WorldWideScience

Sample records for beam based alignment

  1. Semiautomatic beam-based LHC collimator alignment

    CERN Document Server

    Valentino, Gianluca; Bruce, Roderik; Wollmann, Daniel; Sammut, Nicholas; Rossi, Adriana; Redaelli, Stefano

    2012-01-01

    Full beam-based alignment of the LHC collimation system was a time-consuming procedure (up to 28 hours) as the collimators were set up manually. A yearly alignment campaign has been sufficient for now, although in the future due to tighter tolerances this may lead to a decrease in the cleaning efficiency if machine parameters such as the beam orbit drift over time. Automating the collimator setup procedure can reduce the beam time for collimator setup and allow for more frequent alignments, therefore reducing the risk of performance degradation. This article describes the design and testing of a semiautomatic algorithm as a first step towards a fully automatic setup procedure. The parameters used to measure the accuracy and performance of the alignment are defined and determined from experimental data. A comparison of these measured parameters at 450 GeV and 3.5 TeV with manual and semiautomatic alignment is provided.

  2. Bunch Compressor for Beam-Based Alignment

    CERN Document Server

    Latina, A; Schulte, D

    2007-01-01

    Misalignments in the main linac of future linear colliders can lead to significant emittance growth. Beam-based alignment algorithms, such as Dispersion Free Steering (DFS), are necessary to mitigate these effects. We study how to use the Bunch Compressor to create the off-energy beams necessary for DFS and discuss the effectiveness of this method.

  3. FERMI@Elettra beam-based alignment simulations

    CERN Document Server

    Janeiro Costa, Raul Antonio; CERN. Geneva. BE Department

    2015-01-01

    In this report we present various simulations of the FERMI@Elettra linear accelerator performance with ideal and non-ideal element alignment, showing that a non-ideal machine’s emittance may be over 15 times its ideal counterpart. We then apply beam-based alignment techniques in order to correct this emittance growth, concluding that, under these conditions, dispersion-free steering is enough to reduce the emittance to within 30% of the beam’s original emittance.

  4. Quadrupole Beam-Based Alignment in the RHIC Interaction Regions

    International Nuclear Information System (INIS)

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements.

  5. Tests of beam-based alignement at FACET

    CERN Document Server

    Latina, A; Schulte, D; Adli, E

    2014-01-01

    The performance of future linear colliders will depend critically on beam-based alignment (BBA) and feedback systems, which will play a crucial role in guaranteeing the low emittance transport throughout such machines. BBA algorithms designed to improve the beam transmission in a linac by simultaneously optimising the trajectory and minimising the residual dispersion, have thoughtfully been studied in theory over the last years, and successfully verified experimentally. One such technique is called Dispersion-Free Steering (DFS). A careful study of the DFS performance at the SLAC test facility FACET lead us to design a beam-based technique specifically targeted to reduce the impact of transverse short-range wakefields, rather than of the dispersion, being the wakefields the limiting factor to the FACET performance. This technique is called Wakefield-Free Steering (WFS). The results of the first tests of WFS at FACET are presented in this paper.

  6. Beam based alignment and its relevance in Indus-2.

    Science.gov (United States)

    Jena, Saroj Kumar; Husain, Riyasat; Gandhi, M L; Agrawal, R K; Yadav, S; Ghodke, A D

    2015-09-01

    Initially in the Indus-2 storage ring, the closed orbit distortion (COD) could be best corrected to 1.3 mm rms in the horizontal and 0.43 mm rms in the vertical plane. The strength of the corrector magnets required high values for COD correction. This revealed that offsets in COD readout by the beam position monitors (BPMs) played a role in not achieving a rms COD lower than the above value. Thus, the offset between the electrical center of BPMs and the magnetic center of the nearest quadrupole magnet could be estimated using the beam based alignment (BBA) method. It prefers that the quadrupole magnet is able to be controlled individually and active shunt power supply (ASPS) system was designed for this purpose that works efficiently. This paper describes the methodology of BBA, topology of ASPS and its performance, and COD minimization using the measured BPM offsets. After BBA, the COD could be reduced to 0.45 mm rms and 0.2 mm rms in horizontal and vertical planes, respectively. PMID:26429436

  7. Beam based alignment and its relevance in Indus-2

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Saroj Kumar; Husain, Riyasat; Gandhi, M. L.; Agrawal, R. K.; Yadav, S.; Ghodke, A. D. [Raja Ramanna Centre for Advanced Technology, Indore (India)

    2015-09-15

    Initially in the Indus-2 storage ring, the closed orbit distortion (COD) could be best corrected to 1.3 mm rms in the horizontal and 0.43 mm rms in the vertical plane. The strength of the corrector magnets required high values for COD correction. This revealed that offsets in COD readout by the beam position monitors (BPMs) played a role in not achieving a rms COD lower than the above value. Thus, the offset between the electrical center of BPMs and the magnetic center of the nearest quadrupole magnet could be estimated using the beam based alignment (BBA) method. It prefers that the quadrupole magnet is able to be controlled individually and active shunt power supply (ASPS) system was designed for this purpose that works efficiently. This paper describes the methodology of BBA, topology of ASPS and its performance, and COD minimization using the measured BPM offsets. After BBA, the COD could be reduced to 0.45 mm rms and 0.2 mm rms in horizontal and vertical planes, respectively.

  8. Beam-Based Alignment Measurements of the LANSCE Linac

    CERN Document Server

    McCrady, R C

    2004-01-01

    We have made measurements of the alignment of the LANSCE Drift Tube linac (DTL) and Side Coupled linac (SCL) using beam position measurements and analyzing them with linear models. In the DTL, we varied the injection steering, measured the beam position after each DTL tank, and analyzed the data with a linear model using R-matrices that were computed by the Trace-3D computer program. The analysis model allowed for tank-to-tank misalignments. The measurements were made similarly in the SCL, where the analysis model allowed for misalignments of each quadrupole doublet lens. We present here the analysis techniques, the resulting alignment measurements and comparisons to measurements made with optical instruments.

  9. Beam based alignment of the SLC final focus sextupoles

    International Nuclear Information System (INIS)

    The strong demagnification inherent in final focus systems requires local cancellation of the resulting chromaticty. Strong sextupole pair separated by a -I transform are positioned π/2 in the betatron phase away from the Interaction Point (IP) in order to cancel chromatic aberrations primarily due to the final quadrupoles. Sextupole alignment is critical in order to provide orthogonal tuning of the chromaticty and, in the case of the SLC, to limit the third and higher order optical aberrations generated from misaligned and 'nested' horizontal and vertical sextupole pairs. Reported here is a novel technique for aligning the beam centroid to the sextupole centers, which uses measurements of the criticality dependent parameter - the beam size at the IP. Results for the SLC final focus sextupoles are presented, where a resolution of <50 μm is achieved

  10. Automation of beam based alignment for the PAL-XFEL undulator line

    International Nuclear Information System (INIS)

    An automated method of quadrupole beam based alignment in an X-ray free electron laser (XFEL) undulator line is proposed. To realize the automatic beam based alignment (BBA) independently of operator's skill and efforts, the procedure is simplified. Simulation results on the BBA technique using two alignment stages for the Pohang Accelerator Laboratory XFEL's (PAL-XFEL) undulator line is carried out. After a standard mechanical alignment the quadrupoles are expected to be aligned to 100 μm rms from our previous experience. A rough alignment method in this study is able to align the quadrupoles to about 40 μm rms without any pre-handling of electron beam orbit or quadrupoles position. At the second stage, the singular value decomposition (SVD) method is applied to perform a fine alignment in which the trajectory of an electron beam is controlled within 5 μm rms to the ideal orbit. All procedures are programmable to perform the BBA automatically

  11. Semi-automatic beam-based alignment algorithm for the LHC collimation system

    CERN Document Server

    Valentino, G; Redaelli, S; Sammut, N; Wollmann, D

    2011-01-01

    Full beam-based alignment of the LHC collimation system was a lengthy procedure as the collimators were setup manually. A yearly alignment campaign has been sufficient for now, although in future this may lead to a decrease in the cleaning efficiency if machine parameters such as the beam orbit drift over time. Automating the collimator setup procedure can allow for more frequent alignments, therefore reducing this risk. This paper describes the design and testing of a semi-automatic algorithmas a first step towards a fully automatic setup. Its implementation in the collimator control software and future plans are described.

  12. Comparison of LHC collimator beam-based alignment to BPM-Interpolated centers

    CERN Document Server

    Valentino, G; Assmann, R W; Bruce, R; Muller, G J; Redaelli, S; Rossi, A; Lari, L

    2012-01-01

    The beam centers at the Large Hadron Collider collimators are determined by beam-based alignment, where both jaws of a collimator are moved in separately until a loss spike is detected on a Beam LossMonitor downstream. Orbit drifts of more than a few hundred micrometers cannot be tolerated, as they would compromise the performance of the collimation system. Beam Position Monitors (BPMs) are installed at various locations around the LHC ring, and a linear interpolation of the orbit can be obtained at the collimator positions. In this paper, the results obtained from beam-based alignment are compared with the orbit interpolated from the BPM data throughout the 2011 and 2012 LHC proton runs.

  13. Beam alignment system

    International Nuclear Information System (INIS)

    A patent is claimed for the invention of a beam alignment system. The aim of the invention is the obtention of an accurate monitoring of the beam position and direction. It is of great interest in the nuclear industry. The invention can be applied in an infrared laser beam for welding operations. An auxiliar radiation source is incorporated to the device. The system's configuration allows a simultaneous and separated utilisation of two beams. The description and the design of the proposed system are provided

  14. Design and performance of a video-based laser beam automatic alignment system

    Institute of Scientific and Technical Information of China (English)

    Daizhong Liu(刘代中); Renfang Xu(徐仁芳); Dianyuan Fan(范滇元)

    2004-01-01

    @@ A laser alignment system is applied to a high power laser facility for inertial confinement fusion.A designof the automated,close-loop laser beam alignment system is described.Its function is to sense beamalignment errors in a laser beam transport system and automatically steer mirrors preceding the sensorlocation as required to maintain beam alignment.The laser beam is sampled by a sensor package,whichuses video cameras to sense pointing and centering errors.The camera outputs are fed to a personalcomputer,which includes video digitizers and uses image storage and software to sense the centroid of theimage.Signals are sent through the computer to a stepper motor controller,which drives stepper motorson mirror mounts preceding the beam sampling location to return the beam alignment to the prescribedcondition.Its optical principles and key techniques are given.The pointing and centering sensitivities ofthe beam aligmnent sensor package are analyzed.The system has been verified on the multi-pass amplifier experimental system.

  15. A Fuzzy Logic Based Controller for the Automated Alignment of a Laser-beam-smoothing Spatial Filter

    Science.gov (United States)

    Krasowski, M. J.; Dickens, D. E.

    1992-01-01

    A fuzzy logic based controller for a laser-beam-smoothing spatial filter is described. It is demonstrated that a human operator's alignment actions can easily be described by a system of fuzzy rules of inference. The final configuration uses inexpensive, off-the-shelf hardware and allows for a compact, readily implemented embedded control system.

  16. Developments in Beam-Based Alignment and Steering of the Next Linear Collider Main Linac

    International Nuclear Information System (INIS)

    The Next Linear Collider main linacs are 13 km linear accelerators which each contain approximately 750 hybrid iron/permanent-magnet quadrupoles in a FODO array. The small amount of vertical emittance dilution permitted in the main linacs implies a tight tolerance on the RMS distance between the beam and the centers of the quads. We describe two methods for measuring the offsets between the quads and their integrated beam position monitors, and three algorithms for steering the main linac to minimize the emittance dilution. Simulation studies of the alignment and steering algorithms are presented

  17. Beam alignment system for laser welding system

    International Nuclear Information System (INIS)

    The patent describes a beam alignment system for laser welding work pieces, such as fuel rod grids for nuclear fuel assemblies. The apparatus for performing various laser-machining comprises a beam alignment system including alignment target means, as well as means for emitting, directing and focusing the laser beam. (U.K.)

  18. Antares beam-alignment-system performance

    International Nuclear Information System (INIS)

    The beam alignment system for the 24-beam-sector Antares CO2 fusion laser automatically aligns more than 200 optical elements. A visible-wavelength alignment technique is employed which uses a telescope/TV system to view point-light sources appropriately located down the beamline. The centroids of the light spots are determined by a video tracker, which generates error signals used by the computer control system to move appropriate mirrors in a closed-loop system. Final touch-up alignment is accomplished by projecting a CO2 alignment laser beam through the system and sensing its position at the target location. The techniques and control algorithms employed have resulted in alignment accuracies exceeding design requirements. By employing video processing to determine the centroids of diffraction images and by averaging over multiple TV frames, we achieve alignment accuracies better than 0.1 times system diffraction limits in the presence of air turbulence

  19. Beam-Based Alignment, Tuning and Beam Dynamics Studies for the ATF2 Extraction Line and Final Focus System

    International Nuclear Information System (INIS)

    Using a new extraction line currently under construction, the ATF2 experiment plans to test the novel compact final focus optics design with local chromaticity correction intended for use in future linear colliders. With a 1.3 GeV design beam of 30nm normalized vertical emittance extracted from the ATF damping ring, the primary goal is to achieve a vertical spot-size at the IP waist of 37nm. We discuss our planned strategy for tuning the ATF2 beam to meet the primary goal. Simulation studies have been performed to asses the effectiveness of the strategy, including 'static' (installation) errors and dynamical effects (ground-motion, mechanical vibration, ring extraction jitter etc.). We have simulated all steps in the tuning procedure, from initial orbit establishment to final IP spot-size tuning. Through a Monte Carlo study of 100's of simulation seeds we find we can achieve a spot-size within ∼10% of the design optics value in at least 75% of cases. We also ran a simulation to study the long-term performance with the use of beam-based feedbacks

  20. Fast Automatic Beam-Based Alignment of the LHC Collimator Jaws

    CERN Document Server

    Valentino, Gianluca; Assmann, R W

    2014-01-01

    The CERN Large Hadron Collider (LHC) in Geneva, Switzerland is the largest and most powerful particle accelerator ever built. With a circumference of 27 km, it is designed to collide particles in two counter-rotating beams at a centre-of-mass energy of 14 TeV to explore the fundamental forces and constituents of matter. Due to its potentially destructive high energy particle beams, the LHC is equipped with several machine protection systems. The LHC collimation system is tasked with scattering and absorbing beam halo particles before they can quench the superconducting magnets. The 108 collimators also protect the machine from damage in the event of very fast beam losses, and shields sensitive devices in the tunnel from radiation over years of operation. Each collimator is made up of two blocks or ‘jaws’ of carbon, tungsten or copper material. The collimator jaws need be placed symmetrically on either side of the beam trajectory, to clean halo particles with maximum efficiency. The beam orbit and beam siz...

  1. The HIFI Focal Plane Beam Characterization and Alignment Status

    NARCIS (Netherlands)

    Jellema, Willem; Jochemsen, M.; Peacocke, T.; Meinsma, L.; Lowes, P.; Withington, S.; Wild, Wolfgang; Wild, W

    2008-01-01

    In this paper we present the results of the characterization program of the beams in the focal plane of the HIFI flight model. We discuss the beam properties, quality of alignment, instrument footprint, performance impact and compliance and compare the results to predictions based on lower-level cha

  2. Alignment of the SLC Final Focus system using beam orbits

    International Nuclear Information System (INIS)

    Beam based alignment is being routinely applied in the SLC Final Focus and has proved to be a very useful tool for determining the quality of the zeroth order orbit as defined by various beam line elements. Given the stringent requirement on the beam quality at the interaction point, a well aligned beam line is essential in that it minimizes the confusion which would otherwise arise in the higher order optics, the demand called on the correctors which also serve as optical knobs, and the problem associated with the background radiation. In the SLC final focus we have been relying on an interplay between the field survey and the orbit analysis to achieve this purpose. Mechanical alignment generally provides coordinate information of various beam line elements and offset values inferred from these data and the model of the beam line. Beam based alignment is done mainly by recording the beam orbit under controlled experiment where optical elements or orbit conditions are varied. Due to the complexity of the beamline layout and special power supply configuration in the SLC Final Focus, the latter method is useful only when coupled with off-line analysis which disentangles the data taken at each measurement. In this report we describe the techniques used and the underlying principle, the procedure as applied in the Final Focus, the outcome of this exercise and some problems encountered. 6 figs

  3. Angular momentum alignment in molecular beam scattering

    International Nuclear Information System (INIS)

    It is shown how the angular momentum alignment in a molecular beam can be determined using laser-induced fluorescence in combination with precession of the angular momenta in a magnetic field. After a general analysis of the method, some results are presented to illustrate the possibilities of the method. Experimental data are presented on the alignment production for Na2 molecules that made a collision induced angular momentum transition. Magnitude as well as direction of the alignment have been determined for scattering with several scattering partners and for a large number of scattering angles and transitions. The last chapter deals with the total alignment production in a final J-state, i.e. without state selection of the initial rotational state. (orig.)

  4. Initial alignment method for free space optics laser beam

    Science.gov (United States)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  5. Track Based Alignment of Composite Detector Structures

    CERN Document Server

    Karimäki, V; Schilling, F P

    2006-01-01

    An iterative algorithm for track based alignment is presented. The algorithm can be applied to rigid composite detector structures or to individual modules. The iterative process involves track reconstruction and alignment, in which the chi-2 function of the hit residuals of each alignable object is minimized. Six alignment parameters per structure or per module, three for location and three for orientation, can be computed. The method is computationally light and easily parallelizable. The performance of the method is demonstrated with simulated tracks in the CMS pixel detector and tracks reconstructed from experimental data recorded with a test beam setup.

  6. Autonomous beam alignment for coherent Doppler lidar with multielement detectors.

    Science.gov (United States)

    Frehlich, R

    1999-11-20

    Autonomous beam alignment for coherent Doppler lidar requires accurate information about optical misalignment and optical aberrations. A multielement heterodyne detector provides the required information without a loss in overall system performance. The effects of statistical variations from the random backscattered field (speckle field) are determined with computer simulations for both ground-based operation with a fixed calibration target and for space-based operation with random target backscatter. PMID:18324236

  7. Partial Alignment for Improvement of Beam Transmission at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Hyuk; Kim, Dae-Il; Ahn, Tae-Sung; Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub [KOMAC, Gyeongju (Korea, Republic of)

    2015-05-15

    The ion source and steering magnets were aligned for improving the beam transmission. It is expected that the re-alignment of accelerator components can reduce the beam loss which can occur for the dislocation among them. The center displacements of RFQ and 20MeV DTL are different to 100MeV DTL, so it is necessary to re-align in next maintenance period. 100MeV proton linac placed in KOMAC (Korea Multi-purpose Accelerator Complex) has been operated and provided to beam users. There are two maintenance periods every year, winter (Jan-Feb) and summer (Jul-Aug). In maintenance period, proton linac is re-aligned for the improvement of beam transmission. 4 newly steering magnet are installed in beam line. To align the steering magnet, network align in tunnel is measured using by laser tracker. In addition, the position of ion source is away from the position of RFQ in the result of the survey of network align. The alignment of steering magnet after installation is performed. At the same time, the position of accelerator component is checked and aligned partially.

  8. Ion beam induced alignment of semiconductor nanowires

    International Nuclear Information System (INIS)

    Epitaxially grown GaAs nanowires were irradiated with different kinds of energetic ions. The growth substrates were GaAs, and the nanowires grow under an angle of 35 circle. A bending of the nanowires was observed under ion beam irradiation, where the direction and magnitude of the bending depends on the energy, the species, and fluence of the incident ions. By choosing suitable ion beam parameters the nanowires could be realigned towards the ion beam direction. In order to understand the underlying mechanisms, computer simulations of the ion irradiation were done using a special version of TRIM which accounts for the geometry of the nanowires. The simulated distributions indicate vacancy and interstitial formation within the implantation cascade as the key mechanism for bending.

  9. ATF neutral beam injection: optimization of beam alignment and aperturing

    International Nuclear Information System (INIS)

    The application of the existing Impurity Study Experiment (ISX-B) neutral beam injectors for the Advanced Toroidal Facility (ATF) is studied. It is determined that with the practical considerations of beam aperturing, ATF vacuum vessel complexity, and realistic beam modeling, the power absorbed by the plasma will be approximately 57% of the extracted neutral beam power, which corresponds to an injected power of about 1.5 MW. By reducing the beam divergence to a 10 Gaussian distribution, the absorbed power could be increased to 93%. The power delivered to the plasma is found to be a strong function of the beam divergence but only a weak function of the beam focal length. Shinethrough can be a serious problem if very low density startups are necessary. Preliminary calculations indicate that there will be no excessive fast-ion losses. 12 refs., 17 figs., 1 tab

  10. Cavity Alignment Using Beam Induced Higher Order Modes Signals in the TTF Linac

    CERN Document Server

    Ross, Marc; Frisch, Josef; Hacker, Kirsten E; Jones, Roger M; McCormick, Douglas; Napoly, Olivier; Paparella, Rita; Smith, Tonee; Wendt, Manfred

    2005-01-01

    Each nine cell superconducting accelerator cavity in the TESLA Test Facility (TTF) at DESY* has two higher order mode (HOM) couplers that efficiently remove the HOM power.** They can also provide useful diagnostic signals. The most interesting modes are in the first 2 cavity dipole passbands. They are easy to identify and their amplitude depends linearly on the beam offset from the cavity axis making them excellent beam position monitors (BPM). By steering the beam through an eight-cavity cryomodule, we can use the HOM signals to estimate internal residual alignment errors and minimize wakefield related beam emittance growth. We built and commissioned a four channel heterodyne receiver and time-domain based waveform recorder system that captures information from each mode in these two bands on each beam pulse. In this paper we present an experimental study of the single-bunch generated HOM signals at the TTF linac including estimates of cavity alignment precision and HOM BPM resolution.

  11. Study and control of the alignment of the SILHI beam

    International Nuclear Information System (INIS)

    The low energy line of the IPHI injector includes 2 couples of magnetic deflectors operating in 2 transverse directions. This work aims at assessing the capacity of these deflectors to collimate efficiently the beam in the RFQ (radio-frequency quadrupole) inlet. There are 4 main causes of mis-alignment : first, the misalignment of the line components such as the ECR source or the 2 solenoids; second, the earth magnetic field; third the non-linear and non-axisymmetric forces due to charge distribution inside the beam tend to break the beam's circular symmetry; and four, particle losses tend to shift the centre of mass of the beam. It appears that the power of the deflectors is sufficient, in the SILHI present scheme, to center the beam at the interface with RFQ. Moving away the 2 deflectors from each other will improve their efficiency. The alignment procedures are complex: setting first the solenoid fields before the deflectors' could make the task easier but an advanced automated algorithm seems necessary. (A.C.)

  12. Comparative genomics beyond sequence-based alignments

    DEFF Research Database (Denmark)

    Þórarinsson, Elfar; Yao, Zizhen; Wiklund, Eric D.;

    2008-01-01

    Recent computational scans for non-coding RNAs (ncRNAs) in multiple organisms have relied on existing multiple sequence alignments. However, as sequence similarity drops, a key signal of RNA structure--frequent compensating base changes--is increasingly likely to cause sequence-based alignment me...

  13. Development and Beam Tests of an Automatic Algorithm for Alignment of LHC Collimators with Embedded BPMs

    CERN Document Server

    Valentino, G; Gasior, M; Mirarchi, D; Nosych, A A; Redaelli, S; Salvachua, B; Assmann, R W; Sammut, N

    2013-01-01

    Collimators with embedded Beam Position Monitor (BPM) buttons will be installed in the LHC during the upcoming long shutdown period. During the subsequent operation, the BPMs will allow the collimator jaws to be kept centered around the beam trajectory. In this manner, the best possible beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation, as the BPM measurements are affected by non-linearities, which vary with the distance between opposite buttons, as well as the difference between the beam and the jaw centers. The successful test results, as well as some considerations for eventual operation in the LHC are also presented.

  14. Motorized Beam Alignment of a Commercial X-ray Diffractometer

    Science.gov (United States)

    Van Zandt, Noah R.; Myers, James F.; Rogers, Richard B

    2013-01-01

    X-ray diffraction (XRD) is a powerful analysis method that allows researchers to noninvasively probe the crystalline structure of a material. This includes the ability to determine the crystalline phases present, quantify surface residual stresses, and measure the distribution of crystallographic orientations. The Structures and Materials Division at the NASA Glenn Research Center (GRC) heavily uses the on-site XRD lab to characterize advanced metal alloys, ceramics, and polymers. One of the x-ray diffractometers in the XRD lab (Bruker D8 Discover) uses three different x-ray tubes (Cu, Cr, and Mn) for optimal performance over numerous material types and various experimental techniques. This requires that the tubes be switched out and aligned between experiments. This alignment maximizes the x-ray tube s output through an iterative process involving four set screws. However, the output of the x-ray tube cannot be monitored during the adjustment process due to standard radiation safety engineering controls that prevent exposure to the x-ray beam when the diffractometer doors are open. Therefore, the adjustment process is a very tedious series of blind adjustments, each followed by measurement of the output beam using a PIN diode after the enclosure doors are shut. This process can take up to 4 hr to perform. This technical memorandum documents an in-house project to motorize this alignment process. Unlike a human, motors are not harmed by x-ray radiation of the energy range used in this instrument. Therefore, using motors to adjust the set screws will allow the researcher to monitor the x-ray tube s output while making interactive adjustments from outside the diffractometer. The motorized alignment system consists of four motors, a motor controller, and a hand-held user interface module. Our goal was to reduce the alignment time to less than 30 min. The time available was the 10-week span of the Lewis' Educational and Research Collaborative Internship Project (LERCIP

  15. GPCODON ALIGNMENT: A GLOBAL PAIRWISE CODON BASED SEQUENCE ALIGNMENT APPROACH

    Directory of Open Access Journals (Sweden)

    Zeinab A. Fareed

    2016-02-01

    Full Text Available The alignment of two DNA sequences is a basic step in the analysis of biological data. Sequencing a long DNA sequence is one of the most interesting problems in bioinformatics. Several techniques have been developed to solve this sequence alignment problem like dynamic programming and heuristic algorithms. In this paper, we introduce (GPCodon alignment a pairwise DNA-DNA method for global sequence alignment that improves the accuracy of pairwise sequence alignment. We use a new scoring matrix to produce the final alignment called the empirical codon substitution matrix. Using this matrix in our technique enabled the discovery of new relationships between sequences that could not be discovered using traditional matrices. In addition, we present experimental results that show the performance of the proposed technique over eleven datasets of average length of 2967 bps. We compared the efficiency and accuracy of our techniques against a comparable tool called “Pairwise Align Codons” [1].

  16. Vertical beam size due to orbit and alignment errors

    International Nuclear Information System (INIS)

    The value of luminosity, synchrotron light source brightness, quantum lifetime, etc., for an electron storage ring is directly dependent upon the natural beam size and shape in the transverse phase space. These transverse beam parameters can be determined from the stationary particle distribution, psi, which depends upon (a) quantum excitations determined by the horizontal and vertical energy dispersion functions eta/sub x,y/ and eta'/sub x,y/ in the machine, (b) radiation damping provided by the rf acceleration, and (c) coupling between the transverse betatron motions caused by the skew quadrupole and solenoid magentic fields. A straightforward method to find psi is by solving the Fokker-Planck equation, which conveniently takes into account these factors. In this approach the quantum diffusion effects are described by three quantities, H/sub xx/, H/sub xy/, and H/sub yy/, which are integrals of the β- and eta-functions and their derivatives evaluated over the bending magnets in the machine; the radiation damping effects are characterized by the radiation damping constants α/sub x,y/ provided by an rf system. The coupling effects are represented by a coupling coefficient, Q, assuming smooth coupling between the betatron motions. Under these assumptions, psi can be found analytically and the expressions for transverse beam parameters in terms of Q, H/sub xx/, H/sub x,y/, H/sub yy/, α/sub x/, and α/sub y/ can be obtained. From these expressions, invariant conditions between some of the beam parameters can easily be shown. These results have been used to estimate the effects in PEP and SPEAR due to magnet alignment and vertical closed-orbit errors

  17. In vivo pink-beam imaging and fast alignment procedure for rat brain tumor radiation therapy

    OpenAIRE

    Nemoz, Christian; Kibleur, Astrid; Hyacinthe, Jean-Noël; Berruyer, Gilles; Brochard, Thierry; Bräuer-Krisch, Elke; Le Duc, Géraldine; Brun, Emmanuel; Elleaume, Hélène; Serduc, Raphaël

    2016-01-01

    A fast positioning method for brain tumor microbeam irradiations for preclinical studies at third-generation X-ray sources is described. The three-dimensional alignment of the animals relative to the X-ray beam was based on the X-ray tomography multi-slices after iodine infusion. This method used pink-beam imaging produced by the ID17 wiggler. A graphical user interface has been developed in order to define the irradiation parameters: field width, height, number of angles and X-ray dose. This...

  18. Propagation of partially polarized Gaussian Schell-model beams through aligned and misaligned optical systems

    Institute of Scientific and Technical Information of China (English)

    戈迪; 蔡阳健; 林强

    2005-01-01

    By use of a tensor method, the transform formulae for the beam coherence-polarization matrix of the partially polarized Gaussian Schell-model (GSM) beams through aligned and misaligned optical systems are derived. As an example, the propagation properties of the partially polarized GSM beam passing through a misaligned thin lens are illustrated numerically and discussed in detail. The derived formulae provide a convenient way to study the propagation properties of the partially polarized GSM beams through aligned and misaligned optical systems.

  19. Image-guided small animal radiation research platform: calibration of treatment beam alignment

    International Nuclear Information System (INIS)

    Small animal research allows detailed study of biological processes, disease progression and response to therapy with the potential to provide a natural bridge to the clinical environment. The small animal radiation research platform (SARRP) is a portable system for precision irradiation with beam sizes down to approximately 0.5 mm and optimally planned radiation with on-board cone-beam CT (CBCT) guidance. This paper focuses on the geometric calibration of the system for high-precision irradiation. A novel technique for the calibration of the treatment beam is presented, which employs an x-ray camera whose precise positioning need not be known. Using the camera system we acquired a digitally reconstructed 3D 'star shot' for gantry calibration and then developed a technique to align each beam to a common isocenter with the robotic animal positioning stages. The calibration incorporates localization by cone-beam CT guidance. Uncorrected offsets of the beams with respect to the calibration origin ranged from 0.4 mm to 5.2 mm. With corrections, these alignment errors can be reduced to the sub-millimeter range. The calibration technique was used to deliver a stereotactic-like arc treatment to a phantom constructed with EBT Gafchromic films. All beams were shown to intersect at a common isocenter with a measured beam (FWHM) of approximately 1.07 mm using the 0.5 mm collimated beam. The desired positioning accuracy of the SARRP is 0.25 mm and the results indicate an accuracy of 0.2 mm. To fully realize the radiation localization capabilities of the SARRP, precise geometric calibration is required, as with any such system. The x-ray camera-based technique presented here provides a straightforward and semi-automatic method for system calibration.

  20. Triangular Alignment (TAME). A Tensor-based Approach for Higher-order Network Alignment

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Shahin [Purdue Univ., West Lafayette, IN (United States); Gleich, David F. [Purdue Univ., West Lafayette, IN (United States); Kolda, Tamara G. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Grama, Ananth [Purdue Univ., West Lafayette, IN (United States)

    2015-11-01

    Network alignment is an important tool with extensive applications in comparative interactomics. Traditional approaches aim to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel formulation of the network alignment problem that extends topological similarity to higher-order structures and provide a new objective function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem, which is NP-hard. Consequently, we approximate this objective function as a surrogate function whose maximization results in a tensor eigenvalue problem. Based on this formulation, we present an algorithm called Triangular AlignMEnt (TAME), which attempts to maximize the number of aligned triangles across networks. We focus on alignment of triangles because of their enrichment in complex networks; however, our formulation and resulting algorithms can be applied to general motifs. Using a case study on the NAPABench dataset, we show that TAME is capable of producing alignments with up to 99% accuracy in terms of aligned nodes. We further evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment methods both in terms of biological and topological quality of the alignments.

  1. Pyro-Align: Sample-Align based Multiple Alignment system for Pyrosequencing Reads of Large Number

    CERN Document Server

    Saeed, Fahad

    2009-01-01

    Pyro-Align is a multiple alignment program specifically designed for pyrosequencing reads of huge number. Multiple sequence alignment is shown to be NP-hard and heuristics are designed for approximate solutions. Multiple sequence alignment of pyrosequenceing reads is complex mainly because of 2 factors. One being the huge number of reads, making the use of traditional heuristics,that scale very poorly for large number, unsuitable. The second reason is that the alignment cannot be performed arbitrarily, because the position of the reads with respect to the original genome is important and has to be taken into account.In this report we present a short description of the multiple alignment system for pyrosequencing reads.

  2. Beam plug replacement and alignment under high radiation conditions for cold neutron facilities at Hanaro

    International Nuclear Information System (INIS)

    Full text : The HANARO, an open-tank-in-pool type research reactor of a 30 MWth power in Korea, has been operating for 15 years since its initial criticality in February 1995. The beam port assigned for the cold neutron at HANARO had been used for an 8-m SANS without neutron guides until it was replaced by a cold neutron guide system in 2008. It was developed a cold neutron guide system for the delivery of cold neutrons from the cold neutron source in the reactor to the neutron scattering instruments in the guide hall. Since the HANARO has been operated from 1995, it was a big challenge to replace the existing plug and shutter with the new facilities under high radiation conditions. When the old plug was removed from the beam port in 2008, the radiation level was 230 mSv/hr at the end of beam port. In addition to that, there were more difficult situations such as the poor as-built dimensions of the beam port, limited work space and time constraint due to other constructions in parallel in the reactor hall. Before the removal of the old plug the level of the radiation was measured coming out through a small hole of the plug to estimate the radiation level during the removal of the old plug and installation of a new plug. Based on the measurement and analysis results, special tools and various shielding facilities were developed for the removal of old in-pile plug and the installation of the new in-pile plug assembly safely. In 2008, the old plug and shutter were successfully replaced by the new plug and shutter as shown in this article with a minimum exposure to the workers. A laser tracker system was also one of the main factors in our successful installation and alignment under high radiation conditions and limited work space. The laser tracker was used to measure and align all the mechanical facilities and the neutron guides with a minimum radiation exposure to workers. The alignment of all the guides and accessories were possible during reactor operation because

  3. Zenithal alignment of liquid crystal on homeotropic polyimide film irradiated by ion beam

    OpenAIRE

    Choi, Yoonseuk; Yoon, Tae-Hoon; Kwon, Jin Hyuk; Yi, Jonghoon; Gwag, Jin Seog

    2012-01-01

    We investigate the pretilt characteristics of a nematic liquid crystal [LC] in terms of ion beam exposure conditions on the homeotropic polyimide alignment layer. The pretilt angle of LCs in the case of high-energy ion beam treatment was decreased considerably almost the same to that of the homogenous alignment layer though we used homeotropic polyimide film at first. Increasing irradiating energy, we could control the pretilt from 90° to 1° with several steps. We believe that this is because...

  4. Direct determination of geometric alignment parameters for cone-beam scanners

    OpenAIRE

    Mennessier, C; Clackdoyle, R.; Noo, F.

    2009-01-01

    This paper describes a comprehensive method for determining the geometric alignment parameters for cone-beam scanners (often called calibrating the scanners or performing geometric calibration). The method is applicable to x-ray scanners using area detectors, or to SPECT systems using pinholes or cone-beam converging collimators. Images of an alignment test object (calibration phantom) fixed in the field of view of the scanner are processed to determine the nine geometric parameters for each ...

  5. Modeling and simulation of LHC beam-based collimator setup

    CERN Document Server

    Valentino, G; Assmann, R W; Burkart, F; Redaelli, S; Rossi, A; Lari, L

    2012-01-01

    In the 2011 Large Hadron Collider run, collimators were aligned for proton and heavy ion beams using a semiautomatic setup algorithm. The algorithm provided a reduction in the beam time required for setup, an elimination of beam dumps during setup and better reproducibility with respect to manual alignment. A collimator setup simulator was developed based on a Gaussian model of the beam distribution as well as a parametric model of the beam losses. A time-varying beam loss signal can be simulated for a given collimator movement into the beam. The simulation results and comparison to measurement data obtained during collimator setups and dedicated fills for beam halo scraping are presented. The simulator will then be used to develop a fully automatic collimator alignment algorithm.

  6. Multiple Sequence Alignment Based on Chaotic PSO

    Science.gov (United States)

    Lei, Xiu-Juan; Sun, Jing-Jing; Ma, Qian-Zhi

    This paper introduces a new improved algorithm called chaotic PSO (CPSO) based on the thought of chaos optimization to solve multiple sequence alignment. For one thing, the chaotic variables are generated between 0 and 1 when initializing the population so that the particles are distributed uniformly in the solution space. For another thing, the chaotic sequences are generated using the Logistic mapping function in order to make chaotic search and strengthen the diversity of the population. The simulation results of several benchmark data sets of BAliBase show that the improved algorithm is effective and has good performances for the data sets with different similarity.

  7. Survey, alignment, and beam stability at the Advanced Light Source

    International Nuclear Information System (INIS)

    This paper describes survey and alignment at the Lawrence Berkeley Laboratories Advanced Light Source (ALS) accelerators from 1993 to 1997. The ALS is a third generation light source requiring magnet alignment to within 150 microns. To accomplish this, a network of monuments was established and maintained. Monthly elevation surveys show the movement of the floor over time. Inclinometers have recently been employed to give real time information about magnet, vacuum tank and magnet girder motion in the ALS storage ring

  8. In vivo pink-beam imaging and fast alignment procedure for rat brain tumor radiation therapy.

    Science.gov (United States)

    Nemoz, Christian; Kibleur, Astrid; Hyacinthe, Jean Noël; Berruyer, Gilles; Brochard, Thierry; Bräuer-Krisch, Elke; Le Duc, Géraldine; Brun, Emmanuel; Elleaume, Hélène; Serduc, Raphaël

    2016-01-01

    A fast positioning method for brain tumor microbeam irradiations for preclinical studies at third-generation X-ray sources is described. The three-dimensional alignment of the animals relative to the X-ray beam was based on the X-ray tomography multi-slices after iodine infusion. This method used pink-beam imaging produced by the ID17 wiggler. A graphical user interface has been developed in order to define the irradiation parameters: field width, height, number of angles and X-ray dose. This study is the first reporting an image guided method for soft tissue synchrotron radiotherapy. It allowed microbeam radiation therapy irradiation fields to be reduced by a factor of ∼20 compared with previous studies. It permitted more targeted, more efficient brain tumor microbeam treatments and reduces normal brain toxicity of the radiation treatment. PMID:26698083

  9. Alignment of the CMS Muon System with Cosmic-Ray and Beam-Halo Muons

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The CMS muon system has been aligned using cosmic-ray muons collected in 2008 and beam-halo muons from the 2008 LHC circulating beam tests. After alignment, the resolution of the most sensitive coordinate is 80 microns for the relative positions of superlayers in the same barrel chamber and 270 microns for the relative positions ofendcap chambers in the same ring structure. The resolution on the position of the central barrel chambers relative to the tracker is comprised between two extreme estimates, 200 and 700 microns, provided by two complementary studies. With minor modifications, the alignment procedures can be applied using muons from LHC collisions, leading to additional significant improvements.

  10. Fast Implementation of Matched Filter Based Automatic Alignment Image Processing

    Energy Technology Data Exchange (ETDEWEB)

    Awwal, A S; Rice, K; Taha, T

    2008-04-02

    Video images of laser beams imprinted with distinguishable features are used for alignment of 192 laser beams at the National Ignition Facility (NIF). Algorithms designed to determine the position of these beams enable the control system to perform the task of alignment. Centroiding is a common approach used for determining the position of beams. However, real world beam images suffer from intensity fluctuation or other distortions which make such an approach susceptible to higher position measurement variability. Matched filtering used for identifying the beam position results in greater stability of position measurement compared to that obtained using the centroiding technique. However, this gain is achieved at the expense of extra processing time required for each beam image. In this work we explore the possibility of using a field programmable logic array (FPGA) to speed up these computations. The results indicate a performance improvement of 20 using the FPGA relative to a 3 GHz Pentium 4 processor.

  11. Study and Development of a Laser Based Alignment System

    CERN Multimedia

    Stern, G

    2014-01-01

    CLIC (Compact Linear Collider) has tight requirements regarding pre-alignment of beam related components: 10 µm accuracy over a sliding window of 200 m along the 20 km of linac. To perform such an alignment, a new system is proposed combining laser beam as straight line reference and camera/shutter assemblies as sensors. The poster describes the alignment system and shows results regarding laser pointing stability with respect to time, shutter type, distance and environment. These results give a frame for future building and calibrating of sensors.

  12. Orientation and alignment effects in beam foil experiments with tilted foils

    International Nuclear Information System (INIS)

    A general density matrix theory is formulated to account for recently observed orientation and alignment effects in beam foil experiments with tilted foils. Various simplified models for the interaction between the atomic and ionic excited states and the beam surface are considered and comparison with the present experimental data leads to some direct conclusions. Further experimental tests of the proposed mechanism are suggested. (author)

  13. Feasibility study of multipoint based laser alignment system for CLIC

    CERN Document Server

    Stern, G; Mainaud-Durand, H; Piedigrossi, D; Geiger, A

    2012-01-01

    CLIC (Compact LInear Collider) is a study for a future electron-positron collider that would allow physicists to explore a new energy region beyond the capabilities oftoday’s particle accelerators. Alignment is one of the major challenges within the CLIC study in order to achieve the high requirement of a multi-TeV center of mass colliding beam energy range (nominal 3 TeV). To reach this energy in a realistic and cost efficient scenario all accelerator components have to be aligned with an accuracy of 10 μm over a sliding window of 200 m. The demand for a straight line reference is so far based on stretched wires coupled with Wire Positioning Sensors (WPS). These solutions are currently further developed inorder to reduce the drawbacks which are mainly given by their costs and difficult implementation. However, it should be validated through inter-comparison with a solution ideally based on a different physical principle. Therefore, a new metrological approach is proposed using a laser beam as straight lin...

  14. Opto-mechanical devices for the Antares automatic beam alignment system

    International Nuclear Information System (INIS)

    Antares is a 24-beam CO2 laser system for controlled fusion research, under construction at Los Alamos National Laboratory. Rapid automatic alignment of this system is required prior to each experimental shot. Unique opto-mechanical alignment devices, which have been developed specifically for this automatic alignment system, are discussed. A variable focus alignment telescope views point light sources. A beam expander/spatial filter processes both a visible Krypton Ion and a 10.6 μm CO2 alignment laser. The periscope/carousel device provides the means by which the alignment telescope can sequentially view each of twelve optical trains in each power amplifier. The polyhedron alignment device projects a point-light source for both centering and pointing alignment at the polyhedron mirror. The rotating wedge alignment device provides a sequencing point-light source and also compensates for dispersion between visible and 10.6 μm radiation. The back reflector flip in remotely positions point-light sources at the back reflector mirrors. A light source box illuminates optic fibers with high intensity white light which is distributed to the various point-light sources in the system

  15. Alignment of liquid crystal on a polyimide surface exposed to an Ar ion beam

    International Nuclear Information System (INIS)

    In this paper properties of nematic liquid crystals aligned on polyimide surfaces exposed to a low-energy Ar ion beam are investigated. We studied how the pretilt angle of a liquid crystal cell is affected by ion-beam conditions, such as the energy of the incident ions, the angle of incidence, and the exposure time. X-ray photoelectron spectroscopy data indicate that ion-beam exposure changes the chemical bonding states of the polyimide surface, which may be one of the main causes of anisotropic liquid crystal alignment. We also found that twisted-nematic cells fabricated by the ion-beam alignment method have the voltage holding time enough for application to thin-film-transistor liquid crystal displays

  16. Effective Electrocardiogram Steganography Based on Coefficient Alignment.

    Science.gov (United States)

    Yang, Ching-Yu; Wang, Wen-Fong

    2016-03-01

    This study presents two types of data hiding methods based on coefficient alignment for electrocardiogram (ECG) signals, namely, lossy and reversible ECG steganographys. The lossy method is divided into high-quality and high-capacity ECG steganography, both of which are capable of hiding confidential patient data in ECG signals. The reversible data hiding method can not only hide secret messages but also completely restore the original ECG signal after bit extraction. Simulations confirmed that the perceived quality generated by the lossy ECG steganography methods was good, while hiding capacity was acceptable. In addition, these methods have a certain degree of robustness, which is rare in conventional ECG stegangraphy schemes. Moreover, the proposed reversible ECG steganography method can not only successfully extract hidden messages but also completely recover the original ECG data. PMID:26711443

  17. Beam-Based Procedures for RF Guns

    CERN Document Server

    Krasilnikov, Mikhail; Grabosch, H J; Hartrott, Michael; Hui Han, Jang; Miltchev, Velizar; Oppelt, Anne; Petrosyan, Bagrat; Staykov, Lazar; Stephan, Frank

    2005-01-01

    A wide range of rf photo injector parameters has to be optimized in order to achieve an electron source performance as required for linac based high gain FELs. Some of the machine parameters can not be precisely controlled by direct measurements, whereas the tolerance on them is extremely tight. Therefore, this should be met with beam-based techniques. Procedures for beam-based alignment (BBA) of the laser on the photo cathode as well as solenoid alignment have been developed. They were applied at the Photo Injector Test facility at DESY Zeuthen (PITZ) and at the photo injector of the VUV-FEL at DESY Hamburg. A field balance of the accelerating mode in the 1 ½ cell gun cavity is one of the key beam dynamics issues of the rf gun. Since no direct field measurement in the half and full cell of the cavity is available for the PITZ gun, a beam-based technique to determine the field balance has been proposed. A beam-based rf phase monitoring procedure has been developed as well.

  18. Spin-aligned RI beams via two-step fragmentation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Y., E-mail: yuichikawa@phys.titech.ac.jp [RIKEN Nishina Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ueno, H. [RIKEN Nishina Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ishii, Y. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro, Tokyo 152-8551 (Japan); Furukawa, T. [Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Yoshimi, A. [Research Core for Extreme Quantum World, Okayama University, 3-1-1 Tsushimanaka, Kita, Okayama 700-8530 (Japan); Kameda, D.; Watanabe, H.; Aoi, N. [RIKEN Nishina Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Asahi, K. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro, Tokyo 152-8551 (Japan); Balabanski, D.L. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, BG-1784 Sofia (Bulgaria); Chevrier, R.; Daugas, J.M. [CEA, DAM, DIF, F-91297 Arpajon (France); Fukuda, N. [RIKEN Nishina Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Georgiev, G. [CSNSM, IN2P3-CNRS, Université Paris-sud, F-91404 Orsay (France); Hayashi, H.; Iijima, H. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro, Tokyo 152-8551 (Japan); Inabe, N. [RIKEN Nishina Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Inoue, T. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro, Tokyo 152-8551 (Japan); Ishihara, M.; Kubo, T. [RIKEN Nishina Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); and others

    2013-12-15

    A method to produce spin-aligned rare isotope (RI) beams has been developed, where a scheme of two-step projectile fragmentation to produce the RI of interest with high spin alignment and a technique of momentum-dispersion matching are combined. Effectiveness of the present method was demonstrated in an experiment at the RIKEN RIBF, where an RI beam of {sup 32}Al with spin alignment of 8(1)% was successfully produced from a primary beam of {sup 48}Ca, via an intermediate RI of {sup 33}Al. Figure of merit of the present method was found to be more than 50 times greater than that of the conventional method employing single-step projectile fragmentation.

  19. Nanogenerators based on vertically aligned InN nanowires.

    Science.gov (United States)

    Liu, Guocheng; Zhao, Songrui; Henderson, Robert D E; Leonenko, Zoya; Abdel-Rahman, Eihab; Mi, Zetian; Ban, Dayan

    2016-01-28

    Piezoelectric nanogenerators (NGs) based on vertically aligned InN nanowires (NWs) are fabricated, characterized, and evaluated. In these NGs, arrays of p-type and intrinsic InN NWs prepared by plasma-assisted molecular beam epitaxy (MBE) demonstrate similar piezoelectric properties. The p-type NGs show 160% more output current and 70% more output power product than the intrinsic NGs. The features driving performance enhancement are reduced electrostatic losses due to better NW array morphology, improved electromechanical energy conversion efficiency due to smaller NW diameters, and the higher impedance of intrinsic NGs due to elevated NW surface charge levels. These findings highlight the potential of InN based NGs as a power source for self-powered systems and the importance of NW morphology and surface state in overall NG performance. PMID:26700694

  20. Titanium dioxide surface modification via ion-beam bombardment for vertical alignment of nematic liquid crystal.

    Science.gov (United States)

    Na, Hyun-Jae; Lee, Jin-Woo; Lee, Won-Kyu; Lim, Ji-Hun; Park, Hong-Gyu; Kim, Byoung-Yong; Hwang, Jeong-Yeon; Han, Jeong-Min; Seo, Dae-Shik

    2010-04-15

    We introduce the characteristics of the titanium dioxide (TiO(2)) inorganic film deposited by rf magnetron sputtering for liquid crystal display applications. The TiO(2) films demonstrated vertical alignment (VA) of the liquid crystals (LCs) obtained by using ion-beam (IB) bombardment. As observed by using x-ray photoelectron spectroscopy, the chemical structure of the TiO(2) was changed by IB bombardment, altering the Ti-O bonding of the Ti 2p spectra to lower intensity levels. Breaking Ti-O bonding by IB bombardment created pretilt angles between the TiO(2) film and LC molecules. The better voltage-transmittance characteristics of the VA LCDs based on TiO(2) film were measured and compared with the same characteristics of polyimide film. PMID:20410949

  1. A laser-based fiducial line for high-precision multipoint alignment system

    International Nuclear Information System (INIS)

    The next generation of linear colliders is very demanding concerning the alignment tolerances of their components. For the CLIC project, the reference axis of the components will have to be pre-aligned within 10 μm at 1 sigma with respect to a straight line in a sliding window of 200 m. A solution based on stretched wires with wire positioning sensors has been proposed in order to fulfill the alignment requirements in the Conceptual Design Report of the project. This solution has some drawbacks and laser-based alternative solutions are under study in order to validate the wire solution and possibly replace it. A new proposal is introduced in this paper, using a laser beam over 150 m as a straight alignment reference, with the objective of having an uncertainty in the determination of its straightness within 10μm. Sensors coupled to the components to be aligned would provide after calibration the horizontal and vertical offsets with respect to the laser beam, within a few micrometers, in their coordinate system. The method is based on the laser beam space stabilization effect when a beam propagates in atmospheric air inside a pipe with standing acoustic wave. The principal schemes of corresponding optoelectronics devices and temperature stabilization solutions are also proposed, making probable the extension of the laser fiducial line up to a 500 m length.

  2. A laser-based fiducial line for high-precision multipoint alignment system

    International Nuclear Information System (INIS)

    The next generation of linear colliders is very demanding concerning the alignment tolerances of their components. For the CLIC project, the reference axis of the components will have to be pre-aligned within 10 µm at 1 sigma with respect to a straight line in a sliding window of 200 m. A solution based on stretched wires with wire positioning sensors has been proposed in order to fulfill the alignment requirements in the Conceptual Design Report of the project. This solution has some drawbacks and laser-based alternative solutions are under study in order to validate the wire solution and possibly replace it. A new proposal is introduced in this paper, using a laser beam over 150 m as a straight alignment reference, with the objective of having an uncertainty in the determination of its straightness within 10 µm. Sensors, coupled to the components to be aligned, would provide after calibration the horizontal and vertical offsets with respect to the laser beam, within a few micrometers, in their coordinate system. The method is based on the laser beam space stabilization effect when a beam propagates in atmospheric air inside a pipe with standing acoustic wave. The principal schemes of corresponding optoelectronics devices and temperature stabilization solutions are also proposed, making probable the extension of the laser fiducial line up to a 500 m length.

  3. Search for anisotropic light propagation as a function of laser beam alignment relative to the Earth's velocity vector

    OpenAIRE

    Navia C. E.; Augusto C. R. A.; Franceschini D. F.; Robba M. B.; Tsui K. H.,

    2006-01-01

    A laser diffraction experiment was conducted to study light propagation in air. The experiment is easy to reproduce and it is based on simple optical principles. Two optical sensors (segmented photo-diodes) are used for measuring the position of diffracted light spots with a precision better than 0.1 μ m. The goal is to look for signals of anisotropic light propagation as function of the laser beam alignment to the Earth’s motion (solar barycenter motion) obtain...

  4. Sound propagation in a horizontal bottom aligned beam

    Czech Academy of Sciences Publication Activity Database

    Rakowitz, G.; Kubečka, Jan

    Algarve : University of Algarve, 2006 - (Jesus, S.; Rodríguez, O.), s. 249-254 ISBN 989-95068-0-X. [European Conference on Underwater Acoustics /8./. Carvoeiro (PT), 12.06.2006-15.06.2006] Grant ostatní: EFRE(AT) FIDON Institutional research plan: CEZ:AV0Z60170517 Keywords : echosounder * fish * calibration * sound beam * spreading Subject RIV: EH - Ecology, Behaviour

  5. Liquid crystal anchoring transitions on aligning substrates processed by plasma beam

    OpenAIRE

    Yaroshchuk, Oleg V.; Kiselev, Alexei D.; Kravchuk, Ruslan M.

    2007-01-01

    We observe a sequence of the anchoring transitions in nematic liquid crystals (NLC) sandwiched between the hydrophobic polyimide substrates treated with the plasma beam. There is a pronounced continuous transition from homeotropic to low tilted (nearly planar) alignment with the easy axis parallel to the incidence plane of the plasma beam (the zenithal transition) that takes place as the exposure dose increases. In NLC with positive dielectric anisotropy, a further increase in the exposure do...

  6. Method of light path alignment for femtosecond laser tracker based on double optical wedge

    Science.gov (United States)

    Cui, Chengjun; Zhou, Weihu; Lao, Dabao; Zhang, Wenying

    2015-08-01

    There are two light sources in Femtosecond laser tracker, the center wavelengths of which are different. In order to achieve precise distance, light beams from the two sources should be combined. In this paper, key technology of light path alignment for femtosecond laser tracker based on double optical wedge is presented. Precise steering of incident light beam can be realized by changing the angle of the double optical wedge. Method for adjusting the angle and translation of light beam using two pairs of double optical wedge is proposed. Also mathematical model on the basis of vector superposition method is established to correct offset of light beam, which is validated with Zemax.

  7. Structure alignment based on coding of local geometric measures

    Directory of Open Access Journals (Sweden)

    Rinne Andrew W

    2006-07-01

    Full Text Available Abstract Background A structure alignment method based on a local geometric property is presented and its performance is tested in pairwise and multiple structure alignments. In this approach, the writhing number, a quantity originating from integral formulas of Vassiliev knot invariants, is used as a local geometric measure. This measure is used in a sliding window to calculate the local writhe down the length of the protein chain. By encoding the distribution of writhing numbers across all the structures in the protein databank (PDB, protein geometries are represented in a 20-letter alphabet. This encoding transforms the structure alignment problem into a sequence alignment problem and allows the well-established algorithms of sequence alignment to be employed. Such geometric alignments offer distinct advantages over structural alignments in Cartesian coordinates as it better handles structural subtleties associated with slight twists and bends that distort one structure relative to another. Results The performance of programs for pairwise local alignment (TLOCAL and multiple alignment (TCLUSTALW are readily adapted from existing code for Smith-Waterman pairwise alignment and for multiple sequence alignment using CLUSTALW. The alignment algorithms employed a blocked scoring matrix (TBLOSUM generated using the frequency of changes in the geometric alphabet of a block of protein structures. TLOCAL was tested on a set of 10 difficult proteins and found to give high quality alignments that compare favorably to those generated by existing pairwise alignment programs. A set of protein comparison involving hinged structures was also analyzed and TLOCAL was seen to compare favorably to other alignment methods. TCLUSTALW was tested on a family of protein kinases and reveal conserved regions similar to those previously identified by a hand alignment. Conclusion These results show that the encoding of the writhing number as a geometric measure allow high

  8. Conception and realisation of a system for the automatic alignment of a CO2 laser beam

    International Nuclear Information System (INIS)

    The present paper deals with the continuous control of the direction of a CO2 laser beam, with a view to laser machining. Slow deviations, due to the cavity instability, move away the beam from the focusing system axis. An automatic alignment device acting on the last flat mirror of the optical line has been designed. This mirror is actuated by 2 motors which vary its inclination in 2 directions x,y. The first part of the present paper deals with the alignment principle worked according to the specific constraints to be faced and to the characteristics of the beam. It uses the revolution symmetry of the energy distribution of the beam: 4 thermocouples surrounding the beam on a same circumference yield equals signals if the beam is centered onto the 4 sensors. An angular displacement is characterised by the difference between the signals of 2 opposed detectors. The second part presents the digital feedback system: the divergence or the beam is computed from the differential signal by a coefficient K experimentally valued. The motor commands proceed from optical geometry laws. The filtering of the thermocouple signals is necessary in order to sort the slowly changing signal related to the beam displacement, from the higher frequency signal related to the laser system instability. The system has been implemented on a 16 bit microprocessor. (author)

  9. Verification of the alignment of a therapeutic radiation beam relative to its patient positioner.

    Science.gov (United States)

    Barkhof, J; Schut, G; Flanz, J B; Goitein, M; Schippers, J M

    1999-11-01

    An easily-used system has been developed for routine measurements of the alignment of beams used for radiation therapy. The position of a beam of circular cross section is measured with respect to a steel sphere fixed to the patient positioning table and which should coincide with the isocenter. Since measurements can be done at all gantry angles (if one is available) and with all possible orientations of the patient table, the system is particularly suited for rapid and accurate measurements of gantry and/or couch isocentricity. Because it directly measures beam-to-positioner offset, the system provides an inclusive alignment verification of the total treatment system. The system has been developed for use with proton beams, but it could equally be used for alignment checks of an x-ray beam from a linear accelerator or other source. The measuring instrument consists of a scintillation screen viewed by a CCD camera, mounted on the gantry downstream of the sphere. The steel sphere is not large enough to stop protons of all energies of interest; however, it will always modify the energy and direction of protons which intersect it, creating a region of lower intensity (a "shadow") in the light spot created by the proton beam hitting the screen. The position of the shadow with respect to the light spot is a measure of the alignment of the system. An image-analysis algorithm has been developed for an automatic determination of the position of the shadow with respect to the light spot. The specifications and theoretical analysis of the system have been derived from Monte Carlo simulations, which are validated by measurements. We have demonstrated that the device detects beam misalignments with an accuracy (1 s.d.) of 0.05 mm, which is in agreement with the expected performance. This accuracy is more than sufficient to detect the maximum allowed misalignment of +/-0.5 mm. PMID:10587228

  10. Alignment tools used to locate a wire and a laser beam in the VISA undulator project

    International Nuclear Information System (INIS)

    Within the framework of the LCLS (Linac Coherent Light Source), a small experiment VISA (Visual to Infrared SASE (Self Amplified Stimulated Emission) Amplifier) is being performed at Brookhaven National Laboratory. VISA consists of four wiggler segments, each 0.99 m long. The four segments are required to be aligned to the beam axis with an rms error less than 50 μm. This very demanding alignment is carried out in two steps. First the segments are fiducialized using a pulsed wire system. Then the wiggler segments are placed along a reference laser beam which coincides with the electron beam axis. In the wiggler segment fiducialization, a wire is stretched through a wiggler segment and a current pulse is sent down the wire. The deflection of the wire is monitored. The deflection gives information about the electron beam trajectory. The wire is moved until its x position, the coordinate without wire sag, is on the ideal beam trajectory. (The y position is obtained by rotating the wiggler 90 deg C.) Once the wire is on the ideal beam trajectory, the wire's location is measured relative to tooling balls on the wiggler segment. To locate the wire, a device was constructed which measures the wire position relative to tooling balls on the device. The device is called the wire finder. It will be discussed in this paper. To place the magnets along the reference laser beam, the position of the laser beam must be determined. A device which can locate the laser beam relative to tooling balls was constructed and is also discussed in this paper. This device is called the laser finder. With a total alignment error budget less than 50 μm, both the fiducialization and magnet placement must be performed with errors much smaller than 50 μm. It is desired to keep the errors from the wire finder and laser finder at the few μm level. (authors)

  11. Truss beam having convex-curved rods, shear web panels, and self-aligning adapters

    Science.gov (United States)

    Fernandez, Ian M. (Inventor)

    2013-01-01

    A truss beam comprised of a plurality of joined convex-curved rods with self-aligning adapters (SAA) adhesively attached at each end of the truss beam is disclosed. Shear web panels are attached to adjacent pairs of rods, providing buckling resistance for the truss beam. The rods are disposed adjacent to each other, centered around a common longitudinal axis, and oriented so that adjacent rod ends converge to at least one virtual convergence point on the common longitudinal axis, with the rods' curvature designed to increase prevent buckling for the truss beam. Each SAA has longitudinal bores that provide self-aligning of the rods in the SAA, the self-aligning feature enabling creation of strong adhesive bonds between each SAA and the rods. In certain embodiments of the present invention, pultruded unidirectional carbon fiber rods are coupled with carbon fiber shear web panels and metal SAA(s), resulting in a lightweight, low-cost but strong truss beam that is highly resistant to buckling.

  12. Zenithal alignment of liquid crystal on homeotropic polyimide film irradiated by ion beam

    Science.gov (United States)

    Choi, Yoonseuk; Yoon, Tae-Hoon; Kwon, Jin Hyuk; Yi, Jonghoon; Gwag, Jin Seog

    2012-01-01

    We investigate the pretilt characteristics of a nematic liquid crystal [LC] in terms of ion beam exposure conditions on the homeotropic polyimide alignment layer. The pretilt angle of LCs in the case of high-energy ion beam treatment was decreased considerably almost the same to that of the homogenous alignment layer though we used homeotropic polyimide film at first. