WorldWideScience

Sample records for beam bunchers

  1. An rf electron beam buncher

    International Nuclear Information System (INIS)

    A method is described for producing density modulations on an intense relativistic electron beam by the use of rf fields in a betatron configuration. In concept, a device embodying this method should be capable of producing short (1-10 ns) electron bunches from a long (10-100 ns) beam, and is expected to be relatively compact and to operate efficiently on low power and energy. The method requires that the azimuthal phase velocity of the rf wave equal the electron beam velocity. Depending on phase relative to the rf wave, electrons in the beam gain or lose energy and form bunches by the negative mass effect. The dynamics of the electrons in the combined rf wave and betatron field have been analyzed. An example of an rf electron beam buncher is given

  2. Beam buncher for the K130-cyclotron

    Science.gov (United States)

    Saario, J.; Gustafsson, J.; Kotilainen, P.; Kaski, K.; Lassila, A.; Liukkonen, E.

    1996-02-01

    A beam buncher, developed to improve the beam efficiency in the K130 cyclotron at University of Jyväskylä, is described. The basic acceleration frequency and the second harmonic component were used to simulate a saw-tooth wave, needed for axial injection of the beam. With this method up to eight times increase in the beam intensity was achieved.

  3. Beam buncher for the K130-cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Saario, J. [Tampere Univ. of Technol. (Finland). Microelectronics Lab.; Gustafsson, J. [Tampere Univ. of Technol. (Finland). Microelectronics Lab.; Kotilainen, P. [Tampere Univ. of Technol. (Finland). Microelectronics Lab.; Kaski, K. [Tampere Univ. of Technol. (Finland). Microelectronics Lab.; Lassila, A. [Jyvaeskylae Univ. (Finland). Dept. of Physics; Liukkonen, E. [Jyvaeskylae Univ. (Finland). Dept. of Physics

    1996-02-21

    A beam buncher, developed to improve the beam efficiency in the K130 cyclotron at University of Jyvaeskylae, is described. The basic acceleration frequency and the second harmonic component were used to simulate a saw-tooth wave, needed for axial injection of the beam. With this method up to eight times increase in the beam intensity was achieved. (orig.).

  4. Ion beam cooler-buncher at the IGISOL facility

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, A.; Hakala, J.; Huikari, J.; Kolhinen, V.S.; Rinta-Antila, S.; Szerypo, J. [Dept. of Physics, Univ. of Jyvaeskylae (Finland); Billowes, J.; Campbell, P.; Moore, I.D.; Moore, R. [Schuster Lab., Univ. of Manchester (United Kingdom); Forest, D.H.; Thayer, H.L.; Tungate, G. [School of Physics and Astronomy, Univ. of Birmingham, Edgbaston (United Kingdom); Jokinen, A.; Aeystoe, J. [Dept. of Physics, Univ. of Jyvaeskylae (Finland)]|[CERN, Geneva (Switzerland)

    2003-07-01

    An ion beam cooler-buncher for manipulating low-energy radioactive ion beams at the IGISOL facility is described. The cooler-buncher serves as a source of cooled ion bunches for collinear laser spectroscopy and it will be used for preparation of ion bunches for injection into a Penning trap system. (orig.)

  5. Design of Multi-Harmonic Buncher for Pulsed Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2014-10-15

    Fast neutrons with a broad spectrum can be generated by irradiating the proton beams on target materials. To measure the neutron energy by time of flight (TOF) method, we need pulsed proton beam. The short pulse width of the proton beam is preferred because the neutron energy uncertainty is proportional to the pulse width. In addition, the pulse repetition rate should be low enough to extend the lower limit of the available neutron energy. To generate short pulse proton beam, we adopted a deflector and slit system. In a simple deflector with slit system, most of the proton beam is blocked by slit, especially when the beam pulse width is short. Therefore, the available beam current is very low, which results in low neutron flux. We proposed beam modulation by using buncher cavity to increase the available beam current. The ideal field pattern for the buncher cavity is saw-tooth type. To make the field pattern similar to the saw-tooth waveform, we adopted a multi-harmonic buncher. The design for the multi-harmonic buncher including 3D electromagnetic calculation is presented in this paper. A multi-harmonic buncher for a proton beam chopper system to generate a short pulse neutron beam was designed. The frequency of the fundamental mode is 50 MHz and the resonant structure up to 3{sup rd} harmonics is used.

  6. A second-generation ion beam buncher and cooler

    CERN Document Server

    Schwarz, S; Lawton, D; Neudert, A; Ringle, R; Schury, P; Sun, T

    2003-01-01

    A radiofrequency quadrupole (RFQ) ion accumulator and buncher has been designed for the low-energy beam and ion-trap (LEBIT) facility which is being set up at the NSCL/MSU. The LEBIT buncher will be a cryogenic system. Compared to room-temperature systems an improved beam quality and overall efficiency are expected. It will feature a novel electrode structure with a drastically reduced number of electrodes for simplified operation. Its design is presented and Monte-Carlo type ion-trajectory calculations are discussed which predict excellent beam quality and high performance.

  7. RF Design of the TW Buncher for the CLIC Drive Beam Injector (2nd report)

    CERN Document Server

    Shaker, Hamed

    2016-01-01

    CLIC is based on the two beams concept that one beam (drive beam) produces the required RF power to accelerate another beam (main beam). The drive beam is produced and accelerated up to 50MeV inside the CLIC drive beam injector. The drive beam injector main components are a thermionic electron gun, three sub-harmonic bunchers, a pre-buncher, a TW buncher, 13 accelerating structures and one magnetic chicane. This document is the second report of the RF structure design of the TW buncher. This design is based on the beam dynamic design done by Shahin Sanaye Hajari due to requirements mentioned in CLIC CDR. A disk-loaded tapered structure is chosen for the TW buncher. The axial electric field increases strongly based on the beam dynamic requirements. This second report includes the study of HOM effects, retuning the cells, study of dimensional tolerances and the heat dissipation on the surface.

  8. Fabrication of Multi-Harmonic Buncher for Pulsed Proton Beam Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Kwon, H. J.; Cho, Y. S. [Korea Multipurpose Accelerator Complex, Gyeongju (Korea, Republic of)

    2015-05-15

    Fast neutrons with a broad spectrum can be generated by irradiating the proton beams on target materials. To measure the neutron energy by time of flight (TOF) method, the short pulse width of the proton beam is preferred because the neutron energy uncertainty is proportional to the pulse width. In addition, the pulse repetition rate should be low enough to extend the lower limit of the available neutron energy. Pulsed proton beam generation system is designed based on an electrostatic deflector and slit system as shown in Fig. 1. In a simple deflector with slit system, most of the proton beam is blocked by slit, especially when the beam pulse width is short. The ideal field pattern inside the buncher cavity is saw-tooth wave. To make the field pattern similar to the saw-tooth waveform, we adopted a multi-harmonic buncher (MHB). The design for the multi-harmonic buncher including 3D electromagnetic calculation has been performed. Based on the design, a multi-harmonic buncher cavity was fabricated. It consists of two resonators, two drift tubes and a vacuum chamber. The resonator is a quarter-wave coaxial resonator type. The drift tube is connected to the resonator by using a coaxial vacuum feedthrough. Design summary and detailed fabrication method of the multi-harmonic buncher is presented in this paper. A multi-harmonic buncher for a proton beam chopper system to generate a short pulse neutron beam was designed, fabricated and assembled.

  9. Design, fabrication and VNA testing of an auto-focussing buncher section for 40 keV, 500 mA DC electron beam injection

    International Nuclear Information System (INIS)

    A buncher section for the 40 keV, DC electron beam has been designed in such a way so that it will act as a buncher and focuser to the injected electron beam. The autofocussing effect is obtained by introducing a slow rise of the Eacc in the first buncher cell. The RF phase focusing force is proportional to the factor (βγ2)-1 and it damps out very quickly as the particle becomes relativistic. Taking this dependency into account, the field asymmetry is introduced only in the first bunching cavity. This paper presents the electromagnetic (EM) design of the RF structure, beam dynamics, fabrication and the measurements of the EM parameters with VNA. (author)

  10. Development and characterization of grounded grid triode amplifier for re-buncher of Radioactive Ion Beam line of VECC

    International Nuclear Information System (INIS)

    A radio frequency amplifier of 3.0 kW/37.8 MHz has been indigenously designed and developed for a re-buncher in the post-acceleration beam line of the RIB facility at VECC. The buncher cavity is a 37.8 MHz quarter-wave resonator shorted at one end and loaded by capacitive drift tubes at the open end. It is placed in the beam line between the RFQ and first 1H-LINAC. The 3 kW power is good enough to produce the maximum required RF voltage inside the buncher cavity. To build a 3 kW amplifier at 37.8 MHz frequency, two stages of amplifications is required. The first stage is a 300 W Solid State Amplifier (SSA) as driver followed by a 3 kW triode tube amplifier as the final stage. The final stage amplifier is a class AB amplifier designed using triode 3CX5000A7 in grounded grid configuration. The input and output impedances were computed after fixing the biasing condition and networks which are LC networks were variable type. The triode cage and proper forced air cooling arrangement with RF filter blocks has been developed. An indigenously developed DC power supplies for Anode (4.5kV/3A), Grid (-100 V/0.5A) and Filament (10V/24A) have been used. The amplifier has been successfully tested and operated up to 2 kW in CW mode with 15 dB gain. At the same time the amplifier is also tested up to 3.0 kW in pulse mode with 50% duty cycle and being tuned to achieve 3.0 kW in CW. Some measured parameters of this amplifier is given. This paper describes the detail design, test and measurement report of the amplifier system. (author)

  11. Design study of the SSC-LINAC re-buncher

    Science.gov (United States)

    Sun, Lie-Peng; Zhao, Hong-Wei; Sun, Zhou-Ping; He, Yuan; Shi, Ai-Min; Xiao, Chen; Du, Xiao-Nan; Zhang, Cong; Zhang, Zhou-Li

    2013-02-01

    A re-buncher with spiral arms for a heavy ion linear accelerator named as SSC-LINAC at HIRFL (the heavy ion research facility of Lanzhou) has been constructed. The re-buncher, which is used for beam longitudinal modulation and matching between the RFQ and DTL, is designed to be operated in continuous wave (CW) mode at the Medium-Energy Beam-Transport (MEBT) line to maintain the beam intensity and quality. Because of the longitudinal space limitation, the re-buncher has to be very compact and will be built with four gaps. We determined the key parameters of the re-buncher cavity from the simulations using Microwave Studio software, such as the resonant frequency, the quality factor Q and the shunt impedance. The detailed design of a 53.667 MHz spiral cavity and measurement results of its prototype will be presented.

  12. Rapidly tuned buncher structure for the Los Alamos Proton Storage Ring (PSR)

    International Nuclear Information System (INIS)

    In the PSR's short-bunch operating mode, accumulated beam currents are intense and change rapidly. The resonant frequency of the 503.125-MHz buncher used in this mode must be rapidly adjusted through a 100-kHz range to maintain the correct 900 phase relation between cavity voltage and beam current. Modulation rates are up to 3 kHz/μs. Each structure consists of two side-coupled buncher cavities, resonantly coupled to a ferrite-loaded tuner cavity. The needed frequency change δf in the buncher cells is produced by a 50 x δf change in the tuner, accomplished by varying a magnetic field applied to the ferrite perpendicular to the rf magnetic field. Fast modulation of this bias is provided by a low-inductance ferrite-core magnet excited by a special function generator. The resonantly coupled multicavity structure configuration allows buncher and tuner cells to be independently optimized for their specific functions. This paper describes the buncher design, ferrite selection, and test results from a prototype ferrite-loaded tuner cavity. The tests have demonstrated the tuning scheme's feasibility, showing that the necessary 5-MHz range can be attained with only 12% of the tuner cell filled with ferrite, and that losses in the ferrite are small throughout this frequency interval

  13. Installation and operation of a radio-frequency quadrupole cooler and buncher and offline commissioning of the TRIGA-SPEC ion beam preparation transfer line

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Thomas

    2014-11-26

    The dominant fraction of elements heavier than iron was created in stellar nucleosynthesis by neutron-capture reactions. The isotopic compositions of these elements are the fingerprints of the involved processes, and a huge amount of experimental data on these isotopes is required to support corresponding astrophysical calculations and models. The TRIGA-SPEC experiment aims to contribute to these data by the measurement of ground-state properties of neutron-rich heavy nuclides. It consists of the Penning-trap mass spectrometer TRIGA-TRAP for the determination of masses, Q-values and binding energies, and the collinear laser spectroscopy setup TRIGALASER for the determination of charge radii, nuclear spins, and moments. The nuclides of interest are produced by neutron-induced fission of an actinide target inside the research reactor TRIGA Mainz and ionized in an online ion source. In the context of this thesis, the two experiments were coupled to the reactor, completing the ion beam preparation transfer line. This included the implementation and commissioning of a radio-frequency quadrupole for the emittance reduction and accumulation of the ions. The functionality of the ion beam preparation was verified by successful test measurements of stable nuclides produced in the online ion source.

  14. Installation and operation of a radio-frequency quadrupole cooler and buncher and offline commissioning of the TRIGA-SPEC ion beam preparation transfer line

    International Nuclear Information System (INIS)

    The dominant fraction of elements heavier than iron was created in stellar nucleosynthesis by neutron-capture reactions. The isotopic compositions of these elements are the fingerprints of the involved processes, and a huge amount of experimental data on these isotopes is required to support corresponding astrophysical calculations and models. The TRIGA-SPEC experiment aims to contribute to these data by the measurement of ground-state properties of neutron-rich heavy nuclides. It consists of the Penning-trap mass spectrometer TRIGA-TRAP for the determination of masses, Q-values and binding energies, and the collinear laser spectroscopy setup TRIGALASER for the determination of charge radii, nuclear spins, and moments. The nuclides of interest are produced by neutron-induced fission of an actinide target inside the research reactor TRIGA Mainz and ionized in an online ion source. In the context of this thesis, the two experiments were coupled to the reactor, completing the ion beam preparation transfer line. This included the implementation and commissioning of a radio-frequency quadrupole for the emittance reduction and accumulation of the ions. The functionality of the ion beam preparation was verified by successful test measurements of stable nuclides produced in the online ion source.

  15. Thermal analysis and water-cooling design of the CSNS MEBT 324 MHz buncher cavity

    Institute of Scientific and Technical Information of China (English)

    LIU Hua-Chang; OUYANG Hua-Fu

    2008-01-01

    At least two bunchers are needed in the 3 MeV H- Medium Energy Beam Transport(MEBT)line located between RFQ and DTL for the CSNS(China Spallation Neutron Source).A nose-cone geometry has been adopted as the type of buncher cavity for its simplicity,higher impedance and lower risk of multipacting.By making use of the results got from the simulations on the buncher with two-dimension code SUPERFISH,the thermal and structural analyses have been carried out,the process and results to determine the resulting frequency shift due to thermal and structural distortion of the cavity are presented,the water-cooling channel position and the optimum cooling water temperature as well as the tuning method by adjusting the cooling water temperature when the cavity is out of resonance are also determined through the analyses.

  16. Thermal analysis and water-cooling design of the CSNS MEBT 324 MHz buncher cavity

    Science.gov (United States)

    Liu, Hua-Chang; Ouyang, Hua-Fu

    2008-04-01

    At least two bunchers are needed in the 3 MeV H- Medium Energy Beam Transport (MEBT) line located between RFQ and DTL for the CSNS (China Spallation Neutron Source). A nose-cone geometry has been adopted as the type of buncher cavity for its simplicity, higher impedance and lower risk of multipacting. By making use of the results got from the simulations on the buncher with two-dimension code SUPERFISH, the thermal and structural analyses have been carried out, the process and results to determine the resulting frequency shift due to thermal and structural distortion of the cavity are presented, the water-cooling channel position and the optimum cooling water temperature as well as the tuning method by adjusting the cooling water temperature when the cavity is out of resonance are also determined through the analyses.

  17. The electron test accelerator beam injector

    International Nuclear Information System (INIS)

    A beam chopper and buncher system has been designed to improve the capture efficiency and reduce the beam spill in the Electron Test Accelerator. The buncher increases the dc beam capture from 30 to 70%. 100% beam transmission through the accelerator structures is obtained with the chopper. This report describes results of experimental tests with the beam injector. Results from computer modeling and from measurements with prototypes that have led to the design of the beam chopper and buncher system are discussed

  18. Sporax applicator for feller-bunchers.

    Energy Technology Data Exchange (ETDEWEB)

    Karsky, Richard, J.; Cram, Michelle

    1998-09-01

    Annosum root rot affects conifers throughout the Northern Hemisphere, leading to root rot, windthrow, and ultimately, the death of infected trees. The fungus Heterobasidion annosum causes annosum root rot, which colonizes readily on freshly cut stumps. Partially cut stands have a high risk of infestation because the fungus can colonize on each of the stumps, potentially leading to the loss of many residual trees. The primary method of controlling annosum in partially cut stands is by applying Sporax to the stump immediately after cutting. This document is an informational brochure on a Sporax applicator for feller-bunchers, with cost estimates and contacts for further information.

  19. Report on Design, Development, and Characterization of a Coaxial Resonator Based Single-gap Gridless Multiharmonic Buncher

    Energy Technology Data Exchange (ETDEWEB)

    Pozdeyev, E; Brandon, J; Bultman, N; Rao, X; York, R; Zhao, Q

    2013-02-11

    The design of the multiharmonic buncher is determined by Facility for Rare Isotope Beam (FRIB) requirements. The buncher will bunch stable ion beams for injection into the FRIB RFQ to minimize the longitudinal beam emittance growth. The design beam energy is fixed at 12 keV/u while the beam charge state Q/A can vary from 1/3 to 1/7. The buncher operates at a fundamental frequency of 40.25 MHz. Two higher harmonics, 80.5 MHz and 120.75 MHz are used to linearize the voltage ramp. The typical accelerating voltage for a uranium beam, including the time-of-flight factor, is 1271 V, 456 V, and 150 V for 40.25 MHz, 80.5 MHz, and 120.75 MHz harmonics respectively. The voltage will be scaled with the charge state of an accelerated beam. The accelerated electrical beam current is expected to be approximately equal to 0.5 mA for all ion beams between oxygen and uranium.

  20. RF Simulation and Test of the New Buncher at INFN-LNS

    Institute of Scientific and Technical Information of China (English)

    LI; Peng-zhan; Antonio; Caruso; Alberto; Longhitano; JI; Bin

    2013-01-01

    The present buncher of INFN-LNS K800 Superconducting Cyclotron is installed inside the yoke of the cyclotron,0.5 m below the medium plane.The new buncher is designed to replace the present buncher for the convenience of maintenance and commissioning.The new buncher is featured with the three-electrode structure.The bunching gap is 5 mm and the length of the central electrode is 83.5 mm.

  1. Status of the TAMUTRAP facility and initial characterization of the RFQ cooler/buncher

    Energy Technology Data Exchange (ETDEWEB)

    Mehlman, M., E-mail: mehlmanmichael@tamu.edu; Shidling, P. D.; Burch, R.; Bennett, E.; Fenker, B.; Melconian, D. [Texas A& M University, Cyclotron Institute (United States)

    2015-11-15

    The Texas A&M University Penning Trap experiment (TAMUTRAP) is an upcoming ion trap facility that will be used to search for possible scalar currents in T = 2 superallowed pure Fermi decays (utilizing β-delayed proton emitters), which, if found, would be an indication of physics beyond the standard model. In addition, TAMUTRAP will provide a low-energy, point-like source of ions for various other applications at the Cyclotron Institute at Texas A&M University. The experiment is centered around a unique, compensated cylindrical Penning trap that employs a specially optimized length/radius ratio in the electrode structure that is not used by any other facility. The radioactive beam, provided by the Texas A&M University Re-accelerated Exotics (T-REX) program at the Cyclotron Institute, will be prepared for loading in the measurement trap via a specially designed Radio Frequency Quadrupole (RFQ) cooler/buncher. These proceedings will describe the current status of the TAMUTRAP facility, paying particular attention to the design and initial characterization of the RFQ cooler/buncher. Future plans will also be discussed.

  2. A dry powder stump applicator for a feller-buncher.

    Energy Technology Data Exchange (ETDEWEB)

    Karsky, Richard, J.; Cram Michelle; Thistle, Harold

    1998-07-11

    Karsky, D., M. Cram, and H. Thistle. 1998. A dry powder borax stump applicator for a feller-buncher. Presented at the 1998 ASAE Annual International Meeting at Colorado Springs Resort, Orlando, Florida, July 11-16, 1998. Paper No. 987023. ASAE, 2950 Niles Road, St. Joseph, MI 49085-9659. Annosum root rot affects conifers throughout the Northern Hemisphere, infecting the roots and eventually killing the trees. An applicator attachment has been developed that mounts to the back of a feller-buncher saw head, that can reduce mortality from Heterobasidion annosum. The attachment applies a borax powder to a stump immediately after the tree has been cut. This document provides information on the design, development and testing of an applicator for applying dry borax on tree stumps at the time of harvesting to reduce future losses due to root rot.

  3. Upgrade of the radio frequency quadrupole cooler and buncher for the HIE-ISOLDE project

    CERN Document Server

    Babcock, Carla

    2013-01-01

    The upgrade to the ISOLDE facility, HIE-ISOLDE, will include an upgrade to the RFQCB (radio frequency quadrupole cooler and buncher), the focus of which will be fixing the problems of alignment with the current machine, improving the integrity of the vacuum system, stabilizing the internal gas pressure, and the changes associated with a new position. The beam passage inside the RFQCB has been simulated with an independent code to highlight the importance of the internal gas pressure, to motivate design changes in the new RFQCB and to explain ways to improve the performance of the current machine. The suspected misalignment of ISCOOL has been quantified, and, using a simulation of ions passing through the external injection electrodes, the effect of the misalignment on machine acceptance has been detailed. Plans for the future RFQCB test stand and HIE-ISOLDE installation have been outlined. (C) 2013 Elsevier B.V. All rights reserved.

  4. Upgrade of the radio frequency quadrupole cooler and buncher for the HIE-ISOLDE project

    Science.gov (United States)

    Babcock, Carla; Giles, Tim

    2013-12-01

    The upgrade to the ISOLDE facility, HIE-ISOLDE, will include an upgrade to the RFQCB (radio frequency quadrupole cooler and buncher), the focus of which will be fixing the problems of alignment with the current machine, improving the integrity of the vacuum system, stabilizing the internal gas pressure, and the changes associated with a new position. The beam passage inside the RFQCB has been simulated with an independent code to highlight the importance of the internal gas pressure, to motivate design changes in the new RFQCB and to explain ways to improve the performance of the current machine. The suspected misalignment of ISCOOL has been quantified, and, using a simulation of ions passing through the external injection electrodes, the effect of the misalignment on machine acceptance has been detailed. Plans for the future RFQCB test stand and HIE-ISOLDE installation have been outlined.

  5. Design of medium energy beam transport line between the RFQ and the Linac in the radioactive ion beam facility at VECC, Kolkata

    Indian Academy of Sciences (India)

    S Dechoudhury; Vaishali Naik; Manas Mondal; Hemendra Kumar Pandey; Avik Chatterjee; Dirtha Sanyal; Debasis Bhowmick; Alok Chakrabarti

    2010-09-01

    The design of a medium energy beam transport (MEBT) line comprising of a re-buncher and four quadrupoles, two upstream and the other two downstream of the re-buncher, has been presented. The design was done to ensure almost 100% transport of heavy-ion beams of about 99 keV/u energy from RFQ having a / not less than 1/14 through the re-buncher and then through IH Linac of about 0.6 m length in which beam would be accelerated to about 185 keV/u. The re-buncher has been designed to operate at 37.8 MHz, the resonating frequency of both the RFQ and the IH Linac. The entire beam line has been installed and recently O5+ beam from RFQ has been transported through the re-buncher and subsequently accelerated in the IH Linac successfully.

  6. Algorithm improvement for phase control of subharmonic buncher

    International Nuclear Information System (INIS)

    To realize digital phase control of subharmonic buncher,a low level radio frequency control system using down converter, IQ modulator and demodulator techniques, and commercial PXI system, was developed on the platform of LabVIEW. A single-neuron adaptive PID (proportional-integral-derivative) control algorithm with ability of self learning was adopted, satisfying the requirements of phase stability. By comparison with the traditional PID algorithm in field testing, the new algorithm has good stability, fast response and strong anti-interference ability. (authors)

  7. Design and RF test of MEBT buncher cavities for C-ADS Injector II at IMP

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shichun; Jia, Huan [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Niu, Haihua [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); He, Yuan, E-mail: hey@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang, Shenghu; Yuan, Chenzhang [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Jing [Lanzhou University of Technology, Lanzhou 730050 (China); Zhang, Shengxue; Chang, Wei; Zhang, Peng; Zhao, Hongwei; Xia, Jiawen [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2015-11-01

    Abstracts: To match the beam from the Radio Frequency Quadrupole (RFQ) accelerator to the Superconducting Half-wave Resonator (HWR) Linac, two room temperature (RT) double-gap Quarter-wave Resonator (QWR) bunchers are designed to be located in the Medium Energy Beam Transport Line (MEBT) for the C-ADS Injector II at IMP. Both cavities work at 162.5 MHz, with β=0.067 and a beam aperture diameter of 40 mm. The effective voltage of these two cavities needs to reach 135 kV in Continuous Wave (CW) mode. In this paper, the RF design and thermal analysis of the cavities will be presented, along with the tuners and coupler consideration. The measured frequencies, R{sub sh}/Q{sub 0}, Q{sub 0} and voltage of the cavities agree well with the simulation result. Details of the RF test results including the full power tests of the cavities will be shown. - Highlights: • High bunching voltage for this type of cavity with limited longitudinal length in MEBT line. • Using copper-plated stainless technique for cavity outer conductor. • Spiral cooling channel design for stem cooling.

  8. Tuning of 2.998 GHz S-band hybrid buncher for injector upgrade of LINAC II at DESY

    Science.gov (United States)

    Nie, Y. C.; Liebig, C.; Hüning, M.; Schmitz, M.

    2014-10-01

    The injector upgrade of LINAC II at DESY aims to improve its reliability and mitigate the radiological activation of components due to electron loss at relatively high energy of hundreds of MeV. Therefore, a 2.998 GHz hybrid buncher has been developed and will be installed in between an existing 2.998 GHz pre-buncher and LINAC II. It comprises a 1-cell standing-wave (SW) section for rapid electron acceleration and a 13-cells traveling-wave (TW) section for further beam bunching and acceleration. This paper focuses on its radio-frequency tuning procedure. The tuning strategy combines a non-resonant bead-pull measurement of complex electric field and a linear model for local reflection coefficient calculation. It is demonstrated that imaginary part of the local reflection coefficient represents the field distribution straightforwardly, based on which the structure can be tuned from cell to cell. During tuning, special attention has been paid to the field enhancement in the SW section to ensure its beam-capturing capability. Field amplitude and phase, global and local reflection coefficients have been analyzed for two different frequencies simultaneously, i.e. the intrinsic frequency of the structure and the target frequency, to avoid over-tuning. The tuning result is satisfying. For the target frequency, field unflatness of the TW section has been reduced from ±9% to ±4%, and field in the SW section has been enhanced significantly. Meanwhile, in the TW section, the deviation of phase advances between adjacent cells from the nominal value 120° has been reduced from the range ±5° to ±2°. By using ASTRA simulation, it has been verified that the residual detuning of the structure is acceptable in view of the beam dynamics performance.

  9. Development and testing of a multi-harmonic buncher for the high current injector at IUAC

    International Nuclear Information System (INIS)

    The Superconducting Linac at IUAC has been used as a heavy ion booster accelerator for the energetic heavy ion beams of the 15UD Pelletron accelerator. In order to inject heavy ion beams with higher charge states and higher currents to the Superconducting Linac, an alternate injection system called the High Current Injector (HCI) is being developed. This injector will extract beams from a superconducting ECR ion source (PKDELIS) and further accelerate them through Radio Frequency Quadrupoles (RFQ) and Drift Tube Linac (DTL) before injecting into the Superconducting Linac. In order to run the RFQ and other RF accelerating systems efficiently it is necessary to pre-bunch the beam before injection into the RFQ. SO a single gap Multi-Harmonic Buncher (MHB) is planned and is being developed to be installed before the RFQ. Ion beams of energy 3 keV/u produced by the ECR source, analysed in terms of mass to charge ratio of 6 using a large acceptance analysing magnet, transported by an electrostatic quadrupole triplet and energised to 8 keV/u by accelerating tubes will be focussed at the centre of the MHB. A saw-tooth voltage generated across a single gap formed by a closely spaced pair of Molybdenum grids, at the centre of the MHB chamber, will be used for bunching the dc beam. This saw-tooth voltage is produced by adding a sinewave (12.125 MHz) with its higher harmonics in proper phase and amplitude. The MHB vacuum chamber with grids mounted on copper cones and other accessories are ready for installation in the beam line. The tank circuits for the different harmonics to be used for powering the grids have been fabricated and tested. A controller has been developed to produce the different harmonics with proper phase and amplitude control and locking arrangements. The controller has been tested thoroughly in the Laboratory and using the bunching system of the Pelletron beam. The fabrication details of the MHB chamber, tank circuits and electronics to generate and to lock

  10. Simulations of the HIE-ISOLDE radio frequency quadrupole cooler and buncher vacuum using the Monte Carlo test particle code Molflow

    CERN Document Server

    Hermann, M; Vandoni, G; Kersevan, R

    2013-01-01

    The existing ISOLDE radio frequency quadrupole cooler and buncher (RFQCB) will be upgraded in the framework of the HIE-ISOLDE design study. In order to improve beam properties, the upgrade includes vacuum optimization with the aim of tayloring the overall pressure profile: increasing gas pressure at the injection to enhance cooling and reducing it at the extraction to avoid emittance blow up while the beam is being bunched. This paper describes the vacuum modelling of the present RFQCB using Test Particle Monte Carlo (Molflow+). In order to benchmark the simulation results, real pressure profiles along the existing RFQCB are measured using variable helium flux in the cooling section and compared with the pressure profiles obtained with Molflow+. Vacuum conditions of the improved future RFQCB can then be simulated to validate its design. (C) 2013 Elsevier B.V. All rights reserved.

  11. Subharmonic triple buncher for a high-efficiency free electron laser

    International Nuclear Information System (INIS)

    A high-efficiency free electron laser oscillator experiment is being constructed at Los Alamos National Laboratory. A buncher system has been designed to deliver 30-ps, 5-nC electron bunches to a 20-MeV standing-wave linac at the 60th subharmonic of the 1300-MHz accelerator frequency. The first 108.3-MHz buncher cavity accepts a 5-ns, 5-A peak current pulse from a triode gun. Following a 120-cm drift space, a second 108.3-MHz cavity is used, primarily to enhance the bunching of the trailing half of the bunch. A 1300-MHz cavity with 20-cm drift spaces at each end completes the beamline components. The bunching process continues into the linac's first three accelerating cells. Two thin iron-shielded lenses and seven large-diameter solenoids provide axial magnetic fields for radial focusing

  12. Subharmonic buncher for the Los Alamos free-electron laser oscillator experiment

    International Nuclear Information System (INIS)

    A high efficiency free-electron laser oscillator experiment is being constructed at Los Alamos National Laboratory. A buncher system has been designed to deliver 30-ps, 5-nC electron bunches to a 20-MeV standing-wave linac at the 60th subharmonic of the 1300-MHz accelerator frequency. The first 108.3-MHz buncher cavity accepts a 5-ns, 5-A peak current pulse from a triode gun. Following a 120-cm drift space, a second 108.3-MHz cavity is used, primarily to enhance the bunching of the trailing half of the bunch. A 1300-MHz cavity with 20-cm drift spaces at the each end completes the beamline components. The bunching process continues into the linac's first three accelerating cells. Two thin iron-shielded lenses and several large-diameter solenoids provide axial magnetic fields for radial focusing

  13. Evaluation of the Feller-Buncher Moipu 400E for Energy Wood Harvesting

    OpenAIRE

    Rottensteiner, Christian; Affenzeller, Günter; Stampfer, Karl

    2008-01-01

    Proper tending operations in young stands increase the quality of valuable roundwood and reduce the risk of stand damages caused by wind and snow-breaks, and infestation of bark beetles. When felling and extracting small diameter trees, costs often exceed the potential revenues. Mechanized thinning performed by using a forwarder mounted feller-buncher head could improve this cost-effectiveness. Atime study was carried out in a 35–40 year old Scots Pine–Oak dominated stand. Productivity ...

  14. Buncher-cavities for the MYRRHA injector LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Koser, Daniel; Basten, Markus; Maeder, Dominik; Noll, Daniel; Podlech, Holger; Ratzinger, Ulrich; Schwarz, Malte; Seibel, Anja; Vossberg, Markus [Institute for Applied Physics IAP, Frankfurt am Main (Germany)

    2014-07-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is currently being designed as an Accelerator Driven System (ADS) for demonstrating the feasibility of transmutation of high level nuclear waste. The MAX project (MYRRHA Accelerator eXperiment and development) is the corresponding R and D programme for the designated proton driver, which should provide the spallation target with a continuous wave proton beam of 600 MeV and 4 mA. The current layout of the injector design includes a 2-gap as well as a 5-gap room temperature rebunching structure operating at 176,1 MHz with total effective voltages of 116 kV and 270 kV, respectively, which both are being designed at IAP. For maximum power efficiency the 2-gap structure is going to be implemented as a quarter-wave coaxial resonator whereas the 5-gap structure will be a CH cavity, for which a prototype was already built within the scope of FRANZ. In order to optimize the performance and to provide a reliable cooling system and mechanical stability, RF, thermal and structural mechanics simulations are done mainly using CST Studio. Also the beam dynamics is going to be investigated using a new particle in cell tracking code called BENDER, which was developed at IAP.

  15. Avaliação operacional e econômica do "feller-buncher" em dois subsistemas de colheita de florestas de eucalipto Technical and economic analysis of a feller-buncher in two harvest subsystems of eucalyptus forests

    Directory of Open Access Journals (Sweden)

    Fábio Murilo Tieghi Moreira

    2004-04-01

    Full Text Available O objetivo deste trabalho foi avaliar técnica e economicamente o feller-buncher em dois subsistemas de colheita em florestas de eucalipto. A análise técnica englobou um estudo de tempos e movimentos e de produtividade. A análise econômica englobou os parâmetros custo operacional, custo de produção e rendimento energético. O elemento parcial que consumiu a maior parte do tempo do ciclo operacional foi o busca e corte, com aproximadamente 50% do tempo total do ciclo nos dois subsistemas. Os elementos deslocamento vazio e descarregamento consumiram cerca de 39% do tempo total do ciclo do feller-buncher. O custo operacional do feller-buncher foi de US$55,27/he; os custos de produção foram de 1,69 e 1,55 US$/m³cc, nos subsistemas 1 e 2, respectivamente; e o rendimento energético foi de 4,45 e 4,09 g/kW*m³cc, nos subsistemas 1 e 2, respectivamente.This work aimed to evaluate a feller-buncher operationally and economically, under two eucalyptus forest harvest subsystems. The operational analysis included a productivity and motion and time study. The economic analysis included the parameters operational cost, production cost and energy consumption. Searching and cutting consumed most of the operational time, approximately 50% of the total cycle time in both subsystems. Empty displacement and unloading consumed together about 39% of the total feller-buncher cycle time. The feller-buncher operational cost was US$55.27/he. The production costs were US$1.69 and 1.55/m³cc in subsystems 1 and 2, respectively. The energy consumption rates were 4.45 and 4.09 g/kW*m³cc in subsystems 1 and 2, respectively.

  16. Design and performance of the pulsed positron beam at Chalmers University of Technology

    Science.gov (United States)

    Mileshina, L.; Nordlund, A.

    2009-09-01

    A slow monoenergetic pulsed positron beam at Chalmers University of Technology has been built. The system consists mainly of chopper, buncher and accelerator. The achieved positron energy range is in range between 230 eV and 15 keV. The FWHM of the beam resolution function is around 700 ps. The beam intensity is around 103 cps.

  17. A 71 dB Gain, High Efficiency Relativistic Klystron using a High Current Linear Accelerator Traveling Wave Buncher Output Structure

    International Nuclear Information System (INIS)

    After five years of operation, the 17 GHz MKII relativistic klystron in service at the MIT Plasma Science and Fusion Center was upgraded with a new output structure to provide a common source of high peak power for continuing operation of the 17 GHz linac, for RF gun testing and for energizing a recently developed circularly polarized beam deflection RF system to evaluate the ultra short electron bunch performance of the linac. The salient features of the impedance and phase velocity tapered new traveling wave output structure designed for high gain and stability are described; and initial high power test results of the 17 GHz relativistic klystron are presented. The output structure was designed as a beam driven bunching and phase shifting 2π/3 mode circuit using codes that were developed over a 40 year period designing, fabricating and testing high current traveling wave linac bunchers. The electrical length of the new (MKIII) output circuit was extended to 1200 degrees using a group to phase velocity harmonic mean ratio of 0.124 to provide total skin losses of less than 5 percent and a phase/frequency sensitivity of only 0.6 degree/MHz. A dual feed racetrack shaped output cavity having a decelerating gradient of 150 kV/cm and beam apertures substantially larger than λ0/2, to allow reduction of space charge debunching forces, are added advantages of this 25 MW, 71 dB gain RF amplifier

  18. A new feller-buncher for harvesting energy wood: Results from a European test programme

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Raffaele [CNR-Ivalsa, Timber and Tree Institute, Sesto Fiorentino (Italy); Cuchet, Emmanuel [Afocel, Charrey sur Saone (France); Roux, Philippe [Cemagref, TEMO, Montpellier (France)

    2007-04-15

    In recent years, some manufacturers have developed new downsized feller-bunchers that are particularly suited to small-tree harvesting. One of these machines was tested in some of the most promising small tree resources of Europe, namely: Finnish young conifer forests, French hornbeam coppice and Italian sycamore plantations. The tests were conducted within the scope of a 3-year long European project, whose goal was to assess the suitability of this new technology to the production of wood biomass from silvicultural operations. Depending on site characteristics, the machine reached an average productivity between 4 and 8 green tonnes per net working hour, comparing favourably with other European shear-type felling heads and qualifying for deployment on a European scale. (author)

  19. ERGONOMIC EVALUATION OF A FELLER-BUNCHER USED ON EUCALYPTUS TIMBER-HARVESTING

    Directory of Open Access Journals (Sweden)

    Carla Bento da Silva

    2003-01-01

    Full Text Available A study was carried out to ergonomically evaluate a feller-buncher, used in harvesting operations of Eucalyptus, in a forestry enterprise in the region of Brasilandia, state of Minas Gerais-Brazil. The following parameters were evaluate : access to the cabin, cabin, visibility, operator seat,controls and operation of the machine, noise level, vibration, climate control in the cabin, exhaustionof gases and dust, illumination and maintenance, according to the manual on “Ergonomic Guidelinesfor Forest Machines”, by Skogforsk. A qualitative evaluation was performed for all items, except fornoise level, that was quantified by using a decibelimeter. According to the observations, each parameterwas classified as A, B, C, D or 0 (zero, being. A that with the best working conditions,and 0, the least favorable. The results classified the items as follows: in class A, vibration; in class B,visibility, operator seat, controls and operation of the machine, noise level, climate control in thecabin, and exhaustion of gases and dust; in class C, cabin and illumination; in class D, access to thecabin. Therefore, none of the parameters was considered as class 0. The feller-buncher obtained anoverall classification as B, indicating a highly productive work, slightly below the best level A, thuspresenting a high level of active and passive working safety. It was also observed that some adjustment is required to adapt the working space of the machine to the Brazilian operator. It isapparent that his antropometric characteristics are less favorable than for the Europeans, for which the machine was designed. This results in much more effort required for operation by workers.

  20. A better beam for ISOLDE

    CERN Multimedia

    2007-01-01

    ISCOOL, the RFQ Cooler and Buncher, recently installed at ISOLDE, heralds a new generation of beam quality. Jérôme Sarret working on the alignment of ISCOOL, ISOLDE’s new RFQ Cooler and Buncher.As any good chef knows, the secret to a good dish lies in the quality of its ingredients. And at ISOLDE, unlocking the juiciest secrets of the nucleus needs a high-quality beam. One recently installed device, the RFQ Cooler and Buncher (RFQCB), will enhance the emittance and bunching properties of the ion beam, giving ISOLDE’s experiments a better shot at teasing out the properties of exotic nuclei. The device, originally conceived in a PhD thesis by Ivan Podadera, was installed and commissioned over the past few weeks by the AB-ATB-IF, AB-OP and PH-IS groups. At ISOLDE, radioactive nuclides are produced in thick high-temperature targets and the RFQ cooler will use a buffer gas, segmented cylinder and RF quadrupole to slow the ions, del...

  1. Beam dynamics in an initial part of a high Brightness electron linac

    CERN Document Server

    Ayzatsky, M I; Dovbnya-Kushnir, V A

    2001-01-01

    The paper is focused on problems of obtained a bright electron beam in a system that includes a grid-controlled electron gun,a klystron type type subharmonical buncher, a standing wave fundamental buncher with increasing accelerating field and a short travelling wave accelerating section. Beam focusing is provided by a longitudinal solenoidal magnetic field.It was shown that the proposed system can provide electron bunches with a peak current more than 100 A and normalized r.m.s. emittance no more than phi centre dot mm centre dot mrad.

