WorldWideScience

Sample records for beam choppers

  1. A fast chopper for medium energy beams

    Energy Technology Data Exchange (ETDEWEB)

    Madrak, R. [Fermilab; Wildman, D. [Fermilab

    2014-10-30

    The key elements have been constructed for a fast chopper system capable of removing single 2.5 MeV proton bunches spaced at 325 MHz. The average chopping rate is ~ 1 MHz. The components include a pulse delaying microstrip structure for deflecting the beam, high voltage (1.2 kV) fast (ns rise time) pulsers, and an associated wideband combiner. Various designs for the deflecting structures have been studied. Measurements of the microstrip structures' coverage factors and pulse shapes are presented.

  2. Beam chopper For the Low-Energy Undulator Test Line (LEUTL) in the APS

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Y.; Wang, J.; Milton, S.; Teng, L. [and others

    1997-08-01

    The low-energy undulator test line (LEUTL) is being built and will be tested with a short beam pulse from an rf gun in the Advanced Photon Source (APS) at the Argonne National Laboratory. In the LEUTL a beam chopper is used after the rf gun to deflect the unwanted beam to a beam dump. The beam chopper consists of a permanent magnet and an electric deflector that can compensate for the magnetic deflection. A 30-kV pulsed power supply is used for the electric deflector. The chopper subsystem was assembled and tested for beamline installation. The electrical and beam properties of the chopper assembly are presented.

  3. Development of a fast traveling-wave beam chopper for the National Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.S.; Jason, A.J.; Krawczyk, F.L.; Power, J.

    1997-10-01

    High current and severe restrictions on beam losses, below 1 nA/m, in the designed linac for the National Spallation Neutron Source (NSNS) require clean and fast--with the rise time from 2% to 98% less than 2.5 ns to accommodate a 402.5-MHz beam structure--beam chopping in its front end, at the beam energy 2.5 MeV. The R and D program includes both modification of the existing LANSCE coax-plate chopper to reduce parasitic coupling between adjacent plates, and development of new traveling-wave deflecting structures, in particular, based on a meander line. Using analytical methods and three-dimensional time-domain computer simulations the authors study transient effects in such structures to choose an optimal chopper design.

  4. Development of a Fast Traveling-Wave Beam Chopper for National Spallation Neutron Source.

    Science.gov (United States)

    Kurennoy, Sergey S.; Jason, Andrew J.; Krawczyk, Frank L.

    1997-05-01

    High current and severe restrictions on beam losses, below 1 nA/m, in the designed linac for the NSNS require clean and fast (with the rise time from 2% to 98% less than 2.5 ns to accommodate a 402.5 MHz beam structure) beam chopping in its front end, at beam energy 2.5 MeV. The present R&D program includes both modification of the existing LANSCE coax-plate chopper to reduce parasitic coupling between adjacent plates, and development of new traveling-wave deflecting structures, in particular, based on a meander line. Using analytical methods and three-dimensional time-domain computer simulations we study transient effects in such structures to choose an optimal chopper design.

  5. Development of a fast traveling-wave beam chopper for the SNS project

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.S.; Power, J.F.

    1998-12-31

    High current and stringent restrictions on beam losses, below 1 nA/m, in the designed linac for the Spallation Neutron Source (SNS) require clean and fast--with the rise time from 2% to 98% less than 2.5 ns--beam chopping in its front end, at the beam energy 2.5 MeV. The development of new traveling-wave deflecting current structures based on meander lines is discussed. Three-dimensional time-domain computer simulations with MAFIA are used to study transient effects in the chopper and to optimize current structure design. Two options for the fast pulsed voltage generator--based on FETs and vacuum tubes--are considered, and their advantages and shortcomings for the SNS chopper are discussed.

  6. Electromagnetic Modeling of a Fast Traveling-Wave Beam Chopper for the SNS Project.

    Science.gov (United States)

    Kurennoy, Sergey

    1998-04-01

    High current and severe restrictions on beam losses, below 1 nA/m, in the designed linac for the Spallation Neutron Source (SNS) require clean and fast --- with the rise time from 2% to 98% less than 2.5 ns --- beam chopping in its front end, at the beam energy 2.5 MeV. The development of new traveling-wave deflecting current structures, based on meander lines, is discussed. Three-dimensional time-domain computer simulations are used to study transient effects in the chopper and to optimize its design.

  7. Extracting source parameters from beam monitors on a chopper spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Abernathy, Douglas L [ORNL; Niedziela, Jennifer L [ORNL; Stone, Matthew B [ORNL

    2015-01-01

    The intensity distributions of beam monitors in direct-geometry time-of-flight neutron spectrometers provide important information about the instrument resolution. For short-pulse spallation neutron sources in particular, the asymmetry of the source pulse may be extracted and compared to Monte Carlo source simulations. An explicit formula using a Gaussian-convolved Ikeda-Carpenter distribution is given and compared to data from the ARCS instrument at the Spallation Neutron Source.

  8. Design of a medium-energy beam-transport line with an anti-chopper for the JAERI/KEK project

    CERN Document Server

    Wang Sheng; Kato, T

    2002-01-01

    The medium-energy beam-transport line (MEBT) plays an important role in reducing beam loss in the JAERI/KEK project. A MEBT was designed two years ago, with good beam matching and lower beam loss. To further reduce beam loss during the transient time of the chopper to meet the new requirement from the DTL, a medium-energy beam-transport line with an anti-chopper has been designed. The 3.5 m long transport line consists of nine quadrupole magnets, three bunchers and four chopper/anti-chopper cavities. It accomplishes two tasks: matching the beam from the RFQ to the acceptance of the DTL and chopping the beam to produce gaps for injection into the rapid-cycling ring, which follows the linac. A RF Chopper and an anti-chopper have been adopted in the lattice, resulting in a clean chopping effect and no beam losses during the transient time. Details of the beam dynamics analysis are given

  9. A chopper system for shortening the duration of pulsed supersonic beams seeded with NO or Br2 down to 13 μs

    Science.gov (United States)

    Lam, Jessica; Rennick, Christopher J.; Softley, Timothy P.

    2015-05-01

    A chopper wheel construct is used to shorten the duration of a molecular beam to 13 μs. Molecular beams seeded with NO or with Br2 and an initial pulse width of ≥200 μs were passed through a spinning chopper wheel, which was driven by a brushless DC in vacuo motor at a range of speeds, from 3000 rpm to 80 000 rpm. The resulting duration of the molecular-beam pulses measured at the laser detection volume ranged from 80 μs to 13 μs and was the same for both NO and Br2. The duration is consistent with a simple analytical model, and the minimum pulse width measured is limited by the spreading of the beam between the chopper and the detection point as a consequence of the longitudinal velocity distribution of the beam. The setup adopted here effectively eliminates buildup of background gas without the use of a differential pumping stage, and a clean narrow pulse is obtained with low rotational temperature.

  10. A chopper system for shortening the duration of pulsed supersonic beams seeded with NO or Br2 down to 13 microseconds

    CERN Document Server

    Lam, Jessica; Softley, Tim

    2015-01-01

    A chopper wheel construct is used to shorten the duration of a molecular beam to 13 microseconds. Molecular beams seeded with NO or with Br2 and an initial pulse width of greater or equal to 200 microseconds were passed through a spinning chopper wheel, which was driven by a brushless DC in vacuo motor at a range of speeds, from 3,000 rpm to 80,000 rpm. The resulting duration of the molecular-beam pulses measured at the laser detection volume ranged from 80 microseconds to 13 microseconds, and was the same for both NO and Br2. The duration is consistent with a simple analytical model, and the minimum pulse width measured is limited by the spreading of the beam between the chopper and the detection point as a consequence of the longitudinal velocity distribution of the beam. The setup adopted here effectively eliminates buildup of background gas without the use of a differential pumping stage, and a clean narrow pulse is obtained with low rotational temperature.

  11. A chopper system for shortening the duration of pulsed supersonic beams seeded with NO or Br{sub 2} down to 13 μs

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Jessica; Rennick, Christopher J.; Softley, Timothy P. [Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford OX1 3TA (United Kingdom)

    2015-05-15

    A chopper wheel construct is used to shorten the duration of a molecular beam to 13 μs. Molecular beams seeded with NO or with Br{sub 2} and an initial pulse width of ≥200 μs were passed through a spinning chopper wheel, which was driven by a brushless DC in vacuo motor at a range of speeds, from 3000 rpm to 80 000 rpm. The resulting duration of the molecular-beam pulses measured at the laser detection volume ranged from 80 μs to 13 μs and was the same for both NO and Br{sub 2}. The duration is consistent with a simple analytical model, and the minimum pulse width measured is limited by the spreading of the beam between the chopper and the detection point as a consequence of the longitudinal velocity distribution of the beam. The setup adopted here effectively eliminates buildup of background gas without the use of a differential pumping stage, and a clean narrow pulse is obtained with low rotational temperature.

  12. Note: significant increase to the temporal resolution of 2D X-ray detectors using a novel beam chopper system.

    Science.gov (United States)

    Küchemann, Stefan; Mahn, Carsten; Samwer, Konrad

    2014-01-01

    The investigation of short time dynamics using X-ray scattering techniques is commonly limited either by the read out frequency of the detector or by a low intensity. In this paper, we present a chopper system, which can increase the temporal resolution of 2D X-ray detectors by a factor of 13. This technique only applies to amorphous or polycrystalline samples due to their circular diffraction patterns. Using the chopper, we successfully increased the temporal resolution up to 5.1 ms during synchrotron experiments. For the construction, we provide a mathematical formalism, which, in principle, allows an even higher increase of the temporal resolution.

  13. A design study on the CSNS LEBT pre-chopper

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The China Spallation Neutron Source (CSNS) front end incorporates a pre-chopper in the Low Energy Beam Transport line (LEBT) that will remove a 530 ns section of beam at approximately 1 MHz rate, which is the RF frequency of the ring at injection. It’s one of the most critical devices for properly controlling the injecting beam loss. Physical designing of the pre-chopper is carried out, and the RFQ itself is used as the beam dump of the chopper system. In order to examine the reliability of the pre-chopper design, the beam study of a similar chopper system is successfully performed. The results of physical design and experiments are presented.

  14. ExB chopper system

    Energy Technology Data Exchange (ETDEWEB)

    Wiesner, Christoph [Institut fuer Angewandte Physik, Goethe-Universitaet, Frankfurt/Main (Germany)

    2010-07-01

    A chopper system for high intensity proton beams of up to 200 mA and repetition rates up to 250 kHz is under development at IAP to be tested and applied at the Frankfurt Neutron Source FRANZ. The chopper system consists of a fast kicker for transversal separation of the beams and a static septum magnet to lower the dynamic deflection angle. Multi-particle simulations and preliminary experiments are presented. The simulations were made using a Particle in Cell (PIC)-Code developed at IAP. It permits the study of collective effects of compensation and secondary electrons on the proton beam in time-dependent kicker fields. A magnetic kicker with high repetition rate would entail high power consumption while electrostatic deflection in combination with intense beams can lead to voltage breakdown. Therefore a Wien filter-type E x B configuration consisting of a static magnetic dipole field and a pulsed electric field to compensate the magnetic deflection is discussed. The 25 kV high voltage pulser (250 kHz,100 ns) will apply fast MOSFET transistor technology in the primary circuit, while the high voltage is provided at the secondary circuit around a metglas transformer core.

  15. New chopper control at ILL

    Energy Technology Data Exchange (ETDEWEB)

    Descamps, F. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Proper phasing is an essential characteristic of the chopper systems used at ILL. A wide variety of choppers and selectors differing in weight, speed and bearing types are controlled by a unique electronic card performing digital adaptative filtering. The chopper regulation system is described. (author).

  16. Chopper mode analysis of beam distribution based on time in HIRFL%兰州重离子加速器分时供束的Chopper模式解析

    Institute of Scientific and Technical Information of China (English)

    姜子运; 张玮; 安石; 陈云; 武俊奇; 杨锋; 顾可伟; 李朋

    2011-01-01

    Chopper is an important equipment in beam distribution system based on time of heavy ion research facility in Lanzhou(HIRFL). This paper introduces its mode analysis system's architecture and hardware composition, analyzes correspond ing software requirements, and designs the mode analysis program using multithreading technology. Firstly the program reads mode pulse data of chopper from data acquisition card by NI-DAQmx function, then uses the data for further analysis, and finally sends corresponding work mode control instruction to chopper controller through TCP/IP protocol. The designed program meets system requirements, realizing the function of chopper mode automatic conversion, and has passed the field test.%介绍了兰州重离子加速器分时供束系统中Chopper模式解析子系统的体系结构及硬件组成,分析了软件需求,并采用多线程技术设计了Chopper模式解析程序.首先使用NF-DAQmx函数实时读取PXI6133数据采集卡上采集的Chopper模式脉冲,然后对其作进一步分析,最后使用TCP/IP协议将相应的工作模式控制指令发送给控制器.设计的程序达到了系统要求,实现了Chopper模式自动转换的功能,并通过了现场测试.

  17. Experimental performance of an E ×B chopper system

    Science.gov (United States)

    Wiesner, C.; Droba, M.; Meusel, O.; Noll, D.; Payir, O.; Ratzinger, U.; Schneider, P.

    2017-02-01

    Beam operation of a novel E ×B chopper system has started in the low-energy beam transport (LEBT) section of the accelerator-driven neutron source FRANZ. The chopper is designed for low-energy high-perveance beams and high repetition rates, and will finally operate with 120 keV protons. It combines a static magnetic deflection field with a pulsed electric compensation field in a Wien filter-type E ×B configuration. The chopper was designed, manufactured and successfully commissioned at the required repetition rate of 257 kHz using a 14 keV helium beam with up to 3.5 mA of beam current. Beam pulses with rise times of (120 ±10 ) ns , flat-top lengths of (85 ±10 ) ns to (120 ±10 ) ns and full width at half maximum (FWHM) between (295 ±10 ) ns and (370 ±10 ) ns were experimentally achieved.

  18. Linac4 chopper line commissioning strategy

    CERN Document Server

    Bellodi, G; Lombardi, A M; Posocco, P A; Sargsyan, E

    2010-01-01

    The report outlines the strategy for beam-based commissioning of the Linac4 3 MeV chopper line as currently scheduled to start in the second half of 2011 in the Test Stand Area. A dedicated temporary diagnostics test bench will complement the measurement devices foreseen for permanent installation in the chopper line. A commissioning procedure is set out as a series of consecutive phases, each one supposed to meet a well- defined milestone in the path to fully characterise the beam-line. Specific set-ups for each stage are defined in terms of beam characteristics, machine settings and diagnostics used. Operational guidelines are given and expected results at the relative points of measurements are shown for simulated scenarios (on the basis of multi-particle tracking studies carried out with the codes PATH and TRACEWin). These are then interpreted in the light of the resolution limits of the available diagnostics instruments to assess the precision reach on individual measurements and the feasibility of techn...

  19. Infrared Sensor with Liquid Crystal Chopper

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An infrared sensor using the liquid crystal chopper is presented. The infrared sensor is designed to detect infrared rays with a pyroelectric element used as a liquid crystal chopper in such an infrared sensor or the like.

  20. Fabrication of the MEBT chopper system for the spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Hardekopf, R. A.; Kurennoy, S. (Sergey); Power, J. F. (John F.); Roybal, R. J. (Raymond J.(Ray); Schrage, D. L. (Dale L.); Sherwood, R. (Ron); Collins, S. (Shaun)

    2003-01-01

    Los Alamos completed design, fabrication, procurement, and initial testing (without beam) of the SNS medium-energy beam-transport (MEBT) chopper, including the meander-line traveling-wave structure and the electrical-pulser system. This report reviews the design parameters and discusscs the fabrication process for the chopper structures, including measurements of the impedance and rise time. (The MEBT vacuum system and chopper-target beam stop were developed at and reported by LBNL.) We discuss the spccifications for the pulse generator and its fabrication and testing at Directed Energy, Inc. of Boulder, CO. Experimental tests of the chopper system are currently being performed at the SNS site at ORNL and will be reported separately.

  1. Fast Chopper Structure for the CERN Superconducting Proton Linac

    CERN Document Server

    Caspers, Friedhelm; Kurennoy, S S

    2002-01-01

    The SPL chopper is a travelling wave device, which deflects a slow beam (b = v/c = 0.08) by its transverse electric field. We discuss the chopper deflecting structure based on a meander line printed on an alumina substrate. This concept profits from the radiation resistance of alumina, its excellent out-gassing properties and its good thermal conductivity. The use of well established MIC (microwave integrated circuit) thick film technology allows easy implementation of prototypes; the thickness of the printed layer should be increased by means of an electrochemical deposition method. The topology of the structure has been chosen from standard MIC layouts and was subsequently optimized using numerical simulations. Several prototypes have been manufactured and measurements have shown encouraging results.

  2. Risk Assessment of the Chopper Dipole Kicker Magnets for the MedAustron Facility

    CERN Document Server

    Kramer, T; Barnes, M J; Benedikt, M; Fowler, T

    2011-01-01

    The MedAustron facility, to be built in Wiener Neustadt (Austria), will provide protons and ions for both cancer therapy and research [1]. Different types of kicker magnets will be used in the accelerator complex, including fast beam chopper dipoles: these allow the beam to be switched on and off for routine operational reasons or in case of emergency. Main requirements for the beam chopper system are safety and reliability. A criticality analysis, to chart the probability of failure modes against the severity of their consequences of the fault, has been carried out for the chopper dipole system. This "Failure Mode, Effects, and Criticality Analysis" (FMECA), has been used to highlight failure modes with relatively high probability and severity of consequences: conservative ratings of critical components and appropriate redundancy, together with measurements and interlocks, have been used to reduce the probability and criticality of faults. This paper gives an overview of the Risk Assessment approach and pres...

  3. Capacitively-coupled chopper amplifiers

    CERN Document Server

    Fan, Qinwen; Huijsing, Johan H

    2017-01-01

    This book describes the concept and design of the capacitively-coupled chopper technique, which can be used in precision analog amplifiers. Readers will learn to design power-efficient amplifiers employing this technique, which can be powered by regular low supply voltage such as 2V and possibly having a +\\-100V input common-mode voltage input. The authors provide both basic design concepts and detailed design examples, which cover the area of both operational and instrumentation amplifiers for multiple applications, particularly in power management and biomedical circuit designs. Discusses basic working principles and details of implementation for proven designs; Includes a diverse set of applications, along with measurement results to demonstrate the effectiveness of the technique; Explains advantages and drawbacks of the technique, given particular circumstances.

  4. Status of CERN Chopper Driver and the Solid State Alternative

    CERN Document Server

    Paoluzzi, M

    2005-01-01

    The Superconducting H- Linac under study at CERN requires a high performance 3 MeV chopper. It has to establish the required beam time-structure by dumping part of the beam exiting the RFQ in 0.6 ms bursts of 1 ns bunches spaced by 2.84 ns and repeated at 50 Hz. For maximum flexibility, the system must be able to remove any number of consecutive bunches with a minimum of 3 and up to a few thousand. The amplifier driving the chopper structure has thus to provide 500 V on 50 omega, with rise and fall times below 2 ns and repetition rate as high as 45 MHz. To achieve the very wide frequency response required for this application a first proposal based on the idea of generating the low and high frequency part of the required spectrum with distinct amplifiers has been followed. In-depth studies and prototyping have proven the principle but also shown its fragilities. Distortions, saturation effects in the ferrite or in the driving circuits, vacuum tube ageing, etc. are difficult to keep within the limits required ...

  5. Non-periodic multi-slit masking for a single counter rotating 2-disc chopper and channeling guides for high resolution and high intensity neutron TOF spectroscopy

    Science.gov (United States)

    Bartkowiak, M.; Hofmann, T.; Stüßer, N.

    2017-02-01

    Energy resolution is an important design goal for time-of-flight instruments and neutron spectroscopy. For high-resolution applications, it is required that the burst times of choppers be short, going down to the μs-range. To produce short pulses while maintaining high neutron flux, we propose beam masks with more than two slits on a counter-rotating 2-disc chopper, behind specially adapted focusing multi-channel guides. A novel non-regular arrangement of the slits ensures that the beam opens only once per chopper cycle, when the masks are congruently aligned. Additionally, beam splitting and intensity focusing by guides before and after the chopper position provide high intensities even for small samples. Phase-space analysis and Monte Carlo simulations on examples of four-slit masks with adapted guide geometries show the potential of the proposed setup.

  6. Chopper:Efficient Algorithm for Tree Mining

    Institute of Scientific and Technical Information of China (English)

    Chen Wang; Ming-Sheng Hong; Wei Wang; Bai-Le Shi

    2004-01-01

    With the development of Internet, frequent pattern mining has been extended to more complex patterns like tree mining and graph mining. Such applications arise in complex domains like bioinformatics, web mining, etc. In this paper, we present a novel algorithm, named Chopper, to discover frequent subtrees from ordered labeled trees. An extensive performance study shows that the newly developed algorithm outperforms TreeMinerV, one of the fastest methods proposed previously, in mining large databases. At the end of this paper,the potential improvement of Chopper is mentioned.

  7. Conceptual design of a Disk Chopper Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Copley, J.R.D. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1997-09-01

    We describe methods that we have used for the conceptual design of the Disk Chopper Spectrometer at the Cold Neutron Research Facility, National Institute of Standards and Technology. Most of the discussion concerns the multiple chopper system. No single design method is best in every situation. We believe that an analytical approach is preferable, whenever possible. Graphical methods of expressing problems have been very instructive. We have also found it useful, and occasionally invaluable, to cross-check results obtained using different methods, such as analytical integration and ray-tracing.

  8. Negative coupled inductors for polyphase choppers

    Science.gov (United States)

    Jamieson, Robert S. (Inventor)

    1984-01-01

    A technique for negatively coupling the outputs of polyphase choppers is disclosed, wherein the output inductance of each phase is divided into two windings, and each winding is negatively coupled to a corresponding winding of a neighboring phase. In a preferred embodiment for a three-phase chopper circuit, the output inductance of phase A is divided into windings 100 and 102, the output inductance of phase B is divided into windings 110 and 112, and the output inductance of phase C is divided into windings 120 and 122. Pairs of windings 100 and 110, 112 and 120, and 102 and 122 are respectively disposed in transformers arranged for negatively coupling the windings of each pair.

  9. Progress with PXIE MEBT Chopper

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, V.; Chen, A.; Pasquinelli, R; Peterson, D.; Saewert, G.; Shemyakin, A.; Sun, D.; Wendt, M.; /Fermilab; Tang, T.; /SLAC

    2012-05-01

    A capability to provide a large variety of bunch patterns is crucial for the concept of the Project X serving MW-range beam to several experiments simultaneously. This capability will be realized by the Medium Energy Beam Transport's (MEBT) chopping system that will divert 80% of all bunches of the initially 5 mA, 2.1 MeV CW 162.5 MHz beam to an absorber according to a pre-programmed bunch-by-bunch selection. Being considered one of the most challenging components, the chopping system will be tested at the Project X Injector Experiment (PXIE) facility that will be built at Fermilab as a prototype of the Pojrect X front end. The bunch deflection will be made by two identical sets of travelling-wave kickers working in sync. Presently, two versions of the kickers are being investigated: a helical 200 Ohm structure with a switching-type 500 V driver and a planar 50 Ohm structure with a linear {+-} 250 V amplifier. This paper describes the chopping system scheme and functional specifications for the kickers, present results of electromagnetic measurements of the models, discuss possible driver schemes, and show a conceptual mechanical design.

  10. Choppers to optimise the repetition rate multiplication technique on a direct geometry neutron chopper spectrometer

    DEFF Research Database (Denmark)

    Vickery, Anette; Deen, P. P.

    2014-01-01

    In recent years the use of repetition rate multiplication (RRM) on direct geometry neutron spectrometers has been established and is the common mode of operation on a growing number of instruments. However, the chopper configurations are not ideally optimised for RRM with a resultant 100 fold flux...

  11. MEANDER-LINE CURRENT STRUCTURE DEVELOPMENT FOR SPALLATION NEUTRON SOURCE FAST CHOPPER

    Energy Technology Data Exchange (ETDEWEB)

    S. KURRENOY; J. POWER

    2000-10-01

    A new current structure for the fast traveling-wave 2.5-MeV beam chopper in the front end of the Spallation Neutron Source (SNS) has been suggested in [1]. The structure is based on the meander-folded notched stripline with dielectric supports and separators. Its design has been optimized using electromagnetic 3-D modeling with the MAFIA code package to provide rise and fall times in the range of 1 to 2 ns. A full-length (50 cm) prototype has been manufactured, and its preliminary measurements showed a good agreement with the calculations. Detailed measurements results and their comparison with simulations are presented. The latest front-end design requires a shorter, 35-cm chopper with a higher pulse voltage. Its meander-line current structure, based on the same principles, has also been optimized with MAFIA.

  12. A CMOS low-noise instrumentation amplifier using chopper modulation

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Bruun, Erik

    2005-01-01

    This paper describes a low-power, low-noise chopper stabilized CMOS instrumentation amplifier for biomedical applications. Low thermal noise is achieved by employing MOSTs biased in the weak/moderate inversion region, whereas chopper stabilization is utilized to shift 1/f-noise out of the signal...

  13. Broad-band chopper for a CW proton linac at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, E.; Lebedev, V.A.; Solyak, N.; Nagaitsev, S.; Sun, D.; /Fermilab

    2011-03-01

    The future Fermilab program in the high energy physics is based on a new facility called the Project X [1] to be built in the following decade. It is based on a 3 MW CW linear accelerator delivering the 3 GeV 1 mA H{sup -} beam to a few experiments simultaneously. Small fraction of this beam will be redirected for further acceleration to 8 GeV to be injected to the Recycler/Main Injector for a usage in a neutrino program and other synchrotron based high energy experiments. Requirements and technical limitations to the bunch-by-bunch chopper for the Fermilab Project X are discussed.

  14. Analysis of Input and Output Ripples of PWM AC Choppers

    Directory of Open Access Journals (Sweden)

    Pekik Argo Dahono

    2008-11-01

    Full Text Available This paper presents an analysis of input and output ripples of PWM AC choppers. Expressions of input and output current and voltage ripples of single-phase PWM AC choppers are first derived. The derived expressions are then extended to three-phase PWM AC choppers. As input current and output voltage ripples specification alone cannot be used to determine the unique values of inductance and capacitance of the LC filters, an additional criterion based on the minimum reactive power is proposed. Experimental results are included in this paper to show the validity of the proposed analysis method.

  15. Neural network based PWM AC chopper fed induction motor drive

    Directory of Open Access Journals (Sweden)

    Venkatesan Jamuna

    2009-01-01

    Full Text Available In this paper, a new Simulink model for a neural network controlled PWM AC chopper fed single phase induction motor is proposed. Closed loop speed control is achieved using a neural network controller. To maintain a constant fluid flow with a variation in pressure head, drives like fan and pump are operated with closed loop speed control. The need to improve the quality and reliability of the drive circuit has increased because of the growing demand for improving the performance of motor drives. With the increased availability of MOSFET's and IGBT's, PWM converters can be used efficiently in low and medium power applications. From the simulation studies, it is seen that the PWM AC chopper has a better harmonic spectrum and lesser copper loss than the Phase controlled AC chopper. It is observed that the drive system with the proposed model produces better dynamic performance, reduced overshoot and fast transient response. .

  16. A MEMS-based high frequency x-ray chopper.

    Science.gov (United States)

    Siria, A; Dhez, O; Schwartz, W; Torricelli, G; Comin, F; Chevrier, J

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  17. A MEMS-based high frequency x-ray chopper

    Energy Technology Data Exchange (ETDEWEB)

    Siria, A; Schwartz, W; Chevrier, J [Institut Neel, CNRS-Universite Joseph Fourier Grenoble, BP 166, F-38042 Grenoble Cedex 9 (France); Dhez, O; Comin, F [ESRF, 6 rue Jules Horowitz, F-38043 Grenoble Cedex 9 (France); Torricelli, G [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  18. Four Quadrant Chopper Drive with Specialized Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Alexandru Morar

    2009-12-01

    Full Text Available The paper presents a high performance system for separately-excited D.C. motor control, which was designed and performed with a specialized integrated circuit (L292, made by SGS-THOMSON Microelectronics Company. With an interface and an adequate software, L292 circuit can be used as a chopper in 2 or 4 quadrant.

  19. Four Quadrant Chopper Drive with Specialized Integrated Circuits

    OpenAIRE

    Alexandru Morar

    2009-01-01

    The paper presents a high performance system for separately-excited D.C. motor control, which was designed and performed with a specialized integrated circuit (L292), made by SGS-THOMSON Microelectronics Company. With an interface and an adequate software, L292 circuit can be used as a chopper in 2 or 4 quadrant.

  20. Observability and observer design for hybrid multicell choppers

    Science.gov (United States)

    Bejarano, F. J.; Ghanes, M.; Barbot, J.-P.

    2010-03-01

    Multicell choppers are part of a class of hybrid systems in which the continuous state vector is always unobservable, in the sense that the observability matrix never has full rank. Due to their hybrid behaviour, the recent concept of Z(T N )-observability can be applied and analysed in the context of multicell choppers, which allows to give conditions, in terms of the switching sequence, under which the voltage across each capacitor can be reconstructed, not instantly, but after some number of switchings. The case when a DC-motor is coupled to the multicell chopper is also considered. It is shown that, under certain admissible assumptions, the voltages across the capacitors and the motor speed can be acceptably estimated. Two observers, one based on the super-twisting algorithm and the other one based on an adaptive approach, are designed. Additionally, we design an observer for the partial state observation. Simulations are given where the proposed observers are compared and the effectiveness of both is shown.

  1. Development and characterization of a 2D precision cryogenic chopper for METIS

    NARCIS (Netherlands)

    Paalvast, Sander L.; Huisman, Robert; Brandl, Bernhard R.; Huub, Janssen; Jayawardhana, Bayu; Molster, Frank; Teuwen, Maurice; Venema, Lars

    2014-01-01

    This paper discusses the development, realization, and characterization of a demonstrator cryogenic chopper for METIS, the third instrument on the ELT. The chopper has to tip/tilt in 2D with a combined angle of up to 13.6mrad and achieve a 95% duty cycle at 5Hz. The mirror (Ø64mm) is guided by a mon

  2. Simulations of chopper jitter at the LET neutron spectrometer at the ISIS TS2

    DEFF Research Database (Denmark)

    Klenø, Kaspar Hewitt; Lefmann, Kim; Willendrup, Peter Kjær

    2014-01-01

    The effect of uncertainty in chopper phasing (jitter) has been investigated for the high-resolution time-of-flight spectrometer LET at the ISIS second target station. The investigation is carried out using virtual experiments, with the neutron simulation package McStas, where the chopper jitter i...

  3. Thermal chopper spectrometer for the European spallation source

    DEFF Research Database (Denmark)

    Klenø, Kaspar Hewitt; Lefmann, Kim

    2011-01-01

    One of the instruments being considered for the ESS is a thermal chopper spectrometer, intended for the study of lattice vibrations and magnetic excitations. However, as the ESS will be a long pulsed source, we propose a very long instrument (180–300 m). We here present a guide system that can ac...... achieve a flux of 3.47 ×108 n/(s·cm2) and a resolution of dE/E = 5.3% for 1 Å neutrons on the sample with a transport efficiency of 80%. Furthermore, we demonstrate the efficiency of the instrument using a virtual experiment measuring an elastic line width...

  4. Analysis of Variable Speed PFC Chopper Fed BLDC Motor Drive

    Directory of Open Access Journals (Sweden)

    A Jeya Selvan Renius

    2015-02-01

    Full Text Available This paper provides the detailed analysis of the DC-DC chopper fed Brushless DC motor drive used for low-power applications. The various methods used to improve the power quality at the ac mains with lesser number of components are discussed. The most effective method of power quality improvement is also simulated using MATLAB Simulink. Improved method of speed control by controlling the dc link voltage of Voltage Source Inverter is also discussed with reduced switching losses. The continuous and discontinuous modes of operation of the converters are also discussed based on the improvement in power quality. The performance of the most effective solution is simulated in MATLAB Simulink environment and the obtained results are presented.

  5. The Control Method for Pyroelectric Chopper%热释电斩波器控制

    Institute of Scientific and Technical Information of China (English)

    王敏; 李晶; 朱洪洋; 刘愚; 郭小军; 陈如造; 罗凤旺; 秦伟; 朱光明

    2014-01-01

    斩波器是热释电型热像仪的重要组成部份,其平稳、匀速且按要求相位精确地运转,关系到整机成像质量的好坏。提出了一种对热释电斩波器进行闭环控制的方法,该方法的使用,解决了斩波器的控制问题。%Chopper is the important part of the pyroelectric thermal imager. The stable and uniform operation of chopper is related to the imaging quality. This paper presents a method about the closed-loop control for pyroelectric chopper, which solves the problem of the chopper control.

  6. The cold neutron chopper spectrometer at the Spallation Neutron Source—A review of the first 8 years of operation

    Science.gov (United States)

    Ehlers, G.; Podlesnyak, A. A.; Kolesnikov, A. I.

    2016-09-01

    The first eight years of operation of the Cold Neutron Chopper Spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge is being reviewed. The instrument has been part of the facility user program since 2009, and more than 250 individual user experiments have been performed to date. CNCS is an extremely powerful and versatile instrument and offers leading edge performance in terms of beam intensity, energy resolution, and flexibility to trade one for another. Experiments are being routinely performed with the sample at extreme conditions: T ≲ 0.05 K, p ≳ 2 GPa, and B = 8 T can be achieved individually or in combination. In particular, CNCS is in a position to advance the state of the art with inelastic neutron scattering under pressure, and some of the recent accomplishments in this area will be presented in more detail.

  7. The Cold Neutron Chopper Spectrometer at the Spallation Neutron Source - A Review of the first 8 Years of Operation

    CERN Document Server

    Ehlers, Georg; Kolesnikov, Alexander I

    2016-01-01

    The first eight years of operation of the Cold Neutron Chopper Spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge is being reviewed. The instrument has been part of the facility user program since 2009, and more than 250 individual user experiments have been performed to date. CNCS is an extremely powerful and versatile instrument and offers leading edge performance in terms of beam intensity, energy resolution, and flexibility to trade one for another. Experiments are being routinely performed with the sample at extreme conditions: T~0.05K, p>=2GPa and B=8T can be achieved individually or in combination. In particular, CNCS is in a position to advance the state of the art with inelastic neutron scattering under pressure, and some of the recent accomplishments in this area will be presented in more detail.

  8. Investigating the Feasibility of a Travelling-wave Chopper for the Clean Separation of 10 MHz Bunches at HIE-ISOLDE

    CERN Document Server

    Mukhopadhyay, A; Calaga, R; Caspers, F; Paoluzzi, M

    2014-01-01

    The feasibility of cleanly separating the main 10.128MHz bunches from the 101.28MHz satellite bunches with a travelling-wave type chopper at HIE-ISOLDE was investigated using a simple model comprising a chain of synchronised capacitors pulsed at high-voltage. Even with a relatively large transverse aperture of 30mm it appears feasible to remove the satellite bunches spaced at 75mm without significantly perturbing the main bunch. We estimate that for a chopping voltage of 1.2 kV a string of 20 capacitors is required to impart the required deflection of 4 mrad to beams with A=q = 4:5 and the mechanical length of the system can be kept under 0.5 m. The deflection imparted on the main pulse is . 1% of that received by the discarded satellite bunches and the transverse emittance growth of the beam is small if the rise/fall times are kept below 5 ns. The HIE-ISOLDE specification is similar to the specification of the meander strip-line chopper developed at CERN for Linac4 and the application of this technology at ...

  9. Design and performance of the pulsed positron beam at Chalmers University of Technology

    Science.gov (United States)

    Mileshina, L.; Nordlund, A.

    2009-09-01

    A slow monoenergetic pulsed positron beam at Chalmers University of Technology has been built. The system consists mainly of chopper, buncher and accelerator. The achieved positron energy range is in range between 230 eV and 15 keV. The FWHM of the beam resolution function is around 700 ps. The beam intensity is around 103 cps.

  10. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    Science.gov (United States)

    Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.

    2015-03-01

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  11. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Müller, O., E-mail: o.mueller@uni-wuppertal.de; Lützenkirchen-Hecht, D.; Frahm, R. [Bergische Universität Wuppertal, Gaußstraße 20, Wuppertal 42119 (Germany)

    2015-03-15

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  12. The Monte Carlo simulation of neutron transmitted and scattered by disk choppers of various compositions

    Energy Technology Data Exchange (ETDEWEB)

    Baek, I.; Carpenter, J.M. [Intense Pulsed Neutron Source, Argonne National Laboratory, Argonne, IL (United States); Iverson, E.B. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2001-03-01

    We consider the transmission of neutrons through disk-type neutron choppers, considering both the uncollided neutron fraction ({phi}{sub u}) and scattered neutron fraction ({phi}{sub s}). We computed {phi}{sub u}, {phi}{sub s}, and the ratio {phi}{sub u}/{phi}{sub s} through plates of five different absorber materials of various thicknesses to give information for selecting optimum materials and thicknesses. We also studied variance-reducing techniques for Monte Carlo calculation of chopper using MCNP4b, selecting those most effective for these calculations. (author)

  13. A design study of VOR: A versatile optimal resolution chopper spectrometer for the ESS

    Directory of Open Access Journals (Sweden)

    Deen P.P.

    2015-01-01

    Full Text Available VOR, the versatile optimal resolution chopper spectrometer, is designed to probe dynamic phenomena that are currently inaccessible for inelastic neutron scattering due to flux limitations. VOR is a short instrument by the standards of the European Spallation Source (ESS, 30.2 m moderator to sample, and provides instantaneous access to a broad dynamic range, 1–120 meV within each ESS period. The short instrument length combined with the long ESS pulse width enables a quadratic flux increase, even at longer wavelengths, by relaxing energy resolution from ΔE/E = 1% up to ΔE/E = 7%. This is impossible both on a long chopper spectrometer at the ESS and with instruments at short pulsed sources. In comparison to current day chopper spectrometers, VOR can offer an order of magnitude improvement in flux for equivalent energy resolutions, ΔE/E = 1–3%. Further relaxing the energy resolution enables VOR to gain an extra order of magnitude in flux. In addition, VOR has been optimised for repetition rate multiplication (RRM and is therefore able to measure, in a single ESS period, 6–14 incident wavelengths, across a wavelength band of 9 Å with a novel chopper configuration that transmits all incident wavelengths with equivalent counting statistics. The characteristics of VOR make it a unique instrument with capabilities to access small, limited-lifetime samples and transient phenomena with inelastic neutron scattering.

  14. Optimization of the proton chopper for {sup 7}Li(p,n) neutron spectrometry using a {sup 3}He ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Matysiak, W., E-mail: matysiw@mcmaster.c [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, L8S 4K1 (Canada); Chettle, D.R.; Prestwich, W.V.; Byun, S.H. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, L8S 4K1 (Canada)

    2011-02-11

    Thick target {sup 7}Li(p,n) neutron spectra were measured with a {sup 3}He ion chamber in the proton energy region between 1.95 and 2.3 MeV using the McMaster pulsed accelerator neutron source. The pulsed neutron beam was produced by an electrostatic proton chopper to reject the slow neutron detection events, which seriously limit the fast neutron counting rate of the {sup 3}He ion chamber. To collect both arrival time and energy information of {sup 3}He detection events, a custom two-dimensional time-energy analyzer was built using a time scaler and a successive approximation peak-sensing ADC. At each proton energy, the optimum chopper operation was determined by taking into account the two competing requirements: high fast-to-slow neutron ratio and reasonable fast neutron counting rate. The proton pulse widths used were 10 {mu}s for 1.95 and 2.1 MeV proton energies, whereas a shorter, 5 {mu}s proton pulse was used for 2.3 MeV acquisition. The raw data were analyzed using three spectral unfolding methods: a simple division by detection efficiency, an iterative algorithm, and a regularized constrained inversion method. The three methods gave consistent neutron fluence spectra within 20% above 30 keV. Thanks to the enhanced fast-to-slow neutron ratio of the pulsed beam, the full detector response function could be employed in unfolding, which led to an extension of the dynamic energy range as well as a better stability of unfolding process in the low energy region.

  15. Application of a simple asynchronous mechanical light chopper to multielectron coincidence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kenji; Suzuki, Isao H. [Photon Factory, IMSS, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Penent, Francis; Lablanquie, Pascal [Universite Pierre et Marie Curie (UPMC), 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); CNRS, LCPMR(UMR 7614), 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Hikosaka, Yasumasa; Shigemasa, Eiji [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Eland, John H. D. [PTCL, Oxford University, South Parks Road, Oxford OX1 3QZ (United Kingdom)

    2009-12-15

    A simple asynchronous mechanical light chopper, based on modification of a turbo-molecular pump, has been developed to extend the interval between light pulses in single bunch operation at the Photon Factory storage ring. A pulse repetition rate of 80 kHz was achieved using a cylinder rotating at 48000 rpm, with 100 slits of 80 {mu}m width. This allows absolute timing of particles up to 12.48 {mu}s instead of the single-bunch period of 624 ns. We have applied the chopper together with a light pulse monitor to measure multielectron coincidence spectra using a magnetic bottle time-of-flight electron spectrometer. With such a system, the electron energies are determined without any ambiguity, the folding of coincidence spectra disappears and the effect of false coincidences is drastically reduced.

  16. Vehicle test report: South Coast Technology electric Volkswagen Rabbit with developmental low-power armature chopper

    Science.gov (United States)

    Marte, J. E.; Bryant, J. A.; Livingston, R.

    1983-01-01

    Dynamometer performance of a South Coast Technology electric conversion of a Volkswagen (VW) Rabbit designated SCT-8 was tested. The SCT-8 vehicle was fitted with a transistorized chopper in the motor armature circuit to supplement the standard motor speed control via field weakening. The armature chopper allowed speed control below the motor base speed. This low speed control was intended to reduce energy loss at idle during stop-and-go traffic; to eliminate the need for using the clutch below base motor speed; and to improve the drivability. Test results indicate an improvement of about 3.5% in battery energy economy for the SAE J227a-D driving cycle and 6% for the C-cycle with only a minor reduction in acceleration performance. A further reduction of about 6% would be possible if provision were made for shutting down field power during the idle phases of the driving cycles. Drivability of the vehicle equipped with the armature chopper was significantly improved compared with the standard SCT Electric Rabbit.

