WorldWideScience

Sample records for beam cancer therapy

  1. External beam radiation therapy for prostate cancer

    International Nuclear Information System (INIS)

    Purpose/Objectives: The intent of this course is to review the issues involved in the management of non-metastatic adenocarcinoma of the prostate. -- The value of pre-treatment prognostic factors including stage, grade and PSA value will be presented, and their value in determining therapeutic strategies will be discussed. -- Controversies involving the simulation process and treatment design will be presented. The value of CT scanning, Beams-Eye View, 3-D planning, intravesicle, intraurethral and rectal contrast will be presented. The significance of prostate and patient movement and strategies for dealing with them will be presented. -- The management of low stage, low to intermediate grade prostate cancer will be discussed. The dose, volume and timing of irradiation will be discussed as will the role of neo-adjuvant hormonal therapy, neutron irradiation and brachytherapy. The current status of radical prostatectomy and cryotherapy will be summarized. Treatment of locally advanced, poorly differentiated prostate cancer will be presented including a discussion of neo-adjuvant and adjuvant hormones, dose-escalation and neutron irradiation. -- Strategies for post-radiation failures will be presented including data on cryotherapy, salvage prostatectomy and hormonal therapy (immediate, delayed and/or intermittent). New areas for investigation will be reviewed. -- The management of patients post prostatectomy will be reviewed. Data on adjuvant radiation and therapeutic radiation for biochemical or clinically relapsed patients will be presented. This course hopes to present a realistic and pragmatic overview for treating patients with non-metastatic prostatic cancer

  2. Proton beam therapy how protons are revolutionizing cancer treatment

    CERN Document Server

    Yajnik, Santosh

    2013-01-01

    Proton beam therapy is an emerging technology with promise of revolutionizing the treatment of cancer. While nearly half of all patients diagnosed with cancer in the US receive radiation therapy, the majority is delivered via electron accelerators, where photons are used to irradiate cancerous tissue. Because of the physical properties of photon beams, photons may deposit energy along their entire path length through the body. On the other hand, a proton beam directed at a tumor travels in a straight trajectory towards its target, gives off most of its energy at a defined depth called the Bragg peak, and then stops. While photons often deposit more energy within the healthy tissues of the body than within the cancer itself, protons can deposit most of their cancer-killing energy within the area of the tumor. As a result, in the properly selected patients, proton beam therapy has the ability to improve cure rates by increasing the dose delivered to the tumor and simultaneously reduce side-effects by decreasing...

  3. Beam-optics study of the gantry beam delivery system for light-ion cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, M. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    1997-11-11

    Beams of light ions (Z=1-8) have favourable physical and biological properties for their use in radiotherapy. Their advantages are best pronounced if the beam is delivered in a tumour-shape conformed way. The highest degree of conformity could be achieved by combination of a rotating gantry with an active pencil-beam scanning. Ion-optics considerations on such a gantry beam delivery system for light-ion cancer therapy are presented. A low-angle magnetic beam scanning in two perpendicular directions is included in the beam transport system of the gantry. The optical properties of the beam transport system are discussed. (orig.). 29 refs.

  4. Nano-scale processes behind ion-beam cancer therapy

    Science.gov (United States)

    Surdutovich, Eugene; Garcia, Gustavo; Mason, Nigel; Solov'yov, Andrey V.

    2016-04-01

    This topical issue collates a series of papers based on new data reported at the third Nano-IBCT Conference of the COST Action MP1002: Nanoscale Insights into Ion Beam Cancer Therapy, held in Boppard, Germany, from October 27th to October 31st, 2014. The Nano-IBCT COST Action was launched in December 2010 and brought together more than 300 experts from different disciplines (physics, chemistry, biology) with specialists in radiation damage of biological matter from hadron-therapy centres, and medical institutions. This meeting followed the first and the second conferences of the Action held in October 2011 in Caen, France and in May 2013 in Sopot, Poland respectively. This conference series provided a focus for the European research community and has highlighted the pioneering research into the fundamental processes underpinning ion beam cancer therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.

  5. Dosimetry for Total Skin Electron Beam Therapy in Skin Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Sung Sil; Loh, John J. K.; Kim, Gwi Eon [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1992-06-15

    Increasing frequency of skin cancer, mycosis fungoides, Kaposi sarcoma etc, it need to treatment dose planning for total skin electron beam (TSEB) therapy. Appropriate treatment planning for TSEB therapy is needed to give homogeneous dose distribution throughout the entire skin surface. The energy of 6 MeV electron from the 18 MeV medical linear accelerator was adapted for superficial total skin electron beam therapy. The energy of the electron beam was reduced to 4.2 MeV by a 0.5cmx90cmx180cm acryl screen placed in a feet front of the patient. Six dual field beam was adapted for total skin irradiation to encompass the entire body surface from head to toe simultaneously. The patients were treated behind the acryl screen plate acted as a beam scatterer and contained a parallel-plate shallow ion chamber for dosimetry and beam monitoring. During treatment, the patient was placed in six different positions due to be homogeneous dose distribution for whole skin around the body. One treatment session delivered 400 cGy to the entire skin surface and patients were treated twice a week for eight consecutive weeks, which is equivalent to TDF value 57. Instrumentation and techniques developed in determining the depth dose, dose distribution and bremsstrahlung dose are discussed.

  6. Particle Beam Therapy for Cancer of the Skull Base, Nasal Cavity, and Paranasal Sinus

    OpenAIRE

    Fukumitsu, Nobuyoshi

    2012-01-01

    Particle beam therapy has been rapidly developed in these several decades. Proton and carbon ion beams are most frequently used in particle beam therapy. Proton and carbon ion beam radiotherapy have physical and biological advantage to the conventional photon radiotherapy. Cancers of the skull base, nasal cavity, and paranasal sinus are rare; however these diseases can receive the benefits of particle beam radiotherapy. This paper describes the clinical review of the cancer of the skull base,...

  7. The potential of proton beam therapy in paediatric cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerk-Eriksson, Thomas [Sahlgrenska Univ. Hospital, Goeteborg (Sweden). Dept. of Oncology; Glimelius, Bengt [Karolinska Inst., Stockholm (Sweden). Dept. of Oncology and Pathology; Akademiska sjukhuset, Uppsala (Sweden). Dept. of Oncology, Radiology and Clinical Immunology

    2005-12-01

    A group of Swedish oncologists and hospital physicists have estimated the number of patients in Sweden suitable for proton beam therapy. The estimations have been based on current statistics of tumour incidence, number of patients potentially eligible for radiation treatment, scientific support from clinical trials and model dose planning studies and knowledge of the dose-response relations of different tumours and normal tissues. It is estimated that in paediatric cancers, proton beams are of potential importance in 80-100 children annually in Sweden. About 20 of the patients have medulloblastoma. The main purpose is to reduce late sequelae, but these are also increased chances to avoid myelosupression during e.g. concomitant chemo-radiation and to further intensify the chemotherapy.

  8. Proton Beam Therapy and Concurrent Chemotherapy for Esophageal Cancer

    International Nuclear Information System (INIS)

    Purpose: Proton beam therapy (PBT) is a promising modality for the management of thoracic malignancies. We report our preliminary experience of treating esophageal cancer patients with concurrent chemotherapy (CChT) and PBT (CChT/PBT) at MD Anderson Cancer Center. Methods and Materials: This is an analysis of 62 esophageal cancer patients enrolled on a prospective study evaluating normal tissue toxicity from CChT/PBT from 2006 to 2010. Patients were treated with passive scattering PBT with two- or three-field beam arrangement using 180 to 250 MV protons. We used the Kaplan-Meier method to assess time-to-event outcomes and compared the distributions between groups using the log–rank test. Results: The median follow-up time was 20.1 months for survivors. The median age was 68 years (range, 38–86). Most patients were males (82%) who had adenocarcinomas (76%) and Stage II-III disease (84%). The median radiation dose was 50.4 Gy (RBE [relative biologic equivalence]) (range, 36–57.6). The most common grade 2 to 3 acute toxicities from CChT/PBT were esophagitis (46.8%), fatigue (43.6%), nausea (33.9%), anorexia (30.1%), and radiation dermatitis (16.1%). There were two cases of grade 2 and 3 radiation pneumonitis and two cases of grade 5 toxicities. A total of 29 patients (46.8%) received preoperative CChT/PBT, with one postoperative death. The pathologic complete response (pCR) rate for the surgical cohort was 28%, and the pCR and near CR rates (0%–1% residual cells) were 50%. While there were significantly fewer local-regional recurrences in the preoperative group (3/29) than in the definitive CChT/PBT group (16/33) (log–rank test, p = 0.005), there were no differences in distant metastatic (DM)-free interval or overall survival (OS) between the two groups. Conclusions: This is the first report of patients treated with PBT/CChT for esophageal cancer. Our data suggest that this modality is associated with a few severe toxicities, but the pathologic response and

  9. Proton Beam Therapy and Concurrent Chemotherapy for Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Steven H., E-mail: shlin@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Komaki, Ritsuko; Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wei, Caimiao [Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Myles, Bevan [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Guo Xiaomao [Department of Radiation Oncology, Fudan University Cancer Hospital, Shanghai (China); Palmer, Matthew [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Swisher, Stephen G.; Hofstetter, Wayne L. [Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Ajani, Jaffer A. [Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Cox, James D. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-07-01

    Purpose: Proton beam therapy (PBT) is a promising modality for the management of thoracic malignancies. We report our preliminary experience of treating esophageal cancer patients with concurrent chemotherapy (CChT) and PBT (CChT/PBT) at MD Anderson Cancer Center. Methods and Materials: This is an analysis of 62 esophageal cancer patients enrolled on a prospective study evaluating normal tissue toxicity from CChT/PBT from 2006 to 2010. Patients were treated with passive scattering PBT with two- or three-field beam arrangement using 180 to 250 MV protons. We used the Kaplan-Meier method to assess time-to-event outcomes and compared the distributions between groups using the log-rank test. Results: The median follow-up time was 20.1 months for survivors. The median age was 68 years (range, 38-86). Most patients were males (82%) who had adenocarcinomas (76%) and Stage II-III disease (84%). The median radiation dose was 50.4 Gy (RBE [relative biologic equivalence]) (range, 36-57.6). The most common grade 2 to 3 acute toxicities from CChT/PBT were esophagitis (46.8%), fatigue (43.6%), nausea (33.9%), anorexia (30.1%), and radiation dermatitis (16.1%). There were two cases of grade 2 and 3 radiation pneumonitis and two cases of grade 5 toxicities. A total of 29 patients (46.8%) received preoperative CChT/PBT, with one postoperative death. The pathologic complete response (pCR) rate for the surgical cohort was 28%, and the pCR and near CR rates (0%-1% residual cells) were 50%. While there were significantly fewer local-regional recurrences in the preoperative group (3/29) than in the definitive CChT/PBT group (16/33) (log-rank test, p = 0.005), there were no differences in distant metastatic (DM)-free interval or overall survival (OS) between the two groups. Conclusions: This is the first report of patients treated with PBT/CChT for esophageal cancer. Our data suggest that this modality is associated with a few severe toxicities, but the pathologic response and clinical

  10. Head and Neck Cancer Treatment with Particle Beam Therapy

    Directory of Open Access Journals (Sweden)

    Mehrzad Zargarzadeh

    2013-01-01

    Full Text Available In this century, cancer incidence has become one of the most significant problems concerning human. Conventional radiotherapy damage healthy tissue and in some cases may cause new primary cancers. This problem can be partially solved by hadron therapy which would be more effective and less harmful compared to other forms of radiotherapies used to treat some cancers. Although carbon ion and proton therapy both are effective treatments, they have serious differences which are mentioned in this paper and compared between the two methods. Furthermore, various treatments have been performed on head and neck cancer with hadrons so far will be discussed.

  11. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Abigail T., E-mail: abigail.berman@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 (United States); James, Sara St.; Rengan, Ramesh [Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA 98195 (United States)

    2015-07-02

    Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT), through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC), as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning.

  12. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    Directory of Open Access Journals (Sweden)

    Abigail T. Berman

    2015-07-01

    Full Text Available Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT, through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC, as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning.

  13. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    International Nuclear Information System (INIS)

    Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT), through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC), as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning

  14. T2-weighted endorectal magnetic resonance imaging of prostate cancer after external beam radiation therapy

    Directory of Open Access Journals (Sweden)

    Antonio C. Westphalen

    2009-04-01

    Full Text Available PURPOSE: To retrospectively determine the accuracy of T2-weighted endorectal MR imaging in the detection of prostate cancer after external beam radiation therapy and to investigate the relationship between imaging accuracy and time since therapy. MATERIAL AND METHODS: Institutional review board approval was obtained and the study was HIPPA compliant. We identified 59 patients who underwent 1.5 Tesla endorectal MR imaging of the prostate between 1999 and 2006 after definitive external beam radiation therapy for biopsy-proven prostate cancer. Two readers recorded the presence or absence of tumor on T2-weighted images. Logistic regression and Fisher’s exact tests for 2x2 tables were used to determine the accuracy of imaging and investigate if accuracy differed between those imaged within 3 years of therapy (n = 25 and those imaged more than 3 years after therapy (n = 34. Transrectal biopsy was used as the standard of reference for the presence or absence of recurrent cancer. RESULTS: Thirty-four of 59 patients (58% had recurrent prostate cancer detected on biopsy. The overall accuracy of T2-weighted MR imaging in the detection cancer after external beam radiation therapy was 63% (37/59 for reader 1 and 71% for reader 2 (42/59. For both readers, logistic regression showed no difference in accuracy between those imaged within 3 years of therapy and those imaged more than 3 years after therapy (p = 0.86 for reader 1 and 0.44 for reader 2. CONCLUSION: T2-weighted endorectal MR imaging has low accuracy in the detection of prostate cancer after external beam radiation therapy, irrespective of the time since therapy.

  15. Opening and construction of facilities in succession for particle beam therapy of cancer

    International Nuclear Information System (INIS)

    This feature article describes the current state of practical particle beam therapy of cancer, its future prospect, recent opening/construction of its facilities and manufacturers' view with following 9 topics presented by relevant experts. Gunma University (topic 1) started the carbon ion therapy from Mar., 2010, and has treated more than 100 cancer patients to aim the treatment of about 600 patients/year after several years. Fukui Prefectural Hospital Proton Therapy Center (topic 2) started from this March with proton beams for patients with its therapeutic standard, in cooperation with insurance companies and hotels for patients' convenience. Medipolis Proton Therapy and Research Center (Kagoshima Pref.) (topic 3) started this year with proton beams for 13 patients hitherto with reference protocol of Hyogo Ion Beam Medical Center. A new stereotactic irradiation system of proton beams for breast cancer has been developed. Construction of Saga Heavy Ion Medical Accelerator in Tosu (Saga Pref.) (topic 4) began this year to be completed in 2013. Aizawa Hospital (Nagano Pref.) (topic 5) plans to introduce the small-sized proton accelerator-gantry system (Sumitomo Heavy Ind., Ltd.) aiming the practice in 2013. Association for Nuclear Technology in Medicine (topic 6) reports the trends of current and future construction inside/outside Japan. Manufacturers comment their respective business: high-speed scanning irradiation system, next generation handling system of patient and particle beam therapy information system by Toshiba (topic 7); designation of the whole heavy ion beam therapy system (with NIRS), proton beam (as in topic 5) and system of BNCT (boron neutron-capture therapy) (Kyoto Univ.) by Sumitomo Heavy Ind., Ltd. (topic 8); and small-size proton therapeutic machine with 4D tracing capability for patient's movement (Hokkaido Univ.) and with spot-scanning irradiation technique by Hitachi (topic 9). (author)

  16. A Dual-Beam Irradiation Facility for a Novel Hybrid Cancer Therapy

    CERN Document Server

    Sabchevski, Svilen; Ishiyama, Shintaro; Miyoshi, Norio; Tatsukawa, Toshiaki

    2012-01-01

    In this paper we present the main ideas and discuss both the feasibility and the conceptual design of a novel hybrid technique and equipment for an experimental cancer therapy based on the simultaneous and/or sequential application of two beams, namely a beam of neutrons and a CW (continuous wave) or intermittent sub-terahertz wave beam produced by a gyrotron for treatment of cancerous tumors. The main simulation tools for the development of the computer aided design (CAD) of the prospective experimental facility for clinical trials and study of such new medical technology are briefly reviewed. Some tasks for a further continuation of this feasibility analysis are formulated as well.

  17. Potential clinical impact of laser-accelerated beams in cancer ion therapy

    Science.gov (United States)

    Obcemea, Ceferino

    2016-09-01

    In this article, I present three advantages of plasma-accelerated ion beams for cancer therapy. I discuss how: 1. low-emittance and well-collimated beams are advantageous in proximal normal tissue-sparing; 2. highly-peaked quasi-monoenergetic beams are ideal for fast energy selection and switching in Pencil Beam Scanning (PBS) as a treatment delivery; 3. high fluence and ultra-short pulse delivery produce collective excitations in the medium and enhance the stopping power. This in turn produces denser ionization track signatures (spurs, blobs, etc.) in target tumors, higher linear energy transfer, higher Bragg peak, and higher radiobiological effectiveness at the micro-level.

  18. The Utility of Proton Beam Therapy with Concurrent Chemotherapy for the Treatment of Esophageal Cancers

    Directory of Open Access Journals (Sweden)

    Steven H. Lin

    2011-10-01

    Full Text Available The standard of care for the management of locally advanced esophageal cancers in the United States is chemotherapy combined with radiation, either definitively, or for those who could tolerate surgery, preoperatively before esophagectomy. Although the appropriate radiation dose remains somewhat controversial, the quality of the radiation delivery is critical for the treatment of esophageal cancer since the esophagus is positioned close to vital structures, such as the heart and lung. The volume and relative doses to these normal tissues affect acute and late term complications. Advances in radiation delivery from 2D to 3D conformal radiation therapy, to Intensity Modulated Radiation Therapy (IMRT or charged particle therapy (carbon ion or proton beam therapy (PBT, allow incremental improvements in the therapeutic ratio. This could have implications in non-cancer related morbidity for long term survivors. This article reviews the evolution in radiation technologies and the use of PBT with chemotherapy in the management of esophageal cancer.

  19. The Utility of Proton Beam Therapy with Concurrent Chemotherapy for the Treatment of Esophageal Cancers

    International Nuclear Information System (INIS)

    The standard of care for the management of locally advanced esophageal cancers in the United States is chemotherapy combined with radiation, either definitively, or for those who could tolerate surgery, preoperatively before esophagectomy. Although the appropriate radiation dose remains somewhat controversial, the quality of the radiation delivery is critical for the treatment of esophageal cancer since the esophagus is positioned close to vital structures, such as the heart and lung. The volume and relative doses to these normal tissues affect acute and late term complications. Advances in radiation delivery from 2D to 3D conformal radiation therapy, to Intensity Modulated Radiation Therapy (IMRT) or charged particle therapy (carbon ion or proton beam therapy (PBT)), allow incremental improvements in the therapeutic ratio. This could have implications in non-cancer related morbidity for long term survivors. This article reviews the evolution in radiation technologies and the use of PBT with chemotherapy in the management of esophageal cancer

  20. Dependence of simulated positron emitter yields in ion beam cancer therapy on modeling nuclear fragmentation

    DEFF Research Database (Denmark)

    Lühr, Armin; Priegnitz, Marlen; Fiedler, Fine;

    2014-01-01

    In ion beam cancer therapy, range verification in patients using positron emission tomography (PET) requires the comparison of measured with simulated positron emitter yields. We found that (1) changes in modeling nuclear interactions strongly affected the positron emitter yields and that (2) Monte...

  1. External Beam Therapy (EBT)

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z External Beam Therapy (EBT) External beam therapy (EBT) is a ... follow-up should I expect? What is external beam therapy and how is it used? External beam ...

  2. Multiscale approach predictions for biological outcomes in ion-beam cancer therapy

    OpenAIRE

    Alexey Verkhovtsev; Eugene Surdutovich; Solov’yov, Andrey V.

    2016-01-01

    Ion-beam therapy provides advances in cancer treatment, offering the possibility of excellent dose localization and thus maximising cell-killing within the tumour. The full potential of such therapy can only be realised if the fundamental mechanisms leading to lethal cell damage under ion irradiation are well understood. The key question is whether it is possible to quantitatively predict macroscopic biological effects caused by ion radiation on the basis of physical and chemical effects rela...

  3. Proton beam therapy and localised prostate cancer: current status and controversies

    OpenAIRE

    Efstathiou, J. A.; Gray, P. J.; Zietman, A L

    2013-01-01

    Proton therapy is a promising, but costly, treatment for prostate cancer. Theoretical physical advantages exist; yet to date, it has been shown only to be comparably safe and effective when compared with the alternatives and not necessarily superior. If clinically meaningful benefits do exist for patients, more rigorous study will be needed to detect them and society will require this to justify the investment of time and money. New technical advances in proton beam delivery coupled with shor...

  4. Heavy Charged Particle Radiobiology: Using Enhanced Biological Effectiveness and Improved Beam Focusing to Advance Cancer Therapy

    OpenAIRE

    Allen, Christopher; Borak, Thomas B.; Tsujii, Hirohiko; Jac A Nickoloff

    2011-01-01

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilitie...

  5. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy.

    Science.gov (United States)

    Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A

    2011-06-01

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation.

  6. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy.

    Science.gov (United States)

    Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A

    2011-06-01

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. PMID:21376738

  7. Hadron Cancer Therapy - relative merits of X-ray, proton and carbon beams

    Science.gov (United States)

    Jakel, Oliver

    2014-03-01

    -Heidelberg University has a long experience in radiotherapy with carbon ions, starting with a pilot project at GSI in 1997. This project was jointly run by the Dep. for Radiation Oncology of Heidelberg University, GSI and the German Cancer Research Center (DKFZ). A hospital based heavy ion center at Heidelberg University, the Heidelberg Ion Beam Therapy Center (HIT) was proposed by the same group in 1998 and started clinical operation in late 2009. Since then nearly 2000 patients were treated with beams of carbon ions and protons. Just recently the operation of the world's first and only gantry for heavy ions also started at HIT. Patient treatments are performed in three rooms. Besides that, a lot of research projects are run in the field of Medical Physics and Radiobiology using a dedicated experimental area and the possibility to use beams of protons, carbon, helium and oxygen ions being delivered with the raster scanning technique.

  8. Multiscale approach predictions for biological outcomes in ion-beam cancer therapy

    Science.gov (United States)

    Verkhovtsev, Alexey; Surdutovich, Eugene; Solov'Yov, Andrey V.

    2016-06-01

    Ion-beam therapy provides advances in cancer treatment, offering the possibility of excellent dose localization and thus maximising cell-killing within the tumour. The full potential of such therapy can only be realised if the fundamental mechanisms leading to lethal cell damage under ion irradiation are well understood. The key question is whether it is possible to quantitatively predict macroscopic biological effects caused by ion radiation on the basis of physical and chemical effects related to the ion-medium interactions on a nanometre scale. We demonstrate that the phenomenon-based MultiScale Approach to the assessment of radiation damage with ions gives a positive answer to this question. We apply this approach to numerous experiments where survival curves were obtained for different cell lines and conditions. Contrary to other, in essence empirical methods for evaluation of macroscopic effects of ionising radiation, the MultiScale Approach predicts the biodamage based on the physical effects related to ionisation of the medium, transport of secondary particles, chemical interactions, thermo-mechanical pathways of biodamage, and heuristic biological criteria for cell survival. We anticipate this method to give great impetus to the practical improvement of ion-beam cancer therapy and the development of more efficient treatment protocols.

  9. Dependence of simulated positron emitter yields in ion beam cancer therapy on modeling nuclear fragmentation.

    Science.gov (United States)

    Lühr, Armin; Priegnitz, Marlen; Fiedler, Fine; Sobolevsky, Nikolai; Bassler, Niels

    2014-01-01

    In ion beam cancer therapy, range verification in patients using positron emission tomography (PET) requires the comparison of measured with simulated positron emitter yields. We found that (1) changes in modeling nuclear interactions strongly affected the positron emitter yields and that (2) Monte Carlo simulations with SHIELD-HIT10Areasonably matched the most abundant PET isotopes (11)C and (15)O. We observed an ion-energy (i.e., depth) dependence of the agreement between SHIELD-HIT10Aand measurement. Improved modeling requires more accurate measurements of cross-section values.

  10. Increasing Use of Dose-Escalated External Beam Radiation Therapy for Men With Nonmetastatic Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Swisher-McClure, Samuel, E-mail: Swisher-Mcclure@uphs.upenn.edu [Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (United States); Leonard Davis Institute of Health Economics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (United States); Mitra, Nandita; Woo, Kaitlin [Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania (United States); Smaldone, Marc; Uzzo, Robert [Division of Urologic Oncology, Department of Surgery, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (United States); Bekelman, Justin E. [Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (United States); Leonard Davis Institute of Health Economics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (United States); Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania (United States); Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2014-05-01

    Purpose: To examine recent practice patterns, using a large national cancer registry, to understand the extent to which dose-escalated external beam radiation therapy (EBRT) has been incorporated into routine clinical practice for men with prostate cancer. Methods and Materials: We conducted a retrospective observational cohort study using the National Cancer Data Base, a nationwide oncology outcomes database in the United States. We identified 98,755 men diagnosed with nonmetastatic prostate cancer between 2006 and 2011 who received definitive EBRT and classified patients into National Comprehensive Cancer Network (NCCN) risk groups. We defined dose-escalated EBRT as total prescribed dose of ≥75.6 Gy. Using multivariable logistic regression, we examined the association of patient, clinical, and demographic characteristics with the use of dose-escalated EBRT. Results: Overall, 81.6% of men received dose-escalated EBRT during the study period. The use of dose-escalated EBRT did not vary substantially by NCCN risk group. Use of dose-escalated EBRT increased from 70.7% of patients receiving treatment in 2006 to 89.8% of patients receiving treatment in 2011. On multivariable analysis, year of diagnosis and use of intensity modulated radiation therapy were significantly associated with receipt of dose-escalated EBRT. Conclusions: Our study results indicate that dose-escalated EBRT has been widely adopted by radiation oncologists treating prostate cancer in the United States. The proportion of patients receiving dose-escalated EBRT increased nearly 20% between 2006 and 2011. We observed high utilization rates of dose-escalated EBRT within all disease risk groups. Adoption of intensity modulated radiation therapy was strongly associated with use of dose-escalated treatment.

  11. GATE simulation based feasibility studies of in-beam PET monitoring in 12C beam cancer therapy

    Institute of Scientific and Technical Information of China (English)

    WU Jing; LIU Yaqiang; MA Tianyu; WEI Qingyang; WANG Shi; CHENG Jianping

    2010-01-01

    In comparison with conventional radiotherapy techniques,12C beam therapy has its significant advantage in cancer treatment because the radiation dose are mostly concentrated near the Bragg peak region and damage to normal tissues along the beam path is thus greatly reduced.In-beam PET provides a way to monitor dose distribution inside human body since several kinds of positron-emitting nuclei are produced through the interaction between 12C beam and body matters.In this work,we study the quantitative relationship between the spatial location of the Bragg peak and the spatial distribution of positrons produced by positron-emitting nuclei.Monte Carlo package GATE is used to simulate the interactions between the incident 12C beam of different energies (337.5,270.0 and 195.0 MeV/u) and various target matters (water,muscle and spine bone).Several data post-processing operations are performed on the simulated positron-emitting nuclei distribution data to mimic the impacts of positron generation and finite spatial resolution of a typical PET imaging system.Simulation results are compared to published experimental data for verification.In all the simulation cases,we fred that 10C and 11C are two dominant positron-emitting nuclei,and there exists a significant correlation between the spatial distributions of deposited energy and positrons.Therefore,we conclude that it is possible to determine the location of Bragg peak with 1 mm accuracy using current PET imaging systems by detecting the falling edge of the positron distribution map in depth direction.

  12. GATE simulation based feasibility studies of in-beam PET monitoring in 12C beam cancer therapy

    International Nuclear Information System (INIS)

    In comparison with conventional radiotherapy techniques, 12C beam therapy has its significant advantage in cancer treatment because the radiation dose are mostly concentrated near the Bragg peak region and damage to normal tissues along the beam path is thus greatly reduced. In-beam PET provides a way to monitor dose distribution inside human body since several kinds of positron-emitting nuclei are produced through the interaction between 12C beam and body matters. In this work, we study the quantitative relationship between the spatial location of the Bragg peak and the spatial distribution of positrons produced by positron-emitting nuclei. Monte Carlo package GATE is used to simulate the interactions between the incident 12C beam of different energies (337.5, 270.0 and 195.0 MeV/u) and various target matters (water, muscle and spine bone). Several data post-processing operations are performed on the simulated positron-emitting nuclei distribution data to mimic the impacts of positron generation and finite spatial resolution of a typical PET imaging system. Simulation results are compared to published experimental data for verification. In all the simulation cases, we find that 10C and 11C are two dominant positron-emitting nuclei, and there exists a significant correlation between the spatial distributions of deposited energy and positrons. Therefore, we conclude that it is possible to determine the location of Bragg peak with 1 mm accuracy using current PET imaging systems by detecting the falling edge of the positron distribution map in depth direction. (authors)

  13. The feasibility and safety of high-intensity focused ultrasound combined with low-dose external beam radiotherapy as supplemental therapy for advanced prostate cancer following hormonal therapy

    OpenAIRE

    Wu, Rui-Yi; Wang, Guo-Min; Xu, Lei; ZHANG, BO-HENG; Xu, Ye-Qing; Zeng, Zhao-Chong; Chen, Bing

    2011-01-01

    The aim of this study was to investigate the feasibility and safety of high-intensity focused ultrasound (HIFU) combined with (+) low-dose external beam radiotherapy (LRT) as supplemental therapy for advanced prostate cancer (PCa) following hormonal therapy (HT). Our definition of HIFU+LRT refers to treating primary tumour lesions with HIFU in place of reduced field boost irradiation to the prostate, while retaining four-field box irradiation to the pelvis in conventional-dose external beam r...

  14. Biochemical Response to Androgen Deprivation Therapy Before External Beam Radiation Therapy Predicts Long-term Prostate Cancer Survival Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Zelefsky, Michael J., E-mail: zelefskm@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Gomez, Daniel R.; Polkinghorn, William R.; Pei, Xin; Kollmeier, Marisa [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2013-07-01

    Purpose: To determine whether the response to neoadjuvant androgen deprivation therapy (ADT) defined by a decline in prostate-specific antigen (PSA) to nadir values is associated with improved survival outcomes after external beam radiation therapy (EBRT) for prostate cancer. Methods and Materials: One thousand forty-five patients with localized prostate cancer were treated with definitive EBRT in conjunction with neoadjuvant and concurrent ADT. A 6-month course of ADT was used (3 months during the neoadjuvant phase and 2 to 3 months concurrently with EBRT). The median EBRT prescription dose was 81 Gy using a conformal-based technique. The median follow-up time was 8.5 years. Results: The 10-year PSA relapse-free survival outcome among patients with pre-radiation therapy PSA nadirs of ≤0.3 ng/mL was 74.3%, compared with 57.7% for patients with higher PSA nadir values (P<.001). The 10-year distant metastases-free survival outcome among patients with pre-radiation therapy PSA nadirs of ≤0.3 ng/mL was 86.1%, compared with 78.6% for patients with higher PSA nadir values (P=.004). In a competing-risk analysis, prostate cancer-related deaths were also significantly reduced among patients with pre-radiation therapy PSA nadirs of <0.3 ng/mL compared with higher values (7.8% compared with 13.7%; P=.009). Multivariable analysis demonstrated that the pre-EBRT PSA nadir value was a significant predictor of long-term biochemical tumor control, distant metastases-free survival, and cause-specific survival outcomes. Conclusions: Pre-radiation therapy nadir PSA values of ≤0.3 ng/mL after neoadjuvant ADT were associated with improved long-term biochemical tumor control, reduction in distant metastases, and prostate cancer-related death. Patients with higher nadir values may require alternative adjuvant therapies to improve outcomes.

  15. Dosemetric Parameters Predictive of Rib Fractures after Proton Beam Therapy for Early-Stage Lung Cancer.

    Science.gov (United States)

    Ishikawa, Yojiro; Nakamura, Tatsuya; Kato, Takahiro; Kadoya, Noriyuki; Suzuki, Motohisa; Azami, Yusuke; Hareyama, Masato; Kikuchi, Yasuhiro; Jingu, Keiichi

    2016-01-01

    Proton beam therapy (PBT) is the preferred modality for early-stage lung cancer. Compared with X-ray therapy, PBT offers good dose concentration as revealed by the characteristics of the Bragg peak. Rib fractures (RFs) after PBT lead to decreased quality of life for patients. However, the incidence of and the risk factors for RFs after PBT have not yet been clarified. We therefore explored the relationship between irradiated rib volume and RFs after PBT for early-stage lung cancer. The purpose of this study was to investigate the incidence and the risk factors for RFs following PBT for early-stage lung cancer. We investigated 52 early-stage lung cancer patients and analyzed a total of 215 irradiated ribs after PBT. Grade 2 RFs occurred in 12 patients (20 ribs); these RFs were symptomatic without displacement. No patient experienced more severe RFs. The median time to grade 2 RFs development was 17 months (range: 9-29 months). The three-year incidence of grade 2 RFs was 30.2%. According to the analysis comparing radiation dose and rib volume using receiver operating characteristic curves, we demonstrated that the volume of ribs receiving more than 120 Gy3 (relative biological effectiveness (RBE)) was more than 3.7 cm(3) at an area under the curve of 0.81, which increased the incidence of RFs after PBT (P < 0.001). In this study, RFs were frequently observed following PBT for early-stage lung cancer. We demonstrated that the volume of ribs receiving more than 120 Gy3 (RBE) was the most significant parameter for predicting RFs. PMID:27087118

  16. Long-term results of intraoperative electron beam radiation therapy for nonmetastatic locally advanced pancreatic cancer

    Science.gov (United States)

    Chen, Yingtai; Che, Xu; Zhang, Jianwei; Huang, Huang; Zhao, Dongbing; Tian, Yantao; Li, Yexiong; Feng, Qinfu; Zhang, Zhihui; Jiang, Qinglong; Zhang, Shuisheng; Tang, Xiaolong; Huang, Xianghui; Chu, Yunmian; Zhang, Jianghu; Sun, Yuemin; Zhang, Yawei; Wang, Chengfeng

    2016-01-01

    Abstract To assess prognostic benefits of intraoperative electron beam radiation therapy (IOERT) in patients with nonmetastatic locally advanced pancreatic cancer (LAPC) and evaluate optimal adjuvant treatment after IOERT. A retrospective cohort study using prospectively collected data was conducted at the Cancer Hospital of the Chinese Academy of Medical Sciences, China National Cancer Center. Two hundred forty-seven consecutive patients with nonmetastatic LAPC who underwent IOERT between January 2008 and May 2015 were identified and included in the study. Overall survival (OS) was calculated from the day of IOERT. Prognostic factors were examined using Cox proportional hazards models. The 1-, 2-, and 3-year actuarial survival rates were 40%, 14%, and 7.2%, respectively, with a median OS of 9.0 months. On multivariate analysis, an IOERT applicator diameter strategy incorporating IOERT and postoperative adjuvant treatment. Chemoradiotherapy followed by chemotherapy might be a recommended adjuvant treatment strategy for well-selected cases. Intraoperative interstitial sustained-release 5-fluorouracil chemotherapy should not be recommended for patients with nonmetastatic LAPC. PMID:27661028

  17. Epithermal neutron beam adoption for liver cancer treatment by boron and gadolinium neutron capture therapy

    International Nuclear Information System (INIS)

    Comparative evaluation was made on depth-dose distribution in boron neutron capture therapy (B-NCT) and gadolinium one (Gd-NCT) for the treatments of liver cancers. At present, epithermal neutron beam is expected to be applicable to the treatment of deep and widespread tumors. ICRU computational model of ADAM and EVA was used as a liver phantom loading a tumor at depth of 6 cm in its central region. Epithermal neutron beam of Musashi reactor was used as the primary neutron beam for the depth-dose calculation. Calculation was conducted using the three-dimensional continuous-energy Monte Carlo code MCNP4A. The doses observed in both NCTs were bumped over the tumor region but the dose for Gd-NCT was not so tumor-specific compared with that for BNCT because radiation in Gd-NCT was due to γ-ray. The mean physical dose was 4 Gy/h for boron 30 ppm and 5 Gy/h for Gd 1000 ppm when exposed to an epithermal neutron flux of 5x108 n/cm-2/sec and the dose ratio of tumor-to normal tissue was 2.7 for boron and 2.5 for Gd. The lethal dose of 50 Gy for the liver can be accomplished under conditions where the dose has not reached 25 Gy, the tolerance dose of the normal tissue. This seems very encouraging and indicating that both B-NCT and Gd-NCT are applicable for the treatment for liver cancer. However, if normal tissue contain 1/4 of the tumor concentration of boron or Gd, the BNCT would still possible when considering a large RBE value for 10B(n, α) reaction but the Gd-NCT would impossible for deep liver treatment. (M.N.)

  18. Epithermal neutron beam adoption for liver cancer treatment by boron and gadolinium neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Tetsuo [Musashi Inst. of Tech., Kawasaki, Kanagawa (Japan). Atomic Energy Research Lab

    2001-06-01

    Comparative evaluation was made on depth-dose distribution in boron neutron capture therapy (B-NCT) and gadolinium one (Gd-NCT) for the treatments of liver cancers. At present, epithermal neutron beam is expected to be applicable to the treatment of deep and widespread tumors. ICRU computational model of ADAM and EVA was used as a liver phantom loading a tumor at depth of 6 cm in its central region. Epithermal neutron beam of Musashi reactor was used as the primary neutron beam for the depth-dose calculation. Calculation was conducted using the three-dimensional continuous-energy Monte Carlo code MCNP4A. The doses observed in both NCTs were bumped over the tumor region but the dose for Gd-NCT was not so tumor-specific compared with that for BNCT because radiation in Gd-NCT was due to {gamma}-ray. The mean physical dose was 4 Gy/h for boron 30 ppm and 5 Gy/h for Gd 1000 ppm when exposed to an epithermal neutron flux of 5x10{sup 8} n/cm{sup -2}/sec and the dose ratio of tumor-to normal tissue was 2.7 for boron and 2.5 for Gd. The lethal dose of 50 Gy for the liver can be accomplished under conditions where the dose has not reached 25 Gy, the tolerance dose of the normal tissue. This seems very encouraging and indicating that both B-NCT and Gd-NCT are applicable for the treatment for liver cancer. However, if normal tissue contain 1/4 of the tumor concentration of boron or Gd, the BNCT would still possible when considering a large RBE value for {sup 10}B(n, {alpha}) reaction but the Gd-NCT would impossible for deep liver treatment. (M.N.)

  19. Cone-Beam Computed Tomographic Image Guidance for Lung Cancer Radiation Therapy

    International Nuclear Information System (INIS)

    Purpose: To determine the geometric accuracy of lung cancer radiotherapy using daily volumetric, cone-beam CT (CBCT) image guidance and online couch position adjustment. Methods and Materials: Initial setup accuracy using localization CBCT was analyzed in three lung cancer patient cohorts. The first (n = 19) involved patients with early-stage non-small-cell lung cancer (NSCLC) treated using stereotactic body radiotherapy (SBRT). The second (n = 48) and third groups (n = 20) involved patients with locally advanced NSCLC adjusted with manual and remote-controlled couch adjustment, respectively. For each group, the couch position was adjusted when positional discrepancies exceeded ±3 mm in any direction, with the remote-controlled couch correcting all three directions simultaneously. Adjustment accuracy was verified with a second CBCT. Population-based setup margins were derived from systematic (Σ) and random (σ) positional errors for each group. Results: Localization imaging demonstrates that 3D positioning errors exceeding 5 mm occur in 54.5% of all delivered fractions. CBCT reduces these errors; post-correction Σ and σ ranged from 1.2 to 1.9 mm for Group 1, with 82% of all fractions within ±3 mm. For Group 2, Σ and σ ranged between 0.8 and 1.8 mm, with 76% of all treatment fractions within ±3 mm. For Group 3, the remote-controlled couch raised this to 84%, and Σ and σ were reduced to 0.4 to 1.7 mm. For each group, the postcorrection setup margins were 4 to 6 mm, 3 to 4 mm, and 2 to 3 mm, respectively. Conclusions: Using IGRT, high geometric accuracy is achievable for NSCLC patients, potentially leading to reduced PTV margins, improved outcomes and empowering adaptive radiation therapy for lung cancer

  20. Short-term Androgen-Deprivation Therapy Improves Prostate Cancer-Specific Mortality in Intermediate-Risk Prostate Cancer Patients Undergoing Dose-Escalated External Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zumsteg, Zachary S.; Spratt, Daniel E.; Pei, Xin; Yamada, Yoshiya; Kalikstein, Abraham [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Kuk, Deborah; Zhang, Zhigang [Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Zelefsky, Michael J., E-mail: zelefskm@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2013-03-15

    Purpose: We investigated the benefit of short-term androgen-deprivation therapy (ADT) in patients with intermediate-risk prostate cancer (PC) receiving dose-escalated external beam radiation therapy. Methods and Materials: The present retrospective study comprised 710 intermediate-risk PC patients receiving external beam radiation therapy with doses of ≥81 Gy at a single institution from 1992 to 2005, including 357 patients receiving neoadjuvant and concurrent ADT. Prostate-specific antigen recurrence-free survival (PSA-RFS) and distant metastasis (DM) were compared using the Kaplan-Meier method and Cox proportional hazards models. PC-specific mortality (PCSM) was assessed using competing-risks analysis. Results: The median follow-up was 7.9 years. Despite being more likely to have higher PSA levels, Gleason score 4 + 3 = 7, multiple National Comprehensive Cancer Network intermediate-risk factors, and older age (P≤.001 for all comparisons), patients receiving ADT had improved PSA-RFS (hazard ratio [HR], 0.598; 95% confidence interval [CI], 0.435-0.841; P=.003), DM (HR, 0.424; 95% CI, 0.219-0.819; P=.011), and PCSM (HR, 0.380; 95% CI, 0.157-0.921; P=.032) on univariate analysis. Using multivariate analysis, ADT was an even stronger predictor of improved PSA-RFS (adjusted HR [AHR], 0.516; 95% CI, 0.360-0.739; P<.001), DM (AHR, 0.347; 95% CI, 0.176-0.685; P=.002), and PCSM (AHR, 0.297; 95% CI, 0.128-0.685; P=.004). Gleason score 4 + 3 = 7 and ≥50% positive biopsy cores were other independent predictors of PCSM. Conclusions: Short-term ADT improves PSA-RFS, DM, and PCSM in patients with intermediate-risk PC undergoing dose-escalated external beam radiation therapy.

  1. Optimal beam design on intensity-modulated radiation therapy with simultaneous integrated boost in nasopharyngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Mei-Chun [Division of Radiation Oncology, Department of Oncology Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Hu, Yu-Wen; Liu, Ching-Sheng [Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Lee, Jeun-Shenn [Division of Radiation Oncology, Department of Oncology Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Huang, Pin-I; Yen, Sang-Hue; Lee, Yuh-Lin; Hsieh, Chun-Mei [Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Shiau, Cheng-Ying, E-mail: cyshiau@vghtpe.gov.tw [Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan (China)

    2014-10-01

    This study aims to determine the optimal beam design among various combinations of field numbers and beam trajectories for intensity-modulated radiation therapy (IMRT) with simultaneous integrated boost (SIB) technique for the treatment of nasopharyngeal cancer (NPC). We used 10 fields with gantry angles of 155°, 130°, 75°, 25°, 0° L, 0° R, 335°, 285°, 230°, and 205° denoted as F10. To decrease doses in the spinal cord, the F10 technique was designed by featuring 2 pairs of split-opposed beam fields at 155° to 335° and 205° to 25°, as well as one pair of manually split beam fields at 0°. The F10 technique was compared with 4 other common field arrangements: F7E, 7 fields with 50° equally spaced gantry angles; F7, the basis of F10 with 155°, 130°, 75°, 0°, 285°, 230°, and 205°; F9E, 9 fields with 40° equally spaced gantry angles; and FP, 7 posterior fields with 180°, 150°, 120°, 90°, 270°, 240°, and 210°. For each individual case of 10 patients, the customized constraints derived after optimization with the standard F10 technique were applied to 4 other field arrangements. The 4 new optimized plans of each individual case were normalized to achieve the same coverage of planning target volume (PTV){sub 63} {sub Gy} as that of the standard F10 technique. The F10 field arrangement exhibited the best coverage in PTV{sub 70} {sub Gy} and the least mean dose in the trachea-esophagus region. Furthermore, the F10 field arrangement demonstrated the highest level of conformity in the low-dose region and the least monitor unit. The F10 field arrangement performed more outstandingly than the other field arrangements in PTV{sub 70} {sub Gy} coverage and spared the central organ. This arrangement also exhibited the highest conformity and delivery efficiency. The F10 technique is recommended as the standard beam geometry for the SIB-IMRT of NPC.

  2. External-beam radiation therapy after surgical resection and intraoperative electron-beam radiation therapy for oligorecurrent gynecological cancer. Long-term outcome

    Energy Technology Data Exchange (ETDEWEB)

    Sole, C.V. [Hospital General Universitario Gregorio Maranon, Department of Oncology, Madrid (Spain); Complutense University, School of Medicine, Madrid (Spain); Instituto de Radiomedicina, Service of Radiation Oncology, Santiago (Chile); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Calvo, F.A. [Hospital General Universitario Gregorio Maranon, Department of Oncology, Madrid (Spain); Complutense University, School of Medicine, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Lozano, M.A.; Gonzalez-Sansegundo, C. [Hospital General Universitario Gregorio Maranon, Department of Oncology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Service of Radiation Oncology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Gonzalez-Bayon, L. [Hospital General Universitario Gregorio Maranon, Service of General Surgery, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Alvarez, A. [Hospital General Universitario Gregorio Maranon, Service of Radiation Oncology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Lizarraga, S. [Hospital General Universitario Gregorio Maranon, Department of Gynecology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Garcia-Sabrido, J.L. [Complutense University, School of Medicine, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Service of General Surgery, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Department of Gynecology, Madrid (Spain)

    2014-02-15

    The goal of the present study was to analyze prognostic factors in patients treated with external-beam radiation therapy (EBRT), surgical resection and intraoperative electron-beam radiotherapy (IOERT) for oligorecurrent gynecological cancer (ORGC). From January 1995 to December 2012, 61 patients with ORGC [uterine cervix (52 %), endometrial (30 %), ovarian (15 %), vagina (3 %)] underwent IOERT (12.5 Gy, range 10-15 Gy), and surgical resection to the pelvic (57 %) and paraaortic (43 %) recurrence tumor bed. In addition, 29 patients (48 %) also received EBRT (range 30.6-50.4 Gy). Survival outcomes were estimated using the Kaplan-Meier method, and risk factors were identified by univariate and multivariate analyses. Median follow-up time for the entire cohort of patients was 42 months (range 2-169 months). The 10-year rates for overall survival (OS) and locoregional control (LRC) were 17 and 65 %, respectively. On multivariate analysis, no tumor fragmentation (HR 0.22; p = 0.03), time interval from primary tumor diagnosis to locoregional recurrence (LRR) < 24 months (HR 4.02; p = 0.02) and no EBRT at the time of pelvic recurrence (HR 3.95; p = 0.02) retained significance with regard to LRR. Time interval from primary tumor to LRR < 24 months (HR 2.32; p = 0.02) and no EBRT at the time of pelvic recurrence (HR 3.77; p = 0.04) showed a significant association with OS after adjustment for other covariates. External-beam radiation therapy at the time of pelvic recurrence, time interval for relapse ≥24 months and not multi-involved fragmented resection specimens are associated with improved LRC in patients with ORGC. As suggested from the present analysis a significant group of ORGC patients could potentially benefit from multimodality rescue treatment. (orig.)

  3. Proton Beam Therapy of Stage II and III Non–Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Purpose: The present retrospective study assessed the role of proton beam therapy (PBT) in the treatment of patients with Stage II or III non–small-cell lung cancer who were inoperable or ineligible for chemotherapy because of co-existing disease or refusal. Patients and Methods: Between November 2001 and July 2008, PBT was given to 35 patients (5 patients with Stage II, 12 with Stage IIIA, and 18 with Stage IIIB) whose median age was 70.3 years (range, 47.4–85.4). The median proton dose given was 78.3 Gy (range, 67.1–91.3) (relative biologic effectiveness). Results: Local progression-free survival for Stage II-III patients was 93.3% at 1 year and 65.9% at 2 years during a median observation period of 16.9 months. Four patients (11.4%) developed local recurrence, 13 (37.1%) developed regional recurrence, and 7 (20.0%) developed distant metastases. The progression-free survival rate for Stage II-III patients was 59.6% at 1 year and 29.2% at 2 years. The overall survival rate of Stage II-III patients was 81.8% at 1 year and 58.9% at 2 years. Grade 3 or greater toxicity was not observed. A total of 15 patients (42.9%) developed Grade 1 and 6 (17.1%) Grade 2 toxicity. Conclusion: PBT for Stage II-III non–small-cell lung cancer without chemotherapy resulted in good local control and low toxicity. PBT has a definite role in the treatment of patients with Stage II-III non–small-cell lung cancer who are unsuitable for surgery or chemotherapy.

  4. Proton Beam Therapy of Stage II and III Non-Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Hidetsugu, E-mail: hnakayam@tokyo-med.ac.jp [Proton Medical Research Center, University of Tsukuba Graduate School of Comprehensive Human Sciences, Tsukuba, Ibaraki (Japan); Department of Radiation Oncology, Tokyo Medical University, Shinjuku, Tokyo (Japan); Satoh, Hiroaki [Department of Respiratory Medicine, University of Tsukuba Graduate School of Comprehensive Human Sciences, Tsukuba, Ibaraki (Japan); Sugahara, Shinji [Proton Medical Research Center, University of Tsukuba Graduate School of Comprehensive Human Sciences, Tsukuba, Ibaraki (Japan); Department of Radiation Oncology, Tokyo Medical University, Shinjuku, Tokyo (Japan); Kurishima, Koichi [Department of Respiratory Medicine, University of Tsukuba Graduate School of Comprehensive Human Sciences, Tsukuba, Ibaraki (Japan); Tsuboi, Koji; Sakurai, Hideyuki [Proton Medical Research Center, University of Tsukuba Graduate School of Comprehensive Human Sciences, Tsukuba, Ibaraki (Japan); Ishikawa, Shigemi [Department of Thoracic Surgery, University of Tsukuba Graduate School of Comprehensive Human Sciences, Tsukuba, Ibaraki (Japan); Tokuuye, Koichi [Proton Medical Research Center, University of Tsukuba Graduate School of Comprehensive Human Sciences, Tsukuba, Ibaraki (Japan); Department of Radiation Oncology, Tokyo Medical University, Shinjuku, Tokyo (Japan)

    2011-11-15

    Purpose: The present retrospective study assessed the role of proton beam therapy (PBT) in the treatment of patients with Stage II or III non-small-cell lung cancer who were inoperable or ineligible for chemotherapy because of co-existing disease or refusal. Patients and Methods: Between November 2001 and July 2008, PBT was given to 35 patients (5 patients with Stage II, 12 with Stage IIIA, and 18 with Stage IIIB) whose median age was 70.3 years (range, 47.4-85.4). The median proton dose given was 78.3 Gy (range, 67.1-91.3) (relative biologic effectiveness). Results: Local progression-free survival for Stage II-III patients was 93.3% at 1 year and 65.9% at 2 years during a median observation period of 16.9 months. Four patients (11.4%) developed local recurrence, 13 (37.1%) developed regional recurrence, and 7 (20.0%) developed distant metastases. The progression-free survival rate for Stage II-III patients was 59.6% at 1 year and 29.2% at 2 years. The overall survival rate of Stage II-III patients was 81.8% at 1 year and 58.9% at 2 years. Grade 3 or greater toxicity was not observed. A total of 15 patients (42.9%) developed Grade 1 and 6 (17.1%) Grade 2 toxicity. Conclusion: PBT for Stage II-III non-small-cell lung cancer without chemotherapy resulted in good local control and low toxicity. PBT has a definite role in the treatment of patients with Stage II-III non-small-cell lung cancer who are unsuitable for surgery or chemotherapy.

  5. Comparison of arc-modulated cone beam therapy and helical tomotherapy for three different types of cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, Silke; Sterzing, Florian; Nill, Simeon; Schubert, Kai; Herfarth, Klaus K.; Debus, Juergen; Oelfke, Uwe [Department of Medical Physics in Radiation Therapy, German Cancer Research Center, Heidelberg 69120 (Germany); Department of Radiation Oncology, University of Heidelberg, Heidelberg 69120 (Germany); Department of Medical Physics in Radiation Therapy, German Cancer Research Center, Heidelberg 69120 (Germany); Department of Radiation Oncology, University of Heidelberg, Heidelberg 69120 (Germany); Department of Medical Physics in Radiation Therapy, German Cancer Research Center, Heidelberg 69120 (Germany)

    2009-10-15

    Purpose: Arc-modulated cone beam therapy (AMCBT) is a fast treatment technique deliverable in a single rotation with a conventional C-arm shaped linac. In this planning study, the authors assess the dosimetric properties of single-arc therapy in comparison to helical tomotherapy for three different tumor types. Methods: Treatment plans for three patients with prostate carcinoma, three patients with anal cancer, and three patients with head and neck cancer were optimized for helical tomotherapy and AMCBT. The dosimetric comparison of the two techniques is based on physical quantities derived from dose-volume histograms. Results: For prostate cancer, the quality of dose distributions calculated for AMCBT was of equal quality as that generated for tomotherapy with the additional benefits of a faster delivery and a lower integral dose. For highly complex geometries, the plan quality achievable with helical tomotherapy could not be achieved with arc-modulated cone beam therapy. Conclusions: Rotation therapy with a conventional linac in a single arc is capable to deliver a high and homogeneous dose to the target and spare organs at risk. Advantages of this technique are a fast treatment time and a lower integral dose in comparison to helical tomotherapy. For highly complex cases, e.g., with several target regions, the dose shaping capabilities of AMCBT are inferior to those of tomotherapy. However, treatment plans for AMCBT were also clinically acceptable.

  6. External-beam radiation therapy should be given with androgen deprivation treatment for intermediate-risk nrnstate cancer: new confirmatory evidence

    Institute of Scientific and Technical Information of China (English)

    Matthew R Cooperberg

    2012-01-01

    Anewly published study, RadiationTherapy Oncology Group (RTOG) trial94-08,has demonstrated that a short-course ofneoadjuvant androgen deprivation therapy (ADT) given together with external-beam radiation therapy (EBRT) improves outcomes for men with intermediate-risk prostate cancer compared with EBRT alone.

  7. Oblique gantry - an alternative solution for a beam delivery system for heavy-ion cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, Marius

    1999-09-21

    Beams of protons and heavy ions have favorable physical and biological properties for their application in radiotherapy. Their advantages can be best exploited if the beam can be applied to the patient from any direction by a rotating gantry. The construction of a gantry is quite demanding for heavy ions due to the high magnetic rigidity of the therapy beams. In order to reduce the gantry size and weight, a novel gantry concept with an oblique 60 deg. output beam is proposed. This concept allows a very compact gantry design even for the isocentric layout and normal conducting magnets. The overall gantry radius is 2.8 m. The gantry is equipped with a two-directional magnetic scanning system and an achromatic beam transport system. The scanning system is located upstream to the last gantry dipole and combines a parallel scanning mode in one direction with a low-angle scanning mode in the other direction in order to reduce the vertical gap of the last dipole. The beam transport system is designed with a high degree of ion-optical flexibility which is used to form a narrow pencil-like beam with adjustable spot-size in the gantry isocentre. The design principles and ion-optical properties of the gantry beam transport and scanning systems are discussed. (author)

  8. Beam configuration selection for robust intensity-modulated proton therapy in cervical cancer using Pareto front comparison.

    Science.gov (United States)

    van de Schoot, A J A J; Visser, J; van Kesteren, Z; Janssen, T M; Rasch, C R N; Bel, A

    2016-02-21

    The Pareto front reflects the optimal trade-offs between conflicting objectives and can be used to quantify the effect of different beam configurations on plan robustness and dose-volume histogram parameters. Therefore, our aim was to develop and implement a method to automatically approach the Pareto front in robust intensity-modulated proton therapy (IMPT) planning. Additionally, clinically relevant Pareto fronts based on different beam configurations will be derived and compared to enable beam configuration selection in cervical cancer proton therapy. A method to iteratively approach the Pareto front by automatically generating robustly optimized IMPT plans was developed. To verify plan quality, IMPT plans were evaluated on robustness by simulating range and position errors and recalculating the dose. For five retrospectively selected cervical cancer patients, this method was applied for IMPT plans with three different beam configurations using two, three and four beams. 3D Pareto fronts were optimized on target coverage (CTV D(99%)) and OAR doses (rectum V30Gy; bladder V40Gy). Per patient, proportions of non-approved IMPT plans were determined and differences between patient-specific Pareto fronts were quantified in terms of CTV D(99%), rectum V(30Gy) and bladder V(40Gy) to perform beam configuration selection. Per patient and beam configuration, Pareto fronts were successfully sampled based on 200 IMPT plans of which on average 29% were non-approved plans. In all patients, IMPT plans based on the 2-beam set-up were completely dominated by plans with the 3-beam and 4-beam configuration. Compared to the 3-beam set-up, the 4-beam set-up increased the median CTV D(99%) on average by 0.2 Gy and decreased the median rectum V(30Gy) and median bladder V(40Gy) on average by 3.6% and 1.3%, respectively. This study demonstrates a method to automatically derive Pareto fronts in robust IMPT planning. For all patients, the defined four-beam configuration was found optimal

  9. Beam configuration selection for robust intensity-modulated proton therapy in cervical cancer using Pareto front comparison

    Science.gov (United States)

    van de Schoot, A. J. A. J.; Visser, J.; van Kesteren, Z.; Janssen, T. M.; Rasch, C. R. N.; Bel, A.

    2016-02-01

    The Pareto front reflects the optimal trade-offs between conflicting objectives and can be used to quantify the effect of different beam configurations on plan robustness and dose-volume histogram parameters. Therefore, our aim was to develop and implement a method to automatically approach the Pareto front in robust intensity-modulated proton therapy (IMPT) planning. Additionally, clinically relevant Pareto fronts based on different beam configurations will be derived and compared to enable beam configuration selection in cervical cancer proton therapy. A method to iteratively approach the Pareto front by automatically generating robustly optimized IMPT plans was developed. To verify plan quality, IMPT plans were evaluated on robustness by simulating range and position errors and recalculating the dose. For five retrospectively selected cervical cancer patients, this method was applied for IMPT plans with three different beam configurations using two, three and four beams. 3D Pareto fronts were optimized on target coverage (CTV D99%) and OAR doses (rectum V30Gy; bladder V40Gy). Per patient, proportions of non-approved IMPT plans were determined and differences between patient-specific Pareto fronts were quantified in terms of CTV D99%, rectum V30Gy and bladder V40Gy to perform beam configuration selection. Per patient and beam configuration, Pareto fronts were successfully sampled based on 200 IMPT plans of which on average 29% were non-approved plans. In all patients, IMPT plans based on the 2-beam set-up were completely dominated by plans with the 3-beam and 4-beam configuration. Compared to the 3-beam set-up, the 4-beam set-up increased the median CTV D99% on average by 0.2 Gy and decreased the median rectum V30Gy and median bladder V40Gy on average by 3.6% and 1.3%, respectively. This study demonstrates a method to automatically derive Pareto fronts in robust IMPT planning. For all patients, the defined four-beam configuration was found optimal in terms of

  10. Laser Ion Acceleration Toward Future Ion Beam Cancer Therapy - Numerical Simulation Sudy-

    CERN Document Server

    Kawata, Shigeo; Nagashima, Toshihiro; Takano, Masahiro; Barada, Daisuke; Kong, Qing; Gu, Yan Jun; Wang, Ping Xiao; Ma, Yan Yun; Wang, Wei Ming

    2013-01-01

    Ion beam has been used in cancer treatment, and has a unique preferable feature to deposit its main energy inside a human body so that cancer cell could be killed by the ion beam. However, conventional ion accelerator tends to be huge in its size and its cost. In this paper a future intense-laser ion accelerator is proposed to make the ion accelerator compact. An intense femtosecond pulsed laser was employed to accelerate ions. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching and the ion particle energy control. In the study particle computer simulations were performed to solve the issues, and each component was designed to control the ion beam quality. When an intense laser illuminates a target, electrons in the target are accelerated and leave from the target; temporarily a strong electric field is formed between the high-energy electrons and the target ions, and the target ions ...

  11. The CBS-The Most Cost Effective and High Performance Carbon Beam Source Dedicated for a New Generation Cancer Therapy

    CERN Document Server

    Kumada, Masayuki; Leivichev, E B; Parkhomchuk, Vasily; Podgorny, Fedor; Rastigeev, Sergey; Reva, Vladimir B; Skrinsky, Aleksander Nikolayevich; Vostrikov, Vladimir

    2005-01-01

    A Carbon ion beam is a superior tool to x-rays or a proton beam in both physical and biological doses in treating a cancer. A Carbon beam has an advantage in treating radiation resistant and deep-seated tumors. Its radiological effect is of a mitotic independent nature. These features improve hypofractionation, typically reducing the number of irradiations per patient from 35 to a few. It has been shown that a superior QOL(Quality Of Life) therapy is possible by a carbon beam.The only drawback is its high cost. Nevertheless, tens of Prefectures and organizations are eagerly considering the possibility of having a carbon ion therapy facility in Japan. Germany, Austria, Italy, China, Taiwan and Korea also desire to have one.A carbon beam accelerator of moderate cost is about 100 Million USD. With the "CBS" design philosophy, which will be described in this paper, the cost could be factor of 2 or 3 less, while improving its performance more than standard designs. Novel extraction techniques, a new approach to a ...

  12. Epithermal neutron beam adoption for lung and pancreatic cancer treatment by boron neutron capture therapy

    International Nuclear Information System (INIS)

    The depth-dose distributions were evaluated for possible treatment of both lung and pancreatic cancers using an epithermal neutron beam. The Monte Carlo Neutron Photon (MCNP) calculations showed that physical dose in tumors were 6 and 7 Gy/h, respectively, for lung and pancreas, attaining an epithermal neutron flux of 5 x 108 ncm-2s-1. The boron concentrations were assumed at 100 ppm and 30 ppm, respectively, for lung and pancreas tumors and normal tissues contains 1/10 tumor concentrations. The dose ratios of tumor to normal tissue were 2.5 and 2.4, respectively, for lung and pancreas. The dose evaluation suggests that BNCT using an epithermal neutron beam could be applied for both lung and pancreatic cancer treatment. (author)

  13. Optimized treatment parameters to account for interfractional variability in scanned ion beam therapy of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Brevet, Romain

    2015-02-04

    Scanned ion beam therapy of lung tumors is severely limited in its clinical applicability by intrafractional organ motion, interference effects between beam and tumor motion (interplay) as well as interfractional anatomic changes. To compensate for dose deterioration by intrafractional motion, motion mitigation techniques, such as gating have been developed. The latter confines the irradiation to a predetermined breathing state, usually the stable end-exhale phase. However, optimization of the treatment parameters is needed to further improve target dose coverage and normal tissue sparing. The aim of the study presented in this dissertation was to determine treatment planning parameters that permit to recover good target coverage and homogeneity during a full course of lung tumor treatments. For 9 lung tumor patients from MD Anderson Cancer Center (MDACC), a total of 70 weekly time-resolved computed tomography (4DCT) datasets were available, which depict the evolution of the patient anatomy over the several fractions of the treatment. Using the GSI in-house treatment planning system (TPS) TRiP4D, 4D simulations were performed on each weekly 4DCT for each patient using gating and optimization of a single treatment plan based on a planning CT acquired prior to treatment. It was found that using a large beam spot size, a short gating window (GW), additional margins and multiple fields permitted to obtain the best results, yielding an average target coverage (V95) of 96.5%. Two motion mitigation techniques, one approximating the rescanning process (multiple irradiations of the target with a fraction of the planned dose) and one combining the latter and gating, were then compared to gating. Both did neither show an improvement in target dose coverage nor in normal tissue sparing. Finally, the total dose delivered to each patient in a simulation of a fractioned treatment was calculated and clinical requirements in terms of target coverage and normal tissue sparing were

  14. Proton beam therapy

    OpenAIRE

    Levin, W P; Kooy, H; Loeffler, J S; T. F. DeLaney

    2005-01-01

    Conventional radiation therapy directs photons (X-rays) and electrons at tumours with the intent of eradicating the neoplastic tissue while preserving adjacent normal tissue. Radiation-induced damage to healthy tissue and second malignancies are always a concern, however, when administering radiation. Proton beam radiotherapy, one form of charged particle therapy, allows for excellent dose distributions, with the added benefit of no exit dose. These characteristics make this form of radiother...

  15. Pet imaging of dose distribution in proton-beam cancer therapy

    Directory of Open Access Journals (Sweden)

    Beebe-Wang Joanne

    2005-01-01

    Full Text Available Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than X-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as 12C, 14N, and 16O. These radio isotopes, mainly 11C, 13N, and 15O, al low imaging the therapy dose distribution using positron emission tomography. The resulting positron emission tomography images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This pa per uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner.

  16. PREFACE: 1st Nano-IBCT Conference 2011 - Radiation Damage of Biomolecular Systems: Nanoscale Insights into Ion Beam Cancer Therapy

    Science.gov (United States)

    Huber, Bernd A.; Malot, Christiane; Domaracka, Alicja; Solov'yov, Andrey V.

