WorldWideScience

Sample records for beam blowup

  1. Controlled Transverse Blow-up of Highenergy Proton Beams for Aperture Measurements and Loss Maps

    CERN Document Server

    Hӧfle, W; Redaelli, S; Schmidt, R; Valuch, D; Wollmann, D; Zerlauth, M

    2012-01-01

    A technique was developed to blow-up transversely in a controlled way high energy proton beams in the LHC. The technique is based on band limited white noise excitation that is injected into the transverse damper feedback loop. The injected signal can be gated to selectively blow-up individual trains of bunches. The speed of transverse blow-up can be precisely controlled. This opens the possibility to perform safely and efficiently aperture measurements and loss maps with high intensity bunch trains well above stored beam energies that are considered to be safe. In particular, lengthy procedures for measurements at top energy, otherwise requiring multiple fills of individual bunches, can be avoided. In this paper, the method is presented and results from beam measurements are discussed and compared with alternative blowup methods.

  2. PSB beam longitudinal blow-up by phase modulation with the digital LLRF prototype system

    CERN Document Server

    Angoletta, M E; Butterworth, A; Findlay, A; Jaussi, M; Leinonen, P; Molendijk, J; Sanchez-Quesada, J

    2014-01-01

    The PSB will be upgraded to a new, Digital Low-Level RF (DLLRF) system in 2014 at the injectors’ restart after LS1. This DLLRF is an evolution of that successfully deployed in LEIR and comprises new hardware, software and implementation strategies. Machine development studies have been carried out in the PSB over recent years with the existing LEIR-style hardware installed in PSB ring four. These studies have allowed testing approaches and validating implementation strategies. This note focuses on a series of MDs carried out during the 2011 run where a new implementation of the longitudinal beam blow-up obtained by phase modulation was tested. Test results and effects on the beam are show for a CNGS-type beam. Finally, an overview is given of the final longitudinal blow-up implementation planned with the new hardware, which will be operationally deployed in 2014.

  3. Simple countermeasures against the TM110-beam-blowup-mode in biperiodic structures

    International Nuclear Information System (INIS)

    Euteneuer, H.; Herminghaus, H.; Schoeler, H.

    1984-01-01

    The two fundamental methods of fighting beam blow-up in rf-accelerating-structures are staggered detuning and selective Q-spoiling of their higher order modes. Biperiodic structures offer a very simple way of applying the latter technique of the most dangerous TM 110 -like blowup mode at 1.7 times the accelerating frequency: letting this mode propagate but giving a large gap to the TM 110 -passband. This gap must be positive for electric coupling (f(phi=0) =1.7c. With asymmetric coupling elements between the cavities of a structure, one has a simple tool for staggered detuning: a change of the relative orientation of these elements spreads the resonance frequencies not only of the TM 110 -mode, but of at least all dipole modes. (orig.)

  4. Beam-blowup study for a weak-strong case

    International Nuclear Information System (INIS)

    Kheifets, S.; Helm, R.; Shoaee, H.

    1983-07-01

    A comparison is made of experimental results obtained on two SLAC storage rings PEP and SPEAR with the theoretical calculations and the dependence of the phenomenon on different machine parameters is studied. In the present paper we present such a comparison with reasonably good agreement between the experiment and the theory. The important conclusion from our study is that any valid theory of the beam-beam phenomenon should take into account the asymmetries of the machine parameters arising in any storage ring from all kinds of machine imperfections

  5. Beam size blow-up and current loss in the Fermilab Main Ring during storage

    International Nuclear Information System (INIS)

    Guignard, C.; Month, M.

    1977-01-01

    Observations at Fermilab during storage mode operation show characteristic forms of transverse beam size growth and current loss with time. There are three obvious mechanisms which can produce such blowup. The gas pressure is a source for immediate beam loss by direct nuclear scattering. Protons can also multiple scatter off the orbiting electrons of the gas atoms causing the trasnverse beam size to increase with time. A third mechanism not related to gas pressure is beam growth due to multiple crossing of betatron resonances arising from the synchrotron oscillations of the stored bunches. This simulates a random walk and causes the transverse beam size to grow. This is an attempt to describe the observations with direct nuclear scattering, multiple coulomb scattering, and multiple resonance crossing

  6. Beam size blow-up and current loss in the Fermilab main ring during storage

    International Nuclear Information System (INIS)

    Guignard, G.; Month, M.

    1977-01-01

    Observations at Fermilab during the storage mode of operation show characteristic forms of transverse beam size growth and current loss with time. There are three obvious mechanisms which can produce such blowup. The gas pressure is a source for immediate beam loss by direct nuclear scattering. Protons can also multiple Coulomb scatter off the orbiting electrons of the gas atoms causing the transverse beam size to increase with time, t. This effect is therefore also proportional to the gas pressure. A third mechanism not related to the gas pressure is beam growth due to multiple crossing of betatron resonances arising from the synchrotron oscillations of the stored bunches. This simulates a random walk and causes the transverse beam size to grow with √t. An attempt is made to describe the observations with direct nuclear scattering, multiple coulomb scattering and multiple resonance crossing. In addition to the loss rate from direct nuclear scattering, the presence of betatron resonances also contribute to particle loss. In fact this latter effect becomes dominant after the beam size reaches a critical value. This critical size is referred to as the resonance aperture. It is the size at which ''fast'' resonance crossing is no longer valid. The stopband width becomes so large (due both to emittance growth as well as the increase in magnetic field distortions) that particles are locked into the resonance and are extracted to the physical aperture. The model is described in a phenomenological way, and the coefficients involved are estimated. Theoretical curves for transverse beam growth and loss rate are plotted and compared with some measured values. Finally, some general comments are given

  7. Origins of transverse emittance blow-up during the LHC energy tramp

    CERN Document Server

    Kuhn, M; Arduini, G; Kain, V; Schaumann, M; Tomas, R

    2014-01-01

    During LHC Run 1 about 30 % of the potential peak performance was lost due to transverse emittance blow-up through the LHC cycle. Measurements indicated that the majority of the blow-up occurred during the energy ramp. Until the end of LHC Run 1 this emittance blow-up could not be eliminated. In this paper the measurements and observations of emittance growth through the ramp are summarized. Simulation results for growth due to Intra Beam Scattering will be shown and compared to measurements. A summary of investigations of other possible sources will be given and backed up with simulations where possible. Requirements for commissioning the LHC with beam in 2015 after Long Shutdown 1 to understand and control emittance blow-up will be listed.

  8. New beam-based and direct magnetic waveform measurements of the BTx.KFA10(20) vertical recombination kickers and induced emittance blow-up simulations at 1.4 and 2 GeV

    CERN Document Server

    Forte, Vincenzo; Borburgh, Jan; Sermeus, Luc; CERN. Geneva. ATS Department

    2018-01-01

    In the framework of the LHC Injectors Upgrade (LIU) project [1], this document summarises a new reconstruction methodology for the measurement of the magnetic waveforms of the vertical re-combination kickers BT1.KFA10, BT4.KFA10 and BT2.KFA20, from data collected during several Machine Development (MD) sessions. The reconstruction has been performed in order to verify the LIU specification of the recombination kickers, which is required for a clean transfer of the longer bunches coming from the PSB after the upgrade. A beam-based methodology was developed to measure the transient magnetics dynamics of the kicker where the bunch length is comparable to the rise and/or fall times. These measurements represent a valuable way to reconstruct the mag-netic waveform of the kickers where removing them to make direct probe measurements is time consuming. A benchmarking of the beam-based measurements with field probe measurements is presented, together with realistic simulations of the vertical emittance blow-up at 1...

  9. Blowup for flat slow manifolds

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall

    2017-01-01

    In this paper, we present a way of extending the blowup method, in the formulation of Krupa and Szmolyan, to flat slow manifolds that lose hyperbolicity beyond any algebraic order. Although these manifolds have infinite co-dimensions, they do appear naturally in certain settings; for example, in (a......) the regularization of piecewise smooth systems by tanh, (b) a particular aircraft landing dynamics model, and finally (c) in a model of earthquake faulting. We demonstrate the approach using a simple model system and the examples (a) and (b)....

  10. Blowup for flat slow manifolds

    Science.gov (United States)

    Kristiansen, K. U.

    2017-05-01

    In this paper, we present a way of extending the blowup method, in the formulation of Krupa and Szmolyan, to flat slow manifolds that lose hyperbolicity beyond any algebraic order. Although these manifolds have infinite co-dimensions, they do appear naturally in certain settings; for example, in (a) the regularization of piecewise smooth systems by \\tanh , (b) a particular aircraft landing dynamics model, and finally (c) in a model of earthquake faulting. We demonstrate the approach using a simple model system and the examples (a) and (b).

  11. Blow-up: A Free Lunch?

    Directory of Open Access Journals (Sweden)

    Jan Koenderink

    2012-02-01

    Full Text Available We consider operations that change the size of images, either shrinks or blow-ups. Image processing offers numerous possibilities, put at everyone's disposal with such computer programs as Adobe Photoshop. We consider a different class of operations, aimed at immediate visual awareness, rather than pixel arrays. We demonstrate cases of blow-ups that do not sacrifice apparent resolution. This apparent information gain is due to “amodal occlusion.”

  12. Transverse blowup along bunch train caused by electron cloud in BEPC

    International Nuclear Information System (INIS)

    Liu Yudong; Guo Zhiyuan; Qin Qing; Wang Jiuqing; Zhao Zheng

    2006-01-01

    Electron cloud instability (ECI) may take place in a storage ring when the machine is operated with a multi-bunch positively charged beam. Transverse blowup due to electron cloud has been observed in some machines and is considered to be a major limit factor in the development of high current and high luminosity electron positron colliders. With a streak camera, the transverse blowup along the bunch train was first observed in an experiment at the Beijing Electron-Positron Collider (BEPC) and the simulation results were used to compared with the observation. (authors)

  13. Improved Longitudinal Blow-up and Shaving in the Booster

    CERN Document Server

    Hancock, S

    2013-01-01

    The low-intensity proton beam for p-Pb collisions in the LHC did not come back in the Booster at the beginning of 2013 anything like it had been set up at the end of 2012. In particular there were unexplained intensity fluctuations of ±100%. Although the root cause of the drift in performance was never established, its investigation revealed long-standing issues in the longitudinal plane which, when corrected, allowed single-bunch beams to be delivered with unprecedented reproducibility and control of both intensity and longitudinal emittance. The new approach was adopted for the ion run and subsequently for MDs at higher intensities, where it made possible a robust control of intensity at constant 6D phase space volume. Post-LS1, it may even provide a platform upon which to build a more exotic controlled longitudinal blow-up to generate higher intensity bunches with a flattened line density.

  14. Blow-up : A free lunch?

    NARCIS (Netherlands)

    Koenderink, J.J.; Richards, W.; Van Doorn, A.J.

    2012-01-01

    We consider operations that change the size of images, either shrinks or blow-ups. Image processing offers numerous possibilities, put at everyone’s disposal with such computer programs as Adobe Photoshop. We consider a different class of operations, aimed at immediate visual awareness, rather than

  15. Simulation study of the beam-beam interaction at SPEAR

    International Nuclear Information System (INIS)

    Tennyson, J.

    1980-01-01

    A two dimensional simulation study of the beam-beam interaction at SPEAR indicates that quantum fluctuations affecting the horizontal betatron oscillation play a critical role in the vertical beam blowup

  16. Blow-up in nonlinear Schroedinger equations. II. Similarity structure of the blow-up singularity

    DEFF Research Database (Denmark)

    Rypdal, K.; Juul Rasmussen, Jens

    1986-01-01

    invariance and generalizations of the latter. This generalized "quasi-invariance" reveals the nature of the blow-up singularity and resolves an old controversy. Most of the previous work has been done on the cubic nonlinearity. We generalize the results to an arbitrary power nonlinearity....

  17. Study of periodic tune modulation with the beam-beam effect

    International Nuclear Information System (INIS)

    Neuffer, D.; Riddiford, A.; Ruggerio, A.G.

    1983-01-01

    Simulations of weak-strong pp - collisions with a periodic tune modulation show the possiblity of beam blowup at sufficiently strong modulation amplitudes. This beam blowup is associated with the appearance of nonrepeatable ''chaotic'' trajectories and occurs when low order resonances are crossed by the modulation. In this paper the authors report results of an investigation of the dependence of this blowup upon the modulation frequency, with the modulation amplitude fixed. It is determined that if a threshold frequency exists, modulations at frequencies greater than the threshold do not lead to beam blowup

  18. Controlled longitudinal emittance blow-up using band-limited phase noise in CERN PSB

    Science.gov (United States)

    Quartullo, D.; Shaposhnikova, E.; Timko, H.

    2017-07-01

    Controlled longitudinal emittance blow-up (from 1 eVs to 1.4 eVs) for LHC beams in the CERN PS Booster is currently achievied using sinusoidal phase modulation of a dedicated high-harmonic RF system. In 2021, after the LHC injectors upgrade, 3 eVs should be extracted to the PS. Even if the current method may satisfy the new requirements, it relies on low-power level RF improvements. In this paper another method of blow-up was considered, that is the injection of band-limited phase noise in the main RF system (h=1), never tried in PSB but already used in CERN SPS and LHC, under different conditions (longer cycles). This technique, which lowers the peak line density and therefore the impact of intensity effects in the PSB and the PS, can also be complementary to the present method. The longitudinal space charge, dominant in the PSB, causes significant synchrotron frequency shifts with intensity, and its effect should be taken into account. Another complication arises from the interaction of the phase loop with the injected noise, since both act on the RF phase. All these elements were studied in simulations of the PSB cycle with the BLonD code, and the required blow-up was achieved.

  19. Heterotic Mini-landscape in blow-up

    CERN Document Server

    Bizet, Nana Geraldine Cabo

    2013-01-01

    Localization properties of fields in compact extra dimensions are crucial ingredients for string model building, particularly in the framework of orbifold compactifications. Realistic models often require a slight deviation from the orbifold point, that can be analyzed using field theoretic methods considering (singlet) fields with nontrivial vacuum expectation values. Some of these fields correspond to blow-up modes that represent the resolution of orbifold singularities. Improving on previous analyses we give here an explicit example of the blow-up of a model from the heterotic Mini-landscape. An exact identification of the blow-up modes at various fixed points and fixed tori with orbifold twisted fields is given. We match the massless spectra and identify the blow-up modes as non-universal axions of compactified string theory. We stress the important role of the Green-Schwarz anomaly polynomial for the description of the resolution of orbifold singularities.

  20. Blow-up Mechanism of Classical Solutions to Quasilinear Hyperbolic Systems in the Critical Case

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper deals with the blow-up phenomenon, particularly, the geometric blow-up mechanism, of classical solutions to the Cauchy problem for quasilinear hyperbolic systems in the critical case. We prove that it is still the envelope of the same family of characteristics which yields the blowup of classical solutions to the Cauchy problem in the critical case.

  1. Blow-Up Time for Nonlinear Heat Equations with Transcendental Nonlinearity

    Directory of Open Access Journals (Sweden)

    Hee Chul Pak

    2012-01-01

    Full Text Available A blow-up time for nonlinear heat equations with transcendental nonlinearity is investigated. An upper bound of the first blow-up time is presented. It is pointed out that the upper bound of the first blow-up time depends on the support of the initial datum.

  2. Finite Time Blowup in a Realistic Food-Chain Model

    KAUST Repository

    Parshad, Rana; Ait Abderrahmane, Hamid; Upadhyay, Ranjit Kumar; Kumari, Nitu

    2013-01-01

    We investigate a realistic three-species food-chain model, with generalist top predator. The model based on a modified version of the Leslie-Gower scheme incorporates mutual interference in all the three populations and generalizes several other known models in the ecological literature. We show that the model exhibits finite time blowup in certain parameter range and for large enough initial data. This result implies that finite time blowup is possible in a large class of such three-species food-chain models. We propose a modification to the model and prove that the modified model has globally existing classical solutions, as well as a global attractor. We reconstruct the attractor using nonlinear time series analysis and show that it pssesses rich dynamics, including chaos in certain parameter regime, whilst avoiding blowup in any parameter regime. We also provide estimates on its fractal dimension as well as provide numerical simulations to visualise the spatiotemporal chaos.

  3. Finite Time Blowup in a Realistic Food-Chain Model

    KAUST Repository

    Parshad, Rana

    2013-05-19

    We investigate a realistic three-species food-chain model, with generalist top predator. The model based on a modified version of the Leslie-Gower scheme incorporates mutual interference in all the three populations and generalizes several other known models in the ecological literature. We show that the model exhibits finite time blowup in certain parameter range and for large enough initial data. This result implies that finite time blowup is possible in a large class of such three-species food-chain models. We propose a modification to the model and prove that the modified model has globally existing classical solutions, as well as a global attractor. We reconstruct the attractor using nonlinear time series analysis and show that it pssesses rich dynamics, including chaos in certain parameter regime, whilst avoiding blowup in any parameter regime. We also provide estimates on its fractal dimension as well as provide numerical simulations to visualise the spatiotemporal chaos.

  4. Asymptotic properties of blow-up solutions in reaction-diffusion equations with nonlocal boundary flux

    Science.gov (United States)

    Liu, Bingchen; Dong, Mengzhen; Li, Fengjie

    2018-04-01

    This paper deals with a reaction-diffusion problem with coupled nonlinear inner sources and nonlocal boundary flux. Firstly, we propose the critical exponents on nonsimultaneous blow-up under some conditions on the initial data. Secondly, we combine the scaling technique and the Green's identity method to determine four kinds of simultaneous blow-up rates. Thirdly, the lower and the upper bounds of blow-up time are derived by using Sobolev-type differential inequalities.

  5. Numerical study of blow-up in the Davey-Stewartson system

    KAUST Repository

    Klein, Christian; Muite, Benson; Roidot, Kristelle

    2013-01-01

    Nonlinear dispersive partial differential equations such as the nonlinear Schrödinger equations can have solutions that blow up. We numerically study the long time behavior and potential blow-up of solutions to the focusing Davey-Stewartson II equation by analyzing perturbations of the lump and the Ozawa solutions. It is shown in this way that both are unstable to blow-up and dispersion, and that blow-up in the Ozawa solution is generic.

  6. Numerical study of blow-up in the Davey-Stewartson system

    KAUST Repository

    Klein, Christian

    2013-03-01

    Nonlinear dispersive partial differential equations such as the nonlinear Schrödinger equations can have solutions that blow up. We numerically study the long time behavior and potential blow-up of solutions to the focusing Davey-Stewartson II equation by analyzing perturbations of the lump and the Ozawa solutions. It is shown in this way that both are unstable to blow-up and dispersion, and that blow-up in the Ozawa solution is generic.

  7. Blow-up, Global Existence and Persistence Properties for the Coupled Camassa–Holm equations

    International Nuclear Information System (INIS)

    Zhu Mingxuan

    2011-01-01

    In this paper, we consider the coupled Camassa–Holm equations. First, we present some new criteria on blow-up. Then global existence and blow-up rate of the solution are also established. Finally, we discuss persistence properties of this system.

  8. Transition between extinction and blow-up in a generalized Fisher–KPP model

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Bermejo, Benito, E-mail: benito.hernandez@urjc.es [Departamento de Física, Universidad Rey Juan Carlos, Calle Tulipán S/N, 28933, Móstoles, Madrid (Spain); Sánchez-Valdés, Ariel [Departamento de Matemática Aplicada, Universidad Rey Juan Carlos, Calle Tulipán S/N, 28933, Móstoles, Madrid (Spain)

    2014-05-01

    Stationary solutions of the Fisher–KPP equation with general nonlinear diffusion and arbitrary reactional kinetic orders terms are characterized. Such stationary (separatrix-like) solutions disjoint the blow-up solutions from those showing extinction. In addition a criterion for general parameter values is presented, which allows determining the blow-up or vanishing character of the solutions.

  9. Transition between extinction and blow-up in a generalized Fisher–KPP model

    International Nuclear Information System (INIS)

    Hernández-Bermejo, Benito; Sánchez-Valdés, Ariel

    2014-01-01

    Stationary solutions of the Fisher–KPP equation with general nonlinear diffusion and arbitrary reactional kinetic orders terms are characterized. Such stationary (separatrix-like) solutions disjoint the blow-up solutions from those showing extinction. In addition a criterion for general parameter values is presented, which allows determining the blow-up or vanishing character of the solutions.

  10. Blow-up for a three dimensional Keller-Segel model with consumption of chemoattractant

    Science.gov (United States)

    Jiang, Jie; Wu, Hao; Zheng, Songmu

    2018-04-01

    We investigate blow-up properties for the initial-boundary value problem of a Keller-Segel model with consumption of chemoattractant when the spatial dimension is three. Through a kinetic reformulation of the Keller-Segel system, we first derive some higher-order estimates and obtain certain blow-up criteria for the local classical solutions. These blow-up criteria generalize the results in [4,5] from the whole space R3 to the case of bounded smooth domain Ω ⊂R3. Lower global blow-up estimate on ‖ n ‖ L∞ (Ω) is also obtained based on our higher-order estimates. Moreover, we prove local non-degeneracy for blow-up points.

  11. Some blow-up problems for a semilinear parabolic equation with a potential

    Science.gov (United States)

    Cheng, Ting; Zheng, Gao-Feng

    The blow-up rate estimate for the solution to a semilinear parabolic equation u=Δu+V(x)|u in Ω×(0,T) with 0-Dirichlet boundary condition is obtained. As an application, it is shown that the asymptotic behavior of blow-up time and blow-up set of the problem with nonnegative initial data u(x,0)=Mφ(x) as M goes to infinity, which have been found in [C. Cortazar, M. Elgueta, J.D. Rossi, The blow-up problem for a semilinear parabolic equation with a potential, preprint, arXiv: math.AP/0607055, July 2006], is improved under some reasonable and weaker conditions compared with [C. Cortazar, M. Elgueta, J.D. Rossi, The blow-up problem for a semilinear parabolic equation with a potential, preprint, arXiv: math.AP/0607055, July 2006].

  12. A Digital System for Longitudinal Emittance Blow-Up in the LHC

    CERN Document Server

    JaussI, M; Baudrenghien, P; Butterworth, A; Sanchez-Quesada, J; Shaposhnikova, E; Tuckmantel, J

    2011-01-01

    In order to preserve beam stability with nominal bunch intensity in the LHC, longitudinal emittance blow-up is performed during the energy ramp by injecting phase noise in the main accelerating cavities. The noise spectrum spans a small frequency band around the synchrotron frequency. It is generated continuously in software and streamed digitally into the Digital Signal Processor (DSP) of the Beam Control system where it is added to the pick-up signal of the beam phase loop, resulting in a phase modulation of the accelerating RF. In order to achieve reproducible results, a feedback system, using as input the measured bunch lengths averaged over each ring, controls the strength of the excitation, allowing the operator to simply set a target bunch length. The spectrum of the noise is adjusted to excite the core of the bunch only, extending to the desired bunch length. As it must follow the evolution of the synchrotron frequency through the ramp, it is automatically calculated by the LHC settings management sof...

  13. Studies of the beam-beam interaction for the LHC

    International Nuclear Information System (INIS)

    Krishnagopal, S.; Furman, M.A.; Turner, W.C.

    1999-01-01

    The authors have used the beam-beam simulation code CBI to study the beam-beam interaction for the LHC. We find that for nominal LHC parameters, and assuming only one bunch per beam, there are no collective (coherent) beam-beam instabilities. We have investigated the effect of sweeping one of the beams around the other (a procedure that could be used as a diagnostic for head-on beam-beam collisions). We find that this does not cause any problems at the nominal current, though at higher currents there can be beam blow-up and collective beam motion. consequence of quadrupole collective effects

  14. Perturbational blowup solutions to the compressible Euler equations with damping.

    Science.gov (United States)

    Cheung, Ka Luen

    2016-01-01

    The N-dimensional isentropic compressible Euler system with a damping term is one of the most fundamental equations in fluid dynamics. Since it does not have a general solution in a closed form for arbitrary well-posed initial value problems. Constructing exact solutions to the system is a useful way to obtain important information on the properties of its solutions. In this article, we construct two families of exact solutions for the one-dimensional isentropic compressible Euler equations with damping by the perturbational method. The two families of exact solutions found include the cases [Formula: see text] and [Formula: see text], where [Formula: see text] is the adiabatic constant. With analysis of the key ordinary differential equation, we show that the classes of solutions include both blowup type and global existence type when the parameters are suitably chosen. Moreover, in the blowup cases, we show that the singularities are of essential type in the sense that they cannot be smoothed by redefining values at the odd points. The two families of exact solutions obtained in this paper can be useful to study of related numerical methods and algorithms such as the finite difference method, the finite element method and the finite volume method that are applied by scientists to simulate the fluids for applications.

  15. Local-in-space blow-up criteria for a class of nonlinear dispersive wave equations

    Science.gov (United States)

    Novruzov, Emil

    2017-11-01

    This paper is concerned with blow-up phenomena for the nonlinear dispersive wave equation on the real line, ut -uxxt +[ f (u) ] x -[ f (u) ] xxx +[ g (u) + f″/(u) 2 ux2 ] x = 0 that includes the Camassa-Holm equation as well as the hyperelastic-rod wave equation (f (u) = ku2 / 2 and g (u) = (3 - k) u2 / 2) as special cases. We establish some a local-in-space blow-up criterion (i.e., a criterion involving only the properties of the data u0 in a neighborhood of a single point) simplifying and precising earlier blow-up criteria for this equation.

  16. Blow-up boundary regimes for general quasilinear parabolic equations in multidimensional domains

    International Nuclear Information System (INIS)

    Shishkov, A E; Shchelkov, A G

    1999-01-01

    A new approach (not based on the techniques of barriers) to the study of asymptotic properties of the generalized solutions of parabolic initial boundary-value problems with finite-time blow-up of the boundary values is proposed. Precise conditions on the blow-up pattern are found that guarantee uniform localization of the solution for an arbitrary compactly supported initial function. The main result of the paper consists in obtaining precise sufficient conditions for the singular (or blow-up) set of an arbitrary solution to remain within the boundary of the domain

  17. Blowup with vorticity control for a 2D model of the Boussinesq equations

    Science.gov (United States)

    Hoang, V.; Orcan-Ekmekci, B.; Radosz, M.; Yang, H.

    2018-06-01

    We propose a system of equations with nonlocal flux in two space dimensions which is closely modeled after the 2D Boussinesq equations in a hyperbolic flow scenario. Our equations involve a vorticity stretching term and a non-local Biot-Savart law and provide insight into the underlying intrinsic mechanisms of singularity formation. We prove stable, controlled finite time blowup involving upper and lower bounds on the vorticity up to the time of blowup for a wide class of initial data.

  18. On lower bounds for possible blow-up solutions to the periodic Navier-Stokes equation

    International Nuclear Information System (INIS)

    Cortissoz, Jean C.; Montero, Julio A.; Pinilla, Carlos E.

    2014-01-01

    We show a new lower bound on the H .3/2 (T 3 ) norm of a possible blow-up solution to the Navier-Stokes equation, and also comment on the extension of this result to the whole space. This estimate can be seen as a natural limiting result for Leray's blow-up estimates in L p (R 3 ), 3 .5/2 (T 3 ), and give the corresponding extension to the case of the whole space

  19. Description of regional blow-up in a porous-medium equation

    Directory of Open Access Journals (Sweden)

    Carmen Cortazar

    2002-10-01

    Full Text Available We describe the (finite-time blow-up phenomenon for a non-negative solution of a porous medium equation of the form $$ u_t = Delta u^m + u^m $$ in the entire space. Here $m>1$ and the initial condition is assumed compactly supported. Blow-up takes place exactly inside a finite number of balls with same radii and exhibiting the same self-similar profile.

  20. Beam instabilities in race track microtrons

    International Nuclear Information System (INIS)

    Euteneuer, H.; Herminghaus, H.; Klein, R.

    1982-01-01

    Several limitations of the benefits of the race track microtron (RTM) as an economic cw electron accelerator are discussed. For beam blowup some final results of our investigations for the Mainz Microtron are given. The other two effects presented more generally are beam diffusion by imperfections of the optical elements of a RTM and the deterioration of transverse phase space by synchrotron radiation

  1. Longitudinal emittance blowup in the large hadron collider

    CERN Document Server

    Baudrenghien, P

    2013-01-01

    The Large Hadron Collider (LHC) relies on Landau damping for longitudinal stability. To avoid decreasing the stability margin at high energy, the longitudinal emittance must be continuously increased during the acceleration ramp. Longitudinal blowup provides the required emittance growth. The method was implemented through the summer of 2010. Band-limited RF phase-noise is injected in the main accelerating cavities during the whole ramp of about 11min. Synchrotron frequencies change along the energy ramp, but the digitally created noise tracks the frequency change. The position of the noise-band, relative to the nominal synchrotron frequency, and the bandwidth of the spectrum are set by pre-defined constants, making the diffusion stop at the edges of the demanded distribution. The noise amplitude is controlled by feedback using the measurement of the average bunch length. This algorithm reproducibly achieves the programmed bunch length of about 1.2ns, at flat top with low bunch-to-bunch scatter and provides a...

  2. Blow-Up Analysis for a Quasilinear Degenerate Parabolic Equation with Strongly Nonlinear Source

    Directory of Open Access Journals (Sweden)

    Pan Zheng

    2012-01-01

    Full Text Available We investigate the blow-up properties of the positive solution of the Cauchy problem for a quasilinear degenerate parabolic equation with strongly nonlinear source ut=div(|∇um|p−2∇ul+uq,  (x,t∈RN×(0,T, where N≥1, p>2 , and m, l,  q>1, and give a secondary critical exponent on the decay asymptotic behavior of an initial value at infinity for the existence and nonexistence of global solutions of the Cauchy problem. Moreover, under some suitable conditions we prove single-point blow-up for a large class of radial decreasing solutions.

  3. Blow-up of solutions to the rotation b-family system modeling equatorial water waves

    Directory of Open Access Journals (Sweden)

    Min Zhu

    2018-03-01

    Full Text Available We consider the blow-up mechanism to the periodic generalized rotation b-family system (R-b-family system. This model can be derived from the f-plane governing equations for the geographical water waves with a constant underlying current in the equatorial water waves with effect of the Coriolis force. When b=2, it is a rotation two-component Camassa-Holm (R2CH system. We consider the periodic R2CH system when linear dispersion is absent (which model is called r2CH system and derive two finite-time blow-up results.

  4. Effects of parasitic beam-beam interaction during the injection process at the PEP-II B Factory

    International Nuclear Information System (INIS)

    Chin, Y.H.

    1992-06-01

    This paper is concerned with beam-beam effects during the injection process at the proposed asymmetric SLAC/LBL/LLNL B-Factory, PEP-II. It is shown that the parasitic beam-beam interaction can lead to a significant blowup in the vertical size of the injected beam. Simulation results for the horizontal and the vertical injection schemes are presented, and their performances are studied

  5. A critical study of emittance measurements of intense low-energy proton beams

    CERN Document Server

    Evans, Lyndon R

    1972-01-01

    The measurement of emittance in low energy proton beams suffers from two perturbing effects: 1) the neutralisation of the beam by backstreaming secondary electrons and 2) the space charge blowup of the beam sample between defining and analysing apparatus. An experimental study shows a significant change of the emittance orientation when bias is used to eliminate the secondary electrons. Biased and non-biased cases are also compared with computed dynamics including space charge. Criteria for the slit size and drift distance which make the space charge blow-up negligible are derived. In addition a transverse coherent oscillation of the proton beam, which was revealed the measurements, is discussed briefly. (11 refs).

  6. The Saturne beam measurement system for orbit corrections and high and low intensity beam acceleration

    International Nuclear Information System (INIS)

    Degueurce, L.; Nakach, A.; Sole, J.

    1980-07-01

    This paper summarizes the dipolar and multipolar correction system and the main beam diagnostics of Saturne II: wide-band RF electrostatic pick-up electrode for observation of bunches, beam position and tune measurement systems, special electrodes for observation of emittance blow-up when particles cross a resonance line. For low intensity beams, special electrodes and electronics have been developed. All this instrumentation is computer controlled

  7. Exact, rotational, infinite energy, blowup solutions to the 3-dimensional Euler equations

    International Nuclear Information System (INIS)

    Yuen, Manwai

    2011-01-01

    In this Letter, we construct a new class of blowup or global solutions with elementary functions to the 3-dimensional compressible or incompressible Euler and Navier-Stokes equations. And the corresponding blowup or global solutions for the incompressible Euler and Naiver-Stokes equations are also given. Our constructed solutions are similar to the famous Arnold-Beltrami-Childress (ABC) flow. The obtained solutions with infinite energy can exhibit the interesting behaviors locally. Furthermore, due to divu → =0 for the solutions, the solutions also work for the 3-dimensional incompressible Euler and Navier-Stokes equations. -- Highlights: → We construct a new class of solutions to the 3D compressible or incompressible Euler and Navier-Stokes equations. → The constructed solutions are similar to the famous Arnold-Beltrami-Childress flow. → The solutions with infinite energy can exhibit the interesting behaviors locally.

  8. The blow-up problem for a semilinear parabolic equation with a potential

    Science.gov (United States)

    Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.

    2007-11-01

    Let [Omega] be a bounded smooth domain in . We consider the problem ut=[Delta]u+V(x)up in [Omega]×[0,T), with Dirichlet boundary conditions u=0 on [not partial differential][Omega]×[0,T) and initial datum u(x,0)=M[phi](x) where M[greater-or-equal, slanted]0, [phi] is positive and compatible with the boundary condition. We give estimates for the blow-up time of solutions for large values of M. As a consequence of these estimates we find that, for M large, the blow-up set concentrates near the points where [phi]p-1V attains its maximum.

  9. LHC MD 1087: Controlled Longitudinal Emittance Blow-up with Short Bunches

    CERN Document Server

    Timko, Helga; Esteban Muller, Juan; Jaussi, Michael; Lasheen, Alexandre; Shaposhnikova, Elena; CERN. Geneva. ATS Department

    2017-01-01

    The aim of the MD was to study the controlled longitudinal emittance blow-up applied during the ramp with bunches that are slightly shorter than operational. Earlier MDs in 2015 have shown that with a short target bunch length, the blow-up is less controlled and a bifurcation of bunch lengths occurs. The presented measurements show that the bifurcation is independent of the presence of the bunch length feedback, pointing towards an intensity-dependent phenomenon, originating from a synchrotron frequency shift with intensity. Accurate measurements of synchrotron frequency shift with intensity are presented as well. The measurements took place between 22nd August 2016, 19:00 and 23rd August 2016, 04:00.

  10. Blow-up of the quantum potential for a free particle in one dimension

    International Nuclear Information System (INIS)

    Devillanova, G.; Maddalena, F.; Florio, G.

    2013-01-01

    We derive a non-linear differential equation that must be satisfied by the quantum potential, in the context of the Madelung equations, in one dimension for a particular class of wave functions. In this case, we exhibit explicit conditions leading to the blow-up of the quantum potential of a free particle at the boundary of the compact support of the probability density.

  11. Some problems on non-linear semigroups and the blow-up of integral solutions

    International Nuclear Information System (INIS)

    Pavel, N.H.

    1983-07-01

    After some introductory remarks, this highly mathematical document considers a unifying approach in the theory of non-linear semigroups. Then a brief survey is given on blow-up of mild solutions from the semilinear case. Finally, the global behavior of solutions to non-linear evolution equations is addressed; it is found that classical results on the behavior of the maximal solution u as t up-arrow tsub(max) hold also for integral solutions

  12. A note on Burgers' equation with time delay: Instability via finite-time blow-up

    International Nuclear Information System (INIS)

    Jordan, P.M.

    2008-01-01

    Burgers' equation with time delay is considered. Using the Cole-Hopf transformation, the exact solution of this nonlinear partial differential equation (PDE) is determined in the context of a (seemingly) well-posed initial-boundary value problem (IBVP) involving homogeneous Dirichlet data. The solution obtained, however, is shown to exhibit a delay-induced instability, suffering blow-up in finite-time

  13. On blow-up of solutions of the Kuramoto-Sivashinsky equation

    International Nuclear Information System (INIS)

    Pokhozhaev, S I

    2008-01-01

    The problem of the absence of global solutions of initial-boundary value problems for the Kuramoto-Sivashinsky equation is considered. Sufficient conditions for the absence of global solutions of the problems under consideration are obtained both for bounded and unbounded domains. These conditions imply a priori the blow-up of the solution of the corresponding initial-boundary value problem. The proof uses a generalization of the method of non-linear capacity based on the choice of asymptotically optimal test functions. Bibliography: 20 titles.

  14. Asymptotic analysis of reaction-diffusion-advection problems: Fronts with periodic motion and blow-up

    Science.gov (United States)

    Nefedov, Nikolay

    2017-02-01

    This is an extended variant of the paper presented at MURPHYS-HSFS 2016 conference in Barcelona. We discuss further development of the asymptotic method of differential inequalities to investigate existence and stability of sharp internal layers (fronts) for nonlinear singularly perturbed periodic parabolic problems and initial boundary value problems with blow-up of fronts for reaction-diffusion-advection equations. In particular, we consider periodic solutions with internal layer in the case of balanced reaction. For the initial boundary value problems we prove the existence of fronts and give their asymptotic approximation including the new case of blowing-up fronts. This case we illustrate by the generalised Burgers equation.

  15. Blow-Up Criterion of Weak Solutions for the 3D Boussinesq Equations

    Directory of Open Access Journals (Sweden)

    Zhaohui Dai

    2015-01-01

    Full Text Available The Boussinesq equations describe the three-dimensional incompressible fluid moving under the gravity and the earth rotation which come from atmospheric or oceanographic turbulence where rotation and stratification play an important role. In this paper, we investigate the Cauchy problem of the three-dimensional incompressible Boussinesq equations. By commutator estimate, some interpolation inequality, and embedding theorem, we establish a blow-up criterion of weak solutions in terms of the pressure p in the homogeneous Besov space Ḃ∞,∞0.

  16. Blow-up criteria for the 3D cubic nonlinear Schrödinger equation

    International Nuclear Information System (INIS)

    Holmer, Justin; Platte, Rodrigo; Roudenko, Svetlana

    2010-01-01

    We consider solutions u to the 3D nonlinear Schrödinger equation i∂ t u + Δu + |u| 2 u = 0. In particular, we are interested in finding criteria on the initial data u 0 that predict the asymptotic behaviour of u(t), e.g., whether u(t) blows up in finite time, exists globally in time but behaves like a linear solution for large times (scatters), or exists globally in time but does not scatter. This question has been resolved (at least for H 1 data) (Duyckaerts–Holmer–Roudenko) if M[u]E[u] ≤ M[Q]E[Q], where M[u] and E[u] denote the mass and energy of u and Q denotes the ground state solution to −Q + ΔQ + |Q| 2 Q = 0. Here we consider the complementary case M[u]E[u] > M[Q]E[Q]. In the first (analytical) part of the paper, we present a result due to Lushnikov, based on the virial identity and the generalized uncertainty principle, giving a sufficient condition for blow-up. By replacing the uncertainty principle in his argument with an interpolation-type inequality, we obtain a new blow-up condition that in some cases improves upon Lushnikov's condition. Our approach also allows for an adaptation to radial infinite-variance initial data that has a conceptual interpretation: for real-valued initial data, if a certain fraction of the mass is contained within the ball of radius M[u], then blow up occurs. We also show analytically (if one takes the numerically computed value of ||Q|| .H 1/2 ) that there exist Gaussian initial data u 0 with negative quadratic phase such that ||u 0 || .H 1/2 .H 1/2 but the solution u(t) blows up. In the second (numerical) part of the paper, we examine several different classes of initial data—Gaussian, super Gaussian, off-centred Gaussian, and oscillatory Gaussian—and for each class give the theoretical predictions for scattering or blow-up provided by the above theorems as well as the results of numerical simulation. We find that depending upon the form of the initial conditions, any of the three analytical criteria for blow-up

  17. Longitudinal emittance blow-up and production of future LHC beams

    CERN Document Server

    Albright, S; Shaposhnikova, E

    2017-01-01

    During Long Shutdown 2 the RF systems of the PSB willbe replaced with broadband Finemet systems, there will alsobe an energy increase and many other modifications. Thisnote summarises studies that were done to investigate how tomeet the emittance requirements for the LIU-PSB baselineand a possible use of the broadband cavities to improve thecapture process.The LIU-PSB baseline requires longitudinal emittanceblow-up to 3 eVs with 205 ns bunch length at extraction. Thecurrent ferrite RF systems were used, with phase modulationof a high harmonic, to produce 2.8 eVs bunches with 220ns bunch length, as this is the largest that can currentlybe transferred to the PS. Larger emittances were possible,demonstrating the ability to reach the LIU-PSB baseline inthe future, which is confirmed in simulation.The broadband impedance of the Finemet was exploitedto allow RF voltage to be supplied on three harmonics (h=1,h=2, h=3), as opposed to the usual 2. For high intensitybeams this lead to an improved capture efficiency for...