  2. Particle-in-cell mode beam dynamics simulation of the low energy beam transport for the SSC-linac injector

    Institute of Scientific and Technical Information of China (English)

    XIAO Chen; HE Yuan; YUAN You-Jin; YAO Qing-Gao; WANG Zhi-Jun; CHANG Wei; LIU Yong; XIA Jia-Wen

    2011-01-01

    A new SSC-linac system (injector into separated sector cyclotron) is being designed in the HIRFL (heavy ion research facility of Lanzhou). As part of SSC-Linac, the LEBT (low energy beam transport) consists of seven solenoids, four quadrupoles, a bending magnet and an extra multi-harmonic buncher. The total length of this segment is about 7 meters. The beam dynamics in this LEBT has been studied using three-dimensional PIC (particle-in-cell) code BEAMPATH. The simulation results show that the continuous beam from the ion source is first well analyzed by a charge-to-mass selection system, and the beam of the selected charge-to-mass ratio is then efficiently pre-bunched by a multi-harmonic buncher and optimally matched into the RFQ (radio frequency quadrupole) for further acceleration. The principles and effects of the solenoid collimation channel are discussed, and it could limit the beam emittance by changing the aperture size.

  3. The CLIC Test Facility (CTF3) which allowed the first electron beam recombination in order to multiply the RF frequency from 3 GHz up to 15 GHz.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 0210005_11: The CTF3 linac accelerates an electron beam up to 350 MeV. Photo 0210005_1: At the front, the yellow dipole is used for the spectrometer line. At the back, a doublet of blue quadrupole for the matching. Photo 0210005_03: The CTF3 transfer line between the electron linac and the isochronous ring. Photo 0210005_04: One arc of the EPA isochronous ring. Photo 0210005_06: The CTF3 bunching system. The first RF wave guide feeds the Pre-Buncher while the second RF wave guide feeds the Buncher. They provide a bunched electron beam at 4 MeV. The blue magnet is a solenoid around the Buncher. Photo 0210005_07: A LIL accelerating structure used for CTF3. It is 4.5 meters long and provides an energy gain of 45 MeV. One can see 3 quadrupoles around the RF structure.

  4. Beam dynamics design of the Compact Linear Collider Drive Beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Hajari, Sh. Sanaye, E-mail: ssanayeh@cern.ch [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); European Organization for Nuclear Research (CERN), BE Department, CH-1211 Geneva 23 (Switzerland); Shaker, H. [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); European Organization for Nuclear Research (CERN), BE Department, CH-1211 Geneva 23 (Switzerland); Doebert, S. [European Organization for Nuclear Research (CERN), BE Department, CH-1211 Geneva 23 (Switzerland)

    2015-11-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The longitudinal and transverse beam dynamics of the Drive Beam injector has been studied in detail and optimized. The injector consists of a thermionic gun followed by a bunching system, some accelerating structures, and a magnetic chicane. The bunching system contains three sub-harmonic bunchers, a prebuncher, and a traveling wave buncher all embedded in a solenoidal magnetic field. The main characteristic of the Drive Beam injector is the phase coding process done by the sub-harmonic bunching system operating at half the acceleration frequency. This process is essential for the frequency multiplication of the Drive Beam. During the phase coding process the unwanted satellite bunches are produced that adversely affects the machine power efficiency. The main challenge is to reduce the population of particles in the satellite bunches in the presence of strong space-charge forces due to the high beam current. The simulation of the beam dynamics has been carried out with PARMELA with the goal of optimizing the injector performance compared to the existing model studied for the Conceptual Design Report (CDR). The emphasis of the optimization was on decreasing the satellite population, the beam loss in the magnetic chicane and limiting the beam emittance growth in transverse plane.

  5. CTF3 Drive Beam Injector Optimisation

    CERN Document Server

    AUTHOR|(CDS)2082899; Doebert, S

    2015-01-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The main feasibility issues of the two-beam acceleration scheme are being demonstrated at CLIC Test Facility 3 (CTF3). The CTF3 Drive Beam injector consists of a thermionic gun followed by the bunching system and two accelerating structures all embedded in solenoidal magnetic field and a magnetic chicane. Three sub-harmonic bunchers (SHB), a prebuncher and a travelling wave buncher constitute the bunching system. The phase coding process done by the sub-harmonic bunching system produces unwanted satellite bunches between the successive main bunches. The beam dynamics of the CTF3 Drive Beam injector is reoptimised with the goal of improving the injector performance and in particular decreasing the satellite population, the beam loss in the magnetic chicane and the beam emittance in transverse plane compare to the original model based on P. Ur...

  6. Use of electrons beams for the production of radioactive nuclei by photofission

    International Nuclear Information System (INIS)

    The IPN of Orsay decided to build a linear accelerator in order to produce an electron beam of 50 MeV energy and of 10 mA average intensity. It is the ALTO project (Linear Accelerator near the Tandem of Orsay). This project will be dedicated to the production of the radioactive ions using the photo-fission process. The central topic of this thesis is the study of the beam dynamics of the ALTO facility. The first part presents studies concerning the injector. The simulations made with the simulation code PARMELA allowed the optimization of the characteristics of pre-buncher (dephasing HF, accelerating field peak...) to obtain a good bunching factor at the entrance of the buncher and at the entrance of the accelerating section according to the distance separating the two systems. The second part of this thesis is related to measurements of transverse emittance of the beam at the buncher exit. The three gradients method has been selected and the optical system used is a solenoid. The results obtained are in good agreement with former measurements. Finally a calculation of the beam line was carried out to optimize the transport of the beam to the PARRNe target without degrading its characteristics. The calculation codes that have been used are BETA and TRACE-WIN. (author)

  7. An RFQ cooler and buncher for the TRIGA-SPEC experiment

    Science.gov (United States)

    Beyer, T.; Blaum, K.; Block, M.; Düllmann, Ch. E.; Eberhardt, K.; Eibach, M.; Frömmgen, N.; Geppert, C.; Gorges, C.; Grund, J.; Hammen, M.; Kaufmann, S.; Krieger, A.; Nagy, Sz.; Nörterhäuser, W.; Renisch, D.; Smorra, C.; Will, E.

    2014-01-01

    A linear Paul trap for cooling of ion beams, the former cooler for emittance elimination radiofrequency quadrupole (RFQ) at MISTRAL/ISOLDE, has been installed and commissioned at the TRIGA-SPEC experiment located at the research reactor TRIGA Mainz. It is connected to a hot-surface-ionization ion source and a subsequent mass separator for ionization and pre-separation of neutron-rich fission products as delivered from the reactor. The capability of accumulating and bunching ion beams has been implemented to provide low-emittance ion pulses of 250 ns width containing up to 106 ions. A technical description of the upgraded RFQ as well as its characterization with stable ions is presented. Its installation allows delivery of low-emittance ion bunches to the two branches of the TRIGA-SPEC experiment, namely TRIGA-TRAP and TRIGA-LASER.

  8. Beam parametr measurements for the SLAC linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Clendenin, J.E.; Blocker, C.; Breidenbach, M.

    1981-01-01

    A stable, closely-controlled, high-intensity, single-bunch beam will be required for the SLAC Linear Collider. The characteristics of short-pulse, low-intensity beams in the SLAC linac have been studied. A new, high-intensity thermionic gun, subharmonic buncher and S-band buncher/accelerator section were installed recently at SLAC. With these components, up to 10/sup 11/ electrons in a single S-band bunch are available for injection into the linac. the first 100-m accelerator sector has been modified to allow control of short-pulse beams by a model-driven computer program. Additional instrumentation, including a computerized energy analyzer and emittance monitor have been added at the end of the 100-m sector. The beam intensity, energy spectrum, emittance, charge distribution and the effect of wake fields in the first accelerator sector have been measured. The new source and beam control system are described and the most recent results of the beam parameter measurements are discussed.

  9. A radiofrequency quadrupole cooler and buncher for the TRIGA-SPEC experiment

    International Nuclear Information System (INIS)

    The mass spectrometer TRIGA-TRAP and the laser spectroscopy setup TRIGA-LASER, forming the TRIGA-SPEC experiment, are installed at the research reactor TRIGA Mainz in order to perform high-precision measurements of ground state properties of short-lived neutron-rich radionuclides. Such measurements allow testing the predictive power of nuclear mass models and support astrophysical nucleosynthesis calculations. The extraction and preparation of these nuclides for both experimental branches is achieved by using an aerosol-based gas-jet system to transport them from an actinide target located inside the reactor to an external surface ionization ion source. The ion source is followed by a mass separator and a linear Paul trap, which was the cooler for emittance elimination COLETTE at MISTRAL/ISOLDE. It has been installed in Mainz and the capability of accumulating and bunching ion beams has been implemented to provide low-emittance ion pulses of 250 ns width containing up to 106 ions. A brief description of the upgraded linear Paul trap as well as its performance in bunching stable ions is presented.

  10. ANÁLISE TÉCNICA E DE CUSTO DO FELLER BUNCHER E SKIDDER NA COLHEITA DE MADEIRA EM DIFERENTES PRODUTIVIDADES DO POVOAMENTO

    Directory of Open Access Journals (Sweden)

    André Leonardo Nasser Pereira

    2015-01-01

    Full Text Available The objective of this study was to do a technical and costs analysis of a feller buncher and skidder in module harvesting Pinus taeda L. plantations in stands with different productivities. The study was conducted in a forestry company located in northern region of Santa Catarina State, Brazil. The analysis were made using the motion and time study, where the cutting and extraction operations were bundled into work cycle phases to determine productivity, operational efficiency, energy consumption, production and operational costs of the machines in different stands in terms of average (SAP: I (403.0 m3 ha-1; II (550.0 m3 ha-1 and III (670.0 m3 ha-1. The results indicated that the work cycle phases of skidder was affected by additional maneuvers in the operations of load and unload, caused by the lower volume of bunching of wood on the ground. The greater stand wood volume affected the productivity and production cost of feller buncher and skidder, proving the importance of this variable for harvesting planning.

  11. Use of electron beams for the production of radioactive nuclei through photo-fission; Utilisation de faisceaux d'electrons pour la production des noyaux radioactifs par photo-fission

    Energy Technology Data Exchange (ETDEWEB)

    M' garrech, Slah

    2004-09-01

    The IPN (institute of nuclear physics) of Orsay decided to build a linear accelerator in order to produce an electron beam of 50 MeV energy and of 10 {mu}A average intensity. It is the ALTO project (Linear Accelerator near the Tandem of Orsay). This project will be dedicated to the production of the radioactive ions using the photo-fission process. The central topic of this thesis is the study of the beam dynamics of the ALTO facility. The first part presents studies concerning the injector. The simulations made with the simulation code PARMELA allowed the optimization of the characteristics of pre-buncher (dephasing HF, accelerating field peak...) to obtain a good bunching factor at the entrance of the buncher and at the entrance of the accelerating section according to the distance separating the two systems. The second part of this thesis is related to measurements of transverse emittance of the beam at the buncher exit. The three gradients method has been selected and the optical system used is a solenoid. The results obtained are in good agreement with former measurements. Finally a calculation of the beam line was carried out to optimize the transport of the beam to the PARRNe target without degrading its characteristics. The calculation codes that have been used are BETA and TRACE-WIN. (author)

  12. Design study of low-energy beam transport for multi-charge beams at RAON

    Science.gov (United States)

    Bahng, Jungbae; Qiang, Ji; Kim, Eun-San

    2015-12-01

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.

  13. The low-energy-beam and ion-trap facility at NSCL/MSU

    CERN Document Server

    Schwarz, S; Lawton, D; Lofy, P; Morrissey, D J; Ottarson, J; Ringle, R; Schury, P; Sun, T; Varentsov, V; Weissman, L

    2003-01-01

    The goal of the low-energy-beam and ion-trap (LEBIT) project is to convert the high-energy exotic beams produced at NSCL/MSU into low-energy low-emittance beams. This beam manipulation will be done by a combination of a high-pressure gas stopping cell and a radio-frequency quadrupole ion accumulator and buncher. The first experimental program to profit from the low-energy beams produced will be high-accuracy mass measurements on very short-lived isotopes with a 9.4 T Penning trap system. The status of the project is presented with an emphasis on recent stopping tests range of 100 MeV/A sup 4 sup 0 Ar sup 1 sup 8 sup + ions in a gas cell.

  14. Development of a 50 MW Multiple Beam Klystron

    Energy Technology Data Exchange (ETDEWEB)

    Ives, R Lawrence; Ferguson, Patrick; Read, Michael; Collins, George

    2007-10-31

    The goal of this program was to develop a 50 MW, multiple beam klystron at 11.424 GHz. The device uses eight electron guns and beam lines to achieve the required power level at a beam voltage of 190 kV, consistent with solid state power supplies. The electron gun operates with confined flow focusing, which is unique among current multiple beam sources, and allows operation at power levels consistent with producing 10s of MWs of pulsed RF power. The circuit consists of a ring resonator input cavity, eight sets of buncher cavities, and a ring resonator output cavity. The RF output power is coupled into four rectangular waveguides equally spaced around the klystron. Eight individual collectors absorb the spent beam power in each beam. The klystron operates in a solenoid. The principle challenges in the design included development of the beam optics using confined flow focusing, shaping of the magnetic field in the gun region to avoid beam spiraling, coupling input power equally to all eight beam lines from a single input, and obtaining the required frequency and Q in the output cavity. The mechanical design was particularly complex due to the large parts count, number of braze and weld joints, and close proximity of the beam lines that limited access. Addressing vacuum leaks and cold testing the complex structures was particularly troublesome. At the conclusion of the program, the klystron is experiencing several vacuum leaks that are under repair. Efforts will continue to seal and test the klystron.

  15. Installation and operation of a radio-frequency quadrupole cooler and buncher and offline-commissioning of the TRIGA-SPEC ion beam preparation transfer line

    OpenAIRE

    Beyer, T.

    2014-01-01

    The dominant fraction of elements heavier than iron was created in stellar nucleosynthesis by neutron-capture reactions. The isotopic compositions of these elements are the fingerprints of the involved processes, and a huge amount of experimental data on these isotopes is required to support corresponding astrophysical calculations and models. The TRIGA-SPEC experiment aims to contribute to these data by the measurement of ground-state properties of neutron-rich heavy nuclides. It consists of...

  16. Beam-Beam Effects

    CERN Document Server

    Herr, W

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  17. Achromatic beam transport of High Current Injector

    Science.gov (United States)

    Kumar, Sarvesh; Mandal, A.

    2016-02-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time.

  18. 9. Heavy ion beam driver and its interactions with matter

    International Nuclear Information System (INIS)

    This document gathers 15 articles whose titles are: 1) Perspectives of the GSI accelerator complex (Darmstadt, Germany) for fusion driver studies, 2) Energy loss of 6 MeV/u 56Fe ions in Z-pinch helium plasma as a function of charge state and plasma density, 3) Creation of high-energy-density matter using intense beams of energetic heavy ions, 4) Space resolved charge state distribution of fast ions inside matter, 5) Beam final transport and focusing in heavy ion beam inertial confinement fusion, 6) Beam-plasma interaction study with laser plasma induced from solid hydrogen, 7) Magnetized cylindrical targets for heavy ion fusion, 8) Beam-plasma experiments at Riken, 9) Repetitive induction module for ion acceleration, 10) Simulations of recent and future experiments on heating of rare gas solid by heavy ions, 11) Charge-changing processes of low-energy heavy ions in a dense non-hydrogenic plasma, 12) Development of high-brightness ion sources using moderate power lasers, 13) Induction beam buncher for relativistic heavy ion beams, 14) Simple calculation of surface layer thickness of various IFE reactor candidate material ablated by high fluence X-ray, and 15) Hydro processes in high temperature dense plasma under the impact of intense ion beams

  19. Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima, Satoshi, E-mail: kurashima.satoshi@jaea.go.jp; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Taguchi, Mitsumasa [Quantum Beam Science Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Fukuda, Mitsuhiro [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2015-07-15

    The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of a beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method.

  20. Production of a sub-10 fs electron beam with 107 electrons

    Science.gov (United States)

    Han, Jang-Hui

    2011-05-01

    We study the possibility to produce a 1.6 pC electron beam (107 electrons) with a bunch length of less than 10 fs and a beam energy of a few MeV. Such a short, relativistic beam will be useful for an electron diffraction experiment with a 10 fs time resolution. An electron beam with 107 electrons will allow a single-shot experiment with a laser pulse pump and an electron beam probe. In this design, an S-band photocathode gun is used for generating and accelerating a beam and a buncher consisting of two S-band four-cell cavities is used for temporally compressing the beam. Focusing solenoids control the beam transverse divergence and size at the sample. Numerical optimization is carried out to achieve a beam with a 4 fs full-width-at-half-maximum length, a 26 microradian root-mean-square divergence, and a 2 nm transverse coherence length at a 3.24 MeV beam energy. When state-of-the-art rf stability is considered, beam arrival time jitter at the sample is calculated to be about 10 fs.

  1. Beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.

    1994-12-01

    The term beam-beam effects is usually used to designate different phenomena associated with interactions of counter-rotating beams in storage rings. Typically, the authors speak about beam-beam effects when such interactions lead to an increase of the beam core size or to a reduction of the beam lifetime or to a growth of particle`s population in the beam halo and a correspondent increase of the background. Although observations of beam-beam effects are very similar in most storage rings, it is very likely that every particular case is largely unique and machine-dependent. This constitutes one of the problems in studying the beam-beam effects, because the experimental results are often obtained without characterizing a machine at the time of the experiment. Such machine parameters as a dynamic aperture, tune dependencies on amplitude of particle oscillations and energy, betatron phase advance between the interaction points and some others are not well known, thus making later analysis uncertain. The authors begin their discussion with demonstrations that beam-beam effects are closely related to non linear resonances. Then, they will show that a non linearity of the space charge field is responsible for the excitation of these resonances. After that, they will consider how beam-beam effects could be intensified by machine imperfections. Then, they will discuss a leading mechanism for the formation of the beam halo and will describe a new technique for beam tails and lifetime simulations. They will finish with a brief discussion of the coherent beam-beam effects.

  2. New method of beam bunching in free-ion lasers

    International Nuclear Information System (INIS)

    An effective ion beam bunching method is suggested. This method is based on a selective interaction of line spectrum laser light (e.g. axial mode structure light) with non-fully stripped ion beam cooled in a storage rings, arranging the ion beam in layers in radial direction of an energy-longitudinal coordinate plane and following rotation of the beam at the right angle after switching on the RF cavity or undulator grouper/buncher. Laser cooling of the ion beam can be used at this position after switching off the resonator to decrease the energy spread caused by accelerating field of the resonator. A relativistic multilayer ion mirror will be produced this way. Both monochromatic laser beams and intermediate monochromaticity and bandwidth light sources of spontaneous incoherent radiation can be used for production of hard and high power electromagnetic radiation by reflection from this mirror. The reflectivity of the mirror is rather high because of the cross-section of the backward Rayleigh scattering of photon light by non-fully stripped relativistic ions (∼λ2) is much greater (∼ 10 divided-by 15 orders) then Thompson one (∼ re2). This position is valid even in the case of non-monochromatic laser light (Δω/ω ∼ 10-4). Ion cooling both in longitudinal plane and three-dimensional radiation ion cooling had been proposed based on this observation. The using of these cooling techniques will permit to store high current and low emittance relativistic ion beams in storage rings. The bunched ion beam can be used in ordinary Free-Ion Lasers as well. After bunching the ion beam can be extracted from the storage ring in this case. Storage rings with zero momentum compaction function will permit to keep bunching of the ion beam for a long time

  3. A particle-in-cell mode beam dynamics simulation of medium energy beam transport for the SSC-Linac

    Institute of Scientific and Technical Information of China (English)

    XIAO Chen; XU Meng-Xin; HE Shou-Bo; XIA Jia-Wen; HE Yuan; YUAN You-Jin; LU Yuan-Rong; LIU Yong; WANG Zhi-Jun; DU Xiao-Nan; YAO Qing-Gao; LIU Ge

    2012-01-01

    A new linear accelerator system,called the SSC-Linac injector,is being designed at HIRFL (the heavy ion research facility of Lanzhou).As part of the SSC-Linac,the medium energy beam transport (MEBT) consists of seven magnetic quadrupoles,a re-buncher and a diagnose box.The total length of this segment is about 1.75 m.The beam dynamics simulation in MEBT has been studied using the TRACK 3D particlein-cell code,and the simulation result shows that the beam accelerated from the radio frequency quadrupole (RFQ) matches well with the acceptance of the following drift tube linac (DTL) in both the transverse and longitudinal phase spaces,and that most of the particles can be captured by the final sector focusing cyclotronfor further acceleration.The longitudinal emittance of the RFQ and the longitudinal acceptance of the DTL was calculated in detail,and a multi-particle beam dynamics simulation from the ion source to the end of the DTL was done to verify the original design.

  4. A particle-in-cell mode beam dynamics simulation of medium energy beam transport for the SSC-Linac

    Science.gov (United States)

    Xiao, Chen; He, Yuan; Yuan, You-Jin; Lu, Yuan-Rong; Liu, Yong; Wang, Zhi-Jun; Du, Xiao-Nan; Yao, Qing-Gao; Liu, Ge; Xu, Meng-Xin; He, Shou-Bo; Xia, Jia-Wen

    2012-01-01

    A new linear accelerator system, called the SSC-Linac injector, is being designed at HIRFL (the heavy ion research facility of Lanzhou). As part of the SSC-Linac, the medium energy beam transport (MEBT) consists of seven magnetic quadrupoles, a re-buncher and a diagnose box. The total length of this segment is about 1.75 m. The beam dynamics simulation in MEBT has been studied using the TRACK 3D particle-in-cell code, and the simulation result shows that the beam accelerated from the radio frequency quadrupole (RFQ) matches well with the acceptance of the following drift tube linac (DTL) in both the transverse and longitudinal phase spaces, and that most of the particles can be captured by the final sector focusing cyclotron for further acceleration. The longitudinal emittance of the RFQ and the longitudinal acceptance of the DTL was calculated in detail, and a multi-particle beam dynamics simulation from the ion source to the end of the DTL was done to verify the original design.

  5. Development and application of ion beam diagnostics; Entwicklung und Anwendung schneller Strahldiagnose fuer Ionenstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    Pfister, Jochen

    2010-06-07

    At GSI - Helmholtz Centre for Heavy Ion Research in Darmstadt/Germany the HITRAP project is in the commissioning phase. This world-wide unique facility consists of a linear decelerator for heavy, highly charged ions including atomic physics precision experiments. During commissioning of the cavities, transverse emittances were measured using the single-shot pepperpot method as well as the multi-gradient method. The extraction emittance of the experimental storage ring (ESR) was determined. Furthermore, the phase space distribution of an decelerated beam at an intermediate energy of 500keV/u was measured behind the IH-structure. New algorithms have been integrated into the analysis of digital images. The longitudinal bunch structure measurements of the ion beam at the entry point into the decelerator and the operation of the Double-drift Buncher is shown. The design, development and the first commissioning of a new single-shot pepperpot emittance meter for very low beam currents and beam energies in the order of some hundred nA is described, making it possible to measure the beam behind the deceleration cavities. In addition, transverse beam dynamics calculations were performed, which supported the hands-on commissioning of the accelerator. It is described how the entire beam line from the ESR to the radio-frequency quadrupole can be optimized using the new routine for transverse effects of the bunching and deceleration, which was successfully integrated into the software COSY Infinity. (orig.)

  6. Transient beam-loading model and compensation in Compact Linear Collider main linac

    CERN Document Server

    Kononenko, O

    2011-01-01

    A new model to compensate for the transient beam loading in the CLIC main linac is developed. It takes into account the CLIC specific power generation scheme and the exact 3D geometry of the accelerating structure including couplers. A new method of calculating unloaded and loaded voltages during the transient is proposed and a dedicated optimization scheme of the rf pulse to compensate the transient beam-loading effect is presented. It is demonstrated that the 0.03% limit on the rms relative bunch-to-bunch energy spread in the main beam after acceleration can be reached. The optimization technique has been used to increase the rf to beam efficiency while preserving the CLIC requirements and to compensate for the energy spread caused by the Balakin-Novokhatski-Smirnov damping and transient process in the subharmonic buncher. Effects of charge jitters in the drive and main beams are studied. It is shown that within the 0.1% CLIC specification limit on the rms spread in beams charge the energy spread is not sig...

  7. IH-DTL design with KONUS beam dynamics for KHIMA project

    Science.gov (United States)

    Lee, Yumi; Kim, Eun-San; Li, Zhihui; Hahn, Garam

    2015-11-01

    The Kombinierte Null Grad Struktur (KONUS) beam dynamics design of the interdigit H-mode drift tube linac (IH-DTL) for the Korea Heavy Ion Medical Accelerator (KHIMA) project is presented. We performed a KONUS beam dynamics simulation for a carbon beam (12C4+) with the LORASR code. The 12C4+ beam was accelerated from an input energy of 0.4 MeV/u to an output energy of 7 MeV/u by the IH-DTL operated at 200 MHz. The optimization aims were to increase the transmission efficiency and to minimize the beam emittance growth, beam loss, and project costs. The buncher with two gaps and two quadrupole doublets were placed between the RFQ and the IH-DTL. The whole IH-DTL consists of two tanks, 56 acceleration gaps, and four quadrupole triplets. It achieves a transmission efficiency of 100%. The total length from the exit of the RFQ to the exit of the IH-DTL is approximately 507.7 cm.

  8. Transverse match of high peak-current beam into the LANSCE DTL using PARMILA

    International Nuclear Information System (INIS)

    A new algorithm that uses a multiparticle PARMILA-based code to match high peak current H+ beam (∼21 mA) into the Los Alamos Neutron Science Center (LANSCE) drift tube linac (DTL) has been developed. Two single cell rf bunchers in the low energy beam transport (LEBT) prepare the initially unbunched beam for DTL capture. The transverse distribution at the entrance to the DTL is set with four quadrupoles in the 1.26 m between the last transverse emittance measuring station and the DTL entrance. Previous matching algorithms used TRACE and TRACE 3-D to determine these quadrupole strengths. PARMILA simulation show this procedure produces non-zero mismatch and additional emittance growth through the DTL for high current beams. Because of strong space-charge forces and a rapidly forming longitudinal bunch, simple envelope calculations do not model the beam evolution in the LEBT well. A PARMILA model of this region was combined with ant iterative search routine to set the LEBT quadrupole strengths to achieve a better transverse match into the DTL. Simulations predict a significant reduction in transverse emittance at the exit of the DTL over the typical TRACE 3-D result

  9. Beam Dynamics Studies for a Laser Acceleration Experiment

    CERN Document Server

    Spencer, James; Noble, Robert; Palmer, Dennis T; Siemann, Robert

    2005-01-01

    The NLC Test Accelerator at SLAC was built to address various beam dynamics issues for the Next Linear Collider. An S-Band RF gun, originally proposed for the NLCTA, is being installed together with a large-angle extraction line at 60 MeV. This is followed by a matching section, final focus and buncher for the laser acceleration experiment, E163. The laser-electron interaction area is followed by a broad range, high resolution spectrometer (HES) for electron bunch analysis. The RF gun is discussed in another paper. We discuss only the beam dynamics and high resolution analysis system at 6 MeV based on using Parmela and high-order Transport for bunch charges from 50 pC to 1 nC. Beyond the diagnostics, this system uses the emittance compensating solenoids and a low energy, high resolution spectrometer (LES) to help tune for best operating point and match to the linac. Optical symmetries in the design of the 25.5° extraction line provide 1:1 phase space transfer without linear dispersion or use of sextu...

  10. Bessel Beams

    OpenAIRE

    McDonald, Kirk T

    2000-01-01

    Scalar Bessel beams are derived both via the wave equation and via diffraction theory. While such beams have a group velocity that exceeds the speed of light, this is a manifestation of the "scissors paradox" of special relativty. The signal velocity of a modulated Bessel beam is less than the speed of light. Forms of Bessel beams that satisfy Maxwell's equations are also given.

  11. Development and application of the intense slow positron beam at IHEP

    Institute of Scientific and Technical Information of China (English)

    WANG Bao-Yi; MA Yan-Yun; WANG Ping; CAO Xing-Zhong; QIN Xiu-So; ZHANG Zhe; YU Run-Sheng; WEI Long

    2008-01-01

    This paper describes the development and application of an intense slow positron beam at IHEP with regard to its two main components.The Variable-Energy Positron Lifetime Spectroscopy (VEPLS) based on the pulsing system consisting of a chopper,a prebuncher and a buncher has been constructed in order to meet the needs of materials science development.At present,the time resolution of the VEPLS can easily reach about 386 ps with a peak-to-background ratio of about 600:1.A plugged-in 22Na positron source section for adjusting the newly built experimental station and for increasing the beam operation efficiency has been constructed.A slow positron beam with an intensity of 2.5x105 e+/s and the beam profile whose diameter is 10 mm has been obtained;the moderation efficiency of the tungsten mesh moderator reaches 5.1x 10-4 as calculated with an original positron source activity of 52 mCi.

  12. Isobar separation by time-of-flight mass spectrometry for low-energy radioactive ion beam facilities

    Science.gov (United States)

    Plaß, Wolfgang R.; Dickel, Timo; Czok, Ulrich; Geissel, Hans; Petrick, Martin; Reinheimer, Katrin; Scheidenberger, Christoph; Yavor, Mikhail I.

    2008-10-01

    A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) system for low-energy radioactive ion beam facilities has been developed, which can be used for (i) isobar separation and (ii) direct mass measurements of very short-lived nuclei with half-lives of about 1 ms or longer, and (iii) for identification and diagnosis of the ion beam by mass spectrometry. The system has been designed and simulated, and individual subsystems have been built and characterized experimentally. An injection trap for cooling and bunching of the ion beam has been developed, and cooling times of less than one millisecond have been achieved. The performance of the MR-TOF-MS was characterized using the isobaric doublet of carbon monoxide and nitrogen molecular ions. A mass resolving power of 105 (FWHM) has been obtained even with an uncooled ion population. The separator capabilities of the MR-TOF-MS have been demonstrated by removing either carbon monoxide or nitrogen ions from the beam in a Bradbury-Nielsen Gate after a flight time of 320 μs. The separation power achieved is thus at least 7000 (FWHM) and increases for longer time-of-flight. An energy buncher stage has been designed that compresses the energy spread of the beam after the separation and facilitates efficient injection of the selected ions into an accumulation trap prior to transfer of the ions to experiments downstream of the MR-TOF-MS.

  13. Isobar separation by time-of-flight mass spectrometry for low-energy radioactive ion beam facilities

    Energy Technology Data Exchange (ETDEWEB)

    Plass, Wolfgang R. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany); Gesellschaft fuer Schwerionenforschung, 64291 Darmstadt (Germany)], E-mail: Wolfgang.R.Plass@exp2.physik.uni-giessen.de; Dickel, Timo [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany); Czok, Ulrich; Geissel, Hans [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany); Gesellschaft fuer Schwerionenforschung, 64291 Darmstadt (Germany); Petrick, Martin; Reinheimer, Katrin [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany); Scheidenberger, Christoph [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany); Gesellschaft fuer Schwerionenforschung, 64291 Darmstadt (Germany); Yavor, Mikhail I. [Institute of Analytical Instrument Making, Russian Academy of Sciences, 190103 St. Petersburg (Russian Federation)

    2008-10-15

    A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) system for low-energy radioactive ion beam facilities has been developed, which can be used for (i) isobar separation and (ii) direct mass measurements of very short-lived nuclei with half-lives of about 1 ms or longer, and (iii) for identification and diagnosis of the ion beam by mass spectrometry. The system has been designed and simulated, and individual subsystems have been built and characterized experimentally. An injection trap for cooling and bunching of the ion beam has been developed, and cooling times of less than one millisecond have been achieved. The performance of the MR-TOF-MS was characterized using the isobaric doublet of carbon monoxide and nitrogen molecular ions. A mass resolving power of 10{sup 5} (FWHM) has been obtained even with an uncooled ion population. The separator capabilities of the MR-TOF-MS have been demonstrated by removing either carbon monoxide or nitrogen ions from the beam in a Bradbury-Nielsen Gate after a flight time of 320 {mu}s. The separation power achieved is thus at least 7000 (FWHM) and increases for longer time-of-flight. An energy buncher stage has been designed that compresses the energy spread of the beam after the separation and facilitates efficient injection of the selected ions into an accumulation trap prior to transfer of the ions to experiments downstream of the MR-TOF-MS.

  14. Beam Dynamics Studies for a Laser Acceleration Experiment

    International Nuclear Information System (INIS)

    The NLC Test Accelerator (NLCTA) at SLAC was built to address various beam dynamics issues for the Next Linear Collider. An S-Band RF gun is being installed together with a large-angle extraction line at 60 MeV followed by a matching section, buncher and final focus for the laser acceleration experiment, E163. The laser-electron interaction area is followed by a broad range, high resolution spectrometer (HES) for electron bunch analysis. Another spectrometer at 6 MeV will be used for analysis of bunch charges up to 1 nC. Emittance compensating solenoids and the low energy spectrometer (LES) will be used to tune for best operating point and match to the linac. Optical symmetries in the design of the 25.5o extraction line provide 1:1 phase space transfer without use of sextupoles for a large, 6D phase space volume and range of input conditions. Design techniques, tolerances, tuning sensitivities and orthogonal knobs are discussed

  15. Beam Dynamics Simulations of the REX-ISOLDE A/q-separator

    CERN Document Server

    Fraser, M A; Wenander, F

    2014-01-01

    The REX-ISOLDE A=q-separator selects the radioactive species of interest from the background of residual gas ions coming from the EBIS ion source. In the context of the HIE-ISOLDE upgrade, including the implementation of a multi-harmonic buncher and an upgraded EBIS, the separator and the beam line between the EBIS and RFQ, which we will call the Low Energy Beam Transfer (LEBT) line, has been simulated by tracking particles through the field maps of each active element using the TRACK [4] code. The simulations were benchmarked with a COSY-1 model that was improved to take into account the fringe fields of the electrostatic quadrupoles, electrostatic deflector and magnetic bender; the model can be used to tune and optimise the separator with higher-order effects taken into account. In this note the beam dynamics simulations are documented and the transverse and longitudinal acceptance of the separator line studied to provide design constraints for the EBIS upgrade.

  16. Beam - cavity interaction beam loading

    International Nuclear Information System (INIS)

    The interaction of a beam with a cavity and a generator in cyclic accelerators or storage rings is investigated. Application of Maxwell's equations together with the nonuniform boundary condition allows one to get an equivalent circuit for a beam-loaded cavity. The general equation for beam loading is obtained on the basis of the equivalent circuit, and the beam admittance is calculated. Formulas for power consumption by a beam-loaded cavity are derived, and the optimal tuning and coupling factor are analyzed. (author)

  17. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  18. Generation of a high-brightness pulsed positron beam for the Munich scanning positron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Piochacz, Christian

    2009-11-20

    Within the present work the prerequisites for the operation of the Munich scanning positron microscope (SPM) at the high intense neutron induced positron source Munich (NEPOMUC) were established. This was accomplished in two steps: Firstly, a re-moderation device was installed at the positron beam facility NEPOMUC, which enhances the brightness of the positron beam for all connected experiments. The second step was the design, set up and initial operation of the SPM interface for the high efficient conversion of the continuous beam into a bunched beam. The in-pile positron source NEPOMUC creates a positron beam with a diameter of typically 7 mm, a kinetic energy of 1 keV and an energy spread of 50 eV. The NEPOMUC re-moderator generates from this beam a low energy positron beam (20 - 200 eV) with a diameter of less than 2 mm and an energy spread well below 2.5 eV. This was achieved with an excellent total efficiency of 6.55{+-}0.25 %. The re-moderator was not only the rst step to implement the SPM at NEPOMUc, it enables also the operation of the pulsed low energy positron beam system (PLEPS). Within the present work, at this spectrometer rst positron lifetime measurements were performed, which revealed the defect types of an ion irradiated uranium molybdenum alloy. Moreover, the instruments which were already connected to the positron beam facility bene ts considerably of the high brightness enhancement. In the new SPM interface an additional re-moderation stage enhances the brightness of the beam even more and will enable positron lifetime measurements at the SPM with a lateral resolution below 1 {mu}m. The efficiency of the re-moderation process in this second stage was 24.5{+-}4.5 %. In order to convert high efficiently the continuous positron beam into a pulsed beam with a repetition rate of 50 MHz and a pulse duration of less than 50 ps, a sub-harmonic pre-bucher was combined with two sine wave bunchers. Furthermore, the additional re-moderation stage of the

  19. Generation of a high-brightness pulsed positron beam for the Munich scanning positron microscope

    International Nuclear Information System (INIS)

    Within the present work the prerequisites for the operation of the Munich scanning positron microscope (SPM) at the high intense neutron induced positron source Munich (NEPOMUC) were established. This was accomplished in two steps: Firstly, a re-moderation device was installed at the positron beam facility NEPOMUC, which enhances the brightness of the positron beam for all connected experiments. The second step was the design, set up and initial operation of the SPM interface for the high efficient conversion of the continuous beam into a bunched beam. The in-pile positron source NEPOMUC creates a positron beam with a diameter of typically 7 mm, a kinetic energy of 1 keV and an energy spread of 50 eV. The NEPOMUC re-moderator generates from this beam a low energy positron beam (20 - 200 eV) with a diameter of less than 2 mm and an energy spread well below 2.5 eV. This was achieved with an excellent total efficiency of 6.55±0.25 %. The re-moderator was not only the rst step to implement the SPM at NEPOMUc, it enables also the operation of the pulsed low energy positron beam system (PLEPS). Within the present work, at this spectrometer rst positron lifetime measurements were performed, which revealed the defect types of an ion irradiated uranium molybdenum alloy. Moreover, the instruments which were already connected to the positron beam facility bene ts considerably of the high brightness enhancement. In the new SPM interface an additional re-moderation stage enhances the brightness of the beam even more and will enable positron lifetime measurements at the SPM with a lateral resolution below 1 μm. The efficiency of the re-moderation process in this second stage was 24.5±4.5 %. In order to convert high efficiently the continuous positron beam into a pulsed beam with a repetition rate of 50 MHz and a pulse duration of less than 50 ps, a sub-harmonic pre-bucher was combined with two sine wave bunchers. Furthermore, the additional re-moderation stage of the SPM

  20. Beam Instabilities

    CERN Document Server

    Rumolo, G

    2014-01-01

    When a beam propagates in an accelerator, it interacts with both the external fields and the self-generated electromagnetic fields. If the latter are strong enough, the interplay between them and a perturbation in the beam distribution function can lead to an enhancement of the initial perturbation, resulting in what we call a beam instability. This unstable motion can be controlled with a feedback system, if available, or it grows, causing beam degradation and loss. Beam instabilities in particle accelerators have been studied and analysed in detail since the late 1950s. The subject owes its relevance to the fact that the onset of instabilities usually determines the performance of an accelerator. Understanding and suppressing the underlying sources and mechanisms is therefore the key to overcoming intensity limitations, thereby pushing forward the performance reach of a machine.

  1. Multiobjective optimizations of a novel cryocooled dc gun based ultrafast electron diffraction beam line

    Science.gov (United States)

    Gulliford, Colwyn; Bartnik, Adam; Bazarov, Ivan

    2016-09-01

    We present the results of multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line utilizing a 225 kV dc gun with a novel cryocooled photocathode system and buncher cavity. Optimizations of the transverse projected emittance as a function of bunch charge are presented and discussed in terms of the scaling laws derived in the charge saturation limit. Additionally, optimization of the transverse coherence length as a function of final rms bunch length at the sample location have been performed for three different sample radii: 50, 100, and 200 μ m , for two final bunch charges: 1 05 electrons (16 fC) and 1 06 electrons (160 fC). Example optimal solutions are analyzed, and the effects of disordered induced heating estimated. In particular, a relative coherence length of Lc ,x/σx=0.27 nm /μ m was obtained for a final bunch charge of 1 05 electrons and final bunch length of σt≈100 fs . For a final charge of 1 06 electrons the cryogun produces Lc ,x/σx≈0.1 nm /μ m for σt≈100 - 200 fs and σx≥50 μ m . These results demonstrate the viability of using genetic algorithms in the design and operation of ultrafast electron diffraction beam lines.

  2. Beam collimator

    CERN Multimedia

    1977-01-01

    A four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with SPS secondary beams, the collimator operates under vacuum conditions. See Annual Report 1976 p. 121 and photo 7701014.