  17. A modified time-of-flight method for precise determination of high speed ratios in molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Salvador Palau, A.; Eder, S. D., E-mail: sabrina.eder@uib.no; Kaltenbacher, T.; Samelin, B.; Holst, B. [Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen (Norway); Bracco, G. [Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen (Norway); CNR-IMEM, Department of Physics, University of Genova, V. Dodecaneso 33, 16146 Genova (Italy)

    2016-02-15

    Time-of-flight (TOF) is a standard experimental technique for determining, among others, the speed ratio S (velocity spread) of a molecular beam. The speed ratio is a measure for the monochromaticity of the beam and an accurate determination of S is crucial for various applications, for example, for characterising chromatic aberrations in focussing experiments related to helium microscopy or for precise measurements of surface phonons and surface structures in molecular beam scattering experiments. For both of these applications, it is desirable to have as high a speed ratio as possible. Molecular beam TOF measurements are typically performed by chopping the beam using a rotating chopper with one or more slit openings. The TOF spectra are evaluated using a standard deconvolution method. However, for higher speed ratios, this method is very sensitive to errors related to the determination of the slit width and the beam diameter. The exact sensitivity depends on the beam diameter, the number of slits, the chopper radius, and the chopper rotation frequency. We present a modified method suitable for the evaluation of TOF measurements of high speed ratio beams. The modified method is based on a systematic variation of the chopper convolution parameters so that a set of independent measurements that can be fitted with an appropriate function are obtained. We show that with this modified method, it is possible to reduce the error by typically one order of magnitude compared to the standard method.

  18. Considerations about Chopper Configuration at a time-of-flight SANS Instrument at a Spallation Source

    CERN Document Server

    Jaksch, Sebastian

    2016-01-01

    In any neutron scattering experiment the measurement of the position of the scattered neutrons and their respective velocities is necessary. In order to do so, a position sensitive detector as well as a way to determine the velocities is needed. Measuring the velocities can either be done by using only a single wavelength and therefore velocity or by creating pulses, where the start and end time of each pulse is known and registering the time of arrival at the detector, which is the case we want to consider here. This pulse shaping process in neutron scattering instruments is usually done by using a configuration of several choppers. This set of choppers is then used to define both the beginning and the end of the pulse. Additionally there is of course also a selection in phase space determining the final resolution that can be achieved by the instrument. Taking into account the special requirements of a specific instrument, here a small-angle neutron scattering instrument, creates an additional set of restri...

  19. Posterior segment nucleotomy for dislocated sclerotic cataractous lens using chandelier endoilluminator and sharp tipped chopper

    Institute of Scientific and Technical Information of China (English)

    Brijesh; Takkar; Rajvardhan; Azad; Shorya; Azad; Anubha; Rathi

    2015-01-01

    · AIM: To describe a new surgical technique for managing dislocated sclerotic cataractous lens.· METHODS: Six patients with advanced posteriorly dislocated cataracts were operated at a tertiary care centre and analyzed retrospectively. After standard 3 port23 G pars plana vitrectomy and perfluorocarbon liquid(PFCL) injection, the dislocated white cataract was held with occlusion using phaco fragmatome and then chopped into smaller pieces with a sharp tipped chopper using 25 G chandelier endoilluminator. Each piece was emulsified individually. Following aspiration of PFCL,Fluid Air Exchange was done in all the cases and surgery completed uneventfully.·RESULTS: Best corrected visual acuity(BCVA) in all the patients was better than 6/12 after one month of follow up. No serious complications were noted till minimum 6mo of follow up.·CONCLUSION: Four port posterior segment nucleotomy with a chandelier endoilluminator, fragmatome and a chopper appears to be a safe, easy and effective procedure for managing dislocated sclerotic cataractous nuclei. Ultrasonic energy used and adverse thermal effects of the fragmatome on the sclera may be lesser.

  20. ARCS A wide-Anglular Range Chopper Spectrometer at the SNS

    Energy Technology Data Exchange (ETDEWEB)

    Prof. Brent Fultz; Dr. Doug Abernathy

    2005-01-03

    The ARCS spectrometer project has been funded for 39 months. Procurements are now amain activity, although engineering effort remains, and installation has begun. Most of the subsystems are under control, and represent no risk to the project. These are: cryo-goniometer, detectors and electronics, Fermi chopper system, computing cluster, basic reduction software, T0 chopper and main neutron guide. The sample hutch and radiationshielding are still items of some risk. At the time of this writing, we are awaiting vendor proposals for the scattering chamber with integrated sample isolation system. This is thelargest uncertainty in the ARCS project today. The ARCS Chief Engineer, Kevin Shaw, joined the project in 2004. Project controlsservices are now performed by the SNS. A construction progress review was held in the August, 2004, before which the project was rebaselined, and after which the ProjectExecution Plan was updated. The ARCS project will be rebaselined in March 2005 after a vendor is selected for the scattering chamber with integrated isolation system. Projectcompletion by Sept. 2006 is possible but challenging.

  1. Design of the low energy beam transport line for the China spallation neutron source

    Institute of Scientific and Technical Information of China (English)

    LI Jin-Hai; OUYANG Hua-Fu; FU Shi-Nian; ZHANG Sua-Shun; HE Wei

    2008-01-01

    The design of the China Spallation Neutron Source (CSNS) low-energy beam transport (LEBT) line, which locates between the ion source and the radio-frequency quadrupole (RFQ), has been completed with the TRACE3D code. The design aims at perfect matching, primary chopping, a small emittance growth and sufficient space for beam diagnostics. The line consists of three solenoids, three vacuum chambers, two steering magnets and a pre-chopper. The total length of LEBT is about 1.74 m. This LEBT is designed to transfer 20 mA of H-pulsed beam from the ion source to the RFQ. An induction cavity is adopted as the pre-chopper.The electrostatic octupole steerer is discussed as a candidate. A four-quadrant aperture for beam scraping and beam position monitoring is designed.

  2. Time-of-flight measurements in atomic beam devices using adiabatic high frequency transitions and sextupole magnets

    CERN Document Server

    Baumgarten, C; Brunn, I; Court, G; Ciullo, G; Ferretti, P; Golendukhin, A; Graw, G; Haeberli, W; Henoch, M; Hertenberger, R; Koch, N; Kolster, H; Lenisa, P; Nass, A; Podyachev, S P; Reggiani, D; Rith, K; Simani, M C; Steffens, E; Stewart, J; Wise, T

    2002-01-01

    Atomic beam devices are frequently equipped with sextupole magnets to focus the beam or to act as spin filters in combination with RF-transitions for manipulating the hyperfine population within the atomic beam. A useful tool for the analysis of sextupole systems, the application of time-of-flight (TOF) measurements is presented. TOF measurements are enabled without mechanical beam chopper by utilizing adiabatic radio frequency transitions to select atoms within a certain time interval. This method is especially interesting for the use in atomic beam devices that are already equipped with RF-transitions and sextupole magnets and where space limitations or the required quality of the vacuum do not allow the installation of a mechanical chopper. The measurements presented here were performed with the atomic beam polarimeter of the HERMES polarized deuterium target and the results have been used to optimize the sextupole system of the polarimeter.

  3. Research on a new active power filter topology based on chopper circuit

    CERN Document Server

    Xiaoling, Guo; Bo, Zhang; Jing, Zhang

    2015-01-01

    The active power filter (APF) is attracting more and more attention for its outstanding performance in current and voltage ripple compensation. As modern high-energy accelerators are demanding much more stringent current ripple guideline, the APF is introduced to the magnet power supply (MPS) in accelerator system. However, the conventional APF has a lot of shortages and drawbacks due to its traditional topology, such as complex structure, nonadjustable working voltage, requirement of power supply, and so on. This paper proposes a new topology of APF, which is working as two types of chopper circuits. This APF need not extra electricity, but to use the power of the MPS current ripple to realize ripple depressing. At the end of this paper, the experiment result proves its feasibility and effect.

  4. FPGA-based genetic algorithm implementation for AC chopper fed induction motor

    Science.gov (United States)

    Mahendran, S.; Gnanambal, I.; Maheswari, A.

    2016-12-01

    Genetic algorithm (GA)-based harmonic elimination technique is proposed for designing AC chopper. GA is used to calculate optimal firing angles to eliminate lower order harmonics in output voltage. Total harmonic distortion of output voltage is taken for the fitness function used in the GA. Thus, the ratings of the load are not mandatory to be known for calculating the switching angles using proposed technique. For the performance assessment of GA, Newton-Raphson (NR) method is applied in this present work. Simulation results show that the proposed technique is better in terms of less computational complexity and quick convergence. Simulation results were verified by field programmable gate array controller-based prototype. Simulation study and experimental investigations show that the proposed GA method is superior to the conventional methods.

  5. Initial Emittance Measurements of the Fermilab Linac Beam Using the MTA Beamline

    CERN Document Server

    Johnstone, C

    2012-01-01

    The MTA beam line has been specifically designed to facilitate measurements of the Fermilab Linac beam emittance and properties utilizing a long, 10m, element-free straight. Linac beam is extracted downstream of the 400-MeV electrostatic chopper located in the Booster injection line. This chopper cannot be utilized for MTA beam, and therefore the entire Linac beam pulse is directed into the MTA beamline. Pulse length manipulation is provided by the 750-keV electrostatic chopper at the upstream end of the Linac and, using this device, beam can be delivered from 8 {\\mu}sec up to the full 50 {\\mu}sec Linac pulse length. The 10 m emittance measurement straight exploits and begins at the 12' shield wall that separates the MTA Experimental Hall and beamline stub from the Linac enclosure. A quadrupole triplet has been installed upstream of the shield wall in order to focus a large, 1.5-2" (~95% width) beam through the shield wall and onto a profile monitor located at the exit of the shielding. Another profile monito...

  6. A Particle In Cell code development for high current ion beam transport and plasma simulations

    CERN Document Server

    Joshi, N

    2016-01-01

    A simulation package employing a Particle in Cell (PIC) method is developed to study the high current beam transport and the dynamics of plasmas. This package includes subroutines those are suited for various planned projects at University of Frankfurt. In the framework of the storage ring project (F8SR) the code was written to describe the beam optics in toroidal magnetic fields. It is used to design an injection system for a ring with closed magnetic field lines. The generalized numerical model, in Cartesian coordinates is used to describe the intense ion beam transport through the chopper system in the low energy beam section of the FRANZ project. Especially for the chopper system, the Poisson equation is implemented with irregular geometries. The Particle In Cell model is further upgraded with a Monte Carlo Collision subroutine for simulation of plasma in the volume type ion source.

  7. 新型级联式交流斩波器%Cascade Mode Three-Level AC Chopper

    Institute of Scientific and Technical Information of China (English)

    李磊; 唐栋材

    2012-01-01

    Three-level(TL) AC switch unit is produced by two-level AC switch unit connected together in series manner.TL AC converter is produced by applying TL AC switch unit in basic converter.By combining Buck mode TL and Boost mode AC converters,a novel cascade mode AC chopper was proposed.The AC chopper can chopper unsteady high AC voltage with distortion into regulated sinusoidal voltage with low THD.The AC chopper,which is suit for high input voltage fields,has such following fetures as less power stages,bi-directional power flow,lower voltage stress in the front stage,low THD of output voltage,Buck and Boost mode conversion,unchanged voltage stress in the back stage.The operation principle was also investigated.For cascade mode TL AC chopper,control strategy of flying capacitor voltage was also presented.The AC chopper and the control strategy are fully proved by experimental results.%两电平交流开关单元串联后可得到三电平交流开关单元,将其应用到基本变换器中,可以获得三电平交流变换器。本文将Buck型三电平和Boost型两电平交流变换器进行组合,提出了一种新颖的级联式交流斩波器,并研究了其工作原理。该交流斩波器能够将不稳定、畸变的高压交流电变换成稳定或可调的优质正弦交流电,具有功率变换级数少,双向功率流,前级开关管的电压应力可降低,输出电压波形质量好,可实现升降压变换,后级电压应力未降低等特点,适用于高输入电压的交流变换场合。针对浮动电容电压控制问题,本文还提出了相应的控制策略。实验结果充分证实了本文所提出的级联式交流斩波器及其控制策略的可行性和正确性。

  8. 嵌套式斩波运放的分析与设计%Analysis and Design of Nested Chopper Operational Amplifier

    Institute of Scientific and Technical Information of China (English)

    张锗源; 杨发顺; 杨法明; 张荣芬; 邓朝勇

    2012-01-01

    A nested chopper operational amplifier was designed to solve the problem of large residual offset in traditional chopper amplifiers. Simulation with Spectre based on SMIC 0. 18 μm CMOS process showed that the circuit had an open loop gain of 78. 3 dB and a CMMR up to 112 dB. With chopper frequency /chophigh = 10 kHz and fchoplow=500 Hz, the single chopper and nested chopper opamp were simulated, respectively, using non-matched chopper switch. Results indicated that the nested chopper was helpful to reduce residual offset The nested chopper opamp is suitable for processing weak signal with low bandwidth, such as front-end readout circuit in sensors and audio signal amplifier circuit.%针对传统的斩波运放具有大残余失调的特点,设计了一个嵌套式斩波运放.基于SMIC0.18μm工艺,通过Spectre仿真工具进行验证与仿真,运放的开环增益达到78.3 dB,共模抑制比达到112 dB.在斩波频率fchophigh=10 kHz、fchoplow=500 Hz的条件下,通过使用非匹配斩波开关,分别对单斩波和嵌套式斩波运放进行仿真.结果表明,嵌套式斩波技术能有效减小残余失调的影响.适用于带宽较低的微弱信号检测与处理电路,如传感器前端读出电路和音频信号放大电路等.

  9. Development of pulsed positron beam line with compact pulsing system

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Masaki, E-mail: maekawa.masaki@jaea.go.jp [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Kawasuso, Atsuo [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2012-01-01

    We have developed a pulsed slow positron beam with a pulse width of less than 200 ps and a period of 25 ns. The beam apparatus is composed of a Munich-type pre-buncher, a chopper and a buncher. Instead of the conventional RF cavity, a simple double-cylinder electrode is used for the buncher. The beam will be used for positron lifetime measurements. The time resolution of the whole system including lifetime measurement circuits is 250 ps, which is adequate for studying semiconductors and metals.

  10. Beam diagnostics measurements at 3 MeV of the LINAC4 H- beam at CERN

    CERN Document Server

    Zocca, F; Duraffourg, M; Focker, G J; Gerard, D; Kolad, B; Lenardon, F; Ludwig, M; Raich, U; Roncarolo, F; Sordet, M; Tan, J; Tassan-Viol, J; Vuitton, C; Feshenko, A

    2014-01-01

    As part of the CERN LHC injector chain upgrade, LINAC4 [1, 2] will accelerate H- ions to 160 MeV, replacing the old 50 MeV proton linac. The ion source, the Low Energy Beam Transfer (LEBT) line, the 3 MeV Radio Frequency Quadrupole and the Medium Energy Beam Transfer (MEBT) line hosting a chopper, have been commissioned in the LINAC4 tunnel. Diagnostic devices are installed in the LEBT and MEBT line and in a movable diagnostics test bench which is temporarily added to the MEBT exit. The paper gives an overview of all the instruments used, including beam current transformers, beam position monitors, wire scanners and wire grids for transverse profile measurements, a longitudinal bunch shape monitor and a slit-and-grid emittance meter. The instrumentation performance is discussed and the measurement results that allowed characterizing the 3 MeV beam in the LINAC4 tunnel are summarized.

  11. Flexible fault ride through of DFIG wind turbines with DC-chopper solution

    Energy Technology Data Exchange (ETDEWEB)

    Wessels, Christian; Laubrock, Malte; Bellgardt, Uwe [Nordex Energy GmbH, Hamburg (Germany). System Dept Grid and Grid Integration; Genius, Andreas [Woodward Kempen GmbH, Kempen (Germany). Wind Power Systems

    2012-07-01

    Grid code requirements are becoming increasingly challenging due to the growing integration of decentralized power generators like renewable energy devices. One of the most challenging grid code requirements is the fault ride through (FRT) of wind turbines. Internationally varying and quickly revised grid code requirements are making it necessary for wind turbine manufacturers to apply competitive hardware and flexible software structures to respond quickly to renewed requirements or project specific changes. In this paper an industrially applied and field-tested hardware solution for the FRT of a DFIG wind turbine is presented. The method using a DC-chopper is making the utilization of the conventionally used rotor crowbar unnecessary. Thus, the consumption of reactive power during grid faults is avoided. Instead, a controlled current can be fed dynamically in order to support the grid voltage and to avoid mechanical stress on the drivetrain of the turbine. Using the presented technology, the application of a flexible FRT software structure is possible to fulfill the internationally varying FRT requirements, which is described here. Selected measurement results from long term FRT tests from a wind turbine manufacturer of a real 2.5 MW wind turbine during grid faults are presented and verify the results. (orig.)

  12. The multiple functions of T stellate/multipolar/chopper cells in the ventral cochlear nucleus.

    Science.gov (United States)

    Oertel, Donata; Wright, Samantha; Cao, Xiao-Jie; Ferragamo, Michael; Bal, Ramazan

    2011-06-01

    Acoustic information is brought to the brain by auditory nerve fibers, all of which terminate in the cochlear nuclei, and is passed up the auditory pathway through the principal cells of the cochlear nuclei. A population of neurons variously known as T stellate, type I multipolar, planar multipolar, or chopper cells forms one of the major ascending auditory pathways through the brainstem. T Stellate cells are sharply tuned; as a population they encode the spectrum of sounds. In these neurons, phasic excitation from the auditory nerve is made more tonic by feedforward excitation, coactivation of inhibitory with excitatory inputs, relatively large excitatory currents through NMDA receptors, and relatively little synaptic depression. The mechanisms that make firing tonic also obscure the fine structure of sounds that is represented in the excitatory inputs from the auditory nerve and account for the characteristic chopping response patterns with which T stellate cells respond to tones. In contrast with other principal cells of the ventral cochlear nucleus (VCN), T stellate cells lack a low-voltage-activated potassium conductance and are therefore sensitive to small, steady, neuromodulating currents. The presence of cholinergic, serotonergic and noradrenergic receptors allows the excitability of these cells to be modulated by medial olivocochlear efferent neurons and by neuronal circuits associated with arousal. T Stellate cells deliver acoustic information to the ipsilateral dorsal cochlear nucleus (DCN), ventral nucleus of the trapezoid body (VNTB), periolivary regions around the lateral superior olivary nucleus (LSO), and to the contralateral ventral lemniscal nuclei (VNLL) and inferior colliculus (IC). It is likely that T stellate cells participate in feedback loops through both medial and lateral olivocochlear efferent neurons and they may be a source of ipsilateral excitation of the LSO.

  13. Charging of capacitors with double switch. The principle of operation of auto-zero and chopper-stabilized DC amplifiers

    CERN Document Server

    Yordanov, Vasil G; Manolev, Stojan G; Mishonov, Todor M

    2015-01-01

    The principle of operation of auto-zero and chopper-stabilized DC amplifiers, which is realized in many contemporary operational amplifiers is illustrated by a simple experimental setup given at the Open Experimental Physics Olympiad 2014 - "The Day of the Capacitor", held in Sofia and Gevgelija. The Olympiad was organized by the Sofia Branch of the Union of Physicists in Bulgaria and the Regional Society of Physicists of Strumica, Macedonia. In addition to the solution of the secondary school task in the paper is given a detailed engineering description of the patent by Edwin Goldberg and Jules Lehmann, Stabilized direct current amplifier, U.S. Patent 2,684,999 (1949).

  14. Micro EEG/ECG signal’s chopper-stabilization amplifying chip for novel dry-contact electrode

    Science.gov (United States)

    Sun, Jianhui; Wang, Chunxing; Wang, Gongtang; Wang, Jinhui; Hua, Qing; Cheng, Chuanfu; Cai, Xinxia; Yin, Tao; Yu, Yang; Yang, Haigang; Li, Dengwang

    2017-02-01

    Facing the body’s EEG (electroencephalograph, 0.5–100 Hz, 5–100 μV) and ECG’s (electrocardiogram, ECG’s waves are real-time displayed with the PC-Labview. The proposed chopper system is a unified EEG/ECG signal’s detection instrument and has a critical real application value. Project supported by the National Natural Science Foundation of China (Nos. 61527815, 31500800, 61501426, 61471342), the National Key Basic Research Plan (No. 2014CB744600), the Beijing Science and Technology Plan (No. Z141100000214002), and the Chinese Academy of Sciences’ Key Project (No. KJZD-EW-L11-2).

  15. Current Detection Method for Chopper Circuit%斩波电路电流检测方法

    Institute of Scientific and Technical Information of China (English)

    周新云; 樊少波; 胡燕娇; 黄赛帅; 王青青

    2012-01-01

    A current detection method for chopper circuit based on MOSFET was introduced, the relationship between MOSFET Turn-on current and voltage was analyzed, while the effection of temperature to MOSFET on-resistance was taken into account. According to the curve relationship between MOSFET on-resistance and temperature,a current detection method with temperature compensation function for chopper circuit was proposed, current sensor was replaced by this method. Experimental results show that it has the characteristics of high precision,lower cost and high practical value.%提出了1种基于MOSFET开关管的斩波电路电流检测方法,利用MOSFET导通电流与电压的关系,考虑了温度对MOSFET的导通阻抗的影响,根据MOSFET导通阻抗与温度关系曲线,设计1种具有温度补偿功能的斩波电路MOSFET导通电流检测方案,取代了传统的电流传感器检测方法.实验结果证明,该检测方法测量精度高,成本较低,具有很高的实用价值.

  16. The design and construction of a pulsed beam generation system based on high intensity cyclotron

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to perform the studies on a pulsed beam generation system based on a high intensity cyclotron, a test beam line with a pulsed beam generation for a 10 MeV compact cyclotron (CYCIAE-10) has been designed and constructed at China Institute of Atomic Energy (CIAE). A 70 MHz continuous H- beam can be pulsed to the pulse length of less than 10 ns with a repetition rate of 4.4 MHz. The sine waveform with a frequency of 2.2 MHz is adopted for the chopper and a mesh structure with single drift and dual gaps is used for the 70 MHz buncher. A helical resonator is designed and constructed based on simulations and experiments on the RF matching for the chopper. A helical inductance loop that is exceptionally large of its kind and equipped with water cooling for the resonator has been successfully wound and a 500 W solid RF amplifier has been manufactured. A special measuring device has been designed, which can be used to measure both the DC beam and the pulsed beam. The required pulsed beam was obtained after pulsed beam tuning.

  17. Digitally compensated beam current transformer

    CERN Document Server

    Kesselman, Martin

    2005-01-01

    The Spallation Neutron Source (SNS) is being built by a collaboration of six laboratories. Beam current monitors (BCMs) will be used to record the current of H-minus and H-plus beams ranging from 15 mA (tune-up in the Front End and Linac) to over 60A fully accumulated in the Ring and dumped to the load as a single pulse in the Ring to Beam Target (RTBT). The time structure of these beams ranges from 645ns "mini" bunches at the 1.05 MHz ring revolution rate, to an overall 1 ms long macro-pulse. The requirements for the BCMs will depend upon their location within the system. The need to measure individual mini-pulses, examine the characteristics of the chopper edge, as well as the longer average current pulse of the macropulse, or long duration pulses during Linac tuning place wide requirements upon the response of current transformers. To obtain the desired accuracy and resolution, current transformers must have less than 1 ns rise time and droops of 0.1 %/ms. This places a significant design burden on the cur...

  18. STATUS REPORT ON DEVELOPMENT OF A HIGH-SPEED HIGH-INTENSITY MOLECULAR BEAM

    Energy Technology Data Exchange (ETDEWEB)

    Knuth, Eldon L.

    1963-07-15

    Status of a high-speed high-intensity molecular beam under development is described. Bases for designs of the several components are presented. Using an arc-heated source and a hypersonic jet, molecular energies exceeding 1 ev and beam intensities of the order of 10/sup 16/ molecules/ cm/sup 2/ sec are anticipated. A two-disk beam chopper and speed selector provides a means for analyzing the speed distribution in the generated beam, for chopping the beam into bursts of nearly monoenergetic molecules suitable for scattering studies using the time-of-flight technique, and for modulating the beam in order to facilitate detection. A through-flow ionization detector possesses the versatility required for scattering studies using the time-of-flight technique. A sorption pump and a turbo pump serve as central components of alternative pumping systems for the collimating chamber. Using the arc-heated source, the converging nozzle, the conduction-radiation-cooled skimmer, the turbo pump (turning at 3400 rpm), the chopperselector (acting only as a chopper), and the detector, an arc-heated beam is generated and detected. (auth)

  19. Design Optimization of the Fast Switched Chopper Dipole Magnet for the MedAustron Project

    CERN Document Server

    AUTHOR|(CDS)2083482; Borburgh, Jan

    The MedAustron hadron therapy centre currently under construction in Wiener Neustadt, Austria, is a synchrotron based accelerator facility for cancer treatment with protons and carbon ions. The concept for such a machine first originated at the European Organization for Nuclear Research (CERN) in 1999 as the Proton-Ion Medical Machine Study (PIMMS). The first centre based on this concept was the National Centre for Oncological Treatment (CNAO) built in Italy, which treated its first patient in November 2012. The MedAustron accelerator complex consists of three particle sources, a linear accelerator, a synchrotron, an extraction line, and four irradiation rooms (1 experimental area with horizontal fixed beam, 2 fixed beam line rooms (one horizontal, and one horizontal and vertical) and a rotating gantry treatment room). It will be capable of accelerating 1H+ protons to energies of 60-250 MeV for clinical purposes, and up to 800 MeV for research purposes. It will also accelerate 12C6+ carbon ions to energies of...

  20. Beam dynamics and commissioning of low and medium energy H- beam at Linac4

    CERN Document Server

    Satri, Masoomeh Yarmohammadi; Lamehi-Rachti , Mohammad

    The First step of the CERN Large Hadron Collider injectors upgrade (LIU) project is Linac4. It accelerates H- ions to 160 MeV in an 80 m long accelerator housed in a tunnel 12 m underground, presently under construction. It will replace the present 50 MeV proton Linac2 as injector of the proton accelerator complex to increase the LHC luminosity. It consists of a 45 keV RF volume source, a twosolenoid Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ) accelerating the beam to 3 MeV, a Medium Energy Beam Transport (MEBT) line. The MEBT houses a fast chopper to selectively remove unwanted micro-bunches in the 352 MHz sequence and avoid losses at capture in the CERN PSB (1 MHz). After chopping, the beam acceleration continues by a 50 MeV Drift Tube Linac (DTL), a 100 MeV Cell-Coupled Drift Tube Linac and a Pi-Mode Structure bringing the beam to the final energy of 160 MeV. Linac4 has been commissioned with a temporary source up to 12 MeV. The beam commissioning stages of Linac4 in LEBT...

  1. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.

    Science.gov (United States)

    Lai, Chia-Wei; Lin, Yen-Heng; Lee, Gwo-Bin

    2008-10-01

    The formation of emulsification droplets is crucial for many industrial applications. This paper reports a new microfluidic chip capable of formation and collection of micro-droplets in liquids for emulsion applications. This microfluidic chip comprising microchannels, a micro-chopper and a micro-switch was fabricated by using micro-electro-mechanical-systems (MEMS) technology. The microfluidic chip can generate uniform droplets with tunable sizes by using combination of flow-focusing and liquid-chopping techniques. The droplet size can be actively fine-tuned by controlling either the relative sheath/sample flow velocity ratios or the chopping frequency. The generated droplets can be then sorted to a specific collection area utilizing an active pneumatic micro-switch formed with three micro-valves. Experimental data showed that the olive oil and sodium-alginate (Na-alginate) droplets with diameters ranging from 3 mum to 70 mum with a variation less than 14% is successfully generated and collected. The development of this microfluidic system can be promising for emulsion, drug delivery and nano-medicine applications.

  2. Beam-transport optimization for cold-neutron spectrometer

    Directory of Open Access Journals (Sweden)

    Nakajima Kenji

    2015-01-01

    Full Text Available We report the design of the beam-transport system (especially the vertical geometry for a cold-neutron disk-chopper spectrometer AMATERAS at J-PARC. Based on the elliptical shape, which is one of the most effective geometries for a ballistic mirror, the design was optimized to obtain, at the sample position, a neutron beam with high flux without serious degrading in divergence and spacial homogeneity within the boundary conditions required from actual spectrometer construction. The optimum focal point was examined. An ideal elliptical shape was modified to reduce its height without serious loss of transmission. The final result was adapted to the construction requirements of AMATERAS. Although the ideas studied in this paper are considered for the AMATERAS case, they can be useful also to other spectrometers in similar situations.

  3. 基于Matlab的Boost-Buck Chopper的建模与仿真%Modeling and simulation of Boost-Buck Chopper based on MATLAB

    Institute of Scientific and Technical Information of China (English)

    孟庆波; 崔刚

    2012-01-01

    对Matlab进行了简单介绍,建立了IGBT的仿真模型,运用Matlab/Simulink和Power System工具对Boost- Buck Chopper进行建模、参数选择和仿真分析.与常规电路分析方法相比,该方法具有很大的优越性.%The paper takes a brief introduction to MATLAB, and establishes a simulation model ofIGBT. It uses Matlab/Simulink and Power System tools to model, chooses parameters and simulatesBoost-Buck Chopper. Compared with conventional circuit analysis methods, this method has greatadvantages.

  4. A DSP-based modified slip energy recovery drive using a 12-pulse converter and shunt chopper for a speed control system of a wound rotor induction motor

    Energy Technology Data Exchange (ETDEWEB)

    Tunyasrirut, Satean; Ngamwiwit, Jongkol [Faculty of Engineering and Research Center for Communications and Information Technology, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Kinnares, Vijit [Department of Electrical Engineering, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Furuya, Tadayoshi [Department of Electronics and Control Engineering, Kitakyushu National College of Technology, Kitakyushu, Fukuoka (Japan); Yamamoto, Yoshiichi [Department of Electronic Control, Kumamoto National College of Technology, 2659-2 Suya Nishigoshi-machi Kikuchi-Gun, Kumamoto Prefecture 861-1102 (Japan)

    2008-05-15

    This paper introduces a modified slip energy recovery drive system for speed control of a wound rotor induction motor offering improvement of drive performance, particularly line power factor and overall system efficiency. A 12-pulse line commutated thyristor converter operating in an inverter mode in conjunction with an additional IGBT shunt chopper is employed to transfer slip energy back to ac mains supply via three phase transformers. This approach offers motor speed control by varying the duty cycle of the chopper instead of changing the inverter firing angle. As a consequence, supply power factor can be improved. The servo state feedback designed by linear quadratic regulator (LQR) with observer is also included in order to keep motor speed to be constant over a certain range of operating conditions by using the estimated dc link current derived from motor speed. The advantage of this technique is absence of current transducers for current feedback control loop. The overall control system is implemented on DSP, DS1104'TMS320F240 controller board. Experimental results are illustrated in order to validate performance of the proposed system. (author)

  5. A 55-dB SNDR, 2.2-mW double chopper-stabilized analog front-end for a thermopile sensor

    Science.gov (United States)

    Chengying, Chen; Xiaoyu, Hu; Jun, Fan; Yong, Hei

    2014-05-01

    A double chopper-stabilized analog front-end (DCS-AFE) circuit for a thermopile sensor is presented, which includes a closed-loop front-end amplifier and a 2nd-order 1 bit quantization sigma—delta modulator. The amplifier with a closed-loop structure ensures the gain stability against the temperature. Moreover, by adopting the chopper-stabilized technique both for the amplifier and 2nd-order 1-bit quantization sigma—delta modulator, the low-frequency 1/f noise and offset is reduced and high resolution is achieved. The AFE is implemented in the SMIC 0.18 μm 1P6M CMOS process. The measurement results show that in a 3.3 V power supply, 1 Hz input frequency and 3KHz clock frequency, the peak signal-to-noise and distortion ratio (SNDR) is 55.4 dB, the effective number of bits (ENOB) is 8.92 bit, and in the range of -20 to 85 degrees, the detection resolution is 0.2 degree.

  6. Transient behaviour of a ``beam loaded`` prebuncher cavity and linac structure

    Energy Technology Data Exchange (ETDEWEB)

    Messina, Giovanni; Picardi, Luigi; Ronsivalle, Concetta; Vignati, Angelo [ENEA, Centro Ricerche Frascati, Rome (Italy)

    1997-03-01

    They present the evaluation of the effect of the beam loading on the time response of a 3 GHz prebuncher cavity to the generator and to an input 120 deg chopped electron beam for two different cavity materials. The lumped-element representation of the cavity as a parallel RLC circuit is used which allows to compute also the sensitivity of the prebuncher voltage amplitude and phase with respect to beam current fluctuations. The analysis has been extended to the transient behaviour of a linac positioned after the prebuncher cavity. The consequences of the computation results on the application of a chopper-prebuncher system in a linac devoted to the MUH FEL experiment are discussed.

  7. Terahertz antenna electronic chopper

    Energy Technology Data Exchange (ETDEWEB)

    Sterczewski, L. A., E-mail: lukasz.sterczewski@pwr.edu.pl; Grzelczak, M. P.; Plinski, E. F. [Department of Electronics, Wroclaw University of Technology, 27 Wybrzeze Wyspianskiego St., 50-370 Wroclaw (Poland)

    2016-01-15

    In this paper, we present an electronic circuit used to bias a photoconductive antenna that generates terahertz radiation. The working principles and the design process for the device are discussed in detail. The noise and shape of the wave measurements for a built device are considered. Furthermore, their impact on a terahertz pulse and its spectra is also examined. The proposed implementation is simple to build, robust and offers a real improvement over THz instrumentation due to the frequency tuning. Additionally, it provides for galvanic isolation and ESD protection.

  8. Design of DC chopper power supply based on UC3842%基于UC3842直流斩波电源的设计

    Institute of Scientific and Technical Information of China (English)

    缪仲翠; 张海明

    2012-01-01

    为了给交流传动窄轨电机车的辅助设备提供直流电源,针对实际的需要利用电流型脉宽调制器UC3842设计了直流斩波电源,介绍了电流型脉宽调制器UC3842的基本原理,同时也介绍了基于UC3842直流斩波电源设计原理及应用.%To provide DC power to auxiliary equipment of AC narrow-gauge electric locomotive, a chopper power supply based on the current mode PWM controller UC 3842 was designed in order to satisfy the need of actual. The basic principle of UC3842 was introduced, and also the principles and applications of the design were given.

  9. A Vector Switching Method of Multiphase Chopper in Superconducting Magnetic Energy Storage Systems%超导磁储能系统用多相斩波器矢量切换控制方法

    Institute of Scientific and Technical Information of China (English)

    施啸寒; 王少荣; 左文平

    2013-01-01

    在高功率超导磁储能装置(superconducting magnetic energy storage,SMES)中,电压源型功率调节系统首先利用多相斩波器将超导磁体电流转化成稳定的直流电压,再利用后级电压源型变流器(voltage source converter,VSC)与交流%In the high power superconducting magnetic energy storage (SMES) device, the voltage source converter (VSC) based power conditioning system (PCS) first converts the current of the superconducting magnetic to a stable DC voltage with the help of a multiphase chopper, and then utilizes a VSC to communicate power with the AC system. However, in the situation when the power communication between SMES and the grid changes too fast, a multiphase chopper with traditional current-self-shared PI controller has some problems such as the DC voltage deviation and transient current unbalance. The DC voltage deviation will further exert adverse effects on the control accuracy and speed of the succeeding VSC. To overcome these problems, this paper deduces the switching-function model of the multiphase chopper, and proposes a vector-switching-based control method using the deduced model. This method utilizes the hysteresis to switch the control vector to realize the DC voltage control, at the same time utilizes the redundant switch combinations of a control vector to realize the current sharing. Simulation shows that the proposed method can eliminate the DC voltage deviation when the power communication suddenly changing, and thus, provides a favorable condition for the fast and accurate control of the VSC. Besides, the proposed method can also realize current-sharing of the multiphase chopper in most of the situations, and therefore ensure the long-term operation of the system reliably.

  10. An Experimental Study of Choppers from the Yuzui Paleolithic Locality 2,Yunxian, Hubei Province%湖北郧县余嘴2号地点砍砸器的实验研究

    Institute of Scientific and Technical Information of China (English)

    陈慧; 陈胜前

    2012-01-01

    Experimental study is a fundamental method in lithic analysis to understand the strategy behind exploitation of raw materials, technological process,and past lithic functions.It is particularly useful to conductexperiments with raw materials from the cultural strata and neighboring areas of the archaeological site. In this paper, replication and use experiments of choppers were done at the Yuzui Paleolithic Locality 2 during the excavation season. In terms of replication we made 100 choppers from local gravels (from the cultural strata N=50; and from nearby site surfaces N=50). Then, we using the replicated choppers we cut fresh boughs according to raw material, chopper size and cutting edge angle. We then compared experimental results with artifacts. This work produced several interesting conclusions. First, sandstone was not a useable raw material for chopper manufacture, flint was much better. Interestingly, ancient peoples used more hornfel and quartzite, which were relatively abundant in the local area. Second, our replication experiments suggest that the anvil technique is fairly effective in chopper manufacture, but many site artifacts showed examples of free-hand percussion. The difference in technique probably related to the larger muscle strength of ancient people. Third, the use experiment indicated that there was an optimal axis of force and holding posture , as well as an optimal length of cutting edge. Examination of archaeological choppers confirmed our observation of this optimal holding posture and cutting edge with the used length of cutting edges usually no more than 6 centimeters.Based on this research, we further discuss the meaning of so-called chopper tradition and the functional interpretations of choppers. As a type of expedient tool, the chopper is characterized by a form of simple technology. As shown at the Yuzui Paleolithic Locality 2, free-hand percussion was used rather than anvil technique. The priority in ease in acquiring raw

  11. Beams dynamics optimisation of LINAC4 structures for increased operational flexibility

    CERN Document Server

    Bellodi, G; Garcia Tudela, M; Hein, L M; Lallement, J B; Lombardi, A M; Posocco, P A; Sargsyan, E; Stovall, J

    2010-01-01

    Linac4 is a new 160 MeV, 40 mA pulsed beam current H- accelerator which will be the source of particles for all proton accelerators at CERN. Construction started in October 2008, and beam commissioning of the 3 MeV front-end is scheduled for early next year. A baseline design of the linac beam dynamics was completed 2 years ago and validated by a systematic campaign of transverse and longitudinal error studies to assess tolerance limits and machine activation levels. Recent studies have been mainly focused on optimising this design to achieve both a smoother performance for nominal beam conditions and to gain operational flexibility for non-nominal scenarios. These include a review of the chopper beam dynamics design, a re-definition of the DTL and CCDTL inter-tank regions and a study of operational schemes for reduced beam currents (either permanent or in pulse-to-pulse mode). These studies have been carried out in parallel to first specifications for a beam commissioning strategy of the linac and its low-en...

  12. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  13. 基于Buck交-交斩波器的无功补偿器拓扑与控制方法设计%Topology and Control Strategy Design for Buck AC-AC Chopper Based Var Compensators

    Institute of Scientific and Technical Information of China (English)

    武伟; 谢少军; 汤雨; 许津铭

    2013-01-01

    首先介绍了一种新的交流斩波型无功补偿器,无需直流储能环节,系统可靠性得到加强.以Buck型交流斩波无功补偿器为对象,分析了交流斩波无功补偿的基本原理和补偿特性,推导出占空比与补偿电流之间的关系,建立了系统分析模型.在此基础上,提出了基于广义积分的直接电流控制策略,并给出了参数设计准则,最后进行了仿真和实验验证.仿真和实验结果表明,基于直接电流控制的Buck型交流斩波无功补偿器可以实现对网侧无功功率的实时补偿.%A new AC-AC chopper based var compensator is proposed. It does not require the DC-link energy storage and can effectively enhance the system reliability. The basic principles and compensation characteristics of the Buck AC/AC chopper based var compensator are described, the relationship between duty ratio and compensation current is derived, and the system analysis model is developed. A new direct current control method based on the second order generalized integral is proposed for the var compensator with detailed design criteria as well. The experimental and simulation results demonstrate that the realtime compensation of reactive power in grid side can be realized by this var compensator based on a direct current controlled Buck AC/AC chopper.

  14. Beam collimator

    CERN Multimedia

    1977-01-01

    A four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with SPS secondary beams, the collimator operates under vacuum conditions. See Annual Report 1976 p. 121 and photo 7701014.

  15. The System of Nanosecond 280-keV-He+ Pulsed Beam

    CERN Document Server

    Junphong, Pimporn; Lekprasert, Banyat; Suwannakachorn, Dusadee; Thongnopparat, N; Vilaithong, Thiraphat; Wiedemann, Helmut

    2005-01-01

    At Fast Neutron Research Facility,the 150 kV-pulseds neutron generator is being upgraded to produce a 280-keV-pulsed-He beam for time-of-flight Rutherford backscattering spectrometry. It involves replacing the existing beam line elements by a multicusp ion source, a 400-kV accelerating tube, 45o-double focusing dipole magnet and quadrupole lens. The Multicusp ion source is a compact filament-driven of 2.6 cm in diameter and 8 cm in length. The current extracted is 20.4 μA with 13 kV of extraction voltage and 8.8 kV of Einzel lens voltage. The beam emittance has been found to vary between 6-12 mm mrad. The beam transport system has to be redesigned based on the new elements. The important part of a good pulsed beam depends on the pulsing system. The two main parts are the chopper and buncher. An optimized geometry for the 280 keV pulsed helium ion beam will be presented and discussed. The PARMELA code has been used to optimize the space charge effect, resulting in pulse width of less than 2 ns at a t...