    2012-07-01

    The 1st Nano-IBCT Conference entitled 'Radiation Damage in Biomolecular Systems: Nanoscale Insights into Ion Beam Cancer Therapy' was held in Caen, France, in October 2011. The Meeting was organised in the framework of the COST Action MP1002 (Nano-IBCT) which was launched in December 2010 (http://fias.uni-frankfurt.de/nano-ibct). This action aims to promote the understanding of mechanisms and processes underlying the radiation damage of biomolecular systems at the molecular and nanoscopic level and to use the findings to improve the strategy of Ion Beam Cancer Therapy. In the hope of achieving this, participants from different disciplines were invited to represent the fields of physics, biology, medicine and chemistry, and also included those from industry and the operators of hadron therapy centres. Ion beam therapy offers the possibility of excellent dose localization for treatment of malignant tumours, minimizing radiation damage in normal healthy tissue, while maximizing cell killing within the tumour. Several ion beam cancer therapy clinical centres are now operating in Europe and elsewhere. However, the full potential of such therapy can only be exploited by better understanding the physical, chemical and biological mechanisms that lead to cell death under ion irradiation. Considering a range of spatio-temporal scales, the proposed action therefore aims to combine the unique experimental and theoretical expertise available within Europe to acquire greater insight at the nanoscopic and molecular level into radiation damage induced by ion impact. Success in this endeavour will be both an important scientific breakthrough and give great impetus to the practical improvement of this innovative therapeutic technique. Ion therapy potentially provides an important advance in cancer therapy and the COST action MP1002 will be very significant in ensuring Europe's leadership in this field, providing the scientific background, required data and mechanistic insight which

  17. Quality assurance for particle beam therapy

    International Nuclear Information System (INIS)

    In radiation therapy, it is essential that a prescribed target area is irradiated with the prescribed dose concentration to reduce the possibility cancer reoccurrence or to mitigate its side effects. Particle beam therapy is a high accuracy radiation therapy, which has superior characteristics. Specifically, a high dose region, namely, Bragg peak formed around the beam stopping point can be adjusted to the target volume. The routine of particle beam therapy should be performed with various verifications, called quality assurance(QA), at its each step, i.e., treatment planning, dosimetry, patient positioning and respiratory gating system. Each particle beam therapy facility should have and conduct its own QA program. Methods and materials for the QA should be developed according to the progress of techniques in particle beam therapy. (author)

  18. Radiation-induced myocardial perfusion abnormalities in breast cancer patients following external beam radiation therapy

    Directory of Open Access Journals (Sweden)

    Mohammad Eftekhari

    2015-01-01

    Full Text Available Objective(s: Radiation therapy for breast cancer can induce myocardial capillary injury and increase cardiovascular morbidity and mortality. A prospective cohort was conducted to study the prevalence of myocardial perfusion abnormalities following radiation therapy of left-sided breast cancer patients as compared to those with right–sided cancer. Methods: To minimize potential confounding factors, only those patients with low 10-year risk of coronary artery disease (based on Framingham risk scoring were included. All patients were initially treated by modified radical mastectomy and then were managed by postoperative 3D Conformal Radiation Therapy (CRT to the surgical bed with an additional 1-cm margin, delivered by 46-50 Gy (in 2 Gy daily fractions over a 5-week course. The same dose-adjusted chemotherapy regimen (including anthracyclines, cyclophosphamide and taxol was given to all patients. Six months after radiation therapy, all patients underwent cardiac SPECT for the evaluation of myocardial perfusion. Results: A total of 71 patients with a mean age of 45.3±7.2 years [35 patients with leftsided breast cancer (exposed and 36 patients with right-sided cancer (controls] were enrolled. Dose-volume histogram (DVH [showing the percentage of the heart exposed to >50% of radiation] was significantly higher in patients with left-sided breast cancer. Visual interpretation detected perfusion abnormalities in 42.9% of cases and 16.7% of controls (P=0.02, Odds ratio=1.46. In semiquantitative segmental analysis, only apical (28.6% versus 8.3%, P=0.03 and anterolateral (17.1% versus 2.8%, P=0.049 walls showed significantly reduced myocardial perfusion in the exposed group. Summed Stress Score (SSS of>3 was observed in twelve cases (34.3%, while in five of the controls (13.9%,(Odds ratio=1.3. There was no significant difference between the groups regarding left ventricular ejection fraction. Conclusion: The risk of radiation induced myocardial

  19. Proton beam therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  20. Bladder Function Preservation With Brachytherapy, External Beam Radiation Therapy, and Limited Surger in Bladder Cancer Patients: Long-Term Results

    International Nuclear Information System (INIS)

    Purpose: To report long-term results of a bladder preservation strategy for muscle-invasive bladder cancer (MIBC) using external beam radiation therapy and brachytherapy/interstitial radiation therapy (IRT). Methods and Materials: Between May 1989 and October 2011, 192 selected patients with MIBC were treated with a combined regimen of preoperative external beam radiation therapy and subsequent surgical exploration with or without partial cystectomy and insertion of source carrier tubes for afterloading IRT using low dose rate and pulsed dose rate. Data for oncologic and functional outcomes were prospectively collected. The primary endpoints were local recurrence-free survival (LRFS), bladder function preservation survival, and salvage cystectomy-free survival. The endpoints were constructed according to the Kaplan-Meier method. Results: The mean follow-up period was 105.5 months. The LRFS rate was 80% and 73% at 5 and 10 years, respectively. Salvage cystectomy-free survival at 5 and 10 years was 93% and 85%. The 5- and 10-year overall survival rates were 65% and 46%, whereas cancer-specific survival at 5 and 10 years was 75% and 67%. The distant metastases-free survival rate was 76% and 69% at 5 and 10 years. Multivariate analysis revealed no independent predictors of LRFS. Radiation Therapy Oncology Group grade ≥3 late bladder and rectum toxicity were recorded in 11 patients (5.7%) and 2 patients (1%), respectively. Conclusions: A multimodality bladder-sparing regimen using IRT offers excellent long-term oncologic outcome in selected patients with MIBC. The late toxicity rate is low, and the majority of patients preserve their functional bladder

  1. Comparing four volumetric modulated arc therapy beam arrangements for the treatment of early-stage prostate cancer

    International Nuclear Information System (INIS)

    This study compared four different volumetric modulated arc therapy (VMAT) beam arrangements for the treatment of early-stage prostate cancer examining plan quality and the impact on a radiotherapy department's resources. Twenty prostate cases were retrospectively planned using four VMAT beam arrangements (1) a partial arc (PA), (2) one arc (1A), (3) one arc plus a partial arc (1A + PA) and (4) two arcs (2A). The quality of the dose distributions generated were compared by examining the overall plan quality, the homogeneity and conformity to the planning target volume (PTV), the number of monitor units and the dose delivered to the organs at risk. Departmental resources were considered by recording the planning time and beam delivery time. Each technique produced a plan of similar quality that was considered adequate for treatment; though some differences were noted. The 1A, 1A + PA and 2A plans demonstrated a better conformity to the PTV which correlated to improved sparing of the rectum in the 60–70 Gy range for the 1A + PA and 2A techniques. The time needed to generate the plans was different for each technique ranging from 13.1 min for 1A + PA to 17.8 min for 1A. The PA beam delivery time was fastest with a mean time of 0.9 min. Beam-on times then increased with an increase in the number of arcs up to an average of 2.2 min for the 2A technique. Which VMAT technique is best suited for clinical implementation for the treatment of prostate cancer may be dictated by the individual patient and the availability of departmental resources

  2. The Missing Pieces in Reporting of Randomized Controlled Trials of External Beam Radiation Therapy Dose Escalation for Prostate Cancer.

    Science.gov (United States)

    Zaorsky, Nicholas G; Egleston, Brian L; Horwitz, Eric M; Dicker, Adam P; Nguyen, Paul L; Showalter, Timothy N; Den, Robert B

    2016-08-01

    Randomized controlled trials (RCTs) are the most rigorous way of determining whether a cause-effect relation exists between treatment and outcome and for assessing the cost-effectiveness of a treatment. For many patients, cancer is a chronic illness; RCTs evaluating treatments for indolent cancers must evolve to facilitate medical decision-making, as "concrete" patient outcomes (eg, survival) will likely be excellent independent of the intervention, and detecting a difference between trial arms may be impossible. In this commentary, we articulate 9 recommendations that we hope future clinical trialists and funding agencies (including those under the National Cancer Institute) will take into consideration when planning RCTs to help guide subsequent interpretation of results and clinical decision making, based on RCTs of external beam radiation therapy dose escalation for the most common indolent cancer in men, that is, prostate cancer. We recommend routinely reporting: (1) race; (2) medical comorbidities; (3) psychiatric comorbidities; (4) insurance status; (5) education; (6) marital status; (7) income; (8) sexual orientation; and (9) facility-related characteristics (eg, number of centers involved, type of facilities, yearly hospital volumes). We discuss how these factors independently affect patient outcomes and toxicities; future clinicians and governing organizations should consider this information to plan RCTs accordingly (to maximize patient accrual and total n), select appropriate endpoints (eg, toxicity, quality of life, sexual function), actively monitor RCTs, and report results so as to identify the optimal treatment among subpopulations. PMID:27322694

  3. A Study of volumetric modulated arc therapy for stereotactic body radiation therapy in case of multi-target liver cancer using flattening filter free beam

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Mi Sook; Yoon, In Ha; Hong, Dong Gi; Back, Geum Mun [Dept. of Radiation Oncology, ASAN Medical Center, Seoul (Korea, Republic of)

    2015-06-15

    Stereotactic body radiation therapy (SBRT) has proved its efficacy in several patient populations with primary and metastatic limited tumors. Because SBRT prescription is high dose level than Conventional radiation therapy. SBRT plan is necessary for effective Organ at risk (OAR) protection and sufficient Planning target volume (PTV) dose coverage. In particular, multi-target cases may result excessive doses to OAR and hot spot due to dose overlap. This study evaluate usefulness of Volumetric modulated arc therapy (VMAT) in dosimetric and technical considerations using Flattening filter free (FFF) beam. The treatment plans for five patients, being treated on TrueBeam STx(Varian™, USA) with VMAT using 10MV FFF beam and Standard conformal radiotherapy (CRT) using 15MV Flattening filter (FF) beam. PTV, liver, duodenum, bowel, spinal cord, esophagus, stomach dose were evaluated using the dose volume histogram(DVH). Conformity index(CI), homogeneity index(HI), Paddick's index(PCI) for the PTV was assessed. Total Monitor unit (MU) and beam on time was assessed. Average value of CI, HI and PCI for PTV was 1.381±0.028, 1.096±0.016, 0.944±0.473 in VMAT and 1.381± 0.042, 1.136±0.042, 1.534±0.465 in CRT respectively. OAR dose in CRT plans evaluated 1.8 times higher than VMAT. Total MU in VMAT evaluated 1.3 times increase than CRT. Average beam on time was 6.8 minute in VMAT and 21.3 minute in CRT respectively. OAR dose in CRT plans evaluated 1.8 times higher than VMAT. Total MU in VMAT evaluated 1.3 times increase than CRT. Average beam on time was 6.8 minute in VMAT and 21.3 minute in CRT. VMAT for SBRT in multi-target liver cancer using FFF beam is effective treatment techniqe in dosimetric and technical considerations. VMAT decrease intra-fraction error due to treatment time shortening using high dose rate of FFF beam.

  4. Prognostic Utility of Cell Cycle Progression Score in Men With Prostate Cancer After Primary External Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Freedland, Stephen J., E-mail: steve.freedland@duke.edu [Department of Surgery, Durham VA Medical Center, Durham, North Carolina (United States); Department of Surgery (Urology), Duke University School of Medicine, Durham, North Carolina (United States); Department of Pathology, Duke University School of Medicine, Durham, North Carolina (United States); Gerber, Leah [Department of Surgery, Durham VA Medical Center, Durham, North Carolina (United States); Department of Surgery (Urology), Duke University School of Medicine, Durham, North Carolina (United States); Department of Pathology, Duke University School of Medicine, Durham, North Carolina (United States); Reid, Julia; Welbourn, William; Tikishvili, Eliso; Park, Jimmy; Younus, Adib; Gutin, Alexander; Sangale, Zaina; Lanchbury, Jerry S. [Myriad Genetics, Inc, Salt Lake City, Utah (United States); Salama, Joseph K. [Department of Radiation Oncology, Durham VA Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina (United States); Stone, Steven [Myriad Genetics, Inc, Salt Lake City, Utah (United States)

    2013-08-01

    Purpose: To evaluate the prognostic utility of the cell cycle progression (CCP) score, a RNA signature based on the average expression level of 31 CCP genes, for predicting biochemical recurrence (BCR) in men with prostate cancer treated with external beam radiation therapy (EBRT) as their primary curative therapy. Methods and Materials: The CCP score was derived retrospectively from diagnostic biopsy specimens of men diagnosed with prostate cancer from 1991 to 2006 (n=141). All patients were treated with definitive EBRT; approximately half of the cohort was African American. Outcome was time from EBRT to BCR using the Phoenix definition. Median follow-up for patients without BCR was 4.8 years. Association with outcome was evaluated by Cox proportional hazards survival analysis and likelihood ratio tests. Results: Of 141 patients, 19 (13%) had BCR. The median CCP score for patient samples was 0.12. In univariable analysis, CCP score significantly predicted BCR (P=.0017). The hazard ratio for BCR was 2.55 for 1-unit increase in CCP score (equivalent to a doubling of gene expression). In a multivariable analysis that included Gleason score, prostate-specific antigen, percent positive cores, and androgen deprivation therapy, the hazard ratio for CCP changed only marginally and remained significant (P=.034), indicating that CCP provides prognostic information that is not provided by standard clinical parameters. With 10-year censoring, the CCP score was associated with prostate cancer-specific mortality (P=.013). There was no evidence for interaction between CCP and any clinical variable, including ethnicity. Conclusions: Among men treated with EBRT, the CCP score significantly predicted outcome and provided greater prognostic information than was available with clinical parameters. If validated in a larger cohort, CCP score could identify high-risk men undergoing EBRT who may need more aggressive therapy.

  5. Prognostic Utility of Cell Cycle Progression Score in Men With Prostate Cancer After Primary External Beam Radiation Therapy

    International Nuclear Information System (INIS)

    Purpose: To evaluate the prognostic utility of the cell cycle progression (CCP) score, a RNA signature based on the average expression level of 31 CCP genes, for predicting biochemical recurrence (BCR) in men with prostate cancer treated with external beam radiation therapy (EBRT) as their primary curative therapy. Methods and Materials: The CCP score was derived retrospectively from diagnostic biopsy specimens of men diagnosed with prostate cancer from 1991 to 2006 (n=141). All patients were treated with definitive EBRT; approximately half of the cohort was African American. Outcome was time from EBRT to BCR using the Phoenix definition. Median follow-up for patients without BCR was 4.8 years. Association with outcome was evaluated by Cox proportional hazards survival analysis and likelihood ratio tests. Results: Of 141 patients, 19 (13%) had BCR. The median CCP score for patient samples was 0.12. In univariable analysis, CCP score significantly predicted BCR (P=.0017). The hazard ratio for BCR was 2.55 for 1-unit increase in CCP score (equivalent to a doubling of gene expression). In a multivariable analysis that included Gleason score, prostate-specific antigen, percent positive cores, and androgen deprivation therapy, the hazard ratio for CCP changed only marginally and remained significant (P=.034), indicating that CCP provides prognostic information that is not provided by standard clinical parameters. With 10-year censoring, the CCP score was associated with prostate cancer-specific mortality (P=.013). There was no evidence for interaction between CCP and any clinical variable, including ethnicity. Conclusions: Among men treated with EBRT, the CCP score significantly predicted outcome and provided greater prognostic information than was available with clinical parameters. If validated in a larger cohort, CCP score could identify high-risk men undergoing EBRT who may need more aggressive therapy

  6. Assessment of organ dose reduction and secondary cancer risk associated with the use of proton beam therapy and intensity modulated radiation therapy in treatment of neuroblastomas

    International Nuclear Information System (INIS)

    To compare proton beam therapy (PBT) and intensity-modulated radiation therapy (IMRT) with conformal radiation therapy (CRT) in terms of their organ doses and ability to cause secondary cancer in normal organs. Five patients (median age, 4 years; range, 2–11 years) who underwent PBT for retroperitoneal neuroblastoma were selected for treatment planning simulation. Four patients had stage 4 tumors and one had stage 2A tumor, according to the International Neuroblastoma Staging System. Two patients received 36 Gy, two received 21.6 Gy, and one received 41.4 Gy of radiation. The volume structures of these patients were used for simulations of CRT and IMRT treatment. Dose–volume analyses of liver, stomach, colon, small intestine, pancreas, and bone were performed for the simulations. Secondary cancer risks in these organs were calculated using the organ equivalent dose (OED) model, which took into account the rates of cell killing, repopulation, and the neutron dose from the treatment machine. In all evaluated organs, the mean dose in PBT was 20–80% of that in CRT. IMRT also showed lower mean doses than CRT for two organs (20% and 65%), but higher mean doses for the other four organs (110–120%). The risk of secondary cancer in PBT was 24–83% of that in CRT for five organs, but 121% of that in CRT for pancreas. The risk of secondary cancer in IMRT was equal to or higher than CRT for four organs (range 100–124%). Low radiation doses in normal organs are more frequently observed in PBT than in IMRT. Assessments of secondary cancer risk showed that PBT reduces the risk of secondary cancer in most organs, whereas IMRT is associated with a higher risk than CRT

  7. Neoadjuvant hormonal therapy and external-beam radiotherapy versus external-beam irradiation alone for prostate cancer. A quality-of-life analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pinkawa, Michael; Piroth, Marc D.; Asadpour, Branka; Gagel, Bernd; Fischedick, Karin; Siluschek, Jaroslav; Kehl, Mareike; Krenkel, Barbara; Eble, Michael J. [RWTH Aachen (Germany). Dept. of Radiotherapy

    2009-02-15

    To evaluate the impact of neoadjuvant hormonal therapy (NHT) on quality of life after external-beam radiotherapy (EBRT) for prostate cancer. A group of 170 patients (85 with and 85 without NHT) has been surveyed prospectively before EBRT (70.2-72 Gy), at the last day of EBRT, a median time of 2 months and 15 months after EBRT using a validated questionnaire (Expanded Prostate Cancer Index Composite). Pairs with and without NHT (median treatment time of 3.5 months before EBRT) were matched according to the respective planning target volume and prostate volume. Before EBRT, significantly lower urinary function/bother, sexual function and hormonal function/bother scores were found for patients with NHT. More than 1 year after EBRT, only sexual function scores remained lower. In a multivariate analysis, NHT and adjuvant hormonal therapy (HT) versus NHT only (hazard ratio 14; 95% confidence interval 2.7-183; p = 0.02) and luteinizing hormone-releasing hormone (LHRH) agonists versus antiandrogens (hazard ratio 3.6; 95% confidence interval 1.1-12; p = 0.04) proved to be independent risk factors for long-term erectile dysfunction (no or very poor ability to have an erection). With the exception of sexual function (additional adjuvant HT and application of LHRH analog independently adverse), short-term NHT was not found to decrease quality of life after EBRT for prostate cancer. (orig.)

  8. Laser Produced Ions as an Injection Beam for Cancer Therapy Facility

    CERN Document Server

    Noda, A; Iwashita, Y; Nakamura, S; Sakabe, S; Shimizu, S; Shirai, T; Tongu, H

    2004-01-01

    Ion production from a solid target by a high-power short pulse laser has been investigated to replace the injector linac of the synchrotron dedicated for cancer therapy. As the high power laser, the laser with the peak power of 100 TW and minimum pulse duration of 20 fs which has been developed at JAERI Kansai Research Establishment, is assumed. Laser produced ions with 100% energy spread is energy selected within ±5% and then phase rotated with use of the RF electric field synchronized to the pulse laser, which further reduces the energy spread to ±1%. The scheme of the phase rotation is presented together with the experimental results of laser production from the thin foil target.

  9. Targeted Therapies for Kidney Cancer

    Science.gov (United States)

    ... for kidney cancer Targeted therapies for kidney cancer Biologic therapy (immunotherapy) for kidney cancer Chemotherapy for kidney cancer Pain control for kidney cancer Treatment choices by stage for ...

  10. Impact of Concurrent Androgen Deprivation on Fiducial Marker Migration in External-beam Radiation Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Purpose: To determine the extent of gold fiducial marker (FM) migration in patients treated for prostate cancer with concurrent androgen deprivation and external-beam radiation therapy (EBRT). Methods and Materials: Three or 4 gold FMs were implanted in 37 patients with prostate adenocarcinoma receiving androgen deprivation therapy (ADT) in conjunction with 70-78 Gy. Androgen deprivation therapy was started a median of 3.9 months before EBRT (range, 0.3-12.5 months). To establish the extent of FM migration, the distance between each FM was calculated for 5-8 treatments once per week throughout the EBRT course. For each treatment, the distance between FMs was compared with the distance from the digitally reconstructed radiographs generated from the planning CT. A total of 281 treatments were analyzed. Results: The average daily migration was 0.8 ± 0.3 mm, with distances ranging from 0.2 mm-2.6 mm. Two of the 281 assessed treatments (0.7%) showed migrations >2 mm. No correlation between FM migration and patient weight or time delay between ADT and start of EBRT was found. There was no correlation between the extent of FM migration and prostate volume. Conclusion: This is the largest report of implanted FM migration in patients receiving concomitant ADT. Only 0.7% of the 281 treatments studied had significant marker migrations (>2 mm) throughout the course of EBRT. Consequently, the use of implanted FMs in these patients enables accurate monitoring of prostate gland position during treatment.

  11. Energy deposition of H and He ion beams in hydroxyapatite films: A study with implications for ion-beam cancer therapy

    Science.gov (United States)

    Limandri, Silvina; de Vera, Pablo; Fadanelli, Raul C.; Nagamine, Luiz C. C. M.; Mello, Alexandre; Garcia-Molina, Rafael; Behar, Moni; Abril, Isabel

    2014-02-01

    Ion-beam cancer therapy is a promising technique to treat deep-seated tumors; however, for an accurate treatment planning, the energy deposition by the ions must be well known both in soft and hard human tissues. Although the energy loss of ions in water and other organic and biological materials is fairly well known, scarce information is available for the hard tissues (i.e., bone), for which the current stopping power information relies on the application of simple additivity rules to atomic data. Especially, more knowledge is needed for the main constituent of human bone, calcium hydroxyapatite (HAp), which constitutes 58% of its mass composition. In this work the energy loss of H and He ion beams in HAp films has been obtained experimentally. The experiments have been performed using the Rutherford backscattering technique in an energy range of 450-2000 keV for H and 400-5000 keV for He ions. These measurements are used as a benchmark for theoretical calculations (stopping power and mean excitation energy) based on the dielectric formalism together with the MELF-GOS (Mermin energy loss function-generalized oscillator strength) method to describe the electronic excitation spectrum of HAp. The stopping power calculations are in good agreement with the experiments. Even though these experimental data are obtained for low projectile energies compared with the ones used in hadron therapy, they validate the mean excitation energy obtained theoretically, which is the fundamental quantity to accurately assess energy deposition and depth-dose curves of ion beams at clinically relevant high energies. The effect of the mean excitation energy choice on the depth-dose profile is discussed on the basis of detailed simulations. Finally, implications of the present work on the energy loss of charged particles in human cortical bone are remarked.

  12. Beam Path Toxicities to Non-Target Structures During Intensity-Modulated Radiation Therapy for Head and Neck Cancer

    International Nuclear Information System (INIS)

    Background: Intensity-modulated radiation therapy (IMRT) beams traverse nontarget normal structures not irradiated during three-dimensional conformal RT (3D-CRT) for head and neck cancer (HNC). This study estimates the doses and toxicities to nontarget structures during IMRT. Materials and Methods: Oropharyngeal cancer IMRT and 3D-CRT cases were reviewed. Dose-volume histograms (DVH) were used to evaluate radiation dose to the lip, cochlea, brainstem, occipital scalp, and segments of the mandible. Toxicity rates were compared for 3D-CRT, IMRT alone, or IMRT with concurrent cisplatin. Descriptive statistics and exploratory recursive partitioning analysis were used to estimate dose 'breakpoints' associated with observed toxicities. Results: A total of 160 patients were evaluated for toxicity; 60 had detailed DVH evaluation and 15 had 3D-CRT plan comparison. Comparing IMRT with 3D-CRT, there was significant (p ≤ 0.002) nonparametric differential dose to all clinically significant structures of interest. Thirty percent of IMRT patients had headaches and 40% had occipital scalp alopecia. A total of 76% and 38% of patients treated with IMRT alone had nausea and vomiting, compared with 99% and 68%, respectively, of those with concurrent cisplatin. IMRT had a markedly distinct toxicity profile than 3D-CRT. In recursive partitioning analysis, National Cancer Institute's Common Toxicity Criteria adverse effects 3.0 nausea and vomiting, scalp alopecia and anterior mucositis were associated with reconstructed mean brainstem dose >36 Gy, occipital scalp dose >30 Gy, and anterior mandible dose >34 Gy, respectively. Conclusions: Dose reduction to specified structures during IMRT implies an increased beam path dose to alternate nontarget structures that may result in clinical toxicities that were uncommon with previous, less conformal approaches. These findings have implications for IMRT treatment planning and research, toxicity assessment, and multidisciplinary patient

  13. External beam radiation therapy and a low-dose-rate brachytherapy boost without or with androgen deprivation therapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Tobin J.; Hutchinson, Sean Z.; Shrinath, Kushagra; Cruz, Alex A.; Figura, Nicholas B.; Nethers, Kevin; Biagioli, Matthew C.; Fernandez, Daniel C.; Heysek, Randy V.; Wilder, Richard B., E-mail: richard.wilder@moffitt.org [Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States)

    2014-07-15

    Purpose: To assess outcomes with external beam radiation therapy (EBRT) and a low-dose-rate (LDR) brachytherapy boost without or with androgen deprivation therapy (ADT) for prostate cancer. Materials and Methods: From January 2001 through August 2011, 120 intermediate-risk or high-risk prostate cancer patients were treated with EBRT to a total dose of 4,500 cGy in 25 daily fractions and a palladium-103 LDR brachytherapy boost of 10,000 cGy (n = 90) or an iodine-125 LDR brachytherapy boost of 11,000 cGy (n = 30). ADT, consisting of a gonadotropin-releasing hormone agonist ± an anti-androgen, was administered to 29/92 (32%) intermediate-risk patients for a median duration of 4 months and 26/28 (93%) high-risk patients for a median duration of 28 months. Results: Median follow-up was 5.2 years (range, 1.1-12.8 years). There was no statistically-significant difference in biochemical disease-free survival (bDFS), distant metastasis-free survival (DMFS), or overall survival (OS) without or with ADT. Also, there was no statistically-significant difference in bDFS, DMFS, or OS with a palladium-103 vs. an iodine-125 LDR brachytherapy boost. Conclusions: There was no statistically-significant difference in outcomes with the addition of ADT, though the power of the current study was limited. The Radiation Therapy Oncology Group 0815 and 0924 phase III trials, which have accrual targets of more than 1,500 men, will help to clarify the role ADT in locally-advanced prostate cancer patients treated with EBRT and a brachytherapy boost. Palladium-103 and iodine-125 provide similar bDFS, DMFS, and OS. (author)

  14. Combined brachytherapy and external beam radiotherapy without adjuvant androgen deprivation therapy for high-risk prostate cancer

    International Nuclear Information System (INIS)

    To report the outcomes of patients treated with combined iodine-125 (I-125) brachytherapy and external beam radiotherapy (EBRT) for high-risk prostate cancer. Between 2003 and 2009, I-125 permanent prostate brachytherapy plus EBRT was performed for 206 patients with high-risk prostate cancer. High-risk patients had prostate-specific antigen ≥ 20 ng/mL, and/or Gleason score ≥ 8, and/or Stage ≥ T3. One hundred and one patients (49.0%) received neoadjuvant androgen deprivation therapy (ADT) but none were given adjuvant ADT. Biochemical failure-free survival (BFFS) was determined using the Phoenix definition. The 5-year actuarial BFFS rate was 84.8%. The 5-year cause-specific survival and overall survival rates were 98.7% and 97.6%, respectively. There were 8 deaths (3.9%), of which 2 were due to prostate cancer. On multivariate analysis, positive biopsy core rates and the number of high-risk factors were independent predictors of BFFS. The 5-year BFFS rates for patients in the positive biopsy core rate <50% and ≥50% groups were 89.3% and 78.2%, respectively (p = 0.03). The 5-year BFFS rate for patients with the any single high-risk factor was 86.1%, compared with 73.6% for those with any 2 or all 3 high-risk factors (p = 0.03). Neoadjuvant ADT did not impact the 5-year BFFS. At a median follow-up of 60 months, high-risk prostate cancer patients undergoing combined I-125 brachytherapy and EBRT without adjuvant ADT have a high probability of achieving 5-year BFFS

  15. SU-E-T-14: A Feasibility Study of Using Modified AP Proton Beam for Post-Operative Pancreatic Cancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, X; Witztum, A; Kenton, O; Younan, F; Dormer, J; Kremmel, E; Lin, H; Liu, H; Tang, S; Both, S; Kassaee, A; Avery, S [UniversityPennsylvania, Philadelphia, PA (United States)

    2014-06-01

    Purpose: Due to the unpredictability of bowel gas movement, the PA beam direction is always favored for robust proton therapy in post-operative pancreatic cancer treatment. We investigate the feasibility of replacing PA beam with a modified AP beam to take the bowel gas uncertainty into account. Methods: Nine post-operative pancreatic cancer patients treated with proton therapy (5040cGy, 28 fractions) in our institution were randomly selected. The original plan uses PA and lateral direction passive-scattering proton beams. Beam weighting is about 1:1. All patients received weekly verification CTs to assess the daily variations(total 17 verification CTs). The PA direction beam was replaced by two other groups of AP direction beam. Group AP: takes 3.5% range uncertainty into account. Group APmod: compensates the bowel gas uncertainty by expanding the proximal margin to 2cm more. The 2cm margin was acquired from the average bowel diameter in from 100 adult abdominal CT scans near pancreatic region (+/- 5cm superiorly and inferiorly). Dose Volume Histograms(DVHs) of the verification CTs were acquired for robustness study. Results: Without the lateral beam, Group APmod is as robust as Group PA. In Group AP, more than 10% of iCTV D98/D95 were reduced by 4–8%. LT kidney and Liver dose robustness are not affected by the AP/PA beam direction. There is 10% of chance that RT kidney and cord will be hit by AP proton beam due to the bowel gas. Compared to Group PA, APmod plan reduced the dose to kidneys and cord max significantly, while there is no statistical significant increase in bowel mean dose. Conclusion: APmod proton beam for the target coverage could be as robust as the PA direction without sacrificing too much of bowel dose. When the AP direction beam has to be selected, a 2cm proximal margin should be considered.

  16. Laser therapy for cancer

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000905.htm Laser therapy for cancer To use the sharing features ... Lasers are also used on the skin. How Laser Therapy is Used Laser therapy can be used ...

  17. Electron beams in radiation therapy

    International Nuclear Information System (INIS)

    Clinical electron beams in interaction with beam flattening and collimating devices are studied, in order to obtain the means for adequate electron therapy. A treatment planning method for arbitrary field shapes is developed that takes the properties of the collimated electron beams into account. An electron multiple-scattering model is extended to incorporate a model for the loss of electrons with depth, in order to improve electron beam dose planning. A study of ionisation measurements in two different phantom materials yields correction factors for electron beam dosimetry. (Auth.)

  18. The feasibility and safety of high-intensity focused ultrasound combined with low-dose external beam radiotherapy as supplemental therapy for advanced prostate cancer following hormonal therapy

    Institute of Scientific and Technical Information of China (English)

    Rui-Yi Wu; Guo-Min Wang; Lei Xu; Bo-Heng Zhang; Ye-Qing Xu; Zhao-Chong Zeng; Bing Chen

    2011-01-01

    The aim of this study was to investigate the feasibility and safety of high-intensity focused ultrasound (HIFU) combined with (+) low-dose external beam radiotherapy (LRT) as supplemental therapy for advanced prostate cancer (PCa) following hormonal therapy (HT). Our definition of HIFU+LRT refers to treating primary tumour lesions with HIFU in place of reduced field boost irradiation to the prostate, while retaining four-field box irradiation to the pelvis in conventional-dose external beam radiotherapy (CRT). We performed a prospective, controlled and non-randomized study on 120 patients with advanced PCa after HT who received HIFU, CRT, HIFU+LRT and HT alone, respectively. CT/MR imaging showed the primary tumours and pelvic lymph node metastases visibly shrank or even disappeared after HIFU+LRT treatment. There were significant differences among four groups with regard to overall survival (OS) and disease-specific survival (DSS) curves (P=0.018 and 0.015). Further comparison between each pair of groups suggested that the long-term DSS of the HIFU+LRT group was higher than those of the other three groups, but there was no significant difference between the HIFU+LRT group and the CRT group. Multivariable Cox's proportional hazard model showed that both HIFU+LRT and CRT were independently associated with DSS (P=0.001 and 0.035) and had protective effects with regard to the risk of death. Compared with CRT, HIFU+LRT significantly decreased incidences of radiation-related late gastrointestinal (GI) and genitourinary (GU) toxicity grade ≥II. In conclusion, long-term survival of patients with advanced PCa benefited from strengthening local control of primary tumour and regional lymph node metastases after HT. As an alternative to CRT, HIFU+LRT showed good efficacy and better safety.

  19. Phase 1 Study of Dose Escalation in Hypofractionated Proton Beam Therapy for Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Daniel R., E-mail: dgomez@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gillin, Michael [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wei, Caimiao [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lin, Steven H.; Swanick, Cameron; Alvarado, Tina; Komaki, Ritsuko; Cox, James D.; Chang, Joe Y. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-07-15

    Background: Many patients with locally advanced non-small cell lung cancer (NSCLC) cannot undergo concurrent chemotherapy because of comorbidities or poor performance status. Hypofractionated radiation regimens, if tolerable, may provide an option to these patients for effective local control. Methods and Materials: Twenty-five patients were enrolled in a phase 1 dose-escalation trial of proton beam therapy (PBT) from September 2010 through July 2012. Eligible patients had histologically documented lung cancer, thymic tumors, carcinoid tumors, or metastatic thyroid tumors. Concurrent chemotherapy was not allowed, but concurrent treatment with biologic agents was. The dose-escalation schema comprised 15 fractions of 3 Gy(relative biological effectiveness [RBE])/fraction, 3.5 Gy(RBE)/fraction, or 4 Gy(RBE)/fraction. Dose constraints were derived from biologically equivalent doses of standard fractionated treatment. Results: The median follow-up time for patients alive at the time of analysis was 13 months (range, 8-28 months). Fifteen patients received treatment to hilar or mediastinal lymph nodes. Two patients experienced dose-limiting toxicity possibly related to treatment; 1 received 3.5-Gy(RBE) fractions and experienced an in-field tracheoesophageal fistula 9 months after PBT and 1 month after bevacizumab. The other patient received 4-Gy(RBE) fractions and was hospitalized for bacterial pneumonia/radiation pneumonitis 4 months after PBT. Conclusion: Hypofractionated PBT to the thorax delivered over 3 weeks was well tolerated even with significant doses to the lungs and mediastinal structures. Phase 2/3 trials are needed to compare the efficacy of this technique with standard treatment for locally advanced NSCLC.

  20. Preliminary comp arison of helical tomotherapy and mixed beams of unmodulated electrons and intensity modulated radiation therapy for treating superficial cancers of the parotid gland and nasal cavity

    Directory of Open Access Journals (Sweden)

    Blasi Olivier

    2011-12-01

    Full Text Available Abstract Background and Purpose To investigate combining unmodulated electron beams with intensity-modulated radiation therapy to improve dose distributions for superficial head and neck cancers, and to compare mixed beam plans with helical tomotherapy. Materials and methods Mixed beam and helical tomotherapy dose plans were developed for two patients with parotid gland tumors and two patients with nasal cavity tumors. Mixed beam plans consisted of various weightings of a enface electron beam and IMRT, which was optimized after calculation of the electron dose to compensate for heterogeneity in the electron dose distribution within the target volume. Results Helical tomotherapy plans showed dose conformity and homogeneity in the target volume that was equal to or better than the mixed beam plans. Electron-only plans tended to show the lowest doses to normal tissues, but with markedly worse dose conformity and homogeneity than in the other plans. However, adding a 20% IMRT dose fraction (i.e., IMRT:electron weighting = 1:4 to the electron plan restored target conformity and homogeneity to values comparable to helical tomotherapy plans, while maintaining lower normal tissue dose. Conclusions Mixed beam treatments offer some dosimetric advantages over IMRT or helical tomotherapy for target depths that do not exceed the useful range of the electron beam. Adding a small IMRT component (e.g., IMRT:electron weighting = 1:4 to electron beam plans markedly improved target dose homogeneity and conformity for the cases examined in this study.

  1. The Detection of Ionizing Radiation by Plasma Panel Sensors: Cosmic Muons, Ion Beams and Cancer Therapy

    CERN Document Server

    Friedman, Peter S; Chapman, J W; Ferretti, Claudio; Levin, Daniel S; Weaverdyck, Curtis; Zhou, Bing; Benhammou, Yan; Etzion, Erez; Guttman, Nir; Moshe, M Ben; Silver, Yiftah; Beene, James R; Varner, Robert L

    2012-01-01

    The plasma panel sensor is an ionizing photon and particle radiation detector derived from PDP technology with high gain and nanosecond response. Experimental results in detecting cosmic ray muons and beta particles from radioactive sources are described along with applications including high energy and nuclear physics, homeland security and cancer therapeutics

  2. Principles and practice of proton beam therapy

    CERN Document Server

    Das, Indra J

    2015-01-01

    Commissioned by The American Association of Physicists in Medicine (AAPM) for their June 2015 Summer School, this is the first AAPM monograph printed in full color. Proton therapy has been used in radiation therapy for over 70 years, but within the last decade its use in clinics has grown exponentially. This book fills in the proton therapy gap by focusing on the physics of proton therapy, including beam production, proton interactions, biology, dosimetry, treatment planning, quality assurance, commissioning, motion management, and uncertainties. Chapters are written by the world's leading medical physicists who work at the pioneering proton treatment centers around the globe. They share their understandings after years of experience treating thousands of patients. Case studies involving specific cancer treatments show that there is some art to proton therapy as well as state-of-the-art science. Even though the focus lies on proton therapy, the content provided is also valuable to heavy charged particle th...

  3. Hypofractionated High-Dose Proton Beam Therapy for Stage I Non-Small-Cell Lung Cancer: Preliminary Results of A Phase I/II Clinical Study

    International Nuclear Information System (INIS)

    Purpose: To present treatment outcomes of hypofractionated high-dose proton beam therapy for Stage I non-small-cell lung cancer (NSCLC). Methods and Materials: Twenty-one patients with Stage I NSCLC (11 with Stage IA and 10 with Stage IB) underwent hypofractionated high-dose proton beam therapy. At the time of irradiation, patient age ranged from 51 to 85 years (median, 74 years). Nine patients were medically inoperable because of comorbidities, and 12 patients refused surgical resection. Histology was squamous cell carcinoma in 6 patients, adenocarcinoma in 14, and large cell carcinoma in 1. Tumor size ranged from 10 to 42 mm (median, 25 mm) in maximum diameter. Three and 18 patients received proton beam irradiation with total doses of 50 Gy and 60 Gy in 10 fractions, respectively, to primary tumor sites. Results: Of 21 patients, 2 died of cancer and 2 died of pneumonia at a median follow-up period of 25 months. The 2-year overall and cause-specific survival rates were 74% and 86%, respectively. All but one of the irradiated tumors were controlled during the follow-up period. Five patients showed recurrences 6-29 months after treatment, including local progression and new lung lesions outside of the irradiated volume in 1 and 4 patients, respectively. The local progression-free and disease-free rates were 95% and 79% at 2 years, respectively. No therapy-related toxicity of Grade ≥3 was observed. Conclusions: Hypofractionated high-dose proton beam therapy seems feasible and effective for Stage I NSCLC. Proton beams may contribute to enhanced efficacy and lower toxicity in the treatment of patients with Stage I NSCLC

  4. Evaluation of every other day-cone beam computed tomography in image guided radiation therapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoung Suk; Ahn, Jong Ho; Kim, Jong Sik; Song, Ki Won [Dept. of Radiation Oncology, (Korea, Republic of)

    2014-12-15

    Cone Beam Computed Tomography(CBCT) in Image Guided Radiation Therapy(IGRT), Set-up error can be reduced but exposure dose of the patient due to CBCT will increase. Through this study, we are to evaluate by making a scenario with the implementation period of CBCT as every other day. Of prostate cancer patients, 9 patients who got a Intensity Modulated Radiation Therapy(IMRT) with CBCT in IGRT were analyzed. Based on values corrected by analyzing set-up error by using CBCT every day during actual treatment, we created a scenario that conducts CBCT every other day. After applying set-up error values of the day not performing CBCT in the scenario to the treatment planning system(Pinnacle 9.2, Philips, USA) by moving them from the treatment iso-center during actual treatment, we established re-treatment plan under the same conditions as actual treatment. Based on this, the dose distribution of normal organs and Planning Target Volume(PTV) was compared and analyzed. In the scenario that performs CBCT every other day based on set-up error values when conducting CBCT every day, average X-axis : 0.2±0.73 mm , Y-axis : 0.1±0.58 mm , Z-axis : -1.3±1.17 mm difference was shown. This was applied to the treatment planning to establish re-treatment plan and dose distribution was evaluated and as a result, Dmean : -0.17 Gy, D99% : -0.71 Gy of PTV difference was shown in comparison with the result obtained when carrying out CBCT every day. As for normal organs, V66 : 1.55% of rectal wall, V66 : -0.76% of bladder difference was shown. In case of a CBCT perform every other day could reduce exposure dose and additional treatment time. And it is thought to be able to consider the application depending on the condition of the patient because the difference in the dose distribution of normal organs, PTV is not large.

  5. Ion beam therapy fundamentals, technology, clinical applications

    CERN Document Server

    2012-01-01

    The book provides a detailed, up-to-date account of the basics, the technology, and the clinical use of ion beams for radiation therapy. Theoretical background, technical components, and patient treatment schemes are delineated by the leading experts that helped to develop this field from a research niche to its current highly sophisticated and powerful clinical treatment level used to the benefit of cancer patients worldwide. Rather than being a side-by-side collection of articles, this book consists of related chapters. It is a common achievement by 76 experts from around the world. Their expertise reflects the diversity of the field with radiation therapy, medical and accelerator physics, radiobiology, computer science, engineering, and health economics. The book addresses a similarly broad audience ranging from professionals that need to know more about this novel treatment modality or consider to enter the field of ion beam therapy as a researcher. However, it is also written for the interested public an...

  6. Nanomedicine and cancer therapies

    CERN Document Server

    Sebastian, Mathew; Elias, Eldho

    2012-01-01

    Introduction Nanotechnological-Based Systems for CancerIn vivo Spectroscopy for Detection and Treatment of GBM with NPt® ImplantationNanobiotechnology for Antibacterial Therapy and DiagnosisChitosan NanoparticlesSynthesis and Biomedical Application of Silver NanoparticlesRecent Advances in Cancer Therapy Using PhytochemicalsMitochondrial Dysfunction and Cancer: Modulation by Palladium-Lipoic Acid ComplexUnity of Mind and Body: The Concept of Life Purpose DominantThuja Occidentalis and Breast Cancer ChemopreventionAntioxidants and Com

  7. A comparative dosimetric study on tangential photon beams, intensity-modulated radiation therapy (IMRT) and modulated electron radiotherapy (MERT) for breast cancer treatment

    Science.gov (United States)

    Ma, C.-M.; Ding, M.; Li, J. S.; Lee, M. C.; Pawlicki, T.; Deng, J.

    2003-04-01

    Recently, energy- and intensity-modulated electron radiotherapy (MERT) has garnered a growing interest for the treatment of superficial targets. In this work, we carried out a comparative dosimetry study to evaluate MERT, photon beam intensity-modulated radiation therapy (IMRT) and conventional tangential photon beams for the treatment of breast cancer. A Monte Carlo based treatment planning system has been investigated, which consists of a set of software tools to perform accurate dose calculation, treatment optimization, leaf sequencing and plan analysis. We have compared breast treatment plans generated using this home-grown treatment optimization and dose calculation software for these treatment techniques. The MERT plans were planned with up to two gantry angles and four nominal energies (6, 9, 12 and 16 MeV). The tangential photon treatment plans were planned with 6 MV wedged photon beams. The IMRT plans were planned using both multiple-gantry 6 MV photon beams or two 6 MV tangential beams. Our results show that tangential IMRT can reduce the dose to the lung, heart and contralateral breast compared to conventional tangential wedged beams (up to 50% reduction in high dose volume or 5 Gy in the maximum dose). MERT can reduce the maximum dose to the lung by up to 20 Gy and to the heart by up to 35 Gy compared to conventional tangential wedged beams. Multiple beam angle IMRT can significantly reduce the maximum dose to the lung and heart (up to 20 Gy) but it induces low and medium doses to a large volume of normal tissues including lung, heart and contralateral breast. It is concluded that MERT has superior capabilities to achieve dose conformity both laterally and in the depth direction, which will be well suited for treating superficial targets such as breast cancer.

  8. Cancer and electromagnetic radiation therapy: Quo Vadis?

    OpenAIRE

    Makropoulou, Mersini

    2016-01-01

    In oncology, treating cancer with a beam of photons is a well established therapeutic technique, developed over 100 years, and today over 50% of cancer patients will undergo traditional X-ray radiotherapy. However, ionizing radiation therapy is not the only option, as the high-energy photons delivering their cell-killing radiation energy into cancerous tumor can lead to significant damage to healthy tissues surrounding the tumor, located throughout the beam's path. Therefore, in nowadays, adv...

  9. Proton Beam Therapy for Patients With Medically Inoperable Stage I Non-Small-Cell Lung Cancer at the University of Tsukuba

    International Nuclear Information System (INIS)

    Purpose: To evaluate in a retrospective review the role of proton beam therapy for patients with medically inoperable Stage I non-small-cell lung cancer (NSCLC). Patients and Methods: From November 2001 to July 2008, 55 medically inoperable patients with Stage I NSCLC were treated with proton beam therapy. A total of 58 (T1/T2, 30/28) tumors were treated. The median age of study participants was 77 years (range, 52-86 years). A total dose of 66 GyE in 10 fractions was given to peripherally located tumors and 72.6 GyE in 22 fractions to centrally located tumors. Results: The rates (95% confidence interval) of overall and progression-free survival of all patients and of local control of all tumors at 2 years were 97.8% (93.6-102.0%), 88.7% (77.9-99.5%), and 97.0% (91.1-102.8%), respectively. There was no statistically significant difference in progression-free rate between T1 and T2 tumors (p = 0.87). Two patients (3.6%) had deterioration in pulmonary function, and 2 patients (3.6%) had Grade 3 pneumonitis. Conclusion: Proton beam therapy was effective and well tolerated in medically inoperable patients with Stage I NSCLC.

  10. Unproven (questionable) cancer therapies.

    OpenAIRE

    Brigden, M L

    1995-01-01

    More than half of all cancer patients use some form of alternative treatment during the course of their illness. Alternative therapies are often started early in patients' illness, and their use is frequently not acknowledged to health care professionals. Some alternative therapies are harmful, and their promoters may be fraudulent. Persons who try alternative cancer therapies may not be poorly educated but may ultimately abandon conventional treatment. Recent attention has focused on aspects...

  11. 3D dosimetry in patients with early breast cancer undergoing Intraoperative Avidination for Radionuclide Therapy (IART {sup registered}) combined with external beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Mahila E.; Cremonesi, Marta; Di Dia, Amalia; Botta, Francesca; Pedroli, Guido [European Institute of Oncology, Division of Medical Physics, Milan (Italy); De Cicco, Concetta; Calabrese, Michele; Paganelli, Giovanni [European Institute of Oncology, Division of Nuclear Medicine, Milan (Italy); Sarnelli, Anna [IRCCS Istituto Romagnolo per lo Studio e la Cura dei Tumori, Medical Physics Unit, Meldola, FC (Italy); Pedicini, Piernicola [Centro Regionale Oncologico Basilicata (IRCCS-CROB), Department of Radiation Oncology, Rionero in Vulture, PZ (Italy); Orecchia, Roberto [European Institute of Oncology, Division of Radiotherapy, Milan (Italy)

    2012-11-15

    Intraoperative Avidination for Radionuclide Therapy (IART {sup registered}) is a novel targeted radionuclide therapy recently used in patients with early breast cancer. It is a radionuclide approach with {sup 90}Y-biotin combined with external beam radiotherapy (EBRT) to release a boost of radiation in the tumour bed. Two previous clinical trials using dosimetry based on the calculation of mean absorbed dose values with the hypothesis of uniform activity distribution (MIRD 16 method) assessed the feasibility and safety of IART {sup registered}. In the present retrospective study, a voxel dosimetry analysis was performed to investigate heterogeneity in distribution of the absorbed dose. The aim of this work was to compare dosimetric and radiobiological evaluations derived from average absorbed dose vs. voxel absorbed dose approaches. We evaluated 14 patients who were injected with avidin into the tumour bed after conservative surgery and 1 day later received an intravenous injection of 3.7 GBq of {sup 90}Y-biotin (together with 185 MBq {sup 111}In-biotin for imaging). Sequential images were used to estimate the absorbed dose in the target region according to the standard dosimetry method (SDM) and the voxel dosimetry method (VDM). The biologically effective dose (BED) distribution was also evaluated. Dose/volume and BED volume histograms were generated to derive equivalent uniform BED (EUBED) and equivalent uniform dose (EUD) values. No ''cold spots'' were highlighted by voxel dosimetry. The median absorbed-dose in the target region was 20 Gy (range 15-27 Gy) by SDM, and the median EUD was 20.4 Gy (range 16.5-29.4 Gy) by the VDM; SDM and VDM estimates differed by about 6 %. The EUD/mean voxel absorbed dose ratio was >0.9 in all patients, indicative of acceptable uniformity in the target. The median BED and EUBED values were 21.8 Gy (range 15.9-29.3 Gy) and 22.8 Gy (range 17.3-31.8 Gy), respectively. VDM highlighted the absence of significant

  12. Gene Therapy of Cancerous Diseases

    OpenAIRE

    Valenčáková, A.; Dziaková, A.; Hatalová, E.

    2015-01-01

    Gene therapy of cancerous diseases provides new means of curing patients with oncologic illnesses. There are several approaches in treating cancer by gene therapy. Most commonly used methods are: cancer immunogene therapy, suicide gene therapy, application of tumor-suppressor genes, antiangiogenic therapy, mesenchymal stem cells used as vectors, gene directed enzyme/prodrug therapy and bacteria used as anti-cancer agents. Cancer gene immunotherapy uses several immunologic agents for the purp...

  13. Mycosis fungoides. Electron beam therapy.

    Science.gov (United States)

    Spittle, M F

    1977-01-01

    The most effective treatment of late mycosis fungoides is total skin electron beam therapy. The beam at the Hammersmith Hospital in London has been adapted to treat these patients. Patients with advanced disease who have failed more conservative methods of treatment are irradiated. The electron beam is modified by the use of carbon and copper scatterers to produce an 80 percent depth dose at 5.5, 8 and 11.5 millimeters below the skin surface. The dose achieved in most patients is between 1500 rads and 2600 rads given in 10 to 13 treatments over 5-7 weeks. Recently the higher dose range has been employed and lithium flouride studies have shown that giving these doses from each of 4 fields, the dose achieved on the skin is approximately twice the given dose. The management of patients and the effects of treatment are discussed.

  14. CERN launches new cancer therapy initiative

    CERN Multimedia

    2002-01-01

    "The first meeting of a new European network for research in cancer therapy was held at CERN, in February 2002. ENLIGHT, the European Network for Research in Light Ion Therapy aims to coordinate the development of a variety of projects at European facilities for "light ion therapy" - a form of radiation therapy that uses beams of the nuclei of lightweight atoms" (1/2 page).

  15. PET monitoring of cancer therapy with He-3 and C-12 beams: a study with the GEANT4 toolkit

    CERN Document Server

    Pshenichnov, Igor; Mishustin, Igor; Greiner, Walter

    2007-01-01

    We study the spatial distributions of $\\beta^+$-activity produced by therapeutic beams of $^3$He and $^{12}$C ions in various tissue-like materials. The calculations were performed within a Monte Carlo model for Heavy-Ion Therapy (MCHIT) based on the GEANT4 toolkit. The contributions from $^{10,11}$C, $^{13}$N, $^{14,15}$O, $^{17,18}$F and $^{30}$P positron-emitting nuclei were calculated and compared with experimental data obtained during and after irradiation. Positron emitting nuclei are created by $^{12}$C beam in fragmentation reactions of projectile and target nuclei. This leads to a $\\beta^+$-activity profile characterised by a noticeable peak located close to the Bragg peak in the corresponding depth-dose distribution. On the contrary, as the most of positron-emitting nuclei are produced by $^3$He beam in target fragmentation reactions, the calculated total $\\beta^+$-activity during or soon after the irradiation period is evenly distributed within the projectile range. However, we predict also the pre...

  16. Biologic Therapy (Immunotherapy) for Kidney Cancer

    Science.gov (United States)

    ... for kidney cancer Targeted therapies for kidney cancer Biologic therapy (immunotherapy) for kidney cancer Chemotherapy for kidney cancer Pain control for kidney cancer Treatment choices by stage for ...

  17. Targeted cancer therapies

    Institute of Scientific and Technical Information of China (English)

    Li Yan; Neal Rosen; Carlos Arteaga

    2011-01-01

    With unprecedented understanding of molecular events underlying human cancer in this genomic era, a large number of drugs specifically targeting hypothesized oncogenic drivers to which tumors are potentially addicted to have been developed and continue to be developed. These targeted cancer therapies are being actively tested in clinical trials with mixed successes. This editorial provides an overview on successful targeted cancer drugs on the market and those drugs that are in late clinical development stages. Importantly, the article lays out main challenges in developing molecular targeted therapies and potential path forward to overcome these challenges, as well as opportunities for China in this new era of targeted agents. The editorial serves as an introduction to the Targeted Cancer Therapies serias that will review in depth of major pathways and drugs targeting these pathways to be published in the coming issues of the Chinese Journal of Cancer.

  18. Intensity-Modulated Radiation Therapy with Noncoplanar Beams for Treatment of Prostate Cancer in Patients with Bilateral Hip Prosthesis-A Case Study

    International Nuclear Information System (INIS)

    Megavoltage photon intensity-modulated radiation therapy (IMRT) is typically used in the treatment of prostate cancer at our institution. Approximately 1% to 2% of patients with prostate cancer have hip prostheses. The presence of the prosthesis usually complicates the planning process because of dose perturbation around the prosthesis, radiation attenuation through the prosthesis, and the introduction of computed tomography artifacts in the planning volume. In addition, hip prostheses are typically made of materials of high atomic number, which add uncertainty to the dosimetry of the prostate and critical organs in the planning volume. When the prosthesis is bilateral, treatment planning is further complicated because only a limited number of beam angles can be used to avoid the prostheses. In this case study, we will report the observed advantages of using noncoplanar beams in the delivery of IMRT to a prostate cancer patient with bilateral hip prostheses. The treatment was planned for 75.6 Gy using a 7-field coplanar approach and a noncoplanar arrangement, with all fields avoiding entrance though the prostheses. Our results indicate that, compared with the coplanar plan, the noncoplanar plan delivers the prescribed dose to the target with a slightly better conformality and sparing of rectal tissue versus the coplanar plan.

  19. The clinical case for proton beam therapy

    Directory of Open Access Journals (Sweden)

    Foote Robert L

    2012-10-01

    Full Text Available Abstract Over the past 20 years, several proton beam treatment programs have been implemented throughout the United States. Increasingly, the number of new programs under development is growing. Proton beam therapy has the potential for improving tumor control and survival through dose escalation. It also has potential for reducing harm to normal organs through dose reduction. However, proton beam therapy is more costly than conventional x-ray therapy. This increased cost may be offset by improved function, improved quality of life, and reduced costs related to treating the late effects of therapy. Clinical research opportunities are abundant to determine which patients will gain the most benefit from proton beam therapy. We review the clinical case for proton beam therapy. Summary sentence Proton beam therapy is a technically advanced and promising form of radiation therapy.

  20. Antiproton Cancer Therapy

    DEFF Research Database (Denmark)

    Bassler, Niels

    An essential part in cancer radiotherapy, is to direct a sufficiently high dose towards the tumour, without damaging the surrounding tissue. Different techniques such as intensity modulated radiation therapy and proton therapy have been developed, in order to reduce the dose to the normal tissue...

  1. Two Effective Heuristics for Beam Angle Optimization in Radiation Therapy

    CERN Document Server

    Yarmand, Hamed

    2013-01-01

    In radiation therapy, mathematical methods have been used for optimizing treatment planning for delivery of sufficient dose to the cancerous cells while keeping the dose to critical surrounding structures minimal. This optimization problem can be modeled using mixed integer programming (MIP) whose solution gives the optimal beam orientation as well as optimal beam intensity. The challenge, however, is the computation time for this large scale MIP. We propose and investigate two novel heuristic approaches to reduce the computation time considerably while attaining high-quality solutions. We introduce a family of heuristic cuts based on the concept of 'adjacent beams' and a beam elimination scheme based on the contribution of each beam to deliver the dose to the tumor in the ideal plan in which all potential beams can be used simultaneously. We show the effectiveness of these heuristics for intensity modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) on a clinical liver case.

  2. Proton beam therapy control system

    Science.gov (United States)

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2008-07-08

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  3. Assessing the radiation-induced second cancer risk in proton therapy for pediatric brain tumors: the impact of employing a patient-specific aperture in pencil beam scanning

    Science.gov (United States)

    Geng, Changran; Moteabbed, Maryam; Xie, Yunhe; Schuemann, Jan; Yock, Torunn; Paganetti, Harald

    2016-01-01

    The purpose of this study was to compare the radiation-induced second cancer risks for in-field and out-of-field organs and tissues for pencil beam scanning (PBS) and passive scattering proton therapy (PPT) and assess the impact of adding patient-specific apertures to sharpen the penumbra in pencil beam scanning for pediatric brain tumor patients. Five proton therapy plans were created for each of three pediatric patients using PPT as well as PBS with two spot sizes (average sigma of ~17 mm and ~8 mm at isocenter) and choice of patient-specific apertures. The lifetime attributable second malignancy risks for both in-field and out-of-field tissues and organs were compared among five delivery techniques. The risk for in-field tissues was calculated using the organ equivalent dose, which is determined by the dose volume histogram. For out-of-field organs, the organ-specific dose equivalent from secondary neutrons was calculated using Monte Carlo and anthropomorphic pediatric phantoms. We find that either for small spot size PBS or for large spot size PBS, a patient-specific aperture reduces the in-field cancer risk to values lower than that for PPT. The reduction for large spot sizes (on average 43%) is larger than for small spot sizes (on average 21%). For out-of-field organs, the risk varies only marginally by employing a patient-specific aperture (on average from  -2% to 16% with increasing distance from the tumor), but is still one to two orders of magnitude lower than that for PPT. In conclusion, when pencil beam spot sizes are large, the addition of apertures to sharpen the penumbra decreases the in-field radiation-induced secondary cancer risk. There is a slight increase in out-of-field cancer risk as a result of neutron scatter from the aperture, but this risk is by far outweighed by the in-field risk benefit from using an aperture with a large PBS spot size. In general, the risk for developing a second malignancy in out-of-field organs for PBS remains

  4. External Beam Radiation Therapy and Abiraterone in Men With Localized Prostate Cancer: Safety and Effect on Tissue Androgens

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eunpi [University of Washington School of Medicine, Seattle, Washington (United States); Fred Hutchinson Cancer Research Center, Seattle, Washington (United States); Mostaghel, Elahe A. [Fred Hutchinson Cancer Research Center, Seattle, Washington (United States); Russell, Kenneth J.; Liao, Jay J.; Konodi, Mark A. [University of Washington School of Medicine, Seattle, Washington (United States); Kurland, Brenda F. [University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Marck, Brett T. [Veterans Affairs Puget Sound Health Care System, Seattle, Washington (United States); Matsumoto, Alvin M. [University of Washington School of Medicine, Seattle, Washington (United States); Veterans Affairs Puget Sound Health Care System, Seattle, Washington (United States); Dalkin, Bruce L. [University of Washington School of Medicine, Seattle, Washington (United States); Montgomery, R. Bruce, E-mail: rbmontgo@uw.edu [University of Washington School of Medicine, Seattle, Washington (United States)

    2015-06-01

    Purpose: Optimizing androgen suppression may provide better control of localized prostate cancer (PCa). Numerous trials have supported the benefit of combining androgen deprivation therapy with definitive radiation therapy in men with locally advanced or high-grade disease. Addition of abiraterone to luteinizing hormone-releasing hormone agonist (LHRHa) with radiation has not been reported. We examined the safety of this combination as well as its impact on androgen suppression. Methods and Materials: A prospective, phase 2 study was conducted in men with localized PCa treated with 6 months of neoadjuvant and concurrent abiraterone with LHRHa and radiation. Duration of adjuvant LHRHa was at the discretion of the treating clinician. Prostate biopsy assays were obtained prior to the start of therapy and prior to radiation. Sera and tissue androgen levels were measured by liquid chromatography-tandem mass spectrometry. Results: A total of 22 men with intermediate- (n=3) and high-risk PCa (n=19) received study therapy. Sixteen men completed the intended course of abiraterone, and 19 men completed planned radiation to 77.4 to 81 Gy. Radiation to pelvic nodes was administered in 20 men. The following grade 3 toxicities were reported: lymphopenia (14 patients), fatigue (1 patient), transaminitis (2 patients), hypertension (2 patients), and hypokalemia (1 patient). There were no grade 4 toxicities. All 21 men who complied with at least 3 months of abiraterone therapy had a preradiation prostate-specific antigen (PSA) concentration nadir of <0.3 ng/mL. Median levels of tissue androgen downstream of CYP17A were significantly suppressed after treatment with abiraterone, and upstream steroids were increased. At median follow-up of 21 months (range: 3-37 months), only 1 patient (who had discontinued abiraterone at 3 months) had biochemical relapse. Conclusions: Addition of abiraterone to LHRHa with radiation is safe and achieves effective prostatic androgen suppression

  5. Analysis of late toxicity associated with external beam radiation therapy for prostate cancer with uniform setting of classical 4-field 70 Gy in 35 fractions: a survey study by the Osaka Urological Tumor Radiotherapy Study Group

    OpenAIRE

    Yoshioka, Yasuo; Suzuki, Osamu; Nishimura, Kazuo; Inoue, Hitoshi; Hara, Tsuneo; Yoshida, Ken; Imai, Atsushi; Tsujimura, Akira; Nonomura, Norio; Ogawa, Kazuhiko

    2012-01-01

    We aimed to analyse late toxicity associated with external beam radiation therapy (EBRT) for prostate cancer using uniform dose-fractionation and beam arrangement, with the focus on the effect of 3D (CT) simulation and portal field size. We collected data concerning patients with localized prostate adenocarcinoma who had been treated with EBRT at five institutions in Osaka, Japan, between 1998 and 2006. All had been treated with 70 Gy in 35 fractions, using the classical 4-field technique wit...

  6. Predictors of High-grade Esophagitis After Definitive Three-dimensional Conformal Therapy, Intensity-modulated Radiation Therapy, or Proton Beam Therapy for Non-small cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Daniel R., E-mail: dgomez@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Tucker, Susan L. [Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Martel, Mary K.; Mohan, Radhe; Balter, Peter A. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lopez Guerra, Jose Luis [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Hospitales Universitarios Virgen del Rocio, Seville (Spain); Liu Hongmei; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-11-15

    Introduction: We analyzed the ability of various patient- and treatment-related factors to predict radiation-induced esophagitis (RE) in patients with non-small cell lung cancer (NSCLC) treated with three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or proton beam therapy (PBT). Methods and Materials: Patients were treated for NSCLC with 3D-CRT, IMRT, or PBT at MD Anderson from 2000 to 2008 and had full dose-volume histogram (DVH) data available. The endpoint was severe (grade {>=}3) RE. The Lyman-Kutcher-Burman (LKB) model was used to analyze RE as a function of the fractional esophageal DVH, with clinical variables included as dose-modifying factors. Results: Overall, 652 patients were included: 405 patients were treated with 3D-CRT, 139 with IMRT, and 108 with PBT; corresponding rates of grade {>=}3 RE were 8%, 28%, and 6%, respectively, with a median time to onset of 42 days (range, 11-93 days). A fit of the fractional DVH LKB model demonstrated that the fractional effective dose was significantly different (P=.046) than 1 (fractional mean dose) indicating that high doses to small volumes are more predictive than mean esophageal dose. The model fit was better for 3D-CRT and PBT than for IMRT. Including receipt of concurrent chemotherapy as a dose-modifying factor significantly improved the LKB model (P=.005), and the model was further improved by including a variable representing treatment with >30 fractions. Examining individual types of chemotherapy agents revealed a trend toward receipt of concurrent taxanes and increased risk of RE (P=.105). Conclusions: Fractional dose (dose rate) and number of fractions (total dose) distinctly affect the risk of severe RE, estimated using the LKB model, and concurrent chemotherapy improves the model fit. This risk of severe RE is underestimated by this model in patients receiving IMRT.

  7. Cancer and electromagnetic radiation therapy: Quo Vadis?

    CERN Document Server

    Makropoulou, Mersini

    2016-01-01

    In oncology, treating cancer with a beam of photons is a well established therapeutic technique, developed over 100 years, and today over 50% of cancer patients will undergo traditional X-ray radiotherapy. However, ionizing radiation therapy is not the only option, as the high-energy photons delivering their cell-killing radiation energy into cancerous tumor can lead to significant damage to healthy tissues surrounding the tumor, located throughout the beam's path. Therefore, in nowadays, advances in ionizing radiation therapy are competitive to non-ionizing ones, as for example the laser light based therapy, resulting in a synergism that has revolutionized medicine. The use of non-invasive or minimally invasive (e.g. through flexible endoscopes) therapeutic procedures in the management of patients represents a very interesting treatment option. Moreover, as the major breakthrough in cancer management is the individualized patient treatment, new biophotonic techniques, e.g. photo-activated drug carriers, help...

