WorldWideScience

Sample records for beam bunching

  1. STOCHASTIC COOLING FOR BUNCHED BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ, M.

    2005-05-16

    Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

  2. SUCCESSFUL BUNCHED BEAM STOCHASTIC COOLING IN RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BRENNAN, J.M.; BLASKIEWICZ, M.; SEVERINO, F.

    2006-06-23

    We report on a successful test of bunch-beam stochastic cooling in RHIC at 100 GeV. The cooling system is designed for heavy ions but was tested in the recent RHIC run which operated only with polarized protons. To make an analog of the ion beam a special bunch was prepared with very low intensity. This bunch had {approx}1.5 x 10{sup 9} protons, while the other 100 bunches contained {approx}1.2 x 10{sup 11} protons each. With this bunch a cooling time on the order 1 hour was observed through shortening of the bunch length and increase in the peak bunch current, together with a narrowing of the spectral line width of the Scottky power at 4 GHz. The low level signal processing electronics and the isolated-frequency kicker cavities are described.

  3. Structural changes in bunched crystalline ion beams

    CERN Document Server

    Bussmann, M; Schätz, T; Habs, D

    2003-01-01

    Measurements of the spatial distribution of bunched crystalline ion beams in the radio frequency quadrupole storage ring PALLAS are presented for different ratios of the longitudinal and the transverse confinement strengths. The length of highly elongated crystalline ion bunches and its dependence on the bunching voltage is compared to predictions for a one-dimensional ion string and three-dimensional space-charge-dominated beams. The length is found to be considerably shorter than that predicted by the models. Furthermore, the scaling of the length with the bunching voltage is shown to differ from the expected inverse cube root scaling. These differences can partially be attributed to the formation of a mixed crystalline structure. Additionally, a concise mapping of the structural transition from a string to a zig-zag configuration as a function of the ratio of the confinement strengths is presented, which in a similar way deviates from the predictions.

  4. FOCUSING AND ACCELERATION OF BUNCHED BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    PARSA,Z.; ZADOROZHNY,V.

    2000-04-07

    A new approach to solving the kinetic equation for the beam distribution function, (very useful from the practical point of view), is discussed, in which the authors also obtain a complement to the Skrinsky's condition for the self-focused bunched beam. This problem belongs to the theory of nonlinear systems in which both regular and chaotic motion is possible. The kinetic approach, based on Vlasov-Poisson equations, are used to investigate the focusing and acceleration of bunched beam. Special attention is given to the studies of stability in a bunched beam by means of the two norm, which may be used to describe t!he motion of high-energy particles.

  5. Laser-cooled bunched ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S. [and others

    1995-08-01

    In collaboration with the Arhus group, the laser cooling of a beam bunched by an rf electrode was investigated at the ASTRID storage ring. A single laser is used for unidirectional cooling, since the longitudinal velocity of the beam will undergo {open_quotes}synchrotron oscillations{close_quotes} and the ions are trapped in velocity space. As the cooling proceeds the velocity spread of the beam, as well as the bunch length is measured. The bunch length decreases to the point where it is limited only by the Coulomb repulsion between ions. The measured length is slightly (20-30%) smaller than the calculated limit for a cold beam. This may be the accuracy of the measurement, or may indicate that the beam still has a large transverse temperature so that the longitudinal repulsion is less than would be expected from an absolutely cold beam. Simulations suggest that the coupling between transverse and longitudinal degrees of freedom is strong -- but this issue will have to be resolved by further measurements.

  6. Beam transport and bunch compression at TARLA

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, Avni, E-mail: avniaksoy@ankara.edu.tr [Ankara University, Ankara (Turkey); Lehnert, Ulf [HZDR, Dresden (Germany)

    2014-10-21

    The Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) will operate two InfraRed Free Electron Lasers (IR-FEL) covering the range of 3–250 μm. The facility will consist of an injector fed by a thermionic triode gun with two-stage RF bunch compression, two superconducting accelerating ELBE modules operating at continuous wave (CW) mode and two independent optical resonator systems with different undulator period lengths. The electron beam will also be used to generate Bremsstrahlung radiation. In this study, we present the electron beam transport including beam matching to the undulators and the shaping of the longitudinal phase space using magnetic dispersive sections.

  7. A Two Bunch Beam Position Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Medvedko, E.; Aiello, R.; Smith, S.; /SLAC

    2011-09-12

    A new beam position monitor digitizer module has been designed, tested and tuned at SLAC. This module, the electron-positron beam position monitor (epBPM), measures position of single electron and positron bunches for the SLC, LINAC, PEPII injections lines and final focus. The epBPM has been designed to improve resolution of beam position measurements with respect to existing module and to speed feedback correction. The required dynamic range is from 5 x 10{sup 8} to 10{sup 11} particles per bunch (46dB). The epBPM input signal range is from {+-}2.5 mV to {+-}500 mV. The pulse-to-pulse resolution is less than 2 {mu}m for 5 x 10{sup 10} particles per bunch for the 12 cm long striplines, covering 30{sup o} at 9 mm radius. The epBPM module has been made in CAMAC standard, single width slot, with SLAC type timing connector. 45 modules have been fabricated. The epBPM module has four input channels X{sup +}, X{sup -}, Y{sup +}, Y{sup -} (Fig. 1), named to correspond with coordinates of four striplines - two in horizontal and two in vertical planes, processing signals to the epBPM inputs. The epBPM inputs are split for eight signal processing channels to catch two bunches, first - the positron, then the electron bunch in one cycle of measurements. The epBPM has internal and external trigger modes of operations. The internal mode has two options - with or without external timing, catching only first bunch in the untimed mode. The epBPM has an on board calibration circuit for measuring gain of the signal processing channels and for timing scan of programmable digital delays to synchronize the trigger and the epBPM input signal's peak. There is a mode for pedestal measurements. The epBPM has 3.6 {mu}s conversion time.

  8. Coupled-Beam and Coupled-Bunch Instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Burov, Alexey [Fermilab

    2016-06-23

    A problem of coupled-beam instability is solved for two multibunch beams with slightly different revolution frequencies, as in the Fermilab Recycler Ring (RR). Sharing of the inter-bunch growth rates between the intra-bunch modes is described. The general analysis is applied to the RR; possibilities to stabilize the beams by means of chromaticity, feedback and Landau damping are considered.

  9. Coupled-Beam and Coupled-Bunch Instabilities

    CERN Document Server

    Burov, Alexey

    2016-01-01

    A problem of coupled-beam instability is solved for two multibunch beams with slightly different revolution frequencies, as in the Fermilab Recycler Ring (RR). Sharing of the inter-bunch growth rates between the intra-bunch modes is described. The general analysis is applied to the RR; possibilities to stabilize the beams by means of chromaticity, feedback and Landau damping are considered.

  10. Longitudinal Beam Diagnostics for the ILC Injectors and Bunch Compressors

    Energy Technology Data Exchange (ETDEWEB)

    Piot, Philippe [Northern Illinois U.; Bracke, Adam [Northern Illinois U.; Demir, Veysel [Northern Illinois U.; Maxwell, Timothy [Fermilab; Rihaoui, Marwan [Argonne; Jing, Chunguang [Euclid Techlabs, Solon; Power, John [Argonne

    2010-12-01

    We present a diagnostics suite and analyze techniques for setting up the longitudinal beam dynamics in ILC e⁻ injectors and e⁺ and e⁻ bunch compressors. Techniques to measure the first order moments and recover the first order longitudinal transfer map of the injector's intricate bunching scheme are presented. Coherent transition radiation diagnostics needed to measure and monitor the bunch length downstream of the ~5 GeV bunch compressor are investigated using a vector diffraction model.

  11. Beam diagnostics based on time-domain bunch-by-bunch data

    Energy Technology Data Exchange (ETDEWEB)

    Teytelman, D.; Fox, J.; Hindi, H.; Limborg, C.; Linscott, I.; Prabhakar, S.; Sebek, J.; Young, A. [Stanford Linear Accelerator Center P.O. Box 4349 Stanford, California 94309 (United States); Drago, A.; Serio, M. [INFN-Laboratori Nazionali di Frascati, P.O. Box 13 I-00044 Frascati (Roma) (Italy); Barry, W.; Stover, G. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road Berkeley, California 94563 (United States)

    1998-12-01

    A bunch-by-bunch longitudinal feedback system has been used to control coupled-bunch longitudinal motion and study the behavior of the beam at ALS, SPEAR, PEP-II, and DA{Phi}NE. Each of these machines presents unique challenges to feedback control of unstable motion and data analysis. Here we present techniques developed to adapt this feedback system to operating conditions at these accelerators. A diverse array of techniques has been developed to extract information on different aspects of beam behavior from the time-domain data captured by the feedback system. These include measurements of growth and damping rates of coupled-bunch modes, bunch-by-bunch current monitoring, measurements of bunch-by-bunch synchronous phases and longitudinal tunes, and beam noise spectra. A technique is presented which uses the longitudinal feedback system to measure transverse growth and damping rates. Techniques are illustrated with data acquired at all of the four above-mentioned machines. {copyright} {ital 1998 American Institute of Physics.}

  12. STOCHASTIC COOLING OF HIGH-ENERGY BUNCHED BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ,M.; BRENNAN, J.M.

    2007-06-25

    Stochastic cooling of 100 GeV/nucleon bunched beams has been achieved in the Relativistic Heavy Ion Collider (RHIC). The physics and technology of the longitudinal cooling system are discussed, and plans for a transverse cooling system are outlined.

  13. ACHROMAT WITH LINEAR SPACE CHARGE FOR BUNCHED BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    RAPARIA,D.; ALESSI,J.G.; LEE,Y.Y.; WENG,W.T.

    1998-08-23

    The standard definition for an achromat is a transport line having zero values for the spatial dispersion (R16) and the angular dispersion (RZ6). For a bunched beam with linear space charge this definition of achromaticity does not hold. The linear space charge in the presence of a bend provides coupling between (a) bunch spatial width and bunch length (R1.5) and (b) bunch angular spread and bunch length (R25). Therefore, achromaticity should be redefined as a line having zero values of the spatial dispersion (R16), the angular dispersion (R26), and matrix elements R15 and R25. These additional conditions (R15=R25=0) can be achieved, for example, with two small RF cavities at appropriate locations in the achromat, to cancel space charge effects. An example of the application of this technique to the Spallation Neutron Source (SNS) high energy beam transport line is presented.

  14. Dependence of bunch energy loss in cavities on beam velocity

    Science.gov (United States)

    Kurennoy, Sergey S.

    1999-03-01

    Beam energy loss in a cavity can be easily computed for a relativistic bunch using time-domain codes like MAFIA or ABCI. However, for nonrelativistic beams the problem is more complicated because of difficulties with its numerical formulation in the time domain. We calculate the cavity loss factors for a bunch in frequency domain as a function of its velocity and compare results with the relativistic case.

  15. Strong-Strong Beam-Beam Simulation of Bunch Length Splitting at the LHC

    CERN Document Server

    Qiang, J; Pieloni, Tatiana; Ohmi, Kazuhito

    2015-01-01

    Longitudinal bunch length splitting was observed for some LHC beams. In this paper, we will report on the study of the observation using strong-strong beam-beam simulations. We explore a variety of factors including initial momentum deviation, collision crossing angle, synchrotron tune, chromaticity, working points and bunch intensity that contribute to the beam particle loss and the bunch length splitting, and try to understand the underlying mechanism of the observed phenomena.

  16. VELOCITY BUNCHING OF HIGH-BRIGHTNESS ELECTRON BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S G; Musumeci, P; Rosenzweig, J B; Brown, W J; England, R J; Ferrario, M; Jacob, J S; Thompson, M C; Travish, G; Tremaine, A M; Yoder, R

    2004-10-15

    Velocity bunching has been recently proposed as a tool for compressing electron beam pulses in modern high brightness photoinjector sources. This tool is familiar from earlier schemes implemented for bunching dc electron sources, but presents peculiar challenges when applied to high current, low emittance beams from photoinjectors. The main difficulty foreseen is control of emittance oscillations in the beam in this scheme, which can be naturally considered as an extension of the emittance compensation process at moderate energies. This paper presents two scenarios in which velocity bunching, combined with emittance control, is to play a role in nascent projects. The first is termed ballistic bunching, where the changing of relative particle velocities and positions occur in distinct regions, a short high gradient linac, and a drift length. This scenario is discussed in the context of the proposed ORION photoinjector. Simulations are used to explore the relationship between the degree of bunching, and the emittance compensation process. Experimental measurements performed at the UCLA Neptune Laboratory of the surprisingly robust bunching process, as well as accompanying deleterious transverse effects, are presented. An unanticipated mechanism for emittance growth in bends for highly momentum chirped beam was identified and studied in these experiments. The second scenario may be designated as phase space rotation, and corresponds closely to the recent proposal of Ferrario and Serafini. Its implementation for the compression of the electron beam pulse length in the PLEIADES inverse Compton scattering (ICS) experiment at LLNL is discussed. It is shown in simulations that optimum compression may be obtained by manipulation of the phases in low gradient traveling wave accelerator sections. Measurements of the bunching and emittance control achieved in such an implementation at PLEIADES, as well as aspects of the use of velocity-bunched beam directly in ICS experiments

  17. Compensating tune spread induced by space charge in bunched beams

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.; Wang, G.

    2015-05-03

    The effects of space charge play a significant role in modern-day accelerators, frequently constraining the beam parameters attainable in an accelerator or in an accelerator chain. They also can limit the luminosity of hadron colliders operating either at low energies or with sub-TeV high-brightness hadron beams. The latter is applied for strongly cooled proton and ion beams in eRHIC – the proposed future electron-ion collider at Brookhaven National Laboratory. Using an appropriate electron beam would compensate both the tune shift and the tune spread in the hadron beam in a coasting beam. But these methods cannot compensate space charge tune spread in a bunched hadron beam. In this paper we propose and evaluate a novel idea of using a co-propagating electron bunch with mismatched longitudinal velocity to compensate the space charge induced tune-shift and tune spread.

  18. LHC Report: 1,033 bunches per beam and counting

    CERN Multimedia

    Jorg Wenninger for the LHC team

    2015-01-01

    Following the second technical stop, the first beams were injected into the LHC in the early evening of Saturday, 5 September. About ten days later, the machine was operated with around 1,000 bunches per beam.    Evolution of the stored energy per LHC beam, over time.   The first step after a technical stop consists of running through a full LHC cycle, from injection to collisions and beam dump, with a low-intensity bunch (“probe”) to check all machine settings and equipment. This is followed by a series of collimation and absorber validation tests at different points in the LHC cycle. Low-intensity beams – typically the equivalent of three nominal bunches (3 x 1011 protons) – are expanded transversely or longitudinally, or de-bunched to verify that the collimators and absorbers are correctly intercepting lost particles. The techniques for those validations have been progressively improved, and t...

  19. Emittance preservation during bunch compression with a magnetized beam

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys

    2016-03-01

    The deleterious effects of coherent synchrotron radiation (CSR) on the phase-space and energy spread of high-energy beams in accelerator light sources can significantly constrain the machine design and performance. In this paper, we present a simple method to preserve the beam emittance by means of using magnetized beams that exhibit a large aspect ratio on their transverse dimensions. The concept is based in combining a finite solenoid field where the beam is generated with a special optics adapter. Numerical simulations of this new type of beam source show that the induced phase-space density growth from CSR can be notably suppressed to less than 1% for any bunch charge. This work elucidates the key parameters that are needed for emittance preservation, such as the required field and aspect ratio for a given bunch charge.

  20. Emittance preservation during bunch compression with a magnetized beam

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-02

    The deleterious effects of coherent synchrotron radiation (CSR) on the phase-space and energy spread of high-energy beams in accelerator light sources can significantly constrain the machine design and performance. In this paper, we present a simple method to preserve the beam emittance by means of using magnetized beams that exhibit a large aspect ratio on their transverse dimensions. The concept is based on combining a finite solenoid field where the beam is generated together with a special optics adapter. Numerical simulations of this new type of beam source show that the induced phase-space density growth can be notably suppressed to less than 1% for any bunch charge. This work elucidates the key parameters that are needed for emittance preservation, such as the required field and aspect ratio for a given bunch charge.

  1. Improved Bunch Splitting for the 75ns LHC Beam

    CERN Document Server

    Damerau, H

    2011-01-01

    The 75ns variant was added to the PS arsenal of LHC-type beams by adapting the 20MHz cavity used to produce the 25 and 50ns variants to operate at a switchable 13MHz. This permitted splitting from harmonic 14 to 28, but at a cost in adiabaticity compared with the h=2142 splitting of the other two cases. Consequently, a delicate empirical optimization was necessary to bring the 75ns beam inside specification. More recently the speed at which the bunches, once fully distinct, are moved apart has been revisited and further optimization achieved. As a by-product, deliberately degrading the splitting by moving the bunches apart too quickly led to sufficient coherent motion in the resultant bunch pair to permit a voltage calibration of the 13MHz cavity by means of the influence on convergence of the rf voltage input into the iterative algorithm of the Tomoscope [1,2].

  2. BUNCHED BEAM STOCHASTIC COOLING SIMULAITONS AND COMPARISON WITH DATA

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ,M.; BRENNAN, J.M.

    2007-09-10

    With the experimental success of longitudinal, bunched beam stochastic cooling in RHIC it is natural to ask whether the system works as well as it might and whether upgrades or new systems are warranted. A computer code, very similar to those used for multi-particle coherent instability simulations, has been written and is being used to address these questions.

  3. Direct observation of beam bunching in BWO experiments

    CERN Document Server

    Morimoto, I; Maebara, S; Kishiro, J; Takayama, K; Horioka, K; Ishizuka, H; Kawasaki, S; Shiho, M

    2001-01-01

    Backward Wave Oscillation (BWO) experiments using a Large current Accelerator-1 (Lax-1) Induction Linac as a seed power source for an mm-wave FEL are under way. The Lax-1 is typically operated with a 1 MeV electron beam, a few kA of beam current, and a pulse length of 100 ns. In the BWO experiments, annular and solid beams are injected into a corrugated wave guide with guiding axial magnetic field of 1 T. In the BWO with annular beam an output power of 210 MW at 9.8 GHz was obtained. With a solid beam the output power was 130 MW, and an electron beam bunching with the frequency of 9.6-10.2 GHz was observed by a streak camera.

  4. Measuring the electron beam energy in a magnetic bunch compressor

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, Kirsten

    2010-09-15

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 {mu}m precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  5. Beam manipulation with velocity bunching for PWFA applications

    Science.gov (United States)

    Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Galletti, M.; Gallo, A.; Giribono, A.; Li, W.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Petrillo, V.; Di Pirro, G.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zhu, J.

    2016-09-01

    The activity of the SPARC_LAB test-facility (LNF-INFN, Frascati) is currently focused on the development of new plasma-based accelerators. Particle accelerators are used in many fields of science, with applications ranging from particle physics research to advanced radiation sources (e.g. FEL). The demand to accelerate particles to higher and higher energies is currently limited by the effective efficiency in the acceleration process that requires the development of km-size facilities. By increasing the accelerating gradient, the compactness can be improved and costs reduced. Recently, the new technique which attracts main efforts relies on plasma acceleration. In the following, the current status of plasma-based activities at SPARC_LAB is presented. Both laser- and beam-driven schemes will be adopted with the aim to provide an adequate accelerating gradient (1-10 GV/m) while preserving the brightness of the accelerated beams to the level of conventional photo-injectors. This aspect, in particular, requires the use of ultra-short (< 100 fs) electron beams, consisting in one or more bunches. We show, with the support of simulations and experimental results, that such beams can be produced using RF compression by velocity-bunching.

  6. A Novel Diagnostics of Ultrashort Electron Bunches Based on Detection of Coherent Radiation from Bunched Electron Beam in an Undulator

    CERN Document Server

    Saldin, Evgeny L; Yurkov, Mikhail V

    2004-01-01

    We propose a new method for measurements of the longitudinal profile of 100 femtosecond electron bunches for X-ray Free Electron Lasers (XFELs). The method is based on detection of coherent undulator radiation produced by modulated electron beam. Seed optical quantum laser is used to produce exact optical replica of ultrashort electron bunches. The replica is generated in apparatus which consists of an input undulator (energy modulator), and output undulator (radiator) separated by a dispersion section. The radiation in the output undulator is excited by the electron bunch modulated at the optical wavelength and rapidly reaches a hundred-MW-level power. We then use the now-standard method of ultrashort laser pulse-shape measurement, a tandem combination of autocorrelator and spectrum (FROG -- frequency resolved optical gating) providing real-time single-shot measurements of the electron bunch structure. The big advantage of proposed technique is that it can be used to determine the slice energy spread and emi...

  7. ElectroOptical measurements of ultrashort 45 MeV electron beam bunch

    CERN Document Server

    Nikas, D; Kowalski, L A; Larsen, R; Lazarus, D M; Ozben, C; Semertzidis, Y K; Tsang, Thomas; Srinivasan-Rao, T

    2001-01-01

    We have made an observation of 45 MeV electron beam bunches using the nondestructive electro-optical (EO) technique. The amplitude of the EO modulation was found to increase linearly with electron beam charge and decrease inversely with the optical beam path distance from the electron beam. The risetime of the signal was bandwidth limited by our detection system to \\~70ps. An EO signal due to ionization caused by the electrons traversing the EO crystal was also observed. The EO technique may be ideal for the measurement of bunch structure with femtosecond resolution of relativistic charged particle beam bunches.

  8. Bunching high intensity proton beams with a CH-DTL

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Malte; Claessens, Christine; Heilmann, Manuel; Hinrichs, Ole; Koser, Daniel; Meusel, Oliver; Noll, Daniel; Podlech, Holger; Ratzinger, Ulrich; Seibel, Anja [Institut fuer Angewandte Physik, Goethe-Universitaet Frankfurt am Main (Germany)

    2014-07-01

    The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ) will provide ultra short neutron pulses at high intensities and repetition rates. The facility is under construction with an expected first beam by the end of 2014. A 5-Gap CH rebuncher is installed behind a coupled RFQ/IH-DTL combination at the end of the LINAC section between two magnetic quadrupole triplets. It will be used for varying the final energy between 1.8 and 2.2 MeV, as well as for focusing the proton beam bunch longitudinally, to compensate RF defocusing effects and huge space charge forces at currents up to 200 mA at the final stage of extension. Therefore high current beam dynamic simulations are in progress. They include benchmarking of different beam dynamic codes like LORASR, TraceWin and Bender (a new PIC tracking code developed at IAP), as well as validating the results by measurements. Detailed error tolerance studies, thermal simulations and examination of multipole field impact, due to the cavity geometry, are also done. Furthermore, this CH rebuncher serves as prototype for CH cavity operation at MYRRHA (Belgium), an Accelerator Driven System (ADS) for transmutation of high level nuclear waste. After copper-plating the cavity, RF conditioning will start in spring 2014.

  9. Modeling Longitudinal Oscillations of Bunched Beams in Synchrotrons

    CERN Document Server

    Klingbeil, Harald; Mehler, Monika; Zipfel, Bernhard

    2010-01-01

    Longitudinal oscillations of bunched beams in synchrotrons have been analyzed by accelerator physicists for decades, and a closed theory is well-known [1]. The first modes of oscillation are the coherent dipole mode, quadrupole mode, and sextupole mode. Of course, these modes of oscillation are included in the general theory, but for developing RF control systems, it is useful to work with simplified models. Therefore, several specific models are analyzed in the paper at hand. They are useful for the design of closed-loop control systems in order to reach an optimum performance with respect to damping the different modes of oscillation. This is shown by the comparison of measurement and simulation results for a specific closed-loop control system.

  10. MICRO-BUNCHING OF THE AGS SLOW EXTRACTED BEAM FOR A RARE KAON DECAY SEARCH.

    Energy Technology Data Exchange (ETDEWEB)

    GLENN,J.; SIVERTZ,M.; CHIANG,I.; LAZARUS,D.; KOSCIELNIAK,S.

    2001-06-18

    The AGS Slow Extracted Beam (SEB) must be chopped with 250 ps bursts every 40 ns to permit time-of-flight (ToF) measurement of the secondary K{sup 0} beam. Standard techniques to produce this level of bunching would require excessive rf voltage, thus we have developed a ''Micro-Bunching'' technique of extracting the beam as it is forced between empty rf buckets. A specification of the required rf system will be given. Four-dimensional model simulations of particle dynamics for the planned rf and extraction systems will be shown. Simulations of previous tests along with the test measurements are also presented. Measurement of tight bunching requires dedicated instrumentation. The design of a detector system to measure bunch widths and the extinction factor between bunches will be given; considerations include the various particles produced and transported, timing precision and background.

  11. Beam transfer functions for relativistic proton bunches with beam–beam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Görgen, P., E-mail: goergen@temf.tu-darmstadt.de [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8 64289 Darmstadt (Germany); Fischer, W. [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-03-21

    We present a method for the recovery of the transverse tune spread directly from the beam transfer function (BTF). The model is applicable for coasting beams and bunched beams at high energy with a tune spread from transverse nonlinearities induced by the beam–beam effect or by an electron lens. Other sources of tune spread can be added. A method for the recovery of the incoherent tune spread without prior knowledge of the nonlinearity is presented. The approach is based on the analytic model for BTFs of coasting beams, which agrees very well with simulations results for bunched beams at relativistic energies with typically low synchrotron tune. A priori the presented tune spread recovery method is usable only in the absence of coherent modes, but additional simulation data shows its applicability even in the presence of coherent beam–beam modes. Finally agreement of both the analytic and simulation models with measurement data obtained at RHIC is presented. The proposed method successfully recovers the tune spread from analytic, simulated and measured BTF.

  12. Simulation of Transverse Multi-Bunch Instabilities of Proton Beams in LHC

    CERN Document Server

    Koschik, Alexander; Zotter, Bruno

    The CERN Large Hadron Collider (LHC) is designed for highest luminosity and therefore requires operation with a large number of bunches and high intensities. Its performance could be limited by the electromagnetic interaction between the charged particle beam and its surroundings which cause collective instabilities. This thesis describes methods of simulating and analyzing multi-bunch instabilities in circular accelerators and storage rings. The simulation models as well as analyzing tools presented here, also facilitate the interpretation of measurements in multi-bunch machines. The 3-dimensional, multi-bunch tracking program MultiTRISIM was developed, based on its single-bunch predecessor TRISIM3D. It allows the exploration of longrange effects in round or flat vacuum chambers for equidistant or uneven filling schemes. Previous computer simulations of collective effects concentrated mainly on instabilities of single or few bunches in electron storage rings. There, the strong radiation damping reduces the r...

  13. Suppression of Beam-Ion Instability in Electron Rings with Multi-Bunch Train Beam Fillings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Cai, Y.; Raubenheimer, T.O.; /SLAC; Fukuma, H.; /KEK, Tsukuba

    2011-08-18

    The ion-caused beam instability in the future light sources and electron damping rings can be serious due to the high beam current and ultra-small emittance of picometer level. One simple and effective mitigation of the instability is a multi-bunch train beam filling pattern which can significantly reduce the ion density near the beam, and therefore reduce the instability growth rate up to two orders of magnitude. The suppression is more effective for high intensity beams with low emittance. The distribution and the field of trapped ions are benchmarked to validate the model used in the paper. The wake field of ion-cloud and the beam-ion instability is investigated both analytically and numerically. We derived a simple formula for the build-up of ion-cloud and instability growth rate with the multi-bunch-train filling pattern. The ion instabilities in ILC damping ring, SuperKEKB and SPEAR3 are used to compare with our analyses. The analyses in this paper agree well with simulations.

  14. High intensity single bunch operation with heavy periodic transient beam loading in wide band rf cavities

    Science.gov (United States)

    Tamura, Fumihiko; Hotchi, Hideaki; Schnase, Alexander; Yoshii, Masahito; Yamamoto, Masanobu; Ohmori, Chihiro; Nomura, Masahiro; Toda, Makoto; Shimada, Taihei; Hasegawa, Katsushi; Hara, Keigo

    2015-09-01

    The rapid cycling synchrotron (RCS) in the Japan Proton Accelerator Research Complex (J-PARC) was originally designed to accelerate two high intensity bunches, while some of neutron experiments in the materials and life science experimental facility and a muon experiment using main ring beams require a single bunch operation mode, in which one of the two rf buckets is filled and the other is empty. The beam intensity in the single bunch operation has been limited by longitudinal beam losses due to the rf bucket distortions by the wake voltage of the odd harmonics (h =1 ,3 ,5 ) in the wide band magnetic alloy cavities. We installed an additional rf feedforward system to compensate the wake voltages of the odd harmonics (h =1 ,3 ,5 ). The additional system has a similar structure as the existing feedforward system for the even harmonics (h =2 ,4 ,6 ). We describe the function of the feedforward system for the odd harmonics, the commissioning methodology, and the commissioning results. The longitudinal beam losses during the single bunch acceleration disappeared with feedforward for the odd harmonics. We also confirmed that the beam quality in the single bunch acceleration are similar to that of the normal operation with two bunches. Thus, high intensity single bunch acceleration at the intensity of 2.3 ×1013 protons per bunch has been achieved in the J-PARC RCS. This article is a follow-up of our previous article, Phys. Rev. ST Accel. Beams 14, 051004 (2011). The feedforward system extension for single bunch operation was successful.

  15. Ultra short electron beam bunches from a laser plasma cathode

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Akira [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan)]. E-mail: maekawa@nuclear.jp; Tsujii, Ryosuke [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Kinoshita, Kennichi [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Atsushi, Yamazaki [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Kobayashi, Kazuyuki [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Uesaka, Mitsuru [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Shibata, Yukio [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Kondo, Yasuhiro [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Ohkubo, Takeru [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma (Japan); Hosokai, Tomonao [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo (Japan); Zhidkov, Alexei [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa (Japan); Takahashi, Toshiharu [Kyoto University Research Reactor Institute, Asahiro-nishi2, Kumatori, Sennan, Osaka (Japan)

    2007-08-15

    The fluctuation of the electron bunch duration due to energy spectrum instability in a laser plasma cathode has been examined. Previous experiments clearly proved that a laser plasma cathode can generate ultrashort electron bunches with a bunch duration of 130 fs (FWHM) and a geometrical emittance 0.07{pi} mm mrad. The effect of temporal elongation of electron bunches due to their energy spread is estimated and the results are in good agreement with previous experiments. It is also clarified that the instability of the energy spectrum not only leads to a fluctuation of the bunch shape but also to a time-of-flight jitter, affecting possible future applications of a laser plasma cathode.

  16. CSR Effects in a Bunch Compressor influence of the Beam Frame Transverse Force

    CERN Document Server

    Bassi, G

    2005-01-01

    We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates (shielding) with a Vlasov approach. [1] The fields excited by the bunch are computed in the lab frame using a formula simpler than that based on retarded potentials. The Vlasov equation is solved in the beam frame interaction picture. In recent numerical investigations we solved the Vlasov equation for a bunch compressor using the Liouville-Maxwell approximation (LMA), where the bunch density is evolved under the fields produced by the unperturbed density (subject to external fields only), neglecting the beam frame transverse force. [2] Here we report on the influence of the beam frame transverse force on the equations of motion.

  17. Experimental investigation of the longitudinal beam dynamics in a photoinjector using a two-macroparticle bunch

    Energy Technology Data Exchange (ETDEWEB)

    Piot, P.; /Northern Illinois U. /Fermilab; Tikhoplav, R.; /Rochester U.; Mihalcea, D.; Barov, N.; /Northern Illinois U.

    2006-03-01

    We have developed a two-macroparticle bunch to explore the longitudinal beam dynamics through various components of the Fermilab/NICADD photoinjector. Such a two-macroparticle bunch is generated by splitting the ultraviolet pulse from the photocathode drive laser. The presented method allows the exploration of radiofrequency-induced compression in the 1.625 cell rf-gun and the booster cavity. It also allows a direct measurement of the momentum compaction of the magnetic bunch compressor. The measurements are compared with analytical and numerical models.

  18. On Compensating Tune Spread Induced by Space Charge in Bunched Beams

    CERN Document Server

    Litvinenko, Vladimir N

    2014-01-01

    Space charge effects play significant role in modern-day accelerators. These effects frequently constrain attainable beam parameters in an accelerator - or - in an accelerator chain. They also could limit the luminosity of hadron colliders operating either at low energies or with a sub-TeV high brightness hadron beams. A number of schemes for compensating space charge effects in a coasting (e.g. continuous) hadron beam were proposed and some of them had been tested. But all of these methods do not address the issue of tune spread compensation of a bunched hadron beam, e.g. the tune shift dependence on the longitudinal position inside the bunch. In this paper we propose and evaluate a novel idea of using a co-propagating electron bunch with miss-matched longitudinal velocity to compensate the space charge induced tune-shift and tune spread. We present a number of practical examples of such system.

  19. A coupled bunch instability due to beam-photoelectron interactions in KEKB-LER

    Energy Technology Data Exchange (ETDEWEB)

    Ohmi, Kazuhito [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    LER of KEKB is designed to storage the positron beam of 2.6 A with multibunch operation. Nb = 3.3 x 10{sup 10} positrons are filled in a bunch and the bunch passes every 2ns through a beam chamber. The photoelectron instability may be serious for KEKB-LER. We consider a motion of photoelectrons produced by a bunch with a computer simulation technic. A cylindrical chamber with a diameter of 10 cm was used as a model chamber. About 15 times of the photoelectrons were produced by a bunch. The wake force was calculated for the loading bunches with displacements of 0.5 mm and 1 mm. The wake characteristics seems to be caused by the trapped electrons kicked by the loading bunch. The wake was saturated with the loading displacement of 0.5 mm. We obtained a growth rate by the wake force. It is very high rate, 2500s{sup -1} which exceeds damping rates of various mechanism, radiation, head-tail and feedback. Perhaps it is essential to remove the photoelectrons around the positron beam explicitly. If we apply magnetic field fo about 20 G, the growth rate will be reduced. (S.Y.)

  20. Vacuum electron acceleration and bunch compression by a flat-top laser beam.

    Science.gov (United States)

    Wang, W; Wang, P X; Ho, Y K; Kong, Q; Gu, Y; Wang, S J

    2007-09-01

    The field intensity distribution and phase velocity characteristics of a flat-top laser beam are analyzed and discussed. The dynamics of electron acceleration in this kind of beam are investigated using three-dimensional test particle simulations. Compared with the standard (i.e., TEM(00) mode) Gaussian beam, a flat-top laser beam has a stronger longitudinal electric field and a larger diffraction angle. These characteristics make it easier for electrons to be trapped and accelerated by the beam. With a flat-top shape, the laser beam is also applicable to the acceleration of low energy electron and bunch compression.

  1. Lie algebraic analysis for the nonlinear transport of intense bunched beam in electrostatic quadrupoles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhuo; L(U) Jian-Qin

    2008-01-01

    In this paper, the nonlinear transport of intense bunched beams in electrostatic quadrupoles is analyzed using the Lie algebraic method, and the results are briefly presented of the linear matrix approximation and the second order correction of particle trajectory in the state space. Beam having K-V distribution and Gaussian distribution approximation are respectively considered. A brief discussion is also given of the total effects of the quadrupole and the space charge forces on the evolution of the beam envelope.

  2. Electro-optical Measurements of Ultrashort 45 MeV Electron Beam Bunches

    CERN Document Server

    Tsang, Thomas; Kowalski, L A; Larsen, R; Lazarus, D M; Nikas, D; Ozben, C; Semertzidis, Y K; Srinivasan-Rao, T

    2000-01-01

    We have measured the temporal duration of 45 MeV picosecond electron beam bunches using a noninvasive electro-optical (EO) technique. The amplitude of the EO modulation was found to increase linearly with electron beam charge and decrease inversely with distance from the electron beam. The risetime of the temporal signal was limited by our detection system to ~70ps. The EO signal due to ionization caused by the electrons traversing the EO crystal was also observed. It has a distinctively long decay time constant and signal polarity opposite to that due to the field induced by the electron beam. The electro-optical technique may be ideal for the measurement of bunch length of femtosecond, relativistic, high energy, charged, particle beams.

  3. On compensating tune spread induced by space charge in bunched beams

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko V. N.; Wang, G.

    2014-05-09

    Space charge effects play significant role in modern-day accelerators. These effects frequently constrain attainable beam parameters in an accelerator, or, in an accelerator chain. They also could limit the luminosity of hadron colliders operating either at low energies or with a sub-TeV high brightness hadron beams. The latter is applied for strongly cooled proton and ion beams in eRHIC – the proposed future electron-ion collider at Brookhaven National Laboratory. A number of schemes for compensating space charge effects in a coasting (e.g. continuous) hadron beam were proposed and some of them had been tested. Using a proper transverse profile of the electron beam (or plasma column) for a coasting beam would compensate both the tune shift and the tune spread in the hadron beam. But all of these methods do not address the issue of tune spread compensation of a bunched hadron beam, e.g. the tune shift dependence on the longitudinal position inside the bunch. In this paper we propose and evaluate a novel idea of using a co-propagating electron bunch with miss-matched longitudinal velocity to compensate the space charge induced tune-shift and tune spread. We present a number of practical examples of such system.

  4. Bunching of an Intense Electron-Beam Extracted from a Triode Gun Modulated at 1 Ghz

    NARCIS (Netherlands)

    van der Geer, C. A. J.; Bakker, R. J.; van der Meer, A. F. G.; van Amersfoort, P. W.; Gillespie, W. A.; Saxon, G.

    1991-01-01

    We present measurements of the bunch length and emittance of a high-current electron beam, which is extracted from a triode modulated at 1 GHz and subsequently compressed by means of velocity modulation in a prebuncher cavity. The prebuncher is detuned by about 1 MHz in order to ensure that the tota

  5. A linear radiofrequency quadrupole ion trap for the cooling and bunching of radioactive ion beams

    CERN Document Server

    Kellerbauer, A G; Dilling, J; Henry, S; Herfurth, F; Kluge, H J; Lamour, E; Moore, R B; Scheidenberger, C; Schwarz, S; Sikler, G; Szerypo, J

    2002-01-01

    A linear radiofrequency quadrupole ion guide and beam buncher has been installed at the ISOLTRAP mass spectrometry experiment at the ISOLDE facility at CERN. The apparatus is being used as a beam cooling, accumulation, and bunching system. It operates with a buffer gas that cools the injected ions and converts the quasicontinuous 60- keV beam from the ISOLDE facility to 2.5-keV beam pulses with improved normalized transverse emittance. Recent measurements suggest a capture efficiency of the ion guide of up to 40% and a cooling and bunching efficiency of at least 12% which is expected to still be increased. The improved ISOLTRAP setup has so far been used very successfully in three on-line experiments. (12 refs).

  6. Demonstration of Cathode Emittance Dominated High Bunch Charge Beams in a DC gun-based Photoinjector

    CERN Document Server

    Gulliford, Colwyn; Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca

    2015-01-01

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (greater than or equal to 100 pC) beams produced in the DC gun-based Cornell Energy Recovery Linac Photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittance measured at 9-9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs (ERLs) and Free Electron Lasers (FELs).

  7. Longitudinal halo in beam bunches with self-consistent 6-D distributions

    Science.gov (United States)

    Gluckstern, R. L.; Fedotov, A. V.; Kurennoy, S. S.; Ryne, R. D.

    1998-11-01

    We have explored the formation of longitudinal and transverse halos in 3-D axisymmetric beam bunches by starting with a self-consistent 6-D phase space distribution. Stationary distributions allow us to study the halo development mechanism without being obscured by beam redistribution and its effect on halo formation. The beam is then mismatched longitudinally and/or transversely, and we explore the rate, intensity and spatial extent of the halos which form, as a function of the beam charge and the mismatches. We find that the longitudinal halo forms first because the longitudinal tune depression is more severe than the transverse one for elongated bunches and conclude that it plays a major role in halo formation.

  8. Terahertz coherent transition radiation based on an ultrashort electron bunching beam

    Science.gov (United States)

    Liu, Wen-Xin; Huang, Wen-Hui; Du, Ying-Chao; Yan, Li-Xin; Wu, Dai; Tang, Chuan-Xiang

    2011-07-01

    The experimental result of terahertz (THz) coherent transition radiation generated from an ultrashort electron bunching beam is reported. During this experiment, the window for THz transmission from ultrahigh vacuum to free air is tested. The compact measurement system which can simultaneously test the THz wave power and frequency is built and proofed. With the help of improved Martin—Puplett interferometer and Kramers—Krong transform, the longitudinal bunch length is measured. The results show that the peak power of THz radiation wave is more than 80 kW, and its radiation frequency is from 0.1 THz to 1.5 THz.

  9. Overview of Alternative Bunching and Current-shaping Techniques for Low-Energy Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Piot, Philippe [Northern Illinois U.

    2015-12-01

    Techniques to bunch or shape an electron beam at low energies (E <15 MeV) have important implications toward the realization of table-top radiation sources [1] or to the design of compact multi-user free-electron lasers[2]. This paper provides an overview of alternative methods recently developed including techniques such as wakefield-based bunching, space-charge-driven microbunching via wave-breaking [3], ab-initio shaping of the electron-emission process [4], and phase space exchangers. Practical applications of some of these methods to foreseen free-electron-laser configurations are also briefly discussed [5].

  10. Development of a Turn-by-Turn Beam Position Monitoring System for Multiple Bunch Operation of the ATF Damping Ring

    CERN Document Server

    Burrows, P N; Kraljevic, N Blaskovic; Christian, G B; Davis, M R; Perry, C; Apsimon, R J; Constance, B; Gerbershagen, A; Resta-Lopez, J

    2012-01-01

    An FPGA-based monitoring system has been developed to study multi-bunch beam instabilities in the damping ring (DR) of the KEK Accelerator Test Facility (ATF). The system utilises a stripline beam position monitor (BPM) and single-stage down-mixing BPM processor. The system is designed to record the horizontal and/or vertical positions of up to three bunches in the DR with c. 150ns bunch spacing, or the head bunch of up to three trains in a multi-bunch mode with a bunch spacing of 5.6 ns. The FPGA firmware and data acquisition software allow the recording of turnby-turn data. An overview of the system and performance results will be presented.

  11. INDEPENDENT COMPONENT ANALYSIS (ICA) APPLIED TO LONG BUNCH BEAMS IN THE LOS ALAMOS PROTON STORAGE RING

    Energy Technology Data Exchange (ETDEWEB)

    Kolski, Jeffrey S. [Los Alamos National Laboratory; Macek, Robert J. [Los Alamos National Laboratory; McCrady, Rodney C. [Los Alamos National Laboratory; Pang, Xiaoying [Los Alamos National Laboratory

    2012-05-14

    Independent component analysis (ICA) is a powerful blind source separation (BSS) method. Compared to the typical BSS method, principal component analysis (PCA), which is the BSS foundation of the well known model independent analysis (MIA), ICA is more robust to noise, coupling, and nonlinearity. ICA of turn-by-turn beam position data has been used to measure the transverse betatron phase and amplitude functions, dispersion function, linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices along the bunch and discuss the source signals identified as betatron motion and longitudinal beam structure.

  12. Perturbation-minimized triangular bunch for high-transformer ratio using a double dogleg emittance exchange beam line

    Science.gov (United States)

    Ha, G.; Cho, M. H.; Gai, W.; Kim, K.-J.; Namkung, W.; Power, J. G.

    2016-12-01

    The longitudinal shape, i.e., the current profile, of an electron bunch determines the transformer ratio in a collinear wakefield accelerator and thus methods are sought to control the longitudinal bunch shape. The emittance exchange (EEX) appears to be promising for creating a precisely controlled longitudinal bunch shapes. The longitudinal shape is perturbed by two sources: higher-order terms in the beam line optics and collective effects and these perturbations can lead to a significant drop of the transformer ratio. In this paper, we analytically and numerically investigate the perturbation to an ideal triangular longitudinal bunch shape and propose methods to minimize it.

  13. Electron Cloud Cyclotron Resonances in the Presence of a Short-bunch-length Relativistic Beam

    Energy Technology Data Exchange (ETDEWEB)

    Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-09-02

    Computer simulations using the 2D code"POSINST" were used to study the formation of the electron cloud in the wiggler section of the positron damping ring of the International Linear Collider. In order to simulate an x-y slice of the wiggler (i.e., a slice perpendicular to the beam velocity), each simulation assumed a constant vertical magnetic field. At values of the magnetic field where the cyclotron frequency was an integral multiple of the bunch frequency, and where the field strength was less than approximately 0.6 T, equilibrium average electron densities were up to three times the density found at other neighboring field values. Effects of this resonance between the bunch and cyclotron frequency are expected to be non-negligible when the beam bunch length is much less than the product of the electron cyclotron period and the beam velocity, for a beam moving at v~;;c. Details of the dynamics of the resonance are described.

  14. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    CERN Document Server

    Lemery, Francois

    2015-01-01

    Collinear high-gradient ${\\cal O} (GV/m)$ beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios $>2$, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting "drive" bunch to an accelerated "witness" bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative current profiles which are smooth which also lead to enhanced transformer ratios. We especially explore a laser-shaping method capable of generating one the suggested distributions directly out of a photoinjector and discuss a linac concept that could possible drive a dielectric ...

  15. The beam bunching and transport system of the Argonne positive ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, P.K.; Bogaty, J.M.; Bollinger, L.M.; Clifft, B.E.; Pardo, R.C.; Shepard, K.W.

    1989-01-01

    A new positive ion injector (PII) is currently under construction at Argonne that will replace the existing 9-MV tandem electrostatic accelerator as an injector into ATLAS. It consists of an electron-cyclotron resonance-ion source on a 350-kV platform injecting into a superconducting linac optimized for very slow (..beta.. less than or equal to .007 c) ions. This combination can potentially produce even higher quality heavy-ion beams than are currently available from the tandem since the emittance growth within the linac is largely determined by the quality of the bunching and beam transport. The system we have implemented uses a two-stage bunching system, composed of a 4-harmonic gridded buncher located on the ECR high-voltage platform and a room temperature spiral-loaded buncher of novel design. A sinusoidal beam chopper is used for removal of tails. The beam transport is designed to provide mass resolution of M/..delta..M > 250 and a doubly-isochronous beamline is used to minimize time spread due to path length differences. 4 refs., 2 figs.

  16. 62-TeV center of mass hadron collider with capability for super bunch beams

    Energy Technology Data Exchange (ETDEWEB)

    Ryuji Yamada and Ken Takayama

    2001-08-22

    A 60 TeV center of mass hadron collider is proposed, which has capability of using Superbunch beam. With Superbunch beam, the luminosity is expected to be increased by a factor of 20, compared with conventional acceleration using RF cavities. This hadron collider will be built in two stages with a low field magnet ring first and a high field magnet ring later in the same tunnel. The low field magnet rig will be built with Pipetron scheme, with 7 TeV and 7 TeV proton beams, making a 14 TeV center of mass energy high luminosity collider, using Superbunch beams. In the second stage 10 Tesla high field magnets with twin beams, will be installed. It also utilizes Superbunch beams, realizing high luminosity collider. To accelerate Superbunch beams, the barrier bucket and acceleration induction cells will be used, which are made of induction cells, utilizing FINEMET material. The core loss of the FINEMET is estimated for the whole collider is estimated. The synchrotron radiation of the collider is also estimated. Merits of Superbunch beams over RF bunched beams for the high energy experiments is described.

  17. MD1228: Validation of Single Bunch Stability Threshold & MD1751: Instability Studies with a Single Beam

    CERN Document Server

    Carver, Lee Robert; Biancacci, Nicolo; Buffat, Xavier; Iadarola, Giovanni; Lasocha, Kacper; Li, Kevin Shing Bruce; Levens, Tom; Metral, Elias; Salvant, Benoit; Tambasco, Claudia; CERN. Geneva. ATS Department

    2017-01-01

    Instabilities were being routinely observed in B1V during ADJUST. The timing of the instabilities has been localised to shortly after the TOTEM bump has been implemented. The result is emittance blowup which can negatively effect the luminosity output of the fill. This MD aimed to rule out possible sources of the instability (i.e. beam-beam effects or electron cloud) by only taking one single beam to 6.5TeV and going through the full machine cycle. After the implementation of the TOTEM bump, a reduction of the octupole current was performed in order to determine if there was a discrepancy in the threshold between simulations and measurement. As a precursor, the results of the End of Fill MD: Validation of Single Bunch Stability Threshold will also be described.

  18. Effect of nonlinear radiofrequency electromagnetic fields on the emittance of bunched beams

    Science.gov (United States)

    Phadte, D. S.; Patidar, C. B.

    2013-07-01

    Gap transformations are frequently used in ion Linac codes, to efficiently describe the particle dynamics. Using similar approach, we analyze the uniformly bunched beam passing through an axis-symmetric radiofrequency (RF) cavity. The method can be used for other distributions as well using a similar six dimensional analysis. The effect of non-linear RF field in radial and axial directions in an RF cavity and the finite phase width of the bunch, on the transverse and longitudinal emittance growth have been studied. The expressions obtained have been verified for the two types of cavity cells namely the zero mode DTL and pi mode CCL type used frequently in ion linacs. The results are seen to be valid for the entire maximum phase acceptance up to 360 degrees. Simulations with the equivalent beams of non-uniform distributions namely Waterbag and Gaussian show that at synchronous phases closer to the wave crest, the results give a good approximation of emittance growth in both planes for non-uniform beams.

  19. Enhanced coherent emission of terahertz radiation by energy-phase correlation in a bunched electron beam.

    Science.gov (United States)

    Doria, A; Gallerano, G P; Giovenale, E; Messina, G; Spassovsky, I

    2004-12-31

    We report the first observation of enhanced coherent emission of terahertz radiation in a compact free electron laser. A radio-frequency (rf) modulated electron beam is passed through a magnetic undulator emitting coherent radiation at harmonics of the rf with a phase which depends on the electron drift velocity. A proper correlation between the energy and phase distributions of the electrons in the bunch has been exploited to lock in phase the radiated field, resulting in over 1 order of magnitude enhancement of the coherent emission.

  20. Application of Metal-Semiconductor-Metal (MSM) Photodetectors for Transverse and Longitudinal Intra-Bunch Beam Diagnostics

    CERN Document Server

    Steinhagen, R J; Boland, M J; Lucas, T G; Rassool, R P

    2013-01-01

    The performance reach of modern accelerators is often governed by the ability to reliably measure and control the beam stability. In high-brightness lepton and high-energy hadron accelerators, the use of optical diagnostic techniques is becoming more widespread as the required bandwidth, resolution and high RF beam power level involved limit the use of traditional electro-magnetic RF pick-up based methods. This contribution discusses the use of fibre-coupled ultra-fast Metal-Semiconductor-Metal Photodetectors (MSM-PD) as an alternative, dependablemeans to measure signals derived from electro-optical and synchrotron-light based diagnostics systems. It describes the beam studies performed at CERN’s CLIC Test Facility (CTF3) and the Australian Synchrotron to assess the feasibility of this technology as a robust, wide-band and sensitive technique for measuring transverse intra-bunch and bunch-by-bunch beam oscillations, longitudinal beam profiles, un-bunched beam population and beam-halo profiles. The amplifica...

  1. Suppression of multiple ion bunches and generation of monoenergetic ion beams in laser foil-plasma

    Institute of Scientific and Technical Information of China (English)

    Zhang Shan; Xie Bai-Song; Hong Xue-Ren; Wu Hai-Cheng; Aimierding Aimidula; Zhao Xue-Yan; Liu Ming-Ping

    2011-01-01

    In one-dimensional particle-in-cell simulations, this paper shows that the formation of multiple ion bunches is disadvantageous to the generation of monoenergetic ion beams and can be suppressed by choosing an optimum target thickness in the radiation pressure acceleration mechanism by a circularly polarised laser pulse. As the laser pulse becomes intense, the optimum target thickness obtained by a non-relativistic treatment is no longer adequate. Considering the relativistic Doppler-shifted pressure, it proposes a relativistic formulation to determine the optimum target thickness. The theoretical predictions agree with the simulation results well. The model is also valid for two-dimensional cases. The accelerated ion beams can be compelled to be more stable by choosing the optimum target thickness when they exhibit some unstable behaviours.

  2. DESIGN AND INITIAL RESULTS OF A TURN-BY-TURN BEAM POSITION MONITORING SYSTEM FOR MULTIPLE BUNCH OPERATION OF THE ATF DAMPING RING

    CERN Document Server

    Christian, G B; Bett, D R; Burrows, P N; Davis, M R; Gerbershagen, A; Perry, C; Constance, B; Resta-Lopez, J

    2011-01-01

    An FPGA-based monitoring system has been developed to study multi-bunch beam instabilities in the damping ring (DR) of the KEK Accelerator Test Facility (ATF), utilising a stripline beam position monitor (BPM) and existing BPM processor hardware. The system is designed to record the horizontal and/or vertical positions of up to three bunches in the DR in single-bunch multi-train mode or the head bunch of up to three trains in multi-bunch mode, with a bunch spacing of 5.6 ns. The FPGA firmware and data acquisition software were modified to record turn-by-turn data for up to six channels and 1–3 bunches in the DR. An overview of the system and initial results will be presented.

  3. R & D on Beam Injection and Bunching Schemes in the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab

    2016-01-01

    Fermilab is committed to upgrade its accelerator complex to support HEP experiments at the intensity frontier. The ongoing Proton Improvement Plan (PIP) enables us to reach 700 kW beam power on the NuMI neutrino targets. By the end of the next decade, the current 400 MeV normal conducting LINAC will be replaced by an 800 MeV superconducting LINAC (PIP-II) with an increased beam power >50% of the PIP design goal. Both in PIP and PIP-II era, the existing Booster is going to play a very significant role, at least for next two decades. In the meanwhile, we have recently developed an innovative beam injection and bunching scheme for the Booster called "early injection scheme" that continues to use the existing 400 MeV LINAC and implemented into operation. This scheme has the potential to increase the Booster beam intensity by >40% from the PIP design goal. Some benefits from the scheme have already been seen. In this paper, I will describe the basic principle of the scheme, results from recent beam experiments, our experience with the new scheme in operation, current status, issues and future plans. This scheme fits well with the current and future intensity upgrade programs at Fermilab.

  4. High Charge PHIN Photo Injector at CERN with Fast Phase switching within the Bunch Train for Beam Combination

    CERN Document Server

    Csatari Divall, M; Bolzon, B; Bravin, E; Chevallay, E; Dabrowski, A; Doebert, S; Drozdy, A; Fedosseev, V; Hessler, C; Lefevre, T; Livesley, S; Losito, R; Olvegaard, M; Petrarca, M; Rabiller, A N; Egger, D; Mete, O

    2011-01-01

    The high charge PHIN photo-injector was developed within the framework of the European CARE program to provide an alternative to the drive beam thermionic gun in the CTF3 (CLIC Test Facility) at CERN. In PHIN 1908 electron bunches are delivered with bunch spacing of 1.5 GHz and 2.33 nC charge per bunch. Furthermore the drive beam generated by CTF3 requires several fast 180 deg phase-shifts with respect to the 1.5 GHz bunch repetition frequency in order to allow the beam combination scheme developed at CTF3. A total of 8 subtrains, each 140 ns long and shifted in phase with respect to each other, have to be produced with very high phase and amplitude stability. A novel fiber modulator based phase-switching technique developed on the laser system provides this phase-shift between two consecutive pulses much faster and cleaner than the base line scheme, where a thermionic electron gun and sub-harmonic bunching are used. The paper describes the fiber-based switching system and the measurements verifying the schem...