  16. 异步电机转子IGBT斩波调阻调速的准动态模型%Quasi-dynamic model of the rotor IGBT chopper controlled induction motor

    Institute of Scientific and Technical Information of China (English)

    沈天飞; 陈伯时; 龚幼民

    2001-01-01

    转子斩波调阻是异步电机一种简便有效的调速方法,本文提出了一种新型的采用IGBT作斩波管的具有吸收保护作用的斩波回路拓扑结构,并对该系统整流回路的准动态过程进行了详细研究,推导出斩波管占空比与等效电阻之间的非线性函数关系,给出了外接电阻阻值的选择方法。%Rotor chopper control is a simple and effective speed regulation method for induc tion motor. A novel IGBT chopper topology, which can both adjust rotor resistance and protect IGBT efficiently, is presented in this paper. A thorough investigation on the quasi transient state of the rotor rectifying circuit is made, and a nonlinear mapping between the equivalent resistance and the duty cycle is deduced. Furthermore, the method of determining the magnitude of the external resistor is introduced.

  17. Pink-beam focusing with a one-dimensional compound refractive lens.

    Science.gov (United States)

    Dufresne, Eric M; Dunford, Robert W; Kanter, Elliot P; Gao, Yuan; Moon, Seoksu; Walko, Donald A; Zhang, Xusheng

    2016-09-01

    The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm(-2) was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment. A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. A method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.

  18. Development and application of the intense slow positron beam at IHEP

    Institute of Scientific and Technical Information of China (English)

    WANG Bao-Yi; MA Yan-Yun; WANG Ping; CAO Xing-Zhong; QIN Xiu-So; ZHANG Zhe; YU Run-Sheng; WEI Long

    2008-01-01

    This paper describes the development and application of an intense slow positron beam at IHEP with regard to its two main components.The Variable-Energy Positron Lifetime Spectroscopy (VEPLS) based on the pulsing system consisting of a chopper,a prebuncher and a buncher has been constructed in order to meet the needs of materials science development.At present,the time resolution of the VEPLS can easily reach about 386 ps with a peak-to-background ratio of about 600:1.A plugged-in 22Na positron source section for adjusting the newly built experimental station and for increasing the beam operation efficiency has been constructed.A slow positron beam with an intensity of 2.5x105 e+/s and the beam profile whose diameter is 10 mm has been obtained;the moderation efficiency of the tungsten mesh moderator reaches 5.1x 10-4 as calculated with an original positron source activity of 52 mCi.

  19. The beam bunching and transport system of the Argonne positive ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, P.K.; Bogaty, J.M.; Bollinger, L.M.; Clifft, B.E.; Pardo, R.C.; Shepard, K.W.

    1989-01-01

    A new positive ion injector (PII) is currently under construction at Argonne that will replace the existing 9-MV tandem electrostatic accelerator as an injector into ATLAS. It consists of an electron-cyclotron resonance-ion source on a 350-kV platform injecting into a superconducting linac optimized for very slow (..beta.. less than or equal to .007 c) ions. This combination can potentially produce even higher quality heavy-ion beams than are currently available from the tandem since the emittance growth within the linac is largely determined by the quality of the bunching and beam transport. The system we have implemented uses a two-stage bunching system, composed of a 4-harmonic gridded buncher located on the ECR high-voltage platform and a room temperature spiral-loaded buncher of novel design. A sinusoidal beam chopper is used for removal of tails. The beam transport is designed to provide mass resolution of M/..delta..M > 250 and a doubly-isochronous beamline is used to minimize time spread due to path length differences. 4 refs., 2 figs.

  20. Design Considerations for an MEBT Chopper Absorber of 2.1 MeV H- at the Project X Injector Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Awida, M.; Chen, A.; Eidelman, Y.; Lebedev, V.; Prost, L.; Shemyakin, A.; Solyak, N.; Yakovlev, V.; /Fermilab

    2012-05-14

    The Project X Injector Experiment (PIXIE) will be a prototype of the Project X front end that will be used to validate the design concept and decrease technical risks. One of the most challenging components of PIXIE is the wide-band chopping system of the Medium Energy Beam Transport (MEBT) section, which will form an arbitrary bunch pattern from the initially CW 162.5 MHz 5mA beam. The present scenario assumes diverting 80% of the beam to an absorber to provide a beam with the average current of 1mA to SRF linac. This absorber must withstand a high level of energy deposition and high ion fluence, while being positioned in proximity of the superconductive cavities. This paper discusses design considerations for the absorber. Thermal and mechanical analyses of a conceptual design are presented, and future plans for the fabrication and testing of a prototype are described.

  1. Modeling and Simulation of Photovoltaic Energy Storage System Based on Current Reversible Chopper Circuit%基于电流可逆斩波电路的光伏储能系统建模与仿真

    Institute of Scientific and Technical Information of China (English)

    苏人奇; 任国臣; 程海军

    2016-01-01

    Aiming at the problem of the instability of the battery charging current in the energy storage systemcaused bythe randomness and volatility of the photovoltaic power generation system, the theoretical basis and circuit structure of the supercapacitor and battery hybrid energy storage based on the current reversible chopper circuitisstudied. Firstly, the shortcomings of the existing hybrid energy storage system and the advantages of the current reversible chopper circuitareanalyzed in theory. This circuit can adjust the input voltage and control current direction by controlling the working state of thethyristorsto achieve theenergytransferbetweensupercapacitor and battery. Secondly, a reasonable simulation experimentisdesigned to verify the hybrid energy storage structure of the current reversible chopper circuit in the MATLAB, which can make the charge current and voltage of the lead acid battery more stable.%针对由于光伏发电系统出力的随机性和波动性而导致的储能系统中蓄电池充电电流不稳定的问题,研究了基于电流可逆斩波电路的超级电容器和蓄电池混合储能的理论依据和电路结构。首先在理论上分析了现有混合储能系统并联方式的不足以及电流可逆斩波电路的优势,该电路通过控制开关管的工作状态来调节输入侧的电压及控制电流方向,实现超级电容器和蓄电池之间能量的转移。其次,通过在 MATLAB 上建立电路模型,设计合理的仿真实验,验证了经电流可逆斩波电路并联的混合储能结构,能使铅酸蓄电池的充电电流和电压更稳定。

  2. Power supply system for KSTAR neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, W., E-mail: franciscocho@nfri.re.kr; Bae, Y.S.; Han, W.S.; Jeong, J.H.; Kim, J.S.; Park, H.T.; Yang, H.L.; Oh, Y.K.; Kwak, J.G.

    2015-10-15

    Highlights: • The power supply system in KSTAR NBI consists of DC power supplies for ion source. • For operation NBI, DC High Voltage based on the low voltage transformer with chopper. • The surge absorber near the ion source limit the energy deposited to accelerator grid. - Abstract: The power supply system in KSTAR neutral beam injector consists of low voltage and high current DC power supplies for plasma generator of ion source and high voltage and high current DC power supply for accelerator grid system. The arc discharge is initiated by an arc power supply supplying the arc voltage between the chamber wall and 12 filaments which are heated by individual filament power supply. The negative output of arc power supply is common to each positive output of 12 filament power supplies. To interrupt the arc discharging for the fault condition of the arc current unbalance, DCCT current monitor is placed at the positive output cable of the filament power supply. The plasma grid (G1) power supply has the maximum capability of 120 kV/70 A which consists of low voltage regulator with IGBT-switched chopper array system for the voltage control in unit of 600 V and the high voltage rectified transformers to supply DC voltage of 20 kV, 30 kV, and 50 kV. The output voltage of the G1 power supply is also connected to the input of the voltage divider system which supplies the gradient voltage to the gradient grid (G2) in the range of 80–90% of G1 voltage by changing tap of winding resistors in unit of 1%. The charged G1 voltage is turned on and off by the high voltage switch (HVS) system consisting of MOSFET fast semiconductor switches which can immediately be opened less than 1 μs when the ion source grid breakdown occurs. The decelerating grid (G3) power supply is inverter system using capacitor-charge power supply to supply maximum −5 kV/5 A. The important component in power supply system is the surge absorber near the ion source to limit the arc energy deposited to

  3. A beam-displacement prism based, three band stellar photo-polarimeter

    CERN Document Server

    Raveendran, A V; Muneer, S; Mekkaden, M V; Jayavel, N; Somashekar, M R; Sagayanathan, K; Ramamoorthy, S; Rosario, M J; Jayakumar, K

    2015-01-01

    A new astronomical photo-polarimeter that can measure linear polarization of point sources simultaneously in three spectral bands was designed and built in Indian Institute of Astrophysics. The polarimeter has a Calcite beam-displacement prism as the analyzer. The ordinary and extra-ordinary emerging beams in each spectral band are quasi-simultaneously detected by the same photomultiplier by using a high speed rotating chopper. The effective chopping frequency can be set to as high as 200 Hz. A rotating superachromatic Pancharatnam halfwave plate is used to modulate the light incident on the analyzer. The spectral bands are isolated using appropriate dichroic and glass filters. A detailed analysis shows that the reduction of 50% in the efficiency of the polarimeter because of the fact that the intensities of the two beams are measured alternately is partly compensated by the reduced time to be spent on the observation of the sky background. The position angle of polarization produced by the Glan-Taylor prism ...

  4. Determination of efficiencies, loss mechanisms, and performance degradation factors in chopper controlled dc vehical motors. Section 2: The time dependent finite element modeling of the electromagnetic field in electrical machines: Methods and applications. Ph.D. Thesis

    Science.gov (United States)

    Hamilton, H. B.; Strangas, E.

    1980-01-01

    The time dependent solution of the magnetic field is introduced as a method for accounting for the variation, in time, of the machine parameters in predicting and analyzing the performance of the electrical machines. The method of time dependent finite element was used in combination with an also time dependent construction of a grid for the air gap region. The Maxwell stress tensor was used to calculate the airgap torque from the magnetic vector potential distribution. Incremental inductances were defined and calculated as functions of time, depending on eddy currents and saturation. The currents in all the machine circuits were calculated in the time domain based on these inductances, which were continuously updated. The method was applied to a chopper controlled DC series motor used for electric vehicle drive, and to a salient pole sychronous motor with damper bars. Simulation results were compared to experimentally obtained ones.

  5. Beam screens for the LHC beam pipes

    CERN Multimedia

    Patrice Loïez

    1997-01-01

    Cross-section of LHC prototype beam pipes showing the beam screens. Slits in the screens allow residual gas molecules to be pumped out and become frozen to the walls of the ultra-cold beam pipe. Beam screens like these have been designed to line the beam pipes, absorbing radiation before it can hit the magnets and warm them up, an effect that would greatly reduce the magnetic field and cause serious damage.

  6. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  7. Beam imaging sensor

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  8. Ultracold ordered electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Habs, D.; Kramp, J.; Krause, P.; Matl, K.; Neumann, R.; Schwalm, D.

    1988-01-01

    We have started an experimental program to develop an ultracold electron beam, which can be used together with a standard electron cooling device in the Heidelberg Test Storage Ring TSR. In contrast to the standard-type design using electron beam extraction beam extraction from a heated cathode, the ultracold beam is produced by photoemission of electrons from a cooled semiconductor crystal irradiated with an intense near-infrared laser light beam. Adiabatic acceleration is expected to provide ordering of the electron beam itself. Besides the cooling of ion beams to extremely low temperatures, with the aim of obtaining crystallization, the ultracold beam will constitute an excellent target for atomic physics experiments.

  9. Design of dual Beam multi-wavelength UV-visible absorbance detectors based on CCD

    Institute of Scientific and Technical Information of China (English)

    SHEN Shuang; TANG Zhen-an; LI Tong

    2006-01-01

    @@ Because the general multi-wavelength UV-Visible absorbance detector cannot avoid the noise and drift resulting from the intensity fluctuation of the light source,a dual beam multi-wavelength UV-Visible detector based on CCD was designed.The ray of light source is divided into a signal ray and a reference ray by the beam splitter after it passes through the chopper.The signal ray shines into the sample cell.The signal ray passing through the sample cell falls onto a concave mirror which focuses it onto a slot that is imaged on one portion of CCD by a concave grating.The reference ray is imaged on the other portion of CCD by the concave grating after the slot.The signal spectrum,the reference spectrum and the dark current of CCD can be measured on the same CCD under the cooperation of the optical system and accessorial circuits.The real-time compensation for the signal spectrum by using the reference spectrum and the dark current of CCD can effectively depress the noise and drift of the detector.The short-term noise is 10-5AU and the drift is 10-4AU/h.

  10. The CNAO dose delivery system for modulated scanning ion beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Giordanengo, S.; Marchetto, F. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Garella, M. A.; Donetti, M. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125, Italy and Centro Nazionale Adroterapia Oncologica, Pavia 27100 (Italy); Bourhaleb, F.; Monaco, V.; Hosseini, M. A.; Peroni, C.; Sacchi, R.; Cirio, R. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125, Italy and Physics Department, University of Torino, Torino 10125 (Italy); Ciocca, M.; Mirandola, A. [Centro Nazionale Adroterapia Oncologica, Pavia 27100 (Italy)

    2015-01-15

    Purpose: This paper describes the system for the dose delivery currently used at the Centro Nazionale di Adroterapia Oncologica (CNAO) for ion beam modulated scanning radiotherapy. Methods: CNAO Foundation, Istituto Nazionale di Fisica Nucleare and University of Torino have designed, built, and commissioned a dose delivery system (DDS) to monitor and guide ion beams accelerated by a dedicated synchrotron and to distribute the dose with a full 3D scanning technique. Protons and carbon ions are provided for a wide range of energies in order to cover a sizable span of treatment depths. The target volume, segmented in several layers orthogonally to the beam direction, is irradiated by thousands of pencil beams which must be steered and held to the prescribed positions until the prescribed number of particles has been delivered. For the CNAO beam lines, these operations are performed by the DDS. The main components of this system are two independent beam monitoring detectors, called BOX1 and BOX2, interfaced with two control systems performing the tasks of real-time fast and slow control, and connected to the scanning magnets and the beam chopper. As a reaction to any condition leading to a potential hazard, a DDS interlock signal is sent to the patient interlock system which immediately stops the irradiation. The essential tasks and operations performed by the DDS are described following the data flow from the treatment planning system through the end of the treatment delivery. Results: The ability of the DDS to guarantee a safe and accurate treatment was validated during the commissioning phase by means of checks of the charge collection efficiency, gain uniformity of the chambers, and 2D dose distribution homogeneity and stability. A high level of reliability and robustness has been proven by three years of system activity needing rarely more than regular maintenance and working with 100% uptime. Four identical and independent DDS devices have been tested showing

  11. Literature in Focus Beta Beams: Neutrino Beams

    CERN Multimedia

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  12. Single-phase dynamic voltage restorer based on a new chopper AC/DC/AC conversion%一种新型斩波 AC/DC/AC 变换的单相 DVR

    Institute of Scientific and Technical Information of China (English)

    巫付专; 侯婷婷; 韩梁; 冯占伟

    2015-01-01

    针对输入侧采用不可控整流AC/DC/AC结构的单相动态电压恢复器( DVR )输入侧功率因数低,谐波含量高等问题,提出了一种基于PWM斩波变换器的动态电压恢复器来补偿负载两端电压的跌落。该新型拓扑结构采用PWM斩波控制节省了直流侧电容,简化了滤波器设计,使输入侧线路中谐波含量降低,同时达到单位功率因数;电压检测采用单相信号构造成两相信号,利用瞬时无功理论对信号进行检测与处理,实时性高;搭建MATLAB/Simulink仿真和系统实验平台,验证其合理性和可行性。%In view of such problems as the low input side power factor of the single-phase dynamic voltage restorer ( DVR) with the structure of uncontrolled rectifier AC/DC/AC and high harmonic content , this paper proposed a DVR based on the PWM chopper to compensate for the voltage drop at the two load ends .The new topology , which a-dopted the PWM chopper control , saved the DC capacitor and simplified the filter design so that the harmonic content in the input-side circuit was reduced and the input side achieved the unit power factor .Single-phase signals were con-structed into two-phase signals to detect voltage and the instantaneous reactive power theory was used to detect and process the signals , which attained high real time .Finally, a MATLAB/Simulink simulation and experimental plat-form was constructed to verify the rationality and feasibility of the new structure .

  13. ISR beam scrapers

    CERN Multimedia

    1972-01-01

    Beam scrapers seen in the direction of the beam. The two horizontal scraper foils are near the centre of the beam pipe andthe two scrapers for protection of the vacuum chamber are further outside. In the lower part of the beam pipe is the vertical halo scraping blade.

  14. Telecommunication using muon beams

    Science.gov (United States)

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  15. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    Science.gov (United States)

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  16. Ultracold Ordered Electron Beam

    Science.gov (United States)

    Habs, D.; Kramp, J.; Krause, P.; Matl, K.; Neumann, R.; Schwalm, D.

    1988-01-01

    We have started an experimental program to develop an ultracold electron beam, which can be used together with a standard electron cooling device in the Heidelberg Test Storage Ring TSR. In contrast to the standard-type design using electron beam extraction from a heated cathode, the ultracold beam is produced by photoemission of electrons from a cooled semiconductor crystal irradiated with an intense near-infrared laser light beam. Adiabatic acceleration is expected to provide ordering of the electron beam itself. Besides the cooling of ion beams to extremely low temperatures, with the aim of obtaining crystallization, the ultracold beam will constitute an excellent target for atomic physics experiments.

  17. Parabolic scaling beams.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2014-06-15

    We generalize the concept of diffraction free beams to parabolic scaling beams (PSBs), whose normalized intensity scales parabolically during propagation. These beams are nondiffracting in the circular parabolic coordinate systems, and all the diffraction free beams of Durnin's type have counterparts as PSBs. Parabolic scaling Bessel beams with Gaussian apodization are investigated in detail, their nonparaxial extrapolations are derived, and experimental results agree well with theoretical predictions.

  18. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  19. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  20. Pyramid beam splitter

    Science.gov (United States)

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  1. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  2. Beam-beam issues in asymmetric colliders

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e{sup +}- e{sup -} colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II).

  3. Successful Beam-Beam Tuneshift Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip Aaron [Univ. of California, Los Angeles, CA (United States)

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (TEL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operations with inclusion of the TEL are presented and analyzed. It is shown that the TEL provides a way to shatter the previously inescapable beam-beam limit.

  4. Beam Loss in Linacs

    CERN Document Server

    Plum, M A

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  5. High energy beam lines

    Science.gov (United States)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  6. Empirical model for controlling beam-beam effects in ISABELLE

    Energy Technology Data Exchange (ETDEWEB)

    Parzen, G

    1980-01-01

    The beam-beam interaction may limit the beam intensity in ISABELLE. Although considerable progress has been made in understanding the beam-beam interaction, there appears to be no reliable method at present for computing the effects of the beam-beam interaction. The steps taken at ISABELLE to limit beam-beam effects are based largely on the experience accumulated at the ISR. At the ISR, the beam-beam effects do not appear to be large, and the beam intensity at the ISR does not appear to be limited by beam-beam effects. The beam-beam effects may be much stronger in ISABELLE because of factors like higher intensity and stronger non-linearities.

  7. Beam Dynamics for ARIA

    CERN Document Server

    Ekdahl, Carl

    2015-01-01

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  8. Beam Dynamics for ARIA

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  9. Electron beam focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  10. Electron Beam Ion Sources

    OpenAIRE

    Zschornacka, G.; Schmidt, M.; Thorn, A.

    2014-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviole...

  11. Beam injection into RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

    1997-07-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

  12. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  13. Halo formation from mismatched beam-beam interactions

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji

    2003-05-23

    In this paper, we report on the halo formation and emittance growth driven by a parametric resonance during mismatched beam-beam collisions. In the regime of the weak-strong beam-beam interaction, if two beams have the same machine tunes, on-axis head-on collisions between a mismatched strong beam and a weak beam will not cause the formation of halo. However, if the two beams collide with an initial offset, the beam-beam force from the mismatched strong beam can cause halo formation and emittance growth in the weak beam. Meanwhile, if two beams have different machine tunes, for opposite charged colliding beams, when the machine tune of the weak beam is smaller than that of strong beam, there is emittance growth in the weak beam. When the machine tune of the weak beam is larger than that of the strong beam, there is little emittance growth. In the regime of strong-strong beam-beam interaction, halo is formed in both beams even when the two beams collide head-on on the axis with equal machine tunes. This puts a strong requirement for a good beam match during the injection to colliders in order to avoid the emittance growth.

  14. Refractive beam shapers for focused laser beams

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2016-09-01

    Focusing of laser radiation is most often used approach in various industrial micromachining applications like scribing, PCB drilling, and is important in scientific researches like laser heating in geophysics experiments with diamond anvil cells (DAC). Control of intensity distribution in focal spot is important task since optimum intensity profiles are rather flat-top, doughnut or "inverse-Gauss" than typical for lasers Gaussian profile. Because of high intensity of modern CW and pulsed lasers it is advisable to use refractive beam shaping optics with smooth optical surfaces providing high radiation resistance. Workable optical solutions can be built on the base of diffraction theory conclusion that flat-top intensity profile in focal plane of a lens is created when input beam has Airy-disk intensity distribution. It is suggested to apply refractive beam shapers converting, with minimum wavefront deformation, Gaussian profile of TEM00 beam to a beam with Airy disk intensity distribution, thereby optimizing conditions of interference near the focal plane of a lens after the beam shaper and providing flat-top, doughnut, "inverse-Gauss" profiles. This approach allows operation with CW and ultra-short pulse lasers, using F-theta lenses and objectives, mirror scanners, provides extended depth of field similar to Rayleigh length of comparable TEM00 beam, easy integration in industrial equipment, simple adjustment procedure and switching between profiles, telescope and collimator implementations. There will be considered design basics of beam shapers, analysis of profile behaviour near focal plane, examples of implementations in micromachining systems and experimental DAC setups, results of profile measurements and material processing.

  15. Beam-surface scattering studies of the individual and combined effects of VUV radiation and hyperthermal O, O2, or Ar on FEP Teflon surfaces.

    Science.gov (United States)

    Brunsvold, Amy L; Zhang, Jianming; Upadhyaya, Hari P; Minton, Timothy K

    2009-01-01

    Beam-surface scattering experiments were used to probe products that scattered from FEP Teflon surfaces during bombardment by various combinations of atomic and molecular oxygen, Ar atoms, and vacuum ultraviolet (VUV) light. A laser-breakdown source was used to create hyperthermal (translational energies in the range 4-13 eV) beams of argon and atomic/molecular oxygen. The average incidence energy of these beams was tunable and was controlled precisely with a synchronized chopper wheel. A filtered deuterium lamp provided a source of VUV light in a narrow-wavelength range centered at 161 nm. Volatile products that exited the surfaces were monitored with a rotatable mass spectrometer detector. Hyperthermal O atoms with average translational energies above approximately 4 eV may react directly with a pristine FEP Teflon surface, and the reactivity appears to increase with the translational energy of the incident O atoms. VUV light or highly energetic collisions of O2 or Ar may break chemical bonds and lead to the ejection of volatile products; the ejection of volatile products is enhanced when the surface is subjected to VUV light and energetic collisions simultaneously. Exposure to VUV light or to hyperthermal O2 or Ar may increase the reactivity of an FEP Teflon surface to O atoms.

  16. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove

    2007-01-01

    The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  17. KEKB beam instrumentation systems

    Science.gov (United States)

    Arinaga, M.; Flanagan, J.; Hiramatsu, S.; Ieiri, T.; Ikeda, H.; Ishii, H.; Kikutani, E.; Mimashi, T.; Mitsuhashi, T.; Mizuno, H.; Mori, K.; Tejima, M.; Tobiyama, M.

    2003-02-01

    For the stable high-luminosity operation and luminosity increase, the electron and positron storage rings of the KEK B-Factory (KEKB) is equipped with various beam instrumentations, which have been working well since the start of the commissioning in December, 1998. Details and performance of the beam-position monitor system based on the spectrum analysis using DSPs, the turn-by-turn BPM with four-dimensional function available for measurements of the individual bunch position, phase and intensity, the parametric beam-DCCTs designed so as to avoid the magnetic-core-selection problems for the parametric flux modulation, the bunch-by-bunch feedback system indispensable to suppress the strong multibunch instabilities in KEKB, the various optical beam diagnostic systems, such as synchrotron radiation interferometers for precise beam-size measurement, the tune meters, the bunch length monitors and the beam-loss monitors are described. Delicate machine tuning of KEKB is strongly supported by these instrumentations.

  18. The pulsed beam facility at the 3 MV Van de Graaff accelerator in Florence: Overview and examples of applications

    Science.gov (United States)

    Taccetti, N.; Giuntini, L.; Casini, G.; Stefanini, A. A.; Chiari, M.; Fedi, M. E.; Mandò, P. A.

    2002-04-01

    An electrostatic chopper has been installed at the KN 3000 accelerator in Florence to obtain short beam pulses with a number of particles per pulse whose average value can be chosen by varying the current intensity at the deflector plates input. Beam pulses can be obtained containing an average number of particles per pulse from less than one to thousands. The transmitted beam pulses can be as short as 200 ps FWHM, at a repetition rate up to about 100 kHz. Among the many applications of the facility, the direct measurement of energy loss and straggling of protons in Kapton and aluminium is reported. In this measurement, the facility has been tuned for transmission of mainly single-proton pulses; the beam energy is directly measured downstream with a good energy-resolution detector, without and with absorbers in front. In general, measurements of this kind can be directed both to study the basic processes of charged particles interactions in materials, or more practically to obtain the effective values of energy parameters useful in many IBA applications, avoiding the need to rely on simulations or theoretical estimates. Also briefly described is an application to Si-detector testing. In this case, the facility has been tuned for transmission of pulses containing many hundreds of protons of energy Ep=2.5 MeV and the detector is directly exposed to the pulses. Spectra containing equally spaced peaks at energies multiple of Ep are obtained and the response linearity of the detector plus electronics system can thus be checked.

  19. The pulsed beam facility at the 3 MV Van de Graaff accelerator in Florence: Overview and examples of applications

    Energy Technology Data Exchange (ETDEWEB)

    Taccetti, N.; Giuntini, L. E-mail: giuntini@fi.infn.it; Casini, G.; Stefanini, A.A.; Chiari, M.; Fedi, M.E.; Mando, P.A

    2002-04-01

    An electrostatic chopper has been installed at the KN 3000 accelerator in Florence to obtain short beam pulses with a number of particles per pulse whose average value can be chosen by varying the current intensity at the deflector plates input. Beam pulses can be obtained containing an average number of particles per pulse from less than one to thousands. The transmitted beam pulses can be as short as 200 ps FWHM, at a repetition rate up to about 100 kHz. Among the many applications of the facility, the direct measurement of energy loss and straggling of protons in Kapton and aluminium is reported. In this measurement, the facility has been tuned for transmission of mainly single-proton pulses; the beam energy is directly measured downstream with a good energy-resolution detector, without and with absorbers in front. In general, measurements of this kind can be directed both to study the basic processes of charged particles interactions in materials, or more practically to obtain the effective values of energy parameters useful in many IBA applications, avoiding the need to rely on simulations or theoretical estimates. Also briefly described is an application to Si-detector testing. In this case, the facility has been tuned for transmission of pulses containing many hundreds of protons of energy E{sub p}=2.5 MeV and the detector is directly exposed to the pulses. Spectra containing equally spaced peaks at energies multiple of E{sub p} are obtained and the response linearity of the detector plus electronics system can thus be checked.

  20. Hyperon beam physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, P.S.

    1996-03-01

    This report reviews the present status and recent results in hyperon physics concentrating on results from high energy hyperon beam experiments performed at Fermilab over the past several years. The report focuses on hyperon production polarization, precision hyperon magnetic moment measurements and radiative decay studies. Modern charged hyperon beam experiments are characterized by {approx}100m long apparatus and hyperon beams with {gamma}{sub Y}{approx}100 and hyperon fluxes in the 1-100 kHz range.

  1. Chilled beam application guidebook

    CERN Document Server

    Butler, David; Gräslund, Jonas; Hogeling, Jaap; Lund Kristiansen, Erik; Reinikanen, Mika; Svensson, Gunnar

    2007-01-01

    Chilled beam systems are primarily used for cooling and ventilation in spaces, which appreciate good indoor environmental quality and individual space control. Active chilled beams are connected to the ventilation ductwork, high temperature cold water, and when desired, low temperature hot water system. Primary air supply induces room air to be recirculated through the heat exchanger of the chilled beam. In order to cool or heat the room either cold or warm water is cycled through the heat exchanger.

  2. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    to breakage without any warning or ductility, which can be catastrophic if no precautions are taken. One aspect of this issue is treated here by looking at the possibility of mechanically reinforcing glass beams in order to obtain ductile failure for such a structural component. A mechanically reinforced...... the mechanical behavior of the beam is explained. Finally, some design criterions for reinforced glass beams are discussed....

  3. Resolving Two Beams in Beam Splitters with a Beam Position Monitor

    Science.gov (United States)

    Kurennoy, Sergey

    2002-04-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters. Monitoring two transversely separated beams in a common beam pipe in the splitter sections imposes certain requirements on beam diagnostics for these sections. We explore a two-beam system in a generic beam monitor and study the feasibility of resolving the transverse positions of the two beams with one diagnostics device. Effects of unequal beam currents and of finite transverse sizes of the beams are explored analytically for both the ultra relativistic case and the long-wavelength limit.

  4. Beam cavity interaction

    CERN Document Server

    Gamp, A

    2011-01-01

    We begin by giving a description of the rf generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, rf feedback, and feed-forward are described. Examples of digital rf phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  5. ALFA beam halo

    CERN Document Server

    Komarek, Tomas

    2014-01-01

    This note serves as a final report about CERN Summer Student Programme 2014 project. The beam halo is an undesired phenomenon for physics analyses on particle accelerators. It surrounds the beam core and constitutes an important part of background for signal measurements on some detectors, eg. in the forward region. In this study, the data from the ALFA detector were used, specifically from the run 191373 ($\\beta^*=90\\unit{m}$) and the run 213268 ($\\beta^*=1\\unit{km}$). Using the ROOT framework, a software for beam halo events selection was created and beam halo properties were examined. In the run 213268, excessive beam halo is suspected to be the reason for multiple beam scrapings that occurred. A kinematic reconstruction of beam halo particles is attempted in order to understand beam halo properties in the interaction point. Some further simulations are employed to find constraints for beam halo particles in order to survive in the accelerator for a longer time/many revolutions. This work represents a st...

  6. Plasma Beam Measurements

    Science.gov (United States)

    1991-08-01

    GUN PLASMA BEAM / ,I 21 cm diameter = 0 GLASS DRIFT TUBE 50 cm diameter MCP CAMERA CLASS CROSSES (a) Gun muzzle /"- PLASA BEAM / TAROT z = 10 m MCP...discusses some of the hydrodynamic issues related to the calcula- tions. The reader may well wonder why hydrodynamics should be an issue in a 116 WL-TR-90...answer is yes for the slow beam cases and no for the fast beam cases. This is explained further. 118 WL-TR-90-83 The reader will recall the

  7. (Pulsed electron beam precharger)

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1990-01-01

    This report discusses the following topics on electron beam guns: Precharger Modification; Installation of Charge vs. Radius Apparatus; High Concentration Aerosol Generation; and Data Acquisition and Analysis System.

  8. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, A

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GUINEAPIG and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam back- ground hitting the vertex detector.

  9. Resolving Two Beams in Beam Splitters with a Beam Position Monitor

    CERN Document Server

    Kurennoy, S S

    2002-01-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters [1]. Monitoring two separated beams in a common beam pipe in the splitter sections imposes certain requirements on diagnostics for these sections. In this note we explore a two-beam system in a generic beam monitor and study the feasibility of resolving the positions of the two beams with a single diagnostic device.

  10. Implementation of depolarization due to beam-beam effects in the beam-beam interaction simulation tool GUINEA-PIG++

    Science.gov (United States)

    Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.

    2009-12-01

    Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.

  11. Beam distribution reconstruction simulation for electron beam probe

    CERN Document Server

    Feng, Yongchun; Li, Peng; Kang, Xincai; Yin, Yan; Liu, Tong; You, Yaoyao; Chen, Yucong; Zhao, Tiecheng; Xu, Zhiguo; Wang, Yanyu; Yuan, Youjin

    2016-01-01

    Electron beam probe (EBP) is a new principle detector, which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain parallel electron beam is introduced and a simulation code is developed. And then, EBP as a profile monitor for dense beam is simulated using fast scan method under various target beam profile, such as KV distribution, waterbag distribution, parabolic distribution, Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory...

  12. Beaming teaching application

    DEFF Research Database (Denmark)

    Markovic, Milos; Madsen, Esben; Olesen, Søren Krarup;

    2012-01-01

    BEAMING is a telepresence research project aiming at providing a multimodal interaction between two or more participants located at distant locations. One of the BEAMING applications allows a distant teacher to give a xylophone playing lecture to the students. Therefore, rendering of the xylophon...

  13. Ionization beam scanner

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Inner structure of an ionization beam scanner, a rather intricate piece of apparatus which permits one to measure the density distribution of the proton beam passing through it. On the outside of the tank wall there is the coil for the longitudinal magnetic field, on the inside, one can see the arrangement of electrodes creating a highly homogeneous transverse electric field.

  14. 永磁同步发电机与Boost斩波型变换器非线性速度控制%Nonlinear Speed Control for a Permanent Magnet Synchronous Generator and the Boost-Chopper Converter

    Institute of Scientific and Technical Information of China (English)

    耿强; 夏长亮; 王志强; 史婷娜

    2012-01-01

    直驱式永磁同步风电系统电机侧变换器的一种常见拓扑结构为二极管整流桥后接Boost斩波电路。此结构具有较强的非线性,采用普通PI控制器很难使系统在正常运行范围内保持较好的动态性能。针对其非线性特性,分区间建立了发电机与变换器整体非线性数学模型,在单区间内采用输入-输出反馈线性化方法将非线性系统转换为线性系统,在此基础上设计了转速最优控制器。该设计方法数学转换过程较为简单,参数整定方法较为成熟,且不同区间内线性控制器的参数相同。通过一套3kVA的实验系统,验证了该方法能明显改善系统动态性能,对此类风电系统电机侧变换器控制策略的设计具有一定的参考价值。%A diode bridge rectifier followed by a boost chopper circuit is a common topology of the generator side converter for a direct driven permanent magnet synchronous generator(PMSG)-based wind energy conversion system(WECS).Owing to its strong nonlinearity,it is difficult for the system to maintain good dynamic performance within a normal operating range under the ordinary proportional-integral(PI) controller.According to its nonlinear characteristics,the piecewise nonlinear mathematical model for the whole system including the surface permanent magnet synchronous generator(SPMSG) and the generator side converter is built.Then the nonlinear mathematical model is transformed into a linear one by the input-output feedback linearization(IOFL) method.In addition,a speed controller is designed based on the optimal control theory.The proposed strategy has the advantages of a simple conversion process,a relatively mature parameter tuning method and unchanged parameters for the linear optimal controller within different intervals.Experimental results are presented with a 3kVA prototype,verifying the effectiveness and practicability of the proposed strategy.

  15. Entangled vector vortex beams

    Science.gov (United States)

    D'Ambrosio, Vincenzo; Carvacho, Gonzalo; Graffitti, Francesco; Vitelli, Chiara; Piccirillo, Bruno; Marrucci, Lorenzo; Sciarrino, Fabio

    2016-09-01

    Light beams having a vectorial field structure, or polarization, that varies over the transverse profile and a central optical singularity are called vector vortex (VV) beams and may exhibit specific properties such as focusing into "light needles" or rotation invariance. VV beams have already found applications in areas ranging from microscopy to metrology, optical trapping, nano-optics, and quantum communication. Individual photons in such beams exhibit a form of single-particle quantum entanglement between different degrees of freedom. On the other hand, the quantum states of two photons can be also entangled with each other. Here, we combine these two concepts and demonstrate the generation of quantum entanglement between two photons that are both in VV states: a form of entanglement between two complex vectorial fields. This result may lead to quantum-enhanced applications of VV beams as well as to quantum information protocols fully exploiting the vectorial features of light.

  16. Beam director design report

    Energy Technology Data Exchange (ETDEWEB)

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

  17. Muon Beam at the Fermilab Test Beam Area

    CERN Document Server

    Denisov, Dmitri; Lukić, Strahinja; Ujić, Predrag

    2016-01-01

    The intensities and profiles of the muon beam behind the beam dump of the Fermilab test beam area when the facility is running in the "pion" beam mode are measured and summarized in this note. This muon beam with momenta in the range 10 - 50 GeV/c provides an opportunity to perform various measurements in parallel with other users of the test beam area.

  18. BEAMS3D Neutral Beam Injection Model

    Science.gov (United States)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  19. Multi-Beam Optical Tweezers

    OpenAIRE

    Glückstad, Jesper; Eriksen, Rene Lynge; Hanson, Steen Grüner

    2003-01-01

    A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of electromagnetic beams, at least some of the electromagnetic beams intersecting each other, or, having an individually controlled polarization whereby the position and/or angular orientation of a plurality of micro-objects may be individually controlled.A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of ...

  20. Beam Imaging and Luminosity Calibration

    CERN Document Server

    Klute, Markus; Salfeld-Nebgen, Jakob

    2016-01-01

    We discuss a method to reconstruct two-dimensional proton bunch densities using vertex distributions accumulated during LHC beam-beam scans. The $x$-$y$ correlations in the beam shapes are studied and an alternative luminosity calibration technique is introduced. We demonstrate the method on simulated beam-beam scans and estimate the uncertainty on the luminosity calibration associated to the beam-shape reconstruction to be below 1\\%.

  1. Multi-Beam Optical Tweezers

    DEFF Research Database (Denmark)

    2003-01-01

    A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of electromagnetic beams, at least some of the electromagnetic beams intersecting each other, or, having an individually controlled polarization whereby the position and/or angular...... orientation of a plurality of micro-objects may be individually controlled.A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of electromagnetic beams, at least some of the electromagnetic beams intersecting each other, or, having...

  2. Simulations of beam-beam and beam-wire interactions in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung J.; Sen, Tanaji; /Fermilab; Abreu, Natalia P.; Fischer, Wolfram; /Brookhaven

    2009-02-01

    The beam-beam interaction is one of the dominant sources of emittance growth and luminosity lifetime deterioration. A current carrying wire has been proposed to compensate long-range beam-beam effects in the LHC and strong localized long-range beam-beam effects are experimentally investigated in the RHIC collider. Tune shift, beam transfer function, and beam loss rate are measured in dedicated experiments. In this paper, they report on simulations to study the effect of beam-wire interactions based on diffusive apertures, beam loss rates, and beam transfer function using a parallelized weak-strong beam simulation code (BBSIMC). The simulation results are compared with measurements performed in RHIC during 2007 and 2008.

  3. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G; Thorn, A

    2013-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  4. Final focus test beam

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  5. External Beam Therapy (EBT)

    Science.gov (United States)

    ... Esophageal Cancer Treatment Head and Neck Cancer Treatment Lung Cancer Treatment Prostate Cancer Treatment Brain Tumor Treatment Why is ... Radiation Oncology) Breast Cancer Treatment Esophageal Cancer Treatment Lung Cancer Treatment Images related to External Beam Therapy (EBT) Sponsored ...

  6. HIRENASD Beam FEM

    Data.gov (United States)

    National Aeronautics and Space Administration — This contains attempts to create BEAM FEM model. I have started a Blog to discuss this... please put your comments there and I will attempt to keep everything...

  7. Pulsed electron beam precharger

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1991-01-01

    Electron beam precharging of a high resistivity aerosol was successfully demonstrated during this reporting period (Quarters Five and Six). The initial E-beam particle precharging experiments completed this term were designed to confirm and extend some of the work performed under the previous contract. There are several reasons for doing this: (1) to re-establish a baseline performance criterion for comparison to other runs, (2) to test several recently upgraded or repaired subsystems, and (3) to improve upon the collection efficiency of the electron beam precipitator when testing precharging effectiveness with a very high resistivity, moderate-to-high concentration dust load. In addition, these shakedown runs were used to determine a set of suitable operational parameters for the wind tunnel, the electrostatic collecting sections, and the MINACC E-beam accelerator. These parameters will generally be held constant while the precharging parameters are varied to produce an optimum particle charge.

  8. SPIDER beam dump as diagnostic of the particle beam

    Science.gov (United States)

    Zaupa, M.; Dalla Palma, M.; Sartori, E.; Brombin, M.; Pasqualotto, R.

    2016-11-01

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  9. Measurement Error Effects of Beam Parameters Determined by Beam Profiles

    CERN Document Server

    Jang, Ji-Ho; Jeon, Dong-O

    2015-01-01

    A conventional method to determine beam parameters is using the profile measurements and converting them into the values of twiss parameters and beam emittance at a specified position. The beam information can be used to improve transverse beam matching between two different beam lines or accelerating structures. This work is related with the measurement error effects of the beam parameters and the optimal number of profile monitors in a section between MEBT (medium energy beam transport) and QWR (quarter wave resonator) of RAON linear accelerator.

  10. Transverse Beam Size Effects in Beam Position Monitors

    Science.gov (United States)

    Kurennoy, Sergey

    2001-04-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The corrections to BPM signals due to a finite beam size are found analytically for a few particular transverse distributions of the beam current. The results for fields can also be directly applied for calculating the beam coupling impedances of small discontinuities.

  11. LHCb: Beam Pipe portrait

    CERN Multimedia

    LHCb, Collaboration

    2005-01-01

    The proton beams circulate in the accelerator in Ultra High Vacuum to make them interact only with each other when colliding at the interaction point. A special beam pipe "holds" the vacuum where they pass through the LHCb detector: it has to be mechanically very strong to stand the difference in pressure between the vacuum inside it and the air in the cavern but also be as transparent as possible for the particles originating in the proton−proton collisions.

  12. LHCb: Beam Pipe

    CERN Multimedia

    LHCb, Collaboration

    2005-01-01

    The proton beams circulate in the accelerator in Ultra High Vacuum to make them interact only with each other when colliding at the interaction point. A special beam pipe "holds" the vacuum where they pass through the LHCb detector:it has to be mechanically very strong to stand the difference in pressure between the vacuum inside it and the air in the cavern but also be as transparent as possible for the particles originating in the proton−proton collisions.