  3. Electromagnetic and beam dynamics design of a 5 MeV, 3 kW travelling wave electron linear accelerator

    International Nuclear Information System (INIS)

    An S-band (2856 MHz) 5 MeV, 3 kW traveling wave linear accelerator is currently under design and development at Raja Ramanna Centre for Advanced Technology, Indore. The accelerating structure is a 2π/3 mode constant impedance traveling wave structure, designed to accelerates the 50 keV electron beam from the electron gun to 5 MeV. It comprises of traveling wave buncher cells followed by regular accelerating cells. This paper presents the details of electromagnetic design simulations to fix the mechanical dimensions and tolerances, as well as heat loss calculations in the structure. Comparison of the results obtained from detailed numerical simulations with those obtained from approximate analytical calculations is described in the paper. The beam dynamics simulation from beginning to end of the linac is also performed and the required magnetic field profile for keeping the beam focused in the linac has been evaluated. The aim has been to maximize the capture efficiency with reduced energy spread in a short and compact structure. (author)

  4. A field programmable gate array-based time-resolved scaler for collinear laser spectroscopy with bunched radioactive potassium beams

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, D. M., E-mail: rossi@nscl.msu.edu; Davis, M.; Ringle, R.; Rodriguez, J. A.; Ryder, C. A.; Schwarz, S.; Sumithrarachchi, C.; Zhao, S. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Minamisono, K., E-mail: minamiso@nscl.msu.edu; Barquest, B. R.; Bollen, G.; Hughes, M.; Strum, R.; Tarazona, D. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Cooper, K.; Hammerton, K.; Mantica, P. F.; Morrissey, D. J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, Michigan 48824 (United States)

    2014-09-15

    A new data acquisition system including a Field Programmable Gate Array (FPGA) based time-resolved scaler was developed for laser-induced fluorescence and beam bunch coincidence measurements. The FPGA scaler was tested in a collinear laser-spectroscopy experiment on radioactive {sup 37}K at the BEam COoler and LAser spectroscopy (BECOLA) facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A 1.29 μs bunch width from the buncher and a bunch repetition rate of 2.5 Hz led to a background suppression factor of 3.1 × 10{sup 5} in resonant photon detection measurements. The hyperfine structure of {sup 37}K and its isotope shift relative to the stable {sup 39}K were determined using 5 × 10{sup 4} s{sup −1} {sup 37}K ions injected into the BECOLA beam line. The obtained hyperfine coupling constants A({sup 2}S{sub 1/2}) = 120.3(1.4) MHz, A({sup 2}P{sub 1/2}) = 15.2(1.1) MHz, and A({sup 2}P{sub 3/2}) = 1.4(8) MHz, and the isotope shift δν{sup 39,} {sup 37} = −264(3) MHz are consistent with the previously determined values, where available.

  5. A field programmable gate array-based time-resolved scaler for collinear laser spectroscopy with bunched radioactive potassium beams.

    Science.gov (United States)

    Rossi, D M; Minamisono, K; Barquest, B R; Bollen, G; Cooper, K; Davis, M; Hammerton, K; Hughes, M; Mantica, P F; Morrissey, D J; Ringle, R; Rodriguez, J A; Ryder, C A; Schwarz, S; Strum, R; Sumithrarachchi, C; Tarazona, D; Zhao, S

    2014-09-01

    A new data acquisition system including a Field Programmable Gate Array (FPGA) based time-resolved scaler was developed for laser-induced fluorescence and beam bunch coincidence measurements. The FPGA scaler was tested in a collinear laser-spectroscopy experiment on radioactive (37)K at the BEam COoler and LAser spectroscopy (BECOLA) facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A 1.29 μs bunch width from the buncher and a bunch repetition rate of 2.5 Hz led to a background suppression factor of 3.1 × 10(5) in resonant photon detection measurements. The hyperfine structure of (37)K and its isotope shift relative to the stable (39)K were determined using 5 × 10(4) s(-1) (37)K ions injected into the BECOLA beam line. The obtained hyperfine coupling constants A((2)S(1/2)) = 120.3(1.4) MHz, A((2)P(1/2)) = 15.2(1.1) MHz, and A((2)P(3/2)) = 1.4(8) MHz, and the isotope shift δν(39, 37) = -264(3) MHz are consistent with the previously determined values, where available. PMID:25273722

  6. A field programmable gate array-based time-resolved scaler for collinear laser spectroscopy with bunched radioactive potassium beams.

    Science.gov (United States)

    Rossi, D M; Minamisono, K; Barquest, B R; Bollen, G; Cooper, K; Davis, M; Hammerton, K; Hughes, M; Mantica, P F; Morrissey, D J; Ringle, R; Rodriguez, J A; Ryder, C A; Schwarz, S; Strum, R; Sumithrarachchi, C; Tarazona, D; Zhao, S

    2014-09-01

    A new data acquisition system including a Field Programmable Gate Array (FPGA) based time-resolved scaler was developed for laser-induced fluorescence and beam bunch coincidence measurements. The FPGA scaler was tested in a collinear laser-spectroscopy experiment on radioactive (37)K at the BEam COoler and LAser spectroscopy (BECOLA) facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A 1.29 μs bunch width from the buncher and a bunch repetition rate of 2.5 Hz led to a background suppression factor of 3.1 × 10(5) in resonant photon detection measurements. The hyperfine structure of (37)K and its isotope shift relative to the stable (39)K were determined using 5 × 10(4) s(-1) (37)K ions injected into the BECOLA beam line. The obtained hyperfine coupling constants A((2)S(1/2)) = 120.3(1.4) MHz, A((2)P(1/2)) = 15.2(1.1) MHz, and A((2)P(3/2)) = 1.4(8) MHz, and the isotope shift δν(39, 37) = -264(3) MHz are consistent with the previously determined values, where available.

  7. A field programmable gate array-based time-resolved scaler for collinear laser spectroscopy with bunched radioactive potassium beams

    Science.gov (United States)

    Rossi, D. M.; Minamisono, K.; Barquest, B. R.; Bollen, G.; Cooper, K.; Davis, M.; Hammerton, K.; Hughes, M.; Mantica, P. F.; Morrissey, D. J.; Ringle, R.; Rodriguez, J. A.; Ryder, C. A.; Schwarz, S.; Strum, R.; Sumithrarachchi, C.; Tarazona, D.; Zhao, S.

    2014-09-01

    A new data acquisition system including a Field Programmable Gate Array (FPGA) based time-resolved scaler was developed for laser-induced fluorescence and beam bunch coincidence measurements. The FPGA scaler was tested in a collinear laser-spectroscopy experiment on radioactive 37K at the BEam COoler and LAser spectroscopy (BECOLA) facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A 1.29 μs bunch width from the buncher and a bunch repetition rate of 2.5 Hz led to a background suppression factor of 3.1 × 105 in resonant photon detection measurements. The hyperfine structure of 37K and its isotope shift relative to the stable 39K were determined using 5 × 104 s-1 37K ions injected into the BECOLA beam line. The obtained hyperfine coupling constants A(2S1/2) = 120.3(1.4) MHz, A(2P1/2) = 15.2(1.1) MHz, and A(2P3/2) = 1.4(8) MHz, and the isotope shift δν39, 37 = -264(3) MHz are consistent with the previously determined values, where available.

  8. External Beam Therapy (EBT)

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z External Beam Therapy (EBT) External beam therapy (EBT) is a ... follow-up should I expect? What is external beam therapy and how is it used? External beam ...

  9. Beam quality measure for vector beams.

    Science.gov (United States)

    Ndagano, Bienvenu; Sroor, Hend; McLaren, Melanie; Rosales-Guzmán, Carmelo; Forbes, Andrew

    2016-08-01

    Vector beams have found a myriad of applications, from laser materials processing to microscopy, and are now easily produced in the laboratory. They are usually differentiated from scalar beams by qualitative measures, for example, visual inspection of beam profiles after a rotating polarizer. Here we introduce a quantitative beam quality measure for vector beams and demonstrate it on cylindrical vector vortex beams. We show how a single measure can be defined for the vector quality, from 0 (purely scalar) to 1 (purely vector). Our measure is derived from a quantum toolkit, which we show applies to classical vector beams. PMID:27472580

  10. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  11. Beam propagation

    International Nuclear Information System (INIS)

    The main part of this thesis consists of 15 published papers, in which the numerical Beam Propagating Method (BPM) is investigated, verified and used in a number of applications. In the introduction a derivation of the nonlinear Schroedinger equation is presented to connect the beginning of the soliton papers with Maxwell's equations including a nonlinear polarization. This thesis focuses on the wide use of the BPM for numerical simulations of propagating light and particle beams through different types of structures such as waveguides, fibers, tapers, Y-junctions, laser arrays and crystalline solids. We verify the BPM in the above listed problems against other numerical methods for example the Finite-element Method, perturbation methods and Runge-Kutta integration. Further, the BPM is shown to be a simple and effective way to numerically set up the Green's function in matrix form for periodic structures. The Green's function matrix can then be diagonalized with matrix methods yielding the eigensolutions of the structure. The BPM inherent transverse periodicity can be untied, if desired, by for example including an absorptive refractive index at the computational window edges. The interaction of two first-order soliton pulses is strongly dependent on the phase relationship between the individual solitons. When optical phase shift keying is used in coherent one-carrier wavelength communication, the fiber attenuation will suppress or delay the nonlinear instability. (orig.)

  12. Beam-beam effects in the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; Alexahin, Y.; Lebedev, V.; Lebrun, P.; Moore, R.S.; Sen, T.; Tollestrup, A.; Valishev, A.; Zhang, X.L.; /Fermilab

    2005-01-01

    The Tevatron in Collider Run II (2001-present) is operating with 6 times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams have been significant sources of beam loss and lifetime limitations. We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in operations, predict the performance for planned luminosity upgrades, and discuss ways to improve it.

  13. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  14. Beam imaging sensor

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  15. A symplectic coherent beam-beam model

    International Nuclear Information System (INIS)

    We consider a simple one-dimensional model to study the effects of the beam-beam force on the coherent dynamics of colliding beams. The key ingredient is a linearized beam-beam kick. We study only the quadrupole modes, with the dynamical variables being the 2nd-order moments of the canonical variables q, p. Our model is self-consistent in the sense that no higher order moments are generated by the linearized beam-beam kicks, and that the only source of violation of symplecticity is the radiation. We discuss the round beam case only, in which vertical and horizontal quantities are assumed to be equal (though they may be different in the two beams). Depending on the values of the tune and beam intensity, we observe steady states in which otherwise identical bunches have sizes that are equal, or unequal, or periodic, or behave chaotically from turn to turn. Possible implications of luminosity saturation with increasing beam intensity are discussed. Finally, we present some preliminary applications to an asymmetric collider. 8 refs., 8 figs

  16. Literature in Focus Beta Beams: Neutrino Beams

    CERN Multimedia

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  17. Telecommunication using muon beams

    Science.gov (United States)

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  18. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  19. Parabolic scaling beams.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2014-06-15

    We generalize the concept of diffraction free beams to parabolic scaling beams (PSBs), whose normalized intensity scales parabolically during propagation. These beams are nondiffracting in the circular parabolic coordinate systems, and all the diffraction free beams of Durnin's type have counterparts as PSBs. Parabolic scaling Bessel beams with Gaussian apodization are investigated in detail, their nonparaxial extrapolations are derived, and experimental results agree well with theoretical predictions.

  20. Ion beam diagnosis

    International Nuclear Information System (INIS)

    This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)

  1. Beam induced heating

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Baudrenghien, P; Bracco, C; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Esteban Mueller, J; Gentini, L; Goddar, B; Grudiev, A; Henrist, B; Jones, R; Lanza, G; Lari, L; Mastoridis, T; Métral, E; Mounet, N; Nougaret, J L; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Sapinski, M; Shaposhinkova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wollmann, D

    2012-01-01

    In 2011, the rapid increase of the luminosity performance of LHC came at the expense of increased temperature and pressure readings on several near-beam LHC equipments. In some cases, this beam induced heating was suspected to cause beam dumps and even degradation of the equipment. This contribution aims at gathering the observations of beam induced heating due to beam coupling impedance, their current level of understanding and possible actions that could be implemented during the winter stop 2011-2012.

  2. Direct injection of intense heavy ion beams from a high performance ECR ion source into an RFQ

    International Nuclear Information System (INIS)

    Beam intensities achievable from high performance ECR sources for highly charged ions are limited by the high space charge. For high performance ECR sources, the stray magnetic field of the source can provide focusing against the space charge blow-up of the beam when used with the Direct Plasma Injection Scheme (DPIS) developed for laser ion sources. A combined extraction/matching system has been designed for direct injection into a radio frequency quadrupole (RFQ) accelerator, allowing a total beam current of 12 mA for the production of highly charged 238U40 +(0.49 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ionsource extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of the ion beam. The RFQ has been designed to suppress most of the charge states extracted from the ECR, acting as a filter for the desired 238U40+. This reduces the transport problem for the beam line as well as reduces the emittance for the transmitted charge states. Such an rfq-channel might be very effective and less q/m sensitive for the extraction system of all high performing ECR ion sources. This technique has promising applications for injecting and transporting very intense beams into RFQ accelerators for research, ADSS and more efficient, compact neutron generators. The accelerator driven sub-critical system (ADSS) being developed at various laboratories around the world to create nuclear energy may also benefit from this technique, both in terms of transporting intense beams of protons and making the low energy segment more compact. This RFQ is essentially a buncher configured as a charge filter, so RIB facilities can take advantage of this technique. The charge breeding concept can be utilised with a powerful ECR ion source directly coupled to this

  3. Pyramid beam splitter

    Science.gov (United States)

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  4. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  5. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  6. Beam-beam issues in asymmetric colliders

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e{sup +}- e{sup -} colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II).

  7. Laser-Beam Separator

    Science.gov (United States)

    Mcdermid, I. S.

    1984-01-01

    Train of prisms and optical stop separate fundamental beam of laser from second and higher order harmonics of beam produced in certain crystals and by stimulated Raman scattering in gases and liquids.

  8. Beam Loss in Linacs

    CERN Document Server

    Plum, M A

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  9. Space charge dominated beams

    International Nuclear Information System (INIS)

    After an introductory section on the relationship between emittance and beam Coulomb energy we discuss the properties of space charge dominated beams in progressive steps: from uniformly charged bunched beams to non-uniformly charged beams to correlation effects between particles (simulation beams or 'crystalline' beams). A practical application can be found in the beam dynamics of a high-current injector. The concept of correlation energy is of practical interest in computer simulation of high-brilliance beams, where one deals with an artificially enhanced two-particle Coulomb energy, if many real particles are combined into one simulation super-particle. This can be a source of non-physical emittance growth. (orig./HSI)

  10. High energy beam lines

    Science.gov (United States)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  11. Proton beam writing

    OpenAIRE

    Frank Watt; Breese, Mark B H; Bettiol, Andrew A; Jeroen A. van Kan

    2007-01-01

    Proton beam (p-beam) writing is a new direct-writing process that uses a focused beam of MeV protons to pattern resist material at nanodimensions. The process, although similar in many ways to direct writing using electrons, nevertheless offers some interesting and unique advantages. Protons, being more massive, have deeper penetration in materials while maintaining a straight path, enabling p-beam writing to fabricate three-dimensional, high aspect ratio structures with vertical, smooth side...

  12. Welding by laser beam

    International Nuclear Information System (INIS)

    A laser which does not require a vacuum and the beam from which can be projected over a distance without loss of power is sited outside a welding zone and the beam projected through a replaceable laser transparent window. The window is designed and shaped to facilitate access of the beam of workpiece items to be welded in containment. Either the workpiece or the laser beam may be moved during welding. (author)

  13. Slow kaon beams

    International Nuclear Information System (INIS)

    A short description is given of considerations for the design of low-momentum kaon beam lines. Relevant data for the performance of seven existing and decommissioned slow kaon beams are presented. For single-stage separated beams the observed ratio all/K- is greater than 50 for momenta less than 500 MeV/c. We recommend a two-stage separated beam with perhaps an upstream cleanup section for maximal purity

  14. Beam Dynamics for ARIA

    CERN Document Server

    Ekdahl, Carl

    2015-01-01

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  15. PARTICLE BEAM TRACKING CIRCUIT

    Science.gov (United States)

    Anderson, O.A.

    1959-05-01

    >A particle-beam tracking and correcting circuit is described. Beam induction electrodes are placed on either side of the beam, and potentials induced by the beam are compared in a voltage comparator or discriminator. This comparison produces an error signal which modifies the fm curve at the voltage applied to the drift tube, thereby returning the orbit to the preferred position. The arrangement serves also to synchronize accelerating frequency and magnetic field growth. (T.R.H.)

  16. Electron beam focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  17. Beam Dynamics for ARIA

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  18. Beams 92: Proceedings

    International Nuclear Information System (INIS)

    This report contains papers on the following topics: Ion beam papers; electron beam, bremsstrahlung, and diagnostics papers; radiating Z- pinch papers; microwave papers; electron laser papers; advanced accelerator papers; beam and pulsed power applications papers; pulsed power papers; and these papers have been indexed separately elsewhere

  19. Accelerating nondiffracting beams

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shaohui; Li, Manman; Yao, Baoli, E-mail: yaobl@opt.ac.cn; Yu, Xianghua; Lei, Ming; Dan, Dan; Yang, Yanlong; Min, Junwei; Peng, Tong

    2015-06-05

    We present a set of beams which combine the properties of accelerating beams and (conventional) diffraction-free beams. These beams can travel along a desired trajectory while keeping an approximately invariant transverse profile, which may be (higher-order) Bessel-, Mathieu- or parabolic-nondiffracting-like beams, depending on the initial complex amplitude distribution. A possible application of these beams presented here may be found in optical trapping field. For example, a higher-order Bessel-like beam, which has a hollow (transverse) pattern, is suitable for guiding low-refractive-index or metal particles along a curve. - Highlights: • A set of beams having arbitrary trajectories of accelerating and nondiffracting behaviors are generalized and presented. • Bessel-like accelerating beams are generalized to the higher-order (hollow) version. • Mathieu-like accelerating beams and parabolic-nondiffracting-like accelerating beams are presented. • A possible application of these beams may be found in optical trapping and guiding of particles.

  20. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  1. Klystron beam bunching

    International Nuclear Information System (INIS)

    A detailed description of electron-beam bunching phenomena in klystrons is presented. Beam harmonic current is defined, both space-charge and ballistic bunching are analyzed, Ramo's theorem is used to describe how a bunched beam drives a cavity, and a general cavity model including external coupling is provided. (author)

  2. Pushing the limits - beam

    CERN Document Server

    Métral, E

    2011-01-01

    Many collective effects were observed in 2010, first when the intensity per bunch was increased and subsequently when the number of bunches was pushed up and the bunch spacing was reduced. After a review of the LHC performance during the 2010 run, with a particular emphasis on impedances and related single-beam coherent instabilities, but mentioning also beam-beam and electron cloud issues, the potential of the LHC for 2011 will be discussed. More specifically, the maximum bunch/beam intensity and the maximum beam brightness the LHC should be able to swallow will be compared to what the injectors can provide.

  3. Cluster ion beam evaporation

    International Nuclear Information System (INIS)

    Cluster ions can be made by the supercooling due to adiabatic expansion of substances to be vaporized which are ejected from a nozzle. This paper is described on the recent progress of studies concerning the cluster beam. The technique of cluster ion beam has been applied for the studies of thermonuclear plasma, the fabrication of thin films, crystal growth and electronic devices. The density of cluster ion beam is larger than that of atomic ion beam, and the formation of thin films can be easily done in high vacuum. This method is also useful for epitaxial growth. Metallic vapour cluster beam was made by the help of jetting rare gas beam. Various beam sources were developed. The characteristics of these sources were measured and analyzed. (Kato, T.)

  4. Determination of the 20 MeV linear accelerator, new injector for the synchrotron Saturne. Choice of the electrical and dynamical particle parameters

    International Nuclear Information System (INIS)

    This report takes place in the general determination of the 20 MeV linear accelerator which will be the new Saturne injector; it deals with particle dynamics. Starting from beam requirements at the output of the linac, cells lengths with variable synchronous phase angle, buncher and de-buncher parameters, beam emittances at the output in several phase spaces are successively determined. (author)

  5. Colliding Crystalline Beams

    International Nuclear Information System (INIS)

    The understanding of crystalline beams has advanced to the point where one can now, with reasonable confidence, undertake an analysis of the luminosity of colliding crystalline beams. Such a study is reported here. It is necessary to observe the criteria, previously stated, for the creation and stability of crystalline beams. This requires, firstly, the proper design of a lattice. Secondly, a crystal must be formed, and this can usually be done at various densities. Thirdly, the crystals in a colliding-beam machine are brought into collision. We study all of these processes using the molecular dynamics (MD) method. The work parallels what was done previously, but the new part is to study the crystal-crystal interaction in collision. We initially study the zero-temperature situation. If the beam-beam force (or equivalent tune shift) is too large then over-lapping crystals can not be created (rather two spatially separated crystals are formed). However, if the beam-beam force is less than but comparable to that of the space-charge forces between the particles, we find that overlapping crystals can be formed and the beam-beam tune shift can be of the order of unity. Operating at low but non-zero temperature can increase the luminosity by several orders of magnitude over that of a usual collider. The construction of an appropriate lattice, and the development of adequately strong coding, although theoretically achievable, is a challenge in practice

  6. Beam-beam effect seen through forced vibration

    International Nuclear Information System (INIS)

    In electron accelerator, tune is measured by giving beam transverse forced vibration caused by RF frequency. It is well known that beam-beam parameter can be measured if beam-beam interaction exists. Generally, small value is chosen as the amplitude of forced vibration, and many researches were done in this case. In this report, we discuss effect of resonance caused by beam-beam interaction in case of amplitude of forced vibration being big. (author)

  7. KEKB beam instrumentation systems

    Science.gov (United States)

    Arinaga, M.; Flanagan, J.; Hiramatsu, S.; Ieiri, T.; Ikeda, H.; Ishii, H.; Kikutani, E.; Mimashi, T.; Mitsuhashi, T.; Mizuno, H.; Mori, K.; Tejima, M.; Tobiyama, M.

    2003-02-01

    For the stable high-luminosity operation and luminosity increase, the electron and positron storage rings of the KEK B-Factory (KEKB) is equipped with various beam instrumentations, which have been working well since the start of the commissioning in December, 1998. Details and performance of the beam-position monitor system based on the spectrum analysis using DSPs, the turn-by-turn BPM with four-dimensional function available for measurements of the individual bunch position, phase and intensity, the parametric beam-DCCTs designed so as to avoid the magnetic-core-selection problems for the parametric flux modulation, the bunch-by-bunch feedback system indispensable to suppress the strong multibunch instabilities in KEKB, the various optical beam diagnostic systems, such as synchrotron radiation interferometers for precise beam-size measurement, the tune meters, the bunch length monitors and the beam-loss monitors are described. Delicate machine tuning of KEKB is strongly supported by these instrumentations.

  8. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove;

    2007-01-01

    The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  9. Proton Beam Energy Characterization

    OpenAIRE

    Marus, Lauren A.; Engle, J.W.; John, K. D.; Birnbaum, E. R.; Nortier, F. M.

    2015-01-01

    Introduction The Los Alamos Isotope Production Facility (IPF) is actively engaged in the development of isotope production technologies that can utilize its 100 MeV proton beam. Characterization of the proton beam energy and current is vital for optimizing isotope production and accurately conducting research at the IPF. Motivation In order to monitor beam intensity during research irradiations, aluminum foils are interspersed in experimental stacks. A theoretical yield of 22Na from...

  10. Hyperon beam physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, P.S.

    1996-03-01

    This report reviews the present status and recent results in hyperon physics concentrating on results from high energy hyperon beam experiments performed at Fermilab over the past several years. The report focuses on hyperon production polarization, precision hyperon magnetic moment measurements and radiative decay studies. Modern charged hyperon beam experiments are characterized by {approx}100m long apparatus and hyperon beams with {gamma}{sub Y}{approx}100 and hyperon fluxes in the 1-100 kHz range.

  11. Chilled beam application guidebook

    CERN Document Server

    Butler, David; Gräslund, Jonas; Hogeling, Jaap; Lund Kristiansen, Erik; Reinikanen, Mika; Svensson, Gunnar

    2007-01-01

    Chilled beam systems are primarily used for cooling and ventilation in spaces, which appreciate good indoor environmental quality and individual space control. Active chilled beams are connected to the ventilation ductwork, high temperature cold water, and when desired, low temperature hot water system. Primary air supply induces room air to be recirculated through the heat exchanger of the chilled beam. In order to cool or heat the room either cold or warm water is cycled through the heat exchanger.

  12. Semiconductor laser beam bending

    OpenAIRE

    YILDIRIM, REMZİ; ÇELEBİ, FATİH VEHBİ

    2015-01-01

    This study is about a single-component cylindrical structured lens with a gradient curve that was used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independently of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single-piece cylindrical lens that can bend laser beams was developed. Lenses are made of transparent, tinted, or colored glass and are used to undermine or absorb the energy of...

  13. Mechanical beam isolator

    International Nuclear Information System (INIS)

    Back-reflections from a target, lenses, etc. can gain energy passing backwards through a laser just like the main beam gains energy passing forwards. Unless something blocks these back-reflections early in their path, they can seriously damage the laser. A Mechanical Beam Isolator is a device that blocks back-reflections early, relatively inexpensively, and without introducing aberrations to the laser beam

  14. Resolving Two Beams in Beam Splitters with a Beam Position Monitor

    Science.gov (United States)

    Kurennoy, Sergey

    2002-04-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters. Monitoring two transversely separated beams in a common beam pipe in the splitter sections imposes certain requirements on beam diagnostics for these sections. We explore a two-beam system in a generic beam monitor and study the feasibility of resolving the transverse positions of the two beams with one diagnostics device. Effects of unequal beam currents and of finite transverse sizes of the beams are explored analytically for both the ultra relativistic case and the long-wavelength limit.

  15. Beam cavity interaction

    CERN Document Server

    Gamp, A

    2011-01-01

    We begin by giving a description of the rf generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, rf feedback, and feed-forward are described. Examples of digital rf phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  16. Beam alignment system

    International Nuclear Information System (INIS)

    A patent is claimed for the invention of a beam alignment system. The aim of the invention is the obtention of an accurate monitoring of the beam position and direction. It is of great interest in the nuclear industry. The invention can be applied in an infrared laser beam for welding operations. An auxiliar radiation source is incorporated to the device. The system's configuration allows a simultaneous and separated utilisation of two beams. The description and the design of the proposed system are provided

  17. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, A

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GUINEAPIG and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam back- ground hitting the vertex detector.

  18. Resolving Two Beams in Beam Splitters with a Beam Position Monitor

    CERN Document Server

    Kurennoy, S S

    2002-01-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters [1]. Monitoring two separated beams in a common beam pipe in the splitter sections imposes certain requirements on diagnostics for these sections. In this note we explore a two-beam system in a generic beam monitor and study the feasibility of resolving the positions of the two beams with a single diagnostic device.

  19. Damping of a vibrating beam

    NARCIS (Netherlands)

    Hietanen, Jarmo; Bomer, Johan; Jonsmann, Jacques; Olthuis, Wouter; Bergveld, Piet; Kaski, Kimmo

    2000-01-01

    This study examines the vibration in a beam with one fixed end. The set-up consisted of a beam with one end clamped and a rigid plate having the same thickness of the beam, located adjacent to the unfixed end of the beam. The gap between the beam and the plate varied from 4 to 128 μm depending on th

  20. Beam distribution reconstruction simulation for electron beam probe

    CERN Document Server

    Feng, Yongchun; Li, Peng; Kang, Xincai; Yin, Yan; Liu, Tong; You, Yaoyao; Chen, Yucong; Zhao, Tiecheng; Xu, Zhiguo; Wang, Yanyu; Yuan, Youjin

    2016-01-01

    Electron beam probe (EBP) is a new principle detector, which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain parallel electron beam is introduced and a simulation code is developed. And then, EBP as a profile monitor for dense beam is simulated using fast scan method under various target beam profile, such as KV distribution, waterbag distribution, parabolic distribution, Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory...

  1. Linearizing Intra-Train Beam-Beam Deflection Feedback

    International Nuclear Information System (INIS)

    Beam-beam deflection feedback acting within the crossing time of a single bunch train may be needed to keep linear collider beams colliding at high luminosity. In a short-pulse machine such as the Next Linear Collider (NLC) this feedback must converge quickly to be useful. The non-linear nature of beam-beam deflection vs. beam-beam offset in these machines precludes obtaining both rapid convergence and a stable steady-state lock to beam offsets with a linear feedback algorithm. We show that a simply realizable programmable non-linear amplifier in the feedback loop can linearize the feedback loop, approximately compensating the beam-beam deflection non-linearity. Performance of a prototype non-linear amplifier is shown. Improvement of convergence and stability of the beam-beam feedback loop is simulated

  2. Beaming teaching application

    DEFF Research Database (Denmark)

    Markovic, Milos; Madsen, Esben; Olesen, Søren Krarup;

    2012-01-01

    BEAMING is a telepresence research project aiming at providing a multimodal interaction between two or more participants located at distant locations. One of the BEAMING applications allows a distant teacher to give a xylophone playing lecture to the students. Therefore, rendering of the xylophon...

  3. Ionization beam scanner

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Inner structure of an ionization beam scanner, a rather intricate piece of apparatus which permits one to measure the density distribution of the proton beam passing through it. On the outside of the tank wall there is the coil for the longitudinal magnetic field, on the inside, one can see the arrangement of electrodes creating a highly homogeneous transverse electric field.

  4. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    The use of glass as a load carrying material in structural elements is rarely seen even though glass is a popular material for many architects. This is owed to the unreliable and low tensile strength, which is due to surface flaws and high brittleness of the material. These properties lead...... to breakage without any warning or ductility, which can be catastrophic if no precautions are taken. One aspect of this issue is treated here by looking at the possibility of mechanically reinforcing glass beams in order to obtain ductile failure for such a structural component. A mechanically reinforced...... laminated float glass beam is constructed and tested in four-point bending. The beam consist of 4 layers of glass laminated together with a slack steel band glued onto the bottom face of the beam. The glass parts of the tested beams are \\SI{1700}{mm} long and \\SI{100}{mm} high, and the total width of one...

  5. Beam director design report

    Energy Technology Data Exchange (ETDEWEB)

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

  6. Beam director design report

    International Nuclear Information System (INIS)

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 300 beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project

  7. Muon Beam at the Fermilab Test Beam Area

    OpenAIRE

    Denisov, Dmitri; Evdokimov, Valery; Lukić, Strahinja; Ujić, Predrag

    2016-01-01

    The intensities and profiles of the muon beam behind the beam dump of the Fermilab test beam area when the facility is running in the "pion" beam mode are measured and summarized in this note. This muon beam with momenta in the range 10 - 50 GeV/c provides an opportunity to perform various measurements in parallel with other users of the test beam area.

  8. Diffraction of a Laser Beam.

    Science.gov (United States)

    Jodoin, Ronald E.

    1979-01-01

    Investigates the effect of the nonuniform irradiance across a laser beam on diffraction of the beam, specifically the Fraunhofer diffraction of a laser beam with a Gaussian irradiance profile as it passes through a circular aperture. (GA)

  9. Electron Beam Lithography

    Science.gov (United States)

    Harriott, Lloyd R.

    1997-04-01

    Electron beams have played a significant role in semiconductor technology for more than twenty years. Early electron beam machines used a raster scanned beam spot to write patterns in electron-sensitive polymer resist materials. The main application of electron beam lithography has been in mask making. Despite the inherently high spatial resolution and wide process margins of electron beam lithography, the writing rate for semiconductor wafers has been too slow to be economically viable on a large scale. In the late 1970's, variable shape electron beam writing was developed, projecting a rectangular beam whose size can be varied for each "shot" exposure of a particular pattern, allowing some integrated circuits to be made economically where a variety of "customized" patterns are desired. In the cell or block projection electron beam exposure technique, a unit cell of a repetitive pattern is projected repeatedly to increase the level of parallelism. This can work well for highly repetitive patterns such as memory chips but is not well suited to complex varying patterns such as microprocessors. The rapid progress in the performance of integrated circuits has been largely driven by progress in optical lithography, through improvements in lens design and fabrication as well as the use of shorter wavelengths for the exposure radiation. Due to limitations from the opacity of lens and mask materials, it is unlikely that conventional optical printing methods can be used at wavelengths below 193 nm or feature sizes much below 180 nm. One candidate technology for a post-optical era is the Scattering with Angular Limitation Projection Electron-beam Lithography (SCALPEL) approach, which combines the high resolution and wide process latitude inherent in electron beam lithography with the throughput of a parallel projection system. A mask consisting of a low atomic number membrane and a high atomic number pattern layer is uniformly illuminated with high energy (100 ke

  10. Beam Imaging and Luminosity Calibration

    CERN Document Server

    Klute, Markus; Salfeld-Nebgen, Jakob

    2016-01-01

    We discuss a method to reconstruct two-dimensional proton bunch densities using vertex distributions accumulated during LHC beam-beam scans. The $x$-$y$ correlations in the beam shapes are studied and an alternative luminosity calibration technique is introduced. We demonstrate the method on simulated beam-beam scans and estimate the uncertainty on the luminosity calibration associated to the beam-shape reconstruction to be below 1\\%.

  11. Simulations of beam-beam and beam-wire interactions in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung J.; Sen, Tanaji; /Fermilab; Abreu, Natalia P.; Fischer, Wolfram; /Brookhaven

    2009-02-01

    The beam-beam interaction is one of the dominant sources of emittance growth and luminosity lifetime deterioration. A current carrying wire has been proposed to compensate long-range beam-beam effects in the LHC and strong localized long-range beam-beam effects are experimentally investigated in the RHIC collider. Tune shift, beam transfer function, and beam loss rate are measured in dedicated experiments. In this paper, they report on simulations to study the effect of beam-wire interactions based on diffusive apertures, beam loss rates, and beam transfer function using a parallelized weak-strong beam simulation code (BBSIMC). The simulation results are compared with measurements performed in RHIC during 2007 and 2008.

  12. Polarized atomic hydrogen beam

    Energy Technology Data Exchange (ETDEWEB)

    Chan, N.; Crowe, D.M.; Lubell, M.S.; Tang, F.C.; Vasilakis, A.; Mulligan, F.J.; Slevin, J.

    1988-12-01

    We describe the design and operating characteristics of a simple polarized atomic hydrogen beam particularly suitable for applications to crossed beams experiments. In addition to experimental measurements, we present the results of detailed computer models, using Monte-Carlo ray tracing techniques, optical analogs, and phase-space methods, that not only provide us with a confirmation of our measurement, but also allow us to characterize the density, polarization, and atomic fraction of the beam at all points along its path. As a subsidiary result, we also present measurements of the relative and absolute efficiencies of the V/G Supavac mass analyzer for masses 1 and 2.

  13. Laser beam quality metrics

    CERN Document Server

    Ross, T Sean

    2013-01-01

    This book is geared toward engineers and laser physicists involved in the development of laser-based systems, especially laser systems for directed energy applications. It begins with a review of basic laser properties and moves to definitions and implications of the various standard beam quality metrics such as [i]M[/i][sup]2[/sup], power in the bucket, brightness, beam parameter product, and Strehl ratio. The practical aspects of beam metrology, which have not been sufficiently addressed in the literature, are amply covered here.

  14. Beam instrumentation performance overview

    CERN Document Server

    Sapinski, M

    2012-01-01

    The 2011 run has proven that LHC can operate safely and stably with higher bunch intensity and smaller transverse emittance than foreseen in the Technical Design Report. In this presentation the performance of the Beam Position Monitoring (BPM) system is discussed. The improvements to the system, those made during the last year and those expected to be done for 2012 run are presented. The status of the three types of devices measuring the transverse beam emittance, wire scanners (BWS), synchrotron radiation monitors (BSRT) and beam gas ionization monitors (BGI), are shown. The control room applications are reviewed and a set of improvements proposed by the operation team is presented.

  15. Electron Beam for LHC

    CERN Document Server

    Krasny, M W

    2005-01-01

    A method of delivering a monochromatic electron beam to the LHC interaction points is proposed. In this method, heavy ions are used as carriers of the projectile electrons. Acceleration, storage and collision-stability aspects of such a hybrid beam is discussed and a new beam-cooling method is presented. This discussion is followed by a proposal of the Parasitic Ion-Electron collider at LHC (PIE@LHC). The PIE@LHC provides an opportunity, for the present LHC detectors, to enlarge the scope of their research program by including the program of electron-proton and electron-nucleuscollisions with minor machine and detector investments.

  16. LEDA BEAM DIAGNOSTICS INSTRUMENTATION: BEAM POSITION MONITORS

    International Nuclear Information System (INIS)

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7-MeV and current of 100-mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS32OC40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system

  17. Bunched beam stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jie

    1992-09-01

    The scaling laws for bunched-beam stochastic cooling has been derived in terms of the optimum cooling rate and the mixing condition. In the case that particles occupy the entire sinusoidal rf bucket, the optimum cooling rate of the bunched beam is shown to be similar to that predicted from the coasting-beam theory using a beam of the same average density and mixing factor. However, in the case that particles occupy only the center of the bucket, the optimum rate decrease in proportion to the ratio of the bunch area to the bucket area. The cooling efficiency can be significantly improved if the synchrotron side-band spectrum is effectively broadened, e.g. by the transverse tune spread or by using a double rf system.

  18. Bunched beam stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jie.

    1992-01-01

    The scaling laws for bunched-beam stochastic cooling has been derived in terms of the optimum cooling rate and the mixing condition. In the case that particles occupy the entire sinusoidal rf bucket, the optimum cooling rate of the bunched beam is shown to be similar to that predicted from the coasting-beam theory using a beam of the same average density and mixing factor. However, in the case that particles occupy only the center of the bucket, the optimum rate decrease in proportion to the ratio of the bunch area to the bucket area. The cooling efficiency can be significantly improved if the synchrotron side-band spectrum is effectively broadened, e.g. by the transverse tune spread or by using a double rf system.

  19. Neutrino beams and experiments

    International Nuclear Information System (INIS)

    After a brief review of the early history of neutrino experiments, the principle of neutrino beams at proton accelerators is described and a survey of neutrino experiments since 1963 is given. ((orig.))

  20. HIRENASD Beam FEM

    Data.gov (United States)

    National Aeronautics and Space Administration — This contains attempts to create BEAM FEM model. I have started a Blog to discuss this... please put your comments there and I will attempt to keep everything...

  1. Pulsed electron beam precharger

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1989-01-01

    This is the fifth in a series of contracts and grants exploring the advanced particulate pollution control technology of electron beam precipitation. The chief goal of the current contract is to develop a laboratory scale electron beam precharger using a pulsed electric field to the proof-of-concept stage. Contract tasks leading to the achievement of this goal are generally divided up into two categories: tasks required to bring the Electron Beam Precipitator (EBP) test system up to an operational level for the contract work, and tasks concerning the actual experimental and analytical phase of the study. Not unexpectedly, the early portion of the contract duration will be devoted to the commissioning of the EBP and its many subsystems, while the latter portion will devote itself to testing the new pulsed electron beam precharger.

  2. Longitudinal beam dynamics

    CERN Document Server

    Tecker, F

    2014-01-01

    The course gives a summary of longitudinal beam dynamics for both linear and circular accelerators. After discussing different types of acceleration methods and synchronism conditions, it focuses on the particle motion in synchrotrons.

  3. LHCb: Beam Pipe portrait

    CERN Multimedia

    LHCb, Collaboration

    2005-01-01

    The proton beams circulate in the accelerator in Ultra High Vacuum to make them interact only with each other when colliding at the interaction point. A special beam pipe "holds" the vacuum where they pass through the LHCb detector: it has to be mechanically very strong to stand the difference in pressure between the vacuum inside it and the air in the cavern but also be as transparent as possible for the particles originating in the proton−proton collisions.

  4. LHCb: Beam Pipe

    CERN Multimedia

    LHCb, Collaboration

    2005-01-01

    The proton beams circulate in the accelerator in Ultra High Vacuum to make them interact only with each other when colliding at the interaction point. A special beam pipe "holds" the vacuum where they pass through the LHCb detector:it has to be mechanically very strong to stand the difference in pressure between the vacuum inside it and the air in the cavern but also be as transparent as possible for the particles originating in the proton−proton collisions.

  5. Neutral beams for mirrors

    International Nuclear Information System (INIS)

    An important demonstration of negative ion technology is proposed for FY92 in the MFTF-α+T, an upgrade of the Mirror Fusion Test Facility at the Lawrence Livermore National Laboratory. This facility calls for 200-keV negative ions to form neutral beams that generate sloshing ions in the reactor end plugs. Three different beam lines are considered for this application. Their advantages and disadvantages are discussed

  6. Transverse Beam Size Effects in Beam Position Monitors

    Science.gov (United States)

    Kurennoy, Sergey

    2001-04-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The corrections to BPM signals due to a finite beam size are found analytically for a few particular transverse distributions of the beam current. The results for fields can also be directly applied for calculating the beam coupling impedances of small discontinuities.

  7. Beam-beam studies for the High-Energy LHC

    CERN Document Server

    Ohmi, K; Zimmermann, F

    2011-01-01

    LHC upgrades are being considered both towards higher luminosity (HL-LHC) and towards higher energy (HE-LHC). In this paper we report initial studies of the beam-beam effects in the HE-LHC [1]. The HE-LHC aims at beam energies of 16.5 TeV, where the transverse emittance decreases due to synchrotron radiation with a 2-hour damping time. As a result of this emittance, shrinkage the beam-beam parameter increases with time, during a physics store. The beam-beam limit in the HE-LHC is explored using computer simulations.

  8. LSST optical beam simulator

    CERN Document Server

    Tyson, J A; Gilmore, K; Bradshaw, A; Claver, C; Klint, M; Muller, G; Poczulp, G; Resseguie, E

    2014-01-01

    We describe a camera beam simulator for the LSST which is capable of illuminating a 60mm field at f/1.2 with realistic astronomical scenes, enabling studies of CCD astrometric and photometric performance. The goal is to fully simulate LSST observing, in order to characterize charge transport and other features in the thick fully depleted CCDs and to probe low level systematics under realistic conditions. The automated system simulates the centrally obscured LSST beam and sky scenes, including the spectral shape of the night sky. The doubly telecentric design uses a nearly unit magnification design consisting of a spherical mirror, three BK7 lenses, and one beam-splitter window. To achieve the relatively large field the beam-splitter window is used twice. The motivation for this LSST beam test facility was driven by the need to fully characterize a new generation of thick fully-depleted CCDs, and assess their suitability for the broad range of science which is planned for LSST. Due to the fast beam illuminatio...