  5. Much Ado about Microbunching: Coherent Bunching in High Brightness Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Ratner, Daniel [Stanford Univ., CA (United States)

    2011-05-01

    The push to provide ever brighter coherent radiation sources has led to the creation of correspondingly bright electron beams. With billions of electrons packed into normalized emittances (phase space) below one micron, collective effects may dominate both the preservation and use of such ultra-bright beams. An important class of collective effects is due to density modulations within the bunch, or microbunching. Microbunching may be deleterious, as in the case of the Microbunching Instability (MBI), or it may drive radiation sources of unprecedented intensity, as in the case of Free Electron Lasers (FELs). In this work we begin by describing models of microbunching due to inherent beam shot noise, which sparks both the MBI as well as SLAC's Linac Coherent Light Source, the world's first hard X-ray laser. We first use this model to propose a mechanism for reducing the inherent beam shot noise as well as for predicting MBI effects. We then describe experimental measurements of the resulting microbunching at LCLS, including optical radiation from the MBI, as well as the first gain length and harmonic measurements from a hard X-ray FEL. In the final chapters, we describe schemes that use external laser modulations to microbunch light sources of the future. In these sections we describe coherent light source schemes for both both linacs and storage rings.

  6. Electron beam processing of oil palm empty fruit bunch fibers - polypropylene composites

    Energy Technology Data Exchange (ETDEWEB)

    Khairul Zaman, Hj. Mohd Dahlan [Malaysian Institute for Nuclear Technology Research, Kajang, Selangor (Malaysia); Manarpaac, Gloria A.; Jalaluddin, Harun [Universiti Putra Malaysia, Faculty of Forestry, Selangor (Malaysia)

    2002-03-01

    Researches on oil palm empty fruit bunch (EFB) fibers and thermoplastic composites have been carried out by many workers in the last decade. The main focus was to enhance the properties of the resultant composites in view of the incompatibility of the two components. Thus, efforts have been made to enhance their properties by using coupling agents, treating the fibers and modifying the matrices. In this study, the effects of electron beam (EB) irradiation and some reactive additives (RAs) on the mechanical properties of EFB-PP (polypropylene) composites were evaluated. Different modes of irradiation were investigated. Mono, di and tri functional of monomers of RAs were used. Irradiating PP alone, compared to irradiating the EFB fibers or irradiating both components, gave optimum properties for EFB-PP composites. Further improvements of the properties of the composites were achieved with the addition of RAs with TMPTA (trimethylol propane triacrylate) giving the optimum results. (author)

  7. Demonstration of a real-time interferometer as a bunch-lenght monitor in a high-current electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Thangaraj, J.; Thurman-Keup, R.; Ruan, J.; Johnson, A.S.; Lumpkin, A; Santucci, J.; Maxwell, T.; /Fermilab; Andonian, G.; /UCLA /RadiaBeam Tech.; Murokh, A.; Ruelas, M.; Ovodenko, A.; /RadiaBeam Tech.

    2012-03-01

    A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps (-0.24 mm) and 1.5 ps (-0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera. The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches.

  8. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    Science.gov (United States)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  9. Oil palm empty fruit bunch (OPEFB) fiber reinforced PVC/ENR blend-electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ratnam, Chantara Thevy [Malaysian Nuclear Agency, Bangi, 43000 Kajang (Malaysia)], E-mail: chantara@nuclearmalaysia.gov.my; Raju, Gunasunderi; Wan Md Zin Wan Yunus [Department of Chemistry, Faculty of Science and Environmental Studies, University Putra Malaysia, 43400 UPM Serdang (Malaysia)

    2007-12-15

    The effect of irradiation on the tensile properties of oil palm empty fruit bunch (OPEFB) fiber reinforced poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blends were studied. The composites were prepared by mixing the fiber and the PVC/ENR blend using HAAKE Rheomixer at 150 deg. C. The composites were then irradiated by using a 3.0 MeV electron beam machine at doses ranging from 0 to 100 kGy in air and room temperature. The tensile strength, Young's modulus, elongation at break and gel fraction of the composites were measured. Comparative studies were also made by using poly(methyl acrylate) grafted OPEFB fiber in the similar blend system. An increase in tensile strength, Young's modulus and gel fraction, with a concurrent reduction in the elongation at break (Eb) of the PVC/ENR/OPEFB composites were observed upon electron beam irradiation. Studies revealed that grafting of the OPEFB fiber with methyl acrylate did not cause appreciable effect to the tensile properties and gel fraction of the composites upon irradiation. The morphology of fractured surfaces of the composites, examined by a scanning electron microscope showed an improvement in the adhesion between the fiber and the matrix was achieved upon grafting of the fiber with methyl acrylate.

  10. The Effect of Pretreatment by using Electron Beam Irradiation on Oil Palm Empty Fruit Bunch

    Directory of Open Access Journals (Sweden)

    A. Kristiani

    2016-04-01

    Full Text Available Oil palm empty fruit bunch (OPEFB is a potential type of lignocellulosic biomass for second-generation bioethanol production. The pretreatment process is an important process in the series of processes to produce bioethanol. This research aims to study the effects of pretreatment process by using electron beam irradiation to OPEFB’s characterization as raw materials for the hydrolysis reaction to produce monomer sugars which will be fermented into ethanol. The untreated and treated OPEFB are characterized in terms of their physical and chemical properties. Analysis results of the compositional analysis by using NREL/TP-510-42618 method show that after pretreatment by using electron beam irradiation, OPEFB's total lignin content is changed little while its cellulose and hemicellulose contents tend to decrease with increasing irradiation dose. X-ray diffraction (XRD analysis shows that there is a decrease of crystallinity compared to untreated OPEFB, except for 200-kGy irradiated OPEFB. The highest decrease of crystallinity was shown by 300-kGy irradiated OPEFB. Further, crystallite sizes of treated OPEFBs are not significantly different from the untreated, except for the 200-kGy irradiated OPEFB. Irradiation pretreatment also increases specific surface area, pore volume, and pore size. The IR spectra analysis show the absorption of cellulose, hemicellulose, and lignin.

  11. Formation and stability of a hollow electron beam in the presence of a plasma wake field driven by an ultra-short electron bunch

    Energy Technology Data Exchange (ETDEWEB)

    Tanjia, F., E-mail: tanjia.fatema@gmail.com [Dipartimento di Fisica, Universià di Napoli “Federico II” (Italy); INFN Sezione di Napoli (Italy); Fedele, R. [Dipartimento di Fisica, Universià di Napoli “Federico II” (Italy); INFN Sezione di Napoli (Italy); De Nicola, S. [Dipartimento di Fisica, Universià di Napoli “Federico II” (Italy); INFN Sezione di Napoli (Italy); CNR-SPIN, Complesso Universitario di Monte S' Angelo, Napoli (Italy); Akhter, T. [Dipartimento di Fisica, Universià di Napoli “Federico II” (Italy); INFN Sezione di Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia)

    2016-09-01

    A numerical investigation on the spatiotemporal evolution of an electron beam, externally injected in a plasma in the presence of a plasma wake field, is carried out. The latter is driven by an ultra-short relativistic axially-symmetric femtosecond electron bunch. We first derive a novel Poisson-like equation for the wake potential where the driving term is the ultra-short bunch density, taking suitably into account the interplay between the sharpness and high energy of the bunch. Then, we show that a channel is formed longitudinally, through the externally injected beam while experiencing the effects of the bunch-driven plasma wake field, within the context of thermal wave model. The formation of the channel seems to be a final stage of the 3D evolution of the beam. This involves the appearance of small filaments and bubbles around the longitudinal axis. The bubbles coalesce forming a relatively stable axially-symmetric hollow beam structure. - Highlights: • A novel Poisson-like equation for the wake potential driven by the ultra-short bunch density is derived in the context of PWF theory. • The spatiotemporal evolution of another externally injected electron beam in the presence plasma wake field is numerically investigated. • A channel is formed longitudinally, through the externally injected beam while experiencing the effects of the bunch-driven plasma wake field. • A relatively stable axially symmetric hollow beam structure is formed through the evolution.

  12. Formation and stability of a hollow electron beam in the presence of a plasma wake field driven by an ultra-short electron bunch

    CERN Document Server

    Tanjia, F; De Nicola, S; Akhter, T; Jovanovic, D

    2015-01-01

    A numerical investigation on the spatiotemporal evolution of an electron beam, externally injected in a plasma in the presence of a plasma wake field, is carried out. The latter is driven by an ultra-short relativistic axially-symmetric femtosecond electron bunch. We first derive a novel Poisson-like equation for the wake potential where the driving term is the ultra-short bunch density, taking suitably into account the interplay between the sharpness and high energy of the bunch. Then, we show that a channel is formed longitudinally, through the externally injected beam while experiencing the effects of the bunch-driven plasma wake field, within the context of thermal wave model. The formation of the channel seems to be a final stage of the 3D evolution of the beam. This involves the appearance of small filaments and bubbles around the longitudinal axis. The bubbles coalesce forming a relatively stable axially-symmetric hollow beam structure.

  13. Efficiency of feedbacks for suppression of transverse instabilities of bunched beams

    CERN Document Server

    Burov, Alexey

    2016-01-01

    Which gain and phase have to be set for a bunch-by-bunch transverse damper, and at which chromaticity it is better to stay? These questions are considered for three models: the two-particle model with possible quadrupole wake, the author's Nested Head-Tail Vlasov solver with a broadband impedance, and the same with the LHC impedance model.

  14. Calculation of the Beam Field in the LCLS Bunch Length Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, G.; Ding, Y.; Huang, Z.; /SLAC

    2006-06-07

    Maintaining a stable bunch length and peak current is a critical step for the reliable operation of a SASE based x-ray source. In the LCLS, relative bunch length monitors (BLM) right after both bunch compressors are proposed based on the coherent radiation generated by the short electron bunch. Due to its diagnostic setup, the standard far field synchrotron radiation formula and well-developed numerical codes do not apply for the analysis of the BLM performance. In this paper, we develop a calculation procedure to take into account the near field effect, the effect of a short bending magnet, and the diffraction effect of the radiation transport optics. We find the frequency response of the BLM after the first LCLS bunch compressor and discuss its expected performance.

  15. A field programmable gate array-based time-resolved scaler for collinear laser spectroscopy with bunched radioactive potassium beams.

    Science.gov (United States)

    Rossi, D M; Minamisono, K; Barquest, B R; Bollen, G; Cooper, K; Davis, M; Hammerton, K; Hughes, M; Mantica, P F; Morrissey, D J; Ringle, R; Rodriguez, J A; Ryder, C A; Schwarz, S; Strum, R; Sumithrarachchi, C; Tarazona, D; Zhao, S

    2014-09-01

    A new data acquisition system including a Field Programmable Gate Array (FPGA) based time-resolved scaler was developed for laser-induced fluorescence and beam bunch coincidence measurements. The FPGA scaler was tested in a collinear laser-spectroscopy experiment on radioactive (37)K at the BEam COoler and LAser spectroscopy (BECOLA) facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A 1.29 μs bunch width from the buncher and a bunch repetition rate of 2.5 Hz led to a background suppression factor of 3.1 × 10(5) in resonant photon detection measurements. The hyperfine structure of (37)K and its isotope shift relative to the stable (39)K were determined using 5 × 10(4) s(-1) (37)K ions injected into the BECOLA beam line. The obtained hyperfine coupling constants A((2)S(1/2)) = 120.3(1.4) MHz, A((2)P(1/2)) = 15.2(1.1) MHz, and A((2)P(3/2)) = 1.4(8) MHz, and the isotope shift δν(39, 37) = -264(3) MHz are consistent with the previously determined values, where available.

  16. A field programmable gate array-based time-resolved scaler for collinear laser spectroscopy with bunched radioactive potassium beams

    Science.gov (United States)

    Rossi, D. M.; Minamisono, K.; Barquest, B. R.; Bollen, G.; Cooper, K.; Davis, M.; Hammerton, K.; Hughes, M.; Mantica, P. F.; Morrissey, D. J.; Ringle, R.; Rodriguez, J. A.; Ryder, C. A.; Schwarz, S.; Strum, R.; Sumithrarachchi, C.; Tarazona, D.; Zhao, S.

    2014-09-01

    A new data acquisition system including a Field Programmable Gate Array (FPGA) based time-resolved scaler was developed for laser-induced fluorescence and beam bunch coincidence measurements. The FPGA scaler was tested in a collinear laser-spectroscopy experiment on radioactive 37K at the BEam COoler and LAser spectroscopy (BECOLA) facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A 1.29 μs bunch width from the buncher and a bunch repetition rate of 2.5 Hz led to a background suppression factor of 3.1 × 105 in resonant photon detection measurements. The hyperfine structure of 37K and its isotope shift relative to the stable 39K were determined using 5 × 104 s-1 37K ions injected into the BECOLA beam line. The obtained hyperfine coupling constants A(2S1/2) = 120.3(1.4) MHz, A(2P1/2) = 15.2(1.1) MHz, and A(2P3/2) = 1.4(8) MHz, and the isotope shift δν39, 37 = -264(3) MHz are consistent with the previously determined values, where available.

  17. Design of planar pick-ups for beam position monitor in the bunch compressor at FLASH and XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Angelovski, Aleksandar; Penirschke, Andreas; Jakoby, Rolf [Institut fuer Mikrowellentechnik und Photonik, TU Darmstadt (Germany); Sydlo, Cezary; Mavric, Uros; Gerth, Christopher [DESY, Hamburg (Germany)

    2013-07-01

    For obtaining ultra short electron bunches at the Free Electron Laser at DESY (FLASH) the beam is compressed in magnetic chicanes. During the compression process the precise knowledge of the energy of the bunches is essential for the longitudinal dynamics control. The measurement of the beam position in the chicane allows for non-destructive measurements of the energy. For that purpose, two stripline pick-ups perpendicular to the beam direction are installed in the chicane at FLASH as a part of the Beam Position Monitor. The recent upgrade in the electronics as well as the increased aperture and length of the beam pipe (for the European XFEL) requires the design of new pick-ups which will fulfill the new demands. Namely, the pick-ups should have maximum signal at 3 GHz with minimum reflections. In this talk, we will present the design of planar transmission line pick-ups for FLASH and XFEL. The planar design of the pick-ups can provide for a proper impedance matching to the subsequent electronics as well as sufficient mechanical stability along the aperture when using alumina substrate. A prototype of the pick-ups was build and installed in a non-hermetic body. The measured S parameters are compared to the simulation.

  18. A Single Shot, Sub-picosecond Beam Bunch Characterization with Electro-optic Techniques

    CERN Document Server

    Semertzidis, Y K; Castillo, V; Larsen, R; Lazarus, D M; Nikas, D; Ozben, C; Srinivasan-Rao, T; Stillman, A; Tsang, Thomas; Kowalski, L A

    2001-01-01

    In the past decade, the bunch lengths of electrons in accelerators have decreased dramatically to the range of a few picoseconds \\cite{Uesaka94,Trotz97}. Measurement of the length as well as the longitudinal profile of these short bunches have been a topic of research in a number of institutions \\cite{Uesaka97,Liu97,Hutchins00}. One of the techniques uses the electric field induced by the passage of electrons in the vicinity of a birefringent crystal to change its optical characteristics. Well-established electro-optic techniques can then be used to measure the temporal characteristics of the electron bunch. In this paper we present a novel, non-invasive, single-shot approach to improve the resolution to tens of femtoseconds so that sub-millimeter bunch length can be measured.

  19. Bunch-by-bunch beam loss monitor system in BEPCⅡ storage ring%BEPCⅡ储存环逐束团丢束监测系统及应用

    Institute of Scientific and Technical Information of China (English)

    邓庆勇; 曹建社; 岳军会; 魏源源; 麻惠洲; 杜垚垚

    2014-01-01

    A new prototype system for bunch-by-bunch beam position measurement has been designed and built to monitor and analyse the beam loss in the Beijing Electron-Positron ColliderⅡ(BEPCⅡ)storage ring.The fast ADC is used to sample the analog signals from the beam position monitor,then the digital signal is processed further using programmable gate array (FP-GA).The beam information can be obtained by means of bunch-by-bunch,such as bunch position,bunch current and bunch tune.Based on system monitoring and data analysis for long terms,as well as the dedicated machine experiments,it’s relatively clear for operators to understand some trip events,especially the beam loss caused by the high-frequency cavity trip,tune drift and multiple bunch instability.The study proves that the system is very useful for the operation of accelerator.%针对北京正负电子对撞机二期工程(BEPCⅡ)在高流强下运行经常出现的突然丢束问题,研制了基于逐束团测量的丢束监测系统。束流位置探头(BPM)的四路电极信号作为监测系统的信号源,四路高速模数转换器(ADC)和现场可编程门阵列(FPGA)进行模拟信号的数字化和数字信号的处理。通过获取丢束前每个束团的位置和流强等信息来分析引起丢束的原因。结合加速器硬件情况,长时间对丢束监测系统数据的分析,以及设计的对比实验,深入研究丢束问题。系统对高频系统故障、束流不稳定性和磁铁电源系统不稳定等原因引起的丢束现象可以做出准确的判断,进而为加速器稳定运行提供优化方向。

  20. Energy Spectra from Electromagnetic Fields Generated by Ultra-relativistic Charged Bunches in a Perfectly Conducting Cylindrical Beam Pipe

    CERN Document Server

    Hale, Alison C

    2009-01-01

    The spectrum of electromagnetic fields satisfying perfectly conducting boundary conditions in a segment of a straight beam pipe with a circular cross-section is discussed as a function of various source models. These include charged bunches that move along the axis of the pipe with constant speed for which an exact solution to the initial-boundary value problem for Maxwell's equations in the beam pipe is derived. In the ultra-relativistic limit all longitudinal components of the fields tend to zero and the spectral content of the transverse fields and average total electromagnetic energy crossing any section of the beam pipe are directly related to the properties of the ultra-relativistic source. It is shown that for axially symmetric ultra-relativistic bunches interference effects occur that show a striking resemblance to those that occur due to CSR in cyclic machines despite the fact that in this limit the source is no longer accelerating. The results offer an analytic description showing how such enhanced ...

  1. Efficiency of feedbacks for suppression of transverse instabilities of bunched beams

    Science.gov (United States)

    Burov, Alexey

    2016-08-01

    Which gain and phase have to be set for a bunch-by-bunch transverse damper, and at which chromaticity is it better to stay? These questions are considered for three models: the two-particle model with possible quadrupole wake, the author's nested head-tail (NHT) model with the broadband impedance, and the NHT with the LHC impedance model. Details of 2D areas of stability in the chromaticity-intensity and chromaticity-gain planes and possibilities to use them are discussed. It is shown that resistive feedbacks may generate asymmetry of the tune shift distribution, which requires positively-shifted stability diagrams.

  2. Numerical computation of space-charge fields of electron bunches in a beam pipe of elliptical shape

    Energy Technology Data Exchange (ETDEWEB)

    Markovik, A.

    2005-09-28

    This work deals in particularly with 3D numerical simulations of space-charge fields from electron bunches in a beam pipe with elliptical cross-section. To obtain the space-charge fields it is necessary to calculate the Poisson equation with given boundary condition and space charge distribution. The discretization of the Poisson equation by the method of finite differences on a Cartesian grid, as well as setting up the coefficient matrix A for the elliptical domain are explained in the section 2. In the section 3 the properties of the coefficient matrix and possible numerical algorithms suitable for solving non-symmetrical linear systems of equations are introduced. In the following section 4, the applied solver algorithms are investigated by numerical tests with right hand side function for which the analytical solution is known. (orig.)

  3. CEBAF Upgrade Bunch Length Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mahmoud [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    Many accelerators use short electron bunches and measuring the bunch length is important for efficient operations. CEBAF needs a suitable bunch length because bunches that are too long will result in beam interruption to the halls due to excessive energy spread and beam loss. In this work, bunch length is measured by invasive and non-invasive techniques at different beam energies. Two new measurement techniques have been commissioned; a harmonic cavity showed good results compared to expectations from simulation, and a real time interferometer is commissioned and first checkouts were performed. Three other techniques were used for measurements and comparison purposes without modifying the old procedures. Two of them can be used when the beam is not compressed longitudinally while the other one, the synchrotron light monitor, can be used with compressed or uncompressed beam.

  4. Double Emittance Exchanger as a Bunch Compressor for the MaRIE XFEL electron beam line at 1GeV

    Energy Technology Data Exchange (ETDEWEB)

    Malyzhenkov, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Northern Illinois Univ., DeKalb, IL (United States); Yampolsky, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carlsten, Bruce Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-22

    We demonstrate an alternative realization of a bunch compressor (specifically the second bunch compressor for the MaRIE XFEL beamline, 1GeV electron energy) using a double emittance exchanger (EEX) and a telescope in the transverse phase space.We compare our results with a traditional bunch compressor realized via chicane, taking into account the nonlinear dynamics, Coherent Synchrotron Radiation (CSR) and Space Charge (SC) effects. In particular, we use the Elegant code for tracking particles through the beam line and analyze the eigen-emittances evolution to separate the influence of the CSR/SC effects from the nonlinear dynamics effects. We optimize the scheme parameters to reach a desirable compression factor and minimize the emittance growth. We observe dominant CSR-effects in our scheme resulting in critical emittance growth and introduce alternative version of an emittance exchanger with a reduced number of bending magnets to minimize the impact of CSR effects.

  5. Online optimisation of the CLIC Drive Beam bunch train recombination at CTF3

    CERN Document Server

    AUTHOR|(CDS)2082483; Tecker, Frank

    The Compact Linear Collider (CLIC) design is the leading alternative for a future multi-TeV "e^+e^−" linear collider. One of the key aspects of the design is the use of a Drive Beam as power source for the acceleration of the colliding beams. This work is focused on the optimisation of the set-up and the operations of the CLIC Drive Beam recombination at the CLIC Test Facility (CTF3) at CERN. The main effects that may affect the beam quality during the recombination are studied, with emphasis on orbit, transverse dynamics and beam energy effects. A custom methodology is used to analyse the problem, both from a theoretical and a numerical point of view. The aim is to provide first-order orbit and transverse optics constraints, which can be used as guidelines during the set-up of the beam recombination process. The developed techniques are applied at the CTF3, and the results are reported. The non-linear beam energy effects have been investigated by means of MAD-X simulations. The results show that these effe...

  6. First single-shot and non-intercepting longitudinal bunch diagnostics for comb-like beam by means of Electro-Optic Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Pompili, R., E-mail: riccardo.pompili@lnf.infn.it [INFN-LNF, Via E. Fermi 40, 00044 Frascati, Rome (Italy); Università di Roma “Tor Vergata”, Physics Department, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Cianchi, A. [Università di Roma “Tor Vergata”, Physics Department, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Alesini, D.; Anania, M.P. [INFN-LNF, Via E. Fermi 40, 00044 Frascati, Rome (Italy); Bacci, A. [INFN-Milano, Via Celoria 16, 20133 Milan (Italy); Bellaveglia, M.; Castellano, M.; Chiadroni, E.; Di Giovenale, D.; Di Pirro, G.; Gatti, G. [INFN-LNF, Via E. Fermi 40, 00044 Frascati, Rome (Italy); Giorgianni, F. [Università di Roma “Sapienza”, Physics Department, Via Aldo Moro 2, 00185 Rome (Italy); Ferrario, M. [INFN-LNF, Via E. Fermi 40, 00044 Frascati, Rome (Italy); Lupi, S.; Massimo, F. [Università di Roma “Sapienza”, Physics Department, Via Aldo Moro 2, 00185 Rome (Italy); Mostacci, A. [INFN-LNF, Via E. Fermi 40, 00044 Frascati, Rome (Italy); Rossi, A.R. [INFN-Milano, Via Celoria 16, 20133 Milan (Italy); Vaccarezza, C.; Villa, F. [INFN-LNF, Via E. Fermi 40, 00044 Frascati, Rome (Italy)

    2014-03-11

    At SPARC-LAB, we have installed an Electro-Optic Sampling (EOS) experiment for single shot, non-destructive measurements of the longitudinal distribution charge of individual electron bunches. The profile of the electron bunch field is electro-optically encoded into a Ti:Sa laser, having 130 fs (rms) pulse length, directly derived from the photocathode's laser. The bunch profile information is spatially retrieved, i.e., the laser crosses with an angle of 30° with respect to the normal to the surface of EO crystal (ZnTe, GaP) and the bunch longitudinal profile is mapped into the laser's transverse profile. In particular, we used the EOS for a single-shot direct visualization of the time profile of a comb-like electron beam, consisting of two bunches, about 100 fs (rms) long, sub-picosecond spaced with a total charge of 160 pC. The electro-optic measurements (done with both ZnTe and GaP crystals) have been validated with both RF Deflector (RFD) and Michelson interferometer measurements.

  7. First single-shot and non-intercepting longitudinal bunch diagnostics for comb-like beam by means of Electro-Optic Sampling

    CERN Document Server

    Pompili, R

    2014-01-01

    At SPARC-LAB, we have installed an Electro-Optic Sampling (EOS) experiment for single shot, non-destructive measurements of the longitudinal distribution charge of individual electron bunches. The profile of the electron bunch field is electro-optically encoded into a Ti:Sa laser, having 130 fs (rms) pulse length, directly derived from the photocathode's laser. The bunch profile information is spatially retrieved, i.e., the laser crosses with an angle of 30° with respect to the normal to the surface of EO crystal (ZnTe, GaP) and the bunch longitudinal profile is mapped into the laser's transverse profile. In particular, we used the EOS for a single-shot direct visualization of the time profile of a comb-like electron beam, consisting of two bunches, about 100 fs (rms) long, sub-picosecond spaced with a total charge of 160 pC. The electro-optic measurements (done with both ZnTe and GaP crystals) have been validated with both RF Deflector (RFD) and Michelson interferometer measurements.

  8. On-Line Bunch Tomography and Beam Modelling for MTE Commissioning

    CERN Document Server

    Rothe, Johannes

    2015-01-01

    For my stay as a CERN Summer Student from June 29 to September 25, 2015, I worked with Guido Sterbini of the Accelerator and Beam Physics group. I was based in the CERN Control Center (CCC) at the Prevessin Site, and supported the ongoing beam commissioning work on Multi-Turn Extraction through the development of on-line monitoring and control tools for the Proton Synchrotron (PS) machine.

  9. Development and applications of time-bunched and velocity-selected positron beams

    DEFF Research Database (Denmark)

    Merrison, J.P.; Charlton, M.; Aggerholm, P.

    2003-01-01

    the buncher was used to compress positron pulses produced from an electron accelerator-based beam. Computer simulations of particle trajectories in the buncher have been performed resulting in a detailed evaluation of the factors that govern and limit the time resolution of the instrument. A sector magnet...... for propagation of the applied voltage pulse along the electrode system and to facilitate operation at frequencies up to 100 kHz. A parabolic potential distribution for time focusing was used. Tests with a dc positron beam produced from a radioactive source are described, together with measurements in which...

  10. Longitudinal Single Bunch Instability Study on BEPCII

    CERN Document Server

    Dou, Wang; Zhe, Duan; Na, Wang; Li, Wang; Lin, Wang; Jie, Gao

    2013-01-01

    In order to study the single bunch longitudinal instability in BEPCII, experiments on the positron ring (BPR) for the bunch lengthening phenomenon were made. By analyzing the experimental data based on Gao's theory, the longitudinal loss factor for the bunch are obtained. Also, the total wake potential and the beam current threshold are estimated.

  11. Multi-bunch Feedback Systems

    CERN Document Server

    Lonza, M

    2014-01-01

    Coupled-bunch instabilities excited by the interaction of the particle beam with its surroundings can seriously limit the performance of circular particle accelerators. These instabilities can be cured by the use of active feedback systems based on sensors capable of detecting the unwanted beam motion and actuators that apply the feedback correction to the beam. Advances in electronic technology now allow the implementation of feedback loops using programmable digital systems. Besides important advantages in terms of flexibility and reproducibility, digital systems open the way to the use of novel diagnostic tools and additional features. We first introduce coupled-bunch instabilities, analysing the equation of motion of charged particles and the different modes of oscillation of a multi-bunch beam, showing how they can be observed and measured. Different types of feedback systems will then be presented as examples of real implementations that belong to the history of multi-bunch feedback systems. The main co...

  12. Overview of bunch length measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H.

    1999-02-19

    An overview of particle and photon beam bunch length measurements is presented in the context of free-electron laser (FEL) challenges. Particle-beam peak current is a critical factor in obtaining adequate FEL gain for both oscillators and self-amplified spontaneous emission (SASE) devices. Since measurement of charge is a standard measurement, the bunch length becomes the key issue for ultrashort bunches. Both time-domain and frequency-domain techniques are presented in the context of using electromagnetic radiation over eight orders of magnitude in wavelength. In addition, the measurement of microbunching in a micropulse is addressed.

  13. Analysis of bunch by bunch oscillations with bunch trains at injection into LHC at 25 ns bunch spacing

    CERN Document Server

    Bartosik, H

    2012-01-01

    An MD on August 26, 2011 was dedicated to injection studies of bunch trains with 25 ns spacing and nominal intensity of approximately 1×10(11) protons per bunch. Due to an electrical glitch, the MD was stopped after two attempts of injecting a train of 48 bunches for beam 2. Both injections were aborted after less than 0.1 s. In particular, the first attempt with transverse damper on was dumped after 1000 turns while the second attempt with transverse damper off was dumped after 500 turns only. In this note, an analysis of the bunch by bunch oscillation data recorded with the post-mortem system from the transverse damper is presented. The presented data clearly shows the presence of instabilities that affect mainly the second half of the batch. This is compatible with what would be expected qualitatively in the presence of the electron cloud effect.

  14. Effect of electron beam irradiation and poly(vinylpyrrolidone addition on mechanical properties of polycaprolactone with empty fruit bunch fibre (OPEFB composite

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available Biodegradable composites or green composites were prepared by melt blending technique using polycaprolactone and oil palm empty fruit bunch fibre (OPEFB. Since OPEFB is not compatible with PCL a binder, poly(vinyl pyrrolidone, (PVP was used to improve the interaction between PCL and OPEFB. The composites produced were irradiated using electron beam to improve the mechanical properties. The tensile, flexural and impact strengths of PCL/OPEFB composites were improved by addition of 1% by weight of PVP and irradiated with 10 kGy of electron beam. The FTIR spectra indicate a slight increase of frequencies at C=O peaks from 1730 to 1732 cm–1 after irradiation indicates some interaction between C=O and O–H. The surface morphology of the facture surface obtained from tensile test shows no fibre pull out indicating good adhesion between the OPEFB and PCL after addition of PVP.

  15. Turn-by-Turn and Bunch-by-Bunch Transverse Profiles of a Single Bunch in a Full Ring

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, R.; /Nevada U., Reno; Fisher, A.S.; /SLAC

    2005-12-15

    The apparatus described in this paper can image the evolution of the transverse profile of a single bunch, isolated from a full PEP-II ring of 1500 bunches. Using this apparatus there are two methods of single bunch imaging; bunch-by-bunch beam profiling can image every bunch in the ring a single bunch at a time with the images of sequential bunches being in order, allowing one to see variations in beam size along a train. Turn-by-turn beam profiling images a single bunch on each successive turn it makes around the ring. This method will be useful in determining the effect that an injected bunch has on a stable bunch as the oscillations of the injected bunch damp out. Turn-by-turn imaging of the synchrotron light uses a system of lenses and mirrors to image many turns of both the major and minor axis of a single bunch across the photocathode of a gateable camera. The bunch-by-bunch method is simpler: because of a focusing mirror used in porting the light from the ring, the synchrotron light from the orbiting electrons becomes an image at a certain distance from the mirror; and since the camera does not use a lens, the photocathode is set exactly at this image distance. Bunch-by-bunch profiling has shown that in the Low Energy Ring (LER) horizontal bunch size decreases along a train. Turn-by-turn profiling has been able to image 100 turns of a single bunch on one exposure of the camera. The turn-by-turn setup has also been able to image 50 turns of the minor axis showing part of the damping process of an oscillating injected charge during a LER fill. The goal is to image the damping of oscillations of injected charge for 100 turns of both the major and minor axis throughout the damping process during trickle injection. With some changes to the apparatus this goal is within reach and will make turn-by-turn imaging a very useful tool in beam diagnostics.

  16. Dechirper Wakefields for Short Bunches

    CERN Document Server

    Bane, Karl

    2016-01-01

    In previous work [1] general expressions, valid for arbitrary bunch lengths, were derived for the wakefields of corrugated structures with flat geometry, such as is used in the RadiaBeam/LCLS dechirper. However, the bunch at the end of linac-based X-ray FELs--like the LCLS--is extremely short, and for short bunches the wakes can be considerably simplified. In this work, we first derive analytical approximations to the short-range wakes. These are generalized wakes, in the sense that their validity is not limited to a small neighborhood of the symmetry axis, but rather extends to arbitrary transverse offsets of driving and test particles. The validity of these short-bunch wakes holds not only for the corrugated structure, but rather for any flat structure whose beam-cavity interaction can be described by a surface impedance. We use these wakes to obtain, for a short bunch passing through a dechirper: estimates of the energy loss as function of gap, the transverse kick as function of beam offset, the slice ener...

  17. Control of Coherent Synchrotron Radiation and Micro-Bunching Effects During Transport of High Brightness Electron Beams

    CERN Document Server

    Douglas, D R; Hutton, A; Krafft, G A; Li, R; Neil, G R; Roblin, Y; Tennant, C D; Tsai, C -Y

    2014-01-01

    Beam quality preservation during transport of high-brightness electron beams is of general concern in the design of modern accelerators. Methods to manage incoherent synchrotron radiation (ISR) have been in place for decades; as beam brightness has improved coherent synchrotron radiation (CSR) and the microbunching instability (uBI) have emerged as performance limitations. We apply the compensation analysis of diMitri, Cornacchia, and Spampinati - as previously used by Borland - to the design of transport systems for use with low-emittance beams, and find that appropriately configured second order achromats will suppress transverse emittance growth due to CSR and appear to limit uBI gain.

  18. COMMISSIONING OF THE DIGITAL TRANSVERSE BUNCH-BY-BUNCH FEEDBACK SYSTEM FOR THE TLS.

    Energy Technology Data Exchange (ETDEWEB)

    HU, K.H.; KUO, C.H.; CHOU, P.J.; LEE, D.; HSU, S.Y.; CHEN, J.; WANG, C.J.; HSU, K.T.; KOBAYASHI, K.; NAKAMURA, T.; CHAO, A.W.; WENG, W.T.

    2006-06-26

    Multi-bunch instabilities degrade beam quality through increased beam emittance, energy spread and even beam loss. Feedback systems are used to suppress multi-bunch instabilities associated with the resistive wall of the beam ducts, cavity-like structures, and trapped ions. A new digital transverse bunch-by-bunch feedback system has recently been commissioned at the Taiwan Light Source, and has replaced the previous analog system. The new system has the advantages that it enlarges the tune acceptance and improves damping for transverse instability at high currents, such that top-up operation is achieved. After a coupled-bunch transverse instability was suppressed, more than 350 mA was successfully stored during preliminary commissioning. In this new system, a single feedback loop simultaneously suppresses both horizontal and vertical multi-bunch instabilities. Investigating the characteristics of the feedback loop and further improving the system performances are the next short-term goals. The feedback system employs the latest generation of field-programmable gate array (FPGA) processor to process bunch signals. Memory has been installed to capture up to 250 msec of bunch oscillation signal, considering system diagnostics suitable to support various beam physics studies.

  19. Sub-fs Electron Bunch Generation with Sub-10-fs Bunch Arrival-Time Jitter via Bunch Slicing in a Magnetic Chicane

    OpenAIRE

    Zhu, Jun; Assmann, R W.; Dohlus, M.; Dorda, U.; Marchetti, Barbara

    2016-01-01

    The generation of ultra-short electron bunches with ultra-small bunch arrival-time jitter is of vital importance for Laser-plasma wake field acceleration (LWFA) with external injection. We study the production of 100-MeV electron bunches with bunch durations of sub-femtosecond (fs) and bunch arrival-time jitters of less than 10 fs, in an S-band photoinjector by using a weak magnetic chicane with a slit collimator .The beam dynamics inside the chicane is simulated by using tw...

  20. Phase detector and phase feedback for a single bunch in a two-bunch damping ring for the SLAC Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, H.D.; Judkins, J.G.

    1987-03-01

    The synchronous phase of a bunch of positrons or electrons being damped in a SLAC Linear Collider (SLC) damping ring is dependent on beam intensity. Injection for alternate bunches into the SLC linac from the damping rings should occur at a constant phase. A phase detector was developed allowing the measurement of phase of a single-stored bunch in the presence of a second bunch in reference to the phase of the linac. The single-bunch phase is derived from beam position monitor signals using a switching scheme to separate the two bunches circulating in each damping ring. The hardware is described including feedback loops to stabilize the extraction phase.

  1. Sub-fs electron bunch generation with sub-10-fs bunch arrival-time jitter via bunch slicing in a magnetic chicane

    Science.gov (United States)

    Zhu, J.; Assmann, R. W.; Dohlus, M.; Dorda, U.; Marchetti, B.

    2016-05-01

    The generation of ultrashort electron bunches with ultrasmall bunch arrival-time jitter is of vital importance for laser-plasma wakefield acceleration with external injection. We study the production of 100-MeV electron bunches with bunch durations of subfemtosecond (fs) and bunch arrival-time jitters of less than 10 fs, in an S-band photoinjector by using a weak magnetic chicane with a slit collimator. The beam dynamics inside the chicane is simulated by using two codes with different self-force models. The first code separates the self-force into a three-dimensional (3D) quasistatic space-charge model and a one-dimensional coherent synchrotron radiation (CSR) model, while the other one starts from the first principle with a so-called 3D sub-bunch method. The simulations indicate that the CSR effect dominates the horizontal emittance growth and the 1D CSR model underestimates the final bunch duration and emittance because of the very large transverse-to-longitudinal aspect ratio of the sub-fs bunch. Particularly, the CSR effect is also strongly affected by the vertical bunch size. Due to the coupling between the horizontal and longitudinal phase spaces, the bunch duration at the entrance of the last dipole magnet of the chicane is still significantly longer than that at the exit of the chicane, which considerably mitigates the impact of space charge and CSR effects on the beam quality. Exploiting this effect, a bunch charge of up to 4.8 pC in a sub-fs bunch could be simulated. In addition, we analytically and numerically investigate the impact of different jitter sources on the bunch arrival-time jitter downstream of the chicane, and define the tolerance budgets assuming realistic values of the stability of the linac for different bunch charges and compression schemes.

  2. Van Kampen modes for bunch longitudinal motion

    Energy Technology Data Exchange (ETDEWEB)

    Burov, A.; /Fermilab

    2010-09-01

    Conditions for existence, uniqueness and stability of bunch steady states are considered. For the existence uniqueness problem, simple algebraic equations are derived, showing the result both for the action and Hamiltonian domain distributions. For the stability problem, van Kampen theory is used. Emerging of discrete van Kampen modes show either loss of Landau damping, or instability. This method can be applied for an arbitrary impedance, RF shape and beam distribution function Available areas on intensity-emittance plane are shown for resistive wall wake and single harmonic, bunch shortening and bunch lengthening RF configurations. Language of van Kampen modes is a powerful tool for studying beam stability. Its unique efficiency reveals itself in those complicated cases, when the dielectric function cannot be obtained, as it is for the longitudinal bunch motion. Emergence of a discrete mode means either loss of Landau damping or instability. By definition, the discrete modes lie outside the continuous incoherent spectrum, but they still may stay within the bucket. In the last case, the discrete mode would disappear after a tiny portion of resonant particles would be added. However, if the discrete mode lie outside the bucket, the Landau damping cannot be restored by tiny perturbation of the particle distribution; LLD is called radical in that case. For a given bunch emittance and RF voltage, the intensity is limited either by reduction of the bucket acceptance or by (radical) LLD. In this paper, results are presented for longitudinal bunch stability in weak head-tail approximation and resistive wall impedance; three RF configurations are studied: single harmonic, bunch shortening and bunch lengthening. It is shown that every RF configuration may be preferable, depending on the bunch emittance and intensity.

  3. Bunch-by-bunch detection of coherent transverse modes from digitized single-bpm signals in the Tevatron

    CERN Document Server

    Stancari, G; Semenov, A

    2012-01-01

    A system was developed for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations based on the signal from a single beam-position monitor (BPM) located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, the beam is excited with band-limited noise for about one second, and this was shown not to significantly affect the circulating beams even at high luminosity. The system is used to measure betatron tunes of individual bunches and to study beam- beam effects. In particular, it is one of the main diagnostic tools in an ongoing study of nonlinear beam-beam compensation studies with Gaussian electron lenses. We present the design and operation of this tool, together with results obtained with proton and antiproton bunches.

  4. Double emittance exchanger as a bunch compressor for the MaRIE XFEL electron beam line at 1 GeV

    Science.gov (United States)

    Malyzhenkov, Alexander; Carlsten, Bruce E.; Yampolsky, Nikolai A.

    2017-03-01

    We demonstrate an alternative realization of a bunch compressor (specifically, the second bunch compressor for the MaRIE XFEL beamline, 1GeV electron energy) using a double emittance exchanger (EEX) and a telescope in the transverse phase space. We compare our results with a traditional bunch compressor realized via a chicane, taking into account the nonlinear dynamics, Coherent Synchrotron Radiation (CSR) and Space Charge (SC) effects. In particular, we use the Elegant code for tracking particles through the beamline, and analyze the evolution of the eigen-emittances to separate the influence of the CSR/SC effects from the nonlinear dynamics effects. We optimize the scheme parameters to reach a desirable compression factor and minimize the emittance growth. We observe dominant CSR effects in our scheme, resulting in critical emittance growth, and introduce an alternative version of an emittance exchanger with a reduced number of bending magnets to minimize the impact of CSR effects.

  5. Bunch cleaning strategies and experiments at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Sereno, N. S.

    1999-04-15

    The Advanced Photon Source (APS) design incorporated a positron accumulator ring (PAR) as part of the injector chain. In order to increase reliability and accommodate other uses of the injector, APS will run with electrons, eliminating the need for the PAR, provided another method of eliminating rf bucket pollution in the APS is found. Satellite bunches captured from an up to 30-ns-long beam from the linac need to be removed in the injector synchrotron and storage ring. The bunch cleaning method considered here relies on driving a stripline kicker with an amplitude modulated (AM) carrier signal where the carrier is at a revolution harmonic sideband corresponding to the vertical tune. The envelope waveform is phased so that all bunches except a single target bunch (eventually to be injected into the storage ring) are resonated vertically into a scraper. The kicker is designed with a large enough shunt impedance to remove satellite bunches from the injection energy of 0.4 GeV up to 1 GeV. Satellite bunch removal in the storage ring relies on the single bunch current tune shift resulting from the machine impedance. Small bunches remaining after initial preparation in the synchrotron may be removed by driving the beam vertically into a scraper using a stripline kicker operating at a sideband corresponding to the vertical tune for small current bunches. In this paper both design specifications and bunch purity measurements are reported for both the injector synchrotron and storage ring.

  6. Space Charge Mitigation by Hollow Bunches

    CERN Multimedia

    Oeftiger, AO

    2014-01-01

    To satisfy the requirements of the HL-LHC (High Luminosity Large Hadron Collider), the LHC injector chain will need to supply a higher brightness, i.e. deliver the same transverse beam emittances \\epsilon_{x,y} while providing a higher intensity N. However, a larger number of particles per bunch enhances space charge effects. One approach to mitigate the impact of space charge is to change the longitudinal phase space distribution: hollow bunches feature a depleted bunch centre and a densely populated periphery. Thus, the spatial line density maximum is depressed which ultimately decreases the tune spread imposed by space charge. Therefore, a higher intensity can be accepted while keeping the same overall space charge tune shift. 3 different methods to create hollow bunches in the PSBooster are simulated.

  7. Terahertz radiation as a bunch diagnostic for laser-wakefield-accelerated electron bunches

    Energy Technology Data Exchange (ETDEWEB)

    van Tilborg, Jeroen; Schroeder, Carl; Filip, Catalin; Toth, Csaba; Geddes, Cameron; Fubiani, Gwenael; Esarey, Eric; Leemans, Wim

    2011-06-17

    Experimental results are reported from two measurement techniques (semiconductor switching and electro-optic sampling) that allow temporal characterization of electron bunches produced by a laser-driven plasma-based accelerator. As femtosecond electron bunches exit the plasma-vacuum interface, coherent transition radiation (at THz frequencies) is emitted. Measuring the properties of this radiation allows characterization of the electron bunches. Theoretical work on the emission mechanism is presented, including a model that calculates the THz wave form from a given bunch profile. It is found that the spectrum of the THz pulse is coherent up to the 200 {micro}m thick crystal (ZnTe) detection limit of 4 THz, which corresponds to the production of sub-50 fs (rms) electron bunch structure. The measurements demonstrate both the shot-to-shot stability of bunch parameters that are critical to THz emission (such as total charge and bunch length), as well as femtosecond synchronization among bunch, THz pulse, and laser beam.

  8. Synchronization of Synchrotrons for bunch-to-bucket Transfers

    CERN Document Server

    Ferrand, Thibault; Damerau, Heiko; CERN. Geneva. ATS Department

    2015-01-01

    To reach high particle energies with synchrotrons, a chain of several accelerators is required, as the ratio of extraction and injection energy is in the range of 10 to 20 per synchrotron. Hence the beam must be transfered from one accelerator to the next one. This document deals with the bunch-to-bucket transfer method to inject particle bunches composing the beam from a source synchrotron to a target synchrotron. After we highlight the theoretical concept of the bunch-to-bucket transfer, we determine physical limitations due to the beam dynamics and the adiabatic aspect of the particle bunches. A summary of the currently performed bunch-to-bucket transfer scenarios between the accelerators at CERN is given and set in relation with the mentioned theoretical concepts.

  9. Generation and transport of double-bunch electron beams in the FLASH beamline; Erzeugung und Transport von Doppelpaket-Elektronenstrahlen im FLASH Linearbeschleuniger

    Energy Technology Data Exchange (ETDEWEB)

    Entrena Utrilla, Carlos Manuel

    2014-10-15

    The Free Electron Laser in Hamburg (FLASH) is part of the Deutsches Elektronen-Synchrotron (DESY) research center. Its linear accelerator produces high-quality electron bunches of up to about 1.2 GeV that are used in its undulator to generate short, intense, high-brilliance soft-X ray pulses with a wavelength from 4.2 nm to 45 nm with the SASE process. This characteristics make FLASH a leading facility worldwide in photon science and linear accelerator technologies, along with the Linac Coherent Light Source (in SLAC, Standford, USA), the FERMI rate at Elettra in Trieste (Italy) and SACLA (Japan). For several reasons, there is a substantial interest to accelerate two electron bunches with a final temporal distance of several hundreds of femtoseconds. These two bunches are generated on the photocathode within picoseconds from each other and accelerated within the same RF bucket (the same period of the RF (radio-frequency) accelerating fields). These experiments are of interest for two-color FEL for pump-probe experiments, and for the external injection of electrons in the future particle-driven plasma wakefield accelerator experiment, called FLASHForward, which will start in early 2016. This work analyzes the longitudinal dynamics of said double-bunches, from generation on the photocathode to the transport and compression through the linac. It is shown how a working point for a desired compression scenario (shape and final current of the bunches, and final distance between them) can be found with different numerical tracking procedures, and how the electrons can be experimentally generated and transported through the accelerator in the current layout, which was confirmed in a proof-of-concept experiment in late May 2014.

  10. LHC Report: spring cleaning over, bunches of luminosity

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Scrubbing was completed on Wednesday 13 April. The run had seen over 1000 bunches per beam successfully circulating at 450 GeV. Measurements showed that electron cloud activity in the cold regions had been suppressed. A decrease of vacuum activity in the warm regions demonstrated that the cleaning had also achieved the required results there. As discussed in the last Bulletin, the scrubbing was performed with high intensity bunches with 50 nanosecond spacing. Given the potential luminosity performance with this spacing (more bunches, higher bunch intensity from the injectors) and in the light of the results of the scrubbing run, the decision was taken to continue the 2011 physics run with this bunch spacing.   A few issues with 50 nanosecond spacing had to be resolved when standard operations for luminosity production resumed. Once things had been tidied up, stable beams were provided for the experiments, firstly with 228 bunches per beam and then with 336 bunches per beam. The 336 bunch fill that w...

  11. MULTIPLE SINGLE BUNCH EXTRACTION TO THE AGS SWITCHYARD.

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,K.A.; AHRENS,L.; GASSNER,D.; GLENN,J.W.; ROSER,T.; SMITH,G.; TSOUPAS,N.; VAN ASSELT,W.; ZENO,K.

    2001-06-18

    In this report we will describe the multiple single bunch extraction system as utilized to deliver beams to the Brookhaven's Alternating Gradient Synchrotron (AGS) switchyard area. We will describe modifications of the AGS switchyard, necessary to allow it to accept bunched beam, and results of the first commissioning of this system. The AGS Switchyard has for many years been used to simultaneously deliver (unbunched) resonant extracted beam to a set of fixed target experiments. In order to accommodate new fixed target experiments which require bunched beams, a method of sending the bunched beams to the AGS Switchyard was required. In addition, by using the AGS switchyard instead of the upstream section of the Brookhaven's Relativistic Heavy Ion Collider (RHIC) injection line the accelerators can be reconfigured quickly and efficiently for filling RHIC. We will present results of the commissioning of this system, which was done in January 2001.

  12. Bucket shaking stops bunch dancing in Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Burov, A.; Tan, C.Y.; /Fermilab

    2011-03-01

    Bunches in Tevatron are known to be longitudinally unstable: their collective oscillations, also called dancing bunches, persist without any signs of decay. Typically, a damper is used to stop these oscillations, but recently, it was theoretically predicted that the oscillations can be stabilized by means of small bucket shaking. Dedicated measurements in Tevatron have shown that this method does stop the dancing. According to predictions of Refs. [2,3], the flattening of the bunch distribution at low amplitudes should make the bunch more stable against LLD. An experiment has been devised to flatten the distribution by modulating the RF phase at the low-amplitude synchrotron frequency for a few degrees of amplitude. These beam studies show that stabilisation really happens. After several consecutive shakings, the dancing disappears and the resulting bunch profile becomes smoother at the top. Although not shown in this report, sometimes a little divot forms at the centre of the distribution. These experiments confirm that resonant RF shaking flattens the bunch distribution at low amplitudes, and the dancing stops.

  13. POSITION DETERMINATION OF CLOSELY SPACED BUNCHES USING CAVITY BPMs

    CERN Document Server

    Joshi, N; Cullinan, F; Lyapin, A

    2011-01-01

    Radio Frequency (RF) Cavity Beam Position Monitor (BPM) systems form a major part of precision position measurement diagnostics for linear accelerators with low emittance beams. Using cavity BPMs, a position resolution of less than 100 nm has been demonstrated in single bunch mode operation. In the case of closely spaced bunches, where the decay time of the cavity is comparable to the time separation between bunches, the BPM signal from a bunch is polluted by the signal induced by the previous bunches in the same bunch-train. This paper discusses our ongoing work to develop the methods to extract the position of closely spaced bunches using cavity BPMs. A signal subtraction code is being developed to remove the signal pollution from previous bunches and to determine the individual bunch position. Another code has been developed to simulate the BPM data for the cross check. Performance of the code is studied on the experimental and simulated data. Application of the analysis techniques to the linear colliders,...

  14. Design of BEPC Ⅱ bunch current monitor system

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; MA Hui-Zhou; YUE Jun-Hui; LEI Ge; CAO Jian-She; MA Li

    2008-01-01

    BEPC Ⅱ is an electron-positron collider designed to run under multi-bunches and high beam current condition. The accelerator consists of an electron ring, a positron ring and a linear injector. In order to achieve the target luminosity and implement the equal bunch charge injection, the Bunch Current Monitor (BCM)system is built on BEPC Ⅱ. The BCM system consists of three parts: the front-end circuit, the bunch current acquisition system and the bucket selection system. The control software of BCM is based on VxWorks and EPICS. With the help of BCM system, the bunch current in each bucket can be monitored in the Central Control Room. The BEPC Ⅱ timing system can also use the bunch current database to decide which bucket needs to refill to implement "top-off" injection.

  15. An Electron Bunch Compressor Based on an FEL Interaction in the Far Infra Red

    OpenAIRE

    Gaupp, Andreas

    2013-01-01

    In this note an electron bunch compressor is proposed based on FEL type interaction of the electron bunch with far infrared (FIR) radiation. This mechanism maintains phase space density and thus requires a high quality electron beam to produce bunches of the length of a few ten micrometer.

  16. Microwave measurement of intra bunch charge distributions

    CERN Document Server

    Dehler, M

    2003-01-01

    A direct way of obtaining intra bunch charge distributions is to measure the amplitude roll off as well as the phase behavior of the spectrum of the single bunch self field. To that effect, a microwave pickup together with a microwave front end has been installed in the storage ring of the Swiss Light Source (SLS). As pickup, button type bpms are used, which have been designed for a broad band behavior in the excess of 30 GHz. Three bpms together with their individual front ends are used in order to sample the beam spectrum at frequencies of 6, 12 and 18 GHz, which compares to the standard spectrum of a 1 mA single bunch extending to approximately 12 GHz (13 ps rms bunch length). The signals are mixed to base band in loco using the multiplied RF frequency as a LO. By shifting the LO phase, simultaneously the amplitude roll off as well the complex phase of the beam spectrum can be obtained. Where using a resonator as a pickup would smear out the response over several bunches, allowing only the determination of...

  17. Halo formation in three-dimensional bunches

    CERN Document Server

    Fedotov, A V; Kurennoy, S S; Ryne, Robert D

    1998-01-01

    A new class of self-consistent 6-D phase space stationary distributions is constructed both analytically and numerically. The beam is then mismatched longitudinally and/or transversely, and we explore the beam stability and halo formation for the case of 3-D axisymmetric beam bunches using particle-in-cell simulations. We concentrate on beams with bunch length-to-width ratios varying from 1 to 5, which covers the typical range of the APT linac parameters. We find that the longitudinal halo forms first for comparable longitudinal and transverse mismatches. An interesting coupling phenomenon - a longitudinal or transverse halo is observed even for very small mismatches if the mismatch in the other plane is large - is discovered.