  13. Choppers Grounded: The Supply-Demand Problem

    Science.gov (United States)

    1988-01-01

    Mtulleni focuses in this essaxy on the availabl~Iitv of it si iigle. h ioh - tehnooy weapon system --the lii 1-ti)i i t’leI p ter. In an opening sc;enar io...priorities iind~ spend more for defense. Mobilization of US forces, in all lWelHOoM "dl ý!eMmerate a global miobilization of thme Free k\\orld which. in) turn... mobilized nation to one, with extreniely limited MO- hilIizat ion potential o(:curedl over it 30-year period. As t he overwhel muinxgly major holder of

  14. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, John D. [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gonzales, Fermin [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  15. High power beam analysis

    Science.gov (United States)

    Aharon, Oren

    2014-02-01

    In various modern scientific and industrial laser applications, beam-shaping optics manipulates the laser spot size and its intensity distribution. However the designed laser spot frequently deviates from the design goal due to real life imperfections and effects, such as: input laser distortions, optical distortion, heating, overall instabilities, and non-linear effects. Lasers provide the ability to accurately deliver large amounts of energy to a target area with very high accuracy. Thus monitoring beam size power and beam location is of high importance for high quality results and repeatability. Depending on the combination of wavelength, beam size and pulse duration , laser energy is absorbed by the material surface, yielding into processes such as cutting, welding, surface treatment, brazing and many other applications. This article will cover the aspect of laser beam measurements, especially at the focal point where it matters the most. A brief introduction to the material processing interactions will be covered, followed by fundamentals of laser beam propagation, novel measurement techniques, actual measurement and brief conclusions.

  16. 3D terahertz beam profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  17. Beam Trail Tracking at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Nicklaus, Dennis J. [Fermilab; Carmichael, Linden Ralph [Fermilab; Neswold, Richard [Fermilab; Yuan, Zongwei [Fermilab

    2015-01-01

    We present a system for acquiring and sorting data from select devices depending on the destination of each particular beam pulse in the Fermilab accelerator chain. The 15 Hz beam that begins in the Fermilab ion source can be directed to a variety of additional accelerators, beam lines, beam dumps, and experiments. We have implemented a data acquisition system that senses the destination of each pulse and reads the appropriate beam intensity devices so that profiles of the beam can be stored and analysed for each type of beam trail. We envision utilizing this data long term to identify trends in the performance of the accelerators

  18. Beam-beam observations in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  19. Bringing up beams

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Last month, commissioning began on CERN’s newest linear accelerator: Linac4. As the replacement machine for Linac2, Linac4 will take a negative hydrogen ion beam to a staggering 160 MeV. We check in to see how the Linac4 team is preparing its machine for its new role as the first link in the accelerator chain.   The Linac4 3 MeV beam line, with the ion source in the back, the RFQ in the middle and the chopping line in the front. On 14 November, members of the Linac4 collaboration and the CERN Operations Group were brought together for their first “real day” in the Linac4 Control Room. Together, they successfully accelerated their first hydrogen ion beam to 3 MeV. It was an exciting moment for everyone involved and marked the start of one of the most critical commissioning phases for the new accelerator. At the start of the Linac4 beam line sits the CERN-made Radio Frequency Quadrupole (RFQ). This vital piece of machinery takes the beam from 45 keV to 3 MeV in ju...

  20. Paul Collier : Balancing beams

    CERN Multimedia

    2009-01-01

    As former head of AB Operations, Paul Collier and his group were in the ‘cockpit’ for the LHC’s maiden voyage - piloting the first beam around the ring. But now, as Head of the Beams Department, he will need his feet firmly on the ground in order to balance all the beam activities at CERN. "As Department Head, I’ll have less direct contact with the machines," Collier says with a hint of regret. "I’ll still obviously be very involved, but they won’t actually let me loose in front of the keyboard anymore!" As the new Head of the BE Department, Collier will be in charge of nearly 400 people, and will oversee all the beam activities, including the preparations for the longest period of beam operation in the history of CERN. In the new organization, the BE, TE and EN Departments have been grouped together in the Accelerator and Technology Sector. "‘Partnership’ is a key word for the three departments," says Collier. "The n...

  1. ICFA Beam Dynamics Newsletter

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al

    2012-07-01

    The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.

  2. A better beam quality

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Progress has been made on two fronts, providing physics data and preparing for higher intensities. Over the Whitsun weekend of May 22 to 24, 5 fills for physics provided almost 30 hours of stable colliding beams, all with bunch intensities around 2x1010 protons and at a β* of 2m. The first three of these fills were with 6 bunches per beam, giving 3 pairs of collisions in all experiments. For the other two fills, the number of bunches per beam was increased to 13, giving 8 pairs of colliding bunches, and for the first time luminosities were pushed above 1029 cm-2s-1, 2 orders of magnitude higher than first collisions in March. In between and after these physics fills, nominal bunches of 1011 protons were successfully ramped and brought into collision in ATLAS and CMS for the first time (not in stable beam conditions and without squeeze). Event rates seen by the experiments were in the expected range for these conditions. In the middle of this work, a short fill with beams of 7 nominal bunches was ...

  3. Pulsed electron beam precharger

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1990-01-01

    Electrostatic collection of a high resistivity aerosol using the Electron Beam Precipitator (EBP) collecting section was demonstrated during this reporting period (Quarter Five). Collection efficiency experiments were designed to confirm and extend some of the work performed under the previous contract. The reason for doing this was to attempt to improve upon the collection efficiency of the precipitator alone when testing with a very high resistivity, moderate-to-high concentration dust load. From the collector shakedown runs, a set of suitable operational parameters were determined for the downstream electrostatic collecting sections of the Electron Beam Precipitator wind tunnel. These parameters, along with those for the MINACC electron beam, will generally be held constant while the numerous precharging parameters are varied to produce an optimum particle charge. The electrostatic collector experiments were part of a larger, comprehensive investigation on electron beam precharging of high resistivity aerosol particles performed during the period covered by Quarters Five, Six, and Seven. This body of work used the same experimental apparatus and procedures and the experimental run period lasted nearly continuously for six months. A summary of the Quarter Five work is presented in the following paragraphs. Section II-A of TPR 5 contains a report on the continuing effort which was expended on the modification and upgrade of the pulsed power supply and the monitoring systems prior to the initiation of the electron beam precharging experimental work.

  4. Beam Time Accounting

    CERN Document Server

    Seitova, Diana

    2016-01-01

    ISOLDE is one of the leading research facilities in the field of nuclear physics. A proton beam with an energy 1.4 GeV coming from the Proton Synchrotron Booster (PSB) hits one of the targets at ISOLDE and produces Radioactive Ion Beams (RIBs). Then, the RIBs of interest is selected and delivered to the different experimental stations. In order to deliver the beam to the certain experimental station, the positions of the devices along the beamline should satisfy certain conditions. The purpose of this project is to define the conditions for the beam to pass through the different beamlines and to store the data about device’s status for later analysis and statistics, so it would be possible to know when the beam was used for different experiments. The data with the settings of the different devices is saved in the Timber database and the first steps for making virtual devices to compile the status of the beamlines were completed.

  5. Light Beam Generation

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method and a system for synthesizing a set of controllable light beams by provision of a system for synthesizing a set of light beams, comprising a spatially modulated light source for generation of electromagnetic radiation with a set of replicas of a predetermined......(x-xs, y-ys), a Fourier transforming lens for Fourier transforming the electromagnetic radiation, a first spatial light modulator for phase shifting the Fourier transformed electromagnetic radiation with the phase -F(u, v) of S*, S* is the complex conjugate of the Fourier transformed symbol s, a Fourier...... transforming lens for Inverse Fourier transforming the spatially modulated radiation, whereby a set of light beams are formed propagating through the inverse Fourier plane (x', y') at desired positions (x's, y's), and a controller for controlling the position of a replica of the symbol, s, for movement...

  6. Grazing incidence beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V.K.

    1985-01-01

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.

  7. Beam Synchronous Timing Systems

    CERN Document Server

    Peters, A

    2003-01-01

    For many beam diagnostics purposes beam synchronous timing systems are needed in addition to the timing systems supplied by the control systems of the different accelerators. The demands and techniques of different accelerator facilities will be discussed along the following aspects: Bunch and macro pulse synchronous timing systems Solutions for different time scales from ps to ms Coupling to the RF and control systems of the different accelerators Electronics for the beam synchronous timing systems: parameters, techniques, controlling Use of industrial products for bunch synchronous timing systems, e.g. function generators Distribution of the timing signals: electronically via cables, optically via fibres or wireless Coupling to and use of timing standards: IRIG-B, GPS, ? The participants should present and describe solutions from their facilities with some transparencies as a starting point for the discussion.

  8. Beam characteristics of energy-matched flattening filter free beams

    Energy Technology Data Exchange (ETDEWEB)

    Paynter, D.; Weston, S. J.; Cosgrove, V. P. [St James Institute of Oncology The Leeds Teaching Hospitals NHS Trust, Medical Physics, Leeds LS9 7TF (United Kingdom); Evans, J. A. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds (United Kingdom); Thwaites, D. I. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds, United Kingdom and Institute of Medical Physics, School of Physics, University of Sydney (Australia)

    2014-05-15

    Purpose: Flattening filter free (FFF) linear accelerators can increase treatment efficiency and plan quality. There are multiple methods of defining a FFF beam. The Elekta control system supports tuning of the delivered FFF beam energy to enable matching of the percentage depth-dose (PDD) of the flattened beam at 10 cm depth. This is compared to FFF beams where the linac control parameters are identical to those for the flattened beam. All beams were delivered on an Elekta Synergy accelerator with an Agility multi-leaf collimator installed and compared to the standard, flattened beam. The aim of this study is to compare “matched” FFF beams to both “unmatched” FFF beams and flattened beams to determine the benefits of matching beams. Methods: For the three modes of operation 6 MV flattened, 6 MV matched FFF, 6 MV unmatched FFF, 10 MV flattened, 10 MV matched FFF, and 10 MV unmatched FFF beam profiles were obtained using a plotting tank and were measured in steps of 0.1 mm in the penumbral region. Beam penumbra was defined as the distance between the 80% and 20% of the normalized dose when the inflection points of the unflattened and flattened profiles were normalized with the central axis dose of the flattened field set as 100%. PDD data was obtained at field sizes ranging from 3 cm × 3 cm to 40 cm × 40 cm. Radiation protection measurements were additionally performed to determine the head leakage and environmental monitoring through the maze and primary barriers. Results: No significant change is made to the beam penumbra for FFF beams with and without PDD matching, the maximum change in penumbra for a 10 cm × 10 cm field was within the experimental error of the study. The changes in the profile shape with increasing field size are most significant for the matched FFF beam, and both FFF beams showed less profile shape variation with increasing depth when compared to flattened beams, due to consistency in beam energy spectra across the radiation field

  9. Active Beam Spectroscopy

    Science.gov (United States)

    von Hellermann, M. G.; Delabie, E.; Jaspers, R. J. E.; Biel, W.; Marchuk, O.; Summers, H. P.; Whiteford, A.; Giroud, C.; Hawkes, N. C.; Zastrow, K. D.

    2008-03-01

    Charge eXchange Recombination Spectroscopy (CXRS) plays a pivotal role in the diagnostics of hot fusion plasmas and is implemented currently in most of the operating devices. In the present report the main features of CXRS are summarized and supporting software packages encompassing "Spectral Analysis Code CXSFIT", "Charge Exchange Analysis Package CHEAP", and finally "Forward Prediction of Spectral Features" are described. Beam Emission Spectroscopy (BES) is proposed as indispensable cross-calibration tool for absolute local impurity density measurements and also for the continuous monitoring of the neutral beam power deposition profile. Finally, a full exploitation of the `Motional Stark Effect' pattern is proposed to deduce local pitch angles, total magnetic fields and possibly radial electric fields. For the proposed active beam spectroscopy diagnostic on ITER comprehensive performance studies have been carried out. Estimates of expected spectral signal-to-noise ratios are based on atomic modelling of neutral beam stopping and emissivities for CXRS, BES and background continuum radiation as well as extrapolations from present CXRS diagnostic systems on JET, Tore Supra, TEXTOR and ASDEX-UG. Supplementary to thermal features a further promising application of CXRS has been proposed recently for ITER, that is a study of slowing-down alpha particles in the energy range up to 2 MeV making use of the 100 keV/amu DNB (Diagnostic Neutral Beam) and the 500 keV/amu HNB (Heating Neutral Beam). Synthetic Fast Ion Slowing-Down spectra are evaluated in terms of source rates and slowing-down parameters

  10. Optimal beam focusing through turbulence.

    Science.gov (United States)

    Charnotskii, Mikhail

    2015-11-01

    Beam spread and beam wandering are the most perceptible effects of atmospheric turbulence on propagating laser beams. The width of the mean irradiance profile is typically used to characterize the beam spread. This so-called long-term (LT) statistic allows for a relatively simple theoretical description. However, the LT beam size is not a very practical measure of the beam spread because its measurements are sensitive to the movements of the source and detector, and to the large-scale variations of the refractive index that are not associated with turbulence. The short-term (ST) beam spread is measured relative to the instantaneous position of the beam center and is free of these drawbacks, but has not been studied as thoroughly as the LT spread. We present a theoretical model for the ST beam irradiance that is based on the parabolic equation for the beam wave propagation in random media, and the Markov approximation for calculation of the statistics of the optical field, and discuss an approximation that allows introduction of the isoplanatic ST point spread function (PSF). Unlike the LT PSF, the ST PSF depends on the overall beam geometry. This allows optimization of the initial beam field in terms of minimizing the ST beam size at the observation plane. Calculations supporting this conjecture are presented for the simple case of the coherent Gaussian beam, and Kolmogorov turbulence.

  11. Merged neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Osterwalder, Andreas [Ecole Polytechnique Federale de Lausanne (EPFL), Institute for Chemical Sciences and Engineering, Lausanne (Switzerland)

    2015-12-15

    A detailed description of a merged beam apparatus for the study of low energy molecular scattering is given. This review is intended to guide any scientist who plans to construct a similar experiment, and to provide some inspiration in describing the approach we chose to our goal. In our experiment a supersonic expansion of paramagnetic particles is merged with one of polar molecules. A magnetic and an electric multipole guide are used to bend the two beams onto the same axis. We here describe in detail how the apparatus is designed, characterised, and operated. (orig.)

  12. Coherent laser beam combining

    CERN Document Server

    Brignon, Arnaud

    2013-01-01

    Recently, the improvement of diode pumping in solid state lasers and the development of double clad fiber lasers have allowed to maintain excellent laser beam quality with single mode fibers. However, the fiber output power if often limited below a power damage threshold. Coherent laser beam combining (CLBC) brings a solution to these limitations by identifying the most efficient architectures and allowing for excellent spectral and spatial quality. This knowledge will become critical for the design of the next generation high-power lasers and is of major interest to many industrial, environme

  13. Molecular beam epitaxy

    CERN Document Server

    Pamplin, Brian R

    1980-01-01

    Molecular Beam Epitaxy introduces the reader to the use of molecular beam epitaxy (MBE) in the generation of III-V and IV-VI compounds and alloys and describes the semiconductor and integrated optics reasons for using the technique. Topics covered include semiconductor superlattices by MBE; design considerations for MBE systems; periodic doping structure in gallium arsenide (GaAs); nonstoichiometry and carrier concentration control in MBE of compound semiconductors; and MBE techniques for IV-VI optoelectronic devices. The use of MBE to fabricate integrated optical devices and to study semicond

  14. Quantized beam shifts

    CERN Document Server

    Kort-Kamp, W J M; Dalvit, D A R

    2015-01-01

    We predict quantized Imbert-Fedorov, Goos-H\\"anchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant $\\alpha$, while the Goos- H\\"anchen ones in multiples of $\\alpha^2$. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  15. Dealing with megawatt beams

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, N.V.; /Fermilab

    2010-08-01

    The next generation of accelerators for MegaWatt proton, electron and heavy-ion beams puts unprecedented requirements on the accuracy of particle production predictions, the capability and reliability of the codes used in planning new accelerator facilities and experiments, the design of machine, target and collimation systems, detectors and radiation shielding and minimization of their impact on environment. Recent advances in code developments are described for the critical modules related to these challenges. Examples are given for the most demanding areas: targets, collimators, beam absorbers, radiation shielding, induced radioactivity and radiation damage.

  16. Design and Construction of the First Prototype of Liquid Scintillator Detector for Fast Beam Loss Monitor(FBLM) System%快响应束流损失监控(FBLM)系统液闪探测器初样的研制

    Institute of Scientific and Technical Information of China (English)

    韩晨霞; 陈昌; 田建民; 赵中亮; 徐美杭; 李公平; 陈元柏; 徐韬光; 赵海泉

    2011-01-01

    给出快响应束流损失监控(Fast Beam Lost Monitor,FBLM)系统的液体闪烁体探测器初样的研制.在高频四极加速器(Radio Frequency Quadrupole,RFQ)实验装置上的测试表明,液闪探测器能给出宽度为500 μs 束流宏脉冲结构,能逐个显示出宏脉冲内490 ns的束流切束脉冲.液闪输出信号脉冲较490 ns束流切束脉冲延迟约70 ns.液闪型FBLM输出的信号幅度大于塑闪型.液闪探测器初样的成功研制,为其性能进一步改进提高,打下了良好的基础.%Design and constmction of the first prototype of liquid scintillator detector for fast beam loss monitor ( FBLM ) system are given. A beam chopping device can remove a 490 ns section of beam at approximately 1 MHz repetition rate within a 500 μs macro beam pulse - width. The liquid scintillator displays the measured beam - pulse structure after the beam chopper. Through RFQ special beam structure, the response time of FBLM is measured. The response time of FBLM is about nano second. The signal amplitude from liquid scintillator is larger than plastic scintillator. All of these give us good experiences for the futher improvement of liquid seintillator detector design and construction. According to the measurement data. liquid seintillator is suggested as the detector of FBLM system.

  17. Beam Loss and Beam Shape at the LHC Collimators

    CERN Document Server

    Burkart, Florian

    In this master thesis the beam loss and the beam shape at the LHC collimators was measured, analysed, presented and discussed. Beginning with a short introduction of the LHC, the experiments, the supercon- ducting magnet system, the basics on linear beam dynamics and a describtion of the LHC collimation system are given. This is followed by the presentation of the performance of the LHC collimation sys- tem during 2011. A method to convert the Beam Loss Monitor signal in Gy/s to a proton beam loss rate will be introduced. Also the beam lifetime during the proton physics runs in 2011 will be presented and discussed. Finally, the shape of the LHC beams is analysed by using data obtained by scraping the beam at the LHC primary collimators.

  18. Effects of Transverse Beam Size in Beam Position Monitors

    CERN Document Server

    Kurennoy, S S

    2001-01-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by a displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those produced by a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  19. Effects of transverse beam size in beam position monitors.

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey)

    2001-01-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  20. EFFECTS OF TRANSFERSE BEAM SIZE IN BEAM POSITIONS MONITORS

    Energy Technology Data Exchange (ETDEWEB)

    S.S. KURENNOY

    2001-06-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  1. Observed Orbit Effects during Long Range Beam-Beam Studies

    CERN Document Server

    Alemany, R; Buffat, X; Calaga, R; Fitterer, M; Giachino, R; Hemelsoet, GH; Herr, W; Papotti, G; Pieloni, T; Poyer, M; Schaumann, M; Trad, G; Wollmann, D

    2012-01-01

    Possible limitations due to long range beam-beam effects at the LHC have been studied and are presented in this note. With a larger number of bunches and collisions in all interaction points, the crossing angles were reduced to enhance long range beam-beam effects. The analysis of the effects on the dynamic aperture and losses are documented in [1]. This note concentrates on the bunch-by-bunch orbit effects observed during the experiment.

  2. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  3. Beam transport elements

    CERN Multimedia

    1965-01-01

    Two of the beam transport elements for the slow ejection system. On the left, a quadrupole 1.2 m long with a 5 cm aperture, capable of producing a gradient of 5000 gauss. On the right, a 1 m bending magnet with a 4 cm gap; its field is 20 000 gauss.

  4. Charged particle beams

    CERN Document Server

    Humphries, Stanley

    2013-01-01

    Detailed enough for a text and sufficiently comprehensive for a reference, this volume addresses topics vital to understanding high-power accelerators and high-brightness-charged particle beams. Subjects include stochastic cooling, high-brightness injectors, and the free electron laser. Humphries provides students with the critical skills necessary for the problem-solving insights unique to collective physics problems. 1990 edition.

  5. LHC Report: Beam on

    CERN Multimedia

    Rossano Giachino for the LHC Team

    2012-01-01

    The powering tests described in the last edition of the Bulletin were successfully finished at the end of the first week of March opening the way for 4 TeV operations this year. The beam was back in the machine on Wednesday 14 March. The first collisions at 4 TeV are scheduled for the first week of April.   The first beam of 2012 is dumped after making a few rounds in the LHC. The magnet powering tests were followed by the machine checkout phase. Here the operations team in collaboration with the equipment groups performs a sequence of tests to ensure the readiness of the LHC for beam. The tests include driving all the LHC systems – beam dump, injection, collimation, RF, power converters, magnet circuits, vacuum, interlocks, controls, timing and synchronization – through the operational cycle. The “checkout phase” is really a massive de-bugging exercise, which is performed with the objective of ensuring the proper functioning of the whole machine and t...

  6. Mode Gaussian beam tracing

    CERN Document Server

    Trofimov, M Yu; Kozitskiy, S B

    2015-01-01

    An adiabatic mode Helmholtz equation for 3D underwater sound propagation is developed. The Gaussian beam tracing in this case is constructed. The test calculations are carried out for the crosswedge benchmark and proved an excellent agreement with the source images method.

  7. Pulsed electron beam precharger

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1991-01-01

    During the previous reporting period (Quarter Six), the charging and removal of a fine, high resistivity aerosol using the advanced technology of electron beam precipitation was successfully accomplished. Precharging a dust stream circulating through the EBP wind tunnel produced collection efficiency figures of up to 40 times greater than with corona charging and collection alone (Table 1). The increased system collection efficiency attributed to electron beam precharging was determined to be the result of increased particle charge. It was found that as precharger electric field was raised, collection efficiency became greater. In sequence, saturation particle charge varies with the precharger electric field strength, particle migration velocity varies with the precharger and collector electric field, and collection efficiency varies with the migration velocity. Maximizing the system collection efficiency requires both a high charging electric field (provided by the E-beam precharger), and a high collecting electric field (provided by the collector wires and plates). Because increased particle collection efficiency is directly attributable to higher particle charge, the focus of research during Quarter Seven was shifted to learning more about the actual charge magnitude on the aerosol particles. Charge determinations in precipitators have traditionally been made on bulk dust samples collected from the flue gas stream, which gives an overall charge vs. mass (Q/M) ratio measurement. More recently, techniques have been developed which allow the measurement of the charge on individual particles in a rapid and repeatable fashion. One such advanced technique has been developed at FSU for use in characterizing the electron beam precharger.

  8. Single Gradientless Light Beam Drags Particles as Tractor Beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Qiu, Cheng-Wei; Wang, Haifeng

    2011-01-01

    is the strong nonparaxiality of the light beam, which contributes to the pulling force owing to momentum conservation. The nonparaxiality of the Bessel beam can be manipulated to possess a dragging force along both the radial longitudinal directions, i.e., a "tractor beam" with stable trajectories is achieved...

  9. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    Science.gov (United States)

    Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.

    2015-04-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  10. Splash events First Beams 2008

    CERN Multimedia

    Collaboration, CMS

    2008-01-01

    First beam through the detector: images showing the debris, or "splash", of particles picked up in the detector's calorimeters and muon chambers after the beam was steered into the collimator (tungsten blocks) at Point 5.

  11. Depth-controlled Bessel beams

    CERN Document Server

    Müller, Angelina; Wallrabe, Ulrike

    2016-01-01

    We present a ring aperture with independently switchable segments for the three-dimensional control of quasi propagation invariant beams. We demonstrate that our liquid crystal design concept preserves coherence and generates the Bessel beam structure.

  12. Intense electron and ion beams

    CERN Document Server

    Molokovsky, Sergey Ivanovich

    2005-01-01

    Intense Ion and Electron Beams treats intense charged-particle beams used in vacuum tubes, particle beam technology and experimental installations such as free electron lasers and accelerators. It addresses, among other things, the physics and basic theory of intense charged-particle beams; computation and design of charged-particle guns and focusing systems; multiple-beam charged-particle systems; and experimental methods for investigating intense particle beams. The coverage is carefully balanced between the physics of intense charged-particle beams and the design of optical systems for their formation and focusing. It can be recommended to all scientists studying or applying vacuum electronics and charged-particle beam technology, including students, engineers and researchers.

  13. Beam Injection in Recirculator SALO

    CERN Document Server

    Guk, Ivan S; Dovbnya, Anatoly N; Kononenko, Stanislav; Peev, Fedor; Tarasenko, Alexander; Van der Wiel, Marnix

    2005-01-01

    Possible antetypes of injectors for electron recirculator SALO,* intended for nuclear-physical research, are analyzed. The plan injection of beams in recirculator is offered. Expected parameters of beams are designed.

  14. Damping modeling in Timoshenko beams

    Science.gov (United States)

    Banks, H. T.; Wang, Y.

    1992-01-01

    Theoretical and numerical results of damping model studies for composite material beams using the Timoshenko theory is presented. Based on the damping models developed for Euler-Bernoulli beams, the authors develop damping methods for both bending and shear in investigation of Timoshenko beams. A computational method for the estimation of the damping parameters is given. Experimental data with high-frequency excitation were used to test Timoshenko beam equations with different types of damping models for bending and shear in various combinations.

  15. Resolving two beams in beam splitters with a beam position monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey)

    2002-01-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters. Monitoring two separated beams in a common beam pipe in the splitter sections imposes certain requirements on diagnostics for these sections. In this note we explore a two-beam system in a generic beam monitor and study the feasibility of resolving the positions of the two beams with a single diagnostic device. In the Advanced Hydrotest Facility (AHF), 20-ns beam pulses (bunches) are extracted from the 50-GeV main proton synchrotron and then are transported to the target by an elaborated transport system. The beam transport system splits the beam bunches into equal parts in its splitting sections so that up to 12 synchronous beam pulses can be delivered to the target for the multi-axis proton radiography. Information about the transverse positions of the beams in the splitters, and possibly the bunch longitudinal profile, should be delivered by some diagnostic devices. Possible candidates are the circular wall current monitors in the circular pipes connecting the splitter elements, or the conventional stripline BPMs. In any case, we need some estimates on how well the transverse positions of the two beams can be resolved by these monitors.

  16. Cherenkov light-based beam profiling for ultrarelativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Adli, E., E-mail: Erik.Adli@fys.uio.no [Department of Physics, University of Oslo, N-0316 Oslo (Norway); SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Gessner, S.J.; Corde, S.; Hogan, M.J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Bjerke, H.H. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2015-05-21

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. The profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. We report on the measured performance of this profile monitor.

  17. Focusing Electron Beams at SLAC.

    Science.gov (United States)

    Taylor, Richard L.

    1993-01-01

    Describes the development of a set of magnets that focus high-energy electron and positron beams causing them to collide, annihilate each other, and generate new particles. Explains how dipoles bend the beam, how quadrupoles focus the beam, how the focal length is calculated, and the superconducting final focus. (MDH)

  18. Beam-beam simulation code BBSIM for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung J.; Sen, Tanaji; /Fermilab

    2011-01-01

    A highly efficient, fully parallelized, six-dimensional tracking model for simulating interactions of colliding hadron beams in high energy ring colliders and simulating schemes for mitigating their effects is described. The model uses the weak-strong approximation for calculating the head-on interactions when the test beam has lower intensity than the other beam, a look-up table for the efficient calculation of long-range beam-beam forces, and a self-consistent Poisson solver when both beams have comparable intensities. A performance test of the model in a parallel environment is presented. The code is used to calculate beam emittance and beam loss in the Tevatron at Fermilab and compared with measurements. They also present results from the studies of stwo schemes proposed to compensate the beam-beam interactions: (a) the compensation of long-range interactions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven and the Large Hadron Collider (LHC) at CERN with a current carrying wire, (b) the use of a low energy electron beam to compensate the head-on interactions in RHIC.

  19. Definition of Beam Diameter for Electron Beam Welding

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pierce, Stanley W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dvornak, Matthew John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  20. Metallic beam development for the Facility for Rare Isotope Beam

    Energy Technology Data Exchange (ETDEWEB)

    Machicoane, Guillaume, E-mail: machicoa@nscl.msu.edu; Cole, Dallas; Leitner, Daniela; Neben, Derek; Tobos, Larry [Facility for Rare Isotope Beam, Michigan State University, East Lansing, Michigan 48824 (United States)

    2014-02-15

    The Facility for Rare Isotope Beams (FRIB) at Michigan State University (MSU) will accelerate a primary ion beam to energies beyond 200 MeV/u using a superconducting RF linac and will reach a maximum beam power of 400 kW on the fragmentation target. The beam intensity needed from the ECR ion source is expected to be between 0.4 and 0.5 emA for most medium mass to heavy mass elements. Adding to the challenge of reaching the required intensity, an expanded list of primary beams of interest has been established based on the production rate and the number of isotope beams that could be produced with FRIB. We report here on the development done for some of the beam in the list including mercury (natural), molybdenum ({sup 98}Mo), and selenium ({sup 82}Ser)

  1. Square shaped flat-top beam in refractive beam shapers

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2015-08-01

    Lossless transformation of round Gaussian to square shaped flat-top collimated beam is important in building highpower solid state laser systems to improve optical pumping or amplification. There are industrial micromachining applications like scribing, display repair, which performance is improved when a square shaped spot with uniform intensity is created. Proved beam shaping solutions to these techniques are refractive field mapping beam shapers having some important features: flatness of output phase front, small output divergence, high transmittance, extended depth of field, operation with TEM00 and multimode lasers. Usual approach to design refractive beam shapers implies that input and output beams have round cross-section, therefore the only way to create a square shaped output beam is using a square mask, which leads to essential losses. When an input laser beam is linearly polarized it is suggested to generate square shaped flat-top output by applying beam shaper lenses from birefringent materials or by using additional birefringent components. Due to birefringence there is introduced phase retardation in beam parts and is realized a square shaped interference pattern at the beam shaper output. Realization of this approach requires small phase retardation, therefore weak birefringence effect is enough and birefringent optical components, operating in convergent or divergent beams, can be made from refractive materials, which crystal optical axis is parallel to optical axis of entire beam shaper optical system. There will be considered design features of beam shapers creating square shaped flat-top beams. Examples of real implementations and experimental results will be presented as well.

  2. Slow light beam splitter.

    Science.gov (United States)

    Xiao, Yanhong; Klein, Mason; Hohensee, Michael; Jiang, Liang; Phillips, David F; Lukin, Mikhail D; Walsworth, Ronald L

    2008-07-25

    We demonstrate a slow light beam splitter using rapid coherence transport in a wall-coated atomic vapor cell. We show that particles undergoing random and undirected classical motion can mediate coherent interactions between two or more optical modes. Coherence, written into atoms via electromagnetically induced transparency using an input optical signal at one transverse position, spreads out via ballistic atomic motion, is preserved by an antirelaxation wall coating, and is then retrieved in outgoing slow light signals in both the input channel and a spatially-separated second channel. The splitting ratio between the two output channels can be tuned by adjusting the laser power. The slow light beam splitter may improve quantum repeater performance and be useful as an all-optical dynamically reconfigurable router.

  3. Silicon microfabricated beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A., E-mail: aliman@ppinang.uitm.edu.my; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A. [Faculty of Electrical Engineering, Universiti Teknologi MARA Malaysia, 40450, Shah Alam, Selangor (Malaysia); Ain, M. F. [School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300,Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  4. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    Vishnu M Bannur

    2001-10-01

    We derive relativistic fluid set of equations for neutrinos and electrons from relativistic Vlasov equations with Fermi weak interaction force. Using these fluid equations, we obtain a dispersion relation describing neutrino beam plasma instability, which is little different from normal dispersion relation of streaming instability. It contains new, nonelectromagnetic, neutrino-plasma (or electroweak) stable and unstable modes also. The growth of the instability is weak for the highly relativistic neutrino flux, but becomes stronger for weakly relativistic neutrino flux in the case of parameters appropriate to the early universe and supernova explosions. However, this mode is dominant only for the beam velocity greater than 0.25 and in the other limit electroweak unstable mode takes over.

  5. Oberst beam test technique

    Science.gov (United States)

    Fasana, Alessandro; Garibaldi, Luigi; Giorcelli, Ermanno; Ruzzene, Massimo

    1998-06-01

    The definition of the mechanical properties of viscoelastic materials, i.e. the elastic modulus and the loss factor, is carried out, according to many national and international standards, with many different techniques, both of the resonant and non-resonant type. In this paper we focus our attention on the pros and cons of the resonant technique based on the classical Oberst beam method. When the damping material to be tested is not self-supporting, its properties are determined taking start from the measured modal frequencies and loss factors of a laminated beam, constituted by one or two metallic strips, ideally undamped, and one or two viscoelastic layers. The formulae specified on the standards hold valid under the assumptions of the theory developed by Kerwin, Ungar and Ross and we try in this paper to quantify witch deviation of the results should be expected when moving away from their ideal hypotheses.

  6. Silicon microfabricated beam expander

    Science.gov (United States)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  7. Proton beam therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  8. Bidirectional beam propagation method

    Science.gov (United States)

    Kaczmarski, P.; Lagasse, P. E.

    1988-05-01

    A bidirectional extension of the beam propagation method (BPM) to optical waveguides with a longitudinal discontinuity is presented. The algorithm is verified by computing a reflection of the TE(0) mode from a semiconductor laser facet. The bidirectional BPM is applicable to other configurations such as totally reflecting waveguide mirrors, an abruption transition in a waveguide, or a waveguide with many discontinuities generating multiple reflections. The method can also be adapted to TM polarization.

  9. Magic Baseline Beta Beam

    CERN Document Server

    Agarwalla, Sanjib Kumar; Raychaudhuri, Amitava

    2007-01-01

    We study the physics reach of an experiment where neutrinos produced in a beta-beam facility at CERN are observed in a large magnetized iron calorimeter (ICAL) at the India-based Neutrino Observatory (INO). The CERN-INO distance is close to the so-called "magic" baseline which helps evade some of the parameter degeneracies and allows for a better measurement of the neutrino mass hierarchy and $\\theta_{13}$.

  10. Axion beams at HERA?

    OpenAIRE

    Piotrzkowski, Krzysztof

    2007-01-01

    If the recently observed anomaly in the PVLAS experiment is due to the axion, then the powerful beams of synchrotron photons, propagating through high magnetic field of the HERA beamline, become strong axion sources. This gives a unique opportunity of detection of the axion-photon interactions by installing a small detector in the HERA tunnel, and to corroborate the axion hypothesis within a few days of running. Comment: 5 pages, 1 figure

  11. Mode Gaussian beam tracing

    Science.gov (United States)

    Trofimov, M. Yu.; Zakharenko, A. D.; Kozitskiy, S. B.

    2016-10-01

    A mode parabolic equation in the ray centered coordinates for 3D underwater sound propagation is developed. The Gaussian beam tracing in this case is constructed. The test calculations are carried out for the ASA wedge benchmark and proved an excellent agreement with the source images method in the case of cross-slope propagation. But in the cases of wave propagation at some angles to the cross-slope direction an account of mode interaction becomes necessary.

  12. Beam-Material Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, N. V. [Fermilab; Cerutti, F. [CERN

    2016-01-01

    Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high-intensity energetic particle beam interactions with accelerator, generic target, and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and environment in challenging current and future applications.

  13. Beam-Material Interaction

    CERN Document Server

    Mokhov, N.V.

    2016-01-01

    Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high- intensity energetic particle beam interactions with accelerator, generic target , and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and envir onment in challenging current and future application

  14. Neutrino beam line optics study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming-Jen

    1996-09-01

    A study was done to understand the beam line optics from the beginning of Switchyard all the way to the end of Neutrino beam line. All available SWIC data were taken to get the beam centroid and width to be used in the analysis. The beam emittance and lattice function at the beginning of beam line can also be inferred from the study. The result indicated that the normalized 95% emittance to be around 15 {pi}-mm-mr for the vertical plane and about 28 {pi}-mm-mr for the horizontal plane.

  15. RIA Fragmentation Line Beam Dumps

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W

    2003-08-08

    The Rare Isotope Accelerator project involves generating heavy-element ion beams for use in a fragmentation target line to produce beams for physics research. The main beam, after passing through the fragmentation target, may be dumped into a beam dump located in the vacuum cavity of the first dipole magnet. For a dump beam power of 100 kW, cooling is required to avoid excessive high temperatures. The proposed dump design involves rotating cylinders to spread out the energy deposition and turbulent subcooled water flow through internal water cooling passages to obtain high, nonboiling, cooling rates.

  16. Hyperon Beam Experiment

    CERN Multimedia

    2002-01-01

    The experiment WA89 uses the upgraded Omega facility together with a hyperon beam installed at the end of the H1 beamline. The beam can deliver 2~10$ ^{5} \\% Sigma ^- $ per machine burst at 330 GeV/c with a background of 5 10$ ^{5} \\% \\pi ^- $. \\\\ \\\\ The goals of the experiment are: observation of charmed particles, mainly the charmed-strange baryons and measurements of their production in the kinematical range x$ _{F} $~$>$~0.2, and their decay properties, a search for exotic states such as U(3100) observed in the previous CERN hyperon beam experiment WA62, measurements of hyperon polarization and production properties. \\\\ \\\\ A vertex detector consisting of 24 silicon microstrip planes with 25~$\\mu$m pitch and 6~planes with 50~$\\mu$m pitch provides track measurements of sufficient accuracy to identify the decays of short living charmed particles and measure their lifetimes. A RICH detector provides good $\\pi$/K separation for momenta up to 100~GeV/c and $\\pi$/p separation up to 150~GeV/c. Photons are detecte...

  17. Infrared Risley beam pointer

    Science.gov (United States)

    Harford, Steven T.; Gutierrez, Homero; Newman, Michael; Pierce, Robert; Quakenbush, Tim; Wallace, John; Bornstein, Michael

    2014-03-01

    Ball Aerospace & Technologies Corp. (BATC) has developed a Risley Beam Pointer (RBP) mechanism capable of agile slewing, accurate pointing and high bandwidth. The RBP is comprised of two wedged prisms that offer a wide Field of Regard (FOR) and may be manufactured and operated with diffraction limited optical quality. The tightly packaged mechanism is capable of steering a 4 inch beam over a 60° half angle cone with better than 60 μrad precision. Absolute accuracy of the beam steering is better than 1 mrad. The conformal nature of the RBP makes it an ideal mechanism for use on low altitude aircraft and unmanned aerial vehicles. Unique aspects of the opto-mechanical design include i) thermal compliance to maintain bearing preload and optical figure over a wide temperature range; and ii) packaging of a remote infrared sensor that periodically reports the temperature of both prisms for accurate determination of the index of refraction. The pointing control system operates each prism independently and employs an inner rate loop nested within an outer position loop. Mathematics for the transformation between line-of-sight coordinates and prism rotation are hosted on a 200 MHz microcontroller with just 516 KB of RAM.

  18. CLIC Drive Beam Phase Stabilisation

    CERN Document Server

    Gerbershagen, Alexander; Schulte, Daniel

    The thesis presents phase stability studies for the Compact Linear Collider (CLIC) and focuses in particular on CLIC Drive Beam longitudinal phase stabilisation. This topic constitutes one of the main feasibility challenges for CLIC construction and is an essential component of the current CLIC stabilisation campaign. The studies are divided into two large interrelated sections: the simulation studies for the CLIC Drive Beam stability, and measurements, data analysis and simulations of the CLIC Test Facility (CTF3) Drive Beam phase errors. A dedicated software tool has been developed for a step-by-step analysis of the error propagation through the CLIC Drive Beam. It uses realistic RF potential and beam loading amplitude functions for the Drive and Main Beam accelerating structures, complete models of the recombination scheme and compressor chicane as well as of further CLIC Drive Beam modules. The tool has been tested extensively and its functionality has been verified. The phase error propagation at CLIC h...

  19. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.;

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  20. Relativistic electron beams above thunderclouds

    Directory of Open Access Journals (Sweden)

    M. Füllekrug

    2011-05-01

    Full Text Available Non-luminous relativistic electron beams above thunderclouds are detected by radio remote sensing with low frequency radio signals from 40–400 kHz. The electron beams occur 2–9 ms after positive cloud-to-ground lightning discharges at heights between 22–72 km above thunderclouds. The positive lightning discharges also cause sprites which occur either above or before the electron beam. One electron beam was detected without any luminous sprite occurrence which suggests that electron beams may also occur independently. Numerical simulations show that the beamed electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of 7 MeV to transport a total charge of 10 mC upwards. The impulsive current associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.

  1. Operational beams for the LHC

    CERN Document Server

    Papaphilippou, Y; Rumolo, G; Manglunki, D

    2014-01-01

    The variety of beams, needed to set-up in the injectors as requested in the LHC, are reviewed, in terms of priority but also performance expectations and reach during 2015. This includes the single bunch beams for machine commissioning and measurements (probe, Indiv) but also the standard physics beams with 50 ns and 25 ns bunch spacing and their high brightness variants using the Bunch Compression Merging and Splitting (BCMS) scheme. The required parameters and target performance of special beams like the doublet for electron cloud enhancement and the more exotic 8b$\\oplus$4e beam, compatible with some post-scrubbing scenarios are also described. The progress and plans for the LHC ion production beams during 2014-2015 are detailed. Highlights on the current progress of the setting up of the various beams are finally presented with special emphasis on potential performance issues across the proton and ion injector chain.

  2. Special Technologies Related to Electron Beam Welding

    Institute of Scientific and Technical Information of China (English)

    Zhao; Haiyan; Cai; Zhipeng; Wang; Xichang

    2007-01-01

    In order to improve the manufacturing quality of electron beam welding,some technologies are developed by using the special features of electron beam.Comparing with the conventional electron beam welding,the usage of multi-beam technology and micro-beam technology are introduced.In addition.the development of beam diagnostic system is also presented.