  8. Therapy of pancreatic cancer

    International Nuclear Information System (INIS)

    Pancreatic cancer remains one of the most difficult diseases to cure. Japan pancreas society guidelines for management of pancreatic cancer indicate therapeutic algorithm according to the clinical stage. For locally limited pancreatic cancer (cStage I, II, III in Japanese classification system), surgical resection is recommended, however prognosis is still poor. Major randomized controlled trials of resected pancreatic cancer indicates that adjuvant chemotherapy is superior to observation and gemcitabine is superior to 5-fluorouracil (FU). For locally advanced resectable pancreatic cancer (cStage IVa in Japanese classification system (JCS)), we perform neoadjuvant chemoradiotherapy. Phase I study established a recommended dose of 800 mg gemcitabine and radiation dose of 36 Gy. For locally advanced nonresectable pancreatic cancer (cStage IVa in JCS), chemoradiotherapy followed by chemotherapy is recommended. Although pancreatic cancer is chemotherapy resistant tumor, systemic chemotherapy is recommended for metastatic pancreatic cancer (cStage IVb in JCS). Single-agent gemcitabine is the standard first line agent for the treatment of advanced pancreatic cancer. Meta-analysis of chemotherapy showed possibility of survival benefit of gemcitabine combination chemotherapy over gemcitabine alone. We hope gemcitabine combination chemotherapy or molecular targeted therapy will improve prognosis of pancreatic cancer in the future. (author)

  9. Changes in Pulmonary Function After Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, or Proton Beam Therapy for Non-Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Guerra, Jose L. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Hospitales Universitarios Virgen del Rocio, Seville (Spain); Department of Medicine, Universitat Autonoma de Barcelona, Barcelona (Spain); Gomez, Daniel R., E-mail: dgomez@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhuang Yan; Levy, Lawrence B. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Eapen, George [Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liu, Hongmei; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-07-15

    Purpose: To investigate the extent of change in pulmonary function over time after definitive radiotherapy for non-small-cell lung cancer (NSCLC) with modern techniques and to identify predictors of changes in pulmonary function according to patient, tumor, and treatment characteristics. Patients and Methods: We analyzed 250 patients who had received {>=}60 Gy radio(chemo)therapy for primary NSCLC in 1998-2010 and had undergone pulmonary function tests before and within 1 year after treatment. Ninety-three patients were treated with three-dimensional conformal radiotherapy, 97 with intensity-modulated radiotherapy, and 60 with proton beam therapy. Postradiation pulmonary function test values were evaluated among individual patients compared with the same patient's preradiation value at the following time intervals: 0-4 (T1), 5-8 (T2), and 9-12 (T3) months. Results: Lung diffusing capacity for carbon monoxide (DLCO) was reduced in the majority of patients along the three time periods after radiation, whereas the forced expiratory volume in 1 s per unit of vital capacity (FEV1/VC) showed an increase and decrease after radiation in a similar percentage of patients. There were baseline differences (stage, radiotherapy dose, concurrent chemotherapy) among the radiation technology groups. On multivariate analysis, the following features were associated with larger posttreatment declines in DLCO: pretreatment DLCO, gross tumor volume, lung and heart dosimetric data, and total radiation dose. Only pretreatment DLCO was associated with larger posttreatment declines in FEV1/VC. Conclusions: Lung diffusing capacity for carbon monoxide is reduced in the majority of patients after radiotherapy with modern techniques. Multiple factors, including gross tumor volume, preradiation lung function, and dosimetric parameters, are associated with the DLCO decline. Prospective studies are needed to better understand whether new radiation technology, such as proton beam therapy or

  10. Changes in Pulmonary Function After Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, or Proton Beam Therapy for Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Purpose: To investigate the extent of change in pulmonary function over time after definitive radiotherapy for non-small-cell lung cancer (NSCLC) with modern techniques and to identify predictors of changes in pulmonary function according to patient, tumor, and treatment characteristics. Patients and Methods: We analyzed 250 patients who had received ≥60 Gy radio(chemo)therapy for primary NSCLC in 1998–2010 and had undergone pulmonary function tests before and within 1 year after treatment. Ninety-three patients were treated with three-dimensional conformal radiotherapy, 97 with intensity-modulated radiotherapy, and 60 with proton beam therapy. Postradiation pulmonary function test values were evaluated among individual patients compared with the same patient’s preradiation value at the following time intervals: 0–4 (T1), 5–8 (T2), and 9–12 (T3) months. Results: Lung diffusing capacity for carbon monoxide (DLCO) was reduced in the majority of patients along the three time periods after radiation, whereas the forced expiratory volume in 1 s per unit of vital capacity (FEV1/VC) showed an increase and decrease after radiation in a similar percentage of patients. There were baseline differences (stage, radiotherapy dose, concurrent chemotherapy) among the radiation technology groups. On multivariate analysis, the following features were associated with larger posttreatment declines in DLCO: pretreatment DLCO, gross tumor volume, lung and heart dosimetric data, and total radiation dose. Only pretreatment DLCO was associated with larger posttreatment declines in FEV1/VC. Conclusions: Lung diffusing capacity for carbon monoxide is reduced in the majority of patients after radiotherapy with modern techniques. Multiple factors, including gross tumor volume, preradiation lung function, and dosimetric parameters, are associated with the DLCO decline. Prospective studies are needed to better understand whether new radiation technology, such as proton beam therapy

  11. Accelerators for Cancer Therapy

    Science.gov (United States)

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  12. Risk-optimized proton therapy to minimize radiogenic second cancers

    DEFF Research Database (Denmark)

    Rechner, Laura A; Eley, John G; Howell, Rebecca M;

    2015-01-01

    Proton therapy confers substantially lower predicted risk of second cancer compared with photon therapy. However, no previous studies have used an algorithmic approach to optimize beam angle or fluence-modulation for proton therapy to minimize those risks. The objectives of this study were...... to demonstrate the feasibility of risk-optimized proton therapy and to determine the combination of beam angles and fluence weights that minimizes the risk of second cancer in the bladder and rectum for a prostate cancer patient. We used 6 risk models to predict excess relative risk of second cancer. Treatment...

  13. Tri-Modality therapy with I-125 brachytherapy, external beam radiation therapy, and short- or long-term hormone therapy for high-risk localized prostate cancer (TRIP): study protocol for a phase III, multicenter, randomized, controlled trial

    International Nuclear Information System (INIS)

    Patients with high Gleason score, elevated prostate specific antigen (PSA) level, and advanced clinical stage are at increased risk for both local and systemic relapse. Recent data suggests higher radiation doses decrease local recurrence and may ultimately benefit biochemical, metastasis-free and disease-specific survival. No randomized data is available on the benefits of long-term hormonal therapy (HT) in these patients. A prospective study on the efficacy and safety of trimodality treatment consisting of HT, external beam radiation therapy (EBRT), and brachytherapy (BT) for high-risk prostate cancer (PCa) is strongly required. This is a phase III, multicenter, randomized controlled trial (RCT) of trimodality with BT, EBRT, and HT for high-risk PCa (TRIP) that will investigate the impact of adjuvant HT following BT using iodine-125 (125I-BT) and supplemental EBRT with neoadjuvant and concurrent HT. Prior to the end of September 2012, a total of 340 patients with high-risk PCa will be enrolled and randomized to one of two treatment arms. These patients will be recruited from more than 41 institutions, all of which have broad experience with 125I-BT. Pathological slides will be centrally reviewed to confirm patient eligibility. The patients will commonly undergo 6-month HT with combined androgen blockade (CAB) before and during 125I-BT and supplemental EBRT. Those randomly assigned to the long-term HT group will subsequently undergo 2 years of adjuvant HT with luteinizing hormone-releasing hormone agonist. All participants will be assessed at baseline and every 3 months for the first 30 months, then every 6 months until 84 months from the beginning of CAB. The primary endpoint is biochemical progression-free survival. Secondary endpoints are overall survival, clinical progression-free survival, disease-specific survival, salvage therapy non-adaptive interval, and adverse events. To our knowledge, there have been no prospective studies documenting the efficacy and

  14. Fertility and cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, L.C.

    1979-05-01

    With increased survival of increasing numbers of cancer patients as a result of therapy, the consequences, early and late, of the therapies must be realized. It is the treating physician's duty to preserve as much reproductive potential as possible for patients, consistent with adequate care. With radiotherapy this means shielding the gonads as much as possible, optimal but not excessive doses and fields, oophoropexy, or sperm collection and storage prior to irradiation. With chemotherapy it means the shortest exposure to drugs consistent with best treatment and prior to therapy the collection and storage of sperm where facilities are available. At present this is still an experimental procedure. Artificial insemination for a couple when the male has received cancer therapy is another alternative. Finally, it is the responsibility of physicians caring for patients with neoplasms to be knowledgeable about these and all other effects of therapy so that patients may be counseled appropriately and understand the implications of therapy for their life.

  15. Proton beam therapy in the dermatological field

    International Nuclear Information System (INIS)

    Since 1983, a pilot study of proton beam therapy has been made at the Particle Radiation Medical Science Center (changed to the Proton Medical Research Center). This paper gives an outline of protom beam therapy for skin malignant tumor, with special reference to 24 patients treated during a period 1983-1990. These patients consisted of 4 with Bowen's disease, 5 with oral florid papillomatosis, 3 with spinocellular carcinoma, 9 with malignant melanoma, and 3 with other miscellaneous diseases. The outcome of proton beam therapy was satisfactory for Bowen's disease, controversial for both oral florid papillomatosis and spinocellular carcinoma, and was unsatisfactory for the local control of malignant melanoma. Because proton beams with superior depth dose distribution allow not only inhibition of damage to the surrounding normal tissue but also large fraction radiotherapy, proton beam therapy may become a promising method of therapy in skin malignant tumor. (N.K.)

  16. Hormone therapy for prostate cancer

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000908.htm Hormone therapy for prostate cancer To use the sharing ... helps slow the growth of prostate cancer. Male Hormones and Prostate Cancer Androgens are male sex hormones. ...

  17. Impact of different beam set-up methods on quality of intensity modulated radiation therapy in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Objective: To investigate whether the change of beam set-up methods will influence the dosimetric quality of intensity modulated radiation therapy (IMRT) for non-small cell lung cancer (NSCLC). Methods: Twenty-one stage I-III NSCLC patients were selected for this study. The technique of step and shoot was used and three different beam set-up methods were chosen for IMRT planning including IMRT-7 with nine equal-spaced beams angled 0 degree, 51 degree, 102 degree, 153 degree, 204 degree, 255 degree and 306 degree; IMRT-5 with five equal-spaced beams angled 0 degree, 72 degree, 144 degree, 216 degree and 288 degree; and IMRT-5m which was created from IMRT-7 but excluded 2 fields (51 degree and 102 degree were omitted if there was lesion in the right lung, while 255 degree and 306 degree were excluded if there was lesion in the left lung). The dose constrains of normal lungs for IMRT were set according to V5-V60 of normal lungs obtained from the same patient's actually treated 3D-CRT dose volume histogram. The prescription dose for IMRT started from 65 Gy, and then escalated or decreased step by step by 2 Gy once a time until best plan was obtained. Results: For normal lung dose, IMRT-5m had lower V5-V25 than the other two groups; but there was no significant difference in V30-V40. IMRT-5 was the worst for V45-V60; and mean lung dose was lowest in IMRT-5m. Dose parameters of esophagus and spinal cord, target conformity index, and total monitor units were all similar among difference plans. IMRT-5m had lowest heart V40 compared to the other two groups. For target heterogeneity index, IMRT-5 was higher than IMRT-7, but there were no significant differences among IMRT-5m, IMRT-5 and IMRT-7. Compared to 3D-CRT, the prescription dose could be increased by (5.1±4.6) Gy for IMRT-7, (3.1±5.3) Gy for IMRT-5, and (5.5±4.8) Gy for IMRT-5m. Conclusions: Fewer beams and modified beam angles could result in similar, even better plan quality. (authors)

  18. Prognostic Importance of Gleason 7 Disease Among Patients Treated With External Beam Radiation Therapy for Prostate Cancer: Results of a Detailed Biopsy Core Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spratt, Daniel E.; Zumsteg, Zach; Ghadjar, Pirus; Pangasa, Misha; Pei, Xin [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Fine, Samson W. [Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Yamada, Yoshiya; Kollmeier, Marisa [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Zelefsky, Michael J., E-mail: zelefskm@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2013-04-01

    Purpose: To analyze the effect of primary Gleason (pG) grade among a large cohort of Gleason 7 prostate cancer patients treated with external beam radiation therapy (EBRT). Methods and Materials: From May 1989 to January 2011, 1190 Gleason 7 patients with localized prostate cancer were treated with EBRT at a single institution. Of these patients, 613 had a Gleason 7 with a minimum of a sextant biopsy with nonfragmented cores and full biopsy core details available, including number of cores of cancer involved, percentage individual core involvement, location of disease, bilaterality, and presence of perineural invasion. Median follow-up was 6 years (range, 1-16 years). The prognostic implication for the following outcomes was analyzed: biochemical recurrence-free survival (bRFS), distant metastasis-free survival (DMFS), and prostate cancer-specific mortality (PCSM). Results: The 8-year bRFS rate for pG3 versus pG4 was 77.6% versus 61.3% (P<.0001), DMFS was 96.8% versus 84.3% (P<.0001), and PCSM was 3.7% versus 8.1% (P=.002). On multivariate analysis, pG4 predicted for significantly worse outcome in all parameters. Location of disease (apex, base, mid-gland), perineural involvement, maximum individual core involvement, and the number of Gleason 3+3, 3+4, or 4+3 cores did not predict for distant metastases. Conclusions: Primary Gleason grade 4 independently predicts for worse bRFS, DMFS, and PCSM among Gleason 7 patients. Using complete core information can allow clinicians to utilize pG grade as a prognostic factor, despite not having the full pathologic details from a prostatectomy specimen. Future staging and risk grouping should investigate the incorporation of primary Gleason grade when complete biopsy core information is used.

  19. Biotoxins in Cancer Therapy

    Directory of Open Access Journals (Sweden)

    İlker Kelle

    2007-01-01

    Full Text Available The search for biological antitumor agents has been pursued for over half a century. Among the biological agents which have antitumoral activity, snake and scorpion venoms have been shown to possess a wide spectrum of biological activities. Venom components exhibit an antitumoral activity by means of direct cytolytic and cytostatic effects or indirect mechanisms such as amplifying of immune response against cancerous cells. These peptides constitute a potent antitumoral activity throughout their thrapeutic usages while they cause any significant side effects. Therefore it has been emphasized that natural venom peptides or their synthetic analogues will be valuable agents in replacement of classical antineoplastic drugs in cancer therapy in the future.

  20. Gene therapy for thyroid cancer

    International Nuclear Information System (INIS)

    Gene therapy for thyroid cancer include immunotherapy, suicide gene therapy, tumor suppressor replacement, 131I therapy by sodium/iodide symporter and antisense therapy and so on. Gene therapy has wide perspectives, but there are many problems need to be solved for clinical application

  1. Whole abdomen radiation therapy in ovarian cancers: a comparison between fixed beam and volumetric arc based intensity modulation

    Directory of Open Access Journals (Sweden)

    Clivio Alessandro

    2010-11-01

    Full Text Available Abstract Purpose A study was performed to assess dosimetric characteristics of volumetric modulated arcs (RapidArc, RA and fixed field intensity modulated therapy (IMRT for Whole Abdomen Radiotherapy (WAR after ovarian cancer. Methods and Materials Plans for IMRT and RA were optimised for 5 patients prescribing 25 Gy to the whole abdomen (PTV_WAR and 45 Gy to the pelvis and pelvic nodes (PTV_Pelvis with Simultaneous Integrated Boost (SIB technique. Plans were investigated for 6 MV (RA6, IMRT6 and 15 MV (RA15, IMRT15 photons. Objectives were: for both PTVs V90% > 95%, for PTV_Pelvis: Dmax Results IMRT and RapidArc resulted comparable for target coverage. For PTV_WAR, V90% was 99.8 ± 0.2% and 93.4 ± 7.3% for IMRT6 and IMRT15, and 98.4 ± 1.7 and 98.6 ± 0.9% for RA6 and RA15. Target coverage resulted improved for PTV_Pelvis. Dose homogeneity resulted slightly improved by RA (Uniformity was defined as U5-95% = D5%-D95%/Dmean. U5-95% for PTV_WAR was 0.34 ± 0.05 and 0.32 ± 0.06 (IMRT6 and IMRT15, 0.30 ± 0.03 and 0.26 ± 0.04 (RA6 and RA15; for PTV_Pelvis, it resulted equal to 0.1 for all techniques. For organs at risk, small differences were observed between the techniques. MU resulted 3130 ± 221 (IMRT6, 2841 ± 318 (IMRT15, 538 ± 29 (RA6, 635 ± 139 (RA15; the average measured treatment time was 18.0 ± 0.8 and 17.4 ± 2.2 minutes (IMRT6 and IMRT15 and 4.8 ± 0.2 (RA6 and RA15. GAIIMRT6 = 97.3 ± 2.6%, GAIIMRT15 = 94.4 ± 2.1%, GAIRA6 = 98.7 ± 1.0% and GAIRA15 = 95.7 ± 3.7%. Conclusion RapidArc showed to be a solution to WAR treatments offering good dosimetric features with significant logistic improvements compared to IMRT.

  2. Skin toxicity from external beam radiation therapy in breast cancer patients: protective effects of Resveratrol, Lycopene, Vitamin C and anthocianin (Ixor®

    Directory of Open Access Journals (Sweden)

    Franco Rossella

    2012-01-01

    Full Text Available Abstract Introduction This is an observational study and the aim is to evaluate the effect of dietary supplements based on Resveratrol, Lycopene, Vitamin C and Anthocyanins (Ixor® in reducing skin toxicity due to external beam radiotherapy in patients affected by breast cancer. Materials and methods 71 patients were enrolled and they were divided in two different groups: a control group (CG of 41 patients treated with prophylactic topical therapy based on hyaluronic acid and topical steroid therapy in case of occurrence of radiodermatitis, and a Ixor-Group (IG of 30 patients treated also with an oral therapy based on Resveratrol, Lycopene, Vitamin C and Anthocyanin (Ixor® at a dose of 2 tablets/day, starting from 10 days before the radiation treatment until 10 days after the end of treatment. Skin toxicity has been related to PTV, to breast volume that received a radiation dose equal or lower than 107%, included between 107% and 110%, or greater than 110% of the prescribed dose. Moreover it's been studied the relationship between skin toxicity and the chemotherapy schedule used before treatment. We calculated in both groups the percentage of patients who had a skin toxicity of grade 2 or 3 (according to RTOG scale. Absolute risk reduction (ARR, relative risk (RR and odds ratio (OR have been calculated for each relationship. Results Control Group (CG patients with a PTV > 500 ml presented skin toxicity G2 + G3 in 30% of cases, versus 25% of Ixor-Group (IG [OR 0.77]. In patients with a PTV Conclusions The protective effect of Resveratrol, Lycopene, Vitamin C and Anthocyanin (Ixor® is more detected in patients with PTV

  3. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, K. M.; Schell, S.; Wilkens, J. J. [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany)

    2013-07-26

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  4. Definitive Reirradiation for Locoregionally Recurrent Non-Small Cell Lung Cancer With Proton Beam Therapy or Intensity Modulated Radiation Therapy: Predictors of High-Grade Toxicity and Survival Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    McAvoy, Sarah; Ciura, Katherine; Wei, Caimiao; Rineer, Justin; Liao, Zhongxing; Chang, Joe Y.; Palmer, Matthew B.; Cox, James D.; Komaki, Ritsuko; Gomez, Daniel R., E-mail: DGomez@mdanderson.org

    2014-11-15

    Purpose: Intrathoracic recurrence of non-small cell lung cancer (NSCLC) after initial treatment remains a dominant cause of death. We report our experience using proton beam therapy and intensity modulated radiation therapy for reirradiation in such cases, focusing on patterns of failure, criteria for patient selection, and predictors of toxicity. Methods and Materials: A total of 102 patients underwent reirradiation for intrathoracic recurrent NSCLC at a single institution. All doses were recalculated to an equivalent dose in 2-Gy fractions (EQD2). All patients had received radiation therapy for NSCLC (median initial dose of 70 EQD2 Gy), with median interval to reirradiation of 17 months and median reirradiation dose of 60.48 EQD2 Gy. Median follow-up time was 6.5 months (range, 0-72 months). Results: Ninety-nine patients (97%) completed reirradiation. Median local failure-free survival, distant metastasis-free survival (DMFS), and overall survival times were 11.43 months (range, 8.6-22.66 months), 11.43 months (range, 6.83-23.84 months), and 14.71 (range, 10.34-20.56 months), respectively. Toxicity was acceptable, with rates of grade ≥3 esophageal toxicity of 7% and grade ≥3 pulmonary toxicity of 10%. Of the patients who developed local failure after reirradiation, 88% had failure in either the original or the reirradiation field. Poor local control was associated with T4 disease, squamous histology, and Eastern Cooperative Oncology Group performance status score >1. Concurrent chemotherapy improved DMFS, but T4 disease was associated with poor DMFS. Higher T status, Eastern Cooperative Oncology Group performance status ≥1, squamous histology, and larger reirradiation target volumes led to worse overall survival; receipt of concurrent chemotherapy and higher EQD2 were associated with improved OS. Conclusions: Intensity modulated radiation therapy and proton beam therapy are options for treating recurrent non-small cell lung cancer. However, rates of

  5. Image Guidance During Head-and-Neck Cancer Radiation Therapy: Analysis of Alignment Trends With In-Room Cone-Beam Computed Tomography Scans

    International Nuclear Information System (INIS)

    Purpose: On-board cone-beam computed tomography (CBCT) is currently available for alignment of patients with head-and-neck cancer before radiotherapy. However, daily CBCT is time intensive and increases the overall radiation dose. We assessed the feasibility of using the average couch shifts from the first several CBCTs to estimate and correct for the presumed systematic setup error. Methods and Materials: 56 patients with head-and-neck cancer who received daily CBCT before intensity-modulated radiation therapy had recorded shift values in the medial–lateral, superior–inferior, and anterior–posterior dimensions. The average displacements in each direction were calculated for each patient based on the first five or 10 CBCT shifts and were presumed to represent the systematic setup error. The residual error after this correction was determined by subtracting the calculated shifts from the shifts obtained using daily CBCT. Results: The magnitude of the average daily residual three-dimensional (3D) error was 4.8 ± 1.4 mm, 3.9 ± 1.3 mm, and 3.7 ± 1.1 mm for uncorrected, five CBCT corrected, and 10 CBCT corrected protocols, respectively. With no image guidance, 40.8% of fractions would have been >5 mm off target. Using the first five CBCT shifts to correct subsequent fractions, this percentage decreased to 19.0% of all fractions delivered and decreased the percentage of patients with average daily 3D errors >5 mm from 35.7% to 14.3% vs. no image guidance. Using an average of the first 10 CBCT shifts did not significantly improve this outcome. Conclusions: Using the first five CBCT shift measurements as an estimation of the systematic setup error improves daily setup accuracy for a subset of patients with head-and-neck cancer receiving intensity-modulated radiation therapy and primarily benefited those with large 3D correction vectors (>5 mm). Daily CBCT is still necessary until methods are developed that more accurately determine which patients may benefit from

  6. Ototoxicity and cancer therapy.

    Science.gov (United States)

    Landier, Wendy

    2016-06-01

    Ototoxicity is a well-established toxicity associated with a subgroup of antineoplastic therapies that includes platinum chemotherapy, radiation or surgery involving the ear and auditory nerve, and supportive care agents such as aminoglycoside antibiotics and loop diuretics. The reported prevalence of ototoxicity in patients who have received potentially ototoxic therapy ranges from 4% to 90% depending on factors such as age of the patient population, agent(s) used, cumulative dose, and administration techniques. The impact of ototoxicity on subsequent health-related and psychosocial outcomes in these patients can be substantial, and the burden of morbidity related to ototoxic agents is particularly high in very young children. Considerable interindividual variability in the prevalence and severity of ototoxicity has been observed among patients receiving similar treatment, suggesting genetic susceptibility as a risk factor. The development and testing of otoprotective agents is ongoing; however, to the author's knowledge, no US Food and Drug Administration-approved otoprotectants are currently available. Prospective monitoring for ototoxicity allows for comparison of auditory outcomes across clinical trials, as well as for early detection, potential alterations in therapy, and auditory intervention and rehabilitation to ameliorate the adverse consequences of hearing loss. Cancer 2016;122:1647-58. © 2016 American Cancer Society. PMID:26859792

  7. Gene therapy of liver cancer

    OpenAIRE

    Hernandez-Alcoceba, R. (Rubén); B. Sangro; Prieto, J.

    2006-01-01

    The application of gene transfer technologies to the treatment of cancer has led to the development of new experimental approaches like gene directed enzyme/pro-drug therapy (GDEPT), inhibition of oncogenes and restoration of tumor-suppressor genes. In addition, gene therapy has a big impact on other fields like cancer immunotherapy, anti-angiogenic therapy and virotherapy. These strategies are being evaluated for the treatment of primary and metastatic liver cancer and some of them have reac...

  8. Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer: impact of stereotactic ablative radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy

    Science.gov (United States)

    Murray, Louise J.; Thompson, Christopher M.; Lilley, John; Cosgrove, Vivian; Franks, Kevin; Sebag-Montefiore, David; Henry, Ann M.

    2015-02-01

    Risks of radiation-induced second primary cancer following prostate radiotherapy using 3D-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), flattening filter free (FFF) and stereotactic ablative radiotherapy (SABR) were evaluated. Prostate plans were created using 10 MV 3D-CRT (78 Gy in 39 fractions) and 6 MV 5-field IMRT (78 Gy in 39 fractions), VMAT (78 Gy in 39 fractions, with standard flattened and energy-matched FFF beams) and SABR (42.7 Gy in 7 fractions with standard flattened and energy-matched FFF beams). Dose-volume histograms from pelvic planning CT scans of three prostate patients, each planned using all 6 techniques, were used to calculate organ equivalent doses (OED) and excess absolute risks (EAR) of second rectal and bladder cancers, and pelvic bone and soft tissue sarcomas, using mechanistic, bell-shaped and plateau models. For organs distant to the treatment field, chamber measurements recorded in an anthropomorphic phantom were used to calculate OEDs and EARs using a linear model. Ratios of OED give relative radiation-induced second cancer risks. SABR resulted in lower second cancer risks at all sites relative to 3D-CRT. FFF resulted in lower second cancer risks in out-of-field tissues relative to equivalent flattened techniques, with increasing impact in organs at greater distances from the field. For example, FFF reduced second cancer risk by up to 20% in the stomach and up to 56% in the brain, relative to the equivalent flattened technique. Relative to 10 MV 3D-CRT, 6 MV IMRT or VMAT with flattening filter increased second cancer risks in several out-of-field organs, by up to 26% and 55%, respectively. For all techniques, EARs were consistently low. The observed large relative differences between techniques, in absolute terms, were very low, highlighting the importance of considering absolute risks alongside the corresponding relative risks, since when absolute

  9. Gene therapy of liver cancer

    Institute of Scientific and Technical Information of China (English)

    Ruben Hernandez-Alcoceba; Bruno Sangro; Jesus Prieto

    2006-01-01

    The application of gene transfer technologies to the treatment of cancer has led to the development of new experimental approaches like gene directed enzyme/prodrug therapy (GDEPT), inhibition of oncogenes and restoration of tumor-suppressor genes. In addition,gene therapy has a big impact on other fields like cancer immunotherapy, anti-angiogenic therapy and virotherapy.These strategies are being evaluated for the treatment of primary and metastatic liver cancer and some of them have reached clinical phases. We present a review on the basis and the actual status of gene therapy approaches applied to liver cancer.

  10. A method for selection of beam angles robust to intra-fractional motion in proton therapy of lung cancer

    DEFF Research Database (Denmark)

    Casares-Magaz, Oscar; Toftegaard, Jakob; Muren, Ludvig P.;

    2014-01-01

    Background. Proton therapy offers the potential for sparing the normal tissue surrounding the target. However, due to well-defined proton ranges around the Bragg peak, dose deposition is more sensitive to changes in the water equivalent path length (WEPL) than with photons. In this study, we assess...

  11. Direct 2-Arm Comparison Shows Benefit of High-Dose-Rate Brachytherapy Boost vs External Beam Radiation Therapy Alone for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Khor, Richard [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, and University of Melbourne, Melbourne (Australia); Duchesne, Gillian [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, and University of Melbourne, Melbourne (Australia); Monash University, Melbourne (Australia); Tai, Keen-Hun; Foroudi, Farshad; Chander, Sarat; Van Dyk, Sylvia; Garth, Margaret [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, and University of Melbourne, Melbourne (Australia); Williams, Scott, E-mail: Scott.Williams@petermac.org [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, and University of Melbourne, Melbourne (Australia)

    2013-03-01

    Purpose: To evaluate the outcomes of patients treated for intermediate- and high-risk prostate cancer with a single schedule of either external beam radiation therapy (EBRT) and high-dose-rate brachytherapy (HDRB) boost or EBRT alone. Methods and Materials: From 2001-2006, 344 patients received EBRT with HDRB boost for definitive treatment of intermediate- or high-risk prostate cancer. The prescribed EBRT dose was 46 Gy in 23 fractions, with a HDR boost of 19.5 Gy in 3 fractions. This cohort was compared to a contemporaneously treated cohort who received EBRT to 74 Gy in 37 fractions, using a matched pair analysis. Three-dimensional conformal EBRT was used. Matching was performed using a propensity score matching technique. High-risk patients constituted 41% of the matched cohorts. Five-year clinical and biochemical outcomes were analyzed. Results: Initial significant differences in prognostic indicators between the unmatched treatment cohorts were rendered negligible after matching, providing a total of 688 patients. Median biochemical follow-up was 60.5 months. The 5-year freedom from biochemical failure was 79.8% (95% confidence interval [CI], 74.3%-85.0%) and 70.9% (95% CI, 65.4%-76.0%) for the HDRB and EBRT groups, respectively, equating to a hazard ratio of 0.59 (95% CI, 0.43-0.81, P=.0011). Interaction analyses showed no alteration in HDR efficacy when planned androgen deprivation therapy was administered (P=.95), but a strong trend toward reduced efficacy was shown compared to EBRT in high-risk cases (P=.06). Rates of grade 3 urethral stricture were 0.3% (95% CI, 0%-0.9%) and 11.8% (95% CI, 8.1%-16.5%) for EBRT and HDRB, respectively (P<.0001). No differences in clinical outcomes were observed. Conclusions: This comparison of 2 individual contemporaneously treated HDRB and EBRT approaches showed improved freedom from biochemical progression with the HDR approach. The benefit was more pronounced in intermediate- risk patients but needs to be weighed against

  12. Direct 2-Arm Comparison Shows Benefit of High-Dose-Rate Brachytherapy Boost vs External Beam Radiation Therapy Alone for Prostate Cancer

    International Nuclear Information System (INIS)

    Purpose: To evaluate the outcomes of patients treated for intermediate- and high-risk prostate cancer with a single schedule of either external beam radiation therapy (EBRT) and high-dose-rate brachytherapy (HDRB) boost or EBRT alone. Methods and Materials: From 2001-2006, 344 patients received EBRT with HDRB boost for definitive treatment of intermediate- or high-risk prostate cancer. The prescribed EBRT dose was 46 Gy in 23 fractions, with a HDR boost of 19.5 Gy in 3 fractions. This cohort was compared to a contemporaneously treated cohort who received EBRT to 74 Gy in 37 fractions, using a matched pair analysis. Three-dimensional conformal EBRT was used. Matching was performed using a propensity score matching technique. High-risk patients constituted 41% of the matched cohorts. Five-year clinical and biochemical outcomes were analyzed. Results: Initial significant differences in prognostic indicators between the unmatched treatment cohorts were rendered negligible after matching, providing a total of 688 patients. Median biochemical follow-up was 60.5 months. The 5-year freedom from biochemical failure was 79.8% (95% confidence interval [CI], 74.3%-85.0%) and 70.9% (95% CI, 65.4%-76.0%) for the HDRB and EBRT groups, respectively, equating to a hazard ratio of 0.59 (95% CI, 0.43-0.81, P=.0011). Interaction analyses showed no alteration in HDR efficacy when planned androgen deprivation therapy was administered (P=.95), but a strong trend toward reduced efficacy was shown compared to EBRT in high-risk cases (P=.06). Rates of grade 3 urethral stricture were 0.3% (95% CI, 0%-0.9%) and 11.8% (95% CI, 8.1%-16.5%) for EBRT and HDRB, respectively (P<.0001). No differences in clinical outcomes were observed. Conclusions: This comparison of 2 individual contemporaneously treated HDRB and EBRT approaches showed improved freedom from biochemical progression with the HDR approach. The benefit was more pronounced in intermediate- risk patients but needs to be weighed against

  13. Prostate Cancer (Radiation Therapy)

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Prostate Cancer Treatment Prostate cancer overview? What are my treatment options? What ... any new developments in treating my disease? Prostate cancer overview Prostate cancer is the most common form of cancer ...

  14. Skin toxicity from external beam radiation therapy in breast cancer patients: protective effects of Resveratrol, Lycopene, Vitamin C and anthocianin (Ixor®)

    International Nuclear Information System (INIS)

    This is an observational study and the aim is to evaluate the effect of dietary supplements based on Resveratrol, Lycopene, Vitamin C and Anthocyanins (Ixor®) in reducing skin toxicity due to external beam radiotherapy in patients affected by breast cancer. 71 patients were enrolled and they were divided in two different groups: a control group (CG) of 41 patients treated with prophylactic topical therapy based on hyaluronic acid and topical steroid therapy in case of occurrence of radiodermatitis, and a Ixor-Group (IG) of 30 patients treated also with an oral therapy based on Resveratrol, Lycopene, Vitamin C and Anthocyanin (Ixor®) at a dose of 2 tablets/day, starting from 10 days before the radiation treatment until 10 days after the end of treatment. Skin toxicity has been related to PTV, to breast volume that received a radiation dose equal or lower than 107%, included between 107% and 110%, or greater than 110% of the prescribed dose. Moreover it's been studied the relationship between skin toxicity and the chemotherapy schedule used before treatment. We calculated in both groups the percentage of patients who had a skin toxicity of grade 2 or 3 (according to RTOG scale). Absolute risk reduction (ARR), relative risk (RR) and odds ratio (OR) have been calculated for each relationship. Control Group (CG) patients with a PTV > 500 ml presented skin toxicity G2 + G3 in 30% of cases, versus 25% of Ixor-Group (IG) [OR 0.77]. In patients with a PTV < 500 ml G2 + G3 toxicity was 0% in the IG compared to 18% in CG (OR 0.23). When Dmax was less than or equal to 107% of the prescribed dose skin toxicity was G2 + G3 in 12.5% in CG, versus 0% in IG (OR 0.73), instead when Dmax was included between 107 and 110% of the prescribed dose, G2 + G3 skin toxicity was 35% in CG and 21% in IG (OR 0.50). In patients undergoing chemotherapy with anthracyclines and taxanes, G2 + G3 toxicity was 27% in CG, against 20% in IG (OR 0.68). The protective effect of Resveratrol

  15. Radiation Therapy for Cancer

    Science.gov (United States)

    ... Cancers by Body Location Childhood Cancers Adolescent & Young Adult Cancers Metastatic Cancer Recurrent Cancer Research NCI’s Role in ... the affected area). Damage to the bowels, causing diarrhea and ... a second cancer caused by radiation exposure. Second cancers that develop ...

  16. Biofield therapies and cancer pain.

    Science.gov (United States)

    Anderson, Joel G; Taylor, Ann Gill

    2012-02-01

    The public and healthcare professionals have become increasingly aware and accepting of the benefit in physical, psychological, social, and spiritual support for patients with cancer. Patients with cancer often seek nonpharmacologic interventions to complement conventional care and decrease the pain associated with cancer and its treatment. Most often referred to as complementary and alternative medicine (CAM), these supportive therapies consist of a heterogeneous group of modalities used as adjuncts to allopathic health care. Biofield therapies are CAM modalities that involve the direction of healing energy through the hands to facilitate well-being by modifying the energy field of the body. This critical review of studies of biofield therapies emphasizes research using these modalities to decrease pain in patients with cancer. Although the therapies have demonstrated clinical efficacy, additional research is warranted. Oncology nurses should familiarize themselves with biofield therapies so they can offer informed recommendations to patients with cancer experiencing pain.

  17. Biofield therapies and cancer pain.

    Science.gov (United States)

    Anderson, Joel G; Taylor, Ann Gill

    2012-02-01

    The public and healthcare professionals have become increasingly aware and accepting of the benefit in physical, psychological, social, and spiritual support for patients with cancer. Patients with cancer often seek nonpharmacologic interventions to complement conventional care and decrease the pain associated with cancer and its treatment. Most often referred to as complementary and alternative medicine (CAM), these supportive therapies consist of a heterogeneous group of modalities used as adjuncts to allopathic health care. Biofield therapies are CAM modalities that involve the direction of healing energy through the hands to facilitate well-being by modifying the energy field of the body. This critical review of studies of biofield therapies emphasizes research using these modalities to decrease pain in patients with cancer. Although the therapies have demonstrated clinical efficacy, additional research is warranted. Oncology nurses should familiarize themselves with biofield therapies so they can offer informed recommendations to patients with cancer experiencing pain. PMID:22297006

  18. Type of Cancer Treatment: Targeted Therapy

    Science.gov (United States)

    Information about the role that targeted therapies play in cancer treatment. Includes how targeted therapies work against cancer, who receives targeted therapies, common side effects, and what to expect when having targeted therapies.

  19. Beam control and Dosimetry in Proton Therapy

    International Nuclear Information System (INIS)

    This thesis deals with beam control devices for scanned proton beams. The IBA society (Ion Beam Applications) has developed a new dynamic beam delivery system called Pencil Beam Scanning. IBA needed a monitor unit to equip its proton beam lines dedicated to the PBS system and called upon the medical applications group of the Laboratoire de Physique Corpusculaire de Caen. In 2008, this group realized, in collaboration with IBA, an ionization chamber monitor IC2/3 for the IBA dedicated PBS nozzle. This device verifies the agreement between planned and delivered particular fluence. The first part of this thesis focused on the characterization of this monitor unit. Proton beams of different clinical energies, positions and dose rates were used to check the specifications requested by IBA. After the introduction about the Proton Therapy, the validation step of IC2/3 is exposed. Information provided by IC2/3 makes it possible beam control in terms of fluence but does not ensure quality control in terms of spatial dose distribution. The second part of the work was devoted to the conception of a beam control device for scanned proton beams. Called Compass PT, it will allow a reconstruction of the spatial dose distribution delivered to the patient. The specifications definition and the conception studies are presented in this thesis. All this work has led to recommendations for the realization of this device and new research prospects. (author)

  20. Treatment facilities, human resource development, and future prospect of particle beam therapy

    International Nuclear Information System (INIS)

    The number of particle beam therapy facilities is increasing globally. Among the countries practicing particle beam therapy, Japan is one of the leading countries in the field with four operating carbon-ion therapy facilities and ten operating proton therapy facilities. With the increasing number of particle beam therapy facilities, the human resource development is becoming extremely important, and there has been many such efforts including the Gunma University Program for Cultivating Global Leaders in Heavy Ion Therapeutics and Engineering, which aimed to educate and train the radiation oncologists, medical physicists, accelerator engineers, and radiation biologists to become global leaders in the field of particle beam therapy. In the future, the benefit and effectiveness of particle beam therapy should be discussed and elucidated objectively in a framework of comprehensive cancer care. (author)

  1. A Monte Carlo code for ion beam therapy

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    Initially developed for applications in detector and accelerator physics, the modern Fluka Monte Carlo code is now used in many different areas of nuclear science. Over the last 25 years, the code has evolved to include new features, such as ion beam simulations. Given the growing use of these beams in cancer treatment, Fluka simulations are being used to design treatment plans in several hadron-therapy centres in Europe.   Fluka calculates the dose distribution for a patient treated at CNAO with proton beams. The colour-bar displays the normalized dose values. Fluka is a Monte Carlo code that very accurately simulates electromagnetic and nuclear interactions in matter. In the 1990s, in collaboration with NASA, the code was developed to predict potential radiation hazards received by space crews during possible future trips to Mars. Over the years, it has become the standard tool to investigate beam-machine interactions, radiation damage and radioprotection issues in the CERN accelerator com...

  2. Reduction in Tumor Volume by Cone Beam Computed Tomography Predicts Overall Survival in Non-Small Cell Lung Cancer Treated With Chemoradiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jabbour, Salma K., E-mail: jabbousk@cinj.rutgers.edu [Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, New Jersey (United States); Kim, Sinae [Division of Biometrics, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, New Jersey (United States); Department of Biostatistics, School of Public Health, Rutgers University, New Brunswick, New Jersey (United States); Haider, Syed A. [Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, New Jersey (United States); Xu, Xiaoting [Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, New Jersey (United States); Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Soochow (China); Wu, Alson [Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, New Jersey (United States); Surakanti, Sujani; Aisner, Joseph [Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, New Jersey (United States); Langenfeld, John [Division of Surgery, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, New Jersey (United States); Yue, Ning J.; Haffty, Bruce G.; Zou, Wei [Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, New Jersey (United States)

    2015-07-01

    Purpose: We sought to evaluate whether tumor response using cone beam computed tomography (CBCT) performed as part of the routine care during chemoradiation therapy (CRT) could forecast the outcome of unresectable, locally advanced, non-small cell lung cancer (NSCLC). Methods and Materials: We manually delineated primary tumor volumes (TV) of patients with NSCLC who were treated with radical CRT on days 1, 8, 15, 22, 29, 36, and 43 on CBCTs obtained as part of the standard radiation treatment course. Percentage reductions in TV were calculated and then correlated to survival and pattern of recurrence using Cox proportional hazard models. Clinical information including histologic subtype was also considered in the study of such associations. Results: We evaluated 38 patients with a median follow-up time of 23.4 months. The median TV reduction was 39.3% (range, 7.3%-69.3%) from day 1 (D1) to day 43 (D43) CBCTs. Overall survival was associated with TV reduction from D1 to D43 (hazard ratio [HR] 0.557, 95% CI 0.39-0.79, P=.0009). For every 10% decrease in TV from D1 to D43, the risk of death decreased by 44.3%. For patients whose TV decreased ≥39.3 or <39.3%, log-rank test demonstrated a separation in survival (P=.02), with median survivals of 31 months versus 10 months, respectively. Neither local recurrence (HR 0.791, 95% CI 0.51-1.23, P=.29), nor distant recurrence (HR 0.78, 95% CI 0.57-1.08, P=.137) correlated with TV decrease from D1 to D43. Histologic subtype showed no impact on our findings. Conclusions: TV reduction as determined by CBCT during CRT as part of routine care predicts post-CRT survival. Such knowledge may justify intensification of RT or application of additional therapies. Assessment of genomic characteristics of these tumors may permit a better understanding of behavior or prediction of therapeutic outcomes.

  3. Reduction in Tumor Volume by Cone Beam Computed Tomography Predicts Overall Survival in Non-Small Cell Lung Cancer Treated With Chemoradiation Therapy

    International Nuclear Information System (INIS)

    Purpose: We sought to evaluate whether tumor response using cone beam computed tomography (CBCT) performed as part of the routine care during chemoradiation therapy (CRT) could forecast the outcome of unresectable, locally advanced, non-small cell lung cancer (NSCLC). Methods and Materials: We manually delineated primary tumor volumes (TV) of patients with NSCLC who were treated with radical CRT on days 1, 8, 15, 22, 29, 36, and 43 on CBCTs obtained as part of the standard radiation treatment course. Percentage reductions in TV were calculated and then correlated to survival and pattern of recurrence using Cox proportional hazard models. Clinical information including histologic subtype was also considered in the study of such associations. Results: We evaluated 38 patients with a median follow-up time of 23.4 months. The median TV reduction was 39.3% (range, 7.3%-69.3%) from day 1 (D1) to day 43 (D43) CBCTs. Overall survival was associated with TV reduction from D1 to D43 (hazard ratio [HR] 0.557, 95% CI 0.39-0.79, P=.0009). For every 10% decrease in TV from D1 to D43, the risk of death decreased by 44.3%. For patients whose TV decreased ≥39.3 or <39.3%, log-rank test demonstrated a separation in survival (P=.02), with median survivals of 31 months versus 10 months, respectively. Neither local recurrence (HR 0.791, 95% CI 0.51-1.23, P=.29), nor distant recurrence (HR 0.78, 95% CI 0.57-1.08, P=.137) correlated with TV decrease from D1 to D43. Histologic subtype showed no impact on our findings. Conclusions: TV reduction as determined by CBCT during CRT as part of routine care predicts post-CRT survival. Such knowledge may justify intensification of RT or application of additional therapies. Assessment of genomic characteristics of these tumors may permit a better understanding of behavior or prediction of therapeutic outcomes

  4. Development of modulated electron beam for intensity modulated radiation therapy (IMRT) on a photocathode electron gun

    International Nuclear Information System (INIS)

    Radiation therapy of cancer is developing to un-uniform irradiation, for concentrating dose to a cancer tumor and reducing dose to normal tissue. As a step toward the Intensity modulated radiation therapy, we examined dynamic optical modulation of electron beam produced by a photocathode electron gun. Images on photo-masks were transferred onto a photocathode by relay imaging. Electron beam could be controlled by a remote mirror. Modulated electron beam maintained its shape on acceleration, had a fine spatial resolution, and could be moved dynamically by optical methods. As a second step, optical modulation of electron beam and dynamic control succeeded by a digital micro mirror device (DMD). (author)

  5. Dose reporting in ion beam therapy. Proceedings of a meeting

    International Nuclear Information System (INIS)

    Following the pioneering work in Berkeley, USA, ion beam therapy for cancer treatment is at present offered in Chiba and Hyogo in Japan, and Darmstadt in Germany. Other facilities are coming close to completion or are at various stages of planning in Europe and Japan. In all these facilities, carbon ions have been selected as the ions of choice, at least in the first phase. Taking into account this fast development, the complicated technical and radiobiological research issues involved, and the hope it raises for some types of cancer patients, the IAEA and the International Commission on Radiation Units and measurements (ICRU) jointly sponsored a technical meeting held in Vienna, 23-24 June 2004. That first meeting was orientated mainly towards radiobiology: the relative biological effectiveness (RBE) of carbon ions versus photons, and related issues. One of the main differences between ion beam therapy and other modern radiotherapy techniques (such as proton beam therapy or intensity modulated radiation therapy) is related to radiobiology and in particular the increased RBE of carbon ions compared to both protons and photons (i.e., high linear energy transfer (LET) versus low LET radiation). Another important issue for international agencies and commissions, such as the IAEA and the ICRU, is a worldwide agreement and harmonisation for reporting the treatments. In order to evaluate the merits of ion beam therapy, it is essential that the treatments be reported in a similar/comparable way in all centres so that the clinical reports and protocols can be understood and interpreted without ambiguity by the radiation therapy community in general. For the last few decades, the ICRU has published several reports containing recommendations on how to report external photon beam or electron beam therapy, and brachytherapy. A report on proton beam therapy, jointly prepared by the ICRU and the IAEA, is now completed and is being published in the ICRU series. In line with this

  6. Esophagus Cancer: Palliative Therapy

    Science.gov (United States)

    ... in our document Guide to Controlling Cancer Pain . Nutritional support Nutrition is another concern for many patients with esophagus cancer. The cancer or its treatment might affect how you swallow ... supplements and information about your individual nutritional needs. ...

  7. Ablation and Other Local Therapy for Kidney Cancer

    Science.gov (United States)

    ... for kidney cancer Targeted therapies for kidney cancer Biologic therapy (immunotherapy) for kidney cancer Chemotherapy for kidney cancer Pain control for kidney cancer Treatment choices by stage for ...

  8. Adjuvant therapies for colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The management of colon and rectal cancer has changed dramatically over the last 25 years. The use of adjuvant therapies has become standard practice in locally advanced (stage Ⅲ and selected stage Ⅱ) colorectal cancer. Improved surgical techniques, chemotherapeutics and radiotherapy are resulting in higher cure rates and the development of agents targeting proliferative and angiogenic pathways offer further promise. Here we explore risk factors for local and distant recurrence after resection of colon and rectal cancer, and the role of adjuvant treatments. Discussion will focus on the evidence base for adjuvant therapies utilised in colorectal cancer, and the treatment of sub-groups such as the elderly and stage Ⅱ disease. The role of adjuvant radiotherapy in rectal cancer in reduction of recurrence will be explored and the role and optimal methods for surveillance post-curative resection with or without adjuvant therapy will also be addressed.

  9. Gene therapy in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Xu Chang-tai; Guo Xue-gang; Pan Bo-rong

    2003-01-01

    @@ 1 Introduction We have reviewed the gene therapy in gastrointestinal diseases[1]. Gastric cancer is common in China[2~20] ,and its early diagnosis andtreatment are still difficult up to now[13~36]. The expression of anexogenous gene introduced by gene therapy into patients with gliomascan be monitored non- invasively by positron- emission tomography[4]. In recent years, gene study in cancer is a hotspot, and great progress hasbeen achieved[33~41].

  10. Hormone Therapy for Breast Cancer in Men

    Science.gov (United States)

    ... Topic Targeted therapy for breast cancer in men Hormone therapy for breast cancer in men Hormone therapy ... fatigue, and pain at the injection site. Luteinizing hormone-releasing hormone (LHRH) analogs and anti-androgens LHRH ...

  11. SU-E-J-244: Development and Validation of a Knowledge Based Planning Model for External Beam Radiation Therapy of Locally Advanced Non-Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Purpose: The study aims to develop and validate a knowledge based planning (KBP) model for external beam radiation therapy of locally advanced non-small cell lung cancer (LA-NSCLC). Methods: RapidPlan™ technology was used to develop a lung KBP model. Plans from 65 patients with LA-NSCLC were used to train the model. 25 patients were treated with VMAT, and the other patients were treated with IMRT. Organs-at-risk (OARs) included right lung, left lung, heart, esophagus, and spinal cord. DVH and geometric distribution DVH were extracted from the treated plans. The model was trained using principal component analysis and step-wise multiple regression. Box plot and regression plot tools were used to identify geometric outliers and dosimetry outliers and help fine-tune the model. The validation was performed by (a) comparing predicted DVH boundaries to actual DVHs of 63 patients and (b) using an independent set of treatment planning data. Results: 63 out of 65 plans were included in the final KBP model with PTV volume ranging from 102.5cc to 1450.2cc. Total treatment dose prescription varied from 50Gy to 70Gy based on institutional guidelines. One patient was excluded due to geometric outlier where 2.18cc of spinal cord was included in PTV. The other patient was excluded due to dosimetric outlier where the dose sparing to spinal cord was heavily enforced in the clinical plan. Target volume, OAR volume, OAR overlap volume percentage to target, and OAR out-of-field volume were included in the trained model. Lungs and heart had two principal component scores of GEDVH, whereas spinal cord and esophagus had three in the final model. Predicted DVH band (mean ±1 standard deviation) represented 66.2±3.6% of all DVHs. Conclusion: A KBP model was developed and validated for radiotherapy of LA-NSCLC in a commercial treatment planning system. The clinical implementation may improve the consistency of IMRT/VMAT planning

  12. SU-E-J-244: Development and Validation of a Knowledge Based Planning Model for External Beam Radiation Therapy of Locally Advanced Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z; Kennedy, A [Sarah Cannon, Nashville, TN (United States); Larsen, E; Hayes, C; Grow, A [North Florida Cancer Center, Gainesville, FL (United States); Bahamondes, S.; Zheng, Y; Wu, X [JFK Comprehensive Cancer Institute, Lake Worth, FL (United States); Choi, M; Pai, S [Good Samaritan Hospital, Los Gatos, CA (United States); Li, J [Doctors Hospital of Augusta, Augusta, GA (United States); Cranford, K [Trident Medical Center, Charleston, SC (United States)

    2015-06-15

    Purpose: The study aims to develop and validate a knowledge based planning (KBP) model for external beam radiation therapy of locally advanced non-small cell lung cancer (LA-NSCLC). Methods: RapidPlan™ technology was used to develop a lung KBP model. Plans from 65 patients with LA-NSCLC were used to train the model. 25 patients were treated with VMAT, and the other patients were treated with IMRT. Organs-at-risk (OARs) included right lung, left lung, heart, esophagus, and spinal cord. DVH and geometric distribution DVH were extracted from the treated plans. The model was trained using principal component analysis and step-wise multiple regression. Box plot and regression plot tools were used to identify geometric outliers and dosimetry outliers and help fine-tune the model. The validation was performed by (a) comparing predicted DVH boundaries to actual DVHs of 63 patients and (b) using an independent set of treatment planning data. Results: 63 out of 65 plans were included in the final KBP model with PTV volume ranging from 102.5cc to 1450.2cc. Total treatment dose prescription varied from 50Gy to 70Gy based on institutional guidelines. One patient was excluded due to geometric outlier where 2.18cc of spinal cord was included in PTV. The other patient was excluded due to dosimetric outlier where the dose sparing to spinal cord was heavily enforced in the clinical plan. Target volume, OAR volume, OAR overlap volume percentage to target, and OAR out-of-field volume were included in the trained model. Lungs and heart had two principal component scores of GEDVH, whereas spinal cord and esophagus had three in the final model. Predicted DVH band (mean ±1 standard deviation) represented 66.2±3.6% of all DVHs. Conclusion: A KBP model was developed and validated for radiotherapy of LA-NSCLC in a commercial treatment planning system. The clinical implementation may improve the consistency of IMRT/VMAT planning.

  13. Gene Therapy Used in Cancer Treatment

    OpenAIRE

    Thomas Wirth; Seppo Ylä-Herttuala

    2014-01-01

    Cancer has been, from the beginning, a target of intense research for gene therapy approaches. Currently, more than 60% of all on-going clinical gene therapy trials worldwide are targeting cancer. Indeed, there is a clear unmet medical need for novel therapies. This is further urged by the fact that current conventional cancer therapies are frequently troubled by their toxicities. Different gene therapy strategies have been employed for cancer, such as pro-drug activating suicide gene therapy...

  14. Neurotoxicity Associated With Cancer Therapy

    OpenAIRE

    Lu Lee, Eva; Westcarth, Laurel

    2012-01-01

    Neurologic complications can result from direct or indirect effects of cancer therapy. Treatment toxicity may affect both the central nervous system and the peripheral nervous system. Early recognition of these toxicities plays an important role in the management of patients with cancer.

  15. Study on external beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Sook; Yoo, Seoung Yul; Yoo, Hyung Jun; Ji, Young Hoon; Lee, Dong Han; Lee, Dong Hoon; Choi, Mun Sik; Yoo, Dae Heon; Lee, Hyo Nam; Kim, Kyeoung Jung

    1999-04-01

    To develop the therapy technique which promote accuracy and convenience in external radiation therapy, to obtain the development of clinical treatment methods for the global competition. The contents of the R and D were 1. structure, process and outcome analysis in radiation therapy department. 2. Development of multimodality treatment in radiation therapy 3. Development of computation using networking techniques 4. Development of quality assurance (QA) system in radiation therapy 5. Development of radiotherapy tools 6. Development of intraoperative radiation therapy (IORT) tools. The results of the R and D were 1. completion of survey and analysis about Korea radiation therapy status 2. Performing QA analysis about ICR on cervix cancer 3. Trial of multicenter randomized study on lung cancers 4. Setting up inter-departmental LAN using MS NT server and Notes program 5. Development of ionization chamber and dose-rate meter for QA in linear accelerator 6. Development on optimized radiation distribution algorithm for multiple slice 7. Implementation on 3 dimensional volume surface algorithm and 8. Implementation on adaptor and cone for IORT.

  16. Study on external beam radiation therapy

    International Nuclear Information System (INIS)

    To develop the therapy technique which promote accuracy and convenience in external radiation therapy, to obtain the development of clinical treatment methods for the global competition. The contents of the R and D were 1. structure, process and outcome analysis in radiation therapy department. 2. Development of multimodality treatment in radiation therapy 3. Development of computation using networking techniques 4. Development of quality assurance (QA) system in radiation therapy 5. Development of radiotherapy tools 6. Development of intraoperative radiation therapy (IORT) tools. The results of the R and D were 1. completion of survey and analysis about Korea radiation therapy status 2. Performing QA analysis about ICR on cervix cancer 3. Trial of multicenter randomized study on lung cancers 4. Setting up inter-departmental LAN using MS NT server and Notes program 5. Development of ionization chamber and dose-rate meter for QA in linear accelerator 6. Development on optimized radiation distribution algorithm for multiple slice 7. Implementation on 3 dimensional volume surface algorithm and 8. Implementation on adaptor and cone for IORT

  17. Cancer Alternative Therapies

    Science.gov (United States)

    You have many choices to make about your cancer treatment. One choice you might be thinking about ... are acupuncture, chiropractic, and herbal medicines. People with cancer may use CAM to Help cope with the ...

  18. Epigenetic Therapy for Breast Cancer

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Zhong

    2011-07-01

    Full Text Available Both genetic and epigenetic alterations can control the progression of cancer. Genetic alterations are impossible to reverse, while epigenetic alterations are reversible. This advantage suggests that epigenetic modifications should be preferred in therapy applications. DNA methyltransferases and histone deacetylases have become the primary targets for studies in epigenetic therapy. Some DNA methylation inhibitors and histone deacetylation inhibitors are approved by the US Food and Drug Administration as anti-cancer drugs. Therefore, the uses of epigenetic targets are believed to have great potential as a lasting favorable approach in treating breast cancer.

  19. Pre-irradiation with low-dose 12C6+ beam significantly enhances the efficacy of AdCMV-p53 gene therapy in human non-small lung cancer

    Institute of Scientific and Technical Information of China (English)

    LIU Bing; DUAN Xin; ZHANG Hong; LI WenJian; LI Qiang; ZHOU GuangMing; XIE Yi; HAO JiFang; MIN FengLing; ZHOU QingMing

    2007-01-01

    The combination of ionizing radiation and gene therapy has been investigated. However, there are very few reports about the combination of heavy-ion irradiation and gene therapy. To determine if the pre-exposure to low-dose heavy ion beam enhances the suppression of AdCMV-p53 on non-small lung cancer (NSLC), the cells pre-irradiated or non-irradiated were infected with 20, 40 MOl of AdCMV-p53. Survival fraction and the relative biology effect (RBE) were determined by clonogenic assay. The results showed that the proportions of p53 positive cells in 12C6+ beam induced AdCMV-p53 infected cells were more than 90%, which were significantly more than those in γ-ray induced AdCMV-p53 infected cells. The pre-exposure to low-dose 12C6+ beam significantly prevented the G0/G1 arrest and activated G2/M checkpoints. The pre-exposure to 12C6+ beam significantly improved cell to apoptosis. RBEs for the 12C6+ + AdCMV-p53 infection groups were 30%-60%, 20% -130% and 30%-70% more than those for the 12C6+-irradiated only, AdCMV-p53 infected only, and γ-irradiation induced AdCMVp53 infected groups, respectively. The data suggested that the pre-exposure to low-dose 12C6+ beam significantly promotes exogenous p53 expression in NSLC, and the suppression of AdCMV-p53 gene therapy on NSLC.

  20. Pre-irradiation with low-dose 12C6+ beam significantly enhances the efficacy of AdCMV-p53 gene therapy in human non-small lung cancer

    Science.gov (United States)

    Liu, Bing; Zhang, Hong; Li, Wenjian; Li, Qiang; Zhou, Guangming; Xie, Yi; Hao, Jifang; Min, Fengling; Zhou, Qingming; Duan, Xin

    2007-04-01

    The combination of ionizing radiation and gene therapy has been investigated. However, there are very few reports about the combination of heavy-ion irradiation and gene therapy. To determine if the pre-exposure to low-dose heavy ion beam enhances the suppression of AdCMV-p53 on non-small lung cancer (NSLC), the cells pre-irradiated or non-irradiated were infected with 20, 40 MOI of AdCMV-p53. Survival fraction and the relative biology effect (RBE) were determined by clonogenic assay. The results showed that the proportions of p53 positive cells in 12C6+ beam induced AdCMV-p53 infected cells were more than 90%, which were significantly more than those in γ-ray induced AdCMV-p53 infected cells. The pre-exposure to low-dose 12C6+ beam significantly prevented the G0/G1 arrest and activated G2/M checkpoints. The pre-exposure to 12C6+ beam significantly improved cell to apoptosis. RBEs for the 12C6+ + AdCMV-p53 infection groups were 30% 60%, 20% 130% and 30% 70% more than those for the 12C6+-irradiated only, AdCMV-p53 infected only, and γ-irradiation induced AdCMVp53 infected groups, respectively. The data suggested that the pre-exposure to low-dose 12C6+ beam significantly promotes exogenous p53 expression in NSLC, and the suppression of AdCMV-p53 gene therapy on NSLC.

  1. Pre-irradiation with low-dose 12C6+beam significantly enhances the efficacy of AdCMV-p53 gene therapy in human non-small lung cancer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The combination of ionizing radiation and gene therapy has been investigated. However, there are very few reports about the combination of heavy-ion irradiation and gene therapy. To determine if the pre-exposure to low-dose heavy ion beam enhances the suppression of AdCMV-p53 on non-small lung cancer (NSLC), the cells pre-irradiated or non-irradiated were infected with 20, 40 MOI of AdCMV-p53. Survival fraction and the relative biology effect (RBE) were determined by clonogenic assay. The results showed that the proportions of p53 positive cells in 12C6+ beam induced AdCMV-p53 infected cells were more than 90%, which were signifi-cantly more than those in γ-ray induced AdCMV-p53 infected cells. The pre-exposure to low-dose 12C6+ beam significantly prevented the G0/G1 arrest and activated G2/M checkpoints. The pre-exposure to 12C6+ beam significantly improved cell to apoptosis. RBEs for the 12C6+ + AdCMV-p53 infection groups were 30%-60%, 20%-130% and 30%-70% more than those for the 12C6+-irradiated only, AdCMV-p53 infected only, and γ-irradiation induced AdCMVp53 infected groups, respectively. The data suggested that the pre-exposure to low-dose 12C6+ beam significantly promotes exogenous p53 expression in NSLC, and the suppression of AdCMV-p53 gene therapy on NSLC.

  2. The Comparison Study of Quadratic Infinite Beam Program on Optimization Instensity Modulated Radiation Therapy Treatment Planning (IMRTP) between Threshold and Exponential Scatter Method with CERR® In The Case of Lung Cancer

    Science.gov (United States)

    Hardiyanti, Y.; Haekal, M.; Waris, A.; Haryanto, F.

    2016-08-01

    This research compares the quadratic optimization program on Intensity Modulated Radiation Therapy Treatment Planning (IMRTP) with the Computational Environment for Radiotherapy Research (CERR) software. We assumed that the number of beams used for the treatment planner was about 9 and 13 beams. The case used the energy of 6 MV with Source Skin Distance (SSD) of 100 cm from target volume. Dose calculation used Quadratic Infinite beam (QIB) from CERR. CERR was used in the comparison study between Gauss Primary threshold method and Gauss Primary exponential method. In the case of lung cancer, the threshold variation of 0.01, and 0.004 was used. The output of the dose was distributed using an analysis in the form of DVH from CERR. The maximum dose distributions obtained were on the target volume (PTV) Planning Target Volume, (CTV) Clinical Target Volume, (GTV) Gross Tumor Volume, liver, and skin. It was obtained that if the dose calculation method used exponential and the number of beam 9. When the dose calculation method used the threshold and the number of beam 13, the maximum dose distributions obtained were on the target volume PTV, GTV, heart, and skin.

  3. Repeated proton beam therapy for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Purpose: To retrospectively evaluate the safety and effectiveness of repeated proton beam therapy for newly developed or recurrent hepatocellular carcinoma (HCC). Methods and Materials: From June 1989 through July 2000, 225 patients with HCC underwent their first course of proton beam therapy at University of Tsukuba. Of them, 27 with 68 lesions who had undergone two or more courses were retrospectively reviewed in this study. Median interval between the first and second course was 24.5 months (range 3.3-79.8 months). Median total dose of 72 Gy in 16 fractions and 66 Gy in 16 fractions were given for the first course and the rest of the courses, respectively. Results: The 5-year survival rate and median survival period from the beginning of the first course for the 27 patients were 55.6% and 62.2 months, respectively. Five-year local control rate for the 68 lesions was 87.8%. Of the patients, 1 with Child-Pugh class B and another with class C before the last course suffered from acute hepatic failure. Conclusions: Repeated proton beam therapy for HCC is safe when the patient has a target in the peripheral region of the liver and liver function is Child-Pugh class A

  4. Progress in Gene Therapy for Prostate Cancer

    OpenAIRE

    KamranAliAhmed; BrianJamesDavis; TorrenceMWilson; GregoryAWiseman; MarkJFederspiel; JohnCMorris

    2012-01-01

    Gene therapy has held promise to correct various disease processes. Prostate cancer represents the second leading cause of cancer death in American men. A number of clinical trials involving gene therapy for the treatment of prostate cancer have been reported. The ability to efficiently transduce tumors with effective levels of therapeutic genes has been identified as a fundamental barrier to effective cancer gene therapy. The approach utilizing gene therapy in prostate cancer patients at our...

  5. Advanced metrology for cancer therapy. Proceedings

    International Nuclear Information System (INIS)

    Physical treatments play a central role in cancer therapy. Metrology is reasonably well-established for only some of these techniques: several modern forms of treatment (IMRT, hadron therapy, HITU, brachytherapy) suffer from the limited support of traceable metrology which restricts the success of these techniques. The European Union recognised this deficit and identified metrology for health as one of the first four Targeted Programmes in the framework of the European Metrology Research Programme (EMRP), running from 2008 to 2011. The programme included two EMRP projects which address metrology for cancer therapy: - project T2.J06 deals with brachytherapy - project T2.J07 deals with external beam cancer therapy using ionising radiation and highintensity ultrasound Primary measurement standards applicable to modern treatment conditions are being developed under both projects, together with measurement techniques which are meant as a basis of future protocols for dosimetry, treatment planning and monitoring. This three-day scientific conference provides a platform for the presentation of current developments in clinical measurement techniques for cancer therapy, together with the achievements of these projects, under the headings: - Primary and secondary standards of absorbed dose to water for IMRT and brachytherapy - 3D dose distributions and treatment planning for IMRT and brachytherapy - Hadron therapy (protons and carbon ions) - High Intensity Therapeutic Ultrasound (HITU) The aim of the conference is to provide a forum for the exchange of information and expertise in the community of medical physicists and metrologists at the European level. The conference programme includes 4 keynote talks by invited speakers as well as 59 proffered papers and posters.

  6. Adenovirus Vectors for Gene Therapy, Vaccination and Cancer Gene Therapy

    OpenAIRE

    Wold, William S.M.; Toth, Karoly

    2013-01-01

    Adenovirus vectors are the most commonly employed vector for cancer gene therapy. They are also used for gene therapy and as vaccines to express foreign antigens. Adenovirus vectors can be replication-defective; certain essential viral genes are deleted and replaced by a cassette that expresses a foreign therapeutic gene. Such vectors are used for gene therapy, as vaccines, and for cancer therapy. Replication-competent (oncolytic) vectors are employed for cancer gene therapy. Oncolytic vector...