  18. Bunch Profiling Using a Rotating Mask

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mitchell; /SLAC /IIT, Chicago

    2012-08-24

    The current method for measuring profiles of proton bunches in accelerators is severely lacking. One must dedicate a great deal of time and expensive equipment to achieve meaningful results. A new method to complete this task uses a rotating mask with slots of three different orientations to collect this data. By scanning over the beam in three different directions, a complete profile for each bunch is built in just seconds, compared to the hours necessary for the previous method. This design was successfully tested using synchrotron radiation emitted by SPEAR3. The profile of the beam was measured in each of the three desired directions. Due to scheduled beam maintenance, only one set of data was completed and more are necessary to solve any remaining issues. The data collected was processed and all of the RMS sizes along the major and minor axes, as well as the tilt of the beam ellipse were measured.

  19. Creation and Storage of Long and Flat Bunches in the LHC

    CERN Document Server

    Damerau, H

    2005-01-01

    To maximize the luminosity of the Large Hadron Collider (LHC), the collision of particle bunches with a uniform longitudinal particle density is considered for a future upgrade. The benefits of such bunches and their generation by means of special longitudinal beam manipulations are presented in this report. Three possible options are analyzed with respect to their potential luminosity gain at the beam-beam limit: short rectangular bunches held by radio frequency (RF) harmonics using multiples of the nominal RF frequency of 400.8MHz, long and flat bunches held by multiples of 40.08MHz, and so-called superbunches, confined by barrier buckets. The comparison of the three different approaches shows that flat bunches, with an intermediate bunch length of the order of several meters, are capable of producing a comparable luminosity to superbunches, while avoiding most of their inherent disadvantages. Possible schemes to create the bunches with uniform line density are studied and a longitudinal manipulation to com...

  20. Wakefields of Sub-Picosecond Electron Bunches

    Energy Technology Data Exchange (ETDEWEB)

    Bane, Karl L.F.; /SLAC

    2006-04-19

    We discuss wakefields excited by short bunches in accelerators. In particular, we review some of what has been learned in recent years concerning diffraction wakes, roughness impedance, coherent synchrotron radiation wakes, and the resistive wall wake, focusing on analytical solutions where possible. As examples, we apply formulas for these wakes to various parts of the Linac Coherent Light Source (LCLS) project. The longitudinal accelerator structure wake of the SLAC linac is an important ingredient in the LCLS bunch compression process. Of the wakes in the undulator region, the dominant one is the resistive wall wake of the beam pipe.

  1. Tunable subpicosecond electron-bunch-train generation using a transverse-to-longitudinal phase-space exchange technique.

    Science.gov (United States)

    Sun, Y-E; Piot, P; Johnson, A; Lumpkin, A H; Maxwell, T J; Ruan, J; Thurman-Keup, R

    2010-12-03

    We report on the experimental generation of a train of subpicosecond electron bunches. The bunch train generation is accomplished using a beam line capable of exchanging the coordinates between the horizontal and longitudinal degrees of freedom. An initial beam consisting of a set of horizontally separated beamlets is converted into a train of bunches temporally separated with tunable bunch duration and separation. The experiment reported in this Letter unambiguously demonstrates the conversion process and its versatility.

  2. KEKB bunch feedback systems

    Energy Technology Data Exchange (ETDEWEB)

    Tobiyama, M.; Kikutani, E. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    Design and the present status of the bunch by bunch feedback systems for KEKB rings are shown. The detection of the bunch oscillation are made with the phase detection for longitudinal plane, the AM/PM method for transverse plane. Two GHz component of the bunch signal which is extracted with an analog FIR filter is used for the detection. Hardware two-tap FIR filter systems to shift the phase of the oscillation by 90deg will be used for the longitudinal signal processing. The same system will be used with no filtering but with only digital delay for transverse system. The candidate for the kicker and the required maximum power are also estimated. (author)

  3. Halo formation in three-dimensional bunches

    Energy Technology Data Exchange (ETDEWEB)

    Gluckstern, R.L.; Fedotov, A.V. [Physics Department, University of Maryland, College Park, Maryland 20742 (United States); Kurennoy, S.; Ryne, R. [Los Alamos Neutron Science Center Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1998-10-01

    We have constructed, analytically and numerically, a class of self-consistent six-dimensional (6D) phase space stationary distributions. Stationary distributions allow us to study the halo development mechanism without it being obscured by beam redistribution and its effect on halo formation. The beam is then mismatched longitudinally and/or transversely, and we explore the formation of longitudinal and transverse halos in 3D axisymmetric beam bunches. We find that the longitudinal halo forms first for comparable longitudinal and transverse mismatches because the longitudinal tune depression is more severe than the transverse one for elongated bunches. Of particular importance is the result that, due to the coupling between longitudinal and transverse motion, a longitudinal or transverse halo is observed for a mismatch less than 10{percent} if the mismatch in the other plane is large. {copyright} {ital 1998} {ital The American Physical Society}

  4. Halo formation in three-dimensional bunches

    Science.gov (United States)

    Gluckstern, R. L.; Fedotov, A. V.; Kurennoy, S.; Ryne, R.

    1998-10-01

    We have constructed, analytically and numerically, a class of self-consistent six-dimensional (6D) phase space stationary distributions. Stationary distributions allow us to study the halo development mechanism without it being obscured by beam redistribution and its effect on halo formation. The beam is then mismatched longitudinally and/or transversely, and we explore the formation of longitudinal and transverse halos in 3D axisymmetric beam bunches. We find that the longitudinal halo forms first for comparable longitudinal and transverse mismatches because the longitudinal tune depression is more severe than the transverse one for elongated bunches. Of particular importance is the result that, due to the coupling between longitudinal and transverse motion, a longitudinal or transverse halo is observed for a mismatch less than 10% if the mismatch in the other plane is large.

  5. Probing the LHC impedance with single bunches

    CERN Document Server

    Esteban Müller, J F; Bohl, T; Bhat, C; Calaga, R; Kain, V; Kuhn, M; Mounet, N; Papotti, G; Shaposhnikova, E; Timko, H

    2013-01-01

    The main purpose of this MD was to study longitudinal and transverse beam dynamics in the LHC. Eight bunches with different bunch lengths and intensities were injected into the LHC in two fills. The distance between bunches is large enough so they can be treated as single bunches. The bunch length and the intensity were adjusted in the SPS by applying controlled longitudinal emittance blow-up with different amplitudes and transverse scraping. The aim of the first fill was to measure the longitudinal and the transverse impedance at injection energy (450 GeV). The second fill of the MD included acceleration to 4 TeV and was used to study the loss of Landau damping during the ramp, observed as dipole and quadrupole oscillations, and to measure the impedance at top energy. Measurements of synchronous phase shift and peak-detected Schottky spectra were taken during both fills in order to estimate the longitudinal impedance and they are presented in this Note. We also show the transverse emittance evolution during ...

  6. Loss of Landau Damping for Bunch Oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Burov, A.; /Fermilab

    2011-04-11

    Conditions for the existence, uniqueness and stability of self-consistent bunch steady states are considered. For the existence and uniqueness problems, simple algebraic criteria are derived for both the action and Hamiltonian domain distributions. For the stability problem, van Kampen theory is used. The onset of a discrete van Kampen mode means the emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch or multi-turn wake is sufficient to drive the instability. The method presented here assumes an arbitrary impedance, RF shape, and beam distribution function. Available areas on the intensity-emittance plane are shown for resistive wall wake and single harmonic, bunch shortening and bunch lengthening RF configurations. Thresholds calculated for the Tevatron parameters and impedance model are in agreement with the observations. These thresholds are found to be extremely sensitive to the small-argument behaviour of the bunch distribution function. Accordingly, a method to increase the LLD threshold is suggested. This article summarizes and extends recent author's publications.

  7. HLS bunch current measurement system

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Bunch current is an important parameter for studying the injection fill-pattern in the storage ring and the instability threshold of the bunch, and the bunch current monitor also is an indispensable tool for the top-up injection. A bunch current measurement (BCM) system has been developed to meet the needs of the upgrade project of Hefei Light Source (HLS). This paper presents the layout of the BCM system. The system based on a high-speed digital oscilloscope can be used to measure the bunch current and synchronous phase shift. To obtain the absolute value of bunch-by-bunch current, the calibration coefficient is measured and analyzed. Error analysis shows that the RMS of bunch current is less than 0.01 mA when bunch current is about 5 mA, which can meet project requirement.

  8. Investigation of transient processes at the DELTA electron storage ring using a digital bunch-by-bunch feedback system

    Energy Technology Data Exchange (ETDEWEB)

    Hoener, Markus

    2015-07-01

    At the 1.5-GeV synchrotron radiation source DELTA, operated by the TU Dortmund University, intensive synchrotron radiation in the spectral range from hard X-rays to THz radiation is generated by the circular deflection of highly relativistic electron bunches. Interacting with the vacuum chamber wall, the electron bunches create electric fields, which can act back on subsequent bunches. With increasing beam current, the excitation is enhanced so that the electron beam is unstable, which means that the electron bunches oscillate longitudinally or transversely relative to their reference position. The oscillations reduce the quality of the synchrotron radiation and limit the maximum storable beam current. Within the scope of this thesis, the beam instabilities at the storage ring were systematically investigated. A digital bunch-by-bunch feedback system was installed and commissioned, which allows to detect and digitize the position of each electron bunch at each turn. Based on the input signal, a correction signal is calculated in order to suppress transverse and longitudinal oscillation of the bunches. In addition, it is possible to excite dedicated bunches. The systematic excitation of all coupled-bunch modes allowed for the first time to determine the damping rates of all 192 eigenmodes of the electron beam. The current dependence of the damping rates was investigated and an instability threshold was found. Besides the investigation of multibunch instabilities, single-bunch instabilities are discussed. In addition, the acquisition unit of the digital feedback system can be triggered on external events. This was used to investigate the injection process and beam losses. It was shown that the transverse feedback system increases the injection efficiency. Another aspect of this thesis is the improvement of the signal quality of ultrashort coherent synchrotron radiation pulses, which are generated by the short-pulse facility at DELTA. The short-pulse facility is based

  9. A Proof of Principle of Asymmetric Bunch Pair Merging

    CERN Document Server

    Benedikt, Michael; Vallet, J L; CERN. Geneva. AB Department

    2003-01-01

    Bunch splitting was established as a routine operation in the arsenal of rf gymnastics in the PS Complex long before it became the saving grace of the beam for the LHC. Historically, however, it was born out of the time-reversed analogue process of merging, in which a pair of bunches are combined. Hitherto, both operations have been performed with bunches of equal longitudinal emittance. Now an asymmetric merging process has been demonstrated. By combining a bunch with a small empty bucket, it is possible to deplete only the central density of the resultant particle distribution. This would allow bunches to be tailored with quasi-flat line densities. The details of the method are presented together with some measurements.

  10. Submicron multi-bunch BPM for CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Schmickler, H.; Soby, L.; /CERN; Lunin, A.; Solyak, N.; Wendt, M.; /Fermilab

    2010-08-01

    A common-mode free cavity BPM is currently under development at Fermilab within the ILC-CLIC collaboration. This monitor will be operated in a CLIC Main Linac multi-bunch regime, and needs to provide both, high spatial and time resolution. We present the design concept, numerical analysis, investigation on tolerances and error effects, as well as simulations on the signal response applying a multi-bunch stimulus. The proposed CERN linear collider (CLIC) requires a very precise measurement of beam trajectory to preserve the low emittance when transporting the beam through the Main Linac. An energy chirp within the bunch train will be applied to measure and minimize the dispersion effects, which require high resolution (in both, time and space) beam position monitors (BPM) along the beam-line. We propose a low-Q waveguide loaded TM{sub 110} dipole mode cavity as BPM, which is complemented by a TM{sub 010} monopole mode resonator of same resonant frequency for reference signal purposes. The design is based on a well known TM{sub 110} selective mode coupling idea.

  11. Creation and storage of long and flat bunches in the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Damerau, H.

    2005-09-01

    To maximize the luminosity of the Large Hadron Collider (LHC), the collision of particle bunches with a uniform longitudinal particle density is considered for a future upgrade. The benefits of such bunches and their generation by means of special longitudinal beam manipulations are presented in this report. Three possible options are analyzed with respect to their potential luminosity gain at the beam-beam limit: short rectangular bunches held by radio frequency (RF) harmonics using multiples of the nominal RF frequency of 400.8 MHz, long and flat bunches held by multiples of 40.08 MHz, and so-called superbunches, confined by barrier buckets. The comparison of the three different approaches shows that flat bunches, with an intermediate bunch length of the order of several meters, are capable of producing a comparable luminosity to superbunches, while avoiding most of their inherent disadvantages. Possible schemes to create the bunches with uniform line density are studied and a longitudinal manipulation to combine a batch of ordinary bunches into a long and flat bunch is proposed. These RF gymnastics are based on well-proven techniques such as batch compression and bunch pair merging. Their advantages and disadvantages, including optimization with respect to degradation of the longitudinal particle density, are discussed in detail. Special attention is paid to the investigation of collective effects due to the large line charge density and the influence of the beam on the RF installation is also studied. (Orig.)

  12. Experimental Characterization of Sub-picosecond Electron Bunch Length with Coherent Diffraction Radiation

    Institute of Scientific and Technical Information of China (English)

    XIANG Dao; YANG Xing-Fan; HUANG Wen-Hui; TANG Chuan-Xiang; LIN Yu-Zheng; LI Wei-Hua; PAN Qing; LI Ming

    2008-01-01

    Diffraction radiation is one of the most promising candidates for electron beam diagnostics for the International Linear Collider, x-ray free electron lasers and energy recovery linac due to its non-intercepting characteristics. We report the non-intercepting measurement of sub-ps electron bunch length with coherent diffraction radiation. The bunch length is measured with a Martin-Puplett interferometer and the detailed longitudinal bunch shape is reconstructed with the Kramers-Kronig relation. The rms bunch length is found to be about 0.73ps, which confirms a successful commissioning of the bunch compressor and the interferometer.

  13. Electron bunch length measurement at the Vanderbilt FEL

    Energy Technology Data Exchange (ETDEWEB)

    Amirmadhi, F.; Brau, C.A.; Mendenhall, M. [Vanderbilt Free-Electron-Laser Center, Nashville, TN (United States)] [and others

    1995-12-31

    During the past few years, a number of experiments have been performed to demonstrate the possibility to extract the longitudinal charge distribution from spectroscopic measurements of the coherent far-infrared radiation emitted as transition radiation or synchrotron radiation. Coherent emission occurs in a spectral region where the wavelength is comparable to or longer than the bunch length, leading to an enhancement of the radiation intensity that is on the order of the number of particles per bunch, as compared to incoherent radiation. This technique is particularly useful in the region of mm and sub-mm bunch lengths, a range where streak-cameras cannot be used for beam diagnostics due to their limited time resolution. Here we report on experiments that go beyond the proof of principle of this technique by applying it to the study and optimization of FEL performance. We investigated the longitudinal bunch length of the Vanderbilt FEL by analyzing the spectrum of coherent transition radiation emitted by the electron bunches. By monitoring the bunch length while applying a bunch-compression technique, the amount of the compression could be easily observed. This enabled us to perform a systematic study of the FEL performance, especially gain and optical pulse width, as a function of the longitudinal electron distribution in the bunch. The results of this study will be presented and discussed.

  14. The short bunch blow-out regime in RF photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, L. [INFN and Universita di Milano, Via Celoria 16, 20133Milano (Italy)

    1997-06-01

    A new beam dynamics regime of RF Photoinjectors is presented here, dealing with a violent bunch elongation under the action of longitudinal space charge forces. It is shown that such a blow-out expansion of the electron bunch can lead to highly linear behaviors of both the longitudinal and the transverse space charge field, a well known prerequisite to achieve minimum emittance dilution in photoinjectors. If operated in the ultra-short pancake-like bunch regime, such an effect can be very beneficial to the emittance correction mechanism, making it effective also for ultra-short pancake like bunches. The anticipated performances are presented: kA peak current beams can be generated directly out of the photoinjector (10 to 20 MeV exit energy) with rms normalized emittances below 1mm{center_dot}mrad. {copyright} {ital 1997 American Institute of Physics.}

  15. SuperB Bunch-By-Bunch Feedback R&D

    Energy Technology Data Exchange (ETDEWEB)

    Drago, A.; Beretta, M.; /Frascati; Bertsche, K.; Novokhatski, A.; /SLAC; Migliorati, M.; /Rome U.

    2011-08-12

    The SuperB project has the goal to build in Italy, in the Frascati or Tor Vergata area, an asymmetric e{sup +}/e{sup -} Super Flavor Factory to achieve a peak luminosity > 10**36 cm{sup -2} s{sup -1}. The SuperB design is based on collisions with extremely low vertical emittance beams and high beam currents. A source of emittance growth comes from the bunch by bunch feedback systems producing high power correction signals to damp the beams. To limit any undesirable effect, a large R&D program is in progress, partially funded by the INFN Fifth National Scientific Committee through the SFEED (SuperB Feedback) project approved within the 2010 budget. The SuperB project [1] has the goal to build in Italy, in the Frascati or Tor Vergata area, an asymmetric e{sup +}/e{sup -} Super Flavor Factory to achieve a peak luminosity > 10**36 cm{sup -2} s{sup -1}. In the last and current years, the machine layout has been deeply modified, in particular the main rings are now shorter and an option with high currents has been foreseen. In the fig.1 the new SuperB layout is shown. From bunch-by-bunch feedback point of view, the simultaneous presence in the machine parameters, of very low emittance, of the order of 5-10 pm in the vertical plane, and very high currents, at level of 4 Ampere for the Low Energy Ring, asks for designing very carefully the bunch-by-bunch feedback systems. The parameter list is presented in Fig. 2. The bunch-by-bunch feedback design must take care of the risky and exciting challenges proposed in the SuperB specifications, but it should consider also some other important aspects: flexibility in terms of being able to cope to unexpected beam behaviours [2], [3] legacy of previous version experience [4], [5] and internal powerful diagnostics [6] as in the systems previously used in PEP-II and DAFNE [7].

  16. Development of a bunch-by-bunch longitudinal feedback system with a wide dynamic range for the HIGS facility

    Energy Technology Data Exchange (ETDEWEB)

    Wu, W.Z., E-mail: wwz@fel.duke.ed [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); DFELL, Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Kim, Y. [Department of Physics, Idaho State University, Pocatello, ID 83209-8288 (United States); Li, J.Y. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); DFELL, Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Teytelman, D. [Dimtel, Inc., San Jose, CA 95124 (United States); Busch, M.; Wang, P.; Swift, G. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); DFELL, Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Park, I.S.; Ko, I.S. [Pohang Accelerator Laboratory, POSTECH, Pohang 790-784 (Korea, Republic of); Wu, Y.K., E-mail: wu@fel.duke.ed [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); DFELL, Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2011-03-11

    Electron beam coupled-bunch instabilities can limit and degrade the performance of storage ring based light sources. A longitudinal feedback system has been developed for the Duke storage ring to suppress multi-bunch beam instabilities which prevent stable, high-current operation of the storage ring based free-electron lasers (FELs) and an FEL driven Compton gamma source, the high intensity gamma-ray source (HIGS) at Duke University. In this work, we report the development of a state-of-the-art second generation longitudinal feedback system which employs a field programmable gate array (FPGA) based processor, and a broadband, high shunt-impedance kicker cavity. With two inputs and two outputs, the kicker cavity was designed with a resonant frequency of 937 MHz, a bandwidth of 97 MHz, and a shunt impedance of 1530{Omega}. We also developed an S-matrix based technique to fully characterize the performance of the kicker cavity in the cold test. This longitudinal feedback system has been commissioned and optimized to stabilize high-current electron beams with a wide range of electron beam energies (250 MeV to 1.15 GeV) and a number of electron beam bunch modes, including the single-bunch mode and all possible symmetric bunch modes. This feedback system has become a critical instrument to ensure stable, high-flux operation of HIGS to produce nearly monochromatic, highly polarized Compton gamma-ray beams.

  17. Observed Orbit Effects during Long Range Beam-Beam Studies

    CERN Document Server

    Alemany, R; Buffat, X; Calaga, R; Fitterer, M; Giachino, R; Hemelsoet, GH; Herr, W; Papotti, G; Pieloni, T; Poyer, M; Schaumann, M; Trad, G; Wollmann, D

    2012-01-01

    Possible limitations due to long range beam-beam effects at the LHC have been studied and are presented in this note. With a larger number of bunches and collisions in all interaction points, the crossing angles were reduced to enhance long range beam-beam effects. The analysis of the effects on the dynamic aperture and losses are documented in [1]. This note concentrates on the bunch-by-bunch orbit effects observed during the experiment.

  18. Non-linear effects in bunch compressor of TARLA

    Science.gov (United States)

    Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin

    2016-03-01

    Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.

  19. Measurement of the energy loss of an electron bunch passing in a chicane-type bunch compressor due to the coherent synchrotron radiation

    CERN Document Server

    Okuda, S; Yokoyama, K

    2000-01-01

    The energy loss of an electron beam due to the coherent synchrotron radiation in the components for beam transportation possibly degrades the quality of the beam. In this work the energy loss of an intense single-bunch electron beam passing through a chicane-type bunch compressor has been investigated. The single-bunch beams are being used for self-amplified spontaneous emission experiments in Osaka University. At a beam energy of 27 MeV and the charge of electrons in a bunch of 22 nC the peak shift on the energy spectrum of the beam by 1% and the energy loss of about 0.5% have been observed. In order to evaluate the energy of the coherent synchrotron radiation emitted in the bunch compressor a form factor of the electron bunch has been assumed, according to the results for the measurements of the time profile of the electron bunch with a streak camera and the spectrum of the coherent transition radiation.

  20. Design of a Multi-Bunch BPM for the Next Linear Collider

    CERN Document Server

    Young, A

    2001-01-01

    The Next Linear Collider (NLC) design requires precise control of colliding trains of high-intensity (1.4 x 10 sup 1 sup 0 particles/bunch) and low-emittance beams. High-resolution multi-bunch beam position monitors (BPMs) are required to ensure uniformity across the bunch trains with bunch spacing of 1.4ns. A high bandwidth (approx 350 MHz) multi-bunch BPM has been designed based on a custom-made stripline sum and difference hybrid on a Teflon-based material. High bandwidth RF couplers were included to allow injection of a calibration tone. Three prototype BPMs were fabricated at SLAC and tested in the Accelerator Test Facility at KEK and in the PEP-II ring at SLAC. Tone calibration data and single-bunch and multi-bunch beam data were taken with high-speed (5Gsa/s) digitizers. Offline analysis determined the deconvolution of individual bunches in the multi-bunch mode by using the measured single bunch response. The results of these measurements are presented in this paper.

  1. Bunch compression efficiency of the femtosecond electron source at Chiang Mai University

    Energy Technology Data Exchange (ETDEWEB)

    Thongbai, C. [Department of Physics and Materials Science, Chiang Mai University, Chiangmai 50200 (Thailand); ThEP Center, Commission on Higher Education, Ministry of Education, Bangkok 10400 (Thailand); Kusoljariyakul, K., E-mail: zartparz@gmail.com [Department of Physics and Materials Science, Chiang Mai University, Chiangmai 50200 (Thailand); ThEP Center, Commission on Higher Education, Ministry of Education, Bangkok 10400 (Thailand); Saisut, J. [Department of Physics and Materials Science, Chiang Mai University, Chiangmai 50200 (Thailand); ThEP Center, Commission on Higher Education, Ministry of Education, Bangkok 10400 (Thailand)

    2011-07-21

    A femtosecond electron source has been developed at the Plasma and Beam Physics Research Facility (PBP), Chiang Mai University (CMU), Thailand. Ultra-short electron bunches can be produced with a bunch compression system consisting of a thermionic cathode RF-gun, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator as a post acceleration section. To obtain effective bunch compression, it is crucial to provide a proper longitudinal phase-space distribution at the gun exit matched to the subsequent beam transport system. Via beam dynamics calculations and experiments, we investigate the bunch compression efficiency for various RF-gun fields. The particle distribution at the RF-gun exit will be tracked numerically through the alpha-magnet and beam transport. Details of the study and results leading to an optimum condition for our system will be presented.

  2. A hybrid approach for generating ultra-short bunches for advanced accelerator applications

    Science.gov (United States)

    Stratakis, Diktys

    2016-06-01

    Generation of electron beams with high phase-space density, short bunch length and high peak current is an essential requirement for future linear colliders and bright electron beam sources. Unfortunately, such bunches cannot be produced directly from the source since forces from the mutual repulsion of electrons would destroy the brilliance of the beam within a short distance. Here, we detail a beam dynamics study of a two-stage compression scheme that can generate ultra-short bunches without degrading the beam quality. In the first stage, a magnetized beam is compressed with a velocity bunching technique in which the longitudinal phase space is rotated so that electrons on the bunch tail become faster than electrons in the bunch head. In the second stage, the beam is further compressed with a magnetic chicane. With the aid of numerical simulations we show that our two-staged scheme is capable to increase the current of a 50 pC bunch by a notable factor of 100 (from 15 A to 1.5 kA) while the emittance growth can be suppressed to 1% with appropriate tailoring of the initial beam distribution.

  3. A hybrid approach for generating ultra-short bunches for advanced accelerator applications

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-01

    Generation of electron beams with high phase-space density, short bunch length and high peak current is an essential requirement for future linear colliders and bright electron beam sources. Unfortunately, such bunches cannot be produced directly from the source since forces from the mutual repulsion of electrons would destroy the brilliance of the beam within a short distance. Here, we detail a beam dynamics study of an innovative two-stage compression scheme that can generate ultra-short bunches without degrading the beam quality. In the first stage, the beam is compressed with an advanced velocity bunching technique in which the longitudinal phase space is rotated so that electrons on the bunch tail become faster than electrons in the bunch head. In the second stage, the beam is further compressed with a conventional magnetic chicane. With the aid of numerical simulations we show that our two-staged scheme is capable to increase the current of a 50 pC bunch to a notable factor of 100 while the emittance growth can be suppressed to 1% with appropriate tailoring of the initial beam distribution.

  4. Theoretical and Numerical Analyses of a Slit-Masked Chicane for Modulated Bunch Generation

    CERN Document Server

    Zhu, Xiaofang; Shin, Young-Min

    2015-01-01

    Density modulations on electron beams can improve machine performance of beam-driven accelerators and FELs with resonance beam-wave coupling. The beam modulation is studied with a masked chicane by the analytic model and simulations with the beam parameters of the Fermilab Accelerator Science and Technology (FAST) facility. With the chicane design parameters (bending angle of 18{\\deg}, bending radius of 0.95 m and R56 ~ - 0.19 m) and a nominal beam of 3 ps bunch length, the analytic model showed that a slit-mask with slit period 900 {\\mu}m and aperture width 300 {\\mu}m induces a modulation of bunch-to-bunch spacing ~100 {\\mu}m to the bunch with 2.4% correlated energy spread. With the designed slit mask and a 3 ps bunch, particle-in-cell (PIC) simulations, including nonlinear energy distributions, space charge force, and coherent synchrotron radiation (CSR) effect, also result in beam modulation with bunch-to-bunch distance around 100 {\\mu}m and a corresponding modulation frequency of 3 THz. The beam modulatio...

  5. LHC MD 652: Coupled-Bunch Instability with Smaller Emittance (all HOMs)

    CERN Document Server

    Esteban Muller, Juan; Timko, Helga; CERN. Geneva. ATS Department

    2017-01-01

    The aim of the MD was to measure the coupled-bunch stability from all HOM impedances, with a reduced longitudinal emittance in order to explore the HL-LHC conditions. The acceleration ramp was performed with the nominal beams of 2016, but a reduced target bunch length and RF voltage. With this reduced emittance, the beam remained close but above the single-bunch stability threshold. No coupled-bunch oscillations were observed, so we can conclude that the stability threshold for coupled-bunch instability is not lower than the single-bunch threshold. An interesting observation in the MD was the long-lasting injection oscillations, whose traces can still be seen at arrival to flat top; in agreement with observations in earlier MDs. The measurements took place between 28th October 20:00 and 29th October 05:10.

  6. Single Bunch Longitudinal Instability in the CERN SPS

    CERN Document Server

    Lasheen, Alexandre; Hancock, Steven; Radvilas, Edgaras; Roggen, Toon; Shaposhnikova, Elena

    2016-01-01

    The longitudinal single bunch instability observed in the SPS leads to uncontrolled emittance blow-up and limits the quality of high intensity beams required for the High Luminosity LHC and AWAKE projects at CERN. The present SPS impedance model developed from a thorough survey of machine elements was used in macro-particle simulations (with the code BLonD) of the bunch behavior through the acceleration cycle. Comparison of simulations with measurements of the synchrotron frequency shift, performed on the SPS flat bottom to probe the impedance, show a reasonable agreement. During extensive experimental studies various beam and machine parameters (bunch intensity, longitudinal emittance, RF voltage, with single and double RF systems) were scanned in order to further benchmark the SPS impedance model with measurements and to better understand the mechanism behind the instability. It was found that the dependence of instability threshold on longitudinal emittance and beam energy has an unexpected non-monotonic b...

  7. Measuring the Bunch Frequency Multiplication at CTF3

    CERN Document Server

    Bettoni, S; Corsini, R; Dabrowski, A; Doebert, S; Egger, D; Ferrari, A; Lefevre, T; Rabiller, A; Skowronski, PK; Soby, L; Tecker, F; Welsch, CP

    2010-01-01

    The CLIC Test Facility 3 (CTF3) is being built and commissioned by an international collaboration to test the feasibility of the proposed Compact Linear Collider (CLIC) drive beam generation scheme. Central to this scheme is the use of RF deflectors to inject bunches into a delay loop and a combiner ring, in order to transform the initial bunch frequency of 1.5 GHz from the LINAC to a final bunch frequency of 12 GHz. The optimization procedure relies on several steps. The active length of each ring is carefully adjusted to within less than millimetre accuracy using a wiggler magnet. The transverse optics of the machine must be set up in a way to ensure beam isochronicity. Diagnostics based on optical Streak camera and RF power measurements have been designed to measure the longitudinal behaviour of the beam during the combination. This paper presents their performance and recent measurements

  8. Measuring the longitudinal bunch profile at CTF3

    CERN Document Server

    Dabrowski, A E; Bettoni, S; Braun†, H H; Corsini, R; Döbert, S; Egger, D; Lefevre, T; Rabiller, A; Shaker, H; Soby, L; Skowronski, P K; Tecker, F; Velasco, M

    2010-01-01

    The CLIC Test Facility 3 (CTF3) is being built and commissioned by an international collaboration in order to test the feasibility of the proposed Compact Linear Collider (CLIC) two-beam acceleration scheme. The monitoring and control of the bunch length throughout the CTF3 complex is important since this affects the efficiency and the stability of the final RF power production process. Bunch length diagnostics therefore form an essential component of the beam instrumentation at CTF3. This paper presents longitudinal profile measurements based on Streak camera and non-destructive RF power and microwave spectrometry techniques.

  9. Single/Few Bunch Space Charge Effects at 8 GeV in the Fermilab Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.J.; Capista, D.; Kourbanis, I.; Seiya, K.; Yang, M.-J.; /Fermilab

    2012-05-01

    For Project X, it is planned to inject a beam of 3 10{sup 11} particles per bunch into the Main Injector. Therefore, at 8 GeV, there will be increased space charge tune shifts and an increased incoherent tune spread. In preparation for these higher intensity bunches exploratory studies have commenced looking at the transmission of different intensity bunches at different tunes. An experiment is described with results for bunch intensities between 20 and 300 10{sup 9} particles. To achieve the highest intensity bunches coalescing at 8 GeV is required, resulting in a longer bunch length. Comparisons show that similar transmission curves are obtained when the intensity and bunch length have increased by similar factors. This indicates the incoherent tune shifts are similar, as expected from theory. The results of these experiments will be used in conjugation with simulations to further study high intensity bunches in the Main Injector.

  10. Thermal damage at short electron bunches passage through a thin target

    Science.gov (United States)

    Babaev, A. A.; Gogolev, A. S.

    2016-07-01

    The thin target could be used for beam diagnostics by means the radiation that is induced by interaction of beam particles with target matter. The electron beams used in modern applications (as, for example, modern FELs) have very large brightness, small emittance as well as very short bunch length. For example, the bunch length of XFEL is about of 25 um at bunch charge order of 1 nC and with electrons energy of 17.5 GeV. The passage of this powerful short bunches could damage the target or even completely destroy it. In the presented work the train of such bunches passages through the target is investigated. It is shown the target works in extreme regime close to phase transition temperature.

  11. Study on ILC bunch compressor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, we have found a new set of parameters for the short two-stage ILC bunch compres-sors. The RF sections are both in the accelerating phase rather than the decelerating phase to improve the accelerating efficiency. We have also studied the CSR related issues. The results show that the microbunch instability exists extensively in the second bunch compressor, but the emittance dilution is small due to the relatively long bunch.

  12. Flat bunch creation and acceleration: a possible path for the LHC luminosity upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2009-05-01

    Increasing the collider luminosity by replacing bunches having Gaussian line-charge distribution with flat bunches, but with same beam-beam tune shift at collision, has been studied widely in recent years. But, creation of 'stable' flat bunches (and their acceleration) using a multiple harmonic RF system has not been fully explored. Here, we review our experience with long flat bunches in the barrier RF buckets at Fermilab.We presentsome preliminary results from beam dynamics simulations and recent beam studies in the LHC injectors to create stable flat bunches using double harmonic RF systems. The results deduced from these studies will be used to model the necessary scheme for luminosity upgrade in the LHC. We have also described a viable (and economical) way for creation and acceleration of flat bunches in the LHC. The flat bunch scheme may have many advantages over the LHC baseline scenario, particularly because of the reduced momentum spread of the bunch for increased intensities.

  13. Methods of computer processing of experimental data on the intensity of bunches in synchrotrons

    Science.gov (United States)

    Zhabitsky, V. M.

    2016-12-01

    Methods of computer processing of experimental data on the intensity of bunches in synchrotrons for the purpose of receiving functional dependences from time during the accelerating cycle for a number of circulating particles and the mean-square length of a bunch are discussed. Examples of such dependences for the beam at the nuclotron (JINR) and PSB (CERN) are presented.

  14. Luminosity Increase at the Incoherent Beam-Beam Limit with Six Superbunches in RHIC

    Science.gov (United States)

    Fischer, W.; Blaskiewicz, M.

    2003-12-01

    By colliding bunches of greater length under a larger angle, the tune spread caused by the beam-beam interaction can be reduced. Assuming a constant limit for the beam-beam tune shift, the bunch intensity can then be raised. In this way, a luminosity increase is possible. We review this strategy for proton beams in RHIC, with two collisions and consider six long bunches. Barrier cavities are used to fill every accelerating bucket of the machine, except for an abort gap, and to create the superbunches bunches at store. Resonances driven by the beam-beam interaction and coherent effects are neglected in this article.

  15. End-to-end simulation of bunch merging for a muon collider

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Yu [Univ. of California, Riverside, CA (United States); Stratakis, Diktys [Brookhaven National Lab. (BNL), Upton, NY (United States); Hanson, Gail G. [Univ. of California, Riverside, CA (United States); Palmer, Robert B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Muon accelerator beams are commonly produced indirectly through pion decay by interaction of a charged particle beam with a target. Efficient muon capture requires the muons to be first phase-rotated by rf cavities into a train of 21 bunches with much reduced energy spread. Since luminosity is proportional to the square of the number of muons per bunch, it is crucial for a Muon Collider to use relatively few bunches with many muons per bunch. In this paper we will describe a bunch merging scheme that should achieve this goal. We present for the first time a complete end-to-end simulation of a 6D bunch merger for a Muon Collider. The 21 bunches arising from the phase-rotator, after some initial cooling, are merged in longitudinal phase space into seven bunches, which then go through seven paths with different lengths and reach the final collecting "funnel" at the same time. The final single bunch has a transverse and a longitudinal emittance that matches well with the subsequent 6D rectilinear cooling scheme.

  16. Successful Beam-Beam Tuneshift Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip Aaron [Univ. of California, Los Angeles, CA (United States)

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (TEL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operations with inclusion of the TEL are presented and analyzed. It is shown that the TEL provides a way to shatter the previously inescapable beam-beam limit.

  17. KEKB beam instrumentation systems

    Science.gov (United States)

    Arinaga, M.; Flanagan, J.; Hiramatsu, S.; Ieiri, T.; Ikeda, H.; Ishii, H.; Kikutani, E.; Mimashi, T.; Mitsuhashi, T.; Mizuno, H.; Mori, K.; Tejima, M.; Tobiyama, M.

    2003-02-01

    For the stable high-luminosity operation and luminosity increase, the electron and positron storage rings of the KEK B-Factory (KEKB) is equipped with various beam instrumentations, which have been working well since the start of the commissioning in December, 1998. Details and performance of the beam-position monitor system based on the spectrum analysis using DSPs, the turn-by-turn BPM with four-dimensional function available for measurements of the individual bunch position, phase and intensity, the parametric beam-DCCTs designed so as to avoid the magnetic-core-selection problems for the parametric flux modulation, the bunch-by-bunch feedback system indispensable to suppress the strong multibunch instabilities in KEKB, the various optical beam diagnostic systems, such as synchrotron radiation interferometers for precise beam-size measurement, the tune meters, the bunch length monitors and the beam-loss monitors are described. Delicate machine tuning of KEKB is strongly supported by these instrumentations.

  18. Bunch length measurement at Tsinghua Thomson scattering X-ray source

    Institute of Scientific and Technical Information of China (English)

    DU Ying-Chao; HUA Jian-Fei; YAN Li-Xin; DU Qiang; HUANG Wen-Hui; TANG Chuan-Xiang

    2011-01-01

    The length of electron beam from a photocathode RF gun is determined by a spectrometer, according to the relative energy spread induced by the bunch length during the acceleration in a linac. For a photocathode RF gun, different laser injected phase and beam charge are studied. The compression is changed for the different laser phases, as from 10° to 30°, and the bunch length is lengthened due to the strong longitudinal space charge force, caused by the increased charge.

  19. Digital bunch-by-bunch transverse feedback system at SSRF

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to suppress multi-bunch couple instabilities caused by transverse impedance, a bunch-by-bunch transverse feedback system based on a FPGA digital processor is commissioned at SSRF storage ring. The RF front end has two COD pre-rejected attenuators for increasing the system arrangement and signal noise ratio, and the 3*RF Local signal comes from the BPM’s sum signal using a FIR filter for avoiding the effect of longitudinal oscillation. The digital processor receives the coupled horizontal and vertical oscillation signals in the base band and transforms the coupled signals to the horizontal and vertical feedback signals with two series double-zeroes FIR filters. A matlab GUI is applied for producing the FIR coefficients when the tune is shifted. The horizontal and vertical Kickers have a special design for increasing the shunt impedance. Then the multi-bunch instabilities are suppressed respectively and the minimum damping time is about 0.4 ms.

  20. Generation of sub-picosecond electron bunches from RF photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, L. [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Zhang, R. [California Univ., Los Angeles, CA (United States). Dept. of Physics; Pellegrini, C. [California Univ., Los Angeles, CA (United States). Dept. of Physics

    1997-03-11

    In this paper we discuss the possibility to generate sub-picosecond electron bunches directly from a photoinjector by illuminating a photo-cathode in an RF cavity with a phase-locked sub-picosecond laser pulse. In particular, we address all de-bunching effects taking place during acceleration and transport through a photoinjector. We provide analysis of the beam dynamics, as well as the comparison with numerical simulations. The possible performances of the present SATURNUS linac setup are presented, as well as the anticipated capabilities of a multi-cell RF gun structure based on the PWT linac presently in operation at UCLA. (orig.).

  1. Bunch Length Measurements With Laser/SR Cross-Correlation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Timothy; /Stanford U., Phys. Dept.; Daranciang, Dan; /Stanford U., Phys. Dept.; Lindenberg, Aaron; /Stanford U., Phys. Dept.; Corbett, Jeff; /SLAC; Fisher, Alan; /SLAC; Goodfellow, John; /SLAC; Huang, Xiaobiao; /SLAC; Mok, Walter; /SLAC; Safranek, James; /SLAC; Wen, Haidan; /SLAC

    2012-07-06

    By operating SPEAR3 in low-{alpha} mode the storage ring can generate synchrotron radiation pulses of order 1ps. Applications include pump-probe x-ray science and the production of THz radiation in the CSR regime. Measurements of the bunch length are difficult, however, because the light intensity is low and streak cameras typically provide resolution of only a few ps. Tests are now underway to resolve the short bunch length using cross-correlation between a 60-fs Ti:Sapphire laser and the visible SR beam in a BBO crystal. In this paper we report on the experimental setup, preliminary measurements and prospects for further improvement.

  2. Scanning Synchronization of Colliding Bunches for MEIC Project

    Energy Technology Data Exchange (ETDEWEB)

    Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Popov, V. P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Chernousov, Yu D. [Inst. of Chemical Kinetics and Combustion, Novosibirsk (Russian Federation); Kazakevich, G. M. [Euclid Techlabs LLC., Cleveland, OH (United States)

    2015-09-01

    Synchronization of colliding beams is one of the major issues of an electron-ion collider (EIC) design because of sensitivity of ion revolution frequency to beam energy. A conventional solution for this trouble is insertion of bent chicanes in the arcs space. In our report we consider a method to provide space coincidence of encountering bunches in the crab-crossing orbits Interaction Region (IR) while repetition rates of two beams do not coincide. The method utilizes pair of fast kickers realizing a bypass for the electron bunches as the way to equalize positions of the colliding bunches at the Interaction Point (IP). A dipole-mode warm or SRF cavities fed by the magnetron transmitters are used as fast kickers, allowing a broad-band phase and amplitude control. The proposed scanning synchronization method implies stabilization of luminosity at a maximum via a feedback loop. This synchronization method is evaluated as perspective for the Medium Energy Electron-Ion collider (MEIC) project of JLab with its very high bunch repetition rate.

  3. Single Bunch Stability in LER of PEP II

    Energy Technology Data Exchange (ETDEWEB)

    Heifets, S.; /SLAC; Sabbi, G.; /Fermilab

    2011-10-11

    The note describes results of studies of the single bunch stability in the low energy ring (LER) of the PEP-II B-factory. Simulations describe the potential well distortion (PWD) obtained by numerical solution of the Haiisinski equation and results on the beam stability obtained with the code TRISIM. Both longitudinal and transverse wake fields are taken into account. Preliminary estimates indicate that single bunch in the LER of the PEP-II B-factory has to be stable, both longitudinally and transversely, at the maximum design bunch current 1.8 mA (beam current 3A). However, realistic wakes of the machine has been constructed only recently using results of the extensive numerical simulations of the vacuum components of the ring. Additional to that, the code TRISIM, a simulation program for single-bunch collective effects written by one of the authors (G. S.), became recently available. This allows us to study beam stability in a more reliable way than it is possible analytically.

  4. Fast cooling of bunches in compton storage rings*

    CERN Document Server

    Bulyak, E; Zimmermann, F

    2011-01-01

    We propose an enhancement of laser radiative cooling by utilizing laser pulses of small spatial and temporal dimensions, which interact only with a fraction of an electron bunch circulating in a storage ring. We studied the dynamics of such electron bunch when laser photons scatter off the electrons at a collision point placed in a section with nonzero dispersion. In this case of ‘asymmetric cooling’, the stationary energy spread is much smaller than under conditions of regular scattering where the laser spot size is larger than the electron beam; and the synchrotron oscillations are damped faster. Coherent oscillations of large amplitude may be damped within one synchrotron period, so that this method can support the rapid successive injection of many bunches in longitudinal phase space for stacking purposes. Results of extensive simulations are presented for the performance optimization of Compton gamma-ray sources and damping rings.

  5. Longitudinal Coupled-Bunch Instabilities in the CERN PS

    CERN Document Server

    Damerau, H; Mehler, M; Rossi, C; Shaposhnikova, E; Tückmantel, Joachim; Vallet, J L

    2007-01-01

    Longitudinal coupled bunch instabilities in the CERN PS represent a major limitation to the high brightness beam delivered for the LHC. To identify possible impedance sources for these instabilities, machine development studies have been carried out. The growth rates of coupled bunch modes have been measured, and modes have been identified using mountain range data. Growth rate estimations from coupled bunch mode theory are compared to these results. It is shown that the longitudinal impedance of the broad resonance curve of the main 10 MHz RF system can be identified as the most probable source. Several modes are driven simultaneously due to the large width of the resonance, which is considered for the analysis.

  6. Design of a High-bunch-charge 112-MHz Superconducting RF Photoemission Electron Source

    CERN Document Server

    Xin, T; Belomestnykh, Sergey A; Ben-Zvi, I; Boulware, C H; Grimm, T L; Hayes, T; Litvinenko, Vladimir N; Mernick, K; Narayan, G; Orfin, P; Pinayev, I; Rao, T; Severino, F; Skaritka, J; Smith, K; Than, R; Tuozzolo, J; Wang, E; Xiao, B; Xie, H; Zaltsman, A

    2016-01-01

    High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers (FELs). Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for the Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment. The gun utilizes a quarter-wave resonator (QWR) geometry for assuring beam dynamics, and uses high quantum efficiency (QE) multi-alkali photocathodes for generating electrons.

  7. Measurement of Sub-Picosecond Electron Bunches via Electro-Optic Sampling of Coherent Transition Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Timothy John [Northern Illinois U.

    2012-01-01

    Future collider applications as well as present high-gradient laser plasma wakefield accelerators and free-electron lasers operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. We present results on the single-shot electro-optic spectral decoding of coherent transition radiation from bunches generated at the Fermilab A0 photoinjector laboratory. A longitudinal double-pulse modulation of the electron beam is also realized by transverse beam masking followed by a transverse-to-longitudinal phase-space exchange beamline. Live profile tuning is demonstrated by upstream beam focusing in conjunction with downstream monitoring of single-shot electro-optic spectral decoding of the coherent transition radiation.

  8. Electron bunch structure in energy recovery linac with high-voltage dc photoelectron gun

    Science.gov (United States)

    Saveliev, Y. M.; Jackson, F.; Jones, J. K.; McKenzie, J. W.

    2016-09-01

    The internal structure of electron bunches generated in an injector line with a dc photoelectron gun is investigated. Experiments were conducted on the ALICE (accelerators and lasers in combined experiments) energy recovery linac at Daresbury Laboratory. At a relatively low dc gun voltage of 230 kV, the bunch normally consisted of two beamlets with different electron energies, as well as transverse and longitudinal characteristics. The beamlets are formed at the head and the tail of the bunch. At a higher gun voltage of 325 kV, the beam substructure is much less pronounced and could be observed only at nonoptimal injector settings. Experiments and computer simulations demonstrated that the bunch structure develops during the initial beam acceleration in the superconducting rf booster cavity and can be alleviated either by increasing the gun voltage to the highest possible level or by controlling the beam acceleration from the gun voltage in the first accelerating structure.

  9. Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source

    Science.gov (United States)

    Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; Ben-Zvi, I.; Boulware, C. H.; Grimm, T. L.; Hayes, T.; Litvinenko, Vladimir N.; Mernick, K.; Narayan, G.; Orfin, P.; Pinayev, I.; Rao, T.; Severino, F.; Skaritka, J.; Smith, K.; Than, R.; Tuozzolo, J.; Wang, E.; Xiao, B.; Xie, H.; Zaltsman, A.

    2016-09-01

    High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers. Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory to produce high-brightness and high-bunch-charge bunches for the coherent electron cooling proof-of-principle experiment. The gun utilizes a quarter-wave resonator geometry for assuring beam dynamics and uses high quantum efficiency multi-alkali photocathodes for generating electrons.

  10. Study of the heavy ion bunch compression in CSRm

    Institute of Scientific and Technical Information of China (English)

    YIN Da-Yu; LIU Yong; YUAN You-Jing; YANG Jian-Cheng; LI Peng; LI Jie; CHAI Wei-Ping

    2013-01-01

    The feasibility of attaining nanosecond pulse length heavy ion beam is studied in the main ring (CSRm)of the Heavy Ion Research Facility in Lanzhou.Such heavy ion beam can be produced by non-adiabatic compression,and it is implemented by a fast rotation in the longitudinal phase space.In this paper,the possible beam parameters during longitudinal bunch compression are studied with the envelope model and Particle in Cell simulation,and the results are compared.The result shows that the short bunch 238U28+ with the pulse duration of about 50 ns at the energy of 200 MeV/u can be obtained which can satisfy the research of high density plasma physics experiment.

  11. Bunch compression study using the envelope model in CSRm

    Institute of Scientific and Technical Information of China (English)

    YIN Da-Yu; LIU Yong; YUAN You-Jin; YANG Jian-Cheng; LI Peng; MEI Li-Rong; CHAI Wei-Ping; ZHANG Xiao-Hu

    2012-01-01

    The feasibility of attaining a short-pulse-duration heavy ion beam with a nanosecond pulse length is studied in the main ring of the Heavy Ion Research Facility in Lanzhou (HIRFL).Such a heavy ion beam can be produced by non-adiabatic compression,and it is implemented by fast rotation in the longitudinal phase space.In this paper,the possible beam parameters during longitudinal bunch compression are studied by using the envelope model.The result shows that a shortest heavy ion bunch 238U28+ of 29 ns with energy of 200 MeV/u can be obtained,which can satisfy high energy density physics research.

  12. Capture, acceleration and bunching rf systems for the MEIC booster and storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaoheng [Jefferson Lab, Newport News, VA; Guo, Jiquan [Jefferson Lab, Newport News, VA; Lin, Fanglei [Jefferson Lab, Newport News, VA; Morozov, Vasiliy [Jefferson Lab, Newport News, VA; Rimmer, Robert A. [Jefferson Lab, Newport News, VA; Wang, Haipeng [Jefferson Lab, Newport News, VA; Zhang, Yuhong [Jefferson Lab, Newport News, VA

    2015-09-01

    The Medium-energy Electron Ion Collider (MEIC), proposed by Jefferson Lab, consists of a series of accelerators. The electron collider ring accepts electrons from CEBAF at energies from 3 to 12 GeV. Protons and ions are delivered to a booster and captured in a long bunch before being ramped and transferred to the ion collider ring. The ion collider ring accelerates a small number of long ion bunches to colliding energy before they are re-bunched into a high frequency train of very short bunches for colliding. Two sets of low frequency RF systems are needed for the long ion bunch energy ramping in the booster and ion collider ring. Another two sets of high frequency RF cavities are needed for re-bunching in the ion collider ring and compensating synchrotron radiation energy loss in the electron collider ring. The requirements from energy ramping, ion beam bunching, electron beam energy compensation, collective effects, beam loading and feedback capability, RF power capability, etc. are presented. The preliminary designs of these RF systems are presented. Concepts for the baseline cavity and RF station configurations are described, as well as some options that may allow more flexible injection and acceleration schemes.

  13. Coherent-radiation spectroscopy of few-femtosecond electron bunches using a middle-infrared prism spectrometer.

    Science.gov (United States)

    Maxwell, T J; Behrens, C; Ding, Y; Fisher, A S; Frisch, J; Huang, Z; Loos, H

    2013-11-01

    Modern, high-brightness electron beams such as those from plasma wakefield accelerators and free-electron laser linacs continue the drive to ever-shorter bunch durations. In low-charge operation (~20 pC), bunches shorter than 10 fs are reported at the Linac Coherent Light Source (LCLS). Though suffering from a loss of phase information, spectral diagnostics remain appealing as compact, low-cost bunch duration monitors suitable for deployment in beam dynamics studies and operations instrumentation. Progress in middle-infrared (MIR) imaging has led to the development of a single-shot, MIR prism spectrometer to characterize the corresponding LCLS coherent beam radiation power spectrum for few-femtosecond scale bunch length monitoring. In this Letter, we report on the spectrometer installation as well as the temporal reconstruction of 3 to 60 fs-long LCLS electron bunch profiles using single-shot coherent transition radiation spectra.

  14. Coherent-Radiation Spectroscopy of Few-Femtosecond Electron Bunches Using a Middle-Infrared Prism Spectrometer

    Science.gov (United States)

    Maxwell, T. J.; Behrens, C.; Ding, Y.; Fisher, A. S.; Frisch, J.; Huang, Z.; Loos, H.

    2013-11-01

    Modern, high-brightness electron beams such as those from plasma wakefield accelerators and free-electron laser linacs continue the drive to ever-shorter bunch durations. In low-charge operation (˜20pC), bunches shorter than 10 fs are reported at the Linac Coherent Light Source (LCLS). Though suffering from a loss of phase information, spectral diagnostics remain appealing as compact, low-cost bunch duration monitors suitable for deployment in beam dynamics studies and operations instrumentation. Progress in middle-infrared (MIR) imaging has led to the development of a single-shot, MIR prism spectrometer to characterize the corresponding LCLS coherent beam radiation power spectrum for few-femtosecond scale bunch length monitoring. In this Letter, we report on the spectrometer installation as well as the temporal reconstruction of 3 to 60 fs-long LCLS electron bunch profiles using single-shot coherent transition radiation spectra.

  15. Transformer ratio saturation in a beam-driven wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J. P.; Martorelli, R.; Pukhov, A. [Institut für Theoretische Physik I, Heinrich Heine Universität, 40225 Düsseldorf (Germany)

    2015-12-15

    We show that for beam-driven wakefield acceleration, the linearly ramped, equally spaced train of bunches typically considered to optimise the transformer ratio only works for flat-top bunches. Through theory and simulation, we explain that this behaviour is due to the unique properties of the plasma response to a flat-top density profile. Calculations of the optimal scaling for a train of Gaussian bunches show diminishing returns with increasing bunch number, tending towards saturation. For a periodic bunch train, a transformer ratio of 23 was achieved for 50 bunches, rising to 40 for a fully optimised beam.

  16. An Electron Bunch Compression Scheme for a Superconducting Radio Frequency Linear Accelerator Driven Light Source

    Energy Technology Data Exchange (ETDEWEB)

    C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg

    2011-09-01

    We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.

  17. Radiation sources and diagnostics with ultrashort electron bunches

    Energy Technology Data Exchange (ETDEWEB)

    Catravas, P.; Esarey, E.; Leemans, W.P.

    2001-11-02

    The basic principles and design of radiation sources (transition radiation, Cerenkov radiation, radiation from periodic structures, etc.) and radiation-based diagnostics will be discussed, with emphasis on radiation from ultra-short electron bunches. Ultra-short electron bunches have the potential to produce high peak flux radiation sources that cover wavelength regimes where sources are currently not widely available (coherent THz/IR) as well as ultrashort X-ray pulses (3-100 fs). While radiation from the electron bunch contains the full signature of the electron beam and/or medium it has travelled through, the deconvolution of a single property of interest can be difficult due to a large number of contributing properties. The experimental implementation of novel solutions to this problem will be described for beams from 30 MeV to 30 GeV, including fluctuational interferometry, source imaging, phase matched cone angles and laser-based techniques, which utilize optical transition radiation, wiggler and Cerenkov radiation, and Thomson scattering. These novel diagnostic methods have the potential to resolve fs bunch durations, slice emittance on fs scales, etc. The advantages and novel features of these techniques will be discussed.