  3. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Bonomo, F., E-mail: federica.bonomo@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Istituto Gas Ionizzati - CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Ruf, B.; Schiesko, L.; Fantz, U.; Franzen, P.; Riedl, R.; Wünderlich, D. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Barbisan, M.; Pasqualotto, R.; Serianni, G. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Cristofaro, S. [Universitá degli Studi di Padova, Via 8 Febbraio 2, 35122 Padova (Italy)

    2015-04-08

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the H{sub α} light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of H{sub α} spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  4. Plasma-beam traps and radiofrequency quadrupole beam coolers.

    Science.gov (United States)

    Maggiore, M; Cavenago, M; Comunian, M; Chirulotto, F; Galatà, A; De Lazzari, M; Porcellato, A M; Roncolato, C; Stark, S; Caruso, A; Longhitano, A; Cavaliere, F; Maero, G; Paroli, B; Pozzoli, R; Romé, M

    2014-02-01

    Two linear trap devices for particle beam manipulation (including emittance reduction, cooling, control of instabilities, dust dynamics, and non-neutral plasmas) are here presented, namely, a radiofrequency quadrupole (RFQ) beam cooler and a compact Penning trap with a dust injector. Both beam dynamics studies by means of dedicated codes including the interaction of the ions with a buffer gas (up to 3 Pa pressure), and the electromagnetic design of the RFQ beam cooler are reported. The compact multipurpose Penning trap is aimed to the study of multispecies charged particle samples, primarily electron beams interacting with a background gas and/or a micrometric dust contaminant. Using a 0.9 T solenoid and an electrode stack where both static and RF electric fields can be applied, both beam transport and confinement operations will be available. The design of the apparatus is presented.

  5. Beam line design using G4BeamLine

    CERN Document Server

    Dogan, Arda

    2014-01-01

    In Turkey in Ankara TAEK SANAEM Proton Accelerator Facility (PAF), there is a cyclotron which produces a focused intense 30 MeV proton beam and sends this beam to four different arms, three of which uses this beam to produce pharmaceutical medicine. The remaining one is spared for R&D purposes and the idea was to use these protons coming out from the fourth arm to use space radiation tests, which cannot be done in Turkey at the moment. However, according to SCC 25100 standards which is for 30 MeV protons, the beam coming out of cyclotron is too intense and focused to use for space radiation tests. Therefore, the main aim of my project is to design a beam line which will defocus the beam and reduce the flux so that the space radiation tests can be done according to the standards of SCC 25100.

  6. Beam-Beam Effect with an External Noise in LHC

    CERN Document Server

    Ohmi, K; Höfle, Wolfgang; Tomás, R; Zimmermann, F

    2007-01-01

    In absence of synchrotron radiation, proton beams do not have any damping mechanism for incoherent betatron motion. A noise, which kicks beam particles in the transverse plane, gives a coherent betatron amplitude. If the system is linear, the coherent motion is maintained in amplitude. Nonlinear force, beam-beam and beam-electron cloud interactions, cause a decoherence of the betatron motion keeping the amplitude of each beam particle, with the result that an emittance growth arises. We focus only on fast noise with a correlation time of 1-100 turns. Slower noise is less serious, because it is regarded as an adiabatic change like a closed orbit change. As sources of the noise, we consider the bunch by bunch feedback system and phase jitter of cavities which turns to transverse noise via a crab cavity.

  7. LHC Beam Instrumentation: Beam Profile Measurements (2/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  8. Micro-beam XRF localization by a laser beam

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A new method for micro-beam XRF localization is presented. A laserbeam along with an incident X-ray hits on the surface of a sample. The micro region onthe sample that reached by X-ray beam can be localized by means of thevisible spot of the laser beam. This method is suitable for X-ray microprobesusing anX-ray tube or synchrotron radiation as excitation sources.

  9. Laser cooling of a stored ion beam: A first step towards crystalline beams

    Energy Technology Data Exchange (ETDEWEB)

    Hangst, J.S.

    1992-09-01

    This report discusses: a brief introduction to storage rings; crystalline beams; laser cooling of ion beams; description of astrid-the experimental setup; first experiments with lithium 7 ion beam; experiments with erbium 166 ion beams; further experiments with lithium 7 ion beams; beam dynamics, laser cooling,and crystalline beams in astrid; possibilities for further study in astrid.

  10. Injection Beam Loss and Beam Quality Checks for the LHC

    CERN Document Server

    Kain, Verena; Bartmann, Wolfgang; Bracco, Chiara; Drosdal, Lene; Holzer, Eva; Khasbulatov, Denis; Magnin, Nicolas; Meddahi, Malika; Nordt, Annika; Sapinski, Mariusz; Vogt, Mathias

    2010-01-01

    The quality of the injection into the LHC is monitored by a dedicated software system which acquires and analyses the pulse waveforms from the injection kickers, and measures key beam parameters and compares them with the nominal ones. The beam losses at injection are monitored on many critical devices in the injection regions, together with the longitudinal filling pattern and maximum trajectory offset on the first 100 turns. The paper describes the injection quality check system and the results from LHC beam commissioning, in particular the beam losses measured during injection at the various aperture limits. The results are extrapolated to full intensity and the consequences are discussed

  11. Beam Instrument Development System

    Energy Technology Data Exchange (ETDEWEB)

    2016-01-08

    Beam Instrumentation Development System (BIDS) is a collection of common support libraries and modules developed during a series of Low-Level Radio Frequency (LLRF) control and timing/synchronization projects. BIDS includes a collection of Hardware Description Language (HDL) libraries and software libraries. The BIDS can be used for the development of any FPGA-based system, such as LLRF controllers. HDL code in this library is generic and supports common Digital Signal Processing (DSP) functions, FPGA-specific drivers (high-speed serial link wrappers, clock generation, etc.), ADC/DAC drivers, Ethernet MAC implementation, etc.

  12. Continuous Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1996-01-01

    This report deals with stress and stiffness estimates of continuous reinforced concrete beams with different stiffnesses for negative and positive moments e.g. corresponding to different reinforcement areas in top and bottom. Such conditions are often met in practice.The moment distribution...... at the limit state of serviceability is in some simple cases determined by setting up the statical and the compatibility conditions.With these moment distributions, the maximum deflection and the reinforcement stresses at the span middle and at a support are calculated.The results are compared with results...

  13. Self accelerating electron Airy beams

    CERN Document Server

    Voloch-Bloch, Noa; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-01-01

    We report the first experimental generation and observation of Airy beams of free electrons. The electron Airy beams are generated by diffraction of electrons through a nanoscale hologram, that imprints a cubic phase modulation on the beams' transverse plane. We observed the spatial evolution dynamics of an arc-shaped, self accelerating and shape preserving electron Airy beams. We directly observed the ability of electrons to self-heal, restoring their original shape after passing an obstacle. This electromagnetic method opens up new avenues for steering electrons, like their photonic counterparts, since their wave packets can be imprinted with arbitrary shapes or trajectories. Furthermore, these beams can be easily manipulated using magnetic or electric potentials. It is also possible to efficiently self mix narrow beams having opposite signs of acceleration, hence obtaining a new type of electron interferometer.

  14. Edge effect in beam monitors

    CERN Document Server

    Cuperus, J H

    1977-01-01

    Quite often, particle-beam monitors have not the same cross-section as the beam pipe or vacuum chamber in which they are mounted. In that case, the electromagnetic field of the beam is distorted in the vicinity of the edges of the monitor. This field, at the junction of two rectangular beam pipes of different dimensions, is computed for a beam with constant charge along its length. Solutions which are less accurate but easier to apply are obtained with a first order approximation. The results are extended to intensity-modulated beams and circular or elliptical cross-sections. The errors, due to the edge effect, for the electrostatic pickup and the wall-current monitor are computed. The final formulas are simple and easy to apply to practical cases. (6 refs).

  15. Beam Position Monitoring at CLIC

    CERN Document Server

    Prochnow, J

    2003-01-01

    At the European Organisation for Nuclear Research CERN in Geneva, Switzerland the design of the Compact LInear Collider (CLIC) for high energy physics is studied. To achieve the envisaged high luminosity the quadrupole magnets and radio-frequency accelerating structures have to be actively aligned with micron precision and submicron resolution. This will be done using beam-based algorithms which rely on beam position information inside of quadrupoles and accelerating structures. After a general introduction to the CLIC study and the alignment algorithms, the concept of the interaction between beams and radio-frequency structures is given. In the next chapter beam measurements and simulations are described which were done to study the performance of cavity beam position monitors (BPM). A BPM design is presented which is compatible with the multi-bunch operation at CLIC and could be used to align the quadrupoles. The beam position inside the accelerating structures will be measured by using the structures thems...

  16. Controlling Beam Halo-Chaos

    Institute of Scientific and Technical Information of China (English)

    方锦清; 罗晓曙; 陈关荣; 翁甲强

    2001-01-01

    Beam halo-chaos is essentially a complex spatiotemporal chaotic motion in a periodic-focusing channel of a highpower linear proton accelerator. The controllability condition for beam halo-chaos is analysed qualitatively. A special nonlinear control method, i.e. the wavelet-based function feedback, is proposed for controlling beam halochaos. Particle-in-cell simulations are used to explore the nature of halo-chaos formation, which has shown that the beam hMo-chaos is suppressed effectively after using nonlinear control for the proton beam with an initial full Gaussian distribution. The halo intensity factor Hav is reduced from 14%o to zero, and the other statistical physical quantities of beam halo-chaos are more than doubly reduced. The potential applications of such nonlinear control in experiments are briefly pointed out.

  17. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB.

    Science.gov (United States)

    Ren, Haitao; Pozdeyev, Eduard; Lund, Steven M; Machicoane, Guillaume; Wu, Xiaoyu; Morgan, Glenn

    2016-02-01

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper.

  18. Simulation of beam-induced plasma for the mitigation of beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.; Wang, G.; Samulyak, R.; Yu, K.; Litvinenko, V.

    2015-05-03

    One of the main challenges in the increase of luminosity of circular colliders is the control of the beam-beam effect. In the process of exploring beam-beam mitigation methods using plasma, we evaluated the possibility of plasma generation via ionization of neutral gas by proton beams, and performed highly resolved simulations of the beam-plasma interaction using SPACE, a 3D electromagnetic particle-in-cell code. The process of plasma generation is modelled using experimentally measured cross-section coefficients and a plasma recombination model that takes into account the presence of neutral gas and beam-induced electromagnetic fields. Numerically simulated plasma oscillations are consistent with theoretical analysis. In the beam-plasma interaction process, high-density neutral gas reduces the mean free path of plasma electrons and their acceleration. A numerical model for the drift speed as a limit of plasma electron velocity was developed. Simulations demonstrate a significant reduction of the beam electric field in the presence of plasma. Preliminary simulations using fully-ionized plasma have also been performed and compared with the case of beam-induced plasma.

  19. Harmonic vibrations of multispan beams

    DEFF Research Database (Denmark)

    Dyrbye, Claes

    1996-01-01

    Free and forced harmonic vibrations of multispan beams are determined by a method which implies 1 equation regardless of the configuration. The necessary formulas are given in the paper. For beams with simple supports and the same length of all (n) spans, there is a rather big difference between...... the n´th and the (n+1)´th eigenfrequency. The reason for this phenomenon is explained.Keywords: Vibrations, Eigenfrequencies, Beams....

  20. Atomic laser-beam finder.

    Science.gov (United States)

    Viering, Kirsten; Medellin, David; Mo, Jianyong; Raizen, Mark G

    2012-11-05

    We report on an experimental method to align a laser beam to a cloud of atoms trapped in a magneto-optical trap (MOT). We show how balanced lock-in detection leads to a very sensitive method to align the laser beam to the atoms in the plane perpendicular to the propagation direction. This provides a very reliable and fast way of aligning laser beams to atoms trapped in a MOT.

  1. Beam emittance measurements at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Manfred; Eddy, Nathan; Hu, Martin; Scarpine, Victor; Syphers, Mike; Tassotto, Gianni; Thurman-Keup, Randy; Yang, Ming-Jen; Zagel, James; /Fermilab

    2008-01-01

    We give short overview of various beam emittance measurement methods, currently applied at different machine locations for the Run II collider physics program at Fermilab. All these methods are based on beam profile measurements, and we give some examples of the related instrumentation techniques. At the end we introduce a multi-megawatt proton source project, currently under investigation at Fermilab, with respect to the beam instrumentation challenges.

  2. First Beam Splash Events 2008

    CERN Multimedia

    Collaboration, CMS

    2008-01-01

    10th September 2008 at 10.00 a.m. CMS saw the beam pass through the experiment for the first time ever, in the clockwise direction. The beam was initially intentionally stopped by blocks around 154 metres before CMS at Point 5, producing these images of the debris or "splash" from the particles hitting the blocks. After removal of the blocks, the beam then passed through CMS successfully. At 14.30 beam then passed successfully in the anticlockwise direction through the experiment.

  3. Compact electron beam focusing column

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-07-13

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2-D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  4. Terahertz beam shaping with metasurface

    Science.gov (United States)

    He, Jingwen; Wang, Sen; Zhang, Yan

    2016-11-01

    Based on metasurface, two beam shapers are designed to modulate the wavefront of the terahertz beam. One of the beam shapers is THz ring-Airy beam generator and the other is THz four-focus lens. Each beam shaper is composed of a serious of C-shaped slot antennas, which can be used to modulate the phase and amplitude of the cross-polarized scattered wave. A THz holographic imaging system is utilized to measure the field of the generated beams. The ring- Airy beam shaper is designed by replacing both the phase and amplitude of its initial electric field with the corresponding antennas. In the experiment, an abrupt focus following a parabolic trajectory is subsequently observed. This method can be expanded to other wavebands, such as the visible band, in which the ring-Airy beam shaper can replace traditional computer-generated holography to avoid undesirable multiple diffraction orders. The phase distribution of the four-focus lens is obtained by using the Yang-Gu amplitude-phase retrieval algorithm and then encoded to the antennas. Both the focusing and imaging properties are demonstrated. A clear image can be obtained with a bandwidth of 110 GHz. This type of transmissive metasurface beam shaper serves as an attractive alternative to conventional diffractive optical elements based on its small size, ease of fabrication, and low cost.

  5. Ion beam assisted film growth

    CERN Document Server

    Itoh, T

    2012-01-01

    This volume provides up to date information on the experimental, theoretical and technological aspects of film growth assisted by ion beams.Ion beam assisted film growth is one of the most effective techniques in aiding the growth of high-quality thin solid films in a controlled way. Moreover, ion beams play a dominant role in the reduction of the growth temperature of thin films of high melting point materials. In this way, ion beams make a considerable and complex contribution to film growth. The volume will be essential reading for scientists, engineers and students working in thi

  6. Beam shifts and distribution functions

    CERN Document Server

    Aiello, Andrea

    2011-01-01

    When a beam of light is reflected by a smooth surface its behavior deviates from geometrical optics predictions. Such deviations are quantified by the so-called spatial and angular Goos-Haenchen (GH) and Imbert-Fedorov (IF) shifts of the reflected beam. These shifts depend upon the shape of the incident beam, its polarization and on the material composition of the reflecting surface. In this article we suggest a novel approach that allows one to unambiguously isolate the beam-shape dependent aspects of GH and IF shifts. We show that this separation is possible as a result of some universal features of shifted distribution functions which are presented and discussed.

  7. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  8. LHC beam-beam compensation using wires and electron lenses

    CERN Document Server

    Dorda, U; Shiltsev, V; Zimmermann, F

    2007-01-01

    We present weak-strong simulation results for a possible application of current-carrying wires and electron lenses to compensate the LHC long-range and head-on beambeam interaction, respectively, for nominal and PACMAN bunches. We show that these measures have the potential to considerably increase the beam-beam limit, allowing for a corresponding increase in peak luminosity.

  9. New concepts in deployable beam structures

    Science.gov (United States)

    Rhodes, M. D.

    1985-01-01

    The design of deployable structures involves a complicated tradeoff of packaging efficiency, the overall mechanism associated with deploying and latching beam joints, and the requirements and complexity of the beam deployer/repacker. Three longeron deployable beams, controllable geometry beams, and hybrid deployable/erectable beam concepts are evaluated.

  10. Neutron beam measurement dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  11. Electron beam silicon purification

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, Anatoly [SIA ' ' KEPP EU' ' , Riga (Latvia); Kravtsov, Alexey [' ' KEPP-service' ' Ltd., Moscow (Russian Federation)

    2014-11-15

    Purification of heavily doped electronic grade silicon by evaporation of N-type impurities with electron beam heating was investigated in process with a batch weight up to 50 kilos. Effective temperature of the melt, an indicative parameter suitable for purification process characterization was calculated and appeared to be stable for different load weight processes. Purified material was successfully approbated in standard CZ processes of three different companies. Each company used its standard process and obtained CZ monocrystals applicable for photovoltaic application. These facts enable process to be successfully scaled up to commercial volumes (150-300 kg) and yield solar grade silicon. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Pulsed electron beam precharger

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1990-01-01

    Florida State University is investigating the concept of pulsed electron beams for fly ash precipitation. This report describes the results and data on three of the subtasks of this project and preliminary work only on the remaining five subtasks. Described are the modification of precharger for pulsed and DC energization of anode; installation of the Q/A measurement system; and modification and installation of pulsed power supply to provide both pulsed and DC energization of the anode. The other tasks include: measurement of the removal efficiency for monodisperse simulated fly ash particles; measurement of particle charge; optimization of pulse energization schedule for maximum removal efficiency; practical assessment of results; and measurement of the removal efficiency for polydisperse test particles. 15 figs., 1 tab. (CK)

  13. Molecular-beam scattering

    Science.gov (United States)

    Vernon, M. F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N2 from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HC1 (FEMALE) NAC1 + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2(2)P/sub 3/2/) and Na(3(2)P/sub 3/2) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  14. Molecular-beam scattering

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N/sub 2/ from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl ..-->.. NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2/sup 2/P/sub 3/2/) and Na(3/sup 2/P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  15. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring.

    Science.gov (United States)

    Kumar, Pradeep; Ghodke, A D; Karnewar, A K; Holikatti, A C; Yadav, S; Puntambekar, T A; Singh, G; Singh, P

    2013-12-01

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  16. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring

    Science.gov (United States)

    Kumar, Pradeep; Ghodke, A. D.; Karnewar, A. K.; Holikatti, A. C.; Yadav, S.; Puntambekar, T. A.; Singh, G.; Singh, P.

    2013-12-01

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  17. Hybrid beams in the LHC

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The first proton-ion beams were successfully circulated in the LHC a couple of weeks ago. Everything went so smoothly that the LHC teams had planned the first p-Pb collisions for Wednesday, 16 November. Unfortunately, a last-minute problem with a component of the PS required for proton acceleration prevented the LHC teams from making these new collisions. However, the way is open for a possible physics run with proton-lead collisions in 2012.   Members of the LHC team photographed when the first hybrid beams got to full energy. The proton and lead beams are visible on the leftmost screen up on the wall (click to enlarge the photo). The technical challenge of making different beams circulate in the LHC is by no means trivial. Even if the machine is the same, there are a number of differences when it is operated with beams of protons, beams of lead or beams of proton and lead. Provided that the beams are equal, irrespective of whether they consist of protons or lead nuclei, they revolve at the...

  18. Portal dosimetry in wedged beams

    NARCIS (Netherlands)

    Spreeuw, H.; Rozendaal, R.; Camargo, P.; Mans, A.; Wendling, M.; Olaciregui-Ruiz, I.; Sonke, J.J.; Herk, M. van; Mijnheer, B.

    2015-01-01

    Portal dosimetry using electronic portal imaging devices (EPIDs) is often applied to verify high-energy photon beam treatments. Due to the change in photon energy spectrum, the resulting dose values are, however, not very accurate in the case of wedged beams if the pixel-to-dose conversion for the s

  19. CLIC Drive Beam Accelerating Structures

    CERN Document Server

    Wegner, Rolf

    2012-01-01

    Travelling structures for accelerating the high-current (4.2 A) CLIC Drive Beam to an energy of 2.37 GeV are presented. The structures are optimised for efficiency (full beam loading operation) and a desired filling time. Higher order modes are studied and are reduced by detuning along the structure and by damping with silicon carbide loads.

  20. BOUNDARY STABILIZATION OF TIMOSHENKO BEAM

    Institute of Scientific and Technical Information of China (English)

    YAN Qingxu

    2000-01-01

    In this paper, the stabilization problem of Timoshenko beam by some nonlinear boundary feedback controls is considered. By virtue of nonlinear semigroup theory and energy-perturbed method, it is shown that the vibration of the beam under the proposed control action decays exponentially or in negative power of time t as t → ∞.

  1. An introduction to beam physics

    CERN Document Server

    Berz, Martin; Wan, Weishi

    2015-01-01

    The field of beam physics touches many areas of physics, engineering, and the sciences. In general terms, beams describe ensembles of particles with initial conditions similar enough to be treated together as a group so that the motion is a weakly nonlinear perturbation of a chosen reference particle. Particle beams are used in a variety of areas, ranging from electron microscopes, particle spectrometers, medical radiation facilities, powerful light sources, and astrophysics to large synchrotrons and storage rings such as the LHC at CERN. An Introduction to Beam Physics is based on lectures given at Michigan State University’s Department of Physics and Astronomy, the online VUBeam program, the U.S. Particle Accelerator School, the CERN Academic Training Programme, and various other venues. It is accessible to beginning graduate and upper-division undergraduate students in physics, mathematics, and engineering. The book begins with a historical overview of methods for generating and accelerating beams, high...

  2. Cold and Slow Molecular Beam

    CERN Document Server

    Lu, Hsin-I; Wright, Matthew J; Patterson, Dave; Doyle, John M

    2011-01-01

    Employing a two-stage cryogenic buffer gas cell, we produce a cold, hydrodynamically extracted beam of calcium monohydride molecules with a near effusive velocity distribution. Beam dynamics, thermalization and slowing are studied using laser spectroscopy. The key to this hybrid, effusive-like beam source is a "slowing cell" placed immediately after a hydrodynamic, cryogenic source [Patterson et al., J. Chem. Phys., 2007, 126, 154307]. The resulting CaH beams are created in two regimes. One modestly boosted beam has a forward velocity of vf = 65 m/s, a narrow velocity spread, and a flux of 10^9 molecules per pulse. The other has the slowest forward velocity of vf = 40 m/s, a longitudinal temperature of 3.6 K, and a flux of 5x10^8 molecules per pulse.

  3. Report of the group on beam-beam effects in circular colliders

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    1991-05-01

    We present a summary of the discussions and conclusions of the working group on beam-beam effects for circular colliders. This group was part of the larger beam-beam dynamics group at the 7th ICFA Workshop on Beam Dynamics, on the subject Beam-Beam and Beam-Radiation Interactions,'' held at UCLA, May 13--16, 1991. 15 refs.

  4. Control And Transport Of Intense Electron Beams

    CERN Document Server

    Li, H

    2004-01-01

    The transport of intense beams for advanced accelerator applications with high-intensity beams such as heavy-ion inertial fusion, spallation neutron sources, and intense light sources requires tight control of beam characteristics over long distances. The University of Maryland Electron Ring (UMER), which uses low energy, high current electron beams to model the transport physics of intense space-charge-dominated beams, employs real-time beam characterization and control in order to optimize beam quality throughout the strong focusing lattice. We describe in this dissertation the main beam control techniques used in UMER, which include optimal beam steering by quadrupole scans, beam rotation correction using a skew corrector, rms envelope matching and optimization, empirical envelope matching, beam injection, and phase space reconstruction using a tomographic method. Using these control techniques, we achieved the design goals for UMER. The procedure is not only indispensable for optimum beam transport over l...

  5. Electrostatic wire stabilizing a charged particle beam

    Science.gov (United States)

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  6. Generation of electron Airy beams.

    Science.gov (United States)

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  7. ATLAS diamond Beam Condition Monitor

    CERN Document Server

    Gorišek, A; Dolenc, I; Frais-Kölbl, H; Griesmayer, E; Kagan, H; Korpar, S; Kramberger, G; Mandic, I; Meyer, M; Mikuz, M; Pernegger, H; Smith, S; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at . Timing of signals from the two stations will provide almost ideal separation of beam–beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of area and thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test bea...

  8. Relativistic electron beams above thunderclouds

    Directory of Open Access Journals (Sweden)

    M. Füllekrug

    2011-08-01

    Full Text Available Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency ∼40–400 kHz which they radiate. The electron beams occur ∼2–9 ms after positive cloud-to-ground lightning discharges at heights between ∼22–72 km above thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of ∼7 MeV to transport a total charge of ∼−10 mC upwards. The impulsive current ∼3 × 10−3 Am−2 associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.

  9. Asymmetric Laguerre-Gaussian beams

    Science.gov (United States)

    Kovalev, A. A.; Kotlyar, V. V.; Porfirev, A. P.

    2016-06-01

    We introduce a family of asymmetric Laguerre-Gaussian (aLG) laser beams. The beams have been derived via a complex-valued shift of conventional LG beams in the Cartesian plane. While propagating in a uniform medium, the first bright ring of the aLG beam becomes less asymmetric and the energy is redistributed toward peripheral diffraction rings. The projection of the orbital angular momentum (OAM) onto the optical axis is calculated. The OAM is shown to grow quadratically with increasing asymmetry parameter of the aLG beam, which equals the ratio of the shift to the waist radius. Conditions for the OAM becoming equal to the topological charge have been derived. For aLG beams with zero radial index, we have deduced an expression to define the intensity maximum coordinates and shown the crescent-shaped intensity pattern to rotate during propagation. Results of the experimental generation and rotation of aLG beams agree well with theoretical predictions.

  10. Optical tractor Bessel polarized beams

    Science.gov (United States)

    Mitri, F. G.; Li, R. X.; Guo, L. X.; Ding, C. Y.

    2017-01-01

    Axial and transverse radiation force cross-sections of optical tractor Bessel polarized beams are theoretically investigated for a dielectric sphere with particular emphasis on the beam topological charge (or order), half-cone angle and polarization. The angular spectrum decomposition method (ASDM) is used to derive the non-paraxial electromagnetic (EM) field components of the Bessel beams. The multipole expansion method using vector spherical harmonics is utilized and appropriate beam-shape coefficients are derived in order to compute the radiation force cross-sections. The analysis has no limitation to a particular range of frequencies such that the Rayleigh, Mie or geometrical optics regimes can all be considered effectively using the present rigorous formalism. The focus of this investigation is to identify some of the tractor beam conditions so as to achieve retrograde motion of a dielectric sphere located arbitrarily in space. Numerical computations for the axial and transverse radiation force cross-sections are presented for linear, right-circular, radial, azimuthal and mixed polarizations of the individual plane waves forming the Bessel beams of zeroth- and first-order (with positive or negative helicity), respectively. As the sphere shifts off the beam's axis, the axial pulling (tractor) force is weakened. Moreover, the transverse radiation force cross-section field changes with the sphere's size factor ka (where k is the wavenumber and a is the sphere radius). Both stable and unstable equilibrium regions around the beam's axis are found, depending on the choice of ka and the half-cone angle α0. These results are particularly important in the development of emergent technologies for the photophoretic assembly of optically-engineered (meta)materials with designed properties using optical tractor (vortex) beams, particle manipulation, levitation and positioning, and other applications.

  11. Simulating Transient Effects of Pulsed Beams on Beam Intercepting Devices

    CERN Document Server

    Richter, Herta; Noah Messomo, Etam

    2011-01-01

    The development in the physics community towards higher beam power through the possibilities of particle accelerators lead to challenges for the developers of elements which are exposed to effect of particle beams (beam intercepting devices = BIDs). For the design of BIDs, the increasing heat load onto these devices due to energetic and focused beams and - in most cases - their highly pulsed nature has to be taken into account. The physics requirements are sometimes opposed to the current state of the art. As one possibility of many in combining the different aspects for these ambitious demands, two highly developed computer programs, namely FLUKA and ANSYS AUTODYN, were joined for this dissertation. The former is a widely enhanced Monte-Carlo-code which specializes on the interaction of particles with static matter, while the latter is a versatile explicit code for the simulation of highly dynamic processes. Both computer programs were developed intensively over years and are still continuously enhanced in o...

  12. Electron beam machining using rotating and shaped beam power distribution

    Science.gov (United States)

    Elmer, John W.; O'Brien, Dennis W.

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  13. Beam Instrumentation for the Single Electron DAFNE Beam Test Facility

    CERN Document Server

    Mazzitelli, G; Valente, P; Vescovi, M

    2003-01-01

    The DAΦNE Beam Test Facility (BTF) has been successfully commissioned in February 2002, and started operation in November of the same year. Although the BTF is a beam transfer line optimized for single particle production, mainly for high energy detectors calibration, it can provide electrons and positrons in a wide range of multiplicity: between 1-1010, with energies from a few tens of MeV up to 800 MeV. The large multiplicity range requires many different diagnostic devices, from high-energy calorimeters and ionization/fluorescence chambers in the few particles range, to standard beam diagnostics systems. The schemes of operation, the commissioning results, as well as the beam diagnostics are presented.

  14. Beam stability at CTF3

    CERN Document Server

    Persson, T

    2012-01-01

    The two-beam acceleration tested at CTF3 imposes very tight tolerances on the drive beam stability. A description of the specialized monitoring tool developed to identify the drifts and jitter in the machine is presented. It compares all the relevant signals in an on-line manner to help the operator to identify drifts and to log data for off-line analysis. The main sources for the drifts of the drive beam have been identified and their causes are described. A feedback applied to the RF was implemented to reduce the effects. It works by changing the waveform for the pulse compression to compensate for the drifts.

  15. Beam Transfer and Machine Protection

    CERN Document Server

    Kain, V

    2016-01-01

    Beam transfer, such as injection into or extraction from an accelerator, is one of the most critical moments in terms of machine protection in a high-intensity machine. Special equipment is used and machine protection aspects have to be taken into account in the design of the beam transfer concepts. A brief introduction of the principles of beam transfer and the equipment involved will be given in this lecture. The main concepts of machine protection for injection and extraction will be presented, with examples from the CERN SPS and LHC.

  16. Photoelectron photoion molecular beam spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.

  17. Beam-Beam Simulations with GUINEA-PIG

    CERN Document Server

    Schulte, Daniel

    1998-01-01

    While the bunches in a linear collider cross only once, due to their small size they experience a strong beam-beam effect. GUINEA-PIG is a code to simulate the impact of this effect on luminosity and back ground. A short overview of the program is given with examples of its application to the back ground strudies for TESLA, the top quark threshold scan and a possible luminosity monitor, as well as some results for CLIC.

  18. Observations and open questions in beam-beam interactions

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Tanaji; /Fermilab

    2010-08-01

    The first of the hadron colliders, ISR, started operation in 1970. In the following years, the hadron colliders to follow were the SPS (started 1980), the Tevatron (started 1987 first as a fixed target machine), RHIC (started 2000) and most recently the LHC, which started in 2008. HERA was a hybrid that collided electrons and protons. All of these accelerators had or have their performance limited by the effects of the beam-beam interactions. That has also been true for the electron-positron colliders such as LEP, CESR, KEKB and PEPII. In this article I will discuss how the beam-beam limitations arose in some of these machines. The discussion will be focused on common themes that span the different colliders. I will mostly discuss the hadron colliders but sometimes discuss the lepton colliders where relevant. Only a handful of common accelerator physics topics are chosen here, the list is not meant to be exhaustive. A comparative review of beam-beam performance in the ISR, SPS and Tevatron (ca 1989) can be found in reference. Table 1 shows the relevant parameters of colliders (excluding the LHC), which have accelerated protons.

  19. Experimental observations and theoretical models for beam-beam phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10/sup 10/-10/sup 11/ and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented.

  20. Test Beam Coordination: 2003 ATLAS Combined Test Beam

    CERN Multimedia

    Di Girolamo, B.

    The 2003 Test Beam Period The 2003 Test Beam period has been very fruitful for ATLAS. In spite of several days lost because of the accelerator problems, ATLAS has been able to achieve many results: FCAL has completed the calibration program in H6 Tilecal has completed the calibration program in H8 Pixel has performed extensive studies with normal and high intensity beams (up to 1.4*108 hadrons/spill) SCT has completed a variety of studies with quite a high number of modules operated concurrently TRT has performed several studies at high, low and very low energy (first use of the new H8 beam in the range 1 to 9 GeV) Muons (MDT,RPC and TGC) have been operating a large setup for about 5 months. The almost final MDT ROD (MROD) has been integrated in the readout and the final trigger electronics for TGC and RPC has been tested and certified with normal beam and during dedicated 40 MHz beam periods. The TDAQ has exploited a new generation prototype successfully and the new Event Filter infrastructure f...

  1. RIKEN RI Beam Factory project

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Yasushige; Goto, Akira; Katayama, Takeshi [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    The RARF proposes `RIKEN RI Beam Factory` as a next facility-expanding project. The factory makes it the primary aim to provide RI (Radioactive Isotope) beams covering over the whole atomic-mass range with the world-highest intensity in a wide energy range up to several hundreds MeV/nucleon. These RI beams are generated by the fragmentation of high-intensity heavy-ion beams. For the efficient production heavy-ion energies will be boosted up to over 100 MeV/nucleon even for very heavy ions by a K2500-MeV superconducting ring cyclotron serving as a post accelerator of the existing K540-MeV ring cyclotron. A new type of experimental installation called `MUSES` (Multi-USe Experimental Storage rings) will be constructed as well. With MUSES, various types of unique colliding experiments will become possible. (author)

  2. Electrostatic beam-position monitor

    CERN Multimedia

    CERN PhotoLab

    1969-01-01

    Electrostatic beam-position monitor installed in its final location (bake-out cover removed). The ISR will contain about 110 of these monitors. Their accuracy is better than 1 mm, their band width about 1 MHz.

  3. Center for Beam Physics, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This report contains the following information on the center for beam physics: Facilities; Organizational Chart; Roster; Profiles of Staff; Affiliates; Center Publications (1991--1993); and 1992 Summary of Activities.

  4. Beam instability Workshop - plenary sessions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The purpose of this workshop was to provide a review of the mechanisms of limiting beam instabilities, their cures, including feedback, and beam measurement for synchrotron radiation light sources. 12 plenary sessions took place whose titles are: 1) challenging brilliance and lifetime issues with increasing currents; 2) limiting instabilities in multibunch; 3) experience from high currents in B factories; 4) longitudinal dynamics in high intensity/bunch; 5) Transverse instabilities for high intensity/bunch; 6) working group introduction from ESRF experience; 7) impedance modelling: simulations, minimization; 8) report on the broadband impedance measurements and modelling workshop; 9) feedback systems for synchrotron light sources; 10) beam instabilities diagnostics; 11) harmonic cavities: the pros and cons; and 12) experimental study of fast beam-ion instabilities at PLS. This document gathers the 12 articles that were presented during these sessions.

  5. STOCHASTIC COOLING FOR BUNCHED BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ, M.

    2005-05-16

    Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

  6. LHC beam loss pattern recognition

    CERN Document Server

    Marsili, A; Puzo, P

    2011-01-01

    One of the systems protecting CERN’s Large Hadron Collider (LHC) is the Beam Loss Monitoring system (BLM). More than 3600 monitors are installed around the ring. The beam losses are permanently integrated over 12 different time intervals (from 40 microseconds to 84 seconds). When any loss exceeds the thresholds defined for the integration window, the beam is removed from the machine. Understanding the origin of a beam loss is crucial for machine operation, as it can help to avoid a repetition of the same scenario. The signals read from given monitors can be considered as entries of a vector. This article presents how a loss map of unknown cause can be decomposed using vector based analysis derived from well-known loss scenarios. The algorithms achieving this decomposition are described, as well as the accuracy of the results.

  7. Libera Electron Beam Position Processor

    CERN Document Server

    Ursic, Rok

    2005-01-01

    Libera is a product family delivering unprecedented possibilities for either building powerful single station solutions or architecting complex feedback systems in the field of accelerator instrumentation and controls. This paper presents functionality and field performance of its first member, the electron beam position processor. It offers superior performance with multiple measurement channels delivering simultaneously position measurements in digital format with MHz kHz and Hz bandwidths. This all-in-one product, facilitating pulsed and CW measurements, is much more than simply a high performance beam position measuring device delivering micrometer level reproducibility with sub-micrometer resolution. Rich connectivity options and innate processing power make it a powerful feedback building block. By interconnecting multiple Libera electron beam position processors one can build a low-latency high throughput orbit feedback system without adding additional hardware. Libera electron beam position processor ...

  8. Squid based beam current meter

    Energy Technology Data Exchange (ETDEWEB)

    Kuchnir, M.

    1983-11-25

    A SQUID based beam current meter has the capability of measuring the current of a beam with as little as 30 x 155 antiprotons (with a signal to noise ratio of 2). If low noise dc current is used to cancel most of the beam or an up-down counter is used to count auto-resets this sensitivity will be available at any time in the acumulation process. This current meter will therefore be a unique diagnostic tool for optimizing the performance of several Tev I components. Besides requiring liquid helium it seems that its only drawback is not to follow with the above sensitivity a sudden beam change larger than 16 ..mu..A, something that could be done using a second one in a less sensitive configuration.

  9. Monitor of SC beam profiles

    CERN Multimedia

    1977-01-01

    A high-resolution secondary emission grid for the measurement of SC beam profiles. Modern techniques of metal-ceramic bonding, developed for micro-electronics, have been used in its construction. (See Annual Report 1977 p. 105 Fig. 12.)

  10. Electrostatic ion beam scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Harper, G.C.; Curtis, W.D.

    1978-04-01

    An electrostatic scanning system has been designed and built to uniformly implant a 1 cm/sup 2/ sample with a charged particle beam. The full angular scan capability for a 2 MeV beam is 0.5 degrees at 6 kV p-p. The design of the system is extremely simple so it is very compact, easy to operate, and has shown very good reliability.

  11. Ultraviolet Photodissociation of Molecular Beams.

    Science.gov (United States)

    1980-12-15

    Continue on reerse side if neceesry and identify by block number) Photodissociation , excimer laser, nitrocompounds, carbon disulfide, sulfur dioxide ...4 ULTRAVIOLET PHOTODISSOCIATION OF MOLECULAR BEAMS. * TYPE OF REPORT (TECHNICAL, FINAL, ETC.) FINAL REPOT OR PERIOD 0/01/77 - 9/30/80 AUTHOR (S... Photodissociation of Final report for period 10/01/77 - 9/30/80 Molecular Beams 6. PERFORMIN, CRG. REPORT NUMBER 7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER(e) R

  12. Parameter estimation in truss beams using Timoshenko beam model with damping

    Science.gov (United States)

    Sun, C. T.; Juang, J. N.

    1983-01-01

    Truss beams with members having viscous damping are modeled with a Timoshenko beam. Procedures for deriving the equivalent bending rigidity, transverse shear rigidity, and damping are presented. Explicit expressions for these equivalent beam properties are obtained for a specific truss beam. The beam model thus established is then used to investigate the effect of damping in free vibration. Finally, the beam is employed in the estimation of structural parameters in a simply-supported truss beam using a random search algorithm.

  13. Airy beam optical parametric oscillator.

    Science.gov (United States)

    Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K

    2016-05-04

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  14. The ELENA Beam Diagnostics Systems

    CERN Document Server

    Tranquille, G

    2013-01-01

    The Extra Low ENergy Antiproton ring (ELENA) to be built at CERN is aimed at substantially increasing the number of antiprotons to the low energy antiproton physics community. It will be a small machine which will decelerate low intensity beams (<4x107) from 5.3 MeV to 100 keV and will be equipped with an electron cooler to avoid beam losses during the deceleration and to significantly reduce beam phase space at extraction. To measure the beam parameters from the extraction point of the Antiproton Decelerator (AD), through the ELENA ring and all the way to the experiments, many systems will be needed to ensure that the desired beam characteristics are obtained. Particular attention needs to be paid to the performance of the electron cooler which depends on reliable instrumentation in order to efficiently cool the antiprotons. This contribution will present the different monitors that have been proposed to measure the various beam parameters as well as some of the developments going on to further improve th...

  15. The logarithmic beam position monitor

    Science.gov (United States)

    Medvedko, Evgeny A.; Smith, Stephen R.

    2000-11-01

    Modern logarithmic amplifiers offer wide dynamic range, high bandwidth, good logarithmic conformance, and low cost making them attractive for beam position measurements. A log-ratio beam position monitor has been designed and built at SLAC for use at the PEP-II B-Factory. An integrated circuit logarithmic amplifier from Analog Devices, the AD8307, recovers the envelope of the 476 MHz harmonic of the beam signal. A log BPM board with two logarithmic and one differential amplifier performs the basic function of forming an output voltage proportional to the difference of the logarithms of the signal amplitudes on opposite electrodes. This voltage is approximately linear with beam position. For this application, we have limited the video bandwidth of the log amps to 50 kHz in order to remove fill pattern dependence. The log BPM board has an interface for testing and simulating beam offsets. The log BPMs were developed for a PEP-II ring protection chassis. Here the log BPMs function to identify dangerous orbit excursions. These excursions are signaled to a system, which can dump the beam. Two such chassis serve to protect the PEP-II rings.

  16. Beam-Beam Effects in the Ring-Ring Version of eRHIC

    CERN Document Server

    Shi, Jack; Wang, Dong; Wang, Fuhua

    2005-01-01

    The eRHIC is a proposed electron ring at the RHIC that will provide collisions between a polarized 5-10 GeV electron beam and an ion beam from one of the RHIC rings. In order to achieve proposed high luminosity, large bunch current and small beta-functions at the IP has to be employed. Such measures result in large beam-beam parameters, 0.029 and 0.08 for the electron beam and 0.0065 and 0.0033 for the proton beam in the horizontal and vertical plane, respectively, in the current ZDR design. The beam-beam effect especially the coherent beam-beam effect is therefore one of important issues to the eRHIC. Moreover, the proposed configuration of unequal circumferences of the electron and proton rings could further enhance the coherent beam-beam effect. The beam-beam effect of eRHIC has therefore been studied with a self-consistent beam-beam simulation by using the particle-in-cell method. Beam-beam limits of the electron and proton beam were examined as thresholds of the onset of coherent beam-beam instability. F...