  9. Opal neutron beams shutters

    International Nuclear Information System (INIS)

    Full text: The Opal Reactor has five beam tubes for neutron beams. Of these 5 tubes, two come from a cold neutron source, another two from thermal sources, and a fifth is ready for a future hot neutron source. Neutron guides come from the cold and thermal beam tubes. Neutron beams are enabled/disabled through shutters located inside the reactor pool's radial shield. These shutters were specially designed by INVAP for the OPAL reactor. They comprise fixed and movable shields. The movable part allows neutron beam enabling or disabling. The design of these shutters demanded the construction of prototypes that were further submitted to comprehensive tests to be qualified in light of the strict movement precision and high reliability requirements involved. The shielding material - a plastic and steel mix - was also specifically designed for this facility. The design required great efforts as to shield calculation and energy deposition. A heat removal system was designed to dissipate the energy absorbed by the shields. The cold and thermal beam shutters are built following a single vertical axis design. The hot shutter, due to different requirements, was designed with a horizontal axis

  10. High power beam analysis

    Science.gov (United States)

    Aharon, Oren

    2014-02-01

    In various modern scientific and industrial laser applications, beam-shaping optics manipulates the laser spot size and its intensity distribution. However the designed laser spot frequently deviates from the design goal due to real life imperfections and effects, such as: input laser distortions, optical distortion, heating, overall instabilities, and non-linear effects. Lasers provide the ability to accurately deliver large amounts of energy to a target area with very high accuracy. Thus monitoring beam size power and beam location is of high importance for high quality results and repeatability. Depending on the combination of wavelength, beam size and pulse duration , laser energy is absorbed by the material surface, yielding into processes such as cutting, welding, surface treatment, brazing and many other applications. This article will cover the aspect of laser beam measurements, especially at the focal point where it matters the most. A brief introduction to the material processing interactions will be covered, followed by fundamentals of laser beam propagation, novel measurement techniques, actual measurement and brief conclusions.

  11. WELD FORMATION CONTROL AT ELECTRON BEAM WELDING WITH BEAM OSCILLATIONS

    OpenAIRE

    Trushnikov, Dmitriy; Koleva, Elena; Mladenov, Georgy; Shcherbakov, A.

    2014-01-01

    Electron beam welding is used extensively to produce essential machine parts. The control of the basic beam parameters beam power or beam current at constant accelerating voltage, welding speed, current of focusing lens and distance between electron gun and welded sample surface is not enough to obtain at most of the regimes sound welds. Control of the focus position using analysis of the high frequency component of the current, collected by plasma, at periodic interactions on the beam (the o...

  12. Investigation of the hybrid electron linac with negative group velocity

    Science.gov (United States)

    Savin, E. A.; Alekhanov, R. Yu.; Bulanov, A. V.; Kaminskiy, V. I.; Matsievskiy, S. V.; Sobenin, N. P.

    2016-09-01

    Hybrid accelerator, incorporating travelling wave (TW) and standing wave (SW) structures is proposed and discussed. Accelerator can sum up an RF focusing in the SW buncher and lower losses in the TW accelerating structure walls. Moreover, the structure without dumping load is proposed. Input power and beam loading are chosen to minimize power reflection from buncher maintain travelling wave regime in the accelerating structure while beam loading is on. In this case SW buncher operates as a dumping load, so all input power either goes to beam or dissipates in the wall losses, it increases structure efficiency. RF characteristics and beam dynamics simulations have been performed.

  13. Dual-Cantilever-Beam Accelerometer

    Science.gov (United States)

    Reynolds, Emmitt A.; Speckhart, Frank H.

    1988-01-01

    Sensitivity to velocity changes along beam axis reduced. Weighted-end cantilever beams of accelerometer deflected equally by acceleration in y direction. When acceleration to right as well as up or down, right beam deflected more, while left beam deflected less. Bridge circuit averages outputs of strain gauges measuring deflections, so cross-axis sensitivity of accelerometer reduced. New device simple and inexpensive.

  14. Multi-Beam Optical Tweezers

    DEFF Research Database (Denmark)

    2003-01-01

    A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of electromagnetic beams, at least some of the electromagnetic beams intersecting each other, or, having an individually controlled polarization whereby the position and/or angul...

  15. Holographic memory using beam steering

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Hanan, Jay C. (Inventor); Reyes, George F. (Inventor); Zhou, Hanying (Inventor)

    2007-01-01

    A method, apparatus, and system provide the ability for storing holograms at high speed. A single laser diode emits a collimated laser beam to both write to and read from a photorefractice crystal. One or more liquid crystal beam steering spatial light modulators (BSSLMs) steer a reference beam, split from the collimated laser beam, at high speed to the photorefractive crystal.

  16. 3D terahertz beam profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu;

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  17. Present status of design, installation and testing of electron gun and low energy beam transport line of electron Linac at VECC

    International Nuclear Information System (INIS)

    A key component of ANURIB (Advanced National Facility of Unstable and Rare Isotope Beams) project at VECC is a 2 mA, 30/50 MeV continuous-wave superconducting electron linear accelerator (e-Linac). The e-Linac has two sections - a 10 MeV Injector and an Accelerator section for further accelerating the beam to 30/50 MeV. The Injector comprises a 300 kV de thermionic electron gun with gridded cathode modulated at 650 MHz, low energy beam transport (LEBT) line and an injector cryo-module (ICM) that houses one 9-cell beta=1, 1.3 GHz niobium elliptical cavity. As an alternative to the 300 kV gun, a capture cryo-module (CCM) having two single-cell beta=1, 1.3 GHz niobium cavities that will allow the electron gun to be operated at 100 kV is also being developed. The CCM will pre-accelerate the beam from the gun prior to injection in the ICM. The e-Linac has been jointly designed with TRIUMF Canada. The ICM is being built by TRIUMF whereas the front-end of the injector is being built indigenously at VECC. Till the Rajarhat site for ANURIB is getting ready, an e-Linac test area is being setup at VECC Salt Lake campus. The Injector is being installed here and will be later moved to the new campus. The electron gun and several components of the LEBT line up to the CCM have been installed. Alignment and vacuum tests have also been completed. The LEBT line consists of steering magnets, solenoid magnets, diagnostics chamber and a room temperature 1.3 GHz buncher. Solenoid magnets are under fabrication and steering magnets have been procured. A dipole magnet and rf- deflector cavity for characterization of time structure of the beam has been designed and will be added to the LEBT line. In this report, the detail design of the various components and magnets along with present status of installation of the Injector will be presented. (author)

  18. Beam Trail Tracking at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Nicklaus, Dennis J. [Fermilab; Carmichael, Linden Ralph [Fermilab; Neswold, Richard [Fermilab; Yuan, Zongwei [Fermilab

    2015-01-01

    We present a system for acquiring and sorting data from select devices depending on the destination of each particular beam pulse in the Fermilab accelerator chain. The 15 Hz beam that begins in the Fermilab ion source can be directed to a variety of additional accelerators, beam lines, beam dumps, and experiments. We have implemented a data acquisition system that senses the destination of each pulse and reads the appropriate beam intensity devices so that profiles of the beam can be stored and analysed for each type of beam trail. We envision utilizing this data long term to identify trends in the performance of the accelerators

  19. Review of nondiffracting Bessel beams

    Science.gov (United States)

    Lapointe, Michael R.

    1991-01-01

    The theory of nondiffracting beam propagation and experimental evidence for nearly-nondiffractive Bessel beam propagation are reviewed. The experimental results are reinterpreted using simple optics formulas, which show that the observed propagation distances are characteristic of the optical systems used to generate the beams and do not depend upon the initial beam profiles. A set of simple experiments are described which support this interpretation. It is concluded that nondiffracting Bessel beam propagation has not yet been experimentally demonstrated.

  20. Nonlinear combining of laser beams

    OpenAIRE

    Lushnikov, Pavel M.; Vladimirova, Natalia

    2014-01-01

    We propose to combine multiple laser beams into a single diffraction-limited beam by the beam self-focusing (collapse) in the Kerr medium. The beams with the total power above critical are first combined in the near field and then propagated in the optical fiber/waveguide with the Kerr nonlinearity. Random fluctuations during propagation eventually trigger strong self-focusing event and produce diffraction-limited beam carrying the critical power.

  1. Beam-beam observations in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  2. ICFA Beam Dynamics Newsletter

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al

    2012-07-01

    The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.

  3. A better beam quality

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Progress has been made on two fronts, providing physics data and preparing for higher intensities. Over the Whitsun weekend of May 22 to 24, 5 fills for physics provided almost 30 hours of stable colliding beams, all with bunch intensities around 2x1010 protons and at a β* of 2m. The first three of these fills were with 6 bunches per beam, giving 3 pairs of collisions in all experiments. For the other two fills, the number of bunches per beam was increased to 13, giving 8 pairs of colliding bunches, and for the first time luminosities were pushed above 1029 cm-2s-1, 2 orders of magnitude higher than first collisions in March. In between and after these physics fills, nominal bunches of 1011 protons were successfully ramped and brought into collision in ATLAS and CMS for the first time (not in stable beam conditions and without squeeze). Event rates seen by the experiments were in the expected range for these conditions. In the middle of this work, a short fill with beams of 7 nominal bunches was ...

  4. Paul Collier : Balancing beams

    CERN Multimedia

    2009-01-01

    As former head of AB Operations, Paul Collier and his group were in the ‘cockpit’ for the LHC’s maiden voyage - piloting the first beam around the ring. But now, as Head of the Beams Department, he will need his feet firmly on the ground in order to balance all the beam activities at CERN. "As Department Head, I’ll have less direct contact with the machines," Collier says with a hint of regret. "I’ll still obviously be very involved, but they won’t actually let me loose in front of the keyboard anymore!" As the new Head of the BE Department, Collier will be in charge of nearly 400 people, and will oversee all the beam activities, including the preparations for the longest period of beam operation in the history of CERN. In the new organization, the BE, TE and EN Departments have been grouped together in the Accelerator and Technology Sector. "‘Partnership’ is a key word for the three departments," says Collier. "The n...

  5. Beam Time Accounting

    CERN Document Server

    Seitova, Diana

    2016-01-01

    ISOLDE is one of the leading research facilities in the field of nuclear physics. A proton beam with an energy 1.4 GeV coming from the Proton Synchrotron Booster (PSB) hits one of the targets at ISOLDE and produces Radioactive Ion Beams (RIBs). Then, the RIBs of interest is selected and delivered to the different experimental stations. In order to deliver the beam to the certain experimental station, the positions of the devices along the beamline should satisfy certain conditions. The purpose of this project is to define the conditions for the beam to pass through the different beamlines and to store the data about device’s status for later analysis and statistics, so it would be possible to know when the beam was used for different experiments. The data with the settings of the different devices is saved in the Timber database and the first steps for making virtual devices to compile the status of the beamlines were completed.

  6. Bringing up beams

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Last month, commissioning began on CERN’s newest linear accelerator: Linac4. As the replacement machine for Linac2, Linac4 will take a negative hydrogen ion beam to a staggering 160 MeV. We check in to see how the Linac4 team is preparing its machine for its new role as the first link in the accelerator chain.   The Linac4 3 MeV beam line, with the ion source in the back, the RFQ in the middle and the chopping line in the front. On 14 November, members of the Linac4 collaboration and the CERN Operations Group were brought together for their first “real day” in the Linac4 Control Room. Together, they successfully accelerated their first hydrogen ion beam to 3 MeV. It was an exciting moment for everyone involved and marked the start of one of the most critical commissioning phases for the new accelerator. At the start of the Linac4 beam line sits the CERN-made Radio Frequency Quadrupole (RFQ). This vital piece of machinery takes the beam from 45 keV to 3 MeV in ju...

  7. ATA probe beam experiment

    International Nuclear Information System (INIS)

    The philosophy of these tests is to measure the motion of a low current, small diameter electron beam in the accelerator before running high current. By using low current, we can study particle motion in the applied fields without any extra complications associated with the self-forces of high currents. With the steering magnets off, we have measured the transverse drift of the probe beam. Also, we have used the probe beam to optimize the current in the steering magnets to compensate for the drift. There have been concurrent efforts to locate the source of the error field which is presumed to cause the drift. So far, the source has not been established but the search is continuing

  8. Acoustic Tractor Beam

    Science.gov (United States)

    Démoré, Christine E. M.; Dahl, Patrick M.; Yang, Zhengyi; Glynne-Jones, Peter; Melzer, Andreas; Cochran, Sandy; MacDonald, Michael P.; Spalding, Gabriel C.

    2014-05-01

    Negative radiation forces act opposite to the direction of propagation, or net momentum, of a beam but have previously been challenging to definitively demonstrate. We report an experimental acoustic tractor beam generated by an ultrasonic array operating on macroscopic targets (>1 cm) to demonstrate the negative radiation forces and to map out regimes over which they dominate, which we compare to simulations. The result and the geometrically simple configuration show that the effect is due to nonconservative forces, produced by redirection of a momentum flux from the angled sides of a target and not by conservative forces from a potential energy gradient. Use of a simple acoustic setup provides an easily understood illustration of the negative radiation pressure concept for tractor beams and demonstrates continuous attraction towards the source, against a net momentum flux in the system.

  9. Grazing incidence beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V.K.

    1985-01-01

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.

  10. Beam characteristics of energy-matched flattening filter free beams

    Energy Technology Data Exchange (ETDEWEB)

    Paynter, D.; Weston, S. J.; Cosgrove, V. P. [St James Institute of Oncology The Leeds Teaching Hospitals NHS Trust, Medical Physics, Leeds LS9 7TF (United Kingdom); Evans, J. A. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds (United Kingdom); Thwaites, D. I. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds, United Kingdom and Institute of Medical Physics, School of Physics, University of Sydney (Australia)

    2014-05-15

    Purpose: Flattening filter free (FFF) linear accelerators can increase treatment efficiency and plan quality. There are multiple methods of defining a FFF beam. The Elekta control system supports tuning of the delivered FFF beam energy to enable matching of the percentage depth-dose (PDD) of the flattened beam at 10 cm depth. This is compared to FFF beams where the linac control parameters are identical to those for the flattened beam. All beams were delivered on an Elekta Synergy accelerator with an Agility multi-leaf collimator installed and compared to the standard, flattened beam. The aim of this study is to compare “matched” FFF beams to both “unmatched” FFF beams and flattened beams to determine the benefits of matching beams. Methods: For the three modes of operation 6 MV flattened, 6 MV matched FFF, 6 MV unmatched FFF, 10 MV flattened, 10 MV matched FFF, and 10 MV unmatched FFF beam profiles were obtained using a plotting tank and were measured in steps of 0.1 mm in the penumbral region. Beam penumbra was defined as the distance between the 80% and 20% of the normalized dose when the inflection points of the unflattened and flattened profiles were normalized with the central axis dose of the flattened field set as 100%. PDD data was obtained at field sizes ranging from 3 cm × 3 cm to 40 cm × 40 cm. Radiation protection measurements were additionally performed to determine the head leakage and environmental monitoring through the maze and primary barriers. Results: No significant change is made to the beam penumbra for FFF beams with and without PDD matching, the maximum change in penumbra for a 10 cm × 10 cm field was within the experimental error of the study. The changes in the profile shape with increasing field size are most significant for the matched FFF beam, and both FFF beams showed less profile shape variation with increasing depth when compared to flattened beams, due to consistency in beam energy spectra across the radiation field

  11. Active Beam Spectroscopy

    Science.gov (United States)

    von Hellermann, M. G.; Delabie, E.; Jaspers, R. J. E.; Biel, W.; Marchuk, O.; Summers, H. P.; Whiteford, A.; Giroud, C.; Hawkes, N. C.; Zastrow, K. D.

    2008-03-01

    Charge eXchange Recombination Spectroscopy (CXRS) plays a pivotal role in the diagnostics of hot fusion plasmas and is implemented currently in most of the operating devices. In the present report the main features of CXRS are summarized and supporting software packages encompassing "Spectral Analysis Code CXSFIT", "Charge Exchange Analysis Package CHEAP", and finally "Forward Prediction of Spectral Features" are described. Beam Emission Spectroscopy (BES) is proposed as indispensable cross-calibration tool for absolute local impurity density measurements and also for the continuous monitoring of the neutral beam power deposition profile. Finally, a full exploitation of the `Motional Stark Effect' pattern is proposed to deduce local pitch angles, total magnetic fields and possibly radial electric fields. For the proposed active beam spectroscopy diagnostic on ITER comprehensive performance studies have been carried out. Estimates of expected spectral signal-to-noise ratios are based on atomic modelling of neutral beam stopping and emissivities for CXRS, BES and background continuum radiation as well as extrapolations from present CXRS diagnostic systems on JET, Tore Supra, TEXTOR and ASDEX-UG. Supplementary to thermal features a further promising application of CXRS has been proposed recently for ITER, that is a study of slowing-down alpha particles in the energy range up to 2 MeV making use of the 100 keV/amu DNB (Diagnostic Neutral Beam) and the 500 keV/amu HNB (Heating Neutral Beam). Synthetic Fast Ion Slowing-Down spectra are evaluated in terms of source rates and slowing-down parameters

  12. Optimal beam focusing through turbulence.

    Science.gov (United States)

    Charnotskii, Mikhail

    2015-11-01

    Beam spread and beam wandering are the most perceptible effects of atmospheric turbulence on propagating laser beams. The width of the mean irradiance profile is typically used to characterize the beam spread. This so-called long-term (LT) statistic allows for a relatively simple theoretical description. However, the LT beam size is not a very practical measure of the beam spread because its measurements are sensitive to the movements of the source and detector, and to the large-scale variations of the refractive index that are not associated with turbulence. The short-term (ST) beam spread is measured relative to the instantaneous position of the beam center and is free of these drawbacks, but has not been studied as thoroughly as the LT spread. We present a theoretical model for the ST beam irradiance that is based on the parabolic equation for the beam wave propagation in random media, and the Markov approximation for calculation of the statistics of the optical field, and discuss an approximation that allows introduction of the isoplanatic ST point spread function (PSF). Unlike the LT PSF, the ST PSF depends on the overall beam geometry. This allows optimization of the initial beam field in terms of minimizing the ST beam size at the observation plane. Calculations supporting this conjecture are presented for the simple case of the coherent Gaussian beam, and Kolmogorov turbulence. PMID:26560908

  13. Optimal beam focusing through turbulence.

    Science.gov (United States)

    Charnotskii, Mikhail

    2015-11-01

    Beam spread and beam wandering are the most perceptible effects of atmospheric turbulence on propagating laser beams. The width of the mean irradiance profile is typically used to characterize the beam spread. This so-called long-term (LT) statistic allows for a relatively simple theoretical description. However, the LT beam size is not a very practical measure of the beam spread because its measurements are sensitive to the movements of the source and detector, and to the large-scale variations of the refractive index that are not associated with turbulence. The short-term (ST) beam spread is measured relative to the instantaneous position of the beam center and is free of these drawbacks, but has not been studied as thoroughly as the LT spread. We present a theoretical model for the ST beam irradiance that is based on the parabolic equation for the beam wave propagation in random media, and the Markov approximation for calculation of the statistics of the optical field, and discuss an approximation that allows introduction of the isoplanatic ST point spread function (PSF). Unlike the LT PSF, the ST PSF depends on the overall beam geometry. This allows optimization of the initial beam field in terms of minimizing the ST beam size at the observation plane. Calculations supporting this conjecture are presented for the simple case of the coherent Gaussian beam, and Kolmogorov turbulence.

  14. Euroschool on Exotic Beams

    CERN Document Server

    Pfützner, Marek; The Euroschool on Exotic Beams, vol. IV

    2014-01-01

    This is the forth volume in a series of Lecture Notes based on the highly successful Euro Summer School on Exotic Beams. The aim of these notes is to provide a thorough introduction to radioactive ion-beam physics at the level of graduate students and young postdocs starting out in the field. Each volume covers a range of topics from nuclear theory to experiment and applications. Vol I has been published as LNP 651, Vol II has been published as LNP 700, and Vol. III has been published as LNP 764.

  15. Merged neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Osterwalder, Andreas [Ecole Polytechnique Federale de Lausanne (EPFL), Institute for Chemical Sciences and Engineering, Lausanne (Switzerland)

    2015-12-15

    A detailed description of a merged beam apparatus for the study of low energy molecular scattering is given. This review is intended to guide any scientist who plans to construct a similar experiment, and to provide some inspiration in describing the approach we chose to our goal. In our experiment a supersonic expansion of paramagnetic particles is merged with one of polar molecules. A magnetic and an electric multipole guide are used to bend the two beams onto the same axis. We here describe in detail how the apparatus is designed, characterised, and operated. (orig.)

  16. Molecular beam epitaxy

    CERN Document Server

    Pamplin, Brian R

    1980-01-01

    Molecular Beam Epitaxy introduces the reader to the use of molecular beam epitaxy (MBE) in the generation of III-V and IV-VI compounds and alloys and describes the semiconductor and integrated optics reasons for using the technique. Topics covered include semiconductor superlattices by MBE; design considerations for MBE systems; periodic doping structure in gallium arsenide (GaAs); nonstoichiometry and carrier concentration control in MBE of compound semiconductors; and MBE techniques for IV-VI optoelectronic devices. The use of MBE to fabricate integrated optical devices and to study semicond

  17. Coherent laser beam combining

    CERN Document Server

    Brignon, Arnaud

    2013-01-01

    Recently, the improvement of diode pumping in solid state lasers and the development of double clad fiber lasers have allowed to maintain excellent laser beam quality with single mode fibers. However, the fiber output power if often limited below a power damage threshold. Coherent laser beam combining (CLBC) brings a solution to these limitations by identifying the most efficient architectures and allowing for excellent spectral and spatial quality. This knowledge will become critical for the design of the next generation high-power lasers and is of major interest to many industrial, environme

  18. Tractor beams for optical micromanipulation

    Science.gov (United States)

    Yevick, Aaron; Grier, David G.

    2016-03-01

    Tractor beams are traveling waves that transport illuminated objects in the retrograde direction relative to the direction of propagation. The theory of photokinetic effects identifies design criteria for long-range general- purpose tractor beams. These criteria distinguish first-order tractor beams that couple to induced dipole moments from higher-order tractor beams that rely on coupling to higher-order multipole moments to achieve pulling. First-order tractor beams are inherently longer-ranged and operate on a wider variety of materials. We explore the physics of first-order tractor beams in the context of a family of generalized solenoidal waves.

  19. Effects of Transverse Beam Size in Beam Position Monitors

    CERN Document Server

    Kurennoy, S S

    2001-01-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by a displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those produced by a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  20. Effects of transverse beam size in beam position monitors.

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey)

    2001-01-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  1. EFFECTS OF TRANSFERSE BEAM SIZE IN BEAM POSITIONS MONITORS

    Energy Technology Data Exchange (ETDEWEB)

    S.S. KURENNOY

    2001-06-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  2. Beam Loss and Beam Shape at the LHC Collimators

    CERN Document Server

    Burkart, Florian

    In this master thesis the beam loss and the beam shape at the LHC collimators was measured, analysed, presented and discussed. Beginning with a short introduction of the LHC, the experiments, the supercon- ducting magnet system, the basics on linear beam dynamics and a describtion of the LHC collimation system are given. This is followed by the presentation of the performance of the LHC collimation sys- tem during 2011. A method to convert the Beam Loss Monitor signal in Gy/s to a proton beam loss rate will be introduced. Also the beam lifetime during the proton physics runs in 2011 will be presented and discussed. Finally, the shape of the LHC beams is analysed by using data obtained by scraping the beam at the LHC primary collimators.

  3. High current beam transport with multiple beam arrays

    International Nuclear Information System (INIS)

    Highlights of recent experimental and theoretical research progress on the high current beam transport of single and multiple beams by the Heavy Ion Fusion Accelerator Research (HIFAR) group at the Lawrence Berkeley Laboratory (LBL) are presented. In the single beam transport experiment (SBTE), stability boundaries and the emittance growth of a space charge dominated beam in a long quadrupole transport channel were measured and compared with theory and computer simulations. Also, a multiple beam ion induction linac (MBE-4) is being constructed at LBL which will permit study of multiple beam transport arrays, and acceleration and bunch length compression of individually focused beamlets. Various design considerations of MBE-4 regarding scaling laws, nonlinear effects, misalignments, and transverse and longitudinal space charge effects are summarized. Some aspects of longitudinal beam dynamics including schemes to generate the accelerating voltage waveforms and to amplify beam current are also discussed

  4. Beam transport elements

    CERN Multimedia

    1965-01-01

    Two of the beam transport elements for the slow ejection system. On the left, a quadrupole 1.2 m long with a 5 cm aperture, capable of producing a gradient of 5000 gauss. On the right, a 1 m bending magnet with a 4 cm gap; its field is 20 000 gauss.

  5. Candlestick rubidium beam source

    Science.gov (United States)

    Walkiewicz, M. R.; Fox, P. J.; Scholten, R. E.

    2000-09-01

    We describe a long-lived, bright and intense rubidium atomic beam source based on a previously published recirculating candlestick design for sodium, with several modifications and enhancements. The device operates for thousands of hours without maintenance, with brightness of 1.9×1022 m-2 s-1 sr-1.

  6. LHC Report: Beam on

    CERN Multimedia

    Rossano Giachino for the LHC Team

    2012-01-01

    The powering tests described in the last edition of the Bulletin were successfully finished at the end of the first week of March opening the way for 4 TeV operations this year. The beam was back in the machine on Wednesday 14 March. The first collisions at 4 TeV are scheduled for the first week of April.   The first beam of 2012 is dumped after making a few rounds in the LHC. The magnet powering tests were followed by the machine checkout phase. Here the operations team in collaboration with the equipment groups performs a sequence of tests to ensure the readiness of the LHC for beam. The tests include driving all the LHC systems – beam dump, injection, collimation, RF, power converters, magnet circuits, vacuum, interlocks, controls, timing and synchronization – through the operational cycle. The “checkout phase” is really a massive de-bugging exercise, which is performed with the objective of ensuring the proper functioning of the whole machine and t...

  7. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  8. Charged particle beams

    CERN Document Server

    Humphries, Stanley

    2013-01-01

    Detailed enough for a text and sufficiently comprehensive for a reference, this volume addresses topics vital to understanding high-power accelerators and high-brightness-charged particle beams. Subjects include stochastic cooling, high-brightness injectors, and the free electron laser. Humphries provides students with the critical skills necessary for the problem-solving insights unique to collective physics problems. 1990 edition.

  9. Beam catcher/dump

    International Nuclear Information System (INIS)

    A simple, low cost aperture limiting device with an absorber block has been developed and installed in the AGS ring at Brookhaven National Laboratory. The device intercepts injection tails, transition losses, and the inward spiraling beam of an aborted accelerations or extraction cycle. The resultant consolidation of losses at one point reduces activation of components around the ring and radiation exposure to personnel

  10. Beam dumping at ISABELLE

    International Nuclear Information System (INIS)

    Safely ejecting the approx. 40 MJ stored energy per beam at ISABELLE is clearly a major problem, both for experimental apparatus and for superconducting magnets. Intensive study of this problem is just beginning. A brief review of the current status is presented

  11. Recycled Paper Beam Sculpture

    Science.gov (United States)

    Keller, Kristin; Tabacchi, Jo

    2011-01-01

    As art department budgets across the country continue to shrink, art teachers are increasingly on the lookout for inexpensive materials that can be used to teach a range of concepts. In this article, the authors describe a newspaper beam tower project inspired by the book, "The Wonderful Towers of Watts" by Patricia Zelver. There are many more…

  12. Mode Gaussian beam tracing

    CERN Document Server

    Trofimov, M Yu; Kozitskiy, S B

    2015-01-01

    An adiabatic mode Helmholtz equation for 3D underwater sound propagation is developed. The Gaussian beam tracing in this case is constructed. The test calculations are carried out for the crosswedge benchmark and proved an excellent agreement with the source images method.

  13. Observations of the beam-beam interaction in hadron colliders

    International Nuclear Information System (INIS)

    This paper has three parts. In the first part the basic beam-beam theory will be reviewed. Theoretical issues relevant to e+e- colliders will not be mentioned. In the second part we summarize the operational experiences at FERMILAB and CERN. In the last part of the paper, experiments on long-range beam-beam interactions in the TEVATRON are reviewed. (orig./BBOE)

  14. Depth-controlled Bessel beams

    CERN Document Server

    Müller, Angelina; Wallrabe, Ulrike

    2016-01-01

    We present a ring aperture with independently switchable segments for the three-dimensional control of quasi propagation invariant beams. We demonstrate that our liquid crystal design concept preserves coherence and generates the Bessel beam structure.

  15. Intense electron and ion beams

    CERN Document Server

    Molokovsky, Sergey Ivanovich

    2005-01-01

    Intense Ion and Electron Beams treats intense charged-particle beams used in vacuum tubes, particle beam technology and experimental installations such as free electron lasers and accelerators. It addresses, among other things, the physics and basic theory of intense charged-particle beams; computation and design of charged-particle guns and focusing systems; multiple-beam charged-particle systems; and experimental methods for investigating intense particle beams. The coverage is carefully balanced between the physics of intense charged-particle beams and the design of optical systems for their formation and focusing. It can be recommended to all scientists studying or applying vacuum electronics and charged-particle beam technology, including students, engineers and researchers.

  16. A beam source model for scanned proton beams

    Science.gov (United States)

    Kimstrand, Peter; Traneus, Erik; Ahnesjö, Anders; Grusell, Erik; Glimelius, Bengt; Tilly, Nina

    2007-06-01

    A beam source model, i.e. a model for the initial phase space of the beam, for scanned proton beams has been developed. The beam source model is based on parameterized particle sources with characteristics found by fitting towards measured data per individual beam line. A specific aim for this beam source model is to make it applicable to the majority of the various proton beam systems currently available or under development, with the overall purpose to drive dose calculations in proton beam treatment planning. The proton beam phase space is characterized by an energy spectrum, radial and angular distributions and deflections for the non-modulated elementary pencil beam. The beam propagation through the scanning magnets is modelled by applying experimentally determined focal points for each scanning dimension. The radial and angular distribution parameters are deduced from measured two-dimensional fluence distributions of the elementary beam in air. The energy spectrum is extracted from a depth dose distribution for a fixed broad beam scan pattern measured in water. The impact of a multi-slab range shifter for energy modulation is calculated with an own Monte Carlo code taking multiple scattering, energy loss and straggling, non-elastic and elastic nuclear interactions in the slab assembly into account. Measurements for characterization and verification have been performed with the scanning proton beam system at The Svedberg Laboratory in Uppsala. Both in-air fluence patterns and dose points located in a water phantom were used. For verification, dose-in-water was calculated with the Monte Carlo code GEANT 3.21 instead of using a clinical dose engine with approximations of its own. For a set of four individual pencil beams, both with the full energy and range shifted, 96.5% (99.8%) of the tested dose points satisfied the 1%/1 mm (2%/2 mm) gamma criterion.

  17. Cold and Slow Molecular Beam

    OpenAIRE

    Rasmussen, Julia; Patterson, Dave; Lu, Hsin-I; Wright, Matthew; Doyle, John M.

    2011-01-01

    Employing a two-stage cryogenic buffer gas cell, we produce a cold, hydrodynamically extracted beam of calcium monohydride molecules with a near effusive velocity distribution. Beam dynamics, thermalization and slowing are studied using laser spectroscopy. The key to this hybrid, effusive-like beam source is a “slowing cell” placed immediately after a hydrodynamic, cryogenic source [Patterson et al., J. Chem. Phys., 2007, 126, 154307]. The resulting CaH beams are created in two regimes. In on...

  18. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  19. Resolving two beams in beam splitters with a beam position monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey)

    2002-01-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters. Monitoring two separated beams in a common beam pipe in the splitter sections imposes certain requirements on diagnostics for these sections. In this note we explore a two-beam system in a generic beam monitor and study the feasibility of resolving the positions of the two beams with a single diagnostic device. In the Advanced Hydrotest Facility (AHF), 20-ns beam pulses (bunches) are extracted from the 50-GeV main proton synchrotron and then are transported to the target by an elaborated transport system. The beam transport system splits the beam bunches into equal parts in its splitting sections so that up to 12 synchronous beam pulses can be delivered to the target for the multi-axis proton radiography. Information about the transverse positions of the beams in the splitters, and possibly the bunch longitudinal profile, should be delivered by some diagnostic devices. Possible candidates are the circular wall current monitors in the circular pipes connecting the splitter elements, or the conventional stripline BPMs. In any case, we need some estimates on how well the transverse positions of the two beams can be resolved by these monitors.

  20. Cherenkov light-based beam profiling for ultrarelativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Adli, E., E-mail: Erik.Adli@fys.uio.no [Department of Physics, University of Oslo, N-0316 Oslo (Norway); SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Gessner, S.J.; Corde, S.; Hogan, M.J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Bjerke, H.H. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2015-05-21

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. The profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. We report on the measured performance of this profile monitor.

  1. Luminosity dilution due to random offset beam-beam interaction

    International Nuclear Information System (INIS)

    We consider beam-beam interaction in a collider in the case when the beams randomly displace around the equilibrium orbit at the interaction point. Due to the random part of the interaction, particles diffuse over the betatron amplitude causing an emittance growth of the beam. A Fokker-Planck equation is derived in which a diffusion coefficient is related with the spectral density of the noise. Estimations for the Superconducting Super Collider parameters give a tolerable level of the high-frequency beam offset at the interaction point. 2 refs

  2. North American radioactive beam initiatives

    International Nuclear Information System (INIS)

    After a brief review of existing radioactive beam facilities in North America, two new initiative (the Oak Ridge Radioactive Ion Beam Facility and the IsoSpin Laboratory) are described in some detail. An evaluation of which nuclei these facilities will be able to study, that cannot be studied with stable targets and beams, also is presented

  3. Nuclear physics with radioactive beams

    International Nuclear Information System (INIS)

    Radioactive beam production through two different mechanisms: acceleration of radioactive nuclei, and production of secondary beams from projectile fragmentation is overviewed. Some topics of the applications of radioactive beams in nuclear physics, such as identification and study of exotic nuclei, neutron halos, nuclear astrophysics and medical applications are discussed. (K.A.). 24 refs., 8 figs

  4. Isotropic beam bouquets for shaped beam linear accelerator radiosurgery

    Science.gov (United States)

    Wagner, Thomas H.; Meeks, Sanford L.; Bova, Frank J.; Friedman, William A.; Buatti, John M.; Bouchet, Lionel G.

    2001-10-01

    In stereotactic radiosurgery and radiotherapy treatment planning, the steepest dose gradient is obtained by using beam arrangements with maximal beam separation. We propose a treatment plan optimization method that optimizes beam directions from the starting point of a set of isotropically convergent beams, as suggested by Webb. The optimization process then individually steers each beam to the best position, based on beam's-eye-view (BEV) critical structure overlaps with the target projection and the target's projected cross sectional area at each beam position. This final optimized beam arrangement maintains a large angular separation between adjacent beams while conformally avoiding critical structures. As shown by a radiosurgery plan, this optimization method improves the critical structure sparing properties of an unoptimized isotropic beam bouquet, while maintaining the same degree of dose conformity and dose gradient. This method provides a simple means of designing static beam radiosurgery plans with conformality indices that are within established guidelines for radiosurgery planning, and with dose gradients that approach those achieved in conventional radiosurgery planning.

  5. Beam-beam simulation code BBSIM for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung J.; Sen, Tanaji; /Fermilab

    2011-01-01

    A highly efficient, fully parallelized, six-dimensional tracking model for simulating interactions of colliding hadron beams in high energy ring colliders and simulating schemes for mitigating their effects is described. The model uses the weak-strong approximation for calculating the head-on interactions when the test beam has lower intensity than the other beam, a look-up table for the efficient calculation of long-range beam-beam forces, and a self-consistent Poisson solver when both beams have comparable intensities. A performance test of the model in a parallel environment is presented. The code is used to calculate beam emittance and beam loss in the Tevatron at Fermilab and compared with measurements. They also present results from the studies of stwo schemes proposed to compensate the beam-beam interactions: (a) the compensation of long-range interactions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven and the Large Hadron Collider (LHC) at CERN with a current carrying wire, (b) the use of a low energy electron beam to compensate the head-on interactions in RHIC.

  6. Definition of Beam Diameter for Electron Beam Welding

    International Nuclear Information System (INIS)

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the 'beam diameter'. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  7. Definition of Beam Diameter for Electron Beam Welding

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pierce, Stanley W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dvornak, Matthew John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  8. From Electron Beams to Photon Beams

    International Nuclear Information System (INIS)

    n this article I try to report at the best the events and the emotions I experienced, together with my colleagues, when I was a young researcher working at the Frascati Center of CNEN. In the middle of 70’s the high energy physics activities carried out in Frascati were transferred from CNEN to INFN (Istituto Nazionale Fisica Nucleare) and the personnel had the chance to chose to continue to work at the CNEN (obviously in a different research field) or to continue to work in high energy physics, but at the INFN. I decided to remain at the CNEN and, consequently, I had to change my research activity. I moved from the high energy accelerators research field to the lasers research field in which, at that time at the CNEN, a new interesting project on “uranium laser isotope separation” was just starting. This article is focused on the theoretical and experimental development activity, carried out in the years 70’s-80’s at the CNEN Frascati Center, on a quite particular kind of laser to be utilized in that project. In this laser the active medium is not made of atoms or molecules but is a beam of free electrons running along a spatially periodic magnetic structure: this laser is the “Free Electron Laser”

  9. LEDA beam diagnostics instrumentation: Beam current measurement

    International Nuclear Information System (INIS)

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7 MeV and current of 100 mA operating in either a pulsed or cw mode. Two types of current measurements are used. The first is an AC or pulsed-current measurement which uses three LANL built toroids. They are placed in the beamline in such a way as to measure important transmission parameters and act as a differential current-loss machine protection system. The second system is a DC current measurement used to measure cw beam characteristics and uses toroids from Bergoz Inc. There are two of these systems, so they can also be used for transmission measurements. The AC system uses custom processing electronics whereas the DC system uses a modified Bergoz registered electronics system. Both systems feature data acquisition via a series of custom TMS320C40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of these systems, the calibration technique, the differential current loss measurements and fast-protection processing, current droop characteristics for the AC system, and existing system noise levels. This paper will also cover the DSP system operations and their interaction with the main accelerator control system

  10. Square shaped flat-top beam in refractive beam shapers

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2015-08-01

    Lossless transformation of round Gaussian to square shaped flat-top collimated beam is important in building highpower solid state laser systems to improve optical pumping or amplification. There are industrial micromachining applications like scribing, display repair, which performance is improved when a square shaped spot with uniform intensity is created. Proved beam shaping solutions to these techniques are refractive field mapping beam shapers having some important features: flatness of output phase front, small output divergence, high transmittance, extended depth of field, operation with TEM00 and multimode lasers. Usual approach to design refractive beam shapers implies that input and output beams have round cross-section, therefore the only way to create a square shaped output beam is using a square mask, which leads to essential losses. When an input laser beam is linearly polarized it is suggested to generate square shaped flat-top output by applying beam shaper lenses from birefringent materials or by using additional birefringent components. Due to birefringence there is introduced phase retardation in beam parts and is realized a square shaped interference pattern at the beam shaper output. Realization of this approach requires small phase retardation, therefore weak birefringence effect is enough and birefringent optical components, operating in convergent or divergent beams, can be made from refractive materials, which crystal optical axis is parallel to optical axis of entire beam shaper optical system. There will be considered design features of beam shapers creating square shaped flat-top beams. Examples of real implementations and experimental results will be presented as well.

  11. Laser beam steering device

    Science.gov (United States)

    Motamedi, M. E.; Andrews, A. P.; Gunning, W. J.

    1993-01-01

    Agile beam steering is a critical requirement for airborne and space based LIDAR and optical communication systems. Design and test results are presented for a compact beam steering device with low inertia which functions by dithering two complementary (positive and negative) binary optic microlens arrays relative to each other in directions orthogonal to the direction of light propagation. The miniaturized system has been demonstrated at scan frequencies as high as 300 Hz, generating a 13 x 13 spot array with a total field of view of 2.4 degrees. The design is readily extendable to a 9.5 degree field of view and a 52 x 52 scan pattern. The system is compact - less than 2 in. on a side. Further size reductions are anticipated.

  12. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    Vishnu M Bannur

    2001-10-01

    We derive relativistic fluid set of equations for neutrinos and electrons from relativistic Vlasov equations with Fermi weak interaction force. Using these fluid equations, we obtain a dispersion relation describing neutrino beam plasma instability, which is little different from normal dispersion relation of streaming instability. It contains new, nonelectromagnetic, neutrino-plasma (or electroweak) stable and unstable modes also. The growth of the instability is weak for the highly relativistic neutrino flux, but becomes stronger for weakly relativistic neutrino flux in the case of parameters appropriate to the early universe and supernova explosions. However, this mode is dominant only for the beam velocity greater than 0.25 and in the other limit electroweak unstable mode takes over.

  13. Silicon microfabricated beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A., E-mail: aliman@ppinang.uitm.edu.my; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A. [Faculty of Electrical Engineering, Universiti Teknologi MARA Malaysia, 40450, Shah Alam, Selangor (Malaysia); Ain, M. F. [School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300,Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  14. Slow light beam splitter.