  18. Emittance control and RF bunch compression in the NSRRC photoinjector

    Science.gov (United States)

    Lau, W. K.; Hung, S. B.; Lee, A. P.; Chou, C. S.; Huang, N. Y.

    2011-05-01

    The high-brightness photoinjector being constructed at the National Synchrotron Radiation Research Center is for testing new accelerator and light-source concepts. It is the so-called split photoinjector configuration in which a short solenoid magnet is used for emittance compensation. The UV-drive laser pulses are also shaped to produce uniform cylindrical bunches for further reduction of beam emittance. However, limited by the available power from our microwave power system, the nominal accelerating gradient in the S-band booster linac is set at 18 MV/m. A simulation study with PARMELA shows that the linac operating at this gradient fails to freeze the electron beam emittance at low value. A background solenoid magnetic field is applied for beam emittance control in the linac during acceleration. A satisfactory result that meets our preliminary goal has been achieved with the solenoid magnetic field strength at 0.1 T. RF bunch compression as a means to achieve the required beam brightness for high-gain free-electron laser experiments is also examined. The reduction of bunch length to a few hundred femtoseconds can be obtained.

  19. The LHC Transverse Coupled-Bunch Instability

    CERN Document Server

    Mounet, Nicolas; Métral, Elias

    In this thesis, the problem of the transverse coupled-bunch instabilities created by the Large Hadron Collider (LHC) beam-coupling impedance, that can possibly limit the machine operation, is addressed thanks to several new theories and tools. A rather complete vision of the problem is proposed here, going from the calculation of the impedances and wake functions of individual machine elements, to the beam dynamics study. Firstly, new results are obtained in the theory of the beam-coupling impedance for an axisymmetric two-dimensional structure, generalizing Zotter's theories, and a new general theory is derived for the impedance of an infinite flat two-dimensional structure. Then, a new approach has been found to compute the wake functions from such analytically obtained beam-coupling impedances, over-coming limitations that could be met with standard discrete Fourier transform procedures. Those results are then used to obtain an impedance and wake function model of the LHC, based on the (resistive-) wall im...

  20. Single-bunch kicker pulser

    Energy Technology Data Exchange (ETDEWEB)

    Frey, W.W.

    1983-01-01

    The single-bunch kicker magnet is powered by a capacitor discharge pulser. The ferrite-core magnet is used to kick out one of twelve proton bunches circulating in the AGS (Alternating Gradient Synchrotron) into the experimental area. The magnet current pulse has a half-sinusoid shape, with a peak current of 2800 A. The pulse current rises and falls to zero, with minimum undershoot, in 410 nsec to minimize effects on adjacent bunches. The magnet inductance is 1.0 ..mu..Hy. The pulser is mounted on the kicker magnet in the AGS ring, and is exposed to ionizing radiation. The HVDC power supply, controls, monitoring, and auxiliary circuits are housed approximately 300 feet away external to the ring. A two-gap thyratron is used to discharge the energy storage capacitor. Two hydrogen diodes are series connected to function as an inverse diode.

  1. Measurement of bunch length in Indus-1 storage ring using fast photodiode

    Science.gov (United States)

    Garg, Akash Deep; Nathwani, R. K.; Holikatti, A. C.; Kumar Karnewar, Akhilesh; Tyagi, Y.; Yadav, S.; Puntambekar, T. A.; Navathe, C. P.

    2012-11-01

    The length of electron bunches in a storage ring is an important parameter for both synchrotron radiation users and accelerator physicists. Several methods are used for measurements of bunch length using electronic and optical instruments. We have measured temporal profile of synchrotron radiation emitted from dipole magnet of Indus-1 by using fast photodiode. Bunch length is calculated by assuming gaussian profile for the particles inside bunch. The results show that bunch length is increasing with the decrease of gap voltage of RF cavity. These measurements were carried out at low beam current; at high voltage results are in close agreement with theory and the values estimated using ZAP code. In the second experiment, the results show that bunch length increases with the increase of beam current inside the bunch, and above threshold current, it follows Chao-Gareyte scaling law. The longitudinal broadband impedance for Indus-1 SRS was estimated using Keil-Schnell criterion and results were compared with theoretical estimated values using ZAP code.

  2. Thomson backscattering diagnostics of nanosecond electron bunches in high space charge regime

    CERN Document Server

    Paroli, B

    2012-01-01

    The intra-beam repulsions play a significant role in determining the performances of free-electron devices when an high brilliance of the beam is required. The transversal and longitudinal spread of the beam, its energy and density are fundamental parameters in any beam experiment and different beam diagnostics are available to measure such parameters. A diagnostic method based on the Thomson backscattering of a laser beam impinging on the particle beam is proposed in this work for the study of nanosecond electron bunches in high space charge regime. This diagnostics, aimed to the measurement of density, energy and energy spread, was set-up in a Malmberg-Penning trap (generally used for the electron/ion confinment) in two different configurations designed to optimize sensitivity, spatial resolution and electron-beam coincidence in space and time. To this purpose an electron bunch (pulse time <4ns), produced by a photocathode source, was preliminary characterized with different electrostatic diagnostics and...

  3. A Bunch Length Monitor for JLab 12 GeV Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mahmoud Mohamad Ali [ODU; Freyberger, Arne P. [JLAB; Gubeli, Joseph F. [JLAB; Krafft, Geoffrey A. [JLAB

    2013-12-01

    A continuous non-invasive bunch length monitor for the 12 GeV upgrade of Jefferson Lab will be used to determine the bunch length of the beam. The measurement will be done at the fourth dipole of the injector chicane at 123 MeV using the coherent synchrotron light emitted from the dipole. The estimated bunch length is 333 fs. A vacuum chamber will be fabricated and a Radiabeam real time interferometer will be used. In this paper, background, the estimated calculations and the construction of the chamber will be discussed.

  4. Generation and characterization of electron bunches with ramped current profile at the FLASH facility

    Energy Technology Data Exchange (ETDEWEB)

    Piot, P.; /Northern Illinois U. /Fermilab; Behrens, C.; Gerth, C.; /DESY; Lemery, F.; /Northern Illinois U.; Mihalcea, D.; /Fermilab; Vogt, M.; /DESY

    2011-09-01

    We report on the successful generation of electron bunches with current prof les that have a quasi-linear dependency on the longitudinal coordinate. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a linac operating at two frequencies (1.3 and 3.9 GHz) and a bunch compressor. Data taken for various accelerator settings demonstrate the versatility of the method. The produced bunches have parameters well matched to drive high-gradient accelerating field with enhanced transformer ratio in beam-driven accelerators based on sub-mm-sizes dielectric or plasma structures.

  5. Influence of Transient Beam Loading on the Longitudinal Beam Dynamics at BESSY VSR

    OpenAIRE

    Ruprecht, M.; Goslawski, P.; Jankowiak, A.; Neumann, A.; Ries, M; Wüstefeld, G.; Weis, T.

    2015-01-01

    BESSY VSR, a scheme where 1.7 ps and 15 ps long bunches rms can be stored simultaneously in the BESSY II storage ring has recently been proposed [1]. The strong longitudinal bunch focusing is achieved by superconducting high gradient RF cavities. If the bunch fill pattern exhibits a significant inhomogeneity, e.g. due to gaps, transient beam loading causes a distortion of the longitudinal phase space which is different for each bunch. The result are variations along the fill pattern...

  6. Electron Bunch Length Measurements in the E-167 Plasma Wakefield Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Blumenfeld, I.; Auerbach, D.; Berry, M.; Clayton, C.E.; Decker, F.J.; Hogan, M.J.; Huang, Cheng-Kun; Ischebeck, R.; Iverson, R.; Johnson, D.; Joshi, C.; Katsouleas, T.; Kirby, N.; Lu, Wei; Marsh, K.A.; Mori, W.B.; Muggli, P.; Oz, E.; Siemann, R.H.; Walz, D.; Zacherl, W.; /SLAC /UCLA /Southern California U.

    2007-03-27

    Bunch length is of prime importance to beam driven plasma wakefield acceleration experiments due to its inverse relationship to the amplitude of the accelerating wake. We present here a summary of work done by the E167 collaboration measuring the SLAC ultra-short bunches via autocorrelation of coherent transition radiation. We have studied material transmission properties and improved our autocorrelation traces using materials with better spectral characteristics.

  7. Bunch length measurement at the Fermilab A0 photoinjector using a Martin-Puplett interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Thurman-Keup, Randy; Fliller, Raymond Patrick; Kazakevich, Grigory; /Fermilab

    2008-05-01

    We present preliminary measurements of the electron bunch lengths at the Fermilab A0 Photoinjector using a Martin-Puplett interferometer on loan from DESY. The photoinjector provides a relatively wide range of bunch lengths through laser pulse width adjustment and compression of the beam using a magnetic chicane. We present comparisons of data with simulations that account for diffraction distortions in the signal and discuss future plans for improving the measurement.

  8. Control of synchrotron radiation effects during recirculation with bunch compression

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, David [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Benson, Stephen [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Li, Rui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Yves [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tennant, Christopher [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Krafft, Geoffrey [Old Dominion Univ., Norfolk, VA (United States); Terzic, Balsa [Old Dominion Univ., Norfolk, VA (United States); Tsai, Cheng [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2015-05-01

    Studies of beam quality during recirculation have been extended to an arc providing bunch compression with positive momentum compaction. It controls both incoherent and coherent synchrotron radiation (ISR and CSR) using methods including optics balance and generates little microbunching gain. We detail the dynamical basis for the design, discuss the design process, give an example, and provide simulations of ISR and CSR effects. Reference will be made to a complete analysis of microbunching effects.

  9. Electron Bunch Train Excited Higher-Order Modes in a Superconducting RF Cavity

    CERN Document Server

    Gao, Yongfeng; Wang, Fang; Feng, Liwen; Zhuang, Dehao; Lin, Lin; Zhu, Feng; Hao, Jiankui; Quan, Shengwen; Liu, Kexin

    2016-01-01

    Higher-order mode (HOM) based intra-cavity beam diagnostics has been proved effectively and conveniently in superconducting radio-frequency (SRF) accelerators. Our recent research shows that the beam harmonics in the bunch train excited HOM spectrum, which have much higher signal-to-noise ratio than the intrinsic HOM peaks, may also be useful for beam diagnostics. In this paper, we will present our study on bunch train excited HOMs, including the theoretic model and recent experiments carried out based on the DC-SRF photoinjector and SRF linac at Peking University.

  10. An improved injector bunching geometry for ATLAS

    Indian Academy of Sciences (India)

    Richard C Pardo; J Bogaty; B E Clifft; S Sherementov; P Strickhorn

    2002-12-01

    The bunching system of the ATLAS positive ion injector (PII) has been improved by relocating the harmonic buncher to a point significantly closer to the second stage sine-wave buncher and the injector LINAC. The longitudinal optics design has also been modified and now employs a virtual waist from the harmonic buncher feeding the second stage sine-wave buncher. This geometry improves the handling of space charge for high-current beams, significantly increases the capture fraction into the primary rf bucket and reduces the capture fraction of the unwanted parasitic rf bucket. Total capture and transport through the PII has been demonstrated as high as 80% of the injected dc beam while the population of the parasitic, unwanted rf bucket is typically less than 3% of the total transported beam. To remove this small residual parasitic component a new traveling-wave transmission-line chopper has been developed reducing both transverse and longitudinal emittance growth from the chopping process. This work was supported by the U.S. Department of Energy under contract W-31-109-ENG-38.

  11. An improved injector bunching geometry for ATLAS

    CERN Document Server

    Pardo, Richard C; Clifft, B E; Sherementov, S; Strickhorn, P

    2002-01-01

    The bunching system of the ATLAS positive ion injector (PII) has been improved by relocating the harmonic buncher to a point significantly closer to the second stage sine-wave buncher and the injector LINAC. The longitudinal optics design has also been modified and now employs a virtual waist from the harmonic buncher feeding the second stage sine-wave buncher. This geometry improves the handling of space charge for high-current beams, significantly increases the capture fraction into the primary rf bucket and reduces the capture fraction of the unwanted parasitic rf bucket. Total capture and transport through the PH has been demonstrated as high as 80% of the injected dc beam while the population of the parasitic, unwanted rf bucket is typically less than 3% of the total transported beam. To remove this small residual parasitic component a new traveling-wave transmission- line chopper has been developed reducing both transverse and longitudinal emittance growth from the chopping process. This work was suppor...

  12. Reducing energy spread for long bunch train at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Decker, F.-J.; Farkas, D. [Stanford Linear Accelerator Center, CA (United States); Rinolfi, L. [CERN, Geneva (Switzerland); Truher, J. [Stanford Linear Accelerator Center, CA (United States)

    1996-06-01

    The normal energy gain of the SLC RF system, using SLED (SLAC Energy Development) cavities, can accelerate only about 150 ns beam pulse within an energy spread of 0.5% with 10(exp 11) particles per pulse. By applying two additional 180 deg. phase inversions for about 20% of all SLC klystrons, the classical SLED pulse is flattened to achieve an energy spread of 0.3% over 240 ns which corresponds to 680 bunches in S-band. This scheme was developed for the fixed target experiment E-154, to study the neutron spin. It was used to run at a beam energy of 48.8 GeV and a beam charge of up to 10(exp 11) e- per pulse. This paper describes the beam loading compensation using early beam injection scheme and new RF phase inversions which have been implemented for the SLED devices. The experimental results, obtained during fall 1995, are compared to simulations. The results surpassed the initial requested beam qualities. A similar approach might be useful for future linear colliders with long bunch trains.

  13. A better beam quality

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Progress has been made on two fronts, providing physics data and preparing for higher intensities. Over the Whitsun weekend of May 22 to 24, 5 fills for physics provided almost 30 hours of stable colliding beams, all with bunch intensities around 2x1010 protons and at a β* of 2m. The first three of these fills were with 6 bunches per beam, giving 3 pairs of collisions in all experiments. For the other two fills, the number of bunches per beam was increased to 13, giving 8 pairs of colliding bunches, and for the first time luminosities were pushed above 1029 cm-2s-1, 2 orders of magnitude higher than first collisions in March. In between and after these physics fills, nominal bunches of 1011 protons were successfully ramped and brought into collision in ATLAS and CMS for the first time (not in stable beam conditions and without squeeze). Event rates seen by the experiments were in the expected range for these conditions. In the middle of this work, a short fill with beams of 7 nominal bunches was ...

  14. Operational experience on the generation and control of high brightness electron bunch trains at SPARC-LAB

    Science.gov (United States)

    Mostacci, A.; Alesini, D.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Biagioni, A.; Cardelli, F.; Castellano, Michele; Chiadroni, Enrica; Cianchi, Alessandro; Croia, M.; Di Giovenale, Domenico; Di Pirro, Giampiero; Ferrario, Massimo; Filippi, Francesco; Gallo, Alessandro; Gatti, Giancarlo; Giribono, Anna; Innocenti, L.; Marocchino, A.; Petrarca, M.; Piersanti, L.; Pioli, S.; Pompili, Riccardo; Romeo, Stefano; Rossi, Andrea Renato; Shpakov, V.; Scifo, J.; Vaccarezza, Cristina; Villa, Fabio; Weiwei, L.

    2015-05-01

    Sub-picosecond, high-brightness electron bunch trains are routinely produced at SPARC-LAB via the velocity bunching technique. Such bunch trains can be used to drive multi-color Free Electron Lasers (FELs) and plasma wake field accelerators. In this paper we present recent results at SPARC-LAB on the generation of such beams, highlighting the key points of our scheme. We will discuss also the on-going machine upgrades to allow driving FELs with plasma accelerated beams or with short electron pulses at an increased energy.

  15. Simulation of ELBE SRF gun II for high-bunch-charge applications

    Science.gov (United States)

    Lu, P.; Arnold, A.; Teichert, J.; Vennekate, H.; Xiang, R.

    2016-09-01

    The SRF gun at ELBE will benefit most of the local user beamlines for future high-bunch-charge operations. Parallel to its development, simulation-based investigations have been performed to improve the beam quality for THz experiments and Compton backscattering experiments. These two applications have the most challenging requirements: THz experiments benefit significantly from short bunch lengths at the sub-ps level, while Compton backscattering experiments demand small transverse beam sizes of about 30 μm. The beam dynamics of the SRF gun are simulated with ASTRA and the beam transport is optimized using Elegant. Important physical effects included in simulations are introduced first, where the interesting phenomenon of "slice mismatch" is generally quantified and numerically studied. Afterwards, beam transport strategies and optimization methods are proposed which are based on the specific settings of ELBE but also applicable to similar accelerator setups. Finally, optimizations of the SRF gun and the beam transport in ELBE are presented. Results show that the SRF gun is capable of providing 500 pC bunches for both applications with better beam qualities than the currently 100 pC bunches supplied by the existing thermionic DC source.

  16. Dynamics of Femtosecond Electron Bunches

    OpenAIRE

    Khachatryan, A. G.; Irman, A.; van Goor, F. A.; Boller, K. -J.

    2007-01-01

    In the laser wakefield accelerator (LWFA) a short intense laser pulse, with a duration of the order of a plasma wave period, excites an unusually strong plasma wake wave (laser wakefield). Recent experiments on laser wakefield acceleration [Nature (London) 431, p.535, p.538, p.541 (2004)] demonstrated generation of ultra-short (with a duration of a few femtoseconds) relativistic electron bunches with relatively low energy spread of the order of a few percent. We have studied the dynamics of s...

  17. A multi-length bunch design for electron storage rings with odd buckets

    Institute of Scientific and Technical Information of China (English)

    ZHU Liang-Jing; LI Wei-Min; WANG Lin; XIANG Dao; HUANG Xiao-Biao

    2015-01-01

    A scheme with two superconducting RF cavities is designed to upgrade electron storage rings with odd buckets to multi-length bunches.In this paper,the Hefei Light Source Ⅱ (HLS Ⅱ) is given as an example for odd buckets.As it is designed for 45 buckets,which is a multiple of 3,simultaneous generation of three different lengths of bunches is proposed with the presently applied user optics.The final result,without low-α optics,is to fill HLS Ⅱ with long bunches of length 50 ps,medium bunches of 23 ps and short bunches of 6 ps.Every third bucket can be filled with short bunches,of which the current limit is up to 6.6 mA,more than 60 times the limit for low-α mode.Moreover,particle tracking simulations to examine the beam dynamics,performed by ELEGANT,and calculations of the beam instabilities are presented in this paper.

  18. Calculation of coupled bunch effects in the synchrotron light source BESSY VSR

    Energy Technology Data Exchange (ETDEWEB)

    Ruprecht, Martin

    2016-02-22

    In the scope of this thesis, the strength of coupled bunch instabilities (CBIs) driven by longitudinal monopole higher order modes (HOMs) and transverse dipole and quadrupole HOMs is evaluated for the upgrade project BESSY Variable Pulse Length Storage Ring (BESSY VSR) at Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH (HZB), based on analytic calculations and tracking simulations, and compared to the performance of an active bunch-by-bunch feedback (BBFB). Algorithms for tracking codes are derived, and a semi-empirical formula for the estimation of transverse quadrupole CBIs is presented. CBI studies are an integral part of the benchmarking of the cavity models for BESSY VSR and have been accompanying and influencing their entire design process. Based on the BESSY VSR cavity model with highly advanced HOM damping, beam stability is likely to be reached with a BBFB system, independent of the bunch fill pattern. Additionally, measurements of CBIs have been performed at BESSY II and the Metrology Light Source of the Physikalisch-Technische Bundesanstalt (MLS), where the longitudinal long range impedance was characterized. Transient beam loading is evaluated by means of analytic formulas and new experimentally verified tracking codes. For the baseline bunch fill pattern of BESSY VSR, it is shown that the particular setup of cavity frequencies amplifies the transient effect on the long bunch, limiting its elongation and potentially resulting in increased Touschek losses.

  19. Fast polycrystalline CdTe detectors for bunch-by-bunch luminosity monitoring in the LHC

    CERN Document Server

    Brambilla, A; Jolliot, M; Bravin, E

    2008-01-01

    The luminosity at the four interaction points of the Large Hadron Collider (LHC) must be continuously monitored in order to provide an adequate tool for the control and optimisation of beam parameters. Polycrystalline cadmium telluride (CdTe) detectors have previously been tested, showing their high potential to fulfil the requirements of luminosity measurement in the severe environment of the LHC interaction regions. Further, the large signal yield and the fast response time should allow bunch-by-bunch measurement of the luminosity at 40 MHz with high accuracy. Four luminosity monitors with two rows of five polycrystalline CdTe detectors each have been fabricated and will be installed at both sides of the low-luminosity interaction points ALICE and LHC-b. A detector housing was specially designed to meet the mechanical constraints in the LHC. A series of elementary CdTe detectors were fabricated and tested, of which 40 were selected for the luminosity monitors. A sensitivity of 104 electrons per minimum ioni...

  20. Short electron bunch generation using single-cycle ultrafast electron guns

    Science.gov (United States)

    Fallahi, Arya; Fakhari, Moein; Yahaghi, Alireza; Arrieta, Miguel; Kärtner, Franz X.

    2016-08-01

    We introduce a solution for producing ultrashort (˜fs ) high charge (˜pC ) from ultracompact guns utilizing single-cycle THz pulses. We show that the readily available THz pulses with energies as low as 20 μ J are sufficient to generate multi-10 keV electron bunches. Moreover, it is demonstrated that THz energies of 2 mJ are sufficient to generate relativistic electron bunches with higher than 2 MeV energy. The high acceleration gradients possible in the structures provide 30 fs electron bunches at 30 keV energy and 45 fs bunches at 2 MeV energy. These structures will underpin future devices for strong field THz physics in general and miniaturized electron guns, in which the high fields combined with the short pulse duration enable electron beams with ultrahigh brightness.

  1. Bunch Length Monitoring at the A0 Photoinjector Using a Quasi-Optical Schottky Detector

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, G.; Davidsaver, M.; Edwards, H.; Fliller, R.; Koeth, T.; Lumpkin, A.; Nagaitsev, S.; Ruan, J.; Thurman-Keup, R.; /Fermilab; Jeong, Y.U.; /KAERI, Taejon; Kubarev, V.; /Novosibirsk, IYF

    2009-05-01

    Noninvasive bunch duration monitoring has a crucial importance for modern accelerators intended for short wavelength FEL's, colliders and in some beam dynamics experiments. Monitoring of the bunch compression in the Emittance Exchange Experiment at the A0 Photoinjector was done using a parametric presentation of the bunch duration via Coherent Synchrotron Radiation (CSR) emitted in a dipole magnet and measured with a wideband quasi-optical Schottky Barrier Detector (SBD). The monitoring resulted in a mapping of the quadrupole parameters allowing a determination of the region of highest compression of the bunch in the sub-picosecond range. The obtained data were compared with those measured using the streak camera. A description of the technique and the results of simulations and measurements are presented and discussed in this report.

  2. Short Electron Bunch Generation Using Single-Cycle Ultrafast Electron Guns

    CERN Document Server

    Fallahi, Arya; Yahaghi, Alireza; Arrieta, Miguel; Kärtner, Franz X

    2016-01-01

    We introduce a solution for producing ultrashort ($\\sim$fs) high charge ($\\sim$pC) from ultra-compact guns utilizing single-cycle THz pulses. We show that the readily available THz pulses with energies as low as 20 ?J are sufficient to generate multi-10 keV electron bunches. Moreover, It is demonstrated that THz energies of 2mJ are sufficient to generate relativistic electron bunches with higher than 2 MeV energy. The high acceleration gradients possible in the structures provide 30 fs electron bunches at 30 keV energy and 45 fs bunches at 2 MeV energy. These structures will underpin future devices for strong field THz physics in general and miniaturized electron guns, in which the high fields combined with the short pulse duration enable electron beams with ultrahigh brightness.

  3. Longitudinal Single Bunch Instability Caused by Wake Field of Electron Cloud

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-Dong; YU Cheng-Hui

    2009-01-01

    The electron cloud accumulated in the vicinity of positron beam generates longitudinal electric field during the passage of bunch. The longitudinal interaction between bunch and electron cloud can lead to the distortion of the bunch shape. We use a simple analytic formula to calculate the longitudinal electric field due to electron cloud. Based on the longitudinal wake field, the macro-particle tracking method is used to simulate the variation of bunch longitudinal profile in different electron cloud densities and the simulation also shows that the synchrotron oscillation tune is slightly shifted by the wake field. By comparing the simulation results and the analytical estimation from potential distortion theory, the longitudinal wake field from electron cloud can be seen as a potential well effect.

  4. Beam instability studies for the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.

    1994-09-01

    Beam instability studies of the Superconducting Super Collider (SSC) during the period 1989--1993 are briefly reviewed in this paper. Various topics are covered: single bunch and multi-bunch, single beam and beam-beam, parasitic heating and active feedback, etc. Although the SSC will not be built, many of the results obtained from these studies remain as useful references to the accelerator community.

  5. Different charges in the same bunch train at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Kot, Yauhen; Limberg, Torsten; Zagorodnov, Igor

    2013-11-15

    The injector of the European XFEL was initially designed for the operation with 1nC bunch charges. Later the flexibility of the nominal design of the injector with respect to the bunch charge was studied and extended also for smaller bunch charges down to 20 pC. A very tempting upgrade of this extension would be the operation of the European XFEL with different charges in the same train. It would make it suitable also for the experiments which require simultaneously different SASE pulse length or radiation power. Operation of two bunches within the same train sets new requirements on the working points of the injector which are to be satisfied additionally to the ones of a single charge operation. From the beam dynamics point of view here is to mention the similarity of the beam optical functions after the first accelerating module and suitable for lasing shapes of both bunches in the train at the end of the linac. Due to different charges and thus to different space charge forces which act on bunches during the passage of the linac the last condition cannot be easily satisfied even if the similarity of optical functions at the beginning of the linac is achieved. A more subtle analysis of the interplay between mismatch of beam optical functions, emittance growth in the injector and different 6D beam dynamics in the linac is needed with the final goal of successful lasing of both charges. In this paper we have investigated the possibility of the operation of different charges in the bunch train for the nominal design of the injector and for the case that it is extended by an additional laser system on the cathode. We have examined the problem of similarity of beam optical functions for different bunches in a train. We report also about the sensitivity of the beam optical functions on the chosen compression scenario and give an overview over the working points for the settings at the injector for single charge operation as well as combined working points for

  6. MD210 Note: Creation of Hollow Bunches in the PSB

    CERN Document Server

    Oeftiger, Adrian; Findlay, Alan James; Hancock, Steven; Rumolo, Giovanni; CERN. Geneva. ATS Department

    2016-01-01

    MD210 aims for the creation of longitudinally hollow bunches in the CERN PS Booster. The first three sessions have been carried out using the radial loop feedback system in order to drive the beam on a dipolar parametric resonance (instead of the phase loop). It has been found that the damping by the phase loop inhibits the excitation of the resonance to a major extent. The hollow distributions generated under these circumstances fail to reach a satisfying bunching factor. Nonetheless, proving the principally successful application of this technique to the PS Booster promises good results once the phase loop system supports trim functions. The approach, actions and detailed results of the first three MD sessions are presented in this paper.

  7. A compact source for bunches of singly charged atomic ions

    Science.gov (United States)

    Murböck, T.; Schmidt, S.; Andelkovic, Z.; Birkl, G.; Nörtershäuser, W.; Vogel, M.

    2016-04-01

    We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 106 Mg+ ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg+ ions for sympathetic cooling of highly charged ions by laser-cooled 24Mg+.

  8. Bunching and cooling of radioactive ions with REXTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, P. E-mail: k.schmidt@gsi.de; Ames, F.; Bollen, G.; Forstner, O.; Huber, G.; Oinonen, M.; Zimmer, J

    2002-04-22

    The post-accelerator REX-ISOLDE at ISOLDE/CERN will deliver radioactive ion beams with energies up to 2.2 MeV/u. For this purpose, a Penning trap and an electron-beam ion source are combined with a linear accelerator. REXTRAP - a large gas-filled Penning trap - has started its commissioning phase. First tests have shown that REXTRAP is able to accumulate, cool and bunch stable ISOLDE ion beams covering a large mass range. Fulfilling the REX-ISOLDE demands, it can handle beam intensities from a few hundred up to 1x10{sup 6} ions per pulse at repetition rates up to 50 Hz.0.

  9. Design of bunch compressing system with suppression of coherent synchrotron radiation for ATF upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Yichao [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedurin, Mikhail [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratakis, Diktys [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    One of the operation modes for Accelerator Test Facility (ATF) upgrade is to provide high peak current, high quality electron beam for users. Such operation requires a bunch compressing system with a very large compression ratio. The CSR originating from the strong compressors generally could greatly degrade the quality of the electron beam. In this paper, we present our design for the entire bunch compressing system that will limit the effect of CSR on the e-beam’s quality. We discuss and detail the performance from the start to end simulation of such a compressor for ATF.

  10. Halo Formation in 3-D Bunches with Self-Consistent Stationary Distributions

    Science.gov (United States)

    Fedotov, A. V.; Gluckstern, R. L.; Kurennoy, S. S.; Ryne, R. D.

    1998-04-01

    We have constructed, analytically and numerically, a new class of self-consistent 6-D phase space stationary distributions. The beam is then mismatched longitudinally and/or transversely, and we explore the formation of longitudinal and transverse halos in 3-D axisymmetric beam bunches. The longitudinal phase space clearly shows the typical "peanut" diagram observed in 2-D calculations. We find that the longitudinal halo forms first for comparable longitudinal and transverse mismatches because the longitudinal tune depression is more severe than the transverse one for elongated bunches. Of particular importance is the coupling between longitudinal and transverse motion and its effect on halo formation.

  11. Application of diamond based beam loss monitors

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); CERN, Geneva (Switzerland); Baer, Tobias [CERN, Geneva (Switzerland); Hamburg Univ. (Germany); Castro Carballo, Elena Maria [DESY, Zeuthen (Germany); Lohmann, Wolfgang [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); Schmidt, Ruediger [CERN, Geneva (Switzerland)

    2013-07-01

    The LHC has an operational stored energy of 130MJ per beam. Only a small percentage of beam losses in the LHC equipment can damage material or lead to magnet quenches. Therefore, it is important to monitor different types of beam losses, e.g. scattering on residual gas particles, UFOs, collisions and injection losses. A detailed understanding of beam loss mechanisms is necessary to reduce them and ensure save operation. Two different beam loss monitors are installed in the LHC tunnel: ionization chambers and diamond sensors. Ionization chambers trigger a beam dump if beam losses exceed a certain threshold. They have a time resolution of 40um (half LHC turn) which is not sufficient to resolve bunch-by-bunch beam losses. Diamond sensors have a nanosecond time resolution and can therefore detect bunch-by-bunch beam losses. This time resolution allows an analysis of various types of beam losses and an understanding of the mechanisms. For the first time beam loss intensities were measured bunch-by-bunch caused by different origins of losses. Beam loss measurements using diamond sensors will be presented. The results are compared to simulations and good qualitative agreement was found. The potential of diamond sensors for LHC and experiment applications are discussed.

  12. Operational beams for the LHC

    CERN Document Server

    Papaphilippou, Y; Rumolo, G; Manglunki, D

    2014-01-01

    The variety of beams, needed to set-up in the injectors as requested in the LHC, are reviewed, in terms of priority but also performance expectations and reach during 2015. This includes the single bunch beams for machine commissioning and measurements (probe, Indiv) but also the standard physics beams with 50 ns and 25 ns bunch spacing and their high brightness variants using the Bunch Compression Merging and Splitting (BCMS) scheme. The required parameters and target performance of special beams like the doublet for electron cloud enhancement and the more exotic 8b$\\oplus$4e beam, compatible with some post-scrubbing scenarios are also described. The progress and plans for the LHC ion production beams during 2014-2015 are detailed. Highlights on the current progress of the setting up of the various beams are finally presented with special emphasis on potential performance issues across the proton and ion injector chain.

  13. Multiple-bunch-length operating mode design for a storage ring using hybrid low alpha and harmonic cavity method

    Science.gov (United States)

    Gao, Weiwei; Wang, Lin; Li, Heting

    2017-03-01

    In this paper we design a simultaneous three bunch length operating mode at the HLS-II (Hefei Light Source II) storage ring by installing two harmonic cavities and minimizing the momentum compaction factor. The short bunches (2.6 mm) presented in this work will meet the requirement of coherent millimeter-wave and sub-THz radiation experiments, while the long bunches (20 mm) will efficiently increase the total beam current. Therefore, this multiple-bunch-length operating mode allows present synchrotron users and coherent millimeter-wave users (or sub THz users) to carry out their experiments simultaneously. Since the relatively low energy characteristic of HLS-II we achieve the multiple-bunch-length operating mode without multicell superconducting RF cavities, which is technically feasible.

  14. Probing intensity limits of LHC-Type bunches in CERN SPS with nominal optics

    CERN Document Server

    Adrian, G; Andujar, O; Argyropoulos, T; Axensalva, J; Baldy, J; Bartosik, H; Cettour Cave, S; Chapuis, F; Comblin, JF; Cornelis, K; Cotte, D; Cunnington, K; Damerau, H; Delrieux, M; Duran-Lopez, JL; Esteban Mueller, J; Findlay, A; Fleuret, J; Follin, F; Freyermuth, P; Genoud, H; Gilardoni, S; Guerrero, A; Hancock, S; Hanke, K; Hans, O; Hazelaar, R; Höfle, W; Jensen, L; Kuczerowski, J; Le Borgne, Y; Maillet, R; Manglunki, D; Massot, S; Matli, E; Métral, G; Métral, E; Mikulec, B; Nonglaton, JM; Ovalle, E; Papaphilippou, Y; Pereira, L; Peters, F; Rey, A; Ridewood, J; Rumolo, G; Salvant, B; Sanchez Alvarez, JL; Shaposhnikova, E; Steerenberg, R; Steinhagen, R; Tan, J; Vandorpe, B; Veyrunes, E

    2011-01-01

    Some of the upgrade scenarios of the high-luminosity LHC require large intensity per bunch from the injector chain. Single bunch beams with intensities of up to 3.5 to 4e11 p/b and nominal emittances were successfully produced in the PS Complex and delivered to the SPS in 2010. This contribution presents results of studies with this new intense beam in the SPS to probe single bunch intensity limitations with nominal gamma transition. In particular, the vertical Transverse Mode Coupling Instability (TMCI) threshold with low chromaticity was observed at 1.6e11 p/b for single nominal LHC bunches in the SPS. With increased vertical chromaticity, larger intensities could be injected, stored along the flat bottom and accelerated up to 450 GeV/c. However, significant losses and/or transverse emittance blow up were then observed. Longitudinal and transverse optimization efforts in the PSB, PS and SPS were put in place to minimize this beam degradation and succeeded to obtain single 2.5e11 p/b LHC type bunches with sa...

  15. Bunch Length Measurements in SPEAR3

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, W.J.; Fisher, A.; Huang, X.; Safranek, J.; Sebek, J.; /SLAC; Lumpkin, A.; /Argonne; Sannibale, F.; /LBL, Berkeley; Mok, W.; /Unlisted

    2007-11-28

    A series of bunch length measurements were made in SPEAR3 for two different machine optics. In the achromatic optics the bunch length increases from the low-current value of 16.6ps rms to about 30ps at 25ma/bunch yielding an inductive impedance of -0.17{Omega}. Reducing the momentum compaction factor by a factor of {approx}60 [1] yields a low-current bunch length of {approx}4ps rms. In this paper we review the experimental setup and results.

  16. Beam Imaging and Luminosity Calibration

    CERN Document Server

    Klute, Markus; Salfeld-Nebgen, Jakob

    2016-01-01

    We discuss a method to reconstruct two-dimensional proton bunch densities using vertex distributions accumulated during LHC beam-beam scans. The $x$-$y$ correlations in the beam shapes are studied and an alternative luminosity calibration technique is introduced. We demonstrate the method on simulated beam-beam scans and estimate the uncertainty on the luminosity calibration associated to the beam-shape reconstruction to be below 1\\%.

  17. MD1831: Single Bunch Instabilities with Q" and Non-Linear Corrections

    CERN Document Server

    Carver, Lee Robert; De Maria, Riccardo; Li, Kevin Shing Bruce; Amorim, David; Biancacci, Nicolo; Buffat, Xavier; Maclean, Ewen Hamish; Metral, Elias; Lasocha, Kacper; Lefevre, Thibaut; Levens, Tom; Salvant, Benoit; CERN. Geneva. ATS Department

    2017-01-01

    During MD1751, it was observed that both a full single beam and 964 non-colliding bunches in Beam 1 (B1) and Beam 2 (B2) were both stable at the End of Squeeze (EOS) for 0A in the Landau Octupoles. At ß* = 40cm there is also a significant Q" arising from the lattice, as well as uncorrected non-linearities in the Insertion Regions (IRs). Each of these effects could be capable of fully stabilising the beam. This MD made first use of a Q" knob through variation of the Main Sextupoles (MS) by stabilising a single bunch at Flat Top, before showing at EOS that the non-linearities were the main contributors to the beam stability.

  18. Halo formation in three-dimensional bunches with various phase space distributions

    Science.gov (United States)

    Fedotov, A. V.; Gluckstern, R. L.; Kurennoy, S. S.; Ryne, R. D.

    1999-01-01

    A realistic treatment of halo formation must take into account 3D beam bunches and 6D phase space distributions. We recently constructed, analytically and numerically, a new class of self-consistent 6D phase space stationary distributions, which allowed us to study the halo development mechanism without being obscured by the effect of beam redistribution. In this paper we consider nonstationary distributions and study how the halo characteristics compare with those obtained using the stationary distribution. We then discuss the effect of redistribution on the halo development mechanism. In contrast to bunches with a large aspect ratio, we find that the effect of coupling between the r and z planes is especially important as the bunch shape becomes more spherical.

  19. Excitation of Intra-bunch Vertical Motion in the SPS - Implications for Feedback Control of Ecloud and TMCI Instabilities

    CERN Document Server

    Cesaratto, John; Pivi, M T; Rivetta, C H; Turgut, O; Uemura, S; Hofle, W; Wehrle, U

    2012-01-01

    Electron cloud (ecloud) and transverse mode coupledbunch instabilities (TMCI) limit the bunch intensity in the CERN SPS. This paper presents experimental measurements in the SPS of single-bunch motion driven by a GHz bandwidth vertical excitation system [1]. The nal goal is to quantify the change in internal bunch dynamics as instability thresholds are approached, and quantify the frequencies of internal modes as ecloud effects become signicant. Initially, we have been able to drive the beam and view its motion. We show the excitation of barycentric, head-tail and higher vertical modes at different bunch intensities. The beam motion is analyzed in the time domain, via animated presentations of the sampled vertical signals, and in the frequency domain, via spectrograms showing the modal frequencies vs. time. The demonstration of the excitation of selected internal modes is a signicant step in the development of the feedback control techniques.

  20. LHC Report: Boost in bunches brings record luminosity

    CERN Multimedia

    2011-01-01

    Having hit a luminosity of around 8.4x1032 cm-2 s-1 with 768 bunches per beam, the LHC went into a 5-day machine development (MD) program on Wednesday 4 May. Operators are now working on increasing the number of particle bunches in the machine towards a 2011 maximum of around 1380 bunches. The team is already hitting major milestones, recording another record-breaking peak luminosity on Monday 23 May.   Former LHC Project Leader Lyn Evans (to the right) and Laurette Ponce, the engineer-in-charge when the recent luminosity record was achieved. The MD periods improve our understanding of the machine, with the aim of increasing its short- and long-term performance. This one also included tests of the machine’s configurations for special physics runs and a future high luminosity LHC. It was an intense program and overall it went very well, with most measurements carried out successfully. Highlights included: commissioning a dedicated machine setup for TOTEM and ALFA; succe...

  1. TRANSVERSE MODES FOR FLAT INTER-BUNCH WAKES*

    CERN Document Server

    Burov, A

    2013-01-01

    If inter-bunch wake fields are flat, i.e. their variations over a bunch length can be neglected, all coherent modes have the same coupled-bunch structure, provided the bunches can be treated as identical by their inner qualities (train theorem). If a flat feedback is strong enough, the transverse modes are single-bunch, provided the inter-bunch wakes are also flat (damper theorem).

  2. Generation of attosecond electron bunches in a laser-plasma accelerator using a plasma density upramp

    Energy Technology Data Exchange (ETDEWEB)

    Weikum, M.K., E-mail: maria.weikum@desy.de [Deutsches Elektronensynchrotron (DESY), Bdg. 30b, Notkestr. 85, 22607 Hamburg (Germany); Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Li, F.Y. [Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Assmann, R.W. [Deutsches Elektronensynchrotron (DESY), Bdg. 30b, Notkestr. 85, 22607 Hamburg (Germany); Sheng, Z.M. [Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Laboratory for Laser Plasmas and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Jaroszynski, D. [Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom)

    2016-09-01

    Attosecond electron bunches and attosecond radiation pulses enable the study of ultrafast dynamics of matter in an unprecedented regime. In this paper, the suitability for the experimental realization of a novel scheme producing sub-femtosecond duration electron bunches from laser-wakefield acceleration in plasma with self-injection in a plasma upramp profile has been investigated. While it has previously been predicted that this requires laser power above a few hundred terawatts typically, here we show that the scheme can be extended with reduced driving laser powers down to tens of terawatts, generating accelerated electron pulses with minimum length of around 166 attoseconds and picocoulombs charge. Using particle-in-cell simulations and theoretical models, the evolution of the accelerated electron bunch within the plasma as well as simple scalings of the bunch properties with initial laser and plasma parameters are presented. - Highlights: • LWFA with an upramp density profile can trap and accelerate sub-fs electron beams. • A reduction of the necessary threshold laser intensity by a factor 4 is presented. • Electron properties are tuned by varying initial laser and plasma parameters. • Simulations predict electron bunch lengths below 200 attoseconds with pC charge. • Strong bunch evolution effects and a large energy spread still need to be improved.

  3. Studies of a Proton Bunch Phase Monitor for Range Verification in Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Werner, T.; Golnik, C.; Enghardt, W.; Petzoldt, J.; Kormoll, T.; Pausch, G. [Technische Universitaet Dresden, OncoRay, PF 41, 01307 Dresden (Germany); Straessner, A. [Technische Universitaet Dresden, Institute for Nuclear and Particle Physics, Zellescher Weg 19, 01069 Dresden (Germany); Roemer, K.; Dreyer, A.; Hueso-Gonzalez, F.; Enghardt, W. [Helmholtz-Zentrum Dresden-Rossendorf, PF 510 119, 01314 Dresden (Germany)

    2015-07-01

    A primary subject of the present research in particle therapy is to ensure the precise irradiation of the target volume. The prompt gamma timing (PGT) method provides one possibility for in vivo range verification during the irradiation of patients. Prompt gamma rays with high energies are emitted promptly due to nuclear reactions of protons with tissue. The arrival time of these gammas to the detector reflects the stopping process of the primary protons in tissue and is directly correlated to the range. Due to the time resolution of the detector and the proton bunch time spread, as well as drifts of the bunch phase with respect to the accelerator frequency, timing spectra are smeared out and compromise the accuracy of range information intended for future clinical applications. Nevertheless, counteracting this limitation and recovering range information from the PGT measured spectra, corrections using a bunch phase monitor can be performed. A first prototype of bunch phase monitor was tested at GSI Darmstadt, where measurements of the energy correlation profile of the ion bunches were performed. At the ELBE accelerator at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), set up to provide bremsstrahlung photons in very short pulses, a constant fraction algorithm for the incoming digital signals was evaluated, which is used for optimizing the time resolution. Studies of scattering experiments with different thin targets and detector positions are accomplished at Onco Ray Dresden, where a clinical proton beam is available. These experiments allow a basic characterization of the proton bunch structure and the detection yield. (authors)

  4. Bunch length measurements using synchrotron ligth monitor

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mahmoud [Old Dominion University, Norfolk, VA; Tiefenback, Michael G. [Jefferson Lab, Newport News, VA

    2015-09-01

    The bunch length is measured at CEBAF using an invasive technique. The technique depends on applying an energy chirp for the electron bunch and imaging it through a dispersive region. The measurements are taken through Arc1 and Arc2 at CEBAF. The fundamental equations, procedure and the latest results are given.

  5. LHC MD 1279: Bunch Flattening in Physics

    CERN Document Server

    AUTHOR|(CDS)2073675; Baudrenghien, Philippe; Esteban Muller, Juan; Shaposhnikova, Elena; CERN. Geneva. ATS Department

    2017-01-01

    Vertex reconstruction is not accurate enough for LHCb when the bunch length in physics shrinks below about 0.9 ns. The end-of-fill MD studies presented here proved that bunch flattening using sinusoidal RF modulation is a loss-free method to increase the r.m.s. bunch length and flatten the bunch profile. Furthermore, the optimum modulation parameters to be used in physics have been identified. Subsequently, bunch flattening in physics was used operationally with a modulation frequency of 98.75 % of the central synchrotron frequency and 0.6 modulation amplitude, resulting in a 150-200 ps increase in the BQM-measured bunch length. A ‘mid-of-fill’ test at arrival to flat top revealed that also the bunch distribution created by the controlled emittance blow-up during the ramp is affected when bunch flattening is applied. The measurements took place on 17th June and the 4th, 7th and 22nd July 2016. Operational cases are shown as well.

  6. Femtosecond electron bunches, source and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Thongbai, C. [FNRF, Department of Physics, Chiang Mai University, Chiangmai 50200 (Thailand)], E-mail: chlada@chiangmai.ac.th; Kusoljariyakul, K. [FNRF, Department of Physics, Chiang Mai University, Chiangmai 50200 (Thailand); Rimjaem, S. [DESY Zeuthen, Platanenallee 6, Zeuthen 15738 (Germany); Rhodes, M.W. [IST, Chiang Mai University, Chiangmai 50200 (Thailand); Saisut, J. [FNRF, Department of Physics, Chiang Mai University, Chiangmai 50200 (Thailand); Thamboon, P.; Wichaisirimongkol, P. [IST, Chiang Mai University, Chiangmai 50200 (Thailand); Vilaithong, T. [FNRF, Department of Physics, Chiang Mai University, Chiangmai 50200 (Thailand)

    2008-03-11

    A femtosecond electron source has been developed at the Fast Neutron Research Facility (FNRF), Chiang Mai University, Thailand. So far, it has produced electron bunches as short as {sigma}{sub z}{approx}180 fs with (1-6)x10{sup 8} electrons per microbunch. The system consists of an RF-gun with a thermionic cathode, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator as a post acceleration section. Coherent transition radiation emitted at wavelengths equal to and longer than the bunch length is used in a Michelson interferometer to determine the bunch length by autocorrelation technique. The experimental setup and results of the bunch length measurement are described.

  7. Bunch length measurement at Tsinghua Thomson scattering X-ray source

    Institute of Scientific and Technical Information of China (English)

    DU Ying-Chao; HUA Jian-Fei; YAN Li-Xin; DU Qiang; HUANG Wcn-Hui; TANG Chuan-Xiang

    2011-01-01

    The length of electron beam from a photocathode RF gun is determined by a spectrometer, according to the relative energy spread induced by the bunch length during the acceleration in a linac. For a photocathode RF gun, different laser injected phase and b

  8. Single-bunch emittance dilution in the perfect ILC main linac

    Institute of Scientific and Technical Information of China (English)

    WANG Dou; GAO Jie

    2011-01-01

    In the ILC(International Linear Collider)main linac, low emittance preservation is the most important issue for beam dynamics study. As the main sources of emittance dilution, the dispersive and wakefield effects were studied in this paper. The theoretical calculations and numerical simulations of these two effects on single-bunch emittance dilution, without any misalignment errors, are presented in detail.

  9. Fast digital transverse feedback system for bunch train operation in CESR

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.T.; Billing, M.G.; Dobbins, J.A. [Cornell Univ., Ithaca, NY (United States). Lab. of Nuclear Studies] [and others

    1996-08-01

    We have developed a time domain transverse feedback system with the high bandwidth needed to control transverse instabilities when the CESR e{sup +}e{sup -} collider is filled with trains of closely spaced bunches. This system is based on parallel digital processors and a stripline driver. It is capable of acting on arbitrary patterns of bunches having a minimum spacing of 14 ns. Several simplifying features have been introduced. A single shorted stripline kicker driven by one power amplifier is used to control both counter-rotating beams. The desired feedback phase is achieved by sampling the bunch position at a single location on two independently selectable beam revolutions. The system adapts to changes in the betatron tune, bunch pattern, or desired damping rate through the loading of new parameters into the digital processors via the CESR control system. The feedback system also functions as a fast gated bunch current monitor. Both vertical and horizontal loops are now used in CESR operation. The measured betatron damping rates with the transverse feedback system in operation are in agreement with the analytical prediction and a computer simulation developed in connection with this work. (author)

  10. Proposal for Single-Bunch Collimator Wakefield Measurements at SLAC ESTB

    CERN Document Server

    Resta-Lopez, J; Faus-Golfe, A; Fuster-Martinez, N; Hast, C; Jones, R M; Latina, A; Pivi, M; Rumolo, G; Schulte, D; Smith, J; Tomas, R

    2012-01-01

    Collimator wakefields in the Beam Delivery System (BDS) of future linear colliders, such as the International Linear Collider (ILC) and the Compact Linear Collider (CLIC), can be an important source of emittance growth and beam jitter amplification, consequently degrading the luminosity. Therefore, a better understanding of collimator wakefield effects is essential to optimise the collimation systems of future linear colliders in order to minimise wakefield effects. In the past, measurements of single-bunch collimator wakefields have been carried out at SLAC with the aim of benchmarking theory, numerical calculations and experiments. Those studies revealed some discrepancies between the measurements and the theoretical models. New experimental tests using available beam test facilities, such as the End Station A Test Beam (ESTB) at SLAC, would help to improve our understanding on collimator wakefields. ESTB will provide the perfect test bed to investigate collimator wakefields for different bunch length condi...

  11. Femtosecond probing of light-speed plasma wakefields by using a relativistic electron bunch

    CERN Document Server

    Zhang, C J; Wan, Y; Guo, B; Wu, Y P; Pai, C -H; Li, F; Chu, H -H; Gu, Y Q; Xu, X L; Mori, W B; Joshi, C; Wang, J; Lu, W

    2016-01-01

    Relativistic wakes produced by intense laser or particle beams propagating through plasmas are being considered as accelerators for next generation of colliders and coherent light sources. Such wakes have been shown to accelerate electrons and positrons to several gigaelectronvolts (GeV), with a few percent energy spread and a high wake-to-beam energy transfer efficiency. However, complete mapping of electric field structure of the wakes has proven elusive. Here we show that a high-energy electron bunch can be used to probe the fields of such light-speed wakes with femtosecond resolution. The highly transient, microscopic wakefield is reconstructed from the density modulated ultra-short probe bunch after it has traversed the wake. This technique enables visualization of linear wakefields in low-density plasmas that can accelerate electrons and positrons beams. It also allows characterization of wakes in plasma density ramps critical for maintaining the beam emittance, improving the energy transfer efficiency ...

  12. Halo formation in spheroidal bunches with self-consistent stationary distributions

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, A.V.; Gluckstern, R.L. [Univ. of Maryland, College Park, MD (United States); Kurennoy, S.S.; Ryne, R.D. [Los Alamos National Lab., NM (United States)

    1998-12-31

    A new class of self-consistent 6-D phase space stationary distributions is constructed both analytically and numerically. The beam is then mismatched longitudinally and/or transversely, and the authors explore the beam stability and halo formation for the case of 3-D axisymmetric beam bunches using particle-in-cell simulations. They concentrate on beams with bunch length-to-width ratios varying from 1 to 5, which covers the typical range of the APT linac parameters. They find that the longitudinal halo forms first for comparable longitudinal and transverse mismatches. An interesting coupling phenomenon -- a longitudinal or transverse halo is observed even for very small mismatches if the mismatch in the other plane is large -- is discovered.

  13. Subpicosecond electron bunch train production using a phase-space exchange technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.-E.; /Fermilab; Piot, P.; /Fermilab /Northern Illinois U.; Johnson, A.S.; Lumpkin, A.H.; /Fermilab; Maxwell, T.J.; /Fermilab /Northern Illinois U.; Ruan, J.; Thurman-Keup, R.M.; /Fermilab

    2011-03-01

    Our recent experimental demonstration of a photoinjector electron bunch train with sub-picosecond structures is reported in this paper. The experiment is accomplished by converting an initially horizontal beam intensity modulation into a longitudinal phase space modulation, via a beamline capable of exchanging phase-space coordinates between the horizontal and longitudinal degrees of freedom. The initial transverse modulation is produced by intercepting the beam with a multislit mask prior to the exchange. We also compare our experimental results with numerical simulations.

  14. Tevatron bunch length studies at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Jones; Bob Kephart; and Rick Vidal

    2002-05-29

    A luminous interaction region can be described by the distribution in (x, y, z) over which p{bar p} interactions are observed in a detector. The spatial size of this distribution can be written in terms of expressions that involve only combinations of the proton and anti-proton bunch sizes. Hence, it is not possible to determine the sizes of the proton and anti-proton bunches independently by fitting the distribution of (x, y, z) from the recorded events. If, in addition to the coordinates (x, y, z) at which p{bar p} interactions occur, the times at which the interactions took place are also measured, then it becomes possible to measure the lengths of the proton and anti-proton bunches separately. This sensitivity is due to a correlation between z and t that arises from the fact that the proton and anti-proton bunches travel in opposite directions. The derivation presented in section 2 quantifies this correlation, resulting in an expression for the probability density as a function of z and t for p{bar p} interactions. By fitting the distributions observed at CDF using this model, we measure the lengths of the proton and anti-proton bunches at times throughout several Tevatron stores. From this analysis the evolution of the bunch lengths can be studied. We attempt to correlate these with other measures of the bunch length obtained using different experimental techniques.

  15. Ion beam cooler-buncher at the IGISOL facility

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, A.; Hakala, J.; Huikari, J.; Kolhinen, V.S.; Rinta-Antila, S.; Szerypo, J. [Dept. of Physics, Univ. of Jyvaeskylae (Finland); Billowes, J.; Campbell, P.; Moore, I.D.; Moore, R. [Schuster Lab., Univ. of Manchester (United Kingdom); Forest, D.H.; Thayer, H.L.; Tungate, G. [School of Physics and Astronomy, Univ. of Birmingham, Edgbaston (United Kingdom); Jokinen, A.; Aeystoe, J. [Dept. of Physics, Univ. of Jyvaeskylae (Finland)]|[CERN, Geneva (Switzerland)

    2003-07-01

    An ion beam cooler-buncher for manipulating low-energy radioactive ion beams at the IGISOL facility is described. The cooler-buncher serves as a source of cooled ion bunches for collinear laser spectroscopy and it will be used for preparation of ion bunches for injection into a Penning trap system. (orig.)