  17. Damage Detection In Laboratory Concrete Beams

    DEFF Research Database (Denmark)

    Brincker, Rune; Andersen, Palle; Kirkegaard, Poul Henning;

    1995-01-01

    : a beam with a typical reinforcement ratio, and a beam with a small reinforcement ratio. The modal properties of the beams were found exciting the beams by a series of pulses and identifying the properties using ARMA and ARMAX models. It was found, that extremely small damages could be detected...

  18. Damage Detection in Laboratory Concrete Beams

    DEFF Research Database (Denmark)

    Brincker, Rune; Andersen, P.; Kirkegaard, Poul Henning;

    : a beam with a typical reinforcement ratio, and a beam with a small reinforcement ratio. The modal properties of the beams were found exciting the beams by a series of pulses and identifying the properties using ARMA and ARMAX models. It was found, that extremely small damages could be detected...

  19. BEAM SCRUBBING FOR RHIC POLARIZED PROTON RUN.

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG,S.Y.FISCHER,W.HUANG,H.ROSER,T.

    2004-07-05

    One of the intensity limiting factor of RHIC polarized proton beam is the electron cloud induced pressure rise. A beam scrubbing study shows that with a reasonable period of time of running high intensity 112-bunch proton beam, the pressure rise can be reduced, allowing higher beam intensity.

  20. KTeV beam systems design report

    Energy Technology Data Exchange (ETDEWEB)

    Bocean, V.; Childress, S.; Coleman, R. [and others

    1997-09-01

    The primary and secondary beams for the KTeV experiments E799-II and E832 are discussed. The specifications are presented and justified. The technical details of the implementation of the primary beam transport and stability are detailed. The target, beam dump, and radiation safety issues are discussed. The details of the collimation system for the pair of secondary beams are presented.

  1. Electron optics of microlenses with inclined beams

    NARCIS (Netherlands)

    Zhang, Y.; Barth, J.E.; Kruit, P.

    2008-01-01

    For multielectron beam systems with a single electron source, the outside beams need to be collimated before entering the individual microcolumns. As an alternative of the traditional multibeam source design where the broad beam from the source is collimated by a single lens, the broad beam can be f

  2. Numerical Value Results OF Guassian Beam Focussing

    Institute of Scientific and Technical Information of China (English)

    K.X. He; Alan Chow; Jiada Mo; Wang Zhuo

    2003-01-01

    @@ 1Lens is placed in beam waist We consider the case of a Gaussian beam that is incident at its waist on a thin lens of focal length f.To find the location of the waist of the output beam and the beam radius at that point,we start with the ABCD law.

  3. Luminosity Loss due to Beam Distortion and the Beam-Beam Instability

    CERN Document Server

    Wu, Juhao; Raubenheimer, Tor O; Seryi, Andrei; Sramek, Christopher K

    2005-01-01

    In a linear collider, sources of emittance dilution such as transverse wakefields or dispersive errors will couple the vertical phase space to the longitudinal position within the beam (the so-called ‘banana effect'). When the Intersection Point (IP) disruption parameter is large, these beam distortions will be amplified by a single bunch kink instability which will lead to luminosity loss. We study this phenomena both analytically using linear theory and via numerical simulation. In particular, we examine the dependence of the luminosity loss on the wavelength of the beam distortions and the disruption parameter. This analysis may prove useful when optimizing the vertical disruption parameter for luminosity operation with given beam distortions.

  4. Detection of Equipment Faults Before Beam Loss

    CERN Document Server

    Galambos, J

    2016-01-01

    High-power hadron accelerators have strict limits on fractional beam loss. In principle, once a high-quality beam is set up in an acceptable state, beam loss should remain steady. However, in practice, there are many trips in operational machines, owing to excessive beam loss. This paper deals with monitoring equipment health to identify precursor signals that indicate an issue with equipment that will lead to unacceptable beam loss. To this end, a variety of equipment and beam signal measurements are described. In particular, several operational examples from the Spallation Neutron Source (SNS) of deteriorating equipment functionality leading to beam loss are reported.

  5. Induced focusing and conversion of a Gaussian beam into an elliptic Gaussian beam

    Indian Academy of Sciences (India)

    Manoj Mishra; Swapan Konar

    2005-09-01

    We have presented an investigation of the induced focusing in Kerr media of two laser beams, the pump beam and the probe beam, which could be either Gaussian or elliptic Gaussian or a combination of the two. We have used variational formalism to derive relevant beam-width equations. Among several important findings, the finding that a very week probe beam can be guided and focused when power of both beams are well below their individual threshold for self-focusing, is a noteworthy one. It has been found that induced focusing is not possible for laser beams of any wavelength and beam radius. In case both beams are elliptic Gaussian, we have shown that when power of both beams is above a certain threshold value then the effective radius of both beams collapses and collapse distance depends on power. Moreover, it has been found that induced focusing can be employed to convert a circular Gaussian beam into an elliptic Gaussian beam.

  6. Fractal zone plate beam based optical tweezers

    Science.gov (United States)

    Cheng, Shubo; Zhang, Xinyu; Ma, Wenzhuo; Tao, Shaohua

    2016-01-01

    We demonstrate optical manipulation with an optical beam generated by a fractral zone plate (FZP). The experimental results show that the FZP beam can simultaneously trap multiple particles positioned in different focal planes of the FZP beam, owing to the multiple foci and self-reconstruction property of the FZP beam. The FZP beam can also be used to construct three-dimensional optical tweezers for potential applications. PMID:27678305

  7. Non-paraxial Elliptical Gaussian Beam

    Institute of Scientific and Technical Information of China (English)

    WANG Zhaoying; LIN Qiang; NI Jie

    2001-01-01

    By using the methods of Hertz vector and angular spectrum transormation, the exact solution of non-paraxial elliptical Gaussion beam with general astigmatism based on Maxwell′s equations is obtained. We discussed its propagation characteristics. The results show that the orientation of the elliptical beam spot changes continuously as the beam propagates through isotropic media. Splitting or coupling of beam spots may occur for different initial spot size. This is very different from that of paraxial elliptical Gaussian beam.

  8. MTN magnet for the SPS extracted beam.

    CERN Multimedia

    1976-01-01

    This type of dipole magnet was used in the extracted beam lines of the North Area. It shows an opening for three different proton beam lines: a primary extracted proton beam, split by an upstream magnetic beam splitter (see photo 7612017) into three separated beams passes through different parts of its aperture: right, left up, left down. These magnets were designed to be concrete-insulated for radiation resistance. F. Streun stands on the right.

  9. Revised data taking schedule with ion beams

    CERN Document Server

    Gazdzicki, Marek; Aduszkiewicz, A; Andrieu, B; Anticic, T; Antoniou, N; Argyriades, J; Asryan, A G; Baatar, B; Blondel, A; Blumer, J; Boldizsar, L; Bravar, A; Brzychczyk, J; Bubak, A; Bunyatov, S A; Choi, K U; Christakoglou, P; Chung, P; Cleymans, J; Derkach, D A; Diakonos, F; Dominik, W; Dumarchez, J; Engel, R; Ereditato, A; Feofilov, G A; Fodor, Z; Ferrero, A; Gazdzicki, M; Golubeva, M; Grebieszkow, K; Grzeszczuk, A; Guber, F; Hasegawa, T; Haungs, A; Igolkin, S; Ivanov, A S; Ivashkin, A; Kadija, K; Katrynska, N; Kielczewska, D; Kikola, D; Kisiel, J; Kobayashi, T; Kolesnikov, V I; Kolev, D; Kolevatov, R S; Kondratiev, V P; Kowalski, S; Kurepin, A; Lacey, R; Laszlo, A; Lyubushkin, V V; Majka, Z; I Malakhov, A; Marchionni, A; Marcinek, A; Maris, I; Matveev, V; Melkumov, G L; Meregaglia, A; Messina, M; Mijakowski, P; Mitrovski, M; Montaruli, T; Mrówczynski, St; Murphy, S; Nakadaira, T; Naumenko, P A; Nikolic, V; Nishikawa, K; Palczewski, T; Pálla, G; Panagiotou, A D; Peryt, W; Planeta, R; Pluta, J; Popov, B A; Posiadala, M; Przewlocki, P; Rauch, W; Ravonel, M; Renfordt, R; Röhrich, D; Rondio, E; Rossi, B; Roth, M; Rubbia, A; Rybczynski, M; Sadovskii, A; Sakashita, K; Schuster, T; Sekiguchi, T; Seyboth, P; Shibata, M; Sissakian, A N; Skrzypczak, E; Slodkowski, M; Sorin, A S; Staszel, P; Stefanek, G; Stepaniak, J; Strabel, C; Ströbele, H; Susa, T; Szentpétery, I; Szuba, M; Tada, M; Taranenko, A; Tsenov, R; Ulrich, R; Unger, M; Vassiliou, M; Vechernin, V V; Vesztergombi, G; Wlodarczyk, Z; Wojtaszek, A; Zipper, W; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2009-01-01

    This document presents the revised data taking schedule of NA61 with ion beams. The revision takes into account limitations due to the new LHC schedule as well as final results concerning the physics performance with secondary ion beams. It is proposed to take data with primary Ar and Xe beams in 2012 and 2014, respectively, and to test and use for physics a secondary B beam from primary Pb beam fragmentation in 2010, 2011 and 2013.

  10. Beam Impedance Studies of the PS Beam Gas Ionization Monitor

    CERN Document Server

    Avgidis, Fotios

    2016-01-01

    The Beam Gas Ionization monitor (BGI) is a device for continuous beam size monitoring that is intended to be installed in the CERN Proton Synchrotron (PS) during the extended year-end technical stop from December 2016 to April 2017. With the objective of determining the impedance contribution of the BGI vacuum chamber to the overall beam impedance, we report on RF measurements on the device in a laboratory frame, measurement data analysis, and RF simulations of the structure under investigation. For the impedance contribution characterization of the BGI, the following approach has been followed: First, the EM fields inside a simplified BGI model that doesn’t include any of the internal components of the vacuum chamber have been simulated. RF measurements have been performed on the same empty structure showing great agreement between measurement and simulation and thus verifying the validity of the model. Second, simulations have been executed on a fully assembled BGI model that includes all the internal ele...

  11. Beam Measurements in Storage Rings

    Science.gov (United States)

    Hofmann, Albert

    1996-05-01

    Beam measurements in storage rings are made to diagnose performance limitations and to gain knowledge of the beam behavior in view of improvements and to the benefit for other machines. In beam optics the measurement of the orbit or the trajectory with beam position monitors distributed around the ring reveals deflection errors. The overall focusing is checked by measuring the betatron frequency (tune) using a pulse or continuous excitation of the oscillation. Observing this oscillation with all the beam position monitors around the ring the beta function and the betatron phase advance are obtained. This measurement done for different momenta, i.e. RF-frequencies, gives the local chromaticity and its correction. The tune dependence on quadrupole strength gives the value of the local beta function. Synchrotron radiation is a powerful diagnostics tool and can give the beam cross section. Beam instabilities are investigated with similar methods. The growth or damping rates and frequencies of betatron and synchrotron oscillations, observed as a function of intensity, give a convolution of the resistive and reactive part of the transverse and longitudinal impedance with the spectrum of the oscillation mode. Coupled bunch instabilities are caused by narrow band impedances at particular frequencies while single traversal effects, including energy loss and bunch lengthening, are due to a broad band impedance. A model of the impedance can be constructed from such measurements done with different bunch lengths, tunes and other parameters. In some cases the element causing an instability can be identified. The dependence of the orbit and phase advance around the ring on intensity can give the location of impedances. To probe the impedance at very high frequencies the effects on very short bunches or the energy loss of a continuous beam due to its Schottky noise are measured. The beam energy, usually known from magnetic measurements, can be obtained directly with high

  12. Electron beam pumped semiconductor laser

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  13. The ATLAS beam conditions monitor

    CERN Document Server

    Mikuz, M; Dolenc, I; Kagan, H; Kramberger, G; Frais-Kölbl, H; Gorisek, A; Griesmayer, E; Mandic, I; Pernegger, H; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2006-01-01

    The ATLAS beam conditions monitor is being developed as a stand-alone device allowing to separate LHC collisions from background events induced either on beam gas or by beam accidents, for example scraping at the collimators upstream the spectrometer. This separation can be achieved by timing coincidences between two stations placed symmetric around the interaction point. The 25 ns repetition of collisions poses very stringent requirements on the timing resolution. The optimum separation between collision and background events is just 12.5 ns implying a distance of 3.8 m between the two stations. 3 ns wide pulses are required with 1 ns rise time and baseline restoration in 10 ns. Combined with the radiation field of 10/sup 15/ cm/sup -2/ in 10 years of LHC operation only diamond detectors are considered suitable for this task. pCVD diamond pad detectors of 1 cm/sup 2/ and around 500 mum thickness were assembled with a two-stage RF current amplifier and tested in proton beam at MGH, Boston and SPS pion beam at...

  14. Active beam spectroscopy for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Von Hellermann, M.; Giroud, C.; Jaspers, R. [Association Euratom-Fom, FOM Institute for Plasma Physics Rijnhuizen, Trilateral Euregio Cluster (Netherlands); Hawkes, N.C.; Mullane, M.O.; Zastrow, K.D. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Krasilnikov, A.; Tugarinov, S. [SRC RF TRINITI, Troitsk, Moscow region (Russian Federation); Lotte, P. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; McKee, G. [Wisconsin Univ., Madison, WI (United States); Malaquias, A. [Associacao EURATOM/IST, Instituto Superior Tecnico, Lisboa (Portugal); Rachlew, E. [Kungliga Tekniska Hoegskolan (KTH), Stockholm(Sweden)

    2003-07-01

    The latest status of 'Active Beam' related spectroscopy aspects as part of the ITER diagnostic scenario is presented. A key issue of the proposed scheme is based on the concept that in order to achieve the ultimate goal of global data consistency, all particles involved, that is, intrinsic and seeded impurity ions as well as helium ash ions and bulk plasma ions and also the plasma background data (e.g. magnetic and electric fields, electron density and temperature profiles) need to be addressed. A further sensible step in this direction is the decision of exploiting both a dedicated low-energy, low-power diagnostic beam (DNB, 2.2 MW 100 keV/amu) as well as the high-power, high-energy heating beams (HNB, 17 MW 500 keV/amu) for maximum diagnostic information. The authors report some new aspects referring to the use of DNB for motional Stark effect (MSE) where the main idea is to treat both beams (HNB and DNB) as potential diagnostic tools with complementary roles. The equatorial ports for the DNB promise excellent spatial resolution, however, the angles are less favourable for a polarimetric MSE exploitation. HNB can be used as probe beam for diagnosing slowing-down fusion alpha with a birth energy of 3,5 MeV.

  15. Low voltage electron beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Masafumi [Iwasaki Electric Co., Ltd., Tokyo (Japan)

    2003-02-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  16. Electron beam ion source and electron beam ion trap (invited).

    Science.gov (United States)

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  17. Electron beam ion source and electron beam ion trap (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Reinard [Scientific Software Service, Kapellenweg 2a, D-63571 Gelnhausen (Germany); Kester, Oliver [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  18. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  19. Rotating Dual-Wire Beam Profile Monitor Optimized for Use in Merged-Beams Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Seely, D. G. [Albion College; Bruhns, H. [Columbia University; Savin, D. W. [Columbia University; Kvale, Thomas Jay [University of Toledo, Toledo, OH; Galutschek, Ernst [ORNL; Aliabadi, Habib [ORNL; Havener, Charles C [ORNL

    2008-01-01

    A rotating dual-wire beam proile monitor based upon a modified National Electrostatics Corporation Model BPM80 beam profile monitor is described. The device can measure beam profiles in two perpendicular directions (horizontal and vertical) in each of two pseudoplanes that are situated along the beam axis and are separated by a distance of 6.0 cm. The output signal from the device is analyzed in real time to yield horizontal and vertical beam profiles and to calculate the divergence of a particle beam that traverses the device. This set-up is well-suited for merged-beams experiments where one beam is tuned to saved profiles from a second beam in order to minimize the merge angle and beam divergences while maximizing the beam-beam overlaps.

  20. Rotating dual-wire beam profile monitor optimized for use in merged-beams experiments

    Energy Technology Data Exchange (ETDEWEB)

    Seely, D.G. [Department of Physics, Albion College, Albion, MI 49224-1831 (United States)], E-mail: dseely@albion.edu; Bruhns, H.; Savin, D.W. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027-6606 (United States); Kvale, T.J. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606-3390 (United States); Galutschek, E.; Aliabadi, H.; Havener, C.C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372 (United States)

    2008-01-21

    A rotating dual-wire beam profile monitor based upon a National Electrostatics Corporation Model BPM80 beam profile monitor is described. The device can measure beam profiles in two perpendicular directions (horizontal and vertical) in each of two pseudoplanes that are situated along the beam axis and are separated by a distance of 5.4 cm. The output signal from the device is analyzed in real time to yield horizontal and vertical beam profiles and to calculate the divergence of a particle beam that traverses the device. This set-up is well-suited for merged-beams experiments where one beam is tuned to saved profiles from a second beam in order to minimize the merge angle and beam divergences while maximizing the beam-beam overlaps.

  1. Beam Cleaning and Collimation Systems

    CERN Document Server

    Redaelli, S

    2016-01-01

    Collimation systems in particle accelerators are designed to dispose of unavoidable losses safely and efficiently during beam operation. Different roles are required for different types of accelerator. The present state of the art in beam collimation is exemplified in high-intensity, high-energy superconducting hadron colliders, like the CERN Large Hadron Collider (LHC), where stored beam energies reach levels up to several orders of magnitude higher than the tiny energies required to quench cold magnets. Collimation systems are essential systems for the daily operation of these modern machines. In this document, the design of a multistage collimation system is reviewed, taking the LHC as an example case study. In this case, unprecedented cleaning performance has been achieved, together with a system complexity comparable to no other accelerator. Aspects related to collimator design and operational challenges of large collimation systems are also addressed.

  2. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERAp beam-loss-monitor system

    Science.gov (United States)

    Wittenburg, Kay

    1994-06-01

    The beam-loss-monitors (BLMs) in the HERA-proton-ring (HERAp) must fulfill the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System.

  3. Physics Opportunities with Meson Beams

    CERN Document Server

    Briscoe, William J; Haberzettl, Helmut; Manley, D Mark; Naruki, Megumi; Strakovsky, Igor I; Swanson, Eric S

    2015-01-01

    Over the past two decades, meson photo- and electro-production data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even nonexistent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.

  4. Mycosis fungoides. Electron beam therapy.

    Science.gov (United States)

    Spittle, M F

    1977-01-01

    The most effective treatment of late mycosis fungoides is total skin electron beam therapy. The beam at the Hammersmith Hospital in London has been adapted to treat these patients. Patients with advanced disease who have failed more conservative methods of treatment are irradiated. The electron beam is modified by the use of carbon and copper scatterers to produce an 80 percent depth dose at 5.5, 8 and 11.5 millimeters below the skin surface. The dose achieved in most patients is between 1500 rads and 2600 rads given in 10 to 13 treatments over 5-7 weeks. Recently the higher dose range has been employed and lithium flouride studies have shown that giving these doses from each of 4 fields, the dose achieved on the skin is approximately twice the given dose. The management of patients and the effects of treatment are discussed.

  5. Physics opportunities with meson beams

    Energy Technology Data Exchange (ETDEWEB)

    Briscoe, William J.; Doering, Michael; Haberzettl, Helmut; Strakovsky, Igor I. [The George Washington University, Washington, DC (United States); Manley, D.M. [Kent State University, Kent, OH (United States); Naruki, Megumi [Kyoto University, Kyoto (Japan); Swanson, Eric S. [University of Pittsburgh, Pittsburgh, PA (United States)

    2015-10-15

    Over the past two decades, meson photo- and electroproduction data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even non-existent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state-of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility. (orig.)

  6. Divergence of optical vortex beams

    CERN Document Server

    Reddy, Salla Gangi; Prabhakar, Shashi; Anwar, Ali; Banerji, J; Singh, R P

    2015-01-01

    We show, both theoretically and experimentally, that the propagation of optical vortices in free space can be analysed by using the width ($w(z)$) of the host Gaussian beam and the inner and outer radii of the vortex beam at the source plane ($z=0$) as defined in \\textit{Optics Letters \\textbf{39,} 4364-4367 (2014)}. We also studied the divergence of vortex beams, considered as the rate of change of inner or outer radius with the propagation distance, and found that it varies with the order in the same way as that of the inner and outer radii at zero propagation distance. These results may be useful in designing optical fibers for orbital angular momentum modes that play a crucial role in quantum communication.

  7. Optical Faraday Cup for Heavy Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, Frank; Bieniosek, F.M.; Eylon, S.; Roy, P.K.; Yu, S.S.

    2007-06-25

    We have been using alumina scintillators for imaging beams in heavy-ion beam fusion experiments in 2 to 4 transverse dimensions [1]. The scintillator has a limited lifetime under bombardment by the heavy ion beams. As a possible replacement for the scintillator, we are studying the technique of imaging the beam on a gas cloud. A gas cloud for imaging the beam may be created on a solid hole plate placed in the path of the beam, or by a localized gas jet. It is possible to image the beam using certain fast-quenching optical lines that closely follow beam current density and are independent of gas density. We describe this technique and show preliminary experimental data. This approach has promise to be a new fast beam current diagnostic on a nanosecond time scale.

  8. Active beam spectroscopy for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hellermann, M.G. von, E-mail: mgvh@jet.u [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Barnsley, R. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Biel, W. [Institut fuer Energieforschung, Plasmaphysik, Forschungszentrum Juelich, Euratom Association, 52425 Juelich (Germany); Delabie, E. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Hawkes, N. [Culham Centre for Fusion Energy, Euratom Association, Culham OX14 3DB (United Kingdom); Jaspers, R. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Johnson, D. [Princeton Plasma Physics Laboratory, Princeton, NJ-08548 (United States); Klinkhamer, F. [TNO Science and Industry, Stieltjesweg 1, 2628CK Delft (Netherlands); Lischtschenko, O. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Marchuk, O. [Institut fuer Energieforschung, Plasmaphysik, Forschungszentrum Juelich, Euratom Association, 52425 Juelich (Germany); Schunke, B. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Singh, M.J. [Institute for Plasma Research, Bhat, Gandhinagar, Gurajat 384828 (India); Snijders, B. [TNO Science and Industry, Stieltjesweg 1, 2628CK Delft (Netherlands); Summers, H.P. [Culham Centre for Fusion Energy, Euratom Association, Culham OX14 3DB (United Kingdom); Thomas, D. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Tugarinov, S. [TRINITI Troitsk, Moscow Region 142092 (Russian Federation); Vasu, P. [Institute for Plasma Research, Bhat, Gandhinagar, Gurajat 384828 (India)

    2010-11-11

    Since the first feasibility studies of active beam spectroscopy on ITER in 1995 the proposed diagnostic has developed into a well advanced and mature system. Substantial progress has been achieved on the physics side including comprehensive performance studies based on an advanced predictive code, which simulates active and passive features of the expected spectral ranges. The simulation has enabled detailed specifications for an optimized instrumentation and has helped to specify suitable diagnostic neutral beam parameters. Four ITER partners share presently the task of developing a suite of ITER active beam diagnostics, which make use of the two 0.5 MeV/amu 18 MW heating neutral beams and a dedicated 0.1 MeV/amu, 3.6 MW diagnostic neutral beam. The IN ITER team is responsible for the DNB development and also for beam physics related aspects of the diagnostic. The RF will be responsible for edge CXRS system covering the outer region of the plasma (1>r/a>0.4) using an equatorial observation port, and the EU will develop the core CXRS system for the very core (0

  9. FEL options for power beaming

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.J.; Zholents, A.A.; Zolotorev, M.S. [Lawrence Berkeley National Lab., CA (United States); Vinokurov, N.A. [Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-10-01

    The demand for the output power of communication satellites has been increasing exponentially. The satellite power is generated from solar panels which collect the sunlight and convert it to electrical power. The power per satellite is limited due to the limit in the practical size of the solar panel. One way to meet the power demand is to employ multiple satellites (up to 10) per the internationally agreed-upon ``slot`` in the geosynchronous earth orbit (GEO). However, this approach is very expensive due to the high cost of sending a satellite into a GEO orbit. An alternative approach is power beaming, i.e., to illuminate the solar panels with high power, highly-directed laser beams from earth. The power beaming generates more power per satellite for the same area of the solar panel. The minimum optical beam power, interesting for power beaming application, is P{sub L} = 200kW. The wavelength is chosen to be {lambda} = 0.84 {micro}m, so that it is within one of the transmission windows of the air, and at the same time near the peak of the photo-voltaic conversion efficiency of Si, which is the commonly used material for the solar panels. Free electron lasers (FELs) are well suited for the power beaming application because they can provide high power with coherent wavefront, but without high energy density in media. In this article the authors discuss some principal issues, such as the choice of accelerator and electron gun, the choice of beam parameters, radiation hazards, technological availability, and overall efficiency and reliability of the installation. They also attempt to highlight the compromise between the cost of the primary installation, the operation cost, and the choice of technology, and its maturity. They then present several schemes for the accelerator-FEL systems based on RF accelerators. The initial electron beam accelerator up to the energy of a few MeV is more or less common for all these schemes.

  10. An antideuteron beam at JHF

    CERN Document Server

    Iazzi, F

    1999-01-01

    The future japanese hadronic machine (JHF) could offer the possibility not only to continue experiments with the antiproton in both the low and high energy ranges but also to start to study the antinuclei physics. In the present paper the production of antinuclei is reviewed and first results of a design for an antideuteron beam line at JHF are reported. Moreover, some particular aspects of the antideuteron physics are discussed together with the basic features of the experimental apparatuses involving an antideuteron beam and the antideuteron annihilation detection.

  11. METHOD OF ELECTRON BEAM PROCESSING

    DEFF Research Database (Denmark)

    2003-01-01

    As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which...... is the option of welding workpieces of large thicknesses. Therefore the idea is to guide the electron beam (2) to the workpiece via a hollow wire, said wire thereby acting as a prolongation of the vacuum chamber (4) down to workpiece. Thus, a workpiece need not be placed inside the vacuum chamber, thereby...

  12. Quantized beam shifts in graphene

    Energy Technology Data Exchange (ETDEWEB)

    de Melo Kort-Kamp, Wilton Junior [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinitsyn, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego Alejandro Roberto [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-08

    We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant α, while the Goos-Hanchen ones in multiples of α2. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  13. Getting ready for SPS beam

    CERN Multimedia

    1977-01-01

    View from downstream of the WA7 experiment along beam H1B. In the foreground are scintillator hodoscopes and immediately behind them, is a threshold Cerenkov counter, standing on its edge. The WA7 control hut is located on the right, over the concrete shielding blocks. Still more right, the other branch of the H1 beam, E1A/H1A, runs towards the Omega Facility. WA7 by the CERN-Genoa-LAPP, Annecy-Niels Bohr Institute, Copenhagen-Oslo, University College, London Collaboration was meant to study two-body reactions at large transverse momentum.

  14. Low intensity beam target unit

    CERN Multimedia

    1976-01-01

    This is a wheel fitted with many targets around its periphery (each with three longitudinally arranged thin rods) of which one is placed into the beam via a rotation of the wheel. Upstream of each target is placed a luminescent screen, aligbed on each target axis and viewed with a TV camera, to make sure that one is hitting the target. This target unit was probably used to study target's behaviour (like beam heating). Gualtiero Del Torre stands on the left, Pierre Gerdil on the right.

  15. Beam Coupling Impedances of Obstacles Protruding into Beam Pipe

    CERN Document Server

    Kurennoy, S S

    1997-01-01

    The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle. Formulas for a few important particular cases are presented which allow simple practical estimates of the broad-band impedance contributions from such discontinuities.

  16. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    CERN Document Server

    Stancari, Giulio

    2014-01-01

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compens...

  17. Definition and measurement of the beam propagation factor M2 for chromatic laser beams

    Institute of Scientific and Technical Information of China (English)

    Tao Fang; Xin Ye; Jinfu Niu; Jianqiu Xu

    2006-01-01

    The concept of the beam propagation factor M2 is extended for chromatic laser beams. The definition of the beam propagation factor can be generalized with the weighted effective wavelength. Using the new definition of factor M2, the propagation of chromatic beams can be analyzed by the beam propagation factor M2 as same as that of monochromatic beams. A simple method to measure the chromatic beam factor M2 is demonstrated. The chromatic factor M2 is found invariable while the laser beam propagates through the dispersion-free ABCD system.

  18. Measurement of HL-2A NBI Beam Profile and Beam Power

    Institute of Scientific and Technical Information of China (English)

    LIU He; CAO Jianyong; JIANG Shaofeng; LUO Cuiwen; TANG Lixin; LEI Guangjiu; RAO Jun; LI Bo

    2009-01-01

    To optimize the operation parameters of the beam line of NBI on HL-2A,features of the beam line,including the beam profile and the power deposited on components and injected into the tokamak plasma,were measured.The operational parameters of the four sources on the beam line were optimized with the monitor of the beam profile and beam power,and the transmission efficiency of the NBI injected power was therefore increased.A beam diagnostic system for the beam line of the NBI system on HL-2A as well as the diagnosed results was also presented.

  19. Transverse beam shape measurements of intense proton beams using optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  20. Vectorial rotating vortex Hankel laser beams

    Science.gov (United States)

    Kotlyar, Victor V.; Kovalev, Alexey A.; Soifer, Victor A.

    2016-09-01

    We propose a generalization of spherical waves in the form of linearly polarized beams with embedded optical vortices. The source of these beams is an infinitely narrow light ring with an infinitely small radius. These vectorial beams are obtained based on scalar Hankel beams discovered by the authors recently. We have derived explicit relations for complex amplitudes of all six components of vectorial vortex Hankel beams. A closed analytical expression for the axial projection of the orbital angular momentum density in far field has been obtained. We also showed that the intensity distribution of the electric vector rotates by 90 degrees upon the beam propagation in near field.

  1. Coaxial combination of coherent laser beams

    Institute of Scientific and Technical Information of China (English)

    Hongcheng Dong; Xiao Li; Chaoyang Wei; Hongbo He; Yuanan Zhao; Jianda Shao; Zhengxiu Fan

    2009-01-01

    @@ Based on polarization state conversion, a technique for coaxially coherent combination of laser beams is introduced.Laser beams can be coaxially coupled into one beam with high combination efficiency and perfect beam quality.A polarized laser beam combination system based on master oscillator power amplifier (MOPA) configuration is developed and the efficiencies of both unit combination and the whole system are investigated.In the experiment of combining four beams with single longitudinal mode, a combination efficiency of 85.3% is achieved.It can be further enhanced by improving the stability of experimental environment and the quality of optical and mechanical components.

  2. ORNL positive ion neutral beam program

    Energy Technology Data Exchange (ETDEWEB)

    Whealton, J.H.; Haselton, H.H.; Barber, G.C.

    1978-01-01

    The neutral beam group at Oak Ridge National Laboratory has constructed neutral beam generators for the ORMAK and PLT devices, is presently constructing neutral beam devices for the ISX and PDX devices, and is contemplating the construction of neutral beam systems for the advanced TNS device. These neutral beam devices stem from the pioneering work on ion sources of G. G. Kelley and O. B. Morgan. We describe the ion sources under development at this Laboratory, the beam optics exhibited by these sources, as well as some theoretical considerations, and finally the remainder of the beamline design.

  3. Apertures in the LHC Beam Dump System and Beam Losses During Beam Abort

    CERN Document Server

    Kramer, T; Gyr, M; Koschik, A; Uythoven, J; Weiler, T

    2008-01-01

    The LHC beam dumping system (LBDS) is used to dispose accelerated protons and ions in a wide energy range from 450 GeV up to 7 TeV. An abort gap of $3 \\mu$s is foreseen to avoid sweeping particles through the LHC ring aperture. This paper gives a brief overview of the critical apertures in the extraction region and the two beam dump lines. MAD-X tracking studies have been made to investigate the impact of particles swept through the aperture due to extraction kicker failures or the presence of particles within the abort gap. The issue of failures during beam abort is a major concern for machine protection as well as a critical factor for safe operation of the experiments and their detectors.

  4. LHC Report: Freshly squeezed beams!

    CERN Multimedia

    Mike Lamont for the LHC Team

    2011-01-01

    After careful validation of  new machine settings, the LHC was ready for higher luminosity operation. New luminosity records have been set, but the operations team continues to wrestle with machine availability issues.   The commissioning of the squeeze to a ß* of 1 m in ATLAS and CMS described in the last Bulletin took until Wednesday, 7 September to complete. In order to validate the new set-up, beam losses were provoked in a controlled way with low intensity beams. The distribution of beam loss around the machine in these tests is known as a loss map. The loss maps showed that the collimation system is catching the large majority of beam losses as it should, and that the machine was ready for us to ramp the number of bunches back up and go to physics production. The ramp-up of the number of bunches went smoothly with fills at 264, 480, and 912 bunches on the way back to the machine’s previous record of 1380 bunches (first fill on Friday, 9 Se...

  5. High energy laser beam dump

    Science.gov (United States)

    Halpin, John

    2004-09-14

    The laser beam dump is positioned in a housing. An absorbing glass plate means is operatively connected to the housing. A heat sync means for extracting heat from the absorbing glass plate means is operatively connected to the housing and operatively connected to the absorbing glass plate means.

  6. CERN fires up neutrino beams

    CERN Multimedia

    2006-01-01

    "CERN has switched on a new neutrino beam, aimed through the earth to the INFN Gran Sasso Laboratories some 730km away near Rome. This is the latest additin to a global endeavour to understand this most elusive of particles and unlock the secrest it carries about the origins and evolution of our Universe." (2 pages)

  7. Beam particle tracking for MUSE

    Science.gov (United States)

    Liyanage, Anusha; MUSE Collaboration

    2017-01-01

    The proton radius puzzle is the 7 σ disagreement between the proton radius extracted from the measured muonic hydrogen Lamb shift and the proton radius extracted from the regular hydrogen Lamb shift and elastic ep scattering form factor data. So far there is no generally accepted resolution to the puzzle. The explanations for the discrepancy include new degrees of freedom beyond the Standard Model. The MUon Scattering Experiment (MUSE) will simultaneously measure ep and μp scattering at the Paul Scherrer Institute, using the πM1 beam line at 100-250 MeV/c to cover a four-momentum transfer range of Q2=0.002-0.07 (GeV/c)2. Due to the large divergence of the secondary muon beam, beam particle trajectories are needed for every event. They are measured by a Gas Electron Multiplier (GEM) tracking telescope consisting of three 10x10 cm2 triple-GEM chambers. Fast segmented scintillator paddles provide precise timing information. The GEM detectors, their performance in test beam times, and plans and milestones will be discussed. This work has been supported by DOE DE-SC0012589 and NSF HRD-1649909. DOE DE-SC0012589 and NSF HRD-1649909.

  8. Vibrating wires for beam diagnostics

    CERN Document Server

    Arutunian, S G; Wittenburg, Kay

    2015-01-01

    A new approach to the technique of scanning by wires is developed. Novelty of the method is that the wire heating quantity is used as a source of information about the number of interacting particles. To increase the accuracy and sensitivity of measurements the wire heating measurement is regenerated as a change of wire natural oscillations frequency. By the rigid fixing of the wire ends on the base an unprecedented sensitivity of the frequency to the temperature and to the corresponding flux of colliding particles. The range of used frequencies (tens of kHz) and speed of processes of heat transfer limit the speed characteristics of proposed scanning method, however, the high sensitivity make it a perspective one for investigation of beam halo and weak beam scanning. Traditional beam profile monitors generally focus on the beam core and loose sensitivity in the halo region where a large dynamic range of detection is necessary. The scanning by a vibrating wire can be also successfully used in profiling and det...

  9. A Monochromatic electron neutrino beam

    CERN Document Server

    Lindroos, Mats; Burguet-Castell, J; Espinoza, C

    In the last few years spectacular results have been achieved with the demonstration of non vanishingneutrino masses and flavour mixing. Here, a novel method to create a monochromaticneutrino beam, an old dream for neutrino physics, is described based on the recent discoveryof nuclei with fast decay through electron-capture to Gamow-Teller resonances in super allowedtransitions.

  10. Relativistic atomic beam spectroscopy II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    We are requesting support for a postdoctoral person to participate in H{sup -} studies at Los Alamos. In addition, we are requesting funding for a state-of-the-art YAG laser system that would allow us to obtain data at three times our present rate with improved beam quality.

  11. Beam handling and transport solutions

    Science.gov (United States)

    Maggiore, M.; Cirrone, G. A. P.; Carpinelli, M.; Cuttone, G.; Romano, F.; Schillaci, F.; Scuderi, V.; Tramontana, A.

    2013-07-01

    The main purpose of the present study is to investigate the possibility to characterize the particle beams produced by the laser-target interaction in terms of collection, focusing and energy selection in order to evaluate the feasibility of a laser-driven facility in the field of medical application and, in particular, for hadrontherapy.

  12. Beam handling and transport solutions

    Energy Technology Data Exchange (ETDEWEB)

    Maggiore, M. [Laboratori Nazionali di Legnaro, INFN, Via Universita' 2, Legnaro (PD) (Italy); Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Cuttone, G.; Romano, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Tramontana, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Universita' degli Studi di Catania, Dipartimento di Fisica, Via S. Sofia 64, Catania (Italy)

    2013-07-26

    The main purpose of the present study is to investigate the possibility to characterize the particle beams produced by the laser-target interaction in terms of collection, focusing and energy selection in order to evaluate the feasibility of a laser-driven facility in the field of medical application and, in particular, for hadrontherapy.

  13. Four-block beam collimator

    CERN Multimedia

    1977-01-01

    The photo shows a four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with the secondary beams, the collimators operated in vacuum conditions. The blocks were made of steel and had a standard length of 1 m. The maximum aperture had a square coss-section of 144 cm2. (See Annual Report 1976.)

  14. Multiple Interactions and Beam Remnants

    CERN Document Server

    Sjöstrand, Torbjörn

    2004-01-01

    Open issues on the structure of multiple interactions are outlined. An improved model is summarized, with a new approach to correlated parton densities in flavour, colour, longitudinal and transverse momenta, for both hard-scattering partons and beam-remnant ones.

  15. Focused ion beams in biology.

    Science.gov (United States)

    Narayan, Kedar; Subramaniam, Sriram

    2015-11-01

    A quiet revolution is under way in technologies used for nanoscale cellular imaging. Focused ion beams, previously restricted to the materials sciences and semiconductor fields, are rapidly becoming powerful tools for ultrastructural imaging of biological samples. Cell and tissue architecture, as preserved in plastic-embedded resin or in plunge-frozen form, can be investigated in three dimensions by scanning electron microscopy imaging of freshly created surfaces that result from the progressive removal of material using a focused ion beam. The focused ion beam can also be used as a sculpting tool to create specific specimen shapes such as lamellae or needles that can be analyzed further by transmission electron microscopy or by methods that probe chemical composition. Here we provide an in-depth primer to the application of focused ion beams in biology, including a guide to the practical aspects of using the technology, as well as selected examples of its contribution to the generation of new insights into subcellular architecture and mechanisms underlying host-pathogen interactions.

  16. Three Beam Interfering Pressure Gauge①

    Institute of Scientific and Technical Information of China (English)

    WUZhaoxia; TANGXuhui; 等

    1997-01-01

    In order to solve the problem of high precision,complete electric insulating detection of the pressure measuring system,we have developed the three-beam interferometer.In this paper,the operation principle,structure of the system and measuring results are given.

  17. Beam Interlocks for LHC and SPS

    CERN Document Server

    Dinius, A; Gimeno-Vicente, J; Nouchi, P; Puccio, B; Schmidt, R; Wenninger, J

    2003-01-01

    The Large Hadron Collider at CERN (LHC) will operate at 7 TeV/c with a luminosity of 10 cms. This requires two beams with about 3^10 protons/beam, corresponding to a stored energy of about 350 MJ, sufficient to heat and melt 500 kg of copper. Protection of equipment from damage in case of uncontrolled beam losses is challenging. Injection of the beam from the SPS to the LHC could already damage equipment and is only permitted when all LHC systems are correctly prepared. In case of an uncontrolled loss of the circulating LHC beams, it is required to extract the beams into a specially designed target as soon as possible. Beam loss monitors and equipment for hardware surveillance are distributed around the 26 km long accelerator. In case of failures or beam losses, the beam interlock system is informed and sends a dump request to the beam dumping system. The beam interlock system also inhibits injection when the LHC is not ready for beam. In this paper the requirements for the beam interlock system are discussed...

  18. Infrared imaging diagnostics for INTF ion beam

    Science.gov (United States)

    Sudhir, D.; Bandyopadhyay, M.; Pandey, R.; Joshi, J.; Yadav, A.; Rotti, C.; Bhuyan, M.; Bansal, G.; Soni, J.; Tyagi, H.; Pandya, K.; Chakraborty, A.

    2015-04-01

    In India, testing facility named INTF [1] (Indian test facility) is being built in Institute for Plasma Research to characterize ITER-Diagnostic Neutral Beam (DNB). INTF is expected to deliver 60A negative hydrogen ion beam current of energy 100keV. The beam will be operated with 5Hz modulation having 3s ON/20s OFF duty cycle. To characterize the beam parameters several diagnostics are at different stages of design and development. One of them will be a beam dump, made of carbon fiber composite (CFC) plates placed perpendicular to the beam direction at a distance lm approximately. The beam dump needs to handle ˜ 6MW of beam power with peak power density ˜ 38.5MW/m2. The diagnostic is based on thermal (infra-red - IR) imaging of the footprint of the 1280 beamlets falling on the beam dump using four IR cameras from the rear side of the dump. The beam dump will be able to measure beam uniformity, beamlet divergence. It may give information on relative variation of negative ion stripping losses for different beam pulses. The design of this CFC based beam dump needs to address several physics and engineering issues, including some specific inputs from manufacturers. The manuscript will describe an overview of the diagnostic system and its design methodology highlighting those issues and the present status of its development.

  19. Beam halo studies in LEHIPA DTL

    Science.gov (United States)

    Roy, S.; Pande, R.; Rao, S. V. L. S.; Krishnagopal, S.; Singh, P.