  7. Weekly monitoring of the effects of conventional external beam radiation therapy on patients with head and neck, chest, and pelvis cancer by means of blood cells count

    Energy Technology Data Exchange (ETDEWEB)

    Lundgren, Maria da Salete Fonseca dos Santos [Hospital Universitario Oswaldo Cruz, Recife, PE (Brazil). Radiotherapy Unit]. E-mail: salete@lundgren.med.br; Cavalcanti, Maria do Socorro de Mendonca [Universidade de Pernambuco, Recife, PE (Brazil); Sampaio, Divaldo de Almeida [Centro de Hematologia de Pernambuco (Hemope), Recife, PE (Brazil)

    2008-01-15

    Objective: To evaluate the necessity of weekly monitoring by means of leukocyte and platelet counts of patients with head and neck, chest, and pelvis cancer submitted to conventional radiotherapy. Materials and methods: A hundred and one adult patients with cancer of head and neck (n = 11), chest (n = 35) and pelvis (n = 55), submitted to radiotherapy were assessed by means of leukocyte and platelet counts on a weekly basis, with a comparison between the results before and during the treatment and in correlation with the area treated, patient's sex and age group. Results: The most significant decrease in leukocytes was observed in the fourth week, when lymphocytes, total leukocytes, neutrophils, monocytes and platelets presented a decrease of 53.5%, 26.8%, 19.4%, 22.2% and 14.6%, respectively, in comparison with the values found before the beginning of the therapy. Geometric means for pelvis during the treatment were lower than those for chest, and head and neck. Lymphocytes demonstrated to be more sensitive to radiation therapy. No alteration was found in leukocyte or platelet counts in correlation with patients' sex or age. Conclusion: Based on the results of the present study, weekly leukocyte and platelet counts do not seem to be useful in the assessment patients submitted to conventional radiotherapy for localized cancer. (author)

  8. Weekly monitoring of the effects of conventional external beam radiation therapy on patients with head and neck, chest, and pelvis cancer by means of blood cells count

    International Nuclear Information System (INIS)

    Objective: To evaluate the necessity of weekly monitoring by means of leukocyte and platelet counts of patients with head and neck, chest, and pelvis cancer submitted to conventional radiotherapy. Materials and methods: A hundred and one adult patients with cancer of head and neck (n = 11), chest (n = 35) and pelvis (n = 55), submitted to radiotherapy were assessed by means of leukocyte and platelet counts on a weekly basis, with a comparison between the results before and during the treatment and in correlation with the area treated, patient's sex and age group. Results: The most significant decrease in leukocytes was observed in the fourth week, when lymphocytes, total leukocytes, neutrophils, monocytes and platelets presented a decrease of 53.5%, 26.8%, 19.4%, 22.2% and 14.6%, respectively, in comparison with the values found before the beginning of the therapy. Geometric means for pelvis during the treatment were lower than those for chest, and head and neck. Lymphocytes demonstrated to be more sensitive to radiation therapy. No alteration was found in leukocyte or platelet counts in correlation with patients' sex or age. Conclusion: Based on the results of the present study, weekly leukocyte and platelet counts do not seem to be useful in the assessment patients submitted to conventional radiotherapy for localized cancer. (author)

  9. Thin silicon strip detectors for beam monitoring in Micro-beam Radiation Therapy

    CERN Document Server

    Povoli, Marco; Bravin, Alberto; Cornelius, Iwan; Bräuer-Krisch, Elke; Fournier, Pauline; Hansen, Thor-Erik; Kok, Angela; Lerch, Michael; Monakhov, Edouard; Morse, John; Petasecca, Marco; Requardt, Herwig; Rosenfeld, Anatoly; Röhrich, Dieter; Sandaker, Heidi; Salomé, Murielle; Stugu, Bjarne

    2015-01-01

    Microbeam Radiation Therapy (MRT) is an emerging cancer treatment that is currently being developed at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. This technique uses a highly collimated and fractionated X-ray beam array with extremely high dose rate and very small divergence, to benefit from the dose-volume effect, thus sparing healthy tissue. In case of any beam anomalies and system malfunctions, special safety measures must be installed, such as an emergency safety shutter that requires continuous monitoring of the beam intensity profile. Within the 3DMiMic project, a novel silicon strip detector that can tackle the special features of MRT, such as the extremely high spatial resolution and dose rate, has been developed to be part of the safety shutter system. The first prototypes have been successfully fabricated, and experiments aimed to demonstrate their suitability for this unique application have been performed. Design, fabrication and the experimental results as well as any...

  10. Neoadjuvant Therapy in Pancreatic Cancer: Review Article

    OpenAIRE

    Moritz Pross; Wellner, Ulrich F.; Kim C Honselmann; Carlo Jung; Steffen Deichmann; Tobias Keck; Dirk Bausch

    2015-01-01

    We performed a literature review for neoadjuvant therapy in pancreatic cancer. We divided the results into resectable disease and local advanced pancreatic cancer. Results Neoadjuvant therapy in pancreatic cancer is safe. But currently no standard guidelines exist in neoadjuvant approaches on pancreatic cancer. For local advanced pancreatic cancer the available data tends to show a positive effect on survival rates for neoadjuvant approaches.

  11. Art therapy in cancer fight

    Directory of Open Access Journals (Sweden)

    Érica Rodrigues D'Alencar

    2014-01-01

    Full Text Available Art therapy is the therapeutic use of artistic activity in the context of the professional relationship with people affected by disease, injury or by seeking personal development. This study aims to report the experience of art therapy activities with a group of patients and their caregivers in a university hospital. This is an experience report, in Fortaleza - CE, during September 2010 to February 2011. In the meetings, participated 49 people, who performed activities, using the methods of art therapy, like painting, cutting, drawing, collage, creative visualization and color therapy. In the assessments, after the groups, the participants demonstrated the effects of art therapy, which described that the intervention allowed speak from the process of facing life to cancer fight. It is concluded that the techniques of art therapy provided self-knowledge, self-esteem and redemption sense of well-being with relaxation, and promote happiness and reduce stress.

  12. Status of the Medaustron Ion Beam Therapy centre

    CERN Document Server

    Dorda, U; Osmic, F; Benedikt, M

    2012-01-01

    MedAustron is a synchrotron based light-ion beam therapy centre for cancer treatment as well as for clinical and non-clinical research currently in its construction phase. The accelerator design is based on the CERN-PIMMS study and its technical implementation by CNAO. This paper presents a status overview over the whole project detailing the achieved progress of the building construction & technical infrastructure installation in Wiener Neustadt, Austria, as well as of the accelerator development, performed at CERN and partially at PSI. The design and procurement status and future planning of the various accelerator components is elaborated.

  13. Complications of cancer therapy

    International Nuclear Information System (INIS)

    The purpose of this chapter is to review systematically the toxicity of contemporary chemotherapy and irradiation on normal tissues of growing children. Whenever possible, the separate toxicity of chemotherapy, irradiation, and combination therapy is addressed. However, it is not always possible to quantitate specifically such reactions in the face of multiple drug therapy, which may enhance radiation injury or reactivate prior radiation injury. Prior detailed reviews have provided important sources of information concerning radiation injury for this more general discussion. The information provided will assist both the clinician and the radiologist in the recognition of early and late complications of therapy in pediatric oncology

  14. Neoadjuvant therapy for esophageal cancer

    Institute of Scientific and Technical Information of China (English)

    Rachit; D; Shah; Anthony; D; Cassano; James; P; Neifeld

    2014-01-01

    Esophageal cancer is increasing in incidence more than any other visceral malignancy in North America. Adenocarcinoma has become the most common cell type. Surgery remains the primary treatment modality for locoregional disease. Overall survival with surgery alone has been dismal, with metastatic disease the primary mode of treatment failure after an R0 surgical resection. Cure rates with chemotherapy or radiation therapy alone have been disappointing as well. For these reasons, over the last decade multi-modality treatment has gained increasing acceptance as the standard of care. This review examines the present data and role of neoadjuvant treatment using chemotherapy and radiation therapy followed by surgery for the treatment of esophageal cancer.

  15. Gene therapy in pancreatic cancer

    OpenAIRE

    Liu, Si-Xue; Xia, Zhong-Sheng; Zhong, Ying-Qiang

    2014-01-01

    Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC...

  16. Adjuvant Therapy of Pancreatic Cancer

    OpenAIRE

    Chakra P Chaulagain; Muhammad Wasif Saif; Goodman, Martin D.; John Ng

    2011-01-01

    There is no clear consensus on what type of adjuvant therapy should be used for patients with pancreatic cancer. Chemoradiation is the favored treatment modality by many in the United States while gemcitabine based chemotherapy is favored in Europe. Both of these approaches have been shown by large prospective, randomized trials to improve disease free intervals and in some studies overall survival. This year at the American Society of Clinical Oncology (ASCO) Gastrointestinal Cancer Symposiu...

  17. Targeted therapies for cancer

    Science.gov (United States)

    ... to be untrue. Possible side effects from targeted therapies include: Diarrhea Liver problems Skin problems such as rash, dry skin, and nail changes Problems with blood clotting and wound healing High blood pressure As with any treatment, you ...

  18. Hormone therapy and ovarian cancer

    DEFF Research Database (Denmark)

    Mørch, Lina Steinrud; Løkkegaard, Ellen; Andreasen, Anne Helms;

    2009-01-01

    CONTEXT: Studies have suggested an increased risk of ovarian cancer among women taking postmenopausal hormone therapy. Data are sparse on the differential effects of formulations, regimens, and routes of administration. OBJECTIVE: To assess risk of ovarian cancer in perimenopausal and postmenopau......CONTEXT: Studies have suggested an increased risk of ovarian cancer among women taking postmenopausal hormone therapy. Data are sparse on the differential effects of formulations, regimens, and routes of administration. OBJECTIVE: To assess risk of ovarian cancer in perimenopausal...... and postmenopausal women receiving different hormone therapies. DESIGN AND SETTING: Nationwide prospective cohort study including all Danish women aged 50 through 79 years from 1995 through 2005 through individual linkage to Danish national registers. Redeemed prescription data from the National Register...... bands included hormone exposures as time-dependent covariates. PARTICIPANTS: A total of 909,946 women without hormone-sensitive cancer or bilateral oophorectomy. MAIN OUTCOME MEASURE: Ovarian cancer. RESULTS: In an average of 8.0 years of follow-up (7.3 million women-years), 3068 incident ovarian...

  19. Targeted Therapies in Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Selen Dogan

    2014-04-01

    Full Text Available Endometrial cancer is the most common genital cancer in developed world. It is generally diagnosed in early stage and it has a favorable prognosis. However, advanced staged disease and recurrences are difficult to manage. There are some common genetic alterations related to endometrial carcinogenesis in similar fashion to other cancers. Personalized medicine, which means selection of best suited treatment for an individual, has gain attention in clinical care of patients in recent years. Targeted therapies were developed as a part of personalized or %u201Ctailored%u201D medicine and specifically acts on a target or biologic pathway. There are quite a number of molecular alteration points in endometrial cancer such as PTEN tumor suppressor genes, DNA mismatch repair genes, PI3K/AKT/mTOR pathway and p53 oncogene which all might be potential candidates for tailored targeted therapy. In recent years targeted therapies has clinical application in ovarian cancer patients and in near future with the advent of new agents these %u201Ctailored%u201D drugs will be in market for routine clinical practice in endometrial cancer patients, in primary disease and recurrences as well.

  20. Gene therapy for prostate cancer.

    LENUS (Irish Health Repository)

    Tangney, Mark

    2012-01-31

    Cancer remains a leading cause of morbidity and mortality. Despite advances in understanding, detection, and treatment, it accounts for almost one-fourth of all deaths per year in Western countries. Prostate cancer is currently the most commonly diagnosed noncutaneous cancer in men in Europe and the United States, accounting for 15% of all cancers in men. As life expectancy of individuals increases, it is expected that there will also be an increase in the incidence and mortality of prostate cancer. Prostate cancer may be inoperable at initial presentation, unresponsive to chemotherapy and radiotherapy, or recur following appropriate treatment. At the time of presentation, patients may already have metastases in their tissues. Preventing tumor recurrence requires systemic therapy; however, current modalities are limited by toxicity or lack of efficacy. For patients with such metastatic cancers, the development of alternative therapies is essential. Gene therapy is a realistic prospect for the treatment of prostate and other cancers, and involves the delivery of genetic information to the patient to facilitate the production of therapeutic proteins. Therapeutics can act directly (eg, by inducing tumor cells to produce cytotoxic agents) or indirectly by upregulating the immune system to efficiently target tumor cells or by destroying the tumor\\'s vasculature. However, technological difficulties must be addressed before an efficient and safe gene medicine is achieved (primarily by developing a means of delivering genes to the target cells or tissue safely and efficiently). A wealth of research has been carried out over the past 20 years, involving various strategies for the treatment of prostate cancer at preclinical and clinical trial levels. The therapeutic efficacy observed with many of these approaches in patients indicates that these treatment modalities will serve as an important component of urological malignancy treatment in the clinic, either in isolation or

  1. High-Dose Hypofractionated Proton Beam Radiation Therapy Is Safe and Effective for Central and Peripheral Early-Stage Non-Small Cell Lung Cancer: Results of a 12-Year Experience at Loma Linda University Medical Center

    Energy Technology Data Exchange (ETDEWEB)

    Bush, David A., E-mail: dbush@llu.edu [Department of Radiation Oncology, Loma Linda University Medical Center, Loma Linda, California (United States); Cheek, Gregory [Department of Pulmonary Medicine, Loma Linda University Medical Center, Loma Linda, California (United States); Zaheer, Salman; Wallen, Jason [Department of Thoracic Surgery, Loma Linda University Medical Center, Loma Linda, California (United States); Mirshahidi, Hamid [Department of Medical Oncology, Loma Linda University Medical Center, Loma Linda, California (United States); Katerelos, Ari; Grove, Roger; Slater, Jerry D. [Department of Radiation Oncology, Loma Linda University Medical Center, Loma Linda, California (United States)

    2013-08-01

    Purpose: We update our previous reports on the use of hypofractionated proton beam radiation therapy for early-stage lung cancer patients. Methods and Materials: Eligible subjects had biopsy-proven non-small cell carcinoma of the lung and were medically inoperable or refused surgery. Clinical workup required staging of T1 or T2, N0, M0. Subjects received hypofractionated proton beam therapy to the primary tumor only. The dose delivered was sequentially escalated from 51 to 60 Gy, then to 70 Gy in 10 fractions over 2 weeks. Endpoints included toxicity, pulmonary function, overall survival (OS), disease-specific survival (DSS), and local control (LC). Results: One hundred eleven subjects were analyzed for treatment outcomes. The patient population had the following average characteristics; age 73.2 years, tumor size 3.6 cm, and 1.33 L forced expiratory volume in 1 second. The entire group showed improved OS with increasing dose level (51, 60, and 70 Gy) with a 4-year OS of 18%, 32%, and 51%, respectively (P=.006). Peripheral T1 tumors exhibited LC of 96%, DSS of 88%, and OS of 60% at 4 years. Patients with T2 tumors showed a trend toward improved LC and survival with the 70-Gy dose level. On multivariate analysis, larger tumor size was strongly associated with increased local recurrence and decreased survival. Central versus peripheral location did not correlate with any outcome measures. Clinical radiation pneumonitis was not found to be a significant complication, and no patient required steroid therapy after treatment for radiation pneumonitis. Pulmonary function was well maintained 1 year after treatment. Conclusions: High-dose hypofractionated proton therapy achieves excellent outcomes for lung carcinomas that are peripherally or centrally located. The 70-Gy regimen has been adopted as standard therapy for T1 tumors at our institution. Larger T2 tumors show a trend toward improved outcomes with higher doses, suggesting that better results could be seen with

  2. VEGF Inhibitors for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Prakash S. Sukhramani

    2010-01-01

    Full Text Available Despite significant advances in systemic therapies, radiation oncology, and surgical techniques, many patients with cancer are still incurable. A novel therapeutic approach has been to target the vascular endothelial growth factors (VEGFs which are often mutated and/or over-expressed in many tumors. The ligands and receptors of VEGF family are well established as key regulators of angiogenesis and vasculogenesis processes. VEGF is a homodimeric, basic, 45 kDa glycoprotein specific for vascular endothelial cells. Specifically, VEGF participates in regulation of the female reproductive cycle, wound healing, inflammation, vascular permeability, vascular tone, hematopoiesis and also contributes to pathological angiogenesis disorders such as cancer, rheumatoid arthritis, diabetic retinopathy and the neovascular form of macular degeneration. Thus, the role of VEGF has been extensively studied in the pathogenesis and angiogenesis of human cancers. Clinical trials have anti-VEGF therapies are effective in reducing tumor size, metastasis and blood vessel formation. Clinically, this may result in increased progression free survival, overall patient survival rate and will expand the potential for combinatorial therapies. The aim of present review is on the cellular responses of VEGF inhibitors and their implications for cancer therapy.

  3. Gene Therapy in Human Breast Cancer

    OpenAIRE

    Abaan, Ogan D.

    2002-01-01

    Gene therapy, being a novel treatment for many diseases, is readily applicable for the treatment of cancer patients. Breast cancer is the most common cancer among women. There are many clinical protocols for the treatment of breast cancer, and gene therapy is now being considered within current protocols. This review will focus on the basic concepts of cancer gene therapy strategies (suicide gene, tumor suppressor gene, anti-angiogenesis, immunotherapy, oncolytic viruses and ribozyme/antisens...

  4. Gene therapy for gastric cancer: A review

    Institute of Scientific and Technical Information of China (English)

    Chao Zhang; Zhan-Kui Liu

    2003-01-01

    Gastric cancer is common in China, and its early diagnosis and treatment are difficult. In recent years great progress has been achieved in gene therapy, and a wide array of gene therapy systems for gastric cancer has been investigated. The present article deals with the general principles of gene therapy and then focuses on how these principles may be applied to gastric cancer.

  5. Antiproton Cancer Therapy

    DEFF Research Database (Denmark)

    Bassler, Niels

    Antiprotons are interesting as a modality in radiation therapy for the following reasons: When fast antiprotons penetrate matter, they behave as protons. Well before the Bragg-peak, protons and antiprotons have near identical stopping powers exhibit equal radiobiology. But when the antiprotons co...

  6. Targeted therapy: tailoring cancer treatment

    Institute of Scientific and Technical Information of China (English)

    Min Yan; Quentin Qiang Liu

    2013-01-01

    Targeted therapies include small-molecule inhibitors and monoclonal antibodies,have made treatment more tumor-specific and less toxic,and have opened new possibilities for tailoring cancer treatment.Nevertheless,there remain several challenges to targeted therapies,including molecular identification,drug resistance,and exploring reliable biomarkers.Here,we present several selected signaling pathways and molecular targets involved in human cancers including Aurora kinases,PI3K/mTOR signaling,FOXO-FOXM1 axis,and MDM2/MDM4-p53 interaction.Understanding the molecular mechanisms for tumorigenesis and development of drug resistance will provide new insights into drug discovery and design of therapeutic strategies for targeted therapies.

  7. Dosimetric Comparing between Protons Beam and Photons Beam 
for Lung Cancer Radiotherapy: A Meta-analysis

    Directory of Open Access Journals (Sweden)

    Guangwei TIAN

    2013-05-01

    Full Text Available Background and objective The clinical evidences are not sufficient on the proton beam therapy of lung cancer for lacking of the RCTs on the comparing the proton with the photon beam in lung cancer radiotherapy. The aim of this study is to evaluate the dosimetry superiority of the proton beam and provide more valuable evidences to the clinical researches. Methods Clinical trails of dosimetric comparing between protons beam and photons beam for lung cancer radiotherapy were obtained from the Cochrane library, Pubmed, EMbase, CBM, CNKI, VIP, and Wan Fang databases. The data included in the study were evaluated and analyzed using the Cochrane Collaboration's RevMan 5.2 software. Results Six trails were included. Compared to photon therapy (three-dimensional conformal photon radiotherapy, 3D-CRT, the proton therapy had a significantly lower total lung Dmean (MD=-4.15, 95%CI: -5.56--2.74, P<0.001 and V20, V10, V5 (MD=-10.92, 95%CI: -13.23--8.62, P<0.001; The V20, V10, V5 significantly decreased in proton therapy group. Compared to photon therapy (intensity-modulated photon radiotherapy, IMRT, V20, V10, V5 were also significantly lowered in proton therapy group (MD=-3.70, 95%CI: -5.31--2.10, P<0.001; MD=-8.86, 95%CI: -10.74--6.98, P<0.001; MD=-20.13, 95%CI: -27.11--13.14, P<0.001; The esophagus Dmean was not lowered, while the heart Dmean decreased in proton therapy group. Conclusion Comparing to photon beam radiotherapy (3D-CRT and IMRT, proton beam therapy is advantageous in dosimetry of the lung cancer radiotherapy and recommended for clinical applying.

  8. Adjuvant Therapy of Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Chakra P Chaulagain

    2011-07-01

    Full Text Available There is no clear consensus on what type of adjuvant therapy should be used for patients with pancreatic cancer. Chemoradiation is the favored treatment modality by many in the United States while gemcitabine based chemotherapy is favored in Europe. Both of these approaches have been shown by large prospective, randomized trials to improve disease free intervals and in some studies overall survival. This year at the American Society of Clinical Oncology (ASCO Gastrointestinal Cancer Symposium, the randomized phase III study presented by Uesaka et al. from Japan (Abstract #145 represents a newer paradigm of oral adjuvant S-1 chemotherapy in place of the traditional standard of care intravenous gemcitabine in terms of prolonging patients’ survival. Another study by Fan et al. (Abstract #269 examined the value of targeted therapy using erlotinib with adjuvant chemoradiation and chemotherapy. We present the summary of these two studies and discuss the potential impact on our clinical practice on this highly lethal cancer.

  9. Radiation Therapy in Elderly Skin Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hee [Keimyung University College of Medicine, Daegu (Korea, Republic of)

    2008-06-15

    To evaluate the long term results (local control, survival, failure, and complications) after radiation therapy for skin cancer in elderly patients. The study spanned from January 1990 to October 2002. Fifteen elderly patients with skin cancer were treated by radiotherapy at the Keimyung University Dongsan Medical Center. The age distribution of the patients surveyed was 72 to 95 years, with a median age of 78.8 years. The pathologic classification of the 15 patients included squamous cell carcinoma (10 patients), basal cell carcinoma (3 patients), verrucous carcinoma (1 patient) and skin adnexal origin carcinoma (1 patient). The most common tumor location was the head (13 patients). The mean tumor diameter was 4.9 cm (range 2 to 9 cm). The radiation dose was delivered via an electron beam of 6 to 15 MeV. The dose range was adjusted to the tumor diameter and depth of tumor invasion. The total radiation dose ranged from 50{approx}80 Gy (mean: 66 Gy) with a 2 Gy fractional dose prescribed to the 80% isodose line once a day and 5 times a week. One patient with lymph node metastasis was treated with six MV photon beams boosted with electron beams. The length of the follow-up periods ranged from 10 to 120 months with a median follow-up period of 48 months. The local control rates were 100% (15/15). In addition, the five year disease free survival rate (5YDFS) was 80% and twelve patients (80%) had no recurrence and skin cancer recurrence occurred in 3 patients (20%). Three patients have lived an average of 90 months (68{approx}120 months) without recurrence or metastasis. A total of 9 patients who died as a result of other causes had a mean survival time of 55.8 months after radiation therapy. No severe acute or chronic complications were observed after radiation therapy. Only minor complications including radiation dermatitis was treated with supportive care. The results suggest that radiation therapy is an effective and safe treatment method for the treatment of skin

  10. Target Therapy in Lung Cancer.

    Science.gov (United States)

    Cafarotti, Stefano; Lococo, Filippo; Froesh, Patrizia; Zappa, Francesco; Andrè, Dutly

    2016-01-01

    Lung cancer is an extremely heterogeneous disease, with well over 50 different histological variants recognized under the fourth revision of the World Health Organization (WHO) typing system. Because these variants have differing genetic and biological properties correct classification of lung cancer is necessary to assure that lung cancer patients receive optimum management. Due to the recent understanding that histologic typing and EGFR mutation status are important for target the therapy in lung adenocarcinoma patients there was a great need for a new classification that addresses diagnostic issues and strategic management to allow for molecular testing in small biopsy and cytology specimens. For this reason and in order to address advances in lung cancer treatment an international multidisciplinary classification was proposed by the International Association for the Study of Lung Cancer (IASLC), American Thoracic Society (ATS), and European Respiratory Society (ERS), further increasing the histological heterogeneity and improving the existing WHO-classification. Is now the beginning of personalized therapy era that is ideally finalized to treat each individual case of lung cancer in different way. PMID:26667341

  11. Biotoxins in Cancer Therapy

    OpenAIRE

    İlker Kelle

    2007-01-01

    The search for biological antitumor agents has been pursued for over half a century. Among the biological agents which have antitumoral activity, snake and scorpion venoms have been shown to possess a wide spectrum of biological activities. Venom components exhibit an antitumoral activity by means of direct cytolytic and cytostatic effects or indirect mechanisms such as amplifying of immune response against cancerous cells. These peptides constitute a potent antitumoral activity throughout th...

  12. Antiangiogenic therapy for breast cancer

    DEFF Research Database (Denmark)

    Nielsen, D.L.; Andersson, M.; Andersen, Jon Alexander Lykkegaard;

    2010-01-01

    and optimal use of these agents for the treatment of breast cancer. Currently, the most promising approach has been the use of bevacizumab, a humanized monoclonal antibody directed against the most potent pro-angiogenic factor, vascular endothelial growth factor (VEGF). Small molecular inhibitors of VEGF...... tyrosine kinase activity, such as sorafenib, appear promising. While, the role of sunitinib and inhibitors of mammalian target of rapamycin (mTOR) in breast cancer has to be defined. Several unanswered questions remain, such as choice of drug(s), optimal duration of therapy and patient selection criteria......ABSTRACT: Angiogenesis is an important component of cancer growth, invasion and metastasis. Therefore, inhibition of angiogenesis is an attractive strategy for treatment of cancer. We describe existing clinical trials of antiangiogenic agents and the challenges facing the clinical development...

  13. [Radionuclide therapy for cancer--what's new?].

    Science.gov (United States)

    Hanna, Mäenpää; Mikko, Tenhunen

    2012-01-01

    Radionuclide therapy is radiation therapy, the effect of which is based on radiation damage in cancer cells. The most common radionuclide therapy for cancer is radioiodine therapy for thyroid cancer. Two new forms of treatment have recently been initiated in Finland: 177lutetium octreotate therapy for neuroendocrine tumors, pheochromocytoma and paraganglioma as well as radioembolization (selective internal radiation therapy, SIRT) with 90yttrium-coated resin beads against liver metastases. Still in experimental use, 223radium chloride is a drug prolonging survival in prostate cancer that has metastasized to bone. The treatments require special knowledge and collaboration between several units. PMID:23210283

  14. 20 years experience in radiobiology of neutron, and 10 years experience of neutron therapy in Obninsk, Russia. (Neutrons against cancer - the new methods in radiation therapy of tumors using nuclear reactor neutron beams)

    Energy Technology Data Exchange (ETDEWEB)

    Mardinsky, Y.S.; Oulianenko, S.E.; Obaturov, G.M. [Medical Radiological Research Center of Russian Academy of Medical Sciences, Obninsk (Russian Federation)] [and others

    1997-12-31

    New technology of radiation therapy, developed in Obninsk, is based on newly acquired knowledge in biological effects of neutrons. Detailed studies have been made of antitumor effectiveness of neutrons and of radiomodification factors action. Up till now more then 250 patients with tumors have been treated using reactor neutrons. Integral analysis of 5-year survival rates indicated a higher efficiency of neutron and mixed gamma-neutron therapy as compared with conventional radiation treatment. The survival rates were 89% for larynx cancer and 67% for breast cancer after neutron irradiation; the corresponding values were 65% and 46% after conventional radiation. The advantages of neutrons have been demonstrated both in loco-regional control and in overcoming of recurrences and metastasis

  15. Risk-optimized proton therapy to minimize radiogenic second cancers

    International Nuclear Information System (INIS)

    Proton therapy confers substantially lower predicted risk of second cancer compared with photon therapy. However, no previous studies have used an algorithmic approach to optimize beam angle or fluence-modulation for proton therapy to minimize those risks. The objectives of this study were to demonstrate the feasibility of risk-optimized proton therapy and to determine the combination of beam angles and fluence weights that minimizes the risk of second cancer in the bladder and rectum for a prostate cancer patient. We used 6 risk models to predict excess relative risk of second cancer. Treatment planning utilized a combination of a commercial treatment planning system and an in-house risk-optimization algorithm. When normal-tissue dose constraints were incorporated in treatment planning, the risk model that incorporated the effects of fractionation, initiation, inactivation, repopulation and promotion selected a combination of anterior and lateral beams, which lowered the relative risk by 21% for the bladder and 30% for the rectum compared to the lateral-opposed beam arrangement. Other results were found for other risk models. (paper)

  16. Overview of Light-Ion Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chu, William T.

    2006-03-16

    treatment volume compared to those in conventional (photon) treatments. Wilson wrote his personal account of this pioneering work in 1997. In 1954 Cornelius Tobias and John Lawrence at the Radiation Laboratory (former E.O. Lawrence Berkeley National Laboratory) of the University of California, Berkeley performed the first therapeutic exposure of human patients to hadron (deuteron and helium ion) beams at the 184-Inch Synchrocyclotron. By 1984, or 30 years after the first proton treatment at Berkeley, programs of proton radiation treatments had opened at: University of Uppsala, Sweden, 1957; the Massachusetts General Hospital-Harvard Cyclotron Laboratory (MGH/HCL), USA, 1961; Dubna (1967), Moscow (1969) and St Petersburg (1975) in Russia; Chiba (1979) and Tsukuba (1983) in Japan; and Villigen, Switzerland, 1984. These centers used the accelerators originally constructed for nuclear physics research. The experience at these centers has confirmed the efficacy of protons and light ions in increasing the tumor dose relative to normal tissue dose, with significant improvements in local control and patient survival for several tumor sites. M.R. Raju reviewed the early clinical studies. In 1990, the Loma Linda University Medical Center in California heralded in the age of dedicated medical accelerators when it commissioned its proton therapy facility with a 250-MeV synchrotron. Since then there has been a relatively rapid increase in the number of hospital-based proton treatment centers around the world, and by 2006 there are more than a dozen commercially-built facilities in use, five new facilities under construction, and more in planning stages. In the 1950s larger synchrotrons were built in the GeV region at Brookhaven (3-GeV Cosmotron) and at Berkeley (6-GeV Bevatron), and today most of the world's largest accelerators are synchrotrons. With advances in accelerator design in the early 1970s, synchrotrons at Berkeley and Princeton accelerated ions with atomic numbers

  17. Overview of Light-Ion Beam Therapy

    International Nuclear Information System (INIS)

    compared to those in conventional (photon) treatments. Wilson wrote his personal account of this pioneering work in 1997. In 1954 Cornelius Tobias and John Lawrence at the Radiation Laboratory (former E.O. Lawrence Berkeley National Laboratory) of the University of California, Berkeley performed the first therapeutic exposure of human patients to hadron (deuteron and helium ion) beams at the 184-Inch Synchrocyclotron. By 1984, or 30 years after the first proton treatment at Berkeley, programs of proton radiation treatments had opened at: University of Uppsala, Sweden, 1957; the Massachusetts General Hospital-Harvard Cyclotron Laboratory (MGH/HCL), USA, 1961; Dubna (1967), Moscow (1969) and St Petersburg (1975) in Russia; Chiba (1979) and Tsukuba (1983) in Japan; and Villigen, Switzerland, 1984. These centers used the accelerators originally constructed for nuclear physics research. The experience at these centers has confirmed the efficacy of protons and light ions in increasing the tumor dose relative to normal tissue dose, with significant improvements in local control and patient survival for several tumor sites. M.R. Raju reviewed the early clinical studies. In 1990, the Loma Linda University Medical Center in California heralded in the age of dedicated medical accelerators when it commissioned its proton therapy facility with a 250-MeV synchrotron. Since then there has been a relatively rapid increase in the number of hospital-based proton treatment centers around the world, and by 2006 there are more than a dozen commercially-built facilities in use, five new facilities under construction, and more in planning stages. In the 1950s larger synchrotrons were built in the GeV region at Brookhaven (3-GeV Cosmotron) and at Berkeley (6-GeV Bevatron), and today most of the world's largest accelerators are synchrotrons. With advances in accelerator design in the early 1970s, synchrotrons at Berkeley and Princeton accelerated ions with atomic numbers between 6 and 18, at

  18. Antiangiogenic therapy for breast cancer

    DEFF Research Database (Denmark)

    Nielsen, D.L.; Andersson, M.; Andersen, Jon Alexander Lykkegaard;

    2010-01-01

    and optimal use of these agents for the treatment of breast cancer. Currently, the most promising approach has been the use of bevacizumab, a humanized monoclonal antibody directed against the most potent pro-angiogenic factor, vascular endothelial growth factor (VEGF). Small molecular inhibitors of VEGF...... tyrosine kinase activity, such as sorafenib, appear promising. While, the role of sunitinib and inhibitors of mammalian target of rapamycin (mTOR) in breast cancer has to be defined. Several unanswered questions remain, such as choice of drug(s), optimal duration of therapy and patient selection criteria...

  19. Engineering antibodies for cancer therapy.

    Science.gov (United States)

    Boder, Eric T; Jiang, Wei

    2011-01-01

    The advent of modern antibody engineering has led to numerous successes in the application of these proteins for cancer therapy in the 13 years since the first Food and Drug Administration approval, which has stimulated active interest in developing more and better drugs based on these molecules. A wide range of tools for discovering and engineering antibodies has been brought to bear on this challenge in the past two decades. Here, we summarize mechanisms of monoclonal antibody therapeutic activity, challenges to effective antibody-based treatment, existing technologies for antibody engineering, and current concepts for engineering new antibody formats and antibody alternatives as next generation biopharmaceuticals for cancer treatment.

  20. Immunotoxins and Cancer Therapy

    Institute of Scientific and Technical Information of China (English)

    ZhengLi; TaoYu; PingZhao; JieMa

    2005-01-01

    In the past decade, an increased amount of clinically-oriented research involving immunotoxins has been published. Immunotoxins are a group of artificially-made cytotoxic molecules targeting cancer cells. These molecules composed of a targeting moiety, such as a ligand or an antibody, linked to toxin moiety, which is a toxin with either truncated or deleted cell-binding domain that prevents it from binding to normal cells. Immunotoxins can be divided into two categories: chemically conjugated immunotoxins and recombinant ones. The immunotoxins of the first category have shown limited efficacy in clinical trials in patients with hematologic malignancies and solid tumors. Within the last few years, single-chain immunotoxins provide enhanced therapeutic efficacy over conjugated forms and result in improved antitumor activity. In this review, we briefly illustrate the design of the immunotoxins and their applications in clinical trials. Cellular & Molecular Immunology. 2005;2(2):106-112.

  1. Biotoxins for cancer therapy.

    Science.gov (United States)

    Liu, Cui-Cui; Yang, Hao; Zhang, Ling-Ling; Zhang, Qian; Chen, Bo; Wang, Yi

    2014-01-01

    In recent times, a number of studies have provided evidence that biotoxins present great potential as antitumor agents, such as snake venom, bee venom, some bacteria toxins and plant toxins, and thus could be used as chemotherapeutic agents against tumors. The biodiversity of venoms and toxins make them a unique source from which novel anticancer agent may be developed. Biotoxins, also known as natural toxins, include toxic substances produced by plants, animals and microorganisms. Here, we systematically list representative biological toxins that have antitumor properties, involving animal toxins, plant toxins, mycotoxins as well as bacterial toxins. In this review, we summarize the current knowledge involving biotoxins and the active compounds that have anti-cancer activity to induce cytotoxic, antitumor, immunomodulatory, and apoptotic effects in different tumor cells in vivo or in vitro. We also show insights into the molecular and functional evolution of biotoxins. PMID:24998537

  2. Music therapy in supportive cancer care

    OpenAIRE

    Stanczyk, Malgorzata Monika

    2011-01-01

    The purpose of this paper is to show some aspects of music therapy application in cancer care and to present the integration of music therapy program into a continuous supportive cancer care for inpatients. A cancer diagnosis is one of the most feared and serious life events that causes stress in individuals and families. Cancer disrupts social, physical and emotional well-being and results in a range of emotions, including anger, fear, sadness, guilt, embarrassment and shame. Music therapy i...

  3. Gensko zdravljenje raka: Cancer gene therapy:

    OpenAIRE

    Serša, Gregor; Čemažar, Maja; KOČEVAR, NINA

    2010-01-01

    Gene therapy uses genes to treat diseases. Large amount of research is based on cancer because current methods for cancer treatment have limited efficiencyand unwanted side effects. In the following article we first presentthe basic principles of gene therapy. Next, we describe the main delivery systems, which are viral and non-viral, and then the main therapeuticstrategies of cancer gene therapy. These can be divided into immunological, where we take advantage of the immune system for cancer...

  4. Photodynamic Cancer Therapy - Recent Advances

    International Nuclear Information System (INIS)

    The basic principle of the photodynamic effect was discovered over a hundred years ago leading to the pioneering work on PDT in Europe. It was only during the 1980s, however, when 'photoradiation therapy' was investigated as a possible treatment modality for cancer. Photodynamic therapy (PDT) is a photochemotherapeutic process which requires the use of a photosensitizer (PS) that, upon entry into a cancer cell is targeted by laser irradiation to initiate a series of events that contribute to cell death. PSs are light-sensitive dyes activated by a light source at a specific wavelength and can be classified as first or second generation PSs based on its origin and synthetic pathway. The principle of PS activation lies in a photochemical reaction resulting from excitation of the PS producing singlet oxygen which in turn reacts and damages cell organelles and biomolecules required for cell function and ultimately leading to cell destruction. Several first and second generation PSs have been studied in several different cancer types in the quest to optimize treatment. PSs including haematoporphyrin derivative (HpD), aminolevulinic acid (ALA), chlorins, bacteriochlorins, phthalocyanines, naphthalocyanines, pheophorbiedes and purpurins all require selective uptake and retention by cancer cells prior to activation by a light source and subsequent cell death induction. Photodynamic diagnosis (PDD) is based on the fluorescence effect exhibited by PSs upon irradiation and is often used concurrently with PDT to detect and locate tumours. Both laser and light emitting diodes (LED) have been used for PDT depending on the location of the tumour. Internal cancers more often require the use of laser light delivery using fibre optics as delivery system while external PDT often make use of LEDs. Normal cells have a lower uptake of the PS in comparison to tumour cells, however the acute cytotoxic effect of the compound on the recovery rate of normal cells is not known. Subcellular

  5. Oncolytic virus therapy for cancer

    Directory of Open Access Journals (Sweden)

    Goldufsky J

    2013-09-01

    Full Text Available Joe Goldufsky,1 Shanthi Sivendran,3 Sara Harcharik,4 Michael Pan,4 Sebastian Bernardo,4 Richard H Stern,5 Philip Friedlander,4 Carl E Ruby,1,2 Yvonne Saenger,4 Howard L Kaufman1,2 Departments of 1Immunology & Microbiology and 2Surgery, Rush University Medical Center, Chicago IL, USA 3Hematology/Oncology Medical Specialists, Lancaster General Health, Lancaster, PA, USA, and Departments of 4Medical Oncology and 5Radiology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA Abstract: The use of oncolytic viruses to treat cancer is based on the selection of tropic tumor viruses or the generation of replication selective vectors that can either directly kill infected tumor cells or increase their susceptibility to cell death and apoptosis through additional exposure to radiation or chemotherapy. In addition, viral vectors can be modified to promote more potent tumor cell death, improve the toxicity profile, and/or generate host antitumor immunity. A variety of viruses have been developed as oncolytic therapeutics, including adenovirus, vaccinia virus, herpesvirus, coxsackie A virus, Newcastle disease virus, and reovirus. The clinical development of oncolytic viral therapy has accelerated in the last few years, with several vectors entering clinical trials for a variety of cancers. In this review, current strategies to optimize the therapeutic effectiveness and safety of the major oncolytic viruses are discussed, and a summary of current clinical trials is provided. Further investigation is needed to characterize better the clinical impact of oncolytic viruses, but there are increasing data demonstrating the potential promise of this approach for the treatment of human and animal cancers. Keywords: cancer, gene therapy, oncolytic therapy, virus, treatment

  6. [Maintenance therapy for colorectal cancer].

    Science.gov (United States)

    Yamaguchi, Shigeo; Kato, Shunsuke

    2014-08-01

    Some trials have demonstrated the benefits of maintenance chemotherapy for advanced colorectal cancer. In chemotherapeutic strategies for advanced colorectal cancer, chemotherapy-related toxicity prevention and quality of life(QOL)maintenance are more important than the introduction of a strong regimen, especially when additional surgery is not possible. In Japan, the combination of a folinic acid/5-fluorouracil/oxaliplatin(FOLFOX)regimen and bevacizumab is a popular first-line chemotherapy regimen. However, despite its effectiveness, neuropathy or hand-foot syndrome after 5 or 6 cycles tends to lead to chemotherapy withdrawal. CAIRO3 trial reported the effectiveness of capecitabine and bevacizumab as a maintenance chemotherapy regimen. Additionally, the ML18147 trial demonstrated that bevacizumab beyond progression(BBP)prolonged overall survival(OS)and progression free survival(PFS)in patients with advanced colorectal cancer. Although those trials demonstrated the effectiveness of continuous or maintenance bevacizumab administration, no trials have compared the effectiveness of cytotoxic drugs with bevacizumab as maintenance therapies. Moreover, controversy exists regarding the selection of drugs as a maintenance therapy and the identification of patients who would benefit from maintenance therapy. PMID:25132024

  7. Targeted therapies in gastroesophageal cancer.

    Science.gov (United States)

    Kasper, Stefan; Schuler, Martin

    2014-05-01

    Gastroesophageal cancers comprising gastric cancer (GC), and cancers of the distal oesophagus and gastroesophageal junction (GEJ) are a global health threat. In Western populations the incidence of GC is declining which has been attributed to effective strategies of eradicating Helicobacter pylori infection. To the contrary, GEJ cancers are on the rise, with obesity and reflux disease being viewed as major risk factors. During the past decade perioperative chemotherapy, pre- or postoperative radio-chemotherapy, and, in Asian populations, adjuvant chemotherapy have been shown to improve the outcome of patients with advanced GC and GEJ cancers suited for surgery. Less progress has been made in the treatment of metastatic disease. The introduction of trastuzumab in combination with platinum/fluoropyrimidine-based chemotherapy for patients with HER2-positive disease has marked a turning point. Recently, several novel agents targeting growth factor receptors, angiogenic pathways, adhesion molecules and mediators of intracellular signal transduction have been clinically explored. Here we summarise the current status and future developments of molecularly targeted therapies in GC and GEJ cancer.

  8. Curcumin in combined cancer therapy.

    Science.gov (United States)

    Troselj, Koraljka Gall; Kujundzic, Renata Novak

    2014-01-01

    The mechanisms of beneficial preventive and therapeutic effects achieved by traditional and complementary medicine are currently being deciphered in molecular medicine. Curcumin, a yellow-colored polyphenol derived from the rhizome of turmeric (Curcuma longa), influences a wide variety of cellular processes through the reshaping of many molecular targets. One of them, nuclear factor kappa B (NF-κB), represents a strong mediator of inflammation and, in a majority of systems, supports the pro-proliferative features of cancer cells. The application of various anticancer drugs, cytostatics, triggers signals which lead to an increase in cellular NF-κB activity. As a consequence, cancer cells often reshape their survival signaling pathways and, over time, become resistant to applied therapy. Curcumin was shown to be a strong inhibitor of NF-κB activity and its inhibitory effect on NF-κB related pathways often leads to cellular apoptotic response. All these facts, tested and confirmed in many different biological systems, have paved the way for research aimed to elucidate the potential beneficial effects of combining curcumin and various anti-cancer drugs in order to establish more efficient and less toxic cancer treatment modalities. This review addresses certain aspects of NF-κB-related inflammatory response, its role in carcinogenesis and therapy benefits that may be gained through silencing NF-κB by selectively combining curcumin and various anticancer drugs.

  9. Pitfalls of tungsten multileaf collimator in proton beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Moskvin, Vadim; Cheng, Chee-Wai; Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States) and Indiana University Health Proton Therapy Center (Formerly Midwest Proton Radiotherapy Institute), Bloomington, Indiana 47408 (United States)

    2011-12-15

    Purpose: Particle beam therapy is associated with significant startup and operational cost. Multileaf collimator (MLC) provides an attractive option to improve the efficiency and reduce the treatment cost. A direct transfer of the MLC technology from external beam radiation therapy is intuitively straightforward to proton therapy. However, activation, neutron production, and the associated secondary cancer risk in proton beam should be an important consideration which is evaluated. Methods: Monte Carlo simulation with FLUKA particle transport code was applied in this study for a number of treatment models. The authors have performed a detailed study of the neutron generation, ambient dose equivalent [H*(10)], and activation of a typical tungsten MLC and compared with those obtained from a brass aperture used in a typical proton therapy system. Brass aperture and tungsten MLC were modeled by absorber blocks in this study, representing worst-case scenario of a fully closed collimator. Results: With a tungsten MLC, the secondary neutron dose to the patient is at least 1.5 times higher than that from a brass aperture. The H*(10) from a tungsten MLC at 10 cm downstream is about 22.3 mSv/Gy delivered to water phantom by noncollimated 200 MeV beam of 20 cm diameter compared to 14 mSv/Gy for the brass aperture. For a 30-fraction treatment course, the activity per unit volume in brass aperture reaches 5.3 x 10{sup 4} Bq cm{sup -3} at the end of the last treatment. The activity in brass decreases by a factor of 380 after 24 h, additional 6.2 times after 40 days of cooling, and is reduced to background level after 1 yr. Initial activity in tungsten after 30 days of treating 30 patients per day is about 3.4 times higher than in brass that decreases only by a factor of 2 after 40 days and accumulates to 1.2 x 10{sup 6} Bq cm{sup -3} after a full year of operation. The daily utilization of the MLC leads to buildup of activity with time. The overall activity continues to increase

  10. Cancer Therapy Evaluation Program | Office of Cancer Genomics

    Science.gov (United States)

    The Cancer Therapy Evaluation Program (CTEP) seeks to improve the lives of cancer patients by finding better treatments, control mechanisms, and cures for cancer. CTEP funds a national program of cancer research, sponsoring clinical trials to evaluate new anti-cancer agents.

  11. Experience with high-energy electron beam therapy at the University of Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Griem, M L; Kuchnir, F T; Lanzl, L H; Skaggs, L S; Sutton, H G; Tokars, R

    1979-01-01

    Current utilization of the linear accelerator as well as 5-year cumulative experience in radiotherapy is presented. Cutaneous lymphomas and mammary gland carcinomas were the prime experience region; however, cancers at other locations were treated with mixed-beam therapy; employing fast neutrons and photon beams. The technique appears promising for abdominal tumors and deep-seated malignancies. Carcinoma of the pancreas responds favorably to this technique. (PCS)

  12. Magnetic nanoparticle-based cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Yu Jing; Huang Dong-Yan; Muhammad Zubair Yousaf; Hou Yang-Long; Gao Song

    2013-01-01

    Nanoparticles (NPs) with easily modified surfaces have been playing an important role in biomedicine.As cancer is one of the major causes of death,tremendous efforts have been devoted to advance the methods of cancer diagnosis and therapy.Recently,magnetic nanoparticles (MNPs) that are responsive to a magnetic field have shown great promise in cancer therapy.Compared with traditional cancer therapy,magnetic field triggered therapeutic approaches can treat cancer in an unconventional but more effective and safer way.In this review,we will discuss the recent progress in cancer therapies based on MNPs,mainly including magnetic hyperthermia,magnetic specific targeting,magnetically controlled drug delivery,magnetofection,and magnetic switches for controlling cell fate.Some recently developed strategies such as magnetic resonance imaging (MRI) monitoring cancer therapy and magnetic tissue engineering are also addressed.

  13. Cancer incidence and novel therapies developed in Japan

    Directory of Open Access Journals (Sweden)

    Masaru Iwasaki

    2012-01-01

    Full Text Available According to the ministry of Health, Labour and welfare of Japan, Cancer has been the leading cause of death in Japan since 1981. [1] As per the data in 2010, in Japan, one in every three deaths was due to cancer. [2] The Japanese Government has introduced so far, three terms of 10 years strategies for Cancer control since 1984 till date. The budget allocated for cancer control in 2009 was 52.5 billion yen in Japan. [3] Lung is the leading site for cancer in both males and females in Japan. In males, following the lung, stomach, liver, colon and pancreas are other leading sites while in the females, stomach, colon, pancreas and breast are the other leading sites.[1] In 2006, the cancer incidence was 694,000 and the male cancer incidence was 1.4 times as large as that of females. The peak age for cancer deaths in males is their fifties while in the females it is the sixties among Japanese. In addition to the conventional treatments such as surgery, radiotherapy and chemotherapy, some of other therapies in practice in Japan are the Hyperthermia [4] that uses high temperatures to kill or damage the cancer cells, the Ion Beam therapy using proton beams [5] to damage the DNA of the cells as cancer cells have high rate of cell divisions and lesser ability to repair DNA damage, the molecular targeted therapies that interfere with a specific molecular target involved in tumour growth and progression [6] and most importantly the autologous cell based Immunotherapies. Modern Cancer Immunotherapy started in the 1970s in Japan. The immunopotentiators using compounds from Bacteria, Beta Glucans from fungi were the first forms of modern Immunotherapy. Then was the era of direct injection of cytokines such as Interleukins, Interferons etc. The adverse effects associated with the injection of cytokines led to development of cell based Immunotherapies in the 1980s. [7] Immuno-cell therapies involve isolation of immune cells which are then processed and re

  14. The use of phthalocyanines in cancer therapy

    Science.gov (United States)

    Nyokong, Tebello; Gledhill, Igle

    2013-03-01

    Phthalocyanines are synthetic analogues of porphyrins employed as photosensitizers in cancer therapy. We present the history of photodynamic therapy and developments in the use of phthalocyanines as photosensitizers. New efforts in the development of more cancer-specific phthalocyanines are presented. The combination of phthalocyanines with nanoparticles for "combination therapy" of cancer is also discussed. The nanoparticles employed are quantum dots, gold, and magnetic nanoparticles.

  15. Types of Cancer Treatment: Hormone Therapy

    Science.gov (United States)

    Describes how hormone therapy slows or stops the growth of breast and prostate cancers that use hormones to grow. Includes information about the types of hormone therapy and side effects that may happen.

  16. Photodynamic therapy in head and neck cancer

    Directory of Open Access Journals (Sweden)

    Kamil H Nelke

    2014-02-01

    Full Text Available Photodynamic therapy (PDT is a special type of treatment involving the use of a photosensitizer or a photosensitizing agent along with a special type of light, which, combined together, induces production of a form of oxygen that is used to kill surrounding cells in different areas of the human body. Specification of the head and neck region requires different approaches due to the surrounding of vital structures. PDT can also be used to treat cells invaded with infections such as fungi, bacteria and viruses. The light beam placed in tumor sites activates locally applied drugs and kills the cancer cells. Many studies are taking place in order to invent better photosensitizers, working on a larger scale and to treat deeply placed and larger tumors. It seems that PDT could be used as an alternative surgical treatment in some tumor types; however, all clinicians should be aware that the surgical approach is still the treatment of choice. PDT is a very accurate and effective therapy, especially in early stages of head and neck squamous cell carcinomas (HNSCC, and can greatly affect surgical outcomes in cancerous patients. We present a detailed review about photosensitizers, their use, and therapeutic advantages and disadvantages.

  17. [Prostate cancer external beam radiotherapy].

    Science.gov (United States)

    de Crevoisier, R; Pommier, P; Latorzeff, I; Chapet, O; Chauvet, B; Hennequin, C

    2016-09-01

    The prostate external beam radiotherapy techniques are described, when irradiating the prostate or after prostatectomy, with and without pelvic lymph nodes. The following parts are presented: indications of radiotherapy, total dose and fractionation, planning CT image acquisition, volume of interest delineation (target volumes and organs at risk) and margins, Intensity modulated radiotherapy planning and corresponding dose-volume constraints, and finally Image guided radiotherapy. PMID:27516051

  18. Targeted therapies in upper gastrointestinal cancer

    NARCIS (Netherlands)

    S. Kordes

    2016-01-01

    Upper gastrointestinal (GI) cancers, as esophageal, gastric and pancreatic cancer, are still highly lethal diseases, in spite of advances in surgery, radiotherapy, chemotherapy and specific targeted therapy. Especially when patients are diagnosed with locally advanced or metastasized disease, upper

  19. Cancer stem cells: therapeutic implications and perspectives in cancer therapy

    Directory of Open Access Journals (Sweden)

    Lu Han

    2013-04-01

    Full Text Available The cancer stem cell (CSC theory is gaining increasing attention from researchers and has become an important focus of cancer research. According to the theory, a minority population of cancer cells is capable of self-renewal and generation of differentiated progeny, termed cancer stem cells (CSCs. Understanding the properties and characteristics of CSCs is key to future study on cancer research, such as the isolation and identification of CSCs, the cancer diagnosis, and the cancer therapy. Standard oncology treatments, such as chemotherapy, radiotherapy and surgical resection, can only shrink the bulk tumor and the tumor tends to relapse. Thus, therapeutic strategies that focus on targeting CSCs and their microenvironmental niche address the ineffectiveness of traditional cancer therapies to eradicate the CSCs that otherwise result in therapy resistance. The combined use of traditional therapies with targeted CSC-specific agents may target the whole cancer and offer a promising strategy for lasting treatment and even cure.

  20. [Radiation therapy of pancreatic cancer].

    Science.gov (United States)

    Huguet, F; Mornex, F; Orthuon, A

    2016-09-01

    Currently, the use of radiation therapy for patients with pancreatic cancer is subject to discussion. In adjuvant setting, the standard treatment is 6 months of chemotherapy with gemcitabine and capecitabine. Chemoradiation (CRT) may improve the survival of patients with incompletely resected tumors (R1). This should be confirmed by a prospective trial. Neoadjuvant CRT is a promising treatment especially for patients with borderline resectable tumors. For patients with locally advanced tumors, there is no a standard. An induction chemotherapy followed by CRT for non-progressive patients reduces the rate of local relapse. Whereas in the first trials of CRT large fields were used, the treated volumes have been reduced to improve tolerance. Tumor movements induced by breathing should be taken in account. Intensity modulated radiation therapy allows a reduction of doses to the organs at risk. Whereas widely used, this technique is not recommended. PMID:27523418

  1. Stereotactic radiosurgery: a "targeted" therapy for cancer

    Institute of Scientific and Technical Information of China (English)

    Ming Zeng; Liang-Fu Han

    2012-01-01

    The developments of medicine always follow innovations in science and technology.In the past decade,such innovations have made cancer-related targeted therapies possible.In general,the term "targeted therapy" has been used in reference to cellular and molecular level oriented therapies.However,improvements in the delivery and planning of traditional radiation therapy have also provided cancer patients more options for "targeted" treatment,notably stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT).In this review,the progress and controversies of SRS and SBRT are discussed to show the role of stereotactic radiation therapy in the ever evolving multidisciplinary care of cancer patients.

  2. Emerging therapies in gastrointestinal cancers

    Institute of Scientific and Technical Information of China (English)

    Jyoti Nautiyal; Arun K Rishi; Adhip PN Majumdar

    2006-01-01

    Members of the receptor tyrosine kinase family, that include EGFR, ErbB-2/HER-2, ErbB-3/HER-3 and ErbB-4/HER-4, are frequently implicated in experimental models of epithelial cell neoplasia as well as in human cancers.Therefore, interference with the activation of these growth factor receptors represents a promising strategy for development of novel and selective anticancer therapies.Indeed, a number of inhibitors that target either EGFR or HER-2, with the exception of a few that target both;have been developed for treatment of epithelial cancers.Since most solid tumors express different ErbB receptors and/or their ligands, identification of inhibitor(s), targeting multiple EGFR family members may provide a therapeutic benefit to a broader patient population. Here we describe the significance of an ErbB family of receptors in epithelial cancers, and summarize different available therapeutics targeting these receptors. It also emphasizes the need to develop pan-ErbB inhibitors and discusses EGF-Receptor Related Protein, a recently isolated negative regulator of EGFR as a potential pan-ErbB therapeutic for a wide variety of epithelial cancers.

  3. Thin silicon strip detectors for beam monitoring in Micro-beam Radiation Therapy

    Science.gov (United States)

    Povoli, M.; Alagoz, E.; Bravin, A.; Cornelius, I.; Bräuer-Krisch, E.; Fournier, P.; Hansen, T. E.; Kok, A.; Lerch, M.; Monakhov, E.; Morse, J.; Petasecca, M.; Requardt, H.; Rosenfeld, A. B.; Röhrich, D.; Sandaker, H.; Salomé, M.; Stugu, B.

    2015-11-01

    Microbeam Radiation Therapy (MRT) is an emerging cancer treatment that is currently being developed at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. This technique uses a highly collimated and fractionated X-ray beam array with extremely high dose rate and very small divergence, to benefit from the dose-volume effect, thus sparing healthy tissue. In case of any beam anomalies and system malfunctions, special safety measures must be installed, such as an emergency safety shutter that requires continuous monitoring of the beam intensity profile. Within the 3DMiMic project, a novel silicon strip detector that can tackle the special features of MRT, such as the extremely high spatial resolution and dose rate, has been developed to be part of the safety shutter system. The first prototypes have been successfully fabricated, and experiments aimed to demonstrate their suitability for this unique application have been performed. Design, fabrication and the experimental results as well as any identified inadequacies for future optimisation are reported and discussed in this paper.

  4. Thin silicon strip detectors for beam monitoring in Micro-beam Radiation Therapy

    International Nuclear Information System (INIS)

    Microbeam Radiation Therapy (MRT) is an emerging cancer treatment that is currently being developed at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. This technique uses a highly collimated and fractionated X-ray beam array with extremely high dose rate and very small divergence, to benefit from the dose-volume effect, thus sparing healthy tissue. In case of any beam anomalies and system malfunctions, special safety measures must be installed, such as an emergency safety shutter that requires continuous monitoring of the beam intensity profile. Within the 3DMiMic project, a novel silicon strip detector that can tackle the special features of MRT, such as the extremely high spatial resolution and dose rate, has been developed to be part of the safety shutter system. The first prototypes have been successfully fabricated, and experiments aimed to demonstrate their suitability for this unique application have been performed. Design, fabrication and the experimental results as well as any identified inadequacies for future optimisation are reported and discussed in this paper

  5. Cancer Stem Cells, Cancer Cell Plasticity and Radiation Therapy

    OpenAIRE

    Vlashi, Erina; Pajonk, Frank

    2014-01-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be ...

  6. Liposomal cancer therapy: exploiting tumor characteristics

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Andresen, Thomas Lars

    2010-01-01

    Importance of the field: More than 10 million people worldwide are diagnosed with cancer each year, and the development of effective cancer treatments is consequently of great significance. Cancer therapy is unfortunately hampered by severe dose-limiting side effects that reduce the efficacy...... an overview of current strategies for improving the different stages of liposomal cancer therapy, which involve transporting drug-loaded liposomes through the bloodstream, increasing tumor accumulation, and improving drug release and cancer cell uptake after accumulation at the tumor target site. What...... of new liposomal drug delivery systems that better exploit tumor characteristic features is likely to result in more efficacious cancer treatments....

  7. Oncolytic virus therapy for cancer.

    Science.gov (United States)

    Goldufsky, Joe; Sivendran, Shanthi; Harcharik, Sara; Pan, Michael; Bernardo, Sebastian; Stern, Richard H; Friedlander, Philip; Ruby, Carl E; Saenger, Yvonne; Kaufman, Howard L

    2013-01-01

    The use of oncolytic viruses to treat cancer is based on the selection of tropic tumor viruses or the generation of replication selective vectors that can either directly kill infected tumor cells or increase their susceptibility to cell death and apoptosis through additional exposure to radiation or chemotherapy. In addition, viral vectors can be modified to promote more potent tumor cell death, improve the toxicity profile, and/or generate host antitumor immunity. A variety of viruses have been developed as oncolytic therapeutics, including adenovirus, vaccinia virus, herpesvirus, coxsackie A virus, Newcastle disease virus, and reovirus. The clinical development of oncolytic viral therapy has accelerated in the last few years, with several vectors entering clinical trials for a variety of cancers. In this review, current strategies to optimize the therapeutic effectiveness and safety of the major oncolytic viruses are discussed, and a summary of current clinical trials is provided. Further investigation is needed to characterize better the clinical impact of oncolytic viruses, but there are increasing data demonstrating the potential promise of this approach for the treatment of human and animal cancers.

  8. Hormone therapy and different ovarian cancers

    DEFF Research Database (Denmark)

    Mørch, Lina Steinrud; Løkkegaard, Ellen; Andreasen, Anne Helms;

    2012-01-01

    Postmenopausal hormone therapy use increases the risk of ovarian cancer. In the present study, the authors examined the risks of different histologic types of ovarian cancer associated with hormone therapy. Using Danish national registers, the authors identified 909,946 women who were followed fr...

  9. Radiological physics of heavy charged-particle beams used for therapy

    International Nuclear Information System (INIS)

    The beams available for biological investigations at the Bevatron or at the Bevalac range from helium to iron ions. However, only carbon, neon, and argon beams have been used for therapy. The treatment techniques are arbitrarily divided into two categories: small field and large field irradiation. Examples of the small field treatments are pituitary irradiation, which generaly utilizes the plateau portion of the helium depth-dose curve, and treatment of ocular melanoma, which uses a modified Bragg peak of the helium beam. Large field treatments for cancer therapy generally requires a beam that has a large uniform transverse profile and a modified Bragg peak. Procedures and instrumentation for patient irradiations at the Bevatron/Bevalac have been based on the prior experience obtained at the 184-inch Synchrocyclotron, and for that reason both facilities are discussed

  10. Cancer stem cells: The potential of carbon ion beam radiation and new radiosensitizers (Review).

    Science.gov (United States)

    Baek, Sung-Jae; Ishii, Hideshi; Tamari, Keisuke; Hayashi, Kazuhiko; Nishida, Naohiro; Konno, Masamitsu; Kawamoto, Koichi; Koseki, Jun; Fukusumi, Takahito; Hasegawa, Shinichiro; Ogawa, Hisataka; Hamabe, Atsushi; Miyo, Masaaki; Noguchi, Kozo; Seo, Yuji; Doki, Yuichiro; Mori, Masaki; Ogawa, Kazuhiko

    2015-11-01

    Cancer stem cells (CSCs) are a small population of cells in cancer with stem-like properties such as cell proliferation, multiple differentiation and tumor initiation capacities. CSCs are therapy-resistant and cause cancer metastasis and recurrence. One key issue in cancer therapy is how to target and eliminate CSCs, in order to cure cancer completely without relapse and metastasis. To target CSCs, many cell surface markers, DNAs and microRNAs are considered as CSC markers. To date, the majority of the reported markers are not very specific to CSCs and are also present in non-CSCs. However, the combination of several markers is quite valuable for identifying and targeting CSCs, although more specific identification methods are needed. While CSCs are considered as critical therapeutic targets, useful treatment methods remain to be established. Epigenetic gene regulators, microRNAs, are associated with tumor initiation and progression. MicroRNAs have been recently considered as promising therapeutic targets, which can alter the therapeutic resistance of CSCs through epigenetic modification. Moreover, carbon ion beam radiotherapy is a promising treatment for CSCs. Evidence indicates that the carbon ion beam is more effective against CSCs than the conventional X-ray beam. Combination therapies of radiosensitizing microRNAs and carbon ion beam radiotherapy may be a promising cancer strategy. This review focuses on the identification and treatment resistance of CSCs and the potential of microRNAs as new radiosensitizers and carbon ion beam radiotherapy as a promising therapeutic strategy against CSCs. PMID:26330103

  11. Antiangiogenic Steroids in Human Cancer Therapy

    OpenAIRE

    Pietras, Richard J.; Weinberg, Olga K.

    2005-01-01

    Despite advances in the early detection of tumors and in the use of chemotherapy, radiotherapy and surgery for disease management, the worldwide mortality from human cancer remains unacceptably high. The treatment of cancer may benefit from the introduction of novel therapies derived from natural products. Natural products have served to provide a basis for many of the pharmaceutical agents in current use in cancer therapy. Emerging research indicates that progressive growth and spread of ...

  12. Charged particle therapy with mini-segmented beams

    Directory of Open Access Journals (Sweden)

    F. Avraham eDilmanian

    2015-12-01

    Full Text Available One of the fundamental attributes of proton therapy and carbon ion therapy is the ability of these charged particles to spare tissue distal to the targeted tumor. This significantly reduces normal tissue toxicity and has the potential to translate to a wider therapeutic index. Although, in general, particle therapy also reduces dose to the proximal tissues, particularly in the vicinity of the target, dose to the skin and to other very superficial tissues tends to be higher than that of megavoltage x-rays. The methods presented here, namely Interleaved carbon minibeams and Radiosurgery with arrays of proton and light ion minibeams, both utilize beams segmented into arrays of parallel minibeams of about 0.3 mm incident beam size. These minibeam arrays spare tissues, as demonstrated by synchrotron x-ray experiments. An additional feature of particle minibeams is their gradual broadening due to multiple Coulomb scattering as they penetrate tissues. In the case of interleaved carbon minibeams, which do not broaden much, two arrays of planar carbon minibeams that remain parallel at target depth, are aimed at the target from 90º angles and made to interleave at the target to produce a solid radiation field within the target. As a result the surrounding tissues are exposed only to individual carbon minibeam arrays and are therefore spared. The method was used in four-directional geometry at the NASA Space Radiation Laboratory to ablate a 6.5-mm target in a rabbit brain at a single exposure with 40 Gy physical absorbed dose. Contrast-enhanced magnetic resonance imaging and histology six month later showed very focal target necrosis with nearly no damage to the surrounding brain. As for minibeams of protons and light ions, for which the minibeam broadening is substantial, measurements at MD Anderson Cancer Center in Houston, Texas, and Monte Carlo simulations showed that the broadening minibeams will merge with their neighbors at a certain tissue depth

  13. Proton therapy for pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Romaine; C; Nichols; Soon; Huh; Zuofeng; Li; Michael; Rutenberg

    2015-01-01

    Radiotherapy is commonly offered to patients with pancreatic malignancies although its ultimate utility is compromised since the pancreas is surrounded by exquisitely radiosensitive normal tissues, such as the duodenum, stomach, jejunum, liver, and kidneys. Proton radiotherapy can be used to create dose distributions that conform to tumor targets with significant normal tissue sparing. Because of this, protons appear to represent a superior modality for radiotherapy delivery to patients with unresectable tumors and those receiving postoperative radiotherapy. A particularly exciting opportunity for protons also exists for patients with resectable and marginally resectable disease. In this paper, we review the current literature on proton therapy for pancreatic cancer and discuss scenarios wherein the improvement in the therapeutic index with protons may have the potential to change the management paradigm for this malignancy.

  14. Sci—Sat AM: Stereo — 08: Stereotactic Ablative Radiotherapy (SABR) for low, intermediate and high risk prostate cancer using Volumetric Modulated Arc Therapy (VMAT) with a 10x Flattening Filter Free (FFF) beam

    Energy Technology Data Exchange (ETDEWEB)

    Mestrovic, A; Fortin, D; Alexander, A [BC Cancer Agency - Vancouver Island Centre (Canada)

    2014-08-15

    Purpose: To determine the feasibility of using Volumetric Modulated Arc Therapy (VMAT) with a 10x Flattening Filter Free (FFF) beam for Stereotactic Ablative Radiotherapy (SABR) for low, intermediate and high risk prostate cancer. Methods and Materials: Ten anonymized patient CT data sets were used in this planning study. For each patient CT data set, three sets of contours were generated: 1) low risk, 2) intermediate risk, and 3) high risk scenarios. For each scenario, a single-arc and a double-arc VMAT treatment plans were created. Plans were generated with the Varian Eclipse™ treatment planning system for a Varian TrueBeam™ linac equipped with Millenium 120 MLC. Plans were created using a 10x-FFF beam with a maximum dose rate of 2400 MU/min. Dose prescription was 36.25Gy/5 fractions with the planning objective of covering 99% of the Planning Target Volume with the 95% of the prescription dose. Normal tissue constraints were based on provincial prostate SABR planning guidelines, derived from national and international prostate SABR protocols. Plans were evaluated and compared in terms of: 1) dosimetric plan quality, and 2) treatment delivery efficiency. Results: Both single-arc and double-arc VMAT plans were able to meet the planning goals for low, intermediate and high risk scenarios. No significant dosimetric differences were observed between the plans. However, the treatment time was significantly lower for a single-arc VMAT plans. Conclusions: Prostate SABR treatments are feasible with 10x-FFF VMAT technique. A single-arc VMAT offers equivalent dosimetric plan quality and a superior treatment delivery efficiency, compared to a double-arc VMAT.