  16. Plasma-driven ultrashort bunch diagnostics

    Science.gov (United States)

    Dornmair, I.; Schroeder, C. B.; Floettmann, K.; Marchetti, B.; Maier, A. R.

    2016-06-01

    Ultrashort electron bunches are crucial for an increasing number of applications, however, diagnosing their longitudinal phase space remains a challenge. We propose a new method that harnesses the strong electric fields present in a laser driven plasma wakefield. By transversely displacing driver laser and witness bunch, a streaking field is applied to the bunch. This field maps the time information to a transverse momentum change and, consequently, to a change of transverse position. We illustrate our method with simulations where we achieve a time resolution in the attosecond range.

  17. Plasma-driven ultrashort bunch diagnostic

    CERN Document Server

    Dornmair, I; Floettmann, K; Marchetti, B; Maier, A R

    2016-01-01

    Ultrashort electron bunches are crucial for an increasing number of applications, however, diagnosing their longitudinal phase space remains a challenge. We propose a new method that harnesses the strong electric fields present in a laser driven plasma wakefield. By transversely displacing driver laser and witness bunch, a streaking field is applied to the bunch. This field maps the time information to a transverse momentum change and, consequently, to a change of transverse position. We illustrate our method with simulations where we achieve a time resolution in the attosecond range.

  18. BEAM SCRUBBING FOR RHIC POLARIZED PROTON RUN.

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG,S.Y.FISCHER,W.HUANG,H.ROSER,T.

    2004-07-05

    One of the intensity limiting factor of RHIC polarized proton beam is the electron cloud induced pressure rise. A beam scrubbing study shows that with a reasonable period of time of running high intensity 112-bunch proton beam, the pressure rise can be reduced, allowing higher beam intensity.

  19. Advanced simulation study on bunch gap transient effect

    Science.gov (United States)

    Kobayashi, Tetsuya; Akai, Kazunori

    2016-06-01

    Bunch phase shift along the train due to a bunch gap transient is a concern in high-current colliders. In KEKB operation, the measured phase shift along the train agreed well with a simulation and a simple analytical form in most part of the train. However, a rapid phase change was observed at the leading part of the train, which was not predicted by the simulation or by the analytical form. In order to understand the cause of this observation, we have developed an advanced simulation, which treats the transient loading in each of the cavities of the three-cavity system of the accelerator resonantly coupled with energy storage (ARES) instead of the equivalent single cavities used in the previous simulation, operating in the accelerating mode. In this paper, we show that the new simulation reproduces the observation, and clarify that the rapid phase change at the leading part of the train is caused by a transient loading in the three-cavity system of ARES. KEKB is being upgraded to SuperKEKB, which is aiming at 40 times higher luminosity than KEKB. The gap transient in SuperKEKB is investigated using the new simulation, and the result shows that the rapid phase change at the leading part of the train is much larger due to higher beam currents. We will also present measures to mitigate possible luminosity reduction or beam performance deterioration due to the rapid phase change caused by the gap transient.

  20. Single-shot electron bunch length measurements using a spatial electro-optical autocorrelation interferometer.

    Science.gov (United States)

    Sütterlin, Daniel; Erni, Daniel; Schlott, Volker; Sigg, Hans; Jäckel, Heinz; Murk, Axel

    2010-10-01

    A spatial, electro-optical autocorrelation (EOA) interferometer using the vertically polarized lobes of coherent transition radiation (CTR) has been developed as a single-shot electron bunch length monitor at an optical beam port downstream the 100 MeV preinjector LINAC of the Swiss Light Source. This EOA monitor combines the advantages of step-scan interferometers (high temporal resolution) [D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006) and T. Takahashi and K. Takami, Infrared Phys. Technol. 51, 363 (2008)] and terahertz-gating technologies [U. Schmidhammer et al., Appl. Phys. B: Lasers Opt. 94, 95 (2009) and B. Steffen et al., Phys. Rev. ST Accel. Beams 12, 032802 (2009)] (fast response), providing the possibility to tune the accelerator with an online bunch length diagnostics. While a proof of principle of the spatial interferometer was achieved by step-scan measurements with far-infrared detectors, the single-shot capability of the monitor has been demonstrated by electro-optical correlation of the spatial CTR interference pattern with fairly long (500 ps) neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pulses in a ZnTe crystal. In single-shot operation, variations of the bunch length between 1.5 and 4 ps due to different phase settings of the LINAC bunching cavities have been measured with subpicosecond time resolution.

  1. Emittance growth due to static and radiative space charge forces in an electron bunch compressor

    Science.gov (United States)

    Talman, Richard; Malitsky, Nikolay; Stulle, Frank

    2009-01-01

    Evolution of short intense electron bunches passing through bunch-compressing beam lines is studied using the UAL (Unified Accelerator Libraries) string space charge formulation [R. Talman, Phys. Rev. ST Accel. Beams 7, 100701 (2004)PRABFM1098-440210.1103/PhysRevSTAB.7.100701; N. Malitsky and R. Talman, in Proceedings of the 9th European Particle Accelerator Conference, Lucerne, 2004 (EPS-AG, Lucerne, 2004); R. Talman, Accelerator X-Ray Sources (Wiley-VCH, Weinheim, 2006), Chap. 13]. Three major configurations are studied, with the first most important and studied in greatest detail (because actual experimental results are available and the same results have been simulated with other codes): (i) Experimental bunch compression results were obtained at CTF-II, the CERN test facility for the “Compact Linear Collider” using electrons of about 40 MeV. Previous simulations of these results have been performed (using TraFiC4* [A. Kabel , Nucl. Instrum. Methods Phys. Res., Sect. A 455, 185 (2000)NIMAER0168-900210.1016/S0168-9002(00)00729-4] and ELEGANT [M. Borland, Argonne National Laboratory Report No. LS-287, 2000]). All three simulations are in fair agreement with the data except that the UAL simulation predicts a substantial dependence of horizontal emittance γx on beam width (as controlled by the lattice βx function) at the compressor location. This is consistent with the experimental observations, but inconsistent with other simulations. Excellent agreement concerning dependence of bunch energy loss on bunch length and magnetic field strength [L. Groening , in Proceedings of the Particle Accelerator Conference, Chicago, IL, 2001 (IEEE, New York, 2001), http://groening.home.cern/groening/csr_00.htm] confirms our understanding of the role played by coherent synchrotron radiation (CSR). (ii) A controlled comparison is made between the predictions of the UAL code and those of CSRTrack [M. Dohlus and T. Limberg, in Proceedings of the 2004 FEL Conference, pp. 18

  2. Analytical Formulas for Short Bunch Wakes in a Flat Dechirper

    Energy Technology Data Exchange (ETDEWEB)

    Bane, Karl [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stupakov, Gennady [SLAC National Accelerator Lab., Menlo Park, CA (United States); Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-03-29

    We develop analytical models of the longitudinal and transverse wakes, on and off axis for realistic structures, and then compare them with numerical calculations, and generally find good agreement. These analytical "first order" formulas approximate the droop at the origin of the longitudinal wake and of the slope of the transverse wakes; they represent an improvement in accuracy over earlier, "zeroth order" formulas. In example calculations for the RadiaBeam/LCLS dechirper using typical parameters, we find a 16% droop in the energy chirp at the bunch tail compared to simpler calculations. With the beam moved to 200 m from one jaw in one dechiper section, one can achieve a 3 MV transverse kick differential over a 30 m length.

  3. Real-time single-shot electron bunch length measurements

    CERN Document Server

    Wilke, I; Gillespie, W A; Berden, G; Knippels, G M H; Meer, A F G

    2002-01-01

    Linear accelerators employed as drivers for X-ray free electron lasers (FELs) require relativistic electron bunch with sub-picosecond bunch length. Precise bunch length measurements are important for the tuning and operation of the FELs. Previously, we have demonstrated that electro-optic detection is a powerful technique for sub-picosecond electron bunch length measurements. In those experiments, the measured bunch length was the average of all electron bunches within a macropulse. Here, for the first time, we present the measurement of the length of individual electron bunches using a development of our previous technique. In this experiment, the longitudinal electron bunch shape is encoded electro-optically on to the frequency spectrum of a chirped laser pulse. Subsequently, the laser pulse is dispersed by a grating and the spectrum is imaged with a CCD camera. Single bunch measurements are achieved by using a nanosecond gated camera, and synchronizing the gate with both the electron bunch and the laser pu...

  4. Development of a Bunch Frequency Monitor for the Preliminary Phase of the CLIC Test Facility CTF3

    CERN Document Server

    Caspers, Friedhelm; Ferrari, A; Rinolfi, Louis; Royer, P; Rydberg, A; Tecker, F A

    2003-01-01

    In the framework of the CLIC RF power source studies, the feasibility of the electron bunch train combination by injection with RF deflectors into an isochronous ring has been successfully demonstrated in the preliminary phase of CTF3. A new method, based on beam frequency spectrum analysis, was experimented to monitor this scheme. A coaxial pick-up and its read-out electronics were designed and mounted in the CTF3 ring to allow comparison of the amplitudes of five harmonics of the fundamental beam frequency (3 GHz) while combining the bunch trains. The commissioning of the monitor was a successful proof of principle for this new method, despite the short length of the bunch trains and the presence of parasitic signals associated to high-order waveguide modes propagating with the beam inside the pipe.

  5. LHC Longitudinal Single-Bunch Stability Threshold

    CERN Document Server

    Esteban Muller, Juan Federico; Baudrenghien, Philippe; Lasheen, Alexandre; Roggen, Toon; Shaposhnikova, Elena; Timko, Helga; CERN. Geneva. ATS Department

    2016-01-01

    The aim of the MD studies presented here was to determine with a reasonable accuracy the single-bunch longitudinal stability threshold in the LHC. The measurements were performed by placing along the ring 8 or 20 ‘single’ bunches with different intensities but similar longitudinal emittances. Then they were accelerated and bunch stability was observed at arrival to flat top. Combining the results of two measurement sessions, the single bunch stability threshold is estimated to be (2.4 ± 0.2) × 10^11 ppb for an emittance of 1.89 eVs (1.0 ns) at 6.5 TeV with 12 MV RF voltage. Measurements were taken during the MD session MD472 from 22:00 on 20th to 05:00 on 21st July 2015 and session MD365 from 17:00 on 26th to 01:00 on 27th August 2015.

  6. Space Charge Mitigation With Longitudinally Hollow Bunches

    CERN Document Server

    Oeftiger, Adrian; Rumolo, Giovanni; CERN. Geneva. ATS Department

    2016-01-01

    Suitably, hollow longitudinal phase space distributions have a flat profile and hence reduce the impact of transverse space charge. Dipolar parametric excitation with the phase loop feedback systems provides such hollow distributions under reproducible conditions. We present a procedure to create hollow bunches during the acceleration ramp of CERN’s PS Booster machine with minimal changes to the operational cycle. The improvements during the injection plateau of the downstream Proton Synchrotron are assessed in comparison to standard parabolic bunches.

  7. Space Charge Mitigation With Longitudinally Hollow Bunches

    CERN Multimedia

    Oeftiger, Adrian; Rumolo, Giovanni

    2016-01-01

    Hollow longitudinal phase space distributions have a flat profile and hence reduce the impact of transverse space charge. Dipolar parametric excitation with the phase loop feedback systems provides such hollow distributions under reproducible conditions. We present a procedure to create hollow bunches during the acceleration ramp of CERN’s PS Booster machine with minimal changes to the operational cycle. The improvements during the injection plateau of the downstream Proton Synchrotron are assessed in comparison to standard parabolic bunches.

  8. Adjustment of a double drift harmonic buncher and bunch shape measurements

    CERN Document Server

    Knott, J; Weiss, M

    1976-01-01

    The longitudinal beam matching of the new 50 MeV linac is achieved with a double drift harmonic buncher. For optimum bunching efficiency the RF phase difference between the two cavities should be known and controlled to about 1 degrees (at 202.56 MHz). The adjustment of the RF levels and phases is based on observations of the bunch form via a broad-band probe connected to a travelling wave oscilloscope. The time base is tightly locked to the RF by a specially developed circuit allowing a systematic study of different bunching conditions. A comparison is made between some preliminary measurements and the waveforms predicted by a simplified theory. (3 refs).

  9. Method and apparatus for control of coherent synchrotron radiation effects during recirculation with bunch compression

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, David R; Tennant, Christopher

    2015-11-10

    A modulated-bending recirculating system that avoids CSR-driven breakdown in emittance compensation by redistributing the bending along the beamline. The modulated-bending recirculating system includes a) larger angles of bending in initial FODO cells, thereby enhancing the impact of CSR early on in the beam line while the bunch is long, and 2) a decreased bending angle in the final FODO cells, reducing the effect of CSR while the bunch is short. The invention describes a method for controlling the effects of CSR during recirculation and bunch compression including a) correcting chromatic aberrations, b) correcting lattice and CSR-induced curvature in the longitudinal phase space by compensating T.sub.566, and c) using lattice perturbations to compensate obvious linear correlations x-dp/p and x'-dp/p.

  10. Temporal characterization of ultrashort ionization-injected electron bunches generated from a laser wakefield accelerator

    CERN Document Server

    Zhang, C J; Wan, Y; Guo, B; Pai, C -H; Wu, Y P; Li, F; Chu, H -H; Gu, Y Q; Mori, W B; Joshi, C; Wang, J; Lu, W

    2016-01-01

    A new concept to diagnose the temporal characteristics of ultrashort electron bunches generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser it is deflected and stretched along the direction of the electric field of the laser. Upon exiting the plasma if the bunch goes through a narrow slit in front of the dipole magnet that disperses the electrons in the plane of the laser polarization, it can form a series of bunchlets that have different energies but separated by half a laser wavelength. By analyzing the modulated energy spectrum, the beam current profile and the longitudinal (energy versus time) phase space are recovered. This concept is demonstrated through particle-in-cell simulations and experiment.

  11. CLIC Main Linac Beam-Loading Compensation by Drive Beam Phase Modulation

    CERN Document Server

    Corsini, R; Syratchev, I V

    1999-01-01

    The CLIC final focus momentum acceptance of ± 0.5 % limits the bunch-to-bunch energy variation in the main beam to less than ± 0.1 %, since the estimated single-bunch contribution is ± 0.4 %. On the other hand, a relatively high beam-loading of the main accelerating structures (about 16 %) is unavoidable in order to optimize the RF-to-beam efficiency. Therefore, a compensation method is needed to reduce the resulting bunch-to-bunch energy spread of the main beam. Up to now, it has been planned to obtain the RF pulse shape needed for compensation by means of a charge ramp in the drive beam pulse. On the other hand, the use of constant-current drive beam pulses would make the design and operation of the drive beam injector considerably simpler. In this paper we present a possible solution adapted to the CLIC two-beam scheme with constant-current pulses, based on phase modulation of the drive beam bunches.

  12. A Phase Space Monitoring of Injected Beam of J-PARC MR

    Science.gov (United States)

    Hatakeyama, Shuichiro; Toyama, Takeshi

    Beam power of J-PARC MR (30 GeV Proton Synchrotron Main Ring) has been improved since 2008 and now achieved over 200 kW for the user operation. A part of beam loss is localized at the beam injection phase so it is important to monitor the beam bunch behavior in the transverse direction. In this paper it is described the method how to measure the position and momentum for each injected beam bunch using Beam Position Monitors (BPMs). It is also mentioned some implementation of an operator's interface (OPI) to display the plots of injected and circulating beam bunches in phase space coordinate.

  13. Wall-Current-Monitor based Ghost and Satellite Bunch Detection in the CERN PS and the LHC Accelerators

    CERN Document Server

    Steinhagen, R J; Belleman, J; Bohl, T; Damerau, H

    2012-01-01

    While most LHC detectors and instrumentation systems are optimised for a nominal bunch spacing of 25 ns, the LHC RF cavities themselves operate at the 10th harmonic of the maximum bunch frequency. Due to the beam production scheme and transfers in the injector chain, part of the nominally ‘empty’ RF buckets may contain particles, referred to as ghost or satellite bunches. These populations must be accurately quantified for high-precision experiments, luminosity calibration and control of parasitic particle encounters at the four LHC interaction points. This contribution summarises the wall-current-monitor based ghost and satellite bunch measurements in CERN’s PS and LHC accelerators. Instrumentation set-up, post-processing and achieved performance are discussed.

  14. Femtosecond timing-jitter between photo-cathode laser and ultra-short electron bunches by means of hybrid compression

    Science.gov (United States)

    Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Croia, M.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Gallo, A.; Gatti, G.; Giorgianni, F.; Giribono, A.; Li, W.; Lupi, S.; Mostacci, A.; Petrarca, M.; Piersanti, L.; Di Pirro, G.; Romeo, S.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.

    2016-08-01

    The generation of ultra-short electron bunches with ultra-low timing-jitter relative to the photo-cathode (PC) laser has been experimentally proved for the first time at the SPARC_LAB test-facility (INFN-LNF, Frascati) exploiting a two-stage hybrid compression scheme. The first stage employs RF-based compression (velocity-bunching), which shortens the bunch and imprints an energy chirp on it. The second stage is performed in a non-isochronous dogleg line, where the compression is completed resulting in a final bunch duration below 90 fs (rms). At the same time, the beam arrival timing-jitter with respect to the PC laser has been measured to be lower than 20 fs (rms). The reported results have been validated with numerical simulations.

  15. Monte Carlo Mean Field Treatment of Microbunching Instability in the FERMI@Elettra First Bunch Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Bassi, G.; /Liverpool U. /Cockroft Inst.; Ellison, J.A.; Heinemann, K.; /New Mexico U.; Warnock, R.; /SLAC

    2009-05-07

    Bunch compressors, designed to increase the peak current, can lead to a microbunching instability with detrimental effects on the beam quality. This is a major concern for free electron lasers (FELs) where very bright electron beams are required, i.e. beams with low emittance and energy spread. In this paper, we apply our self-consistent, parallel solver to study the microbunching instability in the first bunch compressor system of FERMI{at}Elettra. Our basic model is a 2D Vlasov-Maxwell system. We treat the beam evolution through a bunch compressor using our Monte Carlo mean field approximation. We randomly generate N points from an initial phase space density. We then calculate the charge density using a smooth density estimation procedure, from statistics, based on Fourier series. The electric and magnetic fields are calculated from the smooth charge/current density using a novel field formula that avoids singularities by using the retarded time as a variable of integration. The points are then moved forward in small time steps using the beam frame equations of motion, with the fields frozen during a time step, and a new charge density is determined using our density estimation procedure. We try to choose N large enough so that the charge density is a good approximation to the density that would be obtained from solving the 2D Vlasov-Maxwell system exactly. We call this method the Monte Carlo Particle (MCP) method.

  16. Ion Emittance Growth Due to Focusing Modulation from Slipping Electron Bunch

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-02-17

    Low energy RHIC operation has to be operated at an energy ranging from γ = 4.1 to γ = 10. The energy variation causes the change of revolution frequency. While the rf system for the circulating ion will operate at an exact harmonic of the revolution frequency (h=60 for 4.5 MHz rf and h=360 for 28 MHz rf.), the superconducting rf system for the cooling electron beam does not have a frequency tuning range that is wide enough to cover the required changes of revolution frequency. As a result, electron bunches will sit at different locations along the ion bunch from turn to turn, i.e. the slipping of the electron bunch with respect to the circulating ion bunch. At cooling section, ions see a coherent focusing force due to the electrons’ space charge, which differs from turn to turn due to the slipping. We will try to estimate how this irregular focusing affects the transverse emittance of the ion bunch.

  17. Beam Size Estimation from Luminosity Scans at the LHC During 2015 Proton Physics Operation

    CERN Document Server

    Hostettler, Michael

    2016-01-01

    As a complementary method for measuring the beam size for high-intensity beams at 6.5 TeV flat-top energy, beam separation scans were done regularly at the CERN Large Hadron Collider (LHC) during 2015 proton physics operation. The luminosities measured by the CMS experiment during the scans were used to derive the convoluted beam size and orbit offset bunch-by-bunch. This contribution will elaborate on the method used to derive plane-by-plane, bunch-by-bunch emittances from the scan data, including uncertainties and corrections. The measurements are then compared to beam size estimations from absolute luminosity, synchrotron light telescopes, and wire scanners. In particular, the evolution of the emittance over the course of several hours in collisions is studied and bunch-by-bunch differences are highlighted.

  18. Turn-By Beam Extraction during Acceleration in a Synchrotron

    Science.gov (United States)

    Tsoupas, Nicholaos; Trbojevic, Dejan

    2014-02-01

    A synchrotron to accelerate protons or carbon ions for medical applications is being designed at Brookhaven National Laboratory (BNL). Single beam bunches with maximum beam energy of 1.18 GeV and 400 MeV/u for protons and carbon ions respectively will be extracted from the synchrotron at 15 Hz. For protons, the maximum required energy for irradiating a tumor is ˜206 MeV. A pencil-like proton beam containing ˜5.4×107 p/bunch delivers a therapeutic dose of 2.5 Gy in ˜1.5 minutes to treat a tumor of 1 liter volume. It will take ˜80 minutes with bunches containing 4.5×104 ions/bunch to deliver the same dose of 2.5 Gy with a 400 MeV/u pencil-like carbon beam. This extended treatment time when using carbon ions is not acceptable. In addition, the synchrotron cannot be controlled with a beam bunch containing such a low number of carbon ions. To overcome these two problems of the extended treatment time and the low bunch intensity required for the treatment when carbon ions are used, we have devised a method to “peel” the required 4.5×104 carbon-ions/bunch from the accelerating carbon beam bunch containing ˜108 ions/bunch and deliver them to the tumor on a “turn-by-turn” basis. Unlike other methods of beam extraction from a synchrotron, such as resonance extraction, this method does not allow for any beam losses during the extraction and the carbon beam can be peeled off in less than 15 ms during the acceleration or deceleration cycle of the synchrotron. Thus, this turn-by-turn beam extraction method provides beam with variable energy and precisely controlled beam current during the 30 ms acceleration or deceleration time.

  19. Results of long range beam-beam studies and observations during operation in the LHC

    CERN Document Server

    Alemany, R; Buffat, X; Calaga, R; Fitterer, M; Giachino, R; Hemelsoet, GH; Herr, W; Papotti, G; Pieloni, T; Poyer, M; Schaumann, M; Trad, G; Wollmann, D

    2011-01-01

    We studied possible limitations due to the long range beam-beam effects in the LHC. With a larger number of bunches and collisions in all interaction points, we have reduced the crossing angles to enhance long range beam-beam effects to evaluate their influence on dynamic aperture and losses. Experience from operation with reduced separation was analysed and provides additional evidence.

  20. Beam Dynamics Studies in Recirculating Machines

    CERN Document Server

    Pellegrini, Dario; Latina, A

    The LHeC and the CLIC Drive Beam share not only the high-current beams that make them prone to show instabilities, but also unconventional lattice topologies and operational schemes in which the time sequence of the bunches varies along the machine. In order to asses the feasibility of these projects, realistic simulations taking into account the most worrisome effects and their interplays, are crucial. These include linear and non-linear optics with time dependent elements, incoherent and coherent synchrotron radiation, short and long-range wakefields, beam-beam effect and ion cloud. In order to investigate multi-bunch effects in recirculating machines, a new version of the tracking code PLACET has been developed from scratch. PLACET2, already integrates most of the effects mentioned before and can easily receive additional physics. Its innovative design allows to describe complex lattices and track one or more bunches accordingly to the machine operation, reproducing the bunch train splitting and recombinat...

  1. Resolving two beams in beam splitters with a beam position monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey)

    2002-01-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters. Monitoring two separated beams in a common beam pipe in the splitter sections imposes certain requirements on diagnostics for these sections. In this note we explore a two-beam system in a generic beam monitor and study the feasibility of resolving the positions of the two beams with a single diagnostic device. In the Advanced Hydrotest Facility (AHF), 20-ns beam pulses (bunches) are extracted from the 50-GeV main proton synchrotron and then are transported to the target by an elaborated transport system. The beam transport system splits the beam bunches into equal parts in its splitting sections so that up to 12 synchronous beam pulses can be delivered to the target for the multi-axis proton radiography. Information about the transverse positions of the beams in the splitters, and possibly the bunch longitudinal profile, should be delivered by some diagnostic devices. Possible candidates are the circular wall current monitors in the circular pipes connecting the splitter elements, or the conventional stripline BPMs. In any case, we need some estimates on how well the transverse positions of the two beams can be resolved by these monitors.

  2. LHC beam-beam compensation using wires and electron lenses

    CERN Document Server

    Dorda, U; Shiltsev, V; Zimmermann, F

    2007-01-01

    We present weak-strong simulation results for a possible application of current-carrying wires and electron lenses to compensate the LHC long-range and head-on beambeam interaction, respectively, for nominal and PACMAN bunches. We show that these measures have the potential to considerably increase the beam-beam limit, allowing for a corresponding increase in peak luminosity.

  3. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    NARCIS (Netherlands)

    Khachatryan, A.G.; Goor, van F.A.; Boller, K.-J.; Reitsma, A.J.W.; Jaroszynski, D.A.

    2004-01-01

    Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [JETP Lett. 74, 371 (2001); Phys. Rev. E 65, 046504 (2002)]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser wa

  4. A racetrack microtron with high brightness beams

    Science.gov (United States)

    Shvedunov, V. I.; Barday, R. A.; Frolov, D. A.; Gorbachev, V. P.; Gribov, I. V.; Knapp, E. A.; Novikov, G. A.; Pakhomov, N. I.; Shvedunov, I. V.; Skachkov, V. S.; Sobenin, N. P.; Trower, W. P.; Tyurin, S. A.; Vetrov, A. A.; Yailijan, V. R.; Zayarny, D. A.

    2004-10-01

    Here we describe a racetrack microtron that provides electron beams at 12 energies from 4.85 to 34.2 MeV with ˜150 pC/bunch in ˜5 ps bunches having ˜10 mm mrad normalized transverse emittance. Our compact, inexpensive accelerator in addition to its external electron beams can generate electromagnetic radiation from ˜3 mm to ˜0.3 nm by a variety of mechanisms.

  5. A racetrack microtron with high brightness beams

    Energy Technology Data Exchange (ETDEWEB)

    Shvedunov, V.I.; Barday, R.A.; Frolov, D.A.; Gorbachev, V.P.; Gribov, I.V.; Knapp, E.A.; Novikov, G.A.; Pakhomov, N.I.; Shvedunov, I.V.; Skachkov, V.S.; Sobenin, N.P.; Trower, W.P. E-mail: trower@naxs.net; Tyurin, S.A.; Vetrov, A.A.; Yailijan, V.R.; Zayarny, D.A

    2004-10-01

    Here we describe a racetrack microtron that provides electron beams at 12 energies from 4.85 to 34.2 MeV with {approx}150 pC/bunch in {approx}5 ps bunches having {approx}10 mm mrad normalized transverse emittance. Our compact, inexpensive accelerator in addition to its external electron beams can generate electromagnetic radiation from {approx}3 mm to {approx}0.3 nm by a variety of mechanisms.

  6. Towards highest peak intensities for ultra-short MeV-range ion bunches

    Science.gov (United States)

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-07-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.

  7. A new type of bunch compressor and seeding of a short-wavelength coherent radiation.

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A. A.; Zolotorev, M. S. (Accelerator Systems Division (APS)); (LBNL)

    2011-05-30

    Transverse-to-longitudinal emittance exchange was proposed in [1] as a tool for an effective matching of the electron beam phase space to requirements of a possible application. Here we propose a new purpose, namely, use of two consecutive emittance exchanges equipped with the telescope between them for a bunch compression that can be done without the energy chirp in the electron bunch. In principle it allows to reduce the electron peak current in the linac by moving the bunch compressor to the end of the linac and, thus, to relax collective effects associated with high peak currents. It is also possible to have a split-action compression when the first part is done inside the low-energy part of the linac and the second and final part is done after the linac. We also demonstrate how proposed bunch compressor can be used for frequency up-conversion of the energy modulation provided by the laser interacting with the electron beam and thus can prepare a significantly higher frequency seed for seeded free-electron lasers. The same approach can be used for a frequency down-conversion that can be useful for generation of THz radiation.

  8. Studies of Longitudinal Coupled-Bunch Instabilities in the LHC Injectors Chain

    CERN Document Server

    AUTHOR|(CDS)2087149; Migliorati, M

    Among several challenging objectives of the LHC Injectors Upgrade project, one aim is to double the beam intensity of the CERN Proton Synchrotron (PS) in order to achieve the integrated luminosity target of the High-Luminosity LHC project. A known limitation to reach the required high intensity is caused by the longitudinal coupled-bunch (CB) oscillations developing above the PS transition energy. The unwanted oscillations induce large bunch-to-bunch intensity variations not compatible with the specifications of the future LHC-type beams. In 2014 a new longitudinal kicker cavity has been installed, the Finemet cavity, as a part of the new digital coupled-bunch feedback (FB) system. The Finemet cavity allows with its large frequency bandwidth, to damp all the expected oscillation modes simultaneously. In the framework of this PhD study the impedance contribution of this equipment has been analyzed starting from the present knowledge of the machine impedance. A model of both the 10 MHz and the Finemet has been ...

  9. Gyrophase bunched ions in the plasma sheet

    Science.gov (United States)

    Wang, Zhiqiang; Zhai, Hao; Gao, Zhuxiu; Huang, Chaoyan

    2017-01-01

    Gyrophase bunched ions were first detected in the upstream region of the Earth's bow shock in the early 1980s which is formed by the microphysical process associated with reflected solar wind ions at the bow shock. Inside the magnetosphere, the results of computer simulations demonstrated that nonlinear wave-particle interaction can also result in the gyrophase bunching of particles. However, to date direct observations barely exist regarding this issue occurred inside the magnetosphere. In this paper, we report for the first time an event of gyrophase bunched ions observed in the near-Earth plasma sheet. The nongyrotropic distributions of ions were closely accompanied with the electromagnetic waves at the oxygen cyclotron frequency. The phase of bunched ions and the phase of waves mainly have very narrow phase differences (helicity with respect to the propagation direction, which agrees with the characteristic of electromagnetic ion cyclotron waves. The observation of O+ ions composition suggests that the oxygen band waves are excited due to the enhancements of the O+ ion density. This study suggests that the gyrophase bunching is a significant nonlinear effect that exists not only in the bow shock but also in the inner magnetosphere.

  10. Measurement of Satellite Bunches at the LHC

    CERN Document Server

    Jeff, A; Boccardi, A; Bozyigit, S; Bravin, E; Lefevre, T; Rabiller, A; Roncarolo, F; Welsch, C P; Fisher, A S

    2012-01-01

    The RF gymnastics involved in the delivery of proton and lead ion bunches to the LHC can result in satellite bunches of varying intensity occupying the nominally empty RF buckets. Quantification of these satellites is crucial for bunch-by-bunch luminosity normalization as well as for machine protection. We present an overview of the longitudinal density monitor (LDM) which is the principal instrument for the measurement of satellite bunches in the LHC. The LDM uses single photon counting of synchrotron light. The very high energies reached in the LHC, combined with a dedicated undulator for diagnostics, allow synchrotron light measurements to be made with both protons and heavy ions. The arrival times of photons are collected over a few million turns, with the resulting histogram corrected for the effects of the detector’s deadtime and afterpulsing in order to reconstruct the longitudinal profile of the entire LHC ring. The LDM has achieved a dynamic range in excess of 105 and a time resolution of 90 ps. Ex...

  11. Analytical bunch compression studies for FLUTE

    CERN Document Server

    Schreck, M

    2014-01-01

    The current article deals with analytical bunch compression studies for FLUTE whose results are compared to simulations. FLUTE is a linac-based electron accelerator with a design energy of approximately 40 MeV currently being constructed at the Karlsruhe Institute of Technology. One of the goals of FLUTE is to generate electron bunches with their length lying in the femtosecond regime. In the first phase this will be accomplished using a magnetic bunch compressor. This compressor forms the subject of the studies presented. The paper is divided into three parts. The first part deals with pure geometric investigations of the bunch compressor where space charge effects and the back reaction of bunches with coherent synchrotron radiation (CSR) are neglected. The second part is dedicated to the treatment of space charge effects and the third part gives some analytical results on the emission of CSR. The upshot is that the results of the first and the third part agree quite well with what is obtained from simulatio...

  12. DSP and FPGA Based Bunch Current Signal Processing

    CERN Document Server

    Naylor, G A

    2001-01-01

    The current in electron storage rings used as synchrotron light sources must be measured to a very high precision in order to determine the stored beam lifetime. This is especially so in high-energy machines in which the lifetime may be very high. Parametric current transformers (PCT) have traditionally been used to measure the DC or average current in the machine, which offer a very high resolution. Unfortunately these do not allow the different components of a complex filling pattern to be measured separately. A hybrid filling mode delivered at the ESRF consists of one third of the ring filled with bunches with a single highly populated bunch in the middle of the two-thirds gap. The lifetime of these two components may be very different. Similarly the two components are injected separately and can be monitored separately using a fast current transformer (FCT) or an integrating current transformer (ICT). The signals from these devices can be analysed using high speed analogue to digital converters operating ...

  13. A compact source for bunches of singly charged atomic ions.

    Science.gov (United States)

    Murböck, T; Schmidt, S; Andelkovic, Z; Birkl, G; Nörtershäuser, W; Vogel, M

    2016-04-01

    We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 10(6) Mg(+) ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg(+) ions for sympathetic cooling of highly charged ions by laser-cooled (24)Mg(+).

  14. Single and Multi-bunch End-to-end Tracking in the LHeC

    CERN Document Server

    Pellegrini, D; Latina, A; Schulte, D

    2015-01-01

    The LHeC study aims at delivering an electron beam for collision with the LHC proton beam. The current base- line design consists of a multi-pass superconductive energy- recovery linac operating in a continuous wave mode. The high current beam ($\\sim$ 100 mA) in the linacs excites long- range wake-fields between bunches of different turns, which induce instabilities and might cause beam losses. PLACET2, a novel version of the tracking code PLACET, capable to handle recirculation and time dependencies, has been em- ployed to perform the first LHeC end-to-end tracking. The impact of long-range wake-fields, synchrotron radiation, and beam-beam effects has been assessed. The simulation results and recent improvements in the lattice design are presented and discussed in this paper.

  15. A 0.2 ns beam pulse for the 6 MV Van de Graaff accelerator

    Science.gov (United States)

    McMurray, W. R.; Kritzinger, J. J.; Wikner, V. C.; Swart, T.; Schmitt, H.

    1984-01-01

    The 1.5 ns pulsed beam of the SUNI Van de Graaff accelerator has been used for neutron time-of-flight studies. To provide sufficient resolution for neutron scattering measurements at 22 MeV, a post-acceleration bunching system has been installed. Bunching of 2-6 MeV p, d and 3He beams is achieved in a simple quarter-wave coaxial resonator chamber designed for high Q and low power. The bunched pulse has a fwhm of less than 0.2 ns. The design and testing of the bunching system are outlined. Optimum power requirements are tabulated together with the induced beam energy spreads.

  16. CTF3 Drive Beam Injector Optimisation

    CERN Document Server

    AUTHOR|(CDS)2082899; Doebert, S

    2015-01-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The main feasibility issues of the two-beam acceleration scheme are being demonstrated at CLIC Test Facility 3 (CTF3). The CTF3 Drive Beam injector consists of a thermionic gun followed by the bunching system and two accelerating structures all embedded in solenoidal magnetic field and a magnetic chicane. Three sub-harmonic bunchers (SHB), a prebuncher and a travelling wave buncher constitute the bunching system. The phase coding process done by the sub-harmonic bunching system produces unwanted satellite bunches between the successive main bunches. The beam dynamics of the CTF3 Drive Beam injector is reoptimised with the goal of improving the injector performance and in particular decreasing the satellite population, the beam loss in the magnetic chicane and the beam emittance in transverse plane compare to the original model based on P. Ur...

  17. ACCELERATORS Study of a magnetic alloy-loaded RF cavity for bunch compression at the CSR

    Science.gov (United States)

    Yin, Da-Yu; Liu, Yong; Xia, Jia-Wen; Li, Peng; Zhao, Yong-Tao; Yang, Lei; Qi, Xin

    2010-12-01

    The Heavy Ion Research Facility and Cooling Storage Ring (HIRFL-CSR) accelerator in Lanzhou offers a unique possibility for the generation of high density and short pulse heavy ion beams by non-adiabatic bunch compression longitudinally, which is implemented by a fast jump of the RF-voltage amplitude. For this purpose, an RF cavity with high electric field gradient loaded with Magnetic Alloy cores has been developed. The results show that the resonant frequency range of the single-gap RF cavity is from 1.13 MHz to 1.42 MHz, and a maximum RF voltage of 40 kV with a total length of 100 cm can be obtained, which can be used to compress heavy ion beams of 238U72+ with 250 MeV/u from the initial bunch length of 200 ns to 50 ns with the coaction of the two single-gap RF cavity mentioned above.

  18. Matching sub-fs electron bunches for laser-driven plasma acceleration at SINBAD

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J., E-mail: jun.zhu@desy.de [Deutsches Elektronen-Synchrotron, DESY, Hamburg (Germany); Universität Hamburg, Hamburg (Germany); Assmann, R.W.; Dorda, U.; Marchetti, B. [Deutsches Elektronen-Synchrotron, DESY, Hamburg (Germany)

    2016-09-01

    We present theoretical and numerical studies of matching sub-femtosecond space-charge-dominated electron bunch into the Laser-plasma Wake Field Accelerator (LWFA) foreseen at the SINBAD facility. The longitudinal space-charge (SC) effect induced growths of the energy spread and longitudinal phase-space chirp are major issues in the matching section, which will result in bunch elongation, emittance growth and spot size dilution. In addition, the transverse SC effect would lead to a mismatch of the beam optics if it were not compensated for. Start-to-end simulations and preliminary optimizations were carried out in order to understand the achievable beam parameters at the entrance of the plasma accelerator.

  19. Early transverse decoherence of bunches with space charge

    Science.gov (United States)

    Karpov, Ivan; Kornilov, Vladimir; Boine-Frankenheim, Oliver

    2016-12-01

    The transverse decoherence of injected bunches is an important phenomenon in synchrotrons and storage rings. The initial stage of this process determines the transverse emittance blowup, which should be taken into account for the design of feedback systems, for example. The interplay of different high-intensity effects can strongly affect the initial decoherence stage. We present a model that explains decoherence and emittance growth with chromaticity, space charge, and image charges within the first synchrotron period. We compare the model for different combinations of parameters with self-consistent particle tracking simulations and measurements in the SIS18 synchrotron at GSI Darmstadt. Generally, space charge slows down the decoherence process and can cause the loss of decoherence. Chromaticity and image charges can partly compensate this loss and restore the decoherence. We also analyze the single-particle excitation driven by space charge during the decoherence process. Particles gain large amplitudes from the coherent beam oscillation, which leads to halo buildup and losses.

  20. Beam dynamics analysis in pulse compression using electron beam compact simulator for Heavy Ion Fusion

    Directory of Open Access Journals (Sweden)

    Kikuchi Takashi

    2013-11-01

    Full Text Available In a final stage of an accelerator system for heavy ion inertial fusion (HIF, pulse shaping and beam current increase by bunch compression are required for effective pellet implosion. A compact simulator with an electron beam was constructed to understand the beam dynamics. In this study, we investigate theoretically and numerically the beam dynamics for the extreme bunch compression in the final stage of HIF accelerator complex. The theoretical and numerical results implied that the compact experimental device simulates the beam dynamics around the stagnation point for initial low temperature condition.

  1. Beam distribution reconstruction simulation for electron beam probe

    CERN Document Server

    Feng, Yongchun; Li, Peng; Kang, Xincai; Yin, Yan; Liu, Tong; You, Yaoyao; Chen, Yucong; Zhao, Tiecheng; Xu, Zhiguo; Wang, Yanyu; Yuan, Youjin

    2016-01-01

    Electron beam probe (EBP) is a new principle detector, which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain parallel electron beam is introduced and a simulation code is developed. And then, EBP as a profile monitor for dense beam is simulated using fast scan method under various target beam profile, such as KV distribution, waterbag distribution, parabolic distribution, Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory...

  2. Beam-Beam Effect with an External Noise in LHC

    CERN Document Server

    Ohmi, K; Höfle, Wolfgang; Tomás, R; Zimmermann, F

    2007-01-01

    In absence of synchrotron radiation, proton beams do not have any damping mechanism for incoherent betatron motion. A noise, which kicks beam particles in the transverse plane, gives a coherent betatron amplitude. If the system is linear, the coherent motion is maintained in amplitude. Nonlinear force, beam-beam and beam-electron cloud interactions, cause a decoherence of the betatron motion keeping the amplitude of each beam particle, with the result that an emittance growth arises. We focus only on fast noise with a correlation time of 1-100 turns. Slower noise is less serious, because it is regarded as an adiabatic change like a closed orbit change. As sources of the noise, we consider the bunch by bunch feedback system and phase jitter of cavities which turns to transverse noise via a crab cavity.

  3. LHC Beam Instrumentation: Beam Profile Measurements (2/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  4. A plasma wakefield acceleration experiment using CLARA beam

    CERN Document Server

    Xia, G; Clarke, J; Smith, J; Cormier-Michel, E; Jones, J; Williams, P H; Mckenzie, J W; Militsyn, B L; Hanahoe, K; Mete, O; Aimidula, A; Welsch, C P

    2014-01-01

    We propose a Plasma Accelerator Research Station (PARS) based at proposed FEL test facility CLARA (Compact Linear Accelerator for Research and Applications) at Daresbury Laboratory. The idea is to use the relativistic electron beam from CLARA, to investigate some key issues in electron beam transport and in electron beam driven plasma wakefield acceleration, e.g. high gradient plasma wakefield excitation driven by a relativistic electron bunch, two bunch experiment for CLARA beam energy doubling, high transformer ratio, long bunch self-modulation and some other advanced beam dynamics issues. This paper presents the feasibility studies of electron beam transport to meet the requirements for beam driven wakefield acceleration and presents the plasma wakefield simulation results based on CLARA beam parameters. Other possible experiments which can be conducted at the PARS beam line are also discussed.

  5. Status of non-destructive bunch length measurement based on coherent Cherenkov radiation

    CERN Document Server

    Zhang, Jianbing; Yu, Tiemin; Deng, Haixiao; Shkitov, Dmitry; Shevelev, Mikhail; Naumenko, Gennady; Potylitsyn, Alexander

    2013-01-01

    As a novel non-destructive bunch length diagnostic of the electron beam, an experimental observation of the coherent Cherenkov radiation generated from a dielectric caesium iodide crystal with large spectral dispersion was proposed for the 30MeV femtosecond linear accelerator at Shanghai Institute of Applied Physics (SINAP). In this paper, the theoretical design, the experimental setup, the terahertz optics, the first angular distribution observations of the coherent Cherenkov radiation, and the future plans are presented.

  6. Evaluation of phase bunching in the central region of a cyclotron by a radial probe with a plastic scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Miyawaki, Nobumasa, E-mail: miyawaki.nobumasa@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Fukuda, Mitsuhiro [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kurashima, Satoshi; Kashiwagi, Hirotsugu; Okumura, Susumu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Arakawa, Kazuo [Gunma University Heavy Ion Medical Center, Gunma University, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511 (Japan); Kamiya, Tomihiro [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-12-11

    A new technique for evaluating the phase bunching performance in the central region of a cyclotron was developed. A newly-developed radial probe with a 6-mm-wide, 5-mm-height plastic scintillator was applied to analysis of the correlation between the internal beam phase distribution and the initial beam phase, defined by adjusting the relative RF phase of the beam buncher. The phase distribution measurement system, comprising the radial probe equipped with a plastic scintillator and the signal-processing modules, had a sufficiently good time resolution of 45 ps full-width at half-maximum for the phase bunching evaluation. The correlations between the buncher phase and the measured phase distribution for the acceleration harmonic number h=1 and 2 were consistent with the calculation result of the geometric trajectory analysis. For h=1 case of a 107 MeV {sup 4}He{sup 2+} beam, the internal beam phase region spread over 71 RF degrees full-width at quarter-maximum (FWQM) for the acceptable buncher phase region of 48 RF degrees, and no evidence of the phase bunching effect was observed. For h=2 case of a 260 MeV {sup 20}Ne{sup 7+} beam, the internal beam phase region for the acceptable buncher phase region of 59 RF degrees was compressed into 21 RF degrees FWQM. The phase bunching effect was sharply evident for h=2, and contributed to increase of the acceptable beam phase region and the beam intensity per phase width.

  7. Interaction of ultrarelativistic electron and proton bunches with dense plasmas

    CERN Document Server

    Rukhadze, A A

    2012-01-01

    Here we discuss the possibility of employment of ultrarelativistic electron and proton bunches for generation of high plasma wakefields in dense plasmas due to the Cherenkov resonance plasma-bunch interaction. We estimate the maximum amplitude of such a wake and minimum system length at which the maximum amplitude can be generated at the given bunch parameters.

  8. Bunch Splitting Simulations for the JLEIC Ion Collider Ring

    Energy Technology Data Exchange (ETDEWEB)

    Satogata, Todd J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Gamage, Randika [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    We describe the bunch splitting strategies for the proposed JLEIC ion collider ring at Jefferson Lab. This complex requires an unprecedented 9:6832 bunch splitting, performed in several stages. We outline the problem and current results, optimized with ESME including general parameterization of 1:2 bunch splitting for JLEIC parameters.

  9. The Case: Bunche-Da Vinci Learning Partnership Academy

    Science.gov (United States)

    Eisenberg, Nicole; Winters, Lynn; Alkin, Marvin C.

    2005-01-01

    The Bunche-Da Vinci case described in this article presents a situation at Bunche Elementary School that four theorists were asked to address in their evaluation designs (see EJ791771, EJ719772, EJ791773, and EJ792694). The Bunche-Da Vinci Learning Partnership Academy, an elementary school located between an urban port city and a historically…

  10. Studies of longitudinal profile of electron bunches and impedance measurements at Indus-2 synchrotron radiation source

    Science.gov (United States)

    Garg, Akash Deep; Yadav, S.; Kumar, Mukesh; Shrivastava, B. B.; Karnewar, A. K.; Ojha, A.; Puntambekar, T. A.

    2016-04-01

    Indus-2 is a 3rd generation synchrotron radiation source at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We study the longitudinal profile of electrons in Indus-2 by using dual sweep synchroscan streak camera at visible diagnostic beamline. In this paper, the longitudinal profiles of electron bunch are analyzed by filling beam current in a single bunch mode. These studies are carried at injection energy (550 MeV) and at ramped beam energy (2.5 GeV). The effects of the wakefield generated interactions between the circulating electrons and the surrounding vacuum chamber are analyzed in terms of measured effects on longitudinal beam distribution. The impedance of the storage ring is obtained by fitting the solutions of Haissinski equation to the measured bunch lengthening with different impedance models. The impedance of storage ring obtained by a series R+L impedance model indicates a resistance (R) of 1350±125 Ω, an inductance (L) of 180±25 nH and broadband impedance of 2.69 Ω. These results are also compared with the values obtained from measured synchronous phase advancing and scaling laws. These studies are very useful in better understanding and control of the electromagnetic interactions.

  11. Beam Synchronous Timing Systems

    CERN Document Server

    Peters, A

    2003-01-01

    For many beam diagnostics purposes beam synchronous timing systems are needed in addition to the timing systems supplied by the control systems of the different accelerators. The demands and techniques of different accelerator facilities will be discussed along the following aspects: Bunch and macro pulse synchronous timing systems Solutions for different time scales from ps to ms Coupling to the RF and control systems of the different accelerators Electronics for the beam synchronous timing systems: parameters, techniques, controlling Use of industrial products for bunch synchronous timing systems, e.g. function generators Distribution of the timing signals: electronically via cables, optically via fibres or wireless Coupling to and use of timing standards: IRIG-B, GPS, ? The participants should present and describe solutions from their facilities with some transparencies as a starting point for the discussion.

  12. Transverse self-fields within an electron bunch moving in an arc of a circle

    CERN Document Server

    Geloni, G A; Luiten, J; Van der Wiel, M J; Dohlus, M; Saldin, E L; Schneidmiller, E A; Yurkov, M; Geloni, Gianluca; Botman, Jan; Luiten, Jom; Wiel, Marnix van der; Dohlus, Martin; Saldin, Evgeni; Schneidmiller, Evgeni; Yurkov, Mikhail

    2004-01-01

    As a consequence of motions driven by external forces, self-fields (which are different from the static case) originate within an electron bunch. In the case of magnetic external forces acting on an ultrarelativistic beam, the longitudinal self-interactions are responsible for CSR (Coherent Synchrotron Radiation)-related phenomena, which have been studied extensively. On the other hand, transverse self-interactions are present too. At the time being, existing theoretical analysis of transverse self-forces deal with the case of a bunch moving along a circular orbit only, without considering the situation of a bending magnet with a finite length. In this paper we propose an electrodynamical analysis of transverse self-fields which originate, at the position of a test particle, from an ultrarelativistic electron bunch moving in an arc of a circle. The problem will be first addressed within a two-particle system. We then extend our consideration to a line bunch with a stepped density distribution, a situation whi...

  13. TADPOLE for longitudinal electron-bunch diagnostics based on electro-optic upconversion

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, Jan-Patrick, E-mail: jan-patrick.schwinkendorf@desy.de; Wunderlich, Steffen, E-mail: steffen.wunderlich@desy.de; Schaper, Lucas; Schmidt, Bernhard; Osterhoff, Jens

    2014-03-11

    Electron-bunch diagnostics are desired to utilize unambiguous, non-destructive, single-shot techniques. Various methods fulfill the latter two demands, but feature significant ambiguities and constraints in the reconstruction of time-domain electron-bunch profiles, e.g. uncertainties arising from the phase retrieval of coherent radiation using the Kramers–Kronig relation. We present a novel method of measuring the spectral phase. The measurement is based on upconversion in an electro-optic crystal, where the THz-field spectrum of fs-electron bunches is shifted to the near-infrared. This technique allows the single-shot detection of its longitudinal form factor in both, amplitude and phase. The spectral phase and amplitude information is measured and thus the temporal profile reconstructed using temporal analysis by dispersing a pair of light E-fields, also known as TADPOLE. This is a combination of frequency resolved optical gating (FROG) and spectral interferometry, enabling the temporal measurement of low-power laser pulses. In this procedure, a narrow-bandwidth laser pulse detecting the longitudinal variations in the transverse electric field of an electron bunch via frequency mixing is interfered with a broadband and FROG-characterized reference pulse. The longitudinal beam profile may therefore be unambiguously inferred from the generated interferogram and the detected spectral-phase-information of the reference pulse.

  14. TADPOLE for longitudinal electron-bunch diagnostics based on electro-optic upconversion

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, Jan-Patrick; Wunderlich, Steffen; Schmidt, Bernhard; Osterhoff, Jens [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-01

    Electron-bunch diagnostics are desired to utilize unambiguous, non-destructive, single-shot techniques. Various methods fulfill the latter two demands, but feature significant ambiguities and constraints in the reconstruction of a time-domain electron-bunch profile, as for example uncertainties due to the phase retrieval of coherent radiation using the Kramers-Kronig relation. We present a novel method of upconverting the THz-field spectrum of fs electron bunches at the free-electron laser FLASH into the near-infrared in an electro-optic crystal. This technique allows the single-shot detection of its longitudinal form factor in both, amplitude and phase. The spectral phase and amplitude information is measured and thus the temporal profile reconstructed using temporal analysis by dispersing a pair of light E-fields, also known as TADPOLE. This is a combination of frequency resolved optical gating (FROG) and spectral interferometry, which enables the temporal measurement of low-power laser pulses. In this experiment, a narrow-bandwidth laser pulse detecting the longitudinal electric field of an electron bunch is interfered with a broadband and FROG-characterized reference pulse. The longitudinal beam profile may therefore be unambiguously inferred from the generated interferogram and the detected spectral-phase-information of the reference pulse.

  15. Control of Multibunch Longitudinal Instabilities and Beam Diagnostics Using a DSP-based Feedback System

    Energy Technology Data Exchange (ETDEWEB)

    Teytelman, Dmitry

    2000-03-30

    A bunch-by-bunch longitudinal feedback system has been designed and built to control coupled-bunch instabilities in the PEP-II machine. A prototype system has been installed at the Advanced Light Source at LBNL. Programmable DSPs allow longitudinal feedback processing in conjunction with data acquisition or instrumentation algorithms. Here the authors describe techniques developed for different beam and system diagnostics, such as measurements of the modal growth and damping rates and measurements of the bunch-by-bunch currents. Results from the Advanced Light Source are presented to illustrate these techniques.

  16. Formation of step bunches induced by flow in solution

    OpenAIRE

    Inaba, Masashi; Sato, Masahide

    2012-01-01

    We study the formation of step bunches induced by flow in solution during growth. In our previous study [M. Inaba and M. Sato: J. Phys. Soc. Jpn. 80 (2011) 074606], we showed that the step-down flow in solution causes bunching. In this research, we study the dependence of step behavior on some parameters. With a slow flow, the separation and coalescence between steps and bunches occur frequently during step bunching. With increasing flow rate, the frequency decreases and tight bunches are for...

  17. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    Energy Technology Data Exchange (ETDEWEB)

    Piot, P. [Northern Illinois Univ., DeKalb, IL (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Sun, Y. -E [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Maxwell, T. J. [Northern Illinois Univ., DeKalb, IL (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Ruan, J. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Lumpkin, A. H. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Rihaoui, M. M. [Northern Illinois Univ., DeKalb, IL (United States); Thurman-Keup, R. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2011-06-27

    We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  18. Bunch stabilization using rf phase modulation in the Intense Pulse Neutron Source (IPNS) Rapid Cycling Synchrotron (RCS).

    Energy Technology Data Exchange (ETDEWEB)

    Brumwell, F. R.; Dooling, J. C.; McMichael, G. E.

    1999-09-01

    Phase modulation (PM) is used to increase the current limit in the IPNS RCS. A device referred to as a scrambler introduces a small oscillating phase between the two RCS rf cavities at approximately twice the synchrotrons frequency, f{sub s}. The modulation introduced by the scrambler generates longitudinal oscillations in the bunch at 2f{sub s}. Modulations in the bunch are also observed transversely indicating a coupling between longitudinal and transverse motion. Comparing PM with amplitude modulation (AM), coupling to the beam is roughly equivalent at 2f{sub s}.

  19. Simulation Results of a Feedback Control System to Damp Electron Cloud Single-Bunch Transverse Instabilities in the CERN SPS

    CERN Document Server

    Secondo, R; Venturini, M; Fox, J D; Rivetta, C H; Höfle, W

    2011-01-01

    Transverse Single-Bunch Instabilities due to Electron Cloud effect are limiting the operation at high current of the SPS at CERN. Recently a high-bandwidth Feedback System has been proposed as a possible solution to stabilize the beam and is currently under study. We analyze the dynamics of the bunch actively damped with a simple model of the Feedback in the macro-particle code WARP, in order to investigate the limitations of the System such as the minimum amount of power required to maintain stability. We discuss the feedback model, report on simulation results and present our plans for further development of the numerical model.