    2015-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA) project at Bhabha Atomic Research Centre (BARC) consists of a 20 MeV, 30 mA proton linac. The accelerator comprises of a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 MeV Drift Tube Linac (DTL). In such high intensity accelerators, beam halos are of concern as they not only cause an increase in emittance, but also lead to beam loss and radio activation. We have studied the effect of beam mismatch at the DTL input on halo formation and propagation. The particle core model is used to excite the three envelope eigen modes; the quadrupole mode, the fast mode and the slow mode by giving input beam mismatch. These modes get damped as the beam progresses through the DTL. The damping mechanism is clearly Landau damping and leads to increase in rms emittance of the beam. The evolution of these modes and the corresponding increase in beam emittance and maximum beam extent, as the beam propagates through the DTL, has been studied for different space charge tunes. The halo parameter based on the definition of Allen and Wangler has been calculated. It is seen that beam halos are very important for LEHIPA DTL, even at 20 MeV and leads to emittance and beam size increase and also to beam loss in some cases. The longitudinal halo is present even without mismatch and transverse halos arise in the presence of beam mismatch.

  20. Denton E-beam Evaporator #1

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: E-Beam Evap 1This is a dual e-beam/thermal evaporator for the deposition of metal and dielectric thin films. Materials available are: Ag, Al,...

  1. Tunable Beam Diffraction in Infiltrated Microstructured Fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.;

    We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....

  2. Denton E-beam Evaporator #1

    Data.gov (United States)

    Federal Laboratory Consortium — Description: CORAL Name: E-Beam Evap 1 This is a dual e-beam/thermal evaporator for the deposition of metal and dielectric thin films. Materials available are: Ag,...

  3. Beam instability studies for the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.

    1994-09-01

    Beam instability studies of the Superconducting Super Collider (SSC) during the period 1989--1993 are briefly reviewed in this paper. Various topics are covered: single bunch and multi-bunch, single beam and beam-beam, parasitic heating and active feedback, etc. Although the SSC will not be built, many of the results obtained from these studies remain as useful references to the accelerator community.

  4. Beam Tests of a Prototype Stripline Beam Position Monitoring System for the Drive Beam of the CLIC Two-beam Module at CTF3

    CERN Document Server

    Benot-Morell, Alfonso; Nappa, Jean-Marc; Vilalte, Sebastien; Wendt, Manfred

    2016-01-01

    In collaboration with LAPP and IFIC, two units of a prototype stripline Beam Position Monitor (BPM) for the CLIC Drive Beam (DB), and its associated readout electronics have been successfully installed and tested in the Two-Beam-Module (TBM) at the CLIC Test Facility 3 (CTF3) at CERN. This paper gives a short overview of the BPM system and presents the performance measured under different Drive Beam configurations.

  5. Optical Beams in Nonlocal Nonlinear Media

    DEFF Research Database (Denmark)

    Królikowski, W.; Bang, Ole; Wyller, J.

    2003-01-01

    We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons.......We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....

  6. Fractional Fourier transform of Lorentz beams

    Institute of Scientific and Technical Information of China (English)

    Zhou Guo-Quan

    2009-01-01

    This paper introduces Lorentz beams to describe certain laser sources that produce highly divergent fields. The fractional Fourier transform (FRFT) is applied to treat the propagation of Lorentz beams. Based on the definition of convolution and the convolution theorem of the Fourier transform, an analytical expression for a Lorentz beam passing through a FRFT system has been derived. By using the derived formula, the properties of a Lorentz beam in the FRFT plane are illustrated numerically.

  7. Plasma/Neutral-Beam Etching Apparatus

    Science.gov (United States)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  8. Summary of impedance issues and beam instabilities

    CERN Document Server

    Zimmermann, Frank

    2016-01-01

    This paper summarizes the session on impedance issues and beam instabilities at the ICFA workshop on future circular electron-positron factories “eeFACT2016” [1] held at the Cockcroft Institute, Daresbury, from 24 to 27 October 2016. This session also covered active beam stabilization by feedback systems. Beam-beam effects and coherent beambeam instabilities were addressed separately and, therefore, are not included here.

  9. The NuMI Neutrino Beam

    CERN Document Server

    Adamson, P; Andrews, M; Andrews, R; Anghel, I; Augustine, D; Aurisano, A; Avvakumov, S; Ayres, D S; Baller, B; Barish, B; Barr, G; Barrett, W L; Bernstein, R H; Biggs, J; Bishai, M; Blake, A; Bocean, V; Bock, G J; Boehnlein, D J; Bogert, D; Bourkland, K; Cao, S V; Castromonte, C M; Childress, S; Choudhary, B C; Coelho, J A B; Cobb, J H; Corwin, L; Crane, D; Cravens, J P; Cronin-Hennessy, D; Ducar, R J; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Erwin, A R; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Fields, T H; Ford, R; Frohne, M V; Gallagher, H R; Garkusha, V; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grossman, N; Grzelak, K; Habig, A; Hahn, S R; Harding, D; Harris, D; Harris, P G; Hartnell, J; Hatcher, R; Hays, S; Heller, K; Holin, A; Huang, J; Hylen, J; Ibrahim, A; Indurthy, D; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Johnstone, J; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Laughton, C; Lefeuvre, G; Ling, J; Litchfield, P J; Loiacono, L; Lucas, P; Mann, W A; Marchionni, A; Marshak, M L; Mayer, N; McGivern, C; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Milburn, R H; Miller, J L; Miller, W H; Mishra, S R; Sher, S Moed; Moore, C D; Morfin, J; Mualem, L; Mufson, S; Murgia, S; Murtagh, M; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Connor, J O; Oliver, W P; Olsen, M; Orchanian, M; Osprey, S; Pahlka, R B; Paley, J; Para, A; Patterson, R B; Patzak, T; Pavlovic, Z; Pawloski, G; Perch, A; Peterson, E A; Petyt, D A; Pfutzner, M; Phan-Budd, S; Plunkett, R K; Poonthottathil, N; Prieto, P; Pushka, D; Qiu, X; Radovic, A; Rameika, R A; Ratchford, J; Rebel, B; Reilly, R; Rosenfeld, C; Rubin, H A; Ruddick, K; Sanchez, M C; Saoulidou, N; Sauer, L; Schneps, J; Schoo, D; Schreckenberger, A; Schreiner, P; Shanahan, P; Sharma, R; Smart, W; Smith, C; Sousa, A; Stefanik, A; Tagg, N; Talaga, R L; Tassotto, G; Thomas, J; Thompson, J; Thomson, M A; Tian, X; Timmons, A; Tinsley, D; Tognini, S C; Toner, R; Torretta, D; Trostin, I; Tzanakos, G; Urheim, J; Vahle, P; Vaziri, K; Villegas, E; Viren, B; Vogel, G; Webber, R C; Weber, A; Webb, R C; Wehmann, A; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Wong-Squires, M L; Yang, T; Yumiceva, F X; Zarucheisky, V; Zwaska, R

    2015-01-01

    This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  10. The NuMI neutrino beam

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Anghel, I. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); Augustine, D. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Aurisano, A. [Department of Physics, University of Cincinnati, Cincinnati, OH 45221 (United States); Avvakumov, S. [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Ayres, D.S. [Argonne National Laboratory, Argonne, IL 60439 (United States); Baller, B. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Barish, B. [Lauritsen Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Barr, G. [Subdepartment of Particle Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Barrett, W.L. [Physics Department, Western Washington University, Bellingham, WA 98225 (United States); Bernstein, R.H.; Biggs, J. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Bishai, M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Blake, A. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Bocean, V.; Bock, G.J.; Boehnlein, D.J. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); and others

    2016-01-11

    This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  11. Spacecraft Dynamic Characteristics While Deploying Flexible Beams

    Institute of Scientific and Technical Information of China (English)

    程绪铎; 李俊峰; 樊勇; 王照林

    2002-01-01

    The attitude dynamic equations of a spacecraft while deploying two flexible beams and the beam equations were developed from momentum theory. The dynamic equations were solved numerically using the Runge-Kutta method to calculate the vibration amplitudes of the flexible beams and the attitude angular velocity. The results show that the vibration amplitudes increase as the beam length increases or as the initial attitude angular velocity increases. The results also show that the vibration amplitudes decrease as the deployment velocity increases.

  12. Dynamic Beam Based Calibration of Beam Position Monitors

    CERN Document Server

    Dehning, Bernd; Galbraith, Peter; Mugnai, G; Placidi, Massimo; Sonnemann, F; Tecker, F A; Wenninger, J

    1998-01-01

    The degree of spin polarization at LEP is strongly dependent on the knowledge of the vertical orbit. Quadrupole magnet alignment and beam position monitor (BPM) offsets are the main source of the orbi t uncertainty. The error of the orbit monitor readings can be largely reduced by calibrating the monitor relative to the adjacent quadrupole. At LEP, 16 BPM offsets can be determined in parallel durin g 40 minutes. The error of the measure offset is about 30mm. During the LEP run 1997, more than 500 measurements were made and used for the optimisation of polarization. The method of dynamic beam bas ed calibration will be explained and the results will be shown.

  13. Maskless, resistless ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features

  14. Maskless, resistless ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O2+, BF2+, P+ etc., for surface modification and doping applications. With optimized source condition, around 85% of BF2+, over 90% of O2+ and P+ have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He+ beam is as high as 440 A/cm2 • Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O2+ ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O2+ ions with the dose of 1015 cm-2. The oxide can then serve as a hard mask for patterning of the Si film. The

  15. Beam coupling impedances of obstacles protruding into a beam pipe

    Science.gov (United States)

    Kurennoy, Sergey S.

    1997-03-01

    The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle. Formulas for a few important particular cases including both essentially three-dimensional objects like a post or a mask and axisymmetric irises, are presented. These results allow simple practical estimates of the broadband impedance contributions from such discontinuities.

  16. Beam coupling impedances of obstacles protruding into a beam pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.S. [AOT-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1997-03-01

    The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle. Formulas for a few important particular cases including both essentially three-dimensional objects like a post or a mask and axisymmetric irises, are presented. These results allow simple practical estimates of the broadband impedance contributions from such discontinuities. {copyright} {ital 1997} {ital The American Physical Society}

  17. 196 Beams in a Scanning Electron Microscope

    NARCIS (Netherlands)

    Mohammadi-Gheidari, A.

    2013-01-01

    In this thesis, for the first time ever, it is demonstrated that 196 beams out of a single electron source can be finely focused onto the sample using the electron optics of a standard single beam SEM. During this PhD thesis, a multi beam scanning electron (MBSEM) was designed and built. The thesis

  18. Beam dynamics issues for linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, R.D.

    1987-09-01

    In this paper we discuss various beam dynamics issues for linear colliders. The emphasis is to explore beam dynamics effects which lead to an effective dilution of the emittance of the beam and thus to a loss of luminosity. These considerations lead to various tolerances which are evaluated for a particular parameter set.

  19. Forced Vibrations of a Cantilever Beam

    Science.gov (United States)

    Repetto, C. E.; Roatta, A.; Welti, R. J.

    2012-01-01

    The theoretical and experimental solutions for vibrations of a vertical-oriented, prismatic, thin cantilever beam are studied. The beam orientation is "downwards", i.e. the clamped end is above the free end, and it is subjected to a transverse movement at a selected frequency. Both the behaviour of the device driver and the beam's weak-damping…

  20. Dielectric barrier discharge source for supersonic beams

    Energy Technology Data Exchange (ETDEWEB)

    Luria, K.; Lavie, N.; Even, U. [Sackler School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2009-10-15

    We present a new excitation source for pulsed supersonic beams. The excitation is based on dielectric barrier discharge in the beam. It produces cold beams of metastable atoms, dissociated neutral atoms from molecular precursors, and both positive and negative ions with high efficiency and reliability.

  1. Application of diamond based beam loss monitors

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); CERN, Geneva (Switzerland); Baer, Tobias [CERN, Geneva (Switzerland); Hamburg Univ. (Germany); Castro Carballo, Elena Maria [DESY, Zeuthen (Germany); Lohmann, Wolfgang [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); Schmidt, Ruediger [CERN, Geneva (Switzerland)

    2013-07-01

    The LHC has an operational stored energy of 130MJ per beam. Only a small percentage of beam losses in the LHC equipment can damage material or lead to magnet quenches. Therefore, it is important to monitor different types of beam losses, e.g. scattering on residual gas particles, UFOs, collisions and injection losses. A detailed understanding of beam loss mechanisms is necessary to reduce them and ensure save operation. Two different beam loss monitors are installed in the LHC tunnel: ionization chambers and diamond sensors. Ionization chambers trigger a beam dump if beam losses exceed a certain threshold. They have a time resolution of 40um (half LHC turn) which is not sufficient to resolve bunch-by-bunch beam losses. Diamond sensors have a nanosecond time resolution and can therefore detect bunch-by-bunch beam losses. This time resolution allows an analysis of various types of beam losses and an understanding of the mechanisms. For the first time beam loss intensities were measured bunch-by-bunch caused by different origins of losses. Beam loss measurements using diamond sensors will be presented. The results are compared to simulations and good qualitative agreement was found. The potential of diamond sensors for LHC and experiment applications are discussed.

  2. The Gouy phase of Airy beams

    NARCIS (Netherlands)

    Pang, X.; Gbur, G.; Visser, T.D.

    2011-01-01

    The phase behavior of Airy beams is studied, and their Gouy phase is defined. Analytic expressions for the idealized, infinite-energy type beam are derived. They are shown to be excellent approximations for finite-energy beams generated under typical experimental conditions.

  3. Spiral kicker for the beam abort system

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.L.

    1983-01-01

    A brief study was carried out to determine the feasibility of a special kicker to produce a damped spiral beam at the beam dump for the beam abort system. There appears to be no problem with realizing this concept at a reasonably low cost.

  4. DOL behaviour of end-notched beams

    DEFF Research Database (Denmark)

    Gustafsson, P.J.; Hoffmeyer, Preben; Valentin, G.

    1998-01-01

    The long-term loading strength of end-notched beams made of glulam and LVL was tested. The beams were of various sizes, with and without a moisture sealing at the notch. Tests were conducted in open shelter climates, and at constant and cyclic relative humidity. The short-term strength was tested...... beams with a moisture sealing at the notch...

  5. A BEAM PROFILE MONITOR USING THE IONIZATION OF RESIDUAL-GAS IN THE BEAM PIPE

    NARCIS (Netherlands)

    SCHIPPERS, JM; KIEWIET, HH; ZIJLSTA, J

    1991-01-01

    A beam profile monitor for high energy beams, which has no intercepting parts in the beam pipe, is described. It makes use of the ionization of the residual gas, which is still present in the vacuum chamber of the beam guiding system. The detection of the ionization products is performed with microc

  6. Beam Propagation Factor and Generation of Cosh-squared-Gaussian Beams

    Institute of Scientific and Technical Information of China (English)

    ZHU Kaicheng; TANG Huiqin; ZHU Zhenhe

    2001-01-01

    A new light beam termed as a cosh-squared-Gaussian beam (ChSGB) which may be one of solutions of the paraxial wave equation for propagation in complex optical systems has been introduced. Their beam propagation factor (M2-factor) is derived and schemes to generate this light beams are proposed.

  7. Results of long range beam-beam studies and observations during operation in the LHC

    CERN Document Server

    Alemany, R; Buffat, X; Calaga, R; Fitterer, M; Giachino, R; Hemelsoet, GH; Herr, W; Papotti, G; Pieloni, T; Poyer, M; Schaumann, M; Trad, G; Wollmann, D

    2011-01-01

    We studied possible limitations due to the long range beam-beam effects in the LHC. With a larger number of bunches and collisions in all interaction points, we have reduced the crossing angles to enhance long range beam-beam effects to evaluate their influence on dynamic aperture and losses. Experience from operation with reduced separation was analysed and provides additional evidence.

  8. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Adonin, A. A., E-mail: a.adonin@gsi.de; Hollinger, R. [Linac and Operations/Ion Sources, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany)

    2014-02-15

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  9. Luminosity Increase at the Incoherent Beam-Beam Limit with Six Superbunches in RHIC

    Science.gov (United States)

    Fischer, W.; Blaskiewicz, M.

    2003-12-01

    By colliding bunches of greater length under a larger angle, the tune spread caused by the beam-beam interaction can be reduced. Assuming a constant limit for the beam-beam tune shift, the bunch intensity can then be raised. In this way, a luminosity increase is possible. We review this strategy for proton beams in RHIC, with two collisions and consider six long bunches. Barrier cavities are used to fill every accelerating bucket of the machine, except for an abort gap, and to create the superbunches bunches at store. Resonances driven by the beam-beam interaction and coherent effects are neglected in this article.

  10. Beam Emittance Measurement with Laser Wire Scanners in the ILC Beam Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, I.; /CERN; Blair, G.A.; /Royal Holloway, U. of London; Woodley, M.; /SLAC

    2008-02-01

    Accurate measurement of the beam phase-space is essential for the next generation of electron accelerators. A scheme for beam optics optimization and beam matrix reconstruction algorithms for the diagnostics section of the beam delivery system of the International Linear Collider based on laser-wire beam profile monitors are discussed. Possible modes of operation of the laser-wire system together with their corresponding performance are presented. Based on these results, prospects for reconstructing the ILC beam emittance from representative laser-wire beam size measurements are evaluated.

  11. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams

    Science.gov (United States)

    Yuan, Yangsheng; Lei, Ting; Li, Zhaohui; Li, Yangjin; Gao, Shecheng; Xie, Zhenwei; Yuan, Xiaocong

    2017-02-01

    Optical beam wander is one of the most important issues for free-space optical (FSO) communication. We theoretically derive a beam wander model for Bessel beams propagating in turbulent atmosphere. The calculated beam wander of high order Bessel beams with different turbulence strengths are consistent with experimental measurements. Both theoretical and experimental results reveal that high order Bessel beams are less influenced by the turbulent atmosphere. We also demonstrate the Bessel beams based orbital angular momentum (OAM) multiplexing/demultiplexing in FSO communication with atmospheric turbulence. Under the same atmospheric turbulence condition, the bit error rates of transmitted signals carried by high order Bessel beams show smaller values and fluctuations, which indicates that the high order Bessel beams have an advantage of mitigating the beam wander in OAM multiplexing FSO communication.

  12. Simulation of wavefront reconstruction in beam reshaping system for rectangular laser beam

    Science.gov (United States)

    Zhou, Qiong; Liu, Wenguang; Jiang, Zongfu

    2014-05-01

    A new method to calculating the wavefront of slap laser is studied in this paper. The method is based on the ray trace theory of geometrical optics. By using the Zemax simulation software and Matlab calculation software, the wavefront of rectangular beam in beam reshaping system is reconstructed. Firstly, with the x- and y-slope measurement of reshaping beam the direction cosine of wavefront can be calculated. Then, the inverse beam path of beam reshaping system is built by using Zemax simulation software and the direction cosine of rectangular beam can be given, too. Finally, Southwell zonal model is used to reconstruct the wavefront of rectangular beam in computer simulation. Once the wavefront is received, the aberration of laser can be eliminated by using the proper configuration of beam reshaping system. It is shown that this method to reconstruct the wavefront of rectangular beam can evidently reduce the negative influence of additional aberration induced by beam reshaping system.

  13. Center for Beam Physics, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Center for Beam Physics is a multi-disciplinary research and development unit in the Accelerator and Fusion Research Division at Lawrence Berkeley Laboratory. At the heart of the Center`s mission is the fundamental quest for mechanisms of acceleration, radiation and focusing of energy. Dedicated to exploring the frontiers of the physics of (and with) particle and photon beams, its primary mission is to promote the science and technology of the production, manipulation, storage and control systems of charged particles and photons. The Center serves this mission via conceptual studies, theoretical and experimental research, design and development, institutional project involvement, external collaborations, association with industry and technology transfer. This roster provides a glimpse at the scientists, engineers, technical support, students, and administrative staff that make up this team and a flavor of their multifaceted activities during 1993.

  14. Beam-time for biology

    CERN Multimedia

    Jordan Juras

    2010-01-01

    There's no question that playing with mercury or handling radioactive cadmium with your bare hands is a risky business. But understanding how these and other toxic metals interact with biomolecules within the body is a challenging feat; one for which the ISOLDE IS488 collaboration hopes to provide valuable insight.   General view of the ISOLDE experimental area. Unlike most of the facilities at CERN's accelerator complex, ISOLDE is not targeted mainly at particle physics. Rather, it produces radioactive nuclei during proton bombardment to study, among other things, physical and biological chemistry. At ISOLDE, the 1.4 GeV proton beam of the PS Booster (an early stage in CERN's accelerator complex) produces nuclear reactions in a thick target, creating a large variety of radioactive nuclei, which are mass-separated for use in experiments. In the case of the IS488 collaboration, the ion beam is directed into ice. "We implant radioactive metal ions into ice", explains Monika Stac...

  15. Vertical Beam Polarization at MAMI

    Science.gov (United States)

    Schlimme, B. S.; Achenbach, P.; Aulenbacher, K.; Baunack, S.; Bender, D.; Beričič, J.; Bosnar, D.; Correa, L.; Dehn, M.; Distler, M. O.; Esser, A.; Fonvieille, H.; Friščić, I.; Gutheil, B.; Herrmann, P.; Hoek, M.; Kegel, S.; Kohl, Y.; Kolar, T.; Kreidel, H.-J.; Maas, F.; Merkel, H.; Mihovilovič, M.; Müller, J.; Müller, U.; Nillius, F.; Nuck, A.; Pochodzalla, J.; Schoth, M.; Schulz, F.; Sfienti, C.; Širca, S.; Spruck, B.; Štajner, S.; Thiel, M.; Tioukine, V.; Tyukin, A.; Weber, A.

    2017-04-01

    For the first time a vertically polarized electron beam has been used for physics experiments at MAMI in the energy range between 180 and 855 MeV. The beam-normal single-spin asymmetry An, which is a direct probe of higher-order photon exchange beyond the first Born approximation, has been measured in the reaction 12C (e → , e ‧)12C . Vertical polarization orientation was necessary to measure this asymmetry with the existing experimental setup. In this paper we describe the procedure to orient the electron polarization vector vertically, and the concept of determining both its magnitude and orientation with the available setup. A sophisticated method has been developed to overcome the lack of a polarimeter setup sensitive to the vertical polarization component.

  16. The Beam Diagnostics for SESAME

    CERN Document Server

    Varnasseri, S

    2005-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an Independent Intergovernmental Organization developed and officially established under the auspices of UNESCO. SESAME will become a major international research center in the Middle East, located in Allan, Jordan. The machine design is based on a 2.5 GeV 3rd generation Light Source with an emittance of 26 nm*rad and 12 straights for insertion devices. The conceptual design of the accelerator complex has been frozen and the engineering design is started. The completion of the accelerators complex construction is scheduled for the end of 2009. In the following an overview of the electron beam diagnostic system is presented, with special emphasis on the beam position monitoring system and the synchrotron light monitor.

  17. Plane waves as tractor beams

    CERN Document Server

    Forgács, Péter; Romańczukiewicz, Tomasz

    2013-01-01

    It is shown that in a large class of systems plane waves can act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode having a larger wave number, in which case excess momentum is created behind the scatterer. Such a tractor beam or negative radiation pressure effect arises naturally in systems where the coupling between the scattering channels is due to Aharonov-Bohm (AB) gauge potentials. It is demonstrated that this effect is also present if the AB potential is an induced, ("artificial") gauge potential such as the one found in J. March-Russell, J. Preskill, F. Wilczek, Phys. Rev. Lett. 58 2567 (1992).

  18. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry

    2010-01-01

    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  19. Neutron beam testing of triblades

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, Sarah E [Los Alamos National Laboratory; Du Bois, Andrew J [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Rust, William N [Los Alamos National Laboratory; Du Bois, David H [Los Alamos National Laboratory; Modl, David G [Los Alamos National Laboratory; Quinn, Heather M [Los Alamos National Laboratory; Blanchard, Sean P [Los Alamos National Laboratory; Manuzzato, Andrea [UNIV DEGLI STUDI DI PADOVA ITALY

    2010-12-16

    Four IBM Triblades were tested in the Irradiation of Chips and Electronics facility at the Los Alamos Neutron Science Center. Triblades include two dual-core Opteron processors and four PowerXCell 8i (Cell) processors. The Triblades were tested in their field configuration while running different applications, with the beam aimed at the Cell processor or the Opteron running the application. Testing focused on the Cell processors, which were tested while running five different applications and an idle condition. While neither application nor Triblade was statistically important in predicting the hazard rate, the hazard rate when the beam was aimed at the Opterons was significantly higher than when it was aimed at the Cell processors. In addition, four Cell blades (one in each Triblade) suffered voltage shorts, leading to their inoperability. The hardware tested is the same as that in the Roadrunner supercomputer.

  20. Fragmentation in Carbon Therapy Beams

    CERN Document Server

    Charara, Y M

    2010-01-01

    The state of the art Monte Carlo code HETC-HEDS was used to simulate spallation products, secondary neutron, and secondary proton production in A-150 Tissue Equivalent Plastic phantoms to investigate fragmentation of carbon therapy beams. For a 356 MeV/Nucleon carbon ion beam, production of charged particles heavier than protons was 0.24 spallation products per incident carbon ion with atomic numbers ranging from 1 through 5 (hydrogen to boron). In addition, there were 4.73 neutrons and 2.95 protons produced per incident carbon ion. Furthermore, as the incident energy increases, the neutron production rate increases at a rate of 20% per 10 MeV/nucleon. Secondary protons were created at a rate between 2.62-2.87 per carbon ion, while spallation products were created at a rate between 0.20-0.24 per carbon ion.

  1. Test-beam with Python

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The talk will show the current implementation of the software tool developed by Silab (Bonn) and Oxford University to analyze test beam data with Mimosa telescope. Data collected from the telescope are merged with hits recorded on pixel detectors with a FE-I4 chips, the official read-out chip of the Atlas Pixel Detector. The software tool used to collect data, pyBAR, is developed with Python as well. The test-beam analysis tool parses the data-sets, recreates the tracks, aligns the telescope planes and allows to investigate the detectors spatial properties with high resolution. This has just allowed to study the properties of brand new devices that stand as possible candidate to replace the current pixel detector in Atlas.

  2. Beam diagnostics in the CIRFEL

    Energy Technology Data Exchange (ETDEWEB)

    Krishnaswamy, J.; Lehrman, I.S.; Hartley, R. [Northrop Grumman Advanced Technology and Development Center, Princeton, NJ (United States)] [and others

    1995-12-31

    The CIRFEL system has been operating with electron energies in the range of 11 to 12 MeV and RF pulse length of 3 to 4 {mu}secs. The electrons produced by a Magnesium photocathode illuminated by a 261nm mode locked laser are accelerated in the RF gun, and further boosted in energy by a booster section downstream of the RIF gun. The electrons are energy selected in the bending section before insertion into a permanent magnet wiggler. We describe several recent diagnostic measurements carried out on the CIRFEL system: emittance measurements in two different sections of the beam line, energy and energy spread measurements, and jitter characteristics of the photo cathode drive laser as well as the electron beam energy.

  3. Repositioning and steering laser beam power via coherent combination of multiple Airy beams.

    Science.gov (United States)

    Zhang, Ze; Ye, Zhuoyi; Song, Daohong; Zhang, Peng; Chen, Zhigang

    2013-12-10

    We study numerically and experimentally laser coherent combination (LCC) with multiple one- or two-dimensional Airy beams. It is shown that the method of LCC using Airy beams leads to a higher combining efficiency and a better feature of propagation than that using conventional Gaussian beams. Based on such coherent Airy beams combination, we propose a laser steering approach that could achieve large-angle beam steering (over 0.6°) without the need of using any mechanical steering component.

  4. Impact of beam-beam effects on precision luminosity measurements at the ILC

    CERN Document Server

    Rimbault, C; Mönig, K; Schulte, D

    2007-01-01

    In this paper, the impact of beam-beam effects on the precision luminosity measurement at the International Linear Collider is investigated quantitatively for the first time. GUINEA-PIG, a beam-beam interaction simulation tool, is adapted to treat the space charge effects affecting the Bhabha events used in this measurement. The biases due to the resulting changes in kinematics are evaluated for different center-of-mass energies and beam parameters.

  5. Development of 3D beam-beam simulation for the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Stern, E.; Amundson, J.; Spentzouris, P.; Valishev, A.; /Fermilab; Qiang, J.; Ryne, R.; /LBL, Berkeley

    2007-06-01

    We present status of development of a 3D Beam-Beam simulation code for simulating the Fermilab Tevatron collider. The essential features of the code are 3D particle-in-cell Poisson solver for calculating the Beam-Beam electromagnetic interactions with additional modules for linear optics, machine impedance and chromaticity, and multiple bunch tracking. The simulations match synchrobetatron oscillations measured at the VEPP-2M collider. The impedance calculations show beam instability development consistent with analytic expressions.

  6. Compression of Ultrafast Laser Beams

    Science.gov (United States)

    2016-03-01

    on the ability to determine an optimal solution ...........17 Fig. 11 Graph of solution evolution using genetic algorithm on SHG maximization...test algorithm to determine the best settings and using those settings when doing pulse compression. Overall, the genetic algorithm is a good tool for...23 The MIIPS algorithm is better for determining a transform-limited beam than the genetic algorithm. First, there is a definitive way to know how

  7. Beam Studies with Electron Columns

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; Valishev, A.; Kuznetsov, G.; /Fermilab; Kamerdzhiev, V.; /Julich, Forschungszentrum; Romanov, A.; /Novosibirsk, IYF

    2009-04-01

    We report preliminary results of experimental studies of 'electron columns' in the Tevatron and in a specialized test setup. In the Tevatron, a beam of 150 GeV protons ionizes residual gas and ionization electrons are stored in an electrostatic trap immersed into strong longitudinal magnetic field. Shifts of proton betatron frequencies are observed. In the test setup, we observe effects pointing to accumulation and escape of ionization electrons.

  8. Diamond Detectors as Beam Monitors

    CERN Document Server

    Dehning, B; Dobos, D; Pernegger, H; Griesmayer, E

    2010-01-01

    CVD diamond particle detectors are already in use in the CERN experiments ATLAS, CMS, LHCb and ALICE and at various particle accelerator laboratories in USA and Japan. This is a proven technology with high radiation tolerance and very fast signal read-out. It can be used for measuring single-particles as well as for high-intensity particle cascades, for timing measurements on the nanosecond scale and for beam protection systems. The radiation tolerance is specified with 10 MGy.

  9. Maritime Adaptive Optics Beam Control

    Science.gov (United States)

    2010-09-01

    adaptive optics work at the NPS has been applied primarily to vibration control and segment alignment for flexible space telescopes and segmented mirror...a Fourier filter in the form of an iris or aperture stop is placed in the beam to select either the +1 or -1 diffractive order to propagate through...optical components on the table include lenses, mirrors, aperture stops, beamsplitters, and filters which reimage the system pupil plane and

  10. Coherence matrix of plasmonic beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Lavrinenko, Andrei

    2013-01-01

    We consider monochromatic electromagnetic beams of surface plasmon-polaritons created at interfaces between dielectric media and metals. We theoretically study non-coherent superpositions of elementary surface waves and discuss their spectral degree of polarization, Stokes parameters, and the for...... of the spectral coherence matrix. We compare the polarization properties of the surface plasmonspolaritons as three-dimensional and two-dimensional fields concluding that the latter is superior....

  11. Sensitive beam current measurement for FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Schwickert, Marcus; Kurian, Febin; Reeg, Hansjoerg [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Seidel, Paul; Neubert, Ralf [Friedrich-Schiller-Universitaet Jena (Germany); Geithner, Rene; Vodel, Wolfgang [Helmholtz-Institut Jena (Germany)

    2012-07-01

    Presently FAIR, the Facility for Antiproton and Ion Research, entered the final planning phase at GSI. The new accelerator facility requires precise devices for beam current measurements due to the large dynamics in beam intensities for the various synchrotrons, transport lines and storage rings. We report on the actual developments of beam diagnostic devices for the measurement of beam intensities ranging from 5 x 10{sup 11} uranium ions down to the detection of less than 10{sup 4} antiprotons. This contribution gives an overview of the planned instruments with a focus on non-intercepting beam current transformers, and summarizes the on-going development of a cryogenic current comparator.

  12. Development of high current electron beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook [and others

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs.

  13. Ion beam analysis fundamentals and applications

    CERN Document Server

    Nastasi, Michael; Wang, Yongqiang

    2015-01-01

    Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization.The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nucle

  14. Electron Beam Curing of Advanced Composites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The fundamental concept of electron beam method and the application in cure of composites are elaborated in this paper. The components of electron beam curing system are introduced. The mechanisms of interaction between electron beam and polymer matrix composites are presented. Recent studies reported including work of authors themselves on electron beam curing of composites are also discussed. Moreover, the authors believe that it is necessary to do the basic research about understanding how electron beam affects cured network and the mechanical/physical properties of the composites, for establishing a quantitative or semi-quantitative formulation.

  15. Self-steering partially coherent beams

    Science.gov (United States)

    Chen, Yahong; Ponomarenko, Sergey A.; Cai, Yangjian

    2017-01-01

    We introduce a class of shape-invariant partially coherent beams with a moving guiding center which we term self-steering partially coherent beams. The guiding center of each such beam evolves along a straight line trajectory which can be engineered to make any angle with the x-axis. We show that the straight line trajectory of the guiding center is the only option in free space due to the linear momentum conservation. We experimentally generate a particular subclass of new beams, self-steering Gaussian Schell beams and argue that they can find applications for mobile target tracing and trapped micro- and/or nanoparticle transport. PMID:28051164

  16. Carbon Fiber Damage in Accelerator Beam

    CERN Document Server

    Sapinski, M; Guerrero, A; Koopman, J; Métral, E

    2009-01-01

    Carbon fibers are commonly used as moving targets in Beam Wire Scanners. Because of their thermomechanical properties they are very resistant to particle beams. Their strength deteriorates with time due to radiation damage and low-cycle thermal fatigue. In case of high intensity beams this process can accelerate and in extreme cases the fiber is damaged during a single scan. In this work a model describing the fiber temperature, thermionic emission and sublimation is discussed. Results are compared with fiber damage test performed on SPS beam in November 2008. In conclusions the limits of Wire Scanner operation on high intensity beams are drawn.

  17. OAM beams from incomplete computer generated holograms

    CERN Document Server

    Zambale, Niña Angelica F; Hermosa, Nathaniel

    2016-01-01

    In this letter we show that optical beams with orbital angular momentum (OAM) can be generated even with incomplete computer generated holograms (CGH). These holograms are made such that random portions of it do not contain any information. We observe that although the beams produced with these holograms are less intense, these beams maintain their shape and that their topological charges are not affected. Furthermore, we show that superposition of two or more beams can be created using separate incomplete CGHs interspersed together. Our result is significant especially since most method to generate beams with OAM for various applications rely on pixelated devices or optical elements with imperfections.

  18. Multi turn beam extraction from synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Tsoupas, Nicholaos

    2017-01-24

    This disclosure relates to apparatuses and methods for the extraction of particle beams while maintaining the energy levels and precision of the particles and the particle beam. Apparatuses and methods for extracting a charged particle beam from a central orbit in a synchrotron are provided, in which a particle beam is deflected from the central orbit. Parts of the deflected particle beam passes through a stripping foil placed in at least parts of the deflected path such that the particles that pass through the foil are stripped of at least one electron. The electron stripped particles and the non-stripped particles may be separated magnetically.

  19. Beam energy online measurement of BEPCII LINAC

    CERN Document Server

    Wang, Shao-Zhe; Chi, Yun-Long

    2015-01-01

    This paper describes beam energy online measurement of BEPCII linac, presents the calculation formula and some of the results. The method mentioned here measures the beam energy by acquiring beam positions in the horizontal direction with three beam position monitors (BPM) eliminating the effect of orbit fluctuation, which is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in the end of this paper.

  20. Schottky Noise and Beam Transfer Functions

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz M.; Blaskiewicz M.

    2016-12-01

    Beam transfer functions (BTF)s encapsulate the stability properties of charged particle beams. In general one excites the beam with a sinusoidal signal and measures the amplitude and phase of the beam response. Most systems are very nearly linear and one can use various Fourier techniques to reduce the number of measurements and/or simulations needed to fully characterize the response. Schottky noise is associated with the finite number of particles in the beam. This signal is always present. Since the Schottky current drives wakefields, the measured Schottky signal is influenced by parasitic impedances.

  1. Theoretical and Experimental Beam Plasma Physics (TEBPP)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is developed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations field ( 10 m) and mid field ( 10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.

  2. Space-variant polarized Airy beam

    CERN Document Server

    Chen, Hao

    2015-01-01

    We experimentally generate an Airy beam with polarization structure while keeping its original amplitude and phase profile intact. This class of Airy beam preserves the acceleration properties. By monitoring their initial polarization structure we have provided insight concerning the self-healing mechanism of Airy beams. We investigate both theoretically and experimentally the self-healing polarization properties of the space-variant polarized Airy beams. Amplitude as well as the polarization structure tends to reform during propagation in spite of the severe truncation of the beam by finite apertures.

  3. Beam combining of quantum cascade laser arrays.

    Science.gov (United States)

    Lee, Benjamin G; Kansky, Jan; Goyal, Anish K; Pflügl, Christian; Diehl, Laurent; Belkin, Mikhail A; Sanchez, Antonio; Capasso, Federico A

    2009-08-31

    Wavelength beam combining was used to co-propagate beams from 28 elements in an array of distributed-feedback quantum cascade lasers (DFB-QCLs). The beam-quality product of the array, defined as the product of near-field spot size and far-field divergence for the entire array, was improved by a factor of 21 by using wavelength beam combining. To demonstrate the applicability of wavelength beam combined DFB-QCL arrays for remote sensing, we obtained the absorption spectrum of isopropanol at a distance of 6 m from the laser array.

  4. Conceptual design of proton beam window

    Energy Technology Data Exchange (ETDEWEB)

    Teraoku, Takuji; Kaminaga, Masanori; Terada, Atsuhiko; Ishikura, Syuichi; Kinoshita, Hidetaka; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    In a MW-scale neutron scattering facility coupled with a high-intensity proton accelerator, a proton beam window is installed as the boundary between a high vacuum region of the proton beam transport line and a helium environment around the target assembly working as a neutron source. The window is cooled by water so as to remove high volumetric heat generated by the proton beam. A concept of the flat-type proton beam window consisting of two plates of 3 mm thick was proposed, which was found to be feasible under the proton beam power of 5 MW through thermal-hydraulic and structural strength analyses. (authors)

  5. Laser wakefield acceleration of polarized electron beams

    Science.gov (United States)

    Pugacheva, D. V.; Andreev, N. E.; Cros, B.

    2016-11-01

    The acceleration of highly polarized electron beams are widely used in state-of-the-art high-energy physics experiments. In this work, a model for investigation of polarization dynamics of electron beams in the laser-plasma accelerator depending on the initial energy of electrons was developed and tested. To obtain the evolution of the trajectory and momentum of the electron for modeling its acceleration the wakefield structure was determined. The spin precession of the beam electron was described by Thomas-Bargman-Michel-Telegdi equations. The evolution of the electron beam polarization was investigated for zero-emittance beams with zero-energy spread.

  6. The two-beam accelertor

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.; Hopkins, D.B.

    1987-08-01

    The Two-Beam Accelerator (TBA) consists of a long high-gradient accelerator structure (HGS) adjacent to an equal-length Free Electron Laser (FEL). In the FEL, a beam propagates through a long series of undulators. At regular intervals, waveguides couple microwave power out of the FEL into the HGS. To replenish energy given up by the FEL beam to the microwave field induction accelerator units are placed periodically along the length or the FEL. In this manner it is expected to achieve gradients of more than 250 MV/m and thus have serious option for a 1 TeV /times/ 1 TeV linear collider. The state of present theoretical understanding of the TBA is presented with particular emphasis upon operation of the ''steady-state'' FEL, phase and amplitude control of the rf wave, and suppression of sideband instabilities. Experimental work has focused upon the development of a suitable HGS and the testing of this structure using the Electron Laser Facility (ELF). Description is given of a first test at ELF with a seven-cell 2..pi../3 mode structure which without pre-conditioning and with a not-very-good vacuum nevertheless at 35 GHz yielded an average accelerating gradient of 180 MV/m.

  7. A better beam for ISOLDE

    CERN Multimedia

    2007-01-01

    ISCOOL, the RFQ Cooler and Buncher, recently installed at ISOLDE, heralds a new generation of beam quality. Jérôme Sarret working on the alignment of ISCOOL, ISOLDE’s new RFQ Cooler and Buncher.As any good chef knows, the secret to a good dish lies in the quality of its ingredients. And at ISOLDE, unlocking the juiciest secrets of the nucleus needs a high-quality beam. One recently installed device, the RFQ Cooler and Buncher (RFQCB), will enhance the emittance and bunching properties of the ion beam, giving ISOLDE’s experiments a better shot at teasing out the properties of exotic nuclei. The device, originally conceived in a PhD thesis by Ivan Podadera, was installed and commissioned over the past few weeks by the AB-ATB-IF, AB-OP and PH-IS groups. At ISOLDE, radioactive nuclides are produced in thick high-temperature targets and the RFQ cooler will use a buffer gas, segmented cylinder and RF quadrupole to slow the ions, del...

  8. Enhancing the accelerated beam current in the booster synchrotron by optimizing the transport line beam propagation

    Indian Academy of Sciences (India)

    Saini R S; Tyagi Y; Ghodke A D; Puntambekar T A

    2016-04-01

    In this paper, we present the results of transverse beam emittance and twiss parameter measurement of an electron beam, delivered by a 20 MeV microtron which is used as a pre-injector system for a booster synchrotron in the Indus Accelerator Facility at RRCAT Indore. Based on these measured beam parameters, beam optics of a transport line was optimized and its results are alsodiscussed in this paper. This beam transport line is used to transport the electron beam from the 20MeV microtron to the booster synchrotron. The booster synchrotron works as a main injector for Indus-1 and Indus-2 synchrotron radiation facilities. To optimize the beam optics of a transport linefor proper beam transmission through the line as well as to match the beam twiss parameters at the beam injection point of another accelerator, it is necessary to know the transverse beam emittance and twiss parameters of the beam coming from the first one. A MATLAB-based GUI program has been developed to calculate the beam emittance and twiss parameters, using quadrupole scanmethod. The measured parameters have been used for beam transport line optimization and twiss parameters matching at booster injection point. After this optimization, an enhancement of ∼50% beam current has been observed in the booster synchrotron.