  15. A beam optics study of the biomedical beam line at a proton therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Chong Cheoul [National Center for Inter-University Research Facilities, Seoul National University, Sillim-dong, Gwanak, Seoul (Korea, Republic of); Kim, Jong-Won [Research Institute and Hospital, National Cancer Center, 809 Madu-dong, Ilsan-gu, Koyang, Kyonggi 410 769 (Korea, Republic of)], E-mail: jwkim@ncc.re.kr

    2007-10-15

    A biomedical beam line has been designed for the experimental area of a proton therapy facility to deliver mm to sub-mm size beams in the energy range of 20-50 MeV using the TRANSPORT/TURTLE beam optics codes and a newly-written program. The proton therapy facility is equipped with a 230 MeV fixed-energy cyclotron and an energy selection system based on a degrader and slits, so that beam currents available for therapy decrease at lower energies in the therapeutic beam energy range of 70-230 MeV. The new beam line system is composed of an energy-degrader, two slits, and three quadrupole magnets. The minimum beam sizes achievable at the focal point are estimated for the two energies of 50 and 20 MeV. The focused FWHM beam size is approximately 0.3 mm with an expected beam current of 20 pA when the beam energy is reduced to 50 MeV from 100 MeV, and roughly 0.8 mm with a current of 10 pA for a 20 MeV beam.

  16. Adjuvant therapy in pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Paula Ghaneh; John Slavin; Robert Sutton; Mark Hartley; John P Neoptolemos

    2001-01-01

    The outlook for patients with pancreatic cancer has been grim. There have been major advances in the surgical treatment of pancreatic csncer, leading to a drsmatic reduction in post-operative mortality from the development of high volume specialized centres. This stimulated the study of adjuvant and neoadjuvant treatments in pancreatic cancer including chemoradiotherapy and chemotherapy. Initial protocols have been based on the original but rather small GITSG study first reported in 1985. There have been two large European trials totalling over 600 patients (EORTC and ESPAC-1) that do not support the use of chemoradiation as adjuvant therapy. A second major finding from the ESPAC-1 trial (541 patients randomized) was some but not conclusive evidence for a survival benefit associated with chemotherapy. A third major finding from the ESPAC-1 trial was that the quality of life was not affected by the use of adjuvant treatments compared to surgery alone.The ESPAC-3 trial aims to assess the definitive use of adjuvant chemotherapy in a randomized controlled trial of 990 patients.

  17. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms.

  18. Hormone therapy and different ovarian cancers

    DEFF Research Database (Denmark)

    Mørch, Lina Steinrud; Løkkegaard, Ellen; Andreasen, Anne Helms;

    2012-01-01

    Postmenopausal hormone therapy use increases the risk of ovarian cancer. In the present study, the authors examined the risks of different histologic types of ovarian cancer associated with hormone therapy. Using Danish national registers, the authors identified 909,946 women who were followed from...... 1995-2005. The women were 50-79 years of age and had no prior hormone-sensitive cancers or bilateral oophorectomy. Hormone therapy prescription data were obtained from the National Register of Medicinal Product Statistics. The National Cancer and Pathology Register provided data on ovarian cancers......, including information about tumor histology. The authors performed Poisson regression analyses that included hormone exposures and confounders as time-dependent covariates. In an average of 8.0 years of follow up, 2,681 cases of epithelial ovarian cancer were detected. Compared with never users, women...

  19. Targeted Therapies in Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Jurjees Hasan

    2010-02-01

    Full Text Available Molecularly targeted therapy is relatively new to ovarian cancer despite the unquestionable success with these agents in other solid tumours such as breast and colorectal cancer. Advanced ovarian cancer is chemosensitive and patients can survive several years on treatment. However chemotherapy diminishes in efficacy over time whilst toxicities persist. Newer biological agents that target explicit molecular pathways and lack specific chemotherapy toxicities such as myelosuppression offer the advantage of long-term therapy with a manageable toxicity profile enabling patients to enjoy a good quality of life. In this review we appraise the emerging data on novel targeted therapies in ovarian cancer. We discuss the role of these compounds in the front-line treatment of ovarian cancer and in relapsed disease; and describe how the development of predictive clinical, molecular and imaging biomarkers will define the role of biological agents in the treatment of ovarian cancer.

  20. Targeted Therapies in Epithelial Ovarian Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Emma; El-Helw, Loaie; Hasan, Jurjees, E-mail: jurjees.hasan@christie.nhs.uk [Christie Hospital NHS Foundation Trust / Wilmslow Road, Manchester, M20 4BX (United Kingdom)

    2010-02-23

    Molecularly targeted therapy is relatively new to ovarian cancer despite the unquestionable success with these agents in other solid tumours such as breast and colorectal cancer. Advanced ovarian cancer is chemosensitive and patients can survive several years on treatment. However chemotherapy diminishes in efficacy over time whilst toxicities persist. Newer biological agents that target explicit molecular pathways and lack specific chemotherapy toxicities such as myelosuppression offer the advantage of long-term therapy with a manageable toxicity profile enabling patients to enjoy a good quality of life. In this review we appraise the emerging data on novel targeted therapies in ovarian cancer. We discuss the role of these compounds in the front-line treatment of ovarian cancer and in relapsed disease; and describe how the development of predictive clinical, molecular and imaging biomarkers will define the role of biological agents in the treatment of ovarian cancer.

  1. Building immunity to cancer with radiation therapy.

    Science.gov (United States)

    Haikerwal, Suresh J; Hagekyriakou, Jim; MacManus, Michael; Martin, Olga A; Haynes, Nicole M

    2015-11-28

    Over the last decade there has been a dramatic shift in the focus of cancer research toward understanding how the body's immune defenses can be harnessed to promote the effectiveness of cytotoxic anti-cancer therapies. The ability of ionizing radiation to elicit anti-cancer immune responses capable of controlling tumor growth has led to the emergence of promising combination-based radio-immunotherapeutic strategies for the treatment of cancer. Herein we review the immunoadjuvant properties of localized radiation therapy and discuss how technological advances in radio-oncology and developments in the field of tumor-immunotherapy have started to revolutionize the therapeutic application of radiotherapy.

  2. Radiation Therapy for Lung Cancer

    Science.gov (United States)

    ... are available to help. HELPFUL WEB SITES ON LUNG CANCER American Lung Association www.lung.org Lungcancer.org www.lungcancer.org Lung Cancer Alliance www.lungcanceralliance.org Lung Cancer Online www. ...

  3. Multimodality Therapy: Bone-Targeted Radioisotope Therapy of Prostate Cancer

    Science.gov (United States)

    Tu, Shi-Ming; Lin, Sue-Hwa; Podoloff, Donald A.; Logothetis, Christopher J.

    2016-01-01

    Accumulating data suggest that bone-seeking radiopharmaceuticals can be used to treat prostate cancer bone metastasis and improve the clinical outcome of patients with advanced prostate cancer. It remains to be elucidated whether radiopharmaceuticals enhance the disruption of the onco-niche or the eradication of micrometastatic cells in the bone marrow. The purpose of this review is to investigate the role of bone-targeted radioisotope therapy in the setting of multimodality therapy for advanced prostate cancer. We examine available data and evaluate whether dose escalation, newer generations, or repeated dosing of radiopharmaceuticals enhance their antitumor effects and whether their combination with hormone ablative therapy, chemotherapy, or novel targeted therapy can improve clinical efficacy. PMID:20551894

  4. A Variable Energy CW Compact Accelerator for Ion Cancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Carol J. [Fermilab; Taylor, J. [Huddersfield U.; Edgecock, R. [Huddersfield U.; Schulte, R. [Loma Linda U.

    2016-03-10

    Cancer is the second-largest cause of death in the U.S. and approximately two-thirds of all cancer patients will receive radiation therapy with the majority of the radiation treatments performed using x-rays produced by electron linacs. Charged particle beam radiation therapy, both protons and light ions, however, offers advantageous physical-dose distributions over conventional photon radiotherapy, and, for particles heavier than protons, a significant biological advantage. Despite recognition of potential advantages, there is almost no research activity in this field in the U.S. due to the lack of clinical accelerator facilities offering light ion therapy in the States. In January, 2013, a joint DOE/NCI workshop was convened to address the challenges of light ion therapy [1], inviting more than 60 experts from diverse fields related to radiation therapy. This paper reports on the conclusions of the workshop, then translates the clinical requirements into accelerat or and beam-delivery technical specifications. A comparison of available or feasible accelerator technologies is compared, including a new concept for a compact, CW, and variable energy light ion accelerator currently under development. This new light ion accelerator is based on advances in nonscaling Fixed-Field Alternating gradient (FFAG) accelerator design. The new design concepts combine isochronous orbits with long (up to 4m) straight sections in a compact racetrack format allowing inner circulating orbits to be energy selected for low-loss, CW extraction, effectively eliminating the high-loss energy degrader in conventional CW cyclotron designs.

  5. Beam monitoring in radiotherapy and hadron-therapy

    International Nuclear Information System (INIS)

    Radiotherapy techniques have evolved over the past twenty years. For photon beams, the development of tools such as multi leaf collimators, machines such as Cyberknife or tomo-therapy, have improved the conformation of treatments to the tumor volume and lowered maximum dose to healthy tissue. In another register, the use of proton-therapy is expanding in all countries and the development of carbon ions beams for hadron-therapy is also increasing. If techniques improve, the control requirements for the monitoring of the dose administered to patients are always the same. This document presents, first, the ins and outs of the different techniques of external beam radiotherapy: photon treatments, protons and hadrons. Starting from the basis of clinical requirements, it sets the variables to be measured in order to ensure the quality of treatment for the different considered modalities. It then describes some implementations, based on precise and rigorous specifications, for the monitoring and measurement of beams delivered by external beam radiotherapy equipments. Two instrumental techniques are particularly highlighted, plastic scintillators dosimetry for the control of megavoltage photon beams and ionization chamber dosimetry applied to proton-therapy or radiobiology experiments conducted at the GANIL facility. Analyzes and perspectives, based on the recent developments of treatment techniques, are delivered in conclusion and can serve as guide for future instrumental developments. (author)

  6. Anaplastic thyroid cancer, tumorigenesis and therapy.

    LENUS (Irish Health Repository)

    O'Neill, J P

    2010-03-01

    Anaplastic thyroid cancer (ATC) is a fatal endocrine malignancy. Current therapy fails to significantly improve survival. Recent insights into thyroid tumorigenesis, post-malignant dedifferentiation and mode of metastatic activity offer new therapeutic strategies.

  7. Measurements and simulations of focused beam for orthovoltage therapy

    International Nuclear Information System (INIS)

    Purpose: Megavoltage photon beams are typically used for therapy because of their skin-sparing effect. However, a focused low-energy x-ray beam would also be skin sparing, and would have a higher dose concentration at the focal spot. Such a beam can be produced with polycapillary optics. MCNP5 was used to model dose profiles for a scanned focused beam, using measured beam parameters. The potential of low energy focused x-ray beams for radiation therapy was assessed. Methods: A polycapillary optic was used to focus the x-ray beam from a tungsten source. The optic was characterized and measurements were performed at 50 kV. PMMA blocks of varying thicknesses were placed between optic and the focal spot to observe any variation in the focusing of the beam after passing through the tissue-equivalent material. The measured energy spectrum was used to model the focused beam in MCNP5. A source card (SDEF) in MCNP5 was used to simulate the converging x-ray beam. Dose calculations were performed inside a breast tissue phantom. Results: The measured focal spot size for the polycapillary optic was 0.2 mm with a depth of field of 5 mm. The measured focal spot remained unchanged through 40 mm of phantom thickness. The calculated depth dose curve inside the breast tissue showed a dose peak several centimeters below the skin with a sharp dose fall off around the focus. The percent dose falls below 10% within 5 mm of the focus. It was shown that rotating the optic during scanning would preserve the skin-sparing effect of the focused beam. Conclusions: Low energy focused x-ray beams could be used to irradiate tumors inside soft tissue within 5 cm of the surface

  8. External-Beam Radiation Therapy and High–Dose Rate Brachytherapy Combined With Long-Term Androgen Deprivation Therapy in High and Very High Prostate Cancer: Preliminary Data on Clinical Outcome

    International Nuclear Information System (INIS)

    Purpose: To determine the feasibility of combined long-term androgen deprivation therapy (ADT) and dose escalation with high-dose-rate (HDR) brachytherapy. Methods and Materials: Between 2001 and 2007, 200 patients with high-risk prostate cancer (32.5%) or very high-risk prostate cancer (67.5%) were prospectively enrolled in this Phase II trial. Tumor characteristics included a median pretreatment prostate-specific antigen of 15.2 ng/mL, a clinical stage of T2c, and a Gleason score of 7. Treatment consisted of 54 Gy of external irradiation (three-dimensional conformal radiotherapy [3DCRT]) followed by 19 Gy of HDR brachytherapy in four twice-daily treatments. ADT started 0–3 months before 3DCRT and continued for 2 years. Results: One hundred and ninety patients (95%) received 2 years of ADT. After a median follow-up of 3.7 years (range, 2–9), late Grade ≥2 urinary toxicity was observed in 18% of the patients and Grade ≥3 was observed in 5%. Prior transurethral resection of the prostate (p = 0.013) and bladder D50 ≥1.19 Gy (p = 0.014) were associated with increased Grade ≥2 urinary complications; age ≥70 (p = 0.05) was associated with Grade ≥3 urinary complications. Late Grade ≥2 gastrointestinal toxicity was observed in 9% of the patients and Grade ≥3 in 1.5%. CTV size ≥35.8 cc (p = 0.007) and D100 ≥3.05 Gy (p = 0.01) were significant for increased Grade ≥2 complications. The 5-year and 9-year biochemical relapse-free survival (nadir + 2) rates were 85.1% and 75.7%, respectively. Patients with Gleason score of 7–10 had a decreased biochemical relapse-free survival (p = 0.007). Conclusions: Intermediate-term results at the 5-year time point indicate a favorable outcome without an increase in the rate of late complications.

  9. Physical and cellular radiobiological properties of heavy ions in relation to cancer therapy applications

    International Nuclear Information System (INIS)

    A variety of experiments have been carried out in vitro on several mammalian cell lines with carbon, neon, silicon and argon beams at 14 and 24 cm depth penetration. The results of these experiments substantiate the conceptual basis for physical and radiobiological advantages of accelerated heavy-ion beams in cancer therapy. The best biologically effective depth dose ratio for situations corresponding to therapy needs can be obtained with accelerated carbon beams. The depression of the oxygen effect with silicon or argon ion beams is greater than that achievable with neutrons or pions, or with heavy ions of lower atomic number

  10. Risk of Second Cancers According to Radiation Therapy Technique and Modality in Prostate Cancer Survivors

    Energy Technology Data Exchange (ETDEWEB)

    Berrington de Gonzalez, Amy, E-mail: berringtona@mail.nih.gov [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Wong, Jeannette; Kleinerman, Ruth; Kim, Clara; Morton, Lindsay [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Bekelman, Justin E. [Department of Radiation Oncology, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2015-02-01

    Purpose: Radiation therapy (RT) techniques for prostate cancer are evolving rapidly, but the impact of these changes on risk of second cancers, which are an uncommon but serious consequence of RT, are uncertain. We conducted a comprehensive assessment of risks of second cancer according to RT technique (>10 MV vs ≤10 MV and 3-dimensional [3D] vs 2D RT) and modality (external beam RT, brachytherapy, and combined modes) in a large cohort of prostate cancer patients. Methods and Materials: The cohort was constructed using the Surveillance Epidemiology and End Results-Medicare database. We included cases of prostate cancer diagnosed in patients 66 to 84 years of age from 1992 to 2004 and followed through 2009. We used Poisson regression analysis to compare rates of second cancer across RT groups with adjustment for age, follow-up, chemotherapy, hormone therapy, and comorbidities. Analyses of second solid cancers were based on the number of 5-year survivors (n=38,733), and analyses of leukemia were based on number of 2-year survivors (n=52,515) to account for the minimum latency period for radiation-related cancer. Results: During an average of 4.4 years' follow-up among 5-year prostate cancer survivors (2DRT = 5.5 years; 3DRT = 3.9 years; and brachytherapy = 2.7 years), 2933 second solid cancers were diagnosed. There were no significant differences in second solid cancer rates overall between 3DRT and 2DRT patients (relative risk [RR] = 1.00, 95% confidence interval [CI]: 0.91-1.09), but second rectal cancer rates were significantly lower after 3DRT (RR = 0.59, 95% CI: 0.40-0.88). Rates of second solid cancers for higher- and lower-energy RT were similar overall (RR = 0.97, 95% CI: 0.89-1.06), as were rates for site-specific cancers. There were significant reductions in colon cancer and leukemia rates in the first decade after brachytherapy compared to those after external beam RT. Conclusions: Advanced treatment planning may have reduced rectal

  11. Radiation dermatitis following electron beam therapy

    International Nuclear Information System (INIS)

    Ten patients, who had been treated for mycosis fungoides with electron beam radiation ten or more years previously, were examined for signs of radiation dermatitis. Although most patients had had acute radiation dermatitis, only a few manifested signs of mild chronic changes after having received between 1,000 and 2,800 rads

  12. Radiation dermatitis following electron beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Price, N.M.

    1978-01-01

    Ten patients, who had been treated for mycosis fungoides with electron beam radiation ten or more years previously, were examined for signs of radiation dermatitis. Although most patients had had acute radiation dermatitis, only a few manifested signs of mild chronic changes after having received between 1,000 and 2,800 rads.

  13. Therapy for bone metastasis from different cancers

    Institute of Scientific and Technical Information of China (English)

    Zheng Zhang; Peng Tan; Baoguo Mi; Chao Song; Yi Deng; Hanfeng Guan

    2016-01-01

    The bone is the most common target organ of cancer metastasis. Bone metastasis leads to considerable morbidity due to skeletal-related events (SREs). These include bone pain, hypercalcemia, pathologic frac-tures, and compression of the spinal cord. Cancers such as those of the lung, breast, prostate, and kidney are more likely to cause SREs than other cancer types. Additionaly, some blood cancers, including multiple myeloma and lymphoma, frequently cause SREs. In this article, we review the conventional therapies for metastatic bone disease, including drug therapy, radiotherapy, and surgery. Among osteoclast-targeting agents, bisphosphonates and nuclear factor kappa-B ligand inhibitors are the most widely used agents to prevent cancer-related bone loss. Unsealed radioisotopes are also considered promising in cancer therapy. Currently, iodine-131, strontium-89, and radium-223 are available for the treatment of bone metastasis. However, the treatments for blood cancers with SREs are diferent from those of other cancers. In those cases, new classes of agents including proteasome inhibitors, immunomodulatory drugs, monoclonal anti-bodies, and histone deacetylase inhibitors have shown remarkable eficacy. We also discuss the potential development of new therapies for these diseases.

  14. Biologic therapies for advanced pancreatic cancer.

    Science.gov (United States)

    He, Aiwu Ruth; Lindenberg, Andreas Peter; Marshall, John Lindsay

    2008-08-01

    Patients with metastatic pancreatic cancer have poor prognosis and short survival due to lack of effective therapy and aggressiveness of the disease. Pancreatic cancer has widespread chromosomal instability, including a high rate of translocations and deletions. Upregulated EGF signaling and mutation of K-RAS are found in most pancreatic cancers. Therefore, inhibitors that target EGF receptor, K-RAS, RAF, MEK, mTOR, VEGF and PDGF, for example, have been evaluated in patients with pancreatic cancer. Although significant activities of these inhibitors have not been observed in the majority of pancreatic cancer patients, an enormous amount of experience and knowledge has been obtained from recent clinical trials. With a better inhibitor or combination of inhibitors, and improvement in the selection of patients for available inhibitors, better therapy for pancreatic cancer is on the horizon.

  15. Targeted Therapies in Epithelial Ovarian Cancer

    OpenAIRE

    Jurjees Hasan; Loaie El-Helw; Emma Dean

    2010-01-01

    Molecularly targeted therapy is relatively new to ovarian cancer despite the unquestionable success with these agents in other solid tumours such as breast and colorectal cancer. Advanced ovarian cancer is chemosensitive and patients can survive several years on treatment. However chemotherapy diminishes in efficacy over time whilst toxicities persist. Newer biological agents that target explicit molecular pathways and lack specific chemotherapy toxicities such as myelosuppression offer the a...

  16. Network systems biology for targeted cancer therapies

    Institute of Scientific and Technical Information of China (English)

    Ting-Ting Zhou

    2012-01-01

    The era of targeted cancer therapies has arrived.However,due to the complexity of biological systems,the current progress is far from enough.From biological network modeling to structural/dynamic network analysis,network systems biology provides unique insight into the potential mechanisms underlying the growth and progression of cancer cells.It has also introduced great changes into the research paradigm of cancer-associated drug discovery and drug resistance.

  17. Future Directions in Pancreatic Cancer Therapy

    Directory of Open Access Journals (Sweden)

    David Orchard-Webb

    2015-05-01

    Full Text Available Pancreatic cancer is a major disease burden that is essentially incurable at present. However significant understanding of the molecular basis of pancreatic cancer has been achieved through sequencing. This is allowing the rational design of therapeutics. The purpose of this review is to introduce the molecular basis of pancreatic cancer, explain the current state of molecular therapy and provide examples of the ongoing developments. These include improvements in chemotherapy, small molecule inhibitors, vaccines, immune checkpoint antibodies, and oncolytics.

  18. Target motion variability and on-line positioning accuracy during external-beam radiation therapy of prostate cancer with an endorectal balloon device

    Energy Technology Data Exchange (ETDEWEB)

    El-Bassiouni, M. [Radiation Oncology, Zurich Univ. Hospital, Univ. of Zurich (Switzerland); Dept. of Clinical Oncology (NEMROCK), Cairo Univ. Hospitals, Cairo (Egypt); Davis, J.B.; Studer, G.M.; Luetolf, U.M.; Ciernik, I.F. [Radiation Oncology, Zurich Univ. Hospital, Univ. of Zurich (Switzerland); El-Attar, I. [Dept. of Epidemiology and Statistics, National Cancer Inst. (NCI), Univ. of Cairo (Egypt)

    2006-09-15

    Purpose: to prospectively define the setup error and the interfraction prostate localization accuracy of the planning target volume (PTV) in the presence of an endorectal balloon (ERB) device. Patients and methods: weekly portal images (PIs) of 15 patients undergoing external-beam radiotherapy were analyzed. Displacements of the isocenter and the center of the ERB were measured. The setup and target motion variability were assessed with regard to the position variability of the ERB. Results: the setup error was random and target motion variability was largest in the craniocaudal direction. The mean displacement of the isocenter was 2.1 mm ({+-} 1.2 mm SD [standard deviation]), 2.4 mm ({+-} 2.2 mm SD), and 3.8 mm ({+-} 4.0 mm SD) in the left-right, craniocaudal, and anteroposterior directions, respectively (p = 0.1). The mean displacement of the ERB was 2.0 mm ({+-} 1.4 mm SD), 4.1 mm ({+-} 2.0 mm SD), and 3.8 mm ({+-} 3.3 mm SD; p = 0.03). Setup margin and internal margin contributed equally to the PTV margin. Cumulative placement insecurity of the field and the ERB together was 4.0 mm ({+-} 2.1 mm SD) laterally, 6.4 mm ({+-} 2.5 mm SD) craniocaudally, and 7.7 mm ({+-} 7.0 mm SD) anteroposteriorly. The 95% CIs (confidence intervals) were 2.9-5.2 mm, 5.1-7.8 mm, and 3.8-11.5 mm. In 35% of cases, the estimation of the dorsal margin exceeded 1 cm. Conclusion: margin estimate dorsally may exceed 1 cm and on-line position verification with an ERB cannot be recommended for dose escalation > 70 Gy. (orig.)

  19. Radiation Therapy for Skin Cancer

    Science.gov (United States)

    ... skin cells called melanocytes that produce skin color ( melanin ). Radiation therapy is used mostly for melanomas that ... in addition to surgery, chemotherapy or biologic therapy. Hair Epidermis Dermis Subcutaneous Hair Follicle Vein Artery © ASTRO ...

  20. Particle beam radiation therapy:re-introducing the future

    Institute of Scientific and Technical Information of China (English)

    Omar Abdel-Rahman

    2014-01-01

    Particle radiation therapy is an exciting area of radiotherapy basic and clinical researches. The majority of particle radiotherapy work is being done with proton beams having essential y the same radiobiologic properties as conventional photon/electron radiation but al owing a much more precise control of the radiation dose distribution. However, other charged particles are also playing an increasing role, like neutrons. In this review article we wil summarize the data related to basic and clinical experiences related to particle beam radiation therapy.

  1. Unilateral radiotherapy for tonsil cancer: Potential dose distribution optimization with a simple two-field intensity-modulated radiation therapy beam arrangement

    International Nuclear Information System (INIS)

    Background and purpose: To evaluate the feasibility and dosimetric optimization potential of a unilateral two-field intensity-modulated radiotherapy (IMRT) technique in the curative treatment of lateralized tonsil cancer. Materials and methods: Six patients with lateralized tonsillar carcinoma were treated unilaterally with a two-field IMRT technique (oblique-anterior and oblique-posterior fields, with or without collimator and couch rotation). Alternative IMRT plans using seven non-opposed coplanar fields were compared with the two-field plans for each patient. Results: Planning target volume (PTV) coverage was excellent with the two-field technique, using a relatively low number of monitor units (MU) (median, 441; range, 309-550). Dose constraints were respected for all organs at risk (OAR). Mean doses to contralateral parotid and submandibular glands were 3.9 and 17.7 Gy, respectively. Seven-field IMRT provided similar PTV coverage, with statistically significant better dose homogeneity and conformality. However, the mean delivered dose to the contralateral parotid (3.9 vs. 9.0 Gy, p = 0.001) as well as the mean number of MU (437 vs. 814, p = 0.002) and consequently machine time were lower with two-field IMRT. Conclusions: Unilateral two-field IMRT is a simple and feasible technique providing excellent tumor coverage and optimal OAR sparing while reducing the number of MU and treatment time.

  2. Post-chemoradiation intraoperative electron-beam radiation therapy boost in resected locally advanced rectal cancer: Long-term results focused on topographic pattern of locoregional relapse

    International Nuclear Information System (INIS)

    Background: Patients with locally advanced rectal cancer (LARC) have a dismal prognosis. We investigated outcomes and risk factors for locoregional recurrence (LRR) in patients treated with preoperative chemoradiotherapy (CRT), surgery and IOERT. Methods: A total of 335 patients with LARC [⩾cT3 93% and/or cN+ 69%) were studied. In multivariate analyses, risk factors for LRR, IFLR and OFLR were assessed. Results: Median follow-up was 72.6 months (range, 4–205). In multivariate analysis distal margin distance ⩽10 mm [HR 2.46, p = 0.03], R1 resection [HR 5.06, p = 0.02], tumor regression grade 1–2 [HR 2.63, p = 0.05] and tumor grade 3 [HR 7.79, p < 0.001] were associated with an increased risk of LRR. A risk model was generated to determine a prognostic index for individual patients with LARC. Conclusions: Overall results after multimodality treatment of LARC are promising. Classification of risk factors for LRR has contributed to propose a prognostic index that could allow us to guide risk-adapted tailored treatment

  3. Dance as a therapy for cancer prevention.

    Science.gov (United States)

    Aktas, Gurbuz; Ogce, Filiz

    2005-01-01

    Even though the field of medicine has developed tremendously, the wide variety of cancer is still among chronic and life threatening disease today. Therefore, the specialists constantly research and try every possible way to find cure or preventive ways to stop its further development. For this reason, studies concerning the chronic disease such as cancer have been spread to many different fields. In this regard, many other alternative ways besides medicine, are used in prevention of cancer. Nutritional therapy, herbal therapy, sportive activities, art therapy, music therapy, dance therapy, imagery, yoga and acupuncture can be given as examples. Among these, dance/movement therapy which deals with individuals physical, emotional, cognitive as well as social integration is widely used as a popular form of physical activity. The physical benefits of dance therapy as exercise are well documented. Studies have shown that physical activity is known to increase special neurotransmitter substances in the brain (endorphins), which create a state of well-being. And total body movement such as dance enhances the functions of other body systems, such as circulatory, respiratory, skeletal, and muscular systems. Regarding its unique connection to the field of medicine, many researches have been undertaken on the effects of dance/movement therapy in special settings with physical problems such as amputations, traumatic brain injury, and stroke, chronic illnesses such as anorexia, bulimia, cancer, Alzheimer's disease, cystic fibrosis, heart disease, diabetes, asthma, AIDS, and arthritis. Today dance/movement therapy is a well recognized form of complementary therapy used in hospitals as well as at the comprehensive clinical cancer centres. PMID:16236009

  4. Energy verification in Ion Beam Therapy

    CERN Document Server

    Moser, F; Dorda, U

    2011-01-01

    The adoption of synchrotrons for medical applications necessitates a comprehensive on-line verification of all beam parameters, autonomous of common beam monitors. In particular for energy verification, the required precision of down to 0.1MeV in absolute terms, poses a special challenge regarding the betatron-core driven 3rd order extraction mechanism which is intended to be used at MedAustron [1]. Two different energy verification options have been studied and their limiting factors were investigated: 1) A time-of-flight measurement in the synchrotron, limited by the orbit circumference information and measurement duration as well as extraction uncertainties. 2) A calorimeter-style system in the extraction line, limited by radiation hardness and statistical fluctuations. The paper discusses in detail the benefits and specific aspects of each method.

  5. Electron beam therapy of mycosis fungoides

    International Nuclear Information System (INIS)

    Sixteen patients with mycosis fungoides were treated with a 3.3 MeV skin electron beam to a dose of 30 Gy over 40 days. Nine patients achieved a complete remission which was generally short. Only two patients remained free of disease one year following treatment. All patients received palliative benefit from treatment, but no significant increase in survival can be anticipated. (Auth.)

  6. Functionalized nanobodies for cancer therapy

    NARCIS (Netherlands)

    van Vught, R.W.M.

    2014-01-01

    Cancer treatment is complicated by the high similarity between cancerous and healthy tissue. New anti-cancer drugs, the monoclonal antibodies, act on one specific molecule/process and thereby minimize side effects. Despite that these monoclonal antibodies are highly specific and harbor multiple mode

  7. [Gene therapy with cytokines against cervical cancer].

    Science.gov (United States)

    Bermúdez-Morales, Victor Hugo; Peralta-Zaragoza, Oscar; Madrid-Marina, Vicente

    2005-01-01

    Gene therapy is an excellent alternative for treatment of many diseases. Capacity to manipulate the DNA has allowed direct the gene therapy to correct the function of an altered gene, to increase the expression of a gene and to favour the activation of the immune response. This way, it can intend the use of the DNA like medication able to control, to correct or to cure many diseases. Gene therapy against cancer has an enormous potential, and actually the use of the DNA has increased to control diverse cancer in animal models, with very encouraging results that have allowed its applications in experimental protocols in human. This work concentrates a review of the foundations of the gene therapy and its application on cervical cancer, from the point of view of the alterations of the immune system focused on the tumour micro-environment, and the use of the cytokines as immunomodulators. PMID:16983992

  8. Optimizing systemic therapy for bladder cancer.

    Science.gov (United States)

    Pal, Sumanta K; Milowsky, Matthew I; Plimack, Elizabeth R

    2013-07-01

    Over the past several decades, few new systemic agents have been incorporated into the treatment paradigm for bladder cancer. Platinum-based therapy remains the cornerstone of treatment in the perioperative and metastatic settings. Despite level one evidence, use of cisplatin-based therapy in the neoadjuvant setting has been dismal. Second-line therapy for metastatic disease has only modest activity with no survival benefit. However, the elucidation and investigation of novel molecular targets, new therapeutics, and associated biomarkers with strong biologic rationale are actively changing the landscape in bladder cancer. Although the field is moving rapidly, no new drug approvals are currently pending and a need remains to continue to educate the medical oncology and urology communities on the optimal use of currently available treatments. This article outlines the evidence, including that from prospective studies and meta-analyses, providing the basis for the current recommendations from NCCN, and details previous and ongoing studies of targeted therapy for bladder cancer.

  9. Cognitive Behavioral Therapy in Cancer Patients

    Directory of Open Access Journals (Sweden)

    Cem Soylu

    2014-09-01

    Full Text Available Cognitive behavioral therapy is one of the structured but flexible psychosocial interventions that could be applied to patients with cancer. In many studies the positive effects of cognitive behavioral therapy in reducing psychological morbidity and improving the quality of life of cancer patients have been shown. In this article, the contents and techniques of adapted cognitive behavioral therapy for patients with cancer and its effectiveness in commonly seen psychiatric disorders have been reviewed. The aim of this article is to contribute positively to physicians and nurses in Turkey for early detection of psychological distress and referral to the therapist that would clearly increase the quality of life of cancer patients. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2014; 6(3.000: 257-270

  10. Focal Therapy, Differential Therapy, and Radiation Treatment for Prostate Cancer

    OpenAIRE

    Jain, Anudh K.; Ennis, Ronald D

    2012-01-01

    Focal and differential therapy represent an approach to improve the therapeutic ratio of prostate cancer treatments. This concept is a shift from treating the whole gland to intensely treating the portion of the gland that contains significant tumor. However, there are many challenges in the move towards focal approaches. Defining which patients are suitable candidates for focal therapy approaches is an area of significant controversy, and it is likely that additional data from imaging or det...

  11. Laser-Driven Very High Energy Electron/Photon Beam Radiation Therapy in Conjunction with a Robotic System

    Directory of Open Access Journals (Sweden)

    Kazuhisa Nakajima

    2014-12-01

    Full Text Available We present a new external-beam radiation therapy system using very-high-energy (VHE electron/photon beams generated by a centimeter-scale laser plasma accelerator built in a robotic system. Most types of external-beam radiation therapy are delivered using a machine called a medical linear accelerator driven by radio frequency (RF power amplifiers, producing electron beams with an energy range of 6–20 MeV, in conjunction with modern radiation therapy technologies for effective shaping of three-dimensional dose distributions and spatially accurate dose delivery with imaging verification. However, the limited penetration depth and low quality of the transverse penumbra at such electron beams delivered from the present RF linear accelerators prevent the implementation of advanced modalities in current cancer treatments. These drawbacks can be overcome if the electron energy is increased to above 50 MeV. To overcome the disadvantages of the present RF-based medical accelerators, harnessing recent advancement of laser-driven plasma accelerators capable of producing 1-GeV electron beams in a 1-cm gas cell, we propose a new embodiment of the external-beam radiation therapy robotic system delivering very high-energy electron/photon beams with an energy of 50–250 MeV; it is more compact, less expensive, and has a simpler operation and higher performance in comparison with the current radiation therapy system.

  12. Radiosensitivity of cancer cells against carbon-ion beams in an aspect of the p53 gene status

    International Nuclear Information System (INIS)

    We can easily understand that radiation sensitivities of cancer cells are dependent on the status of cancer-related genes. It is important to clarify which genes affect radiation sensitivity and reflect the effectiveness of radiation therapy for cancer cells. We have studied about the function of a tumor suppressor gene of p53, because p53 controls apoptosis, cell cycle and DNA repair from an aspect of important roles in cell fate. By analysis of function of p53 gene, therefore, we aim to predict the therapeutic effectiveness and to select the modalities of cancer therapies such as radiotherapy, chemotherapy and hyperthermia. As a final goal, we want to accept the most effective therapy, namely tailor-made cancer therapy, for each patient. Here, we introduce that carbon-beam therapy induced the expression of p53-independent apoptosis-related genes and NO radicals in mutated p53 cancer cells. (author)

  13. Oncological results, functional outcomes and health-related quality-of-life in men who received a radical prostatectomy or external beam radiation therapy for localized prostate cancer: a study on long-term patient outcome with risk stratification

    Institute of Scientific and Technical Information of China (English)

    Itsuhiro Takizawa; Noboru Hara; Tsutomu Nishiyama; Masaaki Kaneko; Tatsuhiko Hoshii; Emiko Tsuchida; Kota Takahashi

    2009-01-01

    Health-related quality-of-life (HRQOL) after a radical prostatectomy (RP) or external beam radiation therapy (EBRT) has not been studied in conjunction with oncological outcomes in relation to disease risk stratification. Moreover, the long-term outcomes of these treatment approaches have not been studied. We retrospectively analyzed ontological outcomes between consecutive patients receiving RP (n=86) and EBRT (n=76) for localized prostate cancer. HRQOL and functional outcomes could be assessed in 62 RP (79%) and 54 EBRT (79%) patients over a 3-year follow-up period (median: 41 months) using the Medical Outcomes Study Short Form-36 (SF-36) and the University of California Los Angeles Prostate Cancer Index (UCLA PCI). The 5-year biochemical progression-free survival did not differ between the RP and EBRT groups for low-risk (74.6% vs. 75.0%, P=0.931) and intermediate-risk (61.3% vs. 71.1%, P=0.691) patients. For high-risk patients, progression-free survival was lower in the RP group (45.1%) than in the EBRT group (79.7%) (P=0.002). The general HRQOL was comparable between the two groups. Regarding functional outcomes, the RP group reported lower scores on urinary function and less urinary bother and sexual bother than the EBRT group (P<0.001, P<0.05 and P<0.001, respectively). With risk stratification, the low-and intermediate-risk patients in the RP group reported poorer urinary function than patients in the EBRT group (P<0.001 for each). The sexual function of the high-risk patients in the EBRT group was better than that of the same risk RP patients (P<0.001). Biochemical recurrence was not associated with the UCLA PCI score in either group. In conclusion, low- to intermediate-risk patients treated with an RP may report relatively decreased urinary function during long-term follow-up. The patient's HRQOL after treatment did not depend on biochemical recurrence.

  14. Cherenkov imaging during volumetric modulated arc therapy for real-time radiation beam tracking and treatment response monitoring

    Science.gov (United States)

    Andreozzi, Jacqueline M.; Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.

    2016-03-01

    External beam radiotherapy utilizes high energy radiation to target cancer with dynamic, patient-specific treatment plans. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high energy beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to track the radiation beam on the surface of the patient in real-time, even for complex cases such as volumetric modulated arc therapy (VMAT). Two patients undergoing VMAT of the head and neck were imaged and analyzed, and the viability of the system to provide clinical feedback was established.

  15. Intermediate Megavoltage Photon Beams for Improved Lung Cancer Treatments

    OpenAIRE

    Zhang, Ying; Feng, Yuanming; Ahmad, Munir; Ming, Xin; Zhou, Li; Deng, Jun

    2015-01-01

    The goal of this study is to evaluate the effects of intermediate megavoltage (3-MV) photon beams on SBRT lung cancer treatments. To start with, a 3-MV virtual beam was commissioned on a commercial treatment planning system based on Monte Carlo simulations. Three optimized plans (6-MV, 3-MV and dual energy of 3- and 6-MV) were generated for 31 lung cancer patients with identical beam configuration and optimization constraints for each patient. Dosimetric metrics were evaluated and compared am...

  16. Radionuclide molecular target therapy for lung cancer

    International Nuclear Information System (INIS)

    Lung cancer harms people's health or even lives severely. Currently, the morbidity and mortality of lung cancer are ascending all over the world. Accounting for 38.08% of malignant tumor caused death in male and 16% in female in cities,ranking top in both sex. Especially, the therapy of non-small cell lung cancer has not been obviously improved for many years. Recently, sodium/iodide transporter gene transfection and the therapy of molecular target drugs mediated radionuclide are being taken into account and become the new research directions in treatment of advanced lung cancer patients with the development of technology and theory for medical molecular biology and the new knowledge of lung cancer's pathogenesis. (authors)

  17. Reactive oxygen species in redox cancer therapy.

    Science.gov (United States)

    Tong, Lingying; Chuang, Chia-Chen; Wu, Shiyong; Zuo, Li

    2015-10-10

    The role of reactive oxygen species (ROS) in cancer cells has been intensively studied for the past two decades. Cancer cells mostly have higher basal ROS levels than their normal counterparts. The induction of ROS has been shown to be associated with cancer development, metastasis, progression, and survival. Various therapeutic approaches targeting intracellular ROS levels have yielded mixed results. As widely accepted dietary supplements, antioxidants demonstrate both ROS scavenging ability and anti-cancer characteristics. However, antioxidants may not always be safe to use since excessive intake of antioxidants could lead to serious health concerns. In this review, we have evaluated the production and scavenging systems of ROS in cells, as well as the beneficial and harmful roles of ROS in cancer cells. We also examine the effect of antioxidants in cancer treatment, the effect of combined treatment of antioxidants with traditional cancer therapies, and the side effects of excessive antioxidant intake.

  18. Hyperbaric Oxygen Therapy in Treating Long-Term Gastrointestinal Adverse Effects Caused by Radiation Therapy in Patients With Pelvic Cancer

    Science.gov (United States)

    2011-07-14

    Bladder Cancer; Cervical Cancer; Colorectal Cancer; Endometrial Cancer; Gastrointestinal Complications; Long-term Effects Secondary to Cancer Therapy in Adults; Ovarian Cancer; Prostate Cancer; Radiation Toxicity; Sarcoma; Testicular Germ Cell Tumor; Vaginal Cancer

  19. Ganetespib radiosensitization for liver cancer therapy

    Science.gov (United States)

    Chettiar, Sivarajan T.; Malek, Reem; Annadanam, Anvesh; Nugent, Katriana M.; Kato, Yoshinori; Wang, Hailun; Cades, Jessica A.; Taparra, Kekoa; Belcaid, Zineb; Ballew, Matthew; Manmiller, Sarah; Proia, David; Lim, Michael; Anders, Robert A.; Herman, Joseph M.; Tran, Phuoc T.

    2016-01-01

    ABSTRACT Therapies for liver cancer particularly those including radiation are still inadequate. Inhibiting the stress response machinery is an appealing anti-cancer and radiosensitizing therapeutic strategy. Heat-shock-protein-90 (HSP90) is a molecular chaperone that is a prominent effector of the stress response machinery and is overexpressed in liver cancer cells. HSP90 client proteins include critical components of pathways implicated in liver cancer cell survival and radioresistance. The effects of a novel non-geldanamycin HSP90 inhibitor, ganetespib, combined with radiation were examined on 3 liver cancer cell lines, Hep3b, HepG2 and HUH7, using in vitro assays for clonogenic survival, apoptosis, cell cycle distribution, γH2AX foci kinetics and client protein expression in pathways important for liver cancer survival and radioresistance. We then evaluated tumor growth delay and effects of the combined ganetespib-radiation treatment on tumor cell proliferation in a HepG2 hind-flank tumor graft model. Nanomolar levels of ganetespib alone exhibited liver cancer cell anti-cancer activity in vitro as shown by decreased clonogenic survival that was associated with increased apoptotic cell death, prominent G2-M arrest and marked changes in PI3K/AKT/mTOR and RAS/MAPK client protein activity. Ganetespib caused a supra-additive radiosensitization in all liver cancer cell lines at low nanomolar doses with enhancement ratios between 1.33–1.78. These results were confirmed in vivo, where the ganetespib-radiation combination therapy produced supra-additive tumor growth delay compared with either therapy by itself in HepG2 tumor grafts. Our data suggest that combined ganetespib-radiation therapy exhibits promising activity against liver cancer cells, which should be investigated in clinical studies. PMID:26980196

  20. Estrogen therapy in gynecological cancer survivors.

    Science.gov (United States)

    Guidozzi, F

    2013-12-01

    Treatment of gynecological cancer has significant impact on a woman's quality of life because it commonly includes removal of the uterus and ovaries, both being the core of a woman's femininity, whilst irradiation and chemotherapy, be they as primary therapy or when indicated as postoperative adjuvant therapy, will lead to ablation of ovarian function if the ovaries had not been removed. This will lead to an acute onset of menopausal symptoms, which may be more debilitating than those occurring as a result of natural aging, and of which hot flushes, night sweats, insomnia, mood swings, vaginal dryness, decreased libido, malaise and a general feeling of apathy are the most common. About 25% of gynecological cancers will occur in pre- and perimenopausal women, a large percentage of whom will become menopausal as a result of their treatment. There are also the gynecological cancer survivors who are not rendered menopausal as a result of the treatment strategy but who will become menopausal because of natural aging. Concern among the medical attendants of these women is whether use of estrogen therapy or estrogen and progestogens for their menopausal symptoms will reactivate tumor deposits and therefore increase the rate of recurrence and, as a result, decrease overall survival among these women. Yet the data that are available do not support this concern. There are eight retrospective studies and only one randomized study that have analyzed outcome in endometrial cancer survivors who used hormone therapy after their surgery, whilst, among ovarian cancer survivors, there are four retrospective studies and one randomized study. The studies do suffer from small numbers and, although the studies pertaining to endometrial cancer analyze mostly women with early-stage disease, a number of the studies in both the endometrial and ovarian cancer survivors do have a sizeable follow-up. These studies seem to support that estrogen therapy after the treatment for gynecological

  1. ERK/p38 MAPK inhibition reduces radio-resistance to a pulsed proton beam in breast cancer stem cells

    Science.gov (United States)

    Jung, Myung-Hwan; Park, Jeong Chan

    2015-10-01

    Recent studies have identified highly tumorigenic cells with stem cell-like characteristics, termed cancer stem cells (CSCs) in human cancers. CSCs are resistant to conventional radiotherapy and chemotherapy owing to their high DNA repair ability and oncogene overexpression. However, the mechanisms regulating CSC radio-resistance, particularly proton beam resistance, remain unclear. We isolated CSCs from the breast cancer cell lines MCF-7 and MDA-MB-231, which expressed the characteristic breast CSC membrane protein markers CD44+/CD24-/ low , and irradiated the CSCs with pulsed proton beams. We confirmed that CSCs were resistant to pulsed proton beams and showed that treatment with p38 and ERK inhibitors reduced CSC radio-resistance. Based on these results, BCSC radio-resistance can be reduced during proton beam therapy by co-treatment with ERK1/2 or p38 inhibitors, a novel approach to breast cancer therapy.

  2. Controls and Beam Diagnostics for Therapy-Accelerators

    CERN Document Server

    Eickhoff, H

    2000-01-01

    During the last four years GSI has developed a new procedure for cancer treatment by means of the intensity controlled rasterscan-method. This method includes active variations of beam parameters during the treatment session and the integration of 'on-line' PET monitoring. Starting in 1997 several patients have been successfully treated within this GSI experimental cancer treatment program; within this program about 350 patients shall be treated in the next 5 years. The developments and experiences of this program accompanied by intensive discussions with the medical community led to a proposal for a hospital based light ion accelerator facility for the clinic in Heidelberg. An essential part for patients treatments is the measurement of the beam properties within acceptance and constancy tests and especially for the rasterscan method during the treatment sessions. The presented description of the accelerator controls and beam diagnostic devices mainly covers the requests for the active scanning method, which...

  3. Radionuclide therapy for thyroid cancer with nervous system metastasis

    International Nuclear Information System (INIS)

    Differentiated thyroid cancer is 85% of all thyroid cancer, and is known to have good prognosis with proper surgery and radioiodine therapy. But 4% of papillary carcinoma and 36% of follicular carcinoma present with distant metastasis. Even if the patient had distant metastasis, total thyroidectomy and radioiodine therapy show good response. Forty seven percent of bone metastases are found in the initial diagnosis, in which vertebral metastases is 29%, pelvic metastases 22%. The metastases to vertebrae often combine spinal cord compression, making it difficult to deliver enough radiation dose to the lesion with radioiodine or external beam irradiation. Brain metastases is found in less than 1% of thyroid cancer, and is also difficult to cure. In Korea Cancer Center Hospital, from 1997 to 2002, we analyzed 437 patients with thyroid cancer who were treated with radioiodine after total thyroidectomy. There were four patients with brain metastases, and 32 patients with vertebral metastases. In four patients with brain metastases, one patient, who also had bone metastases, received high dose radioiodine therapy after total thyroidectomy, and is alive for more than 15 months. Another patients received total thyroidectomy, radioiodine therapy and external irradiation therapy, and survived 22 months. Two patients refused further treatment and died in one month. I-131 uptake in the metastatic lesion in brain is reported to be 17%, and multimodality therapy with surgery, radioiodine therapy, external irradiation and chemotherapy may improve the prognosis. In 32 patients with vertebral metastases, 19 patients (59.4%) showed I-131 uptake after high dose radioiodine therapy, and 5 year survival rate was 65.8%. 13 patients without I-131 uptake after radioiodine therapy had 26.9% of 5 year survival rate. In 11 patients with spinal cord compression, 7 patients received high dose radioiodine therapy and external irradiation after total thyroidectomy and spinal surgery, and six

  4. Salvage HIFU for biopsy confirmed local prostate cancer recurrence after radical prostatectomy and radiation therapy: Case report and literature review.

    Science.gov (United States)

    Rittberg, Rebekah; Kroczak, Tadeusz; Fleshner, Neil; Drachenberg, Darrel

    2015-01-01

    High-intensity focused ultrasound (HIFU) is a treatment option for low- and intermediate-risk prostate cancer and more recently has been used as salvage therapy after failed radiation therapy. We present a case of local recurrence with biochemical failure after radical prostatectomy and salvage external beam radiation therapy with salvage HIFU without biochemical recurrence at 20 months. PMID:26425239

  5. Salvage HIFU for biopsy confirmed local prostate cancer recurrence after radical prostatectomy and radiation therapy: Case report and literature review

    OpenAIRE

    Rittberg, Rebekah; Kroczak, Tadeusz; Fleshner, Neil; Drachenberg, Darrel

    2015-01-01

    High-intensity focused ultrasound (HIFU) is a treatment option for low- and intermediate-risk prostate cancer and more recently has been used as salvage therapy after failed radiation therapy. We present a case of local recurrence with biochemical failure after radical prostatectomy and salvage external beam radiation therapy with salvage HIFU without biochemical recurrence at 20 months.

  6. Epigenetic Therapy in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Stephen V Liu

    2013-05-01

    Full Text Available Epigenetic dysregulation of gene function has been strongly implicated in carcinogenesis and is one of the mechanisms contributing to the development of lung cancer. The inherent reversibility of epigenetic alterations makes them viable therapeutic targets. Here, we review the therapeutic implications of epigenetic changes in lung cancer, and recent advances in therapeutic strategies targeting DNA methylation and histone acetylation.

  7. Epigenetic Therapy in Lung Cancer

    OpenAIRE

    Liu, Stephen V.; Fabbri, Muller; Gitlitz, Barbara J.; Laird-Offringa, Ite A.

    2013-01-01

    Epigenetic deregulation of gene function has been strongly implicated in carcinogenesis and is one of the mechanisms contributing to the development of lung cancer. The inherent reversibility of epigenetic alterations makes them viable therapeutic targets. Here, we review the therapeutic implications of epigenetic changes in lung cancer, and recent advances in therapeutic strategies targeting DNA methylation and histone acetylation.

  8. Translational Approaches towards Cancer Gene Therapy: Hurdles and Hopes

    OpenAIRE

    Yadollah Omidi; Jaleh Barar

    2012-01-01

    Introduction: Of the cancer gene therapy approaches, gene silencing, suicide/apoptosis inducing gene therapy, immunogene therapy and targeted gene therapy are deemed to sub­stantially control the biological consequences of genomic changes in cancerous cells. Thus, a large number of clinical trials have been conducted against various malignancies. In this review, we will discuss recent translational progresses of gene and cell therapy of cancer. Methods: Essential information on gene therapy o...

  9. Future of Bacterial Therapy of Cancer.

    Science.gov (United States)

    Hoffman, Robert M

    2016-01-01

    Bacterial therapy of cancer has a centuries-long history and was first-line therapy at the hospital in New York City that would become Memorial Sloan-Kettering Cancer Center, under Dr. William B. Coley. However, after Coley's death in 1936, bacterial therapy of cancer ceased in the clinic until the present century. Clinical trials have been recently carried out for strains of the obligate anaerobe Clostridium novyi with the toxin gene deleted, and on an attenuated strain of Salmonella typhimurium (S. typhimurium), which is a facultative anaerobe that can grow in viable, as well as necrotic, areas of tumors, unlike Clostridium, which can only grow in the hypoxic areas. Our laboratory has developed the novel strain S. typhimurium A1-R that is effective against all tumor types in clinically-relevant mouse models, including patient-derived orthotopic xenograft (PDOX) mouse models. This chapter suggests future clinical applications for S. typhimurium A1-R.

  10. Perspectives of the Pixel Detector Timepix for Needs of Ion Beam Therapy

    Science.gov (United States)

    Martišíková, M.; Hartmann, B.; Jäkel, O.; Granja, C.; Jakubek, J.

    2012-08-01

    Radiation therapy with ion beams is a highly precise kind of cancer treatment. In ion beam therapy the finite range of the ion beams in tissue and the increase of ionization density at the end of their path, the Bragg-peak, are exploited. Ions heavier than protons offer in addition increased biological effectiveness and decreased scattering. In this contribution we discuss the potential of a quantum counting and position sensitive semiconductor detector Timepix for its applications in ion beam therapy measurements. It provides high sensitivity and high spatial resolution (pixel pitch 55 μm). The detector, developed by the Medipix Collaboration, consists of a silicon sensor bump bonded to a pixelated readout chip (256 × 256 pixels with 55 μm pitch). An integrated USB-based readout interface together with the Pixelman software enable registering single particles online with 2D-track visualization. The experiments were performed at the Heidelberg Ion Beam Therapy Center (HIT), which is a modern ion beam therapy facility. Patient treatments are performed with proton and carbon ions, which are accelerated by a synchrotron. For dose delivery to the patient an active technique is used: narrow pencil-like beams are scanned over the target volume. The possibility to use the detector for two different applications was investigated: ion spectroscopy and beam delivery monitoring by measurement of secondary charged particles around the patient. During carbon ion therapy, a variety of ion species is created by nuclear fragmentation processes of the primary beam. Since they differ in their biological effectiveness, it is of large interest to measure the ion spectra created under different conditions and to visualize their spatial distribution. The possibility of measurements of ion energy loss in silicon makes Timepix a promising detector for ion-spectroscopic studies in patient-like phantoms. Unpredictable changes in the patient can alter the range of the ion beam in the body

  11. Antiangiogenic gene therapy of cancer: recent developments

    OpenAIRE

    Libutti Steven K; Blazer Dan G; Tandle Anita

    2004-01-01

    Abstract With the role of angiogenesis in tumor growth and progression firmly established, considerable effort has been directed to antiangiogenic therapy as a new modality to treat human cancers. Antiangiogenic agents have recently received much widespread attention but strategies for their optimal use are still being developed. Gene therapy represents an attractive alternative to recombinant protein administration for several reasons. This review evaluates the potential advantages of gene t...

  12. Transcriptional Targeting in Cancer Gene Therapy

    OpenAIRE

    Tracy Robson; David G. Hirst

    2003-01-01

    Cancer gene therapy has been one of the most exciting areas of therapeutic research in the past decade. In this review, we discuss strategies to restrict transcription of transgenes to tumour cells. A range of promoters which are tissue-specific, tumour-specific, or inducible by exogenous agents are presented. Transcriptional targeting should prevent normal tissue toxicities associated with other cancer treatments, such as radiation and chemotherapy. In addition, the specificity of these stra...

  13. Clinical results of proton beam therapy for skull base chordoma

    International Nuclear Information System (INIS)

    Purpose: To evaluate clinical results of proton beam therapy for patients with skull base chordoma. Methods and materials: Thirteen patients with skull base chordoma who were treated with proton beams with or without X-rays at the University of Tsukuba between 1989 and 2000 were retrospectively reviewed. A median total tumor dose of 72.0 Gy (range, 63.0-95.0 Gy) was delivered. The patients were followed for a median period of 69.3 months (range, 14.6-123.4 months). Results: The 5-year local control rate was 46.0%. Cause-specific, overall, and disease-free survival rates at 5 years were 72.2%, 66.7%, and 42.2%, respectively. The local control rate was higher, without statistical significance, for those with preoperative tumors <30 mL. Partial or subtotal tumor removal did not yield better local control rates than for patients who underwent biopsy only as the latest surgery. Conclusion: Proton beam therapy is effective for patients with skull base chordoma, especially for those with small tumors. For a patient with a tumor of <30 mL with no prior treatment, biopsy without tumor removal seems to be appropriate before proton beam therapy

  14. Novel Therapies for Pediatric Cancers

    OpenAIRE

    Macy, Margaret E.; Sawczyn, Kelly K.; Garrington, Timothy P.; Graham, Douglas K.; Gore, Lia

    2008-01-01

    The current high cure rates for children diagnosed with cancer can in part be attributed to emphasis on large cooperative group clinical trials. The significant improvement in pediatric cancer survival over the last few decades is the result of optimized chemotherapy drug dosing, timing, and intensity; however, further alterations in traditional chemotherapy agents are unlikely to produce substantially better outcomes. Furthermore, there remains a subset of patients who have a very poor progn...

  15. Treatment planning, optimization, and beam delivery technqiues for intensity modulated proton therapy

    Science.gov (United States)

    Sengbusch, Evan R.

    Physical properties of proton interactions in matter give them a theoretical advantage over photons in radiation therapy for cancer treatment, but they are seldom used relative to photons. The primary barriers to wider acceptance of proton therapy are the technical feasibility, size, and price of proton therapy systems. Several aspects of the proton therapy landscape are investigated, and new techniques for treatment planning, optimization, and beam delivery are presented. The results of these investigations suggest a means by which proton therapy can be delivered more efficiently, effectively, and to a much larger proportion of eligible patients. An analysis of the existing proton therapy market was performed. Personal interviews with over 30 radiation oncology leaders were conducted with regard to the current and future use of proton therapy. In addition, global proton therapy market projections are presented. The results of these investigations serve as motivation and guidance for the subsequent development of treatment system designs and treatment planning, optimization, and beam delivery methods. A major factor impacting the size and cost of proton treatment systems is the maximum energy of the accelerator. Historically, 250 MeV has been the accepted value, but there is minimal quantitative evidence in the literature that supports this standard. A retrospective study of 100 patients is presented that quantifies the maximum proton kinetic energy requirements for cancer treatment, and the impact of those results with regard to treatment system size, cost, and neutron production is discussed. This study is subsequently expanded to include 100 cranial stereotactic radiosurgery (SRS) patients, and the results are discussed in the context of a proposed dedicated proton SRS treatment system. Finally, novel proton therapy optimization and delivery techniques are presented. Algorithms are developed that optimize treatment plans over beam angle, spot size, spot spacing

  16. Melatonin in pathogenesis and therapy of cancer

    Directory of Open Access Journals (Sweden)

    Ravindra T

    2006-12-01

    Full Text Available Melatonin is a neuroendocrine hormone secreted by the pineal gland to transduce the body′s circadian rhythms. An internal 24 hour time keeping system (biological clock regulated by melatonin, controls the sleep-wake cycle. Melatonin production is a highly conserved evolutionary phenomenon. The indole hormone is synthesized in the pinealocytes derived from photoreceptors. Altered patterns and/or levels of melatonin secretion have been reported to coincide with sleep disorders, jetlag, depression, stress, reproductive activities, some forms of cancer and immunological disorders. Lately, the physiological and pathological role of melatonin has become a priority area of investigation, particularly in breast cancer, melanoma, colon cancer, lung cancer and leukemia. According to the ′melatonin hypothesis′ of cancer, the exposure to light at night (LAN and anthropogenic electric and magnetic fields (EMFs is related to the increased incidence of breast cancer and childhood leukaemia via melatonin disruption. Melatonin′s hypothermic, antioxidant and free radical scavenging properties, attribute it to an immunomodulator and an oncostatic agent as well. Many clinical studies have envisaged the potential therapeutic role of melatonin in various pathophysiological disorders, particularly cancer. A substantial reduction in risk of death and low adverse effects were reported from various randomized controlled trials of melatonin treatment in cancer patients. This review summarizes the physiological significance of melatonin and its potential role in cancer therapy. Furthermore, the article focuses on melatonin hypothesis to represent the cause-effect relationship of the three aspects: EMF, LAN and cancer.

  17. Gene Therapy in Oral Cancer: A Review

    OpenAIRE

    Kumar, M. Sathish; Masthan, K.M.K.; Babu, N. Aravindha; Dash, Kailash Chandra

    2013-01-01

    Gene therapy is the use of DNA as an agent to treat disease. Gene therapy aims at the insertion of a functional gene into the cells of a patient for the correction of an inborn error of metabolism, to alter or repair an acquired genetic abnormality, and to provide new function to the cell. Many experiments have been done with respect to its application in various diseases.Today, most of the gene therapy studies are aimed at cancer and hereditary diseases which are linked to genetic defects. C...

  18. Performance of MACACO Compton telescope for ion-beam therapy monitoring : first test with proton beams

    NARCIS (Netherlands)

    Solevi, Paola; Munoz, Enrique; Solaz, Carles; Trovato, Marco; Dendooven, Peter; Gillam, John E.; Lacasta, Carlos; Oliver, Josep F.; Rafecas, Magdalena; Torres-Espallardo, Irene; Llosa, Gabriela

    2016-01-01

    In order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector

  19. The Implications of Cancer Stem Cells for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Wenjing Jiang

    2012-12-01

    Full Text Available Surgery, radiotherapy and chemotherapy are universally recognized as the most effective anti-cancer therapies. Despite significant advances directed towards elucidating molecular mechanisms and developing clinical trials, cancer still remains a major public health issue. Recent studies have showed that cancer stem cells (CSCs, a small subpopulation of tumor cells, can generate bulk populations of nontumorigenic cancer cell progeny through the self-renewal and differentiation processes. As CSCs are proposed to persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors, development of CSC-targeted therapeutic strategies holds new hope for improving survival and quality of life in patients with cancer. Therapeutic innovations will emerge from a better understanding of the biology and environment of CSCs, which, however, are largely unexplored. This review summarizes the characteristics, evidences and development of CSCs, as well as implications and challenges for cancer treatment.

  20. Breast cancer stem-like cells and breast cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Niansong Qian; Nobuko Kawaguchi-Sakita; Masakazu Toi

    2010-01-01

    @@ Until the early 1990s, human cancers were considered a morphologically heterogeneous population of cells. In 1997, Bonnet et al[1] demonstrated that a small population of leukemia cells was able to differentiate in vivo into leukemic blasts, indicating that the leukemic clone was organized as a hierarchy; this was subsequently denoted as cancer stem like cells (CSCs). CSCs are cancer cells that possess characteristics associated with normal stem cells and have the specific ability to give rise to all cell types found in a particular cancer. One reason for the failure of traditional anti tumor therapies might be their inability to eradicate CSCs. Therefore, therapies must identify and destroy CSCs in both primary and metastatic tumors.

  1. Galectins in cancer: carcinogenesis, diagnosis and therapy.

    Science.gov (United States)

    Ebrahim, Ali Hasan; Alalawi, Zainab; Mirandola, Leonardo; Rakhshanda, Rahman; Dahlbeck, Scott; Nguyen, Diane; Jenkins, Marjorie; Grizzi, Fabio; Cobos, Everardo; Figueroa, Jose A; Chiriva-Internati, Maurizio

    2014-09-01

    A major breakthrough in the field of medical oncology has been the discovery of galectins and their role in cancer development, progression and metastasis. In this review article we have condensed the results of a number of studies published over the past decade in an effort to shed some light on the unique role played by the galectin family of proteins in neoplasia, and how this knowledge may alter the approach to cancer diagnosis as well as therapy in the future. In this review we have also emphasized the potential use of galectin inhibitors or modulators in the treatment of cancer and how this novel treatment modality may affect patient outcomes in the future. Based on current pre-clinical models we believe the use of galectin inhibitors/modulators will play a significant role in cancer treatment in the future. Early clinical studies are underway to evaluate the utility of these promising agents in cancer patients. PMID:25405163

  2. Nanotechnology for breast cancer therapy.

    Science.gov (United States)

    Tanaka, Takemi; Decuzzi, Paolo; Cristofanilli, Massimo; Sakamoto, Jason H; Tasciotti, Ennio; Robertson, Fredika M; Ferrari, Mauro

    2009-02-01

    Breast cancer is the field of medicine with the greatest presence of nanotechnological therapeutic agents in the clinic. A pegylated form of liposomally encapsulated doxorubicin is routinely used for treatment against metastatic cancer, and albumin nanoparticulate chaperones of paclitaxel were approved for locally recurrent and metastatic disease in 2005. These drugs have yielded substantial clinical benefit, and are steadily gathering greater beneficial impact. Clinical trials currently employing these drugs in combination with chemo and biological therapeutics exceed 150 worldwide. Despite these advancements, breast cancer morbidity and mortality is unacceptably high. Nanotechnology offers potential solutions to the historical challenge that has rendered breast cancer so difficult to contain and eradicate: the extreme biological diversity of the disease presentation in the patient population and in the evolutionary changes of any individual disease, the multiple pathways that drive disease progression, the onset of 'resistance' to established therapeutic cocktails, and the gravity of the side effects to treatment, which result from generally very poor distribution of the injected therapeutic agents in the body. A fundamental requirement for success in the development of new therapeutic strategies is that breast cancer specialists-in the clinic, the pharmaceutical and the basic biological laboratory-and nanotechnologists-engineers, physicists, chemists and mathematicians-optimize their ability to work in close collaboration. This further requires a mutual openness across cultural and language barriers, academic reward systems, and many other 'environmental' divides. This paper is respectfully submitted to the community to help foster the mutual interactions of the breast cancer world with micro- and nano-technology, and in particular to encourage the latter community to direct ever increasing attention to breast cancer, where an extraordinary beneficial impact may

  3. Diabetes, pancreatic cancer, and metformin therapy.

    Science.gov (United States)

    Gong, Jun; Robbins, Lori A; Lugea, Aurelia; Waldron, Richard T; Jeon, Christie Y; Pandol, Stephen J

    2014-01-01

    Pancreatic cancer carries a poor prognosis as most patients present with advanced disease and preferred chemotherapy regimens offer only modest effects on survival. Risk factors include smoking, obesity, heavy alcohol, and chronic pancreatitis. Pancreatic cancer has a complex relationship with diabetes, as diabetes can be both a risk factor for pancreatic cancer and a result of pancreatic cancer. Insulin, insulin-like growth factor-1 (IGF-1), and certain hormones play an important role in promoting neoplasia in diabetics. Metformin appears to reduce risk for pancreatic cancer and improve survival in diabetics with pancreatic cancer primarily by decreasing insulin/IGF signaling, disrupting mitochondrial respiration, and inhibiting the mammalian target of rapamycin (mTOR) pathway. Other potential anti-tumorigenic effects of metformin include the ability to downregulate specificity protein transcription factors and associated genes, alter microRNAs, decrease cancer stem cell proliferation, and reduce DNA damage and inflammation. Here, we review the most recent knowledge on risk factors and treatment of pancreatic cancer and the relationship between diabetes, pancreatic cancer, and metformin as a potential therapy. PMID:25426078

  4. An overview of gene therapy in head and neck cancer

    OpenAIRE

    Amit Bali; Deepika Bali; Ashutosh Sharma

    2013-01-01

    Gene therapy is a new treatment modality in which new gene is introduced or existing gene is manipulated to cause cancer cell death or slow the growth of the tumor. In this review, we have discussed the different treatment approaches for cancer gene therapy; gene addition therapy, immunotherapy, gene therapy using oncolytic viruses, antisense ribonucleic acid (RNA) and RNA interference-based gene therapy. Clinical trials to date in head and neck cancer have shown evidence of gene transduction...