  20. Investigation of the phase space distribution of electron bunches at the FLASH-linac using a transverse deflecting structure

    Energy Technology Data Exchange (ETDEWEB)

    Roehrs, M.

    2008-06-15

    The operation of a high-gain free-electron laser (FEL) puts stringent demands on the peak current, transverse emittance and energy spread of the electron beam. At the Free Electron Laser in Hamburg (FLASH), a transverse deflecting structure (TDS) has been installed to investigate these electron beam parameters. The radio-frequency electromagnetic field in the TDS is utilized to deflect the beam electrons vertically as a function of time so that the charge distribution in the longitudinal-horizontal plane can be imaged with optical transition radiation screens. Using this technique, the single-bunch current profile was measured with an unprecedented resolution of about 10 {mu}m (30 fs) under FEL operating conditions. A precise single-shot measurement of the energy distribution along a bunch was accomplished by using the TDS in combination with an energy spectrometer. Appropriate variations of the focal strengths of quadrupole magnets allowed for the measurement of the horizontal emittance as a function of the longitudinal position within a bunch (slice emittance) with a longitudinal resolution in the order of 10 {mu}m. While the slice emittance in the peak current region was measured to be significantly larger than deduced from properties of the FEL radiation, tomographic methods revealed a bunch region of small horizontal emittance and high current. The observed increase in slice emittance in the peak current region was found to be caused by coherent emission of synchrotron radiation within bending magnets. (orig.)

  1. Development of 3D beam-beam simulation for the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Stern, E.; Amundson, J.; Spentzouris, P.; Valishev, A.; /Fermilab; Qiang, J.; Ryne, R.; /LBL, Berkeley

    2007-06-01

    We present status of development of a 3D Beam-Beam simulation code for simulating the Fermilab Tevatron collider. The essential features of the code are 3D particle-in-cell Poisson solver for calculating the Beam-Beam electromagnetic interactions with additional modules for linear optics, machine impedance and chromaticity, and multiple bunch tracking. The simulations match synchrobetatron oscillations measured at the VEPP-2M collider. The impedance calculations show beam instability development consistent with analytic expressions.

  2. Self-interaction of subpico-second electron bunch traveling through a chicane-based bunch-compressor

    CERN Document Server

    Hajima, R; Ueda, T; Sakai, F; Kotaki, H; Kondoh, S; Kando, M; Kinoshita, K; Harano, H; Watanabe, T; Uesaka, M; Dewa, H; Nakajima, K

    1999-01-01

    A photo-cathode RF-gun and a chicane-based bunch-compressor are installed on an S-band linac which had been used for a UT-FEL experiment. Electron bunches extracted from the photo-cathode RF-gun are accelerated by an S-band structure up to 20 MeV and compressed by a chicane magnet. Since the bunch has very small longitudinal size and relatively low energy, coherent synchrotron radiation emitted from the bunch in the chicane creates a nonuniform energy loss in the bunch and degrades the performance of the bunch compressor. In the present paper, the performance of the bunch-compressor under the influence of coherent synchrotron radiation is studied. Preliminary experimental results are also presented.

  3. Tunable High-Intensity Electron Bunch Train Production Based on Nonlinear Longitudinal Space Charge Oscillation

    Science.gov (United States)

    Zhang, Zhen; Yan, Lixin; Du, Yingchao; Zhou, Zheng; Su, Xiaolu; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Shi, Jiaru; Chen, Huaibi; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang

    2016-05-01

    High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radio-frequency gun or by tuning the compression of a downstream magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μ J -level energies and tunable central frequency of the spectrum in the range of ˜0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.

  4. Production of high intensity electron bunches for the SLAC Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    James, M.B.

    1987-08-01

    This thesis describes the design and performance of a high intensity electron injecfor for the SLAC Linear Collider. Motivation for the collider and the specifications for the injector are discussed. An analytic theory of the bunching and capture of electrons by rf fields is discussed in the limit of low space charge and small signal. The design and performance of SLAC's main injector are described to illustrate a successful application of this theory. The bunching and capture of electrons by rf fields are then discussed in the limit of high space charge and large signal, and a description of the design of the collider injector follows. In the limit of high space charge forces and large rf signals, the beam dynamics are considerably more complex and numerical simulations are required to predict particle motion. A computer code which models the longitudinal dynamics of electrons in the presence of space charge and rf fields is described. The results of the simulations, the resulting collider injector design and the various components which make up the collider injector are described. These include the gun, subharmonic bunchers, traveling-wave buncher and velocity-of-light accelerator section. Finally, the performance of the injector is described including the beam intensity, bunch length, transverse emittance and energy spectrum. While the final operating conditions differ somewaht from the design, the performance of the collider injector is in good agreement with the numerical simulations and meets all of the collider specifications. 28 refs.

  5. Tunable High-Intensity Electron Bunch Train Production Based on Nonlinear Longitudinal Space Charge Oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen; Yan, Lixin; Du, Yingchao; Zhou, Zheng; Su, Xiaolu; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Shi, Jiaru; Chen, Huaibi; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang

    2016-05-05

    High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radiofrequency gun or by tuning the compression of a downstream magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μJ-level energies and tunable central frequency of the spectrum in the range of ~0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.

  6. Emittance growth due to static and radiative space charge forces in an electron bunch compressor

    CERN Document Server

    Talman, Richard; Stulle, Frank

    2009-01-01

    Evolution of short intense electron bunches passing through bunch-compressing beam lines is studied using the UAL (Unified Accelerator Libraries) string space charge formulation [R. Talman, Phys. Rev. ST Accel. Beams 7, 100701 (2004); N. Malitsky and R. Talman, in Proceedings of the 9th European Particle Accelerator Conference, Lucerne, 2004 (EPS-AG, Lucerne, 2004); R. Talman, Accelerator X-Ray Sources (Wiley-VCH, Weinheim, 2006), Chap. 13]. Three major configurations are studied, with the first most important and studied in greatest detail (because actual experimental results are available and the same results have been simulated with other codes): (i) Experimental bunch compression results were obtained at CTF-II, the CERN test facility for the “Compact Linear Collider” using electrons of about 40 MeV. Previous simulations of these results have been performed (using trafic4* [A. Kabel et al., Nucl. Instrum. Methods Phys. Res., Sect. A 455, 185 (2000)] and elegant [M. Borland, Argonne National Laboratory...

  7. Investigation of bunch repetition rate deviations in FIR FEL driven by a magnetron-based microtron

    CERN Document Server

    Kazakevitch, Grigori M; Lee Byung Cheol; Lee, J

    2002-01-01

    The stability of the bunch repetition rate in a FIR FEL driven by a 2.8 GHz magnetron-based microtron was investigated using a heterodyne method with a low Q-factor straight-flight measuring cavity. The measuring cavity is located in the straight section of the FIR FEL injection beam line and is excited by the passage of electron bunches. The RF signal from the measuring cavity coupling loop was mixed with a precise heterodyne signal with a frequency difference of several MHz. The beat frequency was analyzed to obtain the temporal distribution of the bunch repetition rate deviation during the macro pulse of the electron beam. The time resolution and the accuracy of measurements are approximately 100 ns and a few kHz, respectively. Based on this data, we could determine the level and shape of the magnetron current and the initial frequency shift between magnetron and accelerating cavity for the FEL operation in the wavelength range 100-300 microns.

  8. Theoretical analysis and simulation of the influence of self-bunching effects and longitudinal space charge effects on the propagation of keV electron bunch produced by a novel S-band Micro-Pulse electron Gun

    Directory of Open Access Journals (Sweden)

    Jifei Zhao

    2016-06-01

    Full Text Available As an important electron source, Micro-Pulse electron Gun (MPG which is qualified for producing high average current, short pulse, low emittance electron bunches steadily holds promise to use as an electron source of Coherent Smith-Purcell Radiation (CSPR, Free Electron Laser (FEL. The stable output of S-band MPG has been achieved in many labs. To establish reliable foundation for the future application of it, the propagation of picosecond electron bunch produced by MPG should be studied in detail. In this article, the MPG which was working on the rising stage of total effective Secondary Electron Yield (SEY curve was introduced. The self-bunching mechanism was discussed in depth both in the multipacting amplifying state and the steady working state. The bunch length broadening induced by the longitudinal space-charge (SC effects was investigated by different theoretical models in different regions. The 2D PIC codes MAGIC and beam dynamic codes TraceWin simulations were also performed in the propagation. The result shows an excellent agreement between the simulation and the theoretical analysis for bunch length evolution.

  9. Theoretical analysis and simulation of the influence of self-bunching effects and longitudinal space charge effects on the propagation of keV electron bunch produced by a novel S-band Micro-Pulse electron Gun

    Science.gov (United States)

    Zhao, Jifei; Lu, Xiangyang; Zhou, Kui; Yang, Ziqin; Yang, Deyu; Luo, Xing; Tan, Weiwei; Yang, Yujia

    2016-06-01

    As an important electron source, Micro-Pulse electron Gun (MPG) which is qualified for producing high average current, short pulse, low emittance electron bunches steadily holds promise to use as an electron source of Coherent Smith-Purcell Radiation (CSPR), Free Electron Laser (FEL). The stable output of S-band MPG has been achieved in many labs. To establish reliable foundation for the future application of it, the propagation of picosecond electron bunch produced by MPG should be studied in detail. In this article, the MPG which was working on the rising stage of total effective Secondary Electron Yield (SEY) curve was introduced. The self-bunching mechanism was discussed in depth both in the multipacting amplifying state and the steady working state. The bunch length broadening induced by the longitudinal space-charge (SC) effects was investigated by different theoretical models in different regions. The 2D PIC codes MAGIC and beam dynamic codes TraceWin simulations were also performed in the propagation. The result shows an excellent agreement between the simulation and the theoretical analysis for bunch length evolution.

  10. Modulated Electron Bunch with Amplitude Front Tilt in an Undulator

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2015-01-01

    In a previous paper we discussed the physics of a microbunched electron beam kicked by the dipole field of a corrector magnet by describing the kinematics of coherent undulator radiation after the kick. We demonstrated that the effect of aberration of light supplies the basis for understanding phenomena like the deflection of coherent undulator radiation by a dipole magnet. We illustrated this fact by examining the operation of an XFEL under the steady state assumption, that is a harmonic time dependence. We argued that in this particular case the microbunch front tilt has no objective meaning; in other words, there is no experiment that can discriminate whether an electron beam is endowed with a microbunch front tilt of not. In this paper we extend our considerations to time-dependent phenomena related with a finite electron bunch duration, or SASE mode of operation. We focus our attention on the spatiotemporal distortions of an X-ray pulse. Spatiotemporal coupling arises naturally in coherent undulator radi...

  11. RF Manipulations for Higher Brightness LHC-Type Beams

    CERN Document Server

    Damerau, H; Gilardoni, S; Hancock, S

    2013-01-01

    In order to increase the transverse brightness of beams for the LHC, ever more complicated RF manipulations have been proposed in the PS machine to reduce the intensity demands per PS batch on the upstream PS Booster. Several schemes based on cascades of batch compression, bunch merging, as well as the more routine bunch splitting have been successfully commissioned and higher brightness beams have been delivered to the downstream accelerators for measurement. Despite all this complexity, longitudinal and transverse beam quality are well preserved. In addition, to profit fully from the brightness of all four PS Booster rings, the injection of twice 4 bunches into harmonic 9 buckets in the PS has been made operational as an alternative to the usual double-batch transfer of 4 + 2 bunches into harmonic 7. This paper summarizes the new beam production schemes, their implementation in the PS low-level RF system and the experimental results..

  12. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring.

    Science.gov (United States)

    Kumar, Pradeep; Ghodke, A D; Karnewar, A K; Holikatti, A C; Yadav, S; Puntambekar, T A; Singh, G; Singh, P

    2013-12-01

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  13. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring

    Science.gov (United States)

    Kumar, Pradeep; Ghodke, A. D.; Karnewar, A. K.; Holikatti, A. C.; Yadav, S.; Puntambekar, T. A.; Singh, G.; Singh, P.

    2013-12-01

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  14. Emission of Low-Energy Photons by Electrons at Electron-Positron and Electron-Ion Colliders with Dense Bunches

    CERN Document Server

    Jentschura, U D; Serbo, V G; 10.1103/PhysRevSTAB.12.011003

    2009-01-01

    Usually, the emission of low-energy photons in electron-positron (or electron-ion) bunch collisions is calculated with the same approach as for synchrotron radiation (beamstrahlung). However, for soft photons (E_gamma < E_c where E_c is a critical photon energy), when the coherence length of the radiation becomes comparable to the bunch length, the beamstrahlung approximation becomes invalid. In this paper, we present results of our calculation for this region based on approximation of classical currents. We consider several colliders with dense bunches. The number of low-energy photons dN_gamma emitted by N_e electrons per bunch crossing in the energy interval dE_gamma is dN_gamma = alpha g N_e dE_gamma/E_gamma, where alpha is the fine-structure constant, and the function g, which depends on the bunch parameters, typically is of order unity for modern colliders. In particular, for the ILC, we find that E_c = 83 keV and g=5.5 at a vanishing beam axis displacement, and g=0.88, E_c=0.24 keV for KEKB. We also...

  15. Sensitivity improvement of radio receivers by exploiting an arithmetic pattern in photon bunching noise

    CERN Document Server

    Lieu, Richard

    2016-01-01

    A hierarchy of statistics of increasing sophistication and accuracy is proposed, to exploit an interesting and fundamental arithmetic structure in the photon bunching noise of incoherent light of large photon occupation number, with the purpose of suppressing the noise and rendering a more reliable and unbiased measurement of the light intensity. The method does not require any new hardware, rather it operates at the software level, with the help of high precision computers, to reprocess the intensity time series of the incident light to create a new series with smaller bunching noise coherence length. The ultimate accuracy improvement of this method of flux measurement is limited by the timing resolution of the detector, the precision of the computer in manipulating numbers, and the photon occupation number of the beam (the higher the photon number the better the performance). The principal application is sensitivity enhancement of radio astronomical observations.

  16. Multi-Bunch Simulations of the ILC for Luminosity Performance Studies

    CERN Document Server

    White, Glen; Walker, Nicholas J

    2005-01-01

    To study the luminosity performance of the International Linear Collider (ILC) with different design parameters, a simulation was constructed that tracks a multi-bunch representation of the beam from the Damping Ring extraction through to the Interaction Point. The simulation code PLACET is used to simulate the LINAC, MatMerlin is used to track through the Beam Delivery System and GUINEA-PIG for the beam-beam interaction. Included in the simulation are ground motion and wakefield effects, intra-train fast feedback and luminosity-based feedback systems. To efficiently study multiple parameters/multiple seeds, the simulation is deployed on the Queen Mary High-Throughput computing cluster at Queen Mary, University of London, where 100 simultaneous simulation seeds can be run.

  17. Emittance growth from electron beam modulation

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2009-12-01

    In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.

  18. The beam has circulated 30 minutes in the LHC!

    CERN Multimedia

    Last night around 2 a.m. the beam circulated for the first time for about 30 minutes in the clockwise ring of the LHC. This confirms that the accelerating cavities are working well. During the night, the LHC team also increased the intensity of the single bunch to around 1/20th of the nominal LHC bunch intensity. You can follow the beam commissioning daily reports on: https://lhc-commissioning.web.cern.ch/lhc-commissioning/dailynews/index.htm

  19. LHC Report: Freshly squeezed beams!

    CERN Multimedia

    Mike Lamont for the LHC Team

    2011-01-01

    After careful validation of  new machine settings, the LHC was ready for higher luminosity operation. New luminosity records have been set, but the operations team continues to wrestle with machine availability issues.   The commissioning of the squeeze to a ß* of 1 m in ATLAS and CMS described in the last Bulletin took until Wednesday, 7 September to complete. In order to validate the new set-up, beam losses were provoked in a controlled way with low intensity beams. The distribution of beam loss around the machine in these tests is known as a loss map. The loss maps showed that the collimation system is catching the large majority of beam losses as it should, and that the machine was ready for us to ramp the number of bunches back up and go to physics production. The ramp-up of the number of bunches went smoothly with fills at 264, 480, and 912 bunches on the way back to the machine’s previous record of 1380 bunches (first fill on Friday, 9 Se...

  20. Beam-beam observations in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  1. Femtosecond electron-bunch dynamics in laser wakefields and vacuum

    OpenAIRE

    Khachatryan, A. G.; Irman, A.; Goor, van de, AAAM; Boller, K. -J.

    2007-01-01

    Recent advances in laser wakefield acceleration demonstrated the generation of extremely short (with a duration of a few femtoseconds) relativistic electron bunches with relatively low (of the order of couple of percent) energy spread. In this article we study the dynamics of such bunches in drift space (vacuum) and in channel-guided laser wakefields. Analytical solutions were found for the transverse coordinate of an electron and for the bunch envelope in the wakefield in the case of arbitra...

  2. Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching

    Science.gov (United States)

    Zhang, Zhijun; Li, Wentao; Liu, Jiansheng; Wang, Wentao; Yu, Changhai; Tian, Ye; Nakajima, Kazuhisa; Deng, Aihua; Qi, Rong; Wang, Cheng; Qin, Zhiyong; Fang, Ming; Liu, Jiaqi; Xia, Changquan; Li, Ruxin; Xu, Zhizhan

    2016-05-01

    We propose a scheme to minimize the energy spread of an electron beam (e-beam) in a cascaded laser wakefield accelerator to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. The trapped e-beam in the injection stage is transferred to the zero-phase region at the center of one wakefield period in the compression stage where the length of the e-beam can be greatly shortened owing to the velocity bunching. After being seeded into the third stage for acceleration, the e-beam can be accelerated to a much higher energy before its energy chirp is compensated owing to the shortened e-beam length. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e-beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge.

  3. Characterization of laser-driven single and double electron bunches with a permanent magnet quadrupole triplet and pepper-pot mask

    Science.gov (United States)

    Manahan, G. G.; Brunetti, E.; Aniculaesei, C.; Anania, M. P.; Cipiccia, S.; Islam, M. R.; Grant, D. W.; Subiel, A.; Shanks, R. P.; Issac, R. C.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A.

    2014-10-01

    Electron beams from laser-plasma wakefield accelerators have low transverse emittance, comparable to those from conventional radio frequency accelerators, which highlights their potential for applications, many of which will require the use of quadrupole magnets for optimal electron beam transport. We report on characterizing electron bunches where double bunches are observed under certain conditions. In particular, we present pepper-pot measurements of the transverse emittance of 120-200 MeV laser wakefield electron bunches after propagation through a triplet of permanent quadrupole magnets. It is shown that the normalized emittance at source can be as low as 1 π mm mrad (resolution limited), growing by about five times after propagation through the quadrupoles due to beam energy spread. The inherent energy-dependence of the magnets also enables detection of double electron bunches that could otherwise remain unresolved, providing insight into the self-injection of multiple bunches. The combination of quadrupoles and pepper-pot, in addition, acts as a diagnostic for the alignment of the magnetic triplet.

  4. BEAM DYNAMICS ANALYSIS FOR THE ULTRA-FAST KICKER IN CIRCULAR COOLER RING OF JLEIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yulu [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Inst. Modern Phys., Chinese Academy of Sciences, Lanzhou, China; Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Shaoheng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    An ultra-fast kicker system consisting of four quarter wavelength resonator based deflecting cavities was developed that simultaneously resonates at 10 subharmonic modes of the 476.3MHz bunch repetition frequency. Thus every 10th bunch in the bunch train will experience a transverse kick while all the other bunches are undisturbed. This fast kicker is being developed for the Energy Recovery Linac (ERL) based electron Circular Cooler Ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously MEIC). The electron bunches can be reused 10-30 turns thus the beam current in the ERL can be reduced to 1/10 - 1/30 (150mA - 50mA) of the cooling bunch current (1.5A). In this paper, several methods to synthesize such a kicker waveform and the comparison made by the beam dynamics tracking in Elegant will be discussed.

  5. Multi-beam linear accelerator EVT

    Energy Technology Data Exchange (ETDEWEB)

    Teryaev, Vladimir E., E-mail: vladimir_teryaev@mail.ru [Omega-P, Inc., New Haven, CT 06510 (United States); Kazakov, Sergey Yu. [Fermilab, Batavia, IL 60510 (United States); Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT 06510 (United States); Yale University, New Haven, CT 06511 (United States)

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  6. LHC Report: 25 ns spacing yields record beam intensity

    CERN Multimedia

    The LHC team

    2012-01-01

    Over the weekend the LHC broke two records: a record number of 2,748 proton bunches were injected into the accelerator giving a record beam intensity of around 2.7 x 1014 protons in both beams. These beams have yet to face the challenge of "ramping" to high energy.   These very good results were made possible by a new beam configuration: the design value of 25 nanosecond spacing between proton bunches replaced - for the first time – the typical 50 nanosecond spacing. This test run was done at 450 GeV with no collisions. Up to now, the LHC has been running with around 1,380 bunches with 50 nanoseconds between bunches. By going to 25 nanoseconds, the LHC operations team can double the number of bunches to around 2,800. One of the main limitations for this mode of operation is the so-called electron cloud (see Bulletin 15-16/2011) that is strongly enhanced by the reduced spacing among bunches.  The electron cloud has nasty effects on the beam (beam size increase...

  7. Beam instability Workshop - plenary sessions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The purpose of this workshop was to provide a review of the mechanisms of limiting beam instabilities, their cures, including feedback, and beam measurement for synchrotron radiation light sources. 12 plenary sessions took place whose titles are: 1) challenging brilliance and lifetime issues with increasing currents; 2) limiting instabilities in multibunch; 3) experience from high currents in B factories; 4) longitudinal dynamics in high intensity/bunch; 5) Transverse instabilities for high intensity/bunch; 6) working group introduction from ESRF experience; 7) impedance modelling: simulations, minimization; 8) report on the broadband impedance measurements and modelling workshop; 9) feedback systems for synchrotron light sources; 10) beam instabilities diagnostics; 11) harmonic cavities: the pros and cons; and 12) experimental study of fast beam-ion instabilities at PLS. This document gathers the 12 articles that were presented during these sessions.

  8. 束团序列发射的相干同步辐射强度数值计算%Numerical Calculation on Coherent Synchrotron Radiation Intensity Due to Inter-Bunch Interference in the Bunch Train

    Institute of Scientific and Technical Information of China (English)

    朱俊彪; 张国庆; 李永贵; 谢家麟

    2001-01-01

    提出一个新颖的射频电子束团序列在偏转或者摇摆磁场中发射的相干同步辐射相干迭加导致辐射增强的理论模型,并基此分析和计算了利用BFEL装置的30MeV射频直线加速器产生的电子束团序列发射的相干辐射增强效应. 由讨论可知,不同的束团产生的相干同步辐射之间存在相干性源于束团间的相干性;这种束团间的相干性引起的辐射增强迭加在单个束团产生的相干辐射功率谱上;随着波长的增长,这种辐射增强呈现规则的高速振荡效应;束团间相干性引起的强度增强近似约为宏脉冲内所含束团数的平方. 最后提出利用所设计的毫米波Michelson干涉仪检测BFEL装置的电子束团序列的相干性的实验设想.%A novel model for the inter-bunch interference in a bunch train is presented where a train of electron bunches passing through a bending or undulator magnetic field is considered as a moving multi-slit diffraction array from which multi beams of coherent radiation emitted with definite phase difference. Based on this model,interference among multi-beams of coherent synchrotron radiation emitted from consecutive bunches accelerated by a 30 MeV RF-Linac at BFEL is analyzed and numerically calculated. From the discussions it is shown that: 1. Rapidly oscillating radiation enhancement due to inter-bunch interference is overlapped on the single bunch power spectrum;2. Such radiation enhancement consists of series of spectrum lines corresponding to harmonics of the fundamental of RF-Linac;3. Main maximum positions are determined by the “diffraction condition”;4. Intensity enhancement is about as high as the number of bunches in a macropulse;5. The axially measured radiation frequency is lower than the offaxis one. Experimental design to measure interference from separate bunches at the BFEL Linac with the developed mm-wave Michelson interferometer is presented.

  9. Tax Bunching, Income Shifting and Self-employment

    DEFF Research Database (Denmark)

    le Maire, Christian Daniel; Schjerning, Bertel

    This paper proposes a dynamic extension to Saez (2010) bunching formula that allows us to distinguish bunching based on real responses and income shifting. We provide direct evidence of income shifting and pronounced bunching in taxable income for the case of Danish self-employed. If income...... shifting was neglected in this case, we would conclude that taxable incomes were highly sensitive to changes in marginal tax rates. We show, however, that more than half of the observed bunching in taxable income for the self-employed is driven by intertemporal income shifting, implying a structural...

  10. Tax Bunching, Income Shifting and Self-employment

    DEFF Research Database (Denmark)

    le Maire, Christian Daniel; Schjerning, Bertel

    2013-01-01

    This paper proposes a dynamic extension to Saez (2010) bunching formula that allows us to distinguish bunching based on real responses and income shifting. We provide direct evidence of income shifting and pronounced bunching in taxable income for the Danish self-employed. If income shifting...... was neglected in this case, we would estimate a taxable income elasticity in the range of 0.43-0.53 and conclude that taxable incomes were highly sensitive to changes in marginal tax rates. We show, however, that more than half of the bunching in taxable income is driven by intertemporal income shifting...

  11. Effect of the induced field memory on the bunch lengthening

    Energy Technology Data Exchange (ETDEWEB)

    Pestrikov, D.V., E-mail: pestrikov@inp.nsk.su

    2015-02-11

    We study the variations of the solutions to the Haissinski equation versus the duration of the memory of the longitudinal induced fields. For simplicity, we assume that a single bunch in a storage ring interacts with surrounding electrodes, which electromagnetically are equivalent to a parallel LR-circuit. For this particular case, we have found out that controlling the decay time of the bunch induced fields we can substantially affect the length of the bunch as well as the features of Landau damping of coherent oscillations of the bunch.

  12. Beam-Beam Simulations with GUINEA-PIG

    CERN Document Server

    Schulte, Daniel

    1998-01-01

    While the bunches in a linear collider cross only once, due to their small size they experience a strong beam-beam effect. GUINEA-PIG is a code to simulate the impact of this effect on luminosity and back ground. A short overview of the program is given with examples of its application to the back ground strudies for TESLA, the top quark threshold scan and a possible luminosity monitor, as well as some results for CLIC.

  13. Nano-scale electron bunching in laser-triggered ionization injection in plasma accelerators

    CERN Document Server

    Xu, X L; Li, F; Wan, Y; Wu, Y P; Hua, J F; Pai, C -H; Lu, W; An, W; Yu, P; Mori, W B; Joshi, C

    2015-01-01

    Ionization injection is attractive as a controllable injection scheme for generating high quality electron beams using plasma-based wakefield acceleration. Due to the phase dependent tunneling ionization rate and the trapping dynamics within a nonlinear wake, the discrete injection of electrons within the wake is nonlinearly mapped to discrete final phase space structure of the beam at the location where the electrons are trapped. This phenomenon is theoretically analyzed and examined by three-dimensional particle-in-cell simulations which show that three dimensional effects limit the wave number of the modulation to between $> 2k_0$ and about $5k_0$, where $k_0$ is the wavenumber of the injection laser. Such a nano-scale bunched beam can be diagnosed through coherent transition radiation upon its exit from the plasma and may find use in generating high-power ultraviolet radiation upon passage through a resonant undulator.

  14. Nanoscale Electron Bunching in Laser-Triggered Ionization Injection in Plasma Accelerators

    Science.gov (United States)

    Xu, X. L.; Pai, C.-H.; Zhang, C. J.; Li, F.; Wan, Y.; Wu, Y. P.; Hua, J. F.; Lu, W.; An, W.; Yu, P.; Joshi, C.; Mori, W. B.

    2016-07-01

    Ionization injection is attractive as a controllable injection scheme for generating high quality electron beams using plasma-based wakefield acceleration. Because of the phase-dependent tunneling ionization rate and the trapping dynamics within a nonlinear wake, the discrete injection of electrons within the wake is nonlinearly mapped to a discrete final phase space structure of the beam at the location where the electrons are trapped. This phenomenon is theoretically analyzed and examined by three-dimensional particle-in-cell simulations which show that three-dimensional effects limit the wave number of the modulation to between >2 k0 and about 5 k0, where k0 is the wave number of the injection laser. Such a nanoscale bunched beam can be diagnosed by and used to generate coherent transition radiation and may find use in generating high-power ultraviolet radiation upon passage through a resonant undulator.

  15. A Wideband Slotted Kicker Design for SPS Transverse Intra-Bunch Feedback

    CERN Document Server

    Cesaratto, John M; DeSantis, S; Drago, A; Fox, J D; Gallo, A; Hofle, W; Marcellini, F; Rivetta, C H; Zobov, M

    2013-01-01

    Control and mitigation of transverse beam instabilities caused by electron cloud and TMCI will be essential for the SPS to meet the beam intensity demands for the HL-LHC upgrade. A wideband intra-bunch feedback method is in development, based on a 4 GS/s data acquisition and processing, and with a back end frequency structure extending to 1 GHz. A slotted type kicker, similar to those used for stochastic cooling, has been considered as the terminal element of the feedback chain. It offers the most promising deflecting structure characteristics to meet the system requirements in terms of bandwidth, shunt impedance, and beam coupling impedance. Different types of slotted structures have been explored and simulated, including a ridged waveguide and coaxial type waveguide. In this paper we present our findings and the conceptual design of a vertical SPS wideband kicker consistent with the stay clear, vacuum, frequency band coverage, and peak shunt impedance requirements.

  16. Femtosecond electron-bunch dynamics in laser wakefields and vacuum

    NARCIS (Netherlands)

    Khachatryan, A.G.; Irman, A.; Goor, van F.A.; Boller, K.-J.

    2007-01-01

    Recent advances in laser wakefield acceleration demonstrated the generation of extremely short (with a duration of a few femtoseconds) relativistic electron bunches with relatively low (of the order of couple of percent) energy spread. In this article we study the dynamics of such bunches in drift s

  17. Performance Analysis of a Bunch and Track Identifier Prototype (BTI) for the CMS Barrel Muon Drift Chambers; Estudio de las Prestaciones de un Prototipo de Bunch and Track Identifier (BTI) para las Camaras de Deriva de CMS

    Energy Technology Data Exchange (ETDEWEB)

    Puerta Pelayo, J.

    2001-07-01

    This note contains a short description of the first step in the first level trigger applied to the barrel muon drift chambers of CMS: the Bunch and Track Identifier (BTI). The test beam results obtained with a BTI prototype have been also analysed BTI performance for different incidence angles and in presence of external magnetic field has been tested, as well as BTI capability as trigger device and track reconstructor. (Author) 30 refs.

  18. On the Production of Flat Electron Bunches for Laser Wake Field Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Kando, M.; Fukuda, Y.; Kotaki, H.; Koga, J.; Bulanov, S.V.; Tajima, T.; /JAERI, Kyoto; Chao, A.; Pitthan, R.; /SLAC; Schuler, K.-P.; /DESY; Zhidkov, A.G.; /CRIEPI, Tokyo; Nemoto, K.; /CRIEPI, Tokyo

    2006-06-27

    We suggest a novel method for injection of electrons into the acceleration phase of particle accelerators, producing low emittance beams appropriate even for the demanding high energy Linear Collider specifications. In this paper we work out the injection into the acceleration phase of the wake field in a plasma behind a high intensity laser pulse, taking advantage of the laser polarization and focusing. With the aid of catastrophe theory we categorize the injection dynamics. The scheme uses the structurally stable regime of transverse wake wave breaking, when electron trajectory self-intersection leads to the formation of a flat electron bunch. As shown in three-dimensional particle-in-cell simulations of the interaction of a laser pulse in a line-focus with an underdense plasma, the electrons, injected via the transverse wake wave breaking and accelerated by the wake wave, perform betatron oscillations with different amplitudes and frequencies along the two transverse coordinates. The polarization and focusing geometry lead to a way to produce relativistic electron bunches with asymmetric emittance (flat beam). An approach for generating flat laser accelerated ion beams is briefly discussed.

  19. Beam loading compensation with variable group velocity

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Z.D.

    1992-08-01

    Consider a section with linearly variable group velocity and a beam pulse shorter than the section fill time. Choose the current amplitude so that the gradient of the last bunch equals the gradient of the first bunch. For beam pulses less than about 15% of fill time, the voltage deviation during the beam pulse is small, but as the pulse width increases the voltage deviation also increases. We show that by decreasing the output to input group velocity ratio, we can reduce the first order voltage deviation, and that we can remove the remaining second-order voltage deviation by linearly decreasing the section input power by a small amount starting at beam injection time. This way we can increase the beam pulse width to more than half the fill time, and thereby increase the RF to beam energy transfer efficiency and the luminosity without increasing the voltage deviation.

  20. First years experience of LHC Beam Instrumentation

    CERN Document Server

    Jones, O R

    2011-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. This paper will comment on all of these systems and on their contributions to the various stages of beam commissioning. It will include details on: the beam position system and its use for realtime global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; synchrotron light diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  1. A Fast Switchyard for the TESLA FEL-Beam Using a Superconducting Transverse Mode Cavity

    CERN Document Server

    Wanzenberg, R

    2000-01-01

    In the present design of the TESLA Linear Collider with integrated X-ray Laser Facility it is necessary that 1 ms long bunch trains with about 10000 bunches are generated and distributed to several free electron laser (FEL) beam lines. The different scientific applications of the X-ray FELs need specific filling patterns of the bunches in the bunch train. It is shown that a fast switch-yard based on a superconducting transverse mode cavity can be used to generate the required bunch pattern in a flexible way while keeping the beam loading in the main linear accelerator constant. The conceptual design of the beam optics and the transverse mode cavity are presented.

  2. Studies of RF Noise Induced Bunch Lengthening at the LHC

    CERN Document Server

    Mastoridis, T; Rivetta, C H; Baudrenghien, P; Butterworth, A C; Molendijk, J C

    2011-01-01

    Radio Frequency noise induced bunch lengthening can strongly affect the Large Hadron Collider performance through luminosity reduction, particle loss, and other effects. Models and theoretical formalisms demonstrating the dependence of the LHC longitudinal bunch length on the RF station noise spectral content have been presented*,**. Initial measurements validated these studies and determined the performance limiting RF components. For the existing LHC LLRF implementation the bunch length increases with a rate of 1 mm/hr, which is higher than the intrabeam scattering diffusion and leads to a 27% bunch length increase over a 20 hour store. This work presents measurements from the LHC that better quantify the relationship between the RF noise and longitudinal emittance blowup. Noise was injected at specific frequency bands and with varying amplitudes at the LHC accelerating cavities. The experiments presented in this paper confirmed the predicted effects on the LHC bunch length due to both the noise around the ...

  3. Cherenkov loss factor of short relativistic bunches:general approach

    CERN Document Server

    Baturin, S S

    2013-01-01

    The interaction of short relativistic charged particle bunches with waveguides and other accelerator system components is a critical issue for the development of X-ray FELs (free electron lasers) and linear collider projects. Wakefield Cherenkov losses of short bunches have been studied previously for resistive wall, disk-loaded, corrugated and dielectric loaded waveguides. It was noted in various publications [1] that if the slowdown layer is thin, the Cherenkov loss factor of a short bunch does not depend on the guiding system material and is a constant for any given transverse cross section dimensions of the waveguides. In this paper, we consider a new approach to the analysis of loss factors for relativistic short bunches and formulate a general integral relation that allows calculation of the loss factor for a short relativistic bunch passing an arbitrary waveguide system. The loss factors calculated by this new method for various types of waveguides with arbitrary thickness slowdown layers, including in...

  4. Generation of femtosecond bunch trains using a longitudinal-to-transverse phase space exchange technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yin-e; /Fermilab; Piot, Philippe; /Fermilab /Northern Illinois U.

    2008-10-01

    We demonstrate analytically and via numerical simulations, how a longitudinal-to-transverse phase space manipulation can be used to produce a train of femtosecond electron bunches. The technique uses an incoming transversely-modulated electron beam obtained via destructive (e.g. using a multislits mask) methods. A transverse-to-longitudinal exchanger is used to map this transverse modulation into a temporal modulation. Limitation of the proposed method and scalability to the femtosecond regime are analyzed analytically and with the help of numerical simulation. Finally, a proof-of-principle experiment is discussed in the context of the Fermilab's A0 photoinjector.

  5. Effectiveness of rf phase modulation for increasing bunch length in electron storage rings

    Science.gov (United States)

    Orsini; Mosnier

    2000-04-01

    Aiming at increasing the apparent bunch length and hence the beam lifetime in electron storage rings, rf phase modulation near one parametric resonance has been experimentally investigated. Since the possible benefit of this technique depends greatly on the ring parameters, we studied the effect of such a modulation for different rf parameters on the longitudinal emittance. Theoretical predictions and results of simulations are compared and discussed. It is shown that synchrotron radiation tends to spoil the parametric resonance. In particular, a criterion for island survival has been found.

  6. Bunch mode specific rate corrections for PILATUS3 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Trueb, P., E-mail: peter.trueb@dectris.com [DECTRIS Ltd, 5400 Baden (Switzerland); Dejoie, C. [ETH Zurich, 8093 Zurich (Switzerland); Kobas, M. [DECTRIS Ltd, 5400 Baden (Switzerland); Pattison, P. [EPF Lausanne, 1015 Lausanne (Switzerland); Peake, D. J. [School of Physics, The University of Melbourne, Victoria 3010 (Australia); Radicci, V. [DECTRIS Ltd, 5400 Baden (Switzerland); Sobott, B. A. [School of Physics, The University of Melbourne, Victoria 3010 (Australia); Walko, D. A. [Argonne National Laboratory, Argonne, IL 60439 (United States); Broennimann, C. [DECTRIS Ltd, 5400 Baden (Switzerland)

    2015-04-09

    The count rate behaviour of PILATUS3 detectors has been characterized for seven bunch modes at four different synchrotrons. The instant retrigger technology of the PILATUS3 application-specific integrated circuit is found to reduce the dependency of the required rate correction on the synchrotron bunch mode. The improvement of using bunch mode specific rate corrections based on a Monte Carlo simulation is quantified. PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanism has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel.

  7. Investigating the Feasibility of a Travelling-wave Chopper for the Clean Separation of 10 MHz Bunches at HIE-ISOLDE

    CERN Document Server

    Mukhopadhyay, A; Calaga, R; Caspers, F; Paoluzzi, M

    2014-01-01

    The feasibility of cleanly separating the main 10.128MHz bunches from the 101.28MHz satellite bunches with a travelling-wave type chopper at HIE-ISOLDE was investigated using a simple model comprising a chain of synchronised capacitors pulsed at high-voltage. Even with a relatively large transverse aperture of 30mm it appears feasible to remove the satellite bunches spaced at 75mm without significantly perturbing the main bunch. We estimate that for a chopping voltage of 1.2 kV a string of 20 capacitors is required to impart the required deflection of 4 mrad to beams with A=q = 4:5 and the mechanical length of the system can be kept under 0.5 m. The deflection imparted on the main pulse is . 1% of that received by the discarded satellite bunches and the transverse emittance growth of the beam is small if the rise/fall times are kept below 5 ns. The HIE-ISOLDE specification is similar to the specification of the meander strip-line chopper developed at CERN for Linac4 and the application of this technology at ...

  8. Beam position monitor data acquisition for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Lenkszus, F.R.; Kahana, E.; Votaw, A.J.; Decker, G.A.; Chung, Y.; Ciarlette, D.J.; Laird, R.J.

    1993-01-01

    This paper describes the Beam Position Monitor (BPM) data acquisition scheme for the Advanced Photon Source (APS) storage ring. The storage ring contains 360 beam position monitors distributed around its 1104-meter circumference. The beam position monitor data acquisition system is capable of making turn-by-turn measurements of all BPMs simultaneously. It is VXI-based with each VXI crate containing the electronics for 9 BPMS. The VXI Local Bus is used to provide sustained data transfer rates of up to 13 mega-transfers per second to a scanner module. The system provides single-bunch tracking, bunch-to-bunch measurements, fast digital-averaged positions, beam position history buffering, and synchronized multi-turn measurements. Data is accessible to the control system VME crates via an MXI bus. Dedicated high-speed ports are provided to supply position data to beam orbit feedback systems.

  9. Beam position monitor data acquisition for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Lenkszus, F.R.; Kahana, E.; Votaw, A.J.; Decker, G.A.; Chung, Y.; Ciarlette, D.J.; Laird, R.J.

    1993-06-01

    This paper describes the Beam Position Monitor (BPM) data acquisition scheme for the Advanced Photon Source (APS) storage ring. The storage ring contains 360 beam position monitors distributed around its 1104-meter circumference. The beam position monitor data acquisition system is capable of making turn-by-turn measurements of all BPMs simultaneously. It is VXI-based with each VXI crate containing the electronics for 9 BPMS. The VXI Local Bus is used to provide sustained data transfer rates of up to 13 mega-transfers per second to a scanner module. The system provides single-bunch tracking, bunch-to-bunch measurements, fast digital-averaged positions, beam position history buffering, and synchronized multi-turn measurements. Data is accessible to the control system VME crates via an MXI bus. Dedicated high-speed ports are provided to supply position data to beam orbit feedback systems.

  10. Coherent bremsstrahlung at colliding beams

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, I.F. (Inst. of Mathematics, Novosibirsk (Russia)); Kotkin, G.L.; Serbo, V.G. (Novosibirsk State Univ. (Russia)); Polityko, S.I. (Irkutsk State Univ. (Russia))

    1992-07-30

    We consider a new type of radiation at colliders with short bunches - coherent bremsstrahlung (CBS). CBS can be treated as radiation of the first bunch particles caused by the collective electromagnetic field of the short second bunch. A general method for the calculation of this CBS is presented. The number of CBS photons per single collision is dN{sub {gamma}}{approx equal}N{sub 0}dE{sub {gamma}}/E{sub {gamma}} in the energy range E{sub {gamma}}bunch and N{sub 0}{proportional to}N{sub 1}N{sub 2}{sup 2} where N{sub j} is the jth bunch population. For the colliders VEPP-4M, BEPC, CESR, TRISTAN the quantity N{sub 0}{approx equal}10{sup 8} and E{sub c}{approx equal}1-100 keV. Unusual properties of CBS and the possibility of using CBS for measuring the beam parameters are discussed. (orig.).

  11. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  12. Caustic-based approach to understanding bunching dynamics and current spike formation in particle bunches

    Science.gov (United States)

    Charles, T. K.; Paganin, D. M.; Dowd, R. T.

    2016-10-01

    Current modulations, current spikes, and current horns, are observed in a range of accelerator physics applications including strong bunch compression in Free Electron Lasers and linear colliders, trains of microbunching for terahertz radiation, microbunching instability and many others. This paper considers the fundamental mechanism that drives intense current modulations in dispersive regions, beyond the common explanation of nonlinear and higher-order effects. Under certain conditions, neighboring electron trajectories merge to form caustics, and often result in characteristic current spikes. Caustic lines and surfaces are regions of maximum electron density, and are witnessed in accelerator physics as folds in phase space of accelerated bunches. We identify the caustic phenomenon resulting in cusplike current profiles and derive an expression which describes the conditions needed for particle-bunch caustic formation in dispersive regions. The caustic expression not only reveals the conditions necessary for caustics to form but also where in longitudinal space the caustics will form. Particle-tracking simulations are used to verify these findings. We discuss the broader implications of this work including how to utilize the caustic expression for manipulation of the longitudinal phase space to achieve a desired current profile shape.

  13. Longitudinal impedance monitoring in the SPS with single short bunches at 26 GeV/c (RF on)

    CERN Document Server

    Bohl, T; Shaposhnikova, E; CERN. Geneva. AB Department

    2008-01-01

    In the course of monitoring the low frequency impedance of the SPS over the years usually the quadrupole frequency shift as a function of intensity is measured with single bunches at 26 GeV/c with RF on using the peak detected signal. The additional acquisition of longitudinal bunch profiles allows the evaluation of various parameters of the injected beam, details of its quadrupole oscillation and the evolution of the bunch length as a function of time. Data acquired between 1999 and 2007 will be analysed in this respect. It will be shown that the bunch length data at 600 ms indicates clearly the effect of the SPS impedance reduction programme realised in 2000/2001 and that from then on the absolute value of the quadrupole frequency shift shows a tendency to increase over the years, indicating an impedance increase. However, it does not allow to monitor unambiguously the changes from one year to the next. The reason that the quadrupole frequency shift is not very well determined is attributed to the lack of r...

  14. Mechanical Behavior of Electrospun Palmfruit Bunch Reinforced Polylactide Composite Fibers

    Science.gov (United States)

    Adeosun, S. O.; Akpan, E. I.; Gbenebor, O. P.; Peter, A. A.; Olaleye, Samuel Adebayo

    2016-01-01

    In this study, the mechanical characteristics of electrospun palm fruit bunch reinforced poly lactic acid (PLA) nanofiber composites using treated and untreated filler was examined. Poly lactic acid-palm fruit bunch-dichloromethane blends were electrospun by varying the concentration of the palm fruit bunch between 0 wt.% and 8 wt.%. A constant voltage of 26 kV was applied, the tip-to-collector distance was maintained at 27.5 cm and PLA-palm fruit bunch-dichloromethane (DCM) concentration of 12.5% (w/v) was used. The results revealed that the presence of untreated palm fruit bunch fillers in the electrospun PLA matrix significantly reduces the average diameters of the fibers, causing the formation of beads. As a result there are reductions in tensile strengths of the fibers. The presence of treated palm fruit bunch fillers in the electrospun PLA matrix increases the average diameters of the fibers with improvements in the mechanical properties. The optimal mechanical responses were obtained at 3 wt.% of the treated palm fruit bunch fillers in the PLA matrix. However, increase in the palm fruit fillers (treated and untreated) in the PLA matrix promoted the formation of beads in the nanofiber composites.

  15. Fundamental cavity impedance and longitudinal coupled-bunch instabilities at the High Luminosity Large Hadron Collider

    Science.gov (United States)

    Baudrenghien, P.; Mastoridis, T.

    2017-01-01

    The interaction between beam dynamics and the radio frequency (rf) station in circular colliders is complex and can lead to longitudinal coupled-bunch instabilities at high beam currents. The excitation of the cavity higher order modes is traditionally damped using passive devices. But the wakefield developed at the cavity fundamental frequency falls in the frequency range of the rf power system and can, in theory, be compensated by modulating the generator drive. Such a regulation is the responsibility of the low-level rf (llrf) system that measures the cavity field (or beam current) and generates the rf power drive. The Large Hadron Collider (LHC) rf was designed for the nominal LHC parameter of 0.55 A DC beam current. At 7 TeV the synchrotron radiation damping time is 13 hours. Damping of the instability growth rates due to the cavity fundamental (400.789 MHz) can only come from the synchrotron tune spread (Landau damping) and will be very small (time constant in the order of 0.1 s). In this work, the ability of the present llrf compensation to prevent coupled-bunch instabilities with the planned high luminosity LHC (HiLumi LHC) doubling of the beam current to 1.1 A DC is investigated. The paper conclusions are based on the measured performances of the present llrf system. Models of the rf and llrf systems were developed at the LHC start-up. Following comparisons with measurements, the system was parametrized using these models. The parametric model then provides a more realistic estimation of the instability growth rates than an ideal model of the rf blocks. With this modeling approach, the key rf settings can be varied around their set value allowing for a sensitivity analysis (growth rate sensitivity to rf and llrf parameters). Finally, preliminary measurements from the LHC at 0.44 A DC are presented to support the conclusions of this work.

  16. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    CERN Document Server

    Stancari, Giulio

    2014-01-01

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compens...

  17. LHC Beam Instrumentation: Beam Loss and Tune Measurements (3/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  18. LHC Beam Instrumentation: Beam Position and Intensity Measurements (1/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  19. Matching the laser generated p bunch into a crossbar-H drift tube linac

    Science.gov (United States)

    Almomani, A.; Droba, M.; Ratzinger, U.; Hofmann, I.

    2012-05-01

    Proton bunches with energies up to 30 MeV have been measured at the PHELIX laser. Because of the laser-plasma interactions at a power density of about 4×1019W/cm2, a total yield of 1.5×1013protons was produced. For the reference energy of 10 MeV, the yield within ±0.5MeV was exceeding 1010protons. The important topic for a further acceleration of the laser generated bunch is the matching into the acceptance of an rf accelerator stage. With respect to the high space charge forces and the transit energy range, only drift tube linacs seem adequate for this purpose. A crossbar H-type (CH) cavity was chosen as the linac structure. Optimum emittance values for the linac injection are compared with the available laser generated beam parameters. Options for beam matching into a CH structure by a pulsed magnetic solenoid and by using the simulation codes LASIN and LORASR are presented.

  20. Reflective optical system for time-resolved electron bunch measurements at PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Rosbach, K.; Baehr, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Roensch-Schulenburg, J. [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik

    2011-01-15

    The Photo-Injector Test facility at DESY, Zeuthen site (PITZ), produces pulsed electron beams with low transverse emittance and is equipped with diagnostic devices for measuring various electron bunch properties, including the longitudinal and transverse electron phase space distributions. The longitudinal bunch structure is recorded using a streak camera located outside the accelerator tunnel, connected to the diagnostics in the beam-line stations by an optical system of about 30 m length. This system mainly consists of telescopes of achromatic lenses, which transport the light pulses and image them onto the entrance slit of the streak camera. Due to dispersion in the lenses, the temporal resolution degrades during transport. This article presents general considerations for time-resolving optical systems as well as simulations and measurements of specific candidate systems. It then describes the development of an imaging system based on mirror telescopes which will improve the temporal resolution, with an emphasis on off-axis parabolic mirror systems working at unit magnification. A hybrid system of lenses and mirrors will serve as a proof of principle. (orig.)

  1. A Bunch Compression Method for Free Electron Lasers that Avoids Parasitic Compressions

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Stephen V. [Jefferson Lab, Newport News, VA; Douglas, David R. [Jefferson Lab, Newport News, VA; Tennant, Christopher D. [Jefferson Lab, Newport News, VA; Wilson, Frederick G. [Jefferson Lab, Newport News, VA; Nguyen, Dinh [Brookhaven National Lab, Upton, NY

    2015-09-01

    Virtually all existing high energy (>few MeV) linac-driven FELs compress the electron bunch length though the use of off-crest acceleration on the rising side of the RF waveform followed by transport through a magnetic chicane. This approach has at least three flaws: 1) it is difficult to correct aberrations--particularly RF curvature, 2) rising side acceleration exacerbates space charge-induced distortion of the longitudinal phase space, and 3) all achromatic "negative compaction" compressors create parasitic compression during the final compression process, increasing the CSR-induced emittance growth. One can avoid these deficiencies by using acceleration on the falling side of the RF waveform and a compressor with M56>0. This approach offers multiple advantages: 1) It is readily achieved in beam lines supporting simple schemes for aberration compensation, 2) Longitudinal space charge (LSC)-induced phase space distortion tends, on the falling side of the RF waveform, to enhance the chirp, and 3) Compressors with M56>0 can be configured to avoid spurious over-compression. We will discuss this bunch compression scheme in detail and give results of a successful beam test in April 2012 using the JLab UV Demo FEL

  2. Colliding ionization injection in a beam driven plasma accelerator

    CERN Document Server

    Wan, Y; Li, F; Wu, Y P; Hua, J F; Pai, C -H; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2015-01-01

    The proposal of generating high quality electron bunches via ionization injection triggered by an counter propagating laser pulse inside a beam driven plasma wake is examined via two-dimensional particle-in-cell simulations. It is shown that electron bunches obtained using this technique can have extremely small slice energy spread, because each slice is mainly composed of electrons ionized at the same time. Another remarkable advantage is that the injection distance is changeable. A bunch with normalized emittance of 3.3 nm, slice energy spread of 15 keV and brightness of 7.2 A m$^{-2}$ rad$^{-2}$ is obtained with an optimal injection length which is achieved by adjusting the launch time of the drive beam or by changing the laser focal position. This makes the scheme a promising approach to generate high quality electron bunches for the fifth generation light source.

  3. Development of a new RFQ beam cooler and buncher for the CANREB project at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Barquest, B.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Bale, J.C.; Dilling, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); UBC Department of Physics and Astronomy, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Gwinner, G. [University of Manitoba, Department of Physics and Astronomy, Allen Building, Winnipeg, MB R3T 2N2 (Canada); Kanungo, R. [Saint Mary’s University, Astronomy and Physics Department, 923 Robie Street, Halifax, NS B3H 3C3 (Canada); Krücken, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); UBC Department of Physics and Astronomy, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Pearson, M.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada)

    2016-06-01

    A new radiofrequency quadrupole (RFQ) based ion beam cooler and buncher is under development for the CANadian Rare-isotope facility with Electron Beam ion source (CANREB) project at TRIUMF. The CANREB project requires an RFQ buncher that will efficiently accept continuous beams of rare isotopes from either the Advanced Rare IsotopE Laboratory (ARIEL) or Isotope Separator and ACcelerator (ISAC) target by way of a high resolution magnetic spectrometer, with energies up to 60 keV and deliver bunched beams to an electron beam ion source (EBIS) for charge breeding. The energy of the bunched beam delivered to the EBIS will be adjustable to match the requirements of the existing post acceleration infrastructure. The CANREB RFQ incorporates design considerations to facilitate ease of use over a wide range of ion masses, and is intended to accommodate incident beam rates as high as 10{sup 8} pps, delivering beam bunches at 100 Hz. An overview of the CANREB RFQ design concept will be presented, informed by results from both ion optical simulations as well as commissioning efforts with other beam cooler and buncher devices. Simulation results indicate that the design is well suited to deliver high quality bunched beams with high efficiency with as many as 10{sup 6} ions per bunch.

  4. Bunched soliton states in weakly coupled sine-Gordon systems

    Energy Technology Data Exchange (ETDEWEB)

    Gronbech-Jensen, N.; Samuelsen, M.R. (Physics Laboratory I, The Technical University of Denmark, DK-2800 Lyngby (Denmark)); Lomdahl, P.S. (Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (USA)); Blackburn, J.A. (Department of Physics and Computing, Wilfrid Laurier University, Waterloo, Ontario (Canada))

    1990-09-01

    The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results.

  5. Design Study for 10MHz Beam Frequency of Post-Accelerated RIBs at HIE-ISOLDE

    CERN Document Server

    Fraser, M A; Magdau, I B

    2013-01-01

    An increased bunch spacing of approximately 100 ns is requested by several research groups targeting experimental physics at HIE-ISOLDE. A design study testing the feasibility of retrofitting the existing 101.28MHz REX (Radioactive ion beam EXperiment) RFQ [1] with a subharmonic external pre-buncher at the ISOLDE radioactive nuclear beam facility has been carried out as a means of decreasing the beam frequency by a factor of 10. The proposed scheme for the 10MHz bunch repetition frequency is presented and its performance assessed with beam dynamics simulations. The opportunity to reduce the longitudinal emittance formed in the RFQ is discussed along with the options for chopping the satellite bunches populated in the bunching process.