  18. Blow-up in multidimensional aggregation equations with mildly singular interaction kernels

    International Nuclear Information System (INIS)

    Bertozzi, Andrea L; Laurent, Thomas; Carrillo, José A

    2009-01-01

    We consider the multidimensional aggregation equation u t − ∇· (u∇K * u) = 0 in which the radially symmetric attractive interaction kernel has a mild singularity at the origin (Lipschitz or better). In the case of bounded initial data, finite time singularity has been proved for kernels with a Lipschitz point at the origin (Bertozzi and Laurent 2007 Commun. Math. Sci. 274 717–35), whereas for C 2 kernels there is no finite-time blow-up. We prove, under mild monotonicity assumptions on the kernel K, that the Osgood condition for well-posedness of the ODE characteristics determines global in time well-posedness of the PDE with compactly supported bounded nonnegative initial data. When the Osgood condition is violated, we present a new proof of finite time blow-up that extends previous results, requiring radially symmetric data, to general bounded, compactly supported nonnegative initial data without symmetry. We also present a new analysis of radially symmetric solutions under less strict monotonicity conditions. Finally, we conclude with a discussion of similarity solutions for the case K(x) = |x| and some open problems

  19. Evolution PDEs with nonstandard growth conditions existence, uniqueness, localization, blow-up

    CERN Document Server

    Antontsev, Stanislav

    2015-01-01

    This monograph offers the reader a treatment of the theory of evolution PDEs with nonstandard growth conditions. This class includes parabolic and hyperbolic equations with variable or anisotropic nonlinear structure. We develop methods for the study of such equations and present a detailed account of recent results. An overview of other approaches to the study of PDEs of this kind is provided. The presentation is focused on the issues of existence and uniqueness of solutions in appropriate function spaces, and on the study of the specific qualitative properties of solutions, such as localization in space and time, extinction in a finite time and blow-up, or nonexistence of global in time solutions. Special attention is paid to the study of the properties intrinsic to solutions of equations with nonstandard growth.

  20. Global existence and blow-up phenomena for two-component Degasperis-Procesi system and two-component b-family system

    OpenAIRE

    Liu, Jingjing; Yin, Zhaoyang

    2014-01-01

    This paper is concerned with global existence and blow-up phenomena for two-component Degasperis-Procesi system and two-component b-family system. The strategy relies on our observation on new conservative quantities of these systems. Several new global existence results and a new blowup result of strong solutions to the two-component Degasperis- Procesi system and the two-component b-family system are presented by using these new conservative quantities.

  1. Finite-time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type

    Science.gov (United States)

    Hashira, Takahiro; Ishida, Sachiko; Yokota, Tomomi

    2018-05-01

    This paper deals with the quasilinear degenerate Keller-Segel systems of parabolic-parabolic type in a ball of RN (N ≥ 2). In the case of non-degenerate diffusion, Cieślak-Stinner [3,4] proved that if q > m + 2/N, where m denotes the intensity of diffusion and q denotes the nonlinearity, then there exist initial data such that the corresponding solution blows up in finite time. As to the case of degenerate diffusion, it is known that a solution blows up if q > m + 2/N (see Ishida-Yokota [13]); however, whether the blow-up time is finite or infinite has been unknown. This paper gives an answer to the unsolved problem. Indeed, the finite-time blow-up of energy solutions is established when q > m + 2/N.

  2. Criteria on global boundedness versus finite time blow-up to a two-species chemotaxis system with two chemicals

    Science.gov (United States)

    Yu, Hao; Wang, Wei; Zheng, Sining

    2018-02-01

    This paper considers the two-species chemotaxis system with two chemicals in a smooth bounded domain Ω\\subset{R}2 , subject to the non-flux boundary condition, and χ, ξ, α, β, γ, δ>0 . We obtain a blow-up criterion that if m_1m_2-2π(\\frac{m_1}χβ+\\frac{m_2}ξδ)>0 , then there exist finite time blow-up solutions to the system with m_1:=\\int_Ω u_0(x)dx and m_2:=\\int_Ω w_0(x)dx . When χ=ξ= β=δ=1 , the blow-up criterion becomes m_1m_2-2π(m_1+m_2)>0 , and the global boundedness of solutions is furthermore established with α=γ=1 under the condition that \\max\\{m_1, m_2\\}4π and global boundedness with \\max\\{m_1, m_2\\}Funds for the Central Universities (DUT16LK24).

  3. Damping of coherent oscillations in intense ion beams

    International Nuclear Information System (INIS)

    Karpov, Ivan

    2017-01-01

    Transverse decoherence of a displaced ion bunch is an important phenomenon in synchrotrons and storage rings. An offset can be caused by an injection error after the bunch-to-bucket transfer between synchrotrons or by an externally generated kick. Decoherence results in a transverse emittance blowup, which can cause particle losses and a beam quality degradation. To prevent the beam blowup, a transverse feedback system (TFS) can be used. The damping time should be shorter than the characteristic decoherence time, which can be strongly affected by the interplay of different intensity effects (e.g., space charge and impedances). This thesis describes the development of the analytical models that explain decoherence and emittance growth with chromaticity, space charge, and image charges within the first synchrotron period. The pulsed response function including intensity effects was derived from the model for beam transfer functions. For a coasting beam, the two- dimensional model shows that space charge slows down and above intensity threshold suppresses decoherence. These predictions were confirmed by particle tracking simulations with self-consistent space charge fields. Additionally, halo buildup and losses during decoherence were observed in simulations. These effects were successfully interpreted using a non self-consistent particle-core model. The two-dimensional model was extended to the bunched beams. The simulation results reproduce the analytical predictions. The intensity threshold of decoherence suppression is higher in comparison to a coasting beam, image charges can restore decoherence. In the present work dedicated experiments were performed in the SIS18 synchrotron at GSI Darmstadt and the results were compared with simulations and analytical predictions. The contribution of nonlinearities and image charges is negligible while chromaticity and space charge dominate decoherence. To study the damping efficiency of TFS, a comprehensive TFS module was

  4. Damping of coherent oscillations in intense ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Ivan

    2017-02-06

    Transverse decoherence of a displaced ion bunch is an important phenomenon in synchrotrons and storage rings. An offset can be caused by an injection error after the bunch-to-bucket transfer between synchrotrons or by an externally generated kick. Decoherence results in a transverse emittance blowup, which can cause particle losses and a beam quality degradation. To prevent the beam blowup, a transverse feedback system (TFS) can be used. The damping time should be shorter than the characteristic decoherence time, which can be strongly affected by the interplay of different intensity effects (e.g., space charge and impedances). This thesis describes the development of the analytical models that explain decoherence and emittance growth with chromaticity, space charge, and image charges within the first synchrotron period. The pulsed response function including intensity effects was derived from the model for beam transfer functions. For a coasting beam, the two- dimensional model shows that space charge slows down and above intensity threshold suppresses decoherence. These predictions were confirmed by particle tracking simulations with self-consistent space charge fields. Additionally, halo buildup and losses during decoherence were observed in simulations. These effects were successfully interpreted using a non self-consistent particle-core model. The two-dimensional model was extended to the bunched beams. The simulation results reproduce the analytical predictions. The intensity threshold of decoherence suppression is higher in comparison to a coasting beam, image charges can restore decoherence. In the present work dedicated experiments were performed in the SIS18 synchrotron at GSI Darmstadt and the results were compared with simulations and analytical predictions. The contribution of nonlinearities and image charges is negligible while chromaticity and space charge dominate decoherence. To study the damping efficiency of TFS, a comprehensive TFS module was

  5. Aperture Determination in the LHC Based on an Emittance Blowup Technique with Collimator Position Scan

    CERN Document Server

    Assmann, R W; del Carmen Alabau, M; Giovannozzi, M; Muller, GJ; Redaelli, S; Schmidt, F; Tomas, R; Wenninger, J; Wollmann, D

    2011-01-01

    A new method to determine the LHC aperture was proposed. The new component is a collimator scan technique that refers the globally measured aperture limit to the shadow of the primary collimator, expressed in sigmas of rms beam size. As a by-product the BLM response to beam loss is quantified. The method is described and LHC measurement results are presented.

  6. On the use of blowup to study regularizations of singularities of piecewise smooth dynamical systems in R^3

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall; Hogan, S. J.

    2015-01-01

    In this paper we use the blowup method of Dumortier and Roussarie, in the formulation due to Krupa and Szmolyan, to study the regularization of singularities of piecewise smooth dynamical systems in R3. Using the regularization method of Sotomayor and Teixeira, we first demonstrate the power of our...... approach by considering the case of a fold line. We quickly extend a main result of Reves and Seara in a simple manner. Then, for the two-fold singularity, we show that the regularized system only fully retains the features of the singular canards in the piecewise smooth system in the cases when...... the sliding region does not include a full sector of singular canards. In particular, we show that every locally unique primary singular canard persists the regularizing perturbation. For the case of a sector of primary singular canards, we show that the regularized system contains a canard, provided...

  7. Phenomena of Blowup and Global Existence of the Solution to a Nonlinear Schrödinger Equation

    Directory of Open Access Journals (Sweden)

    Xiaowei An

    2013-01-01

    Full Text Available We consider the following Cauchy problem: -iut=Δu-V(xu+f(x,|u|2u+(W(x⋆|u|2u, x∈ℝN,t>0, u(x, 0=u0(x,x∈ℝN, where V(x and W(x are real-valued potentials and V(x≥0 and W(x is even, f(x,|u|2 is measurable in x and continuous in |u|2, and u0(x is a complex-valued function of x. We obtain some sufficient conditions and establish two sharp thresholds for the blowup and global existence of the solution to the problem.

  8. Condition for a single bunch high frequency fast blow-up

    International Nuclear Information System (INIS)

    Wang, J.M.; Pellegrini, C.

    1980-01-01

    We study the longitudinal stability of a single particle bunch in a storage ring using Vlasov equation. We show that the Vlasov equation has solutions corresponding to a fast, microwave instability if a condition on the beam current, qualitatively similar to the stability condition for a coasting beam, is satisfied. This condition can be used to define a threshold current, and to discuss its dependence on the longitudinal coupling impedance

  9. LHC Damper Beam commissioning in 2010

    CERN Document Server

    Höfle, W; Schokker, M; Valuch, D

    2011-01-01

    The LHC transverse dampers were commissioned in 2010 with beam and their use at injection energy of 450 GeV, during the ramp and in collisions at 3.5 TeV for Physics has become part of the standard operations pro- cedure. The system proved important to limit emittance blow-up at injection and to maintain smaller than nominal emittances throughout the accelerating cycle. We describe the commissioning of the system step-by-step as done in 2010 and summarize its performance as achieved for pro- ton as well as ion beams in 2010. Although its principle function is to keep transverse oscillations under control, the system has also been used as an exciter for abort gap clean- ing and tune measurement. The dedicated beam position measurement system with its low noise properties provides additional possibilities for diagnostics.

  10. Characteristics of possible beam losses in superconducting cyclotron

    International Nuclear Information System (INIS)

    Pradhan, J.; Paul, Santanu; Debnath, Jayanta; Dutta, Atanu; Bhunia, Uttam; Naser, Md. Zamal Abdul; Singh, Vinay; Agrawal, Ankur; Dey, Malay Kanti

    2015-01-01

    In a compact superconducting cyclotron large coherent oscillation and off-centering of the beam may cause large amount of beam loss. The off-centered beam may hit the beam chamber wall prohibiting extraction of the beam. Or it may hit the RF liner surfaces due to vertical blow-up across various resonances during acceleration. The vertical shift of beam caused by the mis-alignment gradually moves the beam out of geometrical median plane eventually leading to internal beam losses. The loss of isochronisms results the reduction of beam intensity depending on the particle phase history. Small field perturbations generated by trim coils have been used to identify the beam loss mechanisms in the superconducting cyclotron at out centre. Besides, the beam loss due to interaction of accelerating ions with residual gases is also discussed. The beam profile obtained from differential and three finger probes gives a clear insight of the loss-mechanism. The paper describes different beam losses observed in the cyclotron with corresponding beam profiles under different field perturbations, Special emphasis is given on characteristics features of beam-current profile to identify the cause of beam loss. (author)

  11. Low-energy ion beam extraction and transport: Experiment--computer comparison

    International Nuclear Information System (INIS)

    Spaedtke, P.; Brown, I.; Fojas, P.

    1994-01-01

    Ion beam formation at low energy (∼1 keV or so) is more difficult to accomplish than at high energy because of beam blowup by space-charge forces in the uncompensated region within the extractor, an effect which is yet more pronounced for heavy ions and for high beam current density. For the same reasons, the extracted ion beam is more strongly subject to space charge blowup than higher energy beams if it is not space-charge neutralized to a high degree. A version of vacuum arc ion source with an extractor that produces low-energy metal ion beams at relatively high current (∼0.5--10 kV at up to ∼100 mA) using a multi-aperture, accel--decel extractor configuration has been created. The experimentally observed beam extraction characteristics of this source is compared with those predicted using the AXCEL-INP code, and the implied downstream beam transport with theoretical expectations. It is concluded that the low-energy extractor performance is in reasonable agreement with the code, and that good downstream space charge neutralization is obtained. Here, the code and the experimental results are described, and the features that contribute to good low-energy performance are discussed

  12. High Intensity Beam Issues in the CERN Proton Synchrotron

    CERN Document Server

    Aumon, Sandra; Rivkin, Leonid

    This PhD work is about limitations of high intensity proton beams observed in the CERN Proton Synchrotron (PS) and, in particular, about issues at injection and transition energies. With its 53 years, the CERN PS would have to operate beyond the limit of its performance to match the future requirements. Beam instabilities driven by transverse impedance and aperture restrictions are important issues for the operation and for the High-Luminosity LHC upgrade which foresees an intensity increase delivered by the injectors. The main subject of the thesis concerns the study of a fast transverse instability occurring at transition energy. The proton beams crossing this energy range are particularly sensitive to wake forces because of the slow synchrotron motion. This instability can cause a strong vertical emittance blow-up and severe losses in less than a synchrotron period. Experimental observations show that the particles at the peak density of the beam longitudinal distribution oscillate in the vertical plane du...

  13. CERN's PS Booster LLRF renovation : plans and initial beam tests

    CERN Document Server

    Angoletta, ME; Butterworth, A; Findlay, A; Leinonen, PM; Molendijk, JC; Pedersen, F; Sanchez-Quesada, J; Schokker, M

    2010-01-01

    In 2008 a project was started to renovate the CERN's PS Booster (PSB) low-level RF (LLRF). Required LLRF capabilities include frequency program, beam phase, radial and synchronization loops. The new LLRF will control the signals feeding the three RF cavities present in each ring; it will also shape the beam in a dual harmonic mode, operate a bunch splitting and create a longitudinal blow-up. The main benefits of this new LLRF are its full remote and cycle-to-cycle controllability, built-in observation capability and flexibility. The overall aim is to improve the robustness, maintainability and reliability of the PSB operation and to make it compatible with the injection from the future Linac4. This paper outlines the main characteristics of the software and hardware building blocks. Initial beam test results and hints on the main milestones and future work are also given.

  14. Beam-Beam Effects

    International Nuclear Information System (INIS)

    Herr, W; Pieloni, T

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities

  15. Characterisation Of The Beam Plasma In High Current, Low Energy Ion Beams For Implanters

    International Nuclear Information System (INIS)

    Fiala, J.; Armour, D. G.; Berg, J. A. van der; Holmes, A. J. T.; Goldberg, R. D.; Collart, E. H. J.

    2006-01-01

    The effective transport of high current, positive ion beams at low energies in ion implanters requires the a high level of space charge compensation. The self-induced or forced introduction of electrons is known to result in the creation of a so-called beam plasma through which the beam propagates. Despite the ability of beams at energies above about 3-5 keV to create their own neutralising plasmas and the development of highly effective, plasma based neutralising systems for low energy beams, very little is known about the nature of beam plasmas and how their characteristics and capabilities depend on beam current, beam energy and beamline pressure. These issues have been addressed in a detailed scanning Langmuir probe study of the plasmas created in beams passing through the post-analysis section of a commercial, high current ion implanter. Combined with Faraday cup measurements of the rate of loss of beam current in the same region due to charge exchange and scattering collisions, the probe data have provided a valuable insight into the nature of the slow ion and electron production and loss processes. Two distinct electron energy distribution functions are observed with electron temperatures ≥ 25 V and around 1 eV. The fast electrons observed must be produced in their energetic state. By studying the properties of the beam plasma as a function of the beam and beamline parameters, information on the ways in which the plasma and the beam interact to reduce beam blow-up and retain a stable plasma has been obtained

  16. Conceptual designs of beam choppers for RFQ linacs

    International Nuclear Information System (INIS)

    Nath, S.; Stevens, S.R. Jr.; Wangler, T.P.

    1995-01-01

    A design study at Los Alamos of a linac/accumulator ring facility for a pulsed neutron spallation source calls for an H - beam with a chopped structure of approximately 200-ns beam-free segments every 600-ns. The required angular impulse can easily be provided with existing pulse power technology and traveling wave structures with a transverse electric field similar to those now available. The deflected beam is then restored by suitable collimation. Chopping is relatively easily done at sufficiently low energies, where the beam is easily deflected, and beam powers are not too large. However, the energy should be high enough so that the space-charge blow-up of the beam can be controlled with adequate focusing. LAMPF presently uses a traveling-wave beam chopper at 750 keV, before injection into the drift tube linac (DTL). In the new linac designs, a radiofrequency quadrupole (RFQ) linac would typically bunch and accelerate the high intensity H - beam from 100 keV to 7 MeV. In this paper, the authors present concepts for beam-chopper systems both before and after the RFQ. The beam-optics designs are presented, together with numerical simulation results

  17. Eroding dipoles and vorticity growth for Euler flows in {{{R}}}^{3}: the hairpin geometry as a model for finite-time blowup

    Science.gov (United States)

    Childress, Stephen; Gilbert, Andrew D.

    2018-02-01

    A theory of an eroding ‘hairpin’ vortex dipole structure in three-dimensions is developed, extending our previous study of an axisymmetric eroding dipole without swirl. The axisymmetric toroidal dipole was found to lead to maximal growth of vorticity, as {t}4/3. The hairpin is here similarly proposed as a model to produce large ‘self-stretching’ of vorticity, with the possibility of finite-time blow-up. We derive a system of partial differential equations of ‘generalized’ form, involving contour averaging of a locally two-dimensional Euler flow. We do not attempt here to solve the system exactly, but point out that non-existence of physically acceptable solutions would most probably be a result of the axial flow. Because of the axial flow the vorticity distribution within the dipole eddies is no longer of the simple Sadovskii type (vorticity constant over a cross-section) obtained in the axisymmetric problem. Thus the solution of the system depends upon the existence of a larger class of propagating two-dimensional dipoles. The hairpin model is obtained by formal asymptotic analysis. As in the axisymmetric problem a local transformation to ‘shrinking’ coordinates is introduced, but now in a self-similar form appropriate to the study of a possible finite-time singularity. We discuss some properties of the model, including a study of the helicity and a first step in iterating toward a solution from the Sadovskii structure. We also present examples of two-dimensional propagating dipoles not previously studied, which have a vorticity profile consistent with our model. Although no rigorous results can be given, and analysis of the system is only partial, the formal calculations are consistent with the possibility of a finite time blowup of vorticity at a point of vanishing circulation of the dipole eddies, but depending upon the existence of the necessary two-dimensional propagating dipole. Our results also suggest that conservation of kinetic energy as

  18. Beam-beam effects in high energy e+e- storage rings: resonant amplification of vertical dimensions for flat beams

    International Nuclear Information System (INIS)

    Bambade, P.

    1984-06-01

    In this thesis, we present a phenomenological study of the beam-beam effect in e + e - storage rings. We are in particular interested in the blow-up of the vertical dimension observed in this kind of accelerator. A detailed analysis of the electromagnetic field generated by the very flat bunches stored, and seen by the counter-rotating particles shows that two-dimensional non-linear resonances, which couple vertical and horizontal betatron oscillations, play a very important role. Moreover, the ''weak beam-strong beam'' approximation holds rather well in the case of very flat bunches. Perturbative analysis enables us to predict the effects from the strongest coupling resonance: 20sub(x)-20sub(y) = integer. We find that mainly the tails of the vertical distribution are affected, and we give a criterion concerning the optimal distance to this resonance in the case of a storage ring such as LEP. Finally, the results and in particular the validity of the single resonance approximation are checked through a numerical simulation [fr

  19. Transverse emittance blow-up of the heavy ion beam injected into the SPS from the proposed MSI-V septum

    CERN Document Server

    Velotti, Francesco Maria; Uythoven, Jan; CERN. Geneva. ATS Department

    2014-01-01

    The initial specification for the MSI-V current ripples was 1000 ppm, but recent developments asked for a maximum ripple between 100 and 1000 ppm. The effect of such errors has to be properly evaluated, together with the other sources of injection errors (MSI, MKP).

  20. A fast wire scanner, used to measure the transverse density distribution of beams circulating in an accelerator or storage ring.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Fast wire scanners are used to measure the transverse density distribution of beams circulating in an accelerator or storage ring. In order to minimize blow-up of the beam through multiple Coulomb scattering, the wires are very thin (in the version shown here it is actually a twisted strand of carbon fibres with a total diameter of about 25 microns) and are swept through the beam at high speed (a linear motor, not mounted here, accelerates the wires to up to 20 m/s). One measures either the secondary emission current from the wire, or the signal from a scintillator/photomultiplier combination downstream from the wire scanner receiving the shower from nuclear reactions of beam particles with the wire nuclei. There are four such fast wire scanners in the 26 GeV PS and eight in the 1.4 GeV Booster.

  1. Controlling multibunch beam breakup in TeV linear colliders

    International Nuclear Information System (INIS)

    Thompson, K.A.; Ruth, R.D.

    1989-01-01

    To obtain luminosities near 10 34 cm/sup /minus/2/sec/sup /minus/1/ in a TeV linear collider, it will probably be essential to accelerate many bunches per RF fill in order to increase the energy transfer efficiency. In this paper we study the transverse dynamics of multiple bunches in a linac, and we examine the effects of several methods of controlling the beam blow-up that would otherwise be induced by transverse dipole wake fields. The methods we study are: damping the transverse modes, adjusting the frequency of the dominant transverse modes so that bunches may be placed near zero-crossings of the transverse wake, and bunch-to-bunch variation of the transverse focusing. We study the utility of these cures in the main linacs of an example of a TeV collider. 16 refs., 4 figs., 2 tabs

  2. On the wave amplitude blow-up in the Berk-Breizman model for nonlinear evolution of a plasma wave driven resonantly by fast ions

    International Nuclear Information System (INIS)

    Zaleśny, Jarosław; Galant, Grzegorz; Berczyński, Paweł; Berczyński, Stefan; Lisak, Mietek

    2011-01-01

    In this paper the Berk-Breizman (BB) model of plasma wave instability arising on the stability threshold is considered. An interesting although physically unacceptable feature of the model is the explosive behaviour occurring in the regime of small values of the collision frequency parameter. We present an analytical description of the explosive solution, based on a fitting to the numerical solution of the BB equation with the collision parameter equal to zero. We find that the chaotic behaviour taking place for small but non-zero values of the collision parameter is absent in this case; therefore, chaotic behaviour seems to be an independent phenomenon not directly related to the blow-up regime. The time and the velocity dependence of the distribution function are found numerically and plotted to better understand what actually happens in the model. It allows us to obtain a good qualitative understanding of the time evolution of the mode amplitude including the linear growth of the amplitude, reaching its maximum and then decreasing towards the zero value. Nevertheless, we have no satisfactory physical explanation of the amplitude evolution when the amplitude vanishes at some time and then revives but with an opposite phase.

  3. Beam dynamics problems for next generation linear colliders

    International Nuclear Information System (INIS)

    Yokoya, Kaoru

    1990-01-01

    The most critical issue for the feasibility of high-energy e + e - linear colliders is obviously the development of intense microwave power sources. Remaining problems, however, are not trivial and in fact some of them require several order-of-magnitude improvement from the existing SLC parameters. The present report summarizes the study status of the beam dynamics problems of high energy linear colliders with an exaggeration on the beam-beam phenomenon at the interaction region. There are four laboratories having linear collider plans, SLAC, CERN, Novosibirsk-Protovino, and KEK. The parameters of these projects scatter in some range but seem to converge slowly if one recalls the status five years ago. The beam energy will be below 500GeV. The basic requirements to the damping ring are the short damping time and small equilibrium emittance. All the proposed designs make use of tight focusing optics and strong wiggler magnets to meet these requirements and seem to have no major problems at least compared with other problems in the colliders. One of the major problems in the linac is the transverse beam blow-up due to the wake field created by the head of the bunch and, in the case of multiple bunches per pulse, by the preceeding bunches. (N.K.)

  4. Longitudinal beam instabilities in a double RF system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00229208; Gazis, Evangelos

    Operation with a double RF system is essential for many accelerators in order to increase beam stability, to change the bunch shape or to perform various RF manipulations. This is also the case for the operation of the CERN SPS as the LHC proton injector, where in addition to the main RF system, a fourth harmonic RF system is used in bunch shortening mode in order to increase the synchrotron frequency spread inside the bunch and thus to enhance Landau damping of the collective instabilities. In fact the double RF system operation in the SPS is one of the essential means, together with the controlled longitudinal emittance blow-up to significantly increase the longitudinal instability thresholds (single and multi-bunch) and deliver a good quality beam for the LHC. However, for the HiLumi-LHC (HL-LHC) and LHC injector upgrade (LIU) projects higher beam intensities are required. After all upgrades are in place, the main performance limitations of the LHC injector complex are beam instabilities and high intensity...

  5. Beam-beam phenomenology

    International Nuclear Information System (INIS)

    Teng, L.C.

    1980-01-01

    In colliding beam storage rings the beam collision regions are generally so short that the beam-beam interaction can be considered as a series of evenly spaced non-linear kicks superimposed on otherwise stable linear oscillations. Most of the numerical studies on computers were carried out in just this manner. But for some reason this model has not been extensively employed in analytical studies. This is perhaps because all analytical work has so far been done by mathematicians pursuing general transcendental features of non-linear mechanics for whom this specific model of the specific system of colliding beams is too parochial and too repugnantly physical. Be that as it may, this model is of direct interest to accelerator physicists and is amenable to (1) further simplification, (2) physical approximation, and (3) solution by analogy to known phenomena

  6. Coherent beam-beam effects

    International Nuclear Information System (INIS)

    Chao, A.W.

    1992-01-01

    There are two physical pictures that describe the beam-beam interaction in a storage ring collider: The weak-strong and the strong-strong pictures. Both pictures play a role in determining the beam-beam behavior. This review addresses only the strong-strong picture. The corresponding beam dynamical effects are referred to as the coherent beam-beam effects. Some basic knowledge of the weak-strong picture is assumed. To be specific, two beams of opposite charges are considered. (orig.)

  7. Longitudinal emittance reduction in LEIR of ion beams for LHC

    CERN Document Server

    Angoletta, M E; Findlay, A; Hancock, S; Manglunki, D

    2014-01-01

    For the 2013 LHC ion run the anticipated request for batches from the PS Complex comprising four ion bunches spaced by 100 ns was changed to batches of two bunches spaced by 200 ns. This modified demand was met by suppressing a splitting step in the PS machine, but with the consequence of halving the longitudinal emittance required from LEIR. Thus NOMINAL Pb54+ beams from LEIR had to be delivered inside ~9 eVs to provide sufficient blow-up margin in the PS. Machine Development (MD) sessions were carried out in LEIR to investigate methods to satisfy these stricter requirements. Two main ingredients were found to reduce longitudinal emittance. The first and most important was to adjust carefully the frequency offset at capture in order to align the RF with the position where the beam is deposited by the electron cooling system prior to acceleration. The second ingredient was to reduce the final bucket area in order to reduce any residual filamentation during capture. This note documents the results obtaine...

  8. Beam loading

    OpenAIRE

    Boussard, Daniel

    1987-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superco...

  9. Molecular beams

    International Nuclear Information System (INIS)

    Pendelbury, J.M.; Smith, K.F.

    1987-01-01

    Studies with directed collision-free beams of particles continue to play an important role in the development of modern physics and chemistry. The deflections suffered by such beams as they pass through electric and magnetic fields or laser radiation provide some of the most direct information about the individual constituents of the beam; the scattering observed when two beams intersect yields important data about the intermolecular forces responsible for the scattering. (author)

  10. End-of-Fill Diffusion and Halo Population Measurements with Physics Beams at 6.5 TeV

    CERN Document Server

    Valentino, Gianluca; Gorzawski, Arkadiusz; Redaelli, Stefano; Trad, Georges; Wagner, Joschka; Xu, Chen; CERN. Geneva. ATS Department

    2017-01-01

    Beam halo measurements at 6.5 TeV in the LHC were conducted with a full physics beam via collimator scrapings in end-of-fill MDs carried out in May and July 2016. From the time evolution of the beam losses in a collimator scan, it is possible to extract information on the halo diffusion and population. In the first MD, six scans were performed with two collimators in the vertical and horizontal planes in B1 and B2 respectively. The scans were done with squeezed colliding beams, with and without a gentle continuous transverse blow-up with the ADT (transverse damper) on a non-colliding bunch train. In the second MD, four scans were performed with the same collimators with squeezed colliding beams. The beam losses observed with the standard ionization chamber BLMs are compared to the diamond BLMs, and parametric fits of the diffusion model are applied to temporal loss patterns from colliding and non-colliding bunch trains. The results presented in this note also include the particle escape times and frequency an...

  11. Beam diagnostics

    International Nuclear Information System (INIS)

    Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.

    1995-01-01

    The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the open-quotes Boosterclose quotes and open-quotes ATLASclose quotes linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates

  12. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  13. Beam loading

    International Nuclear Information System (INIS)

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed. (author)

  14. Superresolution beams

    CSIR Research Space (South Africa)

    Ngcobo, S

    2011-11-01

    Full Text Available The transformation of a Gaussian beam (GB) into a symmetrical higher order TEMp0 Laguerre Gaussian beam (LGB) intensity distribution of which is further rectified and transformed into a Gaussian intensity distribution in the plane of a converging...

  15. Coherent beam-beam effect

    International Nuclear Information System (INIS)

    Chao, A.W.; Keil, E.

    1979-06-01

    The stability of the coherent beam-beam effect between rigid bunches is studied analytically and numerically for a linear force by evaluating eigenvalues. For a realistic force, the stability is investigated by following the bunches for many revolutions. 4 refs., 13 figs., 2 tabs

  16. Beam transport

    International Nuclear Information System (INIS)

    1988-01-01

    Considerable experience has now been gained with the various beam transport lines, and a number of minor changes have been made to improve the ease of operation. These include: replacement of certain little-used slits by profile monitors (harps or scanners); relocation of steering magnets, closer to diagnostic harps or profile scanners; installation of a scanner inside the isocentric neutron therapy system; and conversion of a 2-doublet quadrupole telescope (on the neutron therapy beamline) to a 2-triplet telescope. The beam-swinger project has been delayed by very late delivery of the magnet iron to the manufacturer, but is now progressing smoothly. The K=600 spectrometer magnets have now been delivered and are being assembled for field mapping. The x,y-table with its associated mapping equipment is complete, together with the driver software. One of the experimental areas has been dedicated to the production of collimated neutron beams and has been equipped with a bending magnet and beam dump, together with steel collimators fixed at 4 degrees intervals from 0 degrees to 16 degrees. Changes to the target cooling and shielding system for isotope production have led to a request for much smaller beam spot sizes on target, and preparations have been made for rearrangement of the isotope beamline to permit installation of quadrupole triplets on the three beamlines after the switching magnet. A practical system of quadrupoles for matching beam properties to the spectrometer has been designed. 6 figs

  17. Quantum beams

    International Nuclear Information System (INIS)

    Uesaka, Mitsuru

    2003-01-01

    Present state and future prospect are described on quantum beams for medical use. Efforts for compactness of linac for advanced cancer therapy have brought about the production of machines like Accuray's CyberKnife and TOMOTHERAPY (Tomo Therapy Inc.) where the acceleration frequency of X-band (9-11 GHz) is used. For cervical vein angiography by the X-band linac, a compact hard X-ray source is developed which is based on the (reverse) Compton scattering through laser-electron collision. More intense beam and laser are necessary at present. A compact machine generating the particle beam of 10 MeV-1 GeV (laser-plasma accelerator) for cancer therapy is also developed using the recent compression technique (chirped-pulse amplification) to generate laser of >10 TW. Tokyo University is studying for the electron beam with energy of GeV order, for the laser-based synchrotron X-ray, and for imaging by the short pulse ion beam. Development of advanced compact accelerators is globally attempted. In Japan, a virtual laboratory by National Institute of Radiological Sciences (NIRS), a working group of universities and research facilities through the Ministry of Education, Culture, Sports, Science and Technology, started in 2001 for practical manufacturing of the above-mentioned machines for cancer therapy and for angiography. Virtual Factory (Inc.), a business venture, is to be stood in future. (N.I.)

  18. Importance of beam-beam tune spread to collective beam-beam instability in hadron colliders

    International Nuclear Information System (INIS)

    Jin Lihui; Shi Jicong

    2004-01-01

    In hadron colliders, electron-beam compensation of beam-beam tune spread has been explored for a reduction of beam-beam effects. In this paper, effects of the tune-spread compensation on beam-beam instabilities were studied with a self-consistent beam-beam simulation in model lattices of Tevatron and Large Hodron Collider. It was found that the reduction of the tune spread with the electron-beam compensation could induce a coherent beam-beam instability. The merit of the compensation with different degrees of tune-spread reduction was evaluated based on beam-size growth. When two beams have a same betatron tune, the compensation could do more harm than good to the beams when only beam-beam effects are considered. If a tune split between two beams is large enough, the compensation with a small reduction of the tune spread could benefit beams as Landau damping suppresses the coherent beam-beam instability. The result indicates that nonlinear (nonintegrable) beam-beam effects could dominate beam dynamics and a reduction of beam-beam tune spread by introducing additional beam-beam interactions and reducing Landau damping may not improve the stability of beams

  19. Beam dynamics

    International Nuclear Information System (INIS)

    Abell, D; Adelmann, A; Amundson, J; Dragt, A; Mottershead, C; Neri, F; Pogorelov, I; Qiang, J; Ryne, R; Shalf, J; Siegerist, C; Spentzouris, P; Stern, E; Venturini, M; Walstrom, P

    2006-01-01

    We describe some of the accomplishments of the Beam Dynamics portion of the SciDAC Accelerator Science and Technology project. During the course of the project, our beam dynamics software has evolved from the era of different codes for each physical effect to the era of hybrid codes combining start-of-the-art implementations for multiple physical effects to the beginning of the era of true multi-physics frameworks. We describe some of the infrastructure that has been developed over the course of the project and advanced features of the most recent developments, the interplay betwen beam studies and simulations and applications to current machines at Fermilab. Finally we discuss current and future plans for simulations of the International Linear Collider

  20. Beam transport

    International Nuclear Information System (INIS)

    1988-01-01

    The beam diagnostic components for both the transfer and the high-energy beamlines perform well except for some of the scanners whose noise pick-up has become a problem, especially at low beam intensities. This noise pick-up is primarily due to deterioration of the bearings in the scanner. At some locations in the high-energy beamlines, scanners were replaced by harps as the scanners proved to be practically useless for the low-intensity beams required in the experimental areas. The slits in the low-energy beamline, which are not water-cooled, have to be repaired at regular intervals because of vacuum leaks. Overheating causes the ceramic feedthroughs to deteriorate resulting in the vacuum leaks. Water-cooled slits have been ordered to replace the existing slits which will later be used in the beamlines associated with the second injector cyclotron SPC2. The current-measurement system will be slightly modified and should then be much more reliable. 3 figs

  1. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    Science.gov (United States)

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  2. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, G., E-mail: gerosro@gmail.com; Kanjilal, D.; Roy, A. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi (India); Becker, R. [Institut fur Angewandte Physik der Universitaet, D-60054 Frankfurt/M (Germany); Hamm, R. W. [R and M Technical Enterprises, Inc., 4725 Arlene Place, Pleasanton, California 94566 (United States); Baskaran, R. [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)

    2014-02-15

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged {sup 238}U{sup 40+} (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  3. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    Science.gov (United States)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  4. Beam divergence scaling in neutral beam injectors

    International Nuclear Information System (INIS)

    Holmes, A.J.T.

    1976-01-01

    One of the main considerations in the design of neutral beam injectors is to monimize the divergence of the primary ion beam and hence maximize the beam transport and minimize the input of thermal gas. Experimental measurements of the divergence of a cylindrical ion beam are presented and these measurements are used to analyze the major components of ion beam divergence, namely: space charge expansion, gas-ion scattering, emittance and optical aberrations. The implication of these divergence components in the design of a neutral beam injector system is discussed and a method of maximizing the beam current is described for a given area of source plasma

  5. Dynamical chaos and beam-beam models

    International Nuclear Information System (INIS)

    Izrailev, F.M.

    1990-01-01

    Some aspects of the nonlinear dynamics of beam-beam interaction for simple one-dimensional and two-dimensional models of round and flat beams are discussed. The main attention is paid to the stochasticity threshold due to the overlapping of nonlinear resonances. The peculiarities of a round beam are investigated in view of using the round beams in storage rings to get high luminosity. 16 refs.; 7 figs

  6. Beam propagation

    International Nuclear Information System (INIS)

    Hermansson, B.R.

    1989-01-01

    The main part of this thesis consists of 15 published papers, in which the numerical Beam Propagating Method (BPM) is investigated, verified and used in a number of applications. In the introduction a derivation of the nonlinear Schroedinger equation is presented to connect the beginning of the soliton papers with Maxwell's equations including a nonlinear polarization. This thesis focuses on the wide use of the BPM for numerical simulations of propagating light and particle beams through different types of structures such as waveguides, fibers, tapers, Y-junctions, laser arrays and crystalline solids. We verify the BPM in the above listed problems against other numerical methods for example the Finite-element Method, perturbation methods and Runge-Kutta integration. Further, the BPM is shown to be a simple and effective way to numerically set up the Green's function in matrix form for periodic structures. The Green's function matrix can then be diagonalized with matrix methods yielding the eigensolutions of the structure. The BPM inherent transverse periodicity can be untied, if desired, by for example including an absorptive refractive index at the computational window edges. The interaction of two first-order soliton pulses is strongly dependent on the phase relationship between the individual solitons. When optical phase shift keying is used in coherent one-carrier wavelength communication, the fiber attenuation will suppress or delay the nonlinear instability. (orig.)

  7. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  8. Simple beam profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Gelbart, W.; Johnson, R. R.; Abeysekera, B. [ASD Inc. Garden Bay, BC (Canada); Best Theratronics Ltd Ottawa Ontario (Canada); PharmaSpect Ltd., Burnaby BC (Canada)

    2012-12-19

    An inexpensive beam profile monitor is based on the well proven rotating wire method. The monitor can display beam position and shape in real time for particle beams of most energies and beam currents up to 200{mu}A. Beam shape, position cross-section and other parameters are displayed on a computer screen.