    Science.gov (United States)

    Xiao, Yanhong; Klein, Mason; Hohensee, Michael; Jiang, Liang; Phillips, David F; Lukin, Mikhail D; Walsworth, Ronald L

    2008-07-25

    We demonstrate a slow light beam splitter using rapid coherence transport in a wall-coated atomic vapor cell. We show that particles undergoing random and undirected classical motion can mediate coherent interactions between two or more optical modes. Coherence, written into atoms via electromagnetically induced transparency using an input optical signal at one transverse position, spreads out via ballistic atomic motion, is preserved by an antirelaxation wall coating, and is then retrieved in outgoing slow light signals in both the input channel and a spatially-separated second channel. The splitting ratio between the two output channels can be tuned by adjusting the laser power. The slow light beam splitter may improve quantum repeater performance and be useful as an all-optical dynamically reconfigurable router.

  15. Laser beam methane detector

    Science.gov (United States)

    Hinkley, E. D., Jr.

    1981-01-01

    Instrument uses infrared absorption to determine methane concentration in liquid natural gas vapor. Two sensors measure intensity of 3.39 mm laser beam after it passes through gas; absorption is proportional to concentration of methane. Instrument is used in modeling spread of LNG clouds and as leak detector on LNG carriers and installations. Unit includes wheels for mobility and is both vertically and horizontally operable.

  16. Proton beam therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  17. Proton beam therapy

    OpenAIRE

    Levin, W P; Kooy, H; Loeffler, J S; T. F. DeLaney

    2005-01-01

    Conventional radiation therapy directs photons (X-rays) and electrons at tumours with the intent of eradicating the neoplastic tissue while preserving adjacent normal tissue. Radiation-induced damage to healthy tissue and second malignancies are always a concern, however, when administering radiation. Proton beam radiotherapy, one form of charged particle therapy, allows for excellent dose distributions, with the added benefit of no exit dose. These characteristics make this form of radiother...

  18. Beam-Material Interaction

    CERN Document Server

    Mokhov, N V

    2016-01-01

    Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high- intensity energetic particle beam interactions with accelerator, generic target , and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and envir onment in challenging current and future application

  19. Mode Gaussian beam tracing

    Science.gov (United States)

    Trofimov, M. Yu.; Zakharenko, A. D.; Kozitskiy, S. B.

    2016-10-01

    A mode parabolic equation in the ray centered coordinates for 3D underwater sound propagation is developed. The Gaussian beam tracing in this case is constructed. The test calculations are carried out for the ASA wedge benchmark and proved an excellent agreement with the source images method in the case of cross-slope propagation. But in the cases of wave propagation at some angles to the cross-slope direction an account of mode interaction becomes necessary.

  20. Beam-Material Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, N. V. [Fermilab; Cerutti, F. [CERN

    2016-01-01

    Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high-intensity energetic particle beam interactions with accelerator, generic target, and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and environment in challenging current and future applications.

  1. Electron beams in radiation therapy

    International Nuclear Information System (INIS)

    Clinical electron beams in interaction with beam flattening and collimating devices are studied, in order to obtain the means for adequate electron therapy. A treatment planning method for arbitrary field shapes is developed that takes the properties of the collimated electron beams into account. An electron multiple-scattering model is extended to incorporate a model for the loss of electrons with depth, in order to improve electron beam dose planning. A study of ionisation measurements in two different phantom materials yields correction factors for electron beam dosimetry. (Auth.)

  2. Targets and Secondary Beam Extraction

    Science.gov (United States)

    Noah, Etam

    2014-02-01

    Several applications make use of secondary beams of particles generated by the interaction of a primary beam of particles with a target. Spallation neutrons, bremsstrahlung photon-produced neutrons, radioactive ions and neutrinos are available to users at state-of-the-art facilities worldwide. Plans for even higher secondary beam intensities place severe constraints on the design of targets. This article reports on the main targetry challenges and highlights a variety of solutions for targetry and secondary beam extraction. Issues related to target station layout, instrumentation at the beam-target interface, safety and radioprotection are also discussed.

  3. Hyperon Beam Experiment

    CERN Multimedia

    2002-01-01

    The experiment WA89 uses the upgraded Omega facility together with a hyperon beam installed at the end of the H1 beamline. The beam can deliver 2~10$ ^{5} \\% Sigma ^- $ per machine burst at 330 GeV/c with a background of 5 10$ ^{5} \\% \\pi ^- $. \\\\ \\\\ The goals of the experiment are: observation of charmed particles, mainly the charmed-strange baryons and measurements of their production in the kinematical range x$ _{F} $~$>$~0.2, and their decay properties, a search for exotic states such as U(3100) observed in the previous CERN hyperon beam experiment WA62, measurements of hyperon polarization and production properties. \\\\ \\\\ A vertex detector consisting of 24 silicon microstrip planes with 25~$\\mu$m pitch and 6~planes with 50~$\\mu$m pitch provides track measurements of sufficient accuracy to identify the decays of short living charmed particles and measure their lifetimes. A RICH detector provides good $\\pi$/K separation for momenta up to 100~GeV/c and $\\pi$/p separation up to 150~GeV/c. Photons are detecte...

  4. Beam screen issues

    CERN Document Server

    Métral, E

    2011-01-01

    In the High Energy LHC (HE-LHC), a beam energy of about 16.5 TeV is currently contemplated. The beam screen issues linked to the use of 20 T dipole magnets instead of 8.33 T are discussed, with a particular emphasis on two mechanisms, the magneto-resistance and the anomalous skin effect, assuming the nominal machine and beam parameters. The magneto-resistance effect always leads to an increase of the material resistivity (as the mean free path in the presence of a transverse magnetic field becomes smaller). As concerns the anomalous skin effect, the anomalous increase of surface resistance of metals at low temperatures and high frequencies is attributed to the long mean free path of the conduction electrons: when the skin depth becomes much smaller than the mean free path, only a fraction of the conduction electrons moving almost parallel to the metal surface is effective in carrying the current and the classical theory breaks down.

  5. Neutron beam applications

    International Nuclear Information System (INIS)

    For the materials science by neutron technique, the development of the various complementary neutron beam facilities at horizontal beam port of HANARO and the techniques for measurement and analysis has been performed. High resolution powder diffractometer, after the installation and performance test, has been opened and used actively for crystal structure analysis, magnetic structure analysis, phase transition study, etc., since January 1998. The main components for four circle diffractometer were developed and, after performance test, it has been opened for crystal structure analysis and texture measurement since the end of 1999. For the small angle neutron spectrometer, the main component development and test, beam characterization, and the preliminary experiment for the structure study of polymer have been carried out. Neutron radiography facility, after the precise performance test, has been used for the non-destructive test of industrial component. Addition to the development of main instruments, for the effective utilization of those facilities, the scattering techniques relating to quantitative phase analysis, magnetic structure analysis, texture measurement, residual stress measurement, polymer study, etc, were developed. For the neutron radiography, photographing and printing technique on direct and indirect method was stabilized and the development for the real time image processing technique by neutron TV was carried out. The sample environment facilities for low and high temperature, magnetic field were also developed

  6. Operational beams for the LHC

    CERN Document Server

    Papaphilippou, Y; Rumolo, G; Manglunki, D

    2014-01-01

    The variety of beams, needed to set-up in the injectors as requested in the LHC, are reviewed, in terms of priority but also performance expectations and reach during 2015. This includes the single bunch beams for machine commissioning and measurements (probe, Indiv) but also the standard physics beams with 50 ns and 25 ns bunch spacing and their high brightness variants using the Bunch Compression Merging and Splitting (BCMS) scheme. The required parameters and target performance of special beams like the doublet for electron cloud enhancement and the more exotic 8b$\\oplus$4e beam, compatible with some post-scrubbing scenarios are also described. The progress and plans for the LHC ion production beams during 2014-2015 are detailed. Highlights on the current progress of the setting up of the various beams are finally presented with special emphasis on potential performance issues across the proton and ion injector chain.

  7. CLIC Drive Beam Phase Stabilisation

    CERN Document Server

    Gerbershagen, Alexander; Schulte, Daniel

    The thesis presents phase stability studies for the Compact Linear Collider (CLIC) and focuses in particular on CLIC Drive Beam longitudinal phase stabilisation. This topic constitutes one of the main feasibility challenges for CLIC construction and is an essential component of the current CLIC stabilisation campaign. The studies are divided into two large interrelated sections: the simulation studies for the CLIC Drive Beam stability, and measurements, data analysis and simulations of the CLIC Test Facility (CTF3) Drive Beam phase errors. A dedicated software tool has been developed for a step-by-step analysis of the error propagation through the CLIC Drive Beam. It uses realistic RF potential and beam loading amplitude functions for the Drive and Main Beam accelerating structures, complete models of the recombination scheme and compressor chicane as well as of further CLIC Drive Beam modules. The tool has been tested extensively and its functionality has been verified. The phase error propagation at CLIC h...

  8. Relativistic electron beams above thunderclouds

    Directory of Open Access Journals (Sweden)

    M. Füllekrug

    2011-05-01

    Full Text Available Non-luminous relativistic electron beams above thunderclouds are detected by radio remote sensing with low frequency radio signals from 40–400 kHz. The electron beams occur 2–9 ms after positive cloud-to-ground lightning discharges at heights between 22–72 km above thunderclouds. The positive lightning discharges also cause sprites which occur either above or before the electron beam. One electron beam was detected without any luminous sprite occurrence which suggests that electron beams may also occur independently. Numerical simulations show that the beamed electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of 7 MeV to transport a total charge of 10 mC upwards. The impulsive current associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.

  9. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.;

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  10. Premature beam dumps in 2011

    CERN Document Server

    Albert, Markus

    2012-01-01

    The statistical analysis of all non-programmed beam dumps during the 2011 proton run is presented. The selection criteria of fills that got considered were that the beam intensity of each of the two beams exceeded at least 1e12 particles per beam in order to exclude all probe beam dumps and most of the MPS test dumps. A distribution of beam dump causes by system is shown, as well as the time it took to re-establish injection after a non-programmed dump for fills which made it into STABLE BEAMS. This was done in an attempt to evaluate the cost of those non-programmed dumps in terms of time.

  11. Special Technologies Related to Electron Beam Welding

    Institute of Scientific and Technical Information of China (English)

    Zhao; Haiyan; Cai; Zhipeng; Wang; Xichang

    2007-01-01

    In order to improve the manufacturing quality of electron beam welding,some technologies are developed by using the special features of electron beam.Comparing with the conventional electron beam welding,the usage of multi-beam technology and micro-beam technology are introduced.In addition.the development of beam diagnostic system is also presented.

  12. Beam line design using G4BeamLine

    CERN Document Server

    Dogan, Arda

    2014-01-01

    In Turkey in Ankara TAEK SANAEM Proton Accelerator Facility (PAF), there is a cyclotron which produces a focused intense 30 MeV proton beam and sends this beam to four different arms, three of which uses this beam to produce pharmaceutical medicine. The remaining one is spared for R&D purposes and the idea was to use these protons coming out from the fourth arm to use space radiation tests, which cannot be done in Turkey at the moment. However, according to SCC 25100 standards which is for 30 MeV protons, the beam coming out of cyclotron is too intense and focused to use for space radiation tests. Therefore, the main aim of my project is to design a beam line which will defocus the beam and reduce the flux so that the space radiation tests can be done according to the standards of SCC 25100.

  13. LHC Beam Instrumentation: Beam Profile Measurements (2/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  14. Beam-Beam Effect with an External Noise in LHC

    CERN Document Server

    Ohmi, K; Höfle, Wolfgang; Tomás, R; Zimmermann, F

    2007-01-01

    In absence of synchrotron radiation, proton beams do not have any damping mechanism for incoherent betatron motion. A noise, which kicks beam particles in the transverse plane, gives a coherent betatron amplitude. If the system is linear, the coherent motion is maintained in amplitude. Nonlinear force, beam-beam and beam-electron cloud interactions, cause a decoherence of the betatron motion keeping the amplitude of each beam particle, with the result that an emittance growth arises. We focus only on fast noise with a correlation time of 1-100 turns. Slower noise is less serious, because it is regarded as an adiabatic change like a closed orbit change. As sources of the noise, we consider the bunch by bunch feedback system and phase jitter of cavities which turns to transverse noise via a crab cavity.

  15. Micro-beam XRF localization by a laser beam

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A new method for micro-beam XRF localization is presented. A laserbeam along with an incident X-ray hits on the surface of a sample. The micro region onthe sample that reached by X-ray beam can be localized by means of thevisible spot of the laser beam. This method is suitable for X-ray microprobesusing anX-ray tube or synchrotron radiation as excitation sources.

  16. Optics and beam guidance

    International Nuclear Information System (INIS)

    This is an introductory manual for the field of particle transport (guiding). The utilized method described is that of classical geometrical optics which is based on the action principle or minimal action principle. This manual is addressed to readers neither specialized or familiar with intricate computations. The treatment is focussed upon the transport line of an experimental beam conceived for the late-project PIAFE. This case was chosen as it poses and solves certain significant difficult issues. In addition it will also allow in course of exposition to illustrate formulas and properties and also to give orders of magnitude. Background notions are given on: forces, curvature radius, potential, energy and units. The frame of conception is defined by means of the concepts of particle, referential trajectory, emittance, quadrupoles, electrostatic lenses, etc. Simulation for a large number of systems can be done with fairly high accuracy with the aid of thin lenses. Consequently the properties of several assemblies as for instance the periodic system 'FODO' are studied on the case of a single particle and emittance by means of adaptation and stability notions. The manual is structured on the following sections: 1. Introduction; 2. Basic notions; 3. Particle trajectories; 4. The real beam. Emittance and Evolution; 5.Optics notions and applications; 6. Elements of focusing; 7. Particle beam bending; 8. Some items presented in annexes and conclusions. In annexes the following important technical issues are addressed: 1. Effects of alignment failures on PIAFE structure trajectories; 2. Alignment. Phase 1: Magnetic centers and quadrupoles; 3. Alignment. Phase 2: Structures; 4. Residual gas/ Required pressure

  17. Phase and amplitude feedback control system for the Los Alamos free-electron laser

    International Nuclear Information System (INIS)

    Phase and amplitude feedback control systems for the Los Alamos free-electron laser (FEL) are described. Beam-driven voltages are very high in the buncher cavity because the electron gun is pulsed at the fifth subharmonic of the buncher resonant frequency. The high beam loading necessitated a novel feedback and drive configuration for the buncher. A compensation cirucit has been added to the gun/driver system to reduce observed drift. Extremely small variations in the accelerator gradients had dramatic effects on the laser output power. These problems and how they were solved are described and plans for improvements in the feedback control system are discussed. 5 refs., 7 figs

  18. Laser cooling of a stored ion beam: A first step towards crystalline beams

    Energy Technology Data Exchange (ETDEWEB)

    Hangst, J.S.

    1992-09-01

    This report discusses: a brief introduction to storage rings; crystalline beams; laser cooling of ion beams; description of astrid-the experimental setup; first experiments with lithium 7 ion beam; experiments with erbium 166 ion beams; further experiments with lithium 7 ion beams; beam dynamics, laser cooling,and crystalline beams in astrid; possibilities for further study in astrid.

  19. Beam Instrument Development System

    Energy Technology Data Exchange (ETDEWEB)

    2016-01-08

    Beam Instrumentation Development System (BIDS) is a collection of common support libraries and modules developed during a series of Low-Level Radio Frequency (LLRF) control and timing/synchronization projects. BIDS includes a collection of Hardware Description Language (HDL) libraries and software libraries. The BIDS can be used for the development of any FPGA-based system, such as LLRF controllers. HDL code in this library is generic and supports common Digital Signal Processing (DSP) functions, FPGA-specific drivers (high-speed serial link wrappers, clock generation, etc.), ADC/DAC drivers, Ethernet MAC implementation, etc.

  20. Dynamic acoustic tractor beams

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology – ETC, Santa Fe, New Mexico 87508 (United States)

    2015-03-07

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  1. Dynamic acoustic tractor beams

    Science.gov (United States)

    Mitri, F. G.

    2015-03-01

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  2. Continuous Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1996-01-01

    This report deals with stress and stiffness estimates of continuous reinforced concrete beams with different stiffnesses for negative and positive moments e.g. corresponding to different reinforcement areas in top and bottom. Such conditions are often met in practice.The moment distribution...... at the limit state of serviceability is in some simple cases determined by setting up the statical and the compatibility conditions.With these moment distributions, the maximum deflection and the reinforcement stresses at the span middle and at a support are calculated.The results are compared with results...

  3. Injection Beam Loss and Beam Quality Checks for the LHC

    CERN Document Server

    Kain, Verena; Bartmann, Wolfgang; Bracco, Chiara; Drosdal, Lene; Holzer, Eva; Khasbulatov, Denis; Magnin, Nicolas; Meddahi, Malika; Nordt, Annika; Sapinski, Mariusz; Vogt, Mathias

    2010-01-01

    The quality of the injection into the LHC is monitored by a dedicated software system which acquires and analyses the pulse waveforms from the injection kickers, and measures key beam parameters and compares them with the nominal ones. The beam losses at injection are monitored on many critical devices in the injection regions, together with the longitudinal filling pattern and maximum trajectory offset on the first 100 turns. The paper describes the injection quality check system and the results from LHC beam commissioning, in particular the beam losses measured during injection at the various aperture limits. The results are extrapolated to full intensity and the consequences are discussed

  4. Beam Position Monitoring at CLIC

    CERN Document Server

    Prochnow, J

    2003-01-01

    At the European Organisation for Nuclear Research CERN in Geneva, Switzerland the design of the Compact LInear Collider (CLIC) for high energy physics is studied. To achieve the envisaged high luminosity the quadrupole magnets and radio-frequency accelerating structures have to be actively aligned with micron precision and submicron resolution. This will be done using beam-based algorithms which rely on beam position information inside of quadrupoles and accelerating structures. After a general introduction to the CLIC study and the alignment algorithms, the concept of the interaction between beams and radio-frequency structures is given. In the next chapter beam measurements and simulations are described which were done to study the performance of cavity beam position monitors (BPM). A BPM design is presented which is compatible with the multi-bunch operation at CLIC and could be used to align the quadrupoles. The beam position inside the accelerating structures will be measured by using the structures thems...

  5. Controlling Beam Halo-Chaos

    Institute of Scientific and Technical Information of China (English)

    方锦清; 罗晓曙; 陈关荣; 翁甲强

    2001-01-01

    Beam halo-chaos is essentially a complex spatiotemporal chaotic motion in a periodic-focusing channel of a highpower linear proton accelerator. The controllability condition for beam halo-chaos is analysed qualitatively. A special nonlinear control method, i.e. the wavelet-based function feedback, is proposed for controlling beam halochaos. Particle-in-cell simulations are used to explore the nature of halo-chaos formation, which has shown that the beam hMo-chaos is suppressed effectively after using nonlinear control for the proton beam with an initial full Gaussian distribution. The halo intensity factor Hav is reduced from 14%o to zero, and the other statistical physical quantities of beam halo-chaos are more than doubly reduced. The potential applications of such nonlinear control in experiments are briefly pointed out.

  6. Self accelerating electron Airy beams

    CERN Document Server

    Voloch-Bloch, Noa; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-01-01

    We report the first experimental generation and observation of Airy beams of free electrons. The electron Airy beams are generated by diffraction of electrons through a nanoscale hologram, that imprints a cubic phase modulation on the beams' transverse plane. We observed the spatial evolution dynamics of an arc-shaped, self accelerating and shape preserving electron Airy beams. We directly observed the ability of electrons to self-heal, restoring their original shape after passing an obstacle. This electromagnetic method opens up new avenues for steering electrons, like their photonic counterparts, since their wave packets can be imprinted with arbitrary shapes or trajectories. Furthermore, these beams can be easily manipulated using magnetic or electric potentials. It is also possible to efficiently self mix narrow beams having opposite signs of acceleration, hence obtaining a new type of electron interferometer.

  7. Collimation with hollow electron beams

    CERN Document Server

    Stancari, G; Annala, G; Kuznetsov, G; Shiltsev, V; Still, D A; Vorobiev, L G

    2011-01-01

    A novel concept of controlled halo removal for intense high-energy beams in storage rings and colliders is presented. It is based on the interaction of the circulating beam with a 5-keV, magnetically confined, pulsed hollow electron beam in a 2-m-long section of the ring. The electrons enclose the circulating beam, kicking halo particles transversely and leaving the beam core unperturbed. By acting as a tunable diffusion enhancer and not as a hard aperture limitation, the hollow electron beam collimator extends conventional collimation systems beyond the intensity limits imposed by tolerable losses. The concept was tested experimentally at the Fermilab Tevatron proton-antiproton collider. The first results on the collimation of 980-GeV antiprotons are presented.

  8. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB.

    Science.gov (United States)

    Ren, Haitao; Pozdeyev, Eduard; Lund, Steven M; Machicoane, Guillaume; Wu, Xiaoyu; Morgan, Glenn

    2016-02-01

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper.

  9. Simulation of beam-induced plasma for the mitigation of beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.; Wang, G.; Samulyak, R.; Yu, K.; Litvinenko, V.

    2015-05-03

    One of the main challenges in the increase of luminosity of circular colliders is the control of the beam-beam effect. In the process of exploring beam-beam mitigation methods using plasma, we evaluated the possibility of plasma generation via ionization of neutral gas by proton beams, and performed highly resolved simulations of the beam-plasma interaction using SPACE, a 3D electromagnetic particle-in-cell code. The process of plasma generation is modelled using experimentally measured cross-section coefficients and a plasma recombination model that takes into account the presence of neutral gas and beam-induced electromagnetic fields. Numerically simulated plasma oscillations are consistent with theoretical analysis. In the beam-plasma interaction process, high-density neutral gas reduces the mean free path of plasma electrons and their acceleration. A numerical model for the drift speed as a limit of plasma electron velocity was developed. Simulations demonstrate a significant reduction of the beam electric field in the presence of plasma. Preliminary simulations using fully-ionized plasma have also been performed and compared with the case of beam-induced plasma.

  10. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB

    International Nuclear Information System (INIS)

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper

  11. Beam emittance measurements at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Manfred; Eddy, Nathan; Hu, Martin; Scarpine, Victor; Syphers, Mike; Tassotto, Gianni; Thurman-Keup, Randy; Yang, Ming-Jen; Zagel, James; /Fermilab

    2008-01-01

    We give short overview of various beam emittance measurement methods, currently applied at different machine locations for the Run II collider physics program at Fermilab. All these methods are based on beam profile measurements, and we give some examples of the related instrumentation techniques. At the end we introduce a multi-megawatt proton source project, currently under investigation at Fermilab, with respect to the beam instrumentation challenges.

  12. Atomic laser-beam finder.

    Science.gov (United States)

    Viering, Kirsten; Medellin, David; Mo, Jianyong; Raizen, Mark G

    2012-11-01

    We report on an experimental method to align a laser beam to a cloud of atoms trapped in a magneto-optical trap (MOT). We show how balanced lock-in detection leads to a very sensitive method to align the laser beam to the atoms in the plane perpendicular to the propagation direction. This provides a very reliable and fast way of aligning laser beams to atoms trapped in a MOT.

  13. Harmonic vibrations of multispan beams

    DEFF Research Database (Denmark)

    Dyrbye, Claes

    1996-01-01

    Free and forced harmonic vibrations of multispan beams are determined by a method which implies 1 equation regardless of the configuration. The necessary formulas are given in the paper. For beams with simple supports and the same length of all (n) spans, there is a rather big difference between...... the n´th and the (n+1)´th eigenfrequency. The reason for this phenomenon is explained.Keywords: Vibrations, Eigenfrequencies, Beams....

  14. Ion beam assisted film growth

    CERN Document Server

    Itoh, T

    2012-01-01

    This volume provides up to date information on the experimental, theoretical and technological aspects of film growth assisted by ion beams.Ion beam assisted film growth is one of the most effective techniques in aiding the growth of high-quality thin solid films in a controlled way. Moreover, ion beams play a dominant role in the reduction of the growth temperature of thin films of high melting point materials. In this way, ion beams make a considerable and complex contribution to film growth. The volume will be essential reading for scientists, engineers and students working in thi

  15. Compact electron beam focusing column

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-07-13

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2-D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  16. Long range beam-beam interaction and the effect on the beam and luminosity lifetimes

    CERN Document Server

    Crouch, Matthew; Barranco Garcia, Javier; Banfi, Danilo; Buffat, Xavier; Tambasco, Claudia; Alexahin, Yuri; Bruce, Roderik; Giachino, Rossano; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; Trad, Georges; CERN. Geneva. ATS Department

    2016-01-01

    Identifying the minimum crossing angle achievable in the LHC is a key parameter to identify the collider luminosity reach. In this note, we summarise the observations collected during a dedicated experiment performed in 2015, where the strength of the long range beam-beam interaction is varied by reducing the crossing angle at IP1 and IP5. The crossing angle and the impact of the long range beam-beam interaction is analysed with respect to the beam and luminosity lifetimes. The effect of reducing Landau octupoles initially operating at 476 [A] and high chromaticity values (15 units) are also shown. The minimum crossing angle achievable with collisions is identified, together with the impact on beam and luminosity lifetimes

  17. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  18. Single Gradientless Light Beam Drags Particles as Tractor Beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Qiu, Cheng-Wei; Wang, Haifeng

    2011-01-01

    Usually a light beam pushes a particle when the photons act upon it. We investigate the optical forces by nonparaxial gradientless beams and find that the forces can drag suitable particles all the way towards the light source. The major criterion of realizing the backward dragging force is the s...

  19. LHC beam-beam compensation using wires and electron lenses

    CERN Document Server

    Dorda, U; Shiltsev, V; Zimmermann, F

    2007-01-01

    We present weak-strong simulation results for a possible application of current-carrying wires and electron lenses to compensate the LHC long-range and head-on beambeam interaction, respectively, for nominal and PACMAN bunches. We show that these measures have the potential to considerably increase the beam-beam limit, allowing for a corresponding increase in peak luminosity.

  20. Single-beam collective phenomena transverse I Coasting beams

    CERN Document Server

    Zotter, Bruno W

    1977-01-01

    If a charged particle beam is locally displaced or kicked (e.g. by noise), it will start to oscillate around an equilibrium orbit ('betatron oscillations') due to the external focusing fields of an accelerator or storage ring. These oscillations will excite electromagnetic fields which are modified by the presence of the vacuum chamber walls or other material boundaries in the neighbourhood of the beam. The electromagnetic fields react back on the oscillating beam. If there is an out of phase component of the forces, such as caused by the finite resistivity of the walls, the original oscillations may be reinforced. Their amplitude will then grow exponentially, i.e. the beam is unstable. Linear theory is only concerned with the conditions for the onset of the instability, i.e. the thresholds and initial growth rates, or with the means to stabilize the beam, e.g. by Landau damping or feedback.

  1. Experimental study of proton beam halo in mismatched beams

    International Nuclear Information System (INIS)

    We report measurements of transverse beam-halo formation in mismatched proton beams in a 52-quadrupole FODO-transport channel following the 6.7 MeV RFQ at the Low-Energy Demonstration Accelerator (LEDA) at Los Alamos. Beam profiles in both transverse planes were measured using a new diagnostic device that consists of a movable carbon filament for measurement of the beam core, and scraper plates for measurement of the outer part of the distributions. The initial results indicate a surprisingly strong growth rate of the rms emittance even for the modest space-charge tune depressions of the experiment. Our results are consistent with the complete transfer of free energy of the mismatched beams into emittance growth within 10 envelope oscillations for both the breathing and the quadrupole modes.

  2. Neutron beam tomography software

    International Nuclear Information System (INIS)

    When a sample is traversed by a neutron beam, inhomogeneities in the sample will cause deflections, and the deflections will permit conclusions to be drawn concerning the location and size of the inhomogeneities. The associated computation is similar to problems in tomography, analogous to X-ray tomography though significantly different in detail. We do not have any point-sample information, but only mean values over short line segments. Since each mean value is derived from a separate neutron counter, the quantity of available data has to be modest; also, since each datum is an integral, its geometric precision is inferior to that of X-ray data. Our software is designed to cope with these difficulties. (orig.)

  3. Electron beam silicon purification

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, Anatoly [SIA ' ' KEPP EU' ' , Riga (Latvia); Kravtsov, Alexey [' ' KEPP-service' ' Ltd., Moscow (Russian Federation)

    2014-11-15

    Purification of heavily doped electronic grade silicon by evaporation of N-type impurities with electron beam heating was investigated in process with a batch weight up to 50 kilos. Effective temperature of the melt, an indicative parameter suitable for purification process characterization was calculated and appeared to be stable for different load weight processes. Purified material was successfully approbated in standard CZ processes of three different companies. Each company used its standard process and obtained CZ monocrystals applicable for photovoltaic application. These facts enable process to be successfully scaled up to commercial volumes (150-300 kg) and yield solar grade silicon. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Neutron beam measurement dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  5. Polarized targets and beams

    International Nuclear Information System (INIS)

    First the experimental situation of the single-pion photoproduction and the photodisintegration of the deuteron is briefly discussed. Then a description of the Bonn polarization facilities is given. The point of main effort is put on the polarized target which plays a vital role in the program. A facility for photon induced double polarization experiments at ELSA will be presented in section 4. Properties of a tensor polarized deuteron target are discussed in section 5. The development in the field of polarized targets, especially on new target materials, enables a new generation of polarized target experiments with (polarized) electrons. Some comments on the use of a polarized target in combination with electron beams will be discussed in section 6. Electron deuteron scattering from a tensor polarized deuteron target is considered and compared with other experimental possibilities. (orig./HSI)

  6. In Process Beam Monitoring

    Science.gov (United States)

    Steen, W. M.; Weerasinghe, V. M.

    1986-11-01

    The industrial future of lasers in material processing lies in the combination of the laser with automatic machinery. One possible form of such a combination is an intelligent workstation which monitors the process as it occurs and adjusts itself accordingly, either by self teaching or by comparison to a process data bank or algorithm. In order to achieve this attractive goal in-process signals are required. Two devices are described in this paper. One is the Laser Beam Analyser which is now maturing into a second generation with computerised output. The other is the Acoustic Mirror, a totally novel analytic technique, not yet fully understood, but which nevertheless can act as a very effective process monitor.

  7. Design and Analysis Methodologies for Inflated Beams

    NARCIS (Netherlands)

    Veldman, S.L.

    2005-01-01

    The central theme of the thesis is bending behaviour of inflated beams. Three different types of beams have been analysed for the bending load case: a straight cylindrical beam made of anisotropic foil material, a conical beam made of an isotropic foil material, and a carbon fibre braided beam. The

  8. Molecular-beam scattering

    Science.gov (United States)

    Vernon, M. F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N2 from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HC1 (FEMALE) NAC1 + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2(2)P/sub 3/2/) and Na(3(2)P/sub 3/2) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  9. Molecular-beam scattering

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N/sub 2/ from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl ..-->.. NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2/sup 2/P/sub 3/2/) and Na(3/sup 2/P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  10. Molecular-beam scattering

    International Nuclear Information System (INIS)

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N2 from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl → NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(22P/sub 3/2/) and Na(32P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included

  11. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pradeep; Ghodke, A. D.; Karnewar, A. K.; Holikatti, A. C.; Yadav, S.; Puntambekar, T. A.; Singh, G. [Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Singh, P. [Bhabha Atomic Research Centre, Mumbai (India)

    2013-12-15

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  12. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring.

    Science.gov (United States)

    Kumar, Pradeep; Ghodke, A D; Karnewar, A K; Holikatti, A C; Yadav, S; Puntambekar, T A; Singh, G; Singh, P

    2013-12-01

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  13. Space charge dominated beam transport

    International Nuclear Information System (INIS)

    We consider beam transport systems where space charge forces are comparable in strength with the external focusing force. Space charge then plays an important role for beam transmission and emittance growth. We use the envelope model for matching and the generalized field energy equations to study emittance growth. Analytic results are compared with numerical simulation. (orig.)

  14. BOUNDARY STABILIZATION OF TIMOSHENKO BEAM

    Institute of Scientific and Technical Information of China (English)

    YAN Qingxu

    2000-01-01

    In this paper, the stabilization problem of Timoshenko beam by some nonlinear boundary feedback controls is considered. By virtue of nonlinear semigroup theory and energy-perturbed method, it is shown that the vibration of the beam under the proposed control action decays exponentially or in negative power of time t as t → ∞.

  15. Portal dosimetry in wedged beams

    NARCIS (Netherlands)

    Spreeuw, H.; Rozendaal, R.; Camargo, P.; Mans, A.; Wendling, M.; Olaciregui-Ruiz, I.; Sonke, J.J.; Herk, M. van; Mijnheer, B.

    2015-01-01

    Portal dosimetry using electronic portal imaging devices (EPIDs) is often applied to verify high-energy photon beam treatments. Due to the change in photon energy spectrum, the resulting dose values are, however, not very accurate in the case of wedged beams if the pixel-to-dose conversion for the s

  16. Hybrid beams in the LHC

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The first proton-ion beams were successfully circulated in the LHC a couple of weeks ago. Everything went so smoothly that the LHC teams had planned the first p-Pb collisions for Wednesday, 16 November. Unfortunately, a last-minute problem with a component of the PS required for proton acceleration prevented the LHC teams from making these new collisions. However, the way is open for a possible physics run with proton-lead collisions in 2012.   Members of the LHC team photographed when the first hybrid beams got to full energy. The proton and lead beams are visible on the leftmost screen up on the wall (click to enlarge the photo). The technical challenge of making different beams circulate in the LHC is by no means trivial. Even if the machine is the same, there are a number of differences when it is operated with beams of protons, beams of lead or beams of proton and lead. Provided that the beams are equal, irrespective of whether they consist of protons or lead nuclei, they revolve at the...

  17. Radioactive beams and their applications

    International Nuclear Information System (INIS)

    The proceedings contain lectures and contributed papers submitted to the second INR (Kiev's) International School on Nuclear Physics (Kiev, June 25 -July 2, 1991). The following sections were included in the Proceedings: Radioactive Beam Facilities, Application of Radioactive Beams in the Investigations of Nuclear Reactions, Exotic Nuclei and Clusters, Polarization Phenomena, Astrophysics and Others

  18. Beam dynamics for induction accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Edward P., E-mail: eplee@lbl.gov

    2014-01-01

    An induction linac uses pulsed power that is applied directly, without any intervening resonant cavities, to accelerate a charged particle pulse. This approach can accommodate a large multiple-beam focusing lattice capable of transporting a large total beam current with a long pulse duration, which may be compressed while accelerating as well as afterward. The mean accelerating gradient is relatively low (less than about 1.5 MV/m), but the potential efficiency of energy transfer can be large up to about 50%. A multiple-beam induction linac is therefore a natural candidate accelerator for a heavy ion fusion (HIF) driver. However, the accelerated beams must meet stringent requirements on occupied phase space volume in order to be focused accurately and with small radius onto the fusion target. Dynamical considerations in the beam injector and linac, as well as in the final compression, final focus, and the fusion chamber, determine the quality of the driver beams as they approach the target. Requirements and tolerances derived from beam dynamics strongly influence the linac configuration and component design. After a summary of dynamical considerations, two major topics are addressed here: transportable current limits, which determine the choice of focal system for the linac, and longitudinal control of the beams, which are potentially destabilized by their interaction with the pulsed power system.

  19. Beam tests of phosphorescent screens

    International Nuclear Information System (INIS)

    Twelve phosphorescent screens were beam tested for linearity, uniformity, low radiation damage and a suitable emitted wavelength for use with television cameras. One screen was chosen for the construction of several intercepting profile monitors which were used during the SLC Ten Sector Tests to measure the emittance and wakefield effects of a damped electron beam

  20. Beta Beams Implementation at CERN

    CERN Document Server

    Hansen, Christian

    2011-01-01

    Beta Beam,the concept of generating a pure and intense (anti) neutrino beam by letting accelerated radioactive ions beta decay in a storage ring, called Decay Ring (DR), is the base of one of the proposed next generation neutrino oscillation facilities, necessary for a complete study of the neutrino oscillation parameter space. Sensitivities of the unknown neutrino oscillation parameters depend on the Decay Ring's ion intensity and of it's duty factor (the filled ratio of the ring). Therefore efficient ion production, stripping, bunching, acceleration and storing are crucial sub-projects under study and development within the Beta Beam collaboration. Specifically the feasibility of these tasks as parts of a Beta Beam implementation at CERN will be discussed in this report. The positive impact of the large {\\theta}13 indications from T2K on the Beta Beam performance will also be discussed.

  1. FXR fast beam imaging diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ferriera, T; Gilliam, R; Ong, M; Wargo, P; Zentler, J

    1999-06-01

    The Lawrence Livermore National Laboratory Flash X-ray (FXR) machine is being upgraded to produce two pulses. A very fast imaging system has been developed to characterize the electron beam diameter and shape. The system consists of a kapton target insertion mechanism and a framing camera. It has a fast gated imaging tube (500 ps) and CCD subsystem to capture and send the image to the control room. The beam diameter data provides insight on mechanisms that effect the x-ray spot size. These colorful beam measurements will be compared with our other diagnostics to form a more complete picture of beam behavior. A demonstration will be described where the image data was used to design a collimator to improve x-ray beam performance.

  2. Autoacceleration of a modulated beam

    Energy Technology Data Exchange (ETDEWEB)

    Boiko, V.A.; Borodulin, A.I.; Voronkov, R.M.; Voskresenskii, G.V.; Galkin, V.S.; Dobrokhotov, V.V.; Kurdyumov, V.N.; Mamaev, G.L.; Simonov, K.G.

    1982-11-01

    The interaction of a density-modulated electron beam with a passive resonator is considered. The modulation frequency is equal to the resonant frequency of the resonator, and the beam parameters at the resonator outlet are studied as functions of the percentage of modulation. Calculations reveal that the maximum attainable energy at the outlet is approximately three times greater than the energy of the particles at the inlet. Experimental measurements of the beam parameters are reported. At the outlet of the passive resonator a beam of accelerated electrons was produced with current approx.100 A and energy >500 keV; the current in the initial beam was 250 A and the electron energy was 250 keV.

  3. NETWORK CODING BY BEAM FORMING

    DEFF Research Database (Denmark)

    2013-01-01

    Network coding by beam forming in networks, for example, in single frequency networks, can provide aid in increasing spectral efficiency. When network coding by beam forming and user cooperation are combined, spectral efficiency gains may be achieved. According to certain embodiments, a method...... includes operating a user equipment of a plurality of user equipment in a network comprising a plurality of access points. The method also includes the user equipment forming a beam. The method further receives processing received signals from at least one of the plurality of access points at the user...... equipment. The forming the beam is configured to let different user equipment of the plurality of user equipment to receive different signals from the plurality of access points to achieve diversity by using different beams amongst the plurality of user equipment. The method additionally includes...

  4. Cold and Slow Molecular Beam

    CERN Document Server

    Lu, Hsin-I; Wright, Matthew J; Patterson, Dave; Doyle, John M

    2011-01-01

    Employing a two-stage cryogenic buffer gas cell, we produce a cold, hydrodynamically extracted beam of calcium monohydride molecules with a near effusive velocity distribution. Beam dynamics, thermalization and slowing are studied using laser spectroscopy. The key to this hybrid, effusive-like beam source is a "slowing cell" placed immediately after a hydrodynamic, cryogenic source [Patterson et al., J. Chem. Phys., 2007, 126, 154307]. The resulting CaH beams are created in two regimes. One modestly boosted beam has a forward velocity of vf = 65 m/s, a narrow velocity spread, and a flux of 10^9 molecules per pulse. The other has the slowest forward velocity of vf = 40 m/s, a longitudinal temperature of 3.6 K, and a flux of 5x10^8 molecules per pulse.

  5. Toward automated beam optics control

    International Nuclear Information System (INIS)

    We have begun a program aiming toward automatic control of charged-particle beam optics using artificial intelligence programming techniques. In developing our prototype, we are working with LISP machines and the KEE expert system shell. Our first goal was to develop a ''mouseable'' representation of a typical beam line. This responds actively to changes entered from the mouse or keyboard, giving an updated display of the beam line itself, its optical properties, and the instrumentation and control devices as seen by the operater. We have incorporated TRANSPORT, written in Fortran but running as a callable procedure in the LISP environment, for simulation of the beam-line optics. This paper describes the experience gained in meeting our first goal and discusses plans to extend the work so that it is usable, in realtime, on an operating beam line. 11 refs

  6. Symmetric form-invariant dual Pearcey beams.

    Science.gov (United States)

    Ren, Zhijun; Fan, Changjiang; Shi, Yile; Chen, Bo

    2016-08-01

    We introduce another type of Pearcey beam, namely, dual Pearcey (DP) beams, based on the Pearcey function of catastrophe theory. DP beams are experimentally generated by applying Fresnel diffraction of bright elliptic rings. Form-invariant Bessel distribution beams can be regarded as a special case of DP beams. Subsequently, the basic propagation characteristics of DP beams are identified. DP beams are the result of the interference of two half DP beams instead of two classical Pearcey beams. Moreover, we also verified that half DP beams (including special-case parabolic-like beams) generated by half elliptical rings (circular rings) are a new member of the family of form-invariant beams. PMID:27505650

  7. On nonlinear development of beam instability

    International Nuclear Information System (INIS)

    Radiation-resonance interactions are taken into account in the problem of dynamics of an electron beam inb plasma. The beam characteristics to be taken into account are determined. Stabilization conditions for beam instability are established

  8. Modelling of Beam-Beam Effects in Multiscales

    CERN Document Server

    Fedorova, A N; Fedorova, Antonina N.; Zeitlin, Michael G.