  5. Heterogeneity of liver cancer and personalized therapy.

    Science.gov (United States)

    Li, Liang; Wang, Hongyang

    2016-09-01

    Liver cancer is an extraordinarily heterogeneous malignant disease among the tumors that have so far been identified. Hepatocellular carcinoma (HCC) arises most frequently in the setting of chronic liver inflammation and fibrosis, and takes a variety of course in individual patients to process to tumor. The risk factors such as HBV and/or HCV infections, aflatoxin infection, abuse alcohol intake, metabolic syndrome, obesity and diabetes are closely related to the environmental and genetic susceptibilities to HCC. The consequent resulting genomic instability, molecular and signal transduction network disorders and microenvironmental discrepancies are characterized by the extraordinary heterogeneity of liver cancer. The histology-based definition of the morphological heterogeneity of liver cancer has been modified and refined to treat patients with targeted therapies, but this still cannot solve all the problems. Lack of consistent outcome for anticancer agents and conventional therapies in liver cancer treatment calls for assessing the benefits of new molecularly targeted drugs and combined therapy, under the heterogeneity condition of tumor. The present review article will provide the complex mechanism and phenotype of liver cancer heterogeneity, and help us to execute precision medicine in a really personalized manner.

  6. Heterogeneity of liver cancer and personalized therapy.

    Science.gov (United States)

    Li, Liang; Wang, Hongyang

    2016-09-01

    Liver cancer is an extraordinarily heterogeneous malignant disease among the tumors that have so far been identified. Hepatocellular carcinoma (HCC) arises most frequently in the setting of chronic liver inflammation and fibrosis, and takes a variety of course in individual patients to process to tumor. The risk factors such as HBV and/or HCV infections, aflatoxin infection, abuse alcohol intake, metabolic syndrome, obesity and diabetes are closely related to the environmental and genetic susceptibilities to HCC. The consequent resulting genomic instability, molecular and signal transduction network disorders and microenvironmental discrepancies are characterized by the extraordinary heterogeneity of liver cancer. The histology-based definition of the morphological heterogeneity of liver cancer has been modified and refined to treat patients with targeted therapies, but this still cannot solve all the problems. Lack of consistent outcome for anticancer agents and conventional therapies in liver cancer treatment calls for assessing the benefits of new molecularly targeted drugs and combined therapy, under the heterogeneity condition of tumor. The present review article will provide the complex mechanism and phenotype of liver cancer heterogeneity, and help us to execute precision medicine in a really personalized manner. PMID:26213370

  7. Apoptosis : Target of cancer therapy

    NARCIS (Netherlands)

    Ferreira, CG; Epping, M; Kruyt, FAE; Giaccone, G

    2002-01-01

    Recent knowledge on apoptosis has made it possible to devise novel approaches, which exploit this process to treat cancer. In this review, we discuss in detail approaches to induce tumor cell apoptosis, their mechanism of action, stage of development, and possible drawbacks. Finally, the obstacles y

  8. Hormone Therapy for Breast Cancer

    Science.gov (United States)

    ... to stimulate the growth of breast cancer cells: Selective estrogen receptor modulators (SERMs) bind to estrogen receptors , preventing estrogen from binding. Examples of SERMs approved by the FDA are tamoxifen (Nolvadex®), ... called selective serotonin reuptake inhibitors, or SSRIs), inhibit an enzyme ...

  9. Palliative Therapy for Gallbladder Cancer

    Science.gov (United States)

    ... affect a person’s quality of life, when possible. Biliary stent or biliary catheter If cancer is blocking a duct that ... diagnosed? ”) or, in some cases, during surgery. A stent is a small metal or plastic tube that keeps the duct open ...

  10. Enhancing Immune Responses for Cancer Therapy

    Institute of Scientific and Technical Information of China (English)

    Shao-An Xue; Hans J Stauss

    2007-01-01

    Although the immune system possesses the means to respond to cancer, it often fails to control the spread of malignancy. Nonetheless, equipping endogenous immunity to release a strong antitumor response has significant advantages over conventional therapies. This review explores some of the options available to accomplish this,focusing first on vaccinations with tumor antigens to stimulate the immune system and empower stronger antitumor responses. We then compare and contrast the so-far limited clinical success of vaccination with the well-documented curative potential of adoptive therapy using T lymphocytes transfer. Finally, we highlight novel approaches using T cell receptor (TCR) gene transfer strategy to exploit allogeneic T cell repertoires in conjunction with receptors selected in vitro for defined MHC/peptide combinations, as a basis for antigen-specific gene therapy of cancers.

  11. Advanced strategies in liposomal cancer therapy

    DEFF Research Database (Denmark)

    Andresen, Thomas Lars; Jensen, Simon Skøde; Jørgensen, Kent

    2005-01-01

    Tumor specific drug delivery has become increasingly interesting in cancer therapy, as the use of chemotherapeutics is often limited due to severe side effects. Conventional drug delivery systems have shown low efficiency and a continuous search for more advanced drug delivery principles...... of this paper, we review our own work, exploiting secretory phospholipase A(2) as a site-specific trigger and prodrug activator in cancer therapy. We present novel prodrug lipids together with biophysical investigations of liposome systems, constituted by these new lipids and demonstrate their degradability...... is therefore of great importance. In the first part of this review, we present current strategies in the drug delivery field, focusing on site-specific triggered drug release from liposomes in cancerous tissue. Currently marketed drug delivery systems lack the ability to actively release the carried drug...

  12. Dosimetric properties of the fast neutron therapy beams at TAMVEC

    International Nuclear Information System (INIS)

    In October 1972, M.D. Anderson Hospital and Tumor Institute of the University of Texas System Cancer Center initiated a clinical trial of fast neutron radiotherapy using the cyclotron at Texas A and M University. Initially, the study used neutrons produced by bombarding beryllium with 16 MeV deuterons, but since March, 1973, neutrons from 50 MeV deuterons have been used. The dosimetric properties of the 30 MeV beams have also been measured for comparison with the neutron beams from D-T generators. The three beams are compared in terms of dose rate, skin sparing, depth dose and field flatness. Isodose curves for treatment planning were generated using the decrement line method and compared to curves measured by a computer controlled isodose plotter. This system was also used to measure the isodose curves for wedge fields. Dosimetry checks on various patients were made using silicon diodes as in vivo fast neutron dosimeters

  13. Gene therapy in head and neck cancer: a review

    OpenAIRE

    Chisholm, E; Bapat, U.; Chisholm, C; Alusi, G.; Vassaux, G

    2007-01-01

    Gene therapy for cancer is a rapidly evolving field with head and neck squamous cell cancer being one of the more frequently targeted cancer types. The number of clinical trials in the UK is growing and there is already a commercially available agent in China. Various gene therapy strategies along with delivery mechanisms for targeting head and neck cancer are reviewed.

  14. Principia of cancer therapy, 2

    International Nuclear Information System (INIS)

    When given concomitantly with the regimen for rescue of radiation dermatitis consisting of urokinase, glutathione, vitamin C, flavin adenine dinucleotide and cytochrome c, the peroral administration of zinc was seen to be beneficial in the treatment of radiation-related, undermining ulcers, either a neurogenic and decubital ulcer complicating the radiotherapy or radiation skin cancer with painful ulcers. The zinc element may thus be essential in various processes of wound healing and repair of the DNA damage as related to the radiotherapy. (author)

  15. Cancer therapies in HIV cure research

    DEFF Research Database (Denmark)

    Rasmussen, Thomas A; Anderson, Jenny L; Wightman, Fiona;

    2016-01-01

    PURPOSE OF REVIEW: This article provides an overview of anticancer therapies in various stages of clinical development as potential interventions to target HIV persistence. RECENT FINDINGS: Epigenetic drugs developed for cancer have been investigated in vitro, ex vivo and in clinical trials...... as interventions aimed at reversing HIV latency and depleting the amount of virus that persists on antiretroviral therapy. Treatment with histone deacetylase inhibitors induced HIV expression in patients on antiretroviral therapy but did not reduce the frequency of infected cells. Other interventions that may...... accelerate the decay of latently infected cells, in the presence or absence of latency-reversing therapy, are now being explored. These include apoptosis-promoting agents, nonhistone deacetylase inhibitor compounds to reverse HIV latency and immunotherapy interventions to enhance antiviral immunity...

  16. Novel systemic therapies for breast cancer.

    Science.gov (United States)

    Lo, Soo; Johnston, Stephen R D

    2003-12-01

    The rapid expansion in our knowledge of the molecular pathogenesis of cancer has created several opportunities for novel strategies in anti-cancer drug design and development. Recent developments have included a series of new endocrine therapies such as pure anti-oestrogens and selective oestrogen receptor modulators, and trials are in progress to determine their role in the sequence of therapies given the first-line role now occupied by the aromatase inhibitors. Novel cytotoxic drugs have been developed with an improved toxicity profile, including oral prodrugs that are activated within tumour cells, and liposomal delivery mechanisms for conventional drugs that reduce some of the systemic toxicities. There has been much success with monoclonal antibodies targeted against growth factor receptors, both as monotherapy and in enhancing the efficacy of cytotoxic drugs. A number of small molecule signal transduction inhibitors are in early stages of clinical development for breast cancer, including tyrosine-kinase inhibitors and farnesyl transferase inhibitors. Emerging pre-clinical evidence suggests that these drugs may best be used in combination with endocrine therapy. Other novel strategies that are being tested include vaccines and anti-angiogenesis drugs. As these new therapies evolve towards the clinic, the challenge to oncologists is whether their potential seen in the laboratory can be matched by further substantial improvements in clinical outcome.

  17. Targeted Therapy in Nonmelanoma Skin Cancers

    Directory of Open Access Journals (Sweden)

    Giulia Spallone

    2011-05-01

    Full Text Available Nonmelanoma skin cancer (NMSC is the most prevalent cancer in light-skinned populations, and includes mainly Basal Cell Carcinomas (BCC, representing around 75% of NMSC and Squamous Cell Carcinomas (SCC. The incidence of these tumors is continuously growing. It was found that the overall number of procedures for NMSC in US rose by 76%, from 1,158,298 in 1992 to 2,048,517 in 2006. Although mortality from NMSC tends to be very low, clearly the morbidity related to these skin cancers is very high. Treatment options for NMSC include both surgical and nonsurgical interventions. Surgery was considered the gold standard therapy, however, advancements in the knowledge of pathogenic mechanisms of NMSCs led to the identification of key targets for drug intervention and to the consequent development of several targeted therapies. These represent the future in treatment of these common forms of cancer ensuring a high cure rate, preservation of the maximal amount of normal surrounding tissue and optimal cosmetic outcome. Here, we will review recent advancements in NMSC targeted therapies focusing on BCC and SCC.

  18. Targeted Therapy in Nonmelanoma Skin Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Spallone, Giulia; Botti, Elisabetta; Costanzo, Antonio, E-mail: antonio.costanzo@uniroma2.it [Department of Dermatology, University of Rome “Tor Vergata”, Via Montpellier 1, 00199, Rome (Italy)

    2011-05-03

    Nonmelanoma skin cancer (NMSC) is the most prevalent cancer in light-skinned populations, and includes mainly Basal Cell Carcinomas (BCC), representing around 75% of NMSC and Squamous Cell Carcinomas (SCC). The incidence of these tumors is continuously growing. It was found that the overall number of procedures for NMSC in US rose by 76%, from 1,158,298 in 1992 to 2,048,517 in 2006. Although mortality from NMSC tends to be very low, clearly the morbidity related to these skin cancers is very high. Treatment options for NMSC include both surgical and nonsurgical interventions. Surgery was considered the gold standard therapy, however, advancements in the knowledge of pathogenic mechanisms of NMSCs led to the identification of key targets for drug intervention and to the consequent development of several targeted therapies. These represent the future in treatment of these common forms of cancer ensuring a high cure rate, preservation of the maximal amount of normal surrounding tissue and optimal cosmetic outcome. Here, we will review recent advancements in NMSC targeted therapies focusing on BCC and SCC.

  19. Death receptors: Targets for cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, Zafar [Proteomics Laboratory, Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001 (India); Shukla, Yogeshwer, E-mail: yogeshwer_shukla@hotmail.com [Proteomics Laboratory, Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001 (India)

    2010-04-01

    Apoptosis is the cell's intrinsic program to death, which plays an important role in physiologic growth control and homeostasis. Apoptosis can be triggered by death receptors (DRs), without any adverse effects. DRs are the members of tumor necrosis factor (TNF) receptor superfamily, known to be involved in apoptosis signaling, independent of p53 tumor-supressor gene. Selective triggering of DR-mediated apoptosis in cancer cells is a novel approach in cancer therapy. So far, the best characterized DRs are CD95 (Fas/Apo1), TNF-related apoptosis-inducing ligand receptor (TRAILR) and tumor necrosis factor receptor (TNFR). Among these, TRAILR is emerging as most promising agent for cancer therapy, because it induces apoptosis in a variety of tumor and transformed cells without any toxicity to normal cells. TRAIL treatment in combination with chemotherapy or radiotherapy enhances TRAIL sensitivity or reverses TRAIL resistance by regulating downstream effectors. This review covers the current knowledge about the DRs, summarizes main signaling in DRs and also summarizes the preclinical approaches of these DRs in cancer therapy.

  20. A standardized method for beam design in neutron capture therapy

    International Nuclear Information System (INIS)

    A desirable end point for a given beam design for Neutron Capture Therapy (NCT) should be quantitative description of tumour control probability and normal tissue damage. Achieving this goal will ultimately rely on data from NCT human clinical trials. Traditional descriptions of beam designs have used a variety of assessment methods to quantify proposed or installed beam designs. These methods include measurement and calculation of open-quotes free fieldclose quotes parameters, such as neutron and gamma flux intensities and energy spectra, and figures-of-merit in tissue equivalent phantoms. The authors propose here a standardized method for beam design in NCT. This method would allow all proposed and existing NCT beam facilities to be compared equally. The traditional approach to determining a quantitative description of tumour control probability and normal tissue damage in NCT research may be described by the following path: Beam design → dosimetry → macroscopic effects → microscopic effects. Methods exist that allow neutron and gamma fluxes and energy dependence to be calculated and measured to good accuracy. By using this information and intermediate dosimetric quantities such as kerma factors for neutrons and gammas, macroscopic effect (absorbed dose) in geometries of tissue or tissue-equivalent materials can be calculated. After this stage, for NCT the data begins to become more sparse and in some areas ambiguous. Uncertainties in the Relative Biological Effectiveness (RBE) of some NCT dose components means that beam designs based on assumptions considered valid a few years ago may have to be reassessed. A standard method is therefore useful for comparing different NCT facilities

  1. Development of cancer therapy facility of HANARO

    International Nuclear Information System (INIS)

    Facilities of the research and clinical treatments of neutron capture therapy using HANARO are developed, and they are ready to install. They are BNCT irradiation facility and prompt gamma neutron activatiion analysis facility. Since every horizontal neutron facility of HANARO is long and narrow tangential beam tube, it is analysed that sufficient epithermal neutrons for the BNCT cannot be obtained but sufficient thermal neutrons can be obtained by a filter composed of silicon and bismuth single crystals. Since the thermal neutron penetaration increases significantly when the crystals are cooled, a filter cooled by liquid nitrogen is developed. So as to avoid interference with the reactor operation, a water shutter is developed. The irradiation room is designed for the temporary surgical operation as well. Handling tools to remove activated beam port plug and to install water shutter and filter are developed. The basic structure of the irradiation room is already installed and most of other parts are ready to install. Since no free beam port is available for the prompt gamma neutron activation analysis, a method obtaining almost pure thermal neutrons by the vertical diffraction of extra beam for the polarized neutron spectrometer is developed. This method is confirmed by analysis and experiments to give high enough neutron beam. Equipment and devices are provided to install this facility

  2. Antiangiogenic Steroids in Human Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Richard J. Pietras

    2005-01-01

    Full Text Available Despite advances in the early detection of tumors and in the use of chemotherapy, radiotherapy and surgery for disease management, the worldwide mortality from human cancer remains unacceptably high. The treatment of cancer may benefit from the introduction of novel therapies derived from natural products. Natural products have served to provide a basis for many of the pharmaceutical agents in current use in cancer therapy. Emerging research indicates that progressive growth and spread of many solid tumors depends, in part, on the formation of an adequate blood supply, and this process of tumor-associated angiogenesis is reported to have prognostic significance in several human cancers. This review focuses on the potential application in antitumor therapy of naturally-occurring steroids that target tumor-associated angiogenesis. Squalamine, a 7,24 dihydroxylated 24-sulfated cholestane steroid conjugated to a spermidine at position C-3, is known to have strong antiangiogenic activity in vitro, and it significantly disrupts tumor proliferation and progression in laboratory studies. Work on the interactions of squalamine with vascular endothelial cells indicate that it binds with cell membranes, inhibits the membrane Na+/H+ exchanger and may further function as a calmodulin chaperone. These primary actions appear to promote inhibition of several vital steps in angiogenesis, such as blockade of mitogen-induced actin polymerization, cell–cell adhesion and cell migration, leading to suppression of endothelial cell proliferation. Preclinical studies with squalamine have shown additive benefits in tumor growth delay when squalamine is combined with cisplatin, paclitaxel, cyclophosphamide, genistein or radiation therapy. This compound has also been assessed in early phase clinical trials in cancer; squalamine was found to exhibit little systemic toxicity and was generally well tolerated by treated patients with various solid tumor malignancies

  3. Antiangiogenic Steroids in Human Cancer Therapy.

    Science.gov (United States)

    Pietras, Richard J; Weinberg, Olga K

    2005-03-01

    Despite advances in the early detection of tumors and in the use of chemotherapy, radiotherapy and surgery for disease management, the worldwide mortality from human cancer remains unacceptably high. The treatment of cancer may benefit from the introduction of novel therapies derived from natural products. Natural products have served to provide a basis for many of the pharmaceutical agents in current use in cancer therapy. Emerging research indicates that progressive growth and spread of many solid tumors depends, in part, on the formation of an adequate blood supply, and this process of tumor-associated angiogenesis is reported to have prognostic significance in several human cancers. This review focuses on the potential application in antitumor therapy of naturally-occurring steroids that target tumor-associated angiogenesis. Squalamine, a 7,24 dihydroxylated 24-sulfated cholestane steroid conjugated to a spermidine at position C-3, is known to have strong antiangiogenic activity in vitro, and it significantly disrupts tumor proliferation and progression in laboratory studies. Work on the interactions of squalamine with vascular endothelial cells indicate that it binds with cell membranes, inhibits the membrane Na(+)/H(+) exchanger and may further function as a calmodulin chaperone. These primary actions appear to promote inhibition of several vital steps in angiogenesis, such as blockade of mitogen-induced actin polymerization, cell-cell adhesion and cell migration, leading to suppression of endothelial cell proliferation. Preclinical studies with squalamine have shown additive benefits in tumor growth delay when squalamine is combined with cisplatin, paclitaxel, cyclophosphamide, genistein or radiation therapy. This compound has also been assessed in early phase clinical trials in cancer; squalamine was found to exhibit little systemic toxicity and was generally well tolerated by treated patients with various solid tumor malignancies, including ovarian, non

  4. New targeted therapies in pancreatic cancer.

    Science.gov (United States)

    Seicean, Andrada; Petrusel, Livia; Seicean, Radu

    2015-05-28

    Patients with pancreatic cancer have a poor prognosis with a median survival of 4-6 mo and a 5-year survival of less than 5%. Despite therapy with gemcitabine, patient survival does not exceed 6 mo, likely due to natural resistance to gemcitabine. Therefore, it is hoped that more favorable results can be obtained by using guided immunotherapy against molecular targets. This review summarizes the new leading targeted therapies in pancreatic cancers, focusing on passive and specific immunotherapies. Passive immunotherapy may have a role for treatment in combination with radiochemotherapy, which otherwise destroys the immune system along with tumor cells. It includes mainly therapies targeting against kinases, including epidermal growth factor receptor, Ras/Raf/mitogen-activated protein kinase cascade, human epidermal growth factor receptor 2, insulin growth factor-1 receptor, phosphoinositide 3-kinase/Akt/mTOR and hepatocyte growth factor receptor. Therapies against DNA repair genes, histone deacetylases, microRNA, and pancreatic tumor tissue stromal elements (stromal extracellular matric and stromal pathways) are also discussed. Specific immunotherapies, such as vaccines (whole cell recombinant, peptide, and dendritic cell vaccines), adoptive cell therapy and immunotherapy targeting tumor stem cells, have the role of activating antitumor immune responses. In the future, treatments will likely include personalized medicine, tailored for numerous molecular therapeutic targets of multiple pathogenetic pathways. PMID:26034349

  5. HER2 breast cancer therapies: a review

    Directory of Open Access Journals (Sweden)

    Conleth G Murphy

    2009-06-01

    Full Text Available Conleth G Murphy, Shanu ModiBreast Cancer Medicine Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USAAbstract: Amplification of the HER2 gene and/or overexpression of its protein product have been found in up to 25% to 30% of human breast cancers and have been shown to be associated with poorer outcomes compared to ‘HER2 normal’ breast cancer. Research has focused on developing therapies directed to the HER2 receptor and its pathway. These include the monoclonal antibody trastuzumab, which has improved outcomes when used in patients with both advanced and early breast cancer. Lapatinib is a small-molecule tyrosine kinase inhibitor which has demonstrated activity in advanced breast cancer and is currently being evaluated in early stage disease. We discuss the therapeutic rationale and clinical trial experience with these agents. Other novel and emerging strategies targeting the HER2 receptor and its pathway are also discussed. These strategies include novel HER2 antibodies and small-molecule inhibitors, antibody–drug conjugates, agents targeting downstream components of the HER2 signaling pathway, and heat shock protein 90 (HSP90 inhibitors.Keywords: HER2, human epidermal growth factor receptor 2, breast cancer, trastuzumab, lapatinib

  6. Harnessing Endogenous Systems for Cancer Therapy

    DEFF Research Database (Denmark)

    Klauber, Thomas Christopher Bogh

    immunotherapy is starting to produce positive results in the clinic. A major target in cancer immunotherapy is the immunosuppressive tumor microenvironment generated directly or indirectly by the tumor. Tumor tissues have been shown to be heavily infiltrated by macrophages and DCs but due...... to the conventional PEIs. However, lipid conjugation did not sufficiently reduce the inherent toxicity associated with high molecular weight PEI, and lipid conjugation of bPEI did also not change the ability of bPEI to affect lysosomal pH as a function of time. In contrast to gene silencing therapy, cancer...

  7. [Photodynamic therapy for head and neck cancer

    DEFF Research Database (Denmark)

    Lajer, C.B.; Specht, Lena; Kirkegaard, J.;

    2006-01-01

    Photodynamic therapy (PDT) is a new treatment for head and neck cancer. The principle of the treatment is a photochemical reaction initiated by light activation of a photosensitizer, which causes the death of the exposed tissue. This article presents the modes of action of PDT and the techniques as...... well as the clinical procedure. A critical review of the literature is also presented, regarding treatment results of the different techniques and indications for treatments. The possibilities for PDT for head and neck cancer in Denmark are mentioned Udgivelsesdato: 2006/6/5...

  8. The use of biofield therapies in cancer care.

    Science.gov (United States)

    Pierce, Beverly

    2007-04-01

    Biofield therapies form a subcategory of the domain of energy therapies, as defined by the National Center for Complementary and Alternative Medicine. Specific biofield therapies addressed in this article include Therapeutic Touch, Healing Touch, Polarity Therapy, Reiki, and Qigong. This article will identify core concepts in biofield therapies, review controlled trials of the use of biofield therapies with patients with cancer, describe the process of biofield therapies implementation in one cancer center, and suggest research to benefit not only patients with cancer but also family members and oncology professionals.

  9. The use of biofield therapies in cancer care.

    Science.gov (United States)

    Pierce, Beverly

    2007-04-01

    Biofield therapies form a subcategory of the domain of energy therapies, as defined by the National Center for Complementary and Alternative Medicine. Specific biofield therapies addressed in this article include Therapeutic Touch, Healing Touch, Polarity Therapy, Reiki, and Qigong. This article will identify core concepts in biofield therapies, review controlled trials of the use of biofield therapies with patients with cancer, describe the process of biofield therapies implementation in one cancer center, and suggest research to benefit not only patients with cancer but also family members and oncology professionals. PMID:17573275

  10. Focal therapy for prostate cancer: The current status

    OpenAIRE

    Marshall, Susan; Taneja, Samir

    2015-01-01

    Purpose In an era of increasing prostate cancer incidence and earlier detection, the assessment of clinical significance of prostate cancer is critical. Minimally invasive therapies are increasingly being investigated in localized prostate cancer. Methods and results In this review, we discuss the current status of magnetic resonance imaging targeted fusion prostate biopsy and focal therapy for prostate cancer, its rationale, and techniques. Conclusion Focal therapy offers a promising outlook...

  11. High-Intensity Focused Ultrasound as Salvage Therapy for Patients With Recurrent Prostate Cancer After Radiotherapy

    OpenAIRE

    Song, Wan; Jung, U Seok; Suh, Yoon Seok; Jang, Hyun Jun; Sung, Hyun Hwan; Jeon, Hwang Gyun; Jeong, Byung Chang; Seo, Seong Il; Jeon, Seong Soo; Choi, Han Yong; Lee, Hyun Moo

    2014-01-01

    Purpose To evaluate the oncologic outcomes and postoperative complications of high-intensity focused ultrasound (HIFU) as a salvage therapy after external-beam radiotherapy (EBRT) failure in patients with prostate cancer. Materials and Methods Between February 2002 and August 2010, we retrospectively reviewed the medical records of all patients who underwent salvage HIFU for transrectal ultrasound-guided, biopsy-proven locally recurred prostate cancer after EBRT failure (by ASTRO definition: ...

  12. Liver cancer and selective internal radiation therapy

    International Nuclear Information System (INIS)

    Liver cancer is the biggest cancer-related killer of adults in the world. Liver cancer can be considered as two types: primary and secondary (metastatic). Selective Internal Radiation Therapy (SIRT) is a revolutionary treatment for advanced liver cancer that utilises new technologies designed to deliver radiation directly to the site of tumours. SIRT, on the other hand, involves the delivery of millions of microscopic radioactive spheres called SIR-Spheres directly to the site of the liver tumour/s, where they selectively irradiate the tumours. The anti-cancer effect is concentrated in the liver and there is little effect on cancer at other sites such as the lungs or bones. The SIR-Spheres are delivered through a catheter placed in the femoral artery of the upper thigh and threaded through the hepatic artery (the major blood vessel of the liver) to the site of the tumour. The microscopic spheres, each approximately 35 microns (the size of four red blood cells or one-third the diameter of a strand of hair), are bonded to yttrium-90 (Y-90), a pure beta emitter with a physical half-life of 64.1 hours (about 2.67 days). The microspheres are trapped in the tumour's vascular bed, where they destroy the tumour from inside. The average range of the radiation is only 2.5 mm, so it is wholly contained within the patient's body; after 14 days, only 2.5 percent of the radioactive activity remains. The microspheres are suspended in water for injection. The vials are shipped in lead shields for radiation protection. Treatment with SIR-Spheres is generally not regarded as a cure, but has been shown to shrink the cancer more than chemotherapy alone. This can increase life expectancy and improve quality of life. On occasion, patients treated with SIR-Spheres have had such marked shrinkage of the liver cancer that the cancer can be surgically removed at a later date. This has resulted in a long-term cure for some patients. SIRTeX Medical Limited has developed three separate cancer

  13. Performance of MACACO Compton telescope for ion-beam therapy monitoring: first test with proton beams

    Science.gov (United States)

    Solevi, Paola; Muñoz, Enrique; Solaz, Carles; Trovato, Marco; Dendooven, Peter; Gillam, John E.; Lacasta, Carlos; Oliver, Josep F.; Rafecas, Magdalena; Torres-Espallardo, Irene; Llosá, Gabriela

    2016-07-01

    In order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector concepts proposed, Compton cameras are employed to detect prompt gammas and represent a valid candidate for real-time range verification. We present the first on-beam test of MACACO, a Compton telescope (multi-layer Compton camera) based on lanthanum bromide crystals and silicon photo-multipliers. The Compton telescope was first characterized through measurements and Monte Carlo simulations. The detector linearity was measured employing 22Na and Am-Be sources, obtaining about 10% deviation from linearity at 3.44 MeV. A spectral image reconstruction algorithm was tested on synthetic data. Point-like sources emitting gamma rays with energy between 2 and 7 MeV were reconstructed with 3-5 mm resolution. The two-layer Compton telescope was employed to measure radiation emitted from a beam of 150 MeV protons impinging on a cylindrical PMMA target. Bragg-peak shifts were achieved via adjustment of the PMMA target location and the resulting measurements used during image reconstruction. Reconstructed Bragg peak profiles proved sufficient to observe peak-location differences within 10 mm demonstrating the potential of the MACACO Compton Telescope as a monitoring device for ion-beam therapy.

  14. Performance of MACACO Compton telescope for ion-beam therapy monitoring: first test with proton beams

    Science.gov (United States)

    Solevi, Paola; Muñoz, Enrique; Solaz, Carles; Trovato, Marco; Dendooven, Peter; Gillam, John E.; Lacasta, Carlos; Oliver, Josep F.; Rafecas, Magdalena; Torres-Espallardo, Irene; Llosá, Gabriela

    2016-07-01

    In order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector concepts proposed, Compton cameras are employed to detect prompt gammas and represent a valid candidate for real-time range verification. We present the first on-beam test of MACACO, a Compton telescope (multi-layer Compton camera) based on lanthanum bromide crystals and silicon photo-multipliers. The Compton telescope was first characterized through measurements and Monte Carlo simulations. The detector linearity was measured employing 22Na and Am-Be sources, obtaining about 10% deviation from linearity at 3.44 MeV. A spectral image reconstruction algorithm was tested on synthetic data. Point-like sources emitting gamma rays with energy between 2 and 7 MeV were reconstructed with 3–5 mm resolution. The two-layer Compton telescope was employed to measure radiation emitted from a beam of 150 MeV protons impinging on a cylindrical PMMA target. Bragg-peak shifts were achieved via adjustment of the PMMA target location and the resulting measurements used during image reconstruction. Reconstructed Bragg peak profiles proved sufficient to observe peak-location differences within 10 mm demonstrating the potential of the MACACO Compton Telescope as a monitoring device for ion-beam therapy.

  15. Multifunctional Delivery Systems for Cancer Gene Therapy

    OpenAIRE

    McErlean, Emma M.; McCrudden, Cian M; McCarthy, Helen O.

    2015-01-01

    This chapter examines key concepts with respect to cancer gene therapy and the current issues with respect to non-viral delivery. The biological and molecular barriers that need to be overcome before effective non-viral delivery systems can be appropriately designed for oncology applications are highlighted and ways to overcome these are discussed. Strategies developed to evade the immune response are also described and targeted gene delivery is examined with the most effective strategies hig...

  16. Adenoviral gene therapy in gastric cancer: A review

    Institute of Scientific and Technical Information of China (English)

    Nima Khalighinejad; Hesammodin Hariri; Omid Behnamfar; Arash Yousefi; Amir Momeni

    2008-01-01

    Gastric cancer is one of the most common malignancies worldwide. With current therapeutic approaches the prognosis of gastric cancer is very poor, as gastric cancer accounts for the second most common cause of death in cancer related deaths. Gastric cancer like almost all other cancers has a molecular genetic basis which relies on disruption in normal cellular regulatory mechanisms regarding cell growth, apoptosis and cell division. Thus novel therapeutic approaches such as gene therapy promise to become the alternative choice of treatment in gastric cancer. In gene therapy, suicide genes, tumor suppressor genes and anti-angiogenesis genes among many others are introduced to cancer cells via vectors.Some of the vectors widely used in gene therapy are Adenoviral vectors. This review provides an update of the new developments in adenoviral cancer gene therapy including strategies for inducing apoptosis, inhibiting metastasis and targeting the cancer cells.

  17. The GEANT4 toolkit capability in the hadron therapy field: simulation of a transport beam line

    Science.gov (United States)

    Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.; Raffaele, L.; Russo, G.; Guatelli, S.; Pia, M. G.

    2006-01-01

    At Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare of Catania (Sicily, Italy), the first Italian hadron therapy facility named CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been realized. Inside CATANA 62 MeV proton beams, accelerated by a superconducting cyclotron, are used for the radiotherapeutic treatments of some types of ocular tumours. Therapy with hadron beams still represents a pioneer technique, and only a few centers worldwide can provide this advanced specialized cancer treatment. On the basis of the experience so far gained, and considering the future hadron-therapy facilities to be developed (Rinecker, Munich Germany, Heidelberg/GSI, Darmstadt, Germany, PSI Villigen, Switzerland, CNAO, Pavia, Italy, Centro di Adroterapia, Catania, Italy) we decided to develop a Monte Carlo application based on the GEANT4 toolkit, for the design, the realization and the optimization of a proton-therapy beam line. Another feature of our project is to provide a general tool able to study the interactions of hadrons with the human tissue and to test the analytical-based treatment planning systems actually used in the routine practice. All the typical elements of a hadron-therapy line, such as diffusers, range shifters, collimators and detectors were modelled. In particular, we simulated the Markus type ionization chamber and a Gaf Chromic film as dosimeters to reconstruct the depth (Bragg peak and Spread Out Bragg Peak) and lateral dose distributions, respectively. We validated our simulated detectors comparing the results with the experimental data available in our facility.

  18. Controversies in proton therapy for prostate cancer.

    Science.gov (United States)

    Bryant, Curtis; Henderson, Randal H; Hoppe, Bradford S; Mendenhall, William M; Nichols, R Charles; Su, Zhong; Li, Zuofeng; Mendenhall, Nancy P

    2016-08-01

    Proton therapy (PT) for prostate cancer has been a subject of controversy over the past two decades. Because of its dosimetric advantages when compared to conventional radiation, PT has the potential to improve the therapeutic ratio in the management of prostate cancer by decreasing toxicity and improving disease control. Nevertheless, its higher costs and the current lack of level I evidence documenting improved clinical outcomes have led some to question its cost-effectiveness. A number of new PT centers have been built over the past decade, leading many stakeholders, including patients, physicians, and insurers, to demand comparative effectiveness data to support its current use. In this review, we summarize the results of recently published studies that support the safety and efficacy of PT in the treatment of prostate cancer. We also review the available cost-effectiveness data for PT and discuss the future of PT, including the current randomized trial comparing PT to intensity-modulated radiation therapy and the need for additional research that may help to establish the relative benefit of PT when compared to photon-based radiation therapy. PMID:27558255

  19. Minimally invasive local therapies for liver cancer

    International Nuclear Information System (INIS)

    Primary and metastatic liver tumors are an increasing global health problem, with hepatocellular carcinoma (HCC) now being the third leading cause of cancer-related mortality worldwide. Systemic treatment options for HCC remain limited, with Sorafenib as the only prospectively validated agent shown to increase overall survival. Surgical resection and/or transplantation, locally ablative therapies and regional or locoregional therapies have filled the gap in liver tumor treatments, providing improved survival outcomes for both primary and metastatic tumors. Minimally invasive local therapies have an increasing role in the treatment of both primary and metastatic liver tumors. For patients with low volume disease, these therapies have now been established into consensus practice guidelines. This review highlights technical aspects and outcomes of commonly utilized, minimally invasive local therapies including laparoscopic liver resection (LLR), radiofrequency ablation (RFA), microwave ablation (MWA), high-intensity focused ultrasound (HIFU), irreversible electroporation (IRE), and stereotactic body radiation therapy (SBRT). In addition, the role of combination treatment strategies utilizing these minimally invasive techniques is reviewed

  20. Minimally invasive local therapies for liver cancer

    Institute of Scientific and Technical Information of China (English)

    David Li; Josephine Kang; Benjamin J Golas; Vincent W Yeung; David C Madoff

    2014-01-01

    Primary and metastatic liver tumors are an increasing global health problem, with hepatocellular carcinoma (HCC) now being the third leading cause of cancer-related mortality worldwide. Systemic treatment options for HCC remain limited, with Sorafenib as the only prospectively validated agent shown to increase overall survival. Surgical resection and/or transplantation, locally ablative therapies and regional or locoregional therapies have iflled the gap in liver tumor treatments, providing improved survival outcomes for both primary and metastatic tumors. Minimally invasive local therapies have an increasing role in the treatment of both primary and metastatic liver tumors. For patients with low volume disease, these therapies have now been established into consensus practice guidelines. This review highlights technical aspects and outcomes of commonly utilized, minimally invasive local therapies including laparoscopic liver resection (LLR), radiofrequency ablation (RFA), microwave ablation (MWA), high-intensity focused ultrasound (HIFU), irreversible electroporation (IRE), and stereotactic body radiation therapy (SBRT). In addition, the role of combination treatment strategies utilizing these minimally invasive techniques is reviewed.

  1. Epigallocatechin Gallate Nanodelivery Systems for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Andreia Granja

    2016-05-01

    Full Text Available Cancer is one of the leading causes of morbidity and mortality all over the world. Conventional treatments, such as chemotherapy, are generally expensive, highly toxic and lack efficiency. Cancer chemoprevention using phytochemicals is emerging as a promising approach for the treatment of early carcinogenic processes. (−-Epigallocatechin-3-gallate (EGCG is the major bioactive constituent in green tea with numerous health benefits including anti-cancer activity, which has been intensively studied. Besides its potential for chemoprevention, EGCG has also been shown to synergize with common anti-cancer agents, which makes it a suitable adjuvant in chemotherapy. However, limitations in terms of stability and bioavailability have hampered its application in clinical settings. Nanotechnology may have an important role in improving the pharmacokinetic and pharmacodynamics of EGCG. Indeed, several studies have already reported the use of nanoparticles as delivery vehicles of EGCG for cancer therapy. The aim of this article is to discuss the EGCG molecule and its associated health benefits, particularly its anti-cancer activity and provide an overview of the studies that have employed nanotechnology strategies to enhance EGCG’s properties and potentiate its anti-tumoral activity.

  2. Magnetically scanned proton therapy beams: rationales and principles

    Science.gov (United States)

    Jones, D. T. L.; Schreuder, A. N.

    2001-06-01

    High-energy proton therapy is finding increased application in radiation oncology because of the unique physical characteristics of proton beams which allow superior conformation of the high-dose region to the target volume. The standard method of "painting" the required dose over the target volume is to use passive mechanical means involving multiple scattering and variable thickness absorbers. However, this technique dose not allow proximal surface dose conformation which can only be achieved using beam scanning techniques. Apart from reducing the integral dose, intensity modulation and inverse planning are possible, there is less activation of the surroundings and no field-specific modification devices are required. However, scanning systems are very complicated and there are very high instantaneous dose rates which require sophisticated control systems.

  3. Neoadjuvant Therapy in Differentiated Thyroid Cancer

    Science.gov (United States)

    Le, Valerie H.; Camille, Nadia; Miles, Brett A.; Teng, Marita S.; Genden, Eric M.; Misiukiewicz, Krzysztof J.

    2016-01-01

    Objectives. Invasion of differentiated thyroid cancer (DTC) into surrounding structures can lead to morbid procedures such as laryngectomy and tracheal resection. In these patients, there is a potential role for neoadjuvant therapy. Methods. We identified three studies involving the treatment of DTC with neoadjuvant chemotherapy: two from Slovenia and one from Japan. Results. These studies demonstrate that in selected situations, neoadjuvant chemotherapy can have a good response and allow for a more complete surgical resection, the treatment of DTC. Additionally, the SELECT trial shows that the targeted therapy lenvatinib is effective in the treatment of DTC and could be useful as neoadjuvant therapy for this disease due to its short time to response. Pazopanib has also demonstrated promise in phase II data. Conclusions. Thus, chemotherapy in the neoadjuvant setting could possibly be useful for managing advanced DTC. Additionally, some of the new tyrosine kinase inhibitors (TKIs) hold promise for use in the neoadjuvant setting in DTC.

  4. Neoadjuvant Therapy in Differentiated Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Rajan P. Dang

    2016-01-01

    Full Text Available Objectives. Invasion of differentiated thyroid cancer (DTC into surrounding structures can lead to morbid procedures such as laryngectomy and tracheal resection. In these patients, there is a potential role for neoadjuvant therapy. Methods. We identified three studies involving the treatment of DTC with neoadjuvant chemotherapy: two from Slovenia and one from Japan. Results. These studies demonstrate that in selected situations, neoadjuvant chemotherapy can have a good response and allow for a more complete surgical resection, the treatment of DTC. Additionally, the SELECT trial shows that the targeted therapy lenvatinib is effective in the treatment of DTC and could be useful as neoadjuvant therapy for this disease due to its short time to response. Pazopanib has also demonstrated promise in phase II data. Conclusions. Thus, chemotherapy in the neoadjuvant setting could possibly be useful for managing advanced DTC. Additionally, some of the new tyrosine kinase inhibitors (TKIs hold promise for use in the neoadjuvant setting in DTC.

  5. Nanoparticle-based targeted gene therapy for lung cancer

    OpenAIRE

    Lee, Hung-Yen; Mohammed, Kamal A; Nasreen, Najmunnisa

    2016-01-01

    Despite striking insights on lung cancer progression, and cutting-edge therapeutic approaches the survival of patients with lung cancer, remains poor. In recent years, targeted gene therapy with nanoparticles is one of the most rapidly evolving and extensive areas of research for lung cancer. The major goal of targeted gene therapy is to bring forward a safe and efficient treatment to cancer patients via specifically targeting and deterring cancer cells in the body. To achieve high therapeuti...

  6. Modulating autophagy: a strategy for cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Jun-Lin Li; Shao-Liang Han; Xia Fan

    2011-01-01

    Autophagy is a process in which long-lived proteins,damaged cell organelles,and other cellular particles are sequestered and degraded.This process is important for maintaining the cellular microenvironment when the cell is under stress.Many studies have shown that autophagy plays a complex role in human diseases,especially in cancer,where it is known to have paradoxical effects.Namely,autophagy provides the energy for metabolism and tumor growth and leads to cell death that promotes tumor suppression.The link between autophagy and cancer is also evident in that some of the genes that regulate carcinogenesis,oncogenes and tumor suppressor genes,participate in or impact the autophagy process.Therefore,modulating autophagy will be a valuable topic for cancer therapy.Many studies have shown that autophagy can inhibit the tumor growth when autophagy modulators are combined with radiotherapy and/or chemotherapy.These findings suggest that autophagy may be a potent target for cancer therapy.

  7. Digital pathology in personalized cancer therapy

    Directory of Open Access Journals (Sweden)

    Marcial Garcia Rojo

    2012-01-01

    Full Text Available The development of small molecule inhibitors of growth factor receptors, and the discovery of somatic mutations of the thyrosine kinase domain, have resulted in new paradigms for cancer therapy. Digital microscopy is an important tool for surgical pathologists. The achievements in the digital pathology field have modified the workflow of pathomorphology labs, enhanced the pathologist’s role in diagnostics, and increased their contribution to personalized targeted medicine. Digital image analysis is now available in a variety of platforms to improve quantification performance of diagnostic pathology. We here describe the state of digital microscopy as it applies to the field of quantitative immunohistochemistry of biomarkers related to the clinical personalized targeted therapy of breast cancer, non-small lung cancer and colorectal cancer: HER-2, EGFR, KRAS and BRAF genes. The information is derived from the experience of the authors and a review of the literature. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 570–578

  8. Cytotoxic and targeted therapy for hereditary cancers.

    Science.gov (United States)

    Iyevleva, Aglaya G; Imyanitov, Evgeny N

    2016-01-01

    There is a number of drugs demonstrating specific activity towards hereditary cancers. For example, tumors in BRCA1/2 mutation carriers usually arise via somatic inactivation of the remaining BRCA allele, which makes them particularly sensitive to platinum-based drugs, PARP inhibitors (PARPi), mitomycin C, liposomal doxorubicin, etc. There are several molecular assays for BRCA-ness, which permit to reveal BRCA-like phenocopies among sporadic tumors and thus extend clinical indications for the use of BRCA-specific therapies. Retrospective data on high-dose chemotherapy deserve consideration given some unexpected instances of cure from metastatic disease among BRCA1/2-mutated patients. Hereditary non-polyposis colorectal cancer (HNPCC) is characterized by high-level microsatellite instability (MSI-H), increased antigenicity and elevated expression of immunosuppressive molecules. Recent clinical trial demonstrated tumor responses in HNPCC patients treated by the immune checkpoint inhibitor pembrolizumab. There are successful clinical trials on the use of novel targeted agents for the treatment or rare cancer syndromes, e.g. RET inhibitors for hereditary medullary thyroid cancer, mTOR inhibitors for tumors arising in patients with tuberous sclerosis (TSC), and SMO inhibitors for basal-cell nevus syndrome. Germ-line mutation tests will be increasingly used in the future for the choice of the optimal therapy, therefore turnaround time for these laboratory procedures needs to be significantly reduced to ensure proper treatment planning. PMID:27555886

  9. Small RNA combination therapy for lung cancer

    Science.gov (United States)

    Xue, Wen; Dahlman, James E.; Tammela, Tuomas; Khan, Omar F.; Sood, Sabina; Dave, Apeksha; Cai, Wenxin; Chirino, Leilani M.; Yang, Gillian R.; Bronson, Roderick; Crowley, Denise G.; Sahay, Gaurav; Schroeder, Avi; Langer, Robert; Anderson, Daniel G.; Jacks, Tyler

    2014-01-01

    MicroRNAs (miRNAs) and siRNAs have enormous potential as cancer therapeutics, but their effective delivery to most solid tumors has been difficult. Here, we show that a new lung-targeting nanoparticle is capable of delivering miRNA mimics and siRNAs to lung adenocarcinoma cells in vitro and to tumors in a genetically engineered mouse model of lung cancer based on activation of oncogenic Kirsten rat sarcoma viral oncogene homolog (Kras) and loss of p53 function. Therapeutic delivery of miR-34a, a p53-regulated tumor suppressor miRNA, restored miR-34a levels in lung tumors, specifically down-regulated miR-34a target genes, and slowed tumor growth. The delivery of siRNAs targeting Kras reduced Kras gene expression and MAPK signaling, increased apoptosis, and inhibited tumor growth. The combination of miR-34a and siRNA targeting Kras improved therapeutic responses over those observed with either small RNA alone, leading to tumor regression. Furthermore, nanoparticle-mediated small RNA delivery plus conventional, cisplatin-based chemotherapy prolonged survival in this model compared with chemotherapy alone. These findings demonstrate that RNA combination therapy is possible in an autochthonous model of lung cancer and provide preclinical support for the use of small RNA therapies in patients who have cancer. PMID:25114235

  10. Bladder cancer: molecular determinants of personalized therapy.

    Science.gov (United States)

    Lopez-Beltran, Antonio; Santoni, Matteo; Massari, Francesco; Ciccarese, Chiara; Tortora, Giampaolo; Cheng, Liang; Moch, Holger; Scarpelli, Marina; Reymundo, Carlos; Montironi, Rodolfo

    2015-01-01

    Several molecular and genetic studies have provided new perspectives on the histologic classification of bladder tumors. Recent developments in the field of molecular mutational pathway analyses based on next generation sequencing technology together with classic data derived from the description of mutations in the FGFR3 (fibroblast growth factor receptor 3) gene, mutations on TP53 gene, and cDNA technology profiling data gives support to a differentiated taxonomy of bladder cancer. All these changes are behind the use of non-traditional approach to therapy of bladder cancer patients and are ready to change our daily practice of uro-oncology. The observed correlation of some molecular alterations with tumor behavior and the identification of their targets at cellular level might support the use of molecular changes together with morphological data to develop new clinical and biological strategies to manage patients with urothelial cancer. The current review provides comprehensive data to support personalized therapy for bladder cancer based on an integrated approach including pathologic and clinical features and molecular biology.

  11. “Smart”nanomaterials for cancer therapy

    Institute of Scientific and Technical Information of China (English)

    LE; GUYADER; Laurent

    2010-01-01

    Recent development in nanotechnology has provided new tools for cancer therapy and diagnostics.Because of their small size,nanoscale devices readily interact with biomolecules both on the cell surface and inside the cell.Nanomaterials,such as fullerenes and their derivatives,are effective in terms of interactions with the immune system and have great potential as anticancer drugs.Comparatively,other nanomaterials are able to load active drugs to cancer cells by selectively using the unique tumor environment,such as their enhanced permeability,retention effect and the specific acidic microenvironment.Multifunctional and multiplexed nanoparticles,as the next generation of nanoparticles,are now being extensively investigated and are promising tools to achieve personalized and tailored cancer treatments.

  12. Shielding and Radiation Protection in Ion Beam Therapy Facilities

    Science.gov (United States)

    Wroe, Andrew J.; Rightnar, Steven

    Radiation protection is a key aspect of any radiotherapy (RT) department and is made even more complex in ion beam therapy (IBT) by the large facility size, secondary particle spectra and intricate installation of these centers. In IBT, large and complex radiation producing devices are used and made available to the public for treatment. It is thus the responsibility of the facility to put in place measures to protect not only the patient but also the general public, occupationally and nonoccupationally exposed personnel working within the facility, and electronics installed within the department to ensure maximum safety while delivering maximum up-time.

  13. Alanine EPR dosimeter response in proton therapy beams

    International Nuclear Information System (INIS)

    We report a series of measurements directed to assess the suitability of alanine as a mailable dosimeter for dosimetry quality assurance of proton radiation therapy beams. These measurements include dose-response of alanine at 140 MeV, and comparison of response vs energy with a parallel plate ionization chamber. All irradiations were made at the Harvard Cyclotron Laboratory, and the dosimeters were read at NIST. The results encourage us that alanine could be expected to serve as a mailable dosimeter with systematic error due to differential energy response no greater than 3% when doses of 25 Gy are used. (Author)

  14. Electron therapy of vulva cancer patients

    International Nuclear Information System (INIS)

    Some peculiarities of combined treatment of patients with vulva carcinoma are considered in the case of applying the electron beam of the Soviet medical betatron B5M-25 with the energies of 10-25 MeV. The technique and results of treating 21 patients with vulva carcinoma are presented. 19 patients live 3 and more years after the finishing of electron therapy without relapses and metastases of vulva carcinoma. The analysis of literature and the results obtained permit to consider the clinical application of the method prospective

  15. High power test of an injector linac for heavy ion cancer therapy facilities

    Science.gov (United States)

    Lu, Liang; Hattori, Toshiyuki; Zhao, Huanyu; Kawasaki, Katsunori; Sun, Liangting; He, Yuan; Zhao, Hongwei

    2015-11-01

    A hybrid single cavity (HSC) linac, combined with radio frequency quadrupole and drift tube structure in a single interdigital-H cavity, operates with high rf power as a prototype injector for cancer therapy synchrotron. The HSC adopts a direct plasma injection scheme (DPIS) with a laser ion source. The input beam current of the HSC is designed to be 20 mA C6 + ions. According to simulations, the HSC can accelerate a 6-mA C6 + beam which meets the requirement of the particle number for cancer therapy (1 08 ˜9 ions/pulse ). The HSC injector with DPIS makes the existing multiturn injection system and stripping system unnecessary; what is more, it can also bring down the size of the beam pipe in existing synchrotron magnets, which can reduce the whole cost of the synchrotron. Details of the field measurements of the HSC linac and results of the high power test are reported in this paper.

  16. Particle therapy and treatment of cancer.

    Science.gov (United States)

    Halperin, Edward C

    2006-08-01

    The desire of radiation oncologists and medical physicists to maximise the radiation dose to the tumour while minimising that to healthy tissues has led to attempts to improve the dose distributions and biological effects achievable with photons and electrons. Protons, neutrons, pions, boron-neutron capture therapy, and charged-nuclei therapy (with argon, carbon, helium [alpha particles], neon, nitrogen, and silicon) have been assessed for their physical, biological, and clinical effects. In the 90 years since protons and neutrons were discovered, investigations of particle therapy for cancer have helped to elucidate many fundamental radiobiological ideas, such as linear energy transfer, relative biological effectiveness, oxygen effect, and oxygen enhancement. Particle therapy has contributed to our understanding of medical ethics when neutron therapy became intertwined with the debate over standards of informed consent in radiation experiments in humans during the cold war era. Particle teletherapy and brachytherapy continue to show promise in some clinical situations. In the future, the insights of molecular biology might clarify the ideal particles for clinical situations.

  17. Cold atmospheric plasma in cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Keidar, Michael; Shashurin, Alex; Volotskova, Olga [Mechanical and Aerospace Engineering, George Washington University, Washington DC 20052 (United States); Ann Stepp, Mary [Medical School, George Washington University, Washington DC 20052 (United States); Srinivasan, Priya; Sandler, Anthony [Childrens National Medical Center, Washington DC 20010 (United States); Trink, Barry [Head and Neck Cancer Research Division, Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2013-05-15

    Recent progress in atmospheric plasmas has led to the creation of cold plasmas with ion temperature close to room temperature. This paper outlines recent progress in understanding of cold plasma physics as well as application of cold atmospheric plasma (CAP) in cancer therapy. Varieties of novel plasma diagnostic techniques were developed recently in a quest to understand physics of CAP. It was established that the streamer head charge is about 10{sup 8} electrons, the electrical field in the head vicinity is about 10{sup 7} V/m, and the electron density of the streamer column is about 10{sup 19} m{sup −3}. Both in-vitro and in-vivo studies of CAP action on cancer were performed. It was shown that the cold plasma application selectively eradicates cancer cells in-vitro without damaging normal cells and significantly reduces tumor size in-vivo. Studies indicate that the mechanism of action of cold plasma on cancer cells is related to generation of reactive oxygen species with possible induction of the apoptosis pathway. It is also shown that the cancer cells are more susceptible to the effects of CAP because a greater percentage of cells are in the S phase of the cell cycle.

  18. Tumor microenvironment and cancer therapy resistance.

    Science.gov (United States)

    Sun, Yu

    2016-09-28

    Innate resistance to various therapeutic interventions is a hallmark of cancer. In recent years, however, acquired resistance has emerged as a daunting challenge to anticancer treatments including chemotherapy, radiation and targeted therapy, which abolishes the efficacy of otherwise successful regimens. Cancer cells gain resistance through a variety of mechanisms in both primary and metastatic sites, involving cell intrinsic and extrinsic factors, but the latter often remains overlooked. Mounting evidence suggests critical roles played by the tumor microenvironment (TME) in multiple aspects of cancer progression particularly therapeutic resistance. The TME decreases drug penetration, confers proliferative and antiapoptotic advantages to surviving cells, facilitates resistance without causing genetic mutations and epigenetic changes, collectively modifying disease modality and distorting clinical indices. Recent studies have set the baseline for future investigation on the intricate relationship between cancer resistance and the TME in pathological backgrounds. This review provides an updated outline of research advances in TME biology and highlights the prospect of targeting the TME as an essential strategy to overcome cancer resistance and improve therapeutic outcomes through precise intervention. In the long run, continued inputs into translational medicine remain highly desired to achieve durable responses in the current era of personalized clinical oncology. PMID:26272180

  19. Dosimetric Studies of Mixed Energy Intensity Modulated Radiation Therapy for Prostate Cancer Treatments

    OpenAIRE

    Abdul Haneefa, K.; K. K. Shakir; Siddhartha, A.; T. Siji Cyriac; Musthafa, M. M.; R. Ganapthi Raman

    2014-01-01

    Dosimetric studies of mixed field photon beam intensity modulated radiation therapy (IMRT) for prostate cancer using pencil beam (PB) and collapsed cone convolution (CCC) algorithms using Oncentra MasterPlan treatment planning system (v. 4.3) are investigated in this study. Three different plans were generated using 6 MV, 15 MV, and mixed beam (both 6 and 15 MV). Fifteen patients with two sets of plans were generated: one by using PB and the other by using CCC for the same planning parameters...

  20. Effectiveness of Brachytherapy Combined with External Beam Radiation Therapy and Hormonal Therapy in Treating Localized High-risk Prostate Cancer%近距离治疗联合外放射治疗及内分泌治疗对局部高危前列腺癌的疗效

    Institute of Scientific and Technical Information of China (English)

    陈健; 严维刚; 李汉忠; 纪志刚; 周毅; 周智恩; 麦智鹏

    2016-01-01

    Objective To evaluate the effectiveness of brachytherapy combined with external beam radia -tion therapy and hormonal therapy in treating localized high-risk prostate cancer patients .Methods We retro-spectively analyzed 132 prostate cancer patients treated with brachytherapy from December 2003 to December 2007 in Department of Urology , Peking Union Medical College Hospital , including 97 localized high-risk pa-tients, and 35 localized low-to intermediate-risk patients.Postoperative prostate specific antigen ( PSA) level was monitored regularly in follow-up visits.Biochemical relapse , progression to castration-resistant prostate canc-er (CRPC) or metastasis, and deaths were documented .Biochemical progression-free survival (bPFS), cause-specific survival (CSS), and overall survival (OS) of the patients were evaluated .Results The bPFS, CSS, and OS of the 132 patients were 83.3%, 91.7%, and 84.8%, respectively;those indexes of the 97 localized high-risk patients were 81.4%, 88.7%, and 81.4%, respectively;and those of the 35 localized low-to inter-mediate-risk patients were 88.6%, 100%, and 94.3%, respectively .No significant difference was observed in bPFS and OS between high-risk and low-to intermediate-risk patients ( P=0.433 , 0.098 ) , while CSS was sig-nificant higher in low-to intermediate-risk patients than in high-risk patients ( P=0.037 ) .After patients were grouped based on Gleason score, tumor-node-metastasis (TNM) clinical stage, or preoperative PSA levels, differences in bPFS among groups were not statistically significant ( P=0.084 , 0.537 , 0.850 ) .Conclusion Brachytherapy combined with external beam radiation therapy and hormonal therapy may effectively control PSA level and delay biochemical relapse in localized high-risk prostate cancer .%目的:研究近距离治疗联合外放射治疗及内分泌治疗对局部高危前列腺癌的疗效。方法2003年12月至2007年12月北京协和医院泌尿外科收治前

  1. Systems immune monitoring in cancer therapy.

    Science.gov (United States)

    Greenplate, Allison R; Johnson, Douglas B; Ferrell, P Brent; Irish, Jonathan M

    2016-07-01

    Treatments that successfully modulate anti-cancer immunity have significantly improved outcomes for advanced stage malignancies and sparked intense study of the cellular mechanisms governing therapy response and resistance. These responses are governed by an evolving milieu of cancer and immune cell subpopulations that can be a rich source of biomarkers and biological insight, but it is only recently that research tools have developed to comprehensively characterize this level of cellular complexity. Mass cytometry is particularly well suited to tracking cells in complex tissues because >35 measurements can be made on each of hundreds of thousands of cells per sample, allowing all cells detected in a sample to be characterized for cell type, signalling activity, and functional outcome. This review focuses on mass cytometry as an example of systems level characterization of cancer and immune cells in human tissues, including blood, bone marrow, lymph nodes, and primary tumours. This review also discusses the state of the art in single cell tumour immunology, including tissue collection, technical and biological quality controls, computational analysis, and integration of different experimental and clinical data types. Ex vivo analysis of human tumour cells complements both in vivo monitoring, which generally measures far fewer features or lacks single cell resolution, and laboratory models, which incur cell type losses, signalling alterations, and genomic changes during establishment. Mass cytometry is on the leading edge of a new generation of cytomic tools that work with small tissue samples, such as a fine needle aspirates or blood draws, to monitor changes in rare or unexpected cell subsets during cancer therapy. This approach holds great promise for dissecting cellular microenvironments, monitoring how treatments affect tissues, revealing cellular biomarkers and effector mechanisms, and creating new treatments that productively engage the immune system to

  2. Systemic cancer multistep therapy; Systemische Krebs-Mehrschritt-Therapie

    Energy Technology Data Exchange (ETDEWEB)

    Weigang-Koehler, K. [Medizinische Klinik 5, Arbeitsgruppe Biologische Krebstherapie, Staedtisches Klinikum Nuernberg (Germany); Kaiser, G. [Medizinische Klinik 5, Arbeitsgruppe Biologische Krebstherapie, Staedtisches Klinikum Nuernberg (Germany); Gallmeier, W.M. [Medizinische Klinik 5, Arbeitsgruppe Biologische Krebstherapie, Staedtisches Klinikum Nuernberg (Germany)

    1997-04-11

    To get an insight into the claimed efficacy of `systemic cancer multistep therapy` (sKMT) with hyperglycemia, whole-body hyperthermia and hyperoxemia, we conducted a best case analysis with 20 patients who had received sKMT alone (9 patients) or in combination with chemo- or radiotherapy (11 patients). There was no complete remission or an unquestionable partial remission when sKMT was used alone. When sKMT was combined with classical effective therapies like chemo- and radiotherapy, 1 patient had questionable complete remission and 3 patients had partial remission. In these three patients sKMT had been combined with a newly applied chemotherapy: Therefore, it remains unclear which method was effective in causing the remission. (orig.) [Deutsch] Um eine Ueberblick ueber die behauptete Wirksamkeit der systemischen Krebs-Mehrschritt-Therapie (sKMT) nach von Ardenne zu erlangen, fuehrten wir eine Best-case-Analyse bei 20 Patienten durch, die die sKMT ohne Chemotherapie (9 Patienten) und in Kombination mit Chemo- bzw. Strahlentherapie (11 Patienten) erhalten hatten. sKMT allein hatte zu keiner kompletten Remission oder sicheren partiellen Remission gefuehrt. Bei der Kombination von sKMT mit klassischen Therapieverfahren wie Chemotherapie und Bestrahlung trat bei einem Patienten eine fragliche komplette Remission ein sowie bei 3 Patienten eine partielle Remission. Im letzteren Fall war jeweils eine fuer den Patienten neue Chemotherapie mit der sKMT kombiniert worden, so dass unklar bleibt, was die Verbesserung herbeifuehrte. (orig.)

  3. Novel therapy for advanced gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Yue; Zhang; Shenhong; Wu

    2015-01-01

    Gastric cancer(GC) is a common lethal malignancy.Gastroesophageal junction and gastric cardia tumors are the fastest rising malignancies due to increasing prevalence of obesity and acid reflex in the United States.Traditional chemotherapy remains the main treatment with trastuzumab targeting human epidermal growth factor receptor 2 positive disease.The median overall survival(OS) is less than one year for advanced GC patients; thus,there is an urgent unmet need to develop novel therapy for GC.Although multiple targeted agents were studied,only the vascular endothelial growth factor receptor inhibitor ramucirumab was approved recently by the United States Food and Drug Administration because of its 1.4 mo OS benefit(5.2 mo vs 3.8 mo,P = 0.047) as a single agent; 2.2 mo improvement of survival(9.6 mo vs 7.4 mo,P = 0.017) when combined with paclitaxel in previously treated advanced GC patients.It is the first single agent approved for previously treated GC and the second biologic agent after trastuzumab.Even with limited success,targeted therapy may be improved by developing new biomarkers.Immune therapy is changing the paradigm of cancer treatment and is presently under active investigation for GC in clinical trials.More evidence supports GC stem cells existence and early stage studies are looking for its potential therapeutic possibilities.

  4. Personalized Radiation Therapy (PRT) for Lung Cancer.

    Science.gov (United States)

    Jin, Jian-Yue; Kong, Feng-Ming Spring

    2016-01-01

    This chapter reviews and discusses approaches and strategies of personalized radiation therapy (PRT) for lung cancers at four different levels: (1) clinically established PRT based on a patient's histology, stage, tumor volume and tumor locations; (2) personalized adaptive radiation therapy (RT) based on image response during treatment; (3) PRT based on biomarkers; (4) personalized fractionation schedule. The current RT practice for lung cancer is partially individualized according to tumor histology, stage, size/location, and combination with use of systemic therapy. During-RT PET-CT image guided adaptive treatment is being tested in a multicenter trial. Treatment response detected by the during-RT images may also provide a strategy to further personalize the remaining treatment. Research on biomarker-guided PRT is ongoing. The biomarkers include genomics, proteomics, microRNA, cytokines, metabolomics from tumor and blood samples, and radiomics from PET, CT, SPECT images. Finally, RT fractionation schedule may also be personalized to each individual patient to maximize therapeutic gain. Future PRT should be based on comprehensive considerations of knowledge acquired from all these levels, as well as consideration of the societal value such as cost and effectiveness.

  5. Beam tests on a proton linac booster for hadron therapy

    CERN Document Server

    De Martinis, C; Berra, P; Birattari, C; Calabretta, L; Crandall, K; Giove, D; Masullo, M R; Mauri, M; Rosso, E; Rovelli, A; Serafini, L; Szeless, Balázs; Toet, D Z; Vaccaro, Vittorio G; Weiss, M; Zennaro, R

    2002-01-01

    LIBO is a 3 GHz modular side-coupled proton linac booster designed to deliver beam energies up to 200 MeV, as required for the therapy of deep seated tumours. The injected beam of 50 to 70 MeV is produced by a cyclotron like those in several hospitals and research institutes. A full-scale prototype of the first module with an input/output energy of 62/74 MeV, respectively, was designed and built in 1999 and 2000. Full power RF tests were carried out successfully at CERN using a test facility at LIL at the end of the year 2000. In order to prove the feasibility of the acceleration process, an experimental setup with this module was installed at the INFN Laboratorio Nazionale del Sud (LNS) in Catania during 2001. The superconducting cyclotron provided the 62 MeV test beam. A compact solid-state RF modulator with a 4 MW klystron, made available by IBA-Scanditronix, was put into operation to power the linac. In this paper the main features of the accelerator are reviewed and the experimental results obtained duri...