  9. Crystalline beams

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1989-01-01

    Ions in a storage ring are confined to a mean orbit by focusing elements. To a first approximation these may be described by a constant harmonic restoring force: F = -Kr. If the particles in the frame moving along with the beam have small random thermal energies, then they will occupy a cylindrical volume around the mean orbit and the focusing force will be balanced by that from the mutual repulsion of the particles. Inside the cylinder only residual two-particle interactions will play a significant role and some form of ordering might be expected to take place. The results of some of the first MD calculations showed a surprising result: not only were the particles arranged in the form of a tube, but they formed well-defined layers: concentric shells, with the particles in each shell arranged in a hexagonal lattice that is characteristic of two-dimensional Coulomb systems. This paper discusses the condense layer structure

  10. Stability of longitudinal modes in a bunched beam with mode coupling

    International Nuclear Information System (INIS)

    Satoh, K.

    1981-06-01

    In this paper we study a longitudinal coherent bunch instability in which the growth time is comparable to or less than the period of synchrotron oscillations. Both longitudinal and transverse bunch instabilities have been studied. In most treatments, however, the coherent force is assumed to be small and is treated as a perturbation compared with the synchrotron force. This makes the problem simpler because an individual synchrotron mode is decoupled. As bunch current increases, the coherent force is no longer small and the mode frequency shift becomes significant compared with the synchrotron frequency. Therefore in this case it is necessary to include coupling of the synchrotron modes. Recently a fast blow-up instability which comes from mode coupling was studied. Their method is to derive a dispersion relation for a bunched beam using the Vlasov equation and to analyze it as in a coasting beam. They showed that if mode coupling is included the Vlasov equation predicts a fast microwave instability with a stability condition similar to that for a coasting beam. In this paper we will partly follow their method and present a formalism which includes coupling between higher-order radial modes as well as coupling between synchrotron modes. The formalism is considered to be generalization of the Sacherer formalism without mode coupling. This theory predicts that instability is induced not only by coupling between different synchrotron modes, but also by coupling between positive and negative modes, since negative synchrotron modes are included in the theory in a natural manner. This formalism is to be used for a Gaussian bunch and a parabolic bunch, and is also useful for transverse problems

  11. Beam-Beam Interaction Studies at LHC

    CERN Document Server

    Schaumann, Michaela; Alemany Fernandez, R

    2011-01-01

    The beam-beam force is one of the most important limiting factors in the performance of a collider, mainly in the delivered luminosity. Therefore, it is essential to measure the effects in LHC. Moreover, adequate understanding of LHC beam-beam interaction is of crucial importance in the design phases of the LHC luminosity upgrade. Due to the complexity of this topic the work presented in this thesis concentrates on the beam-beam tune shift and orbit effects. The study of the Linear Coherent Beam-Beam Parameter at the LHC has been determined with head-on collisions with small number of bunches at injection energy (450 GeV). For high bunch intensities the beam-beam force is strong enough to expect orbit effects if the two beams do not collide head-on but with a crossing angle or with a given offset. As a consequence the closed orbit changes. The closed orbit of an unperturbed machine with respect to a machine where the beam-beam force becomes more and more important has been studied and the results are as well ...

  12. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    Wangler, T.P.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  13. Beam-beam issues in asymmetric colliders

    International Nuclear Information System (INIS)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e + - e - colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II)

  14. A symplectic coherent beam-beam model

    International Nuclear Information System (INIS)

    Furman, M.A.

    1989-05-01

    We consider a simple one-dimensional model to study the effects of the beam-beam force on the coherent dynamics of colliding beams. The key ingredient is a linearized beam-beam kick. We study only the quadrupole modes, with the dynamical variables being the 2nd-order moments of the canonical variables q, p. Our model is self-consistent in the sense that no higher order moments are generated by the linearized beam-beam kicks, and that the only source of violation of symplecticity is the radiation. We discuss the round beam case only, in which vertical and horizontal quantities are assumed to be equal (though they may be different in the two beams). Depending on the values of the tune and beam intensity, we observe steady states in which otherwise identical bunches have sizes that are equal, or unequal, or periodic, or behave chaotically from turn to turn. Possible implications of luminosity saturation with increasing beam intensity are discussed. Finally, we present some preliminary applications to an asymmetric collider. 8 refs., 8 figs

  15. Antihydrogen Beams

    Science.gov (United States)

    Yamazaki, Yasunori; Doser, Michael; Pérez, Patrice

    2018-03-01

    Why does our universe consist purely of matter, even though the same amount of antimatter and matter should have been produced at the moment of the Big Bang 13.8 billion years ago? One of the most potentially fruitful approaches to address the mystery is to study the properties of antihydrogen and antiprotons. Because they are both stable, we can in principle make measurement precision as high as we need to see differences between these antimatter systems and their matter counterparts, i.e. hydrogen and protons. This is the goal of cold antihydrogen research. To study a fundamental symmetry-charge, parity, and time reversal (CPT) symmetry-which should lead to identical spectra in hydrogen and antihydrogen, as well as the weak equivalence principle (WEP), cold antihydrogen research seeks any discrepancies between matter and antimatter, which might also offer clues to the missing antimatter mystery. Precision tests of CPT have already been carried out in other systems, but antihydrogen spectroscopy offers the hope of reaching even higher sensitivity to violations of CPT. Meanwhile, utilizing the Earth and antihydrogen atoms as an experimental system, the WEP predicts a gravitational interaction between matter and antimatter that is identical to that between any two matter objects. The WEP has been tested to very high precision for a range of material compositions, but no such precision test using antimatter has yet been carried out, offering hope of a telltale inconsistency between matter and antimatter. In this Discovery book, we invite you to visit the frontiers of cold antimatter research, focusing on new technologies to form beams of antihydrogen atoms and antihydrogen ions, and new ways of interrogating the properties of antimatter.

  16. Beam Techniques - Beam Control and Manipulation

    International Nuclear Information System (INIS)

    Minty, Michiko G

    2003-01-01

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization

  17. Beam Techniques - Beam Control and Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Minty, Michiko G

    2003-04-24

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization.

  18. Literature in Focus Beta Beams: Neutrino Beams

    CERN Document Server

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  19. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    laminated float glass beam is constructed and tested in four-point bending. The beam consist of 4 layers of glass laminated together with a slack steel band glued onto the bottom face of the beam. The glass parts of the tested beams are \\SI{1700}{mm} long and \\SI{100}{mm} high, and the total width of one...

  20. Telecommunication using muon beams

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location

  1. Safe LHC beam commissioning

    International Nuclear Information System (INIS)

    Uythoven, J.; Schmidt, R.

    2007-01-01

    Due to the large amount of energy stored in magnets and beams, safety operation of the LHC is essential. The commissioning of the LHC machine protection system will be an integral part of the general LHC commissioning program. A brief overview of the LHC Machine Protection System will be given, identifying the main components: the Beam Interlock System, the Beam Dumping System, the Collimation System, the Beam Loss Monitoring System and the Quench Protection System. An outline is given of the commissioning strategy of these systems during the different commissioning phases of the LHC: without beam, injection and the different phases with stored beam depending on beam intensity and energy. (author)

  2. LANSCE beam current limiter

    International Nuclear Information System (INIS)

    Gallegos, F.R.

    1996-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described

  3. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  4. Ion beam diagnosis

    International Nuclear Information System (INIS)

    Strehl, P.

    1994-04-01

    This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)

  5. Beam diagnostics for low energy beams

    Directory of Open Access Journals (Sweden)

    J. Harasimowicz

    2012-12-01

    Full Text Available Low-energetic ion and antimatter beams are very attractive for a number of fundamental studies. The diagnostics of such beams, however, is a challenge due to low currents down to only a few thousands of particles per second and significant fraction of energy loss in matter at keV beam energies. A modular set of particle detectors has been developed to suit the particular beam diagnostic needs of the ultralow-energy storage ring (USR at the future facility for low-energy antiproton and ion research, accommodating very low beam intensities at energies down to 20 keV. The detectors include beam-profile monitors based on scintillating screens and secondary electron emission, sensitive Faraday cups for absolute intensity measurements, and capacitive pickups for beam position monitoring. In this paper, the design of all detectors is presented in detail and results from beam measurements are shown. The resolution limits of all detectors are described and options for further improvement summarized. Whilst initially developed for the USR, the instrumentation described in this paper is also well suited for use in other low-intensity, low-energy accelerators, storage rings, and beam lines.

  6. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A; Laird, J S; Bardos, R A; Legge, G J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T; Sekiguchi, H [Electrotechnical Laboratory, Tsukuba (Japan).

    1994-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  7. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  8. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  9. Electron beam instabilities in gyrotron beam tunnels

    International Nuclear Information System (INIS)

    Pedrozzi, M.; Alberti, S.; Hogge, J.P.; Tran, M.Q.; Tran, T.M.

    1997-10-01

    Electron beam instabilities occurring in a gyrotron electron beam can induce an energy spread which might significantly deteriorate the gyrotron efficiency. Three types of instabilities are considered to explain the important discrepancy found between the theoretical and experimental efficiency in the case of quasi-optical gyrotrons (QOG): the electron cyclotron maser instability, the Bernstein instability and the Langmuir instability. The low magnetic field gradient in drift tubes of QOG makes that the electron cyclotron maser instability can develop in the drift tube at very low electron beam currents. Experimental measurements show that with a proper choice of absorbing structures in the beam tunnel, this instability can be suppressed. At high beam currents, the electrostatic Bernstein instability can induce a significant energy spread at the entrance of the interaction region. The induced energy spread scales approximately linearly with the electron beam density and for QOG one observes that the beam density is significantly higher than the beam density of an equivalent cylindrical cavity gyrotron. (author) figs., tabs., refs

  10. Successful Beam-Beam Tuneshift Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip Aaron [Univ. of California, Los Angeles, CA (United States)

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (TEL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operations with inclusion of the TEL are presented and analyzed. It is shown that the TEL provides a way to shatter the previously inescapable beam-beam limit.

  11. BEAMS3D Neutral Beam Injection Model

    Energy Technology Data Exchange (ETDEWEB)

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  12. Beam Loss in Linacs

    CERN Document Server

    Plum, M.A.

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  13. Charged corpuscular beam detector

    Energy Technology Data Exchange (ETDEWEB)

    Hikawa, H; Nishikawa, Y

    1970-09-29

    The present invention relates to a charged particle beam detector which prevents transient phenomena disturbing the path and focusing of a charged particle beam travelling through a mounted axle. The present invention provides a charged particle beam detector capable of decreasing its reaction to the charge in energy of the charged particle beam even if the relative angle between the mounted axle and the scanner is unstable. The detector is characterized by mounting electrically conductive metal pieces of high melting point onto the face of a stepped, heat-resistant electric insulating material such that the pieces partially overlap each other and individually provide electric signals, whereby the detector is no longer affected by the beam. The thickness of the metal piece is selected so that an eddy current is not induced therein by an incident beam, thus the incident beam is not affected. The detector is capable of detecting a misaligned beam since the metal pieces partially overlap each other.

  14. Advanced electron beam techniques

    International Nuclear Information System (INIS)

    Hirotsu, Yoshihiko; Yoshida, Yoichi

    2007-01-01

    After 100 years from the time of discovery of electron, we now have many applications of electron beam in science and technology. In this report, we review two important applications of electron beam: electron microscopy and pulsed-electron beam. Advanced electron microscopy techniques to investigate atomic and electronic structures, and pulsed-electron beam for investigating time-resolved structural change are described. (author)

  15. Beam Dynamics for ARIA

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  16. Crossed beam experiments

    International Nuclear Information System (INIS)

    Dolder, K.T.

    1976-01-01

    Many natural phenomena can only be properly understood if one has a detailed knowledge of interactions involving atoms, molecules, ions, electrons or photons. In the laboratory these processes are often studied by preparing beams of two types of particle and observing the reactions which occur when the beams intersect. Some of the more interesting of these crossed beam experiments and their results are discussed. Proposals to extend colliding beam techniques to high energy particle physics are also outlined. (author)

  17. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  18. Beams 92: Proceedings

    International Nuclear Information System (INIS)

    Mosher, D.; Cooperstein, G.

    1993-01-01

    This report contains papers on the following topics: Ion beam papers; electron beam, bremsstrahlung, and diagnostics papers; radiating Z- pinch papers; microwave papers; electron laser papers; advanced accelerator papers; beam and pulsed power applications papers; pulsed power papers; and these papers have been indexed separately elsewhere

  19. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  20. Beam-beam interaction working group summary

    International Nuclear Information System (INIS)

    Siemann, R.H.

    1995-01-01

    The limit in hadron colliders is understood phenomenologically. The beam-beam interaction produces nonlinear resonances and makes the transverse tunes amplitude dependent. Tune spreads result from the latter, and as long as these tune spreads do not overlap low order resonances, the lifetime and performance is acceptable. Experience is that tenth and sometimes twelfth order resonances must be avoided, and the hadron collider limit corresponds roughly to the space available between resonances of that and lower order when operating near the coupling resonance. The beam-beam interaction in e + e - colliders is not understood well. This affects the performance of existing colliders and could lead to surprises in new ones. For example. a substantial amount of operator tuning is usually required to reach the performance limit given above, and this tuning has to be repeated after each major shutdown. The usual interpretation is that colliding beam performance is sensitive to small lattice errors, and these are being reduced during tuning. It is natural to ask what these errors are, how can a lattice be characterized to minimize tuning time, and what aspects of a lattice should receive particular attention when a new collider is being designed. The answers to this type of question are not known, and developing ideas for calculations, simulations and experiments that could illuminate the details of the beam-beam interaction was the primary working group activity

  1. EUROv Super Beam Studies

    International Nuclear Information System (INIS)

    Dracos, Marcos

    2011-01-01

    Neutrino Super Beams use conventional techniques to significantly increase the neutrino beam intensity compared to the present neutrino facilities. An essential part of these facilities is an intense proton driver producing a beam power higher than a MW. The protons hit a target able to accept the high proton beam intensity. The produced charged particles are focused by a system of magnetic horns towards the experiment detectors. The main challenge of these projects is to deal with the high beam intensity for many years. New high power neutrino facilities could be build at CERN profiting from an eventual construction of a high power proton driver. The European FP7 Design Study EUROv, among other neutrino beams, studies this Super Beam possibility. This paper will give the latest developments in this direction.

  2. Beam electron microprobe

    CERN Document Server

    Stoller, D; Muterspaugh, M W; Pollock, R E

    1999-01-01

    A beam profile monitor based on the deflection of a probe electron beam by the electric field of a stored, electron-cooled proton beam is described and first results are presented. Electrons were transported parallel to the proton beam by a uniform longitudinal magnetic field. The probe beam may be slowly scanned across the stored beam to determine its intensity, position, and size. Alternatively, it may be scanned rapidly over a narrow range within the interior of the stored beam for continuous observation of the changing central density during cooling. Examples of a two dimensional charge density profile obtained from a raster scan and of a cooling alignment study illustrate the scope of measurements made possible by this device.

  3. Bolt beam propagation analysis

    Science.gov (United States)

    Shokair, I. R.

    BOLT (Beam on Laser Technology) is a rocket experiment to demonstrate electron beam propagation on a laser ionized plasma channel across the geomagnetic field in the ion focused regime (IFR). The beam parameters for BOLT are: beam current I(sub b) = 100 Amps, beam energy of 1--1.5 MeV (gamma =3-4), and a Gaussian beam and channel of radii r(sub b) = r(sub c) = 1.5 cm. The N+1 ionization scheme is used to ionize atomic oxygen in the upper atmosphere. This scheme utilizes 130 nm light plus three IR lasers to excite and then ionize atomic oxygen. The limiting factor for the channel strength is the energy of the 130 nm laser, which is assumed to be 1.6 mJ for BOLT. At a fixed laser energy and altitude (fixing the density of atomic oxygen), the range can be varied by adjusting the laser tuning, resulting in a neutralization fraction axial profile of the form: f(z) = f(sub 0) e(exp minus z)/R, where R is the range. In this paper we consider the propagation of the BOLT beam and calculate the range of the electron beam taking into account the fact that the erosion rates (magnetic and inductive) vary with beam length as the beam and channel dynamically respond to sausage and hose instabilities.

  4. Identification of LHC beam loss mechanism: a deterministic treatment of loss patterns

    International Nuclear Information System (INIS)

    Marsili, A.

    2012-01-01

    the error on the re-composition and its correctness. The principles of vector decomposition are developed in chapter 3. An ensemble of well controlled loss scenarios (such as vertical and horizontal blow-up of the beams or momentum offset during collimator loss maps) has been gathered, in order to allow the study and creation of reference vectors. To achieve the Vector Decomposition, linear algebra (matrix inversion) is used with the numeric algorithm for the Singular Value Decomposition. Additionally, a specific code for vector projection on a non-orthogonal basis of a hyper-plane was developed. The implementation of the vector decomposition on the LHC data is described in chapter 4. After this, the use of the decomposition tools systematically on the time evolution of the losses will be described: first as a study of the variations second by second, then by comparison to a calculated default loss profile. The different ways to evaluate the variation are studied, and are presented in chapter 5. The chapter 6 describes the gathering of the decomposition results applied to the beam losses of 2011. The vector decomposition is applied on every second of the 'stable beams' periods, as a study of the spatial distribution of the loss. Several comparisons of the results given by the decompositions with measurements from other LHC instruments allowed different validations. (author)

  5. Craft Stick Beams

    Science.gov (United States)

    Karplus, Alan K.

    1996-01-01

    The objective of this exercise is to provide a phenomenological 'hands-on' experience that shows how geometry can affect the load carrying capacity of a material used in construction, how different materials have different failure characteristics, and how construction affects the performance of a composite material. This will be accomplished by building beams of a single material and composite beams of a mixture of materials (popsicle sticks, fiberboard sheets, and tongue depressors); testing these layered beams to determine how and where they fail; and based on the failure analysis, designing a layered beam that will fail in a predicted manner. The students will learn the effects of lamination, adhesion, and geometry in layered beam construction on beam strength and failure location.

  6. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove

    2007-01-01

    the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating......The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  7. Beam induced RF heating

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Bartmann, W; Baudrenghien, P; Berrig, O; Bracco, C; Bravin, E; Bregliozzi, G; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Garlasche, M; Gentini, L; Goddard, B; Grudiev, A; Henrist, B; Jones, R; Kononenko, O; Lanza, G; Lari, L; Mastoridis, T; Mertens, V; Métral, E; Mounet, N; Muller, J E; Nosych, A A; Nougaret, J L; Persichelli, S; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Salvachua, B; Sapinski, M; Schmidt, R; Shaposhnikova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wenninger, J; Wollmann, D; Zerlauth, M

    2012-01-01

    After the 2011 run, actions were put in place during the 2011/2012 winter stop to limit beam induced radio frequency (RF) heating of LHC components. However, some components could not be changed during this short stop and continued to represent a limitation throughout 2012. In addition, the stored beam intensity increased in 2012 and the temperature of certain components became critical. In this contribution, the beam induced heating limitations for 2012 and the expected beam induced heating limitations for the restart after the Long Shutdown 1 (LS1) will be compiled. The expected consequences of running with 25 ns or 50 ns bunch spacing will be detailed, as well as the consequences of running with shorter bunch length. Finally, actions on hardware or beam parameters to monitor and mitigate the impact of beam induced heating to LHC operation after LS1 will be discussed.

  8. HIBP primary beam detector

    International Nuclear Information System (INIS)

    Schmidt, T.W.

    1979-01-01

    A position measuring detector was fabricated for the Heavy Ion Beam Probe. The 11 cm by 50 cm detector was a combination of 15 detector wires in one direction and 63 copper bars - .635 cm by 10 cm to measure along an orthogonal axis by means of a current divider circuit. High transmission tungsten meshes provide entrance windows and suppress secondary electrons. The detector dimensions were chosen to resolve the beam position to within one beam diameter

  9. Who needs hyperon beams

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1976-01-01

    Hyperon beams can provide new interesting information about hadron structure and their strong, electromagnetic and weak interactions. The dependence of hadron interactions on strangeness and baryon number is not understood, and data from hyperon beams can provide new clues to paradoxes which arise in the interpretation of data from conventional beams. Examples of interesting data are total and differential cross sections, magnetic moments and values of Gsub(A)/Gsub(V) for weak semileptonic decays. (author)

  10. Beam Extraction and Transport

    CERN Document Server

    Kalvas, T.

    2013-12-16

    This chapter gives an introduction to low-energy beam transport systems, and discusses the typically used magnetostatic elements (solenoid, dipoles and quadrupoles) and electrostatic elements (einzel lens, dipoles and quadrupoles). The ion beam emittance, beam space-charge effects and the physics of ion source extraction are introduced. Typical computer codes for analysing and designing ion optical systems are mentioned, and the trajectory tracking method most often used for extraction simulations is described in more detail.

  11. Particle beam accelerator

    International Nuclear Information System (INIS)

    Turner, N.L.

    1982-01-01

    A particle beam accelerator is described which has several electrodes that are selectively short circuited together synchronously with changes in the magnitude of a DC voltage applied to the accelerator. By this method a substantially constant voltage gradient is maintained along the length of the unshortened electrodes despite variations in the energy applied to the beam by the accelerator. The invention has particular application to accelerating ion beams that are implanted into semiconductor wafers. (U.K.)

  12. Neutral beam monitoring

    International Nuclear Information System (INIS)

    Fink, J.H.

    1979-01-01

    A neutral beam generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange partially neutralizes the high energy beam, is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are identified. (U.K.)

  13. Chilled beam application guidebook

    CERN Document Server

    Butler, David; Gräslund, Jonas; Hogeling, Jaap; Lund Kristiansen, Erik; Reinikanen, Mika; Svensson, Gunnar

    2007-01-01

    Chilled beam systems are primarily used for cooling and ventilation in spaces, which appreciate good indoor environmental quality and individual space control. Active chilled beams are connected to the ventilation ductwork, high temperature cold water, and when desired, low temperature hot water system. Primary air supply induces room air to be recirculated through the heat exchanger of the chilled beam. In order to cool or heat the room either cold or warm water is cycled through the heat exchanger.

  14. Mechanical beam isolator

    International Nuclear Information System (INIS)

    Post, R.F.; Vann, C.S.

    1996-10-01

    Back-reflections from a target, lenses, etc. can gain energy passing backwards through a laser just like the main beam gains energy passing forwards. Unless something blocks these back-reflections early in their path, they can seriously damage the laser. A Mechanical Beam Isolator is a device that blocks back-reflections early, relatively inexpensively, and without introducing aberrations to the laser beam

  15. Instability of compensated beam-beam collisions

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Autin, B.; Chen, Pisin.

    1989-01-01

    The beam-beam disruption phenomena in linear colliders are increasingly seen as a source of serious problems for these machines. A plasma compensation scheme, in which the motion of the plasma electrons in the presence of the colliding beams provides neutralizing charge and current densities, has been proposed and studied. But natural alternative to this scheme is to consider the overlapping of nearly identical high energy e + and e/sup /minus// bunches, and the collision of two such pairs - in other words, collision of two opposing relativistic positronium plasmas. It should be noticed that while the luminosity for all collisions is increased by a factor of four in this scheme, the event rate for e + e/sup /minus// collisions is only increased by a factor of two. The other factor of two corresponds to the addition of e + e + and e/sup /minus//e/sup /minus// collisions to the interaction point. This beam compensation scheme, which has been examined through computer simulation by Balakin and Solyak in the Soviet Union, promises full neutralization of beam charges and currents. These numerical investigations have shown that plasma instabilities exist in this nominally neutral system. Although the implementation of this idea seems technically daunting, the potential benefits (beamstrahlung and disruption suppression, relaxation of final focus system constraints) are such that we should consider the physics of these collisions further. In the remainder of this paper, we theoretically analyze the issues of stability and bunch parameter tolerances in this scheme. 11 refs

  16. Dual-beam CRT

    International Nuclear Information System (INIS)

    1975-01-01

    A dual-beam cathode-ray tube having a pair of electron guns and associated deflection means disposed side-by-side on each side of a central axis is described. The electron guns are parallel and the deflection means includes beam centering plates and angled horizontal deflection plates to direct the electron beams toward the central axis, precluding the need for a large-diameter tube neck in which the entire gun structures are angled. Bowing control plates are disposed adjacent to the beam centering plates to minimize trace bowing, and an intergun shield is disposed between the horizontal deflection plates to control and correct display pattern geometry distortion

  17. Beam Instrumentation and Diagnostics

    CERN Document Server

    Strehl, Peter

    2006-01-01

    This treatise covers all aspects of the design and the daily operations of a beam diagnostic system for a large particle accelerator. A very interdisciplinary field, it involves contributions from physicists, electrical and mechanical engineers and computer experts alike so as to satisfy the ever-increasing demands for beam parameter variability for a vast range of operation modi and particles. The author draws upon 40 years of research and work, most of them spent as the head of the beam diagnostics group at GSI. He has illustrated the more theoretical aspects with many real-life examples that will provide beam instrumentation designers with ideas and tools for their work.

  18. Electron beam welding

    International Nuclear Information System (INIS)

    Schwartz, M.M.

    1974-01-01

    Electron-beam equipment is considered along with fixed and mobile electron-beam guns, questions of weld environment, medium and nonvacuum welding, weld-joint designs, tooling, the economics of electron-beam job shops, aspects of safety, quality assurance, and repair. The application of the process in the case of individual materials is discussed, giving attention to aluminum, beryllium, copper, niobium, magnesium, molybdenum, tantalum, titanium, metal alloys, superalloys, and various types of steel. Mechanical-property test results are examined along with the areas of application of electron-beam welding

  19. Neutral beam program

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The structure of the beam injection program for the Doublet-3 device is discussed. The design considerations for the beam line and design parameters for the Doublet-3 ion souce are given. Major components of the neutral beam injector system are discussed in detail. These include the neutralizer, magnetic shielding, reflecting magnets, vacuum system, calorimeter and beam dumps, and drift duct. The planned location of the two-injector system for Doublet-3 is illustrated and site preparation is considered. The status of beamline units 1 and 2 and the future program schedule are discussed

  20. Beam diagnostics on ARGUS

    International Nuclear Information System (INIS)

    MacQuigg, D.R.; Speck, D.R.

    1976-01-01

    Performance of laser fusion targets depends critically on the characteristics of the incident beam. The spatial distribution and temporal behavior of the light incident on the target varies significantly with power, with choice of beam spatial profile and with location of spatial filters. On each ARGUS shot we photograph planes in the incident beams which are equivalent to the target plane. Array cameras record the time integrated energy distributions and streak cameras record the temporal behavior. Computer reduction of the photographic data provides detailed spatial energy distributions, and instantaneous power on target vs. time. Target performance correlates with the observed beam characteristics

  1. Beam front accelerators

    International Nuclear Information System (INIS)

    Reiser, M.

    1982-01-01

    An intense relativistic electron beam cannot propagate in a metal drift tube when the current exceeds the space charge limit. Very high charge density and electric field gradients (10 2 to 10 3 MV/m) develop at the beam front and the electrons are reflected. When a neutral gas or a plasma is present, collective acceleration of positive ions occur, and the resulting charge neutralization enables the beam to propagate. Experimental results, theoretical understanding, and schemes to achieve high ion energies by external control of the beam front velocity will be reviewed

  2. GANIL beam profile detectors

    International Nuclear Information System (INIS)

    Tribouillard, C.

    1997-01-01

    In the design phase of GANIL which started in 1977, one of the priorities of the project management was equipping the beamlines with a fast and efficient system for visualizing the beam position, thus making possible adjustment of the beam transport lines optics and facilitating beam control. The implantation of some thirty detectors was foreseen in the initial design. The assembly of installed detectors (around 190) proves the advantages of these detectors for displaying all the beams extracted from GANIL: transfer and transport lines, beam extracted from SISSI, very high intensity beam, secondary ion beams from the production target of the LISE and SPEG spectrometers, different SPIRAL project lines. All of these detectors are based on standard characteristics: - standard flange diameter (DN 160) with a standard booster for all the sensors; - identical analog electronics for all the detectors, with networking; - unique display system. The new micro-channel plate non-interceptive detectors (beam profile and ion packet lengths) make possible in-line control of the beam quality and accelerator stability. (author)

  3. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, Andre

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GuineaPig and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam background hitting the vertex detector.

  4. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, A

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GUINEAPIG and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam back- ground hitting the vertex detector.

  5. Observations of the beam-beam interaction

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1985-11-01

    The observed complexity of the beam-beam interaction is the subject of this paper. The varied observations obtained from many storage rings happen to be sufficiently similar that a prescription can be formulated to describe the behavior of the luminosity as a function of beam current including the peak value. This prescription can be used to interpret various methods for improving the luminosity. Discussion of these improvement methods is accompanied with examples from actual practice. The consequences of reducing the vertical betatron function (one of the most used techniques) to near the value of the bunch length are reviewed. Finally, areas needing further experimental and calculational studies are pointed out as they are uncovered

  6. Implementation of depolarization due to beam-beam effects in the beam-beam interaction simulation tool GUINEA-PIG++

    Science.gov (United States)

    Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.

    2009-12-01

    Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.

  7. Nonlinear optical beam manipulation, beam combining, and atmospheric propagation

    International Nuclear Information System (INIS)

    Fischer, R.A.

    1988-01-01

    These proceedings collect papers on optics: Topics include: diffraction properties of laser speckle, coherent beam combination by plasma modes, nonlinear responses, deformable mirrors, imaging radiometers, electron beam propagation in inhomogeneous media, and stability of laser beams in a structured environment

  8. Experimental study of the molecular beam destruction by beam-beam and beam-background scattering

    International Nuclear Information System (INIS)

    Bossel, U.; Dettleff, G.

    1974-01-01

    The extraction of flow properties related to the molecular motion normal to stream lines of an expanding gas jet from observed intensity profiles of supersonic beams is critically assessed. The perturbation of the profile curves by various effects is studied for a helium beam. Exponential laws appear to describe scattering effects to a satisfactory degree

  9. Electron beam diagnostics study

    International Nuclear Information System (INIS)

    Garganne, P.

    1989-08-01

    This paper summarizes the results of a study on beam diagnostics, using carbon wire scanners and optical transition radiation (DTR) monitors. The main consideration consists in the material selection, taking their thermal properties and their effect on the beam into account [fr

  10. Rf quadrupole beam dynamics

    International Nuclear Information System (INIS)

    Stokes, R.H.; Crandall, K.R.; Stovall, J.E.; Swenson, D.A.

    1979-01-01

    A method has been developed to analyze the beam dynamics of the radiofrequency quadrupole accelerating structure. Calculations show that this structure can accept a dc beam at low velocity, bunch it with high capture efficiency, and accelerate it to a velocity suitable for injection into a drift tube linac

  11. Beaming teaching application

    DEFF Research Database (Denmark)

    Markovic, Milos; Madsen, Esben; Olesen, Søren Krarup

    2012-01-01

    BEAMING is a telepresence research project aiming at providing a multimodal interaction between two or more participants located at distant locations. One of the BEAMING applications allows a distant teacher to give a xylophone playing lecture to the students. Therefore, rendering of the xylophon...

  12. Beam stabilization at SPEAR

    International Nuclear Information System (INIS)

    Corbett, J.

    1996-01-01

    The SPEAR storage ring began routine synchrotron radiation operation with a dedicated injector in 1990. Since then, a program to improve beam stability has steadily progressed. This paper, based on a seminar given at a workshop on storage ring optimization (1995 SRI conference) reviews the beam stability program for SPEAR. copyright 1996 American Institute of Physics

  13. Ionization beam scanner

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Inner structure of an ionization beam scanner, a rather intricate piece of apparatus which permits one to measure the density distribution of the proton beam passing through it. On the outside of the tank wall there is the coil for the longitudinal magnetic field, on the inside, one can see the arrangement of electrodes creating a highly homogeneous transverse electric field.

  14. Atomic Ferris wheel beams

    Science.gov (United States)

    Lembessis, Vasileios E.

    2017-07-01

    We study the generation of atom vortex beams in the case where a Bose-Einstein condensate, released from a trap and moving in free space, is diffracted from a properly tailored light mask with a spiral transverse profile. We show how such a diffraction scheme could lead to the production of an atomic Ferris wheel beam.

  15. Dosimetry of pion beams

    International Nuclear Information System (INIS)

    Dicello, J.F.

    1975-01-01

    Negative pion beams are probably the most esoteric and most complicated type of radiation which has been suggested for use in clinical radiotherapy. Because of the limited availability of pion beams in the past, even to nuclear physicists, there exist relatively fewer basic data for this modality. Pion dosimetry is discussed

  16. Electron beam welding

    International Nuclear Information System (INIS)

    Gabbay, M.

    1972-01-01

    The bead characteristics and the possible mechanisms of the electron beam penetration are presented. The different welding techniques are exposed and the main parts of an electron beam welding equipment are described. Some applications to nuclear, spatial and other industries are cited [fr

  17. MODULATED PLASMA ELECTRON BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, L. H.

    1963-08-15

    Techniques have been developed for producing electron beams of two amperes or more, from a plasma within a hollow cathode. Electron beam energies of 20 kilovolts are readily obtained and power densities of the order of 10,000 kilowatts per square inch can be obtained with the aid of auxiliary electromagnetic focusing. An inert gas atmosphere of a few microns pressure is used to initiate and maintain the beam. Beam intensity increases with both gas pressure and cathode potential but may be controlled by varying the potential of an internal electrode. Under constant pressure and cathode potential the beam intensity may be varied over a wide range by adjusting the potential of the internal control electrode. The effects of cathode design on the volt-ampere characteristics of the beam and the design of control electrodes are described. Also, performance data in both helium and argon are given. A tentative theory of the origin of electrons and of beam formation is proposed. Applications to vacuum metallurgy and to electron beam welding are described and illustrated. (auth)

  18. Electron beam simulation applicators

    International Nuclear Information System (INIS)

    Purdy, J.A.

    1983-01-01

    A system for simulating electron beam treatment portals using low-temperature melting point alloy is described. Special frames having the same physical dimensions as the electron beam applicators used on the Varian Clinac 20 linear accelerator were designed and constructed

  19. Ion Beam Propulsion Study

    Science.gov (United States)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  20. VIVITRON beam transport

    International Nuclear Information System (INIS)

    Nadji, A.

    1989-07-01

    The VIVITRON is a new 35 MV particle accelerator which presents a great number of innovations. One of the major problem is the beam transport in this electrostatic machine of 50 m length for ions with masses between 1 and 200. Our work consisted in the study of various experimental and theoretical aspects of the beam transport in Tandem accelerators from the ion source to the analysing magnet. Calculations of the beam optics were performed with a Strasbourg version of the computer code Transport. They allowed us to optimize the beam transport parameters of the VIVITRON elements. Special attention has been focused on the design of the charge state selector to be installed in the terminal of the new machine. Beam transmission measurements were carried out in the Strasbourg MP 10 Tandem accelerator for ions beams of masses between 1 and 127 and for terminal voltages from 9 to 15 MV. Partial and total transmissions were obtained and explanations of the beam losses were proposed in terms of the vacuum pressure and/or the optics of the beam accelerator system. The results have been extrapolated to the VIVITRON for which the best working conditions are now clearly defined [fr

  1. Beam director design report

    International Nuclear Information System (INIS)

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30 0 beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project

  2. Vortices in Gaussian beams

    CSIR Research Space (South Africa)

    Roux, FS

    2009-01-01

    Full Text Available , t0)} = P(du, dv) {FR{g(u, v, t0)}} Replacement: u→ du = t− t0 i2 ∂ ∂u′ v → dv = t− t0 i2 ∂ ∂v′ CSIR National Laser Centre – p.13/30 Differentiation i.s.o integration Evaluate the integral over the Gaussian beam (once and for all). Then, instead... . Gaussian beams with vortex dipoles CSIR National Laser Centre – p.2/30 Gaussian beam notation Gaussian beam in normalised coordinates: g(u, v, t) = exp ( −u 2 + v2 1− it ) u = xω0 v = yω0 t = zρ ρ = piω20 λ ω0 — 1/e2 beam waist radius; ρ— Rayleigh range ω ω...

  3. Ion beam monitoring

    International Nuclear Information System (INIS)

    McKinney, C.R.

    1980-01-01

    An ion beam analyzer is specified, having an ion source for generating ions of a sample to be analyzed, means for extracting the sample ions, means for focusing the sample ions into a beam, separation means positioned along the ion beam for selectively deflecting species of ions, and means for detecting the selected species of ions. According to the specification, the analyzer further comprises (a) means for disabling at least a portion of the separation means, such that the ion beam from the source remains undeflected; (b) means located along the path of the undeflected ion beam for sensing the sample ions; and (c) enabling means responsive to the sensing means for automatically re-enabling the separation means when the sample ions reach a predetermined intensity level. (author)

  4. Crossed molecular beams

    International Nuclear Information System (INIS)

    Lee, Y.T.

    1976-01-01

    Research activities with crossed molecular beams at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: scattering of Ar*, Kr*, with Xe; metastable rare gas interactions, He* + H 2 ; an atomic and molecular halogen beam source; a crossed molecular beam study of the Cl + Br 2 → BrCl + Br reaction; O( 3 P) reaction dynamics, development of the high pressure plasma beam source; energy randomization in the Cl + C 2 H 3 Br → Br + C 2 H 3 Cl reaction; high resolution photoionization studies of NO and ICl; photoionization of (H 2 O)/sub n/ and (NH 3 ) 2 ; photoionization mass spectroscopy of NH 3 + and O 3 + ; photo fragmentation of bromine; and construction of chemiluminescence-laser fluorescence crossed molecular beam machine

  5. Survey of beam-beam limitations

    International Nuclear Information System (INIS)

    Courant, E.; Cornacchia, M.; Donald, M.M.R.; Evans, L.R.; Tazzari, S.; Wilson, E.J.N.

    1979-01-01

    The effect of beam-beam interaction is known to limit the luminosity of electron-positron storage rings and will, no doubt, limit the proton-antiproton collision scheme for the SPS. While theorists are struggling to explain this phenomenon it is more instructive to list their failures than their rather limited successes, in the hope that experiments may emerge which will direct their endeavors. The search for a description of a nonlinear system as it approaches the limit in which ordered motion breaks down, is the nub of the problem. It has engaged many fine mathematical intellects for decades and will no doubt continue to do so long after ISABELLE, the p antip and LEP are past achievements. Empirical scaling laws are emerging which relate electron machines to each other but their extrapolation to proton machines remain a very speculative exercise. Experimental data on proton limits is confined to one machine, the ISR, which does not normally suffer the beam-beam effect and where it must be artificially induced or simulated. This machine is also very different in important ways from the p antip collider. The gloomy picture which has emerged recently is that the fixed limits which were conventionally assumed for proton and electron machines can only be said to be valid for the machines which engendered them - the best guess that could be made at the time. They are very difficult to extrapolate to other sets of parameters

  6. Beam-beam interaction in e+-e- storage rings

    International Nuclear Information System (INIS)

    Le Duff, J.

    1977-01-01

    Colliding beams in electron-positron storage rings are discussed with particular reference to the space charge forces occuring during beam-beam interactions and their effect on beam current and consequently machine performance (maximum luminosity). The first section deals with linear beam-beam effects and discussses linear tune shift; the second section considers non-linear beam-beam effects and the creation on non-linear resonances. The last section poses questions of the possibility of extrapolating present results to future machines and discusses optimization of storage ring performance. (B.D.)

  7. Beam-width spreading of vortex beams in free space

    Science.gov (United States)

    Wang, Weiwei; Li, Jinhong; Duan, Meiling

    2018-01-01

    Based on the extended Huygens-Fresnel principle and the definition of second-order moments of the Wigner distribution function, the analytical expression for the beam-width spreading of Gaussian Schell-model (GSM) vortex beams in free space are derived, and used to study the influence of beam parameters on the beam-width spreading of GSM vortex beams. With the increment of the propagation distance, the beam-width spreading of GSM vortex beams will increase; the bigger the topological charge, spatial correlation length, wavelength and waist width are, the smaller the beam-width spreading is.