    2001-01-01

    We present the applications of nonlinear local harmonic analysis methods to the modelling of beam-beam interaction. Our approach is based on methods provided the possibility to work with dynamical beam localization in phase space. The consideration of Fokker-Planck or Vlasov-Maxwell models is based on a number of anzatzes, which reduce initial problems to a number of dynamical systems (with constraints) and on variational-wavelet approach to polynomial/rational approximations for reduced nonlinear dynamics. We calculate contribution to full dynamics (partition function) from all underlying subscales via nonlinear eigenmodes decomposition.

  9. Coherent instabilities of a relativistic bunched beam

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.

    1982-06-01

    A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references.

  10. Experimental studies on beam-plasma interaction

    International Nuclear Information System (INIS)

    Beam-handling technology has reached now at such a level as to enable highly controlled experiments of beam-plasma interaction. Varieties of hypotheses and suppositions about the beam propagation and interaction in space plasma can be proved and often be corrected by examining the specific processes in laboratory plasma. The experiments performed in this way by the author are briefed: ion beam instability in unmagnetized plasma; ion beam instability perpendicular to magnetic field; and electron beam instability. (Mori, K.)

  11. Random sources for cusped beams.

    Science.gov (United States)

    Li, Jia; Wang, Fei; Korotkova, Olga

    2016-08-01

    We introduce two novel classes of partially coherent sources whose degrees of coherence are described by the rectangular Lorentz-correlated Schell-model (LSM) and rectangular fractional multi-Gaussian-correlated Schell-model (FMGSM) functions. Based on the generalized Collins formula, analytical expressions are derived for the spectral density distributions of these beams propagating through a stigmatic ABCD optical system. It is shown that beams belonging to both classes form the spectral density apex that is much higher and sharper than that generated by the Gaussian Schell-model (GSM) beam with a comparable coherence state. We experimentally generate these beams by using a nematic, transmissive spatial light modulator (SLM) that serves as a random phase screen controlled by a computer. The experimental data is consistent with theoretical predictions. Moreover, it is illustrated that the FMGSM beam generated in our experiments has a better focusing capacity than the GSM beam with the same coherence state. The applications that can potentially benefit from the use of novel beams range from material surface processing, to communications and sensing through random media. PMID:27505746

  12. Dark matter beams at LBNF

    CERN Document Server

    Coloma, Pilar; Frugiuele, Claudia; Harnik, Roni

    2015-01-01

    High-intensity neutrino beam facilities may produce a beam of light dark matter when protons strike the target. Searches for such a dark matter beam using its scattering in a nearby detector must overcome the large neutrino background. We characterize the spatial and energy distributions of the dark matter and neutrino beams, focusing on their differences to enhance the sensitivity to dark matter. We find that a dark matter beam produced by a $Z'$ boson in the GeV mass range is both broader and more energetic than the neutrino beam. The reach for dark matter is maximized for a detector sensitive to hard neutral-current scatterings, placed at a sizable angle off the neutrino beam axis. In the case of the Long-Baseline Neutrino Facility (LBNF), a detector placed at roughly 6 degrees off axis and at a distance of about 200 m from the target would be sensitive to $Z'$ couplings as low as 0.05. This search can proceed symbiotically with neutrino measurements. We also show that the MiniBooNE and MicroBooNE detector...

  13. Asymmetric Laguerre-Gaussian beams

    Science.gov (United States)

    Kovalev, A. A.; Kotlyar, V. V.; Porfirev, A. P.

    2016-06-01

    We introduce a family of asymmetric Laguerre-Gaussian (aLG) laser beams. The beams have been derived via a complex-valued shift of conventional LG beams in the Cartesian plane. While propagating in a uniform medium, the first bright ring of the aLG beam becomes less asymmetric and the energy is redistributed toward peripheral diffraction rings. The projection of the orbital angular momentum (OAM) onto the optical axis is calculated. The OAM is shown to grow quadratically with increasing asymmetry parameter of the aLG beam, which equals the ratio of the shift to the waist radius. Conditions for the OAM becoming equal to the topological charge have been derived. For aLG beams with zero radial index, we have deduced an expression to define the intensity maximum coordinates and shown the crescent-shaped intensity pattern to rotate during propagation. Results of the experimental generation and rotation of aLG beams agree well with theoretical predictions.

  14. Multi channel beam profile digitizer

    International Nuclear Information System (INIS)

    Beam of ions in an accelerator are focussed with the help of focussing magnets to achieve very narrow circular beam. To verify the beam profile along its length, Beam Profile Monitors (BPM) are installed at number of points. The signal generated from these units convey information about the shape and axial error of the beam. Presently BPM signals are monitored on oscilloscope. One oscilloscope is required per BPM channel to be monitored and normally 2 oscilloscopes are kept for viewing beam at two successive points along with one channel selector to select the channel to be monitored. The 8 channel beam profile digitizer being developed is a low cost intelligent PC-add on card, built around Intel's 8751 microcontroller, which can be easily integrated with PC based data acquisition and control system for accelerators. Microcontroller digitizes the signal and stores information on FIFO for PC to read and graphically display the profile. User can select up to 8 profiles to view simultaneously on the screen. (author). 1 ref., 2 figs

  15. ATLAS diamond Beam Condition Monitor

    CERN Document Server

    Gorišek, A; Dolenc, I; Frais-Kölbl, H; Griesmayer, E; Kagan, H; Korpar, S; Kramberger, G; Mandic, I; Meyer, M; Mikuz, M; Pernegger, H; Smith, S; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at . Timing of signals from the two stations will provide almost ideal separation of beam–beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of area and thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test bea...

  16. Relativistic electron beams above thunderclouds

    Directory of Open Access Journals (Sweden)

    M. Füllekrug

    2011-08-01

    Full Text Available Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency ∼40–400 kHz which they radiate. The electron beams occur ∼2–9 ms after positive cloud-to-ground lightning discharges at heights between ∼22–72 km above thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of ∼7 MeV to transport a total charge of ∼−10 mC upwards. The impulsive current ∼3 × 10−3 Am−2 associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.

  17. Beam diagnostics with synchrotron radiation

    International Nuclear Information System (INIS)

    Synchrotron radiation is often used to measure the dimensions of an electron beam. The transverse size is obtained from an image of the beam cross section formed by means of the emitted synchrotron radiation. Because of the small natural opening angle the resolution is limited by diffraction. The angular spread of the particles in the beam can be measured by observing the radiation directly. Here, the resolution is limited by the natural opening angle of the emitted light. Measuring both beam cross section and angular spread gives the emittance of the beam. However, in most cases only one of these two parameters is observed and the other deduced from the known particle beam optics at the source of the radiation. Usually one observes radiation emitted in long bending magnets. However, short magnets and undulators are also useful sources for these measurements. For practical reasons the beam diagnostics is carried out using visible or ultraviolet light. This part of the spectrum is usually far below the critical frequency, and corresponding approximations can be applied. Synchrotron radiation is an extremely useful tool for diagnostics in electron (or positron) rings. In some cases it has also served in proton rings using special magnets. (author)

  18. Electron beam machining using rotating and shaped beam power distribution

    Science.gov (United States)

    Elmer, John W.; O'Brien, Dennis W.

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  19. Simulating Transient Effects of Pulsed Beams on Beam Intercepting Devices

    CERN Document Server

    Richter, Herta; Noah Messomo, Etam

    2011-01-01

    The development in the physics community towards higher beam power through the possibilities of particle accelerators lead to challenges for the developers of elements which are exposed to effect of particle beams (beam intercepting devices = BIDs). For the design of BIDs, the increasing heat load onto these devices due to energetic and focused beams and - in most cases - their highly pulsed nature has to be taken into account. The physics requirements are sometimes opposed to the current state of the art. As one possibility of many in combining the different aspects for these ambitious demands, two highly developed computer programs, namely FLUKA and ANSYS AUTODYN, were joined for this dissertation. The former is a widely enhanced Monte-Carlo-code which specializes on the interaction of particles with static matter, while the latter is a versatile explicit code for the simulation of highly dynamic processes. Both computer programs were developed intensively over years and are still continuously enhanced in o...

  20. Cluster beam sources. Part 1. Methods of cluster beams generation

    Directory of Open Access Journals (Sweden)

    A.Ju. Karpenko

    2012-10-01

    Full Text Available The short review on cluster beams generation is proposed. The basic types of cluster sources are considered and the processes leading to cluster formation are analyzed. The parameters, that affects the work of cluster sources are presented.

  1. Longitudinal compression of ion beams

    International Nuclear Information System (INIS)

    This paper examines the longitudinal compression of ion beams which is necessary in some designs of drivers intended to realize inertial thermonuclear fusion by heavy ions. Taking space-charge forces in the beams into account, two compression schemes are investigated: the first preserves the longitudinal phase-space area of the beams, and the second allows an increase of the phase-space area. The compression-system parameters are optimized for an example of a driver for inertial thermonuclear fusion by heavy ions with an energy of 10 MJ and with a pulse length of 25 ns on the target

  2. Photoelectron photoion molecular beam spectroscopy

    International Nuclear Information System (INIS)

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed

  3. A polarized atomic hydrogen beam

    International Nuclear Information System (INIS)

    We describe the design and operating characteristics of a simple polarized atomic hydrogen beam particularly suitable for applications to crossed beams experiments. In addition to experimental measurements, we present the results of detailed computer models, using Monte-Carlo ray tracing techniques, optical analogs, and phase-space methods, that not only provide us with a confirmation of our measurement, but also allow us to characterize the density, polarization, and atomic fraction of the beam at all points along its path. As a subsidiary result, we also present measurements of the relative and absolute efficiencies of the V/G Supavac mass analyzer for masses 1 and 2. (orig.)

  4. Beam Transfer and Machine Protection

    CERN Document Server

    Kain, V

    2016-01-01

    Beam transfer, such as injection into or extraction from an accelerator, is one of the most critical moments in terms of machine protection in a high-intensity machine. Special equipment is used and machine protection aspects have to be taken into account in the design of the beam transfer concepts. A brief introduction of the principles of beam transfer and the equipment involved will be given in this lecture. The main concepts of machine protection for injection and extraction will be presented, with examples from the CERN SPS and LHC.

  5. BR2 reactor neutron beams

    International Nuclear Information System (INIS)

    The use of reactor neutron beams is becoming increasingly more widespread for the study of some properties of condensed matter. It is mainly due to the unique properties of the ''thermal'' neutrons as regards wavelength, energy, magnetic moment and overall favorable ratio of scattering to absorption cross-sections. Besides these fundamental reasons, the impetus for using neutrons is also due to the existence of powerful research reactors (such as BR2) built mainly for nuclear engineering programs, but where a number of intense neutron beams are available at marginal cost. A brief introduction to the production of suitable neutron beams from a reactor is given. (author)

  6. Electron beam, laser beam and plasma arc welding studies

    Science.gov (United States)

    Banas, C. M.

    1974-01-01

    This program was undertaken as an initial step in establishing an evaluation framework which would permit a priori selection of advanced welding processes for specific applications. To this end, a direct comparison of laser beam, electron beam and arc welding of Ti-6Al-4V alloy was undertaken. Ti-6Al-4V was selected for use in view of its established welding characteristics and its importance in aerospace applications.

  7. Monitoring external beam radiotherapy using real-time beam visualization

    International Nuclear Information System (INIS)

    Purpose: To characterize the performance of a novel radiation therapy monitoring technique that utilizes a flexible scintillating film, common optical detectors, and image processing algorithms for real-time beam visualization (RT-BV). Methods: Scintillating films were formed by mixing Gd2O2S:Tb (GOS) with silicone and casting the mixture at room temperature. The films were placed in the path of therapeutic beams generated by medical linear accelerators (LINAC). The emitted light was subsequently captured using a CMOS digital camera. Image processing algorithms were used to extract the intensity, shape, and location of the radiation field at various beam energies, dose rates, and collimator locations. The measurement results were compared with known collimator settings to validate the performance of the imaging system. Results: The RT-BV system achieved a sufficient contrast-to-noise ratio to enable real-time monitoring of the LINAC beam at 20 fps with normal ambient lighting in the LINAC room. The RT-BV system successfully identified collimator movements with sub-millimeter resolution. Conclusions: The RT-BV system is capable of localizing radiation therapy beams with sub-millimeter precision and tracking beam movement at video-rate exposure

  8. Test Beam Coordination: 2003 ATLAS Combined Test Beam

    CERN Multimedia

    Di Girolamo, B.

    The 2003 Test Beam Period The 2003 Test Beam period has been very fruitful for ATLAS. In spite of several days lost because of the accelerator problems, ATLAS has been able to achieve many results: FCAL has completed the calibration program in H6 Tilecal has completed the calibration program in H8 Pixel has performed extensive studies with normal and high intensity beams (up to 1.4*108 hadrons/spill) SCT has completed a variety of studies with quite a high number of modules operated concurrently TRT has performed several studies at high, low and very low energy (first use of the new H8 beam in the range 1 to 9 GeV) Muons (MDT,RPC and TGC) have been operating a large setup for about 5 months. The almost final MDT ROD (MROD) has been integrated in the readout and the final trigger electronics for TGC and RPC has been tested and certified with normal beam and during dedicated 40 MHz beam periods. The TDAQ has exploited a new generation prototype successfully and the new Event Filter infrastructure f...

  9. Generating stable tractor beams with dielectric metasurfaces

    Science.gov (United States)

    Pfeiffer, Carl; Grbic, Anthony

    2015-03-01

    Propagation-invariant beams that pull objects towards a light source are commonly known as tractor beams. Here, an efficient, linearly polarized tractor beam with improved stability is introduced. The beam consists of a superposition of transverse-electric and transverse-magnetic polarized Bessel beams of orders m =+1 and m =-1 . It is shown that this beam can stably pull a wide range of dielectric microparticles arbitrarily long distances, independent of ambient conditions. Next, a straightforward method of generating these high-performance beams is proposed. A Si metasurface transforms an incident linearly polarized Gaussian beam into the desired tractor beam. Full-wave simulations demonstrate that it is possible for this simple geometry to pull a polystyrene sphere a distance equal to the nondiffracting range of the Bessel beam. The simplicity of the setup and the robust performance of the proposed tractor beam significantly enhance the ability to manipulate matter with light.

  10. Monitor of SC beam profiles

    CERN Multimedia

    1977-01-01

    A high-resolution secondary emission grid for the measurement of SC beam profiles. Modern techniques of metal-ceramic bonding, developed for micro-electronics, have been used in its construction. (See Annual Report 1977 p. 105 Fig. 12.)

  11. Neutral beams for magnetic fusion

    International Nuclear Information System (INIS)

    Significant advances in forming energetic beams of neutral hydrogen and deuterium atoms have led to a breakthrough in magnetic fusion: neutral beams are now heating plasmas to thermonuclear temperatures, here at LLL and at other laboratories. For example, in our 2XIIB experiment we have injected a 500-A-equivalent current of neutral deuterium atoms at an average energy of 18 keV, producing a dense plasma (1014 particles/cm3) at thermonuclear energy (14 keV or 160 million kelvins). Currently, LLL and LBL are developing beam energies in the 80- to 120-keV range for our upcoming MFTF experiment, for the TFTR tokamak experiment at Princeton, and for the Doublet III tokamak experiment at General Atomic. These results increase our long-range prospects of producing high-intensity beams of energies in the hundreds or even thousands of kilo-electron-volts, providing us with optimistic extrapolations for realizing power-producing fusion reactors

  12. Center for Beam Physics, 1992

    International Nuclear Information System (INIS)

    This report contains the following information on the center for beam physics: Facilities; Organizational Chart; Roster; Profiles of Staff; Affiliates; Center Publications (1991--1993); and 1992 Summary of Activities

  13. ATF beam image monitor software

    International Nuclear Information System (INIS)

    We report about software for the beam image analysis at ATF. We developed image analysis software with a Linux computer. It acquire image data from a video and an IEEE1394 digital camera of the analog. (author)

  14. Quantum fluctuations in beam dynamics

    International Nuclear Information System (INIS)

    Quantum effects could become important for particle and photon beams used in high-luminosity and high brightness applications in the current and next generation accelerators and radiation sources. This paper is a review of some of these effects

  15. LHC beam loss pattern recognition

    CERN Document Server

    Marsili, A; Puzo, P

    2011-01-01

    One of the systems protecting CERN’s Large Hadron Collider (LHC) is the Beam Loss Monitoring system (BLM). More than 3600 monitors are installed around the ring. The beam losses are permanently integrated over 12 different time intervals (from 40 microseconds to 84 seconds). When any loss exceeds the thresholds defined for the integration window, the beam is removed from the machine. Understanding the origin of a beam loss is crucial for machine operation, as it can help to avoid a repetition of the same scenario. The signals read from given monitors can be considered as entries of a vector. This article presents how a loss map of unknown cause can be decomposed using vector based analysis derived from well-known loss scenarios. The algorithms achieving this decomposition are described, as well as the accuracy of the results.

  16. Libera Electron Beam Position Processor

    CERN Document Server

    Ursic, Rok

    2005-01-01

    Libera is a product family delivering unprecedented possibilities for either building powerful single station solutions or architecting complex feedback systems in the field of accelerator instrumentation and controls. This paper presents functionality and field performance of its first member, the electron beam position processor. It offers superior performance with multiple measurement channels delivering simultaneously position measurements in digital format with MHz kHz and Hz bandwidths. This all-in-one product, facilitating pulsed and CW measurements, is much more than simply a high performance beam position measuring device delivering micrometer level reproducibility with sub-micrometer resolution. Rich connectivity options and innate processing power make it a powerful feedback building block. By interconnecting multiple Libera electron beam position processors one can build a low-latency high throughput orbit feedback system without adding additional hardware. Libera electron beam position processor ...

  17. Electrostatic beam-position monitor

    CERN Multimedia

    CERN PhotoLab

    1969-01-01

    Electrostatic beam-position monitor installed in its final location (bake-out cover removed). The ISR will contain about 110 of these monitors. Their accuracy is better than 1 mm, their band width about 1 MHz.

  18. Center for Beam Physics, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This report contains the following information on the center for beam physics: Facilities; Organizational Chart; Roster; Profiles of Staff; Affiliates; Center Publications (1991--1993); and 1992 Summary of Activities.

  19. Beam emittance measurements in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Zelenski,A.; Bazilevsky, A.; Bunce, G.; Gill, R.; Huang, H.; Makdisi, Y.; Morozov, B.; Nemesure, S.; Russo, t.; Steski, D.; Sivertz, M.

    2009-05-04

    The RHIC proton polarimeters can operate in scanning mode, giving polarization profiles and transverse beam intensity profile (beam emittance) measurements. The polarimeters function as wire scanners, providing a very good signal/noise ratio and high counting rate. This allows accurate bunch-by-bunch emittance measurements during fast target sweeps (<1 s) through the beam. Very thin carbon strip targets make these measurements practically non-destructive. Bunch by bunch emittance measurements are a powerful tool for machine set-up; in RHIC, individual proton beam transverse emittances can only be measured by CNI polarimeter scans. We discuss the consistency of these measurements with Ionization Profile Monitors (IPMs) and vernier scan luminosity measurements. Absolute accuracy limitations and cross-calibration of different techniques are also discussed.

  20. RIKEN RI Beam Factory project

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Yasushige; Goto, Akira; Katayama, Takeshi [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    The RARF proposes `RIKEN RI Beam Factory` as a next facility-expanding project. The factory makes it the primary aim to provide RI (Radioactive Isotope) beams covering over the whole atomic-mass range with the world-highest intensity in a wide energy range up to several hundreds MeV/nucleon. These RI beams are generated by the fragmentation of high-intensity heavy-ion beams. For the efficient production heavy-ion energies will be boosted up to over 100 MeV/nucleon even for very heavy ions by a K2500-MeV superconducting ring cyclotron serving as a post accelerator of the existing K540-MeV ring cyclotron. A new type of experimental installation called `MUSES` (Multi-USe Experimental Storage rings) will be constructed as well. With MUSES, various types of unique colliding experiments will become possible. (author)

  1. A polarized atomic hydrogen beam

    OpenAIRE

    Chan, N; Crowe, D.M.; Lubell, M. S.; Tang, F.C.; Vasilakis, A.; Mulligan, F. J.; Slevin, J.

    1988-01-01

    We describe the design and operating characteristics of a simple polarized atomic hydrogen beam particularly suitable for applications to crossed beams experiments. In addition to experimental measurements, we present the results of detailed computer models, using Monte-Carlo ray tracing techniques, optical analogs, and phase-space methods, that not only provide us with a confirmation of our measurement, but also allow us to characterize the density, polarization, and atomic fraction of the b...

  2. Equipment for ion beam production

    International Nuclear Information System (INIS)

    An equipment has been designed to extend the scope of control of ion beam flux for an intensive ion beam source used for plasma injection in magnetic vessels. The control equipment is connected to the electromagnet power supply. A consumption regulator is fitted in the operating gas supply to the hollow cathode of the ion source. A circuit is also included for discharge voltage maintenance consisting of a control element and a discharge voltage pick-up. (M.D.). 1 fig

  3. Airy beam optical parametric oscillator.

    Science.gov (United States)

    Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K

    2016-01-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582

  4. Airy beam optical parametric oscillator.

    Science.gov (United States)

    Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K

    2016-05-04

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  5. Airy beam optical parametric oscillator

    Science.gov (United States)

    Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.

    2016-05-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  6. The ELENA Beam Diagnostics Systems

    CERN Document Server

    Tranquille, G

    2013-01-01

    The Extra Low ENergy Antiproton ring (ELENA) to be built at CERN is aimed at substantially increasing the number of antiprotons to the low energy antiproton physics community. It will be a small machine which will decelerate low intensity beams (<4x107) from 5.3 MeV to 100 keV and will be equipped with an electron cooler to avoid beam losses during the deceleration and to significantly reduce beam phase space at extraction. To measure the beam parameters from the extraction point of the Antiproton Decelerator (AD), through the ELENA ring and all the way to the experiments, many systems will be needed to ensure that the desired beam characteristics are obtained. Particular attention needs to be paid to the performance of the electron cooler which depends on reliable instrumentation in order to efficiently cool the antiprotons. This contribution will present the different monitors that have been proposed to measure the various beam parameters as well as some of the developments going on to further improve th...

  7. Electron beam diagnostic for profiling high power beams

    Science.gov (United States)

    Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  8. Diplexer for laser-beam heterodyne receiver

    Science.gov (United States)

    Koepf, G.

    1981-01-01

    Four prism interferometer superposes local oscillator beam on signal beam. Position of movable prism directs incident energy in both beams out one output port. Output port is spatially separated from input ports, and there is no limitation on size of frequency difference between laser beams.

  9. KTeV beam systems design report

    Energy Technology Data Exchange (ETDEWEB)

    Bocean, V.; Childress, S.; Coleman, R. [and others

    1997-09-01

    The primary and secondary beams for the KTeV experiments E799-II and E832 are discussed. The specifications are presented and justified. The technical details of the implementation of the primary beam transport and stability are detailed. The target, beam dump, and radiation safety issues are discussed. The details of the collimation system for the pair of secondary beams are presented.

  10. Electron optics of microlenses with inclined beams

    NARCIS (Netherlands)

    Zhang, Y.; Barth, J.E.; Kruit, P.

    2008-01-01

    For multielectron beam systems with a single electron source, the outside beams need to be collimated before entering the individual microcolumns. As an alternative of the traditional multibeam source design where the broad beam from the source is collimated by a single lens, the broad beam can be f

  11. Beam instrumentation in a multidisciplinary accelerator facility

    NARCIS (Netherlands)

    Schippers, J.M.; Boon, S.N.; Dermois, O.C.; Kiewiet, H.H.

    1998-01-01

    Some recently developed beam diagnostic devices for the beam lines of the AGOR cyclotron are reviewed. The range of applications is from low background nuclear physics experiments at "zero degree" to radiation therapy with proton beams. In particular a method to improve beam quality and the performa

  12. Luminosity Loss due to Beam Distortion and the Beam-Beam Instability

    CERN Document Server

    Wu, Juhao; Raubenheimer, Tor O; Seryi, Andrei; Sramek, Christopher K

    2005-01-01

    In a linear collider, sources of emittance dilution such as transverse wakefields or dispersive errors will couple the vertical phase space to the longitudinal position within the beam (the so-called ‘banana effect'). When the Intersection Point (IP) disruption parameter is large, these beam distortions will be amplified by a single bunch kink instability which will lead to luminosity loss. We study this phenomena both analytically using linear theory and via numerical simulation. In particular, we examine the dependence of the luminosity loss on the wavelength of the beam distortions and the disruption parameter. This analysis may prove useful when optimizing the vertical disruption parameter for luminosity operation with given beam distortions.

  13. Detection of Equipment Faults Before Beam Loss

    CERN Document Server

    Galambos, J

    2016-01-01

    High-power hadron accelerators have strict limits on fractional beam loss. In principle, once a high-quality beam is set up in an acceptable state, beam loss should remain steady. However, in practice, there are many trips in operational machines, owing to excessive beam loss. This paper deals with monitoring equipment health to identify precursor signals that indicate an issue with equipment that will lead to unacceptable beam loss. To this end, a variety of equipment and beam signal measurements are described. In particular, several operational examples from the Spallation Neutron Source (SNS) of deteriorating equipment functionality leading to beam loss are reported.

  14. SYNCHROTRON OSCILLATION DAMPING DUE TO BEAM-BEAM COLLISIONS

    CERN Document Server

    Drago, A; Zobov, M; Shatilov, D

    2010-01-01

    In DAΦNE, the Frascati e+/e- collider, the crab waist collision scheme has been successfully implemented in 2008 and 2009. During the collision operations for Siddharta experiment, an unusual synchrotron damping effect has been observed. Indeed, with the longitudinal feedback switched off, the positron beam becomes unstable with beam currents in the order of 200-300 mA. The longitudinal instability is damped by bringing the positron beam in collision with a high current electron beam (~2A). Besides, we have observed a shift of ≈600Hz in the residual synchrotron sidebands. Precise measurements have been performed by using both a commercial spectrum analyzer and the diagnostics capabilities of the DAΦNE longitudinal bunch-by-bunch feedback. This damping effect has been observed in DAΦNE for the first time during collisions with the crab waist scheme. Our explanation is that beam collisions with a large crossing angle produce a longitudinal tune shift and a longitudinal tune spread, providing Landau damping...

  15. Synchrotron oscillation damping due to beam-beam collisions

    CERN Document Server

    Drago, A; Zobov, M; Shatilov, Dmitry

    2010-01-01

    In DA{\\Phi}NE, the Frascati e+/e- collider, the crab waist collision scheme has been successfully implemented in 2008 and 2009. During the collision operations for Siddharta experiment, an unusual synchrotron damping effect has been observed. Indeed, with the longitudinal feedback switched off, the positron beam becomes unstable with beam currents in the order of 200-300 mA. The longitudinal instability is damped by bringing the positron beam in collision with a high current electron beam (~2A). Besides, we have observed a shift of \\approx 600Hz in the residual synchrotron sidebands. Precise measurements have been performed by using both a commercial spectrum analyzer and the diagnostics capabilities of the DA{\\Phi}NE longitudinal bunch-by-bunch feedback. This damping effect has been observed in DA{\\Phi}NE for the first time during collisions with the crab waist scheme. Our explanation is that beam collisions with a large crossing angle produce a longitudinal tune shift and a longitudinal tune spread, providi...

  16. Requirements of CLIC Beam Loss Monitoring System

    CERN Document Server

    Sapinski, M; Holzer, EB; Jonker, M; Mallows, S; Otto, T; Welsch, C

    2010-01-01

    The Compact Linear Collider (CLIC) [1] is a proposed multi-TeV linear electron-positron collider being designed by a world-wide collaboration. It is based on a novel twobeam acceleration scheme in which two beams (drive and main beam) are placed in parallel to each other and energy is transferred from the drive beam to the main one. Beam losses on either of them can have catastrophic consequences for the machine, because of high intensity (drive beam) or high energy and small emittance (main beam). In the framework of machine protection, a Beam Loss Monitoring (BLM) system has to be put in place. This paper discusses the requirements for the beam loss system in terms of detector sensitivity, resolution, dynamic range and ability to distinguish losses originating from various sources. The two-beam module where the protection from beam losses is particularly challenging and important, is studied.

  17. Induced focusing and conversion of a Gaussian beam into an elliptic Gaussian beam

    Indian Academy of Sciences (India)

    Manoj Mishra; Swapan Konar

    2005-09-01

    We have presented an investigation of the induced focusing in Kerr media of two laser beams, the pump beam and the probe beam, which could be either Gaussian or elliptic Gaussian or a combination of the two. We have used variational formalism to derive relevant beam-width equations. Among several important findings, the finding that a very week probe beam can be guided and focused when power of both beams are well below their individual threshold for self-focusing, is a noteworthy one. It has been found that induced focusing is not possible for laser beams of any wavelength and beam radius. In case both beams are elliptic Gaussian, we have shown that when power of both beams is above a certain threshold value then the effective radius of both beams collapses and collapse distance depends on power. Moreover, it has been found that induced focusing can be employed to convert a circular Gaussian beam into an elliptic Gaussian beam.

  18. Vertical Beam Size Measurement by Streak Camera under Colliding and Single Beam Conditions in KEKB

    CERN Document Server

    Ikeda, Hitomi; Fukuma, Hitoshi; Funakoshi, Yoshihiro; Hiramatsu, Shigenori; Mitsuhashi, Toshiyuki; Ohmi, Kazuhito; Uehara, Sadaharu

    2005-01-01

    Beam behavior of KEKB was studied by measurement of the beam size using a streak camera. Effect of the electron-cloud and the parasitic collision on the vertical beam size was examined in beam collision. We intentionally injected a test bunch of positrons after 2 rf buckets of a bunch to enhance the electron cloud effect and changed electron beam conditions to see the beam-beam effect. The beam size was also measured with a single positron beam and compared with that during collision. The result of the measurement is reported in this paper.

  19. Design of typical glued laminated timber beams

    OpenAIRE

    Domadenik, Žiga

    2015-01-01

    In this graduation thesis, I developed a computer program with the help of Excel's built-in developer. I used the programming language Visual Basics (VBA). The program allows dimensioning of typical laminated timber beams covered by Eurocode 5: Single tapered beam, double tapered beam, curved beam and pitched cambered beam. The program uses simplified expressions of Eurocode 5. The first part of the thesis describes expressions used for dimensioning, the second part describes the ...

  20. Fractal zone plate beam based optical tweezers

    Science.gov (United States)

    Cheng, Shubo; Zhang, Xinyu; Ma, Wenzhuo; Tao, Shaohua

    2016-01-01

    We demonstrate optical manipulation with an optical beam generated by a fractral zone plate (FZP). The experimental results show that the FZP beam can simultaneously trap multiple particles positioned in different focal planes of the FZP beam, owing to the multiple foci and self-reconstruction property of the FZP beam. The FZP beam can also be used to construct three-dimensional optical tweezers for potential applications. PMID:27678305

  1. MTN magnet for the SPS extracted beam.

    CERN Multimedia

    1976-01-01

    This type of dipole magnet was used in the extracted beam lines of the North Area. It shows an opening for three different proton beam lines: a primary extracted proton beam, split by an upstream magnetic beam splitter (see photo 7612017) into three separated beams passes through different parts of its aperture: right, left up, left down. These magnets were designed to be concrete-insulated for radiation resistance. F. Streun stands on the right.

  2. Gaussian-Beam Laser-Resonator Program

    Science.gov (United States)

    Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman

    1989-01-01

    Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).

  3. Non-paraxial Elliptical Gaussian Beam

    Institute of Scientific and Technical Information of China (English)

    WANG Zhaoying; LIN Qiang; NI Jie

    2001-01-01

    By using the methods of Hertz vector and angular spectrum transormation, the exact solution of non-paraxial elliptical Gaussion beam with general astigmatism based on Maxwell′s equations is obtained. We discussed its propagation characteristics. The results show that the orientation of the elliptical beam spot changes continuously as the beam propagates through isotropic media. Splitting or coupling of beam spots may occur for different initial spot size. This is very different from that of paraxial elliptical Gaussian beam.

  4. Calibration of waveguide beam position monitors

    CERN Document Server

    Kamps, T

    2000-01-01

    To ensure overlap between the photon beam and electron beam at the SASE-FEL at the TESLA Test Facility, several position-sensitive diagnostics components are installed along the beamline of the FEL. For the undulator part, a new type of waveguide beam position monitors (BPMs) is designed, tested, and installed inside the beam pipe of one undulator module. This paper proposes a method to calibrate these monitors with beam-based measurements

  5. Laguerre-Gauss beams versus Bessel beams showdown: peer comparison.

    Science.gov (United States)

    Mendoza-Hernández, Job; Arroyo-Carrasco, Maximino Luis; Iturbe-Castillo, Marcelo David; Chávez-Cerda, Sabino

    2015-08-15

    We present for the first time a comparison under similar circumstances between Laguerre-Gauss beams (LGBs) and Bessel beams (BB), and show that the former can be a better option for many applications in which BBs are currently used. By solving the Laguerre-Gauss differential equation in the asymptotic limit of a large radial index, we find the parameters to perform a peer comparison, showing that LGBs can propagate quasi-nondiffracting beams within the same region of space where the corresponding BBs do. We also demonstrate that LGBs, which have the property of self-healing, are more robust in the sense that they can propagate further than BBs under similar initial conditions. PMID:26274648

  6. Beam Impedance Studies of the PS Beam Gas Ionization Monitor

    CERN Document Server

    Avgidis, Fotios

    2016-01-01

    The Beam Gas Ionization monitor (BGI) is a device for continuous beam size monitoring that is intended to be installed in the CERN Proton Synchrotron (PS) during the extended year-end technical stop from December 2016 to April 2017. With the objective of determining the impedance contribution of the BGI vacuum chamber to the overall beam impedance, we report on RF measurements on the device in a laboratory frame, measurement data analysis, and RF simulations of the structure under investigation. For the impedance contribution characterization of the BGI, the following approach has been followed: First, the EM fields inside a simplified BGI model that doesn’t include any of the internal components of the vacuum chamber have been simulated. RF measurements have been performed on the same empty structure showing great agreement between measurement and simulation and thus verifying the validity of the model. Second, simulations have been executed on a fully assembled BGI model that includes all the internal ele...

  7. Broad beam and narrow beam attenuation in Lipowitz's metal.

    Science.gov (United States)

    el-Khatib, E E; Podgorsak, E B; Pla, C

    1987-01-01

    Attenuation properties of Lipowitz's metal have been studied for narrow and broad beams of cobalt-60 gamma rays and 4-10 MV x-rays. The measured transmitted fraction for geometries used in radiotherapy depends on the field size and depth of measurement. Therefore a calculation of dose for partially attenuated beams based on narrow beam attenuation coefficients can cause large errors in dosimetry. Our simple calculation of transmitted fractions based on primary attenuation and scattered radiation agrees quite well with the measured data for therapeutic geometries. Also given is a table for linear, mass attenuation, and mass energy absorption coefficients of Lipowitz's metal in the photon energy range from 10 keV to 10 MeV. PMID:3104738

  8. Beam Measurements in Storage Rings

    Science.gov (United States)

    Hofmann, Albert

    1996-05-01

    Beam measurements in storage rings are made to diagnose performance limitations and to gain knowledge of the beam behavior in view of improvements and to the benefit for other machines. In beam optics the measurement of the orbit or the trajectory with beam position monitors distributed around the ring reveals deflection errors. The overall focusing is checked by measuring the betatron frequency (tune) using a pulse or continuous excitation of the oscillation. Observing this oscillation with all the beam position monitors around the ring the beta function and the betatron phase advance are obtained. This measurement done for different momenta, i.e. RF-frequencies, gives the local chromaticity and its correction. The tune dependence on quadrupole strength gives the value of the local beta function. Synchrotron radiation is a powerful diagnostics tool and can give the beam cross section. Beam instabilities are investigated with similar methods. The growth or damping rates and frequencies of betatron and synchrotron oscillations, observed as a function of intensity, give a convolution of the resistive and reactive part of the transverse and longitudinal impedance with the spectrum of the oscillation mode. Coupled bunch instabilities are caused by narrow band impedances at particular frequencies while single traversal effects, including energy loss and bunch lengthening, are due to a broad band impedance. A model of the impedance can be constructed from such measurements done with different bunch lengths, tunes and other parameters. In some cases the element causing an instability can be identified. The dependence of the orbit and phase advance around the ring on intensity can give the location of impedances. To probe the impedance at very high frequencies the effects on very short bunches or the energy loss of a continuous beam due to its Schottky noise are measured. The beam energy, usually known from magnetic measurements, can be obtained directly with high

  9. Electron beam ion source and electron beam ion trap (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Reinard [Scientific Software Service, Kapellenweg 2a, D-63571 Gelnhausen (Germany); Kester, Oliver [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  10. Nonlinear Localized Coherent Spectrum of Beam-Beam Interactions

    CERN Document Server

    Fedorova, A N; Fedorova, Antonina N.; Zeitlin, Michael G.

    2002-01-01

    We consider modeling for strong-strong beam-beam interactions beyond preceding linearized/perturbative methods such as soft gaussian approximation or FMM (HFMM) etc. In our approach discrete coherent modes, discovered before, and possible incoherent oscillations appear as a result of multiresolution/multiscale fast convergent decomposition in the bases of high-localized exact nonlinear modes represented by wavelets or wavelet packets functions. The constructed solutions represent the full multiscale spectrum in all internal hidden scales from slow to fast oscillating eigenmodes. Underlying variational method provides algebraical control of the spectrum.

  11. METHOD OF ELECTRON BEAM PROCESSING

    DEFF Research Database (Denmark)

    2003-01-01

    As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which is the o......As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which...... is the option of welding workpieces of large thicknesses. Therefore the idea is to guide the electron beam (2) to the workpiece via a hollow wire, said wire thereby acting as a prolongation of the vacuum chamber (4) down to workpiece. Thus, a workpiece need not be placed inside the vacuum chamber, thereby...... exploiting the potential of electron beam processing to a greater degree than previously possible, for example by means of electron beam welding...

  12. Low voltage electron beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Masafumi [Iwasaki Electric Co., Ltd., Tokyo (Japan)

    2003-02-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  13. Triple ion beam irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M.B.; Allen, W.R.; Buhl, R.A.; Packan, N.H.; Cook, S.W.; Mansur, L.K.

    1988-12-01

    A unique ion irradiation facility consisting of three accelerators is described. The accelerators can be operated simultaneously to deliver three ion beams on one target sample. The energy ranges of the ions are 50 to 400 keV, 200 keV to 2.5 MeV, and 1.0 to 5.0 MeV. Three different ions in the appropriate mass range can be simultaneously implanted to the same depth in a target specimen as large as 100 mm/sup 2/ in area. Typical depth ranges are 0.1 to 1.0 ..mu..m. The X-Y profiles of all three ion beams are measured by a system of miniature Faraday cups. The low-voltage accelerator can periodically ramp the ion beam energy during the implantation. Three different types of target chambers are in use at this facility. The triple-beam high-vacuum chamber can hold nine transmission electron microscopy specimens at elevated temperature during a irradiation by the three simultaneous beams. A second high-vacuum chamber on the medium-voltage accelerator beamline houses a low- and high-temperature translator and a two-axis goniometer for ion channeling measurements. The third chamber on the high-energy beamline can be gas-filled for special stressed specimen irradiations. Special applications for the surface modification of materials with this facility are described. Appendixes containing operating procedures are also included. 18 refs., 27 figs., 1 tab.

  14. Triple ion beam irradiation facility

    International Nuclear Information System (INIS)

    A unique ion irradiation facility consisting of three accelerators is described. The accelerators can be operated simultaneously to deliver three ion beams on one target sample. The energy ranges of the ions are 50 to 400 keV, 200 keV to 2.5 MeV, and 1.0 to 5.0 MeV. Three different ions in the appropriate mass range can be simultaneously implanted to the same depth in a target specimen as large as 100 mm2 in area. Typical depth ranges are 0.1 to 1.0 μm. The X-Y profiles of all three ion beams are measured by a system of miniature Faraday cups. The low-voltage accelerator can periodically ramp the ion beam energy during the implantation. Three different types of target chambers are in use at this facility. The triple-beam high-vacuum chamber can hold nine transmission electron microscopy specimens at elevated temperature during a irradiation by the three simultaneous beams. A second high-vacuum chamber on the medium-voltage accelerator beamline houses a low- and high-temperature translator and a two-axis goniometer for ion channeling measurements. The third chamber on the high-energy beamline can be gas-filled for special stressed specimen irradiations. Special applications for the surface modification of materials with this facility are described. Appendixes containing operating procedures are also included. 18 refs., 27 figs., 1 tab

  15. COMPASS measurements with hadron beams

    International Nuclear Information System (INIS)

    Muon and hadron beams from the CERN Super Proton Synchrotron are used in the COMPASS experiment for high-energy scattering reactions off fixed targets, aiming at measurements of non-perturbative aspects of quantum chromodynamics. With pion beams, the meson spectrum can be examined via diffractive dissociation, where the existence of hybrid or exotic states is a much discussed issue. The double-diffractive process of central production, which can be measured also with a proton beam, is a promising approach for the search for glueballs. At extremely small momentum transfer, electromagnetic processes are accessible via the Primakoff effect and aim at the determination of QCD low energy constants as the pion polarisability and the chiral anomaly. The muon program, focused on deep inelastic scattering, took place in the years 2002 to 2007. During this time, in autumn 2004, also a first pilot run with a pion beam was taken with the focus on diffractive and Primakoff measurements. Preliminary results and conclusions are presented. Data taking with a pion beam was resumed in 2008, where large statistics for diffractive scattering was collected. First insights, also in view of the findings of previous experiments, are presented, as well as the planning for continuation of data taking in 2009.