  6. Targeted Cancer Therapy Using Engineered Salmonella typhimurium

    Science.gov (United States)

    Zheng, Jin Hai

    2016-01-01

    Obligate or facultative anaerobic bacteria such as Bifidobacterium, Clostridium, Salmonella, or Escherichia coli specifically colonize and proliferate inside tumor tissues and inhibit tumor growth. Among them, attenuated Salmonella typhimurium (S. typhimurium) has been widely studied in animal cancer models and Phase I clinical trials in human patients. S. typhimurium genes are easily manipulated; thus diverse attenuated strains of S. typhimurium have been designed and engineered as tumor-targeting therapeutics or drug delivery vehicles that show both an excellent safety profile and therapeutic efficacy in mouse models. An attenuated strain of S. typhimurium, VNP20009, successfully targeted human metastatic melanoma and squamous cell carcinoma in Phase I clinical trials; however, the efficacy requires further refinement. Along with the characteristics of self-targeting, proliferation, and deep tissue penetration, the ease of genetic manipulation allows for the production of more attenuated strains with greater safety profiles and vector systems that deliver designable cargo molecules for cancer diagnosis and/or therapy. Here, we discuss recent progress in the field of Salmonellae-mediated cancer therapy. PMID:27689027

  7. Targeted Cancer Therapy Using Engineered Salmonella typhimurium.

    Science.gov (United States)

    Zheng, Jin Hai; Min, Jung-Joon

    2016-09-01

    Obligate or facultative anaerobic bacteria such as Bifidobacterium, Clostridium, Salmonella, or Escherichia coli specifically colonize and proliferate inside tumor tissues and inhibit tumor growth. Among them, attenuated Salmonella typhimurium (S. typhimurium) has been widely studied in animal cancer models and Phase I clinical trials in human patients. S. typhimurium genes are easily manipulated; thus diverse attenuated strains of S. typhimurium have been designed and engineered as tumor-targeting therapeutics or drug delivery vehicles that show both an excellent safety profile and therapeutic efficacy in mouse models. An attenuated strain of S. typhimurium, VNP20009, successfully targeted human metastatic melanoma and squamous cell carcinoma in Phase I clinical trials; however, the efficacy requires further refinement. Along with the characteristics of self-targeting, proliferation, and deep tissue penetration, the ease of genetic manipulation allows for the production of more attenuated strains with greater safety profiles and vector systems that deliver designable cargo molecules for cancer diagnosis and/or therapy. Here, we discuss recent progress in the field of Salmonellae-mediated cancer therapy. PMID:27689027

  8. Lipid Metabolism, Apoptosis and Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Chunfa Huang

    2015-01-01

    Full Text Available Lipid metabolism is regulated by multiple signaling pathways, and generates a variety of bioactive lipid molecules. These bioactive lipid molecules known as signaling molecules, such as fatty acid, eicosanoids, diacylglycerol, phosphatidic acid, lysophophatidic acid, ceramide, sphingosine, sphingosine-1-phosphate, phosphatidylinositol-3 phosphate, and cholesterol, are involved in the activation or regulation of different signaling pathways. Lipid metabolism participates in the regulation of many cellular processes such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, motility, membrane homeostasis, chemotherapy response, and drug resistance. Bioactive lipid molecules promote apoptosis via the intrinsic pathway by modulating mitochondrial membrane permeability and activating different enzymes including caspases. In this review, we discuss recent data in the fields of lipid metabolism, lipid-mediated apoptosis, and cancer therapy. In conclusion, understanding the underlying molecular mechanism of lipid metabolism and the function of different lipid molecules could provide the basis for cancer cell death rationale, discover novel and potential targets, and develop new anticancer drugs for cancer therapy.

  9. Targeted Cancer Therapy Using Engineered Salmonella typhimurium

    Science.gov (United States)

    Zheng, Jin Hai

    2016-01-01

    Obligate or facultative anaerobic bacteria such as Bifidobacterium, Clostridium, Salmonella, or Escherichia coli specifically colonize and proliferate inside tumor tissues and inhibit tumor growth. Among them, attenuated Salmonella typhimurium (S. typhimurium) has been widely studied in animal cancer models and Phase I clinical trials in human patients. S. typhimurium genes are easily manipulated; thus diverse attenuated strains of S. typhimurium have been designed and engineered as tumor-targeting therapeutics or drug delivery vehicles that show both an excellent safety profile and therapeutic efficacy in mouse models. An attenuated strain of S. typhimurium, VNP20009, successfully targeted human metastatic melanoma and squamous cell carcinoma in Phase I clinical trials; however, the efficacy requires further refinement. Along with the characteristics of self-targeting, proliferation, and deep tissue penetration, the ease of genetic manipulation allows for the production of more attenuated strains with greater safety profiles and vector systems that deliver designable cargo molecules for cancer diagnosis and/or therapy. Here, we discuss recent progress in the field of Salmonellae-mediated cancer therapy.

  10. Feasibility of the Utilization of BNCT in the Fast Neutron Therapy Beam at Fermilab

    Science.gov (United States)

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  11. Fast pencil beam dose calculation for proton therapy using a double-Gaussian beam model

    Directory of Open Access Journals (Sweden)

    Joakim eda Silva

    2015-12-01

    Full Text Available The highly conformal dose distributions produced by scanned proton pencil beams are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a pencil beam algorithm running on graphics processing units (GPUs intended specifically for online dose calculation. Here we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such pencil beam algorithm for proton therapy running on a GPU. We employ two different parametrizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of pencil beams in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included whilst prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Further, the calculation time is relatively unaffected by the parametrization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy.

  12. Proton therapy for early stage prostate cancer: is there a case?

    Directory of Open Access Journals (Sweden)

    Chan TY

    2016-09-01

    Full Text Available Tabitha Y Chan, Poh Wee Tan, Johann I Tang Department of Radiation Oncology, National University Cancer Institute, Singapore Abstract: Proton-beam therapy (PBT for prostate cancer has been in used for several decades, with its technique evolving significantly over this period. A growing number of centers now routinely utilize pencil-beam scanning as an advanced technique of PBT. Interest and controversy concerning its use have recently come under scrutiny. While the past decade has produced an assemblage of evidence suggesting that PBT is safe and effective for early stage prostate cancer, it is still unknown whether the theoretical dosimetric advantages of PBT translate into meaningful clinical improvements over routine intensity-modulated radiation therapy, which is commonly used for these patients. Outcomes from early trials using whole courses of PBT have shown mixed results when compared with routine intensity-modulated radiation therapy. Therefore, randomized trials comparing these two techniques should be undertaken, as this would help in defining the role of PBT for this patient group. This article aims to describe the basics of PBT, review the reasons for the growing interest in PBT, review the evidence for PBT, review the controversy surrounding PBT, and inquire about PBT’s future in the treatment of prostate cancer, with attention to its physical properties, comparative clinical and cost-effectiveness, and advances in its delivery. Keywords: proton beam, radiation, prostate cancer, clinical outcomes, controversies, future direction

  13. Bacteria in cancer therapy: a novel experimental strategy

    OpenAIRE

    Medhi B; Prakash A; Byrav DS Prasad; Joshi R; Patyar S; Das BK

    2010-01-01

    Abstract Resistance to conventional anticancer therapies in patients with advanced solid tumors has prompted the need of alternative cancer therapies. Moreover, the success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity to normal tissues. Several decades after Coley's work a variety of natural and genetically modified non-pathogenic bacterial species are being explored as potential antitumor agents, either to provide direct tumoricidal effects or...

  14. Passive beam sprending systems and light-weight gentries for synchrotron based hadron therapy

    CERN Document Server

    Maier, A T

    1998-01-01

    Hadron therapy is a promising technique that uses beams of protons or light ions for the treatment of cancer. In order to open this technique to a wider application, hospital based treatment centres are now needed. The extbf{P}roton- extbf{I}on extbf{M}edical extbf{M}achine extbf{S}tudy (PIMMS) in CERN is concerned with the design of such a centre that would use both protons and light ions. The dual species operation makes it preferable to base the centre on a synchrotron. The present thesis is concerned with the beam delivery for the protons. After introducing the basic vocabulary of linear beam optics, the feasibility of a light-weight gantry with passive beam spreading fed by a synchrotron is investigated. The device is a non-linear magnetic structure, which can be described as a emph{magnetic guide} or as a emph{proton pipe}. Detailed studies show that while it is possible to design an optically stable 270$^circ$ section, which would be necessary for a gantry, the properties do not fulfil the requirements...

  15. Adenoviral gene therapy in gastric cancer: A review

    OpenAIRE

    Khalighinejad, Nima; Hariri, Hesammodin; Behnamfar, Omid; Yousefi, Arash; Momeni, Amir

    2008-01-01

    Gastric cancer is one of the most common malignancies worldwide. With current therapeutic approaches the prognosis of gastric cancer is very poor, as gastric cancer accounts for the second most common cause of death in cancer related deaths. Gastric cancer like almost all other cancers has a molecular genetic basis which relies on disruption in normal cellular regulatory mechanisms regarding cell growth, apoptosis and cell division. Thus novel therapeutic approaches such as gene therapy promi...

  16. High power acceleration of an HSC type injector for cancer therapy

    Science.gov (United States)

    Lu, Liang; Hattori, Toshiyuki; Zhao, Huan-Yu; Kawasaki, Katsunori; Sun, Lie-Peng; Jin, Qian-Yu; Zhang, Jun-Jie; Sun, Liang-Ting; He, Yuan; Zhao, Hong-Wei

    2016-07-01

    A hybrid single cavity (HSC) linac, which is formed by combining a radio frequency quadrupole (RFQ) and a drift tube (DT) structure into one interdigital-H (IH) cavity, is fabricated and assembled as a proof of principle injector for cancer therapy synchrotron, based on the culmination of several years of research. The HSC linac adopts a direct plasma injection scheme (DPIS), which can inject a high intensity heavy ion beam produced by a laser ion source (LIS). The input beam current of the HSC is designed to be 20 mA C6+ ions. According to numerical simulations, the HSC linac can accelerate a 6-mA C6+beam, which meets the requirement of the needed particle number for cancer therapy (108-9 ions/pulse). The HSC injector with the DPIS method makes the existing multi-turn injection system and stripping system unnecessary, and can also bring down the size of the beam pipe in existing synchrotron magnets, which could reduce the whole cost of synchrotron. The radio frequency (rf) measurements show excellent rf properties for the resonator, with a measured Q equal to 91% of the simulated value. A C6+ ion beam extracted from the LIS was used for the HSC commissioning. In beam testing, we found the measured beam parameters agreed with simulations. More details of the measurements and the results of the high power test are reported in this paper. Supported by National Natural Science Foundation of China and One Hundred Person Project of CAS

  17. Modelling collimator of radial beam port Kartini reactor for boron neutron capture therapy

    International Nuclear Information System (INIS)

    One of the cancer therapy methods is BNCT (Boron Neutron Capture Therapy). BNCT utilizes neutron nature by 10B deposited on cancer cells. The superiority of BNCT compared to the radiation therapy is the high level of selectivity since its level is within cell. This study was carried out on collimator modelling in radial beam port of reactor Kartini for BNCT. The modelling was conducted by simulation using software of Monte Carlo N-Particle version 5 (MCNP 5). MCNP5 is a package of the programs for both simulating and calculating the problem of particle transport by following the life cycle of a neutron since its birth from fission reaction, transport on materials, until eventually lost due to the absorption reaction or out from the system. The collimator modelling used materials which varied in size in order to generate the value of each of the parameters in accordance with the recommendation of the IAEA, the epithermal neutron flux (ϕepi) > 1.0 x 109n.cm-2s-1, the ratio between the neutron dose rate fast and epithermal neutron flux (Df/ϕepi) < 2.0 x 10-13 Gy.cm2.n-1, the ratio of gamma dose rate and epithermal neutron flux (Dγ/ϕepi) < 2.0 X10-13 Gy.cm2.n-1, the ratio between the thermal and epithermal neutron flux (ϕTh/ϕepi)< 0.05 and the ratio between the current and flux of the epithermal neutron (J/ϕepi) > 0.7. Based on the results of the optimization of the modeling, the materials and sizes of the collimator construction obtained were 0.75 cm Ni as collimator wall, 22 cm Al as a moderator and 4.5 cm Bi as a gamma shield. The outputs of the radiation beam generated from collimator modeling of the radial beam port were ϕepi = 5.25 x 106 n.cm-2.s-1, Df/ϕepi = 1.17 x 10-13Gy.cm2.n-1, Dγ/ϕepi = 1.70 x 10-12 Gy.cm2.n-1, ϕTh/ϕepi = 1.51 and J/ϕepi = 0.731. Based on this study, the result of the beam radiation coming out of the radial beam port dis not fully meet the criteria recommended by IAEA so need to continue this study to get the criteria of IAEA

  18. Gene Tests May Improve Therapy for Endometrial Cancer

    Science.gov (United States)

    ... External link, please review our exit disclaimer . Subscribe Gene Tests May Improve Therapy for Endometrial Cancer By analyzing genes in hundreds of endometrial tumors, scientists identified details ...

  19. Targeting the cancer epigenome for therapy.

    Science.gov (United States)

    Jones, Peter A; Issa, Jean-Pierre J; Baylin, Stephen

    2016-09-15

    Next-generation sequencing has revealed that more than 50% of human cancers harbour mutations in enzymes that are involved in chromatin organization. Tumour cells not only are activated by genetic and epigenetic alterations, but also routinely use epigenetic processes to ensure their escape from chemotherapy and host immune surveillance. Hence, a growing emphasis of recent drug discovery efforts has been on targeting the epigenome, including DNA methylation and histone modifications, with several new drugs being tested and some already approved by the US Food and Drug Administration (FDA). The future will see the increasing success of combining epigenetic drugs with other therapies. As epigenetic drugs target the epigenome as a whole, these true 'genomic medicines' lessen the need for precision approaches to individualized therapies. PMID:27629931

  20. Novel Polypeptide-Based Biomaterials for Prostate Cancer Therapies

    OpenAIRE

    Mayle, Kristine M.

    2015-01-01

    Prostate cancer is the second leading cause of cancer-related death among American men, and current therapies are nonspecific with many negative side effects. As described in Chapter 1, these side effects are generally due to inadvertent harm to healthy cells, and therefore, the development of targeted therapies can improve patient welfare, as well as improve the efficacy of current therapies. Furthermore, the materials used for these therapies should be biocompatible and avoid undesired immu...

  1. Photoacoustic imaging and temperature measurement for photothermal cancer therapy

    OpenAIRE

    Shah, Jignesh; Park, Suhyun; Aglyamov, Salavat; Larson, Timothy; Ma, Li; Sokolov, Konstantin; Johnston, Keith; Milner, Thomas; Emelianov, Stanislav Y.

    2008-01-01

    Photothermal therapy is a noninvasive, targeted, laser-based technique for cancer treatment. During photothermal therapy, light energy is converted to heat by tumor-specific photoabsorbers. The corresponding temperature rise causes localized cancer destruction. For effective treatment, however, the presence of photoabsorbers in the tumor must be ascertained before therapy and thermal imaging must be performed during therapy. This study investigates the feasibility of guiding photothermal ther...

  2. Stereotactic radiosurgery: a “targeted” therapy for cancer

    OpenAIRE

    Liang-Fu Han; Ming Zeng

    2012-01-01

    The developments of medicine always follow innovations in science and technology. In the past decade, such innovations have made cancer-related targeted therapies possible. In general, the term "targeted therapy" has been used in reference to cellular and molecular level oriented therapies. However, improvements in the delivery and planning of traditional radiation therapy have also provided cancer patients more options for "targeted" treatment, notably stereotactic radiosurgery (SRS) and ste...

  3. Carbon materials for drug delivery & cancer therapy

    Directory of Open Access Journals (Sweden)

    Zhuang Liu

    2011-07-01

    Full Text Available Carbon nanotubes and graphene are both low-dimensional sp2 carbon nanomaterials exhibiting many unique physical and chemical properties that are interesting in a wide range of areas including nanomedicine. Since 2004, carbon nanotubes have been extensively explored as drug delivery carriers for the intracellular transport of chemotherapy drugs, proteins, and genes. In vivo cancer treatment with carbon nanotubes has been demonstrated in animal experiments by several different groups. Recently, graphene, another allotrope of carbon, has also shown promise in various biomedical applications. In this article, we will highlight recent research on these two categories of closely related carbon nanomaterials for applications in drug delivery and cancer therapy, and discuss the opportunities and challenges in this rapidly growing field.

  4. Potential role of tetrandrine in cancer therapy

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-Jen

    2002-01-01

    Tetrandrine, a bisbenylisoquinoline alkaloid isolated from the dried root of Stephenia tetrandra S Moore, exhibits very broad pharmacological actions, including anti-tumor activity. The beneficial effects of tetrandrine on tumor cell cytotoxicity and radiosensitization, multidrug resistance, normal tissue radioprotection, and angiogenesis are most promising and deserve great attention. Tetrandrine has potential either as a tumoricidal agent or as an adjunct to chemotherapy and radiotherapy. To evaluate the potential clinical efficacy of tetrandrine for cancer therapy,more mechanism-based pharmacological, pharmacokinetic, and pharmacodynamic studies are required.

  5. Novel therapies in genitourinary cancer: an update

    Directory of Open Access Journals (Sweden)

    Wu Shenhong

    2008-08-01

    Full Text Available Abstract In recent years, new treatment for renal cell carcinoma (RCC has been a spotlight in the field of cancer therapeutics. With several emerging agents branded as 'targeted therapy' now available, both medical oncologists and urologists are progressively more hopeful for better outcomes. The new remedies may provide patients with improved survival and at the same time less toxicity when compared to traditional cytotoxic agents. This article will center on current and emerging treatment strategies for advanced RCC and other GU malignancies with updates from 2008 annual ASCO meeting.

  6. Targeted Immune Therapy of Ovarian Cancer

    Science.gov (United States)

    Knutson, Keith L.; Karyampudi, Lavakumar; Lamichhane, Purushottam; Preston, Claudia

    2014-01-01

    Clinical outcomes, such as recurrence free survival and overall survival, in ovarian cancer are quite variable, independent of common characteristics such as stage, response to therapy and grade. This disparity in outcomes warrants further exploration and therapeutic targeting into the interaction between the tumor and host. One compelling host characteristic that contributes both to the initiation and progression of ovarian cancer is the immune system. Hundreds of studies have confirmed a prominent role for the immune system in modifying the clinical course of the disease. Recent studies also show that anti-tumor immunity is often negated by immune regulatory cells present in the tumor microenvironment. Regulatory immune cells also directly enhance the pathogenesis through the release of various cytokines and chemokines, which together form an integrated pathologic network. Thus, in the future, research into immunotherapy targeting ovarian cancer will probably become increasingly focused on combination approaches that simultaneously augment immunity while preventing local immune suppression. In this article, we summarize important immunological targets that influence ovarian cancer outcome as well as include an update on newer immunotherapeutic strategies. PMID:25544369

  7. Targeting DNA Replication Stress for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2016-08-01

    Full Text Available The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit “replication stress” —a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress.

  8. Targeting DNA Replication Stress for Cancer Therapy

    Science.gov (United States)

    Zhang, Jun; Dai, Qun; Park, Dongkyoo; Deng, Xingming

    2016-01-01

    The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR) mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit “replication stress” —a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress. PMID:27548226

  9. Neutron therapy for salivary and thyroid gland cancer

    Science.gov (United States)

    Gribova, O. V.; Musabaeva, L. I.; Choynzonov, E. L.; Lisin, V. A.; Novikov, V. A.

    2016-08-01

    The purpose of this study was to analyze the results of the combined modality treatment and radiation therapy using 6.3 MeV fast neutrons for salivary gland cancer and prognostically unfavorable thyroid gland cancer. The study group comprised 127 patients with salivary gland cancer and 46 patients with thyroid gland cancer, who received neutron therapy alone and in combination with surgery. The results obtained demonstrated that the combined modality treatment including fast neutron therapy led to encouraging local control in patients with salivary and thyroid gland cancers.

  10. Normal tissue tolerance to external beam radiation therapy: Skin

    International Nuclear Information System (INIS)

    Acute skin toxicity is frequent during radiation therapy and can lead to temporary arrest of the treatment. Chronic toxicity can occur and conduct to cosmetic problems. Alopecia is the most frequent toxicity concerning hair and is most of the time reversible. Several factors linked to patients influence skin toxicity, such as under-nutrition, old age, obesity, smoking, skin diseases, autoimmune diseases, failure of DNA reparation. Skin, hair and nail toxicities depend also on radiation schedule. Acute toxicity is greater when dose per fraction increases. Chronic and acute toxicities are more often when total dose increases. Under 45 Gy, the risk of severe skin toxicity is low, and begins above 50 Gy. Skin toxicity depends also on the duration of radiotherapy and split course schedules are associated with less toxicities. Irradiation surface seems to influence skin toxicity but interaction is more complex. Reirradiation is often feasible in case of cancer recurrence but with a risk of grade 3-4 toxicity above all in head and neck cancer. The benefit/risk ratio has to be always precisely evaluated. Permanent alopecia is correlated with the follicle dose. Modern techniques of radiation therapy allow to spare skin. (authors)

  11. [Genetic basis of head and neck cancers and gene therapy].

    Science.gov (United States)

    Özel, Halil Erdem; Özkırış, Mahmut; Gencer, Zeliha Kapusuz; Saydam, Levent

    2013-01-01

    Surgery and combinations of traditional treatments are not successful enough particularly for advanced stage head and neck cancer. The major disadvantages of chemotherapy and radiation therapy are the lack of specificity for the target tissue and toxicity to the patient. As a result, gene therapy may offer a more specific approach. The aim of gene therapy is to present therapeutic genes into cancer cells which selectively eliminate malignant cells with no systemic toxicity to the patient. This article reviews the genetic basis of head and neck cancers and important concepts in cancer gene therapy: (i) inhibition of oncogenes; (ii) tumor suppressor gene replacement; (iii) regulation of immune response against malignant cells; (iv) genetic prodrug activation; and (v) antiangiogenic gene therapy. Currently, gene therapy is not sufficient to replace the traditional treatments of head and neck cancers, however there is no doubt that it will have an important role in the near future.

  12. Predictors of Postoperative Complications After Trimodality Therapy for Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingya [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wei, Caimiao [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Tucker, Susan L. [Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Myles, Bevan; Palmer, Matthew [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hofstetter, Wayne L.; Swisher, Stephen G. [Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Ajani, Jaffer A. [Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Cox, James D.; Komaki, Ritsuko; Liao, Zhongxing [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lin, Steven H., E-mail: SHLin@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-08-01

    Purpose: While trimodality therapy for esophageal cancer has improved patient outcomes, surgical complication rates remain high. The goal of this study was to identify modifiable factors associated with postoperative complications after neoadjuvant chemoradiation. Methods and Materials: From 1998 to 2011, 444 patients were treated at our institution with surgical resection after chemoradiation. Postoperative (pulmonary, gastrointestinal [GI], cardiac, wound healing) complications were recorded up to 30 days postoperatively. Kruskal-Wallis tests and χ{sup 2} or Fisher exact tests were used to assess associations between continuous and categorical variables. Multivariate logistic regression tested the association between perioperative complications and patient or treatment factors that were significant on univariate analysis. Results: The most frequent postoperative complications after trimodality therapy were pulmonary (25%) and GI (23%). Lung capacity and the type of radiation modality used were independent predictors of pulmonary and GI complications. After adjusting for confounding factors, pulmonary and GI complications were increased in patients treated with 3-dimensional conformal radiation therapy (3D-CRT) versus intensity modulated radiation therapy (IMRT; odds ratio [OR], 2.018; 95% confidence interval [CI], 1.104-3.688; OR, 1.704; 95% CI, 1.03-2.82, respectively) and for patients treated with 3D-CRT versus proton beam therapy (PBT; OR, 3.154; 95% CI, 1.365-7.289; OR, 1.55; 95% CI, 0.78-3.08, respectively). Mean lung radiation dose (MLD) was strongly associated with pulmonary complications, and the differences in toxicities seen for the radiation modalities could be fully accounted for by the MLD delivered by each of the modalities. Conclusions: The radiation modality used can be a strong mitigating factor of postoperative complications after neoadjuvant chemoradiation.

  13. Predictors of Postoperative Complications After Trimodality Therapy for Esophageal Cancer

    International Nuclear Information System (INIS)

    Purpose: While trimodality therapy for esophageal cancer has improved patient outcomes, surgical complication rates remain high. The goal of this study was to identify modifiable factors associated with postoperative complications after neoadjuvant chemoradiation. Methods and Materials: From 1998 to 2011, 444 patients were treated at our institution with surgical resection after chemoradiation. Postoperative (pulmonary, gastrointestinal [GI], cardiac, wound healing) complications were recorded up to 30 days postoperatively. Kruskal-Wallis tests and χ2 or Fisher exact tests were used to assess associations between continuous and categorical variables. Multivariate logistic regression tested the association between perioperative complications and patient or treatment factors that were significant on univariate analysis. Results: The most frequent postoperative complications after trimodality therapy were pulmonary (25%) and GI (23%). Lung capacity and the type of radiation modality used were independent predictors of pulmonary and GI complications. After adjusting for confounding factors, pulmonary and GI complications were increased in patients treated with 3-dimensional conformal radiation therapy (3D-CRT) versus intensity modulated radiation therapy (IMRT; odds ratio [OR], 2.018; 95% confidence interval [CI], 1.104-3.688; OR, 1.704; 95% CI, 1.03-2.82, respectively) and for patients treated with 3D-CRT versus proton beam therapy (PBT; OR, 3.154; 95% CI, 1.365-7.289; OR, 1.55; 95% CI, 0.78-3.08, respectively). Mean lung radiation dose (MLD) was strongly associated with pulmonary complications, and the differences in toxicities seen for the radiation modalities could be fully accounted for by the MLD delivered by each of the modalities. Conclusions: The radiation modality used can be a strong mitigating factor of postoperative complications after neoadjuvant chemoradiation

  14. FDG-PET in monitoring therapy of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Biersack, H.J.; Bender, H.; Palmedo, H. [Department of Nuclear Medicine, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn (Germany)

    2004-06-01

    Fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) has been used successfully for the staging and re-staging of breast cancer. Another significant indication is the evaluation of therapy response. Only limited data are available on the use of FDG-PET in breast cancer after radiation therapy. The same holds true for chemotherapy. Only the therapy response in locally advanced breast cancer after chemotherapy has been investigated thoroughly. Histopathological response could be predicted with an accuracy of 88-91% after the first and second courses of therapy. A quantitative evaluation is, of course, a prerequisite when FDG-PET is used for therapy monitoring. Only a small number of studies have focussed on hormone therapy. In this context, a flare phenomenon with increasing standardised uptake values after initiation of tamoxifen therapy has been observed. More prospective multicentre trials will be needed to make FDG-PET a powerful tool in monitoring chemotherapy in breast cancer. (orig.)

  15. Combination immunotherapy and photodynamic therapy for cancer

    Science.gov (United States)

    Hamblin, Michael R.; Castano, Ana P.; Mroz, Pawel

    2006-02-01

    Cancer is a leading cause of death among modern people largely due to metastatic disease. The ideal cancer treatment should target both the primary tumor and the metastases with minimal toxicity towards normal tissue. This is best accomplished by priming the body's immune system to recognize the tumor antigens so that after the primary tumor is destroyed, distant metastases will also be eradicated. Photodynamic therapy (PDT) involves the IV administration of photosensitizers followed by illumination of the tumor with red light producing reactive oxygen species leading to vascular shutdown and tumor cell death. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, generation of tumor-specific antigens, and induction of heat-shock proteins. Combination regimens using PDT and immunostimulating treatments are likely to even further enhance post-PDT immunity. These immunostimulants are likely to include products derived from pathogenic microorganisms that are effectively recognized by Toll-like receptors and lead to upregulation of transcription factors for cytokines and inflammatory mediators. The following cascade of events causes activation of macrophages, dendritic and natural killer cells. Exogenous cytokine administration can be another way to increase PDT-induced immunity as well as treatment with a low dose of cyclophosphamide that selectively reduces T-regulatory cells. Although so far these combination therapies have only been used in animal models, their use in clinical trials should receive careful consideration.

  16. Drug Carrier for Photodynamic Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Tilahun Ayane Debele

    2015-09-01

    Full Text Available Photodynamic therapy (PDT is a non-invasive combinatorial therapeutic modality using light, photosensitizer (PS, and oxygen used for the treatment of cancer and other diseases. When PSs in cells are exposed to specific wavelengths of light, they are transformed from the singlet ground state (S0 to an excited singlet state (S1–Sn, followed by intersystem crossing to an excited triplet state (T1. The energy transferred from T1 to biological substrates and molecular oxygen, via type I and II reactions, generates reactive oxygen species, (1O2, H2O2, O2*, HO*, which causes cellular damage that leads to tumor cell death through necrosis or apoptosis. The solubility, selectivity, and targeting of photosensitizers are important factors that must be considered in PDT. Nano-formulating PSs with organic and inorganic nanoparticles poses as potential strategy to satisfy the requirements of an ideal PDT system. In this review, we summarize several organic and inorganic PS carriers that have been studied to enhance the efficacy of photodynamic therapy against cancer.

  17. Narcissus, the Beam, and lung cancer.

    Science.gov (United States)

    Rocco, Gaetano

    2016-08-01

    In the management of lung cancer, the rules of engagement of stereotactic ablative radiotherapy (SABR) are not clearly defined. The potential for SABR to affect to an unprecedented level current protocols and in all disease stages emerges vehemently from the literature. However, in a time when the role of surgery is being reassessed, surgeons need to take a closer look at the evidence for the use of SABR in lung cancer patients and clearly define their indisputable role within the context of multidisciplinary teams. The myth of Narcissus exemplified in the absolute masterpiece by Caravaggio seems to represent an ideal metaphor to explain the ever-evolving interaction between surgery and SABR in lung cancer management. PMID:27209014

  18. Radiation therapy planning with photons and protons for early and advanced breast cancer: an overview

    Directory of Open Access Journals (Sweden)

    Lomax Antony J

    2006-07-01

    Full Text Available Abstract Postoperative radiation therapy substantially decreases local relapse and moderately reduces breast cancer mortality, but can be associated with increased late mortality due to cardiovascular morbidity and secondary malignancies. Sophistication of breast irradiation techniques, including conformal radiotherapy and intensity modulated radiation therapy, has been shown to markedly reduce cardiac and lung irradiation. The delivery of more conformal treatment can also be achieved with particle beam therapy using protons. Protons have superior dose distributional qualities compared to photons, as dose deposition occurs in a modulated narrow zone, called the Bragg peak. As a result, further dose optimization in breast cancer treatment can be reasonably expected with protons. In this review, we outline the potential indications and benefits of breast cancer radiotherapy with protons. Comparative planning studies and preliminary clinical data are detailed and future developments are considered.

  19. Oral mucositis in myelosuppressive cancer therapy.

    Science.gov (United States)

    Epstein, J B; Schubert, M M

    1999-09-01

    Because the etiology of mucositis is multifactorial , approaches to prevention and management have also been multifactorial. Effective prevention and management of mucositis will reduce the pain and suffering experienced during cancer treatment. Oropharyngeal pain in cancer patients frequently requires systemic analgesics, adjunctive medications, physical therapy, and psychologic therapy in addition to oral care and topical treatments. Good oral hygiene reduces the severity of oral mucositis and does not increase the risk of bacteremia. Current approaches to management include frequent oral rinsing with saline or bicarbonate rinses, maintaining excellent oral hygiene, and using topical anesthetics and analgesics. Cryotherapy is a potential adjunctive approach in some cases. There are a number of approaches that appear to represent viable candidates for further study. Biologic response modifiers offer the potential for prevention and for acceleration of healing. Various cytokines will enter clinical trials in the near future; these offer the potential for reduction of epithelial cell sensitivity to the toxic effects of cancer therapy or for stimulation of repair of the damaged tissue. Other approaches include the use of medications to reduce exposure of the oral mucosa to chemotherapeutic drugs that are secreted in saliva. Antimicrobial approaches have met with conflicting results, little effect being seen with chlorhexidine and systemic antimicrobials in the prevention of mucositis in radiation patients. In patients with BMT and patients with leukemia, chlorhexidine may not be effective in preventing mucositis, although there may be reduction in oral colonization by Candida. Initial studies of topical antimicrobials that affect the gram-negative oral flora have shown reductions in ulcerative mucositis during radiation therapy but have not been assessed in leukemia/BMT. Among other approaches that require further study are low-energy lasers and anti

  20. Targeting angiogenesis with integrative cancer therapies.

    Science.gov (United States)

    Yance, Donald R; Sagar, Stephen M

    2006-03-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiological pathways that support tumor development while minimizing normal tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The authors will focus on natural health products (NHPs) that have a high degree of antiangiogenic activity but also describe some of their many other interactions that can inhibit tumor progression and reduce the risk of metastasis. NHPs target various molecular pathways besides angiogenesis, including epidermal growth factor receptor (EGFR), the HER-2/neu gene, the cyclooxygenase-2 enzyme, the NF-kB transcription factor, the protein kinases, Bcl-2 protein, and coagulation pathways. The herbalist has access to hundreds of years of observational data on the anticancer activity of many herbs. Laboratory studies are confirming the knowledge that is already documented in traditional texts. The following herbs are traditionally used for anticancer treatment and are antiangiogenic through multiple interdependent processes that include effects on gene expression, signal processing, and enzyme activities: Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (turmeric), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinale (ginger), Panax ginseng, Rabdosia rubescens (rabdosia), and Chinese destagnation herbs. Quality assurance of appropriate extracts is essential prior to embarking on clinical trials. More data are required on dose response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations

  1. Auger Emitting Radiopharmaceuticals for Cancer Therapy

    Science.gov (United States)

    Falzone, Nadia; Cornelissen, Bart; Vallis, Katherine A.

    Radionuclides that emit Auger electrons have been of particular interest as therapeutic agents. This is primarily due to the short range in tissue, controlled linear paths and high linear energy transfer of these particles. Taking into consideration that ionizations are clustered within several cubic nanometers around the point of decay the possibility of incorporating an Auger emitter in close proximity to the cancer cell DNA has immense therapeutic potential thus making nuclear targeted Auger-electron emitters ideal for precise targeting of cancer cells. Furthermore, many Auger-electron emitters also emit γ-radiation, this property makes Auger emitting radionuclides a very attractive option as therapeutic and diagnostic agents in the molecular imaging and management of tumors. The first requirement for the delivery of Auger emitting nuclides is the definition of suitable tumor-selective delivery vehicles to avoid normal tissue toxicity. One of the main challenges of targeted radionuclide therapy remains in matching the physical and chemical characteristics of the radionuclide and targeting moiety with the clinical character of the tumor. Molecules and molecular targets that have been used in the past can be classified according to the carrier molecule used to deliver the Auger-electron-emitting radionuclide. These include (1) antibodies, (2) peptides, (3) small molecules, (4) oligonucleotides and peptide nucleic acids (PNAs), (5) proteins, and (6) nanoparticles. The efficacy of targeted radionuclide therapy depends greatly on the ability to increase intranuclear incorporation of the radiopharmaceutical without compromising toxicity. Several strategies to achieve this goal have been proposed in literature. The possibility of transferring tumor therapy based on the emission of Auger electrons from experimental models to patients has vast therapeutic potential, and remains a field of intense research.

  2. Disorders of endocrine function following cancer therapies.

    Science.gov (United States)

    Bajorunas, D R

    1980-07-01

    There is a growing body of literature detailing the endocrine consequences of cancer therapy. Certain conclusions can be drawn from the data presented. Patients who have received incidental hypothalamic--pituitary gland irradiation need to be followed carefully with serial dynamic hormonal evaluations, as they are at high risk of developing growth hormone and prolactin abnormalities and can develop other pituitary tropic hormone deficiencies as well. Children especially should be monitored closely as GH deficiency can be corrected if detected early. Patients who have received radiation to the head and neck region will need long-term (up to 30 years) surveillance for the development of thyroid cancer, hyperparathyroidism or hypothyroidism. Persistent elevations of TSH after incidental thyroidal irradiation are frequently seen and should be reversed with thyroid hormone administration in an attempt to minimize TSH stimulation of the irradiated gland. Radiation to the gonads will cause graded damage dependent on the dose delivered and the mode of fractionation. Age in a woman seems to be a significant factor of radiation sensitivity. Certain chemotherapeutic agents are radiomimetic in their gonadal effects; to date the alkylating agents have been most commonly implicated. FSH elevations herald gonadal damage (aspermia or loss of follicles) and should be looked for in patients receiving abdominal radiation or systemic chemotherapy. Leydig cell dysfunction occurs less frequently. Of all the iatrogenic endocrine complications discussed, some are eminently treatable, and some are quite preventable. Greater awareness of the unexpectedly high incidence of hormonal dysfunction can help lessen therapy-induced morbidity in long-term cancer survivors.

  3. Intensity Modulated Radiation Therapy in Prostate Cancer

    International Nuclear Information System (INIS)

    Full text: Objective: To analyze the feasibility of high dose assessing acute and late toxicities both rectal and genitourinary in patients with clinically localized prostate cancer. Material and methods: Between April 2006 and April 2008 90 patients diagnosed with clinically localized prostate cancer were treated with MRT technique in the Department of Radiotherapy. The analysis included 80 patients, 10 of them in treatment. The total dose received was 80 Gy. One patient received 70.2 Gy (because of previous pelvic radiotherapy). Age average: 65 (r 43-85 years). Stage: T1c: 43 p (53.75%), T2: 35 p (43.75%), T3: 1 p (1.25%). Score of Gleason 10 ng/ml and < ng / ml: 7 (8.75%). Hormone therapy: 34 p (42.5%). Results: Acute rectal toxicity: grade 0: 46 p (57.5%), grade 1: 23 p (28.75%), grade 2: 9 p (11.25%), grade 3: 1 p (1.25%). Acute genitourinary toxicity: Grade 0: 26 p (32.5%) Grade 1: 36 p (45%), Grade 2: 17 p (21.25%), Grade 3: 1 p (1.25%). Chronic toxicity (RTOG) (considering patients evaluated more than 6 months after the end of treatment): 19 patients showed no rectitis and 1 patient had mild symptoms. Urethritis: 19 patients had no symptoms, 1 patient grade 1. The PSA pretreatment average: 9.5 ng / ml (80 p). One month after treatment: 4.6 ng / ml. With an average follow-up of 8 m (r 2-22), there were no biochemical recurrence. One patient had bone metastases one year after the end of the treatment. No deaths for prostate cancer were noticed. Conclusions: IMRT is a safe and effective therapy with more precision than the 3D-CRT, which allows increase the dose without increasing the risk of complications. (authors)

  4. Pancreatic cancer vaccine: a unique potential therapy

    Directory of Open Access Journals (Sweden)

    Cappello P

    2015-12-01

    Full Text Available Paola Cappello, Moitza Principe, Francesco Novelli Department of Molecular Biotechnologies and Health Sciences, Center for Experimental Research and Medical Studies, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy Abstract: Pancreatic ductal adenocarcinoma (PDA is a lethal disease and is one of the cancers that is most resistant to traditional therapies. Historically, neither chemotherapy nor radiotherapy has provided any significant increase in the survival of patients with PDA. Despite intensive efforts, any attempts to improve the survival in the past 15 years have failed. This holds true even after the introduction of molecularly targeted agents, chosen on the basis of their involvement in pathways that are considered to be important in PDA development and progression. Recently, however, FOLFIRINOX (5-fluorouracil, leucovorin, irinotecan, and oxaliplatin treatment has provided a limited survival advantage in patients with advanced PDA. Therefore, effective therapeutic strategies are urgently needed to improve the survival rate of patients with PDA. Results from the last 10 years of research in the field of PDA have helped to identify new immunological targets and develop new vaccines that are capable of stimulating an immune response. In addition, the information obtained about the role of the tumor microenvironment in suppressing the immune response and the possibility of targeting PDA microenvironment to limit immune suppression and enhance the response of effector T-cells has opened new avenues for treating this incurable disease. The time is ripe for developing new therapeutic approaches that are able to effectively counteract the progression and spreading of PDA. This review discusses the potential prospects in the care of patients with pancreatic cancer through vaccination and its combination therapy with surgery, chemotherapy, targeting of the tumor microenvironment, and inhibition of immunological

  5. Cardiac Exposure in the Dynamic Conformal Arc Therapy, Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy of Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Xin Ming

    Full Text Available To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT, intensity-modulated radiotherapy (IMRT, or volumetric modulated arc therapy (VMAT at our institution in the past seven years.A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercial treatment planning system and have been clinically accepted and delivered. The dose distribution to the heart and the effects of tumor laterality, the irradiated heart volume and the beam-to-heart distance on the cardiac exposure were investigated.The mean dose to the heart among all 140 plans was 4.5 Gy. Specifically, the heart received on average 2.3, 5.2 and 4.6 Gy in the DCAT, IMRT and VMAT plans, respectively. The mean heart doses for the left and right lung tumors were 4.1 and 4.8 Gy, respectively. No patients died with evidence of cardiac disease. Three patients (2% with preexisting cardiac condition developed cardiac disease after treatment. Furthermore, the cardiac exposure was found to increase linearly with the irradiated heart volume while decreasing exponentially with the beam-to-heart distance.Compared to old technologies for lung cancer treatment, modern radiotherapy treatment modalities demonstrated better heart sparing. But the heart dose in lung cancer radiotherapy is still higher than that in the radiotherapy of breast cancer and Hodgkin's disease where cardiac complications have been extensively studied. With strong correlations of mean heart dose with beam-to-heart distance and irradiated heart volume, cautions should be exercised to avoid long-term cardiac toxicity in the lung cancer patients undergoing radiotherapy.

  6. Hadron Cancer Therapy: Role of Nuclear Reactions

    Science.gov (United States)

    Chadwick, M. B.

    2000-06-20

    Recently it has become feasible to calculate energy deposition and particle transport in the body by proton and neutron radiotherapy beams, using Monte Carlo transport methods. A number of advances have made this possible, including dramatic increases in computer speeds, a better understanding of the microscopic nuclear reaction cross sections, and the development of methods to model the characteristics of the radiation emerging from the accelerator treatment unit. This paper describes the nuclear reaction mechanisms involved, and how the cross sections have been evaluated from theory and experiment, for use in computer simulations of radiation therapy. The simulations will allow the dose delivered to a tumor to be optimized, whilst minimizing the dos given to nearby organs at risk.

  7. Dosimetrically Triggered Adaptive Intensity Modulated Radiation Therapy for Cervical Cancer

    International Nuclear Information System (INIS)

    Purpose: The widespread use of intensity modulated radiation therapy (IMRT) for cervical cancer has been limited by internal target and normal tissue motion. Such motion increases the risk of underdosing the target, especially as planning margins are reduced in an effort to reduce toxicity. This study explored 2 adaptive strategies to mitigate this risk and proposes a new, automated method that minimizes replanning workload. Methods and Materials: Thirty patients with cervical cancer participated in a prospective clinical study and underwent pretreatment and weekly magnetic resonance (MR) scans over a 5-week course of daily external beam radiation therapy. Target volumes and organs at risk (OARs) were contoured on each of the scans. Deformable image registration was used to model the accumulated dose (the real dose delivered to the target and OARs) for 2 adaptive replanning scenarios that assumed a very small PTV margin of only 3 mm to account for setup and internal interfractional motion: (1) a preprogrammed, anatomy-driven midtreatment replan (A-IMRT); and (2) a dosimetry-triggered replan driven by target dose accumulation over time (D-IMRT). Results: Across all 30 patients, clinically relevant target dose thresholds failed for 8 patients (27%) if 3-mm margins were used without replanning. A-IMRT failed in only 3 patients and also yielded an additional small reduction in OAR doses at the cost of 30 replans. D-IMRT assured adequate target coverage in all patients, with only 23 replans in 16 patients. Conclusions: A novel, dosimetry-triggered adaptive IMRT strategy for patients with cervical cancer can minimize the risk of target underdosing in the setting of very small margins and substantial interfractional motion while minimizing programmatic workload and cost

  8. Radionuclide liver cancer therapies: from concept to current clinical status.

    Science.gov (United States)

    Vente, Maarten A D; Hobbelink, Monique G G; van Het Schip, Alfred D; Zonnenberg, Bernard A; Nijsen, Johannes F W

    2007-07-01

    Primary and secondary liver cancer have longtime been characterized by an overall poor prognosis since the majority of patients are not candidates for surgical resection with curative intent, systemic chemotherapy alone has rarely resulted in long-term survival, and the role of conventional external beam radiation therapy has traditionally been limited due to the relative sensitivity of the liver parenchyma to radiation. Therefore, a host of new treatment options have been developed and clinically introduced, including radioembolization techniques, which are the main topic of this paper. In these locoregional treatments liver malignancies are passively targeted because, unlike the normal liver, the blood supply of intrahepatic tumors is almost uniquely derived from the hepatic artery. These internal radiation techniques consist of injecting either yttrium-90 ((90)Y) microspheres, or iodine-131 ((131)I) or rhenium-188 ((188)Re) labeled lipiodol into the hepatic artery. Radioactive lipiodol is used exclusively for treatment of primary liver cancer, whereas (90)Y microsphere therapy is applied for treatment of both primary and metastatic liver cancers. Favorable clinical results have been achieved, particularly when (90)Y microspheres were used in conjunction with systemic chemotherapy. The main advantages of radiolabeled lipiodol treatment are that it is relatively inexpensive (especially (188)Re-HDD-lipiodol) and that the administration procedure is somewhat less complex than that of the microspheres. Holmium-166 ((166)Ho) loaded poly(L-lactic acid) microspheres have also been developed and are about to be clinically introduced. Since (166)Ho is a combined beta-gamma emitter and highly paramagnetic as well, it allows for both (quantitative) scintigraphic and magnetic resonance imaging. PMID:17630919

  9. Estrogen Signaling in Lung Cancer: An Opportunity for Novel Therapy

    Directory of Open Access Journals (Sweden)

    Keith D. Eaton

    2012-09-01

    Full Text Available Lung cancer is the leading cause of cancer death in U.S. and represents a major public health burden. Epidemiologic data have suggested that lung cancer in women may possess different biological characteristics compared to men, as evidenced by a higher proportion of never-smokers among women with lung cancer. Emerging data indicate that female hormones such as estrogen and progesterone play a significant role in lung carcinogenesis. It has been reported that estrogen and progesterone receptors are expressed in lung cancer cell lines as well as in patient-derived tumors. Hormone related risk factors such as hormone replacement therapy have been implicated in lung carcinogenesis and several preclinical studies show activity of anti-estrogen therapy in lung cancer. In this review, we summarize the emerging evidence for the role of reproductive hormones in lung cancer and implications for lung cancer therapy.

  10. Estrogen Signaling in Lung Cancer: An Opportunity for Novel Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Christina S., E-mail: cbaik2@u.washington.edu; Eaton, Keith D. [Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98109 (United States); Fred Hutchinson Cancer Research Center, Seattle, WA 98109 (United States)

    2012-09-25

    Lung cancer is the leading cause of cancer death in U.S. and represents a major public health burden. Epidemiologic data have suggested that lung cancer in women may possess different biological characteristics compared to men, as evidenced by a higher proportion of never-smokers among women with lung cancer. Emerging data indicate that female hormones such as estrogen and progesterone play a significant role in lung carcinogenesis. It has been reported that estrogen and progesterone receptors are expressed in lung cancer cell lines as well as in patient-derived tumors. Hormone related risk factors such as hormone replacement therapy have been implicated in lung carcinogenesis and several preclinical studies show activity of anti-estrogen therapy in lung cancer. In this review, we summarize the emerging evidence for the role of reproductive hormones in lung cancer and implications for lung cancer therapy.

  11. Physiologically gated micro-beam radiation therapy using electronically controlled field emission x-ray source array

    Science.gov (United States)

    Chtcheprov, Pavel; Hadsell, Michael; Burk, Laurel; Ger, Rachel; Zhang, Lei; Yuan, Hong; Lee, Yueh Z.; Chang, Sha; Lu, Jianping; Zhou, Otto

    2013-03-01

    Micro-beam radiation therapy (MRT) uses parallel planes of high dose narrow (10-100 um in width) radiation beams separated by a fraction of a millimeter to treat cancerous tumors. This experimental therapy method based on synchrotron radiation has been shown to spare normal tissue at up to 1000Gy of entrance dose while still being effective in tumor eradication and extending the lifetime of tumor-bearing small animal models. Motion during the treatment can result in significant movement of micro beam positions resulting in broader beam width and lower peak to valley dose ratio (PVDR), and thus can reduce the effectiveness of the MRT. Recently we have developed the first bench-top image guided MRT system for small animal treatment using a high powered carbon nanotube (CNT) x-ray source array. The CNT field emission x-ray source can be electronically synchronized to an external triggering signal to enable physiologically gated firing of x-ray radiation to minimize motion blurring. Here we report the results of phantom study of respiratory gated MRT. A simulation of mouse breathing was performed using a servo motor. Preliminary results show that without gating the micro beam full width at tenth maximum (FWTM) can increase by 70% and PVDR can decrease up to 50%. But with proper gating, both the beam width and PVDR changes can be negligible. Future experiments will involve irradiation of mouse models and comparing histology stains between the controls and the gated irradiation.

  12. Radiation therapy for metastatic lesions from breast cancer. Breast cancer metastasis to bone

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Shinya; Hoshi, Hiroaki [Gifu Univ. (Japan). School of Medicine

    2000-10-01

    This paper summarizes radiation therapy in the treatment of bone metastases from breast cancer. Bone metastasis occurs in approximately 70% of breast cancer patients, and the goals of radiation therapy for bone metastasis are: palliation of pain, prevention and treatment of neuropathic symptoms, and prevention of pathologic fractures. The prognosis of bone metastasis from breast cancer is known to be better than that of bone metastasis from other solid tumors. Local-field radiation, hemibody (or wide-field) radiation, and systemic radionuclide treatment are the major methods of radiation therapy for pain palliation. Although many studies have shown that breast cancer is more responsive to radiation therapy for pain palliation than other solid tumors, some studies found no significant difference. Local-field radiation therapy, which includes multi-fraction irradiation and single-fraction irradiation, is currently the most generally used method of radiotherapy for pain palliation. Pain palliation has been reported to be achieved in approximately 80% to 90% of patients treated with local-field external beam irradiation. Three types of multi-fraction irradiation therapy are administered depending on the prognosis: high-dose fraction irradiation (36-50 Gy/12-25 Fr/2.4-5 wk), short-course irradiation (20-30 Gy/10-15 Fr/2-3 wk), and ultra-short-course irradiation (15-25 Gy/2-5 Fr/1 wk). The most common irradiation schedule is 30 Gy/10 Fr/2 wk. Although many reports indicate no significant difference in pain palliation according to the dose, the percentage of patients who show a complete cure is significantly higher in those treated with doses of 30 Gy or more, and thus the total irradiation dose should be at least 30 Gy. High-dose fraction irradiation is indicated for patients with an expected survival time of 6 months or more while short-course or single-fraction irradiation is indicated for those with an expected survival time of 3 months or more. Single

  13. Interim Cosmetic Results and Toxicity Using 3D Conformal External Beam Radiotherapy to Deliver Accelerated Partial Breast Irradiation in Patients With Early-Stage Breast Cancer Treated With Breast-Conserving Therapy

    International Nuclear Information System (INIS)

    Purpose: We present our ongoing clinical experience utilizing three-dimensional (3D)-conformal radiation therapy (3D-CRT) to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer treated with breast-conserving therapy. Methods and Materials: Ninety-one consecutive patients were treated with APBI using our previously reported 3D-CRT technique. The clinical target volume consisted of the lumpectomy cavity plus a 10- to 15 -mm margin. The prescribed dose was 34 or 38.5 Gy in 10 fractions given over 5 consecutive days. The median follow-up was 24 months. Twelve patients have been followed for ≥4 years, 20 for ≥3.5 years, 29 for >3.0 years, 33 for ≥2.5 years, and 46 for ≥2.0 years. Results: No local recurrences developed. Cosmetic results were rated as good/excellent in 100% of evaluable patients at ≥ 6 months (n = 47), 93% at 1 year (n = 43), 91% at 2 years (n = 21), and in 90% at ≥3 years (n = 10). Erythema, hyperpigmentation, breast edema, breast pain, telangiectasias, fibrosis, and fat necrosis were evaluated at 6, 24, and 36 months after treatment. All factors stabilized by 3 years posttreatment with grade I or II rates of 0%, 0%, 0%, 0%, 9%, 18%, and 9%, respectively. Only 2 patients (3%) developed grade III toxicity (breast pain), which resolved with time. Conclusions: Delivery of APBI with 3D-CRT resulted in minimal chronic (≥6 months) toxicity to date with good/excellent cosmetic results. Additional follow-up is needed to assess the long-term efficacy of this form of APBI

  14. Beam removal block and shielding resign for the MARS neutron therapy reactor

    International Nuclear Information System (INIS)

    The beam removal block and shielding design for the MARS neutron therapy reactor are described. The requirements to the beams' characteristics, filters, collimator and reactor shielding are formulated. Radiation field levels in medical box are analyzed for beams' different operation conditions. It is stated that the removal block and shutter compositions meet necessary conditions in radiation treatment and emergency evacuation

  15. External beam radiotherapy for thyroid cancer

    International Nuclear Information System (INIS)

    The indications for and techniques of external beam radiotherapy for thyroid tumours can be clearly defined in relation to the histological type of tumour and stage of disease. Localized treatment for carcinoma can easily be accomplished as can wide field irradiation for lymphoma. However, when either extensive lateral neck disease is present or tumour extends into the superior mediastinum, it becomes difficult to adequately encompass the required volume without including the spinal cord. Several techniques are described which overcome this problem and thus allow a radical dose to be given without significant risk of transverse myelitis

  16. Hormone Replacement Therapy After Breast Cancer

    Directory of Open Access Journals (Sweden)

    Mueck AO

    2008-01-01

    Full Text Available So far, patient samples in all studies investigating hormone replacement therapy (HRT after breast cancer have been small.Therefore, HRT should only be used if alternatives such as specifically not contraindicated phytopreparations or selective sero-tonin reuptake inhibitors (SSRIs are not effective. This is primarily due to forensic reasons since clinical data on the risk ofalternatives (based on present evidence are even more sparse. Regarding HRT, four prospective randomized studies and at least15 observational studies after breast cancer are available. Only the HABITS study shows an increased risk of relapse. The authorssuggest that this is probably associated with the relatively high number of patients with HRT treatment after ER-positive cancersas well as due to the preferred use of estrogen/progestin-combined preparations. Based on the results of the randomized pla-cebo-controlled study Women’s Health Initiative (WHI as well as of at least 12 observational studies, the progestin componentseems to be mainly responsible for the probability of increased diagnosis frequency of primary breast cancer. However, no dataare available on the impact of progestin on the use of combined HRT after breast cancer. However, also with estrogen only anincreased risk of relapse must be expected and patients should be informed about it. This has to be concluded due to biologicalplausibility and observational studies although the estrogen-only arm in WHI did not show any increased primary risk. Thus, anyform of HRT should only be performed in exceptional cases, and treatment duration should be as short as possible with thelowest effective dose.

  17. Immuno-isolation in cancer gene therapy.

    Science.gov (United States)

    Cirone, Pasquale; Potter, Murray; Hirte, Hal; Chang, Patricia

    2006-04-01

    The implantation of genetically-modified non-autologous cells in immuno-protected microcapsules is an alternative to ex vivo gene therapy. Such cells delivering a recombinant therapeutic product are isolated from the host's immune system by being encapsulated within permselective microcapsules. This approach has been successful in pre-clinical animal studies involving delivery of hormone or enzymes to treat dwarfism, lysosomal storage disease, or hemophilia B. Recently, this platform technology has shown promise in the treatment for more complex diseases such as cancer. One of the earliest strategy was to augment the chemotherapeutic effect of a prodrug by implanting encapsulated cells that can metabolise prodrugs into cytotoxic products in close proximity to the cancer cells. More recent approaches include enhancing tumor cell death through immunotherapy, or suppressing tumor cell proliferation through anti-angiogenesis. These can be achieved by delivering single molecules of cytokines or angiostatin, respectively, by implanting microencapsulated cells engineered to secrete these recombinant products. Recent refinements of these approaches include genetic fusion of cytokines or angiostatin to additional functional groups with tumor targeting or tumor cell killing properties, thus enhancing the potency of the recombinant products. Furthermore, a COMBO strategy of implanting microencapsulated cells to deliver multiple products targeted to diverse pathways in tumor suppression also showed much promise. This review will summarise the application of microencapsulation of genetically-modified cells to cancer treatment in animal models, the efficacy of such approaches, and how these studies have led to better understanding of the biology of cancer treatment. The flexibility of this modular system involving molecular engineering, cellular genetic modification, and polymer chemistry provides potentially a huge range of application modalities, and a tremendous multi

  18. Secondary radiation measurements for particle therapy applications: prompt photons produced by $^{4}$He, $^{12}$C and $^{16}$O ion beams in a PMMA target

    OpenAIRE

    Mattei, Ilaria; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Frallicciardi, Paola Maria; Mancini-Terracciano, Carlo; Marafini, Michela; Muraro, Silvia; Paramatti, Riccardo; Patera, Vincenzo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio

    2016-01-01

    Charged particle beams are used in Particle Therapy (PT) to treat oncological patients due to their selective dose deposition in tissues and to their high biological effect in killing cancer cells with respect to photons and electrons used in conventional radiotherapy. Nowadays, protons and carbon ions are used in PT clinical routine but, recently, the interest on the potential application of helium and oxygen beams is growing due to their reduced multiple scattering inside the body and incre...

  19. Modern applications of high energy ion beams: From "single-event burnout" to human eye cancer treatment

    Science.gov (United States)

    Homeyer, H.; Mahnke, H.-E.

    1996-12-01

    Energetic ion beams, originally the domain of nuclear physics, become increasingly important tools in many other fields of research and development. The choice of ion species and ion energy allows an enormously wide variation of the penetration depth and of the amount of the electronic stopping power. These features are utilized to modify or damage materials and living tissues in a specific way. Materials modification with energetic ion beams is one of the central aims of research and development at the ion beam laboratory, ISL-Berlin, a center for ion-beam applications at the Hahn-Meitner-Institut Berlin. In particular, energetic protons will be used for eye cancer treatment. Selected topics such as the "single-event burnout" of high power diodes and the eye cancer therapy setup will be presented in detail.

  20. Gene Therapy of Cancer: Induction of Anti-Tumor Immunity

    Institute of Scientific and Technical Information of China (English)

    Cheng Qian; Jesus Prieto

    2004-01-01

    Many malignancies lack satisfactory treatment and new therapeutic options are urgently needed. Gene therapy is a new modality to treat both inherited and acquired diseases based on the transfer of genetic material to the tissues. Different gene therapy strategies against cancers have been developed. A considerable number of preclinical studies indicate that a great variety of cancers are amenable to gene therapy. Among these strategies,induction of anti-tumorimmunity is the most promising approach. Gene therapy with cytokines has reached unprecedented success in preclinical models of cancer. Synergistic rather than additive effects have beendemonstrated by combination of gene transfer of cytokines/chemokines, costimulatory molecules or adoptive cell therapy. Recent progress in vector technology and in imaging techniques allowing in vivo assessment of gene expression will facilitate the development of clinical applications of gene therapy, a procedure which may have a notorious impact in the management of cancers lacking effective treatment.

  1. An overview of gene therapy in head and neck cancer

    Directory of Open Access Journals (Sweden)

    Amit Bali

    2013-01-01

    Full Text Available Gene therapy is a new treatment modality in which new gene is introduced or existing gene is manipulated to cause cancer cell death or slow the growth of the tumor. In this review, we have discussed the different treatment approaches for cancer gene therapy; gene addition therapy, immunotherapy, gene therapy using oncolytic viruses, antisense ribonucleic acid (RNA and RNA interference-based gene therapy. Clinical trials to date in head and neck cancer have shown evidence of gene transduction and expression, mediation of apoptosis and clinical response including pathological complete responses. The objective of this article is to provide an overview of the current available gene therapies for head and neck cancer.

  2. Targeting copper in cancer therapy: 'Copper That Cancer'.

    Science.gov (United States)

    Denoyer, Delphine; Masaldan, Shashank; La Fontaine, Sharon; Cater, Michael A

    2015-11-01

    Copper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution. The realization that copper serves as a limiting factor for multiple aspects of tumor progression, including growth, angiogenesis and metastasis, has prompted the development of copper-specific chelators as therapies to inhibit these processes. Another therapeutic approach utilizes specific ionophores that deliver copper to cells to increase intracellular copper levels. The therapeutic window between normal and cancerous cells when intracellular copper is forcibly increased, is the premise for the development of copper-ionophores endowed with anticancer properties. Also under investigation is the use of copper to replace platinum in coordination complexes currently used as mainstream chemotherapies. In comparison to platinum-based drugs, these promising copper coordination complexes may be more potent anticancer agents, with reduced toxicity toward normal cells and they may potentially circumvent the chemoresistance associated with recurrent platinum treatment. In addition, cancerous cells can adapt their copper homeostatic mechanisms to acquire resistance to conventional platinum-based drugs and certain copper coordination complexes can re-sensitize cancer cells to these drugs. This review will outline the biological importance of copper and copper homeostasis in mammalian cells, followed by a discussion of our current understanding of copper dysregulation in cancer, and the recent therapeutic advances using copper coordination complexes as anticancer agents.

  3. Systemic cancer therapy: achievements and challenges that lie ahead.

    Science.gov (United States)

    Palumbo, Michael O; Kavan, Petr; Miller, Wilson H; Panasci, Lawrence; Assouline, Sarit; Johnson, Nathalie; Cohen, Victor; Patenaude, Francois; Pollak, Michael; Jagoe, R Thomas; Batist, Gerald

    2013-01-01

    In the last half of the century, advances in the systemic therapy of cancer, including chemotherapy, hormonal therapy, targeted therapy, and immunotherapy have been responsible for improvements in cancer related mortality in developed countries even as the population continues to age. Although such advancements have yet to benefit all cancer types, systemic therapies have led to an improvement in overall survival in both the adjuvant and metastatic setting for many cancers. With the pressure to make therapies available as soon as possible, the side-effects of systemic therapies, in particular long-term side-effects are not very well characterized and understood. Increasingly, a number of cancer types are requiring long-term and even lifelong systemic therapy. This is true for both younger and older patients with cancer and has important implications for each subset. Younger patients have an overall greater expected life-span, and as a result may suffer a greater variety of treatment related complications in the long-term, whereas older patients may develop earlier side-effects as a result of their frailty. Because the incidence of cancer in the world will increase over the next several decades and there will be more people living with cancer, it is important to have an understanding of the potential side-effects of new systemic therapies. As an introductory article, in this review series, we begin by describing some of the major advances made in systemic cancer therapy along with some of their known side-effects and we also make an attempt to describe the future of systemic cancer therapy.

  4. Electron string ion sources for carbon ion cancer therapy accelerators

    CERN Document Server

    Boytsov, A Yu; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-01-01

    The Electron String type of Ion Sources (ESIS) was developed, constructed and tested first in the Joint Institute for Nuclear Research. These ion sources can be the appropriate sources for production of pulsed C4+ and C6+ ion beams which can be used for cancer therapy accelerators. In fact the test ESIS Krion-6T already now at the solenoid magnetic field only 4.6 T provides more than 10^10 C4+ ions per pulse and about 5*10^9 C6+ ions per pulse. Such ion sources could be suitable for application at synchrotrons. It was also found, that Krion-6T can provide more than 10^11 C6+ ions per second at 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. As for production of 11C radioactive ion beams ESIS can be the most economic kind of ion source. To proof that the special cryogenic cell for pulse injection of gaseous species into electron string was successfully tested using the ESIS Krion-2M.

  5. Image-guided focal therapy for prostate cancer

    OpenAIRE

    Sankineni, Sandeep; Wood, Bradford J.; Rais-Bahrami, Soroush; Diaz, Annerleim Walton; Hoang, Anthony N.; Pinto, Peter A.; Peter L. Choyke; Türkbey, Barış

    2014-01-01

    The adoption of routine prostate specific antigen screening has led to the discovery of many small and low-grade prostate cancers which have a low probability of causing mortality. These cancers, however, are often treated with radical therapies resulting in long-term side effects. There has been increasing interest in minimally invasive focal therapies to treat these tumors. While imaging modalities have improved rapidly over the past decade, similar advances in image-guided therapy are now ...

  6. Cell Targeting in Anti-Cancer Gene Therapy

    OpenAIRE

    Lila, Mohd Azmi Mohd; Siew, John Shia Kwong; Zakaria, Hayati; Saad, Suria Mohd; Ni, Lim Shen; Abdullah, Jafri Malin

    2004-01-01

    Gene therapy is a promising approach towards cancer treatment. The main aim of the therapy is to destroy cancer cells, usually by apoptotic mechanisms, and preserving others. However, its application has been hindered by many factors including poor cellular uptake, non-specific cell targeting and undesirable interferences with other genes or gene products. A variety of strategies exist to improve cellular uptake efficiency of gene-based therapies. This paper highlights advancements in gene th...

  7. Stereotactic Body Radiotherapy and Ablative Therapies for Lung Cancer.

    Science.gov (United States)

    Abbas, Ghulam; Danish, Adnan; Krasna, Mark J

    2016-07-01

    The treatment paradigm for early stage lung cancer and oligometastatic disease to the lung is rapidly changing. Ablative therapies, especially stereotactic body radiation therapy, are challenging the surgical gold standard and have the potential to be the standard for operable patients with early stage lung cancer who are high risk due to co- morbidities. The most commonly used ablative modalities include stereotactic body radiation therapy, microwave ablation, and radiofrequency ablation.

  8. Gene therapy for gastric cancer: Is it promising?

    OpenAIRE

    Sutter, Andreas P; Fechner, Henry

    2006-01-01

    Gastric cancer is one of the most common tumors worldwide. The therapeutic outcome of conventional therapies is inefficient. Thus, new therapeutic strategies are urgently needed. Gene therapy is a promising molecular alternative in the treatment of gastric cancer, including the replacement of defective tumor suppressor genes, the inactivation of oncogenes, the introduction of suicide genes, genetic immunotherapy, anti-angiogenetic gene therapy, and virotherapy. Improved molecular biological t...

  9. Cancer Treatment Using Peptides: Current Therapies and Future Prospects

    OpenAIRE

    Jyothi Thundimadathil

    2012-01-01

    This paper discusses the role of peptides in cancer therapy with special emphasis on peptide drugs which are already approved and those in clinical trials. The potential of peptides in cancer treatment is evident from a variety of different strategies that are available to address the progression of tumor growth and propagation of the disease. Use of peptides that can directly target cancer cells without affecting normal cells (targeted therapy) is evolving as an alternate strategy to convent...

  10. Adjuvant Therapy of Colon Cancer: Current Status and Future Developments

    OpenAIRE

    Morse, Michael A.

    2005-01-01

    Options for the adjuvant therapy of resected stage III colon cancer have expanded beyond the previously well-accepted standard of 5-fluorouracil (5-FU) combined with leucovorin. The Xeloda in Adjuvant Colon Cancer Therapy (X-ACT) study confirmed that capecitabine (Xeloda) is at least as effective and is less toxic than a bolus 5-FU and leucovorin regimen for patients with stage III colon cancer. This study, in addition to National Surgical Adjuvant Breast and Bowel Project (NSABP) C-06, which...

  11. Stem Cell Based Gene Therapy in Prostate Cancer

    OpenAIRE

    Jae Heon Kim; Hong Jun Lee; Yun Seob Song

    2014-01-01

    Current prostate cancer treatment, especially hormone refractory cancer, may create profound iatrogenic outcomes because of the adverse effects of cytotoxic agents. Suicide gene therapy has been investigated for the substitute modality for current chemotherapy because it enables the treatment targeting the cancer cells. However the classic suicide gene therapy has several profound side effects, including immune-compromised due to viral vector. Recently, stem cells have been regarded as a new ...

  12. Personalized therapy in endometrial cancer: Challenges and opportunities

    OpenAIRE

    Westin, Shannon N.; Broaddus, Russell R.