  8. Beam monitoring at NA2

    CERN Multimedia

    1978-01-01

    Claus Goessling working on the beam Cerenkov counter of NA2. The muon beam enters from left the hall EHN2 and the last element of the beam transport. On background is the access door on the Jura side.

  9. High bandwidth beam current monitor

    International Nuclear Information System (INIS)

    Baltrusaitis, R.M.; Ekdahl, C.A.; Cooper, R.G.; Peterson, E.; Warn, C.E.

    1993-01-01

    A stripline directional coupler beam current monitor capable of measuring the time structure of a 30-ps electron beam bunch has been developed. The time response performance of the monitor compares very well with Cherenkov light produced in quartz by the electron beam. The four-pickup monitor is now used on a routine basis for measuring the beam duration, tuning for optimized beam bunching, and centering the bunch in the beam pipe

  10. Beam-beam limit in e+e- circular colliders

    International Nuclear Information System (INIS)

    Ohmi, K.; Tawada, M.; Kamada, S.; Oide, K.; Cai, Y.; Qiang, J.

    2004-01-01

    Beam-beam effects limit the luminosity of circular colliders. Once the bunch population exceeds a threshold, the luminosity increases at a slower rate. This phenomenon is called the beam-beam limit. Onset of the beam-beam limit has been analyzed with various simulation methods based on the weak-strong and strong-strong models. We have observed that an incoherent phenomenon is mainly concerned in the beam-beam limit. The simulation have shown that equilibrium distributions of the two colliding beams are distorted from Gaussians when the luminosity is limited. The beam-beam limit is estimated to be ξ∼0.1 for a B factory with damping time of several thousand turns

  11. Particle beam source development

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Electron beam research directed toward providing improved in-diode pinched beam sources and establishing the efficiency and feasibility for superposition of many beams progressed in three major areas. Focusing stability has been improved from large effective aspect ratio (radius/gap of emitting surface) diodes. Substantial progress toward establishing the feasibility of combining beams guided along ionized current-carrying channels has been made. Two beams have been transported and overlayed on a target. Theoretical and experimental measurements on channel formation have resulted in specifications for the capacitor bank channel initiation system for a 12-beam combination experiment on Proto II. An additional area of beam research has been the development of a small pulsed X-ray source to yield high quality flash X-radiography of pellets. A source yielding approximately 100-μm resolution of objects has been demonstrated and work continues to improve the convenience and reliability of this source. The effort to extend the capability of higher power conventional pulse power generators to accelerate ions (rather than electrons), and assess the feasibility of this technology variation for target experiments and reactors has progressed. Progress toward development of a multistage accelerator for ions with pulse power technology centered on development of a new laboratory facility and design and procurement of hardware for a five-stage test apparatus for the Pulslac concept

  12. Nanostructures by ion beams

    Science.gov (United States)

    Schmidt, B.

    Ion beam techniques, including conventional broad beam ion implantation, ion beam synthesis and ion irradiation of thin layers, as well as local ion implantation with fine-focused ion beams have been applied in different fields of micro- and nanotechnology. The ion beam synthesis of nanoparticles in high-dose ion-implanted solids is explained as phase separation of nanostructures from a super-saturated solid state through precipitation and Ostwald ripening during subsequent thermal treatment of the ion-implanted samples. A special topic will be addressed to self-organization processes of nanoparticles during ion irradiation of flat and curved solid-state interfaces. As an example of silicon nanocrystal application, the fabrication of silicon nanocrystal non-volatile memories will be described. Finally, the fabrication possibilities of nanostructures, such as nanowires and chains of nanoparticles (e.g. CoSi2), by ion beam synthesis using a focused Co+ ion beam will be demonstrated and possible applications will be mentioned.

  13. WORKSHOP: Crystalline beams

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Following pioneer work by specialists at the Soviet Novosibirsk Laboratory some ten years ago, interest developed in the possibility of 'freezing' ion beams in storage rings by pushing cooling (to smooth out beam behaviour) to its limits, the final goal being to lock the ions into a neat crystal pattern. After advances by groups working on laser cooled ions in traps, and with several cooling rings now in operation, a workshop on crystalline ion beams was organized recently by the GSI (Darmstadt) Laboratory and held at Wertheim in Germany

  14. Luminescent beam stop

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Diane; Morton, Simon A.

    2017-10-25

    This disclosure provides systems, methods, and apparatus related to beam stops. In one aspect, a device comprises a luminescent material, a beam stop plate, and an optical fiber. The luminescent material is a parallelepiped having a first side and a second side that are squares and having a third side that is a rectangle or a square. The first side and the second side are perpendicular to the third side. The beam stop plate is attached to the first side of the luminescent material. The optical fiber has a first end and a second end, with the first end of the optical fiber attached to the third side of the luminescent material.

  15. ICFA Beam Dynamics Newsletter

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-11-21

    Electron beam ion sources technology made significant progress since 1968 when this method of producing highly charged ions in a potential trap within electron beam was proposed by E. Donets. Better understanding of physical processes in EBIS, technological advances and better simulation tools determined significant progress in key EBIS parameters: electron beam current and current density, ion trap capacity, attainable charge states. Greatly increased the scope of EBIS and EBIT applications. An attempt is made to compile some of EBIS engineering problems and solutions and to demonstrate a present stage of understanding the processes and approaches to build a better EBIS.

  16. The Lhc beam commissioning

    International Nuclear Information System (INIS)

    Redarelli, S.; Bailey, R.

    2008-01-01

    The plans for the Lhc proton beam commissioning are presented. A staged commissioning approach is proposed to satisfy the request of the Lhc experiments while minimizing the machine complexity in early commissioning phases. Machine protection and collimation aspects will be tackled progressively as the performance will be pushed to higher beam intensities. The key parameters are the number of bunches, k b , the proton intensity pe bunch, N, and the β in the various interaction points. All together these parameters determine the total beam power and the complexity of the machine. We will present the proposed trade off between the evolution of these parameters and the Lhc luminosity performance.

  17. Secondary beams at GANIL

    International Nuclear Information System (INIS)

    Doubre, H.

    1992-01-01

    GANIL, a user's facility since 1983, can deliver a broad spectrum of heavy-ion beams, from He to U, to well-equipped experimental areas. Their very large intensities are to be exploited to produce secondary beams, either using the fragmentation method (beams at energy per nucleon larger than 30 MeV/u), or the ISOL method. With the latter one, these ions have to be re-accelerated. The project of a cyclotron as a post-accelerator is described. (author) 11 refs.; 7 figs.; 3 tabs

  18. LEDA BEAM DIAGNOSTICS INSTRUMENTATION: BEAM POSITION MONITORS

    International Nuclear Information System (INIS)

    Barr, D.

    2000-01-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7-MeV and current of 100-mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS32OC40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system

  19. Beam Characterizations at Femtosecond Electron Beam Facility

    CERN Document Server

    Rimjaem, Sakhorn; Kangrang, Nopadol; Kusoljariyakul, Keerati; Rhodes, Michael W; Saisut, Jatuporn; Thongbai, Chitrlada; Vilaithong, Thiraphat; Wichaisirimongkol, Pathom; Wiedemann, Helmut

    2005-01-01

    The SURIYA project at the Fast Neutron Research Facility (FNRF) has been established and is being commissioning to generate femtosecond electron pulses. Theses short pulses are produced by a system consisting of an S-band thermionic cathode RF-gun, an alpha magnet as a magnetic bunch compressor, and a linear accelerator. The characteristics of its major components and the beam characterizations as well as the preliminary experimental results will be presented and discussed.

  20. Beam-beam-induced orbit effects at LHC

    International Nuclear Information System (INIS)

    Schaumann, M; Fernandez, R Alemany

    2014-01-01

    For high bunch intensities the long-range beam-beam interactions are strong enough to provoke effects on the orbit. As a consequence the closed orbit changes. The closed orbit of an unperturbed machine with respect to a machine where the beam-beam force becomes more and more important has been studied and the results are presented in this paper

  1. Beam line design for a low energy electron beam

    International Nuclear Information System (INIS)

    Arvind Kumar; Mahadevan, S.

    2002-01-01

    The design of a beam line for transport of a 70 keV electron beam from a thermionic gun to the Plane Wave Transformer (PWT) linac incorporating two solenoid magnets, a beam profile monitor and drift sections is presented. We used beam dynamics codes EGUN, PARMELA and compare simulated results with analytical calculations. (author)

  2. Compensated linac beam colliding with a stored beam

    International Nuclear Information System (INIS)

    Csonka, P.L.; Oregon Univ., Eugene

    1981-01-01

    The disruptive effect of a linac beam on a beam circulating in a storage ring can be reduced by compensating for the space charge of the linac beam with a beam which is oppositely charged, may have different bunchlength as well as lower energy, and need not be circulating in a storage ring. (orig.)

  3. Longitudinal beam dynamics

    International Nuclear Information System (INIS)

    Tecker, F

    2014-01-01

    The course gives a summary of longitudinal beam dynamics for both linear and circular accelerators. After discussing different types of acceleration methods and synchronism conditions, it focuses on the particle motion in synchrotrons

  4. Beam position monitoring

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1990-01-01

    Beam monitoring in accelerators is reviewed, with emphasis on the engineering aspects of the problem. Guidelines for monitor design are given. Advantages and disadvantages of various electrode designs and signal processing methods are reviewed

  5. Final focus test beam

    International Nuclear Information System (INIS)

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration

  6. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  7. Single Beam Holography.

    Science.gov (United States)

    Chen, Hsuan; Ruterbusch, Paul H.

    1979-01-01

    Discusses how holography can be used as part of undergraduate physics laboratories. The authors propose a single beam technique of holography, which will reduce the recording scheme as well as relax the isolation requirements. (HM)

  8. Neutral beams for mirrors

    International Nuclear Information System (INIS)

    Fink, J.H.

    1983-01-01

    An important demonstration of negative ion technology is proposed for FY92 in the MFTF-α+T, an upgrade of the Mirror Fusion Test Facility at the Lawrence Livermore National Laboratory. This facility calls for 200-keV negative ions to form neutral beams that generate sloshing ions in the reactor end plugs. Three different beam lines are considered for this application. Their advantages and disadvantages are discussed

  9. PARTICLE BEAMS: Frontier course

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Driven by the quest for higher energies and optimal physics conditions, the behaviour of particle beams in accelerators and storage rings is the subject of increasing attention. Thus the second course organized jointly by the US and CERN Accelerator Schools looked towards the frontiers of particle beam knowledge. The programme held at South Padre Island, Texas, from 23-29 October attracted 125 participants including some 35 from Europe

  10. Hadron beams and accelerators

    International Nuclear Information System (INIS)

    Roser, T.

    1994-01-01

    There were four sessions on Hadron Beams and Accelerators with 7 talks on Siberian Snakes and spin rotators, 3 talks on polarization build-up of unpolarized beams in storage rings and 5. 9, and 3 talks on low, medium, and high energy polarimeters, respectively. In this paper I will briefly describe a few highlights from these sessions, giving emphasis to topics which I think will play an important role in the future

  11. LHC First Beam 2008

    CERN Multimedia

    Tuura, L

    2008-01-01

    The CMS Centre played a major part in the LHC First Beam Event on September 10th 2008: it was a central point for CMS, hosting journalists from all over the world and providing live link-ups to collaborating institutes as well as, of course, monitoring events as they happened at Point 5. It was also a venue for celebration as the beam completed circuits of the LHC in both directions, passing successfully through the detector (Courtesy of Lassi Tuura)

  12. PARTICLE BEAMS: Frontier course

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-01-15

    Driven by the quest for higher energies and optimal physics conditions, the behaviour of particle beams in accelerators and storage rings is the subject of increasing attention. Thus the second course organized jointly by the US and CERN Accelerator Schools looked towards the frontiers of particle beam knowledge. The programme held at South Padre Island, Texas, from 23-29 October attracted 125 participants including some 35 from Europe.

  13. Hadron beams and accelerators

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    There were four sessions on Hadron Beams and Accelerators with 7 talks on Siberian Snakes and spin rotators, 3 talks on polarization build-up of unpolarized beams in storage rings and 5, 9, and 3 talks on low, medium, and high energy polarimeters, respectively. In this paper I will briefly describe a few highlights from these sessions, giving emphasis to topics which I think will play an important role in the future. copyright 1995 American Institute of Physics

  14. Betatrons with kiloampere beams

    International Nuclear Information System (INIS)

    Peterson, J.M.

    1982-11-01

    Although the magnetic-induction method of acceleration used in the betatron is inherently capable of accelerating intense particle beams to high energy, many beam-instability questions arise when beams in the kilo-ampere range are considered. The intense electromagnetic fields produced by the beam, and by the image currents and charges induced in the surrounding walls, can produce very disruptive effects. Several unstable modes of collective oscillation are possible; the suppression of any one of them usually involves energy spread for Landau damping and careful design of the electrical character of the vacuum chamber. The various design criteria are often mutually incompatible. Space-charge detuning can be severe unless large beam apertures and high-energy injection are used. In order to have an acceptably low degree of space-charge detuning in the acceleration of a 10-kilo-ampere electron beam, for example, an injection energy on the order of 50 MeV seems necessary, in which case the forces due to nearby wall images can have a larger effect than the internal forces of the beam. A method of image compensation was invented for reducing the net image forces; it serves also to decrease the longitudinal beam impedance and thus helps alleviate the longitudinal instability as well. In order to avoid the ion-electron collective instability a vacuum in the range of 10 - 8 torr is required for an acceleration time of 1 millisecond. A multi-ring betatron system using the 50-MeV Advanced Test Accelerator at LLNL as an injector was conceptually designed

  15. Cluster ion beam facilities

    International Nuclear Information System (INIS)

    Popok, V.N.; Prasalovich, S.V.; Odzhaev, V.B.; Campbell, E.E.B.

    2001-01-01

    A brief state-of-the-art review in the field of cluster-surface interactions is presented. Ionised cluster beams could become a powerful and versatile tool for the modification and processing of surfaces as an alternative to ion implantation and ion assisted deposition. The main effects of cluster-surface collisions and possible applications of cluster ion beams are discussed. The outlooks of the Cluster Implantation and Deposition Apparatus (CIDA) being developed in Guteborg University are shown

  16. Electron-beam lithography

    International Nuclear Information System (INIS)

    Harriott, L.; Liddle, A.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron beams to write features on silicon wafers. Recent advances in electron beam lithography, as it is known, could enable this technology to be used for the mass manufacture of silicon chips. The validation of space-charge optimization and evaluation of printing techniques is underway. (UK)

  17. Electron beam lithography

    International Nuclear Information System (INIS)

    Harriott, L.; Liddle, A.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron beams to write features on silicon wafers. Recent advances in electron beam lithography, as it is known, could enable this technology to be used for the mass manufacture of silicon chips. The validation of space-charge optimization and evaluation of printing techniques is underway. 5 figs

  18. Intense ion beam generator

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Sudan, R.N.

    1977-01-01

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation

  19. Negative ion beam processes

    International Nuclear Information System (INIS)

    Hayward, T.D.; Lawrence, G.P.; Bentley, R.F.; Malanify, J.J.; Jackson, J.A.

    1975-06-01

    Los Alamos Scientific Laboratory fiscal year 1975 work on production of intense, very bright, negative hydrogen (H - ), ion beams and conversion of a high-energy (a few hundred MeV) negative beam into a neutral beam are described. The ion source work has used a cesium charge exchange source that has produced H - ion beams greater than or equal to 10 mA (about a factor of 10 greater than those available 1 yr ago) with a brightness of 1.4 x 10 9 A/m 2 -rad 2 (about 18 times brighter than before). The high-energy, neutral beam production investigations have included measurements of the 800-MeV H - -stripping cross section in hydrogen gas (sigma/sub -10/, tentatively 4 x 10 -19 cm 2 ), 3- to 6-MeV H - -stripping cross sections in a hydrogen plasma (sigma/sub -10/, tentatively 2 to 4 x 10 -16 cm 2 ), and the small-angle scattering that results from stripping an 800-MeV H - ion beam to a neutral (H 0 ) beam in hydrogen gas. These last measurements were interrupted by the Los Alamos Meson Physics Facility shutdown in December 1974, but should be completed early in fiscal year 1976 when the accelerator resumes operation. Small-angle scattering calculations have included hydrogen gas-stripping, plasma-stripping, and photodetachment. Calculations indicate that the root mean square angular spread of a 390-MeV negative triton (T - ) beam stripped in a plasma stripper may be as low as 0.7 μrad

  20. CERN: Producing radioactive beams

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Accelerating radioactive beams has long been of interest at CERN's ISOLDE on-line isotope separator - the possibility was discussed at a CERN Workshop on intermediate energy physics as early as 1977. Meanwhile, as was highlighted in the 1991 report of the Nuclear Physics European Collaboration Committee, widespread scientific interest in these beams has developed and a range of projects are proposed, under construction or operational throughout the world

  1. Particles beams and applications

    International Nuclear Information System (INIS)

    Uzureau, J.L.

    1996-01-01

    This issue of the ''Chocs'' journal is devoted to particles beams used by the D.A.M. (Direction of Military Applications) and to their applications. The concerned beams are limited to those in an energy range from hundred of Kev to several Gev. Light ions (protons, deuterons, alpha) where it is easy to produce neutrons sources and heavy ions (from carbon to gold). (N.C.). 8 refs., 2 figs

  2. Fast antihydrogen beam spectroscopy

    International Nuclear Information System (INIS)

    Neumann, R.

    1989-01-01

    The motivation for production and precision spectroscopy of antihydrogen atoms is outlined. An experimental configuration is considered, concerning laser-microwave spectroscopy of a fast hydrogen beam with characteristics similar to those of an antihydrogen beam emanating from an antiproton-positron overlap region in an antiproton storage ring. In particular, a possible experiment for the measurement of the ground state hyperfine structure splitting is described. (orig.)

  3. Observations of beam-beam effects in the LHC 2011

    International Nuclear Information System (INIS)

    Herr, W.; Alemany, R.; Buffat, X.; Calaga, R.; Giachino, R.; Papotti, G.; Pieloni, T.; Trad, G.; Schaumann, M.

    2012-01-01

    We have reported on the first studies of beam-beam effects in the LHC with high intensity, high brightness beams and can summarize the results as follows. The effect of the beam-beam interaction on the beam dynamics is clearly established. The LHC allows very large head-on tune shifts above nominal. The effect of long range interactions on the beam lifetime and losses (dynamic aperture) is clearly visible. The number of head-on and/or long range interactions important for losses and all predicted PACMAN effects have been observed. All observations are in good agreement with the expectations

  4. Beam-beam diagnostics from closed-orbit distortion

    International Nuclear Information System (INIS)

    Furman, M.; Chin, Y.H.; Eden, J.; Kozanecki, W.; Tennyson, J.; Ziemann, V.

    1992-07-01

    We study the applicability of beam-beam deflection techniques as a tuning tool for asymmetric B factories, focusing on PEP-II as an example. Assuming that the closed orbits of the two beams are separated vertically at the interaction point by a local orbit bump that is nominally closed, we calculate the residual beam orbit distortions due to the beam-beam interaction. Difference orbit measurements, performed at points conveniently distant from the interaction point (IP), provide distinct signatures that can be used to maintain the beams in collision and perform detailed optical diagnostics at the IP. A proposal to test this method experimentally at the TRISTAN ring is briefly discussed

  5. SPIDER beam dump as diagnostic of the particle beam

    Energy Technology Data Exchange (ETDEWEB)

    Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it; Sartori, E. [Università degli Studi di Padova, Via 8 Febbraio 2, Padova 35122 (Italy); Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy); Dalla Palma, M.; Brombin, M.; Pasqualotto, R. [Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy)

    2016-11-15

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  6. Transverse equilibria in linear collider beam-beam collisions

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Chen, Pisin

    1991-01-01

    It has been observed in simulations of the beam-beam interaction in linear colliders that a near equilibrium pinched state of the colliding beams develops when the disruption parameter is large (D much-gt 1). In this state the beam transverse density distributions are peaked at center, with long tails. The authors present here an analytical model of the equilibrium approached by the beams, that of a generalized Bennett pinch which develops through collisionless damping due to the strong nonlinearity of the beam-beam interaction. In order to calculate the equilibrium pinched beam size, an estimation of the rms emittance growth is made which takes into account the partial adiabaticity of the collision. This pinched beam size is used to derive the luminosity enhancement factors whose scaling is in agreement with the simulation results for both D and thermal factor A = σ z /β * large, and explains the previously noted cubic relationship between round and flat beam enhancement factors

  7. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    International Nuclear Information System (INIS)

    Gilpatrick, John D.; Batygin, Yuri K.; Gonzales, Fermin; Gruchalla, Michael E.; Kutac, Vincent G.; Martinez, Derwin; Sedillo, James Daniel; Pillai, Chandra; Rodriguez Esparza, Sergio; Smith, Brian G.

    2012-01-01

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H - beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  8. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, John D. [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gonzales, Fermin [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  9. Electron beams and applications

    International Nuclear Information System (INIS)

    Haouat, G.; Couillaud, C.

    1998-01-01

    Studies of the physical properties of the ELSA-linac electron beam are presented. They include measurements of the characteristic beam parameter and analyzes of the beam transport using simulation codes. The aim of these studies is to determine the best conditions for production of intense and very short electron bunches and to optimize the transport of space-charge dominated beams. Precise knowledge of the transport dynamics allows to produce beams with the required characteristics for light production in Free-Electron Laser (FEL), and to give a good description of energy-transfer phenomena between electrons and photons in the wriggler. The particular features of ELSA authorize studies of high-intensity, high-brightness beam properties, especially the halo surrounding the dense core of the electron bunches, which is formed by the space charge effects. It is also shown that the ELSA facility is well suited for the fabrication of very short γ and X-rays sources for applied research in nuclear and plasma physics, or for time response studies of fast detectors. (author)

  10. ORIC Beam Energy Increase

    CERN Document Server

    Mallory, Merrit L; Dowling, Darryl; Hudson, Ed; Lord, Dick; Tatum, Alan

    2005-01-01

    The detection of and solution to a beam interference problem in the Oak Ridge Isochronous Cyclotron (ORIC) extraction system has yielded a 20% increase in the proton beam energy. The beam from ORIC was designed to be extracted before the nu r equal one resonance. Most cyclotrons extract after the nu r equal one resonance, thus getting more usage of the magnetic field for energy acceleration. We have now determined that the electrostatic deflector septum interferes with the last accelerated orbit in ORIC, with the highest extraction efficiency obtained near the maximum nu r value. This nu r provides a rotation in the betatron oscillation amplitude that is about the same length as the electrostatic septum thus allowing the beam to jump over the interference problem with the septum. With a thinned septum we were able to tune the beam through the nu r equal one resonance and achieve a 20% increase in beam energy. This nu r greater than one extraction method may be desirable for very high field cyclotrons since it...

  11. Photon beam position monitor

    Science.gov (United States)

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  12. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  13. The ideal neutrino beams

    CERN Document Server

    Lindroos, Mats

    2009-01-01

    The advance in neutrino oscillation physics is driven by the availability of well characterized and high flux neutrino beams. The three present options for the next generation neutrino oscillation facility are super beams, neutrino factories and beta-beams. A super-beam is a very high intensity classical neutrino beam generated by protons impinging on a target where the neutrinos are generated by the secondary particles decaying in a tunnel down streams of the target. In a neutrino factory the neutrinos are generated from muons decaying in a storage ring with long straight sections pointing towards the detectors. In a beta-beam the neutrinos are also originating from decay in a storage ring but the decaying particles are radioactive ions rather than muons. I will in this presentation review the three options and discuss the pros and cons of each. The present joint design effort for a future high intensity neutrino oscillation in Europe within a common EU supported design study, EURONU, will also be presented....

  14. The ideal neutrino beams

    Science.gov (United States)

    Lindroos, Mats

    2009-06-01

    The advance in neutrino oscillation physics is driven by the availability of well characterized and high flux neutrino beams. The three present options for the next generation neutrino oscillation facility are super beams, neutrino factories and beta-beams. A super-beam is a very high intensity classical neutrino beam generated by protons impinging on a target where the neutrinos are generated by the secondary particles decaying in a tunnel down streams of the target. In a neutrino factory the neutrinos are generated from muons decaying in a storage ring with long straight sections pointing towards the detectors. In a beta-beam the neutrinos are also originating from decay in a storage ring but the decaying particles are radioactive ions rather than muons. I will in this presentation review the three options and discuss the pros and cons of each. The present joint design effort for a future high intensity neutrino oscillation in Europe within a common EU supported design study, EURONU, will also be presented. The design study will explore the physics reach, the detectors, the feasibility, the safety issues and the cost for each of the options so that the the community can take a decision on what to build when the facilities presently under exploitation and construction have to be replaced.

  15. Beam-beam effects under the influence of external noise

    International Nuclear Information System (INIS)

    Ohmi, K

    2014-01-01

    Fast external noise, which gives fluctuation into the beam orbit, is discussed in connection with beam-beam effects. Phase noise from crab cavities and detection devices (position monitor) and kicker noise from the bunch by bunch feedback system are the sources. Beam-beam collisions with fast orbit fluctuations with turn by turn or multi-turn correlations, cause emittance growth and luminosity degradation. We discuss the tolerance of the noise amplitude for LHC and HL-LHC

  16. Beam-beam force and storage ring parameters

    International Nuclear Information System (INIS)

    Herrera, J.C.

    1979-01-01

    The fundamental aspects of the beam--beam force as it occurs in Intersecting Storage Rings are reported. The way in which the effect of the beam--particle electromagnetic force (weak--strong interaction) is different in the case of unbunched proton beams which cross each other at an angle (as in the ISR and in ISABELLE) is shown, as compared to the case of electron--positron beams where bunches collide head-on

  17. 3D Terahertz Beam Profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Jepsen, Peter Uhd

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  18. CH2 molecular beam source

    International Nuclear Information System (INIS)

    Porter, R.A.R.; Grosser, A.E.

    1980-01-01

    A molecular beam source of CH 2 is described. Coaxial beams of methylene halide and alkali metal react and the mixture is formed into a molecular beam. Passage through a mechanical velocity selector rotating at a suitably high speed purifies the beam, separating light, fast CH 2 from heavier, slower contaminating species

  19. Overview of colliding beam facilities

    International Nuclear Information System (INIS)

    Herrera, J.C.; Month, M.

    1979-01-01

    A review is presented of the colliding beam facilities in existence today. The major high energy physics facilities around the world are described, and a view is presented of the beam collisions in which the instruments used to make the beams collide and those used to detect the products of particle interactions in the beam overlap region are described

  20. Biomaterials modification by ion beam

    International Nuclear Information System (INIS)

    Zhang Tonghe; Yi Zhongzhen; Zhang Xu; Wu Yuguang

    2001-01-01

    Ion beam technology is one of best ways for the modification of biomaterials. The results of ion beam modification of biomaterials are given. The method and results of improved biocompatibility are indicated by ion beam technology. The future development of ion beam modification of biomaterials is discussed

  1. Beam abort detection of SSRF

    International Nuclear Information System (INIS)

    Feng Chenxia; Zhou Weimin; Leng Yongbin

    2010-01-01

    Beam abort signal is a timing signal of the SSRF (Shanghai Synchrotron Radiation Facility) storage ring. It is used to synchronize BPM processor Libera logging beam position data to identify beam abort source and improve the stability of accelerator. The concept design and engineering design of beam abort trigger module are introduced in this paper, and lab test results of this module using RF signal source also presented. Online beam test results show that this module has achieved design goal, could be used to log beam position data before beam abort. (authors)

  2. Bunched beam neutralization

    International Nuclear Information System (INIS)

    Gammel, G.M.; Maschke, A.W.; Mobley, R.M.

    1979-01-01

    One of the steps involved in producing an intense ion beam from conventional accelerators for Heavy Ion Fusion (HIF) is beam bunching. To maintain space charge neutralized transport, neutralization must occur more quickly as the beam bunches. It has been demonstrated at BNL that a 60 mA proton beam from a 750 kV Cockcroft--Walton can be neutralized within a microsecond. The special problem in HIF is that the neutralization must occur in a time scale of nanoseconds. To study neutralization on a faster time scale, a 40 mA, 450 kV proton beam was bunched at 16 MHz. A biased Faraday cup sampled the bunched beam at the position where maximum bunching was nominally expected, about 2.5 meters from the buncher. Part of the drift region, about 1.8 meters, was occupied by a series of Gabor lenses. In addition to enhancing beam transport by transverse focussing, the background cloud of electrons in the lenses provided an extra degree of neutralization. With no lens, the best bunch factor was at least 20. Bunch factor is defined here as the ratio of the distance between bunches to the FWHM bunch length. With the lens, it was hoped that the increased plasma frequency would decrease the neutralization time and cause an increase in the bunch factor. In fact, with the lens, the instantaneous current increased about three times, but the bunch factor dropped to about 10. Even with the lens, the FWHM of the bunches at the position of maximum bunching was still comparable to or less than the oscillation period of the surrounding electron plasma. Thus, the electron density in the lens must increase before neutralization could be effective in this case, or bunching should be done at a lower frequency

  3. Beam-beam observations in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  4. Intense-proton-beam transport through an insulator beam guide

    International Nuclear Information System (INIS)

    Hanamori, Susumu; Kawata, Shigeo; Kikuchi, Takashi; Fujita, Akira; Chiba, Yasunobu; Hikita, Taisuke; Kato, Shigeru

    1998-01-01

    In this paper we study intense-proton-beam transport through an insulator guide. In our previous papers (Jpn. J. Appl. Phys. 34 (1995) L520, Jpn. J. Appl. Phys. 35 (1996) L1127) we proposed a new system for intense-electron-beam transport using an insulator guide. In contrast to the electron beam, an intense-proton beam tends to generate a virtual anode, because of the large proton mass. The virtual anode formation at the initial stage is prevented by prefilled plasma in this system. During and after this, electrons are extracted from the plasma generated at the insulator surface by the proton beam space charge and expand over the transport area. The proton beam charge is effectively neutralized by the electrons. Consequently, the proton beam propagates efficiently through the insulator beam guide. The electron extraction is self-regulated by the net space charge of the proton beam. (author)

  5. Beam-plasma instability in ion beam systems used in neutral beam generation

    International Nuclear Information System (INIS)

    Hooper, E.B. Jr.

    1977-02-01

    The beam-plasma instability is analyzed for the ion beams used for neutral beam generation. Both positive and negative ion beams are considered. Stability is predicted when the beam velocity is less than the electron thermal velocity; the only exception occurs when the electron density accompanying a negative ion beam is less than the ion density by nearly the ratio of electron to ion masses. For cases in which the beam velocity is greater than the electron thermal velocity, instability is predicted near the electron plasma frequency

  6. ICFA Beam Dynamics Newsletter

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al

    2012-07-01

    The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.

  7. Paul Collier : Balancing beams

    CERN Multimedia

    2009-01-01

    As former head of AB Operations, Paul Collier and his group were in the ‘cockpit’ for the LHC’s maiden voyage - piloting the first beam around the ring. But now, as Head of the Beams Department, he will need his feet firmly on the ground in order to balance all the beam activities at CERN. "As Department Head, I’ll have less direct contact with the machines," Collier says with a hint of regret. "I’ll still obviously be very involved, but they won’t actually let me loose in front of the keyboard anymore!" As the new Head of the BE Department, Collier will be in charge of nearly 400 people, and will oversee all the beam activities, including the preparations for the longest period of beam operation in the history of CERN. In the new organization, the BE, TE and EN Departments have been grouped together in the Accelerator and Technology Sector. "‘Partnership’ is a key word for the three departments," says Collier. "The n...

  8. A better beam quality

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Progress has been made on two fronts, providing physics data and preparing for higher intensities. Over the Whitsun weekend of May 22 to 24, 5 fills for physics provided almost 30 hours of stable colliding beams, all with bunch intensities around 2x1010 protons and at a β* of 2m. The first three of these fills were with 6 bunches per beam, giving 3 pairs of collisions in all experiments. For the other two fills, the number of bunches per beam was increased to 13, giving 8 pairs of colliding bunches, and for the first time luminosities were pushed above 1029 cm-2s-1, 2 orders of magnitude higher than first collisions in March. In between and after these physics fills, nominal bunches of 1011 protons were successfully ramped and brought into collision in ATLAS and CMS for the first time (not in stable beam conditions and without squeeze). Event rates seen by the experiments were in the expected range for these conditions. In the middle of this work, a short fill with beams of 7 nominal bunches was ...

  9. Bringing up beams

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Last month, commissioning began on CERN’s newest linear accelerator: Linac4. As the replacement machine for Linac2, Linac4 will take a negative hydrogen ion beam to a staggering 160 MeV. We check in to see how the Linac4 team is preparing its machine for its new role as the first link in the accelerator chain.   The Linac4 3 MeV beam line, with the ion source in the back, the RFQ in the middle and the chopping line in the front. On 14 November, members of the Linac4 collaboration and the CERN Operations Group were brought together for their first “real day” in the Linac4 Control Room. Together, they successfully accelerated their first hydrogen ion beam to 3 MeV. It was an exciting moment for everyone involved and marked the start of one of the most critical commissioning phases for the new accelerator. At the start of the Linac4 beam line sits the CERN-made Radio Frequency Quadrupole (RFQ). This vital piece of machinery takes the beam from 45 keV to 3 MeV in ju...

  10. Lightweight HPC beam OMEGA

    Science.gov (United States)

    Sýkora, Michal; Jedlinský, Petr; Komanec, Jan

    2017-09-01

    In the design and construction of precast bridge structures, a general goal is to achieve the maximum possible span length. Often, the weight of individual beams makes them difficult to handle, which may be a limiting factor in achieving the desired span. The design of the OMEGA beam aims to solve a part of these problems. It is a thin-walled shell made of prestressed high-performance concrete (HPC) in the shape of inverted Ω character. The concrete shell with prestressed strands is fitted with a non-stressed tendon already in the casting yard and is more easily transported and installed on the site. The shells are subsequently completed with mild steel reinforcement and cores are cast in situ together with the deck. The OMEGA beams can also be used as an alternative to steel - concrete composite bridges. Due to the higher production complexity, OMEGA beam can hardly substitute conventional prestressed beams like T or PETRA completely, but it can be a useful alternative for specific construction needs.

  11. A beam profile monitor for a tagged photon beam

    International Nuclear Information System (INIS)

    Arends, J.; Breuer, M.; Dahmen, H.D.; Detemple, P.; Noeldeke, G.; Schneider, W.; Zucht, B.

    1990-10-01

    A beam profile monitor for electron and photon beams is described, which operates at the low intensities encountered in a tagged bremsstrahlung beam environment, typically 10 10 electrons/s and 10 7 photons/s. The method is based on a wire scanner and utilizes the presence of a tagging spectrometer. The accuracy of the measurements can be tuned in a wide range (at the expense of measuring time) to meet the requirements set by the actual beam size. Examples of measured electron and photon beam profiles at the tagged photon beam of the PHOENICS experiment at the electron stretcher ring ELSA are given. (orig.)

  12. A beam profile monitor for a tagged photon beam

    Energy Technology Data Exchange (ETDEWEB)

    Arends, J.; Breuer, M.; Dahmen, H.D.; Detemple, P.; Noeldeke, G.; Schneider, W.; Zucht, B.

    1990-10-01

    A beam profile monitor for electron and photon beams is described, which operates at the low intensities encountered in a tagged bremsstrahlung beam environment, typically 10{sup 10} electrons/s and 10{sup 7} photons/s. The method is based on a wire scanner and utilizes the presence of a tagging spectrometer. The accuracy of the measurements can be tuned in a wide range (at the expense of measuring time) to meet the requirements set by the actual beam size. Examples of measured electron and photon beam profiles at the tagged photon beam of the PHOENICS experiment at the electron stretcher ring ELSA are given. (orig.).

  13. Beam-beam effect and luminosity in SPEAR

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1980-01-01

    Many measurements on the beam-beam limit in SPEAR have been performed over the past years. The goal for these measurements was to find the proper parameterization of the beam-beam effect. All measurements presented were done with both beams equally blown up by control of the flip-flop phenomenon. Colliding beam measurements were made at energies as low as 600 MeV and together with earlier measurements the author presents the scaling of some relevant storage ring parameters from 600 MeV up to almost 4 GeV. (Auth.)

  14. High intensity beam dump for the Tevatron beam abort system

    International Nuclear Information System (INIS)

    Kidd, J.; Mokhov, N.; Murphy, T.; Palmer, M.; Toohig, T.; Turkot, F.; VanGinneken, A.

    1981-01-01

    The beam abort system proposed for the Fermilab Tevatron Accelerator will extract the proton beam from the ring in a single turn (approximately 20/mu/s) and direct it to an external beam dump. It is the function of the beam dump to absorb the unwanted beam and limit the escaping radiation to levels that are acceptable to the surrounding populace and apparatus. A beam dump that is expected to meet these requirements has been designed and constructed. Detailed design of the dump, including considerations leading to the choice of materials, are given. 6 refs

  15. Beam-beam studies for FCC-hh

    CERN Document Server

    AUTHOR|(CDS)2068329; Pieloni, Tatiana; Buffat, Xavier; Furuseth, Sondre Vik

    2017-01-01

    The Future Circular Collider hadron-hadron (FCC-hh) design study is currently exploring different IR design possibilities including round and flat optics or different crossing schemes. The present study intends to evaluate each scenario from the beam-beam effects point of view. In particular the single particle long term stability to maximize beam lifetimes and luminosity reach is used to quantify the differences. The impact of strong head on interactions on the beam quality and lifetime is addressed by means of GPU accelerated simulations code featuring a weak-strong 6-dimensional beam-beam interaction.

  16. A beam position monitor for low current dc beams

    International Nuclear Information System (INIS)

    Adderley, P.; Barry, W.; Heefner, J.; Kloeppel, P.; Rossmanith, R.; Wise, M.; Jachim, S.

    1989-01-01

    The 4 GeV recirculating linac, CEBAF, if presently under construction and will produce a CW beam with average current between.1 and 200 μA. In order to measure beam position, the beam current will be amplitude modulated at a frequency of 10 MHz. The modulation is detected by an inductive loop type monitor with electronics sensitive only to the modulation frequency. The first test with beam from the CEBAF injector indicate that beam position can be measured with an accuracy of .1 mm at a modulated beam current of 1 μA. 1 ref., 6 figs., 1 tab

  17. Beam profile monitors for a tagged photon beam facility

    International Nuclear Information System (INIS)

    Arends, J.; Breuer, M.; Dahmen, H.D.; Detemple, P.; Schneider, W.; Urban, D.; Zucht, B.

    1991-01-01

    A beam profile monitor for electron and photon beams is described, which operates at the low intensities encountered in a tagged bremsstrahlung beam environment, typically 10 10 electrons/s and 10 7 photons/s. The method is based on a wire scanner and utilizes the presence of a tagging spectrometer. The accuracy of the measurements can be tuned in a wide range to meet the requirements set by the actual beam parameters. Examples of measured electron and photon beam profiles at the tagged photon beam of the PHOENICS experiment at the electron stretcher ring ELSA in Bonn are given. (orig.)

  18. Narrow beam neutron dosimetry.

    Science.gov (United States)

    Ferenci, M Sutton

    2004-01-01

    Organ and effective doses have been estimated for male and female anthropomorphic mathematical models exposed to monoenergetic narrow beams of neutrons with energies from 10(-11) to 1000 MeV. Calculations were performed for anterior-posterior, posterior-anterior, left-lateral and right-lateral irradiation geometries. The beam diameter used in the calculations was 7.62 cm and the phantoms were irradiated at a height of 1 m above the ground. This geometry was chosen to simulate an accidental scenario (a worker walking through the beam) at Flight Path 30 Left (FP30L) of the Weapons Neutron Research (WNR) Facility at Los Alamos National Laboratory. The calculations were carried out using the Monte Carlo transport code MCNPX 2.5c.