  16. Electron beam pumped semiconductor laser

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  17. Active beam spectroscopy for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Von Hellermann, M.; Giroud, C.; Jaspers, R. [Association Euratom-Fom, FOM Institute for Plasma Physics Rijnhuizen, Trilateral Euregio Cluster (Netherlands); Hawkes, N.C.; Mullane, M.O.; Zastrow, K.D. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Krasilnikov, A.; Tugarinov, S. [SRC RF TRINITI, Troitsk, Moscow region (Russian Federation); Lotte, P. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; McKee, G. [Wisconsin Univ., Madison, WI (United States); Malaquias, A. [Associacao EURATOM/IST, Instituto Superior Tecnico, Lisboa (Portugal); Rachlew, E. [Kungliga Tekniska Hoegskolan (KTH), Stockholm(Sweden)

    2003-07-01

    The latest status of 'Active Beam' related spectroscopy aspects as part of the ITER diagnostic scenario is presented. A key issue of the proposed scheme is based on the concept that in order to achieve the ultimate goal of global data consistency, all particles involved, that is, intrinsic and seeded impurity ions as well as helium ash ions and bulk plasma ions and also the plasma background data (e.g. magnetic and electric fields, electron density and temperature profiles) need to be addressed. A further sensible step in this direction is the decision of exploiting both a dedicated low-energy, low-power diagnostic beam (DNB, 2.2 MW 100 keV/amu) as well as the high-power, high-energy heating beams (HNB, 17 MW 500 keV/amu) for maximum diagnostic information. The authors report some new aspects referring to the use of DNB for motional Stark effect (MSE) where the main idea is to treat both beams (HNB and DNB) as potential diagnostic tools with complementary roles. The equatorial ports for the DNB promise excellent spatial resolution, however, the angles are less favourable for a polarimetric MSE exploitation. HNB can be used as probe beam for diagnosing slowing-down fusion alpha with a birth energy of 3,5 MeV.

  18. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  19. Physics Opportunities with Meson Beams

    CERN Document Server

    Briscoe, William J; Haberzettl, Helmut; Manley, D Mark; Naruki, Megumi; Strakovsky, Igor I; Swanson, Eric S

    2015-01-01

    Over the past two decades, meson photo- and electro-production data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even nonexistent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.

  20. Mycosis fungoides. Electron beam therapy.

    Science.gov (United States)

    Spittle, M F

    1977-01-01

    The most effective treatment of late mycosis fungoides is total skin electron beam therapy. The beam at the Hammersmith Hospital in London has been adapted to treat these patients. Patients with advanced disease who have failed more conservative methods of treatment are irradiated. The electron beam is modified by the use of carbon and copper scatterers to produce an 80 percent depth dose at 5.5, 8 and 11.5 millimeters below the skin surface. The dose achieved in most patients is between 1500 rads and 2600 rads given in 10 to 13 treatments over 5-7 weeks. Recently the higher dose range has been employed and lithium flouride studies have shown that giving these doses from each of 4 fields, the dose achieved on the skin is approximately twice the given dose. The management of patients and the effects of treatment are discussed.

  1. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERAp beam-loss-monitor system

    Science.gov (United States)

    Wittenburg, Kay

    1994-06-01

    The beam-loss-monitors (BLMs) in the HERA-proton-ring (HERAp) must fulfill the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System.

  2. Antiproton source beam position system

    International Nuclear Information System (INIS)

    The TeV I Beam Position Monitor (BPM) system is designed to provide a useful diagnostic tool during the commissioning and operational phases of the antiproton source. Simply stated the design goal is to provide single turn position information for intensities of > 1x109 particles, and multi-turn (clocked orbit) information for beam intensities of > 1x107 particles, both with sub-millimeter resolution. It is anticipated that the system will be used during commissioning for establishing the first turn through the Debuncher and Accumulator, for aligning injection orbits, for providing information necessary to correct closed orbits, and for measuring various machine parameters (e.g. tunes, dispersion, aperture, chromaticity). During normal antiproton operation the system will be used to monitor the beam position throughout the accumulation process

  3. Beam Cleaning and Collimation Systems

    CERN Document Server

    Redaelli, S

    2016-01-01

    Collimation systems in particle accelerators are designed to dispose of unavoidable losses safely and efficiently during beam operation. Different roles are required for different types of accelerator. The present state of the art in beam collimation is exemplified in high-intensity, high-energy superconducting hadron colliders, like the CERN Large Hadron Collider (LHC), where stored beam energies reach levels up to several orders of magnitude higher than the tiny energies required to quench cold magnets. Collimation systems are essential systems for the daily operation of these modern machines. In this document, the design of a multistage collimation system is reviewed, taking the LHC as an example case study. In this case, unprecedented cleaning performance has been achieved, together with a system complexity comparable to no other accelerator. Aspects related to collimator design and operational challenges of large collimation systems are also addressed.

  4. Active beam spectroscopy for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hellermann, M.G. von, E-mail: mgvh@jet.u [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Barnsley, R. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Biel, W. [Institut fuer Energieforschung, Plasmaphysik, Forschungszentrum Juelich, Euratom Association, 52425 Juelich (Germany); Delabie, E. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Hawkes, N. [Culham Centre for Fusion Energy, Euratom Association, Culham OX14 3DB (United Kingdom); Jaspers, R. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Johnson, D. [Princeton Plasma Physics Laboratory, Princeton, NJ-08548 (United States); Klinkhamer, F. [TNO Science and Industry, Stieltjesweg 1, 2628CK Delft (Netherlands); Lischtschenko, O. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Marchuk, O. [Institut fuer Energieforschung, Plasmaphysik, Forschungszentrum Juelich, Euratom Association, 52425 Juelich (Germany); Schunke, B. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Singh, M.J. [Institute for Plasma Research, Bhat, Gandhinagar, Gurajat 384828 (India); Snijders, B. [TNO Science and Industry, Stieltjesweg 1, 2628CK Delft (Netherlands); Summers, H.P. [Culham Centre for Fusion Energy, Euratom Association, Culham OX14 3DB (United Kingdom); Thomas, D. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Tugarinov, S. [TRINITI Troitsk, Moscow Region 142092 (Russian Federation); Vasu, P. [Institute for Plasma Research, Bhat, Gandhinagar, Gurajat 384828 (India)

    2010-11-11

    Since the first feasibility studies of active beam spectroscopy on ITER in 1995 the proposed diagnostic has developed into a well advanced and mature system. Substantial progress has been achieved on the physics side including comprehensive performance studies based on an advanced predictive code, which simulates active and passive features of the expected spectral ranges. The simulation has enabled detailed specifications for an optimized instrumentation and has helped to specify suitable diagnostic neutral beam parameters. Four ITER partners share presently the task of developing a suite of ITER active beam diagnostics, which make use of the two 0.5 MeV/amu 18 MW heating neutral beams and a dedicated 0.1 MeV/amu, 3.6 MW diagnostic neutral beam. The IN ITER team is responsible for the DNB development and also for beam physics related aspects of the diagnostic. The RF will be responsible for edge CXRS system covering the outer region of the plasma (1>r/a>0.4) using an equatorial observation port, and the EU will develop the core CXRS system for the very core (0

  5. Status of Design of PEFP Beam Lines

    Energy Technology Data Exchange (ETDEWEB)

    Park, Bum Sik; Cho, Yong Sub; Kwon, Hyeok Jung; Jang, Ji Ho; Hong, In Seok; Kim, Han Sung; Yun, Sang Pil; Lee, Hwa Ryun; Kim, Kye Ryung; Choi, Byung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    PEFP(Proton Engineering Frontier Project) is developing a high current 100MeV proton linear accelerator. 20MeV and 100MeV proton beam lines are also under development for beam applications. 10 beam lines will be developed to support various purposes. Two kind of proton beam energy will be transported to 2 beamlines for industrial applications and 3 beamlines for various researches. The characteristic design scheme of PEFP beam lines is the application of a programmable AC magnet. Beam distribution to 3 research beam lines will be conducted sequentially to increase the operation efficiency by using it. To provide flexibility of the irradiation conditions, each beam line is designed to have specific beam parameters. The development of beamline components, including magnets, is conducted in parallel. The details will be reported.

  6. Status of Design of PEFP Beam Lines

    International Nuclear Information System (INIS)

    PEFP(Proton Engineering Frontier Project) is developing a high current 100MeV proton linear accelerator. 20MeV and 100MeV proton beam lines are also under development for beam applications. 10 beam lines will be developed to support various purposes. Two kind of proton beam energy will be transported to 2 beamlines for industrial applications and 3 beamlines for various researches. The characteristic design scheme of PEFP beam lines is the application of a programmable AC magnet. Beam distribution to 3 research beam lines will be conducted sequentially to increase the operation efficiency by using it. To provide flexibility of the irradiation conditions, each beam line is designed to have specific beam parameters. The development of beamline components, including magnets, is conducted in parallel. The details will be reported

  7. Simulation and Experimental Studies on Composite Beams

    Directory of Open Access Journals (Sweden)

    M. Abhinay

    2014-09-01

    Full Text Available A composite beam a one dimensional structure or a rod all of them are sectional dimensions in which width and height are much smaller in comparison to the structure. In structural applications longer beams are more frequently used. In this work a composite beam is manufactured with glass and epoxy combination. And stress analysis is carried out using derived analytical expressions. This research work carried out will enable to determine the beam strength due to bending loads. The importance of fiber reinforcement in the manufacturing of the beam is studied in terms of bending strength of the beam. Mat lab codes are generated to implement analytical equations of the composite beam. The analytical results are validated by performing experiments on composite beams. In this investigation, two different composite beams have been tested and compared the experimental results with the analytical results.

  8. Development of proton beam monitoring devices

    International Nuclear Information System (INIS)

    We develop an 1 channel ionization chamber for beam monitoring system of KOMAC 20/100 MeV proton accelerator with a crystal scintillator, and try to make Multi Functional detectors, which can cover wide range of proton current. After the development, it is possible to provide the beam information to KOMAC beam users. We also develop a fast neutron detector system to detect the proton recoil by the neutron in the beam line. This system can provide the neutron dose information to beam user for safety. The followings are our major study 1) Beam profile and energy monitoring by using scintillators 2) Development of 32 channel Charge integration Embedded DAQ board 3) 1 channel gas scintillation detector for pulse beam monitoring 4) Development of fast neutron detector. Results Our major achievements are as follows ; 1) XY distribution scanning of proton beam by using LYSO crystal scintillator, 2) Development of a 32 channel Charge integration Embedded DAQ board and test it on beam line, 3) Development of 1 channel gas scintillation detector for pulse beam monitoring and test at KOMAC beam line. 4) Development of fast neutron detectors such as liquid scintillator and stilbene and measured neutron at beam line. The most important achievements of this research are ; 1) We measured the timing structure of proton beam by using 1 ch gas scintillation detector, and 2) it was possible to scanning the XY distribution of proton beam at real time

  9. Diagnosing light ion beam diodes

    International Nuclear Information System (INIS)

    This lecture begins with a discussion of diagnostics in ion-beam diodes. This will include electromagnetic measurements, measurements of the electron cloud, and measurements of anode plasmas. A few minutes will be spent on diagnostics of distributed ion sources required for one class of ion diodes, the plasma-filled versions, which require high-density, highly ionized sources of very uniform plasma. The measurements of the beam characteristics will then be discussed. This will be broken into two regions; the region near the diode where diagnostics are generally extensions of those used in other fields; and the region near focus where new diagnostics have been developed

  10. Advanced neutral-beam technology

    International Nuclear Information System (INIS)

    Extensive development will be required to achieve the 50- to 75-MW, 175- to 200-keV, 5- to 10-sec pulses of deuterium atoms envisioned for ETF and INTOR. Multi-megawatt injector systems are large (and expansive); they consist of large vacuum tanks with many square meters of cryogenic pumping panels, beam dumps capable of dissipating several megawatts of un-neutralized beam, bending magnets, electrical power systems capable of fast turnoff with low (capacity) stored energy, and, of course, the injector modules (ion sources and accelerators). The technology requirements associated with these components are described

  11. Quantized beam shifts in graphene

    Energy Technology Data Exchange (ETDEWEB)

    de Melo Kort-Kamp, Wilton Junior [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinitsyn, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego Alejandro Roberto [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-08

    We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant α, while the Goos-Hanchen ones in multiples of α2. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  12. Stochastic cooling of bunched beams

    International Nuclear Information System (INIS)

    Numerical simulation studies are presented for transverse and longitudinal stochastic cooling of bunched particle beams. Radio frequency buckets of various shapes (e.g. rectangular, parabolic well, single sinusoidal waveform) are used to investigate the enhancement of phase space cooling by nonlinearities of synchrotron motion. The connection between the notions of Landau damping for instabilities and mixing for stochastic cooling are discussed. In particular, the need for synchrotron frequency spread for both Landau damping and good mixing is seen to be comparable for bunched beams

  13. Getting ready for SPS beam

    CERN Multimedia

    1977-01-01

    View from downstream of the WA7 experiment along beam H1B. In the foreground are scintillator hodoscopes and immediately behind them, is a threshold Cerenkov counter, standing on its edge. The WA7 control hut is located on the right, over the concrete shielding blocks. Still more right, the other branch of the H1 beam, E1A/H1A, runs towards the Omega Facility. WA7 by the CERN-Genoa-LAPP, Annecy-Niels Bohr Institute, Copenhagen-Oslo, University College, London Collaboration was meant to study two-body reactions at large transverse momentum.

  14. High brightness beams and applications

    International Nuclear Information System (INIS)

    This paper describes the present research on attaining intense bright electron beams. Thermionic systems are briefly covered. Recent and past results from the photoinjector programs are given. The performance advantages and difficulties presently faced by researchers using photoinjectors is discussed. The progress that has been made in photocathode materials, both in lifetime and quantum efficiency, is covered. Finally, a discussion of emittance measurements of photoinjector systems and how the measurement is complicated by the non-thermal nature of the electron beam is presented

  15. Low intensity beam target unit

    CERN Multimedia

    1976-01-01

    This is a wheel fitted with many targets around its periphery (each with three longitudinally arranged thin rods) of which one is placed into the beam via a rotation of the wheel. Upstream of each target is placed a luminescent screen, aligbed on each target axis and viewed with a TV camera, to make sure that one is hitting the target. This target unit was probably used to study target's behaviour (like beam heating). Gualtiero Del Torre stands on the left, Pierre Gerdil on the right.

  16. Free Vibration Analysis for Cracked FGM Beams by Means of a Continuous Beam Model

    OpenAIRE

    E Chuan Yang; Xiang Zhao; Ying Hui Li

    2015-01-01

    Based on Euler-Bernoulli beam theory and a continuous stiffness beam model, the free vibration of rectangular-section beams made of functionally graded materials (FGMs) containing open edge cracks is studied. Assuming the material gradients follow exponential distribution along beam thickness direction, the conversion relation between the vibration governing equations of a FGM beam and that of an isotropic homogenous beam is deduced. A continuous function is used to characterize the bending s...

  17. Beam Coupling Impedances of Obstacles Protruding into Beam Pipe

    CERN Document Server

    Kurennoy, S S

    1997-01-01

    The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle. Formulas for a few important particular cases are presented which allow simple practical estimates of the broad-band impedance contributions from such discontinuities.

  18. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    CERN Document Server

    Stancari, Giulio

    2014-01-01

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compens...

  19. Preliminary Results of Ion Beam Extraction Tests on EAST Neutral Beam Injector

    Institute of Scientific and Technical Information of China (English)

    胡纯栋

    2012-01-01

    The neutral beam injection (NBI) system is one of the most important auxiliary plasma heating and current driving methods for fusion device. A high power ion beam of 3 MW with 80 keV beam energy in 0.5 s beam duration and a long pulse ion beam of 4 s with 50 keV beam energy ion beam extraction were achieved on the EAST neutral beam injector on the teststand. The preliminary results show that the EAST-NBI system was developed successfully on schedule.

  20. Definition and measurement of the beam propagation factor M2 for chromatic laser beams

    Institute of Scientific and Technical Information of China (English)

    Tao Fang; Xin Ye; Jinfu Niu; Jianqiu Xu

    2006-01-01

    The concept of the beam propagation factor M2 is extended for chromatic laser beams. The definition of the beam propagation factor can be generalized with the weighted effective wavelength. Using the new definition of factor M2, the propagation of chromatic beams can be analyzed by the beam propagation factor M2 as same as that of monochromatic beams. A simple method to measure the chromatic beam factor M2 is demonstrated. The chromatic factor M2 is found invariable while the laser beam propagates through the dispersion-free ABCD system.

  1. Transverse beam shape measurements of intense proton beams using optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  2. Vectorial rotating vortex Hankel laser beams

    Science.gov (United States)

    Kotlyar, Victor V.; Kovalev, Alexey A.; Soifer, Victor A.

    2016-09-01

    We propose a generalization of spherical waves in the form of linearly polarized beams with embedded optical vortices. The source of these beams is an infinitely narrow light ring with an infinitely small radius. These vectorial beams are obtained based on scalar Hankel beams discovered by the authors recently. We have derived explicit relations for complex amplitudes of all six components of vectorial vortex Hankel beams. A closed analytical expression for the axial projection of the orbital angular momentum density in far field has been obtained. We also showed that the intensity distribution of the electric vector rotates by 90 degrees upon the beam propagation in near field.

  3. Analytical estimation of ATF beam halo distribution

    CERN Document Server

    Wang, Dou; Yokoya, Kaoru; Gao, Jie

    2013-01-01

    In order to study the background status in the ATF2 beam line and the interaction point (IP), this paper developed an analytical method to give the estimation of ATF beam halo distribution based on K. Hirata and K. Yokoya's theory. The equilibrium particle distribution of beam tail in ATF damping ring, when each electron is being affected by, in addition to the synchrotron radiation damping effects, several stochastic processes, such as beam-gas scattring, beam-gas bremsstrahlung and intra-beam scattering, was presented. This method is common and can be applied on other electron rings.

  4. ORNL positive ion neutral beam program

    International Nuclear Information System (INIS)

    The neutral beam group at Oak Ridge National Laboratory has constructed neutral beam generators for the ORMAK and PLT devices, is presently constructing neutral beam devices for the ISX and PDX devices, and is contemplating the construction of neutral beam systems for the advanced TNS device. These neutral beam devices stem from the pioneering work on ion sources of G. G. Kelley and O. B. Morgan. We describe the ion sources under development at this Laboratory, the beam optics exhibited by these sources, as well as some theoretical considerations, and finally the remainder of the beamline design

  5. Laser-Beam-Alignment Controller

    Science.gov (United States)

    Krasowski, M. J.; Dickens, D. E.

    1995-01-01

    In laser-beam-alignment controller, images from video camera compared to reference patterns by fuzzy-logic pattern comparator. Results processed by fuzzy-logic microcontroller, which sends control signals to motor driver adjusting lens and pinhole in spatial filter.

  6. Digitally compensated beam current transformer

    CERN Document Server

    Kesselman, Martin

    2005-01-01

    The Spallation Neutron Source (SNS) is being built by a collaboration of six laboratories. Beam current monitors (BCMs) will be used to record the current of H-minus and H-plus beams ranging from 15 mA (tune-up in the Front End and Linac) to over 60A fully accumulated in the Ring and dumped to the load as a single pulse in the Ring to Beam Target (RTBT). The time structure of these beams ranges from 645ns "mini" bunches at the 1.05 MHz ring revolution rate, to an overall 1 ms long macro-pulse. The requirements for the BCMs will depend upon their location within the system. The need to measure individual mini-pulses, examine the characteristics of the chopper edge, as well as the longer average current pulse of the macropulse, or long duration pulses during Linac tuning place wide requirements upon the response of current transformers. To obtain the desired accuracy and resolution, current transformers must have less than 1 ns rise time and droops of 0.1 %/ms. This places a significant design burden on the cur...

  7. LHC Report: Freshly squeezed beams!

    CERN Multimedia

    Mike Lamont for the LHC Team

    2011-01-01

    After careful validation of  new machine settings, the LHC was ready for higher luminosity operation. New luminosity records have been set, but the operations team continues to wrestle with machine availability issues.   The commissioning of the squeeze to a ß* of 1 m in ATLAS and CMS described in the last Bulletin took until Wednesday, 7 September to complete. In order to validate the new set-up, beam losses were provoked in a controlled way with low intensity beams. The distribution of beam loss around the machine in these tests is known as a loss map. The loss maps showed that the collimation system is catching the large majority of beam losses as it should, and that the machine was ready for us to ramp the number of bunches back up and go to physics production. The ramp-up of the number of bunches went smoothly with fills at 264, 480, and 912 bunches on the way back to the machine’s previous record of 1380 bunches (first fill on Friday, 9 Se...

  8. Quasiclassical Calculations in Beam Dynamics

    CERN Document Server

    Fedorova, A N; Fedorova, Antonina N.; Zeitlin, Michael G.

    2000-01-01

    We present some applications of general harmonic/wavelet analysis approach (generalized coherent states, wavelet packets) to numerical/analytical calculations in (nonlinear) quasiclassical/quantum beam dynamics problems. (Naive) deformation quantization, multiresolution representations and Wigner transform are the key points.

  9. Treatment Plans for Antiproton Beams

    DEFF Research Database (Denmark)

    Holzscheiter, Michael; Bassler, Niels; Herrmann, Rochus;

    Antiprotons have been proposed as potential modality for particle beam cancer therapy by Gray and Kalogeropoulos in 1985. This proposal was based on the enhancement of physical dose deposition near the end of range due to the annihilation of antiprotons when captured by a nucleus and the expectat...

  10. Focused ion beams in biology.

    Science.gov (United States)

    Narayan, Kedar; Subramaniam, Sriram

    2015-11-01

    A quiet revolution is under way in technologies used for nanoscale cellular imaging. Focused ion beams, previously restricted to the materials sciences and semiconductor fields, are rapidly becoming powerful tools for ultrastructural imaging of biological samples. Cell and tissue architecture, as preserved in plastic-embedded resin or in plunge-frozen form, can be investigated in three dimensions by scanning electron microscopy imaging of freshly created surfaces that result from the progressive removal of material using a focused ion beam. The focused ion beam can also be used as a sculpting tool to create specific specimen shapes such as lamellae or needles that can be analyzed further by transmission electron microscopy or by methods that probe chemical composition. Here we provide an in-depth primer to the application of focused ion beams in biology, including a guide to the practical aspects of using the technology, as well as selected examples of its contribution to the generation of new insights into subcellular architecture and mechanisms underlying host-pathogen interactions.

  11. CERN fires up neutrino beams

    CERN Multimedia

    2006-01-01

    "CERN has switched on a new neutrino beam, aimed through the earth to the INFN Gran Sasso Laboratories some 730km away near Rome. This is the latest additin to a global endeavour to understand this most elusive of particles and unlock the secrest it carries about the origins and evolution of our Universe." (2 pages)

  12. Active beam spectroscopy for ITER

    NARCIS (Netherlands)

    Hellermann, M.G. von; Barnsley, R.; Biel, W.; Delabie, E.; Hawkes, N.; Jaspers, R.; Johnson, D.; Klinkhamer, J.F.F.; Lischtschenko, O.; Marchuk, O.; Schunke, B.; Singh, M.J.; Snijders, B.; Summers, H.P.; Thomas, D.; Tugarinov, S.; Vasu, P.

    2010-01-01

    Since the first feasibility studies of active beam spectroscopy on ITER in 1995 the proposed diagnostic has developed into a well advanced and mature system. Substantial progress has been achieved on the physics side including comprehensive performance studies based on an advanced predictive code, w

  13. History of the polarized beam

    International Nuclear Information System (INIS)

    In 1973, the first high energy polarized proton beam was developed at the Argonne Zero Gradient Synchrotron (ZGS). It operated very successfully and productively until 1979 when the ZGS was shut down permanently. This report describes the development, characteristics, and operations of this facility

  14. Relativistic atomic beam spectroscopy II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    We are requesting support for a postdoctoral person to participate in H{sup -} studies at Los Alamos. In addition, we are requesting funding for a state-of-the-art YAG laser system that would allow us to obtain data at three times our present rate with improved beam quality.

  15. Three Beam Interfering Pressure Gauge①

    Institute of Scientific and Technical Information of China (English)

    WUZhaoxia; TANGXuhui; 等

    1997-01-01

    In order to solve the problem of high precision,complete electric insulating detection of the pressure measuring system,we have developed the three-beam interferometer.In this paper,the operation principle,structure of the system and measuring results are given.

  16. Timber-concrete composite beams

    NARCIS (Netherlands)

    Van der Linden, M.L.R.

    1999-01-01

    In this paper an easy-to-use design model for timber-concrete composite beams is discussed. The model is applicable for computer simulations as well as for hand calculations. A research programme was started in 1992 in co-operation with the University of Karlsruhe, to study the loadbearing capacitie

  17. Beam Interlocks for LHC and SPS

    CERN Document Server

    Dinius, A; Gimeno-Vicente, J; Nouchi, P; Puccio, B; Schmidt, R; Wenninger, J

    2003-01-01

    The Large Hadron Collider at CERN (LHC) will operate at 7 TeV/c with a luminosity of 10 cms. This requires two beams with about 3^10 protons/beam, corresponding to a stored energy of about 350 MJ, sufficient to heat and melt 500 kg of copper. Protection of equipment from damage in case of uncontrolled beam losses is challenging. Injection of the beam from the SPS to the LHC could already damage equipment and is only permitted when all LHC systems are correctly prepared. In case of an uncontrolled loss of the circulating LHC beams, it is required to extract the beams into a specially designed target as soon as possible. Beam loss monitors and equipment for hardware surveillance are distributed around the 26 km long accelerator. In case of failures or beam losses, the beam interlock system is informed and sends a dump request to the beam dumping system. The beam interlock system also inhibits injection when the LHC is not ready for beam. In this paper the requirements for the beam interlock system are discussed...

  18. Infrared imaging diagnostics for INTF ion beam

    Science.gov (United States)

    Sudhir, D.; Bandyopadhyay, M.; Pandey, R.; Joshi, J.; Yadav, A.; Rotti, C.; Bhuyan, M.; Bansal, G.; Soni, J.; Tyagi, H.; Pandya, K.; Chakraborty, A.

    2015-04-01

    In India, testing facility named INTF [1] (Indian test facility) is being built in Institute for Plasma Research to characterize ITER-Diagnostic Neutral Beam (DNB). INTF is expected to deliver 60A negative hydrogen ion beam current of energy 100keV. The beam will be operated with 5Hz modulation having 3s ON/20s OFF duty cycle. To characterize the beam parameters several diagnostics are at different stages of design and development. One of them will be a beam dump, made of carbon fiber composite (CFC) plates placed perpendicular to the beam direction at a distance lm approximately. The beam dump needs to handle ˜ 6MW of beam power with peak power density ˜ 38.5MW/m2. The diagnostic is based on thermal (infra-red - IR) imaging of the footprint of the 1280 beamlets falling on the beam dump using four IR cameras from the rear side of the dump. The beam dump will be able to measure beam uniformity, beamlet divergence. It may give information on relative variation of negative ion stripping losses for different beam pulses. The design of this CFC based beam dump needs to address several physics and engineering issues, including some specific inputs from manufacturers. The manuscript will describe an overview of the diagnostic system and its design methodology highlighting those issues and the present status of its development.

  19. Beam halo studies in LEHIPA DTL

    International Nuclear Information System (INIS)

    The Low Energy High Intensity Proton Accelerator (LEHIPA) project at Bhabha Atomic Research Centre (BARC) consists of a 20 MeV, 30 mA proton linac. The accelerator comprises of a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 MeV Drift Tube Linac (DTL). In such high intensity accelerators, beam halos are of concern as they not only cause an increase in emittance, but also lead to beam loss and radio activation. We have studied the effect of beam mismatch at the DTL input on halo formation and propagation. The particle core model is used to excite the three envelope eigen modes; the quadrupole mode, the fast mode and the slow mode by giving input beam mismatch. These modes get damped as the beam progresses through the DTL. The damping mechanism is clearly Landau damping and leads to increase in rms emittance of the beam. The evolution of these modes and the corresponding increase in beam emittance and maximum beam extent, as the beam propagates through the DTL, has been studied for different space charge tunes. The halo parameter based on the definition of Allen and Wangler has been calculated. It is seen that beam halos are very important for LEHIPA DTL, even at 20 MeV and leads to emittance and beam size increase and also to beam loss in some cases. The longitudinal halo is present even without mismatch and transverse halos arise in the presence of beam mismatch

  20. Beam halo studies in LEHIPA DTL

    Science.gov (United States)

    Roy, S.; Pande, R.; Rao, S. V. L. S.; Krishnagopal, S.; Singh, P.

    2015-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA) project at Bhabha Atomic Research Centre (BARC) consists of a 20 MeV, 30 mA proton linac. The accelerator comprises of a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 MeV Drift Tube Linac (DTL). In such high intensity accelerators, beam halos are of concern as they not only cause an increase in emittance, but also lead to beam loss and radio activation. We have studied the effect of beam mismatch at the DTL input on halo formation and propagation. The particle core model is used to excite the three envelope eigen modes; the quadrupole mode, the fast mode and the slow mode by giving input beam mismatch. These modes get damped as the beam progresses through the DTL. The damping mechanism is clearly Landau damping and leads to increase in rms emittance of the beam. The evolution of these modes and the corresponding increase in beam emittance and maximum beam extent, as the beam propagates through the DTL, has been studied for different space charge tunes. The halo parameter based on the definition of Allen and Wangler has been calculated. It is seen that beam halos are very important for LEHIPA DTL, even at 20 MeV and leads to emittance and beam size increase and also to beam loss in some cases. The longitudinal halo is present even without mismatch and transverse halos arise in the presence of beam mismatch.

  1. Experimental Studies of Compensation of Beam-Beam Effects with Tevatron Electron Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; /Fermilab; Alexahin, Yu.; Bishofberger, Kip; Kamerdzhiev, V.; Parkhomchuk, V.; Reva, V.; Solyak, N.; Wildman, D.; Zhang, X.-L.; Zimmermann, F.; /Fermilab /Los Alamos /Novosibirsk, IYF /CERN

    2008-02-01

    Applying the space-charge forces of a low-energy electron beam can lead to a significant improvement of the beam-particle lifetime limit arising from the beam-beam interaction in a high-energy collider [1]. In this article we present the results of various beam experiments with 'electron lenses', novel instruments developed for the beam-beam compensation at the Tevatron, which collides 980-GeV proton and antiproton beams. We study the dependencies of the particle betatron tunes on the electron beam current, energy and position; we explore the effects of electron-beam imperfections and noises; and we quantify the improvements of the high-energy beam intensity and the collider luminosity lifetime obtained by the action of the Tevatron Electron Lenses.

  2. External proton and Li beams

    International Nuclear Information System (INIS)

    In the frame of a feasibility study to introduce proton therapy in Argentina in a collaborative agreement between the Physics and Radiobiology Departments of the National Atomic Energy Commission or Argentina and the Centre de Protontherapie de Orsay, France, external proton and Li beams were produced at the TANDAR accelerator in Buenos Aires. The specific aim of this work was to start radiobiology studies on cell cultures and small laboratory animals. In particular we seek to determine here the relative biological effectiveness, RBE, for proton and Li beams as a function of energy for different tumor and normal cell lines. The 24 MeV proton beam was diffused using a 25 μm gold foil and extracted through a Kapton window to obtain a homogeneous field (constant to 95%) of about 7 cm in diameter. Measurements were carried out with quasi-monoenergetic beams (of 20.2 ± 0.07 MeV, 2.9 ± 0.10 MeV y 1.5 ± 0.1 MeV for protons and 21.4 ± 0.4 MeV for Lithium). Proton fluence and Bragg peaks were measured. The dose delivered in each case was monitored on-line with a calibrated transmission ionization chamber. Three cell lines PDV, PDVC 57 and V 79 (as a reference) were irradiated with γ-rays, proton and lithium beams with linear energy transfer (LET) from 2 to 100 keV/μm. RBE values in the range of 1.2-5.9 were obtained. In addition preliminary studies on chromosomal aberrations and viability of alveolar macrophages were carried out. (author)

  3. Denton E-beam Evaporator #1

    Data.gov (United States)

    Federal Laboratory Consortium — Description: CORAL Name: E-Beam Evap 1 This is a dual e-beam/thermal evaporator for the deposition of metal and dielectric thin films. Materials available are: Ag,...

  4. Method for splitting low power laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Pierscionek, B.K. (University of Melbourne, Optometry Department, Parkville, Victoria 3052, Australia (AU))

    1990-04-01

    A new method for producing parallel rays from a laser beam using a cylindrical lens and pinholes is presented. This method can produce a greater number of emergent rays than using a {ital beam} {ital splitter}.

  5. Ultrafast Beam Switching Using Coupled VCSELs

    Science.gov (United States)

    Ning, Cun-Zheng; Goorjian, Peter

    2001-01-01

    We propose a new approach to performing ultrafast beam switching using two coupled Vertical-Cavity Surface-Emitting Lasers (VCSELs). The strategy is demonstrated by numerical simulation, showing a beam switching of 10 deg at 42 GHz.

  6. Large area ion and plasma beam sources

    International Nuclear Information System (INIS)

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.)

  7. Standardized beam bouquets for lung IMRT planning

    OpenAIRE

    Yuan, Lulin; Wu, Q. Jackie; Yin, Fangfang; LI, YING; Sheng, Yang; Kelsey, Christopher R.; Ge, Yaorong

    2015-01-01

    The selection of the incident angles of the treatment beams is a critical component of IMRT planning for lung cancer due to significant variations in tumor location, tumor size and patient anatomy. We investigate the feasibility of establishing a small set of standardized beam bouquets for planning. The set of beam bouquets were determined by learning the beam configuration features from 60 clinical lung IMRT plans designed by experienced planners. A k-medoids cluster analysis method was used...

  8. Results of final focus test beam

    OpenAIRE

    Alexandrof, V.A.; Balakin, V.; Mikhailichenko, A..; Flottmann, K.; Peters, F.; Voss, G.A.; Bharadwaj, V.; Halling, M.; Buon, J.; Jeanjean, J.; LeDiberder, F.; Lepeltier, V.; Puzo, P.; Heimlinger, G.; Settles, R.

    1995-01-01

    The beam experiments of Final Focus Test Beam (FFTB) started in September 1993 at SLAC, and have produced a 1.7 μm×75 nm spot of 46 GeV electron beam. A number of new techniques involving two nanometer spot-size monitors have been developed. Several beam diagnostic/tuning schemes are applied to achieve and maintain the small spot. This experiment opens the way toward the nanometer world for future linear colliders

  9. Plasma/Neutral-Beam Etching Apparatus

    Science.gov (United States)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  10. Beam instability studies for the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.

    1994-09-01

    Beam instability studies of the Superconducting Super Collider (SSC) during the period 1989--1993 are briefly reviewed in this paper. Various topics are covered: single bunch and multi-bunch, single beam and beam-beam, parasitic heating and active feedback, etc. Although the SSC will not be built, many of the results obtained from these studies remain as useful references to the accelerator community.

  11. Tunable Beam Diffraction in Infiltrated Microstructured Fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.;

    We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites.......We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....

  12. Spacecraft Dynamic Characteristics While Deploying Flexible Beams

    Institute of Scientific and Technical Information of China (English)

    程绪铎; 李俊峰; 樊勇; 王照林

    2002-01-01

    The attitude dynamic equations of a spacecraft while deploying two flexible beams and the beam equations were developed from momentum theory. The dynamic equations were solved numerically using the Runge-Kutta method to calculate the vibration amplitudes of the flexible beams and the attitude angular velocity. The results show that the vibration amplitudes increase as the beam length increases or as the initial attitude angular velocity increases. The results also show that the vibration amplitudes decrease as the deployment velocity increases.

  13. Fractional Fourier transform of Lorentz beams

    Institute of Scientific and Technical Information of China (English)

    Zhou Guo-Quan

    2009-01-01

    This paper introduces Lorentz beams to describe certain laser sources that produce highly divergent fields. The fractional Fourier transform (FRFT) is applied to treat the propagation of Lorentz beams. Based on the definition of convolution and the convolution theorem of the Fourier transform, an analytical expression for a Lorentz beam passing through a FRFT system has been derived. By using the derived formula, the properties of a Lorentz beam in the FRFT plane are illustrated numerically.

  14. Optical Beams in Nonlocal Nonlinear Media

    DEFF Research Database (Denmark)

    Królikowski, W.; Bang, Ole; Wyller, J.;

    2003-01-01

    We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons.......We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....

  15. Recent Advances in Beam Diagnostic Techniques

    Science.gov (United States)

    Fiorito, R. B.

    2002-12-01

    We describe recent advances in diagnostics of the transverse phase space of charged particle beams. The emphasis of this paper is on the utilization of beam-based optical radiation for the precise measurement of the spatial distribution, divergence and emittance of relativistic charged particle beams. The properties and uses of incoherent as well as coherent optical transition, diffraction and synchrotron radiation for beam diagnosis are discussed.

  16. The NuMI Neutrino Beam

    CERN Document Server

    Adamson, P; Andrews, M; Andrews, R; Anghel, I; Augustine, D; Aurisano, A; Avvakumov, S; Ayres, D S; Baller, B; Barish, B; Barr, G; Barrett, W L; Bernstein, R H; Biggs, J; Bishai, M; Blake, A; Bocean, V; Bock, G J; Boehnlein, D J; Bogert, D; Bourkland, K; Cao, S V; Castromonte, C M; Childress, S; Choudhary, B C; Coelho, J A B; Cobb, J H; Corwin, L; Crane, D; Cravens, J P; Cronin-Hennessy, D; Ducar, R J; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Erwin, A R; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Fields, T H; Ford, R; Frohne, M V; Gallagher, H R; Garkusha, V; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grossman, N; Grzelak, K; Habig, A; Hahn, S R; Harding, D; Harris, D; Harris, P G; Hartnell, J; Hatcher, R; Hays, S; Heller, K; Holin, A; Huang, J; Hylen, J; Ibrahim, A; Indurthy, D; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Johnstone, J; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Laughton, C; Lefeuvre, G; Ling, J; Litchfield, P J; Loiacono, L; Lucas, P; Mann, W A; Marchionni, A; Marshak, M L; Mayer, N; McGivern, C; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Milburn, R H; Miller, J L; Miller, W H; Mishra, S R; Sher, S Moed; Moore, C D; Morfin, J; Mualem, L; Mufson, S; Murgia, S; Murtagh, M; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Connor, J O; Oliver, W P; Olsen, M; Orchanian, M; Osprey, S; Pahlka, R B; Paley, J; Para, A; Patterson, R B; Patzak, T; Pavlovic, Z; Pawloski, G; Perch, A; Peterson, E A; Petyt, D A; Pfutzner, M; Phan-Budd, S; Plunkett, R K; Poonthottathil, N; Prieto, P; Pushka, D; Qiu, X; Radovic, A; Rameika, R A; Ratchford, J; Rebel, B; Reilly, R; Rosenfeld, C; Rubin, H A; Ruddick, K; Sanchez, M C; Saoulidou, N; Sauer, L; Schneps, J; Schoo, D; Schreckenberger, A; Schreiner, P; Shanahan, P; Sharma, R; Smart, W; Smith, C; Sousa, A; Stefanik, A; Tagg, N; Talaga, R L; Tassotto, G; Thomas, J; Thompson, J; Thomson, M A; Tian, X; Timmons, A; Tinsley, D; Tognini, S C; Toner, R; Torretta, D; Trostin, I; Tzanakos, G; Urheim, J; Vahle, P; Vaziri, K; Villegas, E; Viren, B; Vogel, G; Webber, R C; Weber, A; Webb, R C; Wehmann, A; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Wong-Squires, M L; Yang, T; Yumiceva, F X; Zarucheisky, V; Zwaska, R

    2015-01-01

    This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  17. Beam Tests of a Prototype Stripline Beam Position Monitoring System for the Drive Beam of the CLIC Two-beam Module at CTF3

    CERN Document Server

    Benot-Morell, Alfonso; Nappa, Jean-Marc; Vilalte, Sebastien; Wendt, Manfred

    2016-01-01

    In collaboration with LAPP and IFIC, two units of a prototype stripline Beam Position Monitor (BPM) for the CLIC Drive Beam (DB), and its associated readout electronics have been successfully installed and tested in the Two-Beam-Module (TBM) at the CLIC Test Facility 3 (CTF3) at CERN. This paper gives a short overview of the BPM system and presents the performance measured under different Drive Beam configurations.

  18. Orbital angular momentum induced beam shifts

    OpenAIRE

    Hermosa N.; Merano M.; Aiello A.; Woerdman J.P.

    2011-01-01

    We present experiments on Orbital Angular Momentum (OAM) induced beam shifts in optical reflection. Specifically, we observe the spatial Goos-H\\"anchen shift in which the beam is displaced parallel to the plane of incidence and the angular Imbert-Fedorov shift which is a transverse angular deviation from the geometric optics prediction. Experimental results agree well with our theoretical predictions. Both beam shifts increase with the OAM of the beam; we have measured these for OAM indices u...