  6. MD 346: Summary of single bunch instability threshold measurements

    CERN Document Server

    Carver, Lee Robert; Metral, Elias; Salvant, Benoit; Levens, Tom; Buffat, Xavier; Pieloni, Tatiana; Tambasco, Claudia; Trad, Georges; CERN. Geneva. ATS Department

    2016-01-01

    The purpose of this MD is to measure the octupole current threshold to reach single-bunch stability in the LHC at flat top. Two bunches with dierent emittances are injected in the LHC in both B1 and B2 and the current in the Landau octupoles was progressively decreased until an instability developed. The measurements provide insight into the LHC impedance model by comparing them with the stabilizing octupole current predicted from DELPHI.

  7. Space Charge MitigationWith Longitudinally Hollow Bunches

    CERN Document Server

    Oeftiger, Adrian; Rumolo, Giovanni; CERN. Geneva. ATS Department

    2016-01-01

    Suitably, hollow longitudinal phase space distributions have a flat profile and hence reduce the impact of transverse space charge. Dipolar parametric excitation with the phase loop feedback systems provides such hollow distributions under reproducible conditions. We present a procedure to create hollow bunches during the acceleration ramp of CERN’s PS Booster machine with minimal changes to the operational cycle. The improvements during the injection plateau of the downstream Proton Synchrotron are assessed in comparison to standard parabolic bunches.

  8. Optical tailoring of xFEL beams

    Energy Technology Data Exchange (ETDEWEB)

    West, Gavin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Coffee, R. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-20

    There is an inherent exibility unique to free electron lasers (FELs) that lends well to experimental approaches normally too difficult for other light sources to accomplish. This includes the ability to optically shape the electron bunch prior to final its acceleration for the final FEL process. Optical pulse shaping of the electron bunch can enable both femtosecond and attosecond level FEL pulse control. Pulse shaping is currently implemented, not optically but mechanically, in LCLS-I with an adjustable foil slit that physically spoils the momentum phase of the electron bunch. This selectively suppresses the downstream FEL process ofspoiled electrons. Such a mechanical spoiling method fails for both the soft x-ray regime as well as the high repetition rates that are planned in LCLS-II. Our proposed optical spoiling method circumvents this limitation by making use of the existing ultrafast laser beam that is typically used for adjusting the energy spread for the initial electron bunch. Using Fourier domain shaping we can nearly arbitrarily shape the laser pulses to affect the electron bunch. This can selectively spoil electrons within each bunch. Here we demonstrate the viability of this approach with a programmable acousto-optic dispersive filter. This method is not only well suited for LCLS-II but also has several advantages over mechanical spoiling, including lack of radiation concerns, experiment specific FEL pulse shapes, and real-time adjustment for applications that require high duty-cycle variation such as lock-in amplification of small signals.

  9. Beam loss monitors comparison at the CERN Proton Synchrotron

    CERN Document Server

    Gilardoni, S S; Effinger, E; Gil-Flores, J; Wienands, U

    2011-01-01

    CERN is planning the renovation and upgrade of the beam loss detection system for the Proton Synchrotron (PS). Improved performance in speed–to be able to monitor beam loss on a bunch-by-bunch basis–and in longterm stability–to reduce or avoid the need for periodic calibration–are aimed for. To select the most suitable technology, different detectors were benchmarked in the machine with respect to the same beam loss. The characteristics of the different detectors, the results of the measurement campaign and their suitability as future monitors for the PS are presented.

  10. The beam diagnostic system, serving the Serpukhov fast ejection

    CERN Document Server

    Cupérus, J; Kamber, I; Nuttall, J

    1973-01-01

    A set of beam transformers measures the intensity of each bunch, circulating or ejected. Five electrostatic pick-ups measure the radial position of one selected bunch. Secondary emission grids and luminescent screens give the profile and position of the beam at relevant points. Gated radiation detectors monitor beam loss in the ejection area. All signals are digitalized and fed to a minicomputer on line. Readout is via nixies, CRT analogue displays, pen recorders and a teletype. Statistics can be made over a chosen number of acceleration cycles. (5 refs).

  11. Ion-Induced Beam Instability in an Electron Storage Ring

    Institute of Scientific and Technical Information of China (English)

    LI Yong-Jun; JIN Yu-Ming; LI Wei-Min; LIU Zu-Ping

    2000-01-01

    In a small electron storage ring, such as the Hefei Light Source (HLS) ring, the newly generated ions, which can not escape from the beam potential and then are trapped from turn to turn, will lead to the beam instability. The ions created by the leading bunches can perturb the trailing bunches and also themselves during their subsequent passage, which will make the amplitude of beam oscillation be damped and anti-damped periodically. A computer simulation based on the strong-weak model shows a good agreement with our analytical model using the linear theory.

  12. Beam Position Monitoring at CLIC

    CERN Document Server

    Prochnow, J

    2003-01-01

    At the European Organisation for Nuclear Research CERN in Geneva, Switzerland the design of the Compact LInear Collider (CLIC) for high energy physics is studied. To achieve the envisaged high luminosity the quadrupole magnets and radio-frequency accelerating structures have to be actively aligned with micron precision and submicron resolution. This will be done using beam-based algorithms which rely on beam position information inside of quadrupoles and accelerating structures. After a general introduction to the CLIC study and the alignment algorithms, the concept of the interaction between beams and radio-frequency structures is given. In the next chapter beam measurements and simulations are described which were done to study the performance of cavity beam position monitors (BPM). A BPM design is presented which is compatible with the multi-bunch operation at CLIC and could be used to align the quadrupoles. The beam position inside the accelerating structures will be measured by using the structures thems...

  13. Cavity loss factors for non-ultrarelativistic beams

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.S.

    1998-12-31

    Cavity loss factors can be easily computed for ultrarelativistic beams using time-domain codes like MAFIA or ABCI. However, for non-ultrarelativistic beams the problem is more complicated because of difficulties with its numerical formulation in the time domain. The authors calculate the loss factors of a non-relativistic bunch and compare results with the relativistic case.

  14. Cavity Loss Factors For Non-Ultrarelativistic Beams

    CERN Document Server

    Kurennoy, S S

    1998-01-01

    Cavity loss factors can be easily computed for ultrarelativistic beams using time-domain codes like MAFIA or ABCI. However, for non-ultrarelativistic beams the problem is more complicated because of difficulties with its numerical formulation in the time domain. We calculate the loss factors of a non-ultrarelativistic bunch and compare results with the relativistic case.

  15. Characterisation of electron beams from laser-driven particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A. [Physics Department, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  16. Cavity-Beam-Transmitter Interaction Formula Collection with Derivation

    CERN Document Server

    Tückmantel, J

    2010-01-01

    The fundamental beam-cavity-transmitter relations for accelerating and deflecting/crab cavities are presented for steady state and time-varying situations. For completeness a compact proof of the Panofsky-Wenzel theorem is given and the fundamental beam loading theorem is derived.Also the determination of relative bunch form factors is shown.

  17. Two-Colour Free Electron Laser with Wide Frequency Separation using a Single Monoenergetic Electron Beam

    CERN Document Server

    Campbell, L T; Reiche, S

    2014-01-01

    Studies of a broad bandwidth, two-colour FEL amplifier using one monoenergetic electron beam are presented. The two-colour FEL interaction is achieved using a series of undulator modules alternately tuned to two well-separated resonant frequencies. Using the broad bandwidth FEL simulation code Puffin, the electron beam is shown to bunch strongly and simultaneously at the two resonant frequencies. Electron bunching components are also generated at the sum and difference of the resonant frequencies.

  18. Electron Beam Diagnostics at the Radiation Source ELBE

    Science.gov (United States)

    Evtushenko, P.; Lehnert, U.; Michel, P.; Schneider, C.; Schurig, R.; Teichert, J.

    2002-12-01

    In the research center Rossendorf, the radiation source ELBE, based on a super conducting LINAC, is under construction. In the year 2001 the first accelerating module was commissioned. The electron beam parameters like emittance, bunch length, energy spread were measured. Here we present results of the measurements as well as the methods used to make the measurements. In the ELBE injector, where electron beam energy is 250 keV, the emittance was measured with the aid of a multislit device. Emittance of the accelerated beam was measured by means of quadrupole scan method and is 8 mm×mrad at 77 pC bunch charge. Electron bunch length was measured using the coherent transition radiation technique. At the maximum design bunch charge of 77 pC the RMS bunch length was measured to be 2 ps. A set of online diagnostic systems is also under development. One these include a system of stripline beam position monitors is also described here. A BPM resolution of about 10 μm was achieved using logarithmic amplifier as the core element of the BPM electronics. A system of beam loss monitors based on the RF Heliax cable working as an ionization chamber is intended to be another online diagnostic system.

  19. Experimental Observation of Generation of Superradiance Pulses in the Process of Backscattering of Pump Wave on the Intense Electron Bunch

    CERN Document Server

    Ginzburg, N S; Denisov, G G; Rozental, R M; Sergeev, A; Zotova, I V

    2005-01-01

    Recently significant progress was archived in the generation of multimegawatt subnanosecond pulses in millimeter wave band utilizing the cyclotron and Cherenkov mechanisms of superradiance (SR) [1,2]. We study the novel mechanism of SR when the powerful pumping wave undergoes the stimulated back scattering on the intense electron bunch. Due to the Doppler up shift the radiation frequency can significantly exceed the frequency of the pumping wave. With the relativistic microwave generator as a pumping wave source such a mechanism can be used for generation of the powerful pulse radiation in the short millimeter and submillimeter wave bands. Experiments on the observation of the stimulated scattering in the superradiance regime were carried out at Institute of Electrophysics RAS with two synchronized accelerators. The 4 ns electron beam from the first accelerator is used for generation of the 38 GHz 100 MW pumping wave which subsequently scattered on the subnanosecond 250 keV 1 kA electron bunch produced by the...

  20. Bunch motion in the presence of the self-induced voltage due to a reactive impedance with RF off

    Energy Technology Data Exchange (ETDEWEB)

    Shaposhnikova, E. [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-08-01

    Analytic self-consistent solutions have been found for the nonlinear Vlasov equation describing different types of behaviour with time of an intense bunch under the influence of voltage induced due to a reactive part of broad band impedance. The problem is solved for the particular type of the initial distribution function in longitudinal phase space which is elliptic and corresponds to parabolic line density. This paper is devoted to the consideration of the effects in the machine with RF off. In this case the induced voltage is changing with time and can significantly affect bunch motion. The same method applied in the case with RF on allows the time dependent effects of potential well distortion to be analysed. Numerical estimations for the CERN SPS show that effect of induced voltage is important for beam manipulations with RF off. Measurements of the change in the rate of debunching with intensity can be used to estimate the value of the reactive impedance. (author)

  1. 3D simulations on output power fluctuation in a short bunch rf-linac FEL

    Science.gov (United States)

    Sentoku, Y.; Furukawa, H.; Mima, K.; Taguchi, T.; Kuruma, S.; Yasuda, H.; Yamanaka, C.; Nakai, S.

    1995-04-01

    A space-time dependent 3D simulation code has been developed in order to analyze the RF-linac FEL oscillator dynamics. Our simulation code employed both the transverse mode spectral method and the longitudinal finite difference method. The electron beam is modeled by a group of super particles which have a density profile in the time domain. In this model the electron beam is able to determine the energy spread and the finite emittance. This simulation code enables us to describe the transverse mode competition and the slippage effects in the resonator cavity. In this paper, a high power infrared FEL with a short bunch electron beam is investigated. The output power fluctuation with cavity desynchronism is simulated with this code. Especially, we investigated the effects of the transverse mode competition, energy spread, and the finite emittance of the electron beam on the output fluctuation. Using FELIX parameters, the FEL oscillator is simulated for 300 passes. The output power oscillates periodically in the case of single transverse mode and not in the case of multi-transverse modes. In a warm beam with multi-transverse modes, the emission is higher than that with a single mode, and the optical pulse shape is almost the after 100 passes. Furthermore, the phase space motion of the laser field is periodic and stable. As a result of the simulation, we recommend that high power infrared FEL operation should include multi-transverse modes in order to get higher emission and a more stable optical pulse.

  2. Real-time monitoring of longitudinal electron bunch parameters by intensity-integrated and spectroscopic measurements of single coherent THz pulses; Echtzeitbestimmung longitudinaler Elektronenstrahlparameter mittels absoluter Intensitaets- und Spektralmessung einzelner kohaerenter THz Strahlungspulse

    Energy Technology Data Exchange (ETDEWEB)

    Wesch, Stephan

    2012-12-15

    High-gain free-electron lasers (FELs) generate intense and monochromatic photon pulses with few tens of femtosecond duration. For this purpose, electron beams are accelerated to relativistic energies and shrunk longitudinally down to micrometer size.The diagnosis of theses compressed electron bunches is a challenge especially for MHz bunch repetition rates as provided by the FEL FLASH in Hamburg. In this thesis, coherently emitted THz radiation of single electron bunches were investigated, on which the longitudinal structure is imprinted. Two instruments were used: First, the FLASH bunch compression monitors, relying on the integrated intensity measurement of diffraction radiation, were modified to determine the overall length of every bunch behind the two bunch compressors (BC). A model was developed showing that their response is independent of the exact bunch shape for lengths below 200 {mu}m (rms). This could experimentally be verified in the range between 50 and 190 {mu}m within 7% accuracy for themonitor behind the last BC by comparison with measurements with the transverse deflecting structure (TDS). Second, a single-shot spectrometer with five staged reflective blazed gratings has been designed, build and commissioned. With its two grating sets, the wavelength ranges from 5.5 to 44 {mu}m and 45 to 440 {mu}m can be simultaneously detected by 118 fast pyroelectric elements. Measurements based on transition radiation spectra were compared with profiles recorded by the TDS.The shape of the spectra as well as the reconstructed temporal profiles (using the Kramers-Kronig relation for phase retrieval) are in excellent agreement. For bunches with a charge of 50 pC, bunch lengths down to 5 {mu}m (fhwm) could be detected.

  3. Tevatron End-of-Run Beam Physics Experiments

    CERN Document Server

    Valishev, A; Miyamoto, R; White, S; Schmidt, F; Qiang, J

    2012-01-01

    Before the Tevatron Collider Run II ended in September of 2011, a number of specialized beam study periods were dedicated to the experiments on various accelerator physics concepts and effects during the last year of the machine operation. The study topics included collimation with bent crystals and hollow electron beams, diffusion measurements and various aspects of beambeam interactions. In this report we concentrate on the subject of beam-beam interactions, summarizing the results of beam experiments. The covered topics include offset collisions, coherent beam stability, effect of the bunch-length-to-beta-function ratio, and operation of AC dipole with colliding beams.

  4. Fast Beam Current Change Monitor for the LHC

    CERN Document Server

    Kral, Jan

    Stringent demands on the LHC safety and protection systems require improved methods of detecting fast beam losses. The Fast Beam Current Transformer (FBCT) is a measurement instrument, providing information about bunch-to-bunch intensity of the accelerated beam. This thesis describes the development of a new protection system based on the FBCT signal measurements. This system, the Fast Beam Current Change Monitor (FBCCM), measures the FBCT signal in a narrow frequency band and computes time derivation of the beam signal magnitude. This derivation is proportional to the beam losses. When the losses exceed a certain level, the FBCCM requests a beam dump in order to protect the LHC. The LHC protection will be ensured by four FBCCMs which will be installed into the LHC in July 2014. Six FBCCMs have been already constructed and their characteristics were measured with satisfactory results. The FBCCMs were tested by a laboratory simulation of the real LHC environment.

  5. Experimental observations and theoretical models for beam-beam phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10/sup 10/-10/sup 11/ and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented.

  6. Beam-Beam Effects in the Ring-Ring Version of eRHIC

    CERN Document Server

    Shi, Jack; Wang, Dong; Wang, Fuhua

    2005-01-01

    The eRHIC is a proposed electron ring at the RHIC that will provide collisions between a polarized 5-10 GeV electron beam and an ion beam from one of the RHIC rings. In order to achieve proposed high luminosity, large bunch current and small beta-functions at the IP has to be employed. Such measures result in large beam-beam parameters, 0.029 and 0.08 for the electron beam and 0.0065 and 0.0033 for the proton beam in the horizontal and vertical plane, respectively, in the current ZDR design. The beam-beam effect especially the coherent beam-beam effect is therefore one of important issues to the eRHIC. Moreover, the proposed configuration of unequal circumferences of the electron and proton rings could further enhance the coherent beam-beam effect. The beam-beam effect of eRHIC has therefore been studied with a self-consistent beam-beam simulation by using the particle-in-cell method. Beam-beam limits of the electron and proton beam were examined as thresholds of the onset of coherent beam-beam instability. F...

  7. The new Beam Halo Monitor for the CMS experiment at the LHC

    CERN Document Server

    Tosi, Nicolo

    In the context of increasing beam energy and luminosity of the LHC accelerator at CERN, it will be important to accurately measure the Machine Induced Background. A new monitoring system will be installed in the CMS cavern for measuring the beam background at high radius. This detector, called the Beam Halo Monitor, will provide an online, bunch-by-bunch measurement of background induced by beam halo interactions, separately for each beam. The detector is composed of synthetic quartz Cherenkov radiators, coupled to fast UV sensitive photomultiplier tubes. The directional and fast response of the system allows the discrimination of the background particles from the dominant flux in the cavern induced by pp collision debris, produced within the 25 ns bunch spacing. The readout electronics of this detector will make use of many components developed for the upgrade of the CMS Hadron Calorimeter electronics, with a dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal will be d...

  8. Beam Measurements in Storage Rings

    Science.gov (United States)

    Hofmann, Albert

    1996-05-01

    Beam measurements in storage rings are made to diagnose performance limitations and to gain knowledge of the beam behavior in view of improvements and to the benefit for other machines. In beam optics the measurement of the orbit or the trajectory with beam position monitors distributed around the ring reveals deflection errors. The overall focusing is checked by measuring the betatron frequency (tune) using a pulse or continuous excitation of the oscillation. Observing this oscillation with all the beam position monitors around the ring the beta function and the betatron phase advance are obtained. This measurement done for different momenta, i.e. RF-frequencies, gives the local chromaticity and its correction. The tune dependence on quadrupole strength gives the value of the local beta function. Synchrotron radiation is a powerful diagnostics tool and can give the beam cross section. Beam instabilities are investigated with similar methods. The growth or damping rates and frequencies of betatron and synchrotron oscillations, observed as a function of intensity, give a convolution of the resistive and reactive part of the transverse and longitudinal impedance with the spectrum of the oscillation mode. Coupled bunch instabilities are caused by narrow band impedances at particular frequencies while single traversal effects, including energy loss and bunch lengthening, are due to a broad band impedance. A model of the impedance can be constructed from such measurements done with different bunch lengths, tunes and other parameters. In some cases the element causing an instability can be identified. The dependence of the orbit and phase advance around the ring on intensity can give the location of impedances. To probe the impedance at very high frequencies the effects on very short bunches or the energy loss of a continuous beam due to its Schottky noise are measured. The beam energy, usually known from magnetic measurements, can be obtained directly with high

  9. Destructive interferences results in bosons anti bunching: refining Feynman's argument

    Science.gov (United States)

    Marchewka, Avi; Granot, Er'el

    2014-09-01

    The effect of boson bunching is frequently mentioned and discussed in the literature. This effect is the manifestation of bosons tendency to "travel" in clusters. One of the core arguments for boson bunching was formulated by Feynman in his well-known lecture series and has been frequently used ever since. By comparing the scattering probabilities of two bosons and of two distinguishable particles, he concluded: "We have the result that it is twice as likely to find two identical Bose particles scattered into the same state as you would calculate assuming the particles were different" [R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics: Quantum mechanics (Addison-Wesley, 1965)]. This argument was rooted in the scientific community (see for example [C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (John Wiley & Sons, Paris, 1977); W. Pauli, Exclusion Principle and Quantum Mechanics, Nobel Lecture (1946)]), however, while this sentence is completely valid, as is proved in [C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (John Wiley & Sons, Paris, 1977)], it is not a synonym of bunching. In fact, as it is shown in this paper, wherever one of the wavefunctions has a zero, bosons can anti-bunch and fermions can bunch. It should be stressed that zeros in the wavefunctions are ubiquitous in Quantum Mechanics and therefore the effect should be common. Several scenarios are suggested to witness the effect.

  10. High-gradient plasma-wakefield acceleration with two subpicosecond electron bunches.

    Science.gov (United States)

    Kallos, Efthymios; Katsouleas, Tom; Kimura, Wayne D; Kusche, Karl; Muggli, Patric; Pavlishin, Igor; Pogorelsky, Igor; Stolyarov, Daniil; Yakimenko, Vitaly

    2008-02-22

    A plasma-wakefield experiment is presented where two 60 MeV subpicosecond electron bunches are sent into a plasma produced by a capillary discharge. Both bunches are shorter than the plasma wavelength, and the phase of the second bunch relative to the plasma wave is adjusted by tuning the plasma density. It is shown that the second bunch experiences a 150 MeV/m loaded accelerating gradient in the wakefield driven by the first bunch. This is the first experiment to directly demonstrate high-gradient, controlled acceleration of a short-pulse trailing electron bunch in a high-density plasma.

  11. A fast beam-ion instability

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, G.V. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    The ionization of residual gas by an electron beam in an accelerator generates ions that can resonantly couple to the beam through a wave propagating in the beam-ion system. Results of the study of a beam-ion instability are presented for a multi-bunch train taking into account the decoherence of ion oscillations due to the ion frequency spread and spatial variation of the ion frequency. It is shown that the combination of both effects can substantially reduce the growth rate of the instability. (author)

  12. Beam lifetime measurement and analysis in Indus-2 electron storage ring

    Indian Academy of Sciences (India)

    Pradeep Kumar; A D Ghodke; Gurnam Singh

    2013-05-01

    In this paper, the beam lifetime measurement and its theoretical analysis are presented using measured vacuum pressure and applied radio frequency (RF) cavity voltage in Indus-2 electron storage ring at 2 GeV beam energy. Experimental studies of the effect of RF cavity voltage and bunched beam filling pattern on beam lifetime are also presented. An equation of stable beam current decay is evolved and this equation closely follows the observed beam current decay pattern. It shows that the beam is stable and the beam current decay is due to the beam–residual gas interaction (vacuum lifetime) and electron–electron interaction within a bunch (Touschek lifetime). The estimated vacuum, Touschek and total beam lifetimes from analytical formulations are also compared with the measured beam lifetime.

  13. Beam-based model of broad-band impedance of the Diamond Light Source

    Science.gov (United States)

    Smaluk, Victor; Martin, Ian; Fielder, Richard; Bartolini, Riccardo

    2015-06-01

    In an electron storage ring, the interaction between a single-bunch beam and a vacuum chamber impedance affects the beam parameters, which can be measured rather precisely. So we can develop beam-based numerical models of longitudinal and transverse impedances. At the Diamond Light Source (DLS) to get the model parameters, a set of measured data has been used including current-dependent shift of betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening. A matlab code for multiparticle tracking has been developed. The tracking results and analytical estimations are quite consistent with the measured data. Since Diamond has the shortest natural bunch length among all light sources in standard operation, the studies of collective effects with short bunches are relevant to many facilities including next generation of light sources.

  14. 0. 2 ns beam pulse for the 6 MV Van de Graaff accelerator

    Energy Technology Data Exchange (ETDEWEB)

    McMurray, W.R.; Kritzinger, J.J.; Wikner, V.C.; Swart, T.; Schmitt, H.

    The 1.5 ns pulsed beam of the SUNI Van de Graaff accelerator has been used for neutron time-of-flight studies. To provide sufficient resolution for neutron scattering measurements at 22 MeV, a post-acceleration bunching system has been installed. Bunching of 2-6 MeV p, d and /sup 3/He beams is achieved in a simple quarter-wave coaxial resonator chamber designed for high Q and low power. The bunched pulse has a fwhm of less than 0.2 ns. The design and testing of the bunching system are outlined. Optimum power requirements are tabulated together with the induced beam energy spreads.

  15. Coherent modes for multiple non-rigid bunches in a storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S.

    1996-03-01

    A method is presented for determining the stability of a system consisting of several highly relativistic bunches of charged particles circulating in a storage ring. The particles interact with magnets designed to guide the beam as well as with electromagnetic fields induced by the particles themselves. Previous work has considered modes where all bunches in the ring are executing the same type of internal oscillation. This dissertation considers the results of allowing those modes to couple to one another. The formalism begins with a self-consistent distribution, and analyzes small perturbations to that distribution to determine if they grow exponentially. The formalism allows one to do this computation for an arbitrary magnetic lattice, as well as an arbitrary distribution of wakefield sources around the ring. The method also allows for the inclusion of a feedback system which is designed to damp multibunch oscillations. The PEP-II B-factory with a linear lattice is used as an example to demonstrate and explain the phenomenology that results from this coupling of multibunch modes. The effect of adding feedback is also explored.

  16. Design study of a re-bunching RFQ for the SPES project

    Science.gov (United States)

    Shin, Seung Wook; Palmieri, A.; Comunian, M.; Grespan, F.; Chai, Jong Seo

    2014-05-01

    An upgrade to the 2nd generation of the selective production of exotic species (SPES) to produce a radioactive ion beam (RIB) has been studied at the istituto nazionale di fisica nucleare — laboratory nazionali di Legnaro (INFN-LNL). Due to the long distance between the isotope separator online (ISOL) facility and the superconducting quarter wave resonator (QWR) cavity acceleratore lineare per ioni (ALPI), a new re-buncher cavity must be introduced to maintain the high beam quality during the beam transport. A particular radio frequency quadrupole (RFQ) structure has been suggested to meet the requirements of this project. A window-type RFQ, which has a high mode separation, less power dissipation and compact size compared to the conventional normal 4-vane RFQ, has been introduced. The RF design has been studied considering the requirements of the re-bunching machine for high figures of merit such as a proper operation frequency, a high shunt impedance, a high quality factor, a low power dissipation, etc. A sensitivity analysis of the fabrication and the misalignment error has been conducted. A micro-movement slug tuner has been introduced to compensate for the frequency variations that may occur due to the beam loading, the thermal instability, the microphonic effect, etc.

  17. RF Wire Compensator of Long-Range Beam-Beam Effects

    CERN Document Server

    Dorda, U; Kroyer, T; Zimmermann, F

    2008-01-01

    The dynamic aperture of the proton beam circulating in the Large Hadron Collider (LHC) is expected to be limited by up to 120 long-range beam-beam encounters. In order to perfectly compensate the LHC long-range beambeam effect for nominal as well as for so-called "PACMAN" bunches, i.e. bunches at the start or end of a bunch train, the strength of a wire compensator should be adjusted for each bunch individually. Here an RF-based compensator is proposed as a practical solution for the PACMAN compensation. We show that this approach also allows relaxing the power and precision requirements compared with those of a pulsed DC device, to a level within the state-of-the-art of RF technology. Furthermore it permits the use of a passive circulator in the tunnel close to the beam and thus a significant reduction of the transmission line length and of the associated multiple reflections. Simulations of dynamic aperture and emittance growth, issues related to RF phase noise, and first experimental results from laborator...

  18. A waveguide overloaded cavity as longitudinal kicker for the DA{Phi}NE bunch-by-bunch feedback system

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, A.; Boni, R.; Ghigo, A.; Marcellini, F.; Serio, M.; Zobov, M. [Instituto Nazionale de Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati

    1996-08-01

    The multibunch operation of DA{Phi}NE calls for a very efficient feedback system to damp the coupled-bunch longitudinal instabilities. A collaboration program among SLAC, LBL and LNF laboratories on this subject led to the development of a time domain, digital system based on digital signal processors that has been already successfully tested at ALS. The feedback chain ends with the longitudinal kicker, an electromagnetic structure capable of transferring the proper energy correction to each bunch. A cavity kicker for the DA{Phi}NE bunch-by-bunch longitudinal feedback system based on a pill-box loaded by six waveguides has been designed and a full-scale aluminium prototype has been fabricated at LNF. Both simulations and measurements have shown a peak shunt impedance of about 750 ohm and a bandwidth of about 220 MHz. The large shunt impedance allows to economize on the costly feedback power. Moreover, the damping waveguides drastically reduce the device HOM longitudinal and transverse impedances. One cavity pre ring will be sufficient to operate the machine up to 30 bunches while a second device per ring together with a feedback power improvement will be necessary to reach the ultimate current. (G.T.)

  19. Fast beam conditions monitor (BCM1F) for CMS

    CERN Document Server

    Hall-Wilton, Richard; Macpherson, Alick; Ryjov, Vladimir; Stone, Robert L; 10.1109/NSSMIC.2008.4775050

    2009-01-01

    The CMS Beam Conditions and Radiation Monitoring System (BRM) [1] is composed of different subsystems that perform monitoring of, as well as providing the CMS detector protection from, adverse beam conditions inside and around the CMS experiment. This paper presents the Fast Beam Conditions Monitoring subsystem (BCM1F), which is designed for fast flux monitoring based on bunch by bunch measurements of both beam halo and collision product contributions from the LHC beam. The BCM1F is located inside the CMS pixel detector volume close to the beam-pipe and provides real-time information. The detector uses sCVD (single-crystal Chemical Vapor Deposition) diamond sensors and radiation hard front-end electronics, along with an analog optical readout of the signals.

  20. Collective Deceleration of Laser-Driven Electron Bunches

    Science.gov (United States)

    Chou, S.; Xu, J.; Khrennikov, K.; Cardenas, D. E.; Wenz, J.; Heigoldt, M.; Hofmann, L.; Veisz, L.; Karsch, S.

    2016-09-01

    Few-fs electron bunches from laser wakefield acceleration (LWFA) can efficiently drive plasma wakefields (PWFs), as shown by their propagation through underdense plasma in two experiments. A strong and density-insensitive deceleration of the bunches has been observed in 2 mm of 1 018 cm-3 density plasma with 5.1 GV /m average gradient, which is attributed to a self-driven PWF. This observation implies that the physics of PWFs, usually relying on large-scale rf accelerators as drivers, can be studied by tabletop LWFA electron sources.

  1. Fast phase switching within the bunch train of the PHIN photo-injector at CERN using fiber-optic modulators on the drive laser

    CERN Document Server

    Divall Csatari, M; Bolzon, B; Bravin, E; Chevallay, E; Dobert, S; Drozdy, A; Fedosseev, V; Hessler, C; Lefevre, T; Livesley, S; Losito, R; Mete, O; Petrarca, M; Rabiller, A N

    2011-01-01

    The future Compact Linear Collider (CLIC) e^-/e^+ collider is based on the two-beam acceleration concept, whereby interleaving electron bunches of the drive beam through a delay loop and combiner rings as well as high peak RF power at 12GHz are created locally to accelerate a second beam, the main beam. One of the main objectives of the currently operational CLIC Test Facility (CTF3) is to demonstrate beam combination from 1.5GHz to 12GHz, which requires satellite-free fast phase-switching of the drive beam with sub-ns speed. The PHIN photo-injector, with the photo-injector laser, provides flexibility in the time structure of the electron bunches produced, by direct manipulation of the laser pulses. A novel fiber modulator-based phase-switching technique allows clean and fast phase-switch at 1.5GHz. This paper describes the switching system based on fiber-optic modulators, and the measurements carried out on both the laser and the electron beam to verify the scheme.

  2. Barrier Buckets and Transient Beam Loading in the SPS

    CERN Document Server

    Bohl, T; Garoby, R; Linnecar, Trevor Paul R; Shaposhnikova, Elena; Tückmantel, Joachim

    2003-01-01

    Using long bunches held in place by barrier buckets to overcome the limitations associated with peak density in high intensity bunched beams could be a promising scheme for increasing the luminosity of LHC. In the SPS at CERN an initial barrier bucket machine development(MD) study was done in 1999 to check the capabilities of 200 MHz thick barriers generated by the travelling wave system. A second experiment took place on 5th of August 2003 to examine high intensity effects. In this experiment a flat and stable long bunch of @ 3 µs bunch length was obtained and kept for more than 80 minutes without developing a significant line density modulation. However, strong beam loading effects were observed during the injection process, causing a coherent, non-negligible energy transfer from the beam to the RF cavities, and significant fraction of the injected beam was lost to a coasting beam background. The beam intensity that could be confined in between the barriers suffered emittance increase and was not high enou...

  3. A Test Facility for the International Linear Collider at SLAC End Station A, for Prototypes of Beam Delivery and IR Components

    CERN Document Server

    Woods, Mike; Arnold, Ray; Bailey, D; Barlow, Roger J; Beard, Carl D; Boogert, Stewart Takashi; Burrows, P N; Burton, D; Christian, Glenn B; Clarke, Christine; Cussans, D; Densham, C; Erickson, Roger; Frisch, Josef; Greenhalgh, J; Hartin, Anthony F; Hast, Carsten; Hildreth, Michael; Jackson, Frank; Kalinin, Alexander; Jobe, R Keith; Keller, Lewis; Kolomensky, Yury; Kourevlev, German Yu; Lyapin, A; Malton, Stephen; Markiewicz, Thomas W; Maruyama, Takashi; McCormick, Douglas; Mercer, Adam; Miller, David J; Molloy, Stephen; Nelson, Janice; Phinney, Nan; Raubenheimer, Tor O; Ross, Marc; Seryi, Andrei; Shales, N; Sinev, N; Slater, Mark; Smith, J; Smith, Stephen; Sopczak, A; Sugimoto, Y; Szalata, Zen M; Tenenbaum, P G; Thomson, Mark; Torrence, Eric; Tucker, R W; Walston, Sean; Ward, David; Watson, Nigel; Weiland, Thomas; White, Glen; Wing, Matthew; Woodley, Mark; Zagorodnov, Igor; Zimmermann, Frank

    2005-01-01

    The SLAC Linac can deliver damped bunches with ILC parameters for bunch charge and bunch length to End Station A. A 10Hz beam at 28.5 GeV energy can be delivered there, parasitic with PEP-II operation. We plan to use this facility to test prototype components of the Beam Delivery System and Interaction Region. We discuss our plans for this ILC Test Facility and preparations for carrying out experiments related to collimator wakefields and energy spectrometers. We also plan an interaction region mockup to investigate effects from backgrounds and beam-induced electromagnetic interference.

  4. On the production of flat electron bunches for laser wake field acceleration

    CERN Document Server

    Kando, M; Kotaki, H; Koga, J; Bulanov, S V; Tajima, T; Chao, A; Pitthan, R; Schüler, K P; Zhidkov, A G; Nemoto, K

    2006-01-01

    We suggest a novel method for injection of electrons into the acceleration phase of particle accelerators, producing low emittance beams appropriate even for the demanding high energy Linear Collider specifications. In this paper we work out the injection into the acceleration phase of the wake field in a plasma behind a high intensity laser pulse, taking advantage of the laser polarization and focusing. With the aid of catastrophe theory we categorize the injection dynamics. The scheme uses the structurally stable regime of transverse wake wave breaking, when electron trajectory self-intersection leads to the formation of a flat electron bunch. As shown in three-dimensional particle-in-cell simulations of the interaction of a laser pulse in a line-focus with an underdense plasma, the electrons, injected via the transverse wake wave breaking and accelerated by the wake wave, perform betatron oscillations with different amplitudes and frequencies along the two transverse coordinates. The polarization and focus...

  5. Attosecond Control of Relativistic Electron Bunches using Two-Colour Fields

    CERN Document Server

    Yeung, M; Bierbach, J; Li, L; Eckner, E; Kuschel, S; Woldegeorgis, A; Rödel, C; Sävert, A; Paulus, G G; Coughlan, M; Dromey, B; Zepf, M

    2016-01-01

    Energy coupling during relativistically intense laser-matter interactions is encoded in the attosecond motion of strongly driven electrons at the pre-formed plasma-vacuum boundary. Studying and controlling this motion can reveal details about the microscopic processes that govern a vast array of light-matter interaction physics and applications. These include research areas right at the forefront of extreme laser-plasma science such as laser-driven ion acceleration1, bright attosecond pulse generation2,3 and efficient energy coupling for the generation and study of warm dense matter4. Here we demonstrate attosecond control over the trajectories of relativistic electron bunches formed during such interactions by studying the emission of extreme ultraviolet (XUV) harmonic radiation. We describe how the precise addition of a second laser beam operating at the second harmonic of the driving laser pulse can significantly transform the interaction by modifying the accelerating potential provided by the fundamental ...

  6. Modelling and Studies for a Wideband Feedback System for Mitigation of Transverse Single Bunch Instabilities

    CERN Document Server

    Li, K S B; Rumolo, G; Cesaratto, J; Dusatko, J; Fox, J; Pivi, M; Pollock, K; Rivetta, C; Turgut, O

    2013-01-01

    As part of the LHC Injector Upgrade (LIU) Project [1], a wideband feedback system is under study for mitigation of coherent single bunch instabilities. This type of system may provide a generic way of shifting the instability threshold to regions that are currently inaccessible, thus, boosting the brightness of future beams. To study the effectiveness of such systems, a numerical model has been developed that constitutes a realistic feedback system including real transfer functions for pickup and kicker, realistic N-tap FIR and IIR filters as well as noise and saturation effects. Simulations of SPS cases have been performed with HEADTAIL to evaluate the feedback effectiveness in the presence of transverse mode coupling and electron clouds. Some results are presented addressing bandwidth limitations and amplifier power requirements.

  7. Longitudinal stability of Flat Bunches with Space-Charge or Inductive Impedance

    CERN Document Server

    Santiago Gonzalez, I

    2008-01-01

    We study the loss of Landau damping for the longitudinal plane via the "Sacherer formalism". Stability limits are calculated for several longitudinal beam distributions, in particular for two types of flat bunches, which could be of interest to the LHC upgrade. The resulting stability diagrams are computed and displayed for different azimuthal modes. A general recipe is given for calculating the threshold intensity in the case of a capacitive impedance below transition or, equivalently, for a purely inductive impedance above transition. The formalism was applied to the case of the PS Booster, as an example of space-charge impedance below transition, and to the SPS, as an example of inductive impedance above transition.

  8. Effect of Beamstrahlung on Bunch Length and Emittance in Future Circular e+e- Colliders

    CERN Document Server

    Valdivia Garcia, Marco Alan

    2016-01-01

    In future circular e+e− colliders, beamstrahlung may limit the beam lifetime at high energies, and increase the energy spread and bunch length at low energies. If the dispersion or slope of the dispersion is not zero at the collision point, beamstrahlung will also affect the transverse emittance. In this paper, we first examine the beamstrahlung properties, and show that for the proposed FCC-ee, the radiation is fairly well modelled by the classical formulae describing synchrotron radiation in bending magnets. We then derive a set of equations determining the equilibrium emittances in the presence of a nonzero dispersion at the collision point. An example case from FCC-ee will serve as an illustration.

  9. SPARC Working Point Optimization for a Bunch with Gaussian Temporal Profile

    CERN Document Server

    Boscolo, Manuela; Fusco, Valeria; Migliorati, Mauro; Reiche, Sven; Ronsivalle, Concetta

    2005-01-01

    We present the optimization of the working point for the SPARC photoinjector with a Gaussian temporal profile. The implications of a Gaussian temporal profile are discussed here for the standard working conditions and for the RF compressor case in comparison with the nominal working point performances of a 10ps flat top pulse with rise time of 1ps. Comparisons with the upgraded version of the HOMDYN code including arbitrary bunch temporal profiles are also reported. Advantages and drawbacks of the Gaussian and flat top pulse shapes are discussed. For the standard working point, it is shown that the two cases provide the same saturation length and average power, but the higher current in the beam core of the Gaussian pulse gives a higher peak radiation power. As the laser pulse shape could be Gaussian at the first stage of the SPARC operation, it is clear the importance of these simulation results.

  10. Beam induced electron cloud resonances in dipole magnetic fields

    Science.gov (United States)

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. These measurements are supported by both analytical models and computer simulations.

  11. Logic and control module for the Fermilab booster beam damper

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, B.R.

    1977-01-01

    A logic and control module is included in the electronic system of the booster superdamper. This module produces a 9-bit digital word that controls the delay of beam bunch position information in the Fermilab booster synchrotron so that it arrives at the damping electrodes at the same time as the bunch of beam to be corrected. This delay word generator also has an output feature that only allows delay time decreases as the booster synchrotron frequency program increases monotonically. Such a feature guards against low-index incidental FM from affecting the delay computations.

  12. Measuring short electron bunch lengths using coherent smith-purcell radiation

    Science.gov (United States)

    Nguyen, Dinh C.

    1999-01-01

    A method is provided for directly determining the length of sub-picosecond electron bunches. A metallic grating is formed with a groove spacing greater than a length expected for the electron bunches. The electron bunches are passed over the metallic grating to generate coherent and incoherent Smith-Purcell radiation. The angular distribution of the coherent Smith-Purcell radiation is then mapped to directly deduce the length of the electron bunches.

  13. Self-modulation instability of ultra-relativistic particle bunches with finite rise times

    CERN Document Server

    Vieira, J; Fang, Y; Mori, W B; Muggli, P; Silva, L O

    2014-01-01

    We study the evolution of the self-modulation instability using bunches with finite rise times. Using particle-in-cell simulations we show that unlike long bunches with sharp rise times, there are large variations of the wake amplitudes and wake phase velocity when bunches with finite rise times are used. These results show that use of bunches with sharp rise times is important to seed the self-modulation instability and to ensure stable acceleration regimes.

  14. Generation of stable ultra-relativistic attosecond electron bunches via the laser wakefield acceleration mechanism

    NARCIS (Netherlands)

    Luttikhof, M.J.H.; Khachatryan, A.G.; Goor, van F.A.; Boller, K.-J.

    2009-01-01

    In recent experiments ultra-relativistic femtosecond electron bunches were generated by a Laser Wakefield Accelerator (LWFA) in different regimes. Here we predict that even attosecond bunches can be generated by an LWFA due to the fast betatron phase mixing within a femtosecond electron bunch. The a

  15. Nonlinear structure of the wakefield generated by relativistic intense ion bunch

    Science.gov (United States)

    Koshelev, A. A.; Andreev, N. E.

    2016-11-01

    The resonant excitation of the nonlinear wakefield by a single proton bunch is investigated with the parameters characteristic of the AWAKE experiment. It is shown that obtained structure of the wakefield at a distance more than twenty periods behind the driver proton bunch can be suitable for the side injection and further acceleration of the witness electron bunch in the wakefield.

  16. Preliminary results of a femto-second electron bunch facility%飞秒电子束装置的初步实验结果

    Institute of Scientific and Technical Information of China (English)

    顾强; 陈永中; 戴志敏; 李德明; 赵振堂

    2008-01-01

    上海应用物理研究所建造并调试了一台飞秒电子束装置.这台装置主要由一把S波段热阴极微波电子枪、一台alpha磁铁和一根SLAC型加速管组成.这台装置可以产生能量为 20~30 MeV,峰值电流为100 A,微束团长度为250 fs的电子束.这篇文章报道了这台装置的调试和电子束团参数的测量.%A femto-second electron bunch facility has been constructed and commissioned at the Shanghai Institute of Applied Physics(SINAP).The linac of this facility consists of an S-band thermionic cathode RF-gun,an alpha magnet and a SLAC-type accelerating tube to generate a beam,then compress the micro-bunches,and finally accelerate the beam to 20~30 MeV.Preliminary experimental result shows that the length of the micro-bunches is about 250 fs.The measured beam parameters of this facility are presented in this paper.

  17. Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF electron source for the European X-FEL

    Energy Technology Data Exchange (ETDEWEB)

    Roensch, Juliane

    2010-01-15

    The Photoinjector Test facility at DESY, Zeuthen site, (PITZ) is aiming for the optimization of electron guns for SAS-FELs. For this it is necessary to investigate the characteristics of the six dimensional phase space of the bunch produced by a photoinjector. This thesis is focused on the analysis of the longitudinal properties of the electron bunch distribution, this means the temporal current distribution and the momentum distribution as well as the correlation of both properties. The complete distribution of the electron bunch in longitudinal phase space of a photoinjector was measured directly for the first time at a beam momentum of about 5 MeV/c, using an existing apparatus. This system had been designed for an accelerating gradient of 40 MV/m. Its subcomponents were analysed to understand sources of uncertainties of the measurement system. The usage of higher accelerating gradients in the gun (60 MV/m, resulting in a beam momentum of about 6.8 MeV/c) demands major modifications of the existing measurement system for the longitudinal phase space distribution. An upgrade of the facility by an additional accelerating cavity required the design of further longitudinal diagnostics systems for the analysis at higher momenta (up to 40 MeV/c). Measurements of the longitudinal beam properties to determine the influence of different operation parameters, like RF launch phase, charge, accelerating field gradient and laser distribution were performed and compared to simulations. (orig.)

  18. Bunch transverse emittance increase in electron storage rings

    Institute of Scientific and Technical Information of China (English)

    GAO Jie

    2009-01-01

    In this paper a theoretical framework to estimate the bunch transverse emittance growing in electron storage rings due to short range transverse wakefield of the machine is established. New equilibrium emittance equations are derived and applied to explain the experimentally obtained results in ATF damping ring. This equation will be useful for linear collider damping ring design.

  19. Study of Short Bunches at the Free Electron Laser CLIO

    CERN Document Server

    Delerue, Nicolas; Khodnevych, Vitalii; Berthet, Jean-Paul; Glotin, Francois; Ortega, Jean-Michel; Prazeres, Rui

    2016-01-01

    CLIO is a Free Electron Laser based on a thermionic electron gun. In its normal operating mode it delivers electron 8 pulses but studies are ongoing to shorten the pulses to about 1 ps. We report on simulations showing how the pulse can be shortened and the expected signal yield from several bunch length diagnostics (Coherent Transition Radiation, Coherent Smith Purcell Radiation).

  20. Instability of a witness bunch in a plasma bubble

    Energy Technology Data Exchange (ETDEWEB)

    Burov, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lebedev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Nagaitsev, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-02-16

    The stability of a trailing witness bunch, accelerated by a plasma wake accelerator (PWA) in a blow-out regime, is discussed. The instability growth rate as well as the energy spread, required for BNS damping, are obtained. A relationship between the PWA power efficiency and the BNS energy spread is derived.

  1. Simulation of single-bunch instabilities with HEADTAIL

    CERN Document Server

    Astapovych, Daria; Mounet, Nicolas Frank; CERN. Geneva. ATS Department

    2015-01-01

    Transverse collective instabilities are one of the most important limitations to achieve the highest luminosities in the LHC and have been regularly observed during the LHC Run I. We present here an analysis of single bunch instabilities observed in 2012, together with a comparison with HEADTAIL simulations using the LHC impedance model.

  2. Electro-optic methods for longitudinal bunch diagnostics at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, B.R.

    2007-07-15

    Precise measurements of the temporal profile of sub-picosecond electron bunches are of high interest for the optimization and operation of VUV and X-ray free electron lasers. In this thesis, the shortest electro-optic signals measured so far for electron bunch diagnostics are presented, reaching a time resolution of better than 50 fs (rms). The e ects that introduce signal distortions and limit the time resolution are studied in numerical simulations for different electro-optic detection materials and techniques. The time resolution is mainly limited by lattice resonances of the electro-optic crystal. Electro-optic signals as short as 54 fs (rms) are obtained with gallium phosphide (GaP) crystals in a crossed polarizer detection scheme using temporally resolved electro-optic detection. Measuring near crossed polarization, where the electro-optic signal is proportional to the velocity field of the relativistic electron bunch, the shortest obtained signal width is 70 fs (rms). The electro-optic signals are compared to electron bunch shapes that are measured simultaneously with a transverse deflecting structure with 20 fs resolution. Numerical simulations using the bunch shapes as determined with the transverse deflecting cavity as input data are in excellent agreement with electro-optical signals obtained with GaP, both for temporally and spectrally resolved measurements. In the case of zinc telluride (ZnTe) the observed signals are slightly broader and significantly smaller than expected from simulations. These discrepancies are probably due to the poor optical quality of the available ZnTe crystals. (orig.)

  3. Loss Factor of Tapered Structures for Short Bunches

    Energy Technology Data Exchange (ETDEWEB)

    Blednykh, A.

    2011-03-28

    Using the electromagnetic simulation code ECHO, we have found a simple phenomenological formula that accurately describes the loss factor for short bunches traversing an axisymmetric tapered collimator. In this paper, we consider tapered collimators with rectangular cross-section and use the GdfidL code to calculate the loss factor dependence on the geometric parameters for short bunches. The results for both axisymmetric and rectangular collimators are discussed. The behaviour of the impedance of tapered structures for very short bunches in the optical regime has been determined in refs. [10,11]. Here, for the loss factors for two particular geometries, we have studied the departure from the optical regime behaviour as bunch length is increased. In both cases, the ratio of the loss factor for the tapered collimator to the loss factor in the optical regime is a function only of the scaling parameter {sigma}L/d{sup 2}. The fact that the bunch length a and the taper length L appear as a product is consistent with the recent scaling derived by Stupakov in ref. [12], since there is only a weak dependence on g. One noteworthy fact that is not a priori expected is that only the larger radius or vertical half-aperture d appears. The reduction factor is independent of b. Moreover, it is striking that the specific form involving the arctan given in Eq. (5) holds for both geometries, with only the coefficient {mu} differing by a factor of {approx}2 for flat vs round. This suggests that there may be a useful phenomenological form for more general geometries which may follow from natural extensions of Eq. (5). This possibility is presently being investigated.

  4. Measuring the electron bunch timing with femtosecond resolution at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Marie Kristin

    2013-03-15

    Bunch arrival time monitors (BAMs) are an integral part of the laser-based synchronisation system which is being developed at the Free Electron Laser in Hamburg (FLASH).The operation principle comprises the measurement of the electron bunch arrival time relative to the optical timing reference, which is provided by actively length-stabilised fibre-links of the synchronisation system. The monitors are foreseen to be used as a standard diagnostic tool, not only for FLASH but also for the future European X-Ray Free-Electron Laser (European XFEL). The present bunch arrival time monitors have evolved from proof-of-principle experiments to beneficial diagnostic devices, which are almost permanently available during standard machine operation. This achievement has been a major objective of this thesis. The developments went in parallel to improvements in the reliable and low-maintenance operation of the optical synchronisation system. The key topics of this thesis comprised the characterisation and optimisation of the opto-mechanical front-ends of both, the fibre-links and the BAMs. The extent of applications involving the bunch arrival time information has been enlarged, providing automated measurements for properties of the RF acceleration modules, for instance, the RF on-crest phase determination and the measurement of energy fluctuations. Furthermore, two of the currently installed BAMs are implemented in an active phase and gradient stabilisation of specific modules in order to minimise the arrival time jitter of the electron bunches at the location of the FEL undulators, which is crucial for a high timing resolution of pump-probe experiments.

  5. Two-color beam generation based on wakefield excitation

    Science.gov (United States)

    Bettoni, S.; Prat, E.; Reiche, S.

    2016-05-01

    Several beam manipulation methods have been studied and experimentally tested to generate two-color photon beams in free electron laser facilities to accommodate the user requests. We propose to use the interaction of the beam with an oscillating longitudinal wakefield source to obtain a suitable electron beam structure. The bunch generates two subpulses with different energies and delayed in time passing through a magnetic chicane after its longitudinal phase space has been modulated by the wakefield source. According to this approach the power of the emitted radiation is not degraded compared to the monochromatic beam, and the setup in the machine is quite simple because the bunch is manipulated only in the high energy section, where it is more rigid. We present the design applied to SwissFEL. We identified the parameters and the corresponding range of tunability of the time and energy separation among the two subbunches.

  6. Beam Emittance Measurement for PLS-II Linac

    CERN Document Server

    Lee, Byung-Joon; Park, Chong do; Chunjarean, SomJai; Kim, Changbum

    2016-01-01

    The PLS-II has a 100 MeV pre-injector for the 3 GeV Linac. A thermionic gun produces electron charge of 200 pC with a bunch duration of 500 ps by a 250 ps triggering pulser. At the pre-injector, one of the most important beam parameters to identify the beam quality is a transverse emittance of electron bunches. Therefore we measure the beam emittance and twiss functions at 100 MeV in order to match the beam optics to beam transport line and go through it to the storage ring. To get the transverse emittance measurement, well-known technique, quadrupole scan, is used at the pre-injector. The emittance were 0.591 mm-mrad in horizontal and 0.774 mm-mrad in vertical direction.

  7. Luminosity Loss due to Beam Distortion and the Beam-Beam Instability

    CERN Document Server

    Wu, Juhao; Raubenheimer, Tor O; Seryi, Andrei; Sramek, Christopher K

    2005-01-01

    In a linear collider, sources of emittance dilution such as transverse wakefields or dispersive errors will couple the vertical phase space to the longitudinal position within the beam (the so-called ‘banana effect'). When the Intersection Point (IP) disruption parameter is large, these beam distortions will be amplified by a single bunch kink instability which will lead to luminosity loss. We study this phenomena both analytically using linear theory and via numerical simulation. In particular, we examine the dependence of the luminosity loss on the wavelength of the beam distortions and the disruption parameter. This analysis may prove useful when optimizing the vertical disruption parameter for luminosity operation with given beam distortions.

  8. Simulations of the Full Impact of the LHC Beam on Solid Copper and Graphite Targets

    CERN Document Server

    Tahir, Naeem; Lomonosov, Igor; Shutov, Alexander; Piriz, Roberto; Schmidt, Ruediger

    2010-01-01

    The CERN Large Hadron Collider (LHC) is by far the most powerful accelerator in the world. It is a 26.8 km circumference proton synchrotronwith 1232 superconducting magnets, accelerating two counter–rotating proton beams. When this accelerator will achieve its full capacity, each beam will consist of a bunch train with 2808 bunches and each bunch comprising of 1.15 × 1011 7 TeV protons. The bunch length will be 0.5 ns and two neighboring bunches will be separated by 25 ns while intensity distribution in the radial direction will be Gaussian with a standard deviation, σ = 0.2 mm. In the center of the physics detectors the beam will be focused to a much smaller size, down to a σ of 20 μm. The total duration of the beam will be of the order of 89 μs and the total number of protons in the beam will be 3 × 1014 which is equivalent to 362 MJ energy, sufficient to melt 500 kg copper. Safety of operation is a very important issue when working with such extremely powerful beams. An accidental loss of even a sm...