  19. Light Beam Generation

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method and a system for synthesizing a set of controllable light beams by provision of a system for synthesizing a set of light beams, comprising a spatially modulated light source for generation of electromagnetic radiation with a set of replicas of a predetermined......(x-xs, y-ys), a Fourier transforming lens for Fourier transforming the electromagnetic radiation, a first spatial light modulator for phase shifting the Fourier transformed electromagnetic radiation with the phase -F(u, v) of S*, S* is the complex conjugate of the Fourier transformed symbol s, a Fourier...... transforming lens for Inverse Fourier transforming the spatially modulated radiation, whereby a set of light beams are formed propagating through the inverse Fourier plane (x', y') at desired positions (x's, y's), and a controller for controlling the position of a replica of the symbol, s, for movement...

  20. Grazing incidence beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V.K.

    1985-01-01

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.

  1. Fast beam radiofrequency spectroscopy

    International Nuclear Information System (INIS)

    Pipkin, F.M.

    1983-01-01

    The combination of a fast atom or ion beam derived from a small accelerator with radiofrequency spectroscopy methods provides a powerful method for measuring the fine structure of atomic and molecular systems. The fast beam makes possible measurements in which two separated oscillatory fields are used to obtain resonance lines whose widths are less than the natural line width due to the lifetimes of the states. The separated oscillatory field lines have, in addition, a number of features which make possible measurements with greater precision and less sensitivity to systematic errors. The fast beam also makes accessible multiple photon radiofrequency transitions whose line width is intrinsically narrower than that of the single photon transitions and which offer great potential for high precision measurements. This report focuses on the techniques and their promise. Recent measurements of the fine structure of H and He + are used as illustrations

  2. SLIA beam line design

    International Nuclear Information System (INIS)

    Petillo, J.; Chernin, D.; Kostas, C.; Mondelli, A.

    1990-01-01

    The Spiral Line Induction Accelerator (SLIA) is a multi-kiloampere compact electron accelerator. It uses linear induction accelerator modules on the straight sections of a racetrack spiral, with strong-focusing bends to recirculate the electrons. The strong focusing is provided by stellarator windings on the bends. Stellarator coils are used to provide the strong focusing on the bends. The matching of the electron beam from a diode through a series of accelerator modules and stellarator bends is a major issue in the design of this accelerator. The beam line design for a proof-of-concept SLIA experiment (10 kA, 7 MeV) to be carried out at Pulse Sciences, Inc. will be presented. The design will demonstrate beam matching from element to element in the focusing system, the design of an achromatic bend, and the requirements for avoiding collective instabilities

  3. Intracavity vortex beam generation

    Science.gov (United States)

    Naidoo, Darryl; Aït-Ameur, Kamel; Forbes, Andrew

    2011-10-01

    In this paper we explore vortex beams and in particular the generation of single LG0l modes and superpositions thereof. Vortex beams carry orbital angular momentum (OAM) and this intrinsic property makes them prevalent in transferring this OAM to matter and to be used in quantum information processing. We explore an extra-cavity and intra-cavity approach in LG0l mode generation respectively. The outputs of a Porro-prism resonator are represented by "petals" and we show that through a full modal decomposition, the "petal" fields are a superposition of two LG0l modes.

  4. The Colliding Beams Sequencer

    International Nuclear Information System (INIS)

    Johnson, D.E.; Johnson, R.P.

    1989-01-01

    The Colliding Beam Sequencer (CBS) is a computer program used to operate the pbar-p Collider by synchronizing the applications programs and simulating the activities of the accelerator operators during filling and storage. The Sequencer acts as a meta-program, running otherwise stand alone applications programs, to do the set-up, beam transfers, acceleration, low beta turn on, and diagnostics for the transfers and storage. The Sequencer and its operational performance will be described along with its special features which include a periodic scheduler and command logger. 14 refs., 3 figs

  5. Ion beam texturing

    Science.gov (United States)

    Hudson, W. R.

    1977-01-01

    A microscopic surface texture was created by sputter-etching a surface while simultaneously sputter-depositing a lower sputter yield material onto the surface. A xenon ion-beam source was used to perform the texturing process on samples as large as 3-cm diameter. Textured surfaces have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, stainless steel, Au, and Ag. A number of texturing parameters are studied including the variation of texture with ion-beam powder, surface temperature, and the rate of texture growth with sputter etching time.

  6. Beam optimization: improving methodology

    International Nuclear Information System (INIS)

    Quinteiro, Guillermo F.

    2004-01-01

    Different optimization techniques commonly used in biology and food technology allow a systematic and complete analysis of response functions. In spite of the great interest in medical and nuclear physics in the problem of optimizing mixed beams, little attention has been given to sophisticate mathematical tools. Indeed, many techniques are perfectly suited to the typical problem of beam optimization. This article is intended as a guide to the use of two methods, namely Response Surface Methodology and Simplex, that are expected to fasten the optimization process and, meanwhile give more insight into the relationships among the dependent variables controlling the response

  7. Merged neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Osterwalder, Andreas [Ecole Polytechnique Federale de Lausanne (EPFL), Institute for Chemical Sciences and Engineering, Lausanne (Switzerland)

    2015-12-15

    A detailed description of a merged beam apparatus for the study of low energy molecular scattering is given. This review is intended to guide any scientist who plans to construct a similar experiment, and to provide some inspiration in describing the approach we chose to our goal. In our experiment a supersonic expansion of paramagnetic particles is merged with one of polar molecules. A magnetic and an electric multipole guide are used to bend the two beams onto the same axis. We here describe in detail how the apparatus is designed, characterised, and operated. (orig.)

  8. Coherent laser beam combining

    CERN Document Server

    Brignon, Arnaud

    2013-01-01

    Recently, the improvement of diode pumping in solid state lasers and the development of double clad fiber lasers have allowed to maintain excellent laser beam quality with single mode fibers. However, the fiber output power if often limited below a power damage threshold. Coherent laser beam combining (CLBC) brings a solution to these limitations by identifying the most efficient architectures and allowing for excellent spectral and spatial quality. This knowledge will become critical for the design of the next generation high-power lasers and is of major interest to many industrial, environme

  9. Beam dancer fusion device

    International Nuclear Information System (INIS)

    Maier, H.B.

    1984-01-01

    To accomplish fusion of two or more fusion fuel elements numerous minute spots of energy or laser light are directed to a micro target area, there to be moved or danced about by a precision mechanical controlling apparatus at the source of the laser light or electromagnetic energy beams, so that merging and coinciding patterns of light or energy beams can occur around the area of the fuel atoms or ions. The projecting of these merging patterns may be considered as target searching techniques to locate responsive clusters of fuel elements and to compress such elements into a condition in which fusion may occur. Computerized programming may be used

  10. Diamonds for beam instrumentation

    International Nuclear Information System (INIS)

    Griesmayer, Erich

    2013-01-01

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  11. Neutral beam development plan

    International Nuclear Information System (INIS)

    Staten, H.S.

    1980-08-01

    The national plan is presented for developing advanced injection systems for use on upgrades of existing experiments, and use on future facilities such as ETF, to be built in the late 1980's or early 90's where power production from magnetic fusion will move closer to a reality. Not only must higher power and longer pulse length systems be developed , but they must operate reliably; they must be a tool for the experimenter, not the experiment itself. Neutral beam systems handle large amounts of energy and as such, they often are as complicated as the plasma physics experiment itself. This presents a significant challenge to the neutral beam developer

  12. GTK beam test 2017

    CERN Document Server

    Vostinic, Snezana

    2017-01-01

    The GTK is in operation at NA62 since 2014 and is among the few silicon pixel detectors performing 4D tracking. This summer, a beam test was conducted to study the phenomena determining the detector time resolution. The project described here contributed to the beam test preparation, data taking and data analyses. One of the main goals of the test was to understand the weight field contribution to the detector time resolution. This field is distorting the signal pulse shape at the edge of the pixel. Hence, to study this effect, the position of the hits inside the pixel has to be determined. An external telescope was therefore used for this purpose.

  13. Euroschool on Exotic Beams

    CERN Document Server

    Pfützner, Marek

    2018-01-01

    This is the fifth volume in a series of Lecture Notes based on the highly successful Euro Summer School on Exotic Beams. The aim of these notes is to provide a thorough introduction to radioactive ion-beam physics at the level of graduate students and young postdocs starting out in the field. Each volume covers a range of topics from nuclear theory to experiment and applications. Vol I has been published as LNP 651, Vol II as LNP 700, Vol. III as LNP 764 and Vol. IV as LNP 879.

  14. Booster gold beam injection efficiency and beam loss

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Ahrens, L.A.

    1998-01-01

    The Relativistic Heavy Ion Collider (RHIC) at the BNL requires the AGS to provide Gold beam with the intensity of 10 9 ions per bunch. Over the years, the Tandem Van de Graaff has provided steadily increasing intensity of gold ion beams to the AGS Booster. However, the gold beam injection efficiency at the Booster has been found to decrease with the rising intensity of injected beams. As the result, for Tandem beams of the highest intensity, the Booster late intensity is lower than with slightly lower intensity Tandem beam. In this article, the authors present two experiments associated with the Booster injection efficiency and beam intensity. One experiment looks at the Booster injection efficiency by adjusting the Tandem beam intensity, and another looks at the beam life time while scraping the beam in the Booster. The studies suggest that the gold beam injection efficiency at the AGS Booster is related to the beam loss in the ring, rather than the intensity of injected beam or circulating beam. A close look at the effect of the lost gold ion at the Booster injection leads to the prediction that the lost gold ion creates large number of positive ions, and even larger number of electrons. The lost gold beam is also expected to create large numbers of neutral particles. In 1998 heavy ion run, the production of positive ions and electrons due to the lost gold beam has been observed. Also the high vacuum pressure due to the beam loss, presumably because of the neutral particles it created, has been measured. These results will be reported elsewhere

  15. Beam position monitor sensitivity for low-β beams

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1993-01-01

    At low velocities, the EM field of a particle in a conducting beam tube is no longer a TEM wave, but has a finite longitudinal extent. The net effect of this is to reduce the coupling of the high-frequency Fourier components of the beam current to BPM (beam position monitor) electrodes, which modifies the BPM sensitivity to beam displacement. This effect is especially pronounced for high-frequency, large-aperture pickups used for low-β beams. Non-interceptive beam position monitors used in conjunction with high frequency RFQ (radio-frequency-quadrupole) and DTL (drift-tube-linac) accelerators fall into this category. When testing a BPM with a thin wire excited with either pulses or high-frequency sinusoidal currents, the EM wave represents the principal (TEM) mode in a coaxial transmission line, which is equivalent to a highly relativistic (β = 1) beam. Thus wire measurements are not suitable for simulating slow particle beams in high bandwidth diagnostic devices that couple to the image currents in the beam tube wall. Attempts to load the tin wire either capacitively or inductively to slow the EM wave down have met with limited success. In general, the equations used to represent the 2-D response of cylindrical-geometry BPMs to charged-particle beams make several assumptions: (1) the BPM electrodes are flush with and grounded to the surface of the conducting beam tube; (2) the beam is a line source (pencil beam); (3) the longitudinal extent of the EM field of a beam particle at the beam tube wall is zero, corresponding to a highly relativistic beam. The purpose of this paper is to make some quantitative estimates of the corrections to the conventional approximations when a BPM is used to measure the position of low velocity (low-β) beams

  16. Consistency checks in beam emission modeling for neutral beam injectors

    International Nuclear Information System (INIS)

    Punyapu, Bharathi; Vattipalle, Prahlad; Sharma, Sanjeev Kumar; Baruah, Ujjwal Kumar; Crowley, Brendan

    2015-01-01

    In positive neutral beam systems, the beam parameters such as ion species fractions, power fractions and beam divergence are routinely measured using Doppler shifted beam emission spectrum. The accuracy with which these parameters are estimated depend on the accuracy of the atomic modeling involved in these estimations. In this work, an effective procedure to check the consistency of the beam emission modeling in neutral beam injectors is proposed. As a first consistency check, at a constant beam voltage and current, the intensity of the beam emission spectrum is measured by varying the pressure in the neutralizer. Then, the scaling of measured intensity of un-shifted (target) and Doppler shifted intensities (projectile) of the beam emission spectrum at these pressure values are studied. If the un-shifted component scales with pressure, then the intensity of this component will be used as a second consistency check on the beam emission modeling. As a further check, the modeled beam fractions and emission cross sections of projectile and target are used to predict the intensity of the un-shifted component and then compared with the value of measured target intensity. An agreement between the predicted and measured target intensities provide the degree of discrepancy in the beam emission modeling. In order to test this methodology, a systematic analysis of Doppler shift spectroscopy data obtained on the JET neutral beam test stand data was carried out

  17. Beam-beam interactions in p-p storage rings

    International Nuclear Information System (INIS)

    Keil, E.

    1977-01-01

    There are two lectures: the first part of this paper (sections 2 to 5) deals with the theoretical aspects of the beam-beam interaction, and the second part (sections 6 to 8) describe the results of experiments in the ISR. Section 3 describes the strengths of the beam-beam interaction in terms of the linear tune shift ΔQ which has been calculated for several models. Because of the non-uniform density distribution in the beam the force results in a tune spread. This can be calculated by a perturbation method as explained in section 4. Section 5 discusses the simulation of the beam-beam interaction on a computer. Finally, section 6 reviews beam-beam phenomena observed in the CERN-ISR. These include the absence of observable beam-beam effects in unbunched beams, overlap knock-out resonances, collisions between a low-energy beam and a high-intensity stack, experiments with a nonlinear lens, and experiments with a high-β insertion. Section 7 contains a few concluding remarks. (Auth.)

  18. Beam-beam interactions in p-p storage rings

    CERN Document Server

    Keil, Eberhard

    1977-01-01

    There are two lectures. The first one (sections 2 to 5) deals with the theoretical aspects of the beam-beam interaction, and the second one (sections 6 to 8) describes the results of experiments in the ISR. Section 3 describes the strength of the beam-beam interaction in terms of the linear tune shift Delta Q which has been calculated for several models. Because of the non-uniform density distribution in the beam the force results in a tune spread. This can be calculated by a perturbation method as explained in section 4. Section 5 discusses the simulation of the beam-beam interaction on a computer. Finally, section 6 reviews beam-beam phenomena observed in the CERN-ISR. These include the absence of observable beam-beam effects in unbunched beams, overlap knock-out resonances, collisions between a low-energy beam and a high-intensity stack, experiments with a nonlinear lens, and experiments with a high- beta insertion. (20 refs).

  19. The cooling of particle beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling

  20. Beam Loss and Beam Shape at the LHC Collimators

    CERN Document Server

    Burkart, Florian

    In this master thesis the beam loss and the beam shape at the LHC collimators was measured, analysed, presented and discussed. Beginning with a short introduction of the LHC, the experiments, the supercon- ducting magnet system, the basics on linear beam dynamics and a describtion of the LHC collimation system are given. This is followed by the presentation of the performance of the LHC collimation sys- tem during 2011. A method to convert the Beam Loss Monitor signal in Gy/s to a proton beam loss rate will be introduced. Also the beam lifetime during the proton physics runs in 2011 will be presented and discussed. Finally, the shape of the LHC beams is analysed by using data obtained by scraping the beam at the LHC primary collimators.

  1. High current beam transport with multiple beam arrays

    International Nuclear Information System (INIS)

    Kim, C.H.

    1985-05-01

    Highlights of recent experimental and theoretical research progress on the high current beam transport of single and multiple beams by the Heavy Ion Fusion Accelerator Research (HIFAR) group at the Lawrence Berkeley Laboratory (LBL) are presented. In the single beam transport experiment (SBTE), stability boundaries and the emittance growth of a space charge dominated beam in a long quadrupole transport channel were measured and compared with theory and computer simulations. Also, a multiple beam ion induction linac (MBE-4) is being constructed at LBL which will permit study of multiple beam transport arrays, and acceleration and bunch length compression of individually focused beamlets. Various design considerations of MBE-4 regarding scaling laws, nonlinear effects, misalignments, and transverse and longitudinal space charge effects are summarized. Some aspects of longitudinal beam dynamics including schemes to generate the accelerating voltage waveforms and to amplify beam current are also discussed

  2. A Beam Quality Monitor for LHC Beams in the SPS

    CERN Document Server

    Papotti, G

    2008-01-01

    The SPS Beam Quality Monitor (BQM) system monitors the longitudinal parameters of the beam before extraction to the LHC to prevent losses and degradation of the LHC luminosity by the injection of low quality beams. It is implemented in two priority levels. At the highest level the SPS-LHC synchronization and global beam structure are verified. If the specifications are not met, the beam should be dumped in the SPS before extraction. On the second level, individual bunch position, length and stability are checked for beam quality assessment. Tolerances are adapted to the mode of operation and extraction to the LHC can also be inhibited. Beam parameters are accessed by acquiring bunch profiles with a longitudinal pick up and fast digital oscilloscope. The beam is monitored for instabilities during the acceleration cycle and thoroughly checked a few ms before extraction for a final decision on extraction interlock. Dedicated hardware and software components implementing fast algorithms are required. In this pape...

  3. Observed Orbit Effects during Long Range Beam-Beam Studies

    CERN Document Server

    Alemany, R; Buffat, X; Calaga, R; Fitterer, M; Giachino, R; Hemelsoet, GH; Herr, W; Papotti, G; Pieloni, T; Poyer, M; Schaumann, M; Trad, G; Wollmann, D

    2012-01-01

    Possible limitations due to long range beam-beam effects at the LHC have been studied and are presented in this note. With a larger number of bunches and collisions in all interaction points, the crossing angles were reduced to enhance long range beam-beam effects. The analysis of the effects on the dynamic aperture and losses are documented in [1]. This note concentrates on the bunch-by-bunch orbit effects observed during the experiment.

  4. Studies of halo distributions under beam-beam interaction

    International Nuclear Information System (INIS)

    Chen, T.; Irwin, J.; Siemann, R.H.

    1995-01-01

    The halo distribution due to the beam-beam interaction in circular electron-positron colliders is simulated with a program which uses a technique that saves a factor of hundreds to thousands of CPU time. The distribution and the interference between the beam-beam interaction and lattice nonlinearities has been investigated. The effects on the halo distribution due to radiation damping misalignment at the collision point, and chromatic effect are presented

  5. Crystalline beam ground state

    International Nuclear Information System (INIS)

    Wei, Jie; Li, Xiao-Ping

    1993-01-01

    In order to employ molecular dynamics (MD) methods, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations using MD methods has been performed to obtain the equilibrium crystalline beam structure. The effect of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Schiffer et al. depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing

  6. Continuous Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1996-01-01

    This report deals with stress and stiffness estimates of continuous reinforced concrete beams with different stiffnesses for negative and positive moments e.g. corresponding to different reinforcement areas in top and bottom. Such conditions are often met in practice.The moment distribution...

  7. LHC Report: Beam on

    CERN Multimedia

    Rossano Giachino for the LHC Team

    2012-01-01

    The powering tests described in the last edition of the Bulletin were successfully finished at the end of the first week of March opening the way for 4 TeV operations this year. The beam was back in the machine on Wednesday 14 March. The first collisions at 4 TeV are scheduled for the first week of April.   The first beam of 2012 is dumped after making a few rounds in the LHC. The magnet powering tests were followed by the machine checkout phase. Here the operations team in collaboration with the equipment groups performs a sequence of tests to ensure the readiness of the LHC for beam. The tests include driving all the LHC systems – beam dump, injection, collimation, RF, power converters, magnet circuits, vacuum, interlocks, controls, timing and synchronization – through the operational cycle. The “checkout phase” is really a massive de-bugging exercise, which is performed with the objective of ensuring the proper functioning of the whole machine and t...

  8. Beam in on curing

    International Nuclear Information System (INIS)

    Holl, Dr.

    1981-01-01

    Electron beam curing of paints and allied materials is discussed. Examples of applications are: silicone papers; painting of metal; bonding of flake adhesives; bonding of grinding media (binders); paints for external uses; painting shaped parts; bi-reactive painting systems. An example is given of the calculation of the cost of irradiation. (U.K.)

  9. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  10. WORKSHOP: Beam cooling

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Cooling - the control of unruly particles to provide well-behaved beams - has become a major new tool in accelerator physics. The main approaches of electron cooling pioneered by Gersh Budker at Novosibirsk and stochastic cooling by Simon van der Meer at CERN, are now complemented by additional ideas, such as laser cooling of ions and ionization cooling of muons

  11. Ion beam studies

    International Nuclear Information System (INIS)

    Freeman, J.H.; Chivers, D.J.; Gard, G.A.; Temple, W.

    1977-04-01

    A description of techniques for the production of intense beams of heavy ions is given. A table of recommended operational procedures for most elements is included. The ionisation of boron is considered in some detail because of its particular importance as a dopant for ion implantation. (author)

  12. Charged particle beams

    CERN Document Server

    Humphries, Stanley

    2013-01-01

    Detailed enough for a text and sufficiently comprehensive for a reference, this volume addresses topics vital to understanding high-power accelerators and high-brightness-charged particle beams. Subjects include stochastic cooling, high-brightness injectors, and the free electron laser. Humphries provides students with the critical skills necessary for the problem-solving insights unique to collective physics problems. 1990 edition.

  13. Electron beam processing system

    International Nuclear Information System (INIS)

    Kashiwagi, Masayuki

    2004-01-01

    Electron beam Processing Systems (EPS) are used as useful and powerful tools in many industrial application fields such as the production of cross-linked wire, rubber tire, heat shrinkable film and tubing, curing, degradation of polymers, sterilization and environmental application. In this paper, the feature and application fields, the selection of machine ratings and safety measures of EPS will be described. (author)

  14. Dual beam vidicon digitizer

    International Nuclear Information System (INIS)

    Evans, T.L.

    1976-01-01

    A vidicon waveform digitizer which can simultaneously digitize two independent signals has been developed. Either transient or repetitive waveforms can be digitized with this system. A dual beam oscilloscope is used as the signal input device. The light from the oscilloscope traces is optically coupled to a television camera, where the signals are temporarily stored prior to digitizing

  15. Beam Position Monitor Engineering

    International Nuclear Information System (INIS)

    Smith, Stephen R.

    1996-07-01

    The design of beam position monitors often involves challenging system design choices. Position transducers must be robust, accurate, and generate adequate position signal without unduly disturbing the beam. Electronics must be reliable and affordable, usually while meeting tough requirements on precision. accuracy, and dynamic range. These requirements may be difficult to achieve simultaneously, leading the designer into interesting opportunities for optimization or compromise. Some useful techniques and tools are shown. Both finite element analysis and analytic techniques will be used to investigate quasi-static aspects of electromagnetic fields such as the impedance of and the coupling of beam to striplines or buttons. Finite-element tools will be used to understand dynamic aspects of the electromagnetic fields of beams, such as wake-fields and transmission-line and cavity effects in vacuum-to-air feed through. Mathematical modeling of electrical signals through a processing chain will be demonstrated, in particular to illuminate areas where neither a pure time-domain nor a pure frequency-domain analysis is obviously advantageous. Emphasis will be on calculational techniques, in particular on using both time-domain and frequency domain approaches to the applicable parts of interesting problems

  16. Telecommunication with neutrino beams

    International Nuclear Information System (INIS)

    Saenz, A.W.; Ueberall, H.; Kelly, F.J.; Padgett, D.W.; Seeman, N.

    1977-01-01

    Collimated neutrino beams in the energy range 1 to 100 gigaelectron volts, now available from high-energy proton accelerators, are proposed as a potential means for telecommunication over global distances. Quantitative estimates of the feasibility of this proposal based on a particular detector configuration are presented

  17. Noninterceptive transverse beam diagnostics

    International Nuclear Information System (INIS)

    Chamberlin, D.D.; Minerbo, G.N.; Teel, L.E. Jr.; Gilpatrick, J.D.

    1981-01-01

    The transverse emittance properties of a high-current linear accelerator may be measured by using TV cameras sensitive to the visible radiation emitted following beam interactions with residual gas. This paper describes the TV system being used to measure emittances for the Fusion Materials Irradiation Test (FMIT) project

  18. Beam profile monitor

    International Nuclear Information System (INIS)

    Krausse, G.J.; Gram, P.A.M.

    1978-05-01

    A system used to monitor secondary beam profiles at the LAMPF Linac for channel tune-up and diagnostics is described. The multiwire proportional chamber design is discussed, and descriptions and drawings of the gate card, the amplifier/multiplexer card, the output amplifier card, and the overall system are given

  19. Radioactive beams in Europe

    International Nuclear Information System (INIS)

    Warner, D.D.

    1993-01-01

    In its report open-quotes Nuclear Physics in Europe - Opportunities and Perspectivesclose quotes, NuPECC concluded that physics with radioactive beams represents one of the foremost frontiers in nuclear physics. It therefore set up a study group to produce a report on the physics case for radioactive beams, together with a comparison of the relative merits of the various European facilities, operational or planned, and the R ampersand D required to achieve the desired goals. This paper presents some of the results of that report and concentrates on the latter two aspects of the task assigned to the Study Group. The facilities discussed are those planning to use the two-accelerator method to produce beams in the energy range of 0.5-25Mev/A. In addition, a report is given on the status of the recently-approved Test Bed facility at the Rutherford Appleton Laboratory, where the aim is to test the ability of existing ISOL target/ion-source technology to withstand a primary proton beam intensity of 100μA

  20. INDIANA: Beam dynamics experiments

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Beam dynamics experiments at the Indiana University Cooler Facility (IUCF) are helping to trace complicated non-linear effects in proton machines and could go on to pay important dividends in the detailed design of big new high energy proton storage rings

  1. Beam dynamics group summary

    International Nuclear Information System (INIS)

    Peggs, S.

    1994-01-01

    This paper summarizes the activities of the beam dynamics working group of the LHC Collective Effects Workshop that was held in Montreux in 1994. It reviews the presentations that were made to the group, the discussions that ensued, and the consensuses that evolved

  2. Nonlinear beam mechanics

    NARCIS (Netherlands)

    Westra, H.J.R.

    2012-01-01

    In this Thesis, nonlinear dynamics and nonlinear interactions are studied from a micromechanical point of view. Single and doubly clamped beams are used as model systems where nonlinearity plays an important role. The nonlinearity also gives rise to rich dynamic behavior with phenomena like

  3. ITER neutral beam system

    International Nuclear Information System (INIS)

    Mondino, P.L.; Di Pietro, E.; Bayetti, P.

    1999-01-01

    The Neutral Beam (NB) system for the International Thermonuclear Experimental Reactor (ITER) has reached a high degree of integration with the tokamak and with the rest of the plant. Operational requirements and maintainability have been considered in the design. The paper considers the integration with the tokamak, discusses design improvements which appear necessary and finally notes R and D progress in key areas. (author)

  4. Stochastic nonlinear beam equations

    Czech Academy of Sciences Publication Activity Database

    Brzezniak, Z.; Maslowski, Bohdan; Seidler, Jan

    2005-01-01

    Roč. 132, č. 1 (2005), s. 119-149 ISSN 0178-8051 R&D Projects: GA ČR(CZ) GA201/01/1197 Institutional research plan: CEZ:AV0Z10190503 Keywords : stochastic beam equation * stability Subject RIV: BA - General Mathematics Impact factor: 0.896, year: 2005

  5. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    Science.gov (United States)

    Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.

    2015-04-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  6. Proton Beam Writing

    International Nuclear Information System (INIS)

    Rajta, I.; Szilasi, S.Z.; Csige, I.; Baradacs, E.

    2005-01-01

    Complete text of publication follows. Refractive index depth profile in PMMA due to proton irradiation Proton Beam Writing has been successfully used to create buried channel waveguides in PMMA, which suggested that proton irradiation increases the refractive index. To investigate this effect, PMMA samples were irradiated by 1.7-2.1 MeV proton beam. Spectroscopic Ellipsometry has been used to investigate the depth profile of the refractive index. An increase of the refractive index was observed in the order of 0.01, which is approximately one order of magnitude higher than the detection limit. The highest increase of the refractive index occurs at the end of range, i.e. we found a good correlation with the Bragg curve of the energy loss. Hardness changes in PMMA due to proton beam micromachining As protons penetrate a target material and lose their energy according to the Bragg curve, the energy loss is different at different depths. This causes depth-dependent changes of some physical properties in the target material (e.g. refractive index, hardness). In order to characterize the changes of hardness and other mechanical properties as a function of beam penetration depth, systematic investigations have been performed on PMMA, the most common resist material used in proton beam micromachining. Silicon check valve made by proton beam micromachining The possible application of Proton Beam Micromachining (PBM) has been demonstrated by a few authors for creating 3D Si microstructures. In this work we present alternative methods for the formation of a simple a non-return valve for microfluidic applications. Two different approaches have been applied, in both cases we exploited characteristic features of the PBM technique and the selective formation and dissolution of porous Si over the implantation damaged areas. In the first case we implanted 10 μm thick cantilever-type membrane of the valve normally to the crystal surface and at 30-60 degrees to the sidewalls of the

  7. Intense electron and ion beams

    CERN Document Server

    Molokovsky, Sergey Ivanovich

    2005-01-01

    Intense Ion and Electron Beams treats intense charged-particle beams used in vacuum tubes, particle beam technology and experimental installations such as free electron lasers and accelerators. It addresses, among other things, the physics and basic theory of intense charged-particle beams; computation and design of charged-particle guns and focusing systems; multiple-beam charged-particle systems; and experimental methods for investigating intense particle beams. The coverage is carefully balanced between the physics of intense charged-particle beams and the design of optical systems for their formation and focusing. It can be recommended to all scientists studying or applying vacuum electronics and charged-particle beam technology, including students, engineers and researchers.

  8. Report of test beam subgroup

    International Nuclear Information System (INIS)

    Nodulman, L.; Groom, D.; Harrison, M.; Toohig, T.; Gustafson, R.; Kirk, T.

    1986-01-01

    Tasks reported on include: exploration of issues of demand for test beams, and particularly for high energy; fleshing out the possibilities of the High Energy Booster beams; and seeking inexpensive ways of providing high energy facilities

  9. Metal investigation of beams durable

    Directory of Open Access Journals (Sweden)

    Ya.A. Balabukh

    2011-12-01

    Full Text Available Results of metal researches of long-term storage beams are considered. It is determined that the steel of beams meets the requirements of Norms. Their acceptability for construction of bridges is established.

  10. Beam position optimisation for IMRT

    International Nuclear Information System (INIS)

    Holloway, L.; Hoban, P.

    2001-01-01

    Full text: The introduction of IMRT has not generally resulted in the use of optimised beam positions because to find the global solution of the problem a time consuming stochastic optimisation method must be used. Although a deterministic method may not achieve the global minimum it should achieve a superior dose distribution compared to no optimisation. This study aimed to develop and test such a method. The beam optimisation method developed relies on an iterative process to achieve the desired number of beams from a large initial number of beams. The number of beams is reduced in a 'weeding-out' process based on the total fluence which each beam delivers. The process is gradual, with only three beams removed each time (following a small number of iterations), ensuring that the reduction in beams does not dramatically affect the fluence maps of those remaining. A comparison was made between the dose distributions achieved when the beams positions were optimised in this fashion and when the beams positions were evenly distributed. The method has been shown to work quite effectively and efficiently. The Figure shows a comparison in dose distribution with optimised and non optimised beam positions for 5 beams. It can be clearly seen that there is an improvement in the dose distribution delivered to the tumour and a reduction in the dose to the critical structure with beam position optimisation. A method for beam position optimisation for use in IMRT optimisations has been developed. This method although not necessarily achieving the global minimum in beam position still achieves quite a dramatic improvement compared with no beam position optimisation and is very efficiently achieved. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  11. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  12. Holographic memory using beam steering

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Hanan, Jay C. (Inventor); Reyes, George F. (Inventor); Zhou, Hanying (Inventor)

    2006-01-01

    A method, apparatus, and system provide the ability for storing holograms at high speed. A single laser diode emits a collimated laser beam to both write to and read from a photorefractice crystal. One or more liquid crystal beam steering spatial light modulators (BSSLMs) or Micro-Electro-Mechanical Systems (MEMS) mirrors steer a reference beam, split from the collimated laser beam, at high speed to the photorefractive crystal.

  13. Report of the group on beam-beam effects in circular colliders

    International Nuclear Information System (INIS)

    Furman, M.A.

    1991-05-01

    We present a summary of the discussions and conclusions of the working group on beam-beam effects for circular colliders. This group was part of the larger beam-beam dynamics group at the 7th ICFA Workshop on Beam Dynamics, on the subject ''Beam-Beam and Beam-Radiation Interactions,'' held at UCLA, May 13--16, 1991. 15 refs

  14. 'Electron compression' of beam-beam footprint in the Tevatron

    International Nuclear Information System (INIS)

    Shiltsev, V.; Finley, D.A.

    1997-08-01

    The beam-beam interaction in the Tevatron collider sets some limits on bunch intensity and luminosity. These limits are caused by a tune spread in each bunch which is mostly due to head-on collisions, but there is also a bunch-to-bunch tune spread due to parasitic collisions in multibunch operation. We describe a counter-traveling electron beam which can be used to eliminate these effects, and present general considerations and physics limitations of such a device which provides 'electron compression' of the beam-beam footprint in the Tevatron

  15. Study of beam-beam long range compensation with octupoles

    CERN Document Server

    AUTHOR|(CDS)2068329; Pieloni, Tatiana; Buffat, Xavier; Tambasco, Claudia

    2017-01-01

    Long range beam-beam effects are responsible for particle losses and define fundamental operational parameters of colliders (i.e. crossing angles, intensities, emittances, ${\\beta}$${^∗}$). In this study we propose octuple magnets as a possible scheme to efficiently compensate long-range beam-beam interactions with a global correction scheme. The impact and improvements on the dynamic aperture of colliding beams together with estimates of the luminosity potentials are dis- cussed for the HL-LHC upgrade and extrapolations made for the FCC project.

  16. Beam Dynamics Simulation for the CTF3 Drive Beam Accelerator

    CERN Document Server

    Schulte, Daniel

    2000-01-01

    A new CLIC Test Facility (CTF3) at CERN will serve to study the drive beam generation for the Compact Linear Collider (CLIC). CTF3 has to accelerate a 3.5 A electron beam in almost fully-loaded structures. The pulse contains more than 2000 bunches, one in every second RF bucket, and has a length of more than one microsecond. Different options for the lattice of the drive-beam accelerator are presented, based on FODO-cells and triplets as well as solenoids. The transverse stability is simulated, including the effects of beam jitter, alignment and beam-based correction.

  17. Study of Beam-Beam Effects at PEP-II

    International Nuclear Information System (INIS)

    Narsky, I

    2004-01-01

    Using a self-consistent three-dimensional simulation running on parallel supercomputers, we have modeled the beam-beam interaction at the PEP-II asymmetric e + e - collider. To provide guidance for luminosity improvement, we scanned the tunes and currents in both rings and computed their impact on the luminosity and transverse beam sizes. We also studied the effects of colliding the beams with a small crossing angle. Where possible, the code was benchmarked against experimental measurements of luminosity and beam sizes, yielding an acceptable agreement

  18. Beam intensity monitoring for the external proton beam at LAMPF

    International Nuclear Information System (INIS)

    Barrett, R.J.; Anderson, B.D.; Willard, H.B.; Anderson, A.N.; Jarmie, N.

    1975-07-01

    Three different intensity monitors were tested in the external proton beam at LAMPF, and together cover the entire range of beam currents available. A 800 kg Faraday cup was installed and used to measure the absolute intensity to better than 1 percent for beam currents up to several nanoamperes. A high gain ion chamber was used as part of the calibration procedure for the Faraday cup, and was found to be useful when monitoring very small beam intensities, being reliable down to the few picoampere level. A secondary emission monitor was also tested, calibrated, and found to be trustworthy only for beams of greater than 50 pA intensity. (auth)

  19. Power beaming research at NASA

    Science.gov (United States)

    Rather, John D. G.

    1992-01-01

    NASA's current research activities to evaluate laser power beaming systems are summarized with regard to their applications of greatest interest. Key technical certainties and uncertainties pertaining to laser power beaming systems appropriate for space applications are quantified. A path of development is presented that includes maturation of key technology components for reliable laser and millimeter wave power beaming systems during the 1990s.

  20. Calorimetric beam-current integrator

    International Nuclear Information System (INIS)

    Osborne, J.L.

    1984-01-01

    A single-cup calorimeter for beam-current integration and its associated electronics are described. The design allows beam power up to 120 W and is shown to integrate with an accuracy of 1% over a range of beam energy, current, and power. (orig.)

  1. Spatial superpositions of Gaussian beams

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2014-02-01

    Full Text Available . At the plane of the lens we obtain a multi-ringed beam with a central intensity maximum which develops into a multi-ringed beam with a central null at the focal plane of the lens. The interesting feature of this beam is that it possesses two focal spots...

  2. Kiloamp high-brightness beams

    International Nuclear Information System (INIS)

    Caporaso, G.J.

    1987-01-01

    Brightness preservation of high-current relativistic electron beams under two different types of transport is discussed. Recent progress in improving the brightness of laser-guided beams in the Advanced Test Accelerator is reviewed. A strategy for the preservation of the brightness of space-charge-dominated beams in a solenoidal transport system is presented

  3. Proton-beam energy analyzer

    International Nuclear Information System (INIS)

    Belan, V.N.; Bolotin, L.I.; Kiselev, V.A.; Linnik, A.F.; Uskov, V.V.

    1989-01-01

    The authors describe a magnetic analyzer for measurement of proton-beam energy in the range from 100 keV to 25 MeV. The beam is deflected in a uniform transverse magnetic field and is registered by photographing a scintillation screen. The energy spectrum of the beam is constructed by microphotometry of the photographic film

  4. Analyser of sweeping electron beam

    International Nuclear Information System (INIS)

    Strasser, A.

    1993-01-01

    The electron beam analyser has an array of conductors that can be positioned in the field of the sweeping beam, an electronic signal treatment system for the analysis of the signals generated in the conductors by the incident electrons and a display for the different characteristics of the electron beam

  5. Beam Optics for Typical Part of ISOL Beam Lines

    International Nuclear Information System (INIS)

    Jang, Ji Ho; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub

    2013-01-01

    KOMAC (Korea Multi-purpose Accelerator Complex) is doing a project, the detailed design of the ISOL beam lines for the heavy ion accelerator project of IBS (Institute of Basic Science) from August 2013 to February 2014. The heavy ion beams are transported by using the electrostatic quadrupoles and electrostatic benders between the equipment. The work-scope of the project is the beam optics design of the beam lines and the detailed design of the beam optics components, the electrostatic quadrupoles and the electrostatic bender. This work summarized the initial result of beam optics design of the beam line. We performed the beam optics simulation in two regions of ISOL beam lines and found that beam envelope is less than 2 cm. We will check that the poletip file values are reasonable or not in near future, and we also applied this method to the other parts of the ISOL beam line and optimize them. The result will be used the detailed design of the electrostatic quadrupoles and benders

  6. Definition of Beam Diameter for Electron Beam Welding

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pierce, Stanley W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dvornak, Matthew John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  7. The renormalized theory of beam-beam interaction

    International Nuclear Information System (INIS)

    Chin, Yong Ho.

    1988-06-01

    A new approach to calculate analytically the particle distribution in the presence of beam-beam interaction and synchrotron radiation effects for an electron-positron colliding beam storage ring is presented. The method is based on correct calculation of the Green's function which includes the full effect of the beam-beam force on the distortion of particle orbits, borrowing the renormalization technique of quantum field therory. By this way, the theory is applicable to any level of beam-beam interaction, no matter whether chaos ensues in phase space or not. This paper is devoted mostly to verificaiton of the theory by comparison with the results of computer simulations. Fairly good agreements are obtained. 5 refs., 3 figs

  8. Closed orbit distortion and the beam-beam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.; Chin, Y.H.; Eden, J. [Lawrence Berkeley Lab., CA (United States); Kozanecki, W. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)]|[Stanford Linear Accelerator Center, Menlo Park, CA (United States); Tennyson, J.; Ziemann, V. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1992-06-01

    We study the applicability of beam-beam deflection techniques as a tuning tool for the SLAC/LBL/LLNL B factory, PEP-II. Assuming that the closed orbits of the two beams are separated vertically at the interaction point by a local orbit bump that is nominally closed, we calculate the residual beam orbit distortions due to the beam-beam interaction. Difference orbit measurements, performed at points conveniently distant from the IP, provide distinct coordinate- or frequency-space signatures that can be used to maintain the beams in collision and perform detailed optical diagnostics at the IP. A proposal to test this method experimentally at the TRISTAN ring is briefly discussed.