    2012-01-01

    Early stage endometrial cancer is generally curable. However, progress in the treatment of advanced and recurrent endometrial cancer has been limited. This has led to a shift from the use of traditional chemotherapeutic agents and radiotherapy regimens to the promising area of targeted therapy, given the large number of druggable molecular alterations found in endometrial cancer. To maximize the effects of directed targeted therapy, careful molecular characterization of the endometrial tumor ...

  13. Oncolytic adenovirus-mediated therapy for prostate cancer

    OpenAIRE

    Sweeney K; Halldén G

    2016-01-01

    Katrina Sweeney, Gunnel Halldén Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK Abstract: Prostate cancer is a leading cause of cancer-related death and morbidity in men in the Western world. Tumor progression is dependent on functioning androgen receptor signaling, and initial administration of antiandrogens and hormone therapy (androgen-deprivation therapy) prevent growth and spread. Tumors frequently develop escape mechanisms t...

  14. Radiation therapy and Koebner effect in cancer patients with psoriasis

    International Nuclear Information System (INIS)

    Radiation therapy (XRT) may initiate skin side effects that occur more often in patients with skin disorders. One of such diseases is psoriasis - a common disorder in the western communities. In the past Grenz rays and superficial XRT were used to treat psoriatic patients and were reported to initiate the Koebner effect, which is an exacerbation of the underlying disease following a skin trauma. Recently, several case reports revealed a similar response in cancer patients receiving megavoltage XRT. Hence, one may assume that irradiation should be re-considered or re-modified in order to spare the involved skin. To report our experience in radiotherapy of cancer patients with psoriasis. Six patients with prostate adenocarcinoma (3), breast cancer (2) and soft tissue sarcoma (1) suffering from psoriasis were referred for radiotherapy as a part of their anti-cancer treatment. In all patients the irradiation fields included the psoriatic lesions. The irradiation was delivered using linear accelerators operated through 6-8 MV photon and 8 MeV electron beams. The total XRT dose varied from 50 to 70 Gy and the daily fraction was 1.8-2.0 Gy. A close monitoring during and after completion of irradiation was carried out and standard skin care was advised. No change in the irradiated psoriatic lesions as well as in the surrounding area was observed in all patients during the irradiation. Subsequent follow up (up to 24 months) revealed no new skin lesions and no worsening of existing plaques. Megavoltage XRT in a conventional daily fraction has no effect on psoriatic skin lesions

  15. Cancer and Radiation Therapy: Current Advances and Future Directions

    Directory of Open Access Journals (Sweden)

    Rajamanickam Baskar, Kuo Ann Lee, Richard Yeo, Kheng-Wei Yeoh

    2012-01-01

    Full Text Available In recent years remarkable progress has been made towards the understanding of proposed hallmarks of cancer development and treatment. However with its increasing incidence, the clinical management of cancer continues to be a challenge for the 21st century. Treatment modalities comprise of radiation therapy, surgery, chemotherapy, immunotherapy and hormonal therapy. Radiation therapy remains an important component of cancer treatment with approximately 50% of all cancer patients receiving radiation therapy during their course of illness; it contributes towards 40% of curative treatment for cancer. The main goal of radiation therapy is to deprive cancer cells of their multiplication (cell division potential. Celebrating a century of advances since Marie Curie won her second Nobel Prize for her research into radium, 2011 has been designated the Year of Radiation therapy in the UK. Over the last 100 years, ongoing advances in the techniques of radiation treatment and progress made in understanding the biology of cancer cell responses to radiation will endeavor to increase the survival and reduce treatment side effects for cancer patients. In this review, principles, application and advances in radiation therapy with their biological end points are discussed.

  16. Management of Biochemical Recurrence after Primary Localized Therapy for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Oussama M. eDarwish

    2012-05-01

    Full Text Available Clinically localized prostate cancer is typically managed by well established therapies like radical prostatectomy, brachytherapy and external beam radiation therapy. While many patients can be cured with definitive local therapy, some will have biochemical recurrence (BCR of disease detected by a rising serum prostate-specific antigen (PSA. Management of these patients is nuanced and controversial. The natural history indicates that a majority of patients with BCR will not die from prostate cancer but from other causes. Despite this, a vast majority of patients with BCR are empirically treated with non-curable systemic androgen deprivation therapy, with its myriad of real and potential side effects. In this review article, we examined the very definition of BCR after definitive local therapy, the current status of imaging studies in its evaluation, the need for additional therapies and the factors involved in the decision making in the choice of additional therapies. This review aims to help clinicians with the management of patients with BCR. The assessment of prognostic factors including absolute PSA level, time to recurrence, PSA kinetics, multivariable nomograms, imaging, and biopsy of the prostatic bed may help stratify the patients into localized or systemic recurrence. Patients with low risk of systemic disease may be cured by a salvage local therapy, while those with higher risk of systemic disease may be offered the option of androgen deprivation therapy or a clinical trial. An algorithm incorporating these factors is presented.

  17. Hormonal replacement therapy and gynecological cancer.

    Science.gov (United States)

    Onnis, A; Marchetti, M

    1999-01-01

    The problem of quality of life and lifestyle in elderly women is today a very important social problem all over the world but particularly in rich western countries. Life expectancy of the population will be longer and longer in the future and for both females and males the biological involution correlated with the aging process must be delayed. The gonadal hormones stimulate the healthy state of the entire body (heart, skin, brain, bones, urogenital apparatus and so on) and consequently hormonal replacement therapy (HRT) is mandatory. In women the biological clock of menopause allows us to intervene at the right time, with personalized estrogenic, estroprogestinic or estroandrogenic treatments. Health benefits and groundless risks allow today a careful hormonal management even in women treated for gynaecological cancers (breast and endometrium as well). PMID:10412612

  18. Development of novel radiosensitizers for cancer therapy

    CERN Document Server

    Akamatsu, K

    2002-01-01

    The novel radiosensitizers for cancer therapy, which have some atoms with large X-ray absorption cross sections, were synthesized. The chemical and radiation (X-rays, W target, 100kVp) toxicities and the radiosensitivities to LS-180 human colon adenocarcinoma cells were also evaluated. 2,3,4,5,6-pentabromobenzylalcohol (PBBA) derivatives were not radiosensitive even around the maximum concentration. On the other hand, the hydrophilic sodium 2,4,6-triiodobenzoate (STIB) indicated meaningful radiosensitivity to the cells. Moreover, the membrane-specific radiosensitizers, cetyl fluorescein isthiocyanate (cetyl FITC), cetyl eosin isothiocyanate (cetyl br-FITC), cetyl erythrosin isothiocyanate (cetyl I-FITC), which aim for the membrane damage by X-ray photoabsorption on the target atoms, were localized in the plasma membrane. As the results of the colony formation assay, it was found that both cetyl FITC are similarly radiosensitive. In this report, we demonstrate the synthetic methods of the radiosensitizers, the...

  19. Current role of surgical therapy in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Ryan Swan; Thomas J Miner

    2006-01-01

    Surgery is currently the only potentially curative treatment for gastric cancer. Since the inception of the gastrectomy for cancer of the stomach, there has been debate over the bounds of surgical therapy, balancing potential long-term survival with perioperative morbidity and mortality. This review delineates the current role of surgery in preoperative staging, curative resection, and palliative treatment for gastric cancer.

  20. Proton beam therapy for pediatric malignancies: a retrospective observational multicenter study in Japan.

    Science.gov (United States)

    Mizumoto, Masashi; Murayama, Shigeyuki; Akimoto, Tetsuo; Demizu, Yusuke; Fukushima, Takashi; Ishida, Yuji; Oshiro, Yoshiko; Numajiri, Haruko; Fuji, Hiroshi; Okumura, Toshiyuki; Shirato, Hiroki; Sakurai, Hideyuki

    2016-07-01

    Recent progress in the treatment for pediatric malignancies using a combination of surgery, chemotherapy, and radiotherapy has improved survival. However, late toxicities of radiotherapy are a concern in long-term survivors. A recent study suggested reduced secondary cancer and other late toxicities after proton beam therapy (PBT) due to dosimetric advantages. In this study, we evaluated the safety and efficacy of PBT for pediatric patients treated in Japan. A retrospective observational study in pediatric patients who received PBT was performed. All patients aged loss (two cases), cerebral vascular disease, and tissue necrosis occurred in five patients. This study provides preliminary results for PBT in pediatric patients in Japan. More experience and follow-up with this technique are required to establish the efficacy of PBT in this patient population.

  1. Nanomedicine-mediated cancer stem cell therapy.

    Science.gov (United States)

    Shen, Song; Xia, Jin-Xing; Wang, Jun

    2016-01-01

    Circumstantial evidence suggests that most tumours are heterogeneous and contain a small population of cancer stem cells (CSCs) that exhibit distinctive self-renewal, proliferation and differentiation capabilities, which are believed to play a crucial role in tumour progression, drug resistance, recurrence and metastasis in multiple malignancies. Given that the existence of CSCs is a primary obstacle to cancer therapy, a tremendous amount of effort has been put into the development of anti-CSC strategies, and several potential approaches to kill therapeutically-resistant CSCs have been explored, including inhibiting ATP-binding cassette transporters, blocking essential signalling pathways involved in self-renewal and survival of CSCs, targeting CSCs surface markers and destroying the tumour microenvironment. Meanwhile, an increasing number of therapeutic agents (e.g. small molecule drugs, nucleic acids and antibodies) to selectively target CSCs have been screened or proposed in recent years. Drug delivery technology-based approaches hold great potential for tackling the limitations impeding clinical applications of CSC-specific agents, such as poor water solubility, short circulation time and inconsistent stability. Properly designed nanocarrier-based therapeutic agents (or nanomedicines) offer new possibilities of penetrating CSC niches and significantly increasing therapeutic drug accumulation in CSCs, which are difficult for free drug counterparts. In addition, intelligent nanomedicine holds great promise to overcome pump-mediated multidrug resistance which is driven by ATP and to decrease detrimental effects on normal somatic stem cells. In this review, we summarise the distinctive biological processes related to CSCs to highlight strategies against inherently drug-resistant CSCs. We then focus on some representative examples that give a glimpse into state-of-the-art nanomedicine approaches developed for CSCs elimination. A perspective on innovative therapeutic

  2. Optimization of adaptive radiation therapy in cervical cancer: Solutions for photon and proton therapy

    NARCIS (Netherlands)

    A.J.A.J. van de Schoot

    2016-01-01

    In cervical cancer radiation therapy, an adaptive strategy is required to compensate for interfraction anatomical variations in order to achieve adequate dose delivery. In this thesis, we have aimed at optimizing adaptive radiation therapy in cervical cancer to improve treatment efficiency and reduc

  3. Music therapy as part of the alternative-complementary therapy in cancer patients in hospital

    Directory of Open Access Journals (Sweden)

    Efstratios Athanassakis

    2012-01-01

    Full Text Available Cancer is one of the modern health problems of people living in developed countries. Furthermore, therapeutic approaches to cancer patients is constantly updated with new data. Aim: The aim of the present study was to review the international literature referred to the application of music therapy in the treatment for pediatric and adult patients with cancer. Method and materials: The method of this study included bibliography research from both the review and the research literature on MEDLINE (2000-2010 database and using as key words music, music therapy, alternative-complementary therapy, cancer, children. Results: Music therapy, the last few years, seems to be one of the forms of alternative-complementary therapy for patients treated for cancer. Music therapy is applied as part of complementary therapy in pediatric and adult patients with cancer. Complementary-alternative methods are non-invasive, non-toxic, cheap, safe and can be easily used by the patients themselves. Primarily, the music therapy aimed to the reduction of the emotional trauma and the feeling of the pain during the process of the treatment (radiotherapy, chemotherapy, other painful procedures but also in the whole patients life. Conclusions: Scientific bibliographic databases research concerning the music therapy in patients with cancer seem encouraging, especially in children. Nevertheless, the further study of the role of the music during hospitalization in the outcome of the treatment is essential

  4. Personalized Therapy of Small Cell Lung Cancer.

    Science.gov (United States)

    Schneider, Bryan J; Kalemkerian, Gregory P

    2016-01-01

    Small cell lung cancer (SCLC) is an aggressive, poorly differentiated neuroendocrine carcinoma with distinct clinical, pathological and molecular characteristics. Despite robust responses to initial chemotherapy and radiation, the prognosis of patients with SCLC remains poor with an overall 5-year survival rate of less than 10 %. Despite the fact that numerous molecularly targeted approaches have thus far failed to demonstrate clinical utility in SCLC, further advances will rely on better definition of the biological pathways that drive survival, proliferation and metastasis. Recent next-generation, molecular profiling studies have identified many new therapeutic targets in SCLC, as well as extreme genomic instability which explains the high degree of resistance. A wide variety of anti-angiogenic agents, growth factor inhibitors, pro-apoptotic agents, and epigenetic modulators have been evaluated in SCLC and many studies of these strategies are on-going. Perhaps the most promising approaches involve agents targeting cancer stem cell pathways and immunomodulatory drugs that interfere with the PD1 and CTLA-4 pathways. SCLC offers many barriers to the development of successful therapy, including limited tumor samples, inadequate preclinical models, high mutational burden, and aggressive tumor growth which impairs functional status and hampers enrollment on clinical trials. PMID:26703804

  5. Senescence induction; a possible cancer therapy

    Directory of Open Access Journals (Sweden)

    Kondoh Hiroshi

    2009-01-01

    Full Text Available Abstract Cellular immortalization is a crucial step during the development of human cancer. Primary mammalian cells reach replicative exhaustion after several passages in vitro, a process called replicative senescence. During such a state of permanent growth arrest, senescent cells are refractory to physiological proliferation stimuli: they have altered cell morphology and gene expression patterns, although they remain viable with preserved metabolic activity. Interestingly, senescent cells have also been detected in vivo in human tumors, particularly in benign lesions. Senescence is a mechanism that limits cellular lifespan and constitutes a barrier against cellular immortalization. During immortalization, cells acquire genetic alterations that override senescence. Tumor suppressor genes and oncogenes are closely involved in senescence, as their knockdown and ectopic expression confer immortality and senescence induction, respectively. By using high throughput genetic screening to search for genes involved in senescence, several candidate oncogenes and putative tumor suppressor genes have been recently isolated, including subtypes of micro-RNAs. These findings offer new perspectives in the modulation of senescence and open new approaches for cancer therapy.

  6. Emerging HIFU applications in cancer therapy.

    Science.gov (United States)

    Maloney, Ezekiel; Hwang, Joo Ha

    2015-05-01

    High intensity focused ultrasound (HIFU), is a promising, non-invasive modality for treatment of tumours in conjunction with magnetic resonance imaging or diagnostic ultrasound guidance. HIFU is being used increasingly for treatment of prostate cancer and uterine fibroids. Over the last 10 years a growing number of clinical trials have examined HIFU treatment of both benign and malignant tumours of the liver, breast, pancreas, bone, connective tissue, thyroid, parathyroid, kidney and brain. For some of these emerging indications, HIFU is poised to become a serious alternative or adjunct to current standard treatments--including surgery, radiation, gene therapy, immunotherapy, and chemotherapy. Current commercially available HIFU devices are marketed for their thermal ablation applications. In the future, lower energy treatments may play a significant role in mediating targeted drug and gene delivery for cancer treatment. In this article we introduce currently available HIFU systems, provide an overview of clinical trials in emerging oncological targets, and briefly discuss selected pre-clinical research that is relevant to future oncological HIFU applications. PMID:25367011

  7. [Pharmacological therapy of cancer anorexia-cachexia].

    Science.gov (United States)

    Cardona, D

    2006-05-01

    Anorexia is one of the most common symptoms of patients with advanced cancer and it presents as loss of appetite due to satiety. On the other hand, cachexia is described in those patients with unwanted weight loss. Cancerous processes produce an energy unbalance by decreased food intake and increased catabolism, resulting in a clearly negative balance. Several factors determining cachexia are observed, from metabolic unbalances produced by tumoral products and endocrine impairments or the inflammatory response produced by cytokines, all of them leading to higher lipolysis, loss of muscle protein, and anorexia. Besides, causes of anorexia are multiple, from chemotherapy agents, radiotherapy, or immunotherapy, which may produce different degrees of nausea, vomiting, diarrhea, and also leading to impairments of taste and smell, to obstruction of the digestive tract, pain, depression, constipation, etc. From the knowledge of the different mechanisms producing the anorexia-cachexia syndrome, hypercaloric diets for artificial nutrition have been studied with varying success, and different drugs with a positive effect on appetite gain such as progestogens, steroids, and with lesser clinical evidence cannabinoids, cyproheptadine, mirtazapine (antidepressant), and olanzapine (antipsychotic). Other drugs have been studied because of their anti-inflammatory properties, anti-cytokine, such as melatonin, polyunsaturated omega-3 fatty acids, pentoxifylline, and thalidomide; with the exception of the latter, clinical data are still scant for daily usage. Similarly happens with testosterone-derived anabolic drugs or with metabolism inhibitors such as hydrazine sulfate. With no doubt, progestogens, especially megestrol, and corticosteroids will be first-line therapies for anorexia-cachexia syndrome to stimulate the appetite and increase weight (megestrol), and have an effect on quality of life improvement and comfort in patients with advanced cancer.

  8. Cancer treatments

    Science.gov (United States)

    ... focused beam of light to destroy cancer cells. Laser therapy can be used to: Destroy tumors and precancerous growths Shrink tumors that are blocking the stomach, colon, or esophagus Help treat cancer symptoms, such as bleeding Seal nerve endings after ...

  9. [Radiation therapy for prostate cancer in modern era].

    Science.gov (United States)

    Nishimura, Takuya

    2016-01-01

    The purpose of this paper is to provide overview of the latest research trend on technique of radiation therapy of prostate cancer. Three-dimensional conformal radiation therapy(3D -CRT) has achieved better outcome of treatment for prostate cancer than 2-dimensional radiation therapy. Intensity-modulated radiation therapy(IMRT) is considered to be superior to 3D-CRT at certain points. Image-guided (IG) radiation therapy (IGRT), mainly IG-IMRT, is investigated what kind of influence it has on an outcome, both tumor control rate and adverse events. Particle therapy is a most ideal therapy theoretically. There is, however, few evidence which revealed that the therapy is superior to any other modalities.

  10. Determination Of Some Specific Parameters In Energy Spectrum Of Electron Beams From The Radiation Therapy Linear Accelerator Siemens PRIMUS

    International Nuclear Information System (INIS)

    Mean energy E0 and maximum probability energy Ep,0 of electron beams on the patient skin are important parameters using in radiotherapy. This report presents the experimental method assessing quality of 12 MeV electron beam from Radiation therapy Linac-SIEMENS Primus at the National Cancer Hospital (K Hospital). Absorbed dose distribution and absorbed curve of a certain field size at the depths in medium have been defined by absorbed measurement technique in water phantom. The determination of Ep,0 and E0 is based on the use of semi- empirical relationships between electron energy and range parameters, which are determined in percentage depth dose curve for electron beam in water phantom. (author)

  11. Gene therapy for gastric cancer: Is it promising?

    Institute of Scientific and Technical Information of China (English)

    Andreas P Sutter; Henry Fechner

    2006-01-01

    Gastric cancer is one of the most common tumors worldwide. The therapeutic outcome of conventional therapies is inefficient. Thus, new therapeutic strategies are urgently needed. Gene therapy is a promising molecular alternative in the treatment of gastric cancer,including the replacement of defective tumor suppressor genes, the inactivation of oncogenes, the introduction of suicide genes, genetic immunotherapy, anti-angiogenetic gene therapy, and virotherapy. Improved molecular biological techniques and a better understanding of gastric carcinogenesis have allowed us to validate a variety of genes as molecular targets for gene therapy.This review provides an update of the new developments in cancer gene therapy, new principles, techniques,strategies and vector systems, and shows how they may be applied in the treatment of gastric cancer.

  12. Effect of Proton Beam on Cancer Progressive and Metastatic Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Y. H.; Nam, K. S.; Oh, Y. H.; Kim, M. K.; Kim, M. Y.; Jang, J. S. [Dongguk University, Seoul (Korea, Republic of)

    2008-04-15

    The purpose of this study was to investigate the effect of proton beam on enzymes for promotion/progression of carcinogenesis and metastasis of malignant tumor cells to clarify proton beam-specific biological effects. The changes of cancer chemopreventive enzymes in human colorectal adenocarcinoma HT-29 cells irradiated with proton beams were tested by measuring the activities of quinine reductase (QR), glutathione S-transferase (GST), and ornithine decarboxylase (ODC), glutathione (GSH) levels, and expression of cyclooxygenase-2 (COX-2). We also examined the effect of proton beam on the ODC activity and expression of COX-2 in human breast cancer cell. We then assessed the metastatic capabilities of HT-29 and MDA-MB-231 cells irradiated with proton beam by measuring the invasiveness of cells through Matrigel-coated membrane and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP activity in MDA-MB-231 and HT-29 cells. QR activity of irradiated HT-29 cells was slightly increased. Proton irradiation at dose of 32 Gy in HT-29 cells increased GST activity by 1.23-fold. In addition GSH levels in HT-29 cells was significantly increased 1.23- (p<0.05), 1.32- (p<0.01) and 1.34-fold (p<0.01) with the proton irradiation at doses of 8, 16 and 32 Gy, respectively. These results suggest that colon cancer chemopreventive activity was increased with the proton irradiation by increasing QR and GST activities and GSH levels and inhibiting ODC activity. Proton ion irradiation decreased the invasiveness of TPA-treated HT-29 cells and MDA-MB-231 cells through Matrigel-coated membrane. Proton ion irradiation pretreatment decreased TPA-induced MMP activity in MDA-MB-231 and HT-29 cells. Further studies are necessary to investigate if these findings could be translated to in vivo situations

  13. Effect of physical therapy on breast cancer related lymphedema

    DEFF Research Database (Denmark)

    Tambour, Mette; Tange, Berit; Christensen, Robin Daniel Kjersgaard;

    2014-01-01

    BACKGROUND: Physical therapy treatment of patients with lymphedema includes treatment based on the principles of 'Complete Decongestive Therapy' (CDT). CDT consists of the following components; skin care, manual lymphatic drainage, bandaging and exercises. The scientific evidence regarding what...... trial. A total of 160 breast cancer patients with arm lymphedema will be recruited from 3 hospitals and randomized into one of two treatment groups A: Complete Decongestive Therapy including manual drainage or B: Complete Decongestive Therapy without manual lymphatic drainage. The intervention period...

  14. Navigating cancer network attractors for tumor-specific therapy

    DEFF Research Database (Denmark)

    Creixell, Pau; Schoof, Erwin; Erler, Janine Terra;

    2012-01-01

    these malignant states by accumulating different molecular alterations, uncovering these mechanisms represents a grand challenge in cancer biology. Addressing this challenge will require new systems-based strategies that capture the intrinsic properties of cancer signaling networks and provide deeper...... understanding of the processes by which genetic lesions perturb these networks and lead to disease phenotypes. Network biology will help circumvent fundamental obstacles in cancer treatment, such as drug resistance and metastasis, empowering personalized and tumor-specific cancer therapies....

  15. Transcriptionally targeted gene therapy to detect and treat cancer

    OpenAIRE

    Wu, Lily; Johnson, Mai; Sato, Makoto

    2003-01-01

    The greatest challenge in cancer treatment is to achieve the highest levels of specificity and efficacy. Cancer gene therapy could be designed specifically to express therapeutic genes to induce cancer cell destruction. Cancer-specific promoters are useful tools to accomplish targeted expression; however, high levels of gene expression are needed to achieve therapeutic efficacy. Incorporating an imaging reporter gene in tandem with the therapeutic gene will allow tangible proof of principle t...

  16. Gene Therapy: A Potential Approach for Cancer Pain

    OpenAIRE

    Nicholas Boulis; Christina Krudy; Handy, Chalonda R.

    2011-01-01

    Chronic pain is experienced by as many as 9 0 % of cancer patients at some point during the disease. This pain can be directly cancer related or arise from a sensory neuropathy related to chemotherapy. Major pharmacological agents used to treat cancer pain often lack anatomical specificity and can have off-target effects that create new sources of suffering. These concerns establish a need for improved cancer pain management. Gene therapy is emerging as an exciting prospect. This paper discus...

  17. Molecular Diagnosis for Personalized Target Therapy in Gastric Cancer

    OpenAIRE

    Cho, Jae Yong

    2013-01-01

    Gastric cancer is the second leading cause of cancer-related deaths worldwide. In advanced and metastatic gastric cancer, the conventional chemotherapy with limited efficacy shows an overall survival period of about 10 months. Patient specific and effective treatments known as personalized cancer therapy is of significant importance. Advances in high-throughput technologies such as microarray and next generation sequencing for genes, protein expression profiles and oncogenic signaling pathway...

  18. The impact of Quercetin like flavonoid antioxidants on Cancer Therapy

    OpenAIRE

    Akan, Zafer

    2015-01-01

    Uncontrolled consumption of medical plants may lead controversial result over the patients who are receiving radiotherapy or chemotherapy for cancer treatment. Especially, flavonoid free radical scavenger including chemical and plants may not be innocent as much as thought. Free radical scavenger antioxidant extracts uses for commonly for two aims; the prevention of cancer and therapy of cancer.In the light of recent developments the impact of antioxidant usage on cancer treatment and prevent...

  19. Targeted therapy in lung and breast cancer: a big deal

    OpenAIRE

    Caffarra, Cristina

    2015-01-01

    Great strides have been done in treating cancer. For decades, the hallmark of medical treatment for cancer has been intravenous cytotoxic chemotherapy which targets all dividing cells. In the last ten years the identification of different driver oncogenic mutations has allowed the development of targeted drugs. Targeted cancer therapies are based on the use of drugs that block the growth and spread of cancer by interfering with specific molecules involved in tumor growth and progression. The ...

  20. 3D printed plastics for beam modulation in proton therapy

    Science.gov (United States)

    Lindsay, C.; Kumlin, J.; Jirasek, A.; Lee, R.; Martinez, D. M.; Schaffer, P.; Hoehr, C.

    2015-06-01

    Two 3D printing methods, fused filament fabrication (FFF) and PolyJet™ (PJ) were investigated for suitability in clinical proton therapy (PT) energy modulation. Measurements of printing precision, printed density and mean stopping power are presented. FFF is found to be accurate to 0.1 mm, to contain a void fraction of 13% due to air pockets and to have a mean stopping power dependent on geometry. PJ was found to print accurate to 0.05 mm, with a material density and mean stopping power consistent with solid poly(methyl methacrylate) (PMMA). Both FFF and PJ were found to print significant, sporadic defects associated with sharp edges on the order of 0.2 mm. Site standard PT modulator wheels were printed using both methods. Measured depth-dose profiles with a 74 MeV beam show poor agreement between PMMA and printed FFF wheels. PJ printed wheel depth-dose agreed with PMMA within 1% of treatment dose except for a distal falloff discrepancy of 0.5 mm.

  1. 3D printed plastics for beam modulation in proton therapy

    International Nuclear Information System (INIS)

    Two 3D printing methods, fused filament fabrication (FFF) and PolyJet™ (PJ) were investigated for suitability in clinical proton therapy (PT) energy modulation. Measurements of printing precision, printed density and mean stopping power are presented. FFF is found to be accurate to 0.1 mm, to contain a void fraction of 13% due to air pockets and to have a mean stopping power dependent on geometry. PJ was found to print accurate to 0.05 mm, with a material density and mean stopping power consistent with solid poly(methyl methacrylate) (PMMA). Both FFF and PJ were found to print significant, sporadic defects associated with sharp edges on the order of 0.2 mm. Site standard PT modulator wheels were printed using both methods. Measured depth-dose profiles with a 74 MeV beam show poor agreement between PMMA and printed FFF wheels. PJ printed wheel depth-dose agreed with PMMA within 1% of treatment dose except for a distal falloff discrepancy of 0.5 mm. (note)

  2. A comparison of robotic arm versus gantry linear accelerator stereotactic body radiation therapy for prostate cancer

    Science.gov (United States)

    Avkshtol, Vladimir; Dong, Yanqun; Hayes, Shelly B; Hallman, Mark A; Price, Robert A; Sobczak, Mark L; Horwitz, Eric M; Zaorsky, Nicholas G

    2016-01-01

    Prostate cancer is the most prevalent cancer diagnosed in men in the United States besides skin cancer. Stereotactic body radiation therapy (SBRT; 6–15 Gy per fraction, up to 45 minutes per fraction, delivered in five fractions or less, over the course of approximately 2 weeks) is emerging as a popular treatment option for prostate cancer. The American Society for Radiation Oncology now recognizes SBRT for select low- and intermediate-risk prostate cancer patients. SBRT grew from the notion that high doses of radiation typical of brachytherapy could be delivered noninvasively using modern external-beam radiation therapy planning and delivery methods. SBRT is most commonly delivered using either a traditional gantry-mounted linear accelerator or a robotic arm-mounted linear accelerator. In this systematic review article, we compare and contrast the current clinical evidence supporting a gantry vs robotic arm SBRT for prostate cancer. The data for SBRT show encouraging and comparable results in terms of freedom from biochemical failure (>90% for low and intermediate risk at 5–7 years) and acute and late toxicity (cancer-specific mortality) cannot be compared, given the indolent course of low-risk prostate cancer. At this time, neither SBRT device is recommended over the other for all patients; however, gantry-based SBRT machines have the abilities of treating larger volumes with conventional fractionation, shorter treatment time per fraction (~15 minutes for gantry vs ~45 minutes for robotic arm), and the ability to achieve better plans among obese patients (since they are able to use energies >6 MV). Finally, SBRT (particularly on a gantry) may also be more cost-effective than conventionally fractionated external-beam radiation therapy. Randomized controlled trials of SBRT using both technologies are underway. PMID:27574585

  3. Partial Breast Radiation Therapy With Proton Beam: 5-Year Results With Cosmetic Outcomes

    International Nuclear Information System (INIS)

    Purpose: We updated our previous report of a phase 2 trial using proton beam radiation therapy to deliver partial breast irradiation (PBI) in patients with early stage breast cancer. Methods and Materials: Eligible subjects had invasive nonlobular carcinoma with a maximal dimension of 3 cm. Patients underwent partial mastectomy with negative margins; axillary lymph nodes were negative on sampling. Subjects received postoperative proton beam radiation therapy to the surgical bed. The dose delivered was 40 Gy in 10 fractions, once daily over 2 weeks. Multiple fields were treated daily, and skin-sparing techniques were used. Following treatment, patients were evaluated with clinical assessments and annual mammograms to monitor toxicity, tumor recurrence, and cosmesis. Results: One hundred subjects were enrolled and treated. All patients completed the assigned treatment and were available for post-treatment analysis. The median follow-up was 60 months. Patients had a mean age of 63 years; 90% had ductal histology; the average tumor size was 1.3 cm. Actuarial data at 5 years included ipsilateral breast tumor recurrence-free survival of 97% (95% confidence interval: 100%-93%); disease-free survival of 94%; and overall survival of 95%. There were no cases of grade 3 or higher acute skin reactions, and late skin reactions included 7 cases of grade 1 telangiectasia. Patient- and physician-reported cosmesis was good to excellent in 90% of responses, was not changed from baseline measurements, and was well maintained throughout the entire 5-year follow-up period. Conclusions: Proton beam radiation therapy for PBI produced excellent ipsilateral breast recurrence-free survival with minimal toxicity. The treatment proved to be adaptable to all breast sizes and lumpectomy cavity configurations. Cosmetic results appear to be excellent and unchanged from baseline out to 5 years following treatment. Cosmetic results may be improved over those reported with photon

  4. Partial Breast Radiation Therapy With Proton Beam: 5-Year Results With Cosmetic Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Bush, David A., E-mail: dbush@llu.edu [Department of Radiation Oncology, Loma Linda University Medical Center, Loma Linda, California (United States); Do, Sharon [Department of Radiation Oncology, Loma Linda University Medical Center, Loma Linda, California (United States); Lum, Sharon; Garberoglio, Carlos [Department of Surgical Oncology, Loma Linda University Medical Center, Loma Linda, California (United States); Mirshahidi, Hamid [Department of Medical Oncology, Loma Linda University Medical Center, Loma Linda, California (United States); Patyal, Baldev; Grove, Roger; Slater, Jerry D. [Department of Radiation Oncology, Loma Linda University Medical Center, Loma Linda, California (United States)

    2014-11-01

    Purpose: We updated our previous report of a phase 2 trial using proton beam radiation therapy to deliver partial breast irradiation (PBI) in patients with early stage breast cancer. Methods and Materials: Eligible subjects had invasive nonlobular carcinoma with a maximal dimension of 3 cm. Patients underwent partial mastectomy with negative margins; axillary lymph nodes were negative on sampling. Subjects received postoperative proton beam radiation therapy to the surgical bed. The dose delivered was 40 Gy in 10 fractions, once daily over 2 weeks. Multiple fields were treated daily, and skin-sparing techniques were used. Following treatment, patients were evaluated with clinical assessments and annual mammograms to monitor toxicity, tumor recurrence, and cosmesis. Results: One hundred subjects were enrolled and treated. All patients completed the assigned treatment and were available for post-treatment analysis. The median follow-up was 60 months. Patients had a mean age of 63 years; 90% had ductal histology; the average tumor size was 1.3 cm. Actuarial data at 5 years included ipsilateral breast tumor recurrence-free survival of 97% (95% confidence interval: 100%-93%); disease-free survival of 94%; and overall survival of 95%. There were no cases of grade 3 or higher acute skin reactions, and late skin reactions included 7 cases of grade 1 telangiectasia. Patient- and physician-reported cosmesis was good to excellent in 90% of responses, was not changed from baseline measurements, and was well maintained throughout the entire 5-year follow-up period. Conclusions: Proton beam radiation therapy for PBI produced excellent ipsilateral breast recurrence-free survival with minimal toxicity. The treatment proved to be adaptable to all breast sizes and lumpectomy cavity configurations. Cosmetic results appear to be excellent and unchanged from baseline out to 5 years following treatment. Cosmetic results may be improved over those reported with photon

  5. The influence of hormone therapies on colon and rectal cancer

    DEFF Research Database (Denmark)

    Mørch, Lina Steinrud; Lidegaard, Øjvind; Keiding, Niels;

    2016-01-01

    followed 1995-2009. Information on HT exposures was from the National Prescription Register and updated daily, while information on colon (n = 8377) and rectal cancers (n = 4742) were from the National Cancer Registry. Potential confounders were obtained from other national registers. Poisson regression...... analyses with 5-year age bands included hormone exposures as time-dependent covariates. Use of estrogen-only therapy and combined therapy were associated with decreased risks of colon cancer (adjusted incidence rate ratio 0.77, 95 % confidence interval 0.68-0.86 and 0.88, 0.80-0.96) and rectal cancer (0......Exogenous sex hormones seem to play a role in colorectal carcinogenesis. Little is known about the influence of different types or durations of postmenopausal hormone therapy (HT) on colorectal cancer risk. A nationwide cohort of women 50-79 years old without previous cancer (n = 1,006,219) were...

  6. Photodynamic therapy for cutaneous metastases of breast cancer

    Directory of Open Access Journals (Sweden)

    E. V. Goranskaya

    2011-01-01

    Full Text Available Breast cancer is the most common cancer and the leading cause of cancer death in w omen. Cutaneous metastases are observed in 20 % pa- tients with breast cancer. 36 breast cancer patients with cutaneous metastases were treated with photodynamic therapy in the de partment of laser and photodynamic therapy MRRC. Complete regression was obtained in 33.9 %, partial — in 39 % of cases, the stabilization achieved in 25.4 %, progression noted in 1.7 %. The objective response was obtained in 72.9 % of cases, treatment effect — in 97.4 %. Photodynamic therapy has good treatment results of cutaneous metastases of breast cancer with a small number of side effects.

  7. Perspectives of Nanotechnology in Minimally Invasive Therapy of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Yamin Yang

    2013-01-01

    Full Text Available Breast cancer, the most common type of cancer among women in the western world, affects approximately one out of every eight women over their lifetime. In recognition of the high invasiveness of surgical excision and severe side effects of chemical and radiation therapies, increasing efforts are made to seek minimally invasive modalities with fewer side effects. Nanoparticles (<100 nm in size have shown promising capabilities for delivering targeted therapeutic drugs to cancer cells and confining the treatment mainly within tumors. Additionally, some nanoparticles exhibit distinct properties, such as conversion of photonic energy into heat, and these properties enable eradication of cancer cells. In this review, current utilization of nanostructures for cancer therapy, especially in minimally invasive therapy, is summarized with a particular interest in breast cancer.

  8. Proton Radiation Therapy for Head and Neck Cancer: A Review of the Clinical Experience to Date

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, Emma B.; Frank, Steven J., E-mail: sjfrank@mdanderson.org

    2014-06-01

    Proton beam radiation has been used for cancer treatment since the 1950s, but recent increasing interest in this form of therapy and the construction of hospital-based and clinic-based facilities for its delivery have greatly increased both the number of patients and the variety of tumors being treated with proton therapy. The mass of proton particles and their unique physical properties (ie, the Bragg peak) allow proton therapy to spare normal tissues distal to the tumor target from incidental irradiation. Initial observations show that proton therapy is particularly useful for treating tumors in challenging locations close to nontarget critical structures. Specifically, improvements in local control outcomes for patients with chordoma, chonodrosarcoma, and tumors in the sinonasal regions have been reported in series using proton. Improved local control and survival outcomes for patients with cancer of the head and neck region have also been seen with the advent of improvements in better imaging and multimodality therapy comprising surgery, radiation therapy, and chemotherapy. However, aggressive local therapy in the proximity of critical normal structures to tumors in the head and neck region may produce debilitating early and late toxic effects. Great interest has been expressed in evaluating whether proton therapy can improve outcomes, especially early and late toxicity, when used in the treatment of head and neck malignancies. This review summarizes the progress made to date in addressing this question.

  9. Scanning systems for particle cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Trbojevic, Dejan

    2015-08-04

    A particle beam to treat malignant tissue is delivered to a patient by a gantry. The gantry includes a plurality of small magnets sequentially arranged along a beam tube to transfer the particle beam with strong focusing and a small dispersion function, whereby a beam size is very small, allowing for the small magnet size. Magnets arranged along the beam tube uses combined function magnets where the magnetic field is a combination of a bending dipole field with a focusing or defocusing quadrupole field. A triplet set of combined function magnets defines the beam size at the patient. A scanning system of magnets arranged along the beam tube after the bending system delivers the particle beam in a direction normal to the patient, to minimize healthy skin and tissue exposure to the particle beam.

  10. Occupational Therapy for Adults With Cancer: Why It Matters.

    Science.gov (United States)

    Pergolotti, Mackenzi; Williams, Grant R; Campbell, Claudine; Munoz, Lauro A; Muss, Hyman B

    2016-03-01

    Adults with cancer may be at risk for limitations in functional status and quality of life (QOL). Occupational therapy is a supportive service with the specific mission to help people functionally engage in life as safely and independently as possible with the primary goal of improving QOL. Unfortunately, for people with cancer, occupational therapy remains underused. The overall purpose of this review is to provide an understanding of what occupational therapy is and its relevance to patients with cancer, highlight the reasons to refer, and, last, provide general advice on how to access services. PMID:26865588

  11. Occupational Therapy for Adults With Cancer: Why It Matters.

    Science.gov (United States)

    Pergolotti, Mackenzi; Williams, Grant R; Campbell, Claudine; Munoz, Lauro A; Muss, Hyman B

    2016-03-01

    Adults with cancer may be at risk for limitations in functional status and quality of life (QOL). Occupational therapy is a supportive service with the specific mission to help people functionally engage in life as safely and independently as possible with the primary goal of improving QOL. Unfortunately, for people with cancer, occupational therapy remains underused. The overall purpose of this review is to provide an understanding of what occupational therapy is and its relevance to patients with cancer, highlight the reasons to refer, and, last, provide general advice on how to access services.

  12. [Recent advance in adjuvant therapy for breast cancer].

    Science.gov (United States)

    Shimizu, Chikako; Watanabe, Toru

    2002-12-01

    Adjuvant systemic therapy has contributed to a significant improvement of disease-free and overall survival in addition to surgery and irradiation to the local disease. The adjuvant therapy to a patient is determined integrating the information on estimated risk of recurrence, benefit and harm of the therapy and the patient's value. In this review, the state of the art of adjuvant therapy is discussed from several aspects, such as interpretation and evaluation of risk, the best available evidences on adjuvant systemic therapy, the future direction of primary therapy for breast cancer, and patient-oriented decision making. PMID:12506467

  13. Does tadalafil prevent erectile dysfunction in patients undergoing radiation therapy for prostate cancer?

    Directory of Open Access Journals (Sweden)

    Luca Incrocci

    2014-10-01

    Full Text Available A recently published paper addressed the interesting topic of prevention of erectile dysfunction (ED with tadalafil, a phosphodiesterase-type 5 inhibitor (PDE5i in patients undergoing radiation therapy for localized prostate cancer. [1] Tadalafil 5 mg or placebo was administered once-daily for 24 weeks in patients undergoing external-beam radiotherapy (EBRT or brachytherapy (BT for prostate cancer. This randomized trial did not show superior efficacy of the active drug compared with placebo 4-6 weeks after stopping the study drug. Furthermore, patients younger than 65 years did not respond significantly better than older patients.

  14. Microbeam radiation therapy. Physical and biological aspects of a new cancer therapy and development of a treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Bartzsch, Stefan

    2014-11-05

    Microbeam Radiation Therapy (MRT) is a novel treatment strategy against cancer. Highly brilliant synchrotron radiation is collimated to parallel, a few micrometre wide, planar beams and used to irradiate malignant tissues with high doses. The applied peak doses are considerably higher than in conventional radiotherapy, but valley doses between the beams remain underneath the established tissue tolerance. Previous research has shown that these beam geometries spare normal tissue, while being effective in tumour ablation. In this work physical and biological aspects of the therapy were investigated. A therapy planning system was developed for the first clinical treatments at the European Synchrotron Radiation Facility in Grenoble (France) and a dosimetry method based on radiochromic films was created to validate planned doses with measurements on a micrometre scale. Finally, experiments were carried out on a cellular level in order to correlate the physically planned doses with the biological damage caused in the tissue. The differences between Monte Carlo dose and dosimetry are less than 10% in the valley and 5% in the peak regions. Developed alternative faster dose calculation methods deviate from the computational intensive MC simulations by less than 15% and are able to determine the dose within a few minutes. The experiments in cell biology revealed an significant influence of intercellular signalling on the survival of cells close to radiation boundaries. These observations may not only be important for MRT but also for conventional radiotherapy.

  15. High-dose rate iridium-192 brachytherapy combined with external beam radiotherapy for localized prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kasahara, Kotaro; Inoue, Keiji; Karashima, Takashi; Inoue, Yuichiro; Kariya, Shinji; Inomata, Taisuke; Yoshida, Shoji; Shuin, Taro [Kochi Medical School, Nankoku (Japan)

    2001-07-01

    We report our technique and also preliminary results in the cases with localized prostate cancer treated by the combination of high-dose rate Iridium-192 (HDR-Ir 192) brachytherapy and external irradiation. From June 1999 to August 2000, 17 patients were treated by the combination of HDR-Ir 192 and external beam. The mean age of patients was 72 years (range, 48-81 years). The clinical stage was B1 in 5, B2 in 7 and C (no cancer with seminal vesicle) in 5 cases. Of 10 patients without neoadjuvant hormonal therapy, the median initial pretreatment PSA was 15.3 ng/ml (6.93-222.32 ng/ml). The treatment was given by HDR-Ir 192 brachytherapy (6 Gy x 3 times/2 days) and external beam irradiation (40 or 45 Gy). The brachytherapy was given using TRUS guided percutaneously inserted temporary needles with a high dose rate remote afterloading control. Local control was evaluated by digital rectal examination, TRUS-guided biopsies and serum PSA evaluations. Follow-up ranged from 2 to 14 months, with a median of 8 months. In 4 (40.0%) of 10 patients without neoadjuvant hormonal therapy the level of serum PSA was decreased to less than 4.0 ng/ml within 3 months after the therapy. The effective grade in the biopsy specimens of 8 patients without neoadjuvant hormonal therapy was Grade 0b in 4, Grade 1 in 1, Grade 3 in 3 cases at 3 months after the therapy. No severe intra-or peri-operative complications occurred. The combined radiotherapy treatment is safe and effective for use in the patients with localized prostate cancer. However, more comprehensive studies involving long-term follow-up and great numbers of the cases with localized prostate cancer treated by the combination of HDR-Ir 192 brachytherapy and external irradiation will be necessary to determine whether this therapy contributes to better prognosis. (author)

  16. On dendritic cell-based therapy for cancers

    Institute of Scientific and Technical Information of China (English)

    Morikazu Onji; Sk. Md. Fazle Akbar

    2005-01-01

    Dendritic cells (DCs), the most prevalent antigen-presenting cell in vivo, had been widely characterized in the last three decades. DCs are present in almost all tissues of the body and play cardinal roles in recognition of microbial agents,autoantigens, allergens and alloantigen. DCs process the microbial agents or their antigens and migrate to lymphoid tissues to present the antigenic peptide to lymphocytes. This leads to activation of antigen-specific lymphocytes. Initially, it was assumed that DCs are principally involved in the induction and maintenance of adaptive immune responses, but now it is evident that DCs also have important roles in innate immunity. These features make DCs very good candidates for therapy against various pathological conditions including malignancies. Initially, DC-based therapy was used in animal models of cancers. Data from these studies inspired considerable optimism and DC-based therapies was started in human cancers 8 years ago. In general,DC-based therapy has been found to be safe in patients with cancers, although few controlled trials have been conducted in this regard. Because the fundamentals principles of human cancers and animal models of cancers are different, the therapeutic efficacy of the ongoing regime of DC-based therapy in cancer patients is not satisfactory. In this review, we covered the various aspects that should be considered for developing better regime of DC-based therapy for human cancers.

  17. LHCB: A LHCb-VELO module as beam quality monitor for proton therapy beam at the Clatterbridge Centre for Oncology

    CERN Multimedia

    Casse, G; Patel, G D; Smith, N A; Kacperek, A; Marsland, B

    2010-01-01

    The progress in detector technology, driven by the needs of particle tracking and vertexing in the present LHC and its upgrade (sLHC), has led to the design of silicon sensors with low mass, high granularity, high speed and unprecedented radiation hardness. The sensors designed for such a harsh environment can be profitably used for instrumenting the control systems of therapeutic hadron beams. The high granularity and readout clock speed are well suited for monitoring continuous beam currents. The low mass allows reduced interference with the beam whilst monitoring its profile with high precision. The high resolution and sensitivity to minimum ionising particles allows monitoring of the beam spot position by measurement of the halo in real time, without any interference with the beam spot used in therapy.

  18. The influence of hormone therapies on colon and rectal cancer.

    Science.gov (United States)

    Mørch, Lina Steinrud; Lidegaard, Øjvind; Keiding, Niels; Løkkegaard, Ellen; Kjær, Susanne Krüger

    2016-05-01

    Exogenous sex hormones seem to play a role in colorectal carcinogenesis. Little is known about the influence of different types or durations of postmenopausal hormone therapy (HT) on colorectal cancer risk. A nationwide cohort of women 50-79 years old without previous cancer (n = 1,006,219) were followed 1995-2009. Information on HT exposures was from the National Prescription Register and updated daily, while information on colon (n = 8377) and rectal cancers (n = 4742) were from the National Cancer Registry. Potential confounders were obtained from other national registers. Poisson regression analyses with 5-year age bands included hormone exposures as time-dependent covariates. Use of estrogen-only therapy and combined therapy were associated with decreased risks of colon cancer (adjusted incidence rate ratio 0.77, 95 % confidence interval 0.68-0.86 and 0.88, 0.80-0.96) and rectal cancer (0.83, 0.72-0.96 and 0.89, 0.80-1.00), compared to never users. Transdermal estrogen-only therapy implied more protection than oral administration, while no significant influence was found of regimen, progestin type, nor of tibolone. The benefit of HT was stronger for long-term hormone users; and hormone users were at lower risk of advanced stage of colorectal cancer, which seems supportive for a causal association between hormone therapy and colorectal cancer. PMID:26758900

  19. Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy

    Directory of Open Access Journals (Sweden)

    Mavroudi M

    2014-01-01

    Full Text Available Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The grim statistics speak for themselves with reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem guided gene therapy. Stem cells have the unique potential for self-renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for therapeutic use of stem cells is their cancerous transformation. Therefore, we

  20. Actionable mutations in plasma cell-free DNA in patients with advanced cancers referred for experimental targeted therapies

    OpenAIRE

    Janku, Filip; Angenendt, Philipp; Tsimberidou, Apostolia M.; Fu, Siqing; Naing, Aung; Falchook, Gerald S.; David S Hong; Holley, Veronica R.; Cabrilo, Goran; Jennifer J Wheler; Piha-Paul, Sarina A.; Zinner, Ralph G.; Bedikian, Agop Y.; Overman, Michael J.; Kee, Bryan K.

    2015-01-01

    Cell-free (cf) DNA in the plasma of cancer patients offers an easily obtainable source of biologic material for mutation analysis. Plasma samples from 157 patients with advanced cancers who progressed on systemic therapy were tested for 21 mutations in BRAF, EGFR, KRAS, and PIK3CA using the BEAMing method and results were compared to mutation analysis of archival tumor tissue from a CLIA-certified laboratory obtained as standard of care from diagnostic or therapeutic procedures. Results were ...

  1. A targeted approach to cancer imaging and therapy

    Science.gov (United States)

    Li, Chun

    2014-02-01

    Nanoparticle-based imaging plays a crucial role in cancer diagnosis and treatment. Here, we discuss the modalities used for molecular imaging of the tumour microenvironment and image-guided interventions including drug delivery, surgery and ablation therapy.

  2. Occupational Therapy Use by Older Adults With Cancer

    OpenAIRE

    Pergolotti, Mackenzi; Cutchin, Malcolm P.; Weinberger,Morris; Meyer, Anne-Marie

    2014-01-01

    A retrospective cohort study of 27,131 older adults diagnosed with cancer between 2004 and 2007 found that survivors who used occupational therapy after diagnosis also had the highest levels of comorbidities.

  3. Adding Targeted Therapy to Treatment for Esophageal Cancer

    Science.gov (United States)

    In this phase III clinical trial, people with confirmed HER2-positive locally advanced esophageal cancer will be randomly assigned to receive preoperative radiation therapy and chemotherapy, with or without trastuzumab.

  4. Cancer Alternative Therapies - Multiple Languages: MedlinePlus

    Science.gov (United States)

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Cancer Alternative Therapies URL of this page: https://medlineplus.gov/languages/canceralternativetherapies.html Other topics A-Z A B ...

  5. Combination Therapy Shows Promise for Treating Advanced Breast Cancer

    Science.gov (United States)

    Adding the drug everolimus (Afinitor®) to exemestane helped postmenopausal women whose advanced breast cancer had stopped responding to hormonal therapy live about 4 months longer without the disease progressing than women who received exemestane alone.

  6. Multichannel Data Acquisition System comparison for Quality Assurance in external beam radiation therapy

    International Nuclear Information System (INIS)

    Megavoltage photon radiation therapies are widely used in modern cancer treatment. The improvement of the treatment has lead to the need of Quality Assurance (QA) devices to detect malfunctioning or human mistakes during the planning phase and treatment verification. Active electronic devices for 2D or 3D QA in external beam radiotherapy are typically based on analogue/digital mixed signal Data Acquisition Systems (DAS) which are required to have high spatial resolution, large dynamic range, high sensitivity, large numbers of channels and fast real-time capabilities. The Centre of Medical Radiation Physics (CMRP) has developed several multichannel DAS architectures based on different analogue front-ends to suit a wide range of radiotherapy applications. For the purpose of this study, two DAS, with different front-ends, have been equipped with 128 channels and tested in a clinical environment. Data show a good agreement within 1% between the two systems and the ionising chamber currently used for daily QA. - Highlights: • Two multichannels Data Acquisition Systems (DAS A and B) have been designed by the CMRP for Quality Assurance purposes. • The DAS have been tested and compared to ion chamber showing agreement of the results within 1%. • DAS have been used to characterise megavoltage LINAC beam profile and timing performances

  7. Real-time dosimetry in external beam radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Ramachandran; Prabhakar

    2013-01-01

    With growing complexity in radiotherapy treatment delivery,it has become mandatory to check each and every treatment plan before implementing clinically.This process is currently administered by an independent secondary check of all treatment parameters and as a pre-treatment quality assurance (QA) check for intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy treatment plans.Although pre-treatment IMRT QA is aimed to ensure the correct dose is delivered to the patient,it does not necessarily predict the clinically relevant patient dose errors.During radiotherapy,treatment uncertainties can affect tumor control and may increase complications to surrounding normal tissues.To combat this,image guided radiotherapy is employed to help ensure the plan conditions are mimicked on the treatment machine.However,it does not provide information on actual delivered dose to the tumor volume.Knowledge of actual dose delivered during treatment aid in confirming the prescribed dose and also to replan/reassess the treatment in situations where the planned dose is not delivered as expected by the treating physician.Major accidents in radiotherapy would have been averted if real time dosimetry is incorporated as part of the routine radiotherapy procedure.Of late real-time dosimetry is becoming popular with complex treatments in radiotherapy.Realtime dosimetry can be either in the form of point doses or planar doses or projected on to a 3D image dataset to obtain volumetric dose.They either provide entrance dose or exit dose or dose inside the natural cavities of a patient.In external beam radiotherapy,there are four different established platforms whereby the delivered dose information can be obtained:(1)Collimator;(2)Patient;(3)Couch;and(4)Electronic Portal Imaging Device.Current real-time dosimetric techniques available in radiotherapy have their own advantages and disadvantages and a combination of one or more of these methods provide vital information

  8. Nanoparticle-based targeted gene therapy for lung cancer

    Science.gov (United States)

    Lee, Hung-Yen; Mohammed, Kamal A; Nasreen, Najmunnisa

    2016-01-01

    Despite striking insights on lung cancer progression, and cutting-edge therapeutic approaches the survival of patients with lung cancer, remains poor. In recent years, targeted gene therapy with nanoparticles is one of the most rapidly evolving and extensive areas of research for lung cancer. The major goal of targeted gene therapy is to bring forward a safe and efficient treatment to cancer patients via specifically targeting and deterring cancer cells in the body. To achieve high therapeutic efficacy of gene delivery, various carriers have been engineered and developed to provide protection to the genetic materials and efficient delivery to targeted cancer cells. Nanoparticles play an important role in the area of drug delivery and have been widely applied in cancer treatments for the purposes of controlled release and cancer cell targeting. Nanoparticles composed of artificial polymers, proteins, polysaccharides and lipids have been developed for the delivery of therapeutic deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences to target cancer. In addition, the effectiveness of cancer targeting has been enhanced by surface modification or conjugation with biomolecules on the surface of nanoparticles. In this review article we provide an overview on the latest developments in nanoparticle-based targeted gene therapy for lung cancers. Firstly, we outline the conventional therapies and discuss strategies for targeted gene therapy using nanoparticles. Secondly, we provide the most representative and recent researches in lung cancers including malignant pleural mesothelioma, mainly focusing on the application of Polymeric, Lipid-based, and Metal-based nanoparticles. Finally, we discuss current achievements and future challenges. PMID:27294004

  9. Preparation of pediatric patients for treatment with proton beam therapy

    International Nuclear Information System (INIS)

    Purpose: Anesthesia is often used in proton beam therapy (PBT) for pediatric patients and this may prolong the treatment time. The aim of the study was to examine preparation of pediatric patients to allow smooth performance of PBT. Material and methods: Preparation was initiated 1–2 days before treatment planning CT and continued for 10 days. The patient first visited the facility to become familiar with the treatment room and staff. As the second step, the patient stayed in the treatment bed for a certain time with their mother, and then stayed on the treatment bed alone. Special fixtures painted with characters, music, and gifts were also prepared. Results: From 2010 to 2014, 111 pediatric patients underwent PBT. These patients were divided into 3 groups: 40 who could follow instructions well (group A, median age: 13.6 years old), 60 who could communicate, but found it difficult to stay alone for a long time (group B, median age: 4.6 years old), and 11 who could not follow instructions (group C, median age: 1.6 years old). Preparation was used for patients in group B. The mean treatment times in groups A, B and C were 13.6, 17.1, and 15.6 min, respectively, on PBT treatment days 2–6, and 11.8, 13.0, and 16.9 min, respectively, for the last 5 days of PBT treatment. The time reduction was significant in group B (p = 0.003). Conclusion: Preparation is useful for pediatric patients who can communicate. This approach allows PBT to be conducted more smoothly over a shorter treatment time

  10. Proton Beam Therapy and Accountable Care: The Challenges Ahead

    International Nuclear Information System (INIS)

    Purpose: Proton beam therapy (PBT) centers have drawn increasing public scrutiny for their high cost. The behavior of such facilities is likely to change under the Affordable Care Act. We modeled how accountable care reform may affect the financial standing of PBT centers and their incentives to treat complex patient cases. Methods and Materials: We used operational data and publicly listed Medicare rates to model the relationship between financial metrics for PBT center performance and case mix (defined as the percentage of complex cases, such as pediatric central nervous system tumors). Financial metrics included total daily revenues and debt coverage (daily revenues − daily debt payments). Fee-for-service (FFS) and accountable care (ACO) reimbursement scenarios were modeled. Sensitivity analyses were performed around the room time required to treat noncomplex cases: simple (30 minutes), prostate (24 minutes), and short prostate (15 minutes). Sensitivity analyses were also performed for total machine operating time (14, 16, and 18 h/d). Results: Reimbursement under ACOs could reduce daily revenues in PBT centers by up to 32%. The incremental revenue gained by replacing 1 complex case with noncomplex cases was lowest for simple cases and highest for short prostate cases. ACO rates reduced this incremental incentive by 53.2% for simple cases and 41.7% for short prostate cases. To cover daily debt payments after ACO rates were imposed, 26% fewer complex patients were allowable at varying capital costs and interest rates. Only facilities with total machine operating times of 18 hours per day would cover debt payments in all scenarios. Conclusions: Debt-financed PBT centers will face steep challenges to remain financially viable after ACO implementation. Paradoxically, reduced reimbursement for noncomplex cases will require PBT centers to treat more such cases over cases for which PBT has demonstrated superior outcomes. Relative losses will be highest for those

  11. Proton Beam Therapy and Accountable Care: The Challenges Ahead

    Energy Technology Data Exchange (ETDEWEB)

    Elnahal, Shereef M., E-mail: selnahal@partners.org [Department of Medicine, Brigham and Women' s Hospital, Boston, MA (United States); Kerstiens, John [Proton Therapy Center, Indiana University, Bloomington, IN (United States); Helsper, Richard S. [Genesis HealthCare System, Zanesville, OH (United States); Zietman, Anthony L. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Johnstone, Peter A.S. [Proton Therapy Center, Indiana University, Bloomington, IN (United States); Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN (United States)

    2013-03-15

    Purpose: Proton beam therapy (PBT) centers have drawn increasing public scrutiny for their high cost. The behavior of such facilities is likely to change under the Affordable Care Act. We modeled how accountable care reform may affect the financial standing of PBT centers and their incentives to treat complex patient cases. Methods and Materials: We used operational data and publicly listed Medicare rates to model the relationship between financial metrics for PBT center performance and case mix (defined as the percentage of complex cases, such as pediatric central nervous system tumors). Financial metrics included total daily revenues and debt coverage (daily revenues − daily debt payments). Fee-for-service (FFS) and accountable care (ACO) reimbursement scenarios were modeled. Sensitivity analyses were performed around the room time required to treat noncomplex cases: simple (30 minutes), prostate (24 minutes), and short prostate (15 minutes). Sensitivity analyses were also performed for total machine operating time (14, 16, and 18 h/d). Results: Reimbursement under ACOs could reduce daily revenues in PBT centers by up to 32%. The incremental revenue gained by replacing 1 complex case with noncomplex cases was lowest for simple cases and highest for short prostate cases. ACO rates reduced this incremental incentive by 53.2% for simple cases and 41.7% for short prostate cases. To cover daily debt payments after ACO rates were imposed, 26% fewer complex patients were allowable at varying capital costs and interest rates. Only facilities with total machine operating times of 18 hours per day would cover debt payments in all scenarios. Conclusions: Debt-financed PBT centers will face steep challenges to remain financially viable after ACO implementation. Paradoxically, reduced reimbursement for noncomplex cases will require PBT centers to treat more such cases over cases for which PBT has demonstrated superior outcomes. Relative losses will be highest for those

  12. Adjuvant systemic therapy in older women with breast cancer.

    Science.gov (United States)

    Leone, Julieta; Leone, Bernardo Amadeo; Leone, José Pablo

    2016-01-01

    Breast cancer in the elderly is an increasing clinical problem. In addition, ~60% of deaths from breast cancer occur in women aged 65 years and older. Despite this, older women with breast cancer have been underrepresented in clinical trials, and this has led to less than optimal evidence to guide their therapy. The management of elderly women with early breast cancer is a complex process that requires careful evaluation of life expectancy, comorbidities, patient values, and risks and benefits of available treatment options. This review will focus on current adjuvant systemic therapy options for older women with breast cancer, discuss the principles in the decision-making process, and define the role of endocrine therapy, chemotherapy, and targeted agents. PMID:27524919

  13. Adjuvant systemic therapy in older women with breast cancer

    Science.gov (United States)

    Leone, Julieta; Leone, Bernardo Amadeo; Leone, José Pablo

    2016-01-01

    Breast cancer in the elderly is an increasing clinical problem. In addition, ~60% of deaths from breast cancer occur in women aged 65 years and older. Despite this, older women with breast cancer have been underrepresented in clinical trials, and this has led to less than optimal evidence to guide their therapy. The management of elderly women with early breast cancer is a complex process that requires careful evaluation of life expectancy, comorbidities, patient values, and risks and benefits of available treatment options. This review will focus on current adjuvant systemic therapy options for older women with breast cancer, discuss the principles in the decision-making process, and define the role of endocrine therapy, chemotherapy, and targeted agents. PMID:27524919

  14. Second malignancies after breast cancer: The impact of adjuvant therapy

    OpenAIRE

    Dong, Chunhui; Chen, Ling

    2014-01-01

    Second malignant neoplasms (SMNs) are potentially life-threatening late sequelae of the adjuvant therapy for breast cancer (BC). The increased risk of SMNs is associated with adjuvant chemotherapy (development of secondary acute myeloid leukemia and myelodysplastic syndrome) and hormonal therapy (risk of uterine cancer secondary to tamoxifen treatment). Previous studies have demonstrated an increased risk of SMNs associated with alkylating agents, topoisomerase-II inhibitors, granulocyte-stim...

  15. Natural health products and cancer chemotherapy and radiation therapy

    OpenAIRE

    Doreen Oneschuk; Jawaid Younus

    2011-01-01

    Complementary therapies, notably natural health products such as herbs and vitamins, are frequently used by cancer patients receiving chemotherapy and radiation therapy. There is much controversy as to whether these natural health products should be taken during conventional cancer treatments. Supporters of this practice cite beneficial effects of the antioxidant properties, while opponents are concerned about the potential for natural health product-chemotherapy/radiation related negative in...

  16. Bacteriophage-Derived Vectors for Targeted Cancer Gene Therapy

    OpenAIRE

    Md Zahidul Islam Pranjol; Amin Hajitou

    2015-01-01

    Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent dev...

  17. Gene Therapy for Cancer Treatment: Past, Present and Future

    OpenAIRE

    Cross, Deanna; Burmester, James K.

    2006-01-01

    The broad field of gene therapy promises a number of innovative treatments that are likely to become important in preventing deaths from cancer. In this review, we discuss the history, highlights and future of three different gene therapy treatment approaches: immunotherapy, oncolytic virotherapy and gene transfer. Immunotherapy uses genetically modified cells and viral particles to stimulate the immune system to destroy cancer cells. Recent clinical trials of second and third generation vacc...

  18. Lipid-coated gold nanocomposites for enhanced cancer therapy

    OpenAIRE

    Kang JH; Ko YT

    2015-01-01

    Ji Hee Kang, Young Tag Ko College of Pharmacy, Gachon University, Incheon, Republic of Korea Abstract: The aim of the work reported here was to develop lipid-coated multifunctional nanocomposites composed of drugs and nanoparticles for use in cancer therapy. We incorporated thermosensitive phospholipids onto the surface of anisotropic gold nanoparticles (AuNPs) to further enhance drug delivery, with possible additional applications for in vivo imaging and photothermal cancer therapy. Lipid-...

  19. Behaviors of Providers of Traditional Korean Medicine Therapy and Complementary and Alternative Medicine Therapy for the Treatment of Cancer Patients

    OpenAIRE

    Jun-Sang Yu; Chun-Bae Kim; Ki-Kyong Kim; Ji-Eun Lee; Min-Young Kim

    2015-01-01

    Objectives: In Korea, cancer is one of the most important causes of death. Cancer patients have sought alternative methods, like complementary and alternative medicine (CAM) together with Western medicine, to treat cancer. Also, there are many kinds of providers of CAM therapy, including providers of Korean oriental medicine therapy. The purpose of this study is to identify the behaviors of Korean oriental medicine therapy and CAM therapy providers who treat cancer patients and to provide bac...

  20. Intermediate Megavoltage Photon Beams for Improved Lung Cancer Treatments.

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    Full Text Available The goal of this study is to evaluate the effects of intermediate megavoltage (3-MV photon beams on SBRT lung cancer treatments. To start with, a 3-MV virtual beam was commissioned on a commercial treatment planning system based on Monte Carlo simulations. Three optimized plans (6-MV, 3-MV and dual energy of 3- and 6-MV were generated for 31 lung cancer patients with identical beam configuration and optimization constraints for each patient. Dosimetric metrics were evaluated and compared among the three plans. Overall, planned dose conformity was comparable among three plans for all 31 patients. For 21 thin patients with average short effective path length (< 10 cm, the 3-MV plans showed better target coverage and homogeneity with dose spillage index R50% = 4.68±0.83 and homogeneity index = 1.26±0.06, as compared to 4.95±1.01 and 1.31±0.08 in the 6-MV plans (p < 0.001. Correspondingly, the average/maximum reductions of lung volumes receiving 20 Gy (V20Gy, 5 Gy (V5Gy, and mean lung dose (MLD were 7%/20%, 9%/30% and 5%/10%, respectively in the 3-MV plans (p < 0.05. The doses to 5% volumes of the cord, esophagus, trachea and heart were reduced by 9.0%, 10.6%, 11.4% and 7.4%, respectively (p < 0.05. For 10 thick patients, dual energy plans can bring dosimetric benefits with comparable target coverage, integral dose and reduced dose to the critical structures, as compared to the 6-MV plans. In conclusion, our study indicated that 3-MV photon beams have potential dosimetric benefits in treating lung tumors in terms of improved tumor coverage and reduced doses to the adjacent critical structures, in comparison to 6-MV photon beams. Intermediate megavoltage photon beams (< 6-MV may be considered and added into current treatment approaches to reduce the adjacent normal tissue doses while maintaining sufficient tumor dose coverage in lung cancer radiotherapy.