  9. BEAM CONTAINMENT SYSTEM FOR NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.L.; Casey, W.; Job, P.K.

    2010-05-23

    The shielding design for the NSLS-II will provide adequate protection for the full injected beam loss in two periods of the ring around the injection point, but the remainder of the ring is shielded for lower losses of {le} 10% full beam. This will require a system to insure that beam losses don't exceed these levels for a period of time that could cause excessive radiation levels outside the shield walls. This beam containment system will measure, provide a level of control and alarm indication of the beam power losses along the beam path from the source (e-gun, linac) thru the injection system and the storage ring. This system will consist of collimators that will provide limits to (and potentially to measure) the beam miss-steering and control the loss points of the charge and monitors that will measure the average beam current losses along the beam path and alarm when this beam power loss exceeds the level set by the shielding specifications. This will require some new ideas in beam loss detection capability and collimation. The initial planning and R&D program will be presented.

  10. Splitting of high power, cw proton beams

    CERN Document Server

    Facco, Alberto; Berkovits, Dan; Yamane, Isao

    2007-01-01

    A simple method for splitting a high power, continuous wave (cw) proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line adioactive Ion Beam Facility) design study. The aim of the system is to deliver up to 4 MW of H beam to the main radioactive ion beam production target, and up to 100 kWof proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fractionof the main H- beam, magnetic splitting of H- and H0, and stripping of H0 to H+. The method allowsslow raising and individual fine adjustment of the beam intensity in each branch.

  11. Multi-beam linear accelerator EVT

    Energy Technology Data Exchange (ETDEWEB)

    Teryaev, Vladimir E., E-mail: vladimir_teryaev@mail.ru [Omega-P, Inc., New Haven, CT 06510 (United States); Kazakov, Sergey Yu. [Fermilab, Batavia, IL 60510 (United States); Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT 06510 (United States); Yale University, New Haven, CT 06511 (United States)

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  12. Creep Effects in Pultruded FRP Beams

    Science.gov (United States)

    Boscato, G.; Casalegno, C.; Russo, S.

    2016-03-01

    The paper presents results of two creep tests on pultruded open-section GFRP beams aimed to evaluate the long-term deformations, the residual deflection after unloading, and the influence of creep strains on the flexuraltorsional buckling phenomenon. Two beams were subjected to a constant load for about one year. Then one of the beams was unloaded to evaluate its residual deflection. For the other beam, the load was increased up to failure, and the residual buckling strength was compared with that of a similar beam tested up to failure. The parameters of the Findley power law are evaluated, and the experimental results are compared with those of numerical analyses and with available formulations for prediction of the time-dependent properties of composite beams. Results of the investigation testify, in particular, to a noninsignificant time-dependent increment in deflections of the beams and to a significant reduction in their buckling strength due to creep deformations.

  13. Winding light beams along elliptical helical trajectories

    CERN Document Server

    Wen, Yuanhui; Zhang, Yanfeng; Chen, Hui; Yu, Siyuan

    2016-01-01

    Conventional caustic methods in real or Fourier space produced accelerating optical beams only with convex trajectories. We develop a superposition caustic method capable of winding light beams along non-convex trajectories. We ascertain this method by constructing a one-dimensional (1D) accelerating beam moving along a sinusoidal trajectory, and subsequently extending to two-dimensional (2D) accelerating beams along arbitrarily elliptical helical trajectories. We experimentally implement the method with a compact and robust integrated optics approach by fabricating micro-optical structures on quartz glass plates to perform the spatial phase and amplitude modulation to the incident light, generating beam trajectories highly consistent with prediction. The theoretical and implementation methods can in principle be extended to the construction of accelerating beams with a wide variety of non-convex trajectories, thereby opening up a new route of manipulating light beams for fundamental research and practical ap...

  14. The SPL-based Neutrino Super Beam

    CERN Document Server

    Baussan, E; Bobeth, C; Bouquerel, E; Caretta, O; Cupial, P; Davenne, T; Densham, C; Dracos, M; Fitton, M; Gaudiot, G; Kozien, M; Lacny, L; Lepers, B; Longhin, A; Loveridge, P; Osswald, F; Poussot, P; Rooney, M; Skoczen, B; Szybinski, B; Ustrzycka, A; Vassilopoulos, N; Wilcox, D; Wroblewski, A; Wurtz, J; Zeter, V; Zito, M

    2012-01-01

    The EUROnu Super Beam work package has studied a neutrino beam based on SPL at CERN and aimed at MEMPHYS, a large water Cherenkov detector, proposed for the Laboratoire Souterrain de Modane (Fr\\'ejus tunnel, France), with a baseline of 130 km. The aim of this proposed experiment is to study the CP violation in the neutrino sector. In the study reported here, we have developed the conceptual design of the neutrino beam, especially the target and the magnetic focusing device. Indeed, this beam present several unprecedented challenges, like the high primary proton beam power (4 MW), the high repetition rate (50 Hz) and the low energy of the protons (4.5 GeV). The design is completed by a study of all the main component of the system, starting from the transport system to guide the beam to the target up to the beam dump.

  15. Fatigue behavior of RC T-beams

    Directory of Open Access Journals (Sweden)

    Omar A. Farghal

    2014-09-01

    Full Text Available The objective of this research is to study the fatigue performance of reinforced concrete (RC T-beams strengthened in shear with Carbon Fiber Reinforced Polymer (CFRP composite. Experiments were conducted on RC beams with and without CFRP sheets bonded on their web surfaces and subjected to static and cycling loading. The obtained results showed that the strengthened beams could survive one million cycles of cyclic loading (=50% of maximum static load with no apparent signs of damage (premature failure demonstrating the effectiveness of CFRP strengthening system on extending the fatigue life of structures. Also, for beams having the same geometry, the applied strengthening technique can significantly enhance the cycling load particularly, in case of beams provided with U-jacket sheets. Moreover, although the failure mode for the different beams was a brittle one, the strengthened beams provided with U-jacket sheets approved an acceptable enhancement in the structural ductility.

  16. Flat hat glass diffractive optical beam shaper

    Science.gov (United States)

    Reichel, Steffen; Petzold, Uwe; Biertuempfel, Ralf; Vogt, Helge

    2009-02-01

    Many laser applications need a homogeneous - so called flat hat - light distribution in the application area. However, many laser emit Gaussian shaped light. The technology of diffractive optical elements (DOE) can be used to shape the Gaussian beam into a flat hat beam at a compact length. SCHOTT presents a DOE design of a flat hat DOE beam shaper made out of optical glass. Here the material glass has the significant advantage of high laser durability, low scattering losses, high resistance to temperature, moisture, and chemicals compared to polymer DOEs. Simulations and measurements on different DOEs for different wavelength, laser beam width, and laser divergence are presented. Surprisingly the flat hat DOE beam shaper depends only weakly on wavelength and beam width but strongly on laser divergence. Based on the good agreement between simulation and measurement an improved flat hat DOE beam shaper is also presented.

  17. Mixed beams for the nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Breese, M.B.H.; Legge, G.L.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Recently the Micro-Analytical Research Centre (MARC) at Melbourne University has developed a technique to provide mixed beams of ions for a magnetically focussed nuclear microprobe. Such a mixed beam is defined as two (or more) beams of different species ions that can quickly and easily be made to have the same magnetic rigidity R{sub m} = (mE/q{sup 2}) and therefore be transported, focused and scanned the same in a magnetic nuclear microprobe. The production of mixed beams in an electrostatically focussed micro- probe have already been demonstrated. This paper will show how mixed beams can be produced on a single-ended accelerator. Indications of how to produce them on a tandem will also be given. Applications of these mixed beams in micro-lithography, scanning transmission ion microscopy (STIM) imaging and ion beam induced charge (IBIC) imaging will also be presented. 3 refs., 3 figs.

  18. Development of beam instruments at JAERI cyclotron facility

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Susumu; Fukuda, Mitsuhiro; Ishibori, Ikuo; Agematsu, Takashi; Yokota, Watalu; Nara, Takayuki; Nakamura, Yoshiteru; Arakawa, Kazuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A beam phase monitor and two kinds of fluence distribution monitors have been developed for measuring characteristics of cyclotron beams. The beam phase monitor provides a beam phase signal for tuning a beam chopping system and a beam phase selection system. A two-dimensional fluence distribution on a large area is measured with fluence distribution monitors. (author)

  19. Production of an 15O beam using a stable oxygen ion beam for in-beam PET imaging

    Science.gov (United States)

    Mohammadi, Akram; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga

    2017-03-01

    In advanced ion therapy, the 15O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an 15O beam by projectile fragmentation of a stable 16O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors' group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of 15O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of 15O fragments. The highest production rate of 15O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the 16O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the 15O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the 16O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is sufficiently high. In-beam PET imaging was also

  20. Beam coupling impedances of obstacles protruding into beam pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.S.

    1997-08-01

    The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated analytically at frequencies for which the wavelength is large compared to a typical size of the obstacle. Simple formulas for a few important particular cases, including both essentially three-dimensional objects like a post or a mask and axisymmetric irises, are presented. The analytical results are compared and agree with three-dimensional computer simulations. These results allow simple practical estimates of the broad-band impedance contributions from such discontinuities.

  1. Beam Coupling Impedances of Obstacles Protruding into Beam Pipe.

    Science.gov (United States)

    Kurennoy, Sergey S.

    1997-05-01

    The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated analytically at frequencies for which the wavelength is large compared to a typical size of the obstacle. Simple formulas for a few important particular cases including both essentially three-dimensional objects like a post or a mask and axisymmetric irises, are presented. The analytical results are compared and agree with three-dimensional computer simulations. These results allow simple practical estimates of the broad-band impedance contributions from such discontinuities.

  2. Particle-in-cell (PIC) simulations of beam instabilities in gyrotron beam tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Tran, T.M.; Jost, G.; Appert, K.; Sauter, O. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Wuthrich, S. [CRAY Research, PATP/PSE, Ecole Polytechnique Federale, Lausanne (Switzerland)

    1995-10-01

    Experimental observations seem to indicate that the beam velocity and energy spreads are larger than those calculated from the electron trajectory codes which do not take into account the effects of beam instabilities. On the other hand, parasitic oscillations of the beam with frequencies close to the electron cyclotron frequency {omega}{sub ce} have been observed experimentally, suggesting the possibility that instabilities can be excited in the beam tunnels and are responsible for the beam degradation. 2D electrostatic and electromagnetic time-dependent PIC codes have been developed to simulate the beam transport in the beam tunnel. The results of extensive parametric runs, using these codes (which were ported on the Cray T3D massively parallel computer), together with the role of the beam instabilities around {omega}{sub ce} on the beam degradation will be reported. (author) 2 figs., 9 refs.

  3. Adjustment procedure for beam alignment in scanned ion-beam therapy

    Science.gov (United States)

    Saraya, Y.; Takeshita, E.; Furukawa, T.; Hara, Y.; Mizushima, K.; Saotome, N.; Tansho, R.; Shirai, T.; Noda, K.

    2016-09-01

    Control of the beam position for three-dimensional pencil-beam scanning is important because the position accuracy of the beam significantly impacts the alignment of the irradiation field. To suppress this effect, we have developed a simple procedure for beamline tuning. At first, beamline tuning is performed with steering magnets and fluorescent screen monitors to converge the beam's trajectory to a central orbit. Misalignment between the beam's position and the reference axis is checked by using the verification system, which consists of a screen monitor and an acrylic phantom. If the beam position deviates from the reference axis, two pairs of steering magnets, which are placed on downstream of the beam transport line, will be corrected. These adjustments are iterated until the deviations for eleven energies of the beam are within 0.5 mm of the reference axis. To demonstrate the success of our procedure, we used our procedure to perform beam commissioning at the Kanagawa Cancer Center.

  4. Quantitative comparison of self-healing ability between Bessel–Gaussian beam and Airy beam

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wei [Department of Physics and Information Engineering, Huaihua University, Huaihua 418008 (China); Chu, Xiuxiang, E-mail: xiuxiangchu@yahoo.com [School of Sciences, Zhejiang Agriculture and Forestry University, Lin’an 311300 (China)

    2015-09-15

    The self-healing ability during propagation process is one of the most important properties of non-diffracting beams. This ability has crucial advantages to light sheet-based microscopy to reduce scattering artefacts, increase the quality of the image and enhance the resolution of microscopy. Based on similarity between two infinite-dimensional complex vectors in Hilbert space, the ability to a Bessel–Gaussian beam and an Airy beam have been studied and compared. Comparing the evolution of the similarity of Bessel–Gaussian beam with Airy beam under the same conditions, we find that Bessel–Gaussian beam has stronger self-healing ability and is more stable than that of Airy beam. To confirm this result, the intensity profiles of Bessel–Gaussian beam and Airy beam with different similarities are numerically calculated and compared.

  5. Simulation of Head-on Beam-Beam Limitations in Future High Energy Colliders

    CERN Document Server

    Buffat, Xavier; Florio, Adrien; Pieloni, Tatiana; Tambasco, Claudia

    2016-01-01

    The Future Circular Hadron Collider (FCC-hh) project calls for studies in a new regime of beam-beam interactions. While the emittance damping due to synchrotron radiation is still slower than in past or existing lepton colliders, it is significantly larger than in other hadron colliders. The slow reduction of the emittance is profitable for higher luminosity in term of transverse beam size at the interaction points and also to mitigate long-range beam-beam effects, potentially allowing for a reduction of the crossing angle between the beams during the operation. In such conditions, the strength of head-on beam-beam interactions increases, potentially limiting the beam brightness. 4D weak-strong and strong-strong simulations are performed in order to assess these limitations.

  6. Beam wander of partially coherent array beams through non-Kolmogorov turbulence.

    Science.gov (United States)

    Huang, Yongping; Zeng, Anping; Gao, Zenghui; Zhang, Bin

    2015-04-15

    Based on the theory of second moments and non-Kolmogorov spectrum, the beam wander theory is extend to non-Kolmogorov turbulence, the general analytical expression of beam wander in non-Kolmogorov turbulence is derived. Beam wander depends on the non-Kolmogorov turbulence parameters and the initial second moments of the laser beam at the input plane. Taking the Gaussian Schell model array beams as an example, the effects of the generalized exponent parameter, inner scale, and outer scale of non-Kolmogorov turbulence and the beam separation distance, beam number, and coherence degree on the beam wander are studied in detail. It has been shown that the beam wander varies non-monotonically with increasing generalized exponent parameter of the turbulence. Furthermore, it increases as the inner scale decreases or outer scale increases, and decreases as the beam separation distance and beam number increase and the coherence of the beam becomes weaker. Our results also indicate that the beam wander could be reduced by adjusting the beam parameters appropriately.

  7. Standardized beam bouquets for lung IMRT planning

    Science.gov (United States)

    Yuan, Lulin; Wu, Q. Jackie; Yin, Fangfang; Li, Ying; Sheng, Yang; Kelsey, Christopher R.; Ge, Yaorong

    2015-02-01

    The selection of the incident angles of the treatment beams is a critical component of intensity modulated radiation therapy (IMRT) planning for lung cancer due to significant variations in tumor location, tumor size and patient anatomy. We investigate the feasibility of establishing a small set of standardized beam bouquets for planning. The set of beam bouquets were determined by learning the beam configuration features from 60 clinical lung IMRT plans designed by experienced planners. A k-medoids cluster analysis method was used to classify the beam configurations in the dataset. The appropriate number of clusters was determined by maximizing the value of average silhouette width of the classification. Once the number of clusters had been determined, the beam arrangements in each medoid of the clusters were designated as the standardized beam bouquet for the cluster. This standardized bouquet set was used to re-plan 20 cases randomly selected from the clinical database. The dosimetric quality of the plans using the beam bouquets was evaluated against the corresponding clinical plans by a paired t-test. The classification with six clusters has the largest average silhouette width value and hence would best represent the beam bouquet patterns in the dataset. The results shows that plans generated with a small number of standardized bouquets (e.g. 6) have comparable quality to that of clinical plans. These standardized beam configuration bouquets will potentially help improve plan efficiency and facilitate automated planning.

  8. Annular beam with segmented phase gradients

    Directory of Open Access Journals (Sweden)

    Shubo Cheng

    2016-08-01

    Full Text Available An annular beam with a single uniform-intensity ring and multiple segments of phase gradients is proposed in this paper. Different from the conventional superposed vortices, such as the modulated optical vortices and the collinear superposition of multiple orbital angular momentum modes, the designed annular beam has a doughnut intensity distribution whose radius is independent of the phase distribution of the beam in the imaging plane. The phase distribution along the circumference of the doughnut beam can be segmented with different phase gradients. Similar to a vortex beam, the annular beam can also exert torques and rotate a trapped particle owing to the orbital angular momentum of the beam. As the beam possesses different phase gradients, the rotation velocity of the trapped particle can be varied along the circumference. The simulation and experimental results show that an annular beam with three segments of different phase gradients can rotate particles with controlled velocities. The beam has potential applications in optical trapping and optical information processing.

  9. Simple Low-Frequency Beam Pickup

    Energy Technology Data Exchange (ETDEWEB)

    Novokhatski, A.; Heifets, S.; /SLAC; Aleksandrov, A.; /Oak Ridge

    2011-10-12

    Detection of the field induced by a beam outside of the beam pipe can be used as a beam diagnostic. Wires placed in longitudinal slots in the outside wall of the beam pipe can be used as a beam pickup. This has a very small beam-coupling impedance and avoids complications of having a feedthrough. The signal can be reasonably high at low frequencies. We present a field waveform at the outer side of a beam pipe, obtained as a result of calculations and measurements. We calculate the beam-coupling impedance due to a long longitudinal slot in the resistive wall and the signal induced in a wire placed in such a slot and shielded by a thin screen from the beam. These results should be relevant for impedance calculations of the slot in an antechamber and for slots in the PEP-II distributed ion pump screens. The design of the low-frequency beam position monitor is very simple. It can be used in storage rings, synchrotron light sources, and free electron lasers, like LINAC coherent light source.

  10. Intermediate energy neutron beams from the MURR.

    Science.gov (United States)

    Brugger, R M; Herleth, W H

    1990-01-01

    Several reactors in the United States are potential candidates to deliver beams of intermediate energy neutrons for NCT. At this time, moderators, as compared to filters, appear to be the more effective means of tailoring the flux of these reactors. The objective is to sufficiently reduce the flux of fast neutrons while producing enough intermediate energy neutrons for treatments. At the University of Missouri Research Reactor (MURR), the code MCNP has recently been used to calculate doses in a phantom. First, "ideal" beams of 1, 35, and 1000 eV neutrons were analyzed to determine doses and advantage depths in the phantom. Second, a high quality beam that had been designed to fit in the thermal column of the MURR, was reanalyzed. MCNP calculations of the dose in phantom in this beam confirmed previous calculations and showed that this beam would be a nearly ideal one with neutrons of the desired energy and also a high neutron current. However, installation of this beam will require a significant modification of the thermal column of the MURR. Therefore, a second beam that is less difficult to build and install, but of lower neutron current, has been designed to fit in MURR port F. This beam is designed using inexpensive A1, S, and Pb. The doses calculated in the phantom placed in this beam show that it will be satisfactory for sample tests, animal tests, and possible initial patient trials. Producing this beam will require only modest modifications of the existing tube.

  11. Using neutral beams as a light ion beam probe (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi, E-mail: chenxi@fusion.gat.com [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831 (United States); Heidbrink, W. W. [University of California Irvine, Irvine, California 92697 (United States); Van Zeeland, M. A.; Pace, D. C.; Petty, C. C.; Fisher, R. K. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Kramer, G. J.; Nazikian, R. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Austin, M. E. [University of Texas at Austin, Austin, Texas 78712 (United States); Hanson, J. M. [Columbia University, New York, New York 10027 (United States); Zeng, L. [University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-11-15

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fields appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.

  12. A new model for the collective beam-beam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, J.A.; Sobol, A.V. [New Mexico Univ., Albuquerque, NM (United States); Vogt, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-09-15

    The Collective Beam-Beam interaction is studied in the framework of maps with a ''kick-lattice'' model in 4-D phase space. A novel approach to the classical method of averaging is used to derive an approximate map which is equivalent to a flow within the averaging approximation. The flow equation is a continuous-time Vlasov equation which we call the averaged Vlasov equation, the new model of this paper. The power of this approach is evidenced by the fact that the averaged Vlasov equation has exact equilibria and the associated lineralized equations have uncoupled azimuthal Fourier modes. The equation for the Fourier modes leads to a Fredholm integral equation of the third kind and the setting is ready-made for the development of a weakly nonlinear theory to study the coupling of the {pi} and {sigma} modes. The {pi} and {sigma} modes are calculated from the third kind integral equation and results are compared with the kick-lattice model. (orig.)

  13. FFAG Beam Line for nuPIL - Neutrinos from PIon Beam Line

    Energy Technology Data Exchange (ETDEWEB)

    Lagrange, Jean-Baptiste [Fermilab; Pasternak, Jaroslaw [Rutherford; Bross, Alan [Fermilab; Liu, Ao [Fermilab; Appleby, Robert [Cockcroft Inst. Accel. Sci. Tech.; Tygier, Sam [Cockcroft Inst. Accel. Sci. Tech.

    2016-06-01

    The Long Baseline Neutrino Facilities (LBNF) program aims to deliver a neutrino beam for the Deep Underground Neutrino Experiment (DUNE). The current baseline for LBNF is a conventional magnetic horn and decay pipe system. Neutrinos from PIon beam Line (nuPIL) is a part of the optimization effort to optimize the LBNF. It consists of a pion beam line after the horn to clean the beam of high energy protons and wrong-sign pions before transporting them into a decay beam line, where instrumentation could be implemented. This paper focuses on the FFAG solution for this pion beam line. The resulting neutrino flux is also presented.

  14. THE PECULIARITIES OF GRAIN DEFORMATION BY CHOPPERS WORKING PARTS

    Directory of Open Access Journals (Sweden)

    Semenikhin A. M.

    2014-03-01

    Full Text Available In this article we have given the description of grain deformation under grinding according to its visco-elastic peculiarities. The relations of time, deformation rate, dynamic coefficient and geometric parameters of the working disks having original design have been shown

  15. Polarization analysis for the thermal chopper spectrometer TOPAS

    Directory of Open Access Journals (Sweden)

    Voigt Jörg

    2015-01-01

    Full Text Available We report on the progress of the construction of the thermal time-of-flight spectrometer with polarization analysis TOPAS at the Mayer-Leibnitz Zentrum (MLZ. The instrument components approach the status to be ready for installation. The special feature of the instrument is its capability for wide-angle polarization analysis in the thermal spectral range. Here we describe a novel approach to rotate the neutron spin adiabatically into the X, Y or Z direction of the laboratory frame by combination of permanent magnets aligned as Halbach rings and electrically generated fields. Despite the severe spatial restrictions the design exhibits a very high adiabaticity and interacts only weakly with the coil layout for the analyzing 3He spin filter cell (SFC.

  16. A Novel Chopper Circuit Having Divided Multi-load

    Science.gov (United States)

    Yamamoto, Isamu; Matsui, Keiju; Mori, Hideki; Yao, Yugo

    A dc-dc converter is being widely used for various household appliances and for industry applications. The dc-dc converter is powered from single battery, and the voltage is varied according to the purpose. In the vehicle, various accessories whose electric power is different are being used. Thus, plural number of dc-dc converter should be provided, so these situations bring complicated circuits, and accordingly, higher cost. Moreover, this is not limited to the vehicle applications. For instance, for analog circuits and digital circuits, various power supplies with different voltages are used sometimes. Under such backgrounds, in this paper, we propose a novel dc-dc converter with simply circuit configuration which can supply to two or more different output loads. This converter can control output voltages by controlling duty ratio by using typically two switching devices, which is composed by single boost-switch and single buck-switch. The output voltage can be controlled widely. A few modified circuits developed from the fundamental circuit are represented including the general multi-load circuit. Theoretical equations are solved, where results are confirmed by simulations and experiments.

  17. Low Emittance Electron Beam Studies

    Energy Technology Data Exchange (ETDEWEB)

    Tikhoplav, Rodion [Univ. of Rochester, NY (United States)

    2006-01-01

    We have studied the properties of a low emittance electron beam produced by laser pulses incident onto an rf gun photocathode. The experiments were carried out at the A0 photoinjector at Fermilab. Such beam studies are necessary for fixing the design of new Linear Colliders as well as for the development of Free Electron Lasers. An overview of the A0 photoinjector is given in Chapter 1. In Chapter 2 we describe the A0 photoinjector laser system. A stable laser system is imperative for reliable photoinjector operation. After the recent upgrade, we have been able to reach a new level of stability in the pulse-to-pulse fluctuations of the pulse amplitude, and of the temporal and transverse profiles. In Chapter 3 we present a study of transverse emittance versus the shape of the photo-cathode drive-laser pulse. For that purpose a special temporal profile laser shaping device called a pulse-stacker was developed. In Chapter 4 we discuss longitudinal beam dynamics studies using a two macro-particle bunch; this technique is helpful in analyzing pulse compression in the magnetic chicane, as well as velocity bunching effects in the rf-gun and the 9-cell accelerating cavity. In Chapter 5 we introduce a proposal for laser acceleration of electrons. We have developed a laser functioning on the TEM*01 mode, a mode with a longitudinal electric field component which is suitable for such a process. Using this technique at energies above 40 MeV, one would be able to observe laser-based acceleration.

  18. Beam breakup in a microtron

    Energy Technology Data Exchange (ETDEWEB)

    Yung, B.C.; Merminga, L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    1997-06-01

    In a microtron, the path length change from pass to pass is a fixed multiple of the RF wavelength, and the accelerating system can be reasonably well approximated as a single cavity. Under such circumstances it is possible to derive an analytical formula for the multipass beam breakup threshold current. The threshold current determined by numerical simulations agrees very well with the formula for a machine with a small number of passes. The analytic formula can serve as a useful guide in examining optics designs to improve the BBU threshold.

  19. Proton beam therapy control system

    Science.gov (United States)

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2008-07-08

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  20. The appearance of beam lines

    Energy Technology Data Exchange (ETDEWEB)

    Carey, D.C.

    1993-05-01

    The combination of an existing graphics package with a large program like TRANSPORT has often resulted in considerable modification to the large program. Use of other graphics package has resulted in essentially having to repeat the work. This difficulty has been avoided in a modification of TRANSPORT which produce layouts of beam lines. Drawings of the reference trajectory and three-dimensional images of all magnets are made by the graphics package TOP DRAWER. Nothing specific to TOP DRAWER or any other graphics has been incorporated into TRANSPORT. If a user is with a different graphics package he or she can then begin usage of this alternate package essentially immediately.

  1. Nanofabrication by Focused Ion Beam

    Science.gov (United States)

    1993-09-28

    MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES AD-A271 290 )N PAGE orhan Sand .01fMI.,r re ~’.nq tn., Oiurda N0o.me 0& Of .018l 04v~~t P - .L...Institute of Technology Cambridge, MA 02139 APPROVED FOR PUBLIC RELEASE; N, S c; . DISTRIBUTION UNLIMITED u..d.. `. B y .. . . . . . .. Dist A-jr I...defined sidewalls indicate that much finer lithography would be possible with a1 more optimum beam. b ) Preferential Oxide growth after ion exposure. (In

  2. Statics and rotational dynamics of composite beams

    CERN Document Server

    Ghorashi, Mehrdaad

    2016-01-01

    This book presents a comprehensive study of the nonlinear statics and dynamics of composite beams and consists of solutions with and without active elements embedded in the beams. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Two independent numerical solutions for the steady state and the transient responses are presented. The author illustrates that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. Other key areas considered include calculation of the effect of perturbing the steady state solution, coupled nonlinear flap-lag dynamics of a rotating articulated beam with hinge offset and aerodynamic damping, and static and dynamic responses of nonlinear composite beams with embedded anisotropic piezo-composite actuators. The book is intended as a t...

  3. Gamma beam system at ELI-NP

    Energy Technology Data Exchange (ETDEWEB)

    Ur, Calin Alexandru, E-mail: calin.ur@eli-np.ro [Extreme Light Infrastructure, IFIN-HH, Magurele-Bucharest (Romania)

    2015-02-24

    The Gamma Beam System of ELI-NP will produce brilliant, quasi-monochromatic gamma-ray beams via Inverse Compton Scattering of short laser pulses on relativistic electron beam pulses. The scattered radiation is Doppler upshifted by more than 1,000,000 times and is forward focused in a narrow, polarized, tunable, laser-like beam. The gamma-ray beam at ELI-NP will be characterized by large spectral density of about 10{sup 4} photons/s/eV, narrow bandwidth (< 0.5%) and tunable energy from 200 keV up to about 20 MeV. The Gamma Beam System is a state-of-the-art equipment employing techniques and technologies at the limits of the present-day's knowledge.

  4. Static Analysis of Functionally Graded Composite Beams

    Science.gov (United States)

    Das, S.; Sarangi, S. K.

    2016-09-01

    This paper presents a study of functionally graded (FG) composite beam. The FG material for the beam is considered to be composed of different layers of homogeneous material. The fiber volume fraction corresponding to each layer is calculated by considering its variation along the thickness direction (z) according to a power law. Accordingly, the effective properties of the homogeneous layers are estimated and a beam composed of this FG material is modelled using the commercially available ANSYS software. The solid 186 layered structural solid element has been used for discretization of the model of the FG beam. The model developed is validated by comparing the results with those numerical results available in literature. Results are presented for simply supported and fixed boundary conditions for the FG beam. The stress distribution across the thickness of the FG composite beam has also been analyzed.

  5. BEAM TRANSPORT LINES FOR THE BSNS.

    Energy Technology Data Exchange (ETDEWEB)

    WEI, J.

    2006-06-26

    This paper presents the design of two beam transport lines at the BSNS: one is the injection line from the Linac to the RCS and the other is the target line from the RCS to the target station. In the injection beam line, space charge effects, transverse halo collimation, momentum tail collimation and debunching are the main concerned topics. A new method of using triplet cells and stripping foils is used to collimate transverse halo. A long straight section is reserved for the future upgrading linac and debuncher. In the target beam line, large halo emittance, beam stability at the target due to kicker failures and beam jitters, shielding of back-scattering neutrons from the target are main concerned topics. Special bi-gap magnets will be used to reduce beam losses in the collimators in front of the target.

  6. Beam loading compensation with variable group velocity

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Z.D.

    1992-08-01

    Consider a section with linearly variable group velocity and a beam pulse shorter than the section fill time. Choose the current amplitude so that the gradient of the last bunch equals the gradient of the first bunch. For beam pulses less than about 15% of fill time, the voltage deviation during the beam pulse is small, but as the pulse width increases the voltage deviation also increases. We show that by decreasing the output to input group velocity ratio, we can reduce the first order voltage deviation, and that we can remove the remaining second-order voltage deviation by linearly decreasing the section input power by a small amount starting at beam injection time. This way we can increase the beam pulse width to more than half the fill time, and thereby increase the RF to beam energy transfer efficiency and the luminosity without increasing the voltage deviation.

  7. Laser Diode Beam Basics, Manipulations and Characterizations

    CERN Document Server

    Sun, Haiyin

    2012-01-01

    Many optical design technical books are available for many years which mainly deal with image optics design based on geometric optics and using sequential raytracing technique. Some books slightly touched laser beam manipulation optics design. On the other hand many books on laser diodes have been published that extensively deal with laser diode physics with little touching on laser diode beam manipulations and characterizations. There are some internet resources dealing with laser diode beams. However, these internet resources have not covered enough materials with enough details on laser diode beam manipulations and characterizations. A technical book concentrated on laser diode beam manipulations and characterizations can fit in to the open and provide useful information to laser diode users. Laser Diode Beam Basics, Manipulations and  Characterizations is concentrated on the very practical side of the subject, it only discusses the basic physics and mathematics that are necessary for the readers in order...

  8. The clinical case for proton beam therapy

    Directory of Open Access Journals (Sweden)

    Foote Robert L

    2012-10-01

    Full Text Available Abstract Over the past 20 years, several proton beam treatment programs have been implemented throughout the United States. Increasingly, the number of new programs under development is growing. Proton beam therapy has the potential for improving tumor control and survival through dose escalation. It also has potential for reducing harm to normal organs through dose reduction. However, proton beam therapy is more costly than conventional x-ray therapy. This increased cost may be offset by improved function, improved quality of life, and reduced costs related to treating the late effects of therapy. Clinical research opportunities are abundant to determine which patients will gain the most benefit from proton beam therapy. We review the clinical case for proton beam therapy. Summary sentence Proton beam therapy is a technically advanced and promising form of radiation therapy.

  9. A cold 87Rb atomic beam

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Jia; Feng Yan-Ying; Xue Hong-Bo; Zhou Zhao-Ying; Zhang Wen-Dong

    2011-01-01

    We demonstrate an experimental setup for the production of a beam source of cold 87Rb atoms.The atoms are extracted from a trapped cold atomic cloud in an unbalanced three-dimensional magneto-optical trap.Via a radiation pressure difference generated by a specially designed leak tunnel along one trapping laser beam,the atoms are pushed out continuously with low velocities and a high flux.The most-probable velocity in the beam is varied from 9 m/s to 19 m/s by varying the detuning of the trapping laser beams in the magneto-optical trap and the flux can be tuned up to 4× 109 s-1 by increasing the intensity of the trapping beams.We also present a simple model for describing the dependence of the beam performance on the magneto-optical trap trapping laser intensity and the detuning.

  10. Spin-Valley Beam Splitter in Graphene

    CERN Document Server

    Song, Yu; Shi, Zhi-Gui; Li, Shun; Zhang, Jian

    2016-01-01

    The fourfold spin-valley degenerate degrees of freedom in bulk graphene can support rich physics and novel applications associated with multicomponent quantum Hall effects and linear conductance filtering. In this work, we study how to break the spin-valley degeneracy of electron beams spatially. We propose a spin-valley beam splitter in a gated ferromagnetic/pristine/strained graphene structure. We demonstrate that, in a full resonant tunneling regime for all spin-valley beam components, the formation of quasi-standing waves can lead four giant lateral Goos-H\\"{a}nchen shifts as large as the transverse beam width, while the interplay of the two modulated regions can lead difference of resonant angles or energies for the four spin-valley flavors, manifesting an effective spin-valley beam splitting effect. The beam splitting effect is found to be controllable by the gating and strain.

  11. Polarized proton beams since the ZGS

    Energy Technology Data Exchange (ETDEWEB)

    Krisch, A.D.

    1994-12-31

    The author discusses research involving polarized proton beams since the ZGS`s demise. He begins by reminding the attendee that in 1973 the ZGS accelerated the world`s first high energy polarized proton beam; all in attendance at this meeting can be proud of this accomplishment. A few ZGS polarized proton beam experiments were done in the early 1970`s; then from about 1976 until 1 October 1979, the majority of the ZGS running time was polarized running. A great deal of fundamental physics was done with the polarized beam when the ZGS ran as a dedicated polarized proton beam from about Fall 1977 until it shut down on 1 October 1979. The newly created polarization enthusiats then dispersed; some spread polarized seeds al over the world by polarizing beams elsewhere; some wound up running the High Energy and SSC programs at DOE.

  12. On Torsion of Functionally Graded Elastic Beams

    Directory of Open Access Journals (Sweden)

    Marina Diaco

    2016-01-01

    Full Text Available The evaluation of tangential stress fields in linearly elastic orthotropic Saint-Venant beams under torsion is based on the solution of Neumann and Dirichlet boundary value problems for the cross-sectional warping and for Prandtl stress function, respectively. A skillful solution method has been recently proposed by Ecsedi for a class of inhomogeneous beams with shear moduli defined in terms of Prandtl stress function of corresponding homogeneous beams. An alternative reasoning is followed in the present paper for orthotropic functionally graded beams with shear moduli tensors defined in terms of the stress function and of the elasticity of reference inhomogeneous beams. An innovative result of invariance on twist centre is also contributed. Examples of functionally graded elliptic cross sections of orthotropic beams are developed, detecting thus new benchmarks for computational mechanics.

  13. Beam diagnostic suite for the SNS linac

    Science.gov (United States)

    Hardekopf, R. A.; Kurennoy, S. S.; Power, J. F.; Shafer, R. E.; Stovall, J. E.

    2000-11-01

    The Spallation Neutron Source (SNS) is the next-generation pulsed neutron source to be built in the United States. The accelerator chosen to produce the 2 MW beam power on the neutron-producing target is an H- linear accelerator (linac) to 1 GeV, followed by a proton accumulator ring. The ring compresses the 1 ms long beam bunches from the linac to less than 1 μs. The linac is pulsed at 60 Hz with a 6% duty factor. Stringent control of the pulse structure and stability of the high-intensity H- beam is needed to minimize beam loss in the linac and to optimize injection into the accumulator ring. This requires a set of beam diagnostics that can operate at high peak currents (˜52 mA) with high sensitivity and minimum beam interception.

  14. First years experience of LHC Beam Instrumentation

    CERN Document Server

    Jones, O R

    2011-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. This paper will comment on all of these systems and on their contributions to the various stages of beam commissioning. It will include details on: the beam position system and its use for realtime global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; synchrotron light diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  15. Beam Diagnostics Instrumentation for the High Energy Beam Transport Line of I.P.H.I.

    CERN Document Server

    Ausset, P; Coacolo, J L; Lesrel, J; Maymon, J N; Olivier, A; Rouviere, N; Solal-Cohen, M; Vatrinet, L; Yaniche, J F

    2005-01-01

    I.P.H.I. is a High Intensity Proton Injector under construction at Saclay (C.N.R.S/ I.N.2P.3; C.E.A. / D.A.P.N.I.A and C.E.R.N. collaboration). An E.C.R. produces a 100 keV, 100 mA C.W. proton beam which will be accelerated at 3 MeV by a 4 vanes R.F.Q. operating at 352.2 MHz. Finally, a High Energy Beam Transport Line (H.E.B.T.) will deliver the beam to a beam stopper and will be equipped with appropriate beam diagnostics to carry intensity; centroïd beam transverse position, transverse beam profiles, beam energy and energy spread measurements for the commissioning of I.P.H.I. These beam diagnostics will operate under both pulsed and C.W. operation. Transverse beam profile measurements will be acquired under low and high duty factor pulsed beam operation using a slow wire scanner and a C.C.D. camera to image the beam-induced fluorescence. The beam instrumentation of the H.E.B.T. is reviewed and preliminary obtained transverse profile measurements at 100 keV are described.

  16. Beam diagnostics instrumentation for the high energy beam transfer line of I.P.H.I

    Energy Technology Data Exchange (ETDEWEB)

    Ausset, P.; Berthelot, S.; Coacolo, J.L.; Lesrel, J.; Maymon, J.N.; Olivier, A.; Rouviere, N.; Solal, M.; Vatrinet, L.; Yaniche, J.F. [Institut de Physique Nucleaire, (IN2P3/CNRS) 91 - Orsay (France); Belyaev, G.; Roudskoy, I. [I.T.E.P. Moscow (Russian Federation)

    2005-07-01

    I.P.H.I. is a High Intensity Proton Injector under construction at Saclay. An E.C.R. source produces a 100 keV, 100 mA C.W. proton beam which will be accelerated at 3 MeV by a 4 vanes R.F.Q. operating at 352.2 MHz. Finally, a High Energy Beam Transport Line (H.E.B.T.) will deliver the beam to a beam stopper and will be equipped with appropriate beam diagnostics to carry intensity, centroid beam transverse position, transverse beam profiles, beam energy and energy spread measurements for the commissioning of I.P.H.I. These beam diagnostics will operate under both pulsed and C.W. operation. Transverse beam profile measurements will be acquired under low and high duty factor pulsed beam operation using a slow wire scanner and a C.C.D. camera to image the beam-induced fluorescence. The beam instrumentation of the H.E.B.T. is reviewed and preliminary obtained transverse profile measurements at 100 keV are described. (authors)

  17. Interfacial Properties of Electron Beam Cured Composites

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, C.C.

    1999-12-30

    The objectives of the CRADA are to: Confirm that fiber-resin adhesion is responsible for the observed poor shear properties; Determine the mechanism(s) responsible for poor adhesion between carbon fibers and epoxy resins after e-beam curing; Develop and evaluate resin systems and fiber treatments to improve the properties of e-beam cured, carbon-fiber-reinforced composites; and Develop refined methods for processing e-beam cured, carbon-fiber-reinforced composites.

  18. Determination of the LEP beam energy

    CERN Document Server

    Torrence, E

    2000-01-01

    This article describes the determination of the LEP beam energy above the production threshold for W boson pairs. A brief overview of the magnetic extrapolation method is presented which is currently used to determine the LEP beam energy to a relative precision of 2*10/sup -4 /. A new method for beam energy measurements based on an in-line energy spectrometer is presented, and current developments in the commissioning of this device are outlined. (2 refs).

  19. Coherence delay augmented laser beam homogenizer

    Science.gov (United States)

    Rasmussen, P.; Bernhardt, A.

    1993-06-29

    The geometrical restrictions on a laser beam homogenizer are relaxed by ug a coherence delay line to separate a coherent input beam into several components each having a path length difference equal to a multiple of the coherence length with respect to the other components. The components recombine incoherently at the output of the homogenizer, and the resultant beam has a more uniform spatial intensity suitable for microlithography and laser pantogography. Also disclosed is a variable aperture homogenizer, and a liquid filled homogenizer.

  20. Parametric resonance in concrete beam-columns

    OpenAIRE

    Sharma,Mamta R.; Singh,Arbind K; Benipal,Gurmail S

    2014-01-01

    A dynamic instability, called parametric resonance, is exhibited by undampedelastic beam-columns when under the action of pulsating axial force. The scope of the existing theory of parametric resonance is restricted to physically linear beam-columns undergoing finite lateral displacements. In this Paper, the dynamic behaviour of physically nonlinear elastic cracked concrete beam-columns under pulsating axial force and constant lateral force is investigated. The constitutive equations derived ...