  9. Influence of emittance on transverse dynamics of accelerated bunches in the plasma–dielectric wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kniaziev, R.R., E-mail: rkniaziev@gmail.com [V.N. Karazin Kharkov National University, Kharkov (Ukraine); NSC Kharkov Institute of Physics and Technology, Kharkov (Ukraine); Sotnikov, G.V. [NSC Kharkov Institute of Physics and Technology, Kharkov (Ukraine)

    2016-09-01

    We study theoretically transverse dynamics of the bunch of charged particles with the finite emittance in the plasma–dielectric wakefield accelerator. Parameters of bunches are chosen the same as available from the 15 MeV Argonne Wakefield Accelerator beamline. The goal of the paper is to study the behavior of bunches of charged particles with different emittances while accelerating these bunches by wakefields in plasma–dielectric structures. Obtained results allow us to determine the limits of the emittance of the bunch where dynamics of the accelerated particles remains stable.

  10. Principle of a correction of the long-range beam-beam effect in LHC using electromagnetic lenses

    CERN Document Server

    Koutchouk, Jean-Pierre

    2000-01-01

    Due to the small bunch spacing, the beams in LHC collide not only in the four experimental points but experience more than one hundred 'near-misses'. They occur on either side of the collision points in places where the beam separation is in the range of 7 to 13 sigma. These so-called 'long-range'interactions are more and more recognized to be a drastic mechanism leading to beam blow-up or beam loss even-though the tunes of the particles are under control. We show in this note that, contrary to the head-on-beam interaction, a simple non linear model of the long-range interactions can be devised. This model suggests a rather simple correction principle by electromagnetic lenses, basically a wire, which correct with a good accuracy simultaneously the linear and non-linear perturbations. The correction of the average perturbation over all the bunches seems not demanding. An exact correction of the so-called PACMAN bunches may be done at a frequency an order of magnitude lower than the bunch frequency and is bein...

  11. Upgrading Longitudinal Beam Behavior In Ihep Booster

    CERN Document Server

    Gurevich, A; Ivanov, S; Lebedev, O; Simonov, A; Sytov, S

    2004-01-01

    Operation of 1.5 GeV fast-cycling Booster proton syn chrotron of IHEP has been long hampered by unwanted oscillations in bunch length. To identify the reason of such beam behavior, a dedicated beam-dynamics research program has been initiated. The scope of this activity has covered a variety of the might-be mechanisms behind-coherent instabilities, malfunction of voltage amplitude feedbacks, quality of the voltage program, etc. Ultimately, phase loop encircling the VCO has been upgraded, which resulted in a noticeably suppressed scale of both, dipole and quadrupole oscillations of beam.

  12. The kick-out mass selection technique for ions stored in an Electrostatic Ion Beam Trap

    Energy Technology Data Exchange (ETDEWEB)

    Toker, Y; Altstein, N; Aviv, O; Rappaport, M L; Heber, O; Schwalm, D; Strasser, D; Zajfman, D [Department of Particle Physics, Weizmann Institute of Science, Rehovot, 76100 (Israel)], E-mail: jtoker@weizmann.ac.il

    2009-09-15

    A simple mass selection technique which allows one to clean a keV ion beam of undesirable masses while stored in an Electrostatic Ion Beam Trap (EIBT) is described. The technique is based on the time-of-flight principle and takes advantage of the long storage times and self-bunching that are possible in this type of traps (self bunching being the effect that keeps ions of the same mass bunched in spite of their finite distributions of velocities and trajectories). As the oscillation period is proportional to the square root of the ion mass, bunches containing ions of different masses will separate in space with increasing storage time and can be kicked out by a pulsed deflector mounted inside the trap. A mass selector of this type has been implemented successfully in an EIBT connected to an Even-Lavie supersonic expansion source and is routinely used in ongoing cluster experiments.

  13. A closer look at the beam-beam processes at ILC and CLIC

    CERN Document Server

    Hartin, Anthony

    2012-01-01

    The strength of the electromagnetic fields in the bunch collision at a linear collider will have a significant effect, yielding large numbers of beamstrahlung photons and associated coherent pair production. These effects are limited in the proposed ILC beam parameters which limit the strength of the bunch field to $\\Upsilon_{\\text{ave}}=0.27$. The CLIC 3 Tev design by comparison has a $\\Upsilon_{\\text{ave}}=3.34$ yielding huge number of coherent pairs. In terms of the precision physics programs of these proposed colliders there is an imperative to investigate the effect of the strong bunch fields on higher order processes. From the exact wavefunctions used in the calculation of transition rates within the Furry interaction picture, and using appropriate simplifications, a multiplicative factor to the coupling constants was obtained. This indicates a significant variation to the transition rate near threshold energies. Further studies are in progress to calculate the exact effect on expected observables.

  14. Electron Cloud Observations during LHC Operation with 25 ns Beams

    CERN Document Server

    Li, Kevin; Iadarola, Giovanni; Mether, Lotta; Romano, Annalisa; Rumolo, Giovanni; Schenk, Michael

    2016-01-01

    While during the Run 1 (2010-2012) of the Large Hadron Collider (LHC) most of the integrated luminosity was produced with 50 ns bunch spacing, for the Run 2 start-up (2015) it was decided to move to the nominal bunch spacing of 25 ns. As expected, with this beam configuration strong electron cloud effects were observed in the machine, which had to be mitigated with dedicated 'scrubbing' periods at injection energy. This enabled to start the operation with 25 ns beams at 6.5 TeV, but e-cloud effects continued to pose challenges while gradually increasing the number of circulating bunch trains. This contribution will review the encountered limitations and the mitigation measures that where put in place and will discuss possible strategies for further performance gain.

  15. Impedances and beam stability issues of the Fermilab recycler ring

    Energy Technology Data Exchange (ETDEWEB)

    Ng, King-Yuen

    1996-04-01

    The Fermilab Recycler Ring (permanent magnets) will be built on top of the Fermilab Main Injector sharing the same tunnel; its main function is to recycle the anti-protons after a store in the Tevatron and to provide storage for them after after accumulation and cooling in the Accumulator. Estimates of coupling impedances show domination by space charge. Examination of longitudinal instabilities shows that microwave instability will not occur if there are only N = 2.53 x 10{sup 12} anti-protons in the beam. Longitudinal coupling-bunch instability during injection stacking does not appear possible because of long bunch lengths/short bunch gaps and lack of sharp resonances. Transverse instability, on the other hand, cannot be Landau damped by the momentum spread in the beam, but it can be cured by a small spread in the betatron tunes (either from space charge or an octupole).

  16. Ponderomotive scattering of an electron-bunch before injection into a laser wakefield

    CERN Document Server

    Khachatrian, A G; Luttikhof, M J H; Van Goor, F A

    2006-01-01

    For the purpose of laser wakefield acceleration, it turned out that also the injection of electron bunches longer than a plasma wavelength can generate accelerated femtosecond bunches with relatively low energy spread. This is of high interest because such injecting bunches can be provided, e.g., by state-of-the-art photo cathode RF guns. Here we point out that when an e-bunch is injected in the wakefield it is important to take into account the ponderomotive scattering of the injecting bunch by the laser pulse in the vacuum region located in front of the plasma. At low energies of the injected bunch this scattering results in a significant drop of the collection efficiency. Larger collection efficiency can by reached with lower intensity laser pulses and relatively high injection energies. We also estimate the minimum trapping energy for the injected electrons and the length of the trapped bunch.

  17. Measurements and simulations of ultralow emittance and ultrashort electron beams in the linac coherent light source.

    Science.gov (United States)

    Ding, Y; Brachmann, A; Decker, F-J; Dowell, D; Emma, P; Frisch, J; Gilevich, S; Hays, G; Hering, Ph; Huang, Z; Iverson, R; Loos, H; Miahnahri, A; Nuhn, H-D; Ratner, D; Turner, J; Welch, J; White, W; Wu, J

    2009-06-26

    The Linac Coherent Light Source (LCLS) is an x-ray free-electron laser project presently in a commissioning phase at the SLAC National Accelerator Laboratory. We report here on very low-emittance measurements made at low bunch charge, and a few femtosecond bunch length produced by the LCLS bunch compressors. Start-to-end simulations associated with these beam parameters show the possibilities of generating hundreds of GW at 1.5 A x-ray wavelength and nearly a single longitudinally coherent spike at 1.5 nm with 2-fs duration.

  18. Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    CERN Document Server

    Pan, R; Lefevre, T; Gillepsie, WA; CERN. Geneva. ATS Department

    2015-01-01

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding(EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  19. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; /SLAC

    2009-10-30

    Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped

  20. A High Dynamic-Range Beam Position Measurement System for ELSA-2

    CERN Document Server

    Balleyguier, P; Guimbal, P; Borrion, H

    2003-01-01

    New beamlines are presently under construction for ELSA, a 20 MeV electron linac located at Bruyères-le-Châtel. These lines need a beam position measurement system filling the following requirements: small footprint, wide dynamic range, single-bunch/multi-bunch capability, simple design. We designed a compact 4-stripline sensor and an electronic treatment chain based on logarithmic amplifiers. This paper presents the design, cold and hot test results.

  1. A data acquisition system for longitudinal beam properties in a rapid cycling synchrotron

    CERN Document Server

    Steimel, J

    2012-01-01

    A longitudinal beam properties, data acquisition system has been commissioned to operate in the Fermilab booster ring. This system captures real time information including beam synchronous phase, bunch length, and coupled bunch instability amplitudes as the beam is accelerated from 400 MeV to 8 GeV in 33 ms. The system uses an off-the-shelf Tektronix oscilloscope running Labview software and a synchronous pulse generator. This paper describes the hardware configuration and the software configuration used to optimize the data processing rate.

  2. Linear Theory Analysis of Self-Amplified Parametric X-ray Radiation from High Current Density Electron Bunches

    CERN Document Server

    Lobach, Ihar; Feranchuk, Ilya

    2015-01-01

    Linear theory of the parametric beam instability or the self-amplification of parametric x-ray radiation (PXR) from relativistic electrons in a crystal is considered taking into account finite emittance of the electron beam and absorption of the radiation. It is shown that these factors change essentially the estimation of threshold parameters of the electron bunches for the coherent X-ray generation. The boundary conditions for the linear theory of the effect is analyzed in details and it is shown that the grazing incidence diffraction geometry is optimal for the growth of instability. Numerical estimations of amplification and coherent photon yield in dependence on the electron current density are presented for the case of mm-thickness Si crystal and 100 MeV electrons. Possible improvements of the experimental scheme for optimization of the coherent radiation intensity are discussed.

  3. LIGHT SOURCE: RF deflecting cavity for bunch length measurement in Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Shi, Jia-Ru; Chen, Huai-Bi; Tang, Chuan-Xiang; Huang, Wen-Hui; Du, Ying-Chao; Zheng, Shu-Xin; Ren, Li

    2009-06-01

    An RF deflecting cavity used for bunch length measurement has been designed and fabricated at Tsinghua University for the Thomson Scattering X-Ray Source. The cavity is a 2856 MHz, π-mode, 3-cell standing-wave cavity, to diagnose the 3.5 MeV beam produced by photocathode electron gun. With a larger power source, the same cavity will again be used to measure the accelerated beam with energy of 50 MeV before colliding with the laser pulse. The RF design using MAFIA for both the cavity shape and the power coupler is reviewed, followed by presenting the fabrication procedure and bench measurement results of two cavities.

  4. Time domain numerical calculations of the short electron bunch wakefields in resistive structures

    Energy Technology Data Exchange (ETDEWEB)

    Tsakanian, Andranik

    2010-10-15

    The acceleration of electron bunches with very small longitudinal and transverse phase space volume is one of the most actual challenges for the future International Linear Collider and high brightness X-Ray Free Electron Lasers. The exact knowledge on the wake fields generated by the ultra-short electron bunches during its interaction with surrounding structures is a very important issue to prevent the beam quality degradation and to optimize the facility performance. The high accuracy time domain numerical calculations play the decisive role in correct evaluation of the wake fields in advanced accelerators. The thesis is devoted to the development of a new longitudinally dispersion-free 3D hybrid numerical scheme in time domain for wake field calculation of ultra short bunches in structures with walls of finite conductivity. The basic approaches used in the thesis to solve the problem are the following. For materials with high but finite conductivity the model of the plane wave reflection from a conducting half-space is used. It is shown that in the conductive half-space the field components perpendicular to the interface can be neglected. The electric tangential component on the surface contributes to the tangential magnetic field in the lossless area just before the boundary layer. For high conducting media, the task is reduced to 1D electromagnetic problem in metal and the so-called 1D conducting line model can be applied instead of a full 3D space description. Further, a TE/TM (''transverse electric - transverse magnetic'') splitting implicit numerical scheme along with 1D conducting line model is applied to develop a new longitudinally dispersion-free hybrid numerical scheme in the time domain. The stability of the new hybrid numerical scheme in vacuum, conductor and bound cell is studied. The convergence of the new scheme is analyzed by comparison with the well-known analytical solutions. The wakefield calculations for a number of

  5. Beam diagnostic suite for the SNS linac

    Science.gov (United States)

    Hardekopf, R. A.; Kurennoy, S. S.; Power, J. F.; Shafer, R. E.; Stovall, J. E.

    2000-11-01

    The Spallation Neutron Source (SNS) is the next-generation pulsed neutron source to be built in the United States. The accelerator chosen to produce the 2 MW beam power on the neutron-producing target is an H- linear accelerator (linac) to 1 GeV, followed by a proton accumulator ring. The ring compresses the 1 ms long beam bunches from the linac to less than 1 μs. The linac is pulsed at 60 Hz with a 6% duty factor. Stringent control of the pulse structure and stability of the high-intensity H- beam is needed to minimize beam loss in the linac and to optimize injection into the accumulator ring. This requires a set of beam diagnostics that can operate at high peak currents (˜52 mA) with high sensitivity and minimum beam interception.

  6. Bunching of temporal cavity solitons via forward Brillouin scattering

    CERN Document Server

    Erkintalo, Miro; Jang, Jae K; Coen, Stéphane; Murdoch, Stuart G

    2015-01-01

    We report on the experimental observation of bunching dynamics with temporal cavity solitons in a continuously-driven passive fibre resonator. Specifically, we excite a large number of ultrafast cavity solitons with random temporal separations, and observe in real time how the initially random sequence self-organizes into regularly-spaced aggregates. To explain our experimental observations, we develop a simple theoretical model that allows long-range acoustically-induced interactions between a large number of temporal cavity solitons to be simulated. Significantly, results from our simulations are in excellent agreement with our experimental observations, strongly suggesting that the soliton bunching dynamics arise from forward Brillouin scattering. In addition to confirming prior theoretical analyses and unveiling a new cavity soliton self-organization phenomenon, our findings elucidate the manner in which sound interacts with large ensembles of ultrafast pulses of light.

  7. Repetitive Bunches from RF-Photo Gun Radiate Coherently

    CERN Document Server

    Van der Geer, C A J; Van der Geer, S B

    2004-01-01

    We consider to feed the laser wake field accelerator of the alpha-X project by a train of low charge pancake electron bunches to reduce undesired expansion due to space-charge forces. To this purpose the photo excitation laser of the rf-injector is split into a train of sub-pulses, such that each of the produced electron bunches falls into a successive ponderomotive well of the plasma accelerator. This way the total accelerated charge is not reduced. The repetitive photo gun can be tested, at low energy, by connecting it directly to the undulator and monitoring the radiation. The assertions are based on the results of new GPT simulations.

  8. Higher-order photon bunching in a semiconductor microcavity

    DEFF Research Database (Denmark)

    Assmann, M.; Veit, F.; Bayer, M.;

    2009-01-01

    Quantum mechanically indistinguishable particles such as photons may show collective behavior. Therefore, an appropriate description of a light field must consider the properties of an assembly of photons instead of independent particles. We have studied multiphoton correlations up to fourth order...... in the single-mode emission of a semiconductor microcavity in the weak and strong coupling regimes. The counting statistics of single photons were recorded with picosecond time resolution, allowing quantitative measurement of the few-photon bunching inside light pulses. Our results show bunching behavior...... in the strong coupling case, which vanishes in the weak coupling regime as the cavity starts lasing. In particular, we verify the n factorial prediction for the zero-delay correlation function of n thermal light photons....

  9. Torrefaction of Pelletized Oil Palm Empty Fruit Bunches

    CERN Document Server

    Nyakuma, Bemgba Bevan; Johari, Anwar; Abdullah, Tuan Amran Tuan; Oladokun, Olagoke

    2015-01-01

    The torrefaction of oil palm Empty Fruit Bunch (EFB) briquettes was examined in this study. The results indicate that temperature significantly influenced the mass yield, energy yield and heating value of oil palm empty fruit bunch (OPEFB) briquettes during torrefaction. The solid uniform compact nature of EFB briquettes ensured a slow rate of pyrolysis or devolatization which enhanced torrefaction. The mass yield decreased from 79.70 % to 43.03 %, energy yield from 89.44 % to 64.27 % during torrefaction from 250 {\\deg}C to 300 {\\deg}C. The heating value (HHV) of OPEFB briquettes improved significantly from 17.57 MJ/kg to 26.24 MJ/kg after torrefaction at 300 {\\deg}C for 1 hour. Fundamentally, the study has highlighted the effects of pelletization and torrefaction on solid fuel properties of oil palm EFB briquettes and its potential as a solid fuel for future thermal applications.

  10. First test of a CMS DT chamber equipped with full electronics in a muon beam

    CERN Multimedia

    Jesus Puerta-Pelayo

    2003-01-01

    A CMS DT chamber of MB3 type, equipped with the final version of a minicrate (containing all on-chamber trigger and readout electronics), was tested in a muon beam for the first time. The beam was bunched in 25 ns spills, allowing an LHC-like response of the chamber trigger. This test confirmed the excellent performance of the trigger design.

  11. The transverse and longitudinal beam characteristics of the PHIN photo-injector at CERN

    CERN Document Server

    Mete, Ö; Dabrowski, A; Divall, M; Döbert, S; Egger, D; Elsener, K; Fedosseev, V; Lefèvre, T; Petrarca, M

    2010-01-01

    A new photo-injector, capable to deliver a long pulse train with a high charge per bunch for CTF3, has been designed and installed by a collaboration between LAL, CCLRC and CERN within the framework of the second Joint Research Activity PHIN of the European CARE program. The demonstration of the high charge and the stability along the pulse train are the important goals for CTF3 and the CLIC drive beam. The nominal beam for CTF3 has an average current of 3.5 A, a 1.5 GHz bunch repetation frequency and a pulse length of 1.27 μs (1908 bunches). The existing CTF3 injector consists of a thermionic gun and a subharmonic bunching system. The PHIN photo-injector is being tested in a dedicated test-stand at CERN to replace the existing CTF3 injector that is producing unwanted satellite bunches during the bunching process. A phase-coding scheme is planned to be implemented to the PHIN laser system providing the required beam temporal structure by CTF3. RF photo-injectors are high-brightness, low-emittance electron so...

  12. Coupled-bunch instabilities due to fundamental cavity impedance

    CERN Document Server

    Mastoridis, Themistoklis; Chapochnikova, Elena; Esteban Muller, Juan; Molendijk, John; Timko, Helga; CERN. Geneva. ATS Department

    2017-01-01

    The purpose of this MD was to estimate the stability threshold due to longitudinal coupled-bunch instabilities (CBIs) driven by the RF cavities' fundamental impedance. These instabilities are not a concern for the LHC. A model was developed to study the stability threshold for the High-Luminosity LHC (HL-LHC). The goal of this MD was to validate this model and thus its predictions for the HL-LHC stability margins.

  13. Predicting fresh fruit bunch yield of oil palm

    Directory of Open Access Journals (Sweden)

    Nilnond, C.

    2001-11-01

    Full Text Available This study aimed to develop the simulation model for predicting fresh fruit bunch (FFB yield of oil palm through multiple linear regression analysis. Two experiments were conducted at the oil palm plantation of Agricultural and Technology College, Krabi province. Six-year-old Tenera hybrid palms were used for the experiments. These palms were planted in Tha-sae soil series (Typic Paleudults; Fine loamy mixedwith spacing of 9x9x9 m. In the first experiment, 151 Tenera palms were selected and marked randomly throughout an area of plantation about 16 ha. For each selected palm, FFB yield and yield component characters (FFB number and bunch weight were recorded at every harvesting time for four consecutive years (June 1993 to May 1997. The results showed that the FFB number and bunch weight could be used to predict the FFB oil palm yield. In the second experiment, nine plots of Tenera hybrid palms were arranged. The plot size was 0.48 ha and had twenty palms per plot for data collection for three consecutive years (January 1994 to December 1996. These data included leaf nutrient (N, P, K, Mg and B contents in the 17th frond, the fresh fruit bunch (FFB yield and the amount of rainfall. The results showed that N, P, K, Mg and B contents in the leaves, the amount of rainfall and FFB yield in the previous year, together with the N, P, K, Mg and B contents in the leaves (in the predicting year could be used to predict the FFB oil palm yield.

  14. Bunch lengthening with bifurcation in electron storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-San; Hirata, Kohji [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    The mapping which shows equilibrium particle distribution in synchrotron phase space for electron storage rings is discussed with respect to some localized constant wake function based on the Gaussian approximation. This mapping shows multi-periodic states as well as double bifurcation in dynamical states of the equilibrium bunch length. When moving around parameter space, the system shows a transition/bifurcation which is not always reversible. These results derived by mapping are confirmed by multiparticle tracking. (author)

  15. Beam Instrumentation Global Network [BIGNET]: a common web portal for Beam instrumentalists

    CERN Document Server

    Gras, J-J

    2012-01-01

    This document will present an initiative launched during the International Particle Accelerator Conference (IPAC11) to define and produce a common web portal for Beam Instrumentation, with the aim of allowing any beam instrumentalist to easily and efficiently: - find the laboratories with machines using beams of similar characteristics (particle type, total beam intensity, bunch intensity, frequency, energy) - find the person who is working there on the beam observable concerned (i.e. beam position, loss, intensity, transverse or longitudinal profile, tune) and how to contact him/her - create discussion forums with the right audience on hot beam instrumentation topics or issues - advertise topical events and workshop - provide links towards documents describing system designs and performance assessments... This document will cover the status and prospects of the project with the aim to invite and welcome new laboratories to join the adventure.

  16. Single-shot beam size measurements using visible-light interferometry at CESR

    Science.gov (United States)

    Wang, S. T.; Holtzapple, R.; Rubin, D. L.

    2017-03-01

    A new primary mirror for a visible-light beam size monitor (vBSM) was designed and installed in the Cornell Electron-Positron Storage Ring (CESR). The vertical angular acceptance of the mirror was doubled to allow double-slit interferometry with large slit separation (>12 mm). In addition, the diffraction associated with the first generation mirror has been eliminated. The resolution of the vertical beam size measurements has been dramatically improved but is ultimately limited by the beam motion. Two fast-response detectors, a Photomultiplier Tube (PMT) array and a gated camera, were employed to study the beam motion. The advantages and limitations of both devices are discussed in this paper. The gated camera was also used to measure single-shot beam width and motion of each bunch in a multi-bunch train. We measured significantly more horizontal motion of electron as compared to positron bunch trains in otherwise identical machine condition. This difference may be a signature for the difference between electron cloud build-up for positron bunch trains versus ions effects characteristic of electron bunch trains.

  17. Simulation of electron cloud effects to heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Fatih; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder

    2011-07-01

    Electron cloud (EC) driven instability can cause beam loss, emittance growth, trajectory change and wake fields. Mentioned crucial effects of EC motivated researchers to understand the EC build up mechanism and the effects of EC to the beam. This motivation also induced the progress of developing new simulation codes. EC simulations can roughly be divided into two classes such as, softwares whose goals are to simulate the build up of the EC during the passage of a bunch train and the codes which model the interaction of a bunch with an EC. The aim of this study is to simulate the effects of electron cloud (EC) on the dynamics of heavy ion beams which are used in heavy ion synchrotron (SIS-18) at GSI. To do this, a 3-D and self-consistent simulation program based on particle in cell (PIC) method is used. In the PIC cycle, accurate solution of the Maxwell equations is obtained by employing discontinuous Galerkin finite element method. As a model, we assumed a perfectly conducting beam pipe which was uniformly (or randomly) loaded with the electrons. Then as parallel with the realistic cases in SIS-18, a single bunch consisting of U{sup +73} ions was extracted which could propagate in this pipe. Due to EC-ion bunch interaction, electrons gained energy and their displacements were observed. Electric and magnetic field components and EC charge density were calculated, numerically.

  18. Characterestics of pico-second single bunch at the S-band linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Uesaka, Mitsuru (Nuclear Engineering Research Laboratory, University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-11 (Japan)); Kozawa, Takahiro (Nuclear Engineering Research Laboratory, University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-11 (Japan)); Kobayashi, Toshiaki (Nuclear Engineering Research Laboratory, University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-11 (Japan)); Ueda, Toru (Nuclear Engineering Research Laboratory, University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-11 (Japan)); Miya, Kenzo (Nuclear Engineering Research Laboratory, University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-11 (Japan))

    1994-06-15

    Measurement of the bunch structure of a pico-second single bunch was performed using a femto-second streak camera at the S-band linear accelerator of the University of Tokyo. The aim of this research is to investigate the feasibility of the generation of a femto-second single bunch at the S-band linac. The details of the bunch structure and energy spectrum of an original single bunch were precisely investigated in several operation modes where the RF phases in accelerating tubes and a prebuncher were varied. The femto-second streak camera was utilized to measure the bunch structure by one shot via Cherenkov radiation emitted by the electrons in the bunch. Next, an experiment for magnetic pulse compression of the original single bunch was carried out. Pulse shapes of the compressed bunchs for different energy modulation were also obtained by measuring Cherenkov radiation by one shot using the femto-second streak camera. Prior to the experiment, numerical tracking analysis to determine operating parameters for the magnetic pulse compression was also done. Measured pulse widths were compared with calculated ones. Finally, a 2 ps (full width at half maximum; FWHM) single bunch with an electric charge of 0.3 nC could be generated by the magnetic pulse compression. ((orig.))

  19. Study on the injection beam commissioning software for CSNS/RCS

    CERN Document Server

    Huang, Ming-Yang; Liu, Wei-Bin; Qiu, Jing; Huang, Liang-Sheng

    2015-01-01

    The China Spallation Neutron Source (CSNS) accelerator uses H- stripping and phase space painting method of filling large ring acceptance with the linac beam of small emittance. The beam commissioning software system is the key part of CSNS accelerator. The injection beam commissioning software for CSNS contains three parts currently: painting curve control, injection beam control and injection orbit correction. The injection beam control contains two subsections: single bunch beam calculation and LRBT beam control at the foil. The injection orbit correction also contains two subsections: injection orbit correction by the calculation and injection trim power control.

  20. Beam loading compensation for the NLC low frequency linacs

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.; Miller, R.; Farkas, D.; Raubenheimer, T.; Tang, H.; Yeremian, D.

    1997-03-01

    The NLC low rf linacs are heavily loaded by a beam of about 130 ns in macropulse length (90 bunches) and a current up to 2.75 Amps. Beam loading voltage generates a large energy spread along the bunch train. This energy spread is critical for lattice design and, if not properly compensated, induces emittance growth and in turn lowers the luminosity of the machine. In this paper, the authors study the {Delta}F and {Delta}T beam loading compensation techniques for the NLC low rf linacs. They will apply these methods to the NLC low rf linacs to demonstrate the efficacy of these methods. Finally, they discuss a hybrid {Delta}T + {Delta}F method to improve the efficiency of beam loading compensation.

  1. Design of CMS Beam Halo Monitor system

    CERN Document Server

    AUTHOR|(CDS)2078842

    2015-01-01

    A fast and directional monitoring system for the CMS experiment is designed to provide an online, bunch-by-bunch measurement of beam background induced by beam halo interactions, separately for each beam. The background detection is based on Cherenkov radiation produced in synthetic fused silica read out by a fast, UV sensitive photomultiplier tube. Twenty detector units per end will be azimuthally distributed around the rotating shielding of CMS, covering ~408 cm2 at 20.6m from the interaction point, at a radius of ~180 cm. The directional and fast response of the system allows the discrimination of the background particles from the dominant flux in the cavern induced by pp collision debris, produced within the 25 ns bunch spacing. A robust multi-layered shielding will enclose each detector unit to protect the photomultiplier tube from the magnetic field and to eliminate the occupancy from low energy particles. The design of the front-end units is validated by experimental results. An overview of the new sy...

  2. Radial equilibrium of relativistic particle bunches in plasma wakefield accelerators

    CERN Document Server

    Lotov, K V

    2016-01-01

    Drive particle beams in linear or weakly nonlinear regimes of the plasma wakefield accelerator quickly reach a radial equilibrium with the wakefield, which is described in detail for the first time. The equilibrium beam state and self-consistent wakefields are obtained by combining analytical relationships, numerical integration, and first-principle simulations. In the equilibrium state, the beam density is strongly peaked near the axis, the beam radius is constant along the beam, and longitudinal variation of the focusing strength is balanced by varying beam emittance. The transverse momentum distribution of beam particles depends on the observation radius and is neither separable, nor Gaussian.

  3. Beam-Ion Instability in PEP-II

    Energy Technology Data Exchange (ETDEWEB)

    Heifets, S.; Kulikov, A.; Wang, Min-Huey; Wienands, U.; /SLAC

    2007-11-07

    The instability in the PEP-II electron ring has been observed while reducing the clearing gap in the bunch train. We study the ion effects in the ring summarizing existing theories of the beam-ion interaction, comparing them with observations, and estimating effect on luminosity in the saturation regime. Considering the gap instability we suggest that the instability is triggered by the beam-ion instability, and discuss other mechanisms pertinent to the instability.

  4. IBS and expected luminosity performance for RHIC beams at top energy with 56 MHz SRF cavity

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov,A.

    2008-10-01

    The purpose of RF system in RHIC is to capture injected bunches, accelerate them to the top energy, and store bunches at the top energy for many hours. The accelerating RF system operates at harmonic number h=360 of the particle revolution frequency f=78.196 kHz, which corresponds to 28.15MHz. The storage RF system accepts the shortened bunches at top energy and provides longitudinal focusing to keep these bunches short during the store time (collision mode). The storage system operates at harmonic number h=7x360=2520, which corresponds to an RF frequency of 197.05 MHz [1]. Recently, an upgrade of storage RF system with a superconducting 56 MHz cavity was proposed [2]. This upgrade will provide significant increase in the acceptance of storage RF bucket. Presently, the short bunch length for collisions is obtained via RF gymnastics with bunch rotation (called re-bucketing), because the length of 197MHz bucket of 5 nsec is too short to accommodate long bunches otherwise. However, due to bucket non-linearity and hardware complications some increase in the longitudinal emittance occurs during re-bucketing. The 56MHz cavity will produce sufficiently short bunches which would allow one to operate without re-bucketing procedure. This Note summarizes simulation of beam evolution due to Intra-beam scattering (IBS) for beam parameters expected with the 56 MHz SRF cavity upgrade. Expected luminosity improvement is shown both for Au ions at 100 GeV/nucleon and for protons at 250 GeV.

  5. Temporal evolution of longitudinal bunch profile in a laser wakefield accelerator

    OpenAIRE

    Heigoldt, M; Popp, A; Khrennikov, K.; Wenz, J; Chou, SW; Karsch, S.; Bajlekov, SI; Hooker, SM; Schmidt, B.

    2015-01-01

    © 2015 authors. Published by the American Physical Society. We present single-shot measurements of the longitudinal bunch profile from a laser-wakefield accelerator with sub-fs resolution, based on detection of coherent transition radiation in a broad spectral range. A previously developed phase retrieval algorithm enables reconstruction of the bunch profile without prior assumptions about its shape. In this study, a variable-length gas target is used to explore the dynamics of bunch evolutio...

  6. Generation and measurement of sub-picosecond electron bunch in photocathode rf gun

    OpenAIRE

    Li, Weiwei; He, Zhiagng; Jia, Qika

    2013-01-01

    We consider a scheme to generate sub-picosecond electron bunch in the photocathode rf gun by improving the acceleration gradient in the gun, suitably tuning the bunch charge, the laser spot size and the acceleration phase, and reducing the growth of transverse emittance by laser shaping. A nondestructive technique is also reported to measure the electron bunch length, by measuring the high-frequency spectrum of wakefield radiation which is caused by the passage of a relativistic electron bunc...

  7. Spatial configuration of a plasma bunch formed under gyromagnetic resonance in a magnetic mirror trap

    Science.gov (United States)

    Andreev, V. V.; Novitskii, A. A.; Umnov, A. M.; Chuprov, D. V.

    2016-06-01

    The spatial configuration of a relativistic plasma bunch generated under the gyromagnetic autoresonance and confined in a magnetic mirror trap has been studied experimentally and numerically. The characteristics of bremsstrahlung generated by the plasma bunch from the gas and chamber walls were investigated using X-ray spectroscopy and radiometry, which made it possible to determine the localization of the bunch and analyze the dynamics of its confinement.

  8. ATLAS diamond Beam Condition Monitor

    CERN Document Server

    Gorišek, A; Dolenc, I; Frais-Kölbl, H; Griesmayer, E; Kagan, H; Korpar, S; Kramberger, G; Mandic, I; Meyer, M; Mikuz, M; Pernegger, H; Smith, S; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at . Timing of signals from the two stations will provide almost ideal separation of beam–beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of area and thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test bea...

  9. Intense Ion Beam for Warm Dense Matter Physics

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Joshua Eugene [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K+ ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally

  10. Generation and measurement of sub-picosecond electron bunch in photocathode rf gun

    CERN Document Server

    Li, Weiwei; Jia, Qika

    2013-01-01

    We consider a scheme to generate sub-picosecond electron bunch in the photocathode rf gun by improving the acceleration gradient in the gun, suitably tuning the bunch charge, the laser spot size and the acceleration phase, and reducing the growth of transverse emittance by laser shaping. A nondestructive technique is also reported to measure the electron bunch length, by measuring the high-frequency spectrum of wakefield radiation which is caused by the passage of a relativistic electron bunch through a channel surrounded by a dielectric.

  11. Conceptual design and modeling of a six-dimensional bunch merging scheme for a muon collider

    Science.gov (United States)

    Bao, Yu; Hanson, Gail; Palmer, Robert B.; Stratakis, Diktys

    2016-03-01

    A high luminosity muon collider requires single, intense, muon bunches with small emittances: just one of each sign. An efficient front end and a cooling channel have been designed and simulated within the collaboration of the Muon Accelerator Program. The muons are first bunched and phase rotated into 21 bunches, and then cooled in six dimensions. When they are cool enough, they are merged into single bunches: one of each sign. The bunch merging scheme has been outlined with preliminary simulations in previous studies. In this paper we present a comprehensive design with its end-to-end simulation. The 21 bunches are first merged in longitudinal phase space into seven bunches. These are directed into seven "trombone" paths with different lengths, to bring them to the same time, and then merged transversely in a collecting "funnel" into the required single larger bunches. Detailed numerical simulations show that the 6D emittance of the resulting bunch reaches the parameters needed for high acceptance into the downstream cooling channel.

  12. Effects of the precursor electron bunch on quasi-phase matched direct laser acceleration

    Science.gov (United States)

    Lin, M.-W.; Hsieh, C.-Y.; Liu, Y.-L.; Chen, S.-H.; Jovanovic, I.

    2016-12-01

    Direct laser acceleration (DLA) of electrons can be achieved by utilizing the axial field of a well-guided, radially polarized laser pulse in a density-modulated plasma waveguide. When a laser pulse of a few terawatt (TW) peak power is applied, however, the laser ponderomotive force perturbs plasma electrons to concentrate in the center, such that the generated electrostatic fields can significantly defocus the externally injected electron witness bunch and considerably deteriorate the acceleration efficiency. To improve the performance of DLA, a leading electron bunch, which acts as a precursor, can be introduced in DLA to effectively confine the witness bunch. Three-dimensional particle-in-cell simulations have been conducted to demonstrate that the transverse properties of the witness bunch can be significantly improved when a precursor bunch is used. Selected bunch transverse sizes, bunch charges, and axial separation from the witness bunch have been assigned to the precursor in a series of DLA simulations. Since a favorable ion-focusing force is provided by the precursor, the transverse properties of witness bunch can be maintained when a relatively high-power (˜2 TW) laser pulse is used in DLA, and an improved overall acceleration efficiency can be achieved.

  13. Density of bunches of native bluebunch wheatgrass and alien crested wheatgrass

    Energy Technology Data Exchange (ETDEWEB)

    Rickard, W.H.

    1985-10-01

    The density of bunches of bluebunch wheatgrass in a natural undisturbed stand averaged 3.28 per m/sup 2/ as compared to 2.96 per m/sup 2/ for a nearby stand of crested wheatgrass that was planted 30 years ago. Bunch density was similar in both stands indicating that spacing is a response to an environment deficient in soil water. Bunches of crested wheatgrass on the average weighed 3.5 times more than bunches of bluebunch wheatgrass and they also produced a greater weight of seedheads.

  14. Transverse multibunch modes for non-rigid bunches, including mode coupling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S.; Ruth, R.D. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    A method for computing transverse multibunch growth rates and frequency shifts in rings, which has been described previously, is applied to the PEP-II B factory. The method allows multibunch modes with different internal-bunch oscillation modes to couple to one another, similar to single-bunch mode coupling. Including coupling between the multibunch modes gives effects similar to those seen in single-bunch mode coupling. These effects occur at currents that are lower than the single-bunch mode coupling threshold. (author)

  15. Transverse multibunch modes for non-rigid bunches, including mode coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bert, J.S.; Ruth, R.D.

    1995-08-01

    A method for computing transverse multibunch growth rates and frequency shifts in rings, which has been described previously, is applied to the PEP-II B factory. The method allows multibunch modes with different internal-bunch oscillation modes to couple to one another, similar to single-bunch mode coupling. Including coupling between the multibunch modes gives effects similar to those seen in single-bunch mode coupling. These effects occur at currents that are lower than the single-bunch mode coupling threshold.

  16. The source of THz radiation based on dielectric waveguide excited by sequence of electron bunches

    Science.gov (United States)

    Altmark, A. M.; Kanareykin, A. D.

    2016-07-01

    We present a new method for excitation of THz Cherenkov radiation in a dielectric waveguide by relativistic electron bunches. A sequence of bunches generates monochromatic radiation. The frequency of radiation is defined by the distance between the bunches. The studies were carried by using the newly updated BBU-3000 code which permits taking into account a number of additional options: an external quadrupole focusing system, group velocity of the wakefield, and the dielectric material loss factor. In this paper, we present our algorithm for optimizing the number and sequential positions of bunches for generation of narrow band high power THz radiation.

  17. Commissioning and First Performance of the LHC Beam Instrumentation

    CERN Document Server

    Jones, O R

    2010-01-01

    This paper will outline the progress with LHC commissioning to date, detailing the performance achieved with all the main LHC beam instrumentation systems. It will include an overview of the beam loss system and its role in machine protection, along with that of the beam position system and its use for automatic orbit control. Results will be shown from the highly sensitive base band tune system as well as the bunch-bybunch and DC beam current transformer systems, the synchrotron light monitoring systems, the wire scanner system and OTR screens.

  18. Electron Beam Lifetime in SPEAR3: Measurement and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, J.; Huang, X.; Lee, M.; Lui, P.; /SLAC; Sayyar-Rodsari, B.; /Pavilon Tech., Austin

    2007-12-19

    In this paper we report on electron beam lifetime measurements as a function of scraper position, RF voltage and bunch fill pattern in SPEAR3. We then outline development of an empirical, macroscopic model using the beam-loss rate equation. By identifying the dependence of loss coefficients on accelerator and beam parameters, a numerically-integrating simulator can be constructed to compute beam decay with time. In a companion paper, the simulator is used to train a parametric, non-linear dynamics model for the system [1].

  19. High-power radio frequency pulse generation and extration based on wakefield excited by an intense charged particle beam in dielectric-loaded waveguides.

    Energy Technology Data Exchange (ETDEWEB)

    Gao, F.; High Energy Physics; Illinois Inst. of Tech

    2009-07-24

    Power extraction using a dielectric-loaded (DL) waveguide is a way to generate high-power radio frequency (RF) waves for future particle accelerators, especially for two-beam-acceleration. In a two-beam-acceleration scheme, a low-energy, high-current particle beam is passed through a deceleration section of waveguide (decelerator), where the power from the beam is partially transferred to trailing electromagnetic waves (wakefields); then with a properly designed RF output coupler, the power generated in the decelerator is extracted to an output waveguide, where finally the power can be transmitted and used to accelerate another usually high-energy low-current beam. The decelerator, together with the RF output coupler, is called a power extractor. At Argonne Wakefield Accelerator (AWA), we designed a 7.8GHz power extractor with a circular DL waveguide and tested it with single electron bunches and bunch trains. The output RF frequency (7.8GHz) is the sixth harmonic of the operational frequency (1.3GHz) of the electron gun and the linac at AWA. In single bunch excitation, a 1.7ns RF pulse with 30MW of power was generated by a single 66nC electron bunch passing through the decelerator. In subsequent experiments, by employing different splitting-recombining optics for the photoinjector laser, electron bunch trains were generated and thus longer RF pulses could be successfully generated and extracted. In 16-bunch experiments, 10ns and 22ns RF pulses have been generated and extracted; and in 4-bunch experiments, the maximum power generated was 44MW with 40MW extracted. A 26GHz DL power extractor has also been designed to test this technique in the millimeter-wave range. A power level of 148MW is expected to be generated by a bunch train with a bunch spacing of 769ps and bunch charges of 20nC each. The arrangement for the experiment is illustrated in a diagram. Higher-order-mode (HOM) power extraction has also been explored in a dual-frequency design. By using a bunch

  20. Overview of LHC Beam Loss Measurements

    CERN Document Server

    Dehning, B; Effinger, E; Emery, J; Fadakis, E; Holzer, E B; Jackson, S; Kruk, G; Kurfuerst, C; Marsili, A; Misiowiec, M; Nebot Del Busto, E; Nordt, A; Priebe, A; Roderick, C; Sapinski, M; Zamantzas, C; Grishin, V; Griesmayer, E

    2011-01-01

    The LHC beam loss monitoring system provides measurements with an update rate of 1 Hz and high time resolution data by event triggering. These informations are used for the initiation of beam aborts, fixed displays and the off line analysis. The analysis of fast and localized loss events resulted in the determination of its rate, duration, peak amplitudes, its scaling with intensity, number of bunches and beam energy. The calibration of the secondary shower beam loss signal in respect to the needed beam energy deposition to quench the magnet coil is addressed at 450GeV and 3.5T eV . The adjustment of collimators is checked my measuring the loss pattern and its variation in the collimation regions of the LHC. Loss pattern changes during a fill allow the observation of non typical fill parameters.

  1. Pseudo Slice Energy Spread in Dynamics of Electron Beams Moving through Magnetic Bends

    CERN Document Server

    Li, Rui

    2014-01-01

    In the previous canonical formulation of beam dynamics for an electron bunch moving ultrarelativistically through magnetic bending systems, we have shown that the transverse dynamics equation for a particle in the bunch has a driving term which behaves as the centrifugal force caused by the particle's initial potential energy due to collective particle interactions within the bunch. As a result, the initial potential energy at the entrance of a bending system, which we call pseudo (kinetic) energy, is indistinguishable from the usual kinetic energy offset from the design energy in its perturbation to particle optics through dispersion and momentum compaction. In this paper, in identifying this centrifugal force on particles as the remnant of the CSR cancellation effect in transverse particle dynamics, we show how the dynamics equation in terms of the canonical momentum for beam motion on a curved orbit is related to the Panofsky-Wenzel theorem for wakefields for beam motion on a straight path. It is shown tha...

  2. Controlled Transverse Blow-up of Highenergy Proton Beams for Aperture Measurements and Loss Maps

    CERN Document Server

    Hӧfle, W; Redaelli, S; Schmidt, R; Valuch, D; Wollmann, D; Zerlauth, M

    2012-01-01

    A technique was developed to blow-up transversely in a controlled way high energy proton beams in the LHC. The technique is based on band limited white noise excitation that is injected into the transverse damper feedback loop. The injected signal can be gated to selectively blow-up individual trains of bunches. The speed of transverse blow-up can be precisely controlled. This opens the possibility to perform safely and efficiently aperture measurements and loss maps with high intensity bunch trains well above stored beam energies that are considered to be safe. In particular, lengthy procedures for measurements at top energy, otherwise requiring multiple fills of individual bunches, can be avoided. In this paper, the method is presented and results from beam measurements are discussed and compared with alternative blowup methods.

  3. Reprint of: Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    Energy Technology Data Exchange (ETDEWEB)

    Pan, R., E-mail: rui.pan@stfc.ac.uk [Accelerator Science and Technology Centre, Science and Technology Facilities Council, Darebsury Laboratory, Keckwick Lane, Daresbury WA4 4AD (United Kingdom); School of Engineering, Physics and Mathematics, University of Dundee, Nethergate, Dundee DD1 4HN (United Kingdom); Jamison, S.P. [Accelerator Science and Technology Centre, Science and Technology Facilities Council, Darebsury Laboratory, Keckwick Lane, Daresbury WA4 4AD (United Kingdom); Lefevre, T. [CERN, CH-1211 Geneva 23 (Switzerland); Gillespie, W.A. [School of Engineering, Physics and Mathematics, University of Dundee, Nethergate, Dundee DD1 4HN (United Kingdom)

    2016-09-11

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding (EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  4. Reprint of: Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    Science.gov (United States)

    Pan, R.; Jamison, S. P.; Lefevre, T.; Gillespie, W. A.

    2016-09-01

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding (EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  5. Wave Localization and Density Bunching in Pair Ion Plasmas

    CERN Document Server

    Mahajan, Swadesh M

    2008-01-01

    By investigating the nonlinear propagation of high intensity electromagnetic (EM) waves in a pair ion plasma, whose symmetry is broken via contamination by a small fraction of high mass immobile ions, it is shown that this new and interesting state of (laboratory created) matter is capable of supporting structures that strongly localize and bunch the EM radiation with density excess in the region of localization. Testing of this prediction in controlled laboratory experiments can lend credence, inter alia, to conjectures on structure formation (via the same mechanism) in the MEV era of the early universe.

  6. Magnetic Bunch Compression for a Compact Compton Source

    Energy Technology Data Exchange (ETDEWEB)

    Gamage, B. [ODU; Satogata, Todd J. [JLAB

    2013-12-01

    A compact electron accelerator suitable for Compton source applications is in design at the Center for Accelerator Science at Old Dominion University and Jefferson Lab. Here we discuss two options for transverse magnetic bunch compression and final focus, each involving a 4-dipole chicane with M_{56} tunable over a range of 1.5-2.0m with independent tuning of final focus to interaction point $\\beta$*=5mm. One design has no net bending, while the other has net bending of 90 degrees and is suitable for compact corner placement.

  7. Mechanical Properties of Oil Palm Empty Fruit Bunch Fiber

    Science.gov (United States)

    Gunawan, Fergyanto E.; Homma, Hiroomi; Brodjonegoro, Satryo S.; Hudin, Afzer Bin Baseri; Zainuddin, Aryanti Binti

    In tropical countries such as Indonesia and Malaysia, the empty fruit bunches are wastes of the oil palm industry. The wastes are abundantly available and has reached a level that severely threats the environment. Therefore, it is a great need to find useful applications of those waste materials; but firstly, the mechanical properties of the EFB fiber should be quantified. In this work, a small tensile test machine is manufactured, and the tensile test is performed on the EFB fibers. The results show that the strength of the EFB fiber is strongly affected by the fiber diameter; however, the fiber strength is relatively low in comparison to other natural fibers.

  8. Beam instrumentation for the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

    2009-10-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

  9. Electron Beam Dynamics in 4GLS

    CERN Document Server

    Williams, P H; Muratori, B D; Owen, H L; Smith, S L

    2007-01-01

    Studies of the electron beam dynamics for the 4GLS design are presented. 4GLS will provide three different electron bunch trains to a variety of user synchrotron sources. The 1 kHz XUV-FEL and 100 mA High Average Current branches share a common 540 MeV linac, whilst the 13 MHz IR-FEL must be well-synchronised to them. An overview of the injector designs, electron transport, and energy recovery is given, including ongoing studies of coherent synchrotron radiation, beam break-up and wakefields. This work is being pursued for the forthcoming Technical Design Report due in 2008.

  10. Non-perturbative measurement of low-intensity charged particle beams

    Science.gov (United States)

    Fernandes, M.; Geithner, R.; Golm, J.; Neubert, R.; Schwickert, M.; Stöhlker, T.; Tan, J.; Welsch, C. P.

    2017-01-01

    Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of 30 {nA}.

  11. Simulation of 6 to 3 to 1 merge and squeeze of Au77+ bunches in AGS

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-09

    In order to increase the intensity per Au77+ bunch at AGS extraction, a 6 to 3 to 1 merge scheme was developed and implemented by K. Zeno during the 2016 RHIC run [1]. For this scheme, 12 Booster loads, each consisting of a single bunch, are delivered to AGS per AGS magnetic cycle. The bunch from Booster is itself the result of a 4 to 2 to 1 merge which is carried out on a at porch during the Booster magnetic cycle [2]. Each Booster bunch is injected into a harmonic 24 bucket on the AGS injection porch. In order to t into the buckets and allow for the AGS injection kicker rise time, the bunch width must be reduced by exciting quadrupole oscillations just before extraction from Booster [1]. The bunches are injected into two groups of six adjacent harmonic 24 buckets. In each group the 6 bunches are merged into 3 by bringing on RF harmonic 12 while reducing harmonic 24. This is a straightforward 2 to 1 merge (in which two adjacent bunches are merged into one). One ends up with two groups of three adjacent bunches sitting in harmonic 12 buckets. These bunches are accelerated to an intermediate porch for further merging. Doing the merge on a porch that sits above injection energy helps reduce losses that are believed to be due to the space-charge force acting on the bunched particles [3]. (The 6 to 3 merge is done on the injection porch because the harmonic 24 frequency on the intermediate porch would be too high for the AGS RF cavities.) On the intermediate porch each group of 3 bunches is merged into one by bringing on RF harmonics 8 and 4 and then reducing harmonics 12 and 8. One ends up with 2 bunches, each the result of a 6 to 3 to 1 merge and each sitting in a harmonic 4 bucket. This puts 6 Booster loads into each bunch. Each merged bunch needs to be squeezed into a harmonic 12 bucket for subsequent acceleration. This is done by again bringing on harmonic 8 and then harmonic 12.

  12. Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator

    Science.gov (United States)

    Hu, Ronghao; Lu, Haiyang; Shou, Yinren; Lin, Chen; Zhuo, Hongbin; Chen, Chia-erh; Yan, Xueqing

    2016-09-01

    The production of GeV electron beam with narrow energy spread and high brightness is investigated using particle-in-cell simulations. A controlled electron injection scheme and a method for phase-space manipulation in a laser plasma accelerator are found to be essential. The injection is triggered by the evolution of two copropagating laser pulses near a sharp vacuum-plasma transition. The collection volume is well confined and the injected bunch is isolated in phase space. By tuning the parameters of the laser pulses, the parameters of the injected electron bunch, such as the bunch length, energy spread, emittance and charge, can be adjusted. Manipulating the phase-space rotation with the rephasing technique, the injected electron bunch can be accelerated to GeV level while keeping relative energy spread below 0.5% and transverse emittance below 1.0 μ m . The results present a very promising way to drive coherent x-ray sources.

  13. Measurement of the Beam Longitudinal Profile in a Storage Ring by Non-Linear Laser Mixing

    Science.gov (United States)

    Beche, J.-F.; Byrd, J.; De Santis, S.; Denes, P.; Placidi, M.; Turner, W.; Zolotorev, M.

    2004-11-01

    We report on the development of a new technique for the measurement of the longitudinal beam profile in storage rings. This technique, which has been successfully demonstrated at the Advanced Light Source, mixes the synchrotron radiation with the light from a mode-locked solid-state laser oscillator in a non-linear crystal. The up-converted radiation is then detected with a photomultiplier and processed to extract, store, and display the required information. The available choices of laser repetition frequency, pulse width, and phase modulation give a wide range of options for matching the bunch configuration of a particular storage ring. Besides the dynamic measurement of the longitudinal profile of each bunch, the instrument can monitor the evolution of the bunch tails, the presence of un trapped particles, and their diffusion into nominally empty RF buckets ("ghost bunches").

  14. Characteristics of beam collision timing and position at the KEK B-factory

    Science.gov (United States)

    Kichimi, H.

    2010-11-01

    Using the Belle detector we study the characteristics of beam collisions at the KEKB 3.5 GeV e+ and 8 GeV e- asymmetric energy collider. We investigate the collision timing tIP and its z-coordinate along the beam axis zIP as a function of the position of the colliding bunch in a beam train. The various tIP and zIP behaviors observed by Belle are attributed to beam loading effects in the radio frequency cavities that accelerate the beams with a beam abort gap. We also discuss the prospects for the Super-KEKB collider.

  15. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    Stifter, Kelly

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to suppress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. Here, I present the detector...

  16. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    Stifter, Kelly Marie

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to supress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will descri...

  17. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    CMS Collaboration

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to suppress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will describ...

  18. Studies of Beam Induced Electron Cloud Resonances in Dipole Magnetic Fields

    CERN Document Server

    Calvey, J R; Makita, J; Venturini, M

    2016-01-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring (CESR). These measurements are supported by both analytical models and computer simulations.

  19. Beam Dynamics for the Preliminary Phase of the New CLIC Test Facility (CTF3)

    CERN Document Server

    Corsini, R; Rinolfi, Louis; Risselada, Thys; Royer, P; Tecker, F A

    2001-01-01

    In the framework of the CLIC (Compact Linear Collider) RF power source studies, the scheme of electron pulse compression and bunch frequency mulitiplication, using injection by RF deflectors into an isochronous ring, will be tested, at low charge, during the preliminary phase of the new CLIC Test Facility (CTF3) at CERN. In this paper, we describe the beam dynamics studies made in order to assess the feasibility of the bunch combination experiment, as well as the related beam measurements performed on the LEP Pre-Injector complex (LPI) before its transformation into CTF3

  20. Collective effects for long bunches in dual harmonic RF systems

    Institute of Scientific and Technical Information of China (English)

    AN Shi-Zhong; Klaus Bongardt; Rudolf Maier; TANG Jing-Yu; ZHANG Tian-Jue

    2008-01-01

    The storage of long bunches for large time intervals needs flattened stationary buckets with a large bucket height.Collective effects from the space charge and resistive impedance are studied by looking at the incoherent particle motion for the matched and mismatched bunches.Increasing the RF amplitude with particle number provides r.m.s wise matching for modest intensities.The incoherent motion of large amplitude particles depends on the details of the RF system.The resulting debunching process is a combination of the too small full RF acceptance together with the mismatch,enhanced by the collective effects.Irregular single particle motion is not associated with the coherent dipole instability.For the stationary phase space distribution of the Hofmann-Pedersen approach and for the dual harmonic RF system,stability limits are presented,which are too low if using realistic input distributions.For single and dual harmonic RF system with d=0.31,the tracking results are shown for intensities,by a factor of 3 above the threshold values.Small resistive impedances lead to coherent oscillations around the equilibrium phase value,as energy loss by resistive impedance is compensated by the energy gain of the RF system.