WorldWideScience

Sample records for beam breast x-ray

  1. Circle plus Partial Helical Scan Scheme for a Flat Panel Detector-Based Cone Beam Breast X-Ray CT

    OpenAIRE

    Dong Yang; Ruola Ning; Weixing Cai

    2009-01-01

    Flat panel detector-based cone beam breast CT (CBBCT) can provide 3D image of the scanned breast with 3D isotropic spatial resolution, overcoming the disadvantage of the structure superimposition associated with X-ray projection mammography. It is very difficult for Mammography to detect a small carcinoma (a few millimeters in size) when the tumor is occult or in dense breast. CBBCT featured with circular scan might be the most desirable mode in breast imaging due to its simple geometrical co...

  2. Circle Plus Partial Helical Scan Scheme for a Flat Panel Detector-Based Cone Beam Breast X-Ray CT

    Directory of Open Access Journals (Sweden)

    Dong Yang

    2009-01-01

    Full Text Available Flat panel detector-based cone beam breast CT (CBBCT can provide 3D image of the scanned breast with 3D isotropic spatial resolution, overcoming the disadvantage of the structure superimposition associated with X-ray projection mammography. It is very difficult for Mammography to detect a small carcinoma (a few millimeters in size when the tumor is occult or in dense breast. CBBCT featured with circular scan might be the most desirable mode in breast imaging due to its simple geometrical configuration and potential applications in functional imaging. An inherited large cone angle in CBBCT, however, will yield artifacts in the reconstruction images when only a single circular scan is employed. These artifacts usually manifest themselves as density drop and object geometrical distortion that are more noticeable in the reconstructed image areas that are further away from the circular scanning plane. In order to combat this drawback, a circle plus partial helical scan scheme is proposed. An exact circle plus straight line scan scheme is also conducted in computer simulation for the purpose of comparison. Computer simulations using a numerical breast phantom demonstrated the practical feasibility of this new scheme and correction to those artifacts to a certain degree.

  3. Electron beam parallel X-ray generator

    Science.gov (United States)

    Payne, P.

    1967-01-01

    Broad X ray source produces a highly collimated beam of low energy X rays - a beam with 2 to 5 arc minutes of divergence at energies between 1 and 6 keV in less than 5 feet. The X ray beam is generated by electron bombardment of a target from a large area electron gun.

  4. Phase-contrast X-ray imaging of breast

    Energy Technology Data Exchange (ETDEWEB)

    Keyrilaeinen, Jani; Tenhunen, Mikko (Dept. of Physics, HUCH Cancer Center, Helsinki Univ. Central Hospital, Helsinki (Finland)), e-mail: jani.keyrilainen@hus.fi; Bravin, Alberto (Bio-medical Beamline ID17, European Synchrotron Radiation Facility, Grenoble (France)); Fernandez, Manuel (High Brilliance Beamline ID2, European Synchrotron Radiation Facility, Grenoble (France)); Virkkunen, Pekka (Dept. of Radiology, HUCH Cancer Center, Helsinki Univ. Central Hospital, Helsinki (Finland)); Suortti, Pekka (Dept. of Physics, Univ. of Helsinki, Helsinki (Finland))

    2010-10-15

    When an X-ray wave traverses an object, its amplitude and phase change, resulting in attenuation, interference, and refraction, and in phase-contrast X-ray imaging (PCI) these are converted to intensity changes. The relative change of the X-ray phase per unit path length is even orders of magnitude larger than that of the X-ray amplitude, so that the image contrast based on variation of the X-ray phase is potentially much stronger than the contrast based on X-ray amplitude (absorption contrast). An important medical application of PCI methods is soft-tissue imaging, where the absorption contrast is inherently weak. It is shown by in vitro examples that signs of malignant human breast tumor are enhanced in PCI images. Owing to the strong contrast, the radiation dose can be greatly reduced, so that a high-resolution phase-contrast X-ray tomography of the breast is possible with about 1 mGy mean glandular dose. Scattered radiation carries essential information on the atomic and molecular structure of the object, and particularly small-angle X-ray scattering can be used to trace cancer. The imaging methods developed at the synchrotron radiation facilities will become available in the clinical environment with the ongoing development of compact radiation sources, which produce intense X-ray beams of sufficient coherence. Several developments that are under way are described here

  5. Phase-contrast X-ray imaging of breast.

    Science.gov (United States)

    Keyriläinen, Jani; Bravin, Alberto; Fernández, Manuel; Tenhunen, Mikko; Virkkunen, Pekka; Suortti, Pekka

    2010-10-01

    When an X-ray wave traverses an object, its amplitude and phase change, resulting in attenuation, interference, and refraction, and in phase-contrast X-ray imaging (PCI) these are converted to intensity changes. The relative change of the X-ray phase per unit path length is even orders of magnitude larger than that of the X-ray amplitude, so that the image contrast based on variation of the X-ray phase is potentially much stronger than the contrast based on X-ray amplitude (absorption contrast). An important medical application of PCI methods is soft-tissue imaging, where the absorption contrast is inherently weak. It is shown by in vitro examples that signs of malignant human breast tumor are enhanced in PCI images. Owing to the strong contrast, the radiation dose can be greatly reduced, so that a high-resolution phase-contrast X-ray tomography of the breast is possible with about 1 mGy mean glandular dose. Scattered radiation carries essential information on the atomic and molecular structure of the object, and particularly small-angle X-ray scattering can be used to trace cancer. The imaging methods developed at the synchrotron radiation facilities will become available in the clinical environment with the ongoing development of compact radiation sources, which produce intense X-ray beams of sufficient coherence. Several developments that are under way are described here. PMID:20799921

  6. Experimental investigation for determination of optimal X-ray beam tube voltages in a newly developed digital breast tomosynthesis system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye-Suk, E-mail: radiosugar@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of); Kim, Ye-Seul, E-mail: radiohesugar@gmail.com [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of); Choi, Young-Wook, E-mail: ywchoi@keri.re.kr [Korea Electrotechnology Research Institute (KERI), Ansan, Geongki 426-170 (Korea, Republic of); Choi, JaeGu, E-mail: jgchoi88@paran.com [Korea Electrotechnology Research Institute (KERI), Ansan, Geongki 426-170 (Korea, Republic of); Rhee, Yong-Chun, E-mail: ycrhee@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of); Kim, Hee-Joung, E-mail: hjk1@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of)

    2014-11-01

    Our purpose was to investigate optimal tube voltages (kVp) for a newly developed digital breast tomosynthesis (DBT) process and to determine tube current–exposure time products (mA s) for the average glandular dose (AGD), which is similar to that of the two views in conventional mammography (CM). In addition, the optimal acquisition parameters for this system were compared with those of CM. The analysis was based on the contrast-to-noise ratio (CNR) from the simulated micro-calcifications on homogeneous phantoms, and the figure of merit (FOM) was retrieved from the CNR and AGD at X-ray tube voltages ranging from 24 to 40 kVp at intervals of 2 kV. The optimal kVp increased more than 2 kV with increasing glandularity for thicker (≥50 mm) breast phantoms. The optimal kVp for DBT was found to be 4–7 kV higher than that calculated for CM with breast phantoms thicker than 50 mm. This is likely due to the greater effect of noise and dose reduction by kVp increment when using the lower dose per projection in DBT. It is important to determine optimum acquisition conditions for a maximally effective DBT system. The results of our study provide useful information to further improve DBT for high quality imaging.

  7. Experimental investigation for determination of optimal X-ray beam tube voltages in a newly developed digital breast tomosynthesis system

    International Nuclear Information System (INIS)

    Our purpose was to investigate optimal tube voltages (kVp) for a newly developed digital breast tomosynthesis (DBT) process and to determine tube current–exposure time products (mA s) for the average glandular dose (AGD), which is similar to that of the two views in conventional mammography (CM). In addition, the optimal acquisition parameters for this system were compared with those of CM. The analysis was based on the contrast-to-noise ratio (CNR) from the simulated micro-calcifications on homogeneous phantoms, and the figure of merit (FOM) was retrieved from the CNR and AGD at X-ray tube voltages ranging from 24 to 40 kVp at intervals of 2 kV. The optimal kVp increased more than 2 kV with increasing glandularity for thicker (≥50 mm) breast phantoms. The optimal kVp for DBT was found to be 4–7 kV higher than that calculated for CM with breast phantoms thicker than 50 mm. This is likely due to the greater effect of noise and dose reduction by kVp increment when using the lower dose per projection in DBT. It is important to determine optimum acquisition conditions for a maximally effective DBT system. The results of our study provide useful information to further improve DBT for high quality imaging

  8. X-ray beam qualities for dental radiology purposes

    International Nuclear Information System (INIS)

    In order to establish characteristics or properties of equipment for diagnostic radiology, e.g. ion chambers and semiconductor detectors, calibration laboratories offer a set of well-defined radiation conditions, called X-ray qualities, which can be used for many Physics studies and medical purposes. The standardization of radiation qualities has been carried out in several fields of study, but little attention has been given to the area of dental radiology, mainly for medical and physical applications using single-phase units with half-wave rectification. For this reason, a single-phase dental unit with adjustable peak voltage and tube current, called 'variable potential X-ray equipment', was developed aiming to define X-ray beam qualities for test and calibrations purposes. X-ray spectra at 50, 60 and 70 kVp were determined by using a CdTe detector and compared with those obtained for ten commercial X-ray dental units. As a result of this study, a set of X-ray qualities for the variable potential X-ray equipment was determined. The X-ray qualities spectra were utilized as reference for determination of a new set of X-ray qualities characterized for a constant potential X-ray equipment. Thus, sets of X-ray qualities were standardized and implemented in two X-ray laboratories: one with the variable potential X-ray equipment and other with constant potential X-ray equipment. These reference X-ray beam qualities should be used for test and calibration purposes involving scientific studies and services. (author)

  9. Scattered X-ray beam nondestructive testing

    Science.gov (United States)

    Harding, G.; Kosanetzky, J.

    1989-08-01

    X-ray scatter interactions generally dominate the linear attenuation coefficient at the photon energies typical of medical and industrial radiography. Specific advantages of X-ray scatter imaging, including a flexible choice of measurement geometry, direct 3D-imaging capability (tomography) and improved information for material characterization, are illustrated with results from Compton and coherent scatter devices. Applications of a Compton backscatter scanner (ComScan) in the aerospace industry and coherent scatter imaging in security screening are briefly considered.

  10. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongmei; Zhu, Shouping, E-mail: zhusp2009@gmail.com; Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin [Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi' an, Shaanxi 710071 (China)

    2014-11-10

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging.

  11. Calibration of Cone Beam Rotational X-Ray Image Sequence

    Institute of Scientific and Technical Information of China (English)

    YUHengyong; MOUXuanqin; CAIYuanlong

    2004-01-01

    The real X-ray projection does not abide by Lambert-Beer Law, since the X-ray is polychromatic and the imaging chains are nonlinear. Based on the generating process of X-ray images, an equivalent nonlinear transform model is firstly proposed which considers all the nonlinear factors as one nonlinear transform. Then the 3D (three-dimensional) X-ray projection of cone beam is defined. The constraints of Radon transform, named H-L (Helgasson-ludwig) consistency conditions, are expanded to fan-beam. After that an algorithm is developed to calibrate Rotational X-ray image sequence (RXIS). The algorithm uses a set of exponential functions to approximate the nonlinear inverse transform. According to expanded H-L consistency conditions, finally a kind of nonlinear measure for RXIS is defined. Experimental results show that the proposed algorithm can decrease the nonlinear measure to below 0.01.

  12. A new beamstop for microfocus X-ray capillary beams

    Energy Technology Data Exchange (ETDEWEB)

    Englich, Ulrich, E-mail: ue22@cornell.edu [Cornell University, Macromolecular Diffraction at CHESS (MacCHESS), Cornell High Energy Synchrotron Source, 200L Wilson Laboratory, Ithaca, NY 14853 (United States); Revesz, Peter [Cornell University, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 (United States); Miller, William [Cornell University, Macromolecular Diffraction at CHESS (MacCHESS), Cornell High Energy Synchrotron Source, 200L Wilson Laboratory, Ithaca, NY 14853 (United States)

    2011-09-01

    In order to accurately measure the photon flux and to assist in aligning the beam, we have designed a modified beamstop device based on a photo diode integrated with the beamstop. The beamstop contains a small CdWO{sub 4} crystal that completely stops the X-rays and at the same time produces photoluminescence proportional to the X-ray flux. The light is then guided to a photosensitive diode using a flexible light pipe to monitor the flux. With this device we achieve the goal of stopping the primary X-ray beam and simultaneously monitoring the X-ray intensity, thus eliminating the need for integrating ion-chambers into the capillary or collimator mount.

  13. Hypoplasty of the breast due to x-ray irradiation

    International Nuclear Information System (INIS)

    We treated five women with hypoplasty of the breast induced by radiation. Only one of these women underwent mammaplasty with the use of a latissimus dorsi muscle flap and prosthesis. Hypoplasty of the breast is considered a result of imprudent utilization of x-ray irradiation of young patients with benign skin diseases. To prevent underdevelopment and hypoplasty, attention must be directed to the risk involved in radiation therapy for benign diseases

  14. Advances in kilovoltage x-ray beam dosimetry

    Science.gov (United States)

    Hill, Robin; Healy, Brendan; Holloway, Lois; Kuncic, Zdenka; Thwaites, David; Baldock, Clive

    2014-03-01

    This topical review provides an up-to-date overview of the theoretical and practical aspects of therapeutic kilovoltage x-ray beam dosimetry. Kilovoltage x-ray beams have the property that the maximum dose occurs very close to the surface and thus, they are predominantly used in the treatment of skin cancers but also have applications for the treatment of other cancers. In addition, kilovoltage x-ray beams are used in intra operative units, within animal irradiators and in on-board imagers on linear accelerators and kilovoltage dosimetry is important in these applications as well. This review covers both reference and relative dosimetry of kilovoltage x-ray beams and provides recommendations for clinical measurements based on the literature to date. In particular, practical aspects for the selection of dosimeter and phantom material are reviewed to provide suitable advice for medical physicists. An overview is also presented of dosimeters other than ionization chambers which can be used for both relative and in vivo dosimetry. Finally, issues related to the treatment planning and the use of Monte Carlo codes for solving radiation transport problems in kilovoltage x-ray beams are presented.

  15. Application of small-angle X-ray scattering for differentiation among breast tumors

    Directory of Open Access Journals (Sweden)

    Changizi V

    2008-01-01

    Full Text Available Small-angle X-ray scattering (SAXS is an X-ray diffraction-based technique where a narrow collimated beam of X-rays is focused onto a sample and the scattered X-rays recorded by a detector. The pattern of the scattered X-rays carries information on the molecular structure of the material. As breast cancer is the most widespread cancer in women and differentiation among its tumors is important, this project compared the results of coherent X-ray scattering measurements obtained from benign and malignant breast tissues. The energy-dispersive method with a setup including X-ray tube, primary collimator, sample holder, secondary collimator and high-purity germanium (HpGe detector was used. One hundred thirty-one breast-tissue samples, including normal, fibrocystic changes and carcinoma, were studied at the 6° scattering angle. Diffraction profiles (corrected scattered intensity versus momentum transfer of normal, fibrocystic changes and carcinoma were obtained. These profiles showed a few peak positions for adipose (1.15 ± 0.06 nm -1 , mixed normal (1.15 ± 0.06 nm -1 and 1.4 ± 0.04 nm -1 , fibrocystic changes (1.46 ± 0.05 nm -1 and 1.74 ± 0.04 nm -1 and carcinoma (1.55 ± 0.04 nm -1 , 1.73 ± 0.06 nm -1 , 1.85 ± 0.05 nm -1 . We were able to differentiate between normal, fibrocystic changes (benign and carcinoma (malignant breast tissues by SAXS. However, we were unable to differentiate between different types of carcinoma.

  16. Highly porous nanoberyllium for X-ray beam speckle suppression

    Energy Technology Data Exchange (ETDEWEB)

    Goikhman, Alexander, E-mail: agoikhman@ymail.com; Lyatun, Ivan; Ershov, Petr [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); Snigireva, Irina [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Wojda, Pawel [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); Gdańsk University of Technology, 11/12 G. Narutowicza, Gdańsk 80-233 (Poland); Gorlevsky, Vladimir; Semenov, Alexander; Sheverdyaev, Maksim; Koletskiy, Viktor [A. A. Bochvar High-Technology Scientific Research Institute for Inorganic Materials, Rogova str. 5a, Moscow 123098 (Russian Federation); Snigirev, Anatoly [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)

    2015-04-09

    A speckle suppression device containing highly porous nanoberyllium is proposed for manipulating the spatial coherence length and removing undesirable speckle structure during imaging experiments. This paper reports a special device called a ‘speckle suppressor’, which contains a highly porous nanoberyllium plate squeezed between two beryllium windows. The insertion of the speckle suppressor in an X-ray beam allows manipulation of the spatial coherence length, thus changing the effective source size and removing the undesirable speckle structure in X-ray imaging experiments almost without beam attenuation. The absorption of the nanoberyllium plate is below 1% for 1 mm thickness at 12 keV. The speckle suppressor was tested on the ID06 ESRF beamline with X-rays in the energy range from 9 to 15 keV. It was applied for the transformation of the phase–amplitude contrast to the pure amplitude contrast in full-field microscopy.

  17. Highly porous nanoberyllium for X-ray beam speckle suppression

    International Nuclear Information System (INIS)

    A speckle suppression device containing highly porous nanoberyllium is proposed for manipulating the spatial coherence length and removing undesirable speckle structure during imaging experiments. This paper reports a special device called a ‘speckle suppressor’, which contains a highly porous nanoberyllium plate squeezed between two beryllium windows. The insertion of the speckle suppressor in an X-ray beam allows manipulation of the spatial coherence length, thus changing the effective source size and removing the undesirable speckle structure in X-ray imaging experiments almost without beam attenuation. The absorption of the nanoberyllium plate is below 1% for 1 mm thickness at 12 keV. The speckle suppressor was tested on the ID06 ESRF beamline with X-rays in the energy range from 9 to 15 keV. It was applied for the transformation of the phase–amplitude contrast to the pure amplitude contrast in full-field microscopy

  18. Toward optimal X-ray flux utilization in breast CT

    CERN Document Server

    Joergensen, Jakob H; Sidky, Emil Y; Reiser, Ingrid S; Pan, Xiaochuan

    2011-01-01

    A realistic computer-simulation of a breast computed tomography (CT) system and subject is constructed. The model is used to investigate the optimal number of views for the scan given a fixed total X-ray fluence. The reconstruction algorithm is based on accurate solution to a constrained, TV-minimization problem, which has received much interest recently for sparse-view CT data.

  19. X-ray cone beam CT system calibration

    Science.gov (United States)

    Sire, Pascal; Rizo, Philippe; Martin, M.

    1993-12-01

    Recently x-ray cone beam computed tomography (CT) has become of interest for nondestructive testing (NDT) of advanced materials. Such a technique takes advantage of the cone beam geometry, to reduce the acquisition time and increase the resolution. Performances of CT systems rely mainly on geometric precision and measurement quality. Inaccurate geometry or incorrect data produce artifacts and blurring which limit the spatial resolution. A precise geometric calibration procedure is required and some corrections must be applied to the raw attenuation data in order to obtain accurate measurements. An x-ray cone beam CT system has been developed at the LETI. This machine was designed to control small parts limited to a few centimeters, with a high spatial resolution close to 30 microns. This paper introduces the machine setup and describes the calibration computing resources involved in the system. Then, we discuss the performances on experimental data.

  20. Motorized Beam Alignment of a Commercial X-ray Diffractometer

    Science.gov (United States)

    Van Zandt, Noah R.; Myers, James F.; Rogers, Richard B

    2013-01-01

    X-ray diffraction (XRD) is a powerful analysis method that allows researchers to noninvasively probe the crystalline structure of a material. This includes the ability to determine the crystalline phases present, quantify surface residual stresses, and measure the distribution of crystallographic orientations. The Structures and Materials Division at the NASA Glenn Research Center (GRC) heavily uses the on-site XRD lab to characterize advanced metal alloys, ceramics, and polymers. One of the x-ray diffractometers in the XRD lab (Bruker D8 Discover) uses three different x-ray tubes (Cu, Cr, and Mn) for optimal performance over numerous material types and various experimental techniques. This requires that the tubes be switched out and aligned between experiments. This alignment maximizes the x-ray tube s output through an iterative process involving four set screws. However, the output of the x-ray tube cannot be monitored during the adjustment process due to standard radiation safety engineering controls that prevent exposure to the x-ray beam when the diffractometer doors are open. Therefore, the adjustment process is a very tedious series of blind adjustments, each followed by measurement of the output beam using a PIN diode after the enclosure doors are shut. This process can take up to 4 hr to perform. This technical memorandum documents an in-house project to motorize this alignment process. Unlike a human, motors are not harmed by x-ray radiation of the energy range used in this instrument. Therefore, using motors to adjust the set screws will allow the researcher to monitor the x-ray tube s output while making interactive adjustments from outside the diffractometer. The motorized alignment system consists of four motors, a motor controller, and a hand-held user interface module. Our goal was to reduce the alignment time to less than 30 min. The time available was the 10-week span of the Lewis' Educational and Research Collaborative Internship Project (LERCIP

  1. Dosimetry in x-ray-based breast imaging

    Science.gov (United States)

    Dance, David R.; Sechopoulos, Ioannis

    2016-10-01

    The estimation of the mean glandular dose to the breast (MGD) for x-ray based imaging modalities forms an essential part of quality control and is needed for risk estimation and for system design and optimisation. This review considers the development of methods for estimating the MGD for mammography, digital breast tomosynthesis (DBT) and dedicated breast CT (DBCT). Almost all of the methodology used employs Monte Carlo calculated conversion factors to relate the measurable quantity, generally the incident air kerma, to the MGD. After a review of the size and composition of the female breast, the various mathematical models used are discussed, with particular emphasis on models for mammography. These range from simple geometrical shapes, to the more recent complex models based on patient DBCT examinations. The possibility of patient-specific dose estimates is considered as well as special diagnostic views and the effect of breast implants. Calculations using the complex models show that the MGD for mammography is overestimated by about 30% when the simple models are used. The design and uses of breast-simulating test phantoms for measuring incident air kerma are outlined and comparisons made between patient and phantom-based dose estimates. The most widely used national and international dosimetry protocols for mammography are based on different simple geometrical models of the breast, and harmonisation of these protocols using more complex breast models is desirable.

  2. Beam synchronous detection techniques for X-Ray spectroscopy

    Science.gov (United States)

    Goujon, Gérard; Rogalev, Andreï; Goulon, José; Feite, Serge; Wilhelm, Fabrice

    2013-03-01

    The Photo diode detectors combine a set of properties that make them most appropriate, in particular, for X-ray Magnetic Circular Dichroism (XMCD) experiments. Under standard operating conditions, the detection bandwidth is primarily limited by the transimpedance preamplifier that converts the very low ac photocurrent into a voltage. On the other hand, when the photodiode is reverse biased, its finite shunt resistance will cause an undesirable, temperature dependent DC dark current. The best strategy to get rid of it is to use synchronous detection techniques. A classical implementation is based on the use of a chopper modulating the X-ray beam intensity at rather low frequencies (typically below 1 kHz). Here we report on the recent development of a fast Xray detection which has the capability to fully exploit the frequency structure of the ESRF X-ray beam (355 KHz and its harmonics). The availability of new wide band preamplifiers allowed us to extend the working frequency range up to a few MHz. A beam synchronous data processing was implemented in large FPGAs. Performances of the new detection system implemented at the ESRF beamline ID12 are illustrated with detection of the Fe K-edge XMCD spectra in garnets, using 4 bunches operation mode with modulation frequency of 1.4 MHz.

  3. X-ray emission as a diagnostic from pseudospark-sourced electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, D., E-mail: david.bowes@strath.ac.uk [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, H.; He, W.; Zhang, L.; Cross, A.W.; Ronald, K.; Phelps, A.D.R. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Chen, D.; Zhang, P. [Computed Tomography Lab, School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Chen, X.; Li, D. [Department of Electronic Engineering, Queen Mary University of London, London E1 4NS (United Kingdom)

    2014-09-15

    X-ray emission has been achieved using an electron beam generated by a pseudospark low-pressure discharge and utilised as a diagnostic for beam detection. A 300 A, 34 kV PS-sourced electron beam pulse of 3 mm diameter impacting on a 0.1 mm-thick molybdenum target generated X-rays which were detected via the use of a small, portable X-ray detector. Clear X-ray images of a micro-sized object were captured using an X-ray photodetector. This demonstrates the inducement of proton induced X-ray emission (PIXE) not only as an indicator of beam presence but also as a future X-ray source for small-spot X-ray imaging of materials.

  4. Measurement of X-ray beam emittance using crystal optics at an X-ray undulator beamline

    CERN Document Server

    Kohmura, Y; Awaji, M; Tanaka, T; Hara, T; Goto, S; Ishikawa, T

    2000-01-01

    We present a method of using crystal optics to measure the emittance of the X-ray source. Two perfect crystals set in (++) configuration work as a high-resolution collimator. The phase-space diagram (i.e. beam cross-section and angular distribution) could be determined without any assumptions on the light source. When the measurement is done at short wavelength radiation from undulator, the electron beam emittance is larger than the diffraction limit of the X-rays. Therefore, the electron beam emittance could be estimated. The measurement was done with the hard X-rays of 18.5 and 55 keV from an undulator beamline, BL 47XU, of SPring-8. The horizontal emittance of the X-ray beam was estimated to be about 7.6 nmrad, close to the designed electron beam emittance of the storage ring (7 nmrad). Some portions of the instrumental functions, such as the scattering by filters and windows along the beamline and the slight bent of the crystal planes of the monochromator, could not be precisely evaluated, but an upper li...

  5. X-ray framing camera for pulsed, high current, electron beam x-ray sources

    CERN Document Server

    Failor, B H; Riordan, j c; Lojewski, D Y

    2007-01-01

    High power x-ray sources built for nuclear weapons effects testing are evolving toward larger overall diameters and smaller anode cathode gaps. We describe a framing camera developed to measure the time-evolution of these 20-50 ns pulsed x-ray sources produced by currents in the 1.5-2.5 MA range and endpoint voltages between 0.2 and 1.5 MV. The camera has up to 4 frames with 5 ns gate widths; the frames are separated by 5 ns. The image data are recorded electronically with a gated intensified CCD camera and the data are available immediately following a shot. A fast plastic scintillator (2.1 ns decay time) converts the x-rays to visible light and, for high sensitivity, a fiber optic imaging bundle carries the light to the CCD input. Examples of image data are shown.

  6. Monte Carlo simulation of novel breast imaging modalities based on coherent x-ray scattering

    Science.gov (United States)

    Ghammraoui, Bahaa; Badal, Andreu

    2014-07-01

    We present upgraded versions of MC-GPU and penEasy_Imaging, two open-source Monte Carlo codes for the simulation of radiographic projections and CT, that have been extended and validated to account for the effect of molecular interference in the coherent x-ray scatter. The codes were first validation by comparison between simulated and measured energy dispersive x-ray diffraction (EDXRD) spectra. A second validation was by evaluation of the rejection factor of a focused anti-scatter grid. To exemplify the capabilities of the new codes, the modified MC-GPU code was used to examine the possibility of characterizing breast tissue composition and microcalcifications in a volume of interest inside a whole breast phantom using EDXRD and to simulate a coherent scatter computed tomography (CSCT) system based on first generation CT acquisition geometry. It was confirmed that EDXRD and CSCT have the potential to characterize tissue composition inside a whole breast. The GPU-accelerated code was able to simulate, in just a few hours, a complete CSCT acquisition composed of 9758 independent pencil-beam projections. In summary, it has been shown that the presented software can be used for fast and accurate simulation of novel breast imaging modalities relying on scattering measurements and therefore can assist in the characterization and optimization of promising modalities currently under development.

  7. X-ray scatter correction method for dedicated breast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sechopoulos, Ioannis [Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University School of Medicine, 1701 Upper Gate Drive NE, Suite 5018, Atlanta, Georgia 30322 (United States)

    2012-05-15

    Purpose: To improve image quality and accuracy in dedicated breast computed tomography (BCT) by removing the x-ray scatter signal included in the BCT projections. Methods: The previously characterized magnitude and distribution of x-ray scatter in BCT results in both cupping artifacts and reduction of contrast and accuracy in the reconstructions. In this study, an image processing method is proposed that estimates and subtracts the low-frequency x-ray scatter signal included in each BCT projection postacquisition and prereconstruction. The estimation of this signal is performed using simple additional hardware, one additional BCT projection acquisition with negligible radiation dose, and simple image processing software algorithms. The high frequency quantum noise due to the scatter signal is reduced using a noise filter postreconstruction. The dosimetric consequences and validity of the assumptions of this algorithm were determined using Monte Carlo simulations. The feasibility of this method was determined by imaging a breast phantom on a BCT clinical prototype and comparing the corrected reconstructions to the unprocessed reconstructions and to reconstructions obtained from fan-beam acquisitions as a reference standard. One-dimensional profiles of the reconstructions and objective image quality metrics were used to determine the impact of the algorithm. Results: The proposed additional acquisition results in negligible additional radiation dose to the imaged breast ({approx}0.4% of the standard BCT acquisition). The processed phantom reconstruction showed substantially reduced cupping artifacts, increased contrast between adipose and glandular tissue equivalents, higher voxel value accuracy, and no discernible blurring of high frequency features. Conclusions: The proposed scatter correction method for dedicated breast CT is feasible and can result in highly improved image quality. Further optimization and testing, especially with patient images, is necessary to

  8. Constancy check of beam quality in conventional diagnostic X-ray equipment

    International Nuclear Information System (INIS)

    A tandem ionization chamber was developed for quality control programs of X-ray equipment used in conventional radiography and mammography. A methodology for the use of the tandem chamber in the constancy check of diagnostic X-ray beam qualities was established. The application at a medical X-ray imaging facility of this established methodology is presented. The use of the tandem chamber in the constancy check of diagnostic X-ray beam qualities is a useful method to control the performance of the X-ray equipment

  9. X-ray scatter correction method for dedicated breast computed tomography: improvements and initial patient testing

    Science.gov (United States)

    Ramamurthy, Senthil; D'Orsi, Carl J.; Sechopoulos, Ioannis

    2016-02-01

    A previously proposed x-ray scatter correction method for dedicated breast computed tomography was further developed and implemented so as to allow for initial patient testing. The method involves the acquisition of a complete second set of breast CT projections covering 360° with a perforated tungsten plate in the path of the x-ray beam. To make patient testing feasible, a wirelessly controlled electronic positioner for the tungsten plate was designed and added to a breast CT system. Other improvements to the algorithm were implemented, including automated exclusion of non-valid primary estimate points and the use of a different approximation method to estimate the full scatter signal. To evaluate the effectiveness of the algorithm, evaluation of the resulting image quality was performed with a breast phantom and with nine patient images. The improvements in the algorithm resulted in the avoidance of introduction of artifacts, especially at the object borders, which was an issue in the previous implementation in some cases. Both contrast, in terms of signal difference and signal difference-to-noise ratio were improved with the proposed method, as opposed to with the correction algorithm incorporated in the system, which does not recover contrast. Patient image evaluation also showed enhanced contrast, better cupping correction, and more consistent voxel values for the different tissues. The algorithm also reduces artifacts present in reconstructions of non-regularly shaped breasts. With the implemented hardware and software improvements, the proposed method can be reliably used during patient breast CT imaging, resulting in improvement of image quality, no introduction of artifacts, and in some cases reduction of artifacts already present. The impact of the algorithm on actual clinical performance for detection, diagnosis and other clinical tasks in breast imaging remains to be evaluated.

  10. Coherent convergent-beam time-resolved X-ray diffraction

    OpenAIRE

    Spence, John C. H.; Zatsepin, Nadia A.; Li, Chufeng

    2014-01-01

    The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic ...

  11. High-resolution CT by diffraction-enhanced x-ray imaging: mapping of breast tissue samples and comparison with their histo-pathology.

    OpenAIRE

    Bravin, Alberto; Keyriläinen, Jani; Fernández, Manuel; Fiedler, Stefan; Nemoz, Christian; Karjalainen-Lindsberg, Marja-Liisa; Tenhunen, Mikko; Virkkunen, Pekka; Leidenius, Marjut; von Smitten, Karl; Sipilä, Petri; Suortti, Pekka

    2007-01-01

    International audience The aim of this study was to introduce high-resolution computed tomography (CT) of breast tumours using the diffraction-enhanced x-ray imaging (DEI) technique and to compare results with radiological and histo-pathological examinations. X-ray CT images of tumour-bearing breast tissue samples were acquired by monochromatic synchrotron radiation (SR). Due to the narrow beam and a large sample-to-detector distance scattering is rejected in the absorption contrast images...

  12. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, Peter, E-mail: pr20@cornell.edu [Cornell University, Cornell High Energy Synchrotron Source, Ithaca 14850, NY (United States); Temnykh, Alexander B. [Cornell University, Laboratory for Elem-Particle Physics, Ithaca 14850, NY (United States); Pauling, Alan K. [Cornell University, Cornell High Energy Synchrotron Source, Ithaca 14850, NY (United States)

    2011-09-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  13. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    Science.gov (United States)

    Revesz, Peter; Temnykh, Alexander B.; Pauling, Alan K.

    2011-09-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  14. Beam position measurements of Indus-2 using X-Ray beam position monitor

    International Nuclear Information System (INIS)

    A staggered pair metal blade X-ray beam position monitor (XBPM) is designed, fabricated and commissioned on Indus-2 bending magnet front end. Calibration of XBPM is done by scanning the metal blades in the path of synchrotron radiation and by giving controlled electron asymmetric bump. The vertical beam position stability of the source measured during various injections and storages are reported.

  15. On the response of electronic personal dosimeters in constant potential and pulsed X-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Margarete C.; Silva, Teogenes; Silva, Claudete R.E., E-mail: margaretecristinag@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Oliveira, Paulo Marcio C. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Anatomia e Imagem

    2015-07-01

    Electronic personal dosimeters (EPDs) based on solid state detectors have widely been used but some deficiencies in their response in pulsed radiation beams have been reported. Nowadays, there is not an international standard for pulsed X-ray beams for calibration or type testing of dosimeters. Irradiation conditions for testing the response of EPDs in both the constant potential and pulsed X-ray beams were established in CDTN. Three different types of EPDs were tested in different conditions in similar ISO and IEC X-ray qualities. Results stressed the need of performing additional checks before using EPDs in constant potential or pulsed X-rays. (author)

  16. RF Phase Stability and Electron Beam Characterization for the PLEIADES Thomson X-Ray Source

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W J; Hartemann, F V; Tremaine, A M; Springer, P T; Le Sage, G P; Barty, C P J; Rosenzweig, J B; Crane, J K; Cross, R R; Fittinghoff, D N; Gibson, D J; Slaughter, D R; Anderson, S

    2002-10-16

    We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. To produce picosecond, high brightness x-ray pulses, picosecond timing, terahertz bandwidth diagnostics, and RF phase control are required. Planned optical, RF, x-ray and electron beam measurements to characterize the dependence of electron beam parameters and synchronization on RF phase stability are presented.

  17. Coherent electron beam density modulator for driving X-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Novokhatski, A., E-mail: novo@slac.stanford.edu; Decker, F.-J.; Hettel, B.; Nosochkov, Yu.; Sullivan, M.

    2015-02-21

    We propose a new compact scheme for a Free Electron Laser with more coherent properties for the X-ray beam. Higher FEL performance would be achieved using a train of electron bunches initially accelerated in a linear accelerator. Similar to the RF klystron concept, we propose developing an X-ray FEL which consists of two parts: an X-ray self-seeding electron beam density modulator and an output set of undulators. A density modulator consists of a low-Q X-ray cavity and an undulator, which is placed between the cavity mirrors. We use this undulator as a very high gain amplifier, which compensates the amplitude loss due to monochromatic X-ray reflections from the mirrors. Following the X-ray cavity, the density modulated electron beam is separated from the X-ray beam and then enters the output set of undulators. The frequency spectrum of the final X-ray beam is determined mainly by the bandwidth of the reflected elements in the X-ray cavity.

  18. A Laue–Bragg monolithic beam splitter for efficient X-ray 2-beam imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oberta, P., E-mail: peter.oberta@rigaku.com [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, CZ-18221 Praha 8 (Czech Republic); Mokso, R. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2013-03-01

    Newly emerging techniques for probing matter simultaneously by two spatially and angularly separated X-ray beams require efficient and versatile beam splitting. We present a Laue–Bragg monolithic crystal beam splitter in the form of an L-shaped monolithic Si crystal. By simultaneous Laue and Bragg diffractions the X-ray beam is split into a transmitted polychromatic and a diffracted monochromatic branch with a spatial separation of tens of millimeters. The energy spectrum of the transmitted branch can be tuned via diffraction on a second crystal re-creating a beam intersection on the sample. We propose three multi-modal imaging setups exploiting the large angular separation of the two intersecting beams provided by the proposed optics. Photon efficiency and dual-energy operation are the main assets of our scheme as compared to other existing setups. The theoretical description for an energy range between 10 keV and 30 keV was developed.

  19. Exposure reduction in general dental practice using digital x-ray imaging system for intraoral radiography with additional x-ray beam filter

    International Nuclear Information System (INIS)

    To measure exposure reduction in general dental practice using digital x-ray imaging systems for intraoral radiography with additional x-ray beam filter. Two digital x-ray imaging systems, Pana Digital (Pana-Heraus Dental) and CDR (Schick Technologies), were applied for intraoral radiography in general dental practice. Due to the high sensitivity to x-rays, additional x-ray beam filters for output reduction were used for examination. An Orex W II (Osada Electric Industry) x-ray generator was operated at 60 kVp, 7 mA. X-ray output (air-kerma; Gy) necessary for obtaining clinically acceptable images was measured at 0 to 20 cm in 5 cm steps from the cone tip using an ionizing chamber type 660 (Nuclear Associates) and compared with those for Ektaspeed Plus film (Eastman Kodak). The Pana Digital system was used with the optional filter supplied by Pana-Heraus Dental which reduced the output to 38%. The exposure necessary to obtain clinically acceptable images was only 40% of that for the film. The CDR system was used with the Dental X-ray Beam Filter Kit (Eastman Kodak) which reduced the x-ray output to 30%. The exposure necessary to obtain clinically acceptable images was only 20% of that for the film. The two digital x-ray imaging systems, Pana Digital and CDR, provided large dose savings (60-80%) compared with Ektaspeed Plus film when applied for intraoral radiography in general dental practice. (author)

  20. X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions

    Science.gov (United States)

    Tsusaka, Y.; Takeda, S.; Takano, H.; Yokoyama, K.; Kagoshima, Y.; Matsui, J.

    2016-02-01

    X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector of each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 105 cm-2.

  1. X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tsusaka, Y., E-mail: tsusaka@sci.u-hyogo.ac.jp; Takano, H. [Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Hyogo 678-1297 (Japan); Takeda, S. [SPring-8 Service Co., Ltd., 1-20-5, Kouto, Shingu, Tatsuno, Hyogo 679-5165 (Japan); Yokoyama, K.; Matsui, J. [Synchrotron Radiation Nanotechnology Center, University of Hyogo, 1-490-2, Kouto, Shingu, Tatsuno, Hyogo 679-5165 (Japan); Kagoshima, Y. [Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Hyogo 678-1297 (Japan); Synchrotron Radiation Nanotechnology Center, University of Hyogo, 1-490-2, Kouto, Shingu, Tatsuno, Hyogo 679-5165 (Japan)

    2016-02-15

    X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector of each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 10{sup 5} cm{sup −2}.

  2. X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions

    International Nuclear Information System (INIS)

    X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector of each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 105 cm−2

  3. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    OpenAIRE

    Sorapong Aootaphao; Thongvigitmanee, Saowapak S.; Jartuwat Rajruangrabin; Chalinee Thanasupsombat; Tanapon Srivongsa; Pairash Thajchayapong

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter ...

  4. Industrial X-ray tomography using an electron beam welding box

    CERN Document Server

    Hoppe, D; Koch, D; Zippe, C

    2002-01-01

    An existing electron beam welding box should be used with the least additional effort for X-ray tomography. Only a suitable anode, a simple device to turn the investigated object and one detector for X-rays are placed into the vacuum of the welding box. The information necessary to reconstruct tomograms should be derived only from the measurand of the detector.

  5. An investigation on some of the tumor treatment cases using x-rays and electron beams

    Science.gov (United States)

    Ucar, Burcu; Yigitoglu, Ibrahim; Arslan Kabalay, Ipek; Altiparmak, Duygu; Kilicaslan, Sinem

    2015-07-01

    In this work, we discussed some of the applications which X-rays and electron beam used in radiotherapy for tumor treatments. This study has been performed at Radiation Oncology Department, Medicine Faculty in Gaziosmanpasa University by using the VARIAN CLINICA DHX linear accelerator which is operated in the range of 6 MeV - 15 MeV. Processes for the treatments that X-rays used for pancreas, bladder and prostate tumors and the processes that the electron beam used for some of the derm tumors are studied. Effects of X-rays and electron beams to treatments process are examined and the obtained results are presented comparatively.

  6. Evaluation of the Beam Quality of Intraoral X-ray Equipment using Intraoral Standard Films

    International Nuclear Information System (INIS)

    This study was to evaluate the beam quality of intraoral X-ray equipment used at Yonsei University Dental Hospital (YUDH) using the half value layer (HVL) and the characteristic curve of intraoral standard X-ray film. The study was done using the intraoral X-ray equipment used at each clinical department at YUDH. Aluminum filter was used to determine the HVL. Intraoral standard film was used to get the characteristic curve of each intraoral X-ray equipment. Most of the HVLs of intraoral X-ray equipment were higher than the least recommended thickness, but the REX 601 model used at the operative dentistry department and the X-707 model used at the pediatric dentistry department had HVLs lower than the recommended thickness. The slopes of the characteristic curves of films taken using the PANPAS 601 model and REX 601 model at operative dentistry department, the X-70S model of prosthodontic dentistry department, and the REX 601 model at the student clinic were relatively low. HVL and the characteristic curve of X-ray film can be used to evaluate the beam quality of intraoral X-ray equipment. In order to get the best X-ray films with the least radiation exposure to patients and best diagnostic information in clinical dentistry, X-ray equipment should be managed in the planned and organized fashion.

  7. Development of a multi-lane X-ray mirror providing variable beam sizes.

    Science.gov (United States)

    Laundy, D; Sawhney, K; Nistea, I; Alcock, S G; Pape, I; Sutter, J; Alianelli, L; Evans, G

    2016-05-01

    Grazing incidence mirrors are used on most X-ray synchrotron beamlines to focus, collimate or suppress harmonics. Increasingly beamline users are demanding variable beam shapes and sizes at the sample position. We have now developed a new concept to rapidly vary the beam size and shape of a focused X-ray beam. The surface of an elliptically figured mirror is divided into a number of laterally separated lanes, each of which is given an additional longitudinal height profile calculated to shape the X-ray beam to a top-hat profile in the focal plane. We have now fabricated two prototype mirrors and present the results of metrology tests and measurements made with one of the mirrors focusing the X-rays on a synchrotron beamline. We envisage that such mirrors could be widely applied to rapid beam-size switching on many synchrotron beamlines.

  8. Off-axis beam quality change in linear accelerator x-ray beams

    International Nuclear Information System (INIS)

    The effective energy of the x-ray beam from linear accelerators changes as a function of the position in the beam due to nonuniform filtration by the flattening filter. In this work, the transmittance through a water column was measured in good geometry and the beam quality characterized in units of HVL in water. Measurements were made on a variety of linear accelerators from 4 to 10 MV. The beam energy decreased with increasing distance from the central ray for all accelerators measured

  9. A preliminary study of breast cancer diagnosis using laboratory based small angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Round, A R [Daresbury Laboratories, Warrington, WA4 4AD (United Kingdom); Wilkinson, S J [Daresbury Laboratories, Warrington, WA4 4AD (United Kingdom); Hall, C J [Daresbury Laboratories, Warrington, WA4 4AD (United Kingdom); Rogers, K D [Department of Materials and Medical Sciences, Cranfield University, Swindon, SN6 8LA (United Kingdom); Glatter, O [Department of Chemistry, University of Graz (Austria); Wess, T [School of Optometry and Vision Sciences, Cardiff University, Cardiff CF10 3NB, Wales (United Kingdom); Ellis, I O [Nottingham City Hospital, Nottingham (United Kingdom)

    2005-09-07

    Breast tissue collected from tumour samples and normal tissue from bi-lateral mastectomy procedures were examined using small angle x-ray scattering. Previous work has indicated that breast tissue disease diagnosis could be performed using small angle x-ray scattering (SAXS) from a synchrotron radiation source. The technique would be more useful to health services if it could be made to work using a conventional x-ray source. Consistent and reliable differences in x-ray scatter distributions were observed between samples from normal and tumour tissue samples using the laboratory based 'SAXSess' system. Albeit from a small number of samples, a sensitivity of 100% was obtained. This result encourages us to pursue the implementation of SAXS as a laboratory based diagnosis technique.

  10. 77 FR 12226 - Sadex Corp.; Filing of Food Additive Petition (Animal Use); Electron Beam and X-Ray Sources for...

    Science.gov (United States)

    2012-02-29

    ... Petition (Animal Use); Electron Beam and X-Ray Sources for Irradiation of Poultry Feed and Poultry Feed... regulations be amended to provide for the safe use of electron beam and x-ray sources for irradiation of... use of electron beam and x- ray sources for irradiation of poultry feed and poultry feed...

  11. Visualization of X-ray Beam Using CdWO4 Crystal for Macromolecular Crystallography

    Directory of Open Access Journals (Sweden)

    Kazimierz J. Gofron

    2011-12-01

    Full Text Available In synchrotron diffraction experiments, it is typically assumed that the X-ray beam at the sample position is uniform, stable and has dimensions that are controlled by the focus and slits settings. As might be expected, this process is much more complex. We present here an investigation of the properties of a synchrotron X-ray beam at the sample position. The X-ray beam is visualized with a single crystal scintillator that converts X-ray photons into visible light photons, which can be imaged using Structure Biology Center (SBC on-axis and off-axis microscope optics. The X-ray penetration is dependent on the composition of the scintillator (especially the effective Z, and X-ray energy. Several scintillators have been used to visualize X-ray beams. Here we compare CdWO4, PbWO4, Bi4Ge3O12, Y3Al5O12:Ce (YAG:Ce, and Gd2O2S:Tb (phosphor. We determined that scintillator crystals made of CdWO4 and similar high-Z materials are best suited for the energy range (7–20 keV and are most suitable for beam visualization for macromolecular crystallography applications. These scintillators show excellent absorption, optical, and mechanical properties.

  12. Application of imaging plate to micro-beam X-ray diffraction

    International Nuclear Information System (INIS)

    A new type of integrating area detector system with high sensitivity and high spatial resolution was recently developed for diagnostic radiography. In this detector system, a two dimensional X-ray image is temporarily stored as a distribution of F-centers in a photostimulable phosphor screen called the imaging plate (IP). The image in the IP is then read out by measuring the intensity of fluorescence which is stimulated by a focused He-Ne laser beam scanning the surface of the phosphor screen. The residual X-ray image in the IP can be erased simply by exposing it to a large dose of visible light and the IP can be used repeatedly. The detector has 100% detective quantum efficiency for 0-20 keV X-ray, a spatial resolution better than 0.15mm(fwhm), a dynamic range of 105 and no counting rate limitation. The exposure time can be shorten to 1/20-1/60 in comparison with the use of the X-ray film. In this study, we examined the possibility of the IP for the X-ray studies on the mechanical behaviour of materials by using the back-reflection X-ray technique. An exposure time of more than 30 minutes would be required for a conventional high sensitivity X-ray film in the case of αFe(211) diffraction by Cr-Kα X-rays. When the imaging plates were used in place of the film under the same X-ray condition, we could obtain visually similar patterns by exposing the time of less than 90 seconds. These diffraction patterns can be precisely analyzed with the help of the image processing analyzer. We conclude that this detector system is usable in almost the same way as an X-ray film. Especially, this will be more powerful means in the field of micro-beam X-ray diffraction. (author)

  13. Versatile AFM setup combined with micro-focused X-ray beam

    CERN Document Server

    Slobodskyy, T; Tholapi, R; Liefeith, L; Fester, M; Sprung, M; Hansen, W

    2015-01-01

    Micro-focused X-ray beams produced by third generation synchrotron sources offer new perspective of studying strains and processes at nanoscale. Atomic force microscope setup combined with a micro-focused synchrotron beam allows precise positioning and nanomanipulation of nanostructures under illumination. In this paper, we report on integration of a portable commercial atomic force microscope setup into a hard X-ray synchrotron beamline. Details of design, sample alignment procedure and performance of the setup are presented.

  14. Effect of X-ray beam vertical angulation on radiographic assessment of alveolar crest level.

    OpenAIRE

    Zulqarnain B; Almas K

    1998-01-01

    Periodontal diseases are diagnosed and monitored by various methods. Probing pocket depth measurements and dental radiographs are two of the most commonly used methods. The aim of this study was to assess the effect of x-ray beam vertical angulation on radiographic assessment of alveolar crest level in five human mandibles. A standardized technique was used to take bitewing radiographs with -10 degrees, 0 degree and +10 degrees angulation of X-Ray beam. The range of the mean difference...

  15. Using a tandem ionization chamber for quality control of X-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizumi, Maira T.; Caldas, Linda V.E., E-mail: mairaty@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    X-ray beam qualities are defined by both the mean energies and by the half-value layers (HVL). Many international protocols use the half-value layer and the beam voltage to characterize the X-ray beam quality. A quality control program for X-ray equipment includes the constancy check of beam qualities, i.e., the periodical verification of the half-value layer, which can be a time consumable procedure. A tandem ionization chamber, developed at Instituto de Pesquisas Energeticas e Nucleares, was used to determine the HVL and its constancy for five radiotherapy standard beam qualities. This ionization chamber is composed by two sensitive volumes with inner electrodes made of different materials: aluminum and graphite. The beam quality constancy check test was performed during two months and the maximum variation obtained was 1.24% for the radiation beam quality T-10. This result is very satisfactory according to national recommendations. (author)

  16. Use of active-edge silicon detectors as X-ray beam monitors

    International Nuclear Information System (INIS)

    Silicon detectors have been developed which are active to within several microns of the physical edge of the detector. These active-edge devices can be placed near an intense X-ray beam to accurately measure the X-ray beam properties. In addition, they can be fabricated in a variety of geometries that will be useful for monitoring the intensity, profile, and position of synchrotron X-ray beams. One shape is a detector with a through hole surrounded by four active elements. The hole allows the intense X-ray beam to go through the center while the four elements can detect any change in the position or dispersion of the beam. Another shape is a rectangular 5 mm longx0.5 mm wide device with a set of four elements that are 100 μm wide. These devices could be mounted on the upstream side of the jaws of an x-y collimating slit to measure the intensity profile of the beam that each jaw of the slit is stopping. Small detectors could also be mounted in a cylindrical beam stop to give on-line beam intensity measurements. A variety of different geometries were tested at beamline 10.3.1 of the Advanced Light Source using a 12.5 keV X-ray beam. They have wide dynamic range, excellent position sensitivity and low sensitivity to radiation damage

  17. First demonstration of X-ray mirrors using focused ion beam

    Science.gov (United States)

    Numazawa, Masaki; Ezoe, Yuichiro; Ishikawa, Kumi; Ogawa, Tomohiro; Sato, Mayu; Nakamura, Kasumi; Takeuchi, Kazuma; Terada, Masaru; Ohashi, Takaya; Mitsuda, Kazuhisa; Kelley, Ron; Murata, Kaoru

    2016-06-01

    We report on novel X-ray mirrors fabricated with a focused ion beam for future astronomical missions. We fabricated a test sample from a silicon wafer by forming six slits whose sidewalls were used as X-ray reflection surfaces. The six slits were designed with a size of 25 × 300 × 170 µm3 and with different inclination angles of 0 and ±1°. We examined X-ray reflection using three slits with different inclination angles at Al Kα 1.49 keV. Consequently, we demonstrated X-ray reflection from all the three slits. All the sidewalls have multiangular components with a microroughness of ˜1 nm rms. ˜30-45% of the total surface area is effective for X-ray reflection. We confirmed that the inclination angles are consistent with the designed values.

  18. Fabrication of the beam splitters for soft X-ray laser application

    Institute of Scientific and Technical Information of China (English)

    WANG Zhanshan; CUI Mingqi; WU Yonggang; TANG Weixing; QIN Shuji; CHEN Lingyan; XU Xiangdong; HONG Yilin; FU Shaojun; ZHU Jie

    2003-01-01

    The soft X-ray interferometry is completed by the Mach-Zehnder interferometer using a soft X-ray laser, and it is also an important method to measure the electron densities of a laser-produced plasma near the critical surface. It is apparently demonstrated in this paper that the incident angle of each optical element in the soft X-ray Mach- Zehnder interferometer should be near normal incidence based on the polarized characteristics of the soft X-ray multilayers, and the product of reflectivity and transmission of the beam splitter should be taken as a standard of design according to the structure of the soft X-ray Mach-Zehnder interferometer. The beam splitters used in the soft X-ray interferometry at 13.9 nm are fabricated using the ion beam sputtering. The figure error of the beam splitter has reached the nanometer magnitude, in which the product of reflectivity and transmission of the beam splitter is more than 1.6%.

  19. Surface profiling of X-ray mirrors for shaping focused beams.

    Science.gov (United States)

    Laundy, David; Alianelli, Lucia; Sutter, John; Evans, Gwyndaf; Sawhney, Kawal

    2015-01-26

    Grazing incidence mirrors are a standard optic for focusing X-rays. Active mirrors, whose surface profile can be finely adjusted, allow control of beam shape and size at the sample. However, progress towards their routine use for beam shaping has been hampered by the strong striations in reflected beams away from the focal plane. Re-entrant (partly concave and partly convex) surface modifications are proposed for shaping X-ray beams to a top-hat in the focal plane while reducing the striations caused by unavoidable polishing errors. A method for constructing such surfaces with continuous height and slope (but only piecewise continuous curvature) will be provided. Ray tracing and wave propagation calculations confirm its effectiveness. A mirror system is proposed allowing vertical beam sizes in the range 0.5 to 10μm. A prototype will be fabricated and is expected to have applications on many synchrotron X-ray beamlines.

  20. Large-angle x-ray scatter in Talbot–Lau interferometry for breast imaging

    International Nuclear Information System (INIS)

    Monte Carlo simulations were used to investigate large-angle x-ray scatter at design energy of 25 keV during small field of view (9.6 cm × 5 cm) differential phase contrast imaging of the breast using Talbot–Lau interferometry. Homogenous, adipose and fibroglandular breasts of uniform thickness ranging from 2 to 8 cm encompassing the field of view were modeled. Theoretically determined transmission efficiencies of the gratings were used to validate the Monte Carlo simulations, followed by simulations to determine the x-ray scatter reaching the detector. The recorded x-ray scatter was classified into x-ray photons that underwent at least one Compton interaction (incoherent scatter) and Rayleigh interaction alone (coherent scatter) for further analysis. Monte Carlo based estimates of transmission efficiencies showed good correspondence (r2>0.99) with theoretical estimates. Scatter-to-primary ratio increased with increasing breast thickness, ranging from 0.11 to 0.22 for 2–8 cm thick adipose breasts and from 0.12 to 0.28 for 2–8 cm thick fibroglandular breasts. The analyzer grating reduced incoherent scatter by ∼18% for 2 cm thick adipose breast and by ∼35% for 8 cm thick fibroglandular breast. Coherent scatter was the dominant contributor to the total scatter. Coherent-to-incoherent scatter ratio ranged from 2.2 to 3.1 for 2–8 cm thick adipose breasts and from 2.7 to 3.4 for 2–8 cm thick fibroglandular breasts. (paper)

  1. Effect of an electron scattering cloud on X-ray oscillations produced by beaming

    Science.gov (United States)

    Brainerd, J.; Lamb, F. K.

    1987-01-01

    The effect of a scattering cloud on the amplitude of oscillations produced by a rotating beam of X-rays is investigated using analytical and Monte Carlo methods. The scattering cloud was modeled as a uniform density sphere, and the source was represented as an anistropic distribution of radiation emerging from a point at the center of the scattering cloud. The intensity distribution produced by the source beam is examined as a function of optical depth. The relation between electron scattering optical depth and the forward-backward ratio is studied. It is observed that the scattering in a central corona of various optical depths reduces the amplitude of the oscillation. The data suggest that the quasi-periodic oscillations observed in the X-ray intensities of some luminous low-mass X-ray binaries are caused by oscillations in the luminosity of the X-ray star.

  2. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2012-11-15

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  3. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    International Nuclear Information System (INIS)

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  4. Beam transport in the crystal x-ray accelerator

    International Nuclear Information System (INIS)

    A Fokker-Planck model of charged particle transport in crystal channels which includes the effect of strong accelerating gradients has been developed for application to the crystal x-ray accelerator and other crystal accelerator schemes. We indicate the implications of the analytic solutions found for a harmonic channeling potential for the accelerating gradient and the multiple scattering which, because we consider only the acceleration of positive particles, is dominated by scattering from the valence electrons. In order to relax the constraints imposed by these, we have been exploring the application of novel materials to this problem. One candidate is porous Si and our investigation into this material which is as yet preliminary is discussed and other possible materials are indicated

  5. Scattering-compensated cone beam x-ray luminescence computed tomography

    Science.gov (United States)

    Gao, Peng; Rong, Junyan; Pu, Huangsheng; Liu, Wenlei; Liao, Qimei; Lu, Hongbing

    2016-04-01

    X-ray luminescence computed tomography (XLCT) opens new possibilities to perform molecular imaging with x-ray. It is a dual modality imaging technique based on the principle that some nanophosphors can emit near-infrared (NIR) light when excited by x-rays. The x-ray scattering effect is a great issue in both CT and XLCT reconstruction. It has been shown that if the scattering effect compensated, the reconstruction average relative error can be reduced from 40% to 12% in the in the pencil beam XLCT. However, the scattering effect in the cone beam XLCT has not been proved. To verify and reduce the scattering effect, we proposed scattering-compensated cone beam x-ray luminescence computed tomography using an added leading to prevent the spare x-ray outside the irradiated phantom in order to decrease the scattering effect. Phantom experiments of two tubes filled with Y2O3:Eu3+ indicated that the proposed method could reduce the scattering by a degree of 30% and can reduce the location error from 1.8mm to 1.2mm. Hence, the proposed method was feasible to the general case and actual experiments and it is easy to implement.

  6. Maximum-likelihood estimation of scatter components algorithm for x-ray coherent scatter computed tomography of the breast

    Science.gov (United States)

    Ghammraoui, Bahaa; Badal, Andreu; Popescu, Lucretiu M.

    2016-04-01

    Coherent scatter computed tomography (CSCT) is a reconstructive x-ray imaging technique that yields the spatially resolved coherent-scatter cross section of the investigated object revealing structural information of tissue under investigation. In the original CSCT proposals the reconstruction of images from coherently scattered x-rays is done at each scattering angle separately using analytic reconstruction. In this work we develop a maximum likelihood estimation of scatter components algorithm (ML-ESCA) that iteratively reconstructs images using a few material component basis functions from coherent scatter projection data. The proposed algorithm combines the measured scatter data at different angles into one reconstruction equation with only a few component images. Also, it accounts for data acquisition statistics and physics, modeling effects such as polychromatic energy spectrum and detector response function. We test the algorithm with simulated projection data obtained with a pencil beam setup using a new version of MC-GPU code, a Graphical Processing Unit version of PENELOPE Monte Carlo particle transport simulation code, that incorporates an improved model of x-ray coherent scattering using experimentally measured molecular interference functions. The results obtained for breast imaging phantoms using adipose and glandular tissue cross sections show that the new algorithm can separate imaging data into basic adipose and water components at radiation doses comparable with Breast Computed Tomography. Simulation results also show the potential for imaging microcalcifications. Overall, the component images obtained with ML-ESCA algorithm have a less noisy appearance than the images obtained with the conventional filtered back projection algorithm for each individual scattering angle. An optimization study for x-ray energy range selection for breast CSCT is also presented.

  7. Design and characterization of a multi-beam micro-CT scanner based on carbon nanotube field emission x-ray technology

    Science.gov (United States)

    Peng, Rui

    In this dissertation, I will present the results for my Ph.D. research for the past five years. My project mainly focuses on advanced imaging applications with a multi-beam x-ray source array based on carbon nanotube field emission technology. In the past few years, research in carbon nanotubes gradually changed from the raw material science to its application. Field emission x-ray application is one of the hottest research areas for carbon nanotube. Compared to traditional thermionic x-ray sources, the carbon nanotube field emission x-ray source has some natural advantages over traditional thermionic x-ray sources such as instantaneous x-ray generation, programmability and miniaturization. For the past few years, the research and development of carbon nanotube field emission x-ray has shifted from single x-ray beam applications to spatially distributed multi-beam x-ray sources. Previously in Zhou group, we have already built a gated micro-CT system with single beam micro-focus x-ray tube for higher spatial and temporal resolution as required in live animal imaging and a multi-beam tomosynthesis system targeting for faster and more stable breast imaging. Now my project mainly focused on the design, characterization and optimization of a multi-beam micro-CT imaging system. With the increase of gantry rotation speed approaching the mechanical limit, it is getting more and more difficult to further speed up the CT scanning. My new system promises a potential solution for the problem, and it serves as a great test platform for truly stationary micro-CT geometry. The potential capabilities it showed during the characterization and imaging measurements was promising. The dissertation is composed of five chapters. In Chapter 1, I will generally review the physics principles of x-ray generation and interaction with matter. Then the discovery of carbon nanotube and its great potential to serve as an excellent field emission electron source will be introduced in the second

  8. A multiple CCD X-ray detector and its first operation with synchrotron radiation X-ray beam

    CERN Document Server

    Suzuki, M; Kumasaka, T; Sato, K; Toyokawa, H; Aries, I F; Jerram, P A; Ueki, T

    1999-01-01

    A 4x4 array structure of 16 identical CCD X-ray detector modules, called the multiple CCD X-ray detector system (MCCDX), was submitted to its first synchrotron radiation experiment at the protein crystallography station of the RIKEN beamline (BL45XU) at the SPring-8 facility. An X-ray diffraction pattern of cholesterol powder was specifically taken in order to investigate the overall system performance.

  9. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    OpenAIRE

    G. Golovin; Banerjee, S.; Liu, C; Chen, S.; Zhang, J.; Zhao, B.; Zhang, P.; Veale, M.; Wilson, M.; P. Seller; Umstadter, D.

    2016-01-01

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of ...

  10. Study on Compression Induced Contrast in X-ray Mammograms Using Breast Mimicking Phantoms

    Directory of Open Access Journals (Sweden)

    A. B. M. Aowlad Hossain

    2015-09-01

    Full Text Available X-ray mammography is commonly used to scan cancer or tumors in breast using low dose x-rays. But mammograms suffer from low contrast problem. The breast is compressed in mammography to reduce x-ray scattering effects. As tumors are stiffer than normal tissues, they undergo smaller deformation under compression. Therefore, image intensity at tumor region may change less than the background tissues. In this study, we try to find out compression induced contrast from multiple mammographic images of tumorous breast phantoms taken with different compressions. This is an extended work of our previous simulation study with experiment and more analysis. We have used FEM models for synthetic phantom and constructed a phantom using agar and n-propanol for simulation and experiment. The x-ray images of deformed phantoms have been obtained under three compression steps and a non-rigid registration technique has been applied to register these images. It is noticeably observed that the image intensity changes at tumor are less than those at surrounding which induce a detectable contrast. Addition of this compression induced contrast to the simulated and experimental images has improved their original contrast by a factor of about 1.4

  11. SU-E-I-09: The Impact of X-Ray Scattering On Image Noise for Dedicated Breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Yang, K [Massachusetts General Hospital, Boston, MA (United States); Gazi, P [University of California, Davis, Sacramento, CA (United States); Boone, J [UC Davis Medical Center, Sacramento, CA (United States)

    2015-06-15

    Purpose: To quantify the impact of detected x-ray scatter on image noise in flat panel based dedicated breast CT systems and to determine the optimal scanning geometry given practical trade-offs between radiation dose and scatter reduction. Methods: Four different uniform polyethylene cylinders (104, 131, 156, and 184 mm in diameter) were scanned as the phantoms on a dedicated breast CT scanner developed in our laboratory. Both stationary projection imaging and rotational cone-beam CT imaging was performed. For each acquisition type, three different x-ray beam collimations were used (12, 24, and 109 mm measured at isocenter). The aim was to quantify image noise properties (pixel variance, SNR, and image NPS) under different levels of x-ray scatter, in order to optimize the scanning geometry. For both projection images and reconstructed CT images, individual pixel variance and NPS were determined and compared. Noise measurement from the CT images were also performed with different detector binning modes and reconstruction matrix sizes. Noise propagation was also tracked throughout the intermediate steps of cone-beam CT reconstruction, including the inverse-logarithmic process, Fourier-filtering before backprojection. Results: Image noise was lower in the presence of higher scatter levels. For the 184 mm polyethylene phantom, the image noise (measured in pixel variance) was ∼30% lower with full cone-beam acquisition compared to a narrow (12 mm) fan-beam acquisition. This trend is consistent across all phantom sizes and throughout all steps of CT image reconstruction. Conclusion: From purely a noise perspective, the cone-beam geometry (i.e. the full cone-angle acquisition) produces lower image noise compared to the lower-scatter fan-beam acquisition for breast CT. While these results are relevant in homogeneous phantoms, the full impact of scatter on noise in bCT should involve contrast-to-noise-ratio measurements in heterogeneous phantoms if the goal is to optimize

  12. SU-E-I-09: The Impact of X-Ray Scattering On Image Noise for Dedicated Breast CT

    International Nuclear Information System (INIS)

    Purpose: To quantify the impact of detected x-ray scatter on image noise in flat panel based dedicated breast CT systems and to determine the optimal scanning geometry given practical trade-offs between radiation dose and scatter reduction. Methods: Four different uniform polyethylene cylinders (104, 131, 156, and 184 mm in diameter) were scanned as the phantoms on a dedicated breast CT scanner developed in our laboratory. Both stationary projection imaging and rotational cone-beam CT imaging was performed. For each acquisition type, three different x-ray beam collimations were used (12, 24, and 109 mm measured at isocenter). The aim was to quantify image noise properties (pixel variance, SNR, and image NPS) under different levels of x-ray scatter, in order to optimize the scanning geometry. For both projection images and reconstructed CT images, individual pixel variance and NPS were determined and compared. Noise measurement from the CT images were also performed with different detector binning modes and reconstruction matrix sizes. Noise propagation was also tracked throughout the intermediate steps of cone-beam CT reconstruction, including the inverse-logarithmic process, Fourier-filtering before backprojection. Results: Image noise was lower in the presence of higher scatter levels. For the 184 mm polyethylene phantom, the image noise (measured in pixel variance) was ∼30% lower with full cone-beam acquisition compared to a narrow (12 mm) fan-beam acquisition. This trend is consistent across all phantom sizes and throughout all steps of CT image reconstruction. Conclusion: From purely a noise perspective, the cone-beam geometry (i.e. the full cone-angle acquisition) produces lower image noise compared to the lower-scatter fan-beam acquisition for breast CT. While these results are relevant in homogeneous phantoms, the full impact of scatter on noise in bCT should involve contrast-to-noise-ratio measurements in heterogeneous phantoms if the goal is to optimize

  13. Non-invasive measurement of X-ray beam heating on a surrogate crystal sample.

    Science.gov (United States)

    Snell, Edward H; Bellamy, Henry D; Rosenbaum, Gerd; van der Woerd, Mark J

    2007-01-01

    Cryocooling is a technique routinely used to mitigate the effects of secondary radiation damage on macromolecules during X-ray data collection. Energy from the X-ray beam absorbed by the sample raises the temperature of the sample. How large is the temperature increase and does this reduce the effectiveness of cryocooling? Sample heating by the X-ray beam has been measured non-invasively for the first time by means of thermal imaging. Specifically, the temperature rise of 1 mm and 2 mm glass spheres (sample surrogates) exposed to an intense synchrotron X-ray beam and cooled in a laminar flow of nitrogen gas is experimentally measured. For the typical sample sizes, photon energies, fluxes, flux densities and exposure times used for macromolecular crystallographic data collection at third-generation synchrotron radiation sources and with the sample accurately centered in the cryostream, the heating by the X-ray beam is only a few degrees. This is not sufficient to raise the sample above the amorphous-ice/crystalline-ice transition temperature and, if the cryostream cools the sample to 100 K, not even enough to significantly enhance radiation damage from secondary effects.

  14. Influence of the electron beam emittance on the polarization of a laser--electron X-ray generator

    CERN Document Server

    Artyukov, I A; Feshchenko, R M

    2016-01-01

    In this paper we analyze the polarization of the X-ray radiation coming from laser--electron X-ray generator (LEXG). We obtain general relations connecting the polarization state of outgoing X-ray radiation to the polarization state of laser beam as well as to the parameters of electron beam. We demonstrate that finite electron beam emittance causes a partial depolarization of initially fully polarized X-ray radiation even when the laser beam is fully polarized. We demonstrate with a number of numerical experiments that finite electron beam emittance can in some cases fundamentally alter the polarization state of X-ray radiation as compared to the polarization state of X-ray radiation scattered by electron beam with a zero emittance. Possible applications of polarized LEXG's radiation are discussed.

  15. Indirect-detection single-photon-counting x-ray detector for breast tomosynthesis

    Science.gov (United States)

    Jiang, Hao; Kaercher, Joerg; Durst, Roger

    2016-03-01

    X-ray mammography is a crucial screening tool for early identification of breast cancer. However, the overlap of anatomical features present in projection images often complicates the task of correctly identifying suspicious masses. As a result, there has been increasing interest in acquisition of volumetric information through digital breast tomosynthesis (DBT) which, compared to mammography, offers the advantage of depth information. Since DBT requires acquisition of many projection images, it is desirable that the noise in each projection image be dominated by the statistical noise of the incident x-ray quanta and not by the additive noise of the imaging system (referred to as quantum-limited imaging) and that the cumulative dose be as low as possible (e.g., no more than for a mammogram). Unfortunately, the electronic noise (~2000 electrons) present in current DBT systems based on active matrix, flat-panel imagers (AMFPIs) is still relatively high compared with modest x-ray gain of the a-Se and CsI:Tl x-ray converters often used. To overcome the modest signal-to-noise ratio (SNR) limitations of current DBT systems, we have developed a large-area x-ray imaging detector with the combination of an extremely low noise (~20 electrons) active-pixel CMOS and a specially designed high resolution scintillator. The high sensitivity and low noise of such system provides better SNR by at least an order of magnitude than current state-of-art AMFPI systems and enables x-ray indirect-detection single photon counting (SPC) at mammographic energies with the potential of dose reduction.

  16. X-ray diffraction and imaging with a coherent beam: application to X-ray optical elements and to crystals exhibiting phase inhomogeneities

    International Nuclear Information System (INIS)

    The exceptional properties of synchrotron light sources have been exploited in very different disciplines, from archaeology to chemistry, from material science to biology, from medicine to physics. Among these properties it is important to mention the high brilliance, continuum spectrum, high degree of polarization, time structure, small source size and divergence of the beam, the last resulting in a high transversal coherence of the produced radiation. This high transversal coherence of the synchrotron sources has permitted the development of new techniques, e.g. phase contrast imaging, X-ray photon correlation spectroscopy and coherent X-ray diffraction imaging (CXDI). This thesis work will consist essentially of three parts. In the first part it will be presented the work done as a member of the X-ray Optics Group of ESRF in the characterization of high quality diamond crystals foreseen as X-ray optical elements. The characterization has been done using different complementary X-ray techniques, such as high resolution diffraction, topography, grazing incidence diffraction, reflectivity and measurements of the coherence preservation using the Talbot effect. In the second part, I will show the result obtained in the study of the temperature behaviours of the domain in periodically poled ferroelectrics crystals. This type of measurements, based on Bragg-Fresnel diffraction, are possible only thanks to the high degree of coherence of the beam. In the third part, I will present the results obtained in the characterization of diamonds foreseen for applications other than X-ray optical elements. (author)

  17. An upgraded experiment of X-ray photon-photon elastic scattering with a Laue-case beam collider

    CERN Document Server

    Yamaji, T; Yamazaki, T; Namba, T; Asai, S; Kobayashi, T; Tamasaku, K; Tanaka, Y; Inubushi, Y; Sawada, K; Yabashi, M; Ishikawa, T

    2016-01-01

    The new result of a photon-photon scattering experiment in the X-ray region is reported. An X-ray beam collider is used to divide and collide X-ray beams from an X-ray Free Electron Laser, SACLA. The sensitivity of the experiment is enhanced by an upgraded X-ray beam collider and improvement of the SACLA beam quality. The intensity of the colliding photon beams increased significantly, giving an integrated luminosity of (1.24 \\pm 0.08) \\times 10^{28} m^{-2}. No signal of scattered X rays was observed. The obtained 95% C.L. limit on the QED cross section is 1.9 \\times 10^{-27} m^2 at \\omega_{cms}=6.5 keV, which is more stringent by around three orders of magnitude than our previous result.

  18. Estimation of effective x-ray tissue attenuation differences for volumetric breast density measurement

    Science.gov (United States)

    Chen, Biao; Ruth, Chris; Jing, Zhenxue; Ren, Baorui; Smith, Andrew; Kshirsagar, Ashwini

    2014-03-01

    Breast density has been identified to be a risk factor of developing breast cancer and an indicator of lesion diagnostic obstruction due to masking effect. Volumetric density measurement evaluates fibro-glandular volume, breast volume, and breast volume density measures that have potential advantages over area density measurement in risk assessment. One class of volume density computing methods is based on the finding of the relative fibro-glandular tissue attenuation with regards to the reference fat tissue, and the estimation of the effective x-ray tissue attenuation differences between the fibro-glandular and fat tissue is key to volumetric breast density computing. We have modeled the effective attenuation difference as a function of actual x-ray skin entrance spectrum, breast thickness, fibro-glandular tissue thickness distribution, and detector efficiency. Compared to other approaches, our method has threefold advantages: (1) avoids the system calibration-based creation of effective attenuation differences which may introduce tedious calibrations for each imaging system and may not reflect the spectrum change and scatter induced overestimation or underestimation of breast density; (2) obtains the system specific separate and differential attenuation values of fibroglandular and fat for each mammographic image; and (3) further reduces the impact of breast thickness accuracy to volumetric breast density. A quantitative breast volume phantom with a set of equivalent fibro-glandular thicknesses has been used to evaluate the volume breast density measurement with the proposed method. The experimental results have shown that the method has significantly improved the accuracy of estimating breast density.

  19. A compact and portable X-ray beam position monitor using Medipix3

    OpenAIRE

    O. Rico-Alvarez, A. Kachatkou, J. Marchal, B. Willis, K. Sawhney, N. Tartoni and R.G. van Silfhout

    2014-01-01

    The present work reports on the design and implementation of a novel portable Xraybeam diagnostics (XBPM) device. The device is transparent to the X-ray beam and provides real-time measurements of beam position, intensity, and size. The measurement principle is based on a pinhole camera which records scattered radiation from a Kapton foil which is placed in the beam path. The use of hybrid detectors (Medipix3) that feature a virtually noiseless readout system with capability of single photon ...

  20. Measurement of breast-tissue x-ray attenuation by spectral mammography: solid lesions

    Science.gov (United States)

    Fredenberg, Erik; Kilburn-Toppin, Fleur; Willsher, Paula; Moa, Elin; Danielsson, Mats; Dance, David R.; Young, Kenneth C.; Wallis, Matthew G.

    2016-04-01

    Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. For instance, techniques to distinguish between cysts and solid tumours at mammography screening would be highly desirable to reduce recalls, but the development requires knowledge of the x-ray attenuation for cysts and tumours. We have previously measured the attenuation of cyst fluid using photon-counting spectral mammography. Data on x-ray attenuation for solid breast lesions are available in the literature, but cover a relatively wide range, likely caused by natural spread between samples, random measurement errors, and different experimental conditions. In this study, we have adapted a previously developed spectral method to measure the linear attenuation of solid breast lesions. A total of 56 malignant and 5 benign lesions were included in the study. The samples were placed in a holder that allowed for thickness measurement. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, which can be used to derive the x-ray attenuation as a function of energy. The spread in equivalent material thicknesses was relatively large between samples, which is likely to be caused mainly by natural variation and only to a minor extent by random measurement errors and sample inhomogeneity. No significant difference in attenuation was found between benign and malignant solid lesions. The separation between cyst-fluid and tumour attenuation was, however, significant, which suggests it may be possible to distinguish cystic from solid breast lesions, and the results lay the groundwork for a clinical trial. In addition, the study adds a relatively large sample set to the published data and may contribute to a reduction in the overall uncertainty in the literature.

  1. Inclined-incidence quasi-Fresnel lens for prefocusing of synchrotron radiation x-ray beams

    Science.gov (United States)

    Kagoshima, Yasushi; Takano, Hidekazu; Takeda, Shingo

    2012-10-01

    An inclined-incidence quasi-Fresnel lens made of acrylic resin has been developed for prefocusing in synchrotron radiation x-ray beamlines. By inclining the lens, the grating aspect ratio is large enough for x-ray use. As it operates in transmission mode with negligible beam deflection and offset, little additional equipment is needed to introduce it into existing beamlines. It is fabricated by sheet-press forming, enabling inexpensive mass production. The prototype was able to focus a 730-μm-wide beam to a width of 80 μm with a photon flux density gain of 5.6 at an x-ray energy of 10 keV.

  2. Coherent convergent-beam time-resolved X-ray diffraction.

    Science.gov (United States)

    Spence, John C H; Zatsepin, Nadia A; Li, Chufeng

    2014-07-17

    The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic laser radiation of a free-electron X-ray laser is unsuitable. We discuss the possibility of obtaining single-shot, angle-integrated rocking curves from CCB patterns, and the dependence of the resulting patterns on the focused beam coordinate when the beam diameter is larger or smaller than a nanocrystal, or smaller than one unit cell. We show how structure factor phase information is provided at overlapping interfering orders and how a common phase origin between different shots may be obtained. Their use in refinement of the phase-sensitive intensity between overlapping orders is suggested. PMID:24914153

  3. Femtosecond time-resolved X-ray absorption spectroscopy of liquid using a hard X-ray free electron laser in a dual-beam dispersive detection method.

    Science.gov (United States)

    Obara, Yuki; Katayama, Tetsuo; Ogi, Yoshihiro; Suzuki, Takayuki; Kurahashi, Naoya; Karashima, Shutaro; Chiba, Yuhei; Isokawa, Yusuke; Togashi, Tadashi; Inubushi, Yuichi; Yabashi, Makina; Suzuki, Toshinori; Misawa, Kazuhiko

    2014-01-13

    We present femtosecond time-resolved X-ray absorption spectroscopy of aqueous solution using a hard x-ray free electron laser (SACLA) and a synchronized Ti:sapphire laser. The instrumental response time is 200 fs, and the repetition rate of measurement is 10 Hz. A cylindrical liquid beam 100 μm in diameter of aqueous ammonium iron(III) oxalate solution is photoexcited at 400 nm, and the transient X-ray absorption spectra are measured in the K-edge region of iron, 7.10 - 7.26 keV, using a dual X-ray beam dispersive detection method. Each of the dual beams has the pulse energy of 1.4 μJ, and pump-induced absorbance change on the order of 10(-3) is successfully detected. The photoexcited iron complex exhibits a red shifted iron K-edge with the appearance time constant of 260 fs. The X-ray absorption difference spectra, with and without the pump pulses, are independent of time delay after 1.5 ps up to 100 ps, indicating that the photoexcited species is long-lived.

  4. TU-F-18C-03: X-Ray Scatter Correction in Breast CT: Advances and Patient Testing

    Energy Technology Data Exchange (ETDEWEB)

    Ramamurthy, S; Sechopoulos, I [Emory University, Atlanta, GA (United States)

    2014-06-15

    Purpose: To further develop and perform patient testing of an x-ray scatter correction algorithm for dedicated breast computed tomography (BCT). Methods: A previously proposed algorithm for x-ray scatter signal reduction in BCT imaging was modified and tested with a phantom and on patients. A wireless electronic positioner system was designed and added to the BCT system that positions a tungsten plate in and out of the x-ray beam. The interpolation used by the algorithm was replaced with a radial basis function-based algorithm, with automated exclusion of non-valid sampled points due to patient motion or other factors. A 3D adaptive noise reduction filter was also introduced to reduce the impact of scatter quantum noise post-reconstruction. The impact on image quality of the improved algorithm was evaluated using a breast phantom and seven patient breasts, using quantitative metrics such signal difference (SD) and signal difference-to-noise ratios (SDNR) and qualitatively using image profiles. Results: The improvements in the algorithm resulted in a more robust interpolation step, with no introduction of image artifacts, especially at the imaged object boundaries, which was an issue in the previous implementation. Qualitative evaluation of the reconstructed slices and corresponding profiles show excellent homogeneity of both the background and the higher density features throughout the whole imaged object, as well as increased accuracy in the Hounsfield Units (HU) values of the tissues. Profiles also demonstrate substantial increase in both SD and SDNR between glandular and adipose regions compared to both the uncorrected and system-corrected images. Conclusion: The improved scatter correction algorithm can be reliably used during patient BCT acquisitions with no introduction of artifacts, resulting in substantial improvement in image quality. Its impact on actual clinical performance needs to be evaluated in the future. Research Agreement, Koning Corp., Hologic

  5. Phase-contrast x-ray imaging of the breast: recent developments towards clinics

    Science.gov (United States)

    Coan, P.; Bravin, A.; Tromba, G.

    2013-12-01

    Breast imaging is one of the most demanding and delicate radiological applications. Mammography is the primary diagnosis tool in breast cancer detection and national screening programmes. Recognition of breast cancer depends on the detection of subtle architectural distortion, masses showing near normal breast tissue density, skin thickening and microcalcifications. The small differences in attenuation of x-rays between normal and malignant tissue result in low contrast and make cancer detection difficult in conventional x-ray absorption mammography. Because of these challenging aspects, breast imaging has been the first and most explored diagnostic field in phase-contrast imaging research. This novel imaging method has been extensively used and has demonstrated a unique capability in producing high-contrast and sensitive images at quasi-histological resolution. The most recent and significant technical developments are introduced and results obtained by the application of various phase-contrast imaging techniques for breast imaging are reported. The first phase-contrast mammography clinical trials project is also presented and the short- and long-term future perspectives of the method are discussed.

  6. Breast neoplasms in women treated with x-rays for acute postpartum mastitis

    International Nuclear Information System (INIS)

    Breast cancer has been studied by mail survey up to 34 years in 571 of 606 women treated with x-rays for acute postpartum mastitis. The incidence of neoplasms was compared with that of three nonirradiated control groups--nonirradiated sisters of the treated women, women with acute postpartum mastitis not treated with X-rays, and their nonirradiated sisters. For the irradiated group, with a mean dose of 247 rads to both breasts, the overall relative risk of breast cancer was 2.2 for years 10 to 34 post irradiation and 3.6 for 20 to 34. The dose response for malignant and benign breast neoplasms was compatible with a linear fit. For comparable total doses, fractionation of exposure did not reduce carcinogenic action. Women over age 30 years at radiation treatment had as great an excess risk of breast cancer as did younger women. The overall excess risk of developing breast cancer was about 8 to 10 cases per million women per rad per year, an increase of about 0.5% per rad

  7. Expanded beam x-ray optics calibration facility at the Daresbury Synchrotron

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; FREDERIKSEN, P;

    1994-01-01

    A facility for the calibration of X-ray Space Instrumentation has been established for the Daresbury Synchrotron. The facility provides a continuously tunable beam with (Delta) (lambda) /(lambda) X-ray telescopes (XSPECT/SODART and JET-X) will be described.......A facility for the calibration of X-ray Space Instrumentation has been established for the Daresbury Synchrotron. The facility provides a continuously tunable beam with (Delta) (lambda) /(lambda) range from approximately 5 kev to more than 20 kev. At selected energies...... in the interval from 6 kev to 12 kev, the facility features a 1D sheet of X-rays, approximately 200 mm wide, obtained from an extremely asymmetric reflection in large perfect crystals of Si. The beam is collimated to long) beam expander crystals...

  8. THE X-RAY DETECTABILITY OF ELECTRON BEAMS ESCAPING FROM THE SUN

    International Nuclear Information System (INIS)

    We study the detectability and characterization of electron beams as they leave their acceleration site in the low corona toward interplanetary space through their nonthermal X-ray bremsstrahlung emission. We demonstrate that the largest interplanetary electron beams (∼>1035 electrons above 10 keV) can be detected in X-rays with current and future instrumentation, such as RHESSI or the X-Ray Telescope (XRT) onboard Hinode. We make a list of optimal observing conditions and beam characteristics. Amongst others, good imaging (as opposed to mere localization or detection in spatially integrated data) is required for proper characterization, putting the requirement on the number of escaping electrons (above 10 keV) to ∼>3 x 1036 for RHESSI, ∼>3 x 1035 for Hinode/XRT, and ∼>1033 electrons for the FOXSI sounding rocket scheduled to fly in 2011. Moreover, we have found that simple modeling hints at the possibility that coronal soft X-ray jets could be the result of local heating by propagating electron beams.

  9. The X-ray Detectability of Electron Beams Escaping from the Sun

    Science.gov (United States)

    Saint-Hilaire, Pascal; Krucker, Säm; Christe, Steven; Lin, Robert P.

    2009-05-01

    We study the detectability and characterization of electron beams as they leave their acceleration site in the low corona toward interplanetary space through their nonthermal X-ray bremsstrahlung emission. We demonstrate that the largest interplanetary electron beams (gsim1035 electrons above 10 keV) can be detected in X-rays with current and future instrumentation, such as RHESSI or the X-Ray Telescope (XRT) onboard Hinode. We make a list of optimal observing conditions and beam characteristics. Amongst others, good imaging (as opposed to mere localization or detection in spatially integrated data) is required for proper characterization, putting the requirement on the number of escaping electrons (above 10 keV) to gsim3 × 1036 for RHESSI, gsim3 × 1035 for Hinode/XRT, and gsim1033 electrons for the FOXSI sounding rocket scheduled to fly in 2011. Moreover, we have found that simple modeling hints at the possibility that coronal soft X-ray jets could be the result of local heating by propagating electron beams.

  10. X-ray interferometry with divergent polychromatic beams

    International Nuclear Information System (INIS)

    The theory of a strongly absorbing Laue interferometer for an arbitrary composition of the X-radiation has been developed on the basis of the Takagi equations. The coherent properties of interfering beams of polychromatic radiation are discussed. Formulas have been derived showing the dependence on the moire pattern and the contrast of interference fringes of the type of deviation of the interferometer geometry from the perfectly aligned case. The results of an experiment for obtaining the moire pattern of a symmetric Laue case (LLL) interferometer with Bremsstrahlung radiation are presented. (Auth.)

  11. Design and initial characterisation of X-ray beam diagnostic imagers for the European XFEL

    Science.gov (United States)

    Koch, Andreas; Freund, Wolfgang; Grünert, Jan; Planas, Marc; Roth, Thomas; Samoylova, Liubov; Lyamayev, Viktor

    2015-05-01

    The European X-Ray Free-Electron-Laser facility requires diagnostics of its x-ray photon beam. Besides other diagnostic components, imaging stations will be employed for the characterisation of beam properties like position, profile, and pointing, before and after different types of mirrors, slits and monochromators. In combination with soft x-ray grating monochromators or other dispersive devices, imagers can also deliver spectral information. The imagers will usually absorb the beam (invasive devices), however, for some applications they will be partially transmissive to allow for beam pointing monitoring together with a second imaging unit further downstream. For the first commissioning 25 diagnostic imagers are planned at various positions in the photon beam tunnels. Further similar devices are under development for monitoring the beam properties at the experimental stations. The design of theses imaging stations will be described. Initial testing has started and the optimization of some components will be reported. The main components of these imaging stations are: retractable scintillators for conversion of x-rays to visible light, mirrors, optics and CCD / CMOS cameras for image recording, an ultra-high vacuum (UHV) chamber, and the associated control electronics and software. Scintillators and mirrors will be the only components in an ultra-high vacuum chamber. Performance characteristics are addressed, especially mechanical stability, spatial resolution, signal-to-noise properties, and radiation hardness. The challenge in the design is to deal with a wide range of beam properties: photon energies from 0.26 - 25 keV, beam sizes from several 100 μm to several mm, large beam position shifts of up to 120 mm, pulse durations of 10 fs and pulse energies up to 10 mJ which may destroy materials by a single pulse.

  12. The perceptibility of variations in total x-ray beam filtration as evidenced on radiographs

    International Nuclear Information System (INIS)

    The use of filtration in the primary x-ray beam has long been a standard procedure in controlling radiation doses to patients in diagnostic radiology, particularly surface doses. For lightly filtered beams, the addition of further filtration effectively removes softer beam components which otherwise would be absorbed within the patient. The amount and quality of radiation reaching the film is changed only slightly. Thus the first increments of filtration added to diagnostic x-ray beams require little or no change in exposure factors. With further filtration, however, the penetration of the beam increases and a greater proportion is transmitted through the patient to the film. The image contrast is reduced. Simultaneously the useful beam intensity is reduced to the extent that compensating mAs increases begin to be required to maintain constant optical density in the radiograph. When these compensatory adjustments are made it is possible to examine the relationship between total filtration and its effects on radiographic appearance, which should be seen as variations in contrast or penetration. This report is of an exploratory study of the perceptibility to radiographers of these changes in radiographic appearance caused by variations in x-ray beam filtration. (auth)

  13. Development of high-resolution x-ray CT system using parallel beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio, E-mail: akio.yoneyama.bu@hitachi.com; Baba, Rika [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama (Japan); Hyodo, Kazuyuki [Institute of Materials Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Takeda, Tohoru [School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa (Japan); Nakano, Haruhisa; Maki, Koutaro [Department of Orthodontics, School of Dentistry Showa University, Ota-ku, Tokyo (Japan); Sumitani, Kazushi; Hirai, Yasuharu [Kyushu Synchrotron Light Research Center, Tosu, Saga (Japan)

    2016-01-28

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  14. Predicted image quality of a CMOS APS X-ray detector across a range of mammographic beam qualities

    Science.gov (United States)

    Konstantinidis, A.

    2015-09-01

    Digital X-ray detectors based on Complementary Metal-Oxide- Semiconductor (CMOS) Active Pixel Sensor (APS) technology have been introduced in the early 2000s in medical imaging applications. In a previous study the X-ray performance (i.e. presampling Modulation Transfer Function (pMTF), Normalized Noise Power Spectrum (NNPS), Signal-to-Noise Ratio (SNR) and Detective Quantum Efficiency (DQE)) of the Dexela 2923MAM CMOS APS X-ray detector was evaluated within the mammographic energy range using monochromatic synchrotron radiation (i.e. 17-35 keV). In this study image simulation was used to predict how the mammographic beam quality affects image quality. In particular, the experimentally measured monochromatic pMTF, NNPS and SNR parameters were combined with various mammographic spectral shapes (i.e. Molybdenum/Molybdenum (Mo/Mo), Rhodium/Rhodium (Rh/Rh), Tungsten/Aluminium (W/Al) and Tungsten/Rhodium (W/Rh) anode/filtration combinations at 28 kV). The image quality was measured in terms of Contrast-to-Noise Ratio (CNR) using a synthetic breast phantom (4 cm thick with 50% glandularity). The results can be used to optimize the imaging conditions in order to minimize patient's Mean Glandular Dose (MGD).

  15. Characterization of materials for optimal near-infrared and x-ray imaging of the breast.

    Science.gov (United States)

    Michaelsen, Kelly; Krishnaswamy, Venkataramanan; Pogue, Brian W; Brooks, Ken; Defreitas, Ken; Shaw, Ian; Poplack, Steven P; Paulsen, Keith D

    2012-09-01

    Development of a detector case for complete co-registration of images in a non-fiber-based combined near-infrared spectral tomography and digital breast tomosynthesis, required analysis to find materials that could support a breast under full mammographic compression without affecting the x-ray images or the quality of the near infrared measurements. Several possible solutions were considered, and many types of plastics were tested in the development of the detector case. Light channeling within the detector case changed the data obtained in resin and agarose phantoms, lowering recovered absorption values. Additional developments focusing on blocking stray light were successful and permitted a normal subject imaging exam.

  16. From x-ray telescopes to neutron scattering: using axisymmetric mirrors to focus a neutron beam

    OpenAIRE

    Khaykovich, B.; Gubarev, M. V.; Bagdasarova, Y.; Ramsey, B. D.; Moncton, D.E.

    2012-01-01

    We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in x-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We have implemented a system containing four nested Ni mirror pairs, which was tested by focusing a polychromatic neutron beam at the MIT Reactor. In ...

  17. The x-ray detectability of electron beams escaping from the sun

    CERN Document Server

    Saint-Hilaire, Pascal; Christe, Steven; Lin, Robert P

    2011-01-01

    We study the detectability and characterization of electron beams as they leave their acceleration site in the low corona toward interplanetary space through their nonthermal X-ray bremsstrahlung emission. We demonstrate that the largest interplanetary electron beams (>=10^35 electrons above 10 keV) can be detected in X-rays with current and future instrumentation, such as RHESSI or the X-Ray Telescope (XRT) onboard Hinode.We make a list of optimal observing conditions and beam characteristics. Amongst others, good imaging (as opposed to mere localization or detection in spatially integrated data) is required for proper characterization, putting the requirement on the number of escaping electrons (above 10 keV) to >= 3 \\times 10^36 for RHESSI, >=3 \\times 10^35 for Hinode/XRT, and >=10^33 electrons for the FOXSI sounding rocket scheduled to fly in 2011. Moreover, we have found that simple modeling hints at the possibility that coronal soft X-ray jets could be the result of local heating by propagating electron...

  18. X-ray study of a SODART flight telescope using the expanded beam x-ray optics beamline at the Daresbury synchrotron

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Frederiksen, P. K.;

    1995-01-01

    The on- and off-axis imaging properties of the first of two SODART flight telescopes have been studied using the expanded beam x-ray facility at the Daresbury synchrotron. From on- axis measurements the encircled power distribution and the point spread function at three energies 6.627 keV, 8.837 ke...

  19. Matching methods evaluation framework for stereoscopic breast x-ray images.

    Science.gov (United States)

    Rousson, Johanna; Naudin, Mathieu; Marchessoux, Cédric

    2016-01-01

    Three-dimensional (3-D) imaging has been intensively studied in the past few decades. Depth information is an important added value of 3-D systems over two-dimensional systems. Special focuses were devoted to the development of stereo matching methods for the generation of disparity maps (i.e., depth information within a 3-D scene). Dedicated frameworks were designed to evaluate and rank the performance of different stereo matching methods but never considering x-ray medical images. Yet, 3-D x-ray acquisition systems and 3-D medical displays have already been introduced into the diagnostic market. To access the depth information within x-ray stereoscopic images, computing accurate disparity maps is essential. We aimed at developing a framework dedicated to x-ray stereoscopic breast images used to evaluate and rank several stereo matching methods. A multiresolution pyramid optimization approach was integrated to the framework to increase the accuracy and the efficiency of the stereo matching techniques. Finally, a metric was designed to score the results of the stereo matching compared with the ground truth. Eight methods were evaluated and four of them [locally scaled sum of absolute differences (LSAD), zero mean sum of absolute differences, zero mean sum of squared differences, and locally scaled mean sum of squared differences] appeared to perform equally good with an average error score of 0.04 (0 is the perfect matching). LSAD was selected for generating the disparity maps. PMID:26587552

  20. Generating Picosecond X-Ray Pulses with Beam Manipulation in Synchrotron Light Sources

    CERN Document Server

    Guo, Weiming; Harkay, Katherine C; Sajaev, Vadim; Yang Bing Xin

    2005-01-01

    The length of x-ray pulses generated by storage ring light sources is usually tens of picoseconds. For example, the value is 40 ps rms at the Advanced Photon Source (APS). Methods of x-ray pulse compression are of great interest at the APS. One possible method, per Zholents et al., is to tilt the electron bunch with deflecting rf cavities.* Alternately, we found that the electron bunch can develop a tilt after application of a vertical kick in the presence of nonzero chromaticity. After slicing, the x-ray pulse length is determined by the tilt angle and the vertical beam size. In principal, sub-picosecond pulses can be obtained at APS. To date we have observed 6 ps rms visible light pulses with a streak camera. Efforts are underway to attempt further compression of the x-ray pulse and to increase the brilliance. This method can be easily applied to any storage ring light sources to generate x-ray pulses up to two orders of magnitude shorter than the electron bunch length. In this paper, we will present the th...

  1. Electron beam-based sources of ultrashort x-ray pulses.

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.; Accelerator Systems Division (APS)

    2010-09-30

    A review of various methods for generation of ultrashort x-ray pulses using relativistic electron beam from conventional accelerators is presented. Both spontaneous and coherent emission of electrons is considered. The importance of the time-resolved studies of matter at picosecond (ps), femtosecond (fs), and atttosecond (as) time scales using x-rays has been widely recognized including by award of a Nobel Prize in 1999 [Zewa]. Extensive reviews of scientific drivers can be found in [BES1, BES2, BES3, Lawr, Whit]. Several laser-based techniques have been used to generate ultrashort x-ray pulses including laser-driven plasmas [Murn, Alte, Risc, Rose, Zamp], high-order harmonic generation [Schn, Rund, Wang, Arpi], and laser-driven anode sources [Ande]. In addition, ultrafast streak-camera detectors have been applied at synchrotron sources to achieve temporal resolution on the picosecond time scale [Wulf, Lind1]. In this paper, we focus on a different group of techniques that are based on the use of the relativistic electron beam produced in conventional accelerators. In the first part we review several techniques that utilize spontaneous emission of electrons and show how solitary sub-ps x-ray pulses can be obtained at existing storage ring based synchrotron light sources and linacs. In the second part we consider coherent emission of electrons in the free-electron lasers (FELs) and review several techniques for a generation of solitary sub-fs x-ray pulses. Remarkably, the x-ray pulses that can be obtained with the FELs are not only significantly shorter than the ones considered in Part 1, but also carry more photons per pulse by many orders of magnitude.

  2. Measurements of fast electron beams and soft X-ray emission from plasma-focus experiments

    Directory of Open Access Journals (Sweden)

    Surała Władysław

    2016-06-01

    Full Text Available The paper reports results of the recent experimental studies of pulsed electron beams and soft X-rays in plasma-focus (PF experiments carried out within a modified PF-360U facility at the NCBJ, Poland. Particular attention was focused on time-resolved measurements of the fast electron beams by means of two different magnetic analyzers, which could record electrons of energy ranging from about 41 keV to about 715 keV in several (6 or 8 measuring channels. For discharges performed with the pure deuterium filling, many strong electron signals were recorded in all the measuring channels. Those signals were well correlated with the first hard X-ray pulse detected by an external scintillation neutron-counter. In some of the analyzer channels, electron spikes (lasting about dozens of nanoseconds and appearing in different instants after the current peculiarity (so-called current dip were also recorded. For several discharges, fast ion beams, which were emitted along the z-axis and recorded with nuclear track detectors, were also investigated. Those measurements confirmed a multibeam character of the ion emission. The time-integrated soft X-ray images, which were taken side-on by means of a pinhole camera and sensitive X-ray films, showed the appearance of some filamentary structures and so-called hot spots. The application of small amounts of admixtures of different heavy noble gases, i.e. of argon (4.8% volumetric, krypton (1.6% volumetric, or xenon (0.8% volumetric, decreased intensity of the recorded electron beams, but increased intensity of the soft X-ray emission and showed more distinct and numerous hot spots. The recorded electron spikes have been explained as signals produced by quasi-mono-energetic microbeams emitted from tiny sources (probably plasma diodes, which can be formed near the observed hot spots.

  3. X-ray scattering for the characterization of lyophilized breast tissue samples

    Science.gov (United States)

    Elshemey, Wael M.; Mohamed, Fayrouz S.; Khater, Ibrahim M.

    2013-09-01

    This work investigates the possibility of characterizing breast cancer by measuring the X-ray scattering profiles of lyophilized excised breast tissue samples. Since X-ray scattering from water-rich tissue is dominated by scattering from water, the removal of water by lyophilization would enhance the characterization process. In the present study, X-ray scattering profiles of 22 normal, 22 malignant and 10 benign breast tissue samples are measured. The cut-offs of scatter diagrams, sensitivity, specificity and diagnostic accuracy of three characterization parameters (full width at half maximum (FWHM) for the peak at 1.1 nm-1, area under curve (AUC), and ratio of 1st to 2nd scattering peak intensities (I1/I2%)) are calculated and compared to the data from non-lyophilized samples. Results show increased sensitivity (up to 100%) of the present data on lyophilized breast tissue samples compared to previously reported data for non-lyophilized samples while the specificity (up to 95.4%), diagnostic accuracy (up to 95.4%) and receiver operating characteristic (ROC) curve values (up to 0.9979) for both sets of data are comparable. The present study shows significant differences between normal samples and each of malignant and benign samples. Only subtle differences exist between malignant and benign lyophilized breast tissue samples where FWHM=0.7±0.1 and 0.8±0.3, AUC=1.3±0.2 and 1.4±0.2 and I1/I2%=44.9±11.0 and 52.4±7.6 for malignant and benign samples respectively.

  4. The dosimetry of eye shields for kilovoltage X-ray beams

    International Nuclear Information System (INIS)

    The objective of this work was to evaluate the dosimetry of tungsten eye shields for use with kilovoltage X-ray beam treatments. The eye shields, originally designed for megavoltage electron beams, were made of 2 mm tungsten thickness and inside diameters of 11.6 and 15.0 mm with optional aluminium caps of 0.5 and 1 mm thickness. The relative dosimetry of the eye shields were examined by measurement of transmission doses with full scatter conditions, central axis depth doses and beam profiles underneath the eye shield. The X-ray beams used in this study ranged in energy from 50 to 280 kVp. Transmission measurements were performed using an Advanced Markus ionisation chamber located at the surface of an RMI457 Solid Water phantom with a 3 cm diameter applicator flush against the phantom surface. Depth doses and profiles measurements were performed in a PTW MP3 scanning water tank with a PTW diamond detector. Results for transmission doses for the medium size eye shield increased from 1 to 22 % for 50–280 kVp while for the smaller eye shield the percentage dose increased from 3.5 to 30 % for the same energy range. There were minimal differences between using the 0.5 and 1 mm aluminium caps. Central axis depth doses measured with and without the eye shields demonstrated the 125 and 180 kVp beams had higher peak doses behind the eye shields. These results show that these tungsten eye shields are suitable for use with kilovoltage X-ray beams. However, the clinical impact needs to be considered for the higher X-ray beam energies.

  5. Polychromatic X-ray Micro- and Nano-Beam Science and Instrumentation

    International Nuclear Information System (INIS)

    Polychromatic x-ray micro- and nano-beam diffraction is an emerging nondestructive tool for the study of local crystalline structure and defect distributions. Both long-standing fundamental materials science issues, and technologically important questions about specific materials systems can be uniquely addressed. Spatial resolution is determined by the beam size at the sample and by a knife-edge technique called differential aperture microscopy that decodes the origin of scattering from along the penetrating x-ray beam. First-generation instrumentation on station 34-ID-E at the Advanced Photon Source (APS) allows for nondestructive automated recovery of the three-dimensional (3D) local crystal phase and orientation. Also recovered are the local elastic-strain and the dislocation tensor distributions. New instrumentation now under development will further extend the applications of polychromatic microdiffraction and will revolutionize materials characterization

  6. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Normand, E-mail: normand.robert@sri.utoronto.ca; Polack, George G.; Sethi, Benu; Rowlands, John A. [Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Crystal, Eugene [Division of Cardiology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    2015-10-15

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied. The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σ{sub x}, σ{sub y}, σ{sub z}) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to characterize

  7. Multi-species beam hardening calibration device for x-ray microtomography

    Science.gov (United States)

    Evershed, Anthony N. Z.; Mills, David; Davis, Graham

    2012-10-01

    Impact-source X-ray microtomography (XMT) is a widely-used benchtop alternative to synchrotron radiation microtomography. Since X-rays from a tube are polychromatic, however, greyscale `beam hardening' artefacts are produced by the preferential absorption of low-energy photons in the beam path. A multi-material `carousel' test piece was developed to offer a wider range of X-ray attenuations from well-characterised filters than single-material step wedges can produce practically, and optimization software was developed to produce a beam hardening correction by use of the Nelder-Mead optimization method, tuned for specimens composed of other materials (such as hydroxyapatite [HA] or barium for dental applications.) The carousel test piece produced calibration polynomials reliably and with a significantly smaller discrepancy between the calculated and measured attenuations than the calibration step wedge previously in use. An immersion tank was constructed and used to simplify multi-material samples in order to negate the beam hardening effect of low atomic number materials within the specimen when measuring mineral concentration of higher-Z regions. When scanned in water at an acceleration voltage of 90 kV a Scanco AG hydroxyapatite / poly(methyl methacrylate) calibration phantom closely approximates a single-material system, producing accurate hydroxyapatite concentration measurements. This system can then be corrected for beam hardening for the material of interest.

  8. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA; Tung, I. C. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA; Chang, S. -H. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Bhattacharya, A. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Fong, D. D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Freeland, J. W. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA; Hong, Hawoong [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  9. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT.

    Science.gov (United States)

    Aootaphao, Sorapong; Thongvigitmanee, Saowapak S; Rajruangrabin, Jartuwat; Thanasupsombat, Chalinee; Srivongsa, Tanapon; Thajchayapong, Pairash

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM) method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS) software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT) data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain. PMID:27022608

  10. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Freeland, J. W.; Hong, Hawoong, E-mail: hhong@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Tung, I. C. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Chang, S.-H.; Bhattacharya, A.; Fong, D. D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2016-01-15

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  11. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    Directory of Open Access Journals (Sweden)

    Sorapong Aootaphao

    2016-01-01

    Full Text Available Soft tissue images from portable cone beam computed tomography (CBCT scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain.

  12. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy.

    Science.gov (United States)

    Lee, J H; Tung, I C; Chang, S-H; Bhattacharya, A; Fong, D D; Freeland, J W; Hong, Hawoong

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques. PMID:26827327

  13. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    International Nuclear Information System (INIS)

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography. (paper)

  14. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    Science.gov (United States)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  15. Correlation of breast cancer metastases in chest X-rays to symptoms and survival

    Energy Technology Data Exchange (ETDEWEB)

    Virkkunen, P.; Hietanen, P.; Nyman, M.

    1987-05-01

    The sizes and locations of pulmonary and pleural metastases in chest X-rays of 50 symptomatic and 65 asymptomatic breast cancer patients were compared and correlated to survival. The diameters of the metastases were about the same in both groups as also their distribution. The incidence of pleural fluid was higher in symptomatic patients. The survival curve of symptomatic patients did not deviate from that of the asymptomatic ones. Symptoms in pulmonary metastatic disease do not mean rapid progress of the disease but may be beneficial in that they cause the patient to visit the oncologist early. The cost-effectiveness of chest X-rays in the follow-up is questionable.

  16. Fluctuations on the X-ray intensity beam using a portable X-ray probe based on {sup 6}LiI(Eu) crystal

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Geraldo P.; Oliveira, Arno H. [Universidade Federal de Minas Gerais (PCTN/UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares; Carneiro, Andre C.; Carneiro, Clemente J.G.; Milian, Felix M.; Velasco, Fermin G., E-mail: fermin@uesc.b [Universidade Estadual de Santa Cruz (CPqCTR/UESC), Ilheus, BA (Brazil). Centro de Pesquisa em Ciencias e Tecnologias das Radiacoes

    2011-07-01

    X-rays are produced by accelerating electrons with a high voltage and allowing them to collide with a metal target. This high voltage presents fluctuations that define peak, minimum, and average voltages. Different voltages are applied to the X-ray tube depending on the radiographic applications. A rectifier circuit converts the alternating high voltage to unidirectional high voltage to accelerate electrons in this tube. The fluctuations on the energy in the electron beam depend on the mode of rectification. Both energy of the electrons and X rays intensity fluctuates. A portable probe built with a {sup 6}LiI(Eu) detector coupled to a 10 m light guide and a Hamamatsu photon counting head H9319 was used to measuring X ray intensities. This system is designed to collect up to 10000 counts in intervals of 10 ms to 1 s. Counts were accumulated in time intervals of 10 ms during 10 s. The system starts the count before activating the X-ray apparatus, which is on during a time interval of 100ms. During this period, counts may overflow in consequence high voltage was adjusted to be 40kV, in order to avoid such a problem. For each of these points dose was measured using an ionization chamber. The objectives of this work are to study fluctuations on the X-ray beam and to calibrate the portable probe for measuring radiation doses. Counting rates measured for each 10 ms presented strong variations due to high voltages fluctuations. Both dose and counting rate when correlated with distances between source and detector followed the inverse square law and presented values of R2 near of unit. A calibration curve of the portable system for dose measurements showed also R2 value near of unity. (author)

  17. Fluctuations on the X-ray intensity beam using a portable X-ray probe based on 6LiI(Eu) crystal

    International Nuclear Information System (INIS)

    X-rays are produced by accelerating electrons with a high voltage and allowing them to collide with a metal target. This high voltage presents fluctuations that define peak, minimum, and average voltages. Different voltages are applied to the X-ray tube depending on the radiographic applications. A rectifier circuit converts the alternating high voltage to unidirectional high voltage to accelerate electrons in this tube. The fluctuations on the energy in the electron beam depend on the mode of rectification. Both energy of the electrons and X rays intensity fluctuates. A portable probe built with a 6LiI(Eu) detector coupled to a 10 m light guide and a Hamamatsu photon counting head H9319 was used to measuring X ray intensities. This system is designed to collect up to 10000 counts in intervals of 10 ms to 1 s. Counts were accumulated in time intervals of 10 ms during 10 s. The system starts the count before activating the X-ray apparatus, which is on during a time interval of 100ms. During this period, counts may overflow in consequence high voltage was adjusted to be 40kV, in order to avoid such a problem. For each of these points dose was measured using an ionization chamber. The objectives of this work are to study fluctuations on the X-ray beam and to calibrate the portable probe for measuring radiation doses. Counting rates measured for each 10 ms presented strong variations due to high voltages fluctuations. Both dose and counting rate when correlated with distances between source and detector followed the inverse square law and presented values of R2 near of unit. A calibration curve of the portable system for dose measurements showed also R2 value near of unity. (author)

  18. Electron beam stability and beam peak to peak motion data for NSLS X-Ray storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Singh, O.

    1993-07-01

    In the past two years, a significant reduction in electron beam motion has been achieved at the NSLS X-Ray storage ring. The implementation of global analog orbit feedbacks, based on a harmonics correction scheme, has reduced the beam motion globally. Implementation of six local analog feedback systems has reduced the beam motion even further at the corresponding beam line straight sections. This paper presents beam motion measurements, showing the improvement due to the feedback systems. Beam motion is measured using a spectrum analyzer and data is presented at various frequencies, where peaks were observed. Finally, some of the beam motion sources are discussed.

  19. Resonantly excited betatron hard X-Rays from Ionization Injected Electron Beam in a Laser Plasma Accelerator

    CERN Document Server

    Huang, K; Li, Y F; Li, D Z; Tao, M Z; Mirzaie, M; Ma, Y; Zhao, J R; Li, M H; Chen, M; Hafz, N; Sokollik, T; Sheng, Z M; Zhang, J

    2015-01-01

    A new scheme for bright hard x-ray emission from laser wakefield electron accelerator is reported, where pure nitrogen gas is adopted. Intense Betatron x-ray beams are generated from ionization injected K-shell electrons of nitrogen into the accelerating wave bucket. The x-ray radiation shows synchrotron-like spectrum with total photon yield 8$\\times$10$^8$/shot and $10^8$ over 110keV. In particular, the betatron hard x-ray photon yield is 10 times higher compared to the case of helium gas under the same laser parameters. Particle-in-cell simulation suggests that the enhancement of the x-ray yield results from ionization injection, which enables the electrons to be quickly accelerated to the driving laser region for subsequent betatron resonance. Employing the present scheme,the single stage nitrogen gas target could be used to generate stable high brightness betatron hard x-ray beams.

  20. X-ray generation experiment in STF accelerator on quantum beam technology program

    International Nuclear Information System (INIS)

    To obtain high brightness quasi-monochromatic X-ray via Inverse Compton Scattering, highly intensified laser beam is designed and implemented in a new beam line of KEK Superconducting RF Test Facility (STF) accelerator, under the program of 'Quantum Beam Technology Program'. The STF accelerator is a superconducting Linac using ILC technology, operated with a 5 Hz repetition, 1 ms electron bunch train, and 40 MeV beam energy. The intensified laser beam was generated by a 4-mirror optical cavity with beam-synchronized burst-amplified laser input. The high brightness X-ray is generated by the collision between incoming electron beam and stored laser beam in the 4-mirror cavity. The 4-mirror optical cavity technology has been selected for their stable laser storage with long mirror distance, where electron beam is coming in and out for head-on collision between them. On this report, STF accelerator construction including collision laser system, and also collision results are described. (author)

  1. Generation and application of the soft X-ray laser beam based on capillary discharge

    International Nuclear Information System (INIS)

    In this work we report on the generation and characterization of a focused soft X-ray laser beam with intensity and energy density that exceed the threshold for the ablation of PMMA. We demonstrate a feasibility of direct ablation of holes using a focused soft X-ray laser beam. Ablated craters in PMMA/gold-covered-PMMA samples were obtained by focusing the soft X-ray Ar8+ laser pulses generated by a 46.9 nm tabletop capillary-discharge-pumped driver with a spherical Si/Sc multilayer mirror. It was found that the focused beam is capable by one shot to ablate PMMA, even if the focus is significantly influenced by astigmatism. Analysis of the laser beam footprints by atomic force microscope shows that ablated holes have periodic surface structure (similarly as Laser-Induced Periodic Surface Structure) with period ∼2,8 μm and with peak-to-peak depth ∼5-10 nm.

  2. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.

    Science.gov (United States)

    Golovin, G; Banerjee, S; Liu, C; Chen, S; Zhang, J; Zhao, B; Zhang, P; Veale, M; Wilson, M; Seller, P; Umstadter, D

    2016-01-01

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays. PMID:27090440

  3. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.

    Science.gov (United States)

    Golovin, G; Banerjee, S; Liu, C; Chen, S; Zhang, J; Zhao, B; Zhang, P; Veale, M; Wilson, M; Seller, P; Umstadter, D

    2016-04-19

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.

  4. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    Science.gov (United States)

    Golovin, G.; Banerjee, S.; Liu, C.; Chen, S.; Zhang, J.; Zhao, B.; Zhang, P.; Veale, M.; Wilson, M.; Seller, P.; Umstadter, D.

    2016-04-01

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.

  5. Beam characterization of a lab bench cold cathode ultra-soft X-ray generator

    OpenAIRE

    Ounoughi, Nabil; Mavon, Christophe; Belafrites, Abdelfettah; Groetz, Jean-Emmanuel; Fromm, Michel

    2013-01-01

    The aim of this work is to characterize the Ultra Soft X-ray (USX, 1.5 keV, Al Kα) photon beam of a customized lab bench cold cathode generator. Within this generator, the electron beam is slowed down in a thin aluminium foil (16 μm) supported by an easily exchangeable anode. It is shown that the thickness of the foil and the anode configuration determine the spatial distribution and the fluence rate of the photon beam, whereas accelerating voltage determines both fluence rate and energy spec...

  6. Matching X-ray beam and detector properties to protein crystals of different perfection

    International Nuclear Information System (INIS)

    Expressions are given to match X-ray data collection facilities to the intrinsic diffraction properties of crystals with different degrees of perfection. An analysis is given of the effect of different beam and detector parameters on the sharpness of recorded diffraction features for macromolecular crystals of different quality. The crystal quality parameters include crystal strain, crystal or mosaic block size and mosaic block misorientation. Calculations are given for instrument parameters such as angular resolution of the detector, beam divergence and wavelength bandpass to be matched to the intrinsic diffraction properties from these crystals with the aim of obtaining the best possible data out of each crystal. Examples are given using typical crystal imperfections obtained from the literature for both room-temperature and cryo-cooled crystals. Possible implications for the choice of X-ray source, beamline design, detector specifications, instrument set-up and data processing are discussed, together with the limitations of the approach

  7. Breast cancer in women with x-ray exposure: models of dose, time, and host susceptibility

    International Nuclear Information System (INIS)

    Acute postpartum mastitis (APM) is an inflammatory/infectious condition of the breast, occurring commonly at childbirth or during lactation. A series of 600 women who received x-ray therapy for APM during the 1940s or 1950s have been followed up by mail questionnaire, with medical verification of pertinent conditions, to ascertain their incidence of breast cancer. The groups have been followed for up to 45 years, with an average of 29 years. The relative risk of breast cancer, adjusted for age and interval since irradiation (or an equivalent entry definition for controls) was 3.2 for the irradiated breasts. The dose-response curve appeared to be essentially linear, except for a diminution of risk at high doses (≥ 700 rad). The fact that there were no breasts with doses between zero and 50 rad, however, means it was not possible to evaluate the curvature with the maximum contrast between low and high doses. The dose fractionation analyses showed that the number of dose fractions or the number of days between fractions had no apparent effect upon breast cancer risk, but there was a suggestion that lower doses per fraction led to a higher risk, which runs counter to what one would expect based on radiobiological theory. However, a Cox regression analysis, controlling for total breast dose, did not yield a significant effect for any of the fractionation variables

  8. Bisphosphonate-functionalized gold nanoparticles for contrast-enhanced X-ray detection of breast microcalcifications.

    Science.gov (United States)

    Cole, Lisa E; Vargo-Gogola, Tracy; Roeder, Ryan K

    2014-02-01

    Microcalcifications are one of the most common abnormalities detected by mammography for the diagnosis of breast cancer. However, the detection of microcalcifications and correct diagnosis of breast cancer are limited by the sensitivity and specificity of mammography. Therefore, the objective of this study was to investigate the potential of bisphosphonate-functionalized gold nanoparticles (BP-Au NPs) for contrast-enhanced radiographic detection of breast microcalcifications using two models of breast microcalcifications, which allowed for precise control over levels of hydroxyapatite (HA) mineral within a low attenuating matrix. First, an in vitro imaging phantom was prepared with varying concentrations of HA uniformly dispersed in an agarose hydrogel. The X-ray attenuation of HA-agarose compositions labeled by BP-Au NPs was increased by up to 26 HU compared to unlabeled compositions for HA concentrations ranging from 1 to 10 mg/mL. Second, an ex vivo tissue model was developed to more closely mimic the heterogeneity of breast tissue by injecting varying concentrations of HA in a Matrigel carrier into murine mammary glands. The X-ray attenuation of HA-Matrigel compositions labeled by BP-Au NPs was increased by up to 289 HU compared to unlabeled compositions for HA concentrations ranging from 0.5 to 25 mg/mL, which included an HA concentration (0.5 mg/mL) that was otherwise undetectable by micro-computed tomography. Cumulatively, both models demonstrated the ability of BP-Au NPs to enhance contrast for radiographic detection of microcalcifications, including at a clinically-relevant imaging resolution. Therefore, BP-Au NPs may have potential to improve clinical detection of breast microcalcifications by mammography. PMID:24360718

  9. Impact of large x-ray beam collimation on image quality

    Science.gov (United States)

    Racine, Damien; Ba, Alexandre; Ott, Julien G.; Bochud, François O.; Verdun, Francis R.

    2016-03-01

    Large X-ray beam collimation in computed tomography (CT) opens the way to new image acquisition techniques and improves patient management for several clinical indications. The systems that offer large X-ray beam collimation enable, in particular, a whole region of interest to be investigated with an excellent temporal resolution. However, one of the potential drawbacks of this option might be a noticeable difference in image quality along the z-axis when compared with the standard helical acquisition mode using more restricted X-ray beam collimations. The aim of this project is to investigate the impact of the use of large X-ray beam collimation and new iterative reconstruction on noise properties, spatial resolution and low contrast detectability (LCD). An anthropomorphic phantom and a custom made phantom were scanned on a GE Revolution CT. The images were reconstructed respectively with ASIR-V at 0% and 50%. Noise power spectra, to evaluate the noise properties, and Target Transfer Functions, to evaluate the spatial resolution, were computed. Then, a Channelized Hotelling Observer with Gabor and Dense Difference of Gaussian channels was used to evaluate the LCD using the Percentage correct as a figure of merit. Noticeable differences of 3D noise power spectra and MTF have been recorded; however no significant difference appeared when dealing with the LCD criteria. As expected the use of iterative reconstruction, for a given CTDIvol level, allowed a significant gain in LCD in comparison to ASIR-V 0%. In addition, the outcomes of the NPS and TTF metrics led to results that would contradict the outcomes of CHO model observers if used for a NPWE model observer (Non- Prewhitening With Eye filter). The unit investigated provides major advantages for cardiac diagnosis without impairing the image quality level of standard chest or abdominal acquisitions.

  10. Radio and X-ray Diagnostics of Electron Beams in Solar Flares

    Science.gov (United States)

    Vilmer, Nicole; Kontar, Eduard; Hamish; Reid, A. S.; Maksimovic, Milan

    Solar flares are associated with efficient production of energetic particles at all energies. While energetic electrons and ions interacting with the solar atmosphere produce high energy X-rays and gamma-rays, the energetic electrons escaping to the corona and interplanetary medium produce coherent radio emissions (in particular type III bursts) and may be directly detected by experiments aboard spacecraft. We shall present the results of two statistical studies combining X-ray observations from RHESSI and of type III bursts observed in the decimeter/meter range and imaged by the Nançay Radioheliograph We shall show how the combination of X-ray and radio observations allows for some events to deduce the characteristics of the electron beam acceleration sites (height and size). We shall also present the results of a recent study on the percentage of decimetric/metric type III bursts observed with Nançay which have a counterpart at lower frequencies (namely in the range 14 to 1 MHz ) observed with Wind/Waves. This study is based on a list of events for which X-ray emission (by RHESSI) is also observed in connection with the type III bursts. We shall discuss the different reasons which could explain the extent or not of the metric type III burst to the hectometric range.

  11. Design and advancement status of the Beam Expander Testing X-ray facility (BEaTriX)

    CERN Document Server

    Spiga, D; Salmaso, B; Arcangeli, L; Bianucci, G; Ferrari, C; Ghigo, M; Pareschi, G; Rossi, M; Tagliaferri, G; Valsecchi, G; Vecchi, G; Zappettini, A

    2016-01-01

    The BEaTriX (Beam Expander Testing X-ray facility) project is an X-ray apparatus under construction at INAF/OAB to generate a broad (200 x 60 mm2), uniform and low-divergent X-ray beam within a small lab (6 x 15 m2). BEaTriX will consist of an X-ray source in the focus a grazing incidence paraboloidal mirror to obtain a parallel beam, followed by a crystal monochromation system and by an asymmetrically-cut diffracting crystal to perform the beam expansion to the desired size. Once completed, BEaTriX will be used to directly perform the quality control of focusing modules of large X-ray optics such as those for the ATHENA X-ray observatory, based on either Silicon Pore Optics (baseline) or Slumped Glass Optics (alternative), and will thereby enable a direct quality control of angular resolution and effective area on a number of mirror modules in a short time, in full X-ray illumination and without being affected by the finite distance of the X-ray source. However, since the individual mirror modules for ATHENA...

  12. Resonantly excited betatron hard X-Rays from Ionization Injected Electron Beam in a Laser Plasma Accelerator

    OpenAIRE

    K. Huang; Chen, L. M.; Y. F. Li; D.Z. Li; M. Z. Tao; M. Mirzaie; Y. Ma; J. R. Zhao; M. H. Li; M. Chen; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2015-01-01

    A new scheme for bright hard x-ray emission from laser wakefield electron accelerator is reported, where pure nitrogen gas is adopted. Intense Betatron x-ray beams are generated from ionization injected K-shell electrons of nitrogen into the accelerating wave bucket. The x-ray radiation shows synchrotron-like spectrum with total photon yield 8$\\times$10$^8$/shot and $10^8$ over 110keV. In particular, the betatron hard x-ray photon yield is 10 times higher compared to the case of helium gas un...

  13. Subacute neuropathological effects of microplanar beams of x-rays from a synchrotron wiggler.

    Science.gov (United States)

    Slatkin, D N; Spanne, P; Dilmanian, F A; Gebbers, J O; Laissue, J A

    1995-09-12

    Microplanar beam radiation therapy has been proposed to treat brain tumors by using a series of rapid exposures to an array of parallel x-ray beams, each beam having uniform microscopic thickness and macroscopic breadth (i.e., microplanar). Thirty-six rats were exposed head-on either to an upright 4-mm-high, 20- or 37-microns-wide beam or to a horizontal 7-mm-wide, 42-microns-high beam of mostly 32- to 126-keV, minimally divergent x-rays from the X17 wiggler at the National Synchrotron Light Source at Brookhaven National Laboratory. Parallel slices of the head, separated at either 75 or 200 microns on center, were exposed sequentially at 310-650 grays (Gy) per second until each skin-entrance absorbed dose reached 312, 625, 1250, 2500, 5000, or 10,000 Gy. The rats were euthanized 2 weeks or 1 month later. Two rats with 10,000-Gy-entrance slices developed brain tissue necrosis. All the other 10,000- and 5000-Gy-entrance slices and some of the 2500- and 1250-Gy-entrance slices showed loss of neuronal and astrocytic nuclei and their perikarya. No other kind of brain damage was evident histologically in any rat with entrance absorbed doses beam radiation therapy for brain tumors.

  14. Dual-source multi-energy CT with triple or quadruple x-ray beams

    Science.gov (United States)

    Yu, Lifeng; Li, Zhoubo; Leng, Shuai; McCollough, Cynthia H.

    2016-03-01

    Energy-resolved photon-counting CT (PCCT) is promising for material decomposition with multi-contrast agents. However, corrections for non-idealities of PCCT detectors are required, which are still active research areas. In addition, PCCT is associated with very high cost due to lack of mass production. In this work, we proposed an alternative approach to performing multi-energy CT, which was achieved by acquiring triple or quadruple x-ray beam measurements on a dual-source CT scanner. This strategy was based on a "Twin Beam" design on a single-source scanner for dual-energy CT. Examples of beam filters and spectra for triple and quadruple x-ray beam were provided. Computer simulation studies were performed to evaluate the accuracy of material decomposition for multi-contrast mixtures using both tri-beam and quadruple-beam configurations. The proposed strategy can be readily implemented on a dual-source scanner, which may allow material decomposition of multi-contrast agents to be performed on clinical CT scanners with energy-integrating detector.

  15. Development of a multi-spectral, multi-geometry computational model for X-ray breast imaging

    International Nuclear Information System (INIS)

    The introduction of novel applications in X-ray breast imaging warrants new research for image acquisition optimisation. A simulation model was developed to investigate the influence of different imaging techniques and acquisition parameters. It was modelled in Monte Carlo N-Particle Extended and contains an X-ray tube with photon production, a breast model and anti-scatter grid model. This paper describes the simulation model, compares the results with experimental and literature data and presents the influence of breast and anti-scatter grid parameters on scatter radiation. (authors)

  16. A nested case-control study on female breast cancer risk among medical diagnostic X-ray workers in China

    International Nuclear Information System (INIS)

    Objectives: To research whether prolonged or repeated low-level ionizing radiation can induce female breast cancer or not and to investigate other risk factors related to breast cancer risk, a nested case-control study was done. Methods: 30 cases of breast cancers were enrolled in the study, 4 normal persons were selected from X-ray workers as controls to match each case. Logistic regression model was used for risk analysis. Results: 1) Accumulative breast dose is a significant risk factor, odds ratio (OR) between two dose levels (10c Gy) is 1.73 (95%CI = 1.05-2.84). 2) ORs of other two factors, obesity and family history of breast cancer, are 4.07 (P = 0.01) and 26.67 (P = 0.024) respectively. 3) Interaction may exist between occupational X-ray exposure and obesity or non-lactation. Conclusions: Longtime and low-level occupational X-ray exposure may relate to excess risk of female breast cancer among medical diagnostic X-ray workers. Family history of breast cancer and obesity are also the significant risk factors of the cancer. The existence of obesity and non-lactation may enhance the effect of radiation-induced breast cancer

  17. Optimization of breast cancer detection in Dual Energy X-ray Mammography using a CMOS imaging detector

    Science.gov (United States)

    Koukou, V.; Fountos, G.; Martini, N.; Sotiropoulou, P.; Michail, C.; Kalyvas, N.; Valais, I.; Bakas, A.; Kounadi, E.; Kandarakis, I.; Nikiforidis, G.

    2015-01-01

    Dual energy mammography has the ability to improve the detection of microcalcifications leading to early diagnosis of breast cancer. In this simulation study, a prototype dual energy mammography system, using a CMOS based imaging detector with different X-ray spectra, was modeled. The device consists of a 33.91 mg/cm2 Gd2O2S:Tb scintillator screen, placed in direct contact with the sensor, with a pixel size of 22.5 μm. Various filter materials and tube voltages of a Tungsten (W) anode for both the low and high energy were examined. The selection of the filters applied to W spectra was based on their K- edges (K-edge filtering). Hydroxyapatite (HAp) was used to simulate microcalcifications. Calcification signal-to-noise ratio (SNRtc) was calculated for entrance surface dose within the acceptable levels of conventional mammography. Optimization was based on the maximization of SNRtc while minimizing the entrance dose. The best compromise between SNRtc value and dose was provided by a 35kVp X-ray spectrum with added beam filtration of 100μm Pd and a 70kVp Yb filtered spectrum of 800 μm for the low and high energy, respectively. Computer simulation results show that a SNRtc value of 3.6 can be achieved for a calcification size of 200 μm. Compared with previous studies, this method can improve detectability of microcalcifications.

  18. Fast and thermal neutron profiles for a 25-MV x-ray beam.

    Science.gov (United States)

    Price, K W; Nath, R; Holeman, G R

    1978-01-01

    High-energy x-ray radiotherapy machines generate neutrons by photonuclear reactions in the target and the treatment head and expose the patient to a neutron flux. In order to evaluate the neutron exposure quantitatively, fast and thermal neutron profiles for 25-MV x-ray beams of the Sagittaire accelerator have been measured. An activation technique, using the reactions 31P(n, gamma)32P (thermal neutrons) and 31P(n, p)31Si (fast neutrons, E greater than 0.7 MeV), has been developed to measure fast- and thermal-neutron fluxes in an intense high-energy photon flux. The sensitivity of this activation detector to high-energy photons, which has plagued many previous neutron measurements, was carefully measured and found to be less than 4%. Neutron fluxes for various photon field sizes ranging from 5 X 5 cm to 30 X 30 cm have been measured. The fast-neutron profiles were observed to have rounded edges and the thermal fluxes were found to be relatively uniform. In the central part of the x-ray beam, the ratio of neutron dose equivalent to photon absorbed dose was found to be between 0.2% and 0.5%. Outside of the photon field, the ratio of neutron dose equivalent to the central-axis photon absorbed dose was 0.12%.

  19. BEaTriX, expanded X-ray beam facility for testing modular elements of telescope optics: an update

    CERN Document Server

    Pelliciari, Carlo; Bonnini, Elisa; Buffagni, Elisa; Ferrari, Claudio; Pareschi, Giovanni; Tagliaferri, Gianpiero

    2016-01-01

    We present in this paper an update on the design of BEaTriX (Beam Expander Testing X-ray facility), an X-ray apparatus to be realized at INAF/OAB and that will generate an expanded, uniform and parallel beam of soft X-rays. BEaTriX will be used to perform the functional tests of X-ray focusing modules of large X-ray optics such as those for the ATHENA X-ray observatory, using the Silicon Pore Optics (SPO) as a baseline technology, and Slumped Glass Optics (SGO) as a possible alternative. Performing the tests in X-rays provides the advantage of an in-situ, at-wavelength quality control of the optical modules produced in series by the industry, performing a selection of the modules with the best angular resolution, and, in the case of SPOs, there is also the interesting possibility to align the parabolic and the hyperbolic stacks directly under X-rays, to minimize the aberrations. However, a parallel beam with divergence below 2 arcsec is necessary in order to measure mirror elements that are expected to reach ...

  20. Investigation of GEM-Micromegas Detector on X-ray Beam of Synchrotron Radiation

    CERN Document Server

    Zhang, YuLian; Hu, BiTao; Fan, ShengNan; Wang, Bo; Liu, Mei; Zhang, Jian; Liu, RongGuang; Chang, GuangCai; Liu, Peng; Ouyang, Qun; Chen, YuanBo; Yi, FuTing

    2013-01-01

    To solve the discharge of the standard Bulk Micromegas and GEM detector, the GEM-Micromegas detector was developed in Institute of High Energy Physics. Taking into account the advantages of the two detectors, one GEM foil was set as a preamplifier on the mesh of Micromegas in the structure and the GEM preamplification decreased the working voltage of Micromegas to reduce the effect of the discharge significantly. In the paper, the performance of detector in X-ray beam was studied at 1W2B laboratory of Beijing Synchrotron Radiation Facility. Finally, the result of the energy resolution under various X-ray energies was given in different working gases. It indicated that the GEM-Micromegas detector had the energy response capability in all the energy range and it could work better than the standard Bulk-Micromegas.

  1. Electron Beam Production and Characterization for the PLEIADES Thomson X-ray Source

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W J; Hartemann, F V; Tremaine, A M; Springer, P T; Le Sage, G P; Barty, C P J; Rosenzweig, J B; Crane, J K; Cross, R R; Fittinghoff, D B; Gibson, D J; Slaughter, D R; Anderson, S

    2002-10-14

    We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. Simulations of beam production, transport, and focus are presented. It is shown that a 1 ps, 500 pC electron bunch with a normalized emittance of less than 5 {pi}mm-mrad can be delivered to the interaction point. Initial electron measurements are presented. Calculations of expected x-ray flux are also performed, demonstrating an expected peak spectral brightness of 10{sup 20} photons/s/mm{sup 2}/mrad{sup 2}/0.1% bandwidth. Effects of RF phase jitter are also presented, and planned phase measurements and control methods are discussed.

  2. Metal Artifact Reduction for Polychromatic X-ray CT Based on a Beam-Hardening Corrector.

    Science.gov (United States)

    Park, Hyoung Suk; Hwang, Dosik; Seo, Jin Keun

    2016-02-01

    This paper proposes a new method to correct beam hardening artifacts caused by the presence of metal in polychromatic X-ray computed tomography (CT) without degrading the intact anatomical images. Metal artifacts due to beam-hardening, which are a consequence of X-ray beam polychromaticity, are becoming an increasingly important issue affecting CT scanning as medical implants become more common in a generally aging population. The associated higher-order beam-hardening factors can be corrected via analysis of the mismatch between measured sinogram data and the ideal forward projectors in CT reconstruction by considering the known geometry of high-attenuation objects. Without prior knowledge of the spectrum parameters or energy-dependent attenuation coefficients, the proposed correction allows the background CT image (i.e., the image before its corruption by metal artifacts) to be extracted from the uncorrected CT image. Computer simulations and phantom experiments demonstrate the effectiveness of the proposed method to alleviate beam hardening artifacts. PMID:26390451

  3. Electron-Excited X-Ray Microanalysis at Low Beam Energy: Almost Always an Adventure!

    Science.gov (United States)

    Newbury, Dale E; Ritchie, Nicholas W M

    2016-08-01

    Scanning electron microscopy with energy-dispersive spectrometry has been applied to the analysis of various materials at low-incident beam energies, E 0≤5 keV, using peak fitting and following the measured standards/matrix corrections protocol embedded in the National Institute of Standards and Technology Desktop Spectrum Analyzer-II analytical software engine. Low beam energy analysis provides improved spatial resolution laterally and in-depth. The lower beam energy restricts the atomic shells that can be ionized, reducing the number of X-ray peak families available to the analyst. At E 0=5 keV, all elements of the periodic table except H and He can be measured. As the beam energy is reduced below 5 keV, elements become inaccessible due to lack of excitation of useful characteristic X-ray peaks. The shallow sampling depth of low beam energy microanalysis makes the technique more sensitive to surface compositional modification due to formation of oxides and other reaction layers. Accurate and precise analysis is possible with the use of appropriate standards and by accumulating high count spectra of unknowns and standards (>1 million counts integrated from 0.1 keV to E 0). PMID:27515566

  4. Electron-Excited X-Ray Microanalysis at Low Beam Energy: Almost Always an Adventure!

    Science.gov (United States)

    Newbury, Dale E; Ritchie, Nicholas W M

    2016-08-01

    Scanning electron microscopy with energy-dispersive spectrometry has been applied to the analysis of various materials at low-incident beam energies, E 0≤5 keV, using peak fitting and following the measured standards/matrix corrections protocol embedded in the National Institute of Standards and Technology Desktop Spectrum Analyzer-II analytical software engine. Low beam energy analysis provides improved spatial resolution laterally and in-depth. The lower beam energy restricts the atomic shells that can be ionized, reducing the number of X-ray peak families available to the analyst. At E 0=5 keV, all elements of the periodic table except H and He can be measured. As the beam energy is reduced below 5 keV, elements become inaccessible due to lack of excitation of useful characteristic X-ray peaks. The shallow sampling depth of low beam energy microanalysis makes the technique more sensitive to surface compositional modification due to formation of oxides and other reaction layers. Accurate and precise analysis is possible with the use of appropriate standards and by accumulating high count spectra of unknowns and standards (>1 million counts integrated from 0.1 keV to E 0).

  5. DOE/DMS workshop on future synchrotron VUV and x-ray beam Lines

    International Nuclear Information System (INIS)

    This document contains an overview of the participating DOE Laboratory beam line interests and the projected science to be addressed on these beam lines, both at new and existing synchrotron facilities. The scientific programs associated with present and planned synchrotron research by DOE Laboratories are discussed in chapters titled ''VUV and Soft X-Ray Research'' and ''Hard X-Ray Research.'' This research encompasses a broad range of the nation's scientific and technical research needs from fundamental to applied, in areas including environmental, biological, and physical sciences; new materials; and energy-related technologies. The projected cost of this proposed construction has been provided in tabular form using a uniform format so that anticipated DOE and outside funding agency contributions for construction and for research and development can be determined. The cost figures are, of course, subject to uncertainties of detailed design requirements and the availability of facility-designed generic components and outside vendors. The report also contains a compendium (as submitted by the beam line proposers) of the design capabilities, the anticipated costs, and the scientific programs of projected beam line construction at the four synchrotron facilities. A summary of the projected cost of these beam lines to be requested of DOE is compiled

  6. Fluorescence-based knife-edge beam diameter measurement to characterize X-ray beam profiles in reflection geometry

    Science.gov (United States)

    Bassel, Léna; Tauzin, Xavier; Queffelec, Alain; Ferrier, Catherine; Lacanette, Delphine; Chapoulie, Rémy; Bousquet, Bruno

    2016-04-01

    The diameter of an X-ray beam was determined, using the knife-edge technique, widely applied for beam profiling, by taking advantage of the fluorescence emission generated by the X-ray beam. The knife-edge has to be appropriate to the configuration of the device, in our case a double-material target made of plastic and cardboard was scanned in a transversal plane compared to the beam propagation direction. Along the scanning axis, for each position, the intensity of the Kα line of chlorine was recorded. The first derivative of the intensity evolution as a function of the edge position, fitted by a Gaussian function, makes it possible to obtain the beam diameter along the scan direction. We measured a slightly elliptic diameter close to 3 mm. In this note we underline the significance of the knife-edge technique which represents a useful tool, easy to be set up, to control X-ray beam dimensions in portable devices often routinely used by non-specialists.

  7. Efficient E-Beam Lithography Exposure Strategies for Diffractive X-ray Optics

    Science.gov (United States)

    Guzenko, V. A.; Romijn, J.; Vila-Comamala, J.; Gorelick, S.; David, C.

    2011-09-01

    Exposure of structures with rotational symmetry by means of electron beam lithography is not trivial, because the e-beam writers are usually designed to deal with the data defined in Cartesian coordinates. Fabrication of circular nanostructures like Fresnel zone plates (FZPs) for x-ray microscopy applications requires exposures with resolution well below 1 nm. Therefore, special attention has to be paid to the efficient exposure data preparation, which will guarantee required precision and allow keeping the exposure time low. In this article, we describe in detail an optimized strategy that was applied for exposure of FZPs by the Vistec EBPG5000Plus e-beam lithography tool. Direct programming of exposure files allowed us to use fully the capabilities of this e-beam writer to expose efficiently and reproducibly FZPs with desired characteristics in both positive and negative tone resists.

  8. Coherence properties of focused X-ray beams at high brilliance synchrotron sources

    CERN Document Server

    Singer, A

    2013-01-01

    An analytical approach describing properties of focused partially coherent X-ray beams is presented. The method is based on the results of statistical optics and gives both the beam size and transverse coherence length at any distance behind an optical element. In particular, here we consider Gaussian Schell-model beams and thin optical elements. Limiting cases of incoherent and fully coherent illumination of the focusing element are discussed. The effect of the beam defining aperture, typically used in combination with focusing elements at synchrotron sources to improve transverse coherence, is also analyzed in detail. As an example the coherence properties in the focal region of compound refractive lenses at the PETRA III synchrotron source are analyzed.

  9. Theoretical evaluation of induced radioactivity in food products by electron or X-ray beam sterilization

    International Nuclear Information System (INIS)

    We evaluate first the energy density for electrons or X-ray beams necessary to produce a reference level of 1 kilogray at the maximum of dose, as a function of energy, for electrons and bremsstrahlung photons, based on experimental data obtained on radio-therapy beams, from 4 to 32 MeV, and irradiation beams from production plant CARIC. Then from the production of neutrons on the tungsten target and from (γn) reactions on the deuterium content of the irradiated food, the slowing down and capture of these neutrons is estimated. Radioisotopes can be produced by (γn) reactions on iodine, and to a lesser extent on tin, lead, barium, etc., but the major contribution is neutron activation, where the more critical elements are sodium, chlorine, potassium, magnesium, phosphorus, calcium. Induced activity is compared to natural activity coming from potassium 40, carbon 14 and radium, contained in all foods. For electrons up to 1 Mrad the induced activity remains of the order of a few percent of natural activity, for energies below 10 to 11 MeV. Bremsstrahlung X-ray irradiations can give comparable levels as soon as the energy of the generating electron beam is above 3 MeV. The induced activity decays within a few days. (author)

  10. Smart x-ray beam position monitor system for the Advanced Photon Source

    International Nuclear Information System (INIS)

    In third-generation synchrotron radiation sources, such as the Advanced Photon Source (APS), the sensitivity and reliability requirements for the x-ray beam position monitors (XBPMs) are much higher than for earlier systems. Noise and contamination signals caused by radiation emitted from the bending magnet become a major problem. The regular XBPM calibration process can only provide signal correction for one set of conditions for the insertion devices (ID). During normal operation, parameters affecting the ID-emitted beam, such as the gap of the ID magnets and the beam current, are the variables. A new smart x-ray beam position monitor system (SBPM) has been conceived and designed for the APS. It has a built in self-learning structure with EEPROM memory that is large enough to open-quote open-quote remember close-quote close-quote a complete set of calibration data covering all the possible operating conditions. During the self-learning mode, the monitor system initializes a series of automatic scan motions with information for different ID setups and records them into the database array. During normal operation, the SBPM corrects the normalized output according to the ID setup information and the calibration database. So that, with this novel system, the SBPM is always calibrating itself with the changing ID set up conditions. copyright 1996 American Institute of Physics

  11. Scattered hard X-ray and γ-ray generation from a chromatic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, J. E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Welch, D. R.; Miller, C. L. [Voss Scientific, Albuquerque, New Mexico 87108 (United States)

    2015-11-14

    An array of photon diagnostics has been deployed on a high power relativistic electron beam diode. Electrons are extracted through a 17.8 cm diode from the surface discharge of a carbon fiber velvet cathode with a nominal diode voltage of 3.8 MV. <10% of the 100 ns electron pulse is composed of off energy electrons (1–3 MeV) accelerated during the rise and fall of the pulse that impact the stainless steel beam pipe and generate a Bremsstrahlung spectrum of 0.1–3 MeV photons with a total count of 10{sup 11}. The principal objective of these experiments is to quantify the electron beam dynamics and spatial dynamics of the hard X-ray and γ-ray flux generated in the diode region. A qualitative comparison of experimental and calculated results are presented, including time and energy resolved electron beam propagation and scattered photon measurements with X-ray PIN diodes and a photomultiplier tube indicating a dose dependence on the diode voltage >V{sup 4} and detected photon counts of nearly 10{sup 6} at a radial distance of 1 m which corresponds to dose ∼40 μrad at 1 m.

  12. Scattered hard X-ray and γ-ray generation from a chromatic electron beam

    International Nuclear Information System (INIS)

    An array of photon diagnostics has been deployed on a high power relativistic electron beam diode. Electrons are extracted through a 17.8 cm diode from the surface discharge of a carbon fiber velvet cathode with a nominal diode voltage of 3.8 MV. <10% of the 100 ns electron pulse is composed of off energy electrons (1–3 MeV) accelerated during the rise and fall of the pulse that impact the stainless steel beam pipe and generate a Bremsstrahlung spectrum of 0.1–3 MeV photons with a total count of 1011. The principal objective of these experiments is to quantify the electron beam dynamics and spatial dynamics of the hard X-ray and γ-ray flux generated in the diode region. A qualitative comparison of experimental and calculated results are presented, including time and energy resolved electron beam propagation and scattered photon measurements with X-ray PIN diodes and a photomultiplier tube indicating a dose dependence on the diode voltage >V4 and detected photon counts of nearly 106 at a radial distance of 1 m which corresponds to dose ∼40 μrad at 1 m

  13. Development of ion beam figuring system with electrostatic deflection for ultraprecise X-ray reflective optics

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Jumpei; Matsuyama, Satoshi, E-mail: matsuyama@prec.eng.osaka-u.ac.jp; Sano, Yasuhisa; Yamauchi, Kazuto [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2015-09-15

    We developed an ion beam figuring system that utilizes electrostatic deflection. The system can produce an arbitrary shape by deterministically scanning the ion beam. The scan of the ion beam, which can be precisely controlled using only an electrical signal, enables us to avoid degradation of the mirror shape caused by imperfect acceleration or deceleration of a mechanically scanning stage. Additionally, this surface figuring method can easily be combined with X-ray metrology because the workpiece remains fixed during the figuring. We evaluated the figuring accuracy of the system by fabricating a plano-elliptical mirror for X-ray focusing. A mirror with a shape error of 1.4 nm root mean square (RMS) with a maximum removal depth of 992 nm, which corresponds to figuring accuracy of 0.14% RMS, was achieved. After the second shape corrections, an elliptical shape with a shape error of approximately 1 nm peak-to-valley, 0.48 nm RMS could be fabricated. Then, the mirror surface was smoothed by a low-energy ion beam. Consequently, a micro-roughness of 0.117 nm RMS, measured by atomic force microscopy, was achieved over an area of 1 × 1 μm{sup 2}.

  14. X-ray phase contrast imaging of the breast: Analysis of tissue simulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, Srinivasan; Karellas, Andrew [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2013-04-15

    Purpose: Phase contrast imaging, particularly of the breast, is being actively investigated. The purpose of this work is to investigate the x-ray phase contrast properties of breast tissues and commonly used breast tissue substitutes or phantom materials with an aim of determining the phantom materials best representative of breast tissues. Methods: Elemental compositions of breast tissues including adipose, fibroglandular, and skin were used to determine the refractive index, n= 1 -{delta}+i {beta}. The real part of the refractive index, specifically the refractive index decrement ({delta}), over the energy range of 5-50 keV were determined using XOP software (version 2.3, European Synchrotron Radiation Facility, France). Calcium oxalate and calcium hydroxyapatite were considered to represent the material compositions of microcalcifications in vivo. Nineteen tissue substitutes were considered as possible candidates to represent adipose tissue, fibroglandular tissue and skin, and four phantom materials were considered as possible candidates to represent microcalcifications. For each material, either the molecular formula, if available, or the elemental composition based on weight fraction, was used to determine {delta}. At each x-ray photon energy, the absolute percent difference in {delta} between the breast tissue and the substitute material was determined, from which three candidates were selected. From these candidate tissue substitutes, the material that minimized the absolute percent difference in linear attenuation coefficient {mu}, and hence {beta}, was considered to be best representative of that breast tissue. Results: Over the energy range of 5-50 keV, while the {delta} of CB3 and fibroglandular tissue-equivalent material were within 1% of that of fibroglandular tissue, the {mu} of fibroglandular tissue-equivalent material better approximated the fibroglandular tissue. While the {delta} of BR10 and adipose tissue-equivalent material were within 1% of

  15. 3D Medipix2 detector characterization with a micro-focused X-ray beam

    Science.gov (United States)

    Gimenez, E. N.; Maneuski, D.; Mac Raighne, A.; Parkes, C.; Bates, R.; O'Shea, V.; Fleta, C.; Pellegrini, G.; Lozano, M.; Alianelli, L.; Sawhney, K. J. S.; Marchal, J.; Tartoni, N.

    2011-05-01

    Three-dimensional (3D) photodiode detectors offer advantages over standard planar photodiodes in a wide range of applications. The main advantage of these sensors for X-ray imaging is their reduced charge sharing between adjacent pixels, which could improve spatial and spectral resolution. However, a drawback of 3D sensors structures is the loss of detection efficiency due to the presence in the pixel structure of heavily doped electrode columns which are insensitive to X-ray. In this work two types of 3D silicon detectors: n-type wafer with hole collecting readout-columns (N-TYPE) and p-type wafer with electron collecting readout-columns (P-TYPE), bump-bounded to a Medipix2 read-out chip were characterized with a 14.5 keV micro-focused X-ray beam from a synchrotron. Measurements of the detection efficiency and the charge sharing were performed at different bias voltages and Medipix2 energy thresholds and compared with those of a standard planar silicon sensor.

  16. Development of Kilovoltage X-ray Dosimetry Methods and Their Application to Cone Beam Computed Tomography

    Science.gov (United States)

    Lawless, Michael J.

    The increase in popularity of pre-treatment imaging procedures in radiation therapy, such as kilovoltage cone beam computed tomography (CBCT), has been accompanied by an increase in the dose delivered to the patient from these imaging procedures. The measurement of dose from CBCT scans is complicated, as currently available kilovoltage dosimetry protocols are based on air-kerma standards and radiation detectors exhibit large energy responses at the low photon energies used in the imaging procedures. This work aims to provide the tools and methodology needed to measure the dose from these scans more accurately and precisely. Through the use of a validated Monte Carlo (MC) model of the moderately filtered (M-series) x-ray beams at the University of Wisconsin Accredited Dosimetry Calibration Laboratory, dose-to-water rates were obtained in a water phantom for the M-series x-ray beams with tube potentials from 40-250 kVp. The resulting dose-to-water rates were consistent with previously established methods, but had significantly reduced uncertainties. While detectors are commonly used to measure dose in phantom, previous investigations of the energy response of common detectors in the kilovoltage energy range have been limited to in-air geometries. The newly determined dose-to-water rates were used to characterize the in-phantom energy and depth response of thermoluminescent dosimeters and ionization chambers. When compared to previous investigations of the in-air detector response, the impact of scatter and absorption of the photon beam by the water medium was found to have a significant impact on the response of certain detectors. The dose to water in the NIST-traceable M-series x-ray beams was transferred to clinical CBCT beams and the resulting doses agreed with other dose-to-water measurement techniques. The dose to water in the CBCT beams was used to characterize the energy and depth responses of a number of detectors. The energy response in the CBCT beams agreed

  17. 3D electron density imaging using single scattered x rays with application to breast CT and mammographic screening

    Science.gov (United States)

    van Uytven, Eric Peter

    Screening mammography is the current standard in detecting breast cancer. However, its fundamental disadvantage is that it projects a 3D object into a 2D image. Small lesions are difficult to detect when superimposed over layers of normal tissue. Commercial Computed Tomography (CT) produces a true 3D image yet has a limited role in mammography due to relatively low resolution and contrast. With the intent of enhancing mammography and breast CT, we have developed an algorithm which can produce 3D electron density images using a single projection. Imaging an object with x rays produces a characteristic scattered photon spectrum at the detector plane. A known incident beam spectrum, beam shape, and arbitrary 3D matrix of electron density values enable a theoretical scattered photon distribution to be calculated. An iterative minimization algorithm is used to make changes to the electron density voxel matrix to reduce regular differences between the theoretical and the experimentally measured distributions. The object is characterized by the converged electron density image. This technique has been validated in simulation using data produced by the EGSnrc Monte Carlo code system. At both mammographic and CT energies, a scanning polychromatic pencil beam was used to image breast tissue phantoms containing lesion-like inhomogeneities. The resulting Monte Carlo data is processed using a Nelder-Mead iterative algorithm (MATLAB) to produce the 3D matrix of electron density values. Resulting images have confirmed the ability of the algorithm to detect various 1x1x2.5 mm3 lesions with calcification content as low as 0.5% (p<0.005) at a dose comparable to mammography.

  18. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brun, E., E-mail: emmanuel.brun@esrf.fr [European Synchrotron Radiation Facility (ESRF), Grenoble 380000, France and Department of Physics, Ludwig-Maximilians University, Garching 85748 (Germany); Grandl, S.; Sztrókay-Gaul, A.; Gasilov, S. [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Barbone, G. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Mittone, A.; Coan, P. [Department of Physics, Ludwig-Maximilians University, Garching 85748, Germany and Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Bravin, A. [European Synchrotron Radiation Facility (ESRF), Grenoble 380000 (France)

    2014-11-01

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  19. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Manohar, Nivedh [Nuclear/Radiological Engineering and Medical Physics Programs, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Jones, Bernard L. [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Cho, Sang Hyun, E-mail: scho@mdanderson.org [Department of Radiation Physics and Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2014-10-15

    Purpose: To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). Methods: A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Results: Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the

  20. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: A Monte Carlo study

    International Nuclear Information System (INIS)

    Purpose: To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). Methods: A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Results: Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the

  1. X-ray source based on open gaseous diode at supershot avalanche electron beam

    International Nuclear Information System (INIS)

    The formation of a volume discharge in an open gas diode with coaxial electrodes filled with air at atmospheric pressure was accompanied by hard X-ray emission. The conditions of supershort avalanche electron beam formation are retained at a pulse repetition rate up to 1.5 kHz. X radiation formed by 60 keV electrons is recorded by using high-voltage nanosecond pulses and by formation of volume discharges in open gas diodes filled with air at atmospheric pressure

  2. X-ray Interferometry with Transmissive Beam Combiners for Ultra-High Angular Resolution Astronomy

    Science.gov (United States)

    Skinner, G. K.; Krismanic, John F.

    2009-01-01

    Abstract Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.

  3. Pulse-periodic generation of supershort avalanche electron beams and X-ray emission

    Science.gov (United States)

    Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Tarasenko, V. F.

    2014-05-01

    Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.

  4. A one-dimensional ion beam figuring system for x-ray mirror fabrication

    International Nuclear Information System (INIS)

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results

  5. Investigation on the reduction of electron contamination with a 6-MV x-ray beam

    International Nuclear Information System (INIS)

    Experimental investigations have been carried out on the reduction of electron contamination of a 6-MV x-ray beam of Clinac model 1800 for square field sizes 5 x 5 to 30 x 30 cm2 in steps of 5 cm and for rectangular field sizes 19 x 7 and 7 x 19 cm2. The electron contamination of both the open beam and the beam with the tray can be effectively reduced by placing a lead foil filter immediately below the blocking tray. Measurements at 100-cm source-skin distance with filter in place showed a reduction in dose in the buildup region and also a displacement of the location of D/sub max/ to greater depths, even for small field sizes such as 10 x 10 cm2

  6. Supershort avalanche electron beams and x-ray in high-pressure nanosecond discharges

    International Nuclear Information System (INIS)

    The properties of a supershort avalanche electron beam (S AEB) and X-ray radiation produced using a nanosecond volume discharge are examined. An electron beam of the runaway electrons with amplitude of ∼ 50 A has been obtained in air atmospheric pressure. It is reported that S AEB is formed in the angle above 2π sr. Three groups of the runaway electrons are formed in a gas diode under atmospheric air pressure, when nanosecond voltage pulses with amplitude of hundreds of kilovolts are applied. The electron beam has been generated behind a 45 μm thick AlBe foil in SF6 and Xe under the pressure of 2 arm, and in He under the pressure of about 12 atm. The paper gives the analysis of a generation mechanism of SAEB.

  7. Supershort avalanche electron beams and x-ray in high-pressure nanosecond discharges

    Science.gov (United States)

    Tarasenko, V. F.; Baksht, E. H.; Kostyrya, I. D.; Lomaev, M. I.; Rybka, D. V.

    2008-10-01

    The properties of a supershort avalanche electron beam (S AEB) and X-ray radiation produced using a nanosecond volume discharge are examined. An electron beam of the runaway electrons with amplitude of ~ 50 A has been obtained in air atmospheric pressure. It is reported that S AEB is formed in the angle above 2π sr. Three groups of the runaway electrons are formed in a gas diode under atmospheric air pressure, when nanosecond voltage pulses with amplitude of hundreds of kilovolts are applied. The electron beam has been generated behind a 45 μm thick AlBe foil in SF6 and Xe under the pressure of 2 arm, and in He under the pressure of about 12 atm. The paper gives the analysis of a generation mechanism of SAEB.

  8. A one-dimensional ion beam figuring system for x-ray mirror fabrication.

    Science.gov (United States)

    Idir, Mourad; Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Lauer, Ken; Conley, Ray; Rennie, Kent; Kahn, Jim; Nethery, Richard; Zhou, Lin

    2015-10-01

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results.

  9. A one-dimensional ion beam figuring system for x-ray mirror fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Idir, Mourad, E-mail: midir@bnl.gov; Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Lauer, Ken [NSLS-II, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973 (United States); Conley, Ray [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Rennie, Kent; Kahn, Jim; Nethery, Richard [Kaufman & Robinson, Inc., 1330 Blue Spruce Drive, Fort Collins, Colorado 80524 (United States); Zhou, Lin [College of Mechatronics and Automation, National University of Defense Technology, 109 Deya Road, Changsha, Hunan 410073 (China); Hu’nan Key Laboratory of Ultra-precision Machining Technology, Changsha, Hunan 410073 (China)

    2015-10-15

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results.

  10. The VANILLA sensor as a beam monitoring device for X-ray radiation therapy.

    Science.gov (United States)

    Velthuis, J J; Hugtenburg, R P; Cussans, D; Perry, M; Hall, C; Stevens, P; Lawrence, H; McKenzie, A

    2014-01-01

    Cancer treatments such as intensity-modulated radiotherapy (IMRT) require increasingly complex methods to verify the accuracy and precision of the treatment delivery. In vivo dosimetry based on measurements made in an electronic portal imaging device (EPID) has been demonstrated. The distorting effect of the patient anatomy on the beam intensity means it is difficult to separate changes in patient anatomy from changes in the beam intensity profile. Alternatively, upstream detectors scatter and attenuate the beam, changing the energy spectrum of the beam, and generate contaminant radiation such as electrons. We used the VANILLA device, a Monolithic Active Pixel Sensor (MAPS), to measure the 2D beam profile of a 6 MV X-ray beam at Bristol Hospital in real-time in an upstream position to the patient without clinically significant disturbance of the beam (0.1% attenuation). MAPSs can be made very thin (~20 μm) with still a very good signal-to-noise performance. The VANILLA can reconstruct the collimated beam edge with approximately 64 μm precision.

  11. Research and development of an electron beam focusing system for a high-brightness X-ray generator

    OpenAIRE

    Sakai, Takeshi; Ohsawa, Satoshi; Sakabe, Noriyoshi; Sugimura, Takashi; IKEDA, Mitsuo

    2010-01-01

    A new type of rotating anticathode X-ray generator, where an electron beam of up to 60 keV irradiates the inner surface of a U-shaped Cu anticathode, has achieved a beam brilliance of 130 kW mm−2 (at 2.3 kW). A higher-flux electron beam is expected from simulation by optimizing the geometry of a combined-function-type magnet instead of the fringing field of the bending magnet. In order to minimize the size of the X-ray source the electron beam has been focused over a short distance by a new c...

  12. The evaluation of breast tissues removed during reductive mammaplasty with dual energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    Purpose: We conducted a case-control study in which patients were evaluated with dual energy X-ray absorptiometry (DEXA) before and after breast reduction surgery, and results were correlated with the histological examination. Our goal was to confirm the DEXA as a precise technique for the measurement of breast composition, in order to propose it for the preoperative evaluation of plastic surgery patients. Materials and methods: We prospectively recruited all women that underwent reduction mammaplasty and excluded patients with contraindications to the operation or those that previously underwent bariatric surgery to reduce their weight. Patients were evaluated with DEXA 1 week before and after surgery. Results: From February to October 2006 we recruited 25 patients. The statistical analysis found a significant reduction of weight, BMI, regional fat free mass and fat mass after the operation. The comparison between DEXA and the histological analysis produced a correlation r = 0.989 (r2 = 0.978), with a predictivity of 98% and a percentage of error 8.3% (95% confidence intervals -252.6, 273.7; 95% limits of agreements of Bland and Altman -436.0, 457.1). Similar results were obtained with the analysis of fat. Conclusions: Our study demonstrated that conventional segmental DEXA is a very precise technique to measure the amount of tissue removed in breast reductions and could open future application in the preoperative assessment of patients undergoing such operations.

  13. Screening of breast cancer by elemental concentrations in hair observed by fluorescent x-ray analysis

    International Nuclear Information System (INIS)

    Trace elements in a 0.2-mm-long part of a single hair can be analyzed using synchrotron radiation. We found that calcium concentration in hair is universally constant like out temperature and pulse rate for a healthy case, because calcium is so important as to play the messenger in the universal cellular signal transmission. Since calcified lesions are detected in an early stage of breast cancer by X-ray mammography, one may expect a disorder of the calcium metabolism for the patients. Since hair grows with a rate of about 1 cm per month, the analysis from root to tip of single hair samples taken from 10 breast-cancer patients showed that a characteristic calcium abnormality began in all the hair 8 to 12 months before finding the cancer. Most of cancer originates from a genetic source, but cannot sprout without a disorder of the signal transmission among cells. Prediction and prevention of breast cancer may be possible with the hair analysis. (author)

  14. The evaluation of breast tissues removed during reductive mammaplasty with dual energy X-ray absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    De Lorenzo, Antonino [Division of Human Nutrition, University of Tor Vergata in Rome (Italy); Gravante, Gianpiero [Division of Human Nutrition, University of Tor Vergata in Rome (Italy); Department of Surgery, Whipps Cross University Hospital, London (United Kingdom)], E-mail: ggravante@hotmail.com; Sorge, Roberto [Laboratory of Biometry, University of Tor Vergata in Rome (Italy); Nicoli, Fabio; Caruso, Riccardo; Araco, Antonino [Department of Plastic Surgery, University of Tor Vergata in Rome (Italy); Servidio, Michele [Division of Human Nutrition, University of Tor Vergata in Rome (Italy); Orlandi, Augusto [Department of Biopathology, Anatomic Pathology Institute, University of Tor Vergata in Rome (Italy); Cervelli, Valerio [Department of Plastic Surgery, University of Tor Vergata in Rome (Italy)

    2009-06-15

    Purpose: We conducted a case-control study in which patients were evaluated with dual energy X-ray absorptiometry (DEXA) before and after breast reduction surgery, and results were correlated with the histological examination. Our goal was to confirm the DEXA as a precise technique for the measurement of breast composition, in order to propose it for the preoperative evaluation of plastic surgery patients. Materials and methods: We prospectively recruited all women that underwent reduction mammaplasty and excluded patients with contraindications to the operation or those that previously underwent bariatric surgery to reduce their weight. Patients were evaluated with DEXA 1 week before and after surgery. Results: From February to October 2006 we recruited 25 patients. The statistical analysis found a significant reduction of weight, BMI, regional fat free mass and fat mass after the operation. The comparison between DEXA and the histological analysis produced a correlation r = 0.989 (r{sup 2} = 0.978), with a predictivity of 98% and a percentage of error 8.3% (95% confidence intervals -252.6, 273.7; 95% limits of agreements of Bland and Altman -436.0, 457.1). Similar results were obtained with the analysis of fat. Conclusions: Our study demonstrated that conventional segmental DEXA is a very precise technique to measure the amount of tissue removed in breast reductions and could open future application in the preoperative assessment of patients undergoing such operations.

  15. A software-based x-ray scatter correction method for breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jia Feng, Steve Si; Sechopoulos, Ioannis [Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, and Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Department of Radiology and Imaging Sciences, Hematology and Medical Oncology and Winship Cancer Institute, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States)

    2011-12-15

    Purpose: To develop a software-based scatter correction method for digital breast tomosynthesis (DBT) imaging and investigate its impact on the image quality of tomosynthesis reconstructions of both phantoms and patients. Methods: A Monte Carlo (MC) simulation of x-ray scatter, with geometry matching that of the cranio-caudal (CC) view of a DBT clinical prototype, was developed using the Geant4 toolkit and used to generate maps of the scatter-to-primary ratio (SPR) of a number of homogeneous standard-shaped breasts of varying sizes. Dimension-matched SPR maps were then deformed and registered to DBT acquisition projections, allowing for the estimation of the primary x-ray signal acquired by the imaging system. Noise filtering of the estimated projections was then performed to reduce the impact of the quantum noise of the x-ray scatter. Three dimensional (3D) reconstruction was then performed using the maximum likelihood-expectation maximization (MLEM) method. This process was tested on acquisitions of a heterogeneous 50/50 adipose/glandular tomosynthesis phantom with embedded masses, fibers, and microcalcifications and on acquisitions of patients. The image quality of the reconstructions of the scatter-corrected and uncorrected projections was analyzed by studying the signal-difference-to-noise ratio (SDNR), the integral of the signal in each mass lesion (integrated mass signal, IMS), and the modulation transfer function (MTF). Results: The reconstructions of the scatter-corrected projections demonstrated superior image quality. The SDNR of masses embedded in a 5 cm thick tomosynthesis phantom improved 60%-66%, while the SDNR of the smallest mass in an 8 cm thick phantom improved by 59% (p < 0.01). The IMS of the masses in the 5 cm thick phantom also improved by 15%-29%, while the IMS of the masses in the 8 cm thick phantom improved by 26%-62% (p < 0.01). Some embedded microcalcifications in the tomosynthesis phantoms were visible only in the scatter

  16. The experimental station for white beam X-ray topography at the synchrotron light source ANKA, Karlsruhe

    CERN Document Server

    Simon, R

    2003-01-01

    At the recently constructed synchrotron radiation facility ANKA at Karlsruhe, Germany, two end stations for X-ray fluorescence and X-ray topography, respectively, are integrated into one beamline offering white light as well as band pass operation. This contribution is focussed on the design, characteristics and performance parameters of this beamline with special reference to experiments in X-ray topography. Results of characterization measurements of the horizontal and vertical beam profile, the source dimension and of components of the experimental stations are presented.

  17. A Soft X-ray Beam-splitting Multilayer Optic for the NASA GEMS Bragg Reflection Polarimeter

    OpenAIRE

    Allured, Ryan; Fernandez-Perea, Monica; Soufli, Regina; Alameda, Jennifer B.; Pivovaroff, Michael J.; Gullikson, Eric M.; Kaaret, Philip

    2013-01-01

    A soft X-ray, beam-splitting, multilayer optic has been developed for the Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission (GEMS). The optic is designed to reflect 0.5 keV X-rays through a 90 degree angle to the BRP detector, and transmit 2-10 keV X-rays to the primary polarimeter. The transmission requirement prevents the use of a thick substrate, so a 2 micron thick polyimide membrane was used. Atomic force microscopy has shown the membrane...

  18. Analysis of trace elements in blood sera of breast cancer patients by particle induced X-ray emission

    International Nuclear Information System (INIS)

    Trace elemental imbalance in human beings is postulated to exert action, directly or indirectly, on the carcinogenic process. The objective of this study was to evaluate the levels of trace elements in blood sera of breast cancer patients and analyze their alteration with respect to healthy controls. This work was also intended to establish the role played by the trace elements in carcinogenic process. Particle induced X-ray emission (PIXE) technique was used for trace elemental analysis of blood sera of breast cancer patients and healthy controls. The PIXE measurements were carried out using a 2.5 MeV collimated proton beam from the 3 MV Tandem Pelletron accelerator at Institute of Physics, Bhubaneswar, India. On comparing the trace elemental content in the sera of breast cancer patients with those of control subjects, significant variations were observed in the levels of most of the trace elements. The serum levels of almost all the elements except Fe and Cu were observed to be depressed in cancer patients with respect to normal subjects. However, this variation was significant only for Ti (P < 0.00005), Cr (P < 0.005), Mn (P < 0.0005), Ni (P < 0.01), Zn (P < 0.000001), and Se (P < 0.05). On the other hand, significant elevations were observed in serum Fe (P < 0.05) and Cu (P < 0.005) levels in cancer patients. The findings presented in this paper give guidelines for future study into the possible roles and interactions of essential trace elements in the breast carcinogenic process. (author)

  19. Cone-beam x-ray phase contrast tomography of biological samples; Optimization of contrast, resolution and field of view

    OpenAIRE

    Bartels, Matthias

    2013-01-01

    Three-dimensional information of entire objects can be obtained by the remarkable technique of computed tomography (CT). In combination with phase sensitive X-ray imaging high contrast for soft tissue structures can be achieved as opposed to CT based on classical radiography. In this work biological samples ranging from micrometer sized single cells over multi-cellular nerve tissue to entire millimeter sized organs are investigated by use of cone-beam propagationbased X-ray phase contrast. Op...

  20. Scattered hard X-ray and γ-ray generation from a chromatic electron beam

    Science.gov (United States)

    Coleman, J. E.; Welch, D. R.; Miller, C. L.

    2015-11-01

    An array of photon diagnostics has been deployed on a high power relativistic electron beam diode. Electrons are extracted through a 17.8 cm diode from the surface discharge of a carbon fiber velvet cathode with a nominal diode voltage of 3.8 MV. diode region. A qualitative comparison of experimental and calculated results are presented, including time and energy resolved electron beam propagation and scattered photon measurements with X-ray PIN diodes and a photomultiplier tube indicating a dose dependence on the diode voltage >V4 and detected photon counts of nearly 106 at a radial distance of 1 m which corresponds to dose ˜40 μrad at 1 m.

  1. From x-ray telescopes to neutron scattering: Using axisymmetric mirrors to focus a neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Khaykovich, B., E-mail: bkh@mit.ed [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany Street, Cambridge, MA 02139 (United States); Gubarev, M.V. [Marshall Space Flight Center, NASA, VP62, Huntsville, AL 35812 (United States); Bagdasarova, Y. [Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Ramsey, B.D. [Marshall Space Flight Center, NASA, VP62, Huntsville, AL 35812 (United States); Moncton, D.E. [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany Street, Cambridge, MA 02139 (United States); Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2011-03-01

    We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in X-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We implemented a system containing four nested Ni mirror pairs, which was tested by the focusing of a polychromatic neutron beam at the MIT Reactor. In addition, we have carried out extensive ray-tracing simulations of the mirrors and their performance in different situations. The major advantages of the Wolter mirrors are nesting for large angular collection and aberration-free performance. We discuss how these advantages can be utilized to benefit various neutron scattering methods, such as imaging, SANS, and time-of-flight spectroscopy.

  2. From x-ray telescopes to neutron scattering: Using axisymmetric mirrors to focus a neutron beam

    International Nuclear Information System (INIS)

    We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in X-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We implemented a system containing four nested Ni mirror pairs, which was tested by the focusing of a polychromatic neutron beam at the MIT Reactor. In addition, we have carried out extensive ray-tracing simulations of the mirrors and their performance in different situations. The major advantages of the Wolter mirrors are nesting for large angular collection and aberration-free performance. We discuss how these advantages can be utilized to benefit various neutron scattering methods, such as imaging, SANS, and time-of-flight spectroscopy.

  3. Simulating systematic errors in X-ray absorption spectroscopy experiments: Sample and beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Curis, Emmanuel [Laboratoire de Biomathematiques, Faculte de Pharmacie, Universite Rene, Descartes (Paris V)-4, Avenue de l' Observatoire, 75006 Paris (France)]. E-mail: emmanuel.curis@univ-paris5.fr; Osan, Janos [KFKI Atomic Energy Research Institute (AEKI)-P.O. Box 49, H-1525 Budapest (Hungary); Falkenberg, Gerald [Hamburger Synchrotronstrahlungslabor (HASYLAB), Deutsches Elektronen-Synchrotron (DESY)-Notkestrasse 85, 22607 Hamburg (Germany); Benazeth, Simone [Laboratoire de Biomathematiques, Faculte de Pharmacie, Universite Rene, Descartes (Paris V)-4, Avenue de l' Observatoire, 75006 Paris (France); Laboratoire d' Utilisation du Rayonnement Electromagnetique (LURE)-Ba-hat timent 209D, Campus d' Orsay, 91406 Orsay (France); Toeroek, Szabina [KFKI Atomic Energy Research Institute (AEKI)-P.O. Box 49, H-1525 Budapest (Hungary)

    2005-07-15

    The article presents an analytical model to simulate experimental imperfections in the realization of an X-ray absorption spectroscopy experiment, performed in transmission or fluorescence mode. Distinction is made between sources of systematic errors on a time-scale basis, to select the more appropriate model for their handling. For short time-scale, statistical models are the most suited. For large time-scale, the model is developed for sample and beam imperfections: mainly sample inhomogeneity, sample self-absorption, beam achromaticity. The ability of this model to reproduce the effects of these imperfections is exemplified, and the model is validated on real samples. Various potential application fields of the model are then presented.

  4. X-ray beam monitor using a transmission-type PIN photodiode

    International Nuclear Information System (INIS)

    A new transmission-type PD has been tested in its dynamic range and in accuracy for obtaining input photon rates. At 7.30 keV, the linearity reached 108 of the input photon rate. The error for input photon rates was less than 10% even at near 1012 photons/s. These results show that the PD detector is suitable for a beam monitor for synchrotron radiation X-rays. However, the absorption of 0.415 in the diode itself might be too large. At higher energies, the detector is useful even for the transmission set-up. We are now preparing some experiments to prove availability for higher energies. While we did not find the limitation of input photon rate and the effect of radiation damage for the device, these will be tested for the application of the beam monitor. (author)

  5. A Monte Carlo approach for simulating the propagation of partially coherent x-ray beams

    DEFF Research Database (Denmark)

    Prodi, A.; Bergbäck Knudsen, Erik; Willendrup, Peter Kjær;

    2011-01-01

    sampling Huygens-Fresnel waves with Monte Carlo methods and is used to propagate each source realization to the detector plane. The sampling is implemented with a modified Monte Carlo ray tracing scheme where the optical path of each generated ray is stored. Such information is then used in the summation......Advances at SR sources in the generation of nanofocused beams with a high degree of transverse coherence call for effective techniques to simulate the propagation of partially coherent X-ray beams through complex optical systems in order to characterize how coherence properties such as the mutual...... of the generated rays at the observation plane to account for coherence properties. This approach is used to simulate simple models of propagation in free space and with reflective and refractive optics. © 2011 COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the...

  6. Ensuring convergence in total-variation-based reconstruction for accurate microcalcification imaging in breast X-ray CT

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Heide; Sidky, Emil Y.; Pan, Xiaochuan

    2011-01-01

    Breast X-ray CT imaging is being considered in screening as an extension to mammography. As a large fraction of the population will be exposed to radiation, low·dose imaging is essential. Iterative image reconstruction based on solving an optimization problem, such as Total-Variation minimization...

  7. Improved Scatter Correction in X-Ray Cone Beam CT with Moving Beam Stop Array Using Johns' Equation

    CERN Document Server

    Yan, Hao; Tang, Shaojie; Xu, Qiong

    2014-01-01

    In this paper, an improved scatter correction with moving beam stop array (BSA) for x-ray cone beam (CB) CT is proposed. Firstly, correlation between neighboring CB views is deduced based on John's Equation. Then, correlation-based algorithm is presented to complement the incomplete views by using the redundancy (over-determined information) in CB projections. Finally, combining the algorithm with scatter correction method using moving BSA, where part of primary radiation is blocked and incomplete projections are acquired, an improved correction method is proposed. Effectiveness and robustness is validated by Monte Carlo (MC) simulation with EGSnrc on humanoid phantom.

  8. Beam characterization of a lab bench cold cathode ultra-soft X-ray generator

    Science.gov (United States)

    Ounoughi, N.; Mavon, C.; Belafrites, A.; Groetz, J.-E.; Fromm, M.

    2013-06-01

    The aim of this work is to characterize the Ultra Soft X-ray (USX, 1.5 keV, Al Kα) photon beam of a customized lab bench cold cathode generator. Within this generator, the electron beam is slowed down in a thin aluminium foil (16 μm) supported by an easily exchangeable anode. It is shown that the thickness of the foil and the anode configuration determine the spatial distribution and the fluence rate of the photon beam, whereas accelerating voltage determines both fluence rate and energy spectrum feature. It is shown also that under specific operation parameters (i.e. accelerating voltage), a Gaussian energy distribution of the beam can be generated which is centred on the energy of the Al Kα line (1.5 keV). Dosimetric films of GAFCHROMIC® HD-810 were used to estimate the photon fluence rate distribution of the beam. Its variation, when the generator acts as a monoenergetic source, was characterized with the two different configurations of the anode assembly. Finally, it is verified that the anode assembly consisting in a flat washer, on which the aluminium foil is set, acts as a simple point-source.

  9. The beam-based calibration of an X-ray pinhole camera at SSRF

    Institute of Scientific and Technical Information of China (English)

    LENG Yong-Bin; HUANG Guo-Qing; ZHANG Man-Zhou; CHEN Zhi-Chu; CHEN Jie; YE Kai-Rong

    2012-01-01

    A pinhole camera for imaging X-ray synchrotron radiation from a dipole magnet is now in operation at the Shanghai Synchrotron Radiation Facility (SSRF) storage ring.The electron beam size is derived by unfolding the radiation image and the point spread function (PSF) with deconvolution techniques.The performance of the pinhole is determined by the accuracy of the PSF measurement.This article will focus on a beam-based calibration scheme to measure the PSF system by varying the beam images with different quadrupole settings and fitting them with the corresponding theoretical beam sizes.Applying this method at SSRF,the PSF value of the pinhole is revised from 37 to 44 μm.The deviation in beam size between the theoretical value and the measured value is minimized to 4% after calibration.This optimization allows us to observe the horizontal disturbance due to injection down to as small as 0.5 μm.

  10. Advanced simulations of x-ray beam propagation through CRL transfocators using ray-tracing and wavefront propagation methods

    DEFF Research Database (Denmark)

    Baltser, Jana; Bergbäck Knudsen, Erik; Vickery, Anette;

    2011-01-01

    Compound refractive lenses (CRL) are widely used to manipulate synchrotron radiation beams. Accurate modelling of X-ray beam propagation through individual lenses and through "transfocators" composed of a large number of CRLs is of high importance, since it allows for comprehensive optimization o...

  11. Influence of Polarization of the Incident Beam on Integrated Intensities in X-Ray Energy-Dispersive Diffractometry

    DEFF Research Database (Denmark)

    Olsen, J. Staun; Buras, B.; Jensen, T.;

    1978-01-01

    Polarization measurements of the primary X-ray beam produced by thick copper and tungsten anodes are reported and formulas derived for integrated intensities of Bragg reflections in energy-dispersive diffractometry with the polarization of the primary beam taken into account. It was found that for...... photon energies and at scattering angles close to 90...

  12. Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays.

    Science.gov (United States)

    Zygmanski, Piotr; Sajo, Erno

    2016-01-01

    We review radiation transport and clinical beam modelling for gold nanoparticle dose-enhanced radiotherapy using X-rays. We focus on the nanoscale radiation transport and its relation to macroscopic dosimetry for monoenergetic and clinical beams. Among other aspects, we discuss Monte Carlo and deterministic methods and their applications to predicting dose enhancement using various metrics.

  13. Automated marker tracking using noisy X-ray images degraded by the treatment beam

    Energy Technology Data Exchange (ETDEWEB)

    Wisotzky, E. [Fraunhofer Institute for Production Systems and Design Technology (IPK), Berlin (Germany); German Cancer Research Center (DKFZ), Heidelberg (Germany); Fast, M.F.; Nill, S. [The Royal Marsden NHS Foundation Trust, London (United Kingdom). Joint Dept. of Physics; Oelfke, U. [The Royal Marsden NHS Foundation Trust, London (United Kingdom). Joint Dept. of Physics; German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2015-09-01

    This study demonstrates the feasibility of automated marker tracking for the real-time detection of intrafractional target motion using noisy kilovoltage (kV) X-ray images degraded by the megavoltage (MV) treatment beam. The authors previously introduced the in-line imaging geometry, in which the flat-panel detector (FPD) is mounted directly underneath the treatment head of the linear accelerator. They found that the 121 kVp image quality was severely compromised by the 6 MV beam passing through the FPD at the same time. Specific MV-induced artefacts present a considerable challenge for automated marker detection algorithms. For this study, the authors developed a new imaging geometry by re-positioning the FPD and the X-ray tube. This improved the contrast-to-noise-ratio between 40% and 72% at the 1.2 mAs/image exposure setting. The increase in image quality clearly facilitates the quick and stable detection of motion with the aid of a template matching algorithm. The setup was tested with an anthropomorphic lung phantom (including an artificial lung tumour). In the tumour one or three Calypso {sup registered} beacons were embedded to achieve better contrast during MV radiation. For a single beacon, image acquisition and automated marker detection typically took around 76±6 ms. The success rate was found to be highly dependent on imaging dose and gantry angle. To eliminate possible false detections, the authors implemented a training phase prior to treatment beam irradiation and also introduced speed limits for motion between subsequent images.

  14. Commercial CMOS image sensors as X-ray imagers and particle beam monitors

    International Nuclear Information System (INIS)

    CMOS image sensors are widely used in several applications such as mobile handsets webcams and digital cameras among others. Furthermore they are available across a wide range of resolutions with excellent spectral and chromatic responses. In order to fulfill the need of cheap systems as beam monitors and high resolution image sensors for scientific applications we exploited the possibility of using commercial CMOS image sensors as X-rays and proton detectors. Two different sensors have been mounted and tested. An Aptina MT9v034, featuring 752 × 480 pixels, 6μm × 6μm pixel size has been mounted and successfully tested as bi-dimensional beam profile monitor, able to take pictures of the incoming proton bunches at the DeFEL beamline (1–6 MeV pulsed proton beam) of the LaBeC of INFN in Florence. The naked sensor is able to successfully detect the interactions of the single protons. The sensor point-spread-function (PSF) has been qualified with 1MeV protons and is equal to one pixel (6 mm) r.m.s. in both directions. A second sensor MT9M032, featuring 1472 × 1096 pixels, 2.2 × 2.2 μm pixel size has been mounted on a dedicated board as high-resolution imager to be used in X-ray imaging experiments with table-top generators. In order to ease and simplify the data transfer and the image acquisition the system is controlled by a dedicated micro-processor board (DM3730 1GHz SoC ARM Cortex-A8) on which a modified LINUX kernel has been implemented. The paper presents the architecture of the sensor systems and the results of the experimental measurements

  15. X-ray diffraction from bone employing annular and semi-annular beams

    International Nuclear Information System (INIS)

    There is a compelling need for accurate, low cost diagnostics to identify osteo-tissues that are associated with a high risk of fracture within an individual. To satisfy this requirement the quantification of bone characteristics such as ‘bone quality’ need to exceed that provided currently by densitometry. Bone mineral chemistry and microstructure can be determined from coherent x-ray scatter signatures of bone specimens. Therefore, if these signatures can be measured, in vivo, to an appropriate accuracy it should be possible by extending terms within a fracture risk model to improve fracture risk prediction.In this preliminary study we present an examination of a new x-ray diffraction technique that employs hollow annular and semi-annular beams to measure aspects of ‘bone quality’. We present diffractograms obtained with our approach from ex vivo bone specimens at Mo Kα and W Kα energies. Primary data is parameterized to provide estimates of bone characteristics and to indicate the precision with which these can be determined. (paper)

  16. A new generation of detectors for scanning x-ray beam imaging systems

    International Nuclear Information System (INIS)

    Scanning x-ray beam imaging systems were first developed by American Science and Engineering, Inc. (AS and E) in the early 1970s [1]. Since then, these systems have found a wide range of applications in security inspection and non-destructive testing. Large-area detectors are most frequently used to collect backscattered radiation but smaller transmission detectors are also employed for selected applications. Until recently, only two basic detector designs have been used: large scintillator blocks with attached photomultiplier tubes (PMTs) or large-volume light-sealed boxes, lined with scintillating screens and port windows for PMTs. In both cases, the detectors have required considerable depth to provide acceptable light collection efficiency. A new design recently developed by AS and E relies on wavelength shifting fibres (WSF) for light collection. For the first time, this approach enables the construction of thin large-area detectors. Stacking layers of WSF ribbons and scintillating screens in varying combinations enables optimization of the detection efficiency for different applications. Taking separate readings from different layers provides an energy-sensitive signal combination. Energy sensitivity can be improved further by adding filtration between the signal channels. Several prototype configurations have been built and characterized for both backscatter and transmission imaging. A WSF-based detector has been commercialized for a transmission x-ray imaging application

  17. Fast Strain Mapping of Nanowire Light-Emitting Diodes Using Nanofocused X-ray Beams.

    Science.gov (United States)

    Stankevič, Tomaš; Hilner, Emelie; Seiboth, Frank; Ciechonski, Rafal; Vescovi, Giuliano; Kryliouk, Olga; Johansson, Ulf; Samuelson, Lars; Wellenreuther, Gerd; Falkenberg, Gerald; Feidenhans'l, Robert; Mikkelsen, Anders

    2015-07-28

    X-ray nanobeams are unique nondestructive probes that allow direct measurements of the nanoscale strain distribution and composition inside the micrometer thick layered structures that are found in most electronic device architectures. However, the method is usually extremely time-consuming, and as a result, data sets are often constrained to a few or even single objects. Here we demonstrate that by special design of a nanofocused X-ray beam diffraction experiment we can (in a single 2D scan with no sample rotation) measure the individual strain and composition profiles of many structures in an array of upright standing nanowires. We make use of the observation that in the generic nanowire device configuration, which is found in high-speed transistors, solar cells, and light-emitting diodes, each wire exhibits very small degrees of random tilts and twists toward the substrate. Although the tilt and twist are very small, they give a new contrast mechanism between different wires. In the present case, we image complex nanowires for nanoLED fabrication and compare to theoretical simulations, demonstrating that this fast method is suitable for real nanostructured devices. PMID:26090689

  18. Investigation of GEM-Micromegas detector on X-ray beam of synchrotron radiation

    Science.gov (United States)

    Zhang, Yu-Lian; Qi, Hui-Rong; Hu, Bi-Tao; Fan, Sheng-Nan; Wang, Bo; Liu, Mei; Zhang, Jian; Liu, Rong-Guang; Chang, Guang-Cai; Liu, Peng; Ouyang, Qun; Chen, Yuan-Bo; Yi, Fu-Ting

    2014-04-01

    To reduce the discharge of the standard bulk Micromegas and GEM detectors, a GEM-Micromegas detector was developed at the Institute of High Energy Physics. Taking into account the advantages of the two detectors, one GEM foil was set as a preamplifier on the mesh of Micromegas in the structure and the GEM preamplification decreased the working voltage of Micromegas to significantly reduce the effect of the discharge. At the same gain, the spark probability of the GEM-Micromegas detector can be reduced to a factor 0.01 compared to the standard Micromegas detector, and an even higher gain could be obtained. This paper describes the performance of the X-ray beam detector that was studied at 1W2B Laboratory of Beijing Synchrotron Radiation Facility. Finally, the result of the energy resolution under various X-ray energies was given in different working gases. This indicates that the GEM-Micromegas detector has an energy response capability in an energy range from 6 keV to 20 keV and it could work better than the standard bulk-Micromegas.

  19. Research and development of an electron beam focusing system for a high-brightness X-ray generator

    International Nuclear Information System (INIS)

    In order to minimize the size of the X-ray source for a U-shaped rotating anticathode X-ray generator, the electron beam is focused over a short distance by a combined-function bending magnet. Simulation predicts that the beam brightness will reach almost 500 kW mm−2 for a 120 keV/75 mA beam. A new type of rotating anticathode X-ray generator, where an electron beam of up to 60 keV irradiates the inner surface of a U-shaped Cu anticathode, has achieved a beam brilliance of 130 kW mm−2 (at 2.3 kW). A higher-flux electron beam is expected from simulation by optimizing the geometry of a combined-function-type magnet instead of the fringing field of the bending magnet. In order to minimize the size of the X-ray source the electron beam has been focused over a short distance by a new combined-function bending magnet, whose geometrical shape was determined by simulation using the Opera-3D, General Particle Tracer and CST-STUDIO codes. The result of the simulation clearly shows that the role of combined functions in both the bending and the steering magnets is important for focusing the beam to a small size. FWHM sizes of the beam are predicted by simulation to be 0.45 mm (horizontal) and 0.05 mm (vertical) for a 120 keV/75 mA beam, of which the effective brilliance is about 500 kW mm−2 on the supposition of a two-dimensional Gaussian distribution. High-power tests have begun using a high-voltage 120 kV/75 mA power supply for the X-ray generator instead of 60 kV/100 mA. The beam focus size on the target will be verified in the experiments

  20. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ion Beam - Scanning Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, George J. [Univ. of Connecticut, Storrs, CT (United States); Harris, William H. [Univ. of Connecticut, Storrs, CT (United States); Lombardo, Jeffrey J. [Univ. of Connecticut, Storrs, CT (United States); Izzo, Jr., John R. [Univ. of Connecticut, Storrs, CT (United States); Chiu, W. K. S. [Univ. of Connecticut, Storrs, CT (United States); Tanasini, Pietro [Ecole Ploytechnique Federale de Lausanne (Switzerland); Cantoni, Marco [Ecole Ploytechnique Federale de Lausanne (Switzerland); Van herle, Jan [Ecole Ploytechnique Federale de Lausanne (Switzerland); Comninellis, Christos [Ecole Ploytechnique Federale de Lausanne (Switzerland); Andrews, Joy C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Liu, Yijin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Pianetta, Piero [SLAC National Accelerator Lab., Menlo Park, CA (United States); Chu, Yong [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2011-03-24

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB–SEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIB–SEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  1. A Soft X-ray Beam-splitting Multilayer Optic for the NASA GEMS Bragg Reflection Polarimeter

    CERN Document Server

    Allured, Ryan; Soufli, Regina; Alameda, Jennifer B; Pivovaroff, Michael J; Gullikson, Eric M; Kaaret, Philip

    2013-01-01

    A soft X-ray, beam-splitting, multilayer optic has been developed for the Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission (GEMS). The optic is designed to reflect 0.5 keV X-rays through a 90 degree angle to the BRP detector, and transmit 2-10 keV X-rays to the primary polarimeter. The transmission requirement prevents the use of a thick substrate, so a 2 micron thick polyimide membrane was used. Atomic force microscopy has shown the membrane to possess high spatial frequency roughness less than 0.2 nm rms, permitting adequate X-ray reflectance. A multilayer thin film was especially developed and deposited via magnetron sputtering with reflectance and transmission properties that satisfy the BRP requirements and with near-zero stress. Reflectance and transmission measurements of BRP prototype elements closely match theoretical predictions, both before and after rigorous environmental testing.

  2. Characterization of a Test for Invasive Breast Cancer Using X-ray Diffraction of Hair - Results of a Clinical Trial

    Directory of Open Access Journals (Sweden)

    Gary L. Corino

    2009-11-01

    Full Text Available Objective: To assess the performance of a test for breast cancer utilizing synchrotron x-ray diffraction analysis of scalp hair from women undergoing diagnostic radiology assessment. Design and Setting: A double-blinded clinical trial of women who attended diagnostic radiology clinics in Australia. Patients: 1796 women referred for diagnostic radiology, with no previous history of cancer. Main Outcome Measures: Sensitivity, specificity and accuracy of the hair test analysis compared to the gold standard of imaging followed by biopsy where indicated. Results: The hair-based assay had an overall accuracy of >77% and a negative predictive value of 99%. For all women, the sensitivity of both mammography and x-ray diffraction alone was 64%, but when used together the sensitivity rose to 86%. The sensitivity of the hair test for women under the age of 70 was 74%. Conclusion: In this large population trial the association between the presence of breast cancer and an altered hair fibre X-ray diffraction pattern previously reported has been confirmed. It appears that mammography and X-ray diffraction of hair detect different populations of breast cancers, and are synergistic when used together.

  3. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    Directory of Open Access Journals (Sweden)

    Jasper J. van Thor

    2015-01-01

    Full Text Available In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe” which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF, in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.

  4. The significance of X-ray mammography for breast cancer screening

    International Nuclear Information System (INIS)

    One high-priority health problem in our society are the high, age-specifically standardized mortality rates of breast cancer. Breast-conserving therapies are increasingly applied today whenever appropriate, as the patient outcome depends less on the local size of the tumor than on the existing micrometastases and general spreading of the tumor in terms of a systemic tumor lesion at the time of diagnosis and primary therapy. Among the available diagnostic methods, X-ray mammography is the modality of choice for detection of small, pre-clinical carcinoma or pre-invasive stages. Although one should not overestimate the true correct findings in detection of tumors less than 1 cm of size, the proportion of correct findings indicating T1-tumors or minimal cancer obtained in multiple screening projects is surprising. The fact that the number of detected cases involving the lymph nodes is 50% in patients with clinical symptoms and only 20% or even less in diognoses obtained by screening gives reason enough to speak of ''early detection'' in the latter case. Finally, the results of the HIP study, (reduction of mortality rates for women over 50 by 40%), and of the Oestergoetland study (for women between 40 and 70 years of age, 31%) are very convincing. Furthermore, a meta-analysis on the value of breast cancer screening reveals a mortality reduction of 22% in women between 40 and 49 years of age. Further improvement of the mammographic method and quality control in medical evaluation hopefully will contribute to more widespread screening activities also in Germany, and hence to a further reduction of mortality rates. (Orig./vhe)

  5. Simulations of x-ray speckle-based dark-field and phase-contrast imaging with a polychromatic beam

    International Nuclear Information System (INIS)

    Following the first experimental demonstration of x-ray speckle-based multimodal imaging using a polychromatic beam [I. Zanette et al., Phys. Rev. Lett. 112(25), 253903 (2014)], we present a simulation study on the effects of a polychromatic x-ray spectrum on the performance of this technique. We observe that the contrast of the near-field speckles is only mildly influenced by the bandwidth of the energy spectrum. Moreover, using a homogeneous object with simple geometry, we characterize the beam hardening artifacts in the reconstructed transmission and refraction angle images, and we describe how the beam hardening also affects the dark-field signal provided by speckle tracking. This study is particularly important for further implementations and developments of coherent speckle-based techniques at laboratory x-ray sources

  6. Simulations of x-ray speckle-based dark-field and phase-contrast imaging with a polychromatic beam

    Energy Technology Data Exchange (ETDEWEB)

    Zdora, Marie-Christine, E-mail: marie-christine.zdora@diamond.ac.uk [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Department of Physics & Astronomy, University College London, London WC1E 6BT (United Kingdom); Thibault, Pierre [Department of Physics & Astronomy, University College London, London WC1E 6BT (United Kingdom); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Zanette, Irene [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2015-09-21

    Following the first experimental demonstration of x-ray speckle-based multimodal imaging using a polychromatic beam [I. Zanette et al., Phys. Rev. Lett. 112(25), 253903 (2014)], we present a simulation study on the effects of a polychromatic x-ray spectrum on the performance of this technique. We observe that the contrast of the near-field speckles is only mildly influenced by the bandwidth of the energy spectrum. Moreover, using a homogeneous object with simple geometry, we characterize the beam hardening artifacts in the reconstructed transmission and refraction angle images, and we describe how the beam hardening also affects the dark-field signal provided by speckle tracking. This study is particularly important for further implementations and developments of coherent speckle-based techniques at laboratory x-ray sources.

  7. Single-shot radiography using X-rays from Compton-backscattering with laser-wakefield accelerated electron beams

    CERN Document Server

    Döpp, A; Thaury, C; Gautier, J; Andriyash, I; Lifschitz, A; Goddet, J-P; Tafzi, A; Malka, V; Rousse, A; Phuoc, K Ta

    2015-01-01

    We present results from the production of high energy femtosecond X-rays by Compton-backscattering of an intense femtosecond laser pulse with quasi-monoenergetic laser-accelerated electron beams using a plasma mirror. In our parameter regime electrons of $\\sim$ 150 MeV peak energy emit a high energy radiation beam with a broad spectrum extending up to $\\sim$ 500 keV. The photon yield from the source is sufficiently high to illuminate a centimeter-size sample placed 90 centimeters behind the source and record a single-shot radiograph. The small diameter of the laser-accelerated electron beams translates into a micrometer X-ray source size, making it a promising candidate for advanced X-ray imaging techniques as e.g. propagation-based phase contrast imaging.

  8. Characterization of the 46.9-nm soft X-ray laser beam from a capillary discharge

    Science.gov (United States)

    Barnwal, S.; Prasad, Y. B. S. R.; Nigam, S.; Aneesh, K.; Sharma, M. L.; Kushwaha, R. P.; Tripathi, P. K.; Naik, P. A.; Chakera, J. A.; Navathe, C. P.; Gupta, P. D.

    2014-10-01

    Intense lasing had been obtained from argon plasma in the soft X-ray region from a capillary discharge plasma system. Different diagnostics have been used to characterize the lasing properties by recording the temporal, spatial, and spectral profiles of the emission. The divergence measurement indicates that the soft X-ray laser beam has good directionality with a divergence of 3.5 mrad. The spectrum of the laser beam measured using a transmission grating showed intense lasing line at 46.9 nm. Diffraction orders as high as 10th orders were observed. The temporal profile recorded with a vacuum diode showed a distinct laser peak with a pulse width ~1.2 ns (FWHM). In addition, the coherence of the X-ray laser beam was also confirmed from the high-contrast interference fringes (visibility ~85 %) recorded using double slits.

  9. X-ray beam hardening correction for measuring density in linear accelerator industrial computed tomography

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ri-Feng; WANG Jue; CHEN Wei-Min

    2009-01-01

    Due to X-ray attenuation being approximately proportional to material density, it is possible to measure the inner density through Industrial Computed Tomography (ICT) images accurately. In practice, however, a number of factors including the non-linear effects of beam hardening and diffuse scattered radia-tion complicate the quantitative measurement of density variations in materials. This paper is based on the linearization method of beam hardening correction, and uses polynomial fitting coefficient which is obtained by the curvature of iron polychromatic beam data to fit other materials. Through theoretical deduction, the paper proves that the density measure error is less than 2% if using pre-filters to make the spectrum of linear accelerator range mainly 0.3 MeV to 3 MeV. Experiment had been set up at an ICT system with a 9 MeV electron linear accelerator. The result is satisfactory. This technique makes the beam hardening correction easy and simple, and it is valuable for measuring the ICT density and making use of the CT images to recognize materials.

  10. Performance of electronic devices submitted to X-rays and high energy proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, M.A.G., E-mail: shila@if.usp.br [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Cirne, K.H. [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Centro de Tecnologia da Informacao Renato Archer, Campinas, SP (Brazil); Santos, R.B.B.; Gimenez, S.P. [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Medina, N.H.; Added, N.; Tabacniks, M.H.; Barbosa, M.D.L. [Instituto de Fisica da Universidade de Sao Paulo, Sao Paulo, SP (Brazil); Seixas, L.E.; Melo, W.; Lima, J.A. de [Centro de Tecnologia da Informacao Renato Archer, Campinas, SP (Brazil)

    2012-02-15

    In this work we have studied the radiation effects on MOSFET electronic devices. The integrated circuits were exposed to 10 keV X-ray radiation and 2.6 MeV energy proton beam. We have irradiated MOSFET devices with two different geometries: rectangular-gate transistor and circular-gate transistor. We have observed the cumulative dose provokes shifts on the threshold voltage and increases or decreases the transistor's off-state and leakage current. The position of the trapped charges in modern CMOS technology devices depends on radiation type, dose rate, total dose, applied bias and is a function of device geometry. We concluded the circular-gate transistor is more tolerant to radiation than the rectangular-gate transistor.

  11. Evaluation of a tissue equivalent ionization chamber in X-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana Paula; Neves, Lucio Pereira; Santos, William de Souza; Caldas, Linda V.E., E-mail: aperini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Frimaio, Audrew [Seal Technology Ind. Com. Ltda, Sao Paulo, SP (Brazil); Costa, Paulo R. [Universidade de Sao Paulo (USP/IF), Sao Paulo, SP (Brazil). Inst. de Fisica

    2014-07-01

    Tissue equivalent materials present a variety of uses, including routine quality assurance and quality control programs in both diagnostic and therapeutic physics. They are frequently used in research facilities to measure doses delivered to patients undergoing various clinical procedures. This work presents the development and evaluation of a tissue equivalent ionization chamber, with a sensitive volume of 2.3 cm{sup 3}, for routine use in X-rays beams. This ionization chamber was developed at the Calibration Laboratory/IPEN. The new tissue equivalent material was developed at the Physics Institute of the University of Sao Paulo. In order to evaluate the dosimetric performance of the new ionization chamber, several tests described by international standards were undertaken, and all results were within the recommended limits. (author)

  12. Solar Hard X-ray Source Sizes in a Beam-Heated and Ionised Chromosphere

    CERN Document Server

    O'Flannagain, A; Gallagher, P T

    2014-01-01

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by using the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) have shown that HXR source sizes are 3-6 times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionisation (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionised plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionised region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to...

  13. Dosimetry of x-ray beams: The measure of the problem

    International Nuclear Information System (INIS)

    This document contains the text of an oral presentation on dosimetry of analytical x-ray equipment presented at the Denver X-Ray Conference. Included are discussions of sources of background radiation, exposure limits from occupational sources, and the relationship of these sources to the high dose source of x-rays found in analytical machines. The mathematical basis of x-ray dosimetry is reviewed in preparation for more detailed notes on personnel dosimetry and the selection of the most appropriate dosimeter for a specific application. The presentation concludes with a discussion common to previous x-ray equipment accidents. 2 refs

  14. X-ray scattering from human breast tissues and breast-equivalent materials

    International Nuclear Information System (INIS)

    The angular distributions of photons scattered by human breast tissues (adipose and glandular) and by eight breast-equivalent materials (water, polymethylmethacrylate, nylon, polyethylene and four commercial breast-equivalent materials simulating different glandular-adipose proportions) have been measured at a photon energy of 17.44 keV (Kα-radiation of Mo). Transmission target geometry has been used with an acceptance of ±0.6 deg. and an uncertainty of ∼7%. Experimental molecular form factors were extracted from diffraction patterns normalizing the number of scattered photons with theoretical data in regions where no structure is expected. Linear attenuation coefficients have been measured for all samples at this energy. The results for water, polymethylmethacrylate, nylon and adipose tissue agree with former reported data. The results for human breast tissues at low and medium scattering angle (1-25 deg., corresponding to the momentum transfer region between 0.2 and 3 nm-1) differ from the breast-equivalent materials. The results for adipose tissue are similar to the corresponding values from commercial breast-equivalent materials while the results for glandular tissue are similar to those for water. (author)

  15. Investigation of the applicability of a special parallel-plate ionization chamber for x-ray beam dosimetry

    Science.gov (United States)

    Perini, Ana P.; P. Neves, Lucio; E. Caldas, Linda V.

    2014-02-01

    Diagnostic x-rays are the greatest source of exposition to ionizing radiation of the population worldwide. In order to obtain accurate and lower-cost dosimeters for quality control assurance of medical x-ray facilities, a special ionization chamber was designed at the Calibration Laboratory of the IPEN, for dosimetry in diagnostic radiology beams. For the chamber characterization some tests were undertaken. Monte Carlo simulations were proposed to evaluate the distribution of the deposited energy in the sensitive volume of the ionization chamber and the collecting electrode effect on the chamber response. According to the obtained results, this special ionization chamber presents potential use for dosimetry of conventional diagnostic radiology beams.

  16. Integration of a broad beam ion source with a high-temperature x-ray diffraction vacuum chamber

    Science.gov (United States)

    Manova, D.; Bergmann, A.; Mändl, S.; Neumann, H.; Rauschenbach, B.

    2012-11-01

    Here, the integration of a low energy, linearly variable ion beam current density, mechanically in situ adjustable broad beam ion source with a high-temperature x-ray diffraction (XRD) vacuum chamber is reported. This allows in situ XRD investigation of phase formation and evolution processes induced by low energy ion implantation. Special care has been taken to an independent adjustment of the ion beam for geometrical directing towards the substrate, a 15 mm small ion source exit aperture to avoid a secondary sputter process of the chamber walls, linearly variable ion current density by using a pulse length modulation (PLM) for the accelerating voltages without changing the ion beam density profile, nearly homogeneous ion beam distribution over the x-ray footprint, together with easily replaceable Kapton® windows for x-rays entry and exit. By combining a position sensitive x-ray detector with this PLM-modulated ion beam, a fast and efficient time resolved investigation of low energy implantation processes is obtained in a compact experimental setup.

  17. X-ray beam design for multi-energy imaging with charge-integrating detector: A simulation study

    International Nuclear Information System (INIS)

    Multi-energy X-ray imaging systems have been widely used for clinical examinations. In order to enhance the imaging quality of these X-ray systems, a dual-energy system that can obtain specific information has been developed in order to discriminate different materials. Although the dual-energy system shows reliable performance for clinical applications, it is necessary to improve the method in order to minimize radiation dose, reduce projection error, and increase image contrast. The purpose of this study is to develop a triple energy technique that can discriminate three materials for the purpose of enhancing imaging quality and patient safety. The X-ray system tube voltage was varied from 40 to 90 kV, and filters (that can generate three X-ray energies) were installed, consisting of pure elemental materials in foil form (including Al, Cu, I, Ba, Ce, Gd, Er, and W). The X-ray beam was evaluated with respect to mean energy ratio, contrast variation ratio, and exposure efficiency. In order to estimate the performance of the suggested technique, Monte Carlo was conducted, and the results were compared to the photon-counting method. As a result, the density maps of iodine, aluminum, and polymethyl methacrylate (PMMA) using the X-ray beam were more accurate in comparison to that obtained with the photon-counting method. According to the results, the suggested triple energy technique can improve the accuracy of the determination of thickness of density. Moreover, the X-ray beam could reduce unnecessary patient dose

  18. Application of Small Angle X-ray Scattering (SAXS for Differentiation between Normal and Cancerous Breast Tissue

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Introduction: Small angle, between 3° and 10°, X ray scattering is predominantly coherent giving rise to diffraction effects that can be observed as constructive and destructive interferences. These interferences carry information about the molecular structure of the tissue and hence can be used to identify changes that occur due to cancer. Method: In this study an energy dispersive X-ray diffraction method was used. The optimum scattering angle, determined from a series of measurements on adipose breast tissue at several angles from 4 to 7.3 degrees, was found to be 6.5°. Once optimized the system was used to measure the diffraction profiles (corrected scattered intensity versus momentum transfer of a total of 99 breast tissue samples. The samples were both normal and tumour samples. Results: Adipose tissue showed a sharp, high intensity peak at low momentum transfer values of approximately 1.1nm-1. Adipose tissue, mixed tissue (adipose & fibroglandular and tumor have peaks at different values of momentum transfer that can be used to identify the tissue. Benign and malignant breast tissues can also be differentiated by both peak positions and peak heights. It was also observed that the results were reproducible even after the tissue had been preserved at liquid nitrogen temperatures. Conclusion: We were able to differentiate between normal, benign and malignant breast tissues by using energy dispersive small angle x-ray scattering.

  19. X-ray fluorescence in Member States: Australia. Ion beam analysis and X ray methods at the Australian Nuclear Science and Technology Organisation (ANSTO), Menai, NSW, Australia

    International Nuclear Information System (INIS)

    Characterization techniques such as Particle Induced X ray Emission (PIXE), Particle Induced Gamma Ray Emission (PIGE), Rutherford Backscattering (RBS) have been developed individually and applied quantitatively for many years at ANSTO for both thick and thin samples. All these techniques rely on MeV ions from low to medium positive ion accelerators. PIXE and PIGE are used for elemental analysis and RBS is used for depth profiling of elements in environmental, geological and functional materials samples. All these accelerator based ion beam analysis characterization techniques are non-destructive, afford a high sensitivity, are suitable for most elements in the periodic table and provide short measurement times. It is well established that PIXE is mostly used for elements with atomic numbers above Al. In addition, when used in conjunction with appropriate X ray filters, the contributions of dominant elements can be diminished, and thus enhancing the sensitivity for trace elements. For medium proton energies of a few MeV created by common ion beam accelerators, the PIGE technique is mostly suitable for light element analysis, like Li, Mg, Na and Al, where the cross sections for gamma ray production tend to be larger. On the other hand, RBS is ideally suited for determining the depth distributions of trace elements heavier than the major constituents of the matrix or the substrate or for determining absolute matrix compositions for light elements such as carbon, nitrogen or oxygen. It is possible to use a combination of PIXE, PIGE and RBS simultaneously, as a single stand-alone package for quantitative elemental analysis. This integrated capability takes advantage of the strength of each individual technique, providing a better tool for characterization of materials. Each technique provides unique sample matrix information which can be iteratively feed back into the quantitative concentration estimates to produce more reliable results. In addition, this tool is

  20. Polychromatic X-ray Beam from the Acceleration of Energetic Electrons in Ultrafast Laser-Produced Plasmas

    Science.gov (United States)

    Albert, Félicie; Taphuoc, Kim; Shah, Rahul; Burgy, Frederic; Rousseau, Jean Philippe; Rousse, Antoine

    2007-01-01

    Polychromatic beams of hard X-rays from ultrafast laser plasma interaction are studied. Just as in a conventional synchrotron, electrons are accelerated and wiggled, but on a much shorter scale of a few millimeters. By focusing a 50 TW CPA laser system (30 fs duration) onto a helium gas jet, we obtained a polychromatic collimated beam (50 mrad) of X-ray radiation in the keV range. In addition, its perfect synchronization with the laser system, its ultrafast duration (≃30 fs) and its brightness (up to 108 photons/shot/solid angle at 0.1% BW) will make it applicable to both X-ray science and backlighting to address laboratory astrophysics research issues.

  1. A new bend magnet beam line for scanning transmission x-ray microscopy at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, Tony; Ade, Harald; Kilcoyne, A.L. David; Kritscher, Michael; Tylisczcak, Tolek; Fakra, Sirine; Hitchcock, Adam P.; Hitchcock, Peter; Padmore, Howard A.

    2001-12-12

    The high brightness of the bend magnets at the Advanced Light Source has been exploited to illuminate a Scanning Transmission X-ray Microscope (STXM). This is the first diffraction-limited scanning x-ray microscope to operate with useful count rate on a synchrotron bend magnet source. A simple, dedicated beam line has been built covering the range of photon energy from 250 eV to 600 eV. Ease of use and operational availability are radically improved compared to previous installations using undulator beams. This facility provides radiation for C 1s, N 1s and O 1s near edge x-ray absorption spectro-microscopy with a spectral resolution up to about 1:5000 and with STXM count rates in excess of 1 MHz.

  2. Investigation of tomosynthetic perfusion measurements using the scanning-beam digital x-ray (SBDX) system

    Science.gov (United States)

    Nett, Brian E.; Chen, Guang-Hong; Van Lysel, Michael S.; Betts, Timothy; Speidel, Michael; Rowley, Howard A.; Aagaard Kienitz, Beverly D.; Mistretta, Charles A.

    2004-10-01

    The feasibility of making regional perfusion measurements using a tomosynthetic digital subtraction angiography (TDSA) acquisition has been demonstrated. The study of tomosynthetic perfusion measurements was motivated by the clinical desire for perfusion measurements in an interventional angiography suite. These pilot studies were performed using the scanning-beam digital x-ray (SBDX) system which is an inverse-geometry imaging device which utilizes an electromagnetically-scanned x-ray source, and a small CdTe direct conversion photon counting detector. The scanning electron source was used to acquire planar-tomographic images of a 12.5 x 12.5 cm field of view at a frame rate of 15 frames/sec during dynamic contrast injection. A beagle animal model was used to evaluate the tomosynthetic perfusion measurements. A manual bolus injection of iodinated contrast solution was used in order to resolve the parameters of the contrast pass curve. The acquired planar tomosynthetic dataset was reconstructed with a simple back-projection algorithm. Digital subtraction techniques were used to visualize the change in contrast agent intensity in each reconstructed plane. Given the TDSA images, region of interest based analysis was used in the selection of the image pixels corresponding to the artery and tissue bed. The mean transit time (MTT), regional cerebral blood volume (rCBV) and regional cerebral blood flow (rCBF) were extracted from the tomosynthetic data for selected regions in each of the desired reconstructed planes. For the purpose of this study, the arterial contrast enhancement curve was fit with a combination of gamma variate terms, and the MTT was calculated using a deconvolution based on the singular value decomposition (SVD). The results of the contrast pass curves derived with TDSA were consistent with the results from perfusion measurements as implemented with CT acquisition.

  3. Magnitude and effects of X-ray scatter of a cone-beam micro-CT for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Y.C. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Jan, M.L. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Chen, K.W. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Cheng, Y.D. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 30043, Taiwan (China); Chuang, K.S. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 30043, Taiwan (China); Fu, Y.K. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China)]. E-mail: fufrank@iner.gov.tw

    2006-12-20

    We have developed a micro-CT system to provide high-resolution and anatomic information to combine with a microPET'' (registered) R4 system. This study was to evaluate the magnitude and effects of scatter for low kVp X-ray in this cone-beam micro-CT system. Slit collimators were used to simulate fan-beam micro-CT for comparison. The magnitudes of X-ray scatter were measured using the beam-stop method and were estimated by polynomial-fitting extrapolation to 0 mm size of stoppers. The scatter-to-primary ratio at center of the cone-beam system were 45% and 20% for rat and mouse phantoms, respectively, and were reduced to 5.86% and 4.2% in fan-beam geometric setup. The effects of X-ray scatter on image uniformity and contrast ratio were evaluated also. The uniformity response was examined by the profile of the reconstructed image. The degrees of 'cupping' in the fan-beam and cone-beam conditions were 1.75% and 3.81%, respectively, in rat phantom. A contrast phantom consisting of four inserts with physical densities similar to that of acrylic was used for measuring the effect of X-ray scatter on image contrast. Contrast ratios of the inserts and acrylic in cone-beam setup degraded 36.9% in average compared with fan-beam setup. A tumor-bearing mouse was scanned by the micro-CT system. The tumor-to-background contrast ratios were measured to be 0.331 and 0.249, respectively, with fan-beam and cone-beam setups.

  4. Characterizing X-ray detectors for prototype digital breast tomosynthesis systems

    International Nuclear Information System (INIS)

    The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R2>0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types of

  5. 数字乳腺X线机与传统乳腺X线机的临床分析探讨%The Clinical Analysis of Digital Breast X-ray Machine and Traditional Breast X-ray Machine

    Institute of Scientific and Technical Information of China (English)

    马秋伟

    2014-01-01

    目的:比较数字乳腺X线机与传统乳腺X线机的临床应用效果。方法:收集2009年11月-2013年11月笔者所在医院收治的90例乳腺癌患者的临床资料,并进行回顾性分析。根据不同的诊断方法,将患者分为两组,每组45例。其中将采用传统乳腺X线机诊断的患者作为对照组,把采用数字乳腺X线机进行诊断的患者作为观察组,对比两组的检查时长、曝光次数、摄影体位。结果:两组患者检查时长、曝光次数、摄影体位比较,差异有统计学意义(P<0.05)。结论:数字乳腺X线机具备曝光条件好、成像清晰等特点,有利于缩短检查时长。%Objective:To compare the clinical application effect of digital breast X-ray machine and traditional breast X-ray machine.Method:The clinical data of 90 cases of breast cancer patients in author’s hospital from November 2009 to November 2013 were retrospectively analyzed.According to the different diagnosis method,the patients were divided into two groups,each group consisting of 45 cases.The patients with the traditional breast X-ray machine diagnosis as a control group,the patients with digital breast X-ray machine diagnosis as the observation group,the inspection time,exposure times,photography posture of two groups were compared.Result:The differences of inspection time,exposure times,photography posture between two groups had statistical significance(P<0.05).Conclusion:Digital breast X-ray machine with exposure conditions is good,has clear imaging and so on,can shorten the examination time.

  6. X-ray attenuation of adipose breast tissue: in-vitro and in-vivo measurements using spectral imaging

    Science.gov (United States)

    Fredenberg, Erik; Erhard, Klaus; Berggren, Karl; Dance, David R.; Young, Kenneth C.; Cederström, Björn; Johansson, Henrik; Lundqvist, Mats; Moa, Elin; Homan, Hanno; Willsher, Paula; Kilburn-Toppin, Fleur; Wallis, Matthew

    2015-03-01

    The development of new x-ray imaging techniques often requires prior knowledge of tissue attenuation, but the sources of such information are sparse. We have measured the attenuation of adipose breast tissue using spectral imaging, in vitro and in vivo. For the in-vitro measurement, fixed samples of adipose breast tissue were imaged on a spectral mammography system, and the energy-dependent x-ray attenuation was measured in terms of equivalent thicknesses of aluminum and poly-methyl methacrylate (PMMA). For the in-vivo measurement, a similar procedure was applied on a number of spectral screening mammograms. The results of the two measurements agreed well and were consistent with published attenuation data and with measurements on tissue-equivalent material.

  7. Transverse coherence properties of X-ray beams in third-generation synchrotron radiation sources

    CERN Document Server

    Geloni, Gianluca; Schneidmiller, Evgeni; Yurkov, Mikhail

    2008-01-01

    This article describes a complete theory of spatial coherence for undulator radiation sources. Current estimations of coherence properties often assume that undulator sources are quasi-homogeneous, like thermal sources, and rely on the application of the van Cittert-Zernike theorem for calculating the degree of transverse coherence. Such assumption is not adequate when treating third generation light sources, because the vertical(geometrical) emittance of the electron beam is comparable or even much smaller than the radiation wavelength in a very wide spectral interval that spans over four orders of magnitude (from 0.1 Angstrom up to 10^3 Angstrom). Sometimes, the so-called Gaussian-Schell model, that is widely used in statistical optics in the description of partially-coherent sources, is applied as an alternative to the quasi-homogeneous model. However, as we will demonstrate, this model fails to properly describe coherent properties of X-ray beams from non-homogeneous undulator sources. As a result, a more...

  8. Carbon-ion beam irradiation kills X-ray-resistant p53-null cancer cells by inducing mitotic catastrophe.

    Directory of Open Access Journals (Sweden)

    Napapat Amornwichet

    Full Text Available BACKGROUND AND PURPOSE: To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies. MATERIALS AND METHODS: DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs by immunostaining of phosphorylated H2AX (γH2AX, and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3. RESULTS: The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation. CONCLUSIONS: Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.

  9. Interlaced X-ray Microplanar Beams: A Radiosurgery Approach with Clinical Potential

    Energy Technology Data Exchange (ETDEWEB)

    Dilimanian,F.; Zhong, Z.; Bacarian, T.; Benveniste, H.; Romanelli, P.; Wang, R.; Welwart, J.; Yuasa, T.; Rosen, E.; Anschel, D.

    2006-01-01

    Studies have shown that x-rays delivered as arrays of parallel microplanar beams (microbeams), 25- to 90-{micro}m thick and spaced 100-300 {micro}m on-center, respectively, spare normal tissues including the central nervous system (CNS) and preferentially damage tumors. However, such thin microbeams can only be produced by synchrotron sources and have other practical limitations to clinical implementation. To approach this problem, we first studied CNS tolerance to much thicker beams. Three of four rats whose spinal cords were exposed transaxially to four 400-Gy, 0.68-mm microbeams, spaced 4 mm, and all four rats irradiated to their brains with large, 170-Gy arrays of such beams spaced 1.36 mm, all observed for 7 months, showed no paralysis or behavioral changes. We then used an interlacing geometry in which two such arrays at a 90 deg angle produced the equivalent of a contiguous beam in the target volume only. By using this approach, we produced 90-, 120-, and 150-Gy 3.4 x 3.4 x 3.4 mm3 exposures in the rat brain. MRIs performed 6 months later revealed focal damage within the target volume at the 120- and 150-Gy doses but no apparent damage elsewhere at 120 Gy. Monte Carlo calculations indicated a 30-{micro}{micro}m dose falloff (80-20%) at the edge of the target, which is much less than the 2- to 5-mm value for conventional radiotherapy and radiosurgery. These findings strongly suggest potential application of interlaced microbeams to treat tumors or to ablate nontumorous abnormalities with minimal damage to surrounding normal tissue.

  10. Interlaced X-ray Microplanar Beams: A Radiosurgery Approach with Clinical Potential

    International Nuclear Information System (INIS)

    Studies have shown that x-rays delivered as arrays of parallel microplanar beams (microbeams), 25- to 90-(micro)m thick and spaced 100-300 (micro)m on-center, respectively, spare normal tissues including the central nervous system (CNS) and preferentially damage tumors. However, such thin microbeams can only be produced by synchrotron sources and have other practical limitations to clinical implementation. To approach this problem, we first studied CNS tolerance to much thicker beams. Three of four rats whose spinal cords were exposed transaxially to four 400-Gy, 0.68-mm microbeams, spaced 4 mm, and all four rats irradiated to their brains with large, 170-Gy arrays of such beams spaced 1.36 mm, all observed for 7 months, showed no paralysis or behavioral changes. We then used an interlacing geometry in which two such arrays at a 90 deg angle produced the equivalent of a contiguous beam in the target volume only. By using this approach, we produced 90-, 120-, and 150-Gy 3.4 x 3.4 x 3.4 mm3 exposures in the rat brain. MRIs performed 6 months later revealed focal damage within the target volume at the 120- and 150-Gy doses but no apparent damage elsewhere at 120 Gy. Monte Carlo calculations indicated a 30-(micro)(micro)m dose falloff (80-20%) at the edge of the target, which is much less than the 2- to 5-mm value for conventional radiotherapy and radiosurgery. These findings strongly suggest potential application of interlaced microbeams to treat tumors or to ablate nontumorous abnormalities with minimal damage to surrounding normal tissue

  11. Palm-top size X-ray microanalyzer using a pyroelectric focused electron beam with 100-micro-meter diameter

    International Nuclear Information System (INIS)

    We have developed a palm-top size EPMA (electron probe X-ray microanalyzer), operated by 3 V electric battery except for a rotary vacuum pump. The electron beam was generated by a pyroelectric single crystal, LiTaO3. A needle was used to make a focused electron beam. The smallest beam size was 100 μm on the sample surface. The X-ray spectra were measured through a Kapton window by a Si-PIN detector for a model specimen containing TiO2 and MnO2 particles, which was an aerosol model specimen, where TiO2 and MnO2 particles of size about 100-200 μm were separated by a few hundreds micrometers. By moving the sample stage manually, the X-ray spectra were measured for 300 s each by 300 μm e-beam, and the measured X-ray intensities were strong enough for identification of the major element in individual 100-200 μm size aerosol particles.

  12. Development of a Reference System for the determination of the personal dose equivalent and the constancy of X- Ray beams

    International Nuclear Information System (INIS)

    A reference system for the determination of the personal dose equivalent, Hp (10), and a quality control program of X-ray equipment used In radioprotection require the periodic verification of the X-ray beams constancy. In this work, two parallel-plate ionization chambers were developed with inner electrodes of different materials, and inserted into PMMA slab phantoms. One ionization chamber was developed with inner carbon electrodes and the other with inner aluminium electrodes. The two ionization chambers can be used as a Tandem system. The different energy response of the two ionization chambers allowed the development of the Tandem system that is very useful for the checking of the constancy of beam qualities. Standard intermediary energy X-ray beams (from 48 keV to 118 keV), radioprotection level, were established through the development of a dosimetric methodology and the analysis of their physical parameters. The ionization chambers were studied in relation to their operational characteristics, and they were calibrated in X-ray beams (radioprotection, diagnostic radiology, mammography and radiotherapy levels) in accordance to international recommendations. They presented good performance. The determination procedure of personal dose equivalent, Hp (10), was established. (author)

  13. Test for a sign and crisis of breast cancer with hair. Its early detection by orbital fluorescent X-ray

    International Nuclear Information System (INIS)

    Principles of the test and detection in the title are described. The history of systemic intracellular metals is represented in the hair along its length because hair grows at about 0.3 mm/day, and authors, with fluorescent X-ray, analyzed calcium and other metal contents in hair along its length to know the history above. Synchrotron radiation X-ray originated from the Spring-8 BL-24XU was made monochromatic (20 keV) to irradiate the hair along the length and the generated fluorescent X-ray was analyzed for metal contents by a multi-channel pulse height analyzer. Hair specimens were obtained from 11 patients with hepatoma, 17 with breast cancer and 25 healthy volunteers. Authors first found the constancy of calcium content in hair probably because Ca is one of signal transduction substances, and then discovered the abnormality of Ca in 1 year prior to the crisis of the breast cancer: its level in those patients' hairs was normally lowest at the root and gradually (corresponding to the period 8-12 months) increased to abnormally high value at the tip top. This gives an important implication of possible prognostication and protection of the breast cancer crisis if the content is periodically tested: hair analysis described herein may contribute to cost reduction of medicare. (T.I.)

  14. X-ray Diagnosis of Breast Cancer%乳腺癌的X线诊断分析

    Institute of Scientific and Technical Information of China (English)

    王涛

    2015-01-01

    Objective To investigate the X-ray diagnosis of breast cancer patients analyzed. Methods A retrospective analysis of X-ray ifndings of our hospital in 2012 and 2014 were treated 22 cases of breastcancer patients. Results The performance of breast lumps shadow, tumor calcification, nipple retraction, skin thickening, thickening of the vein. Conclusion X-ray examination is the main diagnostic tool in breast cancer.%目的 探讨乳腺癌患者的X线诊断分析.方法回顾性分析我院2012年~2014年收治的22例乳腺癌患者的X线表现.结果 乳腺癌的表现为肿块阴影、肿瘤钙化、乳头凹陷、皮肤增厚、静脉增粗.结论 X线平片是检查乳腺癌主要诊断手段.

  15. Effect of X-ray treatments on salmonella enterica and spoilage bacteria on skin-on chicken breast fillets and shell eggs

    Science.gov (United States)

    The objectives of this study were to determine the efficacy of X-ray irradiation on the inactivation of a 3- strain mixture of Salmonella enterica (S. Enteritidis E190-88, S. Typhimurium ATCC 14028, and S. Montevideo ATCC 8387) using an RS 2400 X-ray system on chicken breast fillets and shell eggs a...

  16. Dosimetric Characteristics of Circular 6-MeV X-Ray Beams for Stereotactic Radiotherapy with a Linear Accelerator

    Science.gov (United States)

    Wysocka, A.; Rostkowska, J.; Kania, M.; Bulski, W.; Fijuth, J.

    2000-01-01

    Dosimetric characteristics of 6 MeV circular X-ray beams of diameters ranging from 7.5 to 35.0 mm are reported. The 6-MeV X-ray beam from Clinac 2300CD was formed using additional cylindrical BrainLAB's collimators. The mechanical stability of the entire system was verified. Specific quantities measured include tissue maximum ratios (TMR), beam profiles (off-axis ratios OAR) and relative output factors. Measurements of these parameters were performed in a water phantom using small cylindrical ionization chambers and a diamond detector. Comparison of TMR values measured with the ionization chamber and the diamond detector showed no significant differences. It was shown that the latter yields more accurate results for beam profiles than ionization chambers. The mechanical and dosimetric characteristics of this radiotherapy unit are found to be suitable for stereotactic radiosurgery and radiotherapy.

  17. Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor

    CERN Document Server

    Alexander, J P; Conolly, C; Edwards, E; Ehrlichman, M P; Flanagan, J W; Fontes, E; Heltsley, B K; Lyndaker, A; Peterson, D P; Rider, N T; Rubin, D L; Seeley, R; Shanks, J

    2014-01-01

    We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring $e^+$ and $e^-$ beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of $10-100~\\mu$m on a turn-by-turn, bunch-by-bunch basis at $e^\\pm$ beam energies of $\\sim2-5~$GeV. X-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.

  18. Modeling of the influence of the driving laser wavelength on the beam quality of transiently pumped X-ray lasers

    Science.gov (United States)

    Le Pape, S.; Zeitoun, Ph.

    2003-04-01

    A three dimensional ray tracing code (SHADOX) has been developed, as a post-processor of any hydrodynamic/atomic code, to model X-ray laser beam propagation along the amplifying medium and any optical component. In this paper we show a study aimed to investigate the influence of the long driving pulse wavelength on the transiently pumped X-ray laser propagation and amplification. Different pumping configurations have been modeled and their respective influence on the beam quality has been investigated. This work shows that the beam homogeneity is highly sensitive to both the emissive zone dimension and electron density gradient and that pumping by a double pulse in a two-color configuration (2 ω/ ω; Δt=200 ps) is favorable in terms of beam quality.

  19. Data consistency-driven scatter kernel optimization for x-ray cone-beam CT

    International Nuclear Information System (INIS)

    Accurate and efficient scatter correction is essential for acquisition of high-quality x-ray cone-beam CT (CBCT) images for various applications. This study was conducted to demonstrate the feasibility of using the data consistency condition (DCC) as a criterion for scatter kernel optimization in scatter deconvolution methods in CBCT. As in CBCT, data consistency in the mid-plane is primarily challenged by scatter, we utilized data consistency to confirm the degree of scatter correction and to steer the update in iterative kernel optimization. By means of the parallel-beam DCC via fan-parallel rebinning, we iteratively optimized the scatter kernel parameters, using a particle swarm optimization algorithm for its computational efficiency and excellent convergence. The proposed method was validated by a simulation study using the XCAT numerical phantom and also by experimental studies using the ACS head phantom and the pelvic part of the Rando phantom. The results showed that the proposed method can effectively improve the accuracy of deconvolution-based scatter correction. Quantitative assessments of image quality parameters such as contrast and structure similarity (SSIM) revealed that the optimally selected scatter kernel improves the contrast of scatter-free images by up to 99.5%, 94.4%, and 84.4%, and of the SSIM in an XCAT study, an ACS head phantom study, and a pelvis phantom study by up to 96.7%, 90.5%, and 87.8%, respectively. The proposed method can achieve accurate and efficient scatter correction from a single cone-beam scan without need of any auxiliary hardware or additional experimentation. (paper)

  20. Pseudopotential calculations of photoionization of atoms in the x-ray photon energy range and FEL beam monitor development

    International Nuclear Information System (INIS)

    A pseudopotential model for calculation of atomic processes under interaction with hard x-ray photons is applied to calculation of Krypton photoionization cross sections by photons with energy in the 20–25 keV range. These cross sections, as well as the mean charge of the resulting ions calculated using the Monte Carlo simulation scheme, are in good agreement with the other theoretical calculations and with the experiment. The obtained results open the doors for new techniques in the design of gas-monitor detectors to control the intensity, coordinates and energy of x-ray free-electron laser (XFEL) beams in the hard x-ray photon energy range. First, Monte Carlo simulations of a scintillation detector application for gas-monitors have been performed. (letter)

  1. Soft x-ray generation in gases by means of a pulsed electron beam produced in a high-voltage barier discharge

    NARCIS (Netherlands)

    Azarov, A.V.; Peters, P.J.M.; Boller, K.-J.

    2007-01-01

    A large area pulsed electron beam is produced by a high-voltage barrier discharge. We compare the properties of the x-rays generated by stopping this beam of electrons in a thin metal foil with those generated by stopping the electrons directly in various gases. The generation of x-rays was investig

  2. Experimental assessment of the influence of beam hardening filters on image quality and patient dose in volumetric 64-slice X-ray CT scanners

    NARCIS (Netherlands)

    Ay, Mohammad Reza; Mehranian, Abolfazi; Maleki, Asghar; Ghadiri, Hossien; Ghafarian, Pardis; Zaidi, Habib

    2013-01-01

    Beam hardening filters have long been employed in X-ray Computed Tomography (CT) to preferentially absorb soft and low-energy X-rays having no or little contribution to image formation, thus allowing the reduction of patient dose and beam hardening artefacts. In this work, we studied the influence o

  3. All-diamond optical assemblies for a beam-multiplexing X-ray monochromator at the Linac Coherent Light Source

    CERN Document Server

    Stoupin, S; Blank, V D; Shvyd'ko, Yu V; Goetze, K; Assoufid, L; Polyakov, S N; Kuznetsov, M S; Kornilov, N V; Katsoudas, J; Alonso-Mori, R; Chollet, M; Feng, Y; Glownia, J M; Lemke, H; Robert, A; Song, S; Sikorski, M; Zhu, D

    2014-01-01

    A double-crystal diamond (111) monochromator recently implemented at the Linac Coherent Light Source (LCLS) enables splitting of the primary X-ray beam into a pink (transmitted) and a monochromatic (reflected) branch. The first monochromator crystal with a thickness of 100 um provides sufficient X-ray transmittance to enable simultaneous operation of two beamlines. Here we report on the design, fabrication, and X-ray characterization of the first and second (300-um-thick) crystals utilized in the monochromator and the optical assemblies holding these crystals. Each crystal plate has a region of about 5 X 2 mm2 with low defect concentration, sufficient for use in X-ray optics at the LCLS. The optical assemblies holding the crystals were designed to provide mounting on a rigid substrate and to minimize mounting-induced crystal strain. The induced strain was evaluated using double-crystal X-ray topography and was found to be small over the 5 X 2 mm2 working regions of the crystals.

  4. An elastically compressible phantom material with mechanical and x-ray attenuation properties equivalent to breast tissue

    International Nuclear Information System (INIS)

    We have developed a novel phantom material: a solution of polyvinyl alcohol (PVAL) in ethanol and water, freeze-thawed to produce a solid yet elastically compressible gel. The x-ray attenuation and mechanical properties of these gels are compared with published measurements of breast tissue. Gels with PVAL concentrations from 5 to 20% w/v were produced. The linear x-ray attenuation coefficients of these gels range from 0.76 to 0.86 cm-1 at 17.5 keV, increasing with PVAL concentration. These values are very similar to the published values of breast tissue at this energy, 0.8-0.9 cm-1. Under compression cancerous breast tissue is approximately ten times stiffer than healthy breast tissue. The Young's moduli of the gels increase with PVAL concentration. Varying the PVAL concentration from 7.5 to 20% w/v produces gels with Young's moduli from 20 to 220 kPa at 15% strain. These values are characteristic of normal and cancerous breast tissue, respectively.

  5. Physiologically gated micro-beam radiation therapy using electronically controlled field emission x-ray source array

    Science.gov (United States)

    Chtcheprov, Pavel; Hadsell, Michael; Burk, Laurel; Ger, Rachel; Zhang, Lei; Yuan, Hong; Lee, Yueh Z.; Chang, Sha; Lu, Jianping; Zhou, Otto

    2013-03-01

    Micro-beam radiation therapy (MRT) uses parallel planes of high dose narrow (10-100 um in width) radiation beams separated by a fraction of a millimeter to treat cancerous tumors. This experimental therapy method based on synchrotron radiation has been shown to spare normal tissue at up to 1000Gy of entrance dose while still being effective in tumor eradication and extending the lifetime of tumor-bearing small animal models. Motion during the treatment can result in significant movement of micro beam positions resulting in broader beam width and lower peak to valley dose ratio (PVDR), and thus can reduce the effectiveness of the MRT. Recently we have developed the first bench-top image guided MRT system for small animal treatment using a high powered carbon nanotube (CNT) x-ray source array. The CNT field emission x-ray source can be electronically synchronized to an external triggering signal to enable physiologically gated firing of x-ray radiation to minimize motion blurring. Here we report the results of phantom study of respiratory gated MRT. A simulation of mouse breathing was performed using a servo motor. Preliminary results show that without gating the micro beam full width at tenth maximum (FWTM) can increase by 70% and PVDR can decrease up to 50%. But with proper gating, both the beam width and PVDR changes can be negligible. Future experiments will involve irradiation of mouse models and comparing histology stains between the controls and the gated irradiation.

  6. Energy calibration of energy-resolved photon-counting pixel detectors using laboratory polychromatic x-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Hanbean; Han, Jong Chul; Kam, Soohwa; Yun, Seungman [School of Mechanical Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Ho Kyung, E-mail: hokyung@pusan.ac.kr [School of Mechanical Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Center for Advanced Medical Engineering Research, Pusan National University, Busan 609-735 (Korea, Republic of)

    2014-10-01

    Recently, photon-counting detectors capable of resolving incident x-ray photon energies have been considered for use in spectral x-ray imaging applications. For reliable use of energy-resolved photon-counting detectors (ERPCDs), energy calibration is an essential procedure prior to their use because variations in responses from each pixel of the ERPCD for incident photons, even at the same energy, are inevitable. Energy calibration can be performed using a variety of methods. In all of these methods, the photon spectra with well-defined peak energies are recorded. Every pixel should be calibrated on its own. In this study, we suggest the use of a conventional polychromatic x-ray source (that is typically used in laboratories) for energy calibration. The energy calibration procedure mainly includes the determination of the peak energies in the spectra, flood-field irradiation, determination of peak channels, and determination of calibration curves (i.e., the slopes and intercepts of linear polynomials). We applied a calibration algorithm to a CdTe ERPCD comprised of 128×128 pixels with a pitch of 0.35 mm using highly attenuated polychromatic x-ray beams to reduce the pulse pile-up effect, and to obtain a narrow-shaped spectrum due to beam hardening. The averaged relative error in calibration curves obtained from 16,384 pixels was about 0.56% for 59.6 keV photons from an Americium radioisotope. This pixel-by-pixel energy calibration enhanced the signal- and contrast-to-noise ratios in images, respectively, by a factor of ∼5 and 3 due to improvement in image homogeneity, compared to those obtained without energy calibration. One secondary finding of this study was that the x-ray photon spectra obtained using a common algorithm for computing x-ray spectra reasonably described the peaks in the measured spectra, which implies easier peak detection without the direct measurement of spectra using a separate spectrometer. The proposed method will be a useful alternative

  7. Energy calibration of energy-resolved photon-counting pixel detectors using laboratory polychromatic x-ray beams

    International Nuclear Information System (INIS)

    Recently, photon-counting detectors capable of resolving incident x-ray photon energies have been considered for use in spectral x-ray imaging applications. For reliable use of energy-resolved photon-counting detectors (ERPCDs), energy calibration is an essential procedure prior to their use because variations in responses from each pixel of the ERPCD for incident photons, even at the same energy, are inevitable. Energy calibration can be performed using a variety of methods. In all of these methods, the photon spectra with well-defined peak energies are recorded. Every pixel should be calibrated on its own. In this study, we suggest the use of a conventional polychromatic x-ray source (that is typically used in laboratories) for energy calibration. The energy calibration procedure mainly includes the determination of the peak energies in the spectra, flood-field irradiation, determination of peak channels, and determination of calibration curves (i.e., the slopes and intercepts of linear polynomials). We applied a calibration algorithm to a CdTe ERPCD comprised of 128×128 pixels with a pitch of 0.35 mm using highly attenuated polychromatic x-ray beams to reduce the pulse pile-up effect, and to obtain a narrow-shaped spectrum due to beam hardening. The averaged relative error in calibration curves obtained from 16,384 pixels was about 0.56% for 59.6 keV photons from an Americium radioisotope. This pixel-by-pixel energy calibration enhanced the signal- and contrast-to-noise ratios in images, respectively, by a factor of ∼5 and 3 due to improvement in image homogeneity, compared to those obtained without energy calibration. One secondary finding of this study was that the x-ray photon spectra obtained using a common algorithm for computing x-ray spectra reasonably described the peaks in the measured spectra, which implies easier peak detection without the direct measurement of spectra using a separate spectrometer. The proposed method will be a useful alternative

  8. Measurement of breast-tissue x-ray attenuation by spectral mammography: first results on cyst fluid

    Science.gov (United States)

    Fredenberg, Erik; Dance, David R.; Willsher, Paula; Moa, Elin; von Tiedemann, Miriam; Young, Kenneth C.; Wallis, Matthew G.

    2013-12-01

    Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. For instance, techniques to better characterize cysts at mammography screening would be highly desirable to reduce recalls, but the development is hampered by the lack of attenuation data for cysts. We have developed a method to measure x-ray attenuation of tissue samples using a prototype photon-counting spectral mammography unit. The method was applied to measure the attenuation of 50 samples of breast cyst fluid and 50 samples of water. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, which can be used to derive the x-ray attenuation as a function of energy. The attenuation of cyst fluid was found to be significantly different from water. There was a relatively large natural spread between different samples of cyst fluid, whereas the homogeneity of each individual sample was found to be good; the variation within samples did not reach above the quantum noise floor. The spectral method proved stable between several measurements on the same sample. Further, chemical analysis and elemental attenuation calculation were used to validate the spectral measurement on a subset of the samples. The two methods agreed within the precision of the elemental attenuation calculation over the mammographic energy range.

  9. Applications of pixellated GaAs X-ray detectors in a synchrotron radiation beam

    CERN Document Server

    Watt, J; Campbell, M; Mathieson, K; Mikulec, B; O'Shea, V; Passmore, M S; Schwarz, C; Smith, K M; Whitehill, C

    2001-01-01

    Hybrid semiconductor pixel detectors are being investigated as imaging devices for radiography and synchrotron radiation beam applications. Based on previous work in the CERN RD19 and the UK IMPACT collaborations, a photon counting GaAs pixel detector (PCD) has been used in an X-ray powder diffraction experiment. The device consists of a 200 mu m thick SI-LEC GaAs detector patterned in a 64*64 array of 170 mu m pitch square pixels, bump-bonded to readout electronics operating in single photon counting mode. Intensity peaks in the powder diffraction pattern of KNbO/sub 3/ have been resolved and compared with results using the standard scintillator, and a PCD predecessor (the Omega 3). The PCD shows improved speed, dynamic range, 2-D information and comparable spatial resolution to the standard scintillator based systems. It also overcomes the severe dead time limitations of the Omega 3 by using a shutter based acquisition mode. A brief demonstration of the possibilities of the system for dental radiography and...

  10. Applications of pixellated GaAs X-ray detectors in a synchrotron radiation beam

    Energy Technology Data Exchange (ETDEWEB)

    Watt, J. E-mail: j.watt@physics.gla.ac.uk; Bates, R.; Campbell, M.; Mathieson, K.; Mikulec, B.; O' Shea, V.; Passmore, M-S.; Schwarz, C.; Smith, K.M.; Whitehill, C

    2001-03-11

    Hybrid semiconductor pixel detectors are being investigated as imaging devices for radiography and synchrotron radiation beam applications. Based on previous work in the CERN RD19 and the UK IMPACT collaborations, a photon counting GaAs pixel detector (PCD) has been used in an X-ray powder diffraction experiment. The device consists of a 200 {mu}m thick SI-LEC GaAs detector patterned in a 64x64 array of 170 {mu}m pitch square pixels, bump-bonded to readout electronics operating in single photon counting mode. Intensity peaks in the powder diffraction pattern of KNbO{sub 3} have been resolved and compared with results using the standard scintillator, and a PCD predecessor (the {omega}3). The PCD shows improved speed, dynamic range, 2-D information and comparable spatial resolution to the standard scintillator based systems. It also overcomes the severe dead time limitations of the {omega}3 by using a shutter based acquisition mode. A brief demonstration of the possibilities of the system for dental radiography and image processing are given, showing a marked reduction in patient dose and dead time compared with film.

  11. Applications of pixellated GaAs X-ray detectors in a synchrotron radiation beam

    Science.gov (United States)

    Watt, J.; Bates, R.; Campbell, M.; Mathieson, K.; Mikulec, B.; O'Shea, V.; Passmore, M.-S.; Schwarz, C.; Smith, K. M.; Whitehill, C.; XIMAGE Project

    2001-03-01

    Hybrid semiconductor pixel detectors are being investigated as imaging devices for radiography and synchrotron radiation beam applications. Based on previous work in the CERN RD19 and the UK IMPACT collaborations, a photon counting GaAs pixel detector (PCD) has been used in an X-ray powder diffraction experiment. The device consists of a 200 μm thick SI-LEC GaAs detector patterned in a 64×64 array of 170 μm pitch square pixels, bump-bonded to readout electronics operating in single photon counting mode. Intensity peaks in the powder diffraction pattern of KNbO 3 have been resolved and compared with results using the standard scintillator, and a PCD predecessor (the Ω3). The PCD shows improved speed, dynamic range, 2-D information and comparable spatial resolution to the standard scintillator based systems. It also overcomes the severe dead time limitations of the Ω3 by using a shutter based acquisition mode. A brief demonstration of the possibilities of the system for dental radiography and image processing are given, showing a marked reduction in patient dose and dead time compared with film.

  12. Direct microfabrication using an x-ray micro-beam with a single refractive lens

    International Nuclear Information System (INIS)

    A micro-beam of hard X-ray (10 keV) as small as 5 μm in diameter has been generated using a single refractive lens made of polymers (e.g. PMMA, PTFE) and been applied for direct writing, which may find possible applications in three-dimensional (3D) micro-fabrication. The refractive lenses are parabolic-shaped concave lenses with a radius of 4 μm and an aperture of 179 μm and have been produced using our high aspect-ratio techniques with synchrotron radiation (SR) of our home-made compact storage ring, AURORA-2S (electron energy of 0.7 GeV). The lenses have two parabolic curvatures (R=4 μm) with apertures A=2(2Rz)1/2=179 μm, thus the aspect-ratio z/R=250 for its curvatures, which is too great for traditional techniques to achieve. The transmissions of our lenses were measured to be 54-85%, which is higher than that of a zone plate and a compound refractive lens. (author)

  13. CRL X-RAY TUBE

    OpenAIRE

    Kolchevsky, N. N.; Petrov, P. V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed.

  14. High-resolution CT by diffraction-enhanced x-ray imaging: mapping of breast tissue samples and comparison with their histo-pathology.

    Science.gov (United States)

    Bravin, Alberto; Keyriläinen, Jani; Fernández, Manuel; Fiedler, Stefan; Nemoz, Christian; Karjalainen-Lindsberg, Marja-Liisa; Tenhunen, Mikko; Virkkunen, Pekka; Leidenius, Marjut; von Smitten, Karl; Sipilä, Petri; Suortti, Pekka

    2007-04-21

    The aim of this study was to introduce high-resolution computed tomography (CT) of breast tumours using the diffraction-enhanced x-ray imaging (DEI) technique and to compare results with radiological and histo-pathological examinations. X-ray CT images of tumour-bearing breast tissue samples were acquired by monochromatic synchrotron radiation (SR). Due to the narrow beam and a large sample-to-detector distance scattering is rejected in the absorption contrast images (SR-CT). Large contrast enhancement is achieved by the use of the DEI-CT method, where the effects of refraction and scatter rejection are analysed by crystal optics. Clinical mammograms and CT images were recorded as reference material for a radiological examination. Three malignant and benign samples were studied in detail. Their radiographs were compared with optical images of stained histological sections. The DEI-CT images map accurately the morphology of the samples, including collagen strands and micro-calcifications of dimensions less than 0.1 mm. Histo-pathological examination and reading of the radiographs were done independently, and the conclusions were in general agreement. High-resolution DEI-CT images show strong contrast and permit visualization of details invisible in clinical radiographs. The radiation dose may be reduced by an order of magnitude without compromising image quality, which would make possible clinical in vivo DEI-CT with future compact SR sources. PMID:17404464

  15. High-resolution CT by diffraction-enhanced x-ray imaging: mapping of breast tissue samples and comparison with their histo-pathology

    Energy Technology Data Exchange (ETDEWEB)

    Bravin, Alberto [ID17, European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Keyrilaeinen, Jani [ID17, European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Fernandez, Manuel [ID17, European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Fiedler, Stefan [ID17, European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Nemoz, Christian [ID17, European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Karjalainen-Lindsberg, Marja-Liisa [Department of Pathology, HUCH Laboratory Diagnostics, Helsinki University Central Hospital, POB 400, FIN-00029 HUS, Helsinki (Finland); Tenhunen, Mikko [Department of Physics, HUCH Cancer Center, Helsinki University Central Hospital, POB 180, FIN-00029 HUS, Helsinki (Finland); Virkkunen, Pekka [Helsinki Medical Imaging Center, Helsinki University Central Hospital, POB 180, FIN-00029 HUS, Helsinki (Finland); Leidenius, Marjut [Breast Surgery Unit, Helsinki University Central Hospital, POB 140, FIN-00029 HUS, Helsinki (Finland); Smitten, Karl von [Breast Surgery Unit, Helsinki University Central Hospital, POB 140, FIN-00029 HUS, Helsinki (Finland); Sipilae, Petri [Radiation Metrology Laboratory, Radiation and Nuclear Safety Authority, POB 14, FIN-00881 Helsinki (Finland); Suortti, Pekka [ID17, European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France)

    2007-04-21

    The aim of this study was to introduce high-resolution computed tomography (CT) of breast tumours using the diffraction-enhanced x-ray imaging (DEI) technique and to compare results with radiological and histo-pathological examinations. X-ray CT images of tumour-bearing breast tissue samples were acquired by monochromatic synchrotron radiation (SR). Due to the narrow beam and a large sample-to-detector distance scattering is rejected in the absorption contrast images (SR-CT). Large contrast enhancement is achieved by the use of the DEI-CT method, where the effects of refraction and scatter rejection are analysed by crystal optics. Clinical mammograms and CT images were recorded as reference material for a radiological examination. Three malignant and benign samples were studied in detail. Their radiographs were compared with optical images of stained histological sections. The DEI-CT images map accurately the morphology of the samples, including collagen strands and micro-calcifications of dimensions less than 0.1 mm. Histo-pathological examination and reading of the radiographs were done independently, and the conclusions were in general agreement. High-resolution DEI-CT images show strong contrast and permit visualization of details invisible in clinical radiographs. The radiation dose may be reduced by an order of magnitude without compromising image quality, which would make possible clinical in vivo DEI-CT with future compact SR sources.

  16. SOLAR HARD X-RAY SOURCE SIZES IN A BEAM-HEATED AND IONIZED CHROMOSPHERE

    International Nuclear Information System (INIS)

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by Kontar et al. using the Ramaty High-Energy Solar Spectroscopic Imager have shown that HXR source sizes are three to six times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionization (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionized plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionized region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to this effect, along with the associated density enhancement in the upper chromosphere, injection of a beam of electrons into a partially ionized plasma should result in an HXR source that is substantially more vertically extended relative to that for a neutral target. Here we present the results of a modification to the CTTM, which takes into account both a localized form of chromospheric NUI and an increased target density. We find 50 keV HXR source widths, with and without the inclusion of a locally ionized region, of ∼3 Mm and ∼0.7 Mm, respectively. This helps to provide a theoretical solution to the currently open question of overly extended HXR sources

  17. SOLAR HARD X-RAY SOURCE SIZES IN A BEAM-HEATED AND IONIZED CHROMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    O' Flannagain, Aidan M.; Gallagher, Peter T. [Astrophysics Research Group, School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Brown, John C. [Astronomy and Astrophysics Group, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2015-02-01

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by Kontar et al. using the Ramaty High-Energy Solar Spectroscopic Imager have shown that HXR source sizes are three to six times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionization (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionized plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionized region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to this effect, along with the associated density enhancement in the upper chromosphere, injection of a beam of electrons into a partially ionized plasma should result in an HXR source that is substantially more vertically extended relative to that for a neutral target. Here we present the results of a modification to the CTTM, which takes into account both a localized form of chromospheric NUI and an increased target density. We find 50 keV HXR source widths, with and without the inclusion of a locally ionized region, of ∼3 Mm and ∼0.7 Mm, respectively. This helps to provide a theoretical solution to the currently open question of overly extended HXR sources.

  18. Time resolved, 2-D hard X-ray imaging of relativistic electron-beam target interactions on ETA-II

    International Nuclear Information System (INIS)

    Advanced radiographic applications require a constant source size less than 1 mm. To study the time history of a relativistic electron beam as it interacts with a bremsstrahlung converter, one of the diagnostics they use is a multi-frame time-resolved hard x-ray camera. They are performing experiments on the ETA-II accelerator at Lawrence Livermore National Laboratory to investigate details of the electron beam/converter interactions. The camera they are using contains 6 time-resolved images, each image is a 5 ns frame. By starting each successive frame 10 ns after the previous frame, they create a 6-frame movie from the hard x-rays produced from the interaction of the 50-ns electron beam pulse

  19. Study of expected performance of the hard X-ray beam for the FEL-X project

    CERN Document Server

    Sei, N; Ohgaki, H; Mikado, T; Yasumoto, M; Ogawa, H

    2002-01-01

    We advance the FEL-X project and plan to install a new optical klystron for the infrared FELs within next year. The expected FEL gain at a wavelength of 10.6 mu m is over 2% with the present electron-beam qualities in the storage ring NIJI-IV. Infrared FELs based on the fundamental and higher harmonics from the new optical klystron will generate hard X-ray beams with an energy of 0.1-2 MeV by the FEL-Compton backscattering process. Conventional light sources cannot provide sufficient amounts of photons in this energy region. The expected yield of the hard X-ray beam is 10 sup 5 -10 sup 6 per second with an energy spread of 3%.

  20. Nano-modulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    CERN Document Server

    Nanni, Emilio A; Moncton, David E

    2015-01-01

    A new method for generation of relativistic electron beams with current modulations at nanometer scale and below is presented. The current modulation is produced by diffracting relativistic electrons in perfect crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a device based on inverse Compton scattering with total length of a few meters. Electron beam simulations from cathode emission through diffraction, acceleration and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.

  1. Generation of focused electron beam and X-rays by the doped LiNbO 3 crystals

    Science.gov (United States)

    Bayssie, M.; Brownridge, J. D.; Kukhtarev, N.; Kukhtarev, T.; Wang, J. C.

    2005-12-01

    Generation of focused electrons beam with energies up to 100 keV from undoped LiNbO3 (LN) crystals have been observed [J.D. Brownridge, Nature 358 (1992) 287; J.D. Brownridge, S.M. Shafroth, Appl. Phys. Lett. 79 (2001) 3364] during heating-cooling cycles in a low-pressure environment. This paper reports about similar results that were observed in doped crystals of LN. Generation of electrons by crystals with thicknesses of 1 and 6 mm, was visualized by ZnS screen [ZSS] during heating-cooling cycles in a vacuum chamber (P = 1-10 mTorr). Generation of X-rays from both thin and thick crystals was evident from registered images from dental X-ray film [DXF]. The possibility of X-ray imaging was demonstrated, using different metal masks. Imaging of X-rays reveals that both focusing and wide-angle scattering modes of operation exist in the electron beams generation pattern during heating-cooling cycles.

  2. Imaging crystal spectrometer for high-resolution x-ray measurements on electron beam ion traps and tokamaks

    Science.gov (United States)

    Beiersdorfer, P.; Magee, E. W.; Hell, N.; Brown, G. V.

    2016-11-01

    We describe a crystal spectrometer implemented on the Livermore electron beam ion traps that employ two spherically bent quartz crystals and a cryogenically cooled back-illuminated charge-coupled device detector to measure x rays with a nominal resolving power of λ/Δλ ≥ 10 000. Its focusing properties allow us to record x rays either with the plane of dispersion perpendicular or parallel to the electron beam and, thus, to preferentially select one of the two linear x-ray polarization components. Moreover, by choice of dispersion plane and focussing conditions, we use the instrument either to image the distribution of the ions within the 2 cm long trap region, or to concentrate x rays of a given energy to a point on the detector, which optimizes the signal-to-noise ratio. We demonstrate the operation and utility of the new instrument by presenting spectra of Mo34+, which prepares the instrument for use as a core impurity diagnostic on the NSTX-U spherical torus and other magnetic fusion devices that employ molybdenum as plasma facing components.

  3. Application of focused-beam flat-sample method to synchrotron powder X-ray diffraction with anomalous scattering effect

    Science.gov (United States)

    Tanaka, M.; Katsuya, Y.; Matsushita, Y.

    2013-03-01

    The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.

  4. Measurement of transverse beam parameters at X-ray diagnostic beamlines in Indus-2 synchrotron radiation source

    International Nuclear Information System (INIS)

    Indus-2 is a 3rd generation synchrotron radiation source at RRCAT, Indore with 2.5 GeV energy and 200 mA beam current. The average beam sizes of electron beam are a few hundred micrometers (∼ 250 μn) in the transverse plane. In Indus-2, various types of diagnostic devices have been installed in the storage ring for the measurement of beam orbit, beam profile, beam current, tune etc. To further enhance the performance of the beam diagnostic system, two diagnostic beamlines have been designed and developed viz. X-ray diagnostic beamline (X-DBL) and visible diagnostic beamline (V- DBL). Beamline BL-24 at 10° port of bending magnet (DP-10) of Indus-2 storage ring has been developed as X-DBL. X-DBL is based on x-ray imaging (8-18 keV) with a pinhole array system. It is primarily used for beam size, beam emittance and beam position measurement. In X-ray diagnostic beamline a LabVIEW based graphical user interface (Gill) has been developed for online image processing and measurement of various beam parameters. Beamline is used routinely for the online measurements of beam sizes, beam emittance and beam stability. Measured data is analyzed to find changes in SR source point parameters under different conditions of the beam operation. In the present optics setting, typical measured beam size (RMS) is 440 ± 20 μnm horizontal and 55 ± 5 μm vertical, and correspondingly typical measured emittance is 155 ± 20 nm rad horizontal and 0.4 ± 0.05 nm rad vertical during the natural decay of beam current from 120 mA to 40 mA. Beam position remains stable within ± 20 μm horizontal and ± 15 μm vertical during the natural decay of beam current in Indus-2. Photon beam position (at 8 m from source point) remains stable within ± 20 μm during this natural decay of beam current. In this paper various measurement results of the beamline are described. (author)

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... images for evaluation. National and international radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  6. Upgrading of the Gray Laboratory soft X ray microprobe with V79 survival measurements following irradiation of one or all cells with a Ck X ray beam of different size

    International Nuclear Information System (INIS)

    The X ray microprobe developed at the Gray Laboratory was originally designed to produce carbon K X rays (278 eV) by electron bombardment and focus them to a few hundred nanometers spot by using a circular diffraction grating with increasing line density (zone plate). The very fine focus achieved (K X rays (photoelectron range -1 entrance dose averaged over a typical V79 cell) and to evaluate the possibility of using higher energy photons (AlK of 1.48 keV). The efficiency of the microprobe system has been tested by assessing the clonogenic potential of V79 cells irradiated with CK X ray beams of different sizes (5 and 0.25 μm radius) and investigating the relevance of the spatial distribution of cells for the bystander effect. (author)

  7. Dosimetry and monitoring of thin X-ray beam produced by linear particle accelerator, for application in radiography

    International Nuclear Information System (INIS)

    The dosimetry and monitoring characteristics of thin X-ray beams, and the application of 4MeV linear particle accelerator to radiosurgery are studied. An addition collimation system, consisted of 3 lead collimators, which allows to obtain thin beams of 6,10 and 15 mm of diameter, was fabricated. The stereo taxic system, together with modifications in dispositives, provide the accuracy required in volum-targed location. The dosimetric informations were determined with silicon detector inserted into water simulator. The isodose curves for each beam, and total isodoses simulating the treatment were established using radiographic emulsions in conditions which reproduce real circunstances of pacient irradiation. (M.C.K.)

  8. Analysis of a 3D imaging device by reconstruction from cone beam X ray radiographs

    International Nuclear Information System (INIS)

    The aim of our study is to analyse the principle of a 3D imaging device which attempts to restore the local density on a cuberill from a set of digital radiographs taken around the object. We have to use a ponctual radiation source to localize the acquisition lines. Therefore the attenuation measurements are modelled by the cone beam X ray transform. In the analysis of the inverse problem, we work out two inversion diagrams which compute the original function, the image of the object, by a sequence of transforms. The theoretical and algorithmical difficulty comes from the fact that, even in the simple case of a circular acquisition trajectory, the cone-shaped geometry prohibits splitting the problem into a superposition of reconstructions in two dimensions. We describe a novel theoretical framework based on the Radon transform. In this new representation space, it becomes possible by a rebinning operation to redistribute the integral values associated to planes from the coordinates system linked to source positions to the spherical coordinates system of the domain. To ensure this shift of space, we have established two formulas, the first approximate but leading to faster processing, related to the Radon transform, the second exact, related to the first derivative of the Radon transform. The inversion of these transforms completes the reconstruction. We state a theorem where we present the hypothesis under which the exact diagram does restore the original function. These are not verified for a circular trajectory, owing to a shadow zone in the Radon domain associated to the planes which intersect the object but not the trajectory. We propose either to restore the missing information or to use an oscillating trajectory

  9. Monte Carlo comparison of x-ray and proton CT for range calculations of proton therapy beams

    International Nuclear Information System (INIS)

    Proton computed tomography (CT) has been described as a solution for imaging the proton stopping power of patient tissues, therefore reducing the uncertainty of the conversion of x-ray CT images to relative stopping power (RSP) maps and its associated margins. This study aimed to investigate this assertion under the assumption of ideal detection systems. We have developed a Monte Carlo framework to assess proton CT performances for the main steps of a proton therapy treatment planning, i.e. proton or x-ray CT imaging, conversion to RSP maps based on the calibration of a tissue phantom, and proton dose simulations. Irradiations of a computational phantom with pencil beams were simulated on various anatomical sites and the proton range was assessed on the reference, the proton CT-based and the x-ray CT-based material maps. Errors on the tissue’s RSP reconstructed from proton CT were found to be significantly smaller and less dependent on the tissue distribution. The imaging dose was also found to be much more uniform and conformal to the primary beam. The mean absolute deviation for range calculations based on x-ray CT varies from 0.18 to 2.01 mm depending on the localization, while it is smaller than 0.1 mm for proton CT. Under the assumption of a perfect detection system, proton range predictions based on proton CT are therefore both more accurate and more uniform than those based on x-ray CT. (paper)

  10. Evaluation of some selected vaccines and other biological products irradiated by gamma rays, electron beams and X-rays

    International Nuclear Information System (INIS)

    Molecular sizing potency results are presented for irradiated samples of one lot of Haemophilus b conjugate vaccine, pneumococcal polysaccharide type 6B and typhoid vi polysaccharide vaccine. The samples were irradiated (25 kGy) by gamma rays, electron beams and X-rays. IgG and IgM antibody response in mice test results (ELISA) are given for the Hib conjugate vaccine irradiated at 0 deg. C or frozen in liquid nitrogen

  11. Development of Methods for Scatter Artifact Correction in Industrial X-ray Cone-beam Computed Tomography

    OpenAIRE

    Schörner, Karsten

    2012-01-01

    Scattered radiation presents a major cause of image degradation for industrial X-ray cone-beam CT scanners. It introduces several kinds of artifacts in reconstructed CT volumes, such as streaks, a general loss of contrast, and inhomogeneities known as cupping artifact. In this work, we study different scattering sources which contribute to the total detected signal and we develop methods for the correction of these secondary contributions. A novel method, based on the temporal modulation of t...

  12. Evaluation of some selected vaccines and other biological products irradiated by gamma rays, electron beams and X-rays

    Energy Technology Data Exchange (ETDEWEB)

    May, J.C. E-mail: may@cber.fda.gov; Rey, L.; Lee, C.-J

    2002-03-01

    Molecular sizing potency results are presented for irradiated samples of one lot of Haemophilus b conjugate vaccine, pneumococcal polysaccharide type 6B and typhoid vi polysaccharide vaccine. The samples were irradiated (25 kGy) by gamma rays, electron beams and X-rays. IgG and IgM antibody response in mice test results (ELISA) are given for the Hib conjugate vaccine irradiated at 0 deg. C or frozen in liquid nitrogen.

  13. Evaluation of some selected vaccines and other biological products irradiated by gamma rays, electron beams and X-rays

    Science.gov (United States)

    May, J. C.; Rey, L.; Lee, Chi-Jen

    2002-03-01

    Molecular sizing potency results are presented for irradiated samples of one lot of Haemophilus b conjugate vaccine, pneumococcal polysaccharide type 6B and typhoid vi polysaccharide vaccine. The samples were irradiated (25 kGy) by gamma rays, electron beams and X-rays. IgG and IgM antibody response in mice test results (ELISA) are given for the Hib conjugate vaccine irradiated at 0°C or frozen in liquid nitrogen.

  14. X-ray Radiation Mechanisms and the Beaming Effect of Hot Spots and Knots in AGN Jets

    Indian Academy of Sciences (India)

    Jin Zhang; Jin-Ming Bai; Liang Chen; Enwei Liang

    2011-03-01

    The observed broadband spectral energy distributions (SEDs) of 22 hot spots and 45 knots are modelled with single-zone lepton models. Considering the sources at rest, the X-rays of some hot spots can be explained by the SSC model with magnetic field being consistent with the equipartition magnetic field in magnitude of order 1, but at the same time an unreasonably low magnetic field is required to model the X-rays for all knots. When considering the relativistic bulk motion of the sources, the IC/CMB model well explains the X-ray emission for most of them under the equipartition condition. We show that the ratio of observational luminosity is tentatively correlated with the co-moving equipartition magnetic field 'eq and the beaming factor . These facts suggest that the observational differences of the X-rays from the knots and hot spots may be mainly due to the differences in the Doppler boosting effect and the co-moving magnetic field of the two kinds of source.

  15. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li+ ion beam-driven hohlraums

    International Nuclear Information System (INIS)

    X-ray-producing hohlraums are being studied as indirect drives for Inertial Confinement Fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li+ ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The UFO unfold code and its suite of auxiliary functions were used extensively in obtaining time- resolved x-ray spectra and radiation temperatures from this diagnostic. UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies (≤ 100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time-history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum

  16. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li+ ion beam-driven hohlraums

    International Nuclear Information System (INIS)

    X-ray-producing hohlraums are being studied as indirect drives for inertial confinement fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li+ ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The unfold operator (UFO) code and its suite of auxiliary functions were used extensively in obtaining time-resolved x-ray spectra and radiation temperatures from this diagnostic. The UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies (≤100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time endash history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum. copyright 1997 American Institute of Physics

  17. Comparison of Quality of Bologna Sausage Manufactured by Electron Beam or X-Ray Irradiated Ground Pork.

    Science.gov (United States)

    Shin, Mee-Hye; Lee, Ju-Woon; Yoon, Young-Min; Kim, Jong Heon; Moon, Byeong-Geum; Kim, Jae-Hun; Song, Beom-Suk

    2014-01-01

    Ground lean pork was irradiated by an electron beam or X-rays to compare the effects of two types of radiation generated by a linear accelerator on the quality of Bologna sausage as a model meat product. Raw ground lean pork was vacuum packaged at a thickness of 1.5 cm and irradiated at doses of 2, 4, 6, 8, or 10 kGy by an electron beam (2.5 MeV) or X-rays (5 MeV). Solubility of myofibrillar proteins, bacterial counts, and thiobarbituric acid reactive substance (TBARS) values were determined for raw meat samples. Bologna sausage was manufactured using the irradiated lean pork, and total bacterial counts, TBARS values, and quality properties (color differences, cooking yield, texture, and palatability) were determined. Irradiation increased the solubility of myofibrillar proteins in a dose-dependent manner (p<0.05). Bacterial contamination of the raw meat was reduced as the absorbed dose increased, and the reduction was the same for both radiation types. Differences were observed only between irradiated and non-irradiated samples (p<0.05). X-ray irradiation may serve as an alternative to gamma irradiation and electron beam irradiation.

  18. Scanning wire beam position monitor for alignment of a high brightness inverse-Compton x-ray source

    CERN Document Server

    Hadmack, Michael R

    2013-01-01

    The Free-Electron Laser Laboratory at the University of Hawai`i has constructed and tested a scanning wire beam position monitor to aid the alignment and optimization of a high spectral brightness inverse-Compton scattering x-ray source. X-rays are produced by colliding the 40 MeV electron beam from a pulsed S-band linac with infrared laser pulses from a mode-locked free-electron laser driven by the same electron beam. The electron and laser beams are focused to 60 {\\mu}m diameters at the interaction point to achieve high scattering efficiency. This wire-scanner allows for high resolution measurements of the size and position of both the laser and electron beams at the interaction point to verify spatial coincidence. Time resolved measurements of secondary emission current allow us to monitor the transverse spatial evolution of the e-beam throughout the duration of a 4 {\\mu}s macro-pulse while the laser is simultaneously profiled by pyrometer measurement of the occulted infrared beam. Using this apparatus we ...

  19. Multi-concentric-ring open-air ionization chamber for high-intensity X-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Nariyama, Nobuteru

    2014-11-01

    An ionization chamber with four concentric ring electrodes was used to measure doses of white, 10, 15 and 20 keV synchrotron X-ray beams. The ring-shaped electrodes, which had diameters less than 11.8 mm, collected charges independently only around the beam, excluding strong in-beam charges when the beams passed through a small hole in the electrode centers. As a result, under low saturation voltages, the measured dose rates were confirmed to correlate with the beam intensity when conversion factors calculated with a Monte Carlo code were employed. The influence of the assumed beam sizes and incident positions on the current was almost negligible, with the exception of the incident position dependence at 10 keV.

  20. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling

    OpenAIRE

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-01-01

    Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ∼10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling,...

  1. Experimental results of use of triple-energy X-ray beam with K-edge filter in multi-energy imaging

    Science.gov (United States)

    Kim, D.; Lee, S.; Jeon, P.-H.

    2016-04-01

    Multi-energy imaging is useful for contrast enhancement of lesions, quantitative analysis of specific materials and material separation in the human body. Generally, dual-energy methods are applied to discriminating two materials, but this method cannot discriminate more than two materials. Photon-counting detectors provide spectral information from polyenergetic X-rays using multiple energy bins. In this work, we developed triple-energy X-ray beams using a filter with K-edge energy and applied them experimentally. The energy spectra of triple-energy X-ray beams were assessed by using a spectrometer. The designed triple-energy X-ray beams were validated by measuring quantitative evaluations with mean energy ratio (MER), contrast variation ratio (CVR) and exposure efficiency (EE). Then, triple-energy X-ray beams were used to extract density map of three materials, iodine (I), aluminum (Al) and polymethyl methacrylate (PMMA). The results of the thickness density maps obtained with the developed triple-energy X-ray beams were compared to those acquired using the photon-counting method. As a result, it was found experimentally that the proposed triple-energy X-ray beam technique can separate the three materials as well as the photon-counting method.

  2. Experimental results of use of triple-energy X-ray beam with K-edge filter in multi-energy imaging

    International Nuclear Information System (INIS)

    Multi-energy imaging is useful for contrast enhancement of lesions, quantitative analysis of specific materials and material separation in the human body. Generally, dual-energy methods are applied to discriminating two materials, but this method cannot discriminate more than two materials. Photon-counting detectors provide spectral information from polyenergetic X-rays using multiple energy bins. In this work, we developed triple-energy X-ray beams using a filter with K-edge energy and applied them experimentally. The energy spectra of triple-energy X-ray beams were assessed by using a spectrometer. The designed triple-energy X-ray beams were validated by measuring quantitative evaluations with mean energy ratio (MER), contrast variation ratio (CVR) and exposure efficiency (EE). Then, triple-energy X-ray beams were used to extract density map of three materials, iodine (I), aluminum (Al) and polymethyl methacrylate (PMMA). The results of the thickness density maps obtained with the developed triple-energy X-ray beams were compared to those acquired using the photon-counting method. As a result, it was found experimentally that the proposed triple-energy X-ray beam technique can separate the three materials as well as the photon-counting method

  3. Heavy Ion Beams Induce Survivin Expression in Human Hepatoma SMMC-7721 Cells More Effectively than X-rays

    Institute of Scientific and Technical Information of China (English)

    Li GONG; Xiaodong JIN; Qiang LI; Jiangtao LIU; Lizhe AN

    2007-01-01

    High linear energy transfer (LET) heavy ion radiation is more effective in inducing biological damage than low-LET X-rays or γ-rays. Heavy ion beam provides good dose localization (Bragg peak) in critical cancer tissue and gives higher relative biological effectiveness in cell killing across the dose peak, so high-LET heavy ion beam is superior to low-LET radiation in cancer treatment. Survivin, as a member of the inhibitor of apoptosis protein family, might help cancerous cells to overcome the G2/M apoptotic checkpoint and favor the aberrant progression of transformed cells through mitosis. Survivin expression in the human hepatoma SMMC-7721 cell line after exposure to low-LET X-ray and high-LET carbon ion irradiation was investigated in this study. Compared with X-ray irradiation, the carbon ion beam clearly caused G2/M arrest and promoted the expression of the survivin gene in a dose-dependent manner. Clonogenic survival assay showed that SMMC-7721 cells were more radiosensitive to the high-LET carbon ions than to the X-rays, and the radiosensitivity was promoted after treatment with specific survivin short interfering RNA. Differential survivin expression at both transcriptional and translational levels was found for SMMC-7721 cells following low- and high-LET irradiation. The overexpression of survivin in SMMC-7721 cells is probably an important reason why the cancerous cells have radioresistance to strong stimulus such as dense ionizing high-LET radiation. However, the direct killing effect on cancerous cells by high-LET radiation might be more significant than the apoptosis inhibition through the overexpression of survivin following heavy ion irradiation.

  4. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chumin; Kanicki, Jerzy, E-mail: kanicki@eecs.umich.edu [Solid-State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Konstantinidis, Anastasios C. [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom and Diagnostic Radiology and Radiation Protection, Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX (United Kingdom); Patel, Tushita [Department of Physics, University of Virginia, Charlottesville, Virginia 22908 (United States)

    2015-11-15

    Purpose: Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50–300 e{sup −}) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). Methods: In this study, imaging performance of a large area (29 × 23 cm{sup 2}) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterized and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165–400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. Results: The LFW mode shows better DQE at low air kerma (K{sub a} < 10 μGy) and should be used for DBT. At current DBT applications, air kerma (K{sub a} ∼ 10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165–400 μm in size can be resolved using a MGD range of 0.3–1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at

  5. Soft X-Ray (1-7 nm) Solar Spectrometer based on novel Nanowriter Electron-Beam Nanofabrication Technology

    Science.gov (United States)

    Didkovsky, L. V.; Wieman, S. R.; Chao, W.

    2015-12-01

    A new soft X-ray (SXR) spectrometer combines proven detector technology demonstrated on the SOHO Solar EUV Monitor (SOHO/SEM) and SDO EUV SpectroPhotometer (SDO/EVE/ESP) instruments with novel technology for X-ray optics nanofabrication developed at the Lawrence Berkeley National Laboratory. The new spectrometer will provide solar SXR measurements of absolute irradiance in the 1.0 to 7.0 nm range spectrally resolved into bands narrower than 1 nm - measurements that are not available from existing solar-observing instruments but are important for studying and modeling coronal dynamics and the Sun-Earth's connection, e.g. the Earth's Ionosphere. For the proposed SXR spectrometer we will introduce a transmission grating based on novel Nanowriter Electron-Beam Nanofabrication technology developed at the Center for X-ray Optics (CXRO) at the Lawrence Berkeley National Laboratory. The CXRO technology has been used in the fabrication of X-ray zone plates with feature sizes as small as 25 nm in optical elements with overall sizes on the order of 1 cm. The CXRO technology has significant flexibility in terms of pattern geometry, and is thus capable of producing linear transmission gratings with aperture sizes similar to SEM and ESP but with four times the dispersion. With such dispersion, reasonable spectral resolution (< 1nm) can be obtained using commercial off-the shelf (COTS) X-ray sensitive AXUV type silicon photodiodes from the Optodiode Corp. in an instrument with overall size and mass similar to that of SEM or ESP.

  6. Effects of a Relativistic Electron Beam Interaction with the Upper Atmosphere: Ionization, X-Rays, and Optical Emissions

    Science.gov (United States)

    Marshall, R. A.; Nicolls, M. J.; Sanchez, E. R.; Lehtinen, N. G.; Neilson, J.

    2014-12-01

    An artificial beam of relativistic (0.5--10 MeV) electrons has been proposed as an active experiment in the ionosphere and magnetosphere, with applications to magnetic field-line tracing, studies of wave-particle interactions, and beam-atmosphere interactions. The beam-atmosphere interaction, while a scientific endeavor of its own, also provides key diagnostics for other experiments. We present results of Monte Carlo simulations of the interaction of a beam of relativistic electrons with the upper atmosphere as they are injected downwards from a notional high altitude (thermospheric / ionospheric) injection platform. The beam parameters, defined by realistic parameters of a compact linear accelerator, are used to create a distribution of thousands of electrons. Each electron is injected downwards from 300 km altitude towards the dense atmosphere, where it undergoes elastic and inelastic collisions, leading to secondary ionization, optical emissions, and X-rays via bremsstrahlung. Here we describe the Monte Carlo model and present calculations of diagnostic outputs, including optical emissions, X-ray fluxes, secondary ionization, and backscattered energetic electron fluxes. Optical emissions are propagated to the ground through the lower atmosphere, including the effects of atmospheric absorption and scattering, to estimate the brightness of the emission column for a given beam current and energy. Similarly, X-ray fluxes are propagated to hypothetical detectors on balloons and satellites, taking into account Compton scattering and photoabsorption. Secondary ionization is used to estimate the radar signal returns from various ground-based radar facilities. Finally, simulated backscattered electron fluxes are measured at the injection location. The simulation results show that for realizable accelerator parameters, each of these diagnostics should be readily detectable by appropriate instruments.

  7. Equalization of Medipix2 imaging detector energy thresholds using measurement of polychromatic X-ray beam attenuation

    International Nuclear Information System (INIS)

    The single photon counting pixel detector Medipix2 is a powerful tool for energy resolved X-ray imaging. It allows the energies of incoming X-rays to be discriminated by setting an energy threshold common to all pixels. As the parameters of individual pixels vary, each pixel further contains a 3-bit digital-to-analogue converter (DAC) adjustment. Values of these DACs are traditionally determined by finding the noise floor in each pixel. Our approach is based on a polychromatic X-ray beam attenuation measurement. An attenuation curve is measured using varying thickness of aluminium foil. The attenuation curve is fitted in each pixel with a function calculating the detected signal. Free parameters of the fit are the beam intensity and the energy threshold. The measurement is done twice, with the threshold adjustment set to minimum resp. maximum value in all pixels. The result is a calibration of the adjustment DACs, allowing the value of the adjustment DAC in each pixel to be found such that the dispersion of energy thresholds between pixels is minimized. It is a fast and simple to use method that does not require modification of the imaging setup. It will be shown that it reduces the dispersion of threshold values by up to 40% compared to the noise-floor based technique of equalization.

  8. X-ray micro-beam techniques and phase contrast tomography applied to biomaterials

    Science.gov (United States)

    Fratini, Michela; Campi, Gaetano; Bukreeva, Inna; Pelliccia, Daniele; Burghammer, Manfred; Tromba, Giuliana; Cancedda, Ranieri; Mastrogiacomo, Maddalena; Cedola, Alessia

    2015-12-01

    A deeper comprehension of the biomineralization (BM) process is at the basis of tissue engineering and regenerative medicine developments. Several in-vivo and in-vitro studies were dedicated to this purpose via the application of 2D and 3D diagnostic techniques. Here, we develop a new methodology, based on different complementary experimental techniques (X-ray phase contrast tomography, micro-X-ray diffraction and micro-X-ray fluorescence scanning technique) coupled to new analytical tools. A qualitative and quantitative structural investigation, from the atomic to the micrometric length scale, is obtained for engineered bone tissues. The high spatial resolution achieved by X-ray scanning techniques allows us to monitor the bone formation at the first-formed mineral deposit at the organic-mineral interface within a porous scaffold. This work aims at providing a full comprehension of the morphology and functionality of the biomineralization process, which is of key importance for developing new drugs for preventing and healing bone diseases and for the development of bio-inspired materials.

  9. Experimental characterization of X-ray transverse coherence in the presence of beam transport optics

    DEFF Research Database (Denmark)

    Chubar, O.; Fluerasu, A.; Chu, Y.S.;

    2013-01-01

    A simple Boron fiber based interference scheme [1] and other similar schemes are currently routinely used for X-ray coherence estimation at 3rd generation synchrotron radiation sources. If such a scheme is applied after a perfect monochromator and without any focusing / transport optics in the op...

  10. Soft X-ray generation via inverse compton scattering between high quality electron beam and high power laser

    International Nuclear Information System (INIS)

    High quality beam generation project based on High-Tech Research Center Project, which has been approved by Ministry of Education, Culture, Sports, Science and Technology in 1999, has been conducted by advance research institute for science and engineering, Waseda University. In the project, laser photo-cathode RF-gun has been selected for the high quality electron beam source. RF cavities with low dark current, which were made by diamond turning technique, have been successfully manufactured. The low emittance electron beam was realized by choosing the modified laser injection technique. The obtained normalized emmitance was about 3 m.mrad at 100 pC of electron charge. The soft x-ray beam generation with the energy of 370 eV, which is in the energy region of so-called water window, by inverse Compton scattering has been performed by the collision between IR laser and the low emmitance electron beams. (Author)

  11. On possibility of high frequency electron beam scanning with application of focusing system for x-ray generation

    International Nuclear Information System (INIS)

    The article describes the electron beam scanning system in combination with electromagnetic focusing system. These systems find their application in different vacuum tube devices that provide the generation of X-ray radiation. Similar systems can be utilized in such fields as medicine, industry and defectoscopy. Electron tube system can be based on thermal or field emission cathodes. Scanning system is built up on two pair of electrical deflecting dipoles. The scanning can also be based on magnetic deflecting system. Beam focusing is achieved by the geometrical fea-tures of electrodes structure and electron lenses. Magnetic focusing can also be used for transversal focusing of the beam. The article describes the schemes of the unit with electron beam scanning and different methods of realization. Beam dynamics investigation in electromagnetic fields of the unit is considered

  12. X-ray Diagnosis Analysis on Breast Cancer Mammography%乳腺癌钼钯X线诊断分析

    Institute of Scientific and Technical Information of China (English)

    李桂花

    2015-01-01

    目的:探讨乳腺癌钼靶X线临床检查价值。方法对80例术后病理检查证实为乳腺癌患者的临床资料进行回顾性分析,所有观察对象术前均接受钼靶X线检查,分析患者钼靶X线影像学表现。结果80例患者中,56例患者可见肿块影,16例单纯毛刺状,24例单纯分叶状,8例未见明显的边界,8例同时存在毛刺和分叶,40例存在钙化征象,8例观察对象出现局部皮肤增厚和血管异常增生等症状,4例观察对象可见明显的大导管征。结论钼靶X线是一种较为准确、可靠的乳腺癌临床检查和诊断方法。%Objective To explore the breast molybdenum target X-ray and clinical examination and diagnosis results.Methods 80 cases of postoperative pathological examination conifrmed for breast cancer patients were selected in this study, the clinical data were retrospectively analyzed, all subjects preoperative accept molybdenum target X-ray, analysis of patients with molybdenum target X-ray imaging findings.Results This study selected 80 cases of medical observation object, visible masses in 56 patients, 16 cases of single wool spiny, 24 cases of simple lobulated, boundary was not found in 8 cases, 8 cases of simultaneous presence of burr and lobulated, 40 cases of the existence of calciifcations, 8 cases were local thickening of the skin and blood vessels abnormal hyperplasia symptoms, 4 cases were obviously visible large duct syndrome.Conclusion By medical research results conifrm, molybdenum target X-ray is an accurate, reliable clinical breast cancer screening and diagnostic methods.

  13. Deformable motion reconstruction for scanned proton beam therapy using on-line x-ray imaging

    International Nuclear Information System (INIS)

    Organ motion is a major problem for any dynamic radiotherapy delivery technique, and is particularly so for spot scanned proton therapy. On the other hand, the use of narrow, magnetically deflected proton pencil beams is potentially an ideal delivery technique for tracking tumour motion on-line. At PSI, our new Gantry is equipped with a Beams Eye View (BEV) imaging system which will be able to acquire 2D x-ray images in fluoroscopy mode during treatment delivery. However, besides precisely tracking motion from BEVs, it is also essential to obtain information on the 3D motion vector throughout the whole region of interest, and any sparsely acquired surrogate motion is generally not sufficient to describe the deformable behaviour of the whole volume in three dimensions. In this study, we propose a method by which 3D deformable motions can be estimated from surrogate motions obtained using this monoscopic imaging system. The method assumes that example motions over a number of breathing cycles can be acquired before treatment for each patient using 4DMRI. In this study, for each of 11 different subjects, 100 continuous breathing cycles have been extracted from extended 4DMRI studies in the liver and then subject specific motion models have been built using principle component analysis (PCA). To simulate treatment conditions, a different set of 30 continuous breathing cycles from the same subjects have then been used to generate a set of simulated 4DCT data sets (so-called 4DCT(MRI) data sets), from which time-resolved digitally reconstructed radiographs (DRRs) were calculated using the BEV geometry for three treatment fields respectively. From these DRRs, surrogate motions from fiducial markers or the diaphragm have been used as a predictor to estimate 3D motions in the liver region for each subject. The prediction results have been directly compared to the ‘ground truth’ motions extracted from the same 30 breath cycles of the originating 4DMRI data set. Averaged

  14. Tunable X-ray source

    Science.gov (United States)

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  15. X-ray Spectropolarimetry of high temperature and high density plasma supported by LLNL Electron Beam Ion Trap Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Shlyaptseva, A S; Kantsyrev, V L; Ouart, N D; Fedin, D A; Neill, P; Harris, C; Hamasha, S M; Hansen, S B; Safronova, U I; Beiersdorfer, P; Petrashen, A G

    2004-03-15

    Plasma polarization spectroscopy work done by our group since the 3rd US-Japan PPS Workshop is overviewed. Theoretically, the polarization dependence on various electron distribution functions for He-like, Ne-like, and Ni-like x-ray transitions for a wide range of Z has been investigated. In particular, this study was focused on the polarization dependence for monoenergetic and steep electron distribution functions. The diagnostically important spectral lines and features of K-, L-, and M-shell ions were identified which can be used in x-ray spectropolarimetry of plasma. Importance of polarization-sensitive LLNL Electron Beam Ion Trap data is emphasized. The results of the UNR polarization-sensitive Ti and Mo x-pinch experiments are discussed.

  16. Precision white-beam slit design for high power density x-ray undulator beamlines at the Advanced Photon Source

    International Nuclear Information System (INIS)

    A set of precision horizontal and vertical white-beam slits has been designed for the Advanced Photon Source (APS) X-ray undulator beamlines at Argonne National Laboratory. There are several new design concepts applied in this slit set, including: grazing-incidence knife-edge configuration to minimize the scattering of X-rays downstream, enhanced heat transfer tubing to provide water cooling, and a second slit to eliminate the thermal distortion on the slit knife edge. The novel aspect of this design is the use of two L-shaped knife-edge assemblies, which are manipulated by two precision X-Z stepping linear actuators. The principal and structural details of the design for this slit set are presented in this paper

  17. Strain mapping in an InGaN/GaN nanowire using a nano-focused x-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Stankevič, Tomaš, E-mail: Tomas.Stankevic@nbi.dk; Feidenhans' l, Robert [Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen (Denmark); Dzhigaev, Dmitry; Vartanyants, Ivan A. [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany); National Research Nuclear University, MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow (Russian Federation); Bi, Zhaoxia; Mikkelsen, Anders; Samuelson, Lars [NanoLund, Department of Physics, Lund University, P.O. Box 118, 22 100 Lund (Sweden); Rose, Max; Shabalin, Anatoly; Reinhardt, Juliane; Falkenberg, Gerald [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany)

    2015-09-07

    Strained InGaN/GaN core-shell nanowires (NWs) are promising candidates for solid state lighting applications due to their superior properties compared to planar films. NW based devices consist of multiple functional layers, which sum up to many hundred nanometers in thickness, that can uniquely be accessed in a non-destructive fashion by hard X-rays. Here, we present a detailed nanoscale strain mapping performed on a single, 400 nm thick and 2 μm long core-shell InGaN/GaN nanowire with an x-ray beam focused down to 100 nm. We observe an inhomogeneous strain distribution caused by the asymmetric strain relaxation in the shell. One side of the InGaN shell was fully strained, whereas the other side and the top part were relaxed. Additionally, tilt and strain gradients were determined at the interface with the substrate.

  18. Combined total body X-ray irradiation and total skin electron beam radiotherapy with an improved technique for mycosis fungoides

    International Nuclear Information System (INIS)

    Twelve consecutive patients with advanced stage mycosis fungoides (MF) were treated with combined total body X ray irradiation (TBI) and total skin electron beam radiotherapy (EBRT). Six had generalized plaque disease and dermatopathic nodes, three had tumor stage disease and node biopsy positive for mycosis fungoides, and three had erythroderma/Sezary syndrome. The treatment regimen consisted of split course total body X ray irradiation, given in twice weekly 15 cGy fractions to 75 cGy, then total skin electron beam radiation therapy given in once weekly 400 cGy fractions to a total dose of 2400 cGy. Underdosed areas and areas of greatest initial involvement were boosted 400 cGy twice weekly for an additional 1200 cGy. This was followed by a second course of total body X ray irradiation, to a total dose of 150 cGy. The total skin electron beam radiotherapy technique is a modification of an established six position EBRT technique for mycosis fungoides. Measurements to characterize the beam with and without a lexan scattering plate, demonstrated that the combination of no-plate beams produced better dose uniformity with a much higher dose rate. This improved technique is particularly advantageous for elderly and/or frail patients. Nine (75%) of the 12 patients achieved complete response (CR). The other three had significant improvement with greater than 80% clearing of their disease and resolution of symptoms. All six patients with generalized plaque disease achieved complete response and remained free of disease from 2 to 16 months. Two of three node positive patients also achieved complete response; one, with massive biopsy-documented mycosis fungoides nodal disease and deep open tumors, remained relapse-free over 2 years. Only one of the three patients with erythroderma/Sezary syndrome achieved a complete response, which was short lived

  19. Combined total body X-ray irradiation and total skin electron beam radiotherapy with an improved technique for mycosis fungoides

    Energy Technology Data Exchange (ETDEWEB)

    Halberg, F.E.; Fu, K.K.; Weaver, K.A.; Zackheim, H.S.; Epstein, E.H. Jr.; Wintroub, B.U.

    1989-08-01

    Twelve consecutive patients with advanced stage mycosis fungoides (MF) were treated with combined total body X ray irradiation (TBI) and total skin electron beam radiotherapy (EBRT). Six had generalized plaque disease and dermatopathic nodes, three had tumor stage disease and node biopsy positive for mycosis fungoides, and three had erythroderma/Sezary syndrome. The treatment regimen consisted of split course total body X ray irradiation, given in twice weekly 15 cGy fractions to 75 cGy, then total skin electron beam radiation therapy given in once weekly 400 cGy fractions to a total dose of 2400 cGy. Underdosed areas and areas of greatest initial involvement were boosted 400 cGy twice weekly for an additional 1200 cGy. This was followed by a second course of total body X ray irradiation, to a total dose of 150 cGy. The total skin electron beam radiotherapy technique is a modification of an established six position EBRT technique for mycosis fungoides. Measurements to characterize the beam with and without a lexan scattering plate, demonstrated that the combination of no-plate beams produced better dose uniformity with a much higher dose rate. This improved technique is particularly advantageous for elderly and/or frail patients. Nine (75%) of the 12 patients achieved complete response (CR). The other three had significant improvement with greater than 80% clearing of their disease and resolution of symptoms. All six patients with generalized plaque disease achieved complete response and remained free of disease from 2 to 16 months. Two of three node positive patients also achieved complete response; one, with massive biopsy-documented mycosis fungoides nodal disease and deep open tumors, remained relapse-free over 2 years. Only one of the three patients with erythroderma/Sezary syndrome achieved a complete response, which was short lived.

  20. Ensuring convergence in total-variation-based reconstruction for accurate microcalcification imaging in breast X-ray CT

    CERN Document Server

    Jørgensen, Jakob H; Pan, Xiaochuan

    2011-01-01

    Breast X-ray CT imaging is being considered in screening as an extension to mammography. As a large fraction of the population will be exposed to radiation, low-dose imaging is essential. Iterative image reconstruction based on solving an optimization problem, such as Total-Variation minimization, shows potential for reconstruction from sparse-view data. For iterative methods it is important to ensure convergence to an accurate solution, since important image features, such as presence of microcalcifications indicating breast cancer, may not be visible in a non-converged reconstruction, and this can have clinical significance. To prevent excessively long computational times, which is a practical concern for the large image arrays in CT, it is desirable to keep the number of iterations low, while still ensuring a sufficiently accurate reconstruction for the specific imaging task. This motivates the study of accurate convergence criteria for iterative image reconstruction. In simulation studies with a realistic...

  1. Contrast-enhanced X-ray detection of breast microcalcifications in a murine model using targeted gold nanoparticles.

    Science.gov (United States)

    Cole, Lisa E; Vargo-Gogola, Tracy; Roeder, Ryan K

    2014-07-22

    Microcalcifications are deposits of hydroxyapatite (HA) mineral within breast tissue and the most common abnormality detected by mammography when screening for breast cancer due to exhibiting greater X-ray attenuation than the surrounding tissue. However, the detection of microcalcifications is limited by the sensitivity and specificity of mammography. Therefore, the objective of this study was to investigate in vivo targeted delivery of bisphosphonate-functionalized gold nanoparticles (BP-Au NPs) for contrast-enhanced detection of microcalcifications using computed tomography (CT). A murine model was developed for precise, a priori control over the level of microcalcification burden by injecting varying concentrations of HA crystals in a Matrigel carrier into mammary glands. The measured X-ray attenuation of microcalcifications containing varying HA concentrations demonstrated that the model was reproducible and able to recapitulate varying levels of microcalcification burden, including levels undetectable by CT in the absence of contrast enhancement. After intramammary delivery, BP-Au NPs provided enhanced contrast for the detection of microcalcifications that were otherwise below the CT detection limit. BP-Au NPs targeted microcalcifications due to specific binding to HA crystal surfaces, resulting in contrast between the HA microcalcification site and surrounding tissue which was visibly apparent (∼30-135 HU) within 2 days after delivery. Therefore, targeted BP-Au NPs enabled improved sensitivity and specificity for the detection of microcalcifications. PMID:24992365

  2. Comparison between beam-stop and beam-hole array scatter correction techniques for industrial X-ray cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Schoerner, K., E-mail: karsten.schoerner.ext@siemens.co [Corporate Technology, Siemens AG, 81739 Muenchen (Germany); Physik-Department, Technische Universitaet Muenchen, 85748 Garching (Germany); Goldammer, M.; Stephan, J. [Corporate Technology, Siemens AG, 81739 Muenchen (Germany)

    2011-02-01

    Research highlights: {yields} We propose a scatter correction method employing a beam-hole array. {yields} Beam-hole and beam-stop array techniques are compared in respect of geometric and scattering properties. {yields} The beam-hole array method reduces overall scattering compared to a beam-stop array. {yields} Application of the beam-hole array method is successfully demonstrated for a CT of ceramic specimen. -- Abstract: In industrial X-ray cone-beam computed tomography, the inspection of large-scale samples is important because of increasing demands on their quality and long-term mechanical resilience. Large-scale samples, for example made of aluminum or iron, are strongly scattering X-rays. Scattered radiation leads to artifacts such as cupping, streaks, and a reduction in contrast in the reconstructed CT-volume. We propose a scatter correction method based on sampling primary signals by employing a beam-hole array (BHA). In this indirect method, a scatter estimate is calculated by subtraction of the sampled primary signal from the total signal, the latter taken from an image where the BHA is absent. This technique is considered complementary to the better known beam-stop array (BSA) method. The two scatter estimation methods are compared here with respect to geometric effects, scatter-to-total ratio and practicability. Scatter estimation with the BHA method yields more accurate scatter estimates in off-centered regions, and a lower scatter-to-total ratio in critical image regions where the primary signal is very low. Scatter correction with the proposed BHA method is then applied to a ceramic specimen from power generation technologies. In the reconstructed CT volume, cupping almost completely vanishes and contrast is enhanced significantly.

  3. X-ray and ultrasound semiotics of mucinous carcinoma of the breast

    Directory of Open Access Journals (Sweden)

    K. A. Lesko

    2013-01-01

    Full Text Available The article describes the main epidemiological, clinical and morphological diagnostic features of one of the rare breast cancer form – mucinous carcinoma of the breast. Current scientific data are followed by the results of own research the 9-year period of research.Authors draw attention to the very complex radiology peculiarities of the mucinous carcinoma of the breast.

  4. Pulse-by-pulse multi-beam-line operation for x-ray free-electron lasers

    Science.gov (United States)

    Hara, Toru; Fukami, Kenji; Inagaki, Takahiro; Kawaguchi, Hideaki; Kinjo, Ryota; Kondo, Chikara; Otake, Yuji; Tajiri, Yasuyuki; Takebe, Hideki; Togawa, Kazuaki; Yoshino, Tatsuya; Tanaka, Hitoshi; Ishikawa, Tetsuya

    2016-02-01

    The parallel operation of plural undulator beam lines is an important means of improving the efficiency and usability of x-ray free-electron laser facilities. After the installation of a second undulator beam line (BL2) at SPring-8 Angstrom compact free-electron laser (SACLA), pulse-by-pulse switching between two beam lines was tested using kicker and dc twin-septum magnets. To maintain a compact size, all undulator beam lines at SACLA are designed to be placed within the same undulator hall located downstream of the accelerator. In order to ensure broad tunability of the laser wavelength, the electron bunches are accelerated to different beam energies optimized for the wavelengths of each beam line. In the demonstration, the 30 Hz electron beam was alternately deflected to two beam lines and simultaneous lasing was achieved with 15 Hz at each beam line. Since the electron beam was deflected twice by 3° in a dogleg to BL2, the coherent synchrotron radiation (CSR) effects became non-negligible. Currently in a wavelength range of 4-10 keV, a laser pulse energy of 100 - 150 μ J can be obtained with a reduced peak current of around 1 kA by alleviating the CSR effects. This paper reports the results and operational issues related to the multi-beam-line operation of SACLA.

  5. Characterization of a free-air ionization chamber in direct X-ray beams as used in mammography

    International Nuclear Information System (INIS)

    At this work stability and characterization tests were undertaken on a Victoreen free-air ionization chamber, model 481. The tests were realized using direct X-ray beams as a contribution for its establishment as a primary standard system of the quantity air kerma. The characterization tests were: saturation curve, ion collection efficiency, polarity effect, response linearity with the air kerma rate and response linearity with the chamber volume variation. The ion collection efficiency allowed the determination of the ion recombination factor. Most of the test results showed agreement with the limits established by international standards. Furthermore, the air attenuation factors for the mammography beams with aluminum and molybdenum filters were obtained. The factors for photon transmission and scattering at the diaphragm edges were also determined for mammography beams with aluminum filter and for the standard beam with molybdenum filter. (author)

  6. Methods for assisting recovery of damaged brain and spinal cord using arrays of X-ray microplanar beams

    Energy Technology Data Exchange (ETDEWEB)

    Dilmanian, F. Avraham; McDonald, III, John W.

    2007-01-02

    A method of assisting recovery of an injury site of brain or spinal cord injury includes providing a therapeutic dose of X-ray radiation to the injury site through an array of parallel microplanar beams. The dose at least temporarily removes regeneration inhibitors from the irradiated regions. Substantially unirradiated cells surviving between the microplanar beams migrate to the in-beam irradiated portion and assist in recovery. The dose may be administered in dose fractions over several sessions, separated in time, using angle-variable intersecting microbeam arrays (AVIMA). Additional doses may be administered by varying the orientation of the microplanar beams. The method may be enhanced by injecting stem cells into the injury site.

  7. Methods for assisting recovery of damaged brain and spinal cord using arrays of X-Ray microplanar beams

    Science.gov (United States)

    Dilmanian, F. Avraham; McDonald, III, John W.

    2007-12-04

    A method of assisting recovery of an injury site of brain or spinal cord injury includes providing a therapeutic dose of X-ray radiation to the injury site through an array of parallel microplanar beams. The dose at least temporarily removes regeneration inhibitors from the irradiated regions. Substantially unirradiated cells surviving between the microplanar beams migrate to the in-beam irradiated portion and assist in recovery. The dose may be administered in dose fractions over several sessions, separated in time, using angle-variable intersecting microbeam arrays (AVIMA). Additional doses may be administered by varying the orientation of the microplanar beams. The method may be enhanced by injecting stem cells into the injury site.

  8. Theoretical evaluation of induced radioactivity in food products by electron — or X-ray beam sterilization

    Science.gov (United States)

    Leboutet, H.; Aucouturier, J.

    We evaluate first the energy density for electrons or X-ray beams necessary to produce a reference level of 1 kilogray at the maximum of dose, as a function of energy, for electrons and bremsstrahlung photons ( BX rays), based on experimental data obtained on radio-therapy beams, from 4 to 32 MeV, and irradiation beams from production plant CARIC. Then from the production of neutrons on the tungsten target and from (γ n) reactions on the deuterium content of the irradiated food, the slowing down and capture of these neutrons is estimated. Radioisotopes can be produced by (γ n) reactions on iodine, and to a lesser extent on tin, lead, barium, etc., but the major contribution is neutron activation, where the more critical elements are sodium, chlorine, potassium, magnesium, phosphorus, calcium. Induced activity is compared to natural activity coming from potassium 40, carbon 14 and radium, contained in all foods. We conclude that for electrons up to 1 Mrad the induced activity remains of the order of a few percent of natural activity, for energies below 10-11 MeV. Bremsstrahlung X-ray irradiations can give comparable levels as soon as the energy of the generating electron beam is above 3 MeV. The induced activity decays within a few days. There is only a small increase of induced activity as the energy changes from 5 to 10 MeV, for the same total applied dose.

  9. Trace elements as tumor biomarkers and prognostic factors in breast cancer: a study through energy dispersive x-ray fluorescence

    Directory of Open Access Journals (Sweden)

    Silva Marina P

    2012-07-01

    Full Text Available Abstract Background The application and better understanding of traditional and new breast tumor biomarkers and prognostic factors are increasing due to the fact that they are able to identify individuals at high risk of breast cancer, who may benefit from preventive interventions. Also, biomarkers can make possible for physicians to design an individualized treatment for each patient. Previous studies showed that trace elements (TEs determined by X-Ray Fluorescence (XRF techniques are found in significantly higher concentrations in neoplastic breast tissues (malignant and benign when compared with normal tissues. The aim of this work was to evaluate the potential of TEs, determined by the use of the Energy Dispersive X-Ray Fluorescence (EDXRF technique, as biomarkers and prognostic factors in breast cancer. Methods By using EDXRF, we determined Ca, Fe, Cu, and Zn trace elements concentrations in 106 samples of normal and breast cancer tissues. Cut-off values for each TE were determined through Receiver Operating Characteristic (ROC analysis from the TEs distributions. These values were used to set the positive or negative expression. This expression was subsequently correlated with clinical prognostic factors through Fisher’s exact test and chi-square test. Kaplan Meier survival curves were also evaluated to assess the effect of the expression of TEs in the overall patient survival. Results Concentrations of TEs are higher in neoplastic tissues (malignant and benign when compared with normal tissues. Results from ROC analysis showed that TEs can be considered a tumor biomarker because, after establishing a cut-off value, it was possible to classify different tissues as normal or neoplastic, as well as different types of cancer. The expression of TEs was found statistically correlated with age and menstrual status. The survival curves estimated by the Kaplan-Meier method showed that patients with positive expression for Cu presented a poor

  10. The development of a postal method to assess X-ray beam parameters and image quality in dental radiology

    International Nuclear Information System (INIS)

    Intraoral radiographs are an extremely valuable diagnostic tool in dentistry. Radiography permits the early detection and diagnosis of dental disease and consequently is used extensively. However, public concern about radiation exposure has increased in recent times. This concern is reflected in national and international law, to the extent that, the basic principles of radiological protection, that is, justification, optimisation and dose limitation are written into law. Furthermore, in Ireland, the regulations, as outlined in the Code of Practice for Radiological Protection in Dentistry, require intraoral dental X-ray machines to perform to certain standards. A report of a direct survey of 164 intraoral dental X-ray machines is given in this study. The survey covered mechanical, electrical as well as radiation safety. Inadequacies with respect to focus to skin distance and timer accuracy were found in 45% and 42% of the machines surveyed. Ninety eight machines were assessed for electrical safety in which 48% were found to be unsafe. The results indicate that a complete assessment of the performance of dental X-ray units in Ireland is required. However, as there are in excess of 800 dental X-ray machines located throughout the country, such an assessment would be very costly for the regulatory authority. The development of a postal method for the assessment of the performance of dental X-ray machines is described in this study. This postal method provides information on the kV, total filtration, beam width and timer linearity and is undertaken by means of a penetrameter and film envelopes for exposure to the X-ray set under examination, together with a questionnaire that requests information on environment in which the machine is located. Using this method an accuracy of +-5% of the actual value was achieved in the measurement of kVp. The penetrameter was also used to assess whether or not the filtration of a particular machine complies with the regulations. This

  11. New x-ray pink-beam profile monitor system for the SPring-8 beamline front-end.

    Science.gov (United States)

    Takahashi, Sunao; Kudo, Togo; Sano, Mutsumi; Watanabe, Atsuo; Tajiri, Hiroo

    2016-08-01

    A new beam profile monitoring system for the small X-ray beam exiting from the SPring-8 front-end was developed and tested at BL13XU. This system is intended as a screen monitor and also as a position monitor even at beam currents of 100 mA by using photoluminescence of a chemical vapor deposition-grown diamond film. To cope with the challenge that the spatial distribution of the photoluminescence in the vertical direction is too flat to detect the beam centroid within a limited narrow aperture, a filter was installed that absorbs the fundamental harmonic concentrated in the beam center, which resulted in "de-flattening" of the vertical distribution. For the measurement, the filter crossed the photon beam vertically at high speed to withstand the intense heat flux of the undulator pink-beam. A transient thermal analysis, which can simulate the movement of the irradiation position with time, was conducted to determine the appropriate configuration and the required moving speed of the filter to avoid accidental melting. In a demonstration experiment, the vertically separated beam profile could be successfully observed for a 0.8 × 0.8 mm(2) beam shaped by an XY slit and with a fundamental energy of 18.48 keV. The vertical beam centroid could be detected with a resolution of less than 0.1 mm. PMID:27587104

  12. Investigation of the concave spherical surface quality by a sliding X-ray beam

    International Nuclear Information System (INIS)

    A new approach to the investigation of the quality of concave spherical surfaces has been proposed and experimentally implemented for the first time. This approach is based on the whispering gallery effect in the X-ray wavelength range. One distinctive feature of the technique proposed is the application of algorithms of computed tomography for locating surface defects and describing their shape. It is noteworthy that the sizes of surfaces and their radius of curvature are not restrictive factors for this analysis.

  13. An expanded X-ray beam facility (BEaTriX) to test the modular elements of the ATHENA optics

    CERN Document Server

    Spiga, D; Bonnini, E; Buffagni, E; Ferrari, C; Pareschi, G; Tagliaferri, G

    2015-01-01

    Future large X-ray observatories like ATHENA will be equipped with very large optics, obtained by assembling modular optical elements, named X-ray Optical Units (XOU) based on the technology of either Silicon Pore Optics or Slumped Glass Optics. In both cases, the final quality of the modular optic (a 5 arcsec HEW requirement for ATHENA) is determined by the accuracy alignment of the XOUs within the assembly, but also by the angular resolution of the individual XOU. This is affected by the mirror shape accuracy, its surface roughness, and the mutual alignment of the mirrors within the XOU itself. Because of the large number of XOUs to be produced, quality tests need to be routinely done to select the most performing stacked blocks, to be integrated into the final optic. In addition to the usual metrology based on profile and roughness measurements, a direct measurement with a broad, parallel, collimated and uniform X- ray beam would be the most reliable test, without the need of a focal spot reconstruction as...

  14. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    Science.gov (United States)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  15. A versatile facility for the calibration of X-ray polarimeters with polarized and unpolarized controlled beams

    CERN Document Server

    Muleri, Fabio; Bellazzini, Ronaldo; Brez, Alessandro; Costa, Enrico; Frutti, Massimo; Mastropietro, Marcello; Morelli, Ennio; Pinchera, Michele; Rubini, Alda; Spandre, Gloria

    2008-01-01

    We devised and built a versatile facility for the calibration of the next generation X-ray polarimeters with unpolarized and polarized radiation. The former is produced at 5.9 keV by means of a Fe55 radioactive source or by X-ray tubes, while the latter is obtained by Bragg diffraction at nearly 45 degrees. Crystals tuned with the emission lines of X-ray tubes with molybdenum, rhodium, calcium and titanium anodes are employed for the efficient production of highly polarized photons at 2.29, 2.69, 3.69 and 4.51 keV respectively. Moreover the continuum emission is exploited for the production of polarized photons at 1.65 keV and 2.04 keV and at energies corresponding to the higher orders of diffraction. The photons are collimated by means of interchangeable capillary plates and diaphragms, allowing a trade-off between collimation and high fluxes. The direction of the beam is accurately arranged by means of high precision motorized stages, controlled via computer so that long and automatic measurements can be do...

  16. Patient dose simulations for scanning-beam digital x-ray tomosynthesis of the lungs

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Geoff; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Yoon, Sungwon [Varian Medical Systems, Palo Alto, California 94304 (United States); Krishna, Ganesh [Palo Alto Medical Foundation, Mountain View, California 94040 (United States); Wilfley, Brian [Triple Ring Technologies, Inc., Newark, California 94560 (United States)

    2013-11-15

    location. When tumor SNR is held constant (i.e., x-ray fluence is scaled appropriately), SBDX gives 2–10 times less dose than fluoroscopy for the same conditions within the typical range of patient locations. The relative position of the patient (as a percent of SDD) has a much more significant impact on dose than either SDD or patient position. The patient position providing the minimum dose for a given tumor SNR and SDD is approximately the same as the position of maximum tomographic angle.Conclusions: SBDX offers a significant dose advantage over currently used C-arm fluoroscopy. The patient location with lowest dose coincides with the location of maximum tomographic angle. In order to provide adequate space for the patient and for the pulmonologists’ equipment, a SDD of 100 cm is recommended.

  17. Oxidation of nanostructured Ti films produced by low energy cluster beam deposition: An X-ray Photoelectron Spectroscopy characterization

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Monica de, E-mail: desimone@tasc.infm.it [CNR-IOM Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy); Snidero, Elena [CNR-IOM Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy); Coreno, Marcello [CNR-IMIP, c/o Laboratorio TASC Area Science Park Basovizza, 34149 Trieste (Italy); Sincrotrone Trieste ScpA, Area Science Park Basovizza, 34149 Trieste (Italy); Bongiorno, Gero [Fondazione Filarete, v.le Ortles 22/4, 20139 Milano (Italy); Giorgetti, Luca [Istituto Europeo di Oncologia, Dip. di Oncologia Sperimentale, Via Adamello 16, 20139, Milano (Italy); Amati, Matteo [Sincrotrone Trieste ScpA, Area Science Park Basovizza, 34149 Trieste (Italy); Cepek, Cinzia [CNR-IOM Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy)

    2012-05-01

    We used in-situ X-ray Photoelectron Spectroscopy (XPS) to study the oxidation process of a cluster-assembled metallic titanium film exposed to molecular oxygen at room temperature. The nanostructured film has been grown on a Si(111) substrate, in ultra high vacuum conditions, by coupling a supersonic cluster beam deposition system with an XPS experimental chamber. Our results show that upon in-situ oxygen exposure Ti{sup 3+} is the first oxidation state observed, followed by Ti{sup 4+}, whereas Ti{sup 2+} is practically absent during the whole process. Our results compare well with the existing literature on Ti films produced using other techniques.

  18. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Intra-oral dental X-ray apparatus for panoramic radiography is described in detail. It comprises a tubular target carrier supporting at its distal end a target with an inclined forward face. Image definition is improved by positioning in the path of the X-rays a window of X-ray transmitting ceramic material, e.g. 90% oxide of Be, or Al, 7% Si02. The target carrier forms a probe which can be positioned in the patient's mouth. X-rays are directed forwardly and laterally of the target to an X-ray film positioned externally. The probe is provided with a detachable sleeve having V-form arms of X-ray opaque material which serve to depress the tongue out of the radiation path and also shield the roof of the mouth and other regions of the head from the X-ray pattern. A cylindrical lead shield defines the X-ray beam angle. (author)

  19. Studies for the development of a micro-focus monochromatic x-ray source with making use of a highly charged heavy ion beam

    International Nuclear Information System (INIS)

    We propose a new scheme for a micro-focus monochromatic X-ray source using a focused highly charged ion beam colliding with a solid surface. When highly charged ion approaches a surface, many electrons are captured into the ion and the so-called hollow atom is produced. The hollow atom will decay by emitting X-rays before and after hitting the surface. Such X-rays do not contain any contribution from bremsstrahlung, so that monochromatic X-rays can be obtained by using proper filters. For the first step of realizing the proposed scheme, an ion focusing system with a glass capillary has been developed. In order to study the monochromaticity of the emission, X-ray spectra from hollow atoms produced in the collisions between highly charged heavy ions and several surfaces have been observed. (author)

  20. High-Flux Femtosecond X-Ray Emission from Controlled Generation of Annular Electron Beams in a Laser Wakefield Accelerator.

    Science.gov (United States)

    Zhao, T Z; Behm, K; Dong, C F; Davoine, X; Kalmykov, S Y; Petrov, V; Chvykov, V; Cummings, P; Hou, B; Maksimchuk, A; Nees, J A; Yanovsky, V; Thomas, A G R; Krushelnick, K

    2016-08-26

    Annular quasimonoenergetic electron beams with a mean energy in the range 200-400 MeV and charge on the order of several picocoulombs were generated in a laser wakefield accelerator and subsequently accelerated using a plasma afterburner in a two-stage gas cell. Generation of these beams is associated with injection occurring on the density down ramp between the stages. This well-localized injection produces a bunch of electrons performing coherent betatron oscillations in the wakefield, resulting in a significant increase in the x-ray yield. Annular electron distributions are detected in 40% of shots under optimal conditions. Simultaneous control of the pulse duration and frequency chirp enables optimization of both the energy and the energy spread of the annular beam and boosts the radiant energy per unit charge by almost an order of magnitude. These well-defined annular distributions of electrons are a promising source of high-brightness laser plasma-based x rays. PMID:27610860

  1. Study on energetic ion beam irradiation induced magnetism and lattice structure by using synchrotron X-ray

    International Nuclear Information System (INIS)

    FeRh alloy has peculiar magnetic properties such that at temperatures slightly above room temperature, it performs first-order transition to the ferromagnetic property of high-temperature phase from the antiferromagnetic property of constant-temperature phase without changing its crystal structure. The measurements based on extended X-ray absorption fine structure (EXAFS), X-ray magnetic circular dichroism (XMCD), in particular photoelectron emission microscope (PEEM), which use synchrotron radiation, clarified that the two-dimensional micro-magnetic pattern of micrometer scale with various induced shapes and magnetization sizes were formed on the FeRh surface with good control. This study is one of the quantum beam fusion researches to modify and control the properties of substances with ion beams, and evaluate the properties with synchrotron radiation. In the future, the authors will clarify the ion beam irradiation effects of metallic materials other than FeRh alloys and ceramic materials based on synchrotron radiation measurement, and thus elucidate the basic processes that will lead to the development of material processing technology. (A.O.)

  2. Dual resolution cone beam breast CT: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Chen Lingyun; Shen Youtao; Lai, Chao-Jen; Han Tao; Zhong Yuncheng; Ge Shuaiping; Liu Xinming; Wang Tianpeng; Yang, Wei T.; Whitman, Gary J.; Shaw, Chris C. [Department of Imaging Physics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009 (United States); Department of Diagnostic Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009 (United States); Department of Imaging Physics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009 (United States)

    2009-09-15

    Purpose: In this study, the authors investigated the feasibility of a dual resolution volume-of-interest (VOI) cone beam breast CT technique and compared two implementation approaches in terms of dose saving and scatter reduction. Methods: With this technique, a lead VOI mask with an opening is inserted between the x-ray source and the breast to deliver x-ray exposure to the VOI while blocking x rays outside the VOI. A CCD detector is used to collect the high resolution projection data of the VOI. Low resolution cone beam CT (CBCT) images of the entire breast, acquired with a flat panel (FP) detector, were used to calculate the projection data outside the VOI with the ray-tracing reprojection method. The Feldkamp-Davis-Kress filtered backprojection algorithm was used to reconstruct the dual resolution 3D images. Breast phantoms with 180 {mu}m and smaller microcalcifications (MCs) were imaged with both FP and FP-CCD dual resolution CBCT systems, respectively. Two approaches of implementing the dual resolution technique, breast-centered approach and VOI-centered approach, were investigated and evaluated for dose saving and scatter reduction with Monte Carlo simulation using a GEANT4 package. Results: The results showed that the breast-centered approach saved more breast absorbed dose than did VOI-centered approach with similar scatter reduction. The MCs in fatty breast phantom, which were invisible with FP CBCT scan, became visible with the FP-CCD dual resolution CBCT scan. Conclusions: These results indicate potential improvement of the image quality inside the VOI with reduced breast dose both inside and outside the VOI.

  3. 乳腺X线机检定方法研究%Study on the Test Method of Breast X-ray Machine

    Institute of Scientific and Technical Information of China (English)

    车贵甫

    2015-01-01

    乳腺X线机是临床医疗常用仪器,其性能直接关系到病人的生命安全。本文介绍了乳腺X线机的原理和相关参数的检定方法。%Breast X-ray machine is a commonly used clinical medical instrument,its performance is directly related to the patient's life and safety. This paper introduces the principle of the breast X-ray machine and the test method of related parameters.

  4. Different effects of carbon ion beams and X-rays on clonogenic survival and DNA repair in human pancreatic cancer stem-like cells

    International Nuclear Information System (INIS)

    Purpose: The effects of a carbon ion beam and X-rays on human pancreatic cancer stem-like cells were examined from the point of view of clonogenic survival and DNA repair. Materials and methods: Human pancreatic cancer stem-like cells were treated with and without carbon ion and X-ray irradiation, and then colony, spheroid and tumor formation assays as well as γH2AX foci formation assay were performed. Results: The relative biological effectiveness (RBE) values of a carbon ion beam relative to X-ray for the MIA PaCa-2 and BxPc-3 cells at the D10 values were 1.85–2.10. The ability for colony, spheroid formation, and tumorigenicity from cancer stem-like CD44+/CD24+ cells is significantly higher than that from non-cancer stem-like CD44−/CD24−cells. FACS data showed that CD44+/CD24+ cells were more highly enriched after X-rays compared to carbon ion irradiation at isoeffective doses. The RBE values for the carbon ion beam relative to X-ray at the D10 levels for CD44+/CD24+ cells were 2.0–2.19. The number of γH2AX foci in CD44−/CD24− cells was higher than that of CD44+/CD24+ cells after irradiation with either X-ray or carbon ion beam. The number of γH2AX foci in CD44+/CD24+ cells was almost the same in the early time, but it persists significantly longer in carbon ion beam irradiated cells compared to X-rays. Conclusions: Carbon ion beam has superior potential to kill pancreatic cancer stem cell-like cells, and prolonged induction of DNA damage might be one of the pivotal mechanisms of its high radiobiological effects compared to X-rays.

  5. Development of an x-ray beam line at the NSLS for studies in materials science using x-ray absorption spectroscopy: Annual progress report

    International Nuclear Information System (INIS)

    The research programs reported span virtually the entire range of condensed matter studies involving the fields of solid state physics, chemistry, electrochemistry, materials science and biochemistry. Results are discussed for various groups. Topics reported include work on amorphous chalcogenide semiconductors, particularly photostructural changes, kinetics of structural changes and rapid quenching, bond strengths, force constants and phonons. Also reported are temperature dependent EXAFS studies of bonding in high temperature alloys, amorphous systems, disordered alloys and studies of resolve electronic structure, EXAFS and XANES studies of permanent magnet systems based on Nd2Fe14B, glancing angle EXAFS study of Nb/Al and Nb/Si interfacial systems, x-ray absorption of krypton-implanted solids and high dose implants into silicon, and x-ray absorption and EXAFS studies of superconducting oxide compounds of Cu and related magnetic systems. Work is also reported on XAFS measurements on the icosahedral phase

  6. X-ray beam-shaping via deformable mirrors: analytical computation of the required mirror profile

    CERN Document Server

    Spiga, Daniele; Svetina, Cristian; Zangrando, Marco; 10.1016/j.nima.2012.10.117

    2013-01-01

    X-ray mirrors with high focusing performances are in use in both mirror mod- ules for X-ray telescopes and in synchrotron and FEL (Free Electron Laser) beamlines. A degradation of the focus sharpness arises in general from geo- metrical deformations and surface roughness, the former usually described by geometrical optics and the latter by physical optics. In general, technological developments are aimed at a very tight focusing, which requires the mirror profile to comply with the nominal shape as much as possible and to keep the roughness at a negligible level. However, a deliberate deformation of the mirror can be made to endow the focus with a desired size and distribution, via piezo actuators as done at the EIS-TIMEX beamline of FERMI@Elettra. The resulting profile can be characterized with a Long Trace Profilometer and correlated with the expected optical quality via a wavefront propagation code. However, if the roughness contribution can be neglected, the com- putation can be performed via a ray-tracin...

  7. Quasimonochromatic x-ray backlighting on the COrnell Beam Research Accelerator (COBRA) pulsed power generator

    International Nuclear Information System (INIS)

    Monochromatic x-ray backlighting has been employed with great success for imaging of plasmas with strong self-emission such as x-pinches and wire array z-pinches. However, implementation of a monochromatic backlighting system typically requires extremely high quality spherically bent crystals which are difficult to manufacture and can be prohibitively expensive. Furthermore, the crystal must have a direct line of sight to the object, which typically emits copious amounts of radiation and debris. We present a quasimonochromatic x-ray backlighting system which employs an elliptically bent mica crystal as the dispersive element. In this scheme a narrow band of continuum radiation is selected for imaging, instead of line radiation in the case of monochromatic imaging. The flat piece of mica is bent using a simple four-point bending apparatus that allows the curvature of the crystal to be adjusted in situ for imaging in the desired wavelength band. This system has the advantage that it is very cost effective, has a large aperture, and is extremely flexible. The principles of operation of the system are discussed and its performance is analyzed.

  8. Estimates of Average Glandular Dose with Auto-modes of X-ray Exposures in Digital Breast Tomosynthesis

    Directory of Open Access Journals (Sweden)

    Izdihar Kamal

    2015-05-01

    Full Text Available Objectives: The aim of this research was to examine the average glandular dose (AGD of radiation among different breast compositions of glandular and adipose tissue with auto-modes of exposure factor selection in digital breast tomosynthesis. Methods: This experimental study was carried out in the National Cancer Society, Kuala Lumpur, Malaysia, between February 2012 and February 2013 using a tomosynthesis digital mammography X-ray machine. The entrance surface air kerma and the half-value layer were determined using a 100H thermoluminescent dosimeter on 50% glandular and 50% adipose tissue (50/50 and 20% glandular and 80% adipose tissue (20/80 commercially available breast phantoms (Computerized Imaging Reference Systems, Inc., Norfolk, Virginia, USA with auto-time, auto-filter and auto-kilovolt modes. Results: The lowest AGD for the 20/80 phantom with auto-time was 2.28 milliGray (mGy for two dimension (2D and 2.48 mGy for three dimensional (3D images. The lowest AGD for the 50/50 phantom with auto-time was 0.97 mGy for 2D and 1.0 mGy for 3D. Conclusion: The AGD values for both phantoms were lower against a high kilovolt peak and the use of auto-filter mode was more practical for quick acquisition while limiting the probability of operator error.

  9. Design and Development of Ionization Chamber for Detection of X-Ray Beam AT INDUS-2 RRCAT

    Directory of Open Access Journals (Sweden)

    Nawaz Ali Sayed

    2013-02-01

    Full Text Available The goal of this paper was to design and develop a Microcontroller based data acquisition unit for detection of X-ray flux through Ionization chamber that will remotely control and monitor the ultra-low current signal detection analog module precisely. This application will be useful to measure the intensity of x-ray flux through the ionization chamber in a beam line of synchrotron radiation source which is mounted in INDUS-2. The beam line area is highly restricted because of hazardous radiation, so through this application remote interfacing provides for the ultra-low current signal detection card that can be controlled by personal computer. To design a perfect embedded system there are many issues like designing a proper PCB, to achieve the specified resolution of the ADC used in chip, code developed using any compiler should be within the limit of the memory of the microcontroller system and integrity of the devices used in the circuit. Initially explore and gain the knowledge of embedded systems by doing a small project and writing the code for the same, and gain a knowledge how the system works. Programming has done in assembly language 8051, for schematic design PCB design tool ORCAD (VERSION 9.0 use

  10. Impulsive solar X-ray bursts. III - Polarization, directivity, and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    Science.gov (United States)

    Langer, S. H.; Petrosian, V.

    1977-01-01

    The paper presents the spectrum, directivity, and state of polarization of the bremsstrahlung radiation expected from a beam of high-energy electrons spiraling along radial magnetic field lines toward the photosphere. A Monte Carlo method is then described for evaluation of the spectrum, directivity, and polarization of X-rays diffusely reflected from stellar photospheres. The accuracy of the technique is evaluated through comparison with analytic results. The calculated characteristics of the incident X-rays are used to evaluate the spectrum, directivity, and polarization of the reflected and total X-ray fluxes. The results are compared with observations.

  11. X-ray tube arrangement

    International Nuclear Information System (INIS)

    An x-ray tube is described incorporating an elongated target/ anode over which the electron beam is deflected and from which x-rays are emitted. Improved methods of monitoring and controlling the amplitude of the beam deflection are presented. (U.K.)

  12. Including the effect of molecular interference in the coherent x-ray scattering modeling in MC-GPU and PENELOPE for the study of novel breast imaging modalities

    Science.gov (United States)

    Ghammraoui, B.; Peng, R.; Suarez, I.; Bettolo, C.; Badal, A.

    2014-03-01

    Purpose: To present upgraded versions of MC-GPU and PenEASY Imaging, two open-source Monte Carlo codes for the simulation of radiographic projections and CT. The codes have been extended with the aim of studying breast imaging modalities that rely on the accurate modeling of coherent x-ray scatter. Methods: The simulation codes were extended to account for the effect of molecular interference in coherent scattering using experimentally measured molecular interference functions. The validity of the new model was tested experimentally using the Energy Dispersive X-Ray Diffraction (EDXRD) technique with a polychromatic x-ray source and an energy-resolved Germanium detector at a fixed scattering angle. Experiments and simulations of a full field digital mammography system with and without a 1D focused antiscatter grid were conducted for additional validation. The modified MC-GPU code was also used to examine the possibility of characterizing breast cancer within a mathematical breast phantom using the EDXRD technique. Results: The measured EDXRD spectra were correctly reproduced by the simulation with the modified code while the previous code using the Independent Atomic Approximation led to large errors in the predicted diffraction spectra. There was good agreement between the simulated and measured rejection factor for the 1D focused antiscatter grid with both models. The simulation study in a whole breast showed that the x-ray scattering profiles of adipose, fibrosis, cancer and benign tissues are differentiable. Conclusion: MC-GPU and PENELOPE were successfully extended and validated for accurate modeling of coherent x-ray scatter. The EDXRD technique with pencil-cone geometry in a whole breast was investigated by a simulation study and it was concluded that this technique has potential to characterize breast cancer lesions.

  13. Devices for high precision x-ray beam intensity monitoring on BSRF

    CERN Document Server

    Hua-Peng, LI; Zhao, Yi-Dong; Zheng, Lei; Liu, Shu-Hu; Zhao, Xiao-Liang; Zhao, Ya-Shuai

    2016-01-01

    Synchrotron radiation with the characteristic of high brilliance, high level of polarization, high collimation, low emittance and wide tunability in energy has been used as a standard source in metrology(1, 2). For a decade, lots of calibration work have been done on 4B7A in Beijing Synchrotron Radiation Facility (BSRF) (3, 4). For the calibration process, a high-precision online monitor is indispensable. To control the uncertainty under 0.1%, we studied different sizes parallel ion chambers with rare-gas and used different collecting methods to monitor the x-ray intensity of the beamline. Two methods to collect the signal of the ion chambers: reading the current directly with electrometer or signal amplification to collect the counts were compared.

  14. X-ray Fluorescence Sectioning

    CERN Document Server

    Cong, Wenxiang

    2012-01-01

    In this paper, we propose an x-ray fluorescence imaging system for elemental analysis. The key idea is what we call "x-ray fluorescence sectioning". Specifically, a slit collimator in front of an x-ray tube is used to shape x-rays into a fan-beam to illuminate a planar section of an object. Then, relevant elements such as gold nanoparticles on the fan-beam plane are excited to generate x-ray fluorescence signals. One or more 2D spectral detectors are placed to face the fan-beam plane and directly measure x-ray fluorescence data. Detector elements are so collimated that each element only sees a unique area element on the fan-beam plane and records the x-ray fluorescence signal accordingly. The measured 2D x-ray fluorescence data can be refined in reference to the attenuation characteristics of the object and the divergence of the beam for accurate elemental mapping. This x-ray fluorescence sectioning system promises fast fluorescence tomographic imaging without a complex inverse procedure. The design can be ad...

  15. Mean glandular dose estimation using MCNPX for a digital breast tomosynthesis system with tungsten/aluminum and tungsten/aluminum+silver x-ray anode-filter combinations

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Andy K. W.; Darambara, Dimitra G.; Stewart, Alexander; Gunn, Spencer; Bullard, Edward [Joint Department of Physics, Institute of Cancer Research and The Royal Marsden Hospital, Fulham Road, London SW3 6JJ (United Kingdom); Dexela Ltd., 1 Water Lane, Camden Town, London NW1 8NZ (United Kingdom)

    2008-12-15

    Breast cancer screening with x-ray mammography, using one or two projection images of the breast, is an indispensible tool in the early detection of breast cancer in women. Digital breast tomosynthesis (DBT) is a 3D imaging technique that promises higher sensitivity and specificity in breast cancer screening at a similar radiation dose to conventional two-view screening mammography. In DBT a 3D volume is reconstructed with anisotropic voxels from a limited number of x-ray projection images acquired over a limited angle. Although the benefit of early cancer detection through screening mammography outweighs the potential risks associated with radiation, the radiation dosage to women in terms of mean glandular dose (MGD) is carefully monitored. This work studies the MGD arising from a prototype DBT system under various parameters. Two anode/filter combinations (W/Al and W/Al+Ag) were investigated; the tube potential ranges from 20 to 50 kVp; and the breast size varied between 4 and 10 cm chest wall-to-nipple distance and between 3 and 7 cm compressed breast thickness. The dosimetric effect of breast positioning with respect to the imaging detector was also reviewed. It was found that the position of the breast can affect the MGD by as much as 5% to 13% depending on the breast size.

  16. 50 μm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis

    Science.gov (United States)

    Zhao, C.; Konstantinidis, A. C.; Zheng, Y.; Anaxagoras, T.; Speller, R. D.; Kanicki, J.

    2015-12-01

    Wafer-scale CMOS active pixel sensors (APSs) have been developed recently for x-ray imaging applications. The small pixel pitch and low noise are very promising properties for medical imaging applications such as digital breast tomosynthesis (DBT). In this work, we evaluated experimentally and through modeling the imaging properties of a 50 μm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). A modified cascaded system model was developed for CMOS APS x-ray detectors by taking into account the device nonlinear signal and noise properties. The imaging properties such as modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) were extracted from both measurements and the nonlinear cascaded system analysis. The results show that the DynAMITe x-ray detector achieves a high spatial resolution of 10 mm-1 and a DQE of around 0.5 at spatial frequencies  microcalcifications at various mean glandular dose (MGD). For an average breast (5 cm thickness, 50% glandular fraction), 165 μm microcalcifications can be distinguished at a MGD of 27% lower than the clinical value (~1.3 mGy). To detect 100 μm microcalcifications, further optimizations of the CMOS APS x-ray detector, image aquisition geometry and image reconstruction techniques should be considered.

  17. Complete blood counts, liver function tests, and chest x-rays as routine screening in early-stage breast cancer: value added or just cost?

    Science.gov (United States)

    Louie, Raphael J; Tonneson, Jennifer E; Gowarty, Minda; Goodney, Philip P; Barth, Richard J; Rosenkranz, Kari M

    2015-11-01

    Current National Comprehensive Cancer Network guidelines for breast cancer staging include pre-treatment complete blood count (CBC) and liver function tests (LFT) to screen for occult metastatic disease. To date, the relevance of these tests in detecting metastatic disease in asymptomatic women with early-stage breast cancer (Stage I/II) has not been demonstrated. Although chest x-rays are no longer recommended in the NCCN guidelines, many centers continue to include this imaging as part of their screening process. We aim to determine the clinical and financial impact of these labs and x-rays in the evaluation of early-stage breast cancer patients. A single institution IRB-approved retrospective chart review was conducted of patients with biopsy-proven invasive breast cancer treated from January 1, 2005–December 31, 2009. We collected patient demographics, clinical and pathologic staging, chest x-ray, CBC, and LFT results at the time of referral. Patients were stratified according to radiographic stage at the time of diagnosis. We obtained Medicare reimbursement fees for cost analysis. From 2005 to 2009, 1609 patients with biopsy-proven invasive breast cancer were treated at our institution. Of the 1082 patients with radiographic stage I/II disease, 27.3 % of patients had abnormal CBCs. No additional testing was performed to evaluate these abnormalities. In the early-stage population, 24.7 % of patients had elevated LFTs, resulting in 84 additional imaging studies. No metastatic disease was detected. The cost of CBC, LFTs and chest x-rays was $110.20 per patient, totaling $106,410.99. Additional tests prompted by abnormal results cost $58,143.30 over the five-year period. We found that pre-treatment CBCs, LFTs, and chest x-rays did not improve detection of occult metastatic disease but resulted in additional financial costs. Avoiding routine ordering of these tests would save the US healthcare system $25.7 million annually.

  18. EXACTRAC x-ray and beam isocenters--What's the difference?

    Energy Technology Data Exchange (ETDEWEB)

    Tideman Arp, Dennis; Carl, Jesper [Department of Medical Physics, Oncology, Aalborg Hospital, Aarhus University Hospital, Hobrovej 18-22, DK-9100 Aalborg (Denmark)

    2012-03-15

    Purpose: To evaluate the geometric accuracy of the isocenter of an image-guidance system, as implemented in the exactrac system from brainlab, relative to the linear accelerator radiation isocenter. Subsequently to correct the x-ray isocenter of the exactrac system for any geometric discrepancies between the two isocenters. Methods: Five Varian linear accelerators all equipped with electronic imaging devices and exactrac with robotics from brainlab were evaluated. A commercially available Winston-Lutz phantom and an in-house made adjustable base were used in the setup. The electronic portal imaging device of the linear accelerators was used to acquire MV-images at various gantry angles. Stereoscopic pairs of x-ray images were acquired using the exactrac system. The deviation between the position of the external laser isocenter and the exactrac isocenter was evaluated using the commercial software of the exactrac system. In-house produced software was used to analyze the MV-images and evaluate the deviation between the external laser isocenter and the radiation isocenter of the linear accelerator. Subsequently, the deviation between the radiation isocenter and the isocenter of the exactrac system was calculated. A new method of calibrating the isocenter of the exactrac system was applied to reduce the deviations between the radiation isocenter and the exactrac isocenter. Results: To evaluate the geometric accuracy a 3D deviation vector was calculated for each relative isocenter position. The 3D deviation between the external laser isocenter and the isocenter of the exactrac system varied from 0.21 to 0.42 mm. The 3D deviation between the external laser isocenter and the linac radiation isocenter ranged from 0.37 to 0.83 mm. The 3D deviation between the radiation isocenter and the isocenter of the exactrac system ranged from 0.31 to 1.07 mm. Using the new method of calibrating the exactrac isocenter the 3D deviation of one linac was reduced from 0.90 to 0.23 mm. The

  19. The development and operation of a method for the remote determination of X-ray beam parameters used in dental radiography

    International Nuclear Information System (INIS)

    The method described is a part of the Dental Monitoring Service operated by the Board in the UK for the assessment of radiation protection in dental practice. This postal service, which provides a comprehensive survey of dental X-ray sets and radiographic procedures, is undertaken by means of a questionnaire, film cassettes for exposure to the X-ray set and a personal monitoring component to check operator doses. The film cassettes and the methods by which the X-ray beam parameters are obtained are described in detail. The cassettes use radiation monitoring film to realise, by means of measurements of relative transmission through selected copper filters, the extended dynamic range of exposure necessary for accurate indication of the operating kilovoltage and total beam filtration. The standard of the X-ray unit with regard to the relevant regulations and code of practice can then be assessed, and, from the values of radiation dose determined for chosen exposure times, exposure settings for optimum quality radiographs can be recommended where appropriate. Although designed primarily for dental X-ray units, use of the film cassette package may be extended, with suitable calibration, to general diagnostic X-ray survey measurements. (author)

  20. Performance of a ruthenium beam separator used to separate soft x rays from light generated by a high-order harmonic light source.

    Science.gov (United States)

    Ichimaru, Satoshi; Hatayama, Masatoshi; Ohchi, Tadayuki; Gullikson, Eric M; Oku, Satoshi

    2016-02-10

    We describe the design and fabrication of a ruthenium beam separator used to simultaneously attenuate infrared light and reflect soft x rays. Measurements in the infrared and soft x-ray regions showed the beam separator to have a reflectivity of 50%-85% in the wavelength region from 6 to 10 nm at a grazing incidence angle of 7.5 deg and 4.3% at 800 nm and the same angle of grazing incidence, indicating that the amount of attenuation is 0.05-0.09. These results show that this beam separator could provide an effective means for separating IR light from soft x rays in light generated by high-order harmonic generation sources. PMID:26906363

  1. Area X-ray or UV camera system for high-intensity beams

    Science.gov (United States)

    Chapman, Henry N.; Bajt, Sasa; Spiller, Eberhard A.; Hau-Riege, Stefan , Marchesini, Stefano

    2010-03-02

    A system in one embodiment includes a source for directing a beam of radiation at a sample; a multilayer mirror having a face oriented at an angle of less than 90 degrees from an axis of the beam from the source, the mirror reflecting at least a portion of the radiation after the beam encounters a sample; and a pixellated detector for detecting radiation reflected by the mirror. A method in a further embodiment includes directing a beam of radiation at a sample; reflecting at least some of the radiation diffracted by the sample; not reflecting at least a majority of the radiation that is not diffracted by the sample; and detecting at least some of the reflected radiation. A method in yet another embodiment includes directing a beam of radiation at a sample; reflecting at least some of the radiation diffracted by the sample using a multilayer mirror; and detecting at least some of the reflected radiation.

  2. A new method for x-ray scatter correction: first assessment on a cone-beam CT experimental setup

    Energy Technology Data Exchange (ETDEWEB)

    Rinkel, J [CEA-LETI MINATEC, Division of Micro Technologies for Biology and Healthcare, 38054 Grenoble Cedex 09 (France); Gerfault, L [CEA-LETI MINATEC, Division of Micro Technologies for Biology and Healthcare, 38054 Grenoble Cedex 09 (France); Esteve, F [INSERM U647-RSRM, ESRF, BP200, 38043 Grenoble Cedex 09 (France); Dinten, J-M [CEA-LETI MINATEC, Division of Micro Technologies for Biology and Healthcare, 38054 Grenoble Cedex 09 (France)

    2007-08-07

    Cone-beam computed tomography (CBCT) enables three-dimensional imaging with isotropic resolution and a shorter acquisition time compared to a helical CT scanner. Because a larger object volume is exposed for each projection, scatter levels are much higher than in collimated fan-beam systems, resulting in cupping artifacts, streaks and quantification inaccuracies. In this paper, a general method to correct for scatter in CBCT, without supplementary on-line acquisition, is presented. This method is based on scatter calibration through off-line acquisition combined with on-line analytical transformation based on physical equations, to adapt calibration to the object observed. The method was tested on a PMMA phantom and on an anthropomorphic thorax phantom. The results were validated by comparison to simulation for the PMMA phantom and by comparison to scans obtained on a commercial multi-slice CT scanner for the thorax phantom. Finally, the improvements achieved with the new method were compared to those obtained using a standard beam-stop method. The new method provided results that closely agreed with the simulation and with the conventional CT scanner, eliminating cupping artifacts and significantly improving quantification. Compared to the beam-stop method, lower x-ray doses and shorter acquisition times were needed, both divided by a factor of 9 for the same scatter estimation accuracy.

  3. Experimental Test of Data Analysis Methods from Staggered Pair X-ray Beam Position Monitors at Bending Magnet Beamlines

    International Nuclear Information System (INIS)

    Different methods have been proposed to calculate the vertical position of the photon beam centroid from the four blade currents of staggered pair X-ray beam position monitors (XBPMs) at bending magnet beamlines since they emerged about 15 years ago. The original difference-over-sum method introduced by Peatman and Holldack is still widely used, even though it has been proven to be rather inaccurate at large beam displacements. By systematically generating bumps in the electron orbit of the ANKA storage ring and comparing synchronized data from electron BPMs and XBPM blade currents, we have been able to show that the log-ratio method by S. F. Lin, B.G. Sun et al. is superior (meaning the characteristic being closer to linear) to the ratio method, which in turn is superior to the difference over sum method. These findings are supported by simulations of the XBPM response to changes of the beam centroid. The heuristic basis for each of the methods is investigated. The implications on using XBPM readings for orbit correction are discussed

  4. Comparison of orthogonal kilovolt X-ray images and cone-beam CT matching results in setup error assessment and correction for EB-PBI during free breathing

    International Nuclear Information System (INIS)

    Objective: To compare the differences in setup error (SE) assessment and correction between the orthogonal kilovolt X-ray images and CBCT in EB-PBI patients during free breathing. Methods: Nineteen patients after breast conserving surgery EB-PBI were recruited. Interfraction SE was acquired using orthogonal kilovolt X-ray setup images and CBCT, after on-line setup correction,calculate the residual error and compare the SE, residual error and setup margin (SM) quantified for orthogonal kilovolt X-ray images and CBCT. Wilcoxon sign-rank test was used to evaluate the differences. Results: The CBCT based SE (systematic error, ∑) was smaller than the orthogonal kilovolt X-ray images based ∑ in AP direction (-1.2 mm vs 2.00 mm; P=0.005), and there was no statistically significant differences for three dimensional directions in random error (σ) (P=0.948, 0.376, 0.314). After on-line setup correction,CBCT decreases setup residual error than the orthogonal kilovolt X-ray images in AP direction (Σ: -0.20 mm vs 0.50 mm, P=0.008; σ: 0.45 mm vs 1.34 mm, P=0.002). And also the CBCT based SM was smaller than orthogonal kilovolt X-ray images based SM in AP direction (Σ: -1.39 mm vs 5.57 mm, P=0.003; σ: 0.00 mm vs 3.2 mm, P=0.003). Conclusions: Compared with kilovolt X-ray images, CBCT underestimate the setup error in the AP direction, but decreases setup residual error significantly.An image-guided radiotherapy and setup error assessment using kilovolt X-ray images for EB-PBI plans was feasible. (authors)

  5. X-ray and pressure conditions on the first wall of a particle beam inertial confinement reactor

    International Nuclear Information System (INIS)

    Because of the presence of a chamber gas in a particle beam reactor cavity, nonneutron target debris created from thermonuclear burn will be modified or stopped before it reaches the first reactor wall. The resulting modified spectra and pulse lengths of the debris need to be calculated to determine first wall effects. Further, the cavity overpressure created by the momentum and energy exchange between the debris and gas must also be calculated to determine its effect. The purpose of this paper is to present results of the debris-background gas problem obtained with a one fluid, two temperature plasma hydrodynamic computer code model which includes multifrequency radiation transport. Spherical symmetry, ideal gas equation of state, and LTE for each radiation frequency group were assumed. The transport of debris ions was not included and all the debris energy was assumed to be in radiation. The calculated x-ray spectra and pulse lengths and the background overpressure are presented

  6. Research and Design of a Sample Heater for Beam Line 6-2c Transmission X-ray Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Policht, Veronica; /Loyola U., Chicago /SLAC

    2012-08-27

    There exists a need for environmental control of samples to be imaged by the Transmission X-Ray Microscope (TXM) at the SSRLs Beam Line 6-2c. In order to observe heat-driven chemical or morphological changes that normally occur in situ, microscopes require an additional component that effectively heats a given sample without heating any of the microscope elements. The confinement of the heat and other concerns about the heaters integrity limit which type of heater is appropriate for the TXM. The bulk of this research project entails researching different heating methods used previously in microscopes, but also in other industrial applications, with the goal of determining the best-fitting method, and finally in designing a preliminary sample heater.

  7. Determination of residual stresses in cathodic arc coatings by means of the parallel beam glancing X-ray diffraction technique

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, C.M. [CEIT and TECNUN, Paseo Manuel de Lardizabal 15, 20018, San Sebastian, Gipuzkoa, Basque Country (Spain); Sanchez, J.M., E-mail: jmsanchez@ceit.e [CEIT and TECNUN, Paseo Manuel de Lardizabal 15, 20018, San Sebastian, Gipuzkoa, Basque Country (Spain); Ardila, L.C.; Molina Aldareguia, J.M. [CEIT and TECNUN, Paseo Manuel de Lardizabal 15, 20018, San Sebastian, Gipuzkoa, Basque Country (Spain)

    2009-11-02

    A method based on the parallel beam glancing X-ray diffraction geometry has been applied to the measurement of the residual stresses present in cathodic arc plasma (Al{sub 0.66}Ti{sub 0.34})N coatings deposited on hardmetal substrates. This procedure avoids the problems associated to the strong overlapping between the diffraction peaks of the coating and the substrate. The method has been validated by comparison with the results obtained with sin{sup 2{psi}} technique on other combinations of coatings and substrates in which no important overlapping occurs (i.e. (Al{sub 0.66}Ti{sub 0.34})N on steel and TiN either on steel or on hardmetal substrates). The elastic moduli of the different coatings, required for the calculation of the residual stresses, have been obtained from nanoindentation experiments.

  8. Trace element analysis of material scalp hair by external beam proton-induced X-ray emission (PIXE)

    International Nuclear Information System (INIS)

    An external beam proton-induced X-ray emission (PIXE) system has been constructed for trace element analysis of biological and environmental samples. Optimization of sample preparation and experimental PIXE set-up produced a rapid, accurate, sensitive, and reliable PIXE analysis procedure. The analytical procedure was evaluated using scalp hair of pregnant women at 16-19 weeks of gestation. The samples were irradiated with 3.5 MeV protons from the Rutgers Nuclear Physics Department's 8 MV Tandem Fn Van de Graaff accelerator. The concentrations of the elements calcium to cadmium in hair are reported for 50 subjects. The analytical procedure is suitable for non-invasive clinical analysis for evaluation of nutritional states and for environmental exposure to toxic metals. (author)

  9. Calibration of the Gamma-RAy Polarimeter Experiment (GRAPE) at a polarized hard X-ray beam

    International Nuclear Information System (INIS)

    The Gamma-RAy Polarimeter Experiment (GRAPE) is a concept for an astronomical hard X-ray Compton polarimeter operating in the 50-500 keV energy band. The instrument has been optimized for wide-field polarization measurements of transient outbursts from energetic astrophysical objects such as gamma-ray bursts and solar flares. The GRAPE instrument is composed of identical modules, each of which consists of an array of scintillator elements read out by a multi-anode photomultiplier tube (MAPMT). Incident photons Compton scatter in plastic scintillator elements and are subsequently absorbed in inorganic scintillator elements; a net polarization signal is revealed by a characteristic asymmetry in the azimuthal scattering angles. We have constructed a prototype GRAPE module containing a single CsI(Na) calorimeter element, at the center of the MAPMT, surrounded by 60 plastic elements. The prototype has been combined with custom readout electronics and software to create a complete 'engineering model' of the GRAPE instrument. This engineering model has been calibrated using a nearly 100% polarized hard X-ray beam at the Advanced Photon Source at Argonne National Laboratory. We find modulation factors of 0.46±0.06 and 0.48±0.03 at 69.5 and 129.5 keV, respectively, in good agreement with Monte Carlo simulations. In this paper we present details of the beam test, data analysis, and simulations, and discuss the implications of our results for the further development of the GRAPE concept.

  10. Slit x-ray beam primary dose profiles determined by analytical transport of Compton recoil electrons

    NARCIS (Netherlands)

    van't Veld, AA; van Luijk, P; Praamstra, F; van der Hulst, PC

    2000-01-01

    Accurate measurement of radiation beam penumbras is essential for conformal radiotherapy. For this purpose a detailed knowledge of the dosimeter's spatial response is required. However, experimental determination of detector spatial response is cumbersome and restricted to the specific detector type

  11. A comparative study of high resolution cone beam X-ray tomography and synchrotron tomography applied to Fe- and Al-alloys

    OpenAIRE

    Kastner, Johann; Harrer, Bernhard; Requena, Guillermo; Brunke, Oliver

    2010-01-01

    X-ray computed tomography (XCT) has become a very important method for non-destructive 3D-characterization and evaluation of materials. Due to measurement speed and quality, XCT systems with cone beam geometry and matrix detectors have gained general acceptance. Continuous improvements in the quality and performance of X-ray tubes and XCT devices have led to cone beam CT systems that can now achieve spatial resolutions down to 1 μm and even below. However, the polychromatic nature of the sour...

  12. X-ray emission yields from both surfaces of thin targets bombarded with a 200-MeV H/sup minus/ beam

    International Nuclear Information System (INIS)

    A modified commercial energy-dispersive x-ray spectrometer was used to measure the yields of characteristic x rays from elemental and alloy targets irradiated by a 200-MeV negative-hydrogen beam. In most cases the entry surface, which was bombarded by both electrons and protons, gave about a factor of 2 higher yield than the exit surface where the stripped protons emerged. The results suggest a method of measuring beam profiles where particle densities are too low to be detected electrically by wire arrays. 6 refs., 4 figs

  13. 乳腺诊断用钼靶X光机发展现状%Development Status of Molybdenum Target X-ray Machine Used in Breast Diagnosis

    Institute of Scientific and Technical Information of China (English)

    牟强善; 亓玉龙; 郭洪栋

    2014-01-01

    本文阐述了乳腺诊断用钼靶X光机的发展历程,总结了前后三代产品的主要技术特征,并结合现有产品的技术研发现状,指出了乳腺诊断用钼靶X光机技术的发展趋势。%This paper describes the development history of molybdenum target X-ray machine used in breast diagnosis, and summarizes the main technical characteristics of three generations of molybdenum target X-ray machine. Combined with the research and development status of technologies of existing products, this paper also points out the development trend of technologies of molybdenum target X-ray machine.

  14. Measurement of photoneutron doses in and out of high-energy X-ray beam of a SATURNE-20 medical linear accelerator by ECE polycarbonate detectors

    CERN Document Server

    Sohrabi, M

    1999-01-01

    Photoneutron contaminations in and out of high energy X-ray beams of the medical linear accelerator SATURNE 20 (CGR) of the Radiotherapy Department of Omeed Hospital in Isfahan, Iran, have been determined using 250 mu m polycarbonate (PC) dosimeters, in strips or in sheets, processed by electrochemical etching (ECE) using specially designed ECE chambers to etch larger sheets. A two dimensional or topographical distribution of neutron contamination was also determined in a full size beam. The neutron dose equivalents (Hn) in the beam of 18 MV X-rays at 80 cm FSD were determined to be linear functions of X-ray dose equivalents (Hx) up to 1400 cSv. The distribution of the Hn at different X-ray doses showed bell-shape profiles with maxima at the isocenter. The ratios of dose equivalents of neutrons to those of X-rays increased as the field size increased having values of 0.22%, 0.28%, 0.31% and 0.37% for field sizes of 10x10, 20x20, 30x30, and 40x40 cm sup 2 respectively. Although such neutron dose equivalents ca...

  15. X-ray fluorescence in Member States (India): Micro-beam X-ray fluorescence spectroscopy using Indus-2 synchrotron radiation facility: beamline BL-16

    International Nuclear Information System (INIS)

    Indus-1 and Indus-2, are India’s national synchrotron radiation facilities located at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore. Indus-1 is a 450 MeV electron storage ring which provides synchrotron radiation in the VUV soft x-ray range with a critical wavelength of 61 Å whereas Indus-2 is a 2.5 GeV, 300 mA synchrotron radiation machine with a critical wavelength of 2 Å for its bending magnet source. The Indus-2 is at present operating at 2.5 GeV, 100 mA in round-theclock operation mode. Both synchrotron sources exist in the same premises of RRCAT, Indore and have very good air/rail connectivities with major cities of India. The RRCAT centre also fosters research and development activities in the fields of particle accelerators, Lasers and related advanced technologies like cryogenics, ultra high vacuum, superconducting cavities, RF power, magnet and their application in different fields of science, thus the centre provides a unique platform covering a wide range of experiments for the synchrotron users in the Indian subcontinent

  16. Development of an x-ray beam line at the NSLS for studies in materials science using x-ray absorption spectroscopy: Annual progress report

    International Nuclear Information System (INIS)

    Although only in operation since May, 1985, the X-11 participation research team (PRT) at the NSLS has already demonstrated that it is one of the leading centers of x-ray absorption spectroscopy (XAS). During this time, results have been obtained and programs initiated in a number of areas, for example: interfaces, including deposited metal-metal and metal-semiconductor systems, multilayers and ion implanted layers; electrochemical systems, including Pt electrode fuel cells, Ni oxide battery electrodes, conducting polymers, passivation and corrosion; catalysts, including highly-dispersed supported metal catalysts and zeolite systems; quasi-crystals, heavy fermion systems, uranium and neptunium compounds, rare gas clusters, disordered metals and semiconductors, ferroelectric transition; and, biological systems and related models, including synthetic porphyrins and a number of metalloproteins. In concert with these scientific results have been a number of developments involving the technique itself. These include implementation of unique optical systems on both the A and B lines for optical performance over their designed energy ranges, advances in experimental capability, particular in glancing angle studies, optimization of ion chambers for surface studies, the improvement of electron yield detectors, and improved software for data acquisition and analysis. This report emphasizes some of the research highlights and significant developments of our PRT which occurred during the past year. A detailed bibliography of papers and talks resulting from work done at our beamline and the progress reports for our PRT which were in the 1985 NSLS Annual Report are appended

  17. MiR-34a is up-regulated in response to low dose, low energy X-ray induced DNA damage in breast cells

    International Nuclear Information System (INIS)

    MicroRNAs are non-coding RNAs involved in the regulation of gene expression including DNA damage responses. Low doses of low energy X-ray radiation, similar to those used in mammographic exams, has been described to be genotoxic. In the present work we investigated the expression of miR-34a; a well described p53-regulated miRNA implicated in cell responses to X-ray irradiation at low doses. Non-cancerous breast cell line MCF-10A and cancerous T-47D and MCF-7 cell lines were submitted to a low-energy X-ray irradiation (ranging from 28–30 Kv) using a dose of 5 Gy. The expression level of miR-34a, let-7a and miR-21 was assessed by qRT-PCR at 4 and 24 hours post-irradiation. DNA damage was then measured by comet assay and micronuclei estimation in MCF-10A and MCF-7 cell lines, where an increase of miR-34a levels could be observed after irradiation. The rate of apoptotic cells was estimated by nuclear staining and fluorescence microscopy. These experiments were also performed at low doses (3; 12 and 48 mGy) in MCF-10A and MCF-7 cell lines. We have observed an increase in miR-34a expression 4 hours post-irradiation at 5 Gy in MCF-10A and MCF-7 cell lines while its level did not change in T-47D, a breast cancer cell line bearing non-functional p53. At low doses, miR-34a was up-regulated in non-tumoral MCF-10A to a higher extent as compared to MCF-7. MiR-34a levels decreased 24 hours post-irradiation. We have also observed DNA damage and apoptosis at low-energy X-ray irradiation at low doses and the high dose in MCF-10A and MCF-7 4 and 24 hours post-irradiation relative to the mock control. Low energy X-ray is able to promote DNA strand breaks and miR-34a might be involved in cell responses to low energy X-ray DNA damage. MiR-34a expression correlates with X-ray dose, time after irradiation and cell type. The present study reinforces the need of investigating consequences of low dose X-ray irradiation of breast cells

  18. Phase-preserving beam expander for biomedical X-ray imaging.

    Science.gov (United States)

    Martinson, Mercedes; Samadi, Nazanin; Bassey, Bassey; Gomez, Ariel; Chapman, Dean

    2015-05-01

    The BioMedical Imaging and Therapy beamlines at the Canadian Light Source are used by many researchers to capture phase-based imaging data. These experiments have so far been limited by the small vertical beam size, requiring vertical scanning of biological samples in order to image their full vertical extent. Previous work has been carried out to develop a bent Laue beam-expanding monochromator for use at these beamlines. However, the first attempts exhibited significant distortion in the diffraction plane, increasing the beam divergence and eliminating the usefulness of the monochromator for phase-related imaging techniques. Recent work has been carried out to more carefully match the polychromatic and geometric focal lengths in a so-called `magic condition' that preserves the divergence of the beam and enables full-field phase-based imaging techniques. The new experimental parameters, namely asymmetry and Bragg angles, were evaluated by analysing knife-edge and in-line phase images to determine the effect on beam divergence in both vertical and horizontal directions, using the flat Bragg double-crystal monochromator at the beamline as a baseline. The results show that by using the magic condition, the difference between the two monochromator types is less than 10% in the diffraction plane. Phase fringes visible in test images of a biological sample demonstrate that this difference is small enough to enable in-line phase imaging, despite operating at a sub-optimal energy for the wafer and asymmetry angle that was used. PMID:25931100

  19. X-ray FEL based on harmonics generation and electron beam outcoupling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Burnham, B. [Duke Univ., Durham, NC (United States)

    1995-12-31

    Electron beam outcoupling was suggested by N. A. Vinokurov as a method of optics independent outcoupling for high power FELs. The bunching of the electron beam is provided in a master oscillator. The prebunched electron beam then radiates coherently into an additional wiggler called the radiator. The electron beam is turned by an achromatic bend into this wiggler and its radiation propagates with a small angle with respect to the OK-4 optical axis. Thus, the radiation will pass around the mirror of the master oscillator optical cavity and can then be utilized. This scheme is perfectly suited for harmonic generation if the radiator wiggler is tuned on one of the master oscillator wavelength harmonics. This system is reminiscent of a klystron operating on a harmonic of the reference frequency. In this paper we present the theory of this device, its spectral and spatial characteristics of radiation, the optimization of the master oscillator, the achromatic bend and bunching for harmonic generation, and influence of beam parameters (energy spread, emittance, etc.) on generated power. Examples of possible storage ring and linac driven systems are discussed.

  20. Proton- and x-ray beams generated by ultra-fast CO(2) lasers for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelsky, I.; Polyanskiy, M.; Yakimenko, V.; Ben-Zvi, I.; Shkolnikov, P. Najmudin, Z.; Palmer, C.A.J.; Dover, N.P.; Oliva, P; Carpinelli, M.

    2011-07-01

    Recent progress in using picosecond CO{sub 2} lasers for Thomson scattering and ion-acceleration experiments underlines their potentials for enabling secondary radiation- and particle-sources. These experiments capitalize on certain advantages of long-wavelength CO{sub 2} lasers, such as higher number of photons per energy unit, and favorable scaling of the electrons ponderomotive energy and critical plasma density. The high-flux x-ray bursts produced by Thomson scattering of the CO{sub 2} laser off a counter-propagating electron beam enabled high-contrast, time-resolved imaging of biological objects in the picosecond time frame. In different experiments, the laser, focused on a hydrogen jet, generated monoenergetic proton beams via the radiation-pressure mechanism. The strong power-scaling of this regime promises realization of proton beams suitable for laser-driven proton cancer therapy after upgrading the CO{sub 2} laser to sub-PW peak power. This planned improvement includes optimizing the 10-{mu}m ultra-short pulse generation, assuring higher amplification in the CO{sub 2} gas under combined isotopic- and power-broadening effects, and shortening the postamplification pulse to a few laser cycles (150-200 fs) via chirping and compression. These developments will move us closer to practical applications of ultra-fast CO{sub 2} lasers in medicine and other areas.

  1. Radiotherapy in the management of keloids. Clinical experience with electron beam irradiation and comparison with X-ray therapy

    Energy Technology Data Exchange (ETDEWEB)

    Maarouf, M. [Dept. of Radiotherapy, Univ. of Technology (RWTH), Aachen (Germany); Dept. of Stereotactic and Functional Neurosurgery, Univ. of Cologne (Germany); Schleicher, U.; Schmachtenberg, A.; Ammon, J. [Dept. of Radiotherapy, Univ. of Technology (RWTH), Aachen (Germany)

    2002-06-01

    Background: Aim of this study was to evaluate the advantages of electron beam irradiation compared to kilovoltage X-ray therapy in the treatment of keloids. Furthermore, the risk of developing malignancy following keloid radiotherapy was assessed. Patients and Methods: An automatic water phantom was used to evaluate the dose distribution in tissue. Furthermore, a series of measurements was done on the patients using thermoluminescence dosimeters (TLD) to estimate the doses absorbed by the organs at risk. We also report our clinical experience with electron beam radiation of 134 keloids following surgical excision. Results: Electron beam irradiation offers a high control rate (84%) with minimal side effects for keloids. Electron irradiation provides better dose distribution in tissue, and therefore less radiation burden to the organs at risk. After a mean follow-up period of 7.2 years, no severe side effects or malignancies were observed after keloid radiotherapy. Conclusions: Electron radiation therapy is superior to kilovoltage irradiation for treating keloids due to better dose distribution in tissue. In agreement with the literature, no cases of malignancy were observed after keloid irradiation. (orig.)

  2. Carbon-ion beams induce production of an immune mediator protein, high mobility group box 1, at levels comparable with X-ray irradiation

    International Nuclear Information System (INIS)

    X-ray radiotherapy activates tumor antigen-specific T-cell responses, and increases in the serum levels of high mobility group box 1 (HMGB1) induced by X-ray irradiation play a pivotal role in activating anti-tumor immunity. Here, we examined whether carbon-ion beams, as well as X-rays, can induce HMGB1 release from human cancer cell lines. The study examined five human cancer cell lines: TE2, KYSE70, A549, NCI-H460 and WiDr. The proportion of cells surviving X- or carbon-ion beam irradiation was assessed in a clonogenic assay. The D10, the dose at which 10% of cells survive, was calculated using a linear–quadratic model. HMGB1 levels in the culture supernatants were assessed by an ELISA. The D10 dose for X-rays in TE2, KYSE70, A549, NCI-H460 and WiDr cells was 2.1, 6.7, 8.0, 4.8 and 7.1 Gy, respectively, whereas that for carbon-ion beams was 0.9, 2.5, 2.7, 1.8 and 3.5 Gy, respectively. X-rays and carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of A549, NCI-H460 and WiDr cells at 72 h post-irradiation with a D10 dose. Furthermore, irradiation with X-rays or carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of all five cell lines at 96 h post-irradiation. There was no significant difference in the amount of HMGB1 induced by X-rays and carbon-ion beams at any time-point (except at 96 h for NCI-H460 cells); thus we conclude that comparable levels of HMGB1 were detected after irradiation with iso-survival doses of X-rays and carbon-ion beams. (author)

  3. Hadron Cancer Therapy - relative merits of X-ray, proton and carbon beams

    Science.gov (United States)

    Jakel, Oliver

    2014-03-01

    -Heidelberg University has a long experience in radiotherapy with carbon ions, starting with a pilot project at GSI in 1997. This project was jointly run by the Dep. for Radiation Oncology of Heidelberg University, GSI and the German Cancer Research Center (DKFZ). A hospital based heavy ion center at Heidelberg University, the Heidelberg Ion Beam Therapy Center (HIT) was proposed by the same group in 1998 and started clinical operation in late 2009. Since then nearly 2000 patients were treated with beams of carbon ions and protons. Just recently the operation of the world's first and only gantry for heavy ions also started at HIT. Patient treatments are performed in three rooms. Besides that, a lot of research projects are run in the field of Medical Physics and Radiobiology using a dedicated experimental area and the possibility to use beams of protons, carbon, helium and oxygen ions being delivered with the raster scanning technique.

  4. Characterisation by X-ray diffraction, electron microscopy and X-ray fluorescence of thin films obtained from evaporation of SmS. Crystallographic structures after annealing with electron beam

    International Nuclear Information System (INIS)

    Thin films are obtained from divalent SmS evaporation under a vacuum of 10-6 torr. The layers with a thickness of less than 1500 A are always amorphous. Those with a thickness of more than 2000 A present some properties varying according to the substrate temperature. The samples deposited at 85 K and slowly heated up to 293 K are black-grey and cristallized (f.c.c. structure, a = 5.91 A) which may be characteristic of the 2 + valence state for Sm. At 293 K, samples are yellow and poorly cristallized (f.c.c. structure, a = 5.58 A) which may be characteristic of the 3 + valence state for Sm. Crystallographic results are obtained by X-ray diffraction and electron diffraction. Analysis have been made by the X-ray fluorescence method. The electron beam permits to anneal the films and the following compounds appear: Sm2O2S, C and B-Sm2O3. At high temperature there is formation of new structures with large lattice parameters probably belonging to the Sm-O-S ternary system as X-ray fluorescence analysis shows it

  5. Phase-preserving beam expander for biomedical X-ray imaging

    International Nuclear Information System (INIS)

    Building on previous work, a phase-preserving bent Laue beam-expanding monochromator was developed with the capability of performing live animal phase contrast dynamic imaging at the Biomedical Imaging and Therapy beamline at the Canadian Light Source. The BioMedical Imaging and Therapy beamlines at the Canadian Light Source are used by many researchers to capture phase-based imaging data. These experiments have so far been limited by the small vertical beam size, requiring vertical scanning of biological samples in order to image their full vertical extent. Previous work has been carried out to develop a bent Laue beam-expanding monochromator for use at these beamlines. However, the first attempts exhibited significant distortion in the diffraction plane, increasing the beam divergence and eliminating the usefulness of the monochromator for phase-related imaging techniques. Recent work has been carried out to more carefully match the polychromatic and geometric focal lengths in a so-called ‘magic condition’ that preserves the divergence of the beam and enables full-field phase-based imaging techniques. The new experimental parameters, namely asymmetry and Bragg angles, were evaluated by analysing knife-edge and in-line phase images to determine the effect on beam divergence in both vertical and horizontal directions, using the flat Bragg double-crystal monochromator at the beamline as a baseline. The results show that by using the magic condition, the difference between the two monochromator types is less than 10% in the diffraction plane. Phase fringes visible in test images of a biological sample demonstrate that this difference is small enough to enable in-line phase imaging, despite operating at a sub-optimal energy for the wafer and asymmetry angle that was used

  6. Phase-preserving beam expander for biomedical X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, Mercedes, E-mail: mercedes.m@usask.ca [University of Saskatchewan, 116 Science Place, Rm 163, Saskatoon, Saskatchewan (Canada); Samadi, Nazanin [University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan (Canada); Bassey, Bassey [University of Saskatchewan, 116 Science Place, Rm 163, Saskatoon, Saskatchewan (Canada); Gomez, Ariel [Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan (Canada); Chapman, Dean [University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan (Canada); University of Saskatchewan, 116 Science Place, Rm 163, Saskatoon, Saskatchewan (Canada)

    2015-04-15

    Building on previous work, a phase-preserving bent Laue beam-expanding monochromator was developed with the capability of performing live animal phase contrast dynamic imaging at the Biomedical Imaging and Therapy beamline at the Canadian Light Source. The BioMedical Imaging and Therapy beamlines at the Canadian Light Source are used by many researchers to capture phase-based imaging data. These experiments have so far been limited by the small vertical beam size, requiring vertical scanning of biological samples in order to image their full vertical extent. Previous work has been carried out to develop a bent Laue beam-expanding monochromator for use at these beamlines. However, the first attempts exhibited significant distortion in the diffraction plane, increasing the beam divergence and eliminating the usefulness of the monochromator for phase-related imaging techniques. Recent work has been carried out to more carefully match the polychromatic and geometric focal lengths in a so-called ‘magic condition’ that preserves the divergence of the beam and enables full-field phase-based imaging techniques. The new experimental parameters, namely asymmetry and Bragg angles, were evaluated by analysing knife-edge and in-line phase images to determine the effect on beam divergence in both vertical and horizontal directions, using the flat Bragg double-crystal monochromator at the beamline as a baseline. The results show that by using the magic condition, the difference between the two monochromator types is less than 10% in the diffraction plane. Phase fringes visible in test images of a biological sample demonstrate that this difference is small enough to enable in-line phase imaging, despite operating at a sub-optimal energy for the wafer and asymmetry angle that was used.

  7. X-ray diffraction contrast tomography (DCT) system, and an X-ray diffraction contrast tomography (DCT) method

    DEFF Research Database (Denmark)

    2012-01-01

    Source: US2012008736A An X-ray diffraction contrast tomography system (DCT) comprising a laboratory X-ray source (2), a staging device (5) rotating a polycrystalline material sample in the direct path of the X-ray beam, a first X-ray detector (6) detecting the direct X-ray beam being transmitted...

  8. Designing of shielding and collimator for high-energy X-ray beam: application to 3 MV Tandem Pelletron based HEX-ray spectrometry

    International Nuclear Information System (INIS)

    High-energy X-rays (60-1000 keV) or HEX-ray bear unique advantage over conventional X-rays in the field of diffraction and scattering experiments. HEX-ray is an important experimental technique because of its uniqueness to characterize technically challenging samples (liquids, glass, amorphous materials, nanomaterial, thick samples, etc.). In the present paper detail designing of the lead collimator and shielding for the recently developed HEX-Ray spectrometry experiment using characteristic PbK-lines (75-85 keV) emitted due to bombardment of 3 MeV proton beam generated from the Pelletron accelerator has been reported. Attenuation (%), transmission (%), and energy absorption (%) are calculated using the NIST data which is based on X-ray interaction cross sections and material densities. Thickness for Pb-shielding possessing highest attenuation (99.99%) for 75 keV and 85 keV X-rays are 3 mm and 4 mm respectively. Hence, shielding thickness about 5 mm is used to cover the experimental table. Again, introducing a source collimator (diameter = 8 mm, length = 35 mm) between the X-ray target (source) and the sample, the incoherent scattered radiation due to air in the path of the beam and the multiple reflection from the chamber as well as from the detector inserting tube can be suppressed. An extra energetic and intense X-ray line was observed at about 44.5 keV using a high-purity germanium (HpGe) detector (Detector Systems GmbH (DSG), Germany). This contamination line is not an escape peak (PbKGeK) and can be suppressed using 8 mm Pb-collimator between X-ray target and sample. The details of the designing, experimental setup, and its applications are discussed in the full paper.

  9. Photo neutron dose equivalent rate in 15 MV X-ray beam from a Siemens Primus Linac

    Directory of Open Access Journals (Sweden)

    A Ghasemi

    2015-01-01

    Full Text Available Fast and thermal neutron fluence rates from a 15 MV X-ray beams of a Siemens Primus Linac were measured using bare and moderated BF 3 proportional counter inside the treatment room at different locations. Fluence rate values were converted to dose equivalent rate (DER utilizing conversion factors of American Association of Physicist in Medicine′s (AAPM report number 19. For thermal neutrons, maximum and minimum DERs were 3.46 × 10 -6 (3 m from isocenter in +Y direction, 0 × 0 field size and 8.36 × 10 -8 Sv/min (in maze, 40 × 40 field size, respectively. For fast neutrons, maximum DERs using 9" and 3" moderators were 1.6 × 10 -5 and 1.74 × 10 -5 Sv/min (2 m from isocenter in +Y direction, 0 × 0 field size, respectively. By changing the field size, the variation in thermal neutron DER was more than the fast neutron DER and the changes in fast neutron DER were not significant in the bunker except inside the radiation field. This study showed that at all points and distances, by decreasing field size of the beam, thermal and fast neutron DER increases and the number of thermal neutrons is more than fast neutrons.

  10. Depth profiling using total reflection X-ray fluorescence spectrometry alone and in combination with ion beam sputtering

    Science.gov (United States)

    Schwenke, H.; Knoth, J.; Günther, R.; Wiener, G.; Bormann, R.

    1997-07-01

    The capability of total reflection X-ray fluorescence spectrometry (TXRF) for depth profiling is examined by means of selected examples including organometallic layers, an implantation profile of arsenic in silicon and a layered nickel/cobalt structure. For structures without density differences that are deeper than 20 nm or so, and also for buried layers and for the examination of sharp interfaces, which require the highest resolution, two different combinations of ion beam sputtering with TXRF have been employed. A microsectioning technique was investigated in which samples were etched to a bevel shape and subsequently scanned by TXRF. A depth resolution of 2.5 nm was obtained. Alternatively, the so called "transfer technique" was investigated. This involves surface atoms being sputtered by an ion beam and immediately deposited on a silicon wafer rotated behind a slit which is moved in step with the sputter progress. Subsequently, the wafer is scanned by TXRF. Using this technique, the width of a coherent Ti/Al interface within a layered structure was measured to be 1.4 nm. The depth resolutions of the "microsectioning" and the "transfer" techniques are compared with data from RBS, XPS, SIMS and SNMS.

  11. Identification of human breast pathologies by X-ray elastic scattering; Identificacao de patologias mamarias atraves do espalhamento elastico de raios X

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, Andre L.C.; Antoniassi, Marcelo; Poletti, Martin E., E-mail: andre_conceicao@yahoo.com.b [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2011-07-01

    In this paper we determine the scattering profiles of normal, benign and malignant human breast samples in a momentum transfer range of 0.07nm{sup -1} {<=}q{<=}70.55nm{sup -1}, resulted from combining WAXS (wide angle x-ray scattering) and SAXS (small angle x-ray scattering) data. The results showed considerable differences between the scattering profiles of each tissue type. Based on this fact, some parameters, representing structural features, were extracted from these scattering profiles and submitted to a discriminant analysis. From statistical analysis, the ratio between the peak intensities at q=19.8nm{sup -1} and q=13.9nm{sup -1} and the intensity of third order axial collagen peak arose as two potentials breast tissue classifiers and, from combining them it was possible differentiate among normal, benign and malignant lesions. (author)

  12. Measurement of neutron and charged particle contamination in high energy medical therapy x-ray beams using recoil track registration in polycarbonate foils

    International Nuclear Information System (INIS)

    The production of photoneutrons and high-energy charged particles by betatrons and linear accelerators used in radiotherapy is measured. It is concluded there exists sufficient contamination in high-energy x-ray beams to be a consideration in certain radiotherapy situations

  13. Development of an x-ray Talbot-Lau moire deflectometer for fast density profile measurements of dense plasmas generated by beam-target interactions

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dan [National Security Technol., LLC, Los Alamos, NM (United States); Berninger, M; Meidinger, A; Stutman, Dan; Valdivia, Maria Pia

    2015-05-01

    For the first time an x-ray Talbot-Lau moire deflectometer is being developed that will use a flash tube source and fast detector for dynamic density gradient measurements. In Talbot-Lau moire deflectometry, an x-ray grating makes an image of itself on a second grating (the Talbot effect) to produce a moire pattern on a detector. The test object is placed between these gratings, with variations in index of refraction changing the pattern. A third grating in front of an incoherent x-ray source produces an array of coherent sources. With a 150 kV x-ray flash tube as the source, the gratings are placed in a glancing angle setup for performance at ~60 keV. The detector is a gated CCD with a fast scintillator for x-ray conversion. This diagnostic, designed for the Dual-Axis Radiographic Hydrodynamic Test facility (DARHT) at Los Alamos National Laboratory, measures the density profile of dense plasma plumes ejected from beam-target interactions. DARHT has two high-current, pulsed, inductive linear electron accelerators with bremsstrahlung targets at the end of each beam line to create 2-D radiographic images of hydrodynamic tests. One multi-pulse accelerator has up to four beam pulses striking the same target within 2 μs. Computer simulations that model target evolution and ejected material between pulses are used to design these targets for optimal radiographic performance; the x-ray deflectometer will directly measure density gradients in the ejected plumes and provide the first experimental constraints to these models. During the first year, currently underway, the diagnostic systems are being designed. In year two, the flash tube and fast detector will be deployed at DARHT for radiographic imaging while the deflectometer is built and tested on the bench with a continuous source. Finally, in year three, the fast deflectometer will be installed on DARHT and density measurements will be performed.

  14. Characterization of Scattered X-Ray Photons in Dental Cone-Beam Computed Tomography

    Science.gov (United States)

    Yang, Ching-Ching

    2016-01-01

    Purpose Scatter is a very important artifact causing factor in dental cone-beam CT (CBCT), which has a major influence on the detectability of details within images. This work aimed to improve the image quality of dental CBCT through scatter correction. Methods Scatter was estimated in the projection domain from the low frequency component of the difference between the raw CBCT projection and the projection obtained by extrapolating the model fitted to the raw projections acquired with 2 different sizes of axial field-of-view (FOV). The function for curve fitting was optimized by using Monte Carlo simulation. To validate the proposed method, an anthropomorphic phantom and a water-filled cylindrical phantom with rod inserts simulating different tissue materials were scanned using 120 kVp, 5 mA and 9-second scanning time covering an axial FOV of 4 cm and 13 cm. The detectability of the CT image was evaluated by calculating the contrast-to-noise ratio (CNR). Results Beam hardening and cupping artifacts were observed in CBCT images without scatter correction, especially in those acquired with 13 cm FOV. These artifacts were reduced in CBCT images corrected by the proposed method, demonstrating its efficacy on scatter correction. After scatter correction, the image quality of CBCT was improved in terms of target detectability which was quantified as the CNR for rod inserts in the cylindrical phantom. Conclusions Hopefully the calculations performed in this work can provide a route to reach a high level of diagnostic image quality for CBCT imaging used in oral and maxillofacial structures whilst ensuring patient dose as low as reasonably achievable, which may ultimately make CBCT scan a reliable and safe tool in clinical practice. PMID:26950435

  15. Characterization of Scattered X-Ray Photons in Dental Cone-Beam Computed Tomography.

    Directory of Open Access Journals (Sweden)

    Ching-Ching Yang

    Full Text Available Scatter is a very important artifact causing factor in dental cone-beam CT (CBCT, which has a major influence on the detectability of details within images. This work aimed to improve the image quality of dental CBCT through scatter correction.Scatter was estimated in the projection domain from the low frequency component of the difference between the raw CBCT projection and the projection obtained by extrapolating the model fitted to the raw projections acquired with 2 different sizes of axial field-of-view (FOV. The function for curve fitting was optimized by using Monte Carlo simulation. To validate the proposed method, an anthropomorphic phantom and a water-filled cylindrical phantom with rod inserts simulating different tissue materials were scanned using 120 kVp, 5 mA and 9-second scanning time covering an axial FOV of 4 cm and 13 cm. The detectability of the CT image was evaluated by calculating the contrast-to-noise ratio (CNR.Beam hardening and cupping artifacts were observed in CBCT images without scatter correction, especially in those acquired with 13 cm FOV. These artifacts were reduced in CBCT images corrected by the proposed method, demonstrating its efficacy on scatter correction. After scatter correction, the image quality of CBCT was improved in terms of target detectability which was quantified as the CNR for rod inserts in the cylindrical phantom.Hopefully the calculations performed in this work can provide a route to reach a high level of diagnostic image quality for CBCT imaging used in oral and maxillofacial structures whilst ensuring patient dose as low as reasonably achievable, which may ultimately make CBCT scan a reliable and safe tool in clinical practice.

  16. Comparative study on X- ray mammography and MRI in diagnosing breast cancer%乳腺癌X线与MRI诊断价值比较分析

    Institute of Scientific and Technical Information of China (English)

    渠红; 鲍春生; 邢丽

    2011-01-01

    目的:比较X线及MRI两种影像学检查方法对于乳腺癌的诊断价值.方法:回顾分析48例经手术病理证实的乳腺癌患者的MRI及X线检查资料,进行对比分析.结果:MRI对于乳腺癌病灶的检出高于X线摄影,但存在假阳性,对于判断病变范围及淋巴结转移等方面MRI具有较大价值.结论:X线摄影与MRI联合应用有助于提高乳腺癌的诊断准确率.%Objective:To compare the capabilities of MRI and X - ray mammography in diagnosing breast cancer. Methods ; A retrospective study of 48 breast cancer proved by pathology was performed, the diagnosing results of MRI and X - ray mammography were compared with that of histopathology.Results : MRI imaging was superior to mammography , but it exist false - positive ; MRI imaging was much valuable for lymph nodes metastases and assesament of lesion extent.Conclusion : X - ray mammography in combination with MRI is helpful in the diagnasis of breast cancer ,the sensitivity and specificity was enhanced when compared to that of single.

  17. Compensating the Electron Beam Energy Spread by the Natural Transverse Gradient of Laser Undulator in All-Optical X-ray Sources

    CERN Document Server

    Zhang, Tong; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2013-01-01

    All-optical schemes provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this letter, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly dispersing the electron beam transversely. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.

  18. Observation of strong virtual scattering under three-beam (220, 371) X-ray diffraction in TeO2 single crystal

    International Nuclear Information System (INIS)

    A strong effect of virtual scattering has been experimentally observed when studying the nearly coplanar three-beam (220, 371) X-ray diffraction in a paratellurite single crystal under high-resolution double-crystal X-ray diffraction using MoKα1 radiation. One characteristic feature of this effect is that the angular dependence of the first (strong) reflection intensity and its shape barely change in the three-beam range of parameters, whereas very strong changes are observed for the second (weak) reflection not only in the three-beam range but also far beyond it, which is related to the variation in the two-beam diffraction parameter due to virtual scattering. The changes observed are asymmetric and make it possible to determine the triplet combination of structure-factor phases.

  19. Observation of strong virtual scattering under three-beam (220, 371) X-ray diffraction in TeO{sub 2} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Blagov, A. E.; Kovalchuk, M. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Kohn, V. G. [Kurchatov Institute, Russian Research Centre (Russian Federation); Pisarevskii, Yu. V.; Prosekov, P. A., E-mail: aopt@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2010-01-15

    A strong effect of virtual scattering has been experimentally observed when studying the nearly coplanar three-beam (220, 371) X-ray diffraction in a paratellurite single crystal under high-resolution double-crystal X-ray diffraction using MoK{sub {alpha}1} radiation. One characteristic feature of this effect is that the angular dependence of the first (strong) reflection intensity and its shape barely change in the three-beam range of parameters, whereas very strong changes are observed for the second (weak) reflection not only in the three-beam range but also far beyond it, which is related to the variation in the two-beam diffraction parameter due to virtual scattering. The changes observed are asymmetric and make it possible to determine the triplet combination of structure-factor phases.

  20. 50 μm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Wafer-scale CMOS active pixel sensors (APSs) have been developed recently for x-ray imaging applications. The small pixel pitch and low noise are very promising properties for medical imaging applications such as digital breast tomosynthesis (DBT). In this work, we evaluated experimentally and through modeling the imaging properties of a 50 μm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). A modified cascaded system model was developed for CMOS APS x-ray detectors by taking into account the device nonlinear signal and noise properties. The imaging properties such as modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) were extracted from both measurements and the nonlinear cascaded system analysis. The results show that the DynAMITe x-ray detector achieves a high spatial resolution of 10 mm−1 and a DQE of around 0.5 at spatial frequencies  <1 mm−1. In addition, the modeling results were used to calculate the image signal-to-noise ratio (SNRi) of microcalcifications at various mean glandular dose (MGD). For an average breast (5 cm thickness, 50% glandular fraction), 165 μm microcalcifications can be distinguished at a MGD of 27% lower than the clinical value (∼1.3 mGy). To detect 100 μm microcalcifications, further optimizations of the CMOS APS x-ray detector, image aquisition geometry and image reconstruction techniques should be considered. (paper)

  1. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Thomas M., E-mail: baumannt@nscl.msu.edu; Lapierre, Alain, E-mail: lapierre@nscl.msu.edu; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan, 48824 (United States)

    2014-07-15

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r{sub 80%}=(212±19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm{sup 2} is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.

  2. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera.

    Science.gov (United States)

    Baumann, Thomas M; Lapierre, Alain; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg

    2014-07-01

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r(80%) = (212 ± 19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm(2) is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments. PMID:25085129

  3. Dose-response curve of EBT, EBT2, and EBT3 radiochromic films to synchrotron-produced monochromatic x-ray beams

    OpenAIRE

    Brown, Thomas A. D.; Hogstrom, Kenneth R; Alvarez, Diane; Matthews II, Kenneth L.; Ham, Kyungmin; Dugas, Joseph P.

    2012-01-01

    This work investigates the dose-response curves of GAFCHROMIC EBT, EBT2, and EBT3 radiochromic films using synchrotron-produced monochromatic x-ray beams. EBT2 film is being utilized for dose verification in photoactivated Auger electron therapy at the Louisiana State University CAMD synchrotron facility. Monochromatic beams of 25, 30, and 35 keV were generated on the tomography beamline at CAMD. Ion chamber depth-dose measurements were used to determine the dose delivered to films irradiated...

  4. A feasibility study of dynamic stress analysis inside a running internal combustion engine using synchrotron X-ray beams.

    Science.gov (United States)

    Baimpas, Nikolaos; Drakopoulos, Michael; Connolley, Thomas; Song, Xu; Pandazaras, Costas; Korsunsky, Alexander M

    2013-03-01

    The present investigation establishes the feasibility of using synchrotron-generated X-ray beams for time-resolved in situ imaging and diffraction of the interior components of an internal combustion engine during its operation. The demonstration experiment was carried out on beamline I12 (JEEP) at Diamond Light Source, UK. The external hutch of the JEEP instrument is a large-scale engineering test bed for complex in situ processing and simulation experiments. The hutch incorporates a large capacity translation and rotation table and a selection of detectors for monochromatic and white-beam diffraction and imaging. These capabilities were used to record X-ray movies of a motorcycle internal combustion engine running at 1850 r.p.m. and to measure strain inside the connecting rod via stroboscopic X-ray diffraction measurement. The high penetrating ability and high flux of the X-ray beam at JEEP allowed the observation of inlet and outlet valve motion, as well as that of the piston, connecting rod and the timing chain within the engine. Finally, the dynamic internal strain within the moving connecting rod was evaluated with an accuracy of ~50 × 10(-6). PMID:23412489

  5. Characterisation of edgeless technologies for pixellated and strip silicon detectors with a micro-focused X-ray beam

    Science.gov (United States)

    Bates, R.; Blue, A.; Christophersen, M.; Eklund, L.; Ely, S.; Fadeyev, V.; Gimenez, E.; Kachkanov, V.; Kalliopuska, J.; Macchiolo, A.; Maneuski, D.; Phlips, B. F.; Sadrozinski, H. F.-W.; Stewart, G.; Tartoni, N.; Zain, R. M.

    2013-01-01

    Reduced edge or ``edgeless'' detector design offers seamless tileability of sensors for a wide range of applications from particle physics to synchrotron and free election laser (FEL) facilities and medical imaging. Combined with through-silicon-via (TSV) technology, this would allow reduced material trackers for particle physics and an increase in the active area for synchrotron and FEL pixel detector systems. In order to quantify the performance of different edgeless fabrication methods, 2 edgeless detectors were characterized at the Diamond Light Source using an 11 μm FWHM 15 keV micro-focused X-ray beam. The devices under test were: a 150 μm thick silicon active edge pixel sensor fabricated at VTT and bump-bonded to a Medipix2 ROIC; and a 300 μm thick silicon strip sensor fabricated at CIS with edge reduction performed by SCIPP and the NRL and wire bonded to an ALiBaVa readout system. Sub-pixel resolution of the 55 μm active edge pixels was achieved. Further scans showed no drop in charge collection recorded between the centre and edge pixels, with a maximum deviation of 5% in charge collection between scanned edge pixels. Scans across the cleaved and standard guard ring edges of the strip detector also show no reduction in charge collection. These results indicate techniques such as the scribe, cleave and passivate (SCP) and active edge processes offer real potential for reduced edge, tiled sensors for imaging detection applications.

  6. Characterisation of edgeless technologies for pixellated and strip silicon detectors with a micro-focused X-ray beam

    International Nuclear Information System (INIS)

    Reduced edge or ''edgeless'' detector design offers seamless tileability of sensors for a wide range of applications from particle physics to synchrotron and free election laser (FEL) facilities and medical imaging. Combined with through-silicon-via (TSV) technology, this would allow reduced material trackers for particle physics and an increase in the active area for synchrotron and FEL pixel detector systems. In order to quantify the performance of different edgeless fabrication methods, 2 edgeless detectors were characterized at the Diamond Light Source using an 11 μm FWHM 15 keV micro-focused X-ray beam. The devices under test were: a 150 μm thick silicon active edge pixel sensor fabricated at VTT and bump-bonded to a Medipix2 ROIC; and a 300 μm thick silicon strip sensor fabricated at CIS with edge reduction performed by SCIPP and the NRL and wire bonded to an ALiBaVa readout system. Sub-pixel resolution of the 55 μm active edge pixels was achieved. Further scans showed no drop in charge collection recorded between the centre and edge pixels, with a maximum deviation of 5% in charge collection between scanned edge pixels. Scans across the cleaved and standard guard ring edges of the strip detector also show no reduction in charge collection. These results indicate techniques such as the scribe, cleave and passivate (SCP) and active edge processes offer real potential for reduced edge, tiled sensors for imaging detection applications.

  7. Morphology of bone defects in patient with unilateral cleft lip and palate. Cone beam x-ray CT evaluation

    International Nuclear Information System (INIS)

    Orthodontic treatment planning of the cleft lip and palate vary according to the morphology of the alveolar bone and palatal bone. The purpose of this study is to evaluate the three-dimensional anatomy of the alveolar and palatal bone in children with complete unilateral cleft lip and palate. Thirty-three nonsyndromic consecutive patients with complete unilateral cleft lip and palate were treated by the cleft palate team at Showa University. Each patient had lip and palate surgeries at Showa University. Cone beam CT radiographs (CB MercuRay, Hitachi) were taken prior to secondary bone grafting, and were classified according to the method of Kita et al. 1997. Cone beam CT radiographs showed multiple types of alveolar and palatal bone morphology, and focused on special types described in the method of Kita et al. It was most frequently found that bone defects in the alveolar crest showed similar patterns in both buccal and palatal aspect, and the buccal bone defect in the nasal floor was larger than the palatal bone defect in the nasal floor. In 80% of the patients, the palatal bone defect showed similar patterns in both anterior and posterior aspects, and the anterior palatal bone defect was smaller than the posterior palatal bone defect. In addition, inadequate bone bridges were frequently found at the cleft site. It is suggested that patients with unilateral cleft lip and palate have various types of alveolar and palatal bone morphology, and are required to take three-dimensional radiographic X-rays prior to any orthodontic treatment. (author)

  8. Molecular-beam epitaxy growth and structural characterization of semiconductor-ferromagnet heterostructures by grazing incidence X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Satapathy, D.K.

    2005-12-19

    The present work is devoted to the growth of the ferromagnetic metal MnAs on the semiconductor GaAs by molecular-beam epitaxy (MBE). The MnAs thin films are deposited on GaAs by molecular-beam epitaxy (MBE). Grazing incidence diffraction (GID) and reflection high-energy electron diffraction (RHEED) are used in situ to investigate the nucleation, evolution of strain, morphology and interfacial structure during the MBE growth. Four stages of the nucleation process during growth of MnAs on GaAs(001) are revealed by RHEED azimuthal scans. GID shows that further growth of MnAs films proceed via the formation of relaxed islands at a nominal thickness of 2.5 ML which increase in size and finally coalesce to form a continuous film. Early on, an ordered array of misfit dislocations forms at the interface releasing the misfit strain even before complete coalescence occurs. The fascinating complex nucleation process of MnAs on GaAs(0 0 1) contains elements of both Volmer-Weber and Stranski-Krastanov growth. A nonuniform strain amounting to 0.66%, along the [1 -1 0] direction and 0.54%, along the [1 1 0] direction is demonstrated from x-ray line profile analysis. A high correlation between the defects is found along the GaAs[1 1 0] direction. An extremely periodic array of misfit dislocations with a period of 4.95{+-}0.05 nm is formed at the interface along the [1 1 0] direction which releases the 7.5% of misfit. The inhomogeneous strain due to the periodic dislocations is confined at the interface within a layer of 1.6 nm thickness. The misfit along the [1 -1 0] direction is released by the formation of a coincidence site lattice. (orig.)

  9. 乳腺高频钼靶X线联合乳管镜筛查乳腺癌%Ductoscopy combined X-ray mammography for breast cancer screening

    Institute of Scientific and Technical Information of China (English)

    冯立文; 黄茂伦; 廖女珠; 李誉

    2013-01-01

    Objective Understand shunde Uistrict Foshan City,Guangdong Province in the incidence of breast cancer in women.Methods The joint selectivity ductoscopy examination of the clinical breast examination screening,breast X-ray radiography examination from March 2011 to January 2013,Shunde District,FoShan City,Guangdong Provice,3 600 bladder than 40 years old woman with breast cancer screening.Results Three thousand six hundred women were found in 10 cases of breast cancer,the detection rate of 278/100 000 (10/3 600).Breast clinical examination found 1 313 cases of breast abnormalities,142 cases of breast lumps,nipple discharge line fiberoptic ductoscopy to cheek the 100 cases,X-ray radiography examination of four and more than 72 cases,accounted for a total of 45.19% of the screening population (1 627/3 600).Conclusions Joint ductoscopy X-ray radiography examination of breast cancer screening in the normal population can help to detect early breast cancer,and to provide the basis for early clinical treatment.%目的 了解广东省佛山市顺德区城市妇女乳腺高频钼靶X线联合乳管镜筛查乳腺癌的情况.方法 2011年3月-2013年1月采用临床乳腺检查初筛,以及乳腺高频钼靶X线检查联合选择性乳管镜检查,对广东省佛山市顺德区3 600例40岁以上妇女进行了乳腺癌筛查.结果 3 600例妇女共检出乳腺癌10例,检出率为278/10万(10/3600).乳腺临床检查中发现乳腺异常1 313例、乳腺肿块142例、乳头溢液行乳管镜检查100例;乳腺高频钼靶X线检查4级及以上者72例,总共占筛查人群的45.19%(1 627/3 600).结论 通过乳管镜联合乳腺高频钼靶X线片在正常人群中进行乳腺癌筛查,有助于发现早期乳腺癌,为临床早期治疗提供依据.

  10. Characterization of pulsed x-ray beams for tests of electronic dosemeter performance; Caracterizacao de feixes de raios X pulsados para testes de desempenho de dosimetros eletronicos

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Margarete C.; Silva, Teogenes A. da, E-mail: mcg@cdtn.br, E-mail: silvata@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Curso de Pos-Graduacao em Ciencias e Tecnologia das Radiacoes, Materiais e Minerais

    2013-10-01

    Electronic dosimeters, due to direct reading, have been increasingly used for individual or area monitoring for purposes of radiation protection in X-ray fields used in diagnostic radiology. Deficiencies of performance in pulsed beams of such dosimeters have been published, which are not detected by the calibration procedures and performance tests established by international standards only for continuous beams of radiation. In Brazil, there are no performance requirements of dosimeters in pulsed beams, or a laboratory that performs testing for reliability in the use of dosimeters. This study aims to characterize the X-ray machine Medical VMI 800 Plus in the Laboratory Calibration of Dosimeters of CDTN/CNEN - Brazilian CNEN institute - and study the feasibility of its use for performance testing of electronic dosimeters. (author)

  11. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Intra-oral dental X-ray apparatus for panoramic dental radiography is described in detail. It comprises an electron gun having an elongated tubular target carrier extending into the patient's mouth. The carrier supports an inclined target for direction of an X-ray pattern towards a film positioned externally of the patient's mouth. Image definition is improved by a focusing anode which focuses the electron beam into a sharp spot (0.05 to 0.10 mm diameter) on the target. The potential on the focusing anode is adjustable to vary the size of the spot. An X-ray transmitting ceramic (oxides of Be, Al and Si) window is positioned adjacent to the front face of the target. The electron beam can be magnetically deflected to change the X-ray beam direction. (author)

  12. Optical and mechanical design of the extended x-ray absorption fine structure (EXAFS) beam-line at Indus-II synchrotron source

    International Nuclear Information System (INIS)

    An extended x-ray absorption fine structure (EXAFS) beam line for x-ray absorption studies using energy dispersive geometry and position sensitive detector is being designed for the INDUS-II Synchrotron source. The beam line would be used for doing x-ray absorption experiments involving measurements of fme structures above the absorption edge of different species of atoms in a material The results of the above experiments would lead to the determination of different important structural parameters of materials viz.. inter-atomic distance. co-ordination number, degree of disorder and radial distribution function etc. The optical design of the beam line has been completed based on the working principle that a single crystal bent in the shape of an ellipse by a crystal bender would act as a dispersing as well as focusing element. The mechanical design of the beam line including the crystal bender has also been completed and discussed here. Calculations have been done to detennine the temperature profile on the different components of the beam line under exposure to synchrotron radiation and proper cooling channels have been designed to bring down the heat load on the components. (author)

  13. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    International Nuclear Information System (INIS)

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam

  14. Stabilized x-ray generator power supply

    International Nuclear Information System (INIS)

    X-ray diffraction and X-ray fluorescence analysis are very much adopted in laboratories to determine the type and structure of the constituent compounds in solid materials, chemical composition of materials, stress developed on metals etc. These experiments need X-ray beam of fixed intensity and wave length. This can only be achieved by X-ray generator having highly stabilized tube voltage and tube current. This paper describes how X-ray tube high voltage and electron beam current are stabilized. This paper also highlights generation of X-rays, diffractometry and X-ray fluorescence analysis and their wide applications. Principle of operation for stabilizing the X-ray tube voltage and current, different protection circuits adopted, special features of the mains H.V. transformer and H.T. tank are described in this report. (author)

  15. High Energy Laboratory Astrophysics using an X-Ray Microcalorimeter with an Electron Beam Ion Trap Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "Since the summer of 2000 we have successfully deployed a high resolution x-ray microcalorimeter spectrometer, based on the spaceflight XRS instrument, at the...

  16. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling.

    Science.gov (United States)

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-05-01

    Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ~10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al2O3/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV. PMID:23592622

  17. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling.

    Science.gov (United States)

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-05-01

    Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ~10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al2O3/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV.

  18. X-ray production cross-sections measurements for high-energy alpha particle beams: New dedicated set-up and first results with aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, T., E-mail: T.Dupuis@ulg.ac.be [Centre Europeen d' Archeometrie, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Institut de Physique Nucleaire, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Chene, G., E-mail: Gregoire.Chene@ulg.ac.be [Centre Europeen d' Archeometrie, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Institut de Physique Nucleaire, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Mathis, F., E-mail: Francois.Mathis@ulg.ac.be [Centre Europeen d' Archeometrie, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Institut de Physique Nucleaire, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); and others

    2011-12-15

    The 'IPNAS' laboratory, in collaboration with the 'Centre Europeen d'Archeometrie' is partly focused on material analysis by means of IBA techniques: PIXE, PIGE and RBS. A new transport beam line has been developed at our CGR-520 MeV cyclotron to analyze Cultural Heritage objects using these techniques. This facility allows us to produce proton and alpha particle beams with energies up to 20 MeV. A vacuum chamber dedicated to X-ray production and Non-Rutherford cross-section measurements has been recently constructed. After determination of the chamber's geometry for X-ray detection using thin foils of several elements (11 Less-Than-Or-Slanted-Equal-To Z Less-Than-Or-Slanted-Equal-To 82) and 3 MeV proton beams, the measurement of the X-ray production cross-sections in the 6-12 MeV energy range has started using alpha particle beams on light element targets. These experiments contribute to the filling a serious lack of experimental values for alpha particles of this particular energy range in databases. The recent decision to focus our work on the alpha particle interaction with light elements was taken because of the high interest of the low Z elements in the field of archaeometry.

  19. Nondestructive mapping of chemical composition and structural qualities of group III-nitride nanowires using submicron beam synchrotron-based X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, P.L., E-mail: plb2@njit.edu [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Gautier, S. [LMOPS + UMI: Laboratoire Matériaux Optiques, Photonique et micro-nano Systèmes, UMR CNRS 7132, Université de Metz et SUPELEC, 2 rue E. Belin, 57070 Metz, France, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Gmili, Y.El.; Moudakir, T. [UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Sirenko, A.A. [Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Kazimirov, A. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Cai, Z.-H. [Advanced Photon Source, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Martin, J. [LMOPS + UMI: Laboratoire Matériaux Optiques, Photonique et micro-nano Systèmes, UMR CNRS 7132, Université de Metz et SUPELEC, 2 rue E. Belin, 57070 Metz, France, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Goh, W.H. [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Martinez, A.; Ramdane, A.; Le Gratiet, L. [Laboratoire de Photonique et de Nanostructures, UPR CNRS 20, Route de Nozay, 91460 Marcoussis (France); Maloufi, N. [Laboratoire d' Etude des Textures et Application aux Matériaux UMR CNRS 7078 Ile du Saulcy 57045 METZ cedex 1 (France); Assouar, M.B. [Laboratoire de Physique des Milieux Ionisés et Applications, Nancy University, CNRS, BP 239, F-54506 Vandoeuvre-lès-Nancy Cédex (France); Ougazzaden, A. [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France)

    2013-08-31

    Submicron beam synchrotron-based X-ray diffraction (XRD) techniques have been developed and used to accurately and nondestructively map chemical composition and material quality of selectively grown group III-nitride nanowires. GaN, AlGaN, and InGaN multi-quantum-well nanowires have been selectively grown on lattice matched and mismatched substrates, and the challenges associated with obtaining and interpreting submicron beam XRD results are addressed and solved. Nanoscale cathodoluminescence is used to examine exciton behavior, and energy-dispersive X-ray spectroscopy is used to verify chemical composition. Scanning transmission electron microscopy is later used to paint a more complete picture. The advantages of submicron beam XRD over other techniques are discussed in the context of this challenging material system. - Highlights: ► We used nano selective area growth to create nanowires of GaN, AlGaN and InGaN/GaN. ► We characterized them by synchrotron-based submicron beam X-ray diffraction (XRD). ► This technique accurately determined chemical and crystallographic properties. ► Challenges of XRD are addressed in the context of this challenging material system. ► Advantages of XRD over other characterization methods are discussed.

  20. Dose-response curve of EBT, EBT2, and EBT3 radiochromic films to synchrotron-produced monochromatic x-ray beams

    International Nuclear Information System (INIS)

    Purpose: This work investigates the dose-response curves of GAFCHROMIC® EBT, EBT2, and EBT3 radiochromic films using synchrotron-produced monochromatic x-ray beams. EBT2 film is being utilized for dose verification in photoactivated Auger electron therapy at the Louisiana State University Center for Advanced Microstructures and Devices (CAMD) synchrotron facility. Methods: Monochromatic beams of 25, 30, and 35 keV were generated on the tomography beamline at CAMD. Ion chamber depth-dose measurements were used to determine the dose delivered to films irradiated at depths from 0.7 to 8.5 cm in a 10 × 10 × 10-cm3 polymethylmethacrylate phantom. AAPM TG-61 protocol was applied to convert measured ionization into dose. Films were digitized using an Epson 1680 Professional flatbed scanner and analyzed using the net optical density (NOD) derived from the red channel. A dose-response curve was obtained at 35 keV for EBT film, and at 25, 30, and 35 keV for EBT2 and EBT3 films. Calibrations of films for 4 MV x-rays were obtained for comparison using a radiotherapy accelerator at Mary Bird Perkins Cancer Center. Results: The sensitivity (NOD per unit dose) of EBT film at 35 keV relative to that for 4-MV x-rays was 0.73 and 0.76 for doses 50 and 100 cGy, respectively. The sensitivity of EBT2 film at 25, 30, and 35 keV relative to that for 4-MV x-rays varied from 1.09–1.07, 1.23–1.17, and 1.27–1.19 for doses 50–200 cGy, respectively. For EBT3 film the relative sensitivity was within 3% of unity for all three monochromatic x-ray beams. Conclusions: EBT and EBT2 film sensitivity showed strong energy dependence over an energy range of 25 keV–4 MV, although this dependence becomes weaker for larger doses. EBT3 film shows weak energy dependence, indicating that it would be a better dosimeter for kV x-ray beams where beam hardening effects can result in large changes in the effective energy.

  1. Performance Evaluation of a Multichannel All-In-One Phantom Dosimeter for Dose Measurement of Diagnostic X-ray Beam

    Directory of Open Access Journals (Sweden)

    Hyesu Jeon

    2015-11-01

    Full Text Available We developed a multichannel all-in-one phantom dosimeter system composed of nine sensing probes, a chest phantom, an image intensifier, and a complementary metal-oxide semiconductor (CMOS image sensor to measure the dose distribution of an X-ray beam used in radiation diagnosis. Nine sensing probes of the phantom dosimeter were fabricated identically by connecting a plastic scintillating fiber (PSF to a plastic optical fiber (POF. To measure the planar dose distribution on a chest phantom according to exposure parameters used in clinical practice, we divided the top of the chest phantom into nine equal parts virtually and then installed the nine sensing probes at each center of the nine equal parts on the top of the chest phantom as measuring points. Each scintillation signal generated in the nine sensing probes was transmitted through the POFs and then intensified by the image intensifier because the scintillation signal normally has a very low light intensity. Real-time scintillation images (RSIs containing the intensified scintillation signals were taken by the CMOS image sensor with a single lens optical system and displayed through a software program. Under variation of the exposure parameters, we measured RSIs containing dose information using the multichannel all-in-one phantom dosimeter and compared the results with the absorbed doses obtained by using a semiconductor dosimeter (SCD. From the experimental results of this study, the light intensities of nine regions of interest (ROI in the RSI measured by the phantom dosimeter were similar to the dose distribution obtained using the SCD. In conclusion, we demonstrated that the planar dose distribution including the entrance surface dose (ESD can be easily measured by using the proposed phantom dosimeter system.

  2. Watching adsorption and electron beam induced decomposition on the model system Mo(CO){sub 6}/Cu(1 1 1) by X-ray absorption and photoemission spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Paufert, Pierre, E-mail: pierre.paufert@u-bourgogne.fr [ICB, UMR 6303 CNRS-Université de Bourgogne, BP 47870, 21078 Dijon cedex (France); Fonda, Emiliano [Synchrotron SOLEIL, BP48, St Aubin, 91192 Gif sur Yvette cedex (France); Li, Zheshen [ISA, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C (Denmark); Domenichini, Bruno, E-mail: bruno.domenichini@u-bourgogne.fr [ICB, UMR 6303 CNRS-Université de Bourgogne, BP 47870, 21078 Dijon cedex (France); Bourgeois, Sylvie [ICB, UMR 6303 CNRS-Université de Bourgogne, BP 47870, 21078 Dijon cedex (France)

    2013-11-01

    An in-depth study of the first steps of electron beam assisted growth of Mo from molybdenum hexacarbonyl on Cu(1 1 1) has been carried out exploiting the complementarity of X-ray photoemission and X-ray absorption spectroscopies. Frank van der Merwe (2D) growth mode has been observed for the completion of the two first monolayers of adsorbed molecules through a simple physisorption process. Irradiation of the Mo(CO){sub 6} deposit by 1 keV electron beam induces a modification of molybdenum coordination, the average number of C-neighbors decreasing from 6 to 3. Decomposed molecules remain on the surface after annealing at 520 K and organize themselves, the molybdenum atoms moving in Cu(1 1 1) surface fcc hollow sites. After annealing at 670 K, metallic molybdenum growth begins, if the total amount of adsorbed Mo atoms exceeds 1.2 monolayers.

  3. Watching adsorption and electron beam induced decomposition on the model system Mo(CO)6/Cu(1 1 1) by X-ray absorption and photoemission spectroscopies

    Science.gov (United States)

    Paufert, Pierre; Fonda, Emiliano; Li, Zheshen; Domenichini, Bruno; Bourgeois, Sylvie

    2013-11-01

    An in-depth study of the first steps of electron beam assisted growth of Mo from molybdenum hexacarbonyl on Cu(1 1 1) has been carried out exploiting the complementarity of X-ray photoemission and X-ray absorption spectroscopies. Frank van der Merwe (2D) growth mode has been observed for the completion of the two first monolayers of adsorbed molecules through a simple physisorption process. Irradiation of the Mo(CO)6 deposit by 1 keV electron beam induces a modification of molybdenum coordination, the average number of C-neighbors decreasing from 6 to 3. Decomposed molecules remain on the surface after annealing at 520 K and organize themselves, the molybdenum atoms moving in Cu(1 1 1) surface fcc hollow sites. After annealing at 670 K, metallic molybdenum growth begins, if the total amount of adsorbed Mo atoms exceeds 1.2 monolayers.

  4. TAILORING X-RAY BEAM ENERGY SPECTRUM TO ENHANCE IMAGE QUALITY OF NEW RADIOGRAPHY CONTRAST AGENTS BASED ON GD OR OTHER LANTHANIDES

    International Nuclear Information System (INIS)

    Gadovist, a 1.0-molar Gd contrast agent from Schering AG, Berlin Germany, in use in clinical MPI in Europe, was evaluated as a radiography contrast agent. In a collaboration with Brookhaven National Laboratory (BNL), Schering AG is developing several such lanthanide-based contrast agents, while BNL evaluates them using different x-my beam energy spectra. These energy spectra include a ''truly'' monochromatic beam (0.2 keV energy bandwidth) from the National Synchrotron Light Source (NSLS), BNL, tuned above the Gd K-edge, and x-ray-tube beams from different kVp settings and beam filtrations. Radiographs of rabbits' kidneys were obtained with Gadovist at the NSLS. Furthermore, a clinical radiography system was used for imaging rabbits' kidneys comparing Gadovist and Conray, an iodinated contrast agent. The study, using 74 kVp and standard Al beam filter for Conray and 66 kVp and an additional 1.5 mm Cu beam filter for Gadovist, produced comparable images for Gadovist and Conray; the injection volumes were the same, while the radiation absorbed dose for Gadovist was slightly smaller. A bent-crystal silicon monochromator operating in the Laue diffraction mode was developed and tested with a conventional x-ray tube beam; it narrows the energy spectrum to about 4 keV around the anode tungsten's Ku line. Preliminary beam-flux results indicate that the method could be implemented in clinical CT if x-ray tubes with approximately twice higher output become available

  5. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Gladstone, David J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  6. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    International Nuclear Information System (INIS)

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm3 volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water

  7. X-Rays

    Science.gov (United States)

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  8. Free-electron laser generation of VUV and x-ray radiation using a conditioned beam and ion-channel focusing

    International Nuclear Information System (INIS)

    The use of ion-focusing and a conditioned beam greatly enhances FEL gain in the VUV and Soft X-Ray range. The equations governing FEL amplification are derived and results of a linear analysis are noted. Numerical results, including 3D effects and having an order of magnitude improvement in gain, are presented for a 30 Angstrom example. 3 refs., 2 figs., 1 tab

  9. Accelerator x-ray sources

    CERN Document Server

    Talman, Richard

    2007-01-01

    This first book to cover in-depth the generation of x-rays in particle accelerators focuses on electron beams produced by means of the novel Energy Recovery Linac (ERL) technology. The resulting highly brilliant x-rays are at the centre of this monograph, which continues where other books on the market stop. Written primarily for general, high energy and radiation physicists, the systematic treatment adopted by the work makes it equally suitable as an advanced textbook for young researchers.

  10. Vertical beam size measurement in the CESR-TA $e^+e^-$ storage ring using x-rays from synchrotron radiation

    CERN Document Server

    Alexander, J P; Conolly, C; Edwards, E; Ehrlichman, M P; Fontes, E; Heltsley, B K; Hopkins, W; Lyndaker, A; Peterson, D P; Rider, N T; Rubin, D L; Savino, J; Seeley, R; Shanks, J; Flanagan, J W

    2013-01-01

    We describe the construction and operation of an x-ray beam size monitor (xBSM), a device measuring $e^+$ and $e^-$ beam sizes in the CESR-TA storage ring using synchrotron radiation. The device can measure vertical beam sizes of $10-100~\\mu$m on a turn-by-turn, bunch-by-bunch basis at $e^\\pm$ beam energies of $\\sim2~$GeV. At such beam energies the xBSM images x-rays of $\\epsilon\\approx$1-10$~$keV ($\\lambda\\approx 0.1-1$ nm) that emerge from a hard-bend magnet through a single- or multiple-slit (coded aperture) optical element onto an array of 32 InGaAs photodiodes with 50$~\\mu$m pitch. Beamlines and detectors are entirely in-vacuum, enabling single-shot beam size measurement down to below 0.1$~$mA ($2.5\\times10^9$ particles) per bunch and inter-bunch spacing of as little as 4$~$ns. At $E_{\\rm b}=2.1 $GeV, systematic precision of $\\sim 1~\\mu$m is achieved for a beam size of $\\sim12~\\mu$m; this is expected to scale as $\\propto 1/\\sigma_{\\rm b}$ and $\\propto 1/E_{\\rm b}$. Achieving this precision requires compr...

  11. Radiation dose in breast CT imaging with monochromatic x-rays: simulation study of the influence of energy, composition and thickness

    International Nuclear Information System (INIS)

    Recent developments have shown that high resolution phase contrast x-ray computed tomography (CT) of the breast can be performed at clinically compatible doses. Results have yet been obtained in vitro on full breasts, and the clinical translation of the technique seems more and more possible. This work presents a method to quickly estimate the average dose in the organ using the software GATE. The influence of different parameters on the dose distribution, like breast composition and thickness, and for preclinical test, the presence of a skin/PMMA external layer, has been investigated. Several correction factors, to be applied to the given dose database, are also introduced to allow the use of these results in geometries different from those studied here. An energy optimization study is presented that considers also the influence on the energy choice of x-ray detector. A simple analytical method to estimate the best energy that minimizes the dose-transmittance ratio in CT imaging is presented and compared with the results of simulations. (paper)

  12. Radiation dose in breast CT imaging with monochromatic x-rays: simulation study of the influence of energy, composition and thickness

    Science.gov (United States)

    Mittone, A.; Bravin, A.; Coan, P.

    2014-05-01

    Recent developments have shown that high resolution phase contrast x-ray computed tomography (CT) of the breast can be performed at clinically compatible doses. Results have yet been obtained in vitro on full breasts, and the clinical translation of the technique seems more and more possible. This work presents a method to quickly estimate the average dose in the organ using the software GATE. The influence of different parameters on the dose distribution, like breast composition and thickness, and for preclinical test, the presence of a skin/PMMA external layer, has been investigated. Several correction factors, to be applied to the given dose database, are also introduced to allow the use of these results in geometries different from those studied here. An energy optimization study is presented that considers also the influence on the energy choice of x-ray detector. A simple analytical method to estimate the best energy that minimizes the dose-transmittance ratio in CT imaging is presented and compared with the results of simulations.

  13. New achievements in X-ray optics——the X-ray lens and its applications

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An X-ray lens consists of a large number of X-ray capillaries. It can collect divergent X-rays emitted from an X-ray source and form a focused or parallel beam of high intensity. So it is an effective tool for adjusting and controlling wide bandwidth X-ray beams. In this paper, the X-ray lens made by the X-ray Optics Laboratory of Institute of Low Energy Nuclear Physics at Beijing Normal University and its applications in the field of X-ray analysis are presented.

  14. X-ray diffraction study of crystal growth dynamics during molecular-beam epitaxy of III-V semiconductors

    International Nuclear Information System (INIS)

    An experimental approach to crystal growth dynamics using surface-sensitive X-ray diffraction techniques is discussed. In crystal growth, two essentially different kinds of dynamics are involved. One is the evolution of a statistical structure averaged over the sample area under consideration. The other is the temporal fluctuation of local structures associated with elemental processes of crystal growth, such as the adsorption, desorption, and diffusion of adatoms. Over the past few decades, combination of a synchrotron X-ray beamlines and specially designed crystal growth systems has played a great role in situ studies of the dynamics of average structures during the epitaxial growth of crystalline films. The recent development of coherent X-ray sources has provided an opportunity to elucidate local structure fluctuation, which is also important for solving many technological problems in crystal growth including the control of the uniformity of self-assembled nanostructures and the suppression of defects. (author)

  15. X-ray induced formation of γ-H2AX foci after full-field digital mammography and digital breast-tomosynthesis.

    Directory of Open Access Journals (Sweden)

    Siegfried A Schwab

    Full Text Available PURPOSE: To determine in-vivo formation of x-ray induced γ-H2AX foci in systemic blood lymphocytes of patients undergoing full-field digital mammography (FFDM and to estimate foci after FFDM and digital breast-tomosynthesis (DBT using a biological phantom model. MATERIALS AND METHODS: The study complies with the Declaration of Helsinki and was performed following approval by the ethic committee of the University of Erlangen-Nuremberg. Written informed consent was obtained from every patient. For in-vivo tests, systemic blood lymphocytes were obtained from 20 patients before and after FFDM. In order to compare in-vivo post-exposure with pre-exposure foci levels, the Wilcoxon matched pairs test was used. For in-vitro experiments, isolated blood lymphocytes from healthy volunteers were irradiated at skin and glandular level of a porcine breast using FFDM and DBT. Cells were stained against the phosphorylated histone variant γ-H2AX, and foci representing distinct DNA damages were quantified. RESULTS: Median in-vivo foci level/cell was 0.086 (range 0.067-0.116 before and 0.094 (0.076-0.126 after FFDM (p = 0.0004. In the in-vitro model, the median x-ray induced foci level/cell after FFDM was 0.120 (range 0.086-0.140 at skin level and 0.035 (range 0.030-0.050 at glandular level. After DBT, the median x-ray induced foci level/cell was 0.061 (range 0.040-0.081 at skin level and 0.015 (range 0.006-0.020 at glandular level. CONCLUSION: In patients, mammography induces a slight but significant increase of γ-H2AX foci in systemic blood lymphocytes. The introduced biological phantom model is suitable for the estimation of x-ray induced DNA damages in breast tissue in different breast imaging techniques.

  16. Particle induced X-ray emission and ion dose distribution in a biological micro-beam: Geant4 Monte Carlo simulations

    International Nuclear Information System (INIS)

    The goal of a microbeam is to deliver a highly localized and small dose to the biological medium. This can be achieved by using a set of collimators that confine the charged particle beam to a very small spatial area of the order of microns in diameter. By using a system that combines an appropriate beam detection method that signals to a beam shut-down mechanism, a predetermined and counted number of energetic particles can be delivered to targeted biological cells. Since the shutter and the collimators block a significant proportion of the beam, there is a probability of the production of low energy X-rays and secondary electrons through interactions with the beam. There is little information in the biological microbeam literature on potential X-ray production. We therefore used Monte Carlo simulations to investigate the potential production of particle-induced X-rays and secondary electrons in the collimation system (which is predominantly made of tungsten) and the subsequent possible effects on the total absorbed dose delivered to the biological medium. We found, through the simulation, no evidence of the escape of X-rays or secondary electrons from the collimation system for proton energies up to 3 MeV as we found that the thickness of the collimators is sufficient to reabsorb all of the generated low energy X-rays and secondary electrons. However, if the proton energy exceeds 3 MeV our simulations suggest that 10 keV X-rays can escape the collimator and expose the overlying layer of cells and medium. If the proton energy is further increased to 4.5 MeV or beyond, the collimator can become a significant source of 10 keV and 59 keV X-rays. These additional radiation fields could have effects on cells and these results should be verified through experimental measurement. We suggest that researchers using biological microbeams at higher energies need to be aware that cells may be exposed to a mixed LET radiation field and be careful in their interpretation of

  17. Radioluminescence characterization of in situ x-ray nanodosimeters: Potential real-time monitors and modulators of external beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Souris, Jeffrey S.; La Riviere, Patrick; Chen, Chin-Tu [Department of Radiology, The University of Chicago, Chicago, Illinois 60637 (United States); Cheng, Shih-Hsun; Chen, Nai-Tzu; Lo, Leu-Wei, E-mail: lwlo@nhri.org.tw [Department of Radiology, The University of Chicago, Chicago, Illinois 60637 (United States); Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Mioli 35053, Taiwan (China); Pelizzari, Charles [Deaprtment of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637 (United States)

    2014-11-17

    Europium-doped yttrium oxide (Y{sub 2}O{sub 3}:Eu) has garnered considerable interest recently for its use as a highly efficient, red phosphor in a variety of lighting applications that include fluorescent lamps, plasma, and field emission display panels, light emitting diodes (LEDs), and lasers. In the present work, we describe the development of Y{sub 2}O{sub 3}:Eu nanoparticles for a very different application: in situ, in vivo x-ray dosimetry. Spectroscopic analyses of these nanoparticles during x-ray irradiation reveal surprisingly bright and stable radioluminescence at near-infrared wavelengths, with markedly linear response to changes in x-ray flux and energy. Monte Carlo modeling of incident flux and broadband, wide-field imaging of mouse phantoms bearing both Y{sub 2}O{sub 3}:Eu nanoparticles and calibrated LEDs of similar spectral emission demonstrated significant transmission of radioluminescence, in agreement with spectroscopic studies; with approximately 15 visible photons being generated for every x-ray photon incident. Unlike the dosimeters currently employed in clinical practice, these nanodosimeters can sample both dose and dose rate rapidly enough as to provide real-time feedback for x-ray based external beam radiotherapy (EBRT). The technique's use of remote sensing and absence of supporting structures enable perturbation-free dosing of the targeted region and complete sampling from any direction. With the conjugation of pathology-targeting ligands onto their surfaces, these nanodosimeters offer a potential paradigm shift in the real-time monitoring and modulation of delivered dose in the EBRT of cancer in situ.

  18. Radioluminescence characterization of in situ x-ray nanodosimeters: Potential real-time monitors and modulators of external beam radiation therapy

    Science.gov (United States)

    Souris, Jeffrey S.; Cheng, Shih-Hsun; Pelizzari, Charles; Chen, Nai-Tzu; La Riviere, Patrick; Chen, Chin-Tu; Lo, Leu-Wei

    2014-11-01

    Europium-doped yttrium oxide (Y2O3:Eu) has garnered considerable interest recently for its use as a highly efficient, red phosphor in a variety of lighting applications that include fluorescent lamps, plasma, and field emission display panels, light emitting diodes (LEDs), and lasers. In the present work, we describe the development of Y2O3:Eu nanoparticles for a very different application: in situ, in vivo x-ray dosimetry. Spectroscopic analyses of these nanoparticles during x-ray irradiation reveal surprisingly bright and stable radioluminescence at near-infrared wavelengths, with markedly linear response to changes in x-ray flux and energy. Monte Carlo modeling of incident flux and broadband, wide-field imaging of mouse phantoms bearing both Y2O3:Eu nanoparticles and calibrated LEDs of similar spectral emission demonstrated significant transmission of radioluminescence, in agreement with spectroscopic studies; with approximately 15 visible photons being generated for every x-ray photon incident. Unlike the dosimeters currently employed in clinical practice, these nanodosimeters can sample both dose and dose rate rapidly enough as to provide real-time feedback for x-ray based external beam radiotherapy (EBRT). The technique's use of remote sensing and absence of supporting structures enable perturbation-free dosing of the targeted region and complete sampling from any direction. With the conjugation of pathology-targeting ligands onto their surfaces, these nanodosimeters offer a potential paradigm shift in the real-time monitoring and modulation of delivered dose in the EBRT of cancer in situ.

  19. Radioluminescence characterization of in situ x-ray nanodosimeters: Potential real-time monitors and modulators of external beam radiation therapy

    International Nuclear Information System (INIS)

    Europium-doped yttrium oxide (Y2O3:Eu) has garnered considerable interest recently for its use as a highly efficient, red phosphor in a variety of lighting applications that include fluorescent lamps, plasma, and field emission display panels, light emitting diodes (LEDs), and lasers. In the present work, we describe the development of Y2O3:Eu nanoparticles for a very different application: in situ, in vivo x-ray dosimetry. Spectroscopic analyses of these nanoparticles during x-ray irradiation reveal surprisingly bright and stable radioluminescence at near-infrared wavelengths, with markedly linear response to changes in x-ray flux and energy. Monte Carlo modeling of incident flux and broadband, wide-field imaging of mouse phantoms bearing both Y2O3:Eu nanoparticles and calibrated LEDs of similar spectral emission demonstrated significant transmission of radioluminescence, in agreement with spectroscopic studies; with approximately 15 visible photons being generated for every x-ray photon incident. Unlike the dosimeters currently employed in clinical practice, these nanodosimeters can sample both dose and dose rate rapidly enough as to provide real-time feedback for x-ray based external beam radiotherapy (EBRT). The technique's use of remote sensing and absence of supporting structures enable perturbation-free dosing of the targeted region and complete sampling from any direction. With the conjugation of pathology-targeting ligands onto their surfaces, these nanodosimeters offer a potential paradigm shift in the real-time monitoring and modulation of delivered dose in the EBRT of cancer in situ

  20. Search for novel contrast materials in dual-energy x-ray breast imaging using theoretical modeling of contrast-to-noise ratio.

    Science.gov (United States)

    Karunamuni, R; Maidment, A D A

    2014-08-01

    Contrast-enhanced (CE) dual-energy (DE) x-ray breast imaging uses a low- and high-energy x-ray spectral pair to eliminate soft-tissue signal variation and thereby increase the detectability of exogenous imaging agents. Currently, CEDE breast imaging is performed with iodinated contrast agents. These compounds are limited by several deficiencies, including rapid clearance and poor tumor targeting ability. The purpose of this work is to identify novel contrast materials whose contrast-to-noise ratio (CNR) is comparable or superior to that of iodine in the mammographic energy range. A monoenergetic DE subtraction framework was developed to calculate the DE signal intensity resulting from the logarithmic subtraction of the low- and high-energy signal intensities. A weighting factor is calculated to remove the dependence of the DE signal on the glandularity of the breast tissue. Using the DE signal intensity and weighting factor, the CNR for materials with atomic numbers (Z) ranging from 1 to 79 are computed for energy pairs between 10 and 50 keV. A group of materials with atomic numbers ranging from 42 to 63 were identified to exhibit the highest levels of CNR in the mammographic energy range. Several of these materials have been formulated as nanoparticles for various applications but none, apart from iodine, have been investigated as CEDE breast imaging agents. Within this group of materials, the necessary dose fraction to the LE image decreases as the atomic number increases. By reducing the dose to the LE image, the DE subtraction technique will not provide an anatomical image of sufficient quality to accompany the contrast information. Therefore, materials with Z from 42 to 52 provide nearly optimal values of CNR with energy pairs and dose fractions that provide good anatomical images. This work is intended to inspire further research into new materials for optimized CEDE breast functional imaging.

  1. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne, E-mail: grevent@is.mpg.de [Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Szeghalmi, Adriana [Friedrich-Schiller-Universität Jena, Albert-Einstein-Strasse 15, D-07745 Jena (Germany); Knez, Mato [CIC nanoGUNE Consolider, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastian (Spain); Basque Foundation for Science, Alameda Urquijo 36-5, E-48011 Bilbao (Spain); Weigand, Markus [Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Snigirev, Anatoly; Snigireva, Irina [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble (France); Schütz, Gisela [Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart (Germany)

    2013-05-01

    The fabrication and performance of multilayer Al{sub 2}O{sub 3}/Ta{sub 2}O{sub 5} Fresnel zone plates in the hard X-ray range and a discussion of possible future developments considering available materials are reported. Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ∼10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al{sub 2}O{sub 3}/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV.

  2. Can the application of computed tomography laser mammography (CTLM) in dense breast (category 3,4 according to ACR) examinations combined with x-ray mammography enhance the detection of breast cancer?

    International Nuclear Information System (INIS)

    Background: The aim of this study was an attempt to answer the question whether laser mammography in dense breast (classified as category 3,4 according to ACR) examination together with x-ray mammography can enhance the detection of breast cancer. Material/Method: 248 women who had undergone a CTLM examination and mammography in the Department of Radiology of Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology in the years 2005-2007 were analyzed retrospectively. In these examinations, x-ray mammography did not reveal lesions (BIRADS 1, category 3 and 4 according to ACR). An interval between CTLM and mammography did not exceed 30 days. The examination result was verified by cytology/histopathology or observation after a minimum of 12 months provided a regular result. CTLM visualizes normal and pathological blood vessels and tissues which are rich in blood, because laser rays used in CTLM (808 nm) are more absorbable by hemoglobin than by the surrounding tissue, making it possible to show a malignant tumor by its accompanying angiogenesis. The result of CTLM mammography was qualified either as the presence (+) or absence (-) of angiogenesis. Results: Among 248 women, angiogenesis was discovered by CTLM in 48 cases, in the CTLM (+) Group 13/48 women were diagnosed with breast cancer, whereas 35/48 were diagnosed with benign lesions. Angiogenesis was not identified in 200 women, in the CTLM (-) group 13/200 were diagnosed finally with cancer, with 187/200 patients having no malignancy. Ultimately, in the group of 248 women (with dense breast, category 3 and 4 according to ACR), in whom x-ray mammography did not reveal malignant processes (BIRADS 1), 26 cancers were detected out of which 13 were revealed with CTLM. Conclusions: Computed Tomography Laser Mammography, when used as an adjunct to x-ray mammography, enhances the detection of breast cancer in women with dense breast tissue

  3. Beam tracking approach for single–shot retrieval of absorption, refraction, and dark-field signals with laboratory  x-ray sources

    International Nuclear Information System (INIS)

    We present the translation of the beam tracking approach for x-ray phase-contrast and dark-field imaging, recently demonstrated using synchrotron radiation, to a laboratory setup. A single absorbing mask is used before the sample, and a local Gaussian interpolation of the beam at the detector is used to extract absorption, refraction, and dark–field signals from a single exposure of the sample. Multiple exposures can be acquired when high resolution is needed, as shown here. A theoretical analysis of the effect of polychromaticity on the retrieved signals, and of the artifacts this might cause when existing retrieval methods are used, is also discussed

  4. Compensating the electron beam energy spread by the natural transverse gradient of laser undulator in all-optical x-ray light sources

    OpenAIRE

    ZHANG, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2013-01-01

    All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural trans...

  5. Beam tracking approach for single–shot retrieval of absorption, refraction, and dark-field signals with laboratory  x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Vittoria, Fabio A., E-mail: fabio.vittoria.12@ucl.ac.uk; Diemoz, Paul C.; Olivo, Alessandro [Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, London WC1E 6BT (United Kingdom); Research Complex at Harwell, Harwell Oxford Campus, OX11 0FA Didcot (United Kingdom); Kallon, Gibril K. N.; Basta, Dario; Endrizzi, Marco [Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, London WC1E 6BT (United Kingdom); Robinson, Ian K. [Research Complex at Harwell, Harwell Oxford Campus, OX11 0FA Didcot (United Kingdom); London Centre for Nanotechnology, WC1H 0AH London (United Kingdom)

    2015-06-01

    We present the translation of the beam tracking approach for x-ray phase-contrast and dark-field imaging, recently demonstrated using synchrotron radiation, to a laboratory setup. A single absorbing mask is used before the sample, and a local Gaussian interpolation of the beam at the detector is used to extract absorption, refraction, and dark–field signals from a single exposure of the sample. Multiple exposures can be acquired when high resolution is needed, as shown here. A theoretical analysis of the effect of polychromaticity on the retrieved signals, and of the artifacts this might cause when existing retrieval methods are used, is also discussed.

  6. Comparative feasibility of gamma, electron beam and x-rays facilities at the Kuala Lumpur International airport (KLIA), Sepang, Malaysia

    International Nuclear Information System (INIS)

    Malaysia is one of the world's leading producers of rubber, palm oil and cocoa beans. There is a great concern within the commodity industries of the possible outbreak of plant diseases yet to be detected in the country but endemic in the South American tropics and Africa. The risk of transferring the diseases to Malaysia are high because of increasing contacts between Malaysia and the South American countries and Africa through trades, tourism and the South-South cooperation. Diseases of particular importance are the South American leaf blight (SALB) of rubber, vascular wilts of oil palm and witches'broom of cocoa caused by Microcyclus ulei, Fusarium oxysporum f sp. elaeidies and Crinipellis pemiciosa (Stahel) Singer respectively. Recent estimates by the Agriculture Department of Malaysia indicated in the event of large scale attack by SALB on rubber would result in revenue loss of a staggering RM 3-3.5 billion per annum, an equivalent of 70% loss in rubber acreage. This excludes massive unemployment in the rubber industry and cost of cleaning up activities to eradicate and free plantations of SALB. Recurring attacks of the diseases cannot be discounted given the fact that spores of fungi can remain dormant for years but still viable. Stringent control and quarantine steps are presently being exercised by the authorities to intercept at airports and hence prevent entry of infectious plant diseases in Malaysia. Many of the measures using chemicals, ultra violet light (UV), steam sterilization, air blowers etc. are not sufficiently effective in killing fungi especially when spores are carried in the personal belongings of air-passengers. There was suggestion that ionizing radiation offers alternative to the present methods for intercepting pathogens at the port of entry. This paper will firstly, discuss results on the investigations carried out to compare the effectiveness of various ionizing radiation sources, i.e., gamma, electron beam and x-rays; chemicals and UV

  7. Photon source term after single collision in targets of silicon, copper and lead for 50-500 keV X-ray beams.

    Science.gov (United States)

    Nariyama, Nobuteru

    2016-03-14

    Single-scattered X-ray doses at 1 m from silicon, copper and lead targets were calculated using an analytical point-kernel method considering the self-absorption, and the calculated values were compared with detailed results of a Monte Carlo calculation with respect to the emission angle. In the calculations, a slab slanted at 3° to the beam axis was used for silicon in addition to the cylindrical targets for the three materials, and the slab geometry showed the largest doses. The analytical calculations were underestimated compared with the Monte Carlo calculations by less than 24% for silicon and 40% for copper, particularly at large-angle scattering, which was attributable to the buildup effect of the single-scattered X-rays in the targets. By considering the buildup effect, the difference from Monte Carlo results decreased to less than 20%. For lead, the influence of fluorescent X-rays produced by the source beam was dominant in the backward direction, which was also calculated analytically. The simple analytical program can be applied to any target size and shape by considering self-absorption and the buildup effect, both of which inform the simple dose estimation method. PMID:27002900

  8. Implantation of the metrological base for dosimetry of X-ray beams used in radiodiagnostic at Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Viewing the reliability on the X, beta and gamma radiations, the Center for Development of Nuclear Technology (CDTN) has invested in the implantation of a metrological infrastructure to attend the necessities of the radiodiagnostic area with X-rays. This work describes the strategy and the more relevant technical and scientific results

  9. Effect of electron contamination of a 6 MV x-ray beam on near surface diode dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, C R; Mountford, P J; Moloney, A J [Medical Physics Directorate, University Hospital of North Staffordshire, Princes Road, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7LN (United Kingdom)

    2006-12-21

    In critical organ in vivo x-ray dosimetry, the relative contaminating electron contribution to the total dose and total detector response outside the field will be different to the corresponding contributions at the central axis detector calibration position, mainly due to the effects of shielding in the linear accelerator head on the electron and x-ray energy spectrum. To investigate these contributions, the electron energy response of a Scanditronix PFD diode was measured using electrons with mean energies from 0.45 to 14.6 MeV, and the Monte Carlo code MCNP-4C was used to calculate the electron energy spectra on the central axis, and at 1 and 10 cm outside the edge of a 4 x 4, 10 x 10 and a 15 x 15 cm{sup 2} 6 MV x-ray field. The electron contribution to the total dose varied from about 8% on the central axis of the smallest field to about 76% at 10 cm outside the edge of the largest field. The electron contribution to the total diode response varied from about 7-8% on the central axis of all three fields to about 58% at 10 cm outside the edge of the smallest field. The results indicated that a near surface x-ray dose measurement with a diode outside the treatment field has to be interpreted with caution and requires knowledge of the relative electron contribution specific to the measurement position and field size.

  10. Generation and application of soft-X-ray by means of inverse compton scattering between high quality election beam and IR laser

    International Nuclear Information System (INIS)

    High quality beam generation project based on High-Tech Research Center Project, which has been approved by Ministry of Education, Culture, Sports, Science and Technology in 1999, has been conducted by advance research institute for science and engineering, Waseda University. In the project, laser photo-cathode RF-gun has been selected for the high quality electron beam source. RF cavities with low dark current, which were made by diamond turning technique, have been successfully manufactured. The low emittance electron beam was realized by choosing the modified laser injection technique. The obtained normalized emittance was about 3 mm·mrad at 100 pC of electron charge. The soft X-ray beam generation with the energy of 370 eV, which is in the energy region of so-called 'water window', by inverse Compton scattering has been performed by the collision between IR laser and the low emittance electron beams. (authors)

  11. Chest x-ray

    Science.gov (United States)

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  12. Operation of beam line facilities for real-time x-ray studies at Sector 7 of the advanced photon source. Final Report

    International Nuclear Information System (INIS)

    This Final Report documents the research accomplishments achieved in the first phase of operations of a new Advanced Photon Source beam line (7-ID MHATT-CAT) dedicated to real-time x-ray studies. The period covered by this report covers the establishment of a world-class facility for time-dependent x-ray studies of materials. During this period many new and innovative research programs were initiated at Sector 7 with support of this grant, most notably using a combination of ultrafast lasers and pulsed synchrotron radiation. This work initiated a new frontier of materials research: namely, the study of the dynamics of materials under extreme conditions of high intensity impulsive laser irradiation

  13. Interfacial structure of molecular beam epitaxial grown cubic-GaN films on GaAs(001) probed by x-ray gazing-angle specular reflection

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    We report on a study of interfacial structure of GaN films grown on GaAs(001) substrates by plasma-assisted molecular beam epitaxy using x-ray grazing-angle specular reflection.We show that interfacial layers with electron densities differing from those of GaN and GaAs were formed upon deposition of GaN.It is also found that the interfacial structure of our systems depends strongly on the course of the initial layer deposition.The phase purity of the GaN films was examined by x-ray reciprocal space mapping.A simple kinetic growth model suggested by our results has been presented.

  14. QED-based Optical Bloch Equations without electric dipole approximation: A model for a two-level atom interacting with a monochromatic X-ray laser beam

    CERN Document Server

    Zhang, Wen-Zhuo

    2012-01-01

    We derive a set of optical Bloch equations (OBEs) directly from the minimal-coupling Hamiltonian density of the bound-state quantum electrodynamics (bound-state QED). Such optical Bloch equations are beyond the former widely-used ones due to that there is no electric dipole approximation (EDA) on the minimal-coupling Hamiltonian density of the bound-state QED. Then our optical Bloch equations can describe a two-level atom interacting with a monochromatic light of arbitrary wavelength, which are suitable to study the spectroscopy and the Rabi oscillations of two-level atoms in X-ray laser beams since that the wavelength of X-ray is close to an atom to make the electric dipole approximation (EDA) invalid.

  15. Detection of metastases in breast cancer patients. Comparison of FDG PET with chest X-ray, bone scintigraphy and ultrasound of the abdomen

    Energy Technology Data Exchange (ETDEWEB)

    Dose-Schwarz, J.; Mahner, S.; Schirrmacher, S.; Mueller, V. [Klinik und Poliklinik fuer Gynaekologie, Universitaetsklinikum Hamburg-Eppendorf (Germany); Jenicke, L.; Brenner, W. [Klinik fuer Nuklearmedizin, Universitaetsklinikum Hamburg-Eppendorf (Germany); Habermann, C.R. [Klinik fuer Diagnostische und Interventionelle Radiologie, Universitaetsklinikum Hamburg-Eppendorf (Germany)

    2008-07-01

    Distant metastases at primary diagnosis are a prognostic key factor in breast cancer patients and play a central role in therapeutic decisions. To detect them, chest X-ray, abdominal ultrasound, and bone scintigraphy are performed as standard of care in Germany and many centers worldwide. Although FDG PET detects metastatic disease with high accuracy, its diagnostic value in breast cancer still needs to be defined. The aim of this study was to compare the diagnostic performance of FDG PET with conventional imaging. Patients, methods: a retrospective analysis of 119 breast cancer patients who presented for staging was performed. Whole-body FDG-PET (n = 119) was compared with chest X-ray (n = 106) and bone scintigraphy (n = 95). Each imaging modality was independently assessed and classified for metastasis (negative, equivocal and positive). The results of abdominal ultrasound (n = 100) were classified as negative and positive according to written reports. Imaging results were compared with clinical follow-up including follow-up imaging procedures and histopathology. Results: FDG-PET detected distant metastases with a sensitivity of 87.3% and a specificity of 83.3%. In contrast, the sensitivity and specificity of combined conventional imaging procedures was 43.1% and 98.5%, respectively. Regarding so-called equivocal and positive results as positive, the sensitivity and specificity of FDG-PET was 93.1% and 76.6%, respectively, compared to 61.2% and 86.6% for conventional imaging. Regarding different locations of metastases the sensitivity of FDG PET was superior in the detection of pulmonary metastases and lymph node metastases of the mediastinum in comparison to chest X-ray, whereas the sensitivity of FDG PET in the detection of bone and liver metastases was comparable with bone scintigraphy and ultrasound of the abdomen. Conclusions: FDG-PET is more sensitive than conventional imaging procedures for detection of distant breast cancer metastases and should be

  16. Cross-calibration of pencil-beam (DPX-NT) and fan-beam (QDR-4500C) dual-energy X-ray absorptiometry for sarcopenia.

    Science.gov (United States)

    Ito, Kenyu; Tsushita, Kazuyo; Muramoto, Akiko; Kanzaki, Hiroki; Nohara, Takashi; Shimizu, Hitomi; Nakazawa, Tomoko; Harada, Atsushi

    2015-11-01

    Sarcopenia, defined as the loss of muscle mass accompanied by weakness, is an important factor leading to frailty and is a growing concern in the aging Japanese society. Muscle mass can be calculated by dual-energy X-ray absorptiometry (DXA), but results differ between devices produced by different manufactures. Thus, cross-calibration is needed to compare body composition results in multicenter trials or when scanners are replaced. The purpose of this study was to perform an in vivo calibration of total body scans between pencil-beam (DPX-NT, GE Healthcare) and fan-beam (QDR-4500C, Hologic Inc.) DXA units. A total 30 subjects (15 women, 15 men, mean age = 35 years, range 22-49 years) were recruited. The lumbar bone mineral density (BMD), femoral neck BMD, appendicular fat and lean body mass, and the appendicular skeletal muscle mass index (ASMI) were highly correlated (r = 0.979-0.993, r(2) = 0.889-0.977). The conversion formulas were as follows: lumbar BMD, Y = -0.08 + 1.16X (X = QDR-4500C, Y = DPX-NT), femoral neck BMD, Y = -0.015 + 1.11X, and ASMI Y = 0.92 + 0.90X. There is excellent comparability between the DPX-NT and the QDR-4500C DXA units. However, cross-calibration equations are required to assess muscle volume, fat, and ASMI in multicenter studies investigating sarcopenia.

  17. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Intra-oral X-ray apparatus which reduces the number of exposures necessary to obtain panoramic dental radiographs is described in detail. It comprises an electron gun, a tubular target carrier projecting from the gun along the beam axis and carrying at its distal end a target surrounded by a shield of X-ray opaque material. This shield extends forward and laterally of the target and has surfaces which define a wedge or cone-shaped radiation pattern delimited vertically by the root tips of the patient's teeth. A film holder is located externally of the patient's mouth. A disposable member can fit on the target carrier to depress the patient's tongue out of the radiation pattern and to further shield the roof of the mouth. The electron beam can be magnetically deflected to change the X-ray beam direction. (author)

  18. X-ray microfluorescence as a tool to analyze elemental changes in femur head induced by chemotherapy drugs for the treatment of breast cancer

    Science.gov (United States)

    Pickler, A.; Mota, C. L.; Mantuano, A.; Salata, C.; Nogueira, L. P.; Almeida, A. P.; Alessio, R.; Sena, G.; Braz, D.; de Almeida, C. E. V.; Barroso, R. C.

    2015-11-01

    Recently some developments in a large number of investigative techniques have been made with the objective to obtain a micrometer spatial resolution imaging of elemental concentrations. The X-ray microfluorescence analysis (μXRF) is one of those techniques which is based on the localized excitation of a small area on the surface of sample, providing information of all elements contained in the material under study. Breast cancer is the most common malignancy in Brazilian women. The main treatment strategies for the breast cancer are surgery and chemotherapy. As bone loss is one of the possible chemotherapy side effects, in this work was used μXRF technique on femoral head samples of female Wistar rats to evaluate Ca, Fe and Zn concentrations in order to investigate possible elemental changes in bone caused by the chemotherapy. Fifteen female rats were divided randomly in groups (five rats each). G1 group received doses of doxorubicin/cyclophosphamide drugs and G2 group was treated with docetaxel/cyclophosphamide drugs. μXRF measurements were carried out at the X-ray XRF beamline in the Brazilian Synchrotron Light Laboratory. The results showed significant decrease especially in Ca concentrations when comparing the treated groups with the control group.

  19. Volumetric x-ray coherent scatter imaging of cancer in resected breast tissue: a Monte Carlo study using virtual anthropomorphic phantoms

    International Nuclear Information System (INIS)

    Breast cancer patients undergoing surgery often choose to have a breast conserving surgery (BCS) instead of mastectomy for removal of only the breast tumor. If post-surgical analysis such as histological assessment of the resected tumor reveals insufficient healthy tissue margins around the cancerous tumor, the patient must undergo another surgery to remove the missed tumor tissue. Such re-excisions are reported to occur in 20%–70% of BCS patients. A real-time surgical margin assessment technique that is fast and consistently accurate could greatly reduce the number of re-excisions performed in BCS. We describe here a tumor margin assessment method based on x-ray coherent scatter computed tomography (CSCT) imaging and demonstrate its utility in surgical margin assessment using Monte Carlo simulations. A CSCT system was simulated in Geant4 and used to simulate two virtual anthropomorphic CSCT scans of phantoms resembling surgically resected tissue. The resulting images were volume-rendered and found to distinguish cancerous tumors embedded in complex distributions of adipose and fibroglandular breast tissue (as is expected in the breast). The images exhibited sufficient spatial and spectral (i.e. momentum transfer) resolution to classify the tissue in any given voxel as healthy or cancerous. ROC analysis of the classification accuracy revealed an area under the curve of up to 0.97. These results indicate that coherent scatter imaging is promising as a possible fast and accurate surgical margin assessment technique. (paper)

  20. Clinical aspects of intraoperative radiotherapy in early breast cancer: short-term complications after IORT in women treated with low energy x-rays

    International Nuclear Information System (INIS)

    To assess postoperative complications, clinical outcome and histological findings in patients undergoing intraoperative radiotherapy with low energy x-rays for early breast cancer. We retrospectively analysed data of 208 women who underwent intraoperative irradiation during breast conserving surgery (BCS) between 2002 and 2007. Demographic, clinical and surgical parameters as well as short-term complications within the first postoperative week and histological findings were evaluated. Toxicities were assessed using the CTC/EORTC Score. Postoperative complications were rare and the immediate toxicity low, without any grade 3/4 acute toxicity. The most frequent postoperative side effects were suggillation (24%) and palpable seroma (17.3%). In 78.6% of the axillary seroma and in 25% of the breast seroma a needle aspiration was inevitable. Erythema grade I-II of the breast was found in 27 women (13%); whereas in 7 patients (3.4%), mastitis was confirmed. In 57.7% of the cases, the pathological assessment revealed ductal invasive breast cancer and tumour size ranged between 0.1 and 4.5 cm (mean = 1.6 cm). IORT using Intrabeam® during BCS is safe, although it is associated with postoperative adverse events such as seroma. These should be mentioned and explained to women in detail during the preoperative discussion. This explicitly clinical description is useful for daily clinical practice; especially for giving a detailed analysis of the postoperative side effects during preoperative counselling

  1. Breast tomosynthesis with monochromatic beams: a feasibility study using Monte Carlo simulations

    OpenAIRE

    Malliori, A; Bliznakova, K.; Sechopoulos, I; Kamarianakis, Z; Fei, B; Pallikarakis, N

    2014-01-01

    The aim of the study is to investigate the impact on image quality of using monochromatic beams for lower dose breast tomosynthesis (BT). For this purpose, modeling and simulation of BT and mammography imaging processes have been performed using two x-ray beams: one at 28kVp and a monochromatic at 19keV at different entrance surface air kerma ranging between 0.16 and 5.5 mGy. Two 4cm thick computational breast models in a compressed state were used: one simple homogeneous and one heterogeneou...

  2. On amplitude beam splitting of tender X-rays (2-8 keV photon energy) using conical diffraction from reflection gratings with laminar profile.

    Science.gov (United States)

    Jark, Werner; Eichert, Diane

    2016-01-01

    Conical diffraction is obtained when a radiation beam impinges onto a periodically ruled surface structure parallel or almost parallel to the ruling. In this condition the incident intensity is diffracted through an arc, away from the plane of incidence. The diffracted intensity thus lies on a cone, which leads to the name `conical diffraction'. In this configuration almost no part of the ruled structure will produce any shadowing effect for the incident or the diffracted beam. Then, compared with a grating in the classical orientation, relatively higher diffraction efficiencies will be observed for fewer diffraction orders. When the incident beam is perfectly parallel to the grooves of a rectangular grating profile, the symmetry of the setup causes diffraction of the intensity symmetrically around the plane of incidence. This situation was previously tested experimentally in the VUV spectral range for the amplitude beam splitting of a radiation beam with a photon energy of 25 eV. In this case the ideally expected beam splitting efficiency of about 80% for the diffraction into the two first orders was confirmed for the optimum combination of groove depth and angle of grazing incidence. The feasibility of the amplitude beam splitting for hard X-rays with 12 keV photon energy by use of the same concept was theoretically confirmed. However, no related experimental data are presented yet, not even for lower energy soft X-rays. The present study reports the first experimental data for the conical diffraction from a rectangular grating profile in the tender X-ray range for photon energies of 4 keV and 6 keV. The expected symmetries are observed. The maximum absolute efficiency for beam splitting was measured to be only about 30%. As the reflectivity of the grating coating at the corresponding angle of grazing incidence was found to be only of the order of 50%, the relative beam splitting efficiency was thus 60%. This is to be compared also here with an ideally

  3. Methods for assisting recovery of damaged brain and spinal cord and treating various diseases using arrays of x-ray microplanar beams

    Science.gov (United States)

    Dilmanian, F. Avraham; Anchel, David J.; Gaudette, Glenn; Romanelli, Pantaleo; Hainfeld, James

    2010-06-29

    A method of assisting recovery of an injury site of the central nervous system (CNS) or treating a disease includes providing a therapeutic dose of X-ray radiation to a target volume through an array of parallel microplanar beams. The dose to treat CNS injury temporarily removes regeneration inhibitors from the irradiated site. Substantially unirradiated cells surviving between beams migrate to the in-beam portion and assist recovery. The dose may be staggered in fractions over sessions using angle-variable intersecting microbeam arrays (AVIMA). Additional doses are administered by varying the orientation of the beams. The method is enhanced by injecting stem cells into the injury site. One array or the AVIMA method is applied to ablate selected cells in a target volume associated with disease for palliative or curative effect. Atrial fibrillation is treated by irradiating the atrial wall to destroy myocardial cells while continuously rotating the subject.

  4. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy?

    International Nuclear Information System (INIS)

    Synchrotron Radiation induced X-ray micro Fluorescence analysis (μ-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed

  5. The development and operation of a dental monitoring service involving the remote determination of X-ray beam parameters

    International Nuclear Information System (INIS)

    In 1973 NRPB introduced a postal service for the radiological safety assessment of dental radiography equipment and procedures. Experience of survey visits to dental practices prior to this had demonstrated that improvements to dental X-ray equipment and attention to correct operating procedures could result in the significant reduction of unnecessary exposure of the patient and dental staff, and also shown that to offer a service to the large number of dental practices in the country would require a postal method operated from a central laboratory. Advantages of such a service include the ability to maintain a low unit cost per X-ray set, the creation of a central point of reference for radiological safety in dentistry having a very comprehensive background of data, and minimum disruption to the normal practice routine

  6. Generation of low-flux X-ray micro-planar beams and their biological effect on a murine subcutaneous tumor model

    International Nuclear Information System (INIS)

    We generated low-flux X-ray micro-planar beams (MPBs) using a laboratory-scale industrial X-ray generator (60 kV/20 mA) with custom-made collimators with three different peak/pitch widths (50/200 μm, 100/400 μm, 50/400 μm). To evaluate normal skin reactions, the thighs of C3H/HeN mice were exposed to 100 and 200 Gy MPBs in comparison with broad beams (20, 30, 40, 50, 60 Gy). Antitumor effects of MPBs were evaluated in C3H/HeN mice with subcutaneous tumors (SCCVII). After the tumors were irradiated with 100 and 200 Gy MPBs and 20 and 30 Gy broad beams, the tumor sizes were measured and survival analyses were performed. In addition, the tumors were excised and immunohistochemically examined to detect γ-H2AX, ki67 and CD34. It was shown that antitumor effects of 200 Gy MPBs at 50/200 μm and 100/400 μm were significantly greater than those of 20 Gy broad beams, and were comparable with 30 Gy broad beams. γ-H2AX-positive cells demonstrated clear stripe-patterns after MPB irradiation; the pattern gradually faded and intermixed over 24 h. The chronological changes in ki67 positivity did not differ between MPBs and broad beams, whereas the CD34-positive area decreased significantly more in MPBs than in broad beams. In addition, it was shown that skin injury after MPB irradiation was significantly milder when compared with broad-beam irradiation at equivalent doses for achieving the same tumor control effect. Bystander effect and tumor vessel injury may be the mechanism contributing to the efficacy of MPBs. (author)

  7. Effect of fluoroscopic X-ray beam spectrum on air-kerma measurement accuracy: implications for establishing correction coefficients on interventional fluoroscopes with KAP meters.

    Science.gov (United States)

    Wunderle, Kevin A; Rakowski, Joseph T; Dong, Frank F

    2016-01-01

    The first goal of this study was to investigate the accuracy of the displayed reference plane air kerma (Ka,r) or air kerma-area product (Pk,a) over a broad spectrum of X-ray beam qualities on clinically used interventional fluoroscopes incorporating air kerma-area product meters (KAP meters) to measure X-ray output. The second goal was to investigate the accuracy of a correction coefficient (CC) determined at a single beam quality and applied to the measured Ka,r over a broad spectrum of beam qualities. Eleven state-of-the-art interventional fluoroscopes were evaluated, consisting of eight Siemens Artis zee and Artis Q systems and three Philips Allura FD systems. A separate calibrated 60 cc ionization chamber (external chamber) was used to determine the accuracy of the KAP meter over a broad range of clinically used beam qualities. For typical adult beam qualities, applying a single CC deter-mined at 100 kVp with copper (Cu) in the beam resulted in a deviation of < 5% due to beam quality variation. This result indicates that applying a CC determined using The American Association of Physicists in Medicine Task Group 190 protocol or a similar protocol provides very good accuracy as compared to the allowed ± 35% deviation of the KAP meter in this limited beam quality range. For interventional fluoroscopes dedicated to or routinely used to perform pediatric interventions, using a CC established with a low kVp (~ 55-60 kVp) and large amount of Cu filtration (~ 0.6-0.9 mm) may result in greater accuracy as compared to using the 100 kVp values. KAP meter responses indicate that fluoroscope vendors are likely normalizing or otherwise influencing the KAP meter output data. Although this may provide improved accuracy in some instances, there is the potential for large discrete errors to occur, and these errors may be difficult to identify. PMID:27167287

  8.  Generation of low-flux X-ray micro-planar beams and their biological effect on a murine subcutaneous tumor model.

    Science.gov (United States)

    Hong, Zhengshan; Zenkoh, Junko; Le, Biao; Gerelchuluun, Ariungerel; Suzuki, Kenshi; Moritake, Takashi; Washio, Masakazu; Urakawa, Junji; Tsuboi, Koji

    2015-09-01

    We generated low-flux X-ray micro-planar beams (MPBs) using a laboratory-scale industrial X-ray generator (60 kV/20 mA) with custom-made collimators with three different peak/pitch widths (50/200 μm, 100/400 μm, 50/400 μm). To evaluate normal skin reactions, the thighs of C3H/HeN mice were exposed to 100 and 200 Gy MPBs in comparison with broad beams (20, 30, 40, 50, 60 Gy). Antitumor effects of MPBs were evaluated in C3H/HeN mice with subcutaneous tumors (SCCVII). After the tumors were irradiated with 100 and 200 Gy MPBs and 20 and 30 Gy broad beams, the tumor sizes were measured and survival analyses were performed. In addition, the tumors were excised and immunohistochemically examined to detect γ-H2AX, ki67 and CD34. It was shown that antitumor effects of 200 Gy MPBs at 50/200 μm and 100/400 μm were significantly greater than those of 20 Gy broad beams, and were comparable with 30 Gy broad beams. γ-H2AX-positive cells demonstrated clear stripe-patterns after MPB irradiation; the pattern gradually faded and intermixed over 24 h. The chronological changes in ki67 positivity did not differ between MPBs and broad beams, whereas the CD34-positive area decreased significantly more in MPBs than in broad beams. In addition, it was shown that skin injury after MPB irradiation was significantly milder when compared with broad-beam irradiation at equivalent doses for achieving the same tumor control effect. Bystander effect and tumor vessel injury may be the mechanism contributing to the efficacy of MPBs. PMID:26141370

  9. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Groetz, J.-E., E-mail: jegroetz@univ-fcomte.fr; Mavon, C.; Fromm, M. [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex (France); Ounoughi, N. [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex (France); Laboratoire de Physique des Rayonnements et Applications, Université de Jijel, B.P. 98 Ouled Aissa, Jijel 18000 (Algeria); Belafrites, A. [Laboratoire de Physique des Rayonnements et Applications, Université de Jijel, B.P. 98 Ouled Aissa, Jijel 18000 (Algeria)

    2014-08-15

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  10. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    Science.gov (United States)

    Groetz, J.-E.; Ounoughi, N.; Mavon, C.; Belafrites, A.; Fromm, M.

    2014-08-01

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  11. Electron optics simulation for designing carbon nanotube based field emission x-ray source

    Science.gov (United States)

    Sultana, Shabana

    In this dissertation, electron optics simulation for designing carbon nanotube (CNT) based field emission x-ray source for medical imaging applications will be presented. However, for design optimization of x-ray tubes accurate electron beam optics simulation is essential. To facilitate design of CNT x-ray sources a commercial 3D finite element software has been chosen for extensive simulation. The results show that a simplified model of uniform electron field emission from the cathode surface is not sufficient when compared to experimental measurements. This necessitated the development of a refined model to describe a macroscopic field emission CNT cathode for electron beam optics simulations. The model emulates the random distribution of CNTs and the associated variation of local field enhancement factor. The main parameter of the model has been derived empirically from the experimentally measured I-V characteristics of the CNT cathode. Simulation results based on this model agree well with experiments which include measurements of the transmission rate and focus spot size. The model provides a consistent simulation platform for optimization of electron beam optics in CNT x-ray source design. A systematic study of electron beam optics in CNT x-ray tubes led to the development of a new generation of compact x-ray source with multiple pixels. A micro focus field emission x-ray source with a variable focal spot size has been fully characterized and evaluated. It has been built and successfully integrated into micro-CT scanners which are capable of dynamic cardiac imaging of free-breathing small animals with high spatial and temporal resolutions. In addition a spatially distributed high power multi-beam x-ray source has also been designed and integrated into a stationary digital breast tomosynthesis (s-DBT) configuration. This system has the potential to reduce the total scan time to 4 seconds and yield superior image quality in breast imaging.

  12. Thoracic spine x-ray

    Science.gov (United States)

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  13. Low energy (soft) x rays

    International Nuclear Information System (INIS)

    Dosimetry of low-energy (soft) X rays produced by the SOFTEX Model CMBW-2 was performed using Nuclear Associates Type 30 - 330 PTW, Exradin Type A2, and Shonka-Wyckoff ionization chambers with a Keithley Model 602 electrometer. Thermoluminescent (BeO chip) dosimeters were used with a Harshaw Detector 2000-A and Picoammeter-B readout system. Beam quality measurements were made using aluminum absorbers; exposure rates were assessed by the current of the X-ray tube and by exposure times. Dose distributions were established, and the average factors for non-uniformity were calculated. The means of obtaining accurate absorbed and exposed doses using these methods are discussed. Survival of V79 cells was assessed by irradiating them with soft X rays, 200 kVp X rays, and 60Co gamma rays. The relative biological effectiveness (RBE) values for soft X rays with 0, 0.2, 0.7 mm added thicknesses of aluminum were 1.6, which were compared to 60Co. The RBE of 200 kVp X rays relative to 60Co was 1.3. Results of this study are available for reference in future RERF studies of cell survival. (author)

  14. SU-E-J-247: A Simulation of X-Ray Emission with Gold Nanoparticle Irradiated by Energetic Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Newpower, M; Ahmad, S; Chen, Y [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2014-06-01

    Purpose: To investigate the proton induced X-ray emissions in gold-water mixture materials. Methods: In this study a Monte Carlo simulation was created using the GEANT4 toolkit (version 4.9.6). The geometry in this setup includes a 2 cm × 2 cm × 2 cm target, a scoring sphere (radius = 10 cm) and a 65 MeV planar proton source (2 cm × 2 cm). Four concentrations of a gold-water solution were irradiated with 5×10{sup 5} incident protons at a distance of 0.5 cm perpendicular to the surface of the target. The solutions of gold-water mixture had 10%, 5%, 1% and 0.5% of gold by mass, respectively. The number of photon emitting for the target was counted in the scoring sphere for the energy range of 0-86.0 keV in 0.1 keV bins. For this study the reference physics list PhysListEmStandard was used together with the x-ray fluorescence, Auger electron and PIXE (particle induced xray emission) options enabled. The range cuts for photons and electrons were set at 0.5 mm and 1.0 mm, respectively. Results: In the energy spectra of emitting X-ray fluorescence, peaks from gold K shell characteristic x-rays (68.8 and 66.9 keV) were observed. The number of counts under the peaks of Ka1 and Ka2 was found to increase with the increasing of the gold concentrations in the mixture materials. The X-ray yields (for both Ka1 and Ka2) when fitted with least-square method as a function of gold concentration demonstrate a linear dependency with R{sup 2} > 0.96. The Ka1yield per incident proton was found to be 0.0016 for 10% gold-water mixture solutions. Conclusion: This preliminary study with PIXE technique with gold nanoparticle has demonstrated potentials for its utilization in the development of range and dose verification methodology that is currently of great interest in the field of proton radiation therapy.

  15. Sci—Thur AM: YIS - 09: Validation of a General Empirically-Based Beam Model for kV X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Y. [CancerCare Manitoba (Canada); University of Calgary (Canada); Sommerville, M.; Johnstone, C.D. [San Diego State University (United States); Gräfe, J.; Nygren, I.; Jacso, F. [Tom Baker Cancer Centre (Canada); Khan, R.; Villareal-Barajas, J.E. [University of Calgary (Canada); Tom Baker Cancer Centre (Canada); Tambasco, M. [University of Calgary (Canada); San Diego State University (United States)

    2014-08-15

    Purpose: To present an empirically-based beam model for computing dose deposited by kilovoltage (kV) x-rays and validate it for radiographic, CT, CBCT, superficial, and orthovoltage kV sources. Method and Materials: We modeled a wide variety of imaging (radiographic, CT, CBCT) and therapeutic (superficial, orthovoltage) kV x-ray sources. The model characterizes spatial variations of the fluence and spectrum independently. The spectrum is derived by matching measured values of the half value layer (HVL) and nominal peak potential (kVp) to computationally-derived spectra while the fluence is derived from in-air relative dose measurements. This model relies only on empirical values and requires no knowledge of proprietary source specifications or other theoretical aspects of the kV x-ray source. To validate the model, we compared measured doses to values computed using our previously validated in-house kV dose computation software, kVDoseCalc. The dose was measured in homogeneous and anthropomorphic phantoms using ionization chambers and LiF thermoluminescent detectors (TLDs), respectively. Results: The maximum difference between measured and computed dose measurements was within 2.6%, 3.6%, 2.0%, 4.8%, and 4.0% for the modeled radiographic, CT, CBCT, superficial, and the orthovoltage sources, respectively. In the anthropomorphic phantom, the computed CBCT dose generally agreed with TLD measurements, with an average difference and standard deviation ranging from 2.4 ± 6.0% to 5.7 ± 10.3% depending on the imaging technique. Most (42/62) measured TLD doses were within 10% of computed values. Conclusions: The proposed model can be used to accurately characterize a wide variety of kV x-ray sources using only empirical values.

  16. X-ray flat-panel imager (FPI)-based cone-beam volume CT (CBVCT) under a circle-plus-two-arc data acquisition orbit

    Science.gov (United States)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    2001-06-01

    The potential of cone beam volume CT (CBVCT) to improve the data acquisition efficiency for volume tomographic imaging is well recognized. A novel x-ray FPI based CBVCT prototype and its preliminary performance evaluation are presented in this paper. To meet the data sufficiency condition, the CBVCT prototype employs a circle-plus-two-arc orbit accomplished by a tiltable circular gantry. A cone beam filtered back-projection (CB-FBP) algorithm is derived for this data acquisition orbit, which employs a window function in the Radon domain to exclude the redundancy between the Radon information obtained from the circular cone beam (CB) data and that from the arc CB data. The number of projection images along the circular sub-orbit and each arc sub-orbit is 512 and 43, respectively. The reconstruction exactness of the prototype x-ray FPI based CBVCT system is evaluated using a disc phantom in which seven acrylic discs are stacked at fixed intervals. Images reconstructed with this algorithm show that both the contrast and geometric distortion existing in the disc phantom images reconstructed by the Feldkamp algorithm are substantially reduced. Meanwhile, the imaging performance of the prototype, such as modulation transfer function (MTF) and low contrast resolution, are quantitatively evaluated in detail through corresponding phantom studies. Furthermore, the capability of the prototype to reconstruct an ROI within a longitudinally unbounded object is verified. The results obtained from this preliminary performance evaluation encourage an expectation of medical applications of the x-ray FPI based CBVCT under the circle-plus-two-arc data acquisition, particularly the application in image-guided interventional procedures and radiotherapy where the movement of a patient table is to be avoided.

  17. Stress evaluation in thin films: Micro-focus synchrotron X-ray diffraction combined with focused ion beam patterning for d{sub o} evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Baimpas, Nikolaos, E-mail: nikolaos.baimpas@eng.ox.ac.uk [University of Oxford, Dept. of Engineering Science (United Kingdom); Le Bourhis, Eric [University of Poitiers, Institut P' , Laboratoire de Physique des Matériaux, Poitiers (France); Eve, Sophie [ENSICAEN, CRISMAT, Caen (France); Thiaudière, Dominique [Synchrotron SOLEIL, L' Orme des Merisiers Saint-Aubin, Paris (France); Hardie, Christopher [University of Oxford, Materials Department (United Kingdom); Korsunsky, Alexander M. [University of Oxford, Dept. of Engineering Science (United Kingdom)

    2013-12-31

    Nanocrystalline metallic coatings of sub-micron thickness are widely used in modern microelectronic applications. In X-ray diffraction experiments to determine both the residual and applied stresses in nanocrystalline coatings, one difficult challenge that comes up invariably is the determination of the strain-free lattice spacing d{sub o}. The present study addresses this challenge by using the focused ion beam (FIB) to generate a built-in strain-free reference by patterning (milling) a 50 × 50 μm{sup 2} region of the coating to produce an array of small stress-relieved “islands” ∼ 0.8 × 0.8 μm{sup 2} each. Transmission X-ray diffraction setup was used for data collection at DIFFABS beamline (Synchrotron SOLEIL, France). A 150 nm-thick multi-layered W–Cu nano-composite thin film on polyimide (Kapton®) substrate was studied. The samples were loaded incrementally using a compact uniaxial loading device, and micro-beam diffraction data were collected on and away from the reference array. It was shown experimentally that the “island” array remained approximately strain free throughout the experiment, providing an on-board d{sub o} lattice spacing reference. The changing lattice spacing d in the coating was also monitored away from the array, to deduce the elastic strain evolution during deformation. The results and their implications are presented and discussed. - Highlights: • In situ deformation study of laminate polycrystalline W–Cu thin films • Focused ion beam (FIB) patterning of an array of “islands” on thin films surface • X-ray diffraction on island-patterned region • Constant strain on “islands” independently of the deformation of the substrate.

  18. Amorphous In–Ga–Zn–O thin-film transistor active pixel sensor x-ray imager for digital breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chumin; Kanicki, Jerzy, E-mail: kanicki@eecs.umich.edu [Solid-State Electronic Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-09-15

    Purpose: The breast cancer detection rate for digital breast tomosynthesis (DBT) is limited by the x-ray image quality. The limiting Nyquist frequency for current DBT systems is around 5 lp/mm, while the fine image details contained in the high spatial frequency region (>5 lp/mm) are lost. Also today the tomosynthesis patient dose is high (0.67–3.52 mGy). To address current issues, in this paper, for the first time, a high-resolution low-dose organic photodetector/amorphous In–Ga–Zn–O thin-film transistor (a-IGZO TFT) active pixel sensor (APS) x-ray imager is proposed for next generation DBT systems. Methods: The indirect x-ray detector is based on a combination of a novel low-cost organic photodiode (OPD) and a cesium iodide-based (CsI:Tl) scintillator. The proposed APS x-ray imager overcomes the difficulty of weak signal detection, when small pixel size and low exposure conditions are used, by an on-pixel signal amplification with a significant charge gain. The electrical performance of a-IGZO TFT APS pixel circuit is investigated by SPICE simulation using modified Rensselaer Polytechnic Institute amorphous silicon (a-Si:H) TFT model. Finally, the noise, detective quantum efficiency (DQE), and resolvability of the complete system are modeled using the cascaded system formalism. Results: The result demonstrates that a large charge gain of 31–122 is achieved for the proposed high-mobility (5–20 cm{sup 2}/V s) amorphous metal-oxide TFT APS. The charge gain is sufficient to eliminate the TFT thermal noise, flicker noise as well as the external readout circuit noise. Moreover, the low TFT (<10{sup −13} A) and OPD (<10{sup −8} A/cm{sup 2}) leakage currents can further reduce the APS noise. Cascaded system analysis shows that the proposed APS imager with a 75 μm pixel pitch can effectively resolve the Nyquist frequency of 6.67 lp/mm, which can be further improved to ∼10 lp/mm if the pixel pitch is reduced to 50 μm. Moreover, the

  19. Charge exchange produced K-shell x-ray emission from Ar16+ in a tokamak plasma with neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P; Bitter, M; Marion, M; Olson, R E

    2004-12-27

    High-resolution spectroscopy of hot tokamak plasma seeded with argon ions and interacting with an energetic, short-pulse neutral hydrogen beam was used to obtain the first high-resolution K-shell x-ray spectrum formed solely by charge exchange. The observed K-shell emission of Ar{sup 16+} is dominated by the intercombination and forbidden lines, providing clear signatures of charge exchange. Results from an ab initio atomic cascade model provide excellent agreement, validating a semiclassical approach for calculating charge exchange cross sections.

  20. Measuring one-dimensional and two-dimensional impurity density profiles on TEXTOR using combined charge exchange-beam emission spectroscopy and ultrasoft x-ray tomography

    Science.gov (United States)

    De Bock, M.; Jakubowska, K.; Hellermann, M. von; Jaspers, R.; Donné, A. J. H.; Shmaenok, L.

    2004-10-01

    Two techniques are presented that allow us to measure impurity density profiles in the TEXTOR tokamak plasma. The one-dimensional profiles are gathered by charge exchange recombination spectroscopy (CXRS) in combination with beam emission spectroscopy (BES). Combining CXRS and BES eliminate the need for absolute calibration. For two-dimensional profiles an ultrasoft x-ray tomography system has been developed. The system is spectrally resolved and produces local emissivity profiles of several ionization stages of impurities. Both systems are presently being commissioned. They are complementary and give an insight into the impurity distribution and transport in plasmas.

  1. Development of an x-ray beam line at the NSLS for studies in materials science using x-ray absorption spectroscopy. Progress report, February 1, 1985-January 31, 1986

    International Nuclear Information System (INIS)

    Research is reported for x-ray studies at NSLS. Energy-loss spectroscopy experiments (EXAFS) were performed on various materials including iron, silicon, gold, glass, niobium-aluminum alloys, and metglass

  2. X-ray (image)

    Science.gov (United States)

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  3. Dental x-rays

    Science.gov (United States)

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film ... dentist's office. There are many types of dental x-rays. Some are: Bitewing Periapical Palatal (also called occlusal) ...

  4. X-ray apparatus

    International Nuclear Information System (INIS)

    A diagnostic x-ray device, readily convertible between conventional radiographic and tomographic operating modes, is described. An improved drive system interconnects and drives the x-ray source and the imaging device through coordinated movements for tomography

  5. Dental x-rays

    Science.gov (United States)

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film; Digital image ... dentist's office. There are many types of dental x-rays. Some of them are: Bitewing. Shows the crown ...

  6. A comparative study of high resolution cone beam X-ray tomography and synchrotron tomography applied to Fe- and Al-alloys.

    Science.gov (United States)

    Kastner, Johann; Harrer, Bernhard; Requena, Guillermo; Brunke, Oliver

    2010-10-01

    X-ray computed tomography (XCT) has become a very important method for non-destructive 3D-characterization and evaluation of materials. Due to measurement speed and quality, XCT systems with cone beam geometry and matrix detectors have gained general acceptance. Continuous improvements in the quality and performance of X-ray tubes and XCT devices have led to cone beam CT systems that can now achieve spatial resolutions down to 1 μm and even below. However, the polychromatic nature of the source, limited photon flux and cone beam artefacts mean that there are limits to the quality of the CT-data achievable; these limits are particularly pronounced with materials of higher density like metals. Synchrotron radiation offers significant advantages by its monochromatic and parallel beam of high brilliance. These advantages usually cause fewer artefacts, improved contrast and resolution.Tomography data of a steel sample and of two multi-phase Al-samples (AlSi12Ni1, AlMg5Si7) are recorded by advanced cone beam XCT-systems with a μ-focus (μXCT) and a sub-μm (nano-focus, sub-μXCT) X-ray source with voxel dimensions between 0.4 and 3.5 μm and are compared with synchrotron computed tomography (sXCT) with 0.3 μm/voxel. CT data features like beam hardening and ring artefacts, detection of details, sharpness, contrast, signal-to-noise ratio and the grey value histogram are systematically compared. In all cases μXCT displayed the lowest performance. Sub-μXCT gives excellent results in the detection of details, spatial and contrast resolution, which are comparable to synchrotron-XCT recordings. The signal-to-noise ratio is usually significantly lower for sub-μXCT compared with the two other methods. With regard to measurement costs "for industrial users", scanning volume, accessibility and user-friendliness sub-μXCT has significant advantages in comparison to synchrotron-XCT.

  7. X-Rays

    Science.gov (United States)

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of your ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat and ...

  8. Chest X-Ray

    Medline Plus

    Full Text Available ... by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  9. X-Ray Imaging

    Science.gov (United States)

    ... Brain Surgery Imaging Clinical Trials Basics Patient Information X-Ray Imaging Print This Page X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of ...

  10. Synergistic effect of heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin and X-rays, but not carbon-ion beams, on lethality in human oral squamous cell carcinoma cells

    International Nuclear Information System (INIS)

    The purpose of this study is to clarify the effect of a heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), in combination with X-rays or carbon-ion beams on cell killing in human oral squamous cell carcinoma LMF4 cells. Cell survival was measured by colony formation assay. Cell-cycle distribution was analyzed by flow cytometry. Expression of DNA repair-related proteins was investigated by western blotting. The results showed 17-AAG to have synergistic effects on cell lethality with X-rays, but not with carbon-ion beams. The 17-AAG decreased G2/M arrest induced by X-rays, but not by carbon-ion beams. Both X-ray and carbon-ion irradiation up-regulated expression of non-homologous end-joining-associated proteins, Ku70 and Ku80, but 17-AAG inhibited only X-ray-induced up-regulation of these proteins. These results show that 17-AAG with X-rays releases G2/M phase arrest; cells carrying misrepaired DNA damage then move on to the G1 phase. We demonstrate, for the first time, that the radiosensitization effect of 17-AAG is not seen with carbon-ion beams because 17-AAG does not affect these changes. (author)

  11. Study on trace elements behaviour in cancerous and healthy tissues of colon, breast and stomach: Total reflection X-ray fluorescence applications

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, T. [Centro de Fisica Atomica da Univeridade de Lisboa, Departamento de Fisica da Faculdade de Ciencias, Av. Prof. Gama Pinto, 2, 1649-00, Lisboa (Portugal); Carvalho, M.L., E-mail: luisa@cii.fc.ul.p [Centro de Fisica Atomica da Univeridade de Lisboa, Departamento de Fisica da Faculdade de Ciencias, Av. Prof. Gama Pinto, 2, 1649-00, Lisboa (Portugal); Von Bohlen, A.; Becker, M. [Institute for Analytical Sciences (ISAS), Bunsen-Kirchhoff-Str. 11, 44139 Dortmund (Germany)

    2010-06-15

    In this work Total-reflection X-ray fluorescence (TXRF) was used to analyse healthy and cancerous tissues of the same individual along several contiguous thin sections of each tissue. Thirty two samples (16 pairs) of breast tissue, 30 samples (15 pairs) of intestine tissue and 10 samples (5 pairs) of stomach tissue were analysed. The samples were obtained in Civil Hospitals of Germany (Dortmund) and Portugal (Lisbon). The elemental distribution of P, S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb, Sr and Pb in these samples was studied. Descriptive statistics based on bar graphics and hypotheses tests and also an automatic classification based on hierarchical grouping analysis was used for the several analysed tissues. It was shown that the behaviour of the elements is tissue dependent. Some elements, like P and K exhibit the same behaviour in all the analysed tissue types. They have increased concentrations in all cancerous tissues. Unlike, other elements like Br show completely different behaviour depending on the tissue: similar concentration in healthy and cancerous stomach, decreased levels in colon cancerous tissues and enhanced concentrations in breast was observed. Moreover cancer tissues present decreased Se concentrations on colon and increased on breast.

  12. X-ray imaging using a tunable coherent X-ray source based on parametric X-ray radiation

    International Nuclear Information System (INIS)

    A novel X-ray source based on parametric X-ray radiation (PXR) has been employed for X-ray imaging at the Laboratory for Electron Beam Research and Application (LEBRA), Nihon University. Notable features of PXR are tunable energy, monochromaticity with spatial chirp, narrow local bandwidth and spatial coherence. Since the X-ray beam from the PXR system has a large irradiation area with uniform flux density, the PXR-based source is suited for X-ray imaging, especially for application to phase-contrast imaging. Despite the cone-like X-ray beam, diffraction-enhanced imaging (DEI) can be employed as a phase contrast imaging technique. DEI experiments were performed using 14- to 34-keV X-rays and the phase-gradient images were obtained. The results demonstrated the capability of PXR as an X-ray source for phase-contrast imaging with a large irradiation field attributed to the cone-beam effect. Given the significant properties of the LEBRA-PXR source, the result suggests the possible construction of a compact linac-driven PXR-Imaging instrument and its application to medical diagnoses

  13. Dose-response curve of EBT, EBT2, and EBT3 radiochromic films to synchrotron-produced monochromatic x-ray beams

    CERN Document Server

    Brown, Thomas A D; Alvarez, Diane; Matthews, Kenneth L; Ham, Kyungmin; Dugas, Joseph P; 10.1118/1.4767770

    2012-01-01

    This work investigates the dose-response curves of GAFCHROMIC EBT, EBT2, and EBT3 radiochromic films using synchrotron-produced monochromatic x-ray beams. EBT2 film is being utilized for dose verification in photoactivated Auger electron therapy at the Louisiana State University CAMD synchrotron facility. Monochromatic beams of 25, 30, and 35 keV were generated on the tomography beamline at CAMD. Ion chamber depth-dose measurements were used to determine the dose delivered to films irradiated at depths from 0.7 to 8.5 cm in a 10x10x10-cm3 PMMA phantom. AAPM TG-61 protocol was applied to convert measured ionization into dose. Films were digitized using an Epson 1680 Professional flatbed scanner and analyzed using the net optical density (NOD) derived from the red channel. A dose-response curve was obtained at 35 keV for EBT film, and at 25, 30, and 35 keV for EBT2 and EBT3 films. Calibrations of films for 4 MV x-rays were obtained for comparison using a radiotherapy accelerator at Mary Bird Perkins Cancer Cent...

  14. Smart x-ray beam position monitor system using artificial intelligence methods for the advanced photon source insertion-device beamlines

    International Nuclear Information System (INIS)

    At the Advanced Photon Source (APS), each insertion device (ID) beamline front-end has two XBPMs to monitor the X-ray beam position for both that vertical and horizontal directions. Performance challenges for a conventional photoemission type X-ray beam position monitor (XBPM) during operations are contamination of the signal from the neighboring bending magnet sources and the sensitivity of the XBPM to the insertion device (ID) gap variations. Problems are exacerbated because users change the ID gap during their operations, and hence the percentage level of the contamination in the front end XBPM signals varies. A smart XBPM system with a high speed digital signal processor has been built at the Advanced Photon Source for the ID beamline front ends. The new version of the software, which uses an artificial intelligence method, provides a self learning and self-calibration capability to the smart XBPM system. The structure of and recent test results with the system are presented in this paper

  15. Potential applications of a dual-sweep streak camera system for characterizing particle and photon beams of VUV, XUV, and x-ray FELS

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. [Argonne National Lab., IL (United States)

    1995-12-31

    The success of time-resolved imaging techniques in the Characterization of particle beams and photon beams of the recent generation of L-band linac-driven or storage ring FELs in the infrared, visible, and ultraviolet wavelength regions can be extended to the VUV, XUV, and x-ray FELs. Tests and initial data have been obtained with the Hamamatsu C5680 dual-sweep streak camera system which includes a demountable photocathode (thin Au) assembly and a flange that allows windowless operation with the transport vacuum system. This system can be employed at wavelengths shorter than 100 nm and down to 1 {Angstrom}. First tests on such a system at 248-nm wavelengths have been performed oil the Argonne Wakefield Accelerator (AWA) drive laser source. A quartz window was used at the tube entrance aperture. A preliminary test using a Be window mounted on a different front flange of the streak tube to look at an x-ray bremsstrahlung source at the AWA was limited by photon statistics. This system`s limiting resolution of {sigma}{approximately}1.1 ps observed at 248 nm would increase with higher incoming photon energies to the photocathode. This effect is related to the fundamental spread in energies of the photoelectrons released from the photocathodes. Possible uses of the synchrotron radiation sources at the Advanced Photon Source and emerging short wavelength FELs to test the system will be presented.

  16. X-ray magnetic circular dichroism photoemission electron microscopy of focused ion beam-induced magnetic patterns on iron–rhodium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tohki, Atsushi; Aikoh, Kazuma; Shinoda, Ryoichi [Department of Materials Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Ohkochi, Takuo [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); Kotsugi, Masato [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); CREST-JST, Kawaguchi, Saitama 332-0012 (Japan); Nakamura, Tetsuya [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); Kinoshita, Toyohiko [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); CREST-JST, Kawaguchi, Saitama 332-0012 (Japan); Iwase, Akihiro [Department of Materials Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Matsui, Toshiyuki, E-mail: t-matsui@21c.osakafu-u.ac.jp [Research Organization for the 21st Century, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2013-05-01

    Iron–rhodium (FeRh) thin films were irradiated with a 30 keV Ga ion beam using a focused ion beam system to produce micrometer scale ferromagnetic square dot arrays. Two-dimensional magnetic square dot arrays with dimensions of 30 × 30, 10 × 10, and 5 × 5 μm were successfully produced on the FeRh surface, which was confirmed by magnetic force microscopy. The results of photoemission electron microscopy combined with X-ray magnetic circular dichroism revealed that the magnetization of the magnetic square dots could be controlled by changing the amount of irradiation. The magnetic domain structure of the magnetic square dots with sides of 5–30 μm was found to be a single domain structure, which was possibly influenced by the interaction between ferromagnetic and antiferromagnetic interfaces.

  17. X-ray magnetic circular dichroism photoemission electron microscopy of focused ion beam-induced magnetic patterns on iron-rhodium surfaces

    Science.gov (United States)

    Tohki, Atsushi; Aikoh, Kazuma; Shinoda, Ryoichi; Ohkochi, Takuo; Kotsugi, Masato; Nakamura, Tetsuya; Kinoshita, Toyohiko; Iwase, Akihiro; Matsui, Toshiyuki

    2013-05-01

    Iron-rhodium (FeRh) thin films were irradiated with a 30 keV Ga ion beam using a focused ion beam system to produce micrometer scale ferromagnetic square dot arrays. Two-dimensional magnetic square dot arrays with dimensions of 30 × 30, 10 × 10, and 5 × 5 μm were successfully produced on the FeRh surface, which was confirmed by magnetic force microscopy. The results of photoemission electron microscopy combined with X-ray magnetic circular dichroism revealed that the magnetization of the magnetic square dots could be controlled by changing the amount of irradiation. The magnetic domain structure of the magnetic square dots with sides of 5-30 μm was found to be a single domain structure, which was possibly influenced by the interaction between ferromagnetic and antiferromagnetic interfaces.

  18. Liquid crystal alignment on ion-beam-treated polyimide with a long alkyl side chain: near edge X-ray absorption fine structure spectroscopy analysis.

    Science.gov (United States)

    Seo, Joo-Hong; Hwang, Soo Won; Song, Dong Han; Shin, Jae Hoon; Yoon, Tae-Hoon; Kim, Jae Chang; Yi, Mi Hye

    2009-02-19

    Liquid crystal alignment on ion-beam-treated polyimides with a long alkyl side chain was investigated using near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The long alkyl side chains and the asymmetric distribution and orientational order of the pi-bonds of the polyimide surface can be determined by analyzing the angular dependent resonance intensities of the NEXAFS measurements. Herein, we demonstrate that the pretilt angle of the LC cell made by our method decreases as more long alkyl side chains are destroyed. Additionally, the tilt direction of the LC molecules can be determined from the asymmetric distribution of pi-bonds of the polyimide created by the ion beam irradiation. PMID:19161281

  19. X-ray Echo Spectroscopy

    Science.gov (United States)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  20. X-ray echo spectroscopy

    CERN Document Server

    Shvyd'ko, Yuri

    2015-01-01

    X-ray echo spectroscopy, a counterpart of neutron spin-echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1--0.02-meV ultra-high-resolution IXS applications (resolving power $> 10^8$) with broadband $\\simeq$~5--13~meV dispersing systems are introduced featuring more than $10^3$ signal e...

  1. X-ray Echo Spectroscopy.

    Science.gov (United States)

    Shvyd'ko, Yuri

    2016-02-26

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >10^{8}) with broadband ≃5-13  meV dispersing systems are introduced featuring more than 10^{3} signal enhancement. The technique is general, applicable in different photon frequency domains.

  2. Probable approaches to develop particle beam energy drivers and to calculate wall material ablation with X ray radiation from imploded targets

    International Nuclear Information System (INIS)

    The first subject was the development of future ion beam driver with medium-mass ion specie. This may enable us to develop a compromised driver from the point of view of the micro-divergence angle and the cost. We produced nitrogen ion beams, and measured the micro-divergence angle on the anode surface. The measured value was 5-6mrad for the above beam with 300-400keV energy, 300A peak current and 50ns duration. This value was enough small and tolerable for the future energy driver. The corresponding value for the proton beam with higher peak current was 20-30mrad, which was too large. So that, the scale-up experiment with the above kind of medium-mass ion beam must be realized urgently to clarify the beam characteristics in more details. The reactor wall ablation with the implosion X-ray was also calculated as the second subject in this paper. (author)

  3. The feasibility of polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects: a Monte Carlo study

    International Nuclear Information System (INIS)

    A recent study investigated the feasibility to develop a bench-top x-ray fluorescence computed tomography (XFCT) system capable of determining the spatial distribution and concentration of gold nanoparticles (GNPs) in vivo using a diagnostic energy range polychromatic (i.e. 110 kVp) pencil-beam source. In this follow-up study, we examined the feasibility of a polychromatic cone-beam implementation of XFCT by Monte Carlo (MC) simulations using the MCNP5 code. In the current MC model, cylindrical columns with various sizes (5-10 mm in diameter) containing water loaded with GNPs (0.1-2% gold by weight) were inserted into a 5 cm diameter cylindrical polymethyl methacrylate phantom. The phantom was then irradiated by a lead-filtered 110 kVp x-ray source, and the resulting gold fluorescence and Compton-scattered photons were collected by a series of energy-sensitive tallies after passing through lead parallel-hole collimators. A maximum-likelihood iterative reconstruction algorithm was implemented to reconstruct the image of GNP-loaded objects within the phantom. The effects of attenuation of both the primary beam through the phantom and the gold fluorescence photons en route to the detector were corrected during the image reconstruction. Accurate images of the GNP-containing phantom were successfully reconstructed for three different phantom configurations, with both spatial distribution and relative concentration of GNPs well identified. The pixel intensity of regions containing GNPs was linearly proportional to the gold concentration. The current MC study strongly suggests the possibility of developing a bench-top, polychromatic, cone-beam XFCT system for in vivo imaging.

  4. Analysis of the variation of the attenuation curve in function of the radiation field size for k Vp X-ray beams using the MCNP-5C code

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Marco A.R., E-mail: marco@cetea.com.b, E-mail: marfernandes@fmb.unesp.b [Universidade Estadual Paulista Julio de Mesquita Filho (FMB/UNESP), Botucatu, SP (Brazil). Fac. de Medicina; Ribeiro, Victor A.B. [Universidade Estadual Paulista Julio de Mesquita Filho (IBB/UNESP), Botucatu, SP (Brazil). Inst. de Biociencias; Viana, Rodrigo S.S.; Coelho, Talita S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The paper illustrates the use of the Monte Carlo method, MCNP-5C code, to analyze the attenuation curve behavior of the 50 kVp radiation beam from superficial radiotherapy equipment as Dermopan2 model. The simulations seek to verify the MCNP-5C code performance to study the variation of the attenuation curve - percentage depth dose (PDD) curve - in function of the radiation field dimension used at radiotherapy of skin tumors with 50 kVp X-ray beams. The PDD curve was calculated for six different radiation field sizes with circular geometry of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 cm in diameter. The radiation source was modeled considering a tungsten target with inclination 30 deg, focal point of 6.5 mm in diameter and energy beam of 50 kVp; the X-ray spectrum was calculated with the MCNP-5C code adopting total filtration (beryllium window of 1 mm and aluminum additional filter of 1 mm). The PDD showed decreasing behavior with the attenuation depth similar what is presented on the literature. There was not significant variation at the PDD values for the radiation field between 1.0 and 4.0 cm in diameter. The differences increased for fields of 5.0 and 6.0 cm and at attenuation depth higher than 1.0 cm. When it is compared the PDD values for fields of 3.0 and 6.0 cm in diameter, it verifies the greater difference (12.6 %) at depth of 5.7 cm, proving the scattered radiation effect. The MCNP-5C code showed as an appropriate procedure to analyze the attenuation curves of the superficial radiotherapy beams. (author)

  5. Calibration of the Gamma-RAy Polarimeter Experiment (GRAPE) at a Polarized Hard X-Ray Beam

    CERN Document Server

    Bloser, P F; McConnell, M L; Macri, J R; Bancroft, C M; Connor, T P; Ryan, J M

    2008-01-01

    The Gamma-RAy Polarimeter Experiment (GRAPE) is a concept for an astronomical hard X-ray Compton polarimeter operating in the 50 - 500 keV energy band. The instrument has been optimized for wide-field polarization measurements of transient outbursts from energetic astrophysical objects such as gamma-ray bursts and solar flares. The GRAPE instrument is composed of identical modules, each of which consists of an array of scintillator elements read out by a multi-anode photomultiplier tube (MAPMT). Incident photons Compton scatter in plastic scintillator elements and are subsequently absorbed in inorganic scintillator elements; a net polarization signal is revealed by a characteristic asymmetry in the azimuthal scattering angles. We have constructed a prototype GRAPE module containing a single CsI(Na) calorimeter element, at the center of the MAPMT, surrounded by 60 plastic elements. The prototype has been combined with custom readout electronics and software to create a complete "engineering model" of the GRAPE...

  6. Femtosecond laser-electron x-ray source

    Science.gov (United States)

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  7. Evaluation of patient dose in imaging using a cone-beam CT dosimetry by X-ray films for radiotherapeutic dose

    International Nuclear Information System (INIS)

    A limited cone-beam X-ray CT (3DX multi-image micro CT; 3DX-FPD) is widely used in dentistry because it provides a lower cost, smaller size, and higher spatial resolution than a CT for medicine. Our recent research suggested that the patient dose of 3DX-FPD was less than 7/10 of that of CT, and it was several to 10 times more than that of dental or panoramic radiography. The purpose of this study was to evaluate the spatial dose distribution from 3DX-FPD and to estimate the influence of dose by positioning of the region of interest. Dosimetry of the organs and the tissues was performed using an anthropomorphic Alderson Rando phantom and X-ray films for measurement of radiotherapeutic dose. Measurements of dose distribution were performed using a cylinder-type tank of water made of acrylic resin imitating the head and X-ray films. The results are summarized as follows: The dose was higher as the ratio of the air region included in the region of interest increased. The dose distribution was not homogeneous and the dose was highest in the skin region. The dose was higher for several seconds after the beginning of exposure. It was concluded that patient positioning, as well as exposure conditions including the size of the exposure field and tube current, could greatly influence the patient dose in 3DX-FPD. In addition, it is necessary to consider the influence of image quality for the treatment of dental implants. (author)

  8. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams

    Science.gov (United States)

    Pinto, M.; Pimpinella, M.; Quini, M.; D'Arienzo, M.; Astefanoaei, I.; Loreti, S.; Guerra, A. S.

    2016-02-01

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm-2, and at a dose rate of about 0.15 Gy min-1, results of calorimetric measurements of absorbed dose to water, D w, were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D w and D wK were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D w uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D w, it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  9. The differentiation of malignant and benign human breast tissue at surgical margins and biopsy using x-ray interaction data and Bayesian classification

    Science.gov (United States)

    Mersov, A.; Mersov, G.; Al-Ebraheem, A.; Cornacchi, S.; Gohla, G.; Lovrics, P.; Farquharson, M. J.

    2014-02-01

    Worldwide, about 1.3 million women are diagnosed with breast cancer annually with an estimated 465,000 deaths. Accordingly, there is a need for high accuracy and speed in diagnosis of lesions suspected of being cancerous. This study assesses the interaction data collected from low energy x-rays within breast tissue samples. Trace element concentrations are assessed using x-ray fluorescence, as well as electron density, and molecular structure which are examined using incoherent and coherent scatter, respectively. Our work to date has shown that such data can provide a quantitative measure of certain tissue characterising parameters and hence, through appropriate modelling, could be used to classify samples for uses such as surgical margin detection and biopsy examination. The parameters used in this study for comparing the normal and tumour tissue sample populations are: levels of elements Ca, Cu, Fe, Br, Zn, Rb, K; the area, FWHM and amplitude from peaks fitted to the coherent scatter profile that are associated with fat, fibre and water content; the ratio of the Compton and coherent scatter peak area, FWHM and amplitude from the incoherent scatter profile. The novelty of the approach to this work lies in the fact that the classification process does not rely on one source of data but combines several measurements, the data from which in this application are modelled using a method based on Bayesian classification. The reliability of the classifications was assessed by its application to diagnostically known data that was not itself included in the thresholds determination. The results of the classification of over 70 breast tissue samples will be presented in this study. Bayesian modelling was carried out using selected significant parameters for classification resulting in 71% of normal tissue samples (n=35) and 66% of tumour tissue samples (n=35) being correctly classified when using all the samples. Bayesian classification using the same variables on all

  10. Non-destructive determination of moisture content and micro-fibril angle of wood using a poly-chromatic X-ray beam theoretical and experimental approach

    International Nuclear Information System (INIS)

    Non-destructive determination of moisture content and micro-fibril angle are important stakes for the sciences of the wood because these two parameters influence strongly the macroscopic behavior of the wood. For example, the shrinkage, the mechanical properties, the thermal and acoustic conductivity are dependent on the moisture content and their anisotropic character is largely governed by the micro-fibril angle. We used the light difference between X-ray mass attenuation coefficient for the water and for the wood in transmission. Regrettably, the results show that this difference between X-ray mass attenuation coefficient is insufficient to allow the precise measurement of the moisture content.In spite of this, the coherent scattering shows sensitive effects. So, by using a poly-energetic beam and a spectrometric system, we were able to discriminate between the crystalline constituent (cellulose) of the amorphous constituent (water) in a sample of wet wood, because for a given angle these phases scatter in different energy. Besides, the device created allowed us to study the crystalline phase of the wood. We were able to confront experimental profiles of diffraction with theoretical profiles of diffraction, obtained by means of a rigorous simulation, in the objective to estimate the average micro-fibril angle and its standard deviation. (author)

  11. Synchrotron white beam x-ray topography characterization of structural defects in microgravity and ground-based CdZnTe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.; Raghothamachar, B.; Dudley, M.; Larson, D.J. Jr. [SUNY, Stony Brook, NY (United States). Dept. of Materials Science and Engineering

    1996-12-31

    In a microgravity environment, gravity-dependent effects such as buoyancy, convection and hydrostatic pressure are minimized, providing an ideal environment for investigating diffusion-controlled, nonwetting crystal growth processes. To evaluate the influence of microgravity on the resultant crystal quality, Synchrotron White Beam X-ray Topography (SWBXT) is applied to characterize defect structures in both flight and ground-based CdZnTe single crystals. Transmission X-ray topographs recorded from one flight sample revealed regions of very low dislocation density with individual dislocations clearly resolved. Dislocations of very high density arrayed in a mosaic pattern were observed in all ground-base samples grown under identical growth conditions except for the gravity conditions. This observation indicates that the flight samples have much higher structural perfection than the ground-based samples. On the other hand, studies of defect configurations in a different flight sample revealed that structural defects and distributions can be strongly influenced by rapid cooling, thermal gradients, and constrained growth. Large thermal stresses induced by rapid cooling can be multiplied by wall contact leading to the formation of extensive slip bands and small angle tilt boundaries starting at the crystal periphery and propagating into the interior of the sample. It is concluded that an optimization of post solidification cooling rate is important to minimize the occurrence of slip.

  12. Performance of computed tomography for contrast agent concentration measurements with monochromatic x-ray beams: comparison of K-edge versus temporal subtraction

    Science.gov (United States)

    Elleaume, H.; Charvet, A. M.; Corde, S.; Estève, F.; LeBas, J. F.

    2002-09-01

    We investigated the performance of monochromatic computed tomography for the quantification of contrast agent concentrations. Two subtraction methods (K-edge subtraction and temporal subtraction) were evaluated and compared theoretically and experimentally in terms of detection limit, precision and accuracy. Measurements were performed using synchrotron x-rays with Lucite phantoms (10 cm and 17.5 cm in diameter) containing iodine or gadolinium solutions ranging from 50 μg ml-1 to 5 mg ml-1. The experiments were carried out using monochromators developed at the European Synchrotron Radiation Facility (ESRF) medical beamline. The phantoms were imaged either above and below the contrast agent K-edge, or before and after the addition of the contrast agent. Both methods gave comparable performance for phantoms less than 10 cm in diameter. For large phantoms, equivalent to a human head, the temporal subtraction is more suitable for detecting elements such as iodine, keeping a reasonable x-ray dose delivered to the phantom. A good agreement was obtained between analytical calculations, simulations and measurements. The beam harmonic content was taken into account in the simulations. It explains the performance degradation with high contrast agent concentrations. The temporal subtraction technique has the advantage of energy tunability and is well suited for imaging elements, such as iodine or gadolinium, in highly absorbing samples. For technical reasons, the K-edge method is preferable when the imaged organ is moving since the two measurements can be performed simultaneously, which is mandatory for obtaining a good subtraction.

  13. 钼靶X线影像对乳腺疾病的诊断价值%Value of Mammography X-ray Images in Diagnosing Breast Diseases

    Institute of Scientific and Technical Information of China (English)

    赵红; 郑穗生; 金晶; 姚文君; 相丽

    2012-01-01

    Purpose To discuss the clinical value and limitations of mammography X-ray photography in diagnosis of breast diseases. Materials and Methods Mammography X-ray image data of 71 cases with pathologically confirmed breast diseases were retrospectively analyzed. The BI-RADS categorization, lesion location, lesion size, micro calcification and mammary gland type were analyzed and compared with surgical records and pathologic results. Results The BI-RADS classification of 71 mammography data were: 13 cases of category 0, 7 cases of category Ⅰ, 3 cases of category Ⅱ , 4 cases of category Ⅲ , 28 cases of category Ⅳ, and 16 cases of category Ⅴ . The coincidence rate of category Ⅰ, Ⅱ, Ⅲ , Ⅳ and Ⅴ were 28%, 33%, 75%, 60% and 100%, respectively. Assessment of the lesion location on mammography was not accurate for 28 cases (39%), and inaccurate assessment of lesion size for 37 cases (52%). Fine calcification had been found in 11 cases, and 9 of them were breast cancer. Dense and intermediate hybrid glands accounted for 77% (55/71), and the correct diagnostic rate of mammography was 53%. Degenerate glands accounted for 23% (16/71), and the correct diagnostic rate of mammography was 81 % when compared with surgical pathology. Conclusion The mammography X-ray is useful in detecting breast diseases, but has a low accuracy for diagnosing lesions of dense glands, which is not accurate to detect lesion location and size.%目的 探讨乳腺钼靶X线影像的临床应用价值与限度.资料与方法回顾性分析71例经手术病理证实为乳腺疾病患者的钼靶X线影像资料,进行BI-RADS分类、乳腺腺体类型分型,观察病灶位置、大小、有无细钙化,与手术记录及术后病理结果进行比较.结果 钼靶X线影像资料BI-RADS分类:0类13例,Ⅰ类7例,Ⅱ类3例,Ⅲ类4例,Ⅳ类28例,Ⅴ类16例.BI-RADS分类与术后病理结果比较,Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ类的诊断符合率分别为28%、33%、75%、60

  14. Vanderbilt University free-electron laser x-ray facility

    Science.gov (United States)

    Tompkins, Perry A.; Andrews, Weiwei D.; Brau, Charles A.; Waters, James A.; Carroll, Frank E.; Pickens, David R.; Price, Ronald R.; Roos, Carlton F.

    1993-02-01

    The Vanderbilt University Free-Electron Laser Program is developing the capability to create near-monochromatic x rays for medical imaging and other purposes. For this experiment we feed-back the normal infrared FEL light to collide with the electron beam. This causes Compton backscattering of the incident photons which creates x rays. These x rays cannot feed an x-ray laser, but they have a collimated intensity and tunability which make them highly suitable for medical imaging. This paper is particularly focused on the x-ray beam transport to be used with this experiment. This transport must collimate the x-ray beam and re-direct it to match a beam chase located in the vault ceiling at a 40 degree angle to the electron beam axis. A brief description of the creation mechanism and x-ray beam properties are included.

  15. Impulsive solar X-ray bursts. 4: Polarization, directivity and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    Science.gov (United States)

    Langer, S. H.; Petrosian, V.

    1976-01-01

    A Monte Carlo method is described for evaluation of the spectrum, directivity and polarization of X-rays diffusely reflected from stellar photospheres. the accuracy of the technique is evaluated through comparison with analytic results. Using the characteristics of the incident X-rays of the model for solar X-ray flares, the spectrum, directivity and polarization of the reflected and the total X-ray fluxes are evaluated. The results are compared with observations.

  16. Dual-energy X-ray CT and the extension to polychromatic X-ray CT

    International Nuclear Information System (INIS)

    We have developed dual energy X-ray CT using monochromatic X-ray beams. From the dual-energy X-ray CT, we can obtain distributions of an electron density and an effective atomic number in a human body. Especially, the electron density is very important for the heavy ion radiotherapy. Now, we adopted new array-detector to know the energy of incident photons as well as detect the position and the number of photons. We carry out the experiment of the dual-energy X-ray CT at the beamline of KEK and SPring-8 as a fundamental study for the polychromatic X-ray CT. We will show the preliminary result of this experiments and the feasibility of a quantitative polychromatic X-ray CT as an advanced method of monochromatic X-ray CT in this study. (author)

  17. Experimental study of beam hardening artifacts in photon counting breast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bisogni, M.G.; Del Guerra, A. [Dip. di Fisica, Univ. di Pisa and INFN, Pisa (Italy); Lanconelli, N. [Dip. di Fisica, Univ. di Bologna and INFN, Bologna (Italy); Lauria, A.; Mettivier, G. [Dip. di Scienze Fisiche, Univ. di Napoli Federico II and INFN, Naples (Italy); Montesi, M.C. [Dip. di Scienze Fisiche, Univ. di Napoli Federico II and INFN, Naples (Italy)], E-mail: montesi@na.infn.it; Panetta, D. [Dip. di Fisica, Univ. di Pisa and INFN, Pisa (Italy); Pani, R. [Dip. di Medicina Sperimentale, Univ. La Sapienza and INFN, Rome (Italy); Quattrocchi, M.G. [Dip. di Fisica, Univ. di Pisa and INFN, Pisa (Italy); Randaccio, P. [Dip. di Fisica, Univ. di Cagliari and INFN, Cagliari (Italy); Rosso, V. [Dip. di Fisica, Univ. di Pisa and INFN, Pisa (Italy); Russo, P. [Dip. di Scienze Fisiche, Univ. di Napoli Federico II and INFN, Naples (Italy)

    2007-10-21

    We are implementing an X-ray breast Computed Tomography (CT) system on the gantry of a dedicated single photon emission tomography system for breast Tc-99 imaging. For the breast CT system we investigated the relevance of the beam hardening artifact. We studied the use of a single photon counting silicon pixel detector (0.3 mm thick, 256x256 pixel, 55{mu}m pitch, bump-bonded to the Medipix2 photon counting readout chip) as detector unit in our X-ray CT system. We evaluated the beam hardening 'cupping' artifact using homogeneous PMMA slabs and phantoms up to 14 cm in diameter, used as uncompressed breast tissue phantoms, imaged with a tungsten anode tube at 80 kVp with 4.2 mm Al filtration. For beam hardening evaluation we used a bimodal energy model. The CT data show a 'cupping' artifact going from 4% (4-cm thick material) to 18% (14-cm thick material). This huge artifacts is influenced by the low detection efficiency and the charge sharing effect of the silicon pixel detector.

  18. X-Ray Polarimetry

    CERN Document Server

    Kaaret, Philip

    2014-01-01

    We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors have enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band soft X-ray polarimeters based on Bragg reflection. Developments in scintillator and solid-state hard X-ray detectors facilitate construction of both modular, large area Compton scattering polarimeters and compact devices suitable for use with focusing X-ray telescopes.

  19. Establishment of dosimetric references for high energy X-ray beams of very small field sizes (≤ 1 cm2) used in radiotherapy

    International Nuclear Information System (INIS)

    The French primary standard dosimetry laboratory 'Laboratoire National Henri Becquerel' is in charge of the establishment of dosimetric standards for ionizing radiation beams. Absolute dose measurements are thus available for X-Ray beams used in radiotherapy for field sizes between 10 and 2 cm. Since the miniaturization of absolute dosimeters is not possible for smaller field sizes, a dose area product (DAP) has been suggested as a substitute to the absorbed dose at a point.In order to measure a DAP with dosimeters which sensitive surface is larger than the beam, a graphite calorimeter with a sensitive surface of 3 cm diameter was designed, built and tested. An ionization chamber with the same diameter was realized and tested to transfer the dosimetric references to the end users. Its calibration factor in terms of DAP was determined in circular beams of 2, 1 and 0.75 cm diameter with an uncertainty smaller than 0.7 %. The two-Dimension relative dose distribution was measured thanks to a diamond dosimeter, a PinPoint ionization chamber and gafchromic films, using a specific protocol. Both approaches, respectively based on a PDS and an absorbed dose to water at a point, were in good agreement in the 2 cm beam. Correction factors determined from Monte Carlo simulations and measured dose distributions were needed for this comparison. The calibration factor of the large ionization chamber in the 1 and 0.75 cm diameter beams were in good agreement within the uncertainties but a gap of -2.6 % was found with the one established in the 2 cm diameter beam. As a result, the DAP can be used if the sensitive surface is much larger than the beam section. (author)

  20. The clinical value of the mammography X-ray, ultrasound and MRI for the qualitative diagnosis of breast cancer%钼靶X射线、超声及MRI对乳腺癌诊断的应用价值

    Institute of Scientific and Technical Information of China (English)

    赵军

    2014-01-01

    Objective:To evaluate the diagnostic value of the mammography X-ray, ultrasound and MRI for breast cancer, expected to provide a reference for the clinical diagnosis of these diseases. Methods:117 cases patients with suspected breast cancer were the objects of the study, compared the results of the detection with mammography X-ray, ultrasound and MRI between the results of pathological examination, to investigate the diagnostic ability of different image means for all types of breast disease.Results:The sensitivity, accuracy of MRI for breast cancer were better than X-ray mammography and ultrasound, but the speciifcity was similar with X-ray mammography. Compared ultrasound, the specificity, positive predictive value of X-ray mammography was much higher, but had no advantage in the other parameters related with diagnostic capabilities.Conclusions:Mammography X-ray, ultrasound and MRI have their own advantages and disadvantages for the diagnosis of breast diseases, but the mammography X-ray can be as the preferred means for the ifrst diagnosis of breast cancer, and multiple imaging means could be joint based on the needs of clinical diagnosis.%目的:探讨钼靶X射线、超声及MRI对乳腺癌的临床诊断价值。方法:以117例疑似乳腺癌患者为研究对象,将钼靶X射线、超声及MRI检查结果与病理诊断结果对比,考察不同影像手段对各类乳腺疾病的诊断能力。结果:MRI对乳腺癌的敏感性、准确度等均优于钼靶X射线和超声,但特异性与钼靶X射线相当。与超声相比,钼靶X射线的特异性、阳性预测值较高,但在其他诊断能力相关的参数方面则无优势。结论:钼靶X射线、超声及MRI在诊断乳腺疾病方面各有优劣,但钼靶X射线可作为乳腺癌临床初诊的首选手段,临床确诊时可联用多种影像手段。