  9. Ion beam neutralization with ferroelectrically generated electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Herleb, U; Riege, H [European Organization for Nuclear Research, Geneva (Switzerland). LHC Division

    1997-12-31

    A technique for ion beam space-charge neutralization with pulsed electron beams is described. The intensity of multiply-charged ions produced with a laser ion source can be enhanced or decreased separately with electron beam trains of MHz repetition rate. These are generated with ferroelectric cathodes, which are pulsed in synchronization with the laser ion source. The pulsed electron beams guide the ion beam in a similar way to the alternating gradient focusing of charged particle beams in circular accelerators such as synchrotrons. This new neutralization technology overcomes the Langmuir-Child space-charge limit and may in future allow ion beam currents to be transported with intensities by orders of magnitude higher than those which can be accelerated today in a single vacuum tube. (author). 6 figs., 10 refs.

  10. Closed orbit distortion and the beam-beam interaction

    International Nuclear Information System (INIS)

    Furman, M.; Chin, Y.H.; Eden, J.; Kozanecki, W.; Tennyson, J.; Ziemann, V.

    1992-01-01

    We study the applicability of beam-beam deflection techniques as a tuning tool for the SLAC/LBL/LLNL B factory, PEP-II. Assuming that the closed orbits of the two beams are separated vertically at the interaction point by a local orbit bump that is nominally closed, we calculate the residual beam orbit distortions due to the beam-beam interaction. Difference orbit measurements, performed at points conveniently distant from the IP, provide distinct coordinate- or frequency-space signatures that can be used to maintain the beams in collision and perform detailed optical diagnostics at the IP. A proposal to test this method experimentally at the TRISTAN ring is briefly discussed

  11. Beam control and matching for the transport of intense beams

    International Nuclear Information System (INIS)

    Li, H.; Bernal, S.; Godlove, T.; Huo, Y.; Kishek, R.A.; Haber, I.; Quinn, B.; Walter, M.; Zou, Y.; Reiser, M.; O'Shea, P.G.

    2005-01-01

    The transport of intense beams for heavy-ion inertial fusion demands tight control of beam characteristics from the source to the target. The University of Maryland Electron Ring (UMER), which uses a low-energy (10 keV), high-current electron beam to model the transport physics of a future recirculator driver, employs real-time beam characterization and control in order to optimize beam quality throughout the strong focusing lattice. We describe the main components and operation of the diagnostics/control system in UMER. It employs phosphor screens, real-time image analysis, quadrupole scans and electronic skew correctors. The procedure is not only indispensable for optimum transport over a long distance, but also provides important insights into the beam physics involved. We discuss control/optimization issues related to beam steering, quadrupole rotation errors and rms envelope matching

  12. From Electron Beams to Photon Beams

    International Nuclear Information System (INIS)

    Ranieri, Alberto

    2015-01-01

    n this article I try to report at the best the events and the emotions I experienced, together with my colleagues, when I was a young researcher working at the Frascati Center of CNEN. In the middle of 70’s the high energy physics activities carried out in Frascati were transferred from CNEN to INFN (Istituto Nazionale Fisica Nucleare) and the personnel had the chance to chose to continue to work at the CNEN (obviously in a different research field) or to continue to work in high energy physics, but at the INFN. I decided to remain at the CNEN and, consequently, I had to change my research activity. I moved from the high energy accelerators research field to the lasers research field in which, at that time at the CNEN, a new interesting project on “uranium laser isotope separation” was just starting. This article is focused on the theoretical and experimental development activity, carried out in the years 70’s-80’s at the CNEN Frascati Center, on a quite particular kind of laser to be utilized in that project. In this laser the active medium is not made of atoms or molecules but is a beam of free electrons running along a spatially periodic magnetic structure: this laser is the “Free Electron Laser” [it

  13. A simple beam analyser

    International Nuclear Information System (INIS)

    Lemarchand, G.

    1977-01-01

    (ee'p) experiments allow to measure the missing energy distribution as well as the momentum distribution of the extracted proton in the nucleus versus the missing energy. Such experiments are presently conducted on SACLAY's A.L.S. 300 Linac. Electrons and protons are respectively analysed by two spectrometers and detected in their focal planes. Counting rates are usually low and include time coincidences and accidentals. Signal-to-noise ratio is dependent on the physics of the experiment and the resolution of the coincidence, therefore it is mandatory to get a beam current distribution as flat as possible. Using new technologies has allowed to monitor in real time the behavior of the beam pulse and determine when the duty cycle can be considered as being good with respect to a numerical basis

  14. LSST beam simulator

    International Nuclear Information System (INIS)

    Tyson, J A; Klint, M; Sasian, J; Claver, C; Muller, G; Gilmor, K

    2014-01-01

    It is always important to test new imagers for a mosaic camera before device acceptance and constructing the mosaic. This is particularly true of the LSST CCDs due to the fast beam illumination: at long wavelengths there can be significant beam divergence (defocus) inside the silicon because of the long absorption length for photons near the band gap. Moreover, realistic sky scenes need to be projected onto the CCD focal plane Thus, we need to design and build an f/1.2 re-imaging system. The system must simulate the entire LSST 1 operation, including a sky with galaxies and stars with approximately black-body spectra superimposed on a spatially diffuse night sky emission with its complex spectral features

  15. Focused ion beam technology

    International Nuclear Information System (INIS)

    Gamo, K.

    1993-01-01

    Focussed ion beam (FIB) technology has the advantage of being a maskless process compatible with UHV processing. This makes it attractive for use in in situ processing and has been applied to the fabrication of various mesoscopic structures. The present paper reviews these results whilst putting emphasis on in situ processing by a combined FIB and molecular beam epitaxy system. The typical performance of present FIB systems is also presented. In order to utilize the potential advantages of FIB processing, reduction of damage and improvement of throughput are important, and much effort has been devoted to developing processing techniques which require a reduced dose. The importance of low-energy FIB is discussed. (author)

  16. Electron beam fusion targets

    International Nuclear Information System (INIS)

    Clauser, M.J.; Sweeney, M.A.

    1975-01-01

    R The behavior of the DT filled gold shells when irradiated by a variety of pulse shapes was studied. In these pulses the power (and beam current) was varied, but the voltage was kept constant at 1 MeV. In general the performance of the target, for a given peak power, was not significantly affected by the pulse shape. Pulses with rise times of up to half the implosion time do not significantly degrade the target performance. The use of the ''optimal pulse'' of laser fusion with a fixed peak power does not appear to improve the performance of these targets. The main function of the ''optimal pulse'' is to produce a large rho r of the target during the thermonuclear burn. In e-beam targets a total rho r of 5--10 g/cm 2 can be obtained without pulse shaping; the problem here is one of achieving high enough temperatures to ignite the DT. (U.S.)

  17. Heavy ion beam probing

    International Nuclear Information System (INIS)

    Hickok, R.L.

    1980-07-01

    This report consists of the notes distributed to the participants at the IEEE Mini-Course on Modern Plasma Diagnostics that was held in Madison, Wisconsin in May 1980. It presents an overview of Heavy Ion Beam Probing that briefly describes the principles and discuss the types of measurements that can be made. The problems associated with implementing beam probes are noted, possible variations are described, estimated costs of present day systems, and the scaling requirements for large plasma devices are presented. The final chapter illustrates typical results that have been obtained on a variety of plasma devices. No detailed calculations are included in the report, but a list of references that will provide more detailed information is included

  18. Silicon microfabricated beam expander

    International Nuclear Information System (INIS)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-01-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed

  19. Silicon microfabricated beam expander

    Science.gov (United States)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  20. Silicon microfabricated beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A., E-mail: aliman@ppinang.uitm.edu.my; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A. [Faculty of Electrical Engineering, Universiti Teknologi MARA Malaysia, 40450, Shah Alam, Selangor (Malaysia); Ain, M. F. [School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300,Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  1. Polarized secondary radioactive beams

    International Nuclear Information System (INIS)

    Zaika, N.I.

    1992-01-01

    Three methods of polarized radioactive nuclei beam production: a) a method nuclear interaction of the non-polarized or polarized charged projectiles with target nuclei; b) a method of polarization of stopped reaction radioactive products in a special polarized ion source with than following acceleration; c) a polarization of radioactive nuclei circulating in a storage ring are considered. Possible life times of the radioactive ions for these methods are determined. General schemes of the polarization method realizations and depolarization problems are discussed

  2. Beam catcher/dump

    International Nuclear Information System (INIS)

    Makdisi, Y.; Rodger, E.; Glenn, J.W.; Brown, K.

    1985-01-01

    A simple, low cost aperture limiting device with an absorber block has been developed and installed in the AGS ring at Brookhaven National Laboratory. The device intercepts injection tails, transition losses, and the inward spiraling beam of an aborted acceleration or extraction cycle. The resultant consolidation of losses at one point reduces activation of components around the ring and radiation exposure to personnel. 3 refs., 6 figs

  3. Ion beam analysis

    International Nuclear Information System (INIS)

    Bethge, K.

    1995-01-01

    Full text: Ion beam analysis is an accelerator application area for the study of materials and the structure of matter; electrostatic accelerators of the Van de Graaff or Dynamitron type are often used for energies up to a few MeV. Two types of machines are available - the single-ended accelerator type with higher beam currents and greater flexibility of beam management, or the tandem accelerator, limited to atomic species with negative ions. The accelerators are not generally installed at specialist accelerator laboratories and have to be easy to maintain and simple to operate. The most common technique for industrial research is Rutherford Back Scattering Spectrometry (RBS). Helium ions are the preferred projectiles, since at elevated energies (above 3 MeV) nuclear resonance scattering can be used to detect photons associated with target molecules containing elements such as carbon, nitrogen or oxygen. Due to the large amount of available data on nuclear reactions in this energy range, activation analysis (detecting trace elements by irradiating the sample) can be performed with charged particles from accelerators over a wider range of atoms than with the conventional use of neutrons, which is more suited to light elements. Resonance reactions have been used to detect trace metals such as aluminium, titanium and vanadium. Hydrogen atoms are vital to the material performance of several classes of materials, such as semiconductors, insulators and ceramics. Prudent selection of the projectile ion aids the analysis of hydrogen composition; the technique is then a simple measurement of the emitted gamma radiation. Solar cell material and glass can be analysed in this way. On a world-wide basis, numerous laboratories perform ion beam analysis for research purposes; considerable work is carried out in cooperation between scientific laboratories and industry, but only a few laboratories provide a completely commercial service

  4. Ion beam inertial fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1995-01-01

    About twenty years ago, A. W. Maschke of Brookhaven National Laboratory and R. L. Martin of Argonne National Laboratory recognized that the accelerators that have been developed for high energy and nuclear physics are, in many ways, ideally suited to the requirements of inertial fusion power production. These accelerators are reliable, they have a long operating life, and they can be efficient. Maschke and Martin noted that they can focus ion beams to small focal spots over distances of many meters and that they can readily operate at the high pulse repetition rates needed for commercial power production. Fusion, however, does impose some important new constraints that are not important for high energy or nuclear physics applications. The most challenging new constraint from a scientific standpoint is the requirement that the accelerator deliver more than 10 14 W of beam power to a small quantity (less than 100 mg) of matter. The most challenging constraint from an engineering standpoint is accelerator cost. Maschke showed theoretically that accelerators could produce adequate work. Heavy-ion fusion is widely recognized to be a promising approach to inertial fusion power production. It provides an excellent opportunity to apply methods and technology developed for basic science to an important societal need. The pulsed-power community has developed a complementary, parallel approach to ion beam fusion known as light-ion fusion. The talk will discuss both heavy-ion and light-ion fusion. It will explain target physics requirements and show how they lead to constraints on the usual accelerator parameters such as kinetic energy, current, and emittance. The talk will discuss experiments that are presently underway, specifically experiments on high-current ion sources and injectors, pulsed-power machines recirculating induction accelerators, and transverse beam combining. The talk will give a brief description of a proposed new accelerator called Elise

  5. Proton beam therapy facility

    International Nuclear Information System (INIS)

    1984-01-01

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs

  6. Stationary nonlinear Airy beams

    International Nuclear Information System (INIS)

    Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.

    2011-01-01

    We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.

  7. Beam-Material Interaction

    CERN Document Server

    Mokhov, N.V.

    2016-01-01

    Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high- intensity energetic particle beam interactions with accelerator, generic target , and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and envir onment in challenging current and future application

  8. Proton beam therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  9. Beam in on curing

    International Nuclear Information System (INIS)

    Holl, Dr.

    1981-01-01

    This third part of an article on the electron beam curing of paints covers the following aspects: inertising equipment; working without inert gas; increase in temperature when irradiating; irradiating plants; laboratory plants; plant operating from coil to coil; plant for shaped parts; possible applications; decorative films, paper, PVC; packaging material; metallisation of paper films; film bonding; strengthening of flock; coating; pressure sensitive adhesives. (U.K.)

  10. Beam-Material Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, N. V. [Fermilab; Cerutti, F. [CERN

    2016-01-01

    Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high-intensity energetic particle beam interactions with accelerator, generic target, and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and environment in challenging current and future applications.

  11. Compression of Ultrafast Laser Beams

    Science.gov (United States)

    2016-03-01

    Copyright 2003, AIP Publishing LLC. DOI: http://dx.doi.org/10.1063/1.1611998.) When designing the pulse shaper, the laser beam must completely fill the...for the design of future versions of this device. The easiest way to align the pulse shaper is to use the laser beam that will be shaped, without...Afterward, an ultrafast thin beam splitter is placed into the system after the diameter of the laser beam is reduced; this is done to monitor the beam

  12. Radioactive heavy ion secondary beams

    International Nuclear Information System (INIS)

    Bimbot, R.

    1987-01-01

    The production of secondary radioactive beams at GANIL using the LISE spectrometer is reviewed. The experimental devices, and secondary beam characteristics are summarized. Production of neutron rich secondary beams was studied for the systems Ar40 + Be at 44 MeV/u, and 018 + Be at 45 and 65 MeV/u. Partial results were also obtained for the system Ne22 + Ta at 45 MeV/u. Experiments using secondary beams are classified into two categories: those which correspond to fast transfer of nuclei from the production target to a well shielded observation point; and those in which the radioactive beam interacts with a secondary target

  13. Electron beams in radiation therapy

    International Nuclear Information System (INIS)

    Bruinvis, I.A.D.

    1987-01-01

    Clinical electron beams in interaction with beam flattening and collimating devices are studied, in order to obtain the means for adequate electron therapy. A treatment planning method for arbitrary field shapes is developed that takes the properties of the collimated electron beams into account. An electron multiple-scattering model is extended to incorporate a model for the loss of electrons with depth, in order to improve electron beam dose planning. A study of ionisation measurements in two different phantom materials yields correction factors for electron beam dosimetry. (Auth.)

  14. Crystalline beam ground state

    International Nuclear Information System (INIS)

    Wei, Jie; Li, Xiao-Ping; Sessler, A.M.

    1993-01-01

    In order to employ Molecular Dynamics method, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations has been performed to obtain the equilibrium structure. The effects of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time-dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Rahman and Schiffer, depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing

  15. Two-beam accelerator

    International Nuclear Information System (INIS)

    Sessler, A.M.; Hopkins, D.B.

    1986-06-01

    The Two-Beam Accelerator (TBA) consists of a long high-gradient accelerator structure (HGS) adjacent to an equal-length Free Electron Laser (FEL). In the FEL, a beam propagates through a long series of undulators. At regular intervals, waveguides couple microwave power out of the FEL into the HGS. To replenish energy given up by the FEL beam to the microwave field, induction accelerator units are placed periodically along the length of the FEL. In this manner it is expected to achieve gradients of more than 250 MV/m and thus have a serious option for a 1 TeV x 1 TeV linear collider. The state of present theoretical understanding of the TBA is presented with particular emphasis upon operation of the ''steady-state'' FEL, phase and amplitude control of the rf wave, and suppression of sideband instabilities. Experimental work has focused upon the development of a suitable HGS and the testing of this structure using the Electron Laser Facility (ELF). Description is given of a first test at ELF with a seven-cell 2π/3 mode structure which without preconditioning and with a not-very-good vacuum nevertheless at 35 GHz yielded an average accelerating gradient of 180 MV/m

  16. The beam transport system

    International Nuclear Information System (INIS)

    1986-01-01

    The first proton beams have been transported along the transfer beamline and the diagnostic components have thus been used and tested under real operating conditions. The various electronic systems have been linked to the control system and the equipment can now be operated from the control console. The performance of the diagnostic system for the transfer beamline is satisfactory. The beam diagnostic components for the high-energy beamlines up to the isotope production and neutron therapy vaults and the first experimental target rooms have been installed. The high-energy slits have been delivered. The scanner and harp electronics have been installed and linked to their respective components in the beamlines. The pneumatic acuator control electronics has been manufactured, installed and is operational; provision has been made for special control features of the equipment in the therapy beamline. The high-voltage bias supply for the Faraday cups has been implemented. The installation of the beam current measurement system is nearing completion although part of it is already operational. A coaxial relay multiplexer for the capacitive phase probe signals has been manufactured and installed. The diagnostic equipment for the beamlines to isotope production and neutron therapy is thus ready for operation. 4 figs

  17. Crystalline beam ground state

    International Nuclear Information System (INIS)

    Wei, J.; Li, X.P.

    1993-01-01

    In order to employ the Molecular Dynamics method, commonly used in condensed matter physics, the authors have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. They include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations has been performed to obtain the equilibrium structure. The effects of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time-dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Rahman and Schiffer, depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing

  18. Fixed target beams

    CERN Document Server

    Kain, V; Cettour-Cave, S; Cornelis, K; Fraser, M A; Gatignon, L; Goddard, B; Velotti, F

    2017-01-01

    The CERN SPS (Super Proton Synchrotron) serves asLHC injector and provides beam for the North Area fixedtarget experiments. At low energy, the vertical acceptancebecomes critical with high intensity large emittance fixed tar-get beams. Optimizing the vertical available aperture is a keyingredient to optimize transmission and reduce activationaround the ring. During the 2016 run a tool was developed toprovide an automated local aperture scan around the entirering.The flux of particles slow extracted with the1/3inte-ger resonance from the Super Proton Synchrotron at CERNshould ideally be constant over the length of the extractionplateau, for optimum use of the beam by the fixed target ex-periments in the North Area. The extracted intensity is con-trolled in feed-forward correction of the horizontal tune viathe main SPS quadrupoles. The Mains power supply noiseat 50 Hz and harmonics is also corrected in feed-forwardby small amplitude tune modulation at the respective fre-quencies with a dedicated additional quad...

  19. Hyperon Beam Experiment

    CERN Multimedia

    2002-01-01

    The experiment WA89 uses the upgraded Omega facility together with a hyperon beam installed at the end of the H1 beamline. The beam can deliver 2~10$ ^{5} \\% Sigma ^- $ per machine burst at 330 GeV/c with a background of 5 10$ ^{5} \\% \\pi ^- $. \\\\ \\\\ The goals of the experiment are: observation of charmed particles, mainly the charmed-strange baryons and measurements of their production in the kinematical range x$ _{F} $~$>$~0.2, and their decay properties, a search for exotic states such as U(3100) observed in the previous CERN hyperon beam experiment WA62, measurements of hyperon polarization and production properties. \\\\ \\\\ A vertex detector consisting of 24 silicon microstrip planes with 25~$\\mu$m pitch and 6~planes with 50~$\\mu$m pitch provides track measurements of sufficient accuracy to identify the decays of short living charmed particles and measure their lifetimes. A RICH detector provides good $\\pi$/K separation for momenta up to 100~GeV/c and $\\pi$/p separation up to 150~GeV/c. Photons are detecte...

  20. Neutron beam applications

    International Nuclear Information System (INIS)

    Lee, Chang Hee; Lee, J. S.; Seong, B. S.

    2000-05-01

    For the materials science by neutron technique, the development of the various complementary neutron beam facilities at horizontal beam port of HANARO and the techniques for measurement and analysis has been performed. High resolution powder diffractometer, after the installation and performance test, has been opened and used actively for crystal structure analysis, magnetic structure analysis, phase transition study, etc., since January 1998. The main components for four circle diffractometer were developed and, after performance test, it has been opened for crystal structure analysis and texture measurement since the end of 1999. For the small angle neutron spectrometer, the main component development and test, beam characterization, and the preliminary experiment for the structure study of polymer have been carried out. Neutron radiography facility, after the precise performance test, has been used for the non-destructive test of industrial component. Addition to the development of main instruments, for the effective utilization of those facilities, the scattering techniques relating to quantitative phase analysis, magnetic structure analysis, texture measurement, residual stress measurement, polymer study, etc, were developed. For the neutron radiography, photographing and printing technique on direct and indirect method was stabilized and the development for the real time image processing technique by neutron TV was carried out. The sample environment facilities for low and high temperature, magnetic field were also developed

  1. Particle beams and plasmas

    International Nuclear Information System (INIS)

    Hofmann, A.; Messerschmid, E.; Lawson, J.D.

    1976-01-01

    These lectures present a survey of some of the concepts of plasma physics and look at some situations familiar to particle-accelerator physicists from the point of view of a plasma physicist, with the intention of helping to link together the two fields. At the outset, basic plasma concepts are presented, including definitions of a plasma, characteristic parameters, magnetic pressure and confinement. This is followed by a brief discussion on plasma kinetic theory, non-equilibrium plasma, and the temperature of moving plasmas. Examples deal with beams in the CERN Intersecting Storage Rings as well as with non-steady beams in cyclic accelerators and microwave tubes. In the final chapters, time-varying systems are considered: waves in free space and the effect of cylinder bounds, wave motion in cold stationary plasmas, and waves in plasmas with well-defined streams. The treatment throughout is informal, with emphasis on the essential physical properties of continuous beams in accelerators and storage rings in relation to the corresponding problems in plasma physics and microwave tubes. (Author)

  2. CLIC Drive Beam Phase Stabilisation

    CERN Document Server

    Gerbershagen, Alexander; Schulte, Daniel

    The thesis presents phase stability studies for the Compact Linear Collider (CLIC) and focuses in particular on CLIC Drive Beam longitudinal phase stabilisation. This topic constitutes one of the main feasibility challenges for CLIC construction and is an essential component of the current CLIC stabilisation campaign. The studies are divided into two large interrelated sections: the simulation studies for the CLIC Drive Beam stability, and measurements, data analysis and simulations of the CLIC Test Facility (CTF3) Drive Beam phase errors. A dedicated software tool has been developed for a step-by-step analysis of the error propagation through the CLIC Drive Beam. It uses realistic RF potential and beam loading amplitude functions for the Drive and Main Beam accelerating structures, complete models of the recombination scheme and compressor chicane as well as of further CLIC Drive Beam modules. The tool has been tested extensively and its functionality has been verified. The phase error propagation at CLIC h...

  3. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  4. Operational beams for the LHC

    CERN Document Server

    Papaphilippou, Y.; Rumolo, G.; Manglunki, D.

    2014-01-01

    The variety of beams, needed to set-up in the injectors as requested in the LHC, are reviewed, in terms of priority but also performance expectations and reach during 2015. This includes the single bunch beams for machine commissioning and measurements (probe, Indiv) but also the standard physics beams with 50 ns and 25 ns bunch spacing and their high brightness variants using the Bunch Compression Merging and Splitting (BCMS) scheme. The required parameters and target performance of special beams like the doublet for electron cloud enhancement and the more exotic 8b$\\oplus$4e beam, compatible with some post-scrubbing scenarios are also described. The progress and plans for the LHC ion production beams during 2014-2015 are detailed. Highlights on the current progress of the setting up of the various beams are finally presented with special emphasis on potential performance issues across the proton and ion injector chain.

  5. Premature beam dumps in 2011

    CERN Document Server

    Albert, Markus

    2012-01-01

    The statistical analysis of all non-programmed beam dumps during the 2011 proton run is presented. The selection criteria of fills that got considered were that the beam intensity of each of the two beams exceeded at least 1e12 particles per beam in order to exclude all probe beam dumps and most of the MPS test dumps. A distribution of beam dump causes by system is shown, as well as the time it took to re-establish injection after a non-programmed dump for fills which made it into STABLE BEAMS. This was done in an attempt to evaluate the cost of those non-programmed dumps in terms of time.

  6. Ion beam generation and focusing

    International Nuclear Information System (INIS)

    Miller, P.A.; Mendel, C.W.; Swain, D.W.; Goldstein, S.A.

    1975-01-01

    Calculations have shown that efficiently generated and focused ion beams could have significant advantages over electron beams in achieving ignition of inertially-confined thermonuclear fuel. Efficient ion beam generation implies use of a good ion source and suppression of net electron current. Net electron flow can be reduced by allowing electrons to reflex through a highly transparent anode or by use of transverse magnetic fields (either beam self-fields or externally applied fields). Geometric focusing can be achieved if the beam is generated by appropriately shaped electrodes. Experimental results are presented which demonstrate ion beam generation in both reflexing and pinched-flow diodes. Spherically shaped electrodes are used to concentrate a proton beam, and target response to proton deposition is studied

  7. IMPACT simulation and the SNS linac beam

    International Nuclear Information System (INIS)

    Zhang, Y.; Qiang, J.

    2008-01-01

    Multi-particle tracking simulations for the SNS linac beam dynamics studies are performed with the IMPACT code. Beam measurement results are compared with the computer simulations, including beam longitudinal halo and beam losses in the superconducting linac, transverse beam Courant-Snyder parameters and the longitudinal beam emittance in the linac. In most cases, the simulations show good agreement with the measured results

  8. Improvement of Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size.

    Science.gov (United States)

    Ma, Haotong; Liu, Zejin; Jiang, Pengzhi; Xu, Xiaojun; Du, Shaojun

    2011-07-04

    We propose and demonstrate the improvement of conventional Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size. Based on the detailed study of the refractive beam shaping system, we found that the conventional Galilean beam shaper can only work well for the magnifying beam shaping. Taking the transformation of input beam with Gaussian irradiance distribution into target beam with high order Fermi-Dirac flattop profile as an example, the shaper can only work well at the condition that the size of input and target beam meets R(0) ≥ 1.3 w(0). For the improvement, the shaper is regarded as the combination of magnifying and demagnifying beam shaping system. The surface and phase distributions of the improved Galilean beam shaping system are derived based on Geometric and Fourier Optics. By using the improved Galilean beam shaper, the accurate transformation of input beam with Gaussian irradiance distribution into target beam with flattop irradiance distribution is realized. The irradiance distribution of the output beam is coincident with that of the target beam and the corresponding phase distribution is maintained. The propagation performance of the output beam is greatly improved. Studies of the influences of beam size and beam order on the improved Galilean beam shaping system show that restriction of beam size has been greatly reduced. This improvement can also be used to redistribute the input beam with complicated irradiance distribution into output beam with complicated irradiance distribution.

  9. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    Science.gov (United States)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  10. Energy transparency and symmetries in the beam-beam interaction

    CERN Document Server

    Krishnagopal, S

    2000-01-01

    We have modified the beam-beam simulation code CBI to handle asymmetric beams and used it to look at energy transparency and symmetries in the beam-beam interaction. We find that even a small violation of energy transparency, or of the symmetry between the two beams, changes the character of the collective (coherent) motion; in particular, period-n oscillations are no longer seen. We speculate that the one-time observation of these oscillations at LEP, and the more ubiquitous observation of the flip-flop instability in colliders around the world, may be a consequence of breaking the symmetry between the electron and positron beams. We also apply this code to the asymmetric collider PEP-II, and find that for the nominal parameters of PEP-II, in particular, the nominal tune-shift parameter of xi /sub 0/=0.03, there are no collective beam-beam issues. Collective quadrupole motion sets in only at xi /sub 0/=0.06 and above, consistent with earlier observations for symmetric beams. (6 refs).

  11. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    International Nuclear Information System (INIS)

    Bonomo, F.; Ruf, B.; Schiesko, L.; Fantz, U.; Franzen, P.; Riedl, R.; Wünderlich, D.; Barbisan, M.; Pasqualotto, R.; Serianni, G.; Cristofaro, S.

    2015-01-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the H α light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of H α spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region

  12. Detection of coherent beam-beam modes with digitized beam position monitor signals

    CERN Document Server

    Stancari, G.; White, S.M.

    2014-01-01

    A system for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations in the Fermilab Tevatron collider is described. It is based on the signal from a single beam-position monitor located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, band-limited noise is applied to the beam for about 1 s. This excitation does not adversely affect the circulating beams even at high luminosities. The device has a response time of a few seconds, a frequency resolution of $1.6\\times 10^{-5}$ in fractional tune, and it is sensitive to oscillation amplitudes of 60 nm. It complements Schottky detectors as a diagnostic tool for tunes, tune spreads, and beam-beam effects. Measurements of coherent mode spectra are presented and compared with models of beam-beam oscillations.

  13. 6D beam-beam interaction step-by-step

    CERN Document Server

    Iadarola, Giovanni; Papaphilippou, Yannis; CERN. Geneva. ATS Department

    2017-01-01

    This document describes in detail the numerical method used in different simulation codes for the simulation of beam-beam interactions using the “Synchro Beam Mapping” approach, in order to correctly model the coupling introduced by beam-beam between the longitudinal and the transverse plane. The goal is to provide in a compact, complete and self-consistent manner the set of equations needed for the implementation in a numerical code. The effect of a “crossing angle” in an arbitrary “crossing plane” with respect to the assigned reference frame is taken into account with a suitable coordinate transformation. The employed description of the strong beam allows correctly accounting for the hour-glass effect as well as for linear coupling at the interaction point.

  14. H- beam neutralization measurements in a solenoidal beam transport system

    International Nuclear Information System (INIS)

    Sherman, J.; Pitcher, E.; Stevens, R.; Allison, P.

    1992-01-01

    H minus beam space-charge neutralization is measured for 65-mA, 35-keV beams extracted from a circular-aperture Penning surface-plasma source, the small-angle source. The H minus beam is transported to a RFQ matchpoint by a two-solenoid magnet system. Beam noise is typically ±4%. A four-grid analyzer is located in a magnetic-field-free region between the two solenoid magnets. H minus potentials are deduced from kinetic energy measurements of particles (electrons and positive ions) ejected radially from the beam channel by using a griddled energy analyzer. Background neutral gas density is increased by the introduction of additional Xe and Ar gases, enabling the H minus beam to become overneutralized

  15. Beam coupling impedance of fast stripline beam kickers

    International Nuclear Information System (INIS)

    Caporaso, G; Chen, Y J; Nelson, A D; Poole, B R

    1999-01-01

    A fast stripline beam kicker is used to dynamically switch a high current electron beam between two beamlines. The transverse dipole impedance of a stripline beam kicker has been previously determined from a simple transmission line model of the structure. This model did not include effects due to the long axial slots along the structure as well as the cavities and coaxial feed transition sections at the ends of the structure. 3-D time domain simulations show that the simple transmission line model underestimates the low frequency dipole beam coupling impedance by about 20% for our structure. In addition, the end cavities and transition sections can exhibit dipole impedances not included in the transmission line model. For high current beams, these additional dipole coupling terms can provide additional beam-induced steering effects not included in the transmission line model of the structure

  16. LHC Beam Instrumentation: Beam Profile Measurements (2/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  17. Beam tuning and stabilization using beam phase measurements at GANIL

    International Nuclear Information System (INIS)

    Chabert, A.; Loyer, F.; Sauret, J.

    1984-06-01

    Owing to the great sensitivity of the beam phase to the various parameters, on line beam phase measurements proved to be a very efficient way of tuning and stabilizing the beam of the multi-accelerator complex. We recall the system which allows to obtain the different kinds of accurate measurements we need and describe the main applications: - tuning process (buncher and SSC's RF phase determination, setting of the required radial beam phase law in the SSC's); - stabilization of the beam by loops, the basic principle of which being to keep constant the beam central phase all along the machine by adjusting RF voltages or magnetic fields. Feedback loops are described and comparative results with and without feedback are given

  18. Simulation of beam-beam effects in tevatron

    International Nuclear Information System (INIS)

    Mishra, C.S.; Assadi, S.; Talman, R.

    1995-08-01

    The Fermilab accelerator complex is in the middle of an upgrade plan Fermilab III. In the last phase of this upgrade the luminosity of the Tevatron will increase by at least one order of magnitude. In order to keep the number of interactions per crossing manageable for experiments, the number of bunches will be increased from 6 x 6 to 36 x 36 and finally to ∼100 x 100 bunches. The beam dynamics of the Tevatron has been studied from Beam-Beam effect point of view in a ''Strong-Weak'' representation with a single particle being tracked in presence of other beam. This paper describes the beam-beam effect in 6 x 6 operation of Tevatron

  19. Beam line design using G4BeamLine

    CERN Document Server

    Dogan, Arda

    2014-01-01

    In Turkey in Ankara TAEK SANAEM Proton Accelerator Facility (PAF), there is a cyclotron which produces a focused intense 30 MeV proton beam and sends this beam to four different arms, three of which uses this beam to produce pharmaceutical medicine. The remaining one is spared for R&D purposes and the idea was to use these protons coming out from the fourth arm to use space radiation tests, which cannot be done in Turkey at the moment. However, according to SCC 25100 standards which is for 30 MeV protons, the beam coming out of cyclotron is too intense and focused to use for space radiation tests. Therefore, the main aim of my project is to design a beam line which will defocus the beam and reduce the flux so that the space radiation tests can be done according to the standards of SCC 25100.

  20. ATLAS diamond Beam Condition Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Gorisek, A. [CERN (Switzerland)]. E-mail: andrej.gorisek@cern.ch; Cindro, V. [J. Stefan Institute (Slovenia); Dolenc, I. [J. Stefan Institute (Slovenia); Frais-Koelbl, H. [Fotec (Austria); Griesmayer, E. [Fotec (Austria); Kagan, H. [Ohio State University, OH (United States); Korpar, S. [J. Stefan Institute (Slovenia); Kramberger, G. [J. Stefan Institute (Slovenia); Mandic, I. [J. Stefan Institute (Slovenia); Meyer, M. [CERN (Switzerland); Mikuz, M. [J. Stefan Institute (Slovenia); Pernegger, H. [CERN (Switzerland); Smith, S. [Ohio State University, OH (United States); Trischuk, W. [University of Toronto (Canada); Weilhammer, P. [CERN (Switzerland); Zavrtanik, M. [J. Stefan Institute (Slovenia)

    2007-03-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at z=+/-183.8cm. Timing of signals from the two stations will provide almost ideal separation of beam-beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of 1cm{sup 2} area and 500{mu}m thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test beam setup at KEK. Results from the test beams and bench measurements are presented.

  1. ATLAS diamond Beam Condition Monitor

    International Nuclear Information System (INIS)

    Gorisek, A.; Cindro, V.; Dolenc, I.; Frais-Koelbl, H.; Griesmayer, E.; Kagan, H.; Korpar, S.; Kramberger, G.; Mandic, I.; Meyer, M.; Mikuz, M.; Pernegger, H.; Smith, S.; Trischuk, W.; Weilhammer, P.; Zavrtanik, M.

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at z=+/-183.8cm. Timing of signals from the two stations will provide almost ideal separation of beam-beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of 1cm 2 area and 500μm thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test beam setup at KEK. Results from the test beams and bench measurements are presented

  2. Beam chopper development at LAMPF

    International Nuclear Information System (INIS)

    Hutson, R.L.; Cooke, D.W.; Heffner, R.H.; Schillaci, M.E.; Dodds, S.A.; Gist, G.A.

    1986-01-01

    In order to reduce pileup limitations on μSR data rates, a fast chopper for surface muon beams was built and tested at LAMPF. The system allowed one muon at a time to be stopped in a μSR sample in the following way: A surface beam from the LAMPF Stopped Muon Channel was focused through a crossed-field beam separator and onto a chopper slit. With the separator E and B fields adjusted properly, the beam could pass through the slit. The beam to the μSR sample was turned on or off (chopped) rapidly by switching the high voltage applied to the separator plates on or off within approximately 500 ns; with the E field off, the B field deflected the beam, dumping it near the slit. We demonstrated that, with improved electronics, we will be able to stop a single muon in a μSR sample as frequently as once every 20 μs and that data rates for the system can be a factor of five higher than is attainable with unchopped beams. The observed positron contamination of the beam was less than five percent, and the ratio of the muon rate with beam on to the rate with beam off was 1540

  3. Beam chopper development at LAMPF

    International Nuclear Information System (INIS)

    Hutson, R.L.; Cooke, D.W.; Heffner, R.H.; Schillaci, M.E.; Dodds, S.A.; Gist, G.A.

    1986-01-01

    In order to reduce pileup limitations on μSR data rates, a fast chopper for surface muon beams was built and tested at LAMPF. The system allowed one muon at a time to be stopped in a μSR sample in the following way: A surface beam from the LAMPF Stopped Muon Channel was focused through a crossed-field beam separator and onto a chopper slit. With the separator E and B fields adjusted properly, the beam could pass through the slit. The beam to the μSR sample was turned on or off (chopped) rapidly by switching the high voltage applied to the separator plates on or off within approximately 500 ns; with the E field off, the B field deflected the beam, dumping it near the slit. We demonstrated that, with improved electronics, we will be able to stop a single muon in a μSR sample as frequently as once every 20 μs and that data rates for the system can be a factor of five higher than is attainable with unchopped beams. The observed positron contamination of the beam was less than five percent, and the ratio of the muon rate with beam on to the rate with beam off was 1540. (orig.)

  4. On beam quality and flatness of radiotherapy megavoltage photon beams

    International Nuclear Information System (INIS)

    Hossain, Murshed; Rhoades, Jeffrey

    2016-01-01

    Ratio of percentage depth dose (PDD) at two depths, PDD at a depth of 10 cm (PDD 10 ), and beam flatness are monitored regularly for radiotherapy beams for quality assurance. The purpose of this study is to understand the effects of changes in one of these parameters on the other. Is it possible to monitor only the beam flatness and not PDD? The investigation has two components. Naturally occurring i.e., unintended changes in PDD ratio and in-plane flatness for 6 and 10 MV photon beams for one particular Siemens Artiste Linac are monitored for a period of about 4 years. Secondly, deliberate changes in the beam parameters are induced by changing the bending magnet current (BMI). Relationships between various beam parameters for unintended changes as well as deliberate changes are characterized. Long term unintentional changes of PDD ratio are found to have no systematic trend. The flatness in the in plane direction for 6 and 10 MV beams show slow increase of 0.43 and 0.75 % respectively in about 4 years while the changes in the PDD ratio show no such trend. Over 10 % changes in BMI are required to induce changes in the beam quality indices at 2 % level. PDD ratio for the 10 MV beam is found to be less sensitive, while the depth of maximum dose, d max , is more sensitive to the changes in BMI compared to the 6 MV beam. Tolerances are more stringent for PDD 10 than PDD ratio for the 10 MV beam. PDD ratio, PDD 10 , and flatness must be monitored independently. Furthermore, off axis ratio alone cannot be used to monitor flatness. The effect of beam quality change in the absolute dose is clinically insignificant.

  5. Electroproduction of pairs at beam-beam collision

    International Nuclear Information System (INIS)

    Bajer, V.N.; Katkov, V.M.; Strakhovenko, V.M.

    1989-01-01

    Charged particle pair production at beam-beam collision in electron-positron linear colliders has been discussed taking into account a finite size of the beams (both longitudinal and transverse) and end effects. Contributions of the main acting mechanisms are singled out which depend on the energy of initial particles and the masses of created particles. A spectral distribution of produced particles is presented. 15 refs

  6. Vaccum and beam diagnostic controls for ORIC beam lines

    International Nuclear Information System (INIS)

    Tatum, B.A.

    1991-01-01

    Vacuum and beam diagnostic equipment on beam lines from the Oak Ridge Isochronous Cyclotron, ORIC, is now controlled by a new dedicated system. The new system is based on an industrial programmable logic controller with an IBM AT personal computer providing control room operator interface. Expansion of this system requires minimal reconfiguration and programming, thus facilitating the construction of additional beam lines. Details of the implementation, operation, and performance of the system are discussed. 2 refs., 2 figs

  7. Beam-beam depolarization in SPEAR and PEP

    International Nuclear Information System (INIS)

    Montague, B.W.

    1977-01-01

    In this note some approximate estimates are made of depolarization due to beam-beam forces in SPEAR and PEP, using the results of a calculation by Kondratenko. The model assumes head-on collisions between bunches of Gaussian distribution in the transverse directions; the force on the weak-beam particle is taken to be a δ-function at the interaction point. 1 ref

  8. Conical pinched electron beam diode for intense ion beam source

    International Nuclear Information System (INIS)

    Matsukawa, Yoshinobu; Nakagawa, Yoshiro

    1982-01-01

    For the purpose of improvement of the pinched electron beam diode, the production of an ion beam by a diode with electrodes in a conical shape was studied at low voltage operation (--200 kV). The ion beam is emitted from a small region of the diode apex. The mean ion beam current density near the axis at 12 cm from the diode apex is two or three times that from an usual flat parallel diode with the same dimension and impedance. The brightness and the power brightness at the otigin are 450 MA/cm 2 sr and 0.12 TW/cm 2 sr respectively. (author)

  9. Electron beam emission and interaction of double-beam gyrotron

    International Nuclear Information System (INIS)

    Singh, Udaybir; Kumar, Anil; Kumar, Nitin; Kumar, Narendra; Pratap, Bhanu; Purohit, L.P.; Sinha, A.K.

    2012-01-01

    Highlights: ► The complete electrical design of electron gun and interaction structure of double-beam gyrotron. ► EGUN code is used for the simulation of electron gun of double-beam gyrotron. ► MAGIC code is used for the simulation of interaction structure of double-beam gyrotron. ► Design validations with other codes. - Abstract: This paper presents the numerical simulation of a double-beam magnetron injection gun (DB-MIG) and beam-wave interaction for 60 GHz, 500 kW gyrotron. The beam-wave interaction calculations, power and frequency growth estimation are performed by using PIC code MAGIC. The maximum output power of 510 kW at 41.5% efficiency, beam currents of 6 A and 12 A, electron beam velocity ratios of 1.41 and 1.25 and beam voltage of 69 kV are estimated. To obtain the design parameters, the DB-MIG with maximum transverse velocity spread less than 5% is designed. The computer simulations are performed by using the commercially available code EGUN and the in-house developed code MIGANS. The simulated results of DB-MIG design obtained by using the EGUN code are also validated with another trajectory code TRAK, which are in good agreement.

  10. Electron beam emission and interaction of double-beam gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udaybir, E-mail: uday.ceeri@gmail.com [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Department of Physics, Gurukul Kangri University, Haridwar 249404 (India); Kumar, Anil [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Kumar, Nitin, E-mail: nitin_physika@rediffmail.com [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Kumar, Narendra; Pratap, Bhanu [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Purohit, L.P. [Department of Physics, Gurukul Kangri University, Haridwar 249404 (India); Sinha, A.K., E-mail: aksinha@ceeri.ernet.in [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer The complete electrical design of electron gun and interaction structure of double-beam gyrotron. Black-Right-Pointing-Pointer EGUN code is used for the simulation of electron gun of double-beam gyrotron. Black-Right-Pointing-Pointer MAGIC code is used for the simulation of interaction structure of double-beam gyrotron. Black-Right-Pointing-Pointer Design validations with other codes. - Abstract: This paper presents the numerical simulation of a double-beam magnetron injection gun (DB-MIG) and beam-wave interaction for 60 GHz, 500 kW gyrotron. The beam-wave interaction calculations, power and frequency growth estimation are performed by using PIC code MAGIC. The maximum output power of 510 kW at 41.5% efficiency, beam currents of 6 A and 12 A, electron beam velocity ratios of 1.41 and 1.25 and beam voltage of 69 kV are estimated. To obtain the design parameters, the DB-MIG with maximum transverse velocity spread less than 5% is designed. The computer simulations are performed by using the commercially available code EGUN and the in-house developed code MIGANS. The simulated results of DB-MIG design obtained by using the EGUN code are also validated with another trajectory code TRAK, which are in good agreement.

  11. Constraints on ion beam handling for intersecting beam experiments

    International Nuclear Information System (INIS)

    Kruse, T.

    1981-01-01

    The intense synchrotron radiation beams from the NSLS uv or x-ray storage rings still do not compare in monochromatized photon flux with a laser beam, a fact which becomes apparent in considering reaction rates for interaction of photon and ion beams. There are two prototypical interaction geometries, parallel and perpendicular. Calculations should properly be done in the rest frame of the ion beam; however, expected beta values are small, so the lab frame will be employed and aberration and Doppler shift effects neglected

  12. Beam position monitor for energy recovered linac beams

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Thomas; Evtushenko, Pavel

    2017-06-06

    A method of determining the beam position in an energy recovered linac (ERL). The method makes use of in phase and quadrature (I/Q) demodulation techniques to separate the pickup signal generated by the electromagnetic fields generated by the first and second pass beam in the energy recovered linac. The method includes using analog or digital based I/Q demodulation techniques in order to measure the relative amplitude of the signals from a position sensitive beam pickup such as a button, strip line or microstripline beam position monitor.

  13. Beam-beam collisions and crossing angles in RHIC

    International Nuclear Information System (INIS)

    Peggs, S.

    1999-01-01

    This paper evaluates the strength of head on and parasitic beam-beam collisions in RHIC when the crossing angle is zero. A non-zero crossing angle is not required in normal operation with 120 bunches, thanks to the early separation of the two beams. The RHIC lattice is shown to easily accommodate even conservatively large crossing angles, for example in beam dynamics studies, or in future operational upgrades to as many as 360 bunches per ring. A modest loss in luminosity is incurred when gold ions collide at an angle after 10 hours of storage

  14. Molecular-beam studies

    International Nuclear Information System (INIS)

    Wexler, S.; Parks, E.K.; Young, C.E.; Dehmer, P.M.; Kuhry, J.G.; Cohen, R.B.; Pobo, L.G.

    1975-01-01

    Highlights of experimental results obtained with chemical accelerators are described under the following headings: development of an aerodynamic source of fast I atoms and I 2 molecules; chemi-ionization processes in collisions of uranium atoms with oxygen molecules; chemi-ionization reactions in other metal--O 2 collisions (La, Ce, Th); kinetic surface ionization; and single-crystal beam source. Relative cross sections for formation of various collision products are shown, as a function of energy in the eV range. (12 figures) (U.S.)

  15. Microplanar beams for radiotherapy

    International Nuclear Information System (INIS)

    Company, F.Z.; Allen, B.J.

    1996-01-01

    Recent advances in synchrotron generated X-ray beams with high fluence rate permit the investigation of the application of an array of closely spaced, parallel or converging microbeams in radiotherapy. The proposed technique takes advantage of the hypothesised repair mechanism of capillary cells between alternate microbeam zones, which replaces the lethally irradiated endothelial cells. In this study using the Monte Carlo method, the lateral and depth dose of a single planar microbeam of 100 keV in a tissue/lung/tissue phantom is investigated. Poster 195. (author)

  16. LANSCE Beam Current Limiter (XL)

    International Nuclear Information System (INIS)

    Gallegos, F.R.; Hall, M.J.

    1997-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) is an engineered safety system that provides personnel protection from prompt radiation due to accelerated proton beams. The Beam Current Limiter (XL), as an active component of the RSS, limits the maximum average current in a beamline, thus the current available for a beam spill accident. Exceeding the pre-set limit initiates action by the RSS to mitigate the hazard (insertion of beam stoppers in the low energy beam transport). The beam limiter is an electrically isolated, toroidal transformer and associated electronics. The device was designed to continuously monitor beamline currents independent of any external timing. Fail-safe operation was a prime consideration in its development. Fail-safe operation is defined as functioning as intended (due to redundant circuitry), functioning with a more sensitive fault threshold, or generating a fault condition. This report describes the design philosophy, hardware, implementation, operation, and limitations of the device

  17. CLIC Drive Beam Position Monitor

    CERN Document Server

    Smith, S; Gudkov, D; Soby, L; Syratchev, I

    2011-01-01

    CLIC, an electron-positron linear collider proposed to probe the TeV energy scale, is based on a two-beam scheme where RF power to accelerate a high energy luminosity beam is extracted from a high current drive beam. The drive beam is efficiently generated in a long train at modest frequency and current then compressed in length and multiplied in frequency via bunch interleaving. The drive beam decelerator requires >40000 quadrupoles, each holding a beam position monitor (BPM). Though resolution requirements are modest (2 microns) these BPMs face several challenges. They must be compact and inexpensive. They must operate below waveguide cutoff to insure locality of position signals, ruling out processing at the natural 12 GHz bunch spacing frequency. Wakefields must be kept low. We find compact conventional stripline BPM with signals processed below 40 MHz can meet requirements. Choices of mechanical design, operating frequency, bandwidth, calibration and processing algorithm are presented. Calculations of wa...

  18. Nonlinear beam expander for ESNIT

    International Nuclear Information System (INIS)

    Rusthoi, D.P.; Blind, B.; Garnett, R.W.; Hanna, D.S.; Jason, A.J.; Kraus, R.H. Jr.; Neri, F.

    1994-01-01

    We describe the design of a beam-redistribution and expansion system for the Japanese Atomic Energy Research Institute (JAERI) Energy Selective Neutron Irradiation Test Facility (ESNIT). The system tailors the beam exiting a deuteron accelerator at energies from 20 to 35 MeV for deposition on a lithium neutron-production target. A uniform beam-intensity distribution in a well-defined irradiation area is inquired at the target and is achieved by the use of nonlinear elements. The design of the high-energy beam transport (HEBT) for ESNIT includes a 90 degree achromatic bend, a matching section with an energy-compacting cavity, a nonlinear beam expander, a target imager, a shielding dipole, and an rf-cavity system to add energy spread to the beam before it impinges on the target. The system meets performance requirements at multiple energies and currents, and for different spot sizes on target

  19. On extrapolation blowups in the $L_p$ scale

    Czech Academy of Sciences Publication Activity Database

    Capone, C.; Fiorenza, A.; Krbec, Miroslav

    2006-01-01

    Roč. 9, č. 4 (2006), s. 1-15 ISSN 1025-5834 R&D Projects: GA ČR(CZ) GA201/01/1201 Institutional research plan: CEZ:AV0Z10190503 Keywords : extrapolation * Lebesgue spaces * small Lebesgue spaces Subject RIV: BA - General Mathematics Impact factor: 0.349, year: 2004

  20. Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology

    Science.gov (United States)

    Manin, Yuri I.; Marcolli, Matilde

    2014-07-01

    We introduce some algebraic geometric models in cosmology related to the ''boundaries'' of space-time: Big Bang, Mixmaster Universe, Penrose's crossovers between aeons. We suggest to model the kinematics of Big Bang using the algebraic geometric (or analytic) blow up of a point x. This creates a boundary which consists of the projective space of tangent directions to x and possibly of the light cone of x. We argue that time on the boundary undergoes the Wick rotation and becomes purely imaginary. The Mixmaster (Bianchi IX) model of the early history of the universe is neatly explained in this picture by postulating that the reverse Wick rotation follows a hyperbolic geodesic connecting imaginary time axis to the real one. Penrose's idea to see the Big Bang as a sign of crossover from ''the end of previous aeon'' of the expanding and cooling Universe to the ''beginning of the next aeon'' is interpreted as an identification of a natural boundary of Minkowski space at infinity with the Big Bang boundary.

  1. BEAM applications to polymer materials

    International Nuclear Information System (INIS)

    Tagawa, Seiichi

    1994-01-01

    Recently papers about beam applications to polymers have been increasing rapidly both in the fundamental and applied fields. Fairly large number of papers have been published in the fundamental aspects of radiation effects of beam applications to polymers such as pulse radiolysis and high density electronic excitation effects. A number of papers have been published in the more applied aspects of beam applications to polymers such as radiation processing and curing. The present paper describes recent beam applications to polymers. 1. Radiation Effects on Polymers; Radiation effects on polymers have been studied for more than 40 years. Most of work on radiation effects on polymers has been carried out by using high energy photon (gamma-ray) and electron beams, since polymers are sensitive to any kinds of ionizing radiation. Even non-ionizing radiation such as ultraviolet and visible light excites electronic excited states of polymers and then photo-chemical reactions of polymers are induced from the electronic excited states. Studies on radiation effects of other ionizing radiation on polymers have not been so popular for a long time. Recently application of new radiation such as ion beams to polymers have been worthy of remark in fields of advanced science and technology, since new radiation beams induce different radiation effects from those induced by high energy gamma-rays and electrons. 2. Beam Applications of Polymers; Recent progress in beam applications to polymers such as radiation processing and curing, x-ray and electron beam microlithography, and applications of new beams such as ion beams to polymers has been reviewed. (author)

  2. GLAST beam test at SLAC

    International Nuclear Information System (INIS)

    Engovatov, D.; Anthony, P.; Atwood, W.

    1996-10-01

    In May and June, a beam test for GLAST calorimeter technologies was conducted. A parasitic low intensity electron/tagged photon beam line into the End Station A at SLAC was commissioned and used. The preliminary stage of the test was devoted to measuring the performance of the parasitic beam. In the main test we studied the response of GLAST prototype CsI and scintillating fiber calorimeters to the electrons and photons. Results of this work are discussed

  3. NCenter wide band neutrino beam

    International Nuclear Information System (INIS)

    Stutte, L.G.

    1985-01-01

    This memo describes the physical properties of the currently operating N-Center wide band neutrino beam---commonly called the triplet train, following a past tradition of a triplet lens configuration. In reality, in order to gain a larger momentum acceptance and to minimize the angular divergence of the beam, a quadruplet beam (4 lenses) employing point-to-parallel optics at a central momentum of 300 GeV was built. 6 refs., 13 figs., 1 tab

  4. Stanford polarized atomic beam target

    International Nuclear Information System (INIS)

    Mavis, D.G.; Dunham, J.S.; Hugg, J.W.; Glavish, H.F.

    1976-01-01

    A polarized atomic beam source was used to produce an atomic hydrogen beam which was in turn used as a polarized proton target. A target density of 2 x 10'' atoms/cm 3 and a target polarization of 0.37 without the use of rf transitions were measured. These measurements indicate that a number of experiments are currently feasible with a variety of polarized target beams

  5. Atomic beams probe surface vibrations

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1982-01-01

    In the last two years, surface scientist have begun trying to obtain the vibrational frequencies of surface atoms in both insulating and metallic crystals from beams of helium atoms. It is the inelastic scattering that researchers use to probe surface vibrations. Inelastic atomic beam scattering has only been used to obtain vibrational frequency spectra from clean surfaces. Several experiments using helium beams are cited. (SC)

  6. Cornell electron beam ion source

    International Nuclear Information System (INIS)

    Kostroun, V.O.; Ghanbari, E.; Beebe, E.N.; Janson, S.W.

    1981-01-01

    An electron beam ion source (EBIS) for the production of low energy, multiply charged ion beams to be used in atomic physics experiments has been designed and constructed. An external high perveance electron gun is used to launch the electron beam into a conventional solenoid. Novel features of the design include a distributed sputter ion pump to create the ultrahigh vacuum environment in the ionization region of the source and microprocessor control of the axial trap voltage supplies

  7. Neutral helium beam probe

    Science.gov (United States)

    Karim, Rezwanul

    1999-10-01

    This article discusses the development of a code where diagnostic neutral helium beam can be used as a probe. The code solves numerically the evolution of the population densities of helium atoms at their several different energy levels as the beam propagates through the plasma. The collisional radiative model has been utilized in this numerical calculation. The spatial dependence of the metastable states of neutral helium atom, as obtained in this numerical analysis, offers a possible diagnostic tool for tokamak plasma. The spatial evolution for several hypothetical plasma conditions was tested. Simulation routines were also run with the plasma parameters (density and temperature profiles) similar to a shot in the Princeton beta experiment modified (PBX-M) tokamak and a shot in Tokamak Fusion Test Reactor tokamak. A comparison between the simulation result and the experimentally obtained data (for each of these two shots) is presented. A good correlation in such comparisons for a number of such shots can establish the accurateness and usefulness of this probe. The result can possibly be extended for other plasma machines and for various plasma conditions in those machines.

  8. Isomeric Targets and Beams

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.; Karamyan, S.A.

    1994-01-01

    One of the main topics of modern nuclear physics is the investigation of exotic nuclei including hyper-nuclei, trans fermium elements, proton and neutron rich isotopes near drip lines as well as high-spin excited states and states with anomalous deformation. The isomerism of nuclei is closely related with such phenomena as the alignment of single-particle orbitals, the coexistence of various deformations and the manifestation of intruder-levels from neighbouring shells. The investigation of electromagnetic and nuclear interactions of isomers could give important information on their shell structure and its role in the mechanism of nuclear reactions. For such experiments one can either make isomeric targets (sufficiently long-lived) or use the methods of acceleration of isomeric nuclei. Recently, an exotic 16 + four-quasiparticle isomer of 178 Hf m 2 was produced in a micro weight quantity and the first nuclear reactions on it were successfully observed. The talk describes these experiments as well as new ideas for the continuation of the studies and some advantageous ways for the isomeric beams production by the method of direct acceleration or by the secondary beam method. 35 refs., 15 figs., 8 tabs

  9. Molecular beam kinetics

    International Nuclear Information System (INIS)

    Behrens, R. Jr.

    1975-11-01

    The design of a crossed molecular beam ''supermachine'' for neutral--neutral collisions is discussed. The universal electron bombardment ionizer, mass filter, and ion detection system of the detector, the supersonic nozzle sources, the differential pumping arrangement for the sources and detector, the time-of-flight detection of scattered products, and the overall configuration of the apparatus are described. The elastic scattering of two systems, CH 4 + Ar and NH 3 + Ar, has been measured using the supermachine with two supersonic nozzle sources. The rainbow structure and the interference oscillations are seen in each system. The best fit to the data was found using a Morse--Spline--Van der Waals (MSV) potential. The three potential parameters epsilon, r/sub m/, and β were found to be 2.20(+-0.04) x 10 -14 ergs, 3.82(+-0.04)A, and 7.05 +- 0.20 for CH 4 + Ar, and 2.21(+-0.04) x 10 -14 ergs 3.93 (+-0.05)A, and 8.45 +- 0.30 for NH 3 + Ar. A new phenomenon in crossed molecular beams of condensation of a molecule on a cluster to form a complex was observed. A bromine molecule condensed on clusters of chlorine (Cl 2 )/sub chi/ and ammonia (NH 3 )/sub chi/. The value of chi for measurements in these experiments ranges from 7 to 40 for chlorine clusters and from 10 to 70 ammonia clusters

  10. Neutron Beam Filters

    International Nuclear Information System (INIS)

    Adib, M.

    2011-01-01

    The purpose of filters is to transmit neutrons with selected energy, while remove unwanted ones from the incident neutron beam. This reduces the background, and the number of spurious. The types of commonly used now-a-day neutron filters and their properties are discussed in the present work. There are three major types of neutron filters. The first type is filter of selective thermal neutron. It transmits the main reflected neutrons from a crystal monochromate, while reject the higher order contaminations accompanying the main one. Beams coming from the moderator always contain unwanted radiation like fast neutrons and gamma-rays which contribute to experimental background and to the biological hazard potential. Such filter type is called filter of whole thermal neutron spectrum. The third filter type is it transmits neutrons with energies in the resonance energy range (En . 1 KeV). The main idea of such neutron filter technique is the use of large quantities of a certain material which have the deep interference minima in its total neutron cross-section. By transmitting reactor neutrons through bulk layer of such material, one can obtain the quasimonochromatic neutron lines instead of white reactor spectrum.

  11. Monochromatic neutrino beams

    International Nuclear Information System (INIS)

    Bernabeu, Jose; Burguet-Castell, Jordi; Espinoza, Catalina; Lindroos, Mats

    2005-01-01

    In the last few years spectacular results have been achieved with the demonstration of non vanishing neutrino masses and flavour mixing. The ultimate goal is the understanding of the origin of these properties from new physics. In this road, the last unknown mixing [U e3 ] must be determined. If it is proved to be non-zero, the possibility is open for Charge Conjugation-Parity (CP) violation in the lepton sector. This will require precision experiments with a very intense neutrino source. Here a novel method to create a monochromatic neutrino beam, an old dream for neutrino physics, is proposed based on the recent discovery of nuclei that decay fast through electron capture. Such nuclei will generate a monochromatic directional neutrino beam when decaying at high energy in a storage ring with long straight sections. We also show that the capacity of such a facility to discover new physics is impressive, so that fine tuning of the boosted neutrino energy allows precision measurements of the oscillation parameters even for a [U e3 ] mixing as small as 1 degree. We can thus open a window to the discovery of CP violation in neutrino oscillations

  12. High purity radioactive beams at the bevalac

    International Nuclear Information System (INIS)

    Alonso, J.R.; Chatterjee, A.; Tobias, C.A.

    1979-03-01

    Peripheral nuclear fragmentation reactions of primary Bevalac heavy ion beams are used to produce secondary beams of radioactive nuclei. The large cross section and small deflection of the projectile fragments lead to high production and delivery efficiency for these beams. Dispersive beam transport allows good separation and purification of the desired secondary beams. 11 C and 19 Ne beams of high purity and good intensity (almost 0.2% of the primary beam current) are presently being used for biomedical experiments

  13. A pencil beam algorithm for helium ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Hermann; Stroebele, Julia; Schreiner, Thomas; Hirtl, Albert; Georg, Dietmar [Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria); PEG MedAustron, 2700 Wiener Neustadt (Austria); Department of Nuclear Medicine, Medical University of Vienna, 1090 Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria)

    2012-11-15

    Purpose: To develop a flexible pencil beam algorithm for helium ion beam therapy. Dose distributions were calculated using the newly developed pencil beam algorithm and validated using Monte Carlo (MC) methods. Methods: The algorithm was based on the established theory of fluence weighted elemental pencil beam (PB) kernels. Using a new real-time splitting approach, a minimization routine selects the optimal shape for each sub-beam. Dose depositions along the beam path were determined using a look-up table (LUT). Data for LUT generation were derived from MC simulations in water using GATE 6.1. For materials other than water, dose depositions were calculated by the algorithm using water-equivalent depth scaling. Lateral beam spreading caused by multiple scattering has been accounted for by implementing a non-local scattering formula developed by Gottschalk. A new nuclear correction was modelled using a Voigt function and implemented by a LUT approach. Validation simulations have been performed using a phantom filled with homogeneous materials or heterogeneous slabs of up to 3 cm. The beams were incident perpendicular to the phantoms surface with initial particle energies ranging from 50 to 250 MeV/A with a total number of 10{sup 7} ions per beam. For comparison a special evaluation software was developed calculating the gamma indices for dose distributions. Results: In homogeneous phantoms, maximum range deviations between PB and MC of less than 1.1% and differences in the width of the distal energy falloff of the Bragg-Peak from 80% to 20% of less than 0.1 mm were found. Heterogeneous phantoms using layered slabs satisfied a {gamma}-index criterion of 2%/2mm of the local value except for some single voxels. For more complex phantoms using laterally arranged bone-air slabs, the {gamma}-index criterion was exceeded in some areas giving a maximum {gamma}-index of 1.75 and 4.9% of the voxels showed {gamma}-index values larger than one. The calculation precision of the

  14. Ion beam assisted film growth

    CERN Document Server

    Itoh, T

    2012-01-01

    This volume provides up to date information on the experimental, theoretical and technological aspects of film growth assisted by ion beams.Ion beam assisted film growth is one of the most effective techniques in aiding the growth of high-quality thin solid films in a controlled way. Moreover, ion beams play a dominant role in the reduction of the growth temperature of thin films of high melting point materials. In this way, ion beams make a considerable and complex contribution to film growth. The volume will be essential reading for scientists, engineers and students working in thi

  15. Compact electron beam focusing column

    Science.gov (United States)

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-12-01

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  16. Plasma neutralizer for H- beams

    International Nuclear Information System (INIS)

    Grossman, M.W.

    1977-01-01

    Neutralization of H - beams by a hydrogen plasma is discussed. Optimum target thickness and maximum neutralization efficiency as a function of the fraction of the hydrogen target gas ionized is calculated for different H - beam energies. Also, the variation of neutralization efficiency with respect to target thickness for different H - beam energies is computed. The dispersion of the neutralized beam by a magnetic field for different energies and different values of B . z is found. Finally, a type of plasma jet is proposed, which may be suitable for a compact H - neutralizer

  17. Electron beam-cured coating

    International Nuclear Information System (INIS)

    Kishi, Naoyuki

    1976-01-01

    The method for hardening coatings by the irradiation with electron beams is reviewed. The report is divided into seven parts, namely 1) general description and characteristics of electron beam-cured coating, 2) radiation sources of curing, 3) hardening conditions and reaction behaviour, 4) uses and advantages, 5) latest trends of the industry, 6) practice in the field of construction materials, and 7) economy. The primary characteristics of the electron beam hardening is that graft reaction takes place between base resin and coating to produce strong adhesive coating without any pretreatment. A variety of base resins are developed. High class esters of acrylic acid monomers and methacrylic acid monomers are mainly used as dilutants recently. At present, scanning type accelerators are used, but the practical application of the system producing electron beam of curtain type is expected. The dose rate dependence, the repetitive irradiation and the irradiation atmosphere are briefly described. The filed patent applications on the electron beam hardening were analyzed by the officer of Japan Patent Agency. The production lines for coatings by the electron beam hardening in the world are listed. In the electron beam-cured coating, fifty percent of given energy is consumed effectively for the electron beam hardening, and the solvents discharged from ovens and polluting atmosphere are not used, because the paints of high solid type is used. The running costs of the electron beam process are one sixth of the thermal oven process. (Iwakiri, K.)

  18. Status of ACCULINNA beam line

    CERN Document Server

    Rodin, A M; Bogdanov, D D; Golovkov, M S; Fomichev, A S; Sidorchuk, S I; Slepnev, R S; Wolski, R; Ter-Akopian, G M; Oganessian, Yu T; Yukhimchuk, A A; Perevozchikov, V V; Vinogradov, Yu I; Grishenchkin, S K; Demin, A M; Zlatoustovskii, S V; Kuryakin, A V; Filchagin, S V; Ilkaev, R I

    2003-01-01

    The separator ACCULINNA was upgraded to achieve new experimental requirements. The beam line was extended by new ion-optical elements beyond the cyclotron hall. The new arrangements yield much better background conditions. The intensities of sup 6 He and sup 8 He radioactive beams produced in fragmentation of 35 A MeV sup 1 sup 1 B ions were increased up to a factor of 10. The upgraded beam line was used in experiments to study the sup 5 H resonance states populated in the t+t reaction. A cryogenic liquid tritium target was designed and installed at the separator beam line.

  19. Simulation of the beam halo from the beam-beam interaction in LEP

    International Nuclear Information System (INIS)

    Chen, T.; Irwin, J.; Siemann, R.

    1994-02-01

    The luminosity lifetimes of e + e - colliders are often dominated by the halo produced by the beam-beam interaction. They have developed a simulation technique to model this halo using the flux across boundaries in amplitude space to decrease the CPU time by a factor of one-hundred or more over 'brute force' tracking. It allows simulation of density distributions and halos corresponding to realistic lifetimes. Reference 1 shows the agreement with brute force tracking in a number of cases and the importance of beam-beam resonances in determining the density distribution of large amplitudes. this research is now directed towards comparisons with operating colliders and studies of the combined effects of lattice and beam-beam nonlinearities. LEP offers an ideal opportunity for both, and in this paper they are presenting the first results of LEP simulations

  20. A summary of some beam-beam models

    International Nuclear Information System (INIS)

    Chao, A.W.

    1989-01-01

    Two categories of theoretical models for the beam-beam interaction are reviewed: the linear-lens models and the single-resonance models. In a linear-lens model, the beam-beam force is linearized and represented by a localized linear lens. Analyses of incoherent single particle effects can be performed exactly in these models by using matrix techniques. Although the results do not agree with the experimental observations in many respects, the linear-lens models constitute a starting point of our understanding of the beam-beam interaction. In the single-resonance models, one is concerned with the possible incoherent instabilities as the betatron tune of some of the particles is close to a certain rational number. It is assumed in these models that one and only one such rational number dominates the single-particle beam-beam effects. It is found that static single resonances cannot explain many of the experimental results. Some attempts have been made to modify the static single-resonance theory by including some mechanisms for diffusive tune fluctuations or periodic tune modulations. These modified single-resonance models have met only with some limited qualitative success. 21 refs., 13 figs

  1. Generation of slow positron beam and beam bunching

    International Nuclear Information System (INIS)

    Azuma, O.; Satoh, T.; Shitoh, M.; Kaneko, N.; Kawaratani, T.; Hara, O.

    1994-01-01

    Two items are described in this report. One is about the outline of our slow positron beam system, which has been fabricated as a commercial prototype. The other is about the calculation result of positron beam bunching, which will be an additional function to the system. (author)

  2. Development of neutral beam source using electron beam excited plasma

    International Nuclear Information System (INIS)

    Hara, Yasuhiro; Hamagaki, Manabu; Mise, Takaya; Hara, Tamio

    2011-01-01

    A low-energy neutral beam (NB) source, which consists of an electron-beam-excited plasma (EBEP) source and two carbon electrodes, has been developed for damageless etching of ultra-large-scale integrated (ULSI) devices. It has been confirmed that the Ar ion beam energy was controlled by the acceleration voltage and the beam profile had good uniformity over the diameter of 80 mm. Dry etching of a Si wafer at the floating potential has been carried out by Ar NB. Si sputtering yield by an Ar NB clearly depends on the acceleration voltage. This result shows that the NB has been generated through the charge exchange reaction from the ion beam in the process chamber. (author)

  3. Design and Analysis Methodologies for Inflated Beams

    NARCIS (Netherlands)

    Veldman, S.L.

    2005-01-01

    The central theme of the thesis is bending behaviour of inflated beams. Three different types of beams have been analysed for the bending load case: a straight cylindrical beam made of anisotropic foil material, a conical beam made of an isotropic foil material, and a carbon fibre braided beam. The

  4. Neutron beam tomography software

    International Nuclear Information System (INIS)

    Newbery, A.C.R.

    1988-05-01

    When a sample is traversed by a neutron beam, inhomogeneities in the sample will cause deflections, and the deflections will permit conclusions to be drawn concerning the location and size of the inhomogeneities. The associated computation is similar to problems in tomography, analogous to X-ray tomography though significantly different in detail. We do not have any point-sample information, but only mean values over short line segments. Since each mean value is derived from a separate neutron counter, the quantity of available data has to be modest; also, since each datum is an integral, its geometric precision is inferior to that of X-ray data. Our software is designed to cope with these difficulties. (orig.) [de

  5. Neutron beam measurement dosimetry

    International Nuclear Information System (INIS)

    Amaro, C.R.

    1995-01-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR

  6. Electron beam irradiating device

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K

    1969-12-20

    The efficiency of an electron beam irradiating device is heightened by improving the irradiation atmosphere and the method of cooling the irradiation window. An irradiation chamber one side of which incorporates the irradiation windows provided at the lower end of the scanner is surrounded by a suitable cooling system such as a coolant piping network so as to cool the interior of the chamber which is provided with circulating means at each corner to circulate and thus cool an inert gas charged therewithin. The inert gas, chosen from a group of such gases which will not deleteriously react with the irradiating equipment, forms a flowing stream across the irradiation window to effect its cooling and does not contaminate the vacuum exhaust system or oxidize the filament when penetrating the equipment through any holes which the foil at the irradiation window may incur during the irradiating procedure.

  7. Laser beam accelerator

    International Nuclear Information System (INIS)

    Tajima, T.; Dawson, J.M.

    1981-01-01

    Parallel intense photon (laser, microwave, etc.) beams /omega/sub //0, k/sub 0/ and /omega/sub //1, k/sub 1/ shone on a plasma with frequency separation equal to the plasma frequency /omega/sub //p is capable of accelerating plasma electrons to high energies in large flux. The photon beat excites through the forward Raman scattering large amplitude plasmons whose phase velocity is equal to (/omega/ /sub 0/-/omega/sub //1)/(k/sub 0/-k/sub 1/), close to c in an underdense plasma. The multiple forward Raman instability produces smaller and smaller frequency and group velocity of photons; thus the photons slow down in the plasma by emitting accelerated electrons (inverse Cherenkov process). 6 refs

  8. Directionally positionable neutron beam

    International Nuclear Information System (INIS)

    Dance, W.E.; Bumgardner, H.M.

    1981-01-01

    Disclosed is apparatus for forming and directionally positioning a neutron beam. The apparatus includes an enclosed housing rotatable about a first axis with a neutron source axially positioned on the axis of rotation of the enclosed housing but not rotating with the housing. The rotatable housing is carried by a vertically positionable arm carried on a mobile transport. A collimator is supported by the rotatable housing and projects into the housing to orientationally position its inlet window at an adjustably fixed axial and radial spacing from the neutron source so that rotation of the enclosed housing causes the inlet window to rotate about a circle which is a fixed axial distance from the neutron source and has the axis of rotation of the housing as its center. (author)

  9. Electron beam silicon purification

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, Anatoly [SIA ' ' KEPP EU' ' , Riga (Latvia); Kravtsov, Alexey [' ' KEPP-service' ' Ltd., Moscow (Russian Federation)

    2014-11-15

    Purification of heavily doped electronic grade silicon by evaporation of N-type impurities with electron beam heating was investigated in process with a batch weight up to 50 kilos. Effective temperature of the melt, an indicative parameter suitable for purification process characterization was calculated and appeared to be stable for different load weight processes. Purified material was successfully approbated in standard CZ processes of three different companies. Each company used its standard process and obtained CZ monocrystals applicable for photovoltaic application. These facts enable process to be successfully scaled up to commercial volumes (150-300 kg) and yield solar grade silicon. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Polarized targets and beams

    International Nuclear Information System (INIS)

    Meyer, W.

    1985-01-01

    First the experimental situation of the single-pion photoproduction and the photodisintegration of the deuteron is briefly discussed. Then a description of the Bonn polarization facilities is given. The point of main effort is put on the polarized target which plays a vital role in the program. A facility for photon induced double polarization experiments at ELSA will be presented in section 4. Properties of a tensor polarized deuteron target are discussed in section 5. The development in the field of polarized targets, especially on new target materials, enables a new generation of polarized target experiments with (polarized) electrons. Some comments on the use of a polarized target in combination with electron beams will be discussed in section 6. Electron deuteron scattering from a tensor polarized deuteron target is considered and compared with other experimental possibilities. (orig./HSI)

  11. Molecular-beam scattering

    International Nuclear Information System (INIS)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N 2 from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl → NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2 2 P/sub 3/2/) and Na(3 2 P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included

  12. First LHC beam in 2017

    CERN Multimedia

    ATLAS Collaboration

    2017-01-01

    Impressions from the ATLAS control room while waiting for the very first 2017 LHC beams, from the traditional croissants in the morning to the "beam splashes" in the evening. The shift crew, online experts, run coordinators and management are looking forward to the next steps of the LHC restart.

  13. NETWORK CODING BY BEAM FORMING

    DEFF Research Database (Denmark)

    2013-01-01

    Network coding by beam forming in networks, for example, in single frequency networks, can provide aid in increasing spectral efficiency. When network coding by beam forming and user cooperation are combined, spectral efficiency gains may be achieved. According to certain embodiments, a method...... cooperating with the plurality of user equipment to decode the received data....

  14. INTOR neutral beam injector concept

    International Nuclear Information System (INIS)

    Metzler, D.H.; Stewart, L.D.

    1981-01-01

    The US INTOR phase 1 effort in the plasma heating area is described. Positive ion based sources extrapolated from present day technology are proposed. These sources operate at 175 keV beam energy for 6 s. Five injectors - plus one spare - inject 75 MW. Beam energy, source size, interface, radiation hardening, and many other studies are summarized

  15. Portal dosimetry in wedged beams

    NARCIS (Netherlands)

    Spreeuw, Hanno; Rozendaal, Roel; Camargo, Priscilla; Mans, Anton; Wendling, Markus; Olaciregui-Ruiz, Igor; Sonke, Jan-Jakob; van Herk, Marcel; Mijnheer, Ben

    2015-01-01

    Portal dosimetry using electronic portal imaging devices (EPIDs) is often applied to verify high-energy photon beam treatments. Due to the change in photon energy spectrum, the resulting dose values are, however, not very accurate in the case of wedged beams if the pixel-to-dose conversion for the

  16. Introduction to electron beam processing

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Waichiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1994-12-31

    The contents are general features in the irradiation of polymers, electron beam machines - low energy, medium energy, high energy; application of EB machine in industries, engineering of EB processing, dosimetry of EB (electron beam) safe operation of EB machine, recent topics on EB processing under development. 3 tabs., 4 figs., 17 refs.

  17. Introduction to electron beam processing

    International Nuclear Information System (INIS)

    Waichiro Kawakami

    1994-01-01

    The contents are general features in the irradiation of polymers, electron beam machines - low energy, medium energy, high energy; application of EB machine in industries, engineering of EB processing, dosimetry of EB (electron beam) safe operation of EB machine, recent topics on EB processing under development. 3 tabs., 4 figs., 17 refs

  18. Hybrid beams in the LHC

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The first proton-ion beams were successfully circulated in the LHC a couple of weeks ago. Everything went so smoothly that the LHC teams had planned the first p-Pb collisions for Wednesday, 16 November. Unfortunately, a last-minute problem with a component of the PS required for proton acceleration prevented the LHC teams from making these new collisions. However, the way is open for a possible physics run with proton-lead collisions in 2012.   Members of the LHC team photographed when the first hybrid beams got to full energy. The proton and lead beams are visible on the leftmost screen up on the wall (click to enlarge the photo). The technical challenge of making different beams circulate in the LHC is by no means trivial. Even if the machine is the same, there are a number of differences when it is operated with beams of protons, beams of lead or beams of proton and lead. Provided that the beams are equal, irrespective of whether they consist of protons or lead nuclei, they revolve at the...

  19. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore. 11 refs., 4 figs

  20. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore

  1. Beam phase space and emittance

    International Nuclear Information System (INIS)

    Buon, J.

    1990-12-01

    The classical and elementary results for canonical phase space, the Liouville theorem and the beam emittance are reviewed. Then, the importance of phase portraits to obtain a geometrical description of motion is emphasized, with examples in accelerator physics. Finally, a statistical point of view is used to define beam emittance, to study its law of approximate conservation and to treat two particular examples

  2. Hardron production and neutrino beams

    Science.gov (United States)

    Guglielmi, A.

    2006-11-01

    The precise measurements of the neutrino mixing parameters in the oscillation experiments at accelerators require new high-intensity and high-purity neutrino beams. Ancillary hadron-production measurements are then needed as inputs to precise calculation of neutrino beams and of atmospheric neutrino fluxes.

  3. Device for electron beam machining

    International Nuclear Information System (INIS)

    Panzer, S.; Ardenne, T. von; Liebergeld, H.

    1984-01-01

    The invention concerns a device for electron beam machining, in particular welding. It is aimed at continuous operation of the electron irradiation device. This is achieved by combining the electron gun with a beam guiding chamber, to which vacuum chambers are connected. The working parts to be welded can be arranged in the latter

  4. First LHC beam in 2017

    CERN Multimedia

    ATLAS Collaboration

    2017-01-01

    Impressions from the ATLAS control room while waiting for the very first 2017 LHC beams, from the traditional croissants in the morning to the "beam splashes" in the evening. The shift crew, online experts, run coordinators and management are looking forward the next steps of the LHC restart.

  5. Techniques to sort Bessel beams

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2013-09-01

    Full Text Available -polar coordinate transformation, translating helically phased beams into a transverse phase gradient. By introducing two cylindrical lenses we can focus each of the azimuthal modes associated with each Bessel beam to a different lateral position in the Fourier...

  6. Beam stability in the ISR

    International Nuclear Information System (INIS)

    Hofmann, A.

    1979-01-01

    There are 3 effects which limit the current in the ISR: the gas desorption by the beam produced ions leads to a pressure rise at a certain beam current. To increase this current limit the vacuum system has been improved continuously which resulted in a maximum beam current of 50 A. The microwave instability leads to a dilution of the longitudinal phase space density during acceleration of the bunches across the chamber and during debunching. This limits the longitudinal density of the final stack and therefore the total current which can be accumulated in the given aperture. The transverse instability of the coasting beam represents another potential limitation of the beam current. This effect is controlled by Landau damping provided by the betatron frequency spread and by feedback systems. The ion induced gas desorption represents the lowest current limit at the top energies. However the other two limitations are not far away and they depend on the proper adjustment of many machine parameters

  7. Schottky spectra and crystalline beams

    International Nuclear Information System (INIS)

    Pestrikov, D.V.

    1996-01-01

    In this paper we revise the current dependence of the Schottky noise power of a cooled proton beam previously measured at NAP-M. More careful study of experimental data indicates a linear decrease in the inverse Schottky noise power with an increase in the beam intensity (N). The root of this function determines a threshold current which occurs at N = N th ≅1.2 x 10 8 particles. The inspection of measured Schottky spectra shows that this threshold does not correspond to some collective instability of the measured harmonic of the linear beam density. The found value of N th does not depend on the longitudinal beam temperature. For the case of NAP-M lattice, the study of the spectral properties of the Schottky noise in the crystalline string predicts the current dependence of the equilibrium momentum spread of the beam, which qualitatively agrees with that, recalculated from the NAP-M data. (orig.)

  8. Toward automated beam optics control

    International Nuclear Information System (INIS)

    Silbar, R.R.; Schultz, D.E.

    1987-01-01

    We have begun a program aiming toward automatic control of charged-particle beam optics using artificial intelligence programming techniques. In developing our prototype, we are working with LISP machines and the KEE expert system shell. Our first goal was to develop a ''mouseable'' representation of a typical beam line. This responds actively to changes entered from the mouse or keyboard, giving an updated display of the beam line itself, its optical properties, and the instrumentation and control devices as seen by the operater. We have incorporated TRANSPORT, written in Fortran but running as a callable procedure in the LISP environment, for simulation of the beam-line optics. This paper describes the experience gained in meeting our first goal and discusses plans to extend the work so that it is usable, in realtime, on an operating beam line. 11 refs

  9. Design of HELIOS beam diagnostics

    International Nuclear Information System (INIS)

    Seagrave, J.D.; Bigio, I.J.; Jackson, S.V.; Laird, A.M.

    1979-01-01

    Verification of satisfactory operation of the HELIOS eight-beam laser system requires measurement of many parameters of each beam on each shot. Fifty-joule samples of each of the eight 1250-J, subnanosecond 34-cm-diameter beams of the HELIOS system are diverted to a gallery of eight folded telescopes and beamsplit to provide diagnostic measurements. Total pulse energy, and prepulse and postlase energy of each beam are measured; pulse shape details and a wavelength spectrum of a selected beam from each shot are measured; and provision is made for retropulse measurement and optical quality monitoring. All data are recorded digitally in a local screen room, with control and communication through a fiberoptic link to the main HELIOS computer

  10. An introduction to beam physics

    CERN Document Server

    Berz, Martin; Wan, Weishi

    2015-01-01

    The field of beam physics touches many areas of physics, engineering, and the sciences. In general terms, beams describe ensembles of particles with initial conditions similar enough to be treated together as a group so that the motion is a weakly nonlinear perturbation of a chosen reference particle. Particle beams are used in a variety of areas, ranging from electron microscopes, particle spectrometers, medical radiation facilities, powerful light sources, and astrophysics to large synchrotrons and storage rings such as the LHC at CERN. An Introduction to Beam Physics is based on lectures given at Michigan State University’s Department of Physics and Astronomy, the online VUBeam program, the U.S. Particle Accelerator School, the CERN Academic Training Programme, and various other venues. It is accessible to beginning graduate and upper-division undergraduate students in physics, mathematics, and engineering. The book begins with a historical overview of methods for generating and accelerating beams, high...

  11. Beam-scanning system for determination of beam profiles and form factors in merged-beam experiments

    International Nuclear Information System (INIS)

    Keyser, C.J.; Froelich, H.R.; Mitchell, J.B.A.; McGowan, J.W.

    1979-01-01

    A beam-scanning system for a merged electron-ion beam experiment is described. This system is used to determine the horizontal and vertical beam profiles and the form factors at three different locations along the axis of the beams. Design details of the wedge-shaped scanners and the electronic circuit for obtaining beam profiles and form factors are described. The form factor derivation for merged beams is given and an expression in terms of measured quantities is derived. (author)

  12. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Geskin, E.S.; Leu, M.C.

    1989-01-01

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  13. Broad-band beam buncher

    International Nuclear Information System (INIS)

    Goldberg, D.A.; Flood, W.S.; Arthur, A.A.; Voelker, F.

    1986-01-01

    This patent describes a broad-band beam buncher. This beam buncher consists of: a housing adapted to be eacuated, an electron gun in the housing for producing a beam of electrons, buncher means in the housing forming a buncher cavity which has an entrance opening for receiving the electron beam and an exit opening through which the electron beam passes out of the buncher cavity, a drift tube electrode in the buncher cavity and disposed between the entrance opening and the exit opening with first and second gaps between the drift tube electrode and the entrance and exit openings, the drift tube electrode which has a first drift space through which the electron beam passes in traveling between the entrance and exit openings, modulating means for supplying an ultrahigh frequeny modulating signal to the drift tube electrode for producing velocity modulation of the electrons in the electron beam as the electrons pass through the buncher cavity and the drift tube electrode between the entrance opening and the exit opening, drift space means in the housing forming a second drift space for receiving the velocity modulated electron beam from the exit opening, the velocity modulated electron beam being bunched as it passes along the second drift space, the drift space means has a discharge opening through which the electron beam is discharged from the second drift space after being bunched therein, the modulating means containing a signal source for producing an ultrahigh frequency signal, a transmission line connected between the signal source and the drift tube electrode, and terminating means connected to the drift tube electrode for terminating the transmission line in approximately its characteristic impedance to afford a broad response band with minimum 6 variations therein

  14. A Refined Zigzag Beam Theory for Composite and Sandwich Beams

    Science.gov (United States)

    Tessler, Alexander; Sciuva, Marco Di; Gherlone, Marco

    2009-01-01

    A new refined theory for laminated composite and sandwich beams that contains the kinematics of the Timoshenko Beam Theory as a proper baseline subset is presented. This variationally consistent theory is derived from the virtual work principle and employs a novel piecewise linear zigzag function that provides a more realistic representation of the deformation states of transverse-shear flexible beams than other similar theories. This new zigzag function is unique in that it vanishes at the top and bottom bounding surfaces of a beam. The formulation does not enforce continuity of the transverse shear stress across the beam s cross-section, yet is robust. Two major shortcomings that are inherent in the previous zigzag theories, shear-force inconsistency and difficulties in simulating clamped boundary conditions, and that have greatly limited the utility of these previous theories are discussed in detail. An approach that has successfully resolved these shortcomings is presented herein. Exact solutions for simply supported and cantilevered beams subjected to static loads are derived and the improved modelling capability of the new zigzag beam theory is demonstrated. In particular, extensive results for thick beams with highly heterogeneous material lay-ups are discussed and compared with corresponding results obtained from elasticity solutions, two other zigzag theories, and high-fidelity finite element analyses. Comparisons with the baseline Timoshenko Beam Theory are also presented. The comparisons clearly show the improved accuracy of the new, refined zigzag theory presented herein over similar existing theories. This new theory can be readily extended to plate and shell structures, and should be useful for obtaining relatively low-cost, accurate estimates of structural response needed to design an important class of high-performance aerospace structures.

  15. On nonlinear development of beam instability

    International Nuclear Information System (INIS)

    Popel', S.I.; Tsytovich, V.N.

    1990-01-01

    Radiation-resonance interactions are taken into account in the problem of dynamics of an electron beam inb plasma. The beam characteristics to be taken into account are determined. Stabilization conditions for beam instability are established

  16. Beam, multi-beam and broad beam production with COMIC devices

    International Nuclear Information System (INIS)

    Sortais, P.; Lamy, T.; Medard, J.; Angot, J.; Peaucelle, C.

    2012-01-01

    The COMIC discharge cavity is a very versatile technology. We will present new results and devices that match new applications like: molecular beams, ultra compact beam line for detectors calibrations, quartz source for on-line application, high voltage platform source, sputtering /assistance broad beams and finally, a quite new use, high energy multi-beam production for surface material modifications. In more details, we will show that the tiny discharge of COMIC can mainly produce molecular ions (H 3+ ). We will present the preliminary operation of the fully quartz ISOLDE COMIC version, in collaboration with IPN Lyon, we will present a first approach for a slit extraction version of a three cavity device, and after discussing about various extraction systems on the multi discharge device (41 cavities) we will show the low energy broad beam (2 KV) and high energy multi-beams (10 beams up to 30 KV) productions. We will specially present the different extraction systems adapted to each application and the beams characteristics which are strongly dependent on the voltage distribution of an accel-accel two electrodes extraction system. The paper is followed by the slides of the presentation. (authors)

  17. A beam profile monitor for small electron beams

    International Nuclear Information System (INIS)

    Norem, J.

    1991-01-01

    Measurement of beam properties at the foci of high energy linacs is difficult due to the small size of the waists in proposed and existing accelerators (1 nm -2 μm). This article considers the use of bremsstrahlung radiation from thin foils to measure the size and phase space density these beams using nonimaging optics. The components of the system are described, and the ultimate resolution, evaluated theoretically for the case of the Final Focus Test Beam (FFTB) at Stanford Linear Accelerator Center, is a few nm

  18. Generalized beam quality factor of aberrated truncated Gaussian laser beams

    CSIR Research Space (South Africa)

    Mafusire, C

    2011-07-01

    Full Text Available with a quadratic refractive index profile, a change in the beam quality factor can be used to infer the pre- sence of aberrations and thereby study the media of interest. For these reasons, among others, research into the beam qual- ity factor... very much like a normal lens (without the rotational symmetry associated with defocus) since the beam quality factor is calculated in the principal axes. With y-astigmatism, the lenslike behavior does not take place in the principal axes where...

  19. A beam profile monitor for small electron beams

    International Nuclear Information System (INIS)

    Norem, J.

    1991-01-01

    Measurement of beam properties at the foci of high energy linacs is difficult due to the small size of the waists in proposed and existing accelerators (1 nm - 2 μ). This paper considers the use of bremsstrahlung radiation from thin foils to measure the size and phase space density these beams using nonimaging optics. The components of the system are described, and the ultimate resolution, evaluated theoretically for the case of the Final Focus Test Beam at Stanford Linear Accelerator Center, is a few nm. 13 refs., 4 figs. 1 tab

  20. OBSERVATION OF STRONG - STRONG AND OTHER BEAM - BEAM EFFECTS IN RHIC

    International Nuclear Information System (INIS)

    FISCHER, W.; BLASKIEWICZ, M.; BRENNAN, J.M.; CAMERON, P.; CONNOLLY, R.; MONTAG, C.; PEGGS, S.; PILAT, F.; PTITSYN, V.; TEPIKIAN, S.; TRBOJEVIC, D.; VAN ZEIJTS, J.

    2003-01-01

    RHIC is currently the only hadron collider in which strong-strong beam-beam effects can be seen. For the first time, coherent beam-beam modes were observed in a bunched beam hadron collider. Other beam-beam effects in RHIC were observed in operation and in dedicated experiments with gold ions, deuterons and protons. Observations include measurements of beam-beam induced tune shifts, lifetime and emittance growth measurements with and without beam-beam interaction, and background rates as a function of tunes. During ramps unequal radio frequencies in the two rings cause the crossing points to move longitudinally. Thus bunches experience beam-beam interactions only in intervals and the tunes are modulated. In this article we summarize the most important beam-beam observations made so far

  1. Ultra-High Density Electron Beams for Beam Radiation and Beam Plasma Interaction

    CERN Document Server

    Anderson, Scott; Frigola, Pedro; Gibson, David J; Hartemann, Fred V; Jacob, Jeremy S; Lim, Jae; Musumeci, Pietro; Rosenzweig, James E; Travish, Gil; Tremaine, Aaron M

    2005-01-01

    Current and future applications of high brightness electron beams, which include advanced accelerators such as the plasma wake-field accelerator (PWFA) and beam-radiation interactions such as inverse-Compton scattering (ICS), require both transverse and longitudinal beam sizes on the order of tens of microns. Ultra-high density beams may be produced at moderate energy (50 MeV) by compression and subsequent strong focusing of low emittance, photoinjector sources. We describe the implementation of this method used at LLNL's PLEIADES ICS x-ray source in which the photoinjector-generated beam has been compressed to 300 fsec duration using the velocity bunching technique and focused to 20 μm rms size using an extremely high gradient, permanent magnet quadrupole (PMQ) focusing system.

  2. Experimental studies on beam-plasma interaction

    International Nuclear Information System (INIS)

    Kiwamoto, Y.

    1977-01-01

    Beam-handling technology has reached now at such a level as to enable highly controlled experiments of beam-plasma interaction. Varieties of hypotheses and suppositions about the beam propagation and interaction in space plasma can be proved and often be corrected by examining the specific processes in laboratory plasma. The experiments performed in this way by the author are briefed: ion beam instability in unmagnetized plasma; ion beam instability perpendicular to magnetic field; and electron beam instability. (Mori, K.)

  3. Coherent instabilities of a relativistic bunched beam

    International Nuclear Information System (INIS)

    Chao, A.W.

    1982-06-01

    A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references

  4. Coherent instabilities of a relativistic bunched beam

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.

    1982-06-01

    A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references.

  5. Electron beam based transversal profile measurements of intense ion beams

    International Nuclear Information System (INIS)

    El Moussati, Said

    2014-01-01

    A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the

  6. Reconstruction of FXR Beam Conditions

    International Nuclear Information System (INIS)

    Nexen, W E; Scarpetti, R D; Zentler, J

    2001-01-01

    Beam-envelope radius, envelope angle, and beam emittance can be derived from measurements of beam radius for at least three different transport conditions. We have used this technique to reconstruct exit parameters from the FXR injector and accelerator. We use a diamagnetic loop (DML) to measure the magnetic moment of the high current beam. With no assumptions about radial profile, we can derive the beam mean squire radius from the moment under certain easily met conditions. Since it is this parameter which is required for the reconstruction, it is evident that the DML is the ideal diagnostic for this technique. The simplest application of this technique requires at least three shots for a reconstruction but in reality requires averaging over many more shots because of shot to shot variation. Since DML measurements do not interfere with the beam, single shot time resolved measurements of the beam parameters appear feasible if one uses an array of at least three DMLs separated by known transport conditions

  7. Intense low energy positron beams

    International Nuclear Information System (INIS)

    Lynn, K.G.; Jacobsen, F.M.

    1993-01-01

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e + beams exist producing of the order of 10 8 - 10 9 e + /sec. Several laboratories are aiming at high intensity, high brightness e + beams with intensities greater than 10 9 e + /sec and current densities of the order of 10 13 - 10 14 e + sec - 1 cm -2 . Intense e + beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B + moderators or by increasing the available activity of B + particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e + collisions with atoms and molecules. Within solid state physics high intensity, high brightness e + beams are in demand in areas such as the re-emission e + microscope, two dimensional angular correlation of annihilation radiation, low energy e + diffraction and other fields. Intense e + beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies

  8. Generation of electron Airy beams.

    Science.gov (United States)

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  9. LCLS Maximum Credible Beam Power

    International Nuclear Information System (INIS)

    Clendenin, J.

    2005-01-01

    The maximum credible beam power is defined as the highest credible average beam power that the accelerator can deliver to the point in question, given the laws of physics, the beam line design, and assuming all protection devices have failed. For a new accelerator project, the official maximum credible beam power is determined by project staff in consultation with the Radiation Physics Department, after examining the arguments and evidence presented by the appropriate accelerator physicist(s) and beam line engineers. The definitive parameter becomes part of the project's safety envelope. This technical note will first review the studies that were done for the Gun Test Facility (GTF) at SSRL, where a photoinjector similar to the one proposed for the LCLS is being tested. In Section 3 the maximum charge out of the gun for a single rf pulse is calculated. In Section 4, PARMELA simulations are used to track the beam from the gun to the end of the photoinjector. Finally in Section 5 the beam through the matching section and injected into Linac-1 is discussed

  10. ATLAS diamond Beam Condition Monitor

    CERN Document Server

    Gorišek, A; Dolenc, I; Frais-Kölbl, H; Griesmayer, E; Kagan, H; Korpar, S; Kramberger, G; Mandic, I; Meyer, M; Mikuz, M; Pernegger, H; Smith, S; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at . Timing of signals from the two stations will provide almost ideal separation of beam–beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of area and thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test bea...

  11. Optical tractor Bessel polarized beams

    Science.gov (United States)

    Mitri, F. G.; Li, R. X.; Guo, L. X.; Ding, C. Y.

    2017-01-01

    Axial and transverse radiation force cross-sections of optical tractor Bessel polarized beams are theoretically investigated for a dielectric sphere with particular emphasis on the beam topological charge (or order), half-cone angle and polarization. The angular spectrum decomposition method (ASDM) is used to derive the non-paraxial electromagnetic (EM) field components of the Bessel beams. The multipole expansion method using vector spherical harmonics is utilized and appropriate beam-shape coefficients are derived in order to compute the radiation force cross-sections. The analysis has no limitation to a particular range of frequencies such that the Rayleigh, Mie or geometrical optics regimes can all be considered effectively using the present rigorous formalism. The focus of this investigation is to identify some of the tractor beam conditions so as to achieve retrograde motion of a dielectric sphere located arbitrarily in space. Numerical computations for the axial and transverse radiation force cross-sections are presented for linear, right-circular, radial, azimuthal and mixed polarizations of the individual plane waves forming the Bessel beams of zeroth- and first-order (with positive or negative helicity), respectively. As the sphere shifts off the beam's axis, the axial pulling (tractor) force is weakened. Moreover, the transverse radiation force cross-section field changes with the sphere's size factor ka (where k is the wavenumber and a is the sphere radius). Both stable and unstable equilibrium regions around the beam's axis are found, depending on the choice of ka and the half-cone angle α0. These results are particularly important in the development of emergent technologies for the photophoretic assembly of optically-engineered (meta)materials with designed properties using optical tractor (vortex) beams, particle manipulation, levitation and positioning, and other applications.

  12. Production of ion beam by conical pinched electron beam diode

    International Nuclear Information System (INIS)

    Matsukawa, Y.; Nakagawa, Y.

    1982-01-01

    Some properties of the ion beam produced by pinched electron beam diode having conical shape electrodes and organic insulator anode was studied. Ion energy is about 200keV and the peak diode current is about 30 kA. At 11cm from the diode apex, not the geometrical focus point, concentrated ion beam was obtained. Its density is more than 500A/cm 2 . The mean ion current density within the radius of 1.6cm around the axis from conical diode is two or three times that from an usual pinched electron beam diode with flat parallel electrodes of same dimension and impedance under the same conditions. (author)

  13. Beam-beam effect and luminosity in SPEAR

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1980-07-01

    Measurements performed at SPEAR have been discussed and scaling laws for the maximum luminosity and the maximum linear tune shift parameter with energy are shown. There are two distinct regimes, one below 2 GeV where the linear tune shift parameter scales like xi/sub y/ approx. E 2 4 and the other regime where this parameter is constant xi/sub y/ approx. = 0.05 to 0.06. In the lower energy regime the limit is reached when the vertical beam size is blown up to the acceptance of the storage ring. A significant (< 10%) horizontal beam blow up is not observed and the value of the horizontal linear tune shift parameter xi/sub x/ does not seem to be related to the beam-beam limit

  14. Beam profile effects on NPB [neutral particle beam] performance

    International Nuclear Information System (INIS)

    LeClaire, R.J. Jr.

    1988-03-01

    A comparison of neutral particle beam brightness for various neutral beam profiles indicates that the widely used assumption of a Gaussian profile may be misleading for collisional neutralizers. An analysis of available experimental evidence shows that lower peaks and higher tails, compared to a Gaussian beam profile, are observed out of collisional neutralizers, which implies that peak brightness is over estimated, and for a given NPB platform-to-target range, the beam current (power), dwell time or some combination of such engagement parameters would have to be altered to maintain a fixed dose on target. Based on the present analysis, this factor is nominally about 2.4 but may actually be as low as 1.8 or as high as 8. This is an important consideration in estimating NPB constellation performance in SDI engagement contexts. 2 refs., 6 figs

  15. A map for the thick beam-beam interaction

    International Nuclear Information System (INIS)

    Irwin, J.; Chen, T.

    1995-01-01

    The authors give a closed-form expression for the thick beam-beam interaction for a small disruption parameter, as typical in electron-positron storage rings. The dependence on transverse angle and position of the particle trajectory as well as the longitudinal position of collision and the waist-modified shape of the beam distribution are included. Large incident angles, as are present for beam-halo particles or for large crossing-angle geometry, are accurately represented. The closed-form expression is well approximated by polynomials times the complex error function. Comparisons with multi-slice representations show even the first order terms are more accurate than a five slice representation, saving a factor of 5 in computation time

  16. CONTINOUS EXTRACTED BEAM IN THE AGS FAST EXTERNAL BEAM LINE

    International Nuclear Information System (INIS)

    GLENN, J.W.; TSOUPAS, N.; BROWN, K.A.; BIRYUKOV, V.M.

    2001-01-01

    A method to split off a few percent of the 6 x 10 13 AGS beam delivered to the Slow External Beam (SEB) lines and send it down the Fast External Beam line (FEB) has been developed. The mission is to feed a counter experiment off the FEB that directly measures the neutrino mass using the muon storage ring. The use of normal thin septum splitters would have an excessive loss overhead and been optically difficult. The AGS Slow Extraction uses a third integer resonance with sextuple strength so the resonance width is a few percent of the beam width. This results in a low density tail which will be clipped by a bent crystal and deflected into the FEB channel. This clipping off of the tail should reduce losses in the SEB transport line. Details of modeled orbits, particle distribution and extraction trajectories into and out off the crystal will be given

  17. Numerical simulation of electron beam welding with beam oscillations

    Science.gov (United States)

    Trushnikov, D. N.; Permyakov, G. L.

    2017-02-01

    This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.

  18. Simulating Transient Effects of Pulsed Beams on Beam Intercepting Devices

    CERN Document Server

    Richter, Herta; Noah Messomo, Etam

    2011-01-01

    The development in the physics community towards higher beam power through the possibilities of particle accelerators lead to challenges for the developers of elements which are exposed to effect of particle beams (beam intercepting devices = BIDs). For the design of BIDs, the increasing heat load onto these devices due to energetic and focused beams and - in most cases - their highly pulsed nature has to be taken into account. The physics requirements are sometimes opposed to the current state of the art. As one possibility of many in combining the different aspects for these ambitious demands, two highly developed computer programs, namely FLUKA and ANSYS AUTODYN, were joined for this dissertation. The former is a widely enhanced Monte-Carlo-code which specializes on the interaction of particles with static matter, while the latter is a versatile explicit code for the simulation of highly dynamic processes. Both computer programs were developed intensively over years and are still continuously enhanced in o...

  19. Gamma ray beam transmutation

    International Nuclear Information System (INIS)

    Imasaki, K.; Li, D.; Miyamoto, S.; Amano, S.; Motizuki, T.

    2007-01-01

    We have proposed a new approach to nuclear transmutation by a gamma ray beam of Compton scattered laser photon. We obtained 20 MeV gamma ray in this way to obtain transmutation rates with the giant resonance of 1 97Au and 1 29Iodine. The rate of the transmutation agreed with the theoretical calculation. Experiments on energy spectrum of positron, electron and neutron from targets were performed for the energy balance and design of the system scheme. The reaction rate was about 1.5∼4% for appropriate photon energies and neutron production rate was up to 4% in the measurements. We had stored laser photon more than 5000 times in a small cavity which implied for a significant improvement of system efficiency. Using these technologies, we have designed an actual transmutation system for 1 29Iodine which has a 16 million year's activity. In my presentation, I will address the properties of this scheme, experiments results and transmutation system for iodine transmutation

  20. A Symplectic Beam-Beam Interaction with Energy Change

    International Nuclear Information System (INIS)

    Moshammer, Herbert

    2003-01-01

    The performance of many colliding storage rings is limited by the beam-beam interaction. A particle feels a nonlinear force produced by the encountering bunch at the collision. This beam-beam force acts mainly in the transverse directions so that the longitudinal effects have scarcely been studied, except for the cases of a collision with a crossing angle. Recently, however, high luminosity machines are being considered where the beams are focused extensively at the interaction point (IP) so that the beam sizes can vary significantly within the bunch length. Krishnagopal and Siemann have shown that they should not neglect the bunch length effect in this case. The transverse kick depends on the longitudinal position as well as on the transverse position. If they include this effect, however, from the action-reaction principle, they should expect, at the same time, an energy change which depends on the transverse coordinates. Such an effect is reasonably understood from the fact that the beam-beam force is partly due to the electric field, which can change the energy. The action-reaction principle comes from the symplecticity of the reaction: the electromagnetic influence on a particle is described by a Hamiltonian. The symplecticity is one of the most fundamental requirements when studying the beam dynamics. A nonsymplectic approximation can easily lead to unphysical results. In this paper, they propose a simple, approximately but symplectic mapping for the beam-beam interaction which includes the energy change as well as the bunch-length effect. In the next section, they propose the mapping in a Hamiltonian form, which directly assures its symplecticity. Then in section 3, they study the nature of the mapping by interpreting its consequences. The mapping itself is quite general and can be applied to any distribution function. They show in Section 4 how it appears when the distribution function is a Gaussian in transverse directions. The mapping is applied to the

  1. Intense beams of light ions

    International Nuclear Information System (INIS)

    Camarcat, Noel

    1985-01-01

    Results of experiments performed in order to accelerate intense beams of light and heavier ions are presented. The accelerating diodes are driven by existing pulsed power generators. Optimization of the generator structure is described in chapter I. Nuclear diagnostics of the accelerated light ion beams are presented in chapter II. Chapter III deals with the physics of intense charged particle beams. The models developed are applied to the calculation of the performances of the ion diodes described in the previous chapters. Chapter IV reports preliminary results on a multiply ionized carbon source driven by a 0.1 TW pulsed power generator. (author) [fr

  2. BR2 reactor neutron beams

    International Nuclear Information System (INIS)

    Neve de Mevergnies, M.

    1977-01-01

    The use of reactor neutron beams is becoming increasingly more widespread for the study of some properties of condensed matter. It is mainly due to the unique properties of the ''thermal'' neutrons as regards wavelength, energy, magnetic moment and overall favorable ratio of scattering to absorption cross-sections. Besides these fundamental reasons, the impetus for using neutrons is also due to the existence of powerful research reactors (such as BR2) built mainly for nuclear engineering programs, but where a number of intense neutron beams are available at marginal cost. A brief introduction to the production of suitable neutron beams from a reactor is given. (author)

  3. Matter-Wave Tractor Beams

    DEFF Research Database (Denmark)

    Gorlach, Alexey A.; Gorlach, Maxim A.; Lavrinenko, Andrei

    2017-01-01

    Optical and acoustic tractor beams are currently the focus of intense research due to their counterintuitive property of exerting a pulling force on small scattering objects. In this Letter we propose a matter-wave tractor beam and utilize the de Broglie waves of nonrelativistic matter particles...... are compared, and the matter-wave pulling force is found to have exclusive properties of dragging slow particles in short-range potentials. We envisage that the use of tractor beams could lead to the unprecedented precision in manipulation with atomic-scale quantum objects....

  4. Crystalline beams: The vertical zigzag

    International Nuclear Information System (INIS)

    Haffmans, A.F.; Maletic, D.; Ruggiero, A.G.

    1994-01-01

    This note is the continuation of our comprehensive investigation of Crystalline Beams. After having determined the equations of motion and the conditions for the formation of the simplest configuration, i.e. the string, we study the possibility of storing an intense beam of charged particles in a storage ring where they form a vertical zigzag. We define the equilibrium configuration, and examine the confinement conditions. Subsequently, we derive the transfer matrix for motion through various elements of the storage ring. Finally we investigate the stability conditions for such a beam

  5. Photoelectron photoion molecular beam spectroscopy

    International Nuclear Information System (INIS)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed

  6. Standard beam PWC for Fermilab

    International Nuclear Information System (INIS)

    Fenker, H.

    1983-02-01

    As one of its projects the Fermilab Experimental Areas Department has been designed and tested a relatively small proportional wire chamber for use in the secondary beam lines. It is intended to supplement the variety of detectors known in the vernacular as SWICS that are used to obtain profiles for beam tuning. The new detector, described in this report, operates in the limited proportional mode and allows experimenters to use a standard, lab supported device for associating trajectories of individual beam particles with events triggering their own experiment's apparatus. A completed triple plane module is shown

  7. Plural beam electron gun assembly

    International Nuclear Information System (INIS)

    Stratton, M.G.

    1977-01-01

    The invention relates to a cathode ray tube plural-beam-in-line bi-potential electron gun assembly, having applied beam currents of differing levels, manifests structurally modified gun structures to effect focused beam landings at the screen that are evidenced as substantially equi-sized spots thereby providing improved resolution and brightness of the screen imagery. The structural changes embody modifications of the related focusing and accelerator electrodes of the respective guns to provide a partial telescoping arrangement for effecting the discrete placement, forming and shielding of the final focusing lenses. The three lenses so formed are in different planes in partial overlapping axial relationship

  8. Positronium reflection and positronium beams

    International Nuclear Information System (INIS)

    Weber, M.; Tang, S.; Khatri, R.; Roellig, L.O.; Viescas, A.J.; Berko, S.; Canter, K.F.; Lynn, K.G.; Mills, A.P. Jr.

    1989-01-01

    We have observed specular reflection of positronium, Ps, and established that there is adequate intensity at higher energies to make further study worthwhile. The scattering appears to be restricted to the outermost surface with a mean free path of (0.75 ± 0.15)Angstrom for Ps in LiF(100). With a greater intensity Ps beam one should see higher order diffraction beams as the result of the periodicity of the surface. Ps diffraction thus offers the possibility of being a novel and valuable probe to study the outermost surface and to study adsorbents on it. Two methods for producing Ps beams are described. 29 refs., 11 figs

  9. Sheet Beam Klystron Instability Analysis

    International Nuclear Information System (INIS)

    Bane, K.

    2009-01-01

    Using the principle of energy balance we develop a 2D theory for calculating growth rates of instability in a two-cavity model of a sheet beam klystron. An important ingredient is a TE-like mode in the gap that also gives a longitudinal kick to the beam. When compared with a self-consistent particle-in-cell calculation, with sheet beam klystron-type parameters, agreement is quite good up to half the design current, 65 A; at full current, however, other, current-dependent effects come in and the results deviate significantly

  10. CEBAF beam viewer imaging software

    International Nuclear Information System (INIS)

    Bowling, B.A.; McDowell, C.

    1993-01-01

    This paper discusses the various software used in the analysis of beam viewer images at CEBAF. This software, developed at CEBAF, includes a three-dimensional viewscreen calibration code which takes into account such factors as multiple camera/viewscreen rotations and perspective imaging, and maintaining a calibration database for each unit. Additional software allows single-button beam spot detection, with determination of beam location, width, and quality, in less than three seconds. Software has also been implemented to assist in the determination of proper chopper RF control parameters from digitized chopper circles, providing excellent results

  11. Generation of arbitrary vector beams

    Science.gov (United States)

    Perez-Garcia, Benjamin; López-Mariscal, Carlos; Hernandez-Aranda, Raul I.; Gutiérrez-Vega, Julio C.

    2017-08-01

    Optical vector beams arise from point to point spatial variations of the electric component of an electromagnetic field over the transverse plane. In this work, we present a novel experimental technique to generate arbitrary vec- tor beams, and provide sufficient evidence to validate their state of polarization. This technique takes advantage of the capability of a Spatial Light Modulator to simultaneously generate two components of an electromagnetic field by halving the screen of the device and subsequently recombining them in a Sagnac interferometer. Our experimental results show the versatility and robustness of this technique for the generation of vector beams.

  12. Beam based systems and controls

    CERN Document Server

    Jacquet, D

    2012-01-01

    This presentation will give a review from the operations team of the performance and issues of the beam based systems, namely RF, ADT, beam instrumentation, controls and injection systems. For each of these systems, statistics on performance and availability will be presented with the main issues encountered in 2012. The possible improvements for operational efficiency and safety will be discussed, with an attempt to answer the question "Are we ready for the new challenges brought by the 25ns beam and increased energy after LSI? ".

  13. Beam phase space and emittance

    International Nuclear Information System (INIS)

    Buon, J.

    1992-02-01

    The classical and elementary results for canonical phase space, the Liouville theorem and the beam emittance are reviewed. Then, the importance of phase portraits to obtain a geometrical description of motion is emphasized, with examples in accelerator physics. Finally, a statistical point of view is used to define beam emittance, to study its law of approximate conservation, with three particular examples, and to introduce a beam envelope-ellipse and the β-function, emphasing the statistical features of its properties. (author) 14 refs.; 11 figs

  14. Doppler-shifted neutral beam line shape and beam transmission

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Grisham, L.R.; Kokatnur, N.; Lagin, L.J.; Newman, R.A.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.

    1994-04-01

    Analysis of Doppler-shifted Balmer-α line emission from the TFTR neutral beam injection systems has revealed that the line shape is well approximated by the sum of two Gaussians, or, alternatively, by a Lorentzian. For the sum of two Gaussians, the broad portion of the distribution contains 40% of the beam power and has a divergence five times that of the narrow part. Assuming a narrow 1/e- divergence of 1.3 degrees (based on fits to the beam shape on the calorimeter), the broad part has a divergence of 6.9 degrees. The entire line shape is also well approximated by a Lorentzian with a half-maximum divergence of 0.9 degrees. Up to now, fusion neutral beam modelers have assumed a single Gaussian velocity distribution, at the extraction plane, in each direction perpendicular to beam propagation. This predicts a beam transmission efficiency from the ion source to the calorimeter of 97%. Waterflow calorimetry data, however, yield a transmission efficiency of ∼75%, a value in rough agreement with predictions of the Gaussian or Lorentzian models presented here. The broad wing of the two Gaussian distribution also accurately predicts the loss in the neutralizer. An average angle of incidence for beam loss at the exit of the neutralizer is 2.2 degrees, rather than the 4.95 degrees subtended by the center of the ion source. This average angle of incidence, which is used in computing power densities on collimators, is shown to be a function of beam divergence

  15. Beam-Beam Simulations with GUINEA-PIG

    CERN Document Server

    Schulte, Daniel

    1998-01-01

    While the bunches in a linear collider cross only once, due to their small size they experience a strong beam-beam effect. GUINEA-PIG is a code to simulate the impact of this effect on luminosity and back ground. A short overview of the program is given with examples of its application to the back ground strudies for TESLA, the top quark threshold scan and a possible luminosity monitor, as well as some results for CLIC.

  16. Observations and open questions in beam-beam interactions

    International Nuclear Information System (INIS)

    Sen, Tanaji

    2010-01-01

    The first of the hadron colliders, ISR, started operation in 1970. In the following years, the hadron colliders to follow were the SPS (started 1980), the Tevatron (started 1987 first as a fixed target machine), RHIC (started 2000) and most recently the LHC, which started in 2008. HERA was a hybrid that collided electrons and protons. All of these accelerators had or have their performance limited by the effects of the beam-beam interactions. That has also been true for the electron-positron colliders such as LEP, CESR, KEKB and PEPII. In this article I will discuss how the beam-beam limitations arose in some of these machines. The discussion will be focused on common themes that span the different colliders. I will mostly discuss the hadron colliders but sometimes discuss the lepton colliders where relevant. Only a handful of common accelerator physics topics are chosen here, the list is not meant to be exhaustive. A comparative review of beam-beam performance in the ISR, SPS and Tevatron (ca 1989) can be found in reference. Table 1 shows the relevant parameters of colliders (excluding the LHC), which have accelerated protons.

  17. Monitoring external beam radiotherapy using real-time beam visualization

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Cesare H. [Department of Mechanical Engineering and Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Naczynski, Dominik J.; Yu, Shu-Jung S.; Xing, Lei, E-mail: lei@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States)

    2015-01-15

    Purpose: To characterize the performance of a novel radiation therapy monitoring technique that utilizes a flexible scintillating film, common optical detectors, and image processing algorithms for real-time beam visualization (RT-BV). Methods: Scintillating films were formed by mixing Gd{sub 2}O{sub 2}S:Tb (GOS) with silicone and casting the mixture at room temperature. The films were placed in the path of therapeutic beams generated by medical linear accelerators (LINAC). The emitted light was subsequently captured using a CMOS digital camera. Image processing algorithms were used to extract the intensity, shape, and location of the radiation field at various beam energies, dose rates, and collimator locations. The measurement results were compared with known collimator settings to validate the performance of the imaging system. Results: The RT-BV system achieved a sufficient contrast-to-noise ratio to enable real-time monitoring of the LINAC beam at 20 fps with normal ambient lighting in the LINAC room. The RT-BV system successfully identified collimator movements with sub-millimeter resolution. Conclusions: The RT-BV system is capable of localizing radiation therapy beams with sub-millimeter precision and tracking beam movement at video-rate exposure.

  18. Experimental observations and theoretical models for beam-beam phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10/sup 10/-10/sup 11/ and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented.

  19. Beam loading effects for two-beam ring

    International Nuclear Information System (INIS)

    Wang Lanfa; Lin Yuzheng; Tong Dechun

    1999-01-01

    An analytic treatment of multi-bunch potential well distortion for a two-beam storage ring is presented. The longitudinal wake effects are separated into: the mode loss, the synchrotron tune shift (both due to potential well distortion) and the coherent multi-bunch coupling. Here, only the first two effects are studied. Resulting simple analytic formulas describe the mode loss and the synchrotron tune shift experienced by a given bunch within the two-beam, as a function of the high order mode's parameters. One can get immediately a simple quantitative answer in term of the mode loss and the synchrotron tune shift experienced by each bunch from these formulas, so the authors can know how to modify the existing configuration of parasitic cavity resonance (via frequency tuning) so that the resulting potential well distortion effects are minimized. When the RF cavities are symmetrically distributed about the interaction points, the two beams will have same beam loading effects, so the authors can compensate the phase shift of the two beam using the same method as in one beam case

  20. Test Beam Coordination: 2003 ATLAS Combined Test Beam

    CERN Multimedia

    Di Girolamo, B.

    The 2003 Test Beam Period The 2003 Test Beam period has been very fruitful for ATLAS. In spite of several days lost because of the accelerator problems, ATLAS has been able to achieve many results: FCAL has completed the calibration program in H6 Tilecal has completed the calibration program in H8 Pixel has performed extensive studies with normal and high intensity beams (up to 1.4*108 hadrons/spill) SCT has completed a variety of studies with quite a high number of modules operated concurrently TRT has performed several studies at high, low and very low energy (first use of the new H8 beam in the range 1 to 9 GeV) Muons (MDT,RPC and TGC) have been operating a large setup for about 5 months. The almost final MDT ROD (MROD) has been integrated in the readout and the final trigger electronics for TGC and RPC has been tested and certified with normal beam and during dedicated 40 MHz beam periods. The TDAQ has exploited a new generation prototype successfully and the new Event Filter infrastructure f...