  19. The NuMI neutrino beam

    Science.gov (United States)

    Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Anghel, I.; Augustine, D.; Aurisano, A.; Avvakumov, S.; Ayres, D. S.; Baller, B.; Barish, B.; Barr, G.; Barrett, W. L.; Bernstein, R. H.; Biggs, J.; Bishai, M.; Blake, A.; Bocean, V.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Bourkland, K.; Cao, S. V.; Castromonte, C. M.; Childress, S.; Choudhary, B. C.; Coelho, J. A. B.; Cobb, J. H.; Corwin, L.; Crane, D.; Cravens, J. P.; Cronin-Hennessy, D.; Ducar, R. J.; De Jong, J. K.; Devan, A. V.; Devenish, N. E.; Diwan, M. V.; Erwin, A. R.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Fields, T. H.; Ford, R.; Frohne, M. V.; Gallagher, H. R.; Garkusha, V.; Gomes, R. A.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grossman, N.; Grzelak, K.; Habig, A.; Hahn, S. R.; Harding, D.; Harris, D.; Harris, P. G.; Hartnell, J.; Hatcher, R.; Hays, S.; Heller, K.; Holin, A.; Huang, J.; Hylen, J.; Ibrahim, A.; Indurthy, D.; Irwin, G. M.; Isvan, Z.; Jaffe, D. E.; James, C.; Jensen, D.; Johnstone, J.; Kafka, T.; Kasahara, S. M. S.; Koizumi, G.; Kopp, S.; Kordosky, M.; Kreymer, A.; Lang, K.; Laughton, C.; Lefeuvre, G.; Ling, J.; Litchfield, P. J.; Loiacono, L.; Lucas, P.; Mann, W. A.; Marchionni, A.; Marshak, M. L.; Mayer, N.; McGivern, C.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Michael, D. G.; Milburn, R. H.; Miller, J. L.; Miller, W. H.; Mishra, S. R.; Moed Sher, S.; Moore, C. D.; Morfín, J.; Mualem, L.; Mufson, S.; Murgia, S.; Murtagh, M.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nowak, J. A.; O`Connor, J.; Oliver, W. P.; Olsen, M.; Orchanian, M.; Osprey, S.; Pahlka, R. B.; Paley, J.; Para, A.; Patterson, R. B.; Patzak, T.; Pavlović, Ž.; Pawloski, G.; Perch, A.; Peterson, E. A.; Petyt, D. A.; Pfützner, M. M.; Phan-Budd, S.; Plunkett, R. K.; Poonthottathil, N.; Prieto, P.; Pushka, D.; Qiu, X.; Radovic, A.; Rameika, R. A.; Ratchford, J.; Rebel, B.; Reilly, R.; Rosenfeld, C.; Rubin, H. A.; Ruddick, K.; Sanchez, M. C.; Saoulidou, N.; Sauer, L.; Schneps, J.; Schoo, D.; Schreckenberger, A.; Schreiner, P.; Shanahan, P.; Sharma, R.; Smart, W.; Smith, C.; Sousa, A.; Stefanik, A.; Tagg, N.; Talaga, R. L.; Tassotto, G.; Thomas, J.; Thompson, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Tinsley, D.; Tognini, S. C.; Toner, R.; Torretta, D.; Trostin, I.; Tzanakos, G.; Urheim, J.; Vahle, P.; Vaziri, K.; Villegas, E.; Viren, B.; Vogel, G.; Webber, R. C.; Weber, A.; Webb, R. C.; Wehmann, A.; White, C.; Whitehead, L.; Whitehead, L. H.; Wojcicki, S. G.; Wong-Squires, M. L.; Yang, T.; Yumiceva, F. X.; Zarucheisky, V.; Zwaska, R.

    2016-01-01

    This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  20. Large deformation dynamic bending of composite beams

    OpenAIRE

    Derian, Edward J.

    1985-01-01

    The large deformation response of composite beams subjected to a dynamic axial load was studied. The beams were loaded with a moderate amount of eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied in order to determine the difference between the static and dynamic failure. Twelve different la...

  1. Maskless, resistless ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features

  2. Maskless, resistless ion beam lithography

    International Nuclear Information System (INIS)

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O2+, BF2+, P+ etc., for surface modification and doping applications. With optimized source condition, around 85% of BF2+, over 90% of O2+ and P+ have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He+ beam is as high as 440 A/cm2 · Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O2+ ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O2+ ions with the dose of 1015 cm-2. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P+ beam implantation at

  3. Simulating transient effects of pulsed beams on beam intercepting devices

    International Nuclear Information System (INIS)

    The development in the physics community towards higher beam power through the possibilities of particle accelerators lead to challenges for the developers of elements which are exposed to effect of particle beams (beam intercepting devices =BIDs). For the design of BIDs, the increasing heat load onto these devices due to energetic and focused beams and - in most cases - their highly pulsed nature has to be taken into account. The physics requirements are sometimes opposed to the current state of the art. As one possibility of many in combining the different aspects for these ambitious demands, two highly developed computer programs, namely FLUKA and ANSYS AUTODYN, were joined for this dissertation. The former is a widely enhanced Monte-Carlo-code which specializes on the interaction of particles with static matter, while the latter is a versatile explicit code for the simulation of highly dynamic processes. Both computer programs were developed intensively over years and are still continuously enhanced in order to achieve their best potential. As a consequence of their separate development histories, their combination requires a large amount of work - at the physics limits of their application as well as at the frontier of computing technology. The current work did not touch all different points needed for a full integration, but it is a first step towards their coupling within a feasible time frame. For the simulation of metallic targets irradiated with highly energetic uranium ions different material models have been combined and one parameter describing the damage of the material was varied. In the case of two copper targets, this procedure led to a qualitative agreement between simulations and experimental results. (author)

  4. Beam coupling impedances of obstacles protruding into a beam pipe

    Science.gov (United States)

    Kurennoy, Sergey S.

    1997-03-01

    The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle. Formulas for a few important particular cases including both essentially three-dimensional objects like a post or a mask and axisymmetric irises, are presented. These results allow simple practical estimates of the broadband impedance contributions from such discontinuities.

  5. Beam coupling impedances of obstacles protruding into a beam pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.S. [AOT-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1997-03-01

    The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle. Formulas for a few important particular cases including both essentially three-dimensional objects like a post or a mask and axisymmetric irises, are presented. These results allow simple practical estimates of the broadband impedance contributions from such discontinuities. {copyright} {ital 1997} {ital The American Physical Society}

  6. Forced Vibrations of a Cantilever Beam

    Science.gov (United States)

    Repetto, C. E.; Roatta, A.; Welti, R. J.

    2012-01-01

    The theoretical and experimental solutions for vibrations of a vertical-oriented, prismatic, thin cantilever beam are studied. The beam orientation is "downwards", i.e. the clamped end is above the free end, and it is subjected to a transverse movement at a selected frequency. Both the behaviour of the device driver and the beam's weak-damping…

  7. LEP beam separator at L3

    CERN Multimedia

    1989-01-01

    During injection and acceleration, separators like this were used to keep the electron and positron beams apart while they travelled in the vacuum chamber. When the beams reached maximum energy the separators at the experiments were turned off, allowing the beams to collide. This one was located near the L3 experiment, whose huge red solenoid magnet can be seen in the background.

  8. Dielectric barrier discharge source for supersonic beams

    Energy Technology Data Exchange (ETDEWEB)

    Luria, K.; Lavie, N.; Even, U. [Sackler School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2009-10-15

    We present a new excitation source for pulsed supersonic beams. The excitation is based on dielectric barrier discharge in the beam. It produces cold beams of metastable atoms, dissociated neutral atoms from molecular precursors, and both positive and negative ions with high efficiency and reliability.

  9. Study on beam lifetime of JSR

    International Nuclear Information System (INIS)

    JSR is a compact electron storage ring constructed in Tokai Research Establishment. Operation of JSR has been started in April 1989. The stored beam current record till July 1990 was about 160mA. In this report, we have discussed mainly the beam lifetime by measuring the decay of stored beam current. (author)

  10. Beam alignment system for laser welding system

    International Nuclear Information System (INIS)

    The patent describes a beam alignment system for laser welding work pieces, such as fuel rod grids for nuclear fuel assemblies. The apparatus for performing various laser-machining comprises a beam alignment system including alignment target means, as well as means for emitting, directing and focusing the laser beam. (U.K.)

  11. Laser diagnostic for high current H- beams

    International Nuclear Information System (INIS)

    In the last 5 years, significant technology advances have been made in the performance, size, and cost of solid-state diode-pumped lasers. These developments enable the use of compact Q-switched Nd:YAG lasers as a beam diagnostic for high current H- beams. Because the threshold for photodetachment is only 0.75 eV, and the maximum detachment cross section is 4x10-17cm2 at 1.5 eV, A 50 mJ/pulse Q-switched Nd:YAG laser can neutralize a significant fraction of the beam in a single 10 ns wide pulse. The neutral beam maintains nearly identical parameters as the parent H- beam, including size, divergence, energy, energy spread, and phase spread. A dipole magnet can separate the neutral beam from the H- beam to allow diagnostics on the neutral beam without intercepting the high-current H- beam. Such a laser system can also be used to extract a low current proton beam, or to induce fluorescence in partially stripped heavy ion beams. Possible beamline diagnostic systems will be reviewed, and the neutral beam yields will be calculated. copyright 1998 American Institute of Physics

  12. Application of diamond based beam loss monitors

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); CERN, Geneva (Switzerland); Baer, Tobias [CERN, Geneva (Switzerland); Hamburg Univ. (Germany); Castro Carballo, Elena Maria [DESY, Zeuthen (Germany); Lohmann, Wolfgang [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); Schmidt, Ruediger [CERN, Geneva (Switzerland)

    2013-07-01

    The LHC has an operational stored energy of 130MJ per beam. Only a small percentage of beam losses in the LHC equipment can damage material or lead to magnet quenches. Therefore, it is important to monitor different types of beam losses, e.g. scattering on residual gas particles, UFOs, collisions and injection losses. A detailed understanding of beam loss mechanisms is necessary to reduce them and ensure save operation. Two different beam loss monitors are installed in the LHC tunnel: ionization chambers and diamond sensors. Ionization chambers trigger a beam dump if beam losses exceed a certain threshold. They have a time resolution of 40um (half LHC turn) which is not sufficient to resolve bunch-by-bunch beam losses. Diamond sensors have a nanosecond time resolution and can therefore detect bunch-by-bunch beam losses. This time resolution allows an analysis of various types of beam losses and an understanding of the mechanisms. For the first time beam loss intensities were measured bunch-by-bunch caused by different origins of losses. Beam loss measurements using diamond sensors will be presented. The results are compared to simulations and good qualitative agreement was found. The potential of diamond sensors for LHC and experiment applications are discussed.

  13. Electron beam parallel X-ray generator

    Science.gov (United States)

    Payne, P.

    1967-01-01

    Broad X ray source produces a highly collimated beam of low energy X rays - a beam with 2 to 5 arc minutes of divergence at energies between 1 and 6 keV in less than 5 feet. The X ray beam is generated by electron bombardment of a target from a large area electron gun.

  14. Electron Beam Welding of Gear Wheels by Splitted Beam

    Science.gov (United States)

    Dřímal, Daniel

    2014-06-01

    This contribution deals with the issue of electron beam welding of high-accurate gear wheels composed of a spur gearing and fluted shaft joined with a face weld for automotive industry. Both parts made of the high-strength low-alloy steel are welded in the condition after final machining and heat treatment, performed by case hardening, whereas it is required that the run-out in the critical point of weldment after welding, i. e. after the final operation, would be 0.04 mm max.. In case of common welding procedure, cracks were formed in the weld, initiated by spiking in the weld root. Crack formation was prevented by the use of an interlocking joint with a rounded recess and suitable welding parameters, eliminating crack initiation by spiking in the weld root. Minimisation of the welding distortions was achieved by the application of tack welding with simultaneous splitting of one beam into two parts in the opposite sections of circumferential face weld attained on the principle of a new system of controlled deflection with digital scanning of the beam. This welding procedure assured that the weldment temperature after welding would not be higher than 400 °C. Thus, this procedure allowed achieving the final run-outs in the critical point of gearwheels within the maximum range up to 0.04 mm, which is acceptable for the given application. Accurate optical measurements did not reveal any changes in the teeth dimensions.

  15. Accelerated ion beams for in-beam e-gamma spectroscopy

    NARCIS (Netherlands)

    Dionisio, JS; Vieu, C; Schuck, C; Meunier, R; Ledu, D; Lafoux, A; Lagrange, JM; Pautrat, M; Waast, B; Phillips, WR; Varley, BJ; Durell, JL; Dagnall, PG; Dorning, SJ; Jones, MA; Smith, AG; Bacelar, JCS; Rzaca-Urban, T; Folger, H; Vanhorenbeeck, J; Urban, W

    1998-01-01

    A few accelerated ion beam requirements for in-beam e-gamma spectroscopy are briefly reviewed as well as several features of the MP Tandem accelerator of IPN-Orsay and the accelerated ion-beam transport devices leading to the experimental area of in-beam e-gamma spectroscopy. In particular, the main

  16. A BEAM PROFILE MONITOR USING THE IONIZATION OF RESIDUAL-GAS IN THE BEAM PIPE

    NARCIS (Netherlands)

    SCHIPPERS, JM; KIEWIET, HH; ZIJLSTA, J

    1991-01-01

    A beam profile monitor for high energy beams, which has no intercepting parts in the beam pipe, is described. It makes use of the ionization of the residual gas, which is still present in the vacuum chamber of the beam guiding system. The detection of the ionization products is performed with microc

  17. Beam Propagation Factor and Generation of Cosh-squared-Gaussian Beams

    Institute of Scientific and Technical Information of China (English)

    ZHU Kaicheng; TANG Huiqin; ZHU Zhenhe

    2001-01-01

    A new light beam termed as a cosh-squared-Gaussian beam (ChSGB) which may be one of solutions of the paraxial wave equation for propagation in complex optical systems has been introduced. Their beam propagation factor (M2-factor) is derived and schemes to generate this light beams are proposed.

  18. A new luminescence beam profile monitor for intense proton and heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tsang,T.; Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.

    2008-10-01

    A new luminescence beam profile monitor is realized in the polarized hydrogen gas jet target at the Relativistic Heavy Ion Collider (RHIC) facility. In addition to the spin polarization of the proton beam being routinely measured by the hydrogen gas jet, the luminescence produced by beam-hydrogen excitation leads to a strong Balmer series lines emission. A selected hydrogen Balmer line is spectrally filtered and imaged to produce the transverse RHIC proton beam shape with unprecedented details on the RHIC beam profile. Alternatively, when the passage of the high energy RHIC gold ion beam excited only the residual gas molecules in the beam path, sufficient ion beam induced luminescence is produced and the transverse gold ion beam profile is obtained. The measured transverse beam sizes and the calculated emittances provide an independent confirmation of the RHIC beam characteristics and to verify the emittance conservation along the RHIC accelerator. This optical beam diagnostic technique by making use of the beam induced fluorescence from injected or residual gas offers a truly noninvasive particle beam characterization, and provides a visual observation of proton and heavy ion beams. Combined with a longitudinal bunch measurement system, a 3-dimensional spatial particle beam profile can be reconstructed tomographically.

  19. Development of beam flattening system using non-linear beam optics at J-PARC/JSNS

    International Nuclear Information System (INIS)

    As increasing in the beam power, the damage of the target becomes serious. Especially for a target for high power short pulse spallation neutron source, the damage due to the proton beam on the target vessel for liquid metal target such as mercury is reported to be proportional of 4th power of the peak intensity of the proton beam. Reduction of the peak intensity is important for the beam injection system. At the JSNS, beam profile can be described by the clear Gaussian functions. To reduce peak intensity, we have developed a beam transport system by non-linear beam optics using octupole magnets. (author)

  20. Beam-optics study of the gantry beam delivery system for light-ion cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, M. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    1997-11-11

    Beams of light ions (Z=1-8) have favourable physical and biological properties for their use in radiotherapy. Their advantages are best pronounced if the beam is delivered in a tumour-shape conformed way. The highest degree of conformity could be achieved by combination of a rotating gantry with an active pencil-beam scanning. Ion-optics considerations on such a gantry beam delivery system for light-ion cancer therapy are presented. A low-angle magnetic beam scanning in two perpendicular directions is included in the beam transport system of the gantry. The optical properties of the beam transport system are discussed. (orig.). 29 refs.

  1. Beam Emittance Measurement with Laser Wire Scanners in the ILC Beam Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, I.; /CERN; Blair, G.A.; /Royal Holloway, U. of London; Woodley, M.; /SLAC

    2008-02-01

    Accurate measurement of the beam phase-space is essential for the next generation of electron accelerators. A scheme for beam optics optimization and beam matrix reconstruction algorithms for the diagnostics section of the beam delivery system of the International Linear Collider based on laser-wire beam profile monitors are discussed. Possible modes of operation of the laser-wire system together with their corresponding performance are presented. Based on these results, prospects for reconstructing the ILC beam emittance from representative laser-wire beam size measurements are evaluated.

  2. A computer algorithm for automatic beam steering

    Energy Technology Data Exchange (ETDEWEB)

    Drennan, E.

    1992-06-01

    Beam steering is done by modifying the current in a trim or bending magnet. If the current change is the right amount the beam can be made to bend in such a manner that it will hit a swic or BPM downstream from the magnet at a predetermined set point. Although both bending magnets and trim magnets can be used to modify beam angle, beam steering is usually done with trim magnets. This is so because, during beam steering the beam angle is usually modified only by a small amount which can be easily achieved with a trim magnet. Thus in this note, all steering magnets will be assumed to be trim magnets. There are two ways of monitoring beam position. One way is done using a BPM and the other is done using a swic. For simplicity, beam position monitoring in this paper will be referred to being done with a swic. Beam steering can be done manually by changing the current through a trim magnet and monitoring the position of the beam downstream from the magnet with a swic. Alternatively the beam can be positioned automatically using a computer which periodically updates the current through a specific number of trim magnets. The purpose of this note is to describe the steps involved in coming up with such a computer program. There are two main aspects to automatic beam steering. First a relationship between the beam position and the bending magnet is needed. Secondly a beamline setup of swics and trim magnets has to be chosen that will position the beam according to the desired specifications. A simple example will be looked at that will show that once a mathematical relationship between the needed change of the beam position on a swic and the change in trim currents is established, a computer could be programmed to calculate and update the trim currents.

  3. The ATLAS Diamond Beam Monitor

    CERN Document Server

    Schaefer, Douglas; The ATLAS collaboration

    2015-01-01

    After the first three years of the LHC running the ATLAS experiment extracted it's pixel detector system to refurbish and re-position the optical readout drivers and install a new barrel layer of pixels. The experiment has also taken advantage of this access to also install a set of beam monitoring telescopes with pixel sensors, four each in the forward and backward regions. These telescopes were assembled based on chemical vapour deposited (CVD) diamond sensors to survive in this high radiation environment without needing extensive cooling. This talk will describe the lessons learned in construction and commissioning of the ATLAS x Diamond Beam Monitor (DBM). We will show results from the construction quality assurance tests, commissioning performance, including results from cosmic ray running in early 2015 and also expected first results from LHC run 2 collisions.

  4. Test-beam with Python

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The talk will show the current implementation of the software tool developed by Silab (Bonn) and Oxford University to analyze test beam data with Mimosa telescope. Data collected from the telescope are merged with hits recorded on pixel detectors with a FE-I4 chips, the official read-out chip of the Atlas Pixel Detector. The software tool used to collect data, pyBAR, is developed with Python as well. The test-beam analysis tool parses the data-sets, recreates the tracks, aligns the telescope planes and allows to investigate the detectors spatial properties with high resolution. This has just allowed to study the properties of brand new devices that stand as possible candidate to replace the current pixel detector in Atlas.

  5. Industrial Products for Beam Instrumentation

    CERN Document Server

    Schmickler, Hermann

    2001-01-01

    In various branches of high technology industry there has been considerable progress in the past years which could be used for beam instrumentation. The subject will be introduced by two short demonstrations: a demonstration of modern audio electronics with 24bit-96kHz ADC, digital signal electronics and application programs under windows on a PC, which allow to change the parameters of the signal treatment. Potential applications are data monitoring at constant sampling frequency, orbit feedbacks (including high power audio amplifiers), noise reduction on beam current transformers... digital treatment of video signals webcams, frame grabbers, CCD-data via USB, all one needs for image acquisitions, in particular interesting for profile measurements. These introductory demonstrations will not last longer than 30 minutes. The remaining time will be used to pass through the audience collecting information into a two dimensional table, which shall contain as row index the accelerator and as column index the t...

  6. Center for Beam Physics, 1993

    International Nuclear Information System (INIS)

    The Center for Beam Physics is a multi-disciplinary research and development unit in the Accelerator and Fusion Research Division at Lawrence Berkeley Laboratory. At the heart of the Center's mission is the fundamental quest for mechanisms of acceleration, radiation and focusing of energy. Dedicated to exploring the frontiers of the physics of (and with) particle and photon beams, its primary mission is to promote the science and technology of the production, manipulation, storage and control systems of charged particles and photons. The Center serves this mission via conceptual studies, theoretical and experimental research, design and development, institutional project involvement, external collaborations, association with industry and technology transfer. This roster provides a glimpse at the scientists, engineers, technical support, students, and administrative staff that make up this team and a flavor of their multifaceted activities during 1993

  7. Focusing of truncated Gaussian beams

    Science.gov (United States)

    Horváth, Zoltán L.; Bor, Zsolt

    2003-07-01

    It is shown that the focusing of truncated Gaussian beams can be treated by the same manner as uniform spherical waves, i.e., the diffraction integral can be expressed by the Lommel functions, which offers a very efficient way for the calculation of the three-dimensional light distribution near focus. All the expressions for the uniform spherical waves hold good for Gaussian beams if the first variable in the Lommel functions is extended to the complex domain. The intensity distribution depending on the Fresnel number and the truncation coefficient is calculated. The location of the first few minima and maxima of the intensity in focal plane is given for different values of the truncation coefficient. The phase behavior depending on the truncation coefficient is studied.

  8. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry

    2010-01-01

    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  9. Neutron beam testing of triblades

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, Sarah E [Los Alamos National Laboratory; Du Bois, Andrew J [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Rust, William N [Los Alamos National Laboratory; Du Bois, David H [Los Alamos National Laboratory; Modl, David G [Los Alamos National Laboratory; Quinn, Heather M [Los Alamos National Laboratory; Blanchard, Sean P [Los Alamos National Laboratory; Manuzzato, Andrea [UNIV DEGLI STUDI DI PADOVA ITALY

    2010-12-16

    Four IBM Triblades were tested in the Irradiation of Chips and Electronics facility at the Los Alamos Neutron Science Center. Triblades include two dual-core Opteron processors and four PowerXCell 8i (Cell) processors. The Triblades were tested in their field configuration while running different applications, with the beam aimed at the Cell processor or the Opteron running the application. Testing focused on the Cell processors, which were tested while running five different applications and an idle condition. While neither application nor Triblade was statistically important in predicting the hazard rate, the hazard rate when the beam was aimed at the Opterons was significantly higher than when it was aimed at the Cell processors. In addition, four Cell blades (one in each Triblade) suffered voltage shorts, leading to their inoperability. The hardware tested is the same as that in the Roadrunner supercomputer.

  10. Beam diagnostics in the CIRFEL

    Energy Technology Data Exchange (ETDEWEB)

    Krishnaswamy, J.; Lehrman, I.S.; Hartley, R. [Northrop Grumman Advanced Technology and Development Center, Princeton, NJ (United States)] [and others

    1995-12-31

    The CIRFEL system has been operating with electron energies in the range of 11 to 12 MeV and RF pulse length of 3 to 4 {mu}secs. The electrons produced by a Magnesium photocathode illuminated by a 261nm mode locked laser are accelerated in the RF gun, and further boosted in energy by a booster section downstream of the RIF gun. The electrons are energy selected in the bending section before insertion into a permanent magnet wiggler. We describe several recent diagnostic measurements carried out on the CIRFEL system: emittance measurements in two different sections of the beam line, energy and energy spread measurements, and jitter characteristics of the photo cathode drive laser as well as the electron beam energy.

  11. Plane waves as tractor beams

    Science.gov (United States)

    Forgács, Péter; Lukács, Árpád; Romańczukiewicz, Tomasz

    2013-12-01

    It is shown that in a large class of systems, plane waves act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode carrying more momentum, in which case excess momentum is created behind the scatterer. This tractor beam or negative radiation pressure (NRP) effect, is found to be generic in systems with multiple scattering channels. In a birefringent medium, electromagnetic plane waves incident on a thin plate exert NRP of the same order of magnitude as optical radiation pressure, while in artificial dielectrics (metamaterials), the magnitude of NRP can even be macroscopic. In two dimensions, we study various scattering situations on vortices, and NRP is shown to occur by the scattering of heavy baryons into light leptons off cosmic strings, and by neutron scattering off vortices in the XY model.

  12. Plane waves as tractor beams

    CERN Document Server

    Forgács, Péter; Romańczukiewicz, Tomasz

    2013-01-01

    It is shown that in a large class of systems plane waves can act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode having a larger wave number, in which case excess momentum is created behind the scatterer. Such a tractor beam or negative radiation pressure effect arises naturally in systems where the coupling between the scattering channels is due to Aharonov-Bohm (AB) gauge potentials. It is demonstrated that this effect is also present if the AB potential is an induced, ("artificial") gauge potential such as the one found in J. March-Russell, J. Preskill, F. Wilczek, Phys. Rev. Lett. 58 2567 (1992).

  13. Beam intensity upgrade at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Marchionni, A.; /Fermilab

    2006-07-01

    The performance of the Fermilab proton accelerator complex is reviewed. The coming into operation of the NuMI neutrino line and the implementation of slip-stacking to increase the anti-proton production rate has pushed the total beam intensity in the Main Injector up to {approx} 3 x 10{sup 13} protons/pulse. A maximum beam power of 270 kW has been delivered on the NuMI target during the first year of operation. A plan is in place to increase it to 350 kW, in parallel with the operation of the Collider program. As more machines of the Fermilab complex become available with the termination of the Collider operation, a set of upgrades are being planned to reach first 700 kW and then 1.2 MW by reducing the Main Injector cycle time and by implementing proton stacking.

  14. Center for Beam Physics, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Center for Beam Physics is a multi-disciplinary research and development unit in the Accelerator and Fusion Research Division at Lawrence Berkeley Laboratory. At the heart of the Center`s mission is the fundamental quest for mechanisms of acceleration, radiation and focusing of energy. Dedicated to exploring the frontiers of the physics of (and with) particle and photon beams, its primary mission is to promote the science and technology of the production, manipulation, storage and control systems of charged particles and photons. The Center serves this mission via conceptual studies, theoretical and experimental research, design and development, institutional project involvement, external collaborations, association with industry and technology transfer. This roster provides a glimpse at the scientists, engineers, technical support, students, and administrative staff that make up this team and a flavor of their multifaceted activities during 1993.

  15. Ion beam sputter implantation method

    International Nuclear Information System (INIS)

    By means of ion beam atomizing or sputtering an integrally composed coating, the composition of which continuously changes from 100% of the substrate to 100% of the coating, can be surfaced on a substrate (e.g. molten quartz on plastic lenses). In order to do this in the facility there is directed a primary beam of accelerated noble gas ions on a target from the group of the following materials: SiO2, Al2O3, Corning Glass 7070, Corning Glass 7740 or borosilicate glass. The particles leaving the target are directed on the substrate by means of an acceleration potential of up to 10 KV. There may, however, be coated also metal layers (Ni, Co) on a mylar film resulting in a semireflecting metal film. (RW)

  16. Beam-time for biology

    CERN Multimedia

    Jordan Juras

    2010-01-01

    There's no question that playing with mercury or handling radioactive cadmium with your bare hands is a risky business. But understanding how these and other toxic metals interact with biomolecules within the body is a challenging feat; one for which the ISOLDE IS488 collaboration hopes to provide valuable insight.   General view of the ISOLDE experimental area. Unlike most of the facilities at CERN's accelerator complex, ISOLDE is not targeted mainly at particle physics. Rather, it produces radioactive nuclei during proton bombardment to study, among other things, physical and biological chemistry. At ISOLDE, the 1.4 GeV proton beam of the PS Booster (an early stage in CERN's accelerator complex) produces nuclear reactions in a thick target, creating a large variety of radioactive nuclei, which are mass-separated for use in experiments. In the case of the IS488 collaboration, the ion beam is directed into ice. "We implant radioactive metal ions into ice", explains Monika Stac...

  17. Center for Beam Physics papers

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M. [ed.

    1996-06-01

    Six papers are included in this collection. They cover: a second interaction region for gamma-gamma, gamma-electron and electron- electron collisions; constraints on laser-driven accelerators for a high-energy linear collider; progress on the design of a high luminosity muon-muon collider; RF power source development at the RTA test facility; sensitivity studies of crystalline beams; and single bunch collective effects in muon colliders.

  18. Physics with polarized electron beams

    International Nuclear Information System (INIS)

    As a distinct field, elementary particle physics is now approximately forty years old. In all that time, only a few of the thousands of experiments that have been performed have made use of spin polarized particle beams. There are two reasons for this lack of interest. The first is that spin polarized beams are difficult to produce, accelerate, and transport. The second reason is that any physical process that can occur during the collision of a polarized particle with another (polarized or not) can also occur during the collision of unpolarized particles. One might ask then, why has any effort been expended on the subject? The answer, at least in the case of polarized electron beams, is that electron accelerators and storage rings have in recent years achieved sufficient energy to begin to probe the weak interaction directly. The weak interaction distinguishes between left- and right-handed fermionic currents. Left-handed particles interact in a fundamentally different way than their right-handed counterparts. If the experimenter wishes to explore or exploit this difference, he (or she) must either prepare the spin state of the incident particles or analyze the spin state of outgoing particles. For reasons, of generality and improved statistical precision, the former is usually preferable to the latter. The first of these lectures will review some of the techniques necessary for the production, transport, and monitoring of polarized electron (or positron) beams. The second lecture will survey some of the physics possibilities of polarized electron--positron collisions. 33 refs., 26 figs., 5 tabs

  19. Quantum Teleportation and Beam Splitting

    OpenAIRE

    Fichtner, Karl-Heinz; Ohya, Masanori

    2000-01-01

    Following the previous paper in which quantum teleportation is rig orously discussed with coherent entangled states given by beam splittings, we further discuss two types of models, perfect teleportation model and non-perfect teleportation model, in general scheme. Then the difference among several models, i.e., the perfect models and the non-perfect models, is studied. Our teleportation models are constructed by means of coherent states in some Fock space with counting measures, so that our ...

  20. Single beam atom sorting machine

    International Nuclear Information System (INIS)

    We create two overlapping one-dimensional optical lattices using a single laser beam, a spatial light modulator and a high numerical aperture lens. These lattices have the potential to trap single atoms, and using the dynamic capabilities of the spatial light modulator may shift and sort atoms to a minimum atom-atom separation of 1.52 μm. We show how a simple feedback circuit can compensate for the spatial light modulator's intensity modulation

  1. LASER BEAM PROPAGATION THROUGH FOG

    OpenAIRE

    Duchet, M; Flocon, B.; Sap, J

    1980-01-01

    The atmosphere is characterized by its molecular absorption coefficient and the fog by the initial radius of droplets which can be drifted by the wind. Absorption and scattering coefficients of droplets are calculated by the MIE's theory from their radius and complex index. In the laser beam, droplets are partially vaporized (we neglect thermal conductivity). Propagation equations are solved by numerical means giving steady state in a first slice of atmosphere and by incremental process in th...

  2. Coherence matrix of plasmonic beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Lavrinenko, Andrei

    2013-01-01

    We consider monochromatic electromagnetic beams of surface plasmon-polaritons created at interfaces between dielectric media and metals. We theoretically study non-coherent superpositions of elementary surface waves and discuss their spectral degree of polarization, Stokes parameters, and the for...... of the spectral coherence matrix. We compare the polarization properties of the surface plasmonspolaritons as three-dimensional and two-dimensional fields concluding that the latter is superior....

  3. [Prostate cancer external beam radiotherapy].

    Science.gov (United States)

    de Crevoisier, R; Pommier, P; Latorzeff, I; Chapet, O; Chauvet, B; Hennequin, C

    2016-09-01

    The prostate external beam radiotherapy techniques are described, when irradiating the prostate or after prostatectomy, with and without pelvic lymph nodes. The following parts are presented: indications of radiotherapy, total dose and fractionation, planning CT image acquisition, volume of interest delineation (target volumes and organs at risk) and margins, Intensity modulated radiotherapy planning and corresponding dose-volume constraints, and finally Image guided radiotherapy. PMID:27516051

  4. Electron beam gaseous pollutants treatment

    International Nuclear Information System (INIS)

    Emission of gaseous pollutants, mostly during combustion of fossil fuels, creates a threat to the environment. New, economical technologies are needed for flue gas treatment. A physico-chemical basis of the process using electron beam for the simultaneous removal of sulfur and nitrogen oxides and volatile organic compounds are presented in this report. Development of the process and its upscaling has been discussed. (author)

  5. Experimental demonstration of beam-beam compensation by Tevatron electron lenses and prospects for the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; Alexahin, Y.; Kamerdzhiev, V.; Kuznetsov, G.; Zhang, X.L.; /Fermilab; Bishofberger, K.; /Los Alamos

    2007-06-01

    Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams are significant sources of beam loss and lifetime limitations in the Tevatron Collider Run II (2001-present). We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in high energy physics (HEP) operation, predict the performance for planned luminosity upgrades and discuss ways to improve it.

  6. Repositioning and steering laser beam power via coherent combination of multiple Airy beams.

    Science.gov (United States)

    Zhang, Ze; Ye, Zhuoyi; Song, Daohong; Zhang, Peng; Chen, Zhigang

    2013-12-10

    We study numerically and experimentally laser coherent combination (LCC) with multiple one- or two-dimensional Airy beams. It is shown that the method of LCC using Airy beams leads to a higher combining efficiency and a better feature of propagation than that using conventional Gaussian beams. Based on such coherent Airy beams combination, we propose a laser steering approach that could achieve large-angle beam steering (over 0.6°) without the need of using any mechanical steering component.

  7. Impact of beam-beam effects on precision luminosity measurements at the ILC

    CERN Document Server

    Rimbault, C; Mönig, K; Schulte, D

    2007-01-01

    In this paper, the impact of beam-beam effects on the precision luminosity measurement at the International Linear Collider is investigated quantitatively for the first time. GUINEA-PIG, a beam-beam interaction simulation tool, is adapted to treat the space charge effects affecting the Bhabha events used in this measurement. The biases due to the resulting changes in kinematics are evaluated for different center-of-mass energies and beam parameters.

  8. Preliminary Experimental Study of Ion Beam Extraction of EAST Neutral Beam Injector

    Institute of Scientific and Technical Information of China (English)

    XU Yong-Jian; HU Chun-Dong; LIU Sheng; XIE Ya-Hong; LIANG Li-Zhen; JIANG Cai-Chao

    2012-01-01

    Neutral beam injection is recognized as one of the most effective means for plasma heating.The preliminary data of ion beam extraction is obtained on the EAST neutral beam injector test-stand.Beam extraction from the ion source of EAST-NBI is verified by measuring the beam current with a Faraday cup and by analyzing the results obtained by means of water calorimetric measurement on the temperature rises of water cooling the accelerator electrodes.

  9. Ion beam analysis fundamentals and applications

    CERN Document Server

    Nastasi, Michael; Wang, Yongqiang

    2015-01-01

    Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization.The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nucle

  10. Polychromatic and rotating beams of light

    International Nuclear Information System (INIS)

    Beams of light with rotating polarization or mode patterns can be viewed as superpositions of components with a well-defined angular momentum ℎm per photon, each having a frequency shift m times the rotation frequency. Such beams can also be created after passing a monochromatic beam through rotating optical elements. We discuss the properties of the angular momentum of such beams, both for a rotating polarization and a rotating amplitude pattern. We also consider beams where the polarization is not uniform

  11. Beam combining of quantum cascade laser arrays.

    Science.gov (United States)

    Lee, Benjamin G; Kansky, Jan; Goyal, Anish K; Pflügl, Christian; Diehl, Laurent; Belkin, Mikhail A; Sanchez, Antonio; Capasso, Federico A

    2009-08-31

    Wavelength beam combining was used to co-propagate beams from 28 elements in an array of distributed-feedback quantum cascade lasers (DFB-QCLs). The beam-quality product of the array, defined as the product of near-field spot size and far-field divergence for the entire array, was improved by a factor of 21 by using wavelength beam combining. To demonstrate the applicability of wavelength beam combined DFB-QCL arrays for remote sensing, we obtained the absorption spectrum of isopropanol at a distance of 6 m from the laser array.

  12. Development of high current electron beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook [and others

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs.

  13. LHC beam instrumentation detectors and acquisition systems

    International Nuclear Information System (INIS)

    An overview of some of the detectors and acquisition systems being developed for measuring and controlling beam parameters in the LHC. The two largest systems concern the measurement of beam position, with over 1000 monitors, and beam loss, with over 3000 monitors. For the beam position system a novel wide band time normaliser has been developed to allow bunch-by-bunch 40MHz acquisitions with a dynamic range greater than 30dB and an overall linearity of better than 1%. Also mentioned will be the acquisition system for the fast beam current transformers and the development of CdTe detectors for luminosity monitoring. [author

  14. OAM beams from incomplete computer generated holograms

    CERN Document Server

    Zambale, Niña Angelica F; Hermosa, Nathaniel

    2016-01-01

    In this letter we show that optical beams with orbital angular momentum (OAM) can be generated even with incomplete computer generated holograms (CGH). These holograms are made such that random portions of it do not contain any information. We observe that although the beams produced with these holograms are less intense, these beams maintain their shape and that their topological charges are not affected. Furthermore, we show that superposition of two or more beams can be created using separate incomplete CGHs interspersed together. Our result is significant especially since most method to generate beams with OAM for various applications rely on pixelated devices or optical elements with imperfections.

  15. Theoretical and Experimental Beam Plasma Physics (TEBPP)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is developed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations field ( 10 m) and mid field ( 10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.

  16. Electron Beam Curing of Advanced Composites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The fundamental concept of electron beam method and the application in cure of composites are elaborated in this paper. The components of electron beam curing system are introduced. The mechanisms of interaction between electron beam and polymer matrix composites are presented. Recent studies reported including work of authors themselves on electron beam curing of composites are also discussed. Moreover, the authors believe that it is necessary to do the basic research about understanding how electron beam affects cured network and the mechanical/physical properties of the composites, for establishing a quantitative or semi-quantitative formulation.

  17. Space-variant polarized Airy beam

    CERN Document Server

    Chen, Hao

    2015-01-01

    We experimentally generate an Airy beam with polarization structure while keeping its original amplitude and phase profile intact. This class of Airy beam preserves the acceleration properties. By monitoring their initial polarization structure we have provided insight concerning the self-healing mechanism of Airy beams. We investigate both theoretically and experimentally the self-healing polarization properties of the space-variant polarized Airy beams. Amplitude as well as the polarization structure tends to reform during propagation in spite of the severe truncation of the beam by finite apertures.

  18. Fresnel diffraction patterns as accelerating beams

    CERN Document Server

    Zhang, Yiqi; Zheng, Huaibin; Wu, Zhenkun; Li, Yuanyuan; Lu, Keqing; Zhang, Yanpeng

    2013-01-01

    We demonstrate that beams originating from Fresnel diffraction patterns are self-accelerating in free space. In addition to accelerating and self-healing, they also exhibit parabolic deceleration property, which is in stark contrast to other accelerating beams. We find that the trajectory of Fresnel paraxial accelerating beams is similar to that of nonparaxial Weber beams. Decelerating and accelerating regions are separated by a critical propagation distance, at which no acceleration is present. During deceleration, the Fresnel diffraction beams undergo self-smoothing, in which oscillations of the diffracted waves gradually focus and smooth out at the critical distance.

  19. Beam energy online measurement of BEPCII LINAC

    CERN Document Server

    Wang, Shao-Zhe; Chi, Yun-Long

    2015-01-01

    This paper describes beam energy online measurement of BEPCII linac, presents the calculation formula and some of the results. The method mentioned here measures the beam energy by acquiring beam positions in the horizontal direction with three beam position monitors (BPM) eliminating the effect of orbit fluctuation, which is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in the end of this paper.

  20. Multi-beam laser altimeter

    Science.gov (United States)

    Bufton, Jack L.; Harding, David J.; Ramos-Izquierdo, Luis

    1993-01-01

    Laser altimetry provides a high-resolution, high-accuracy method for measurement of the elevation and horizontal variability of Earth-surface topography. The basis of the measurement is the timing of the round-trip propagation of short-duration pulses of laser radiation between a spacecraft and the Earth's surface. Vertical resolution of the altimetry measurement is determined primarily by laser pulsewidth, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and sub-nsec resolution electronics, sub-meter vertical range resolution is possible from orbital attitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition-rate, laser transmitter beam configuration, and altimeter platform velocity determine the space between successive laser pulses. Multiple laser transitters in a singlaltimeter instrument provide across-track and along-track coverage that can be used to construct a range image of the Earth's surface. Other aspects of the multi-beam laser altimeter are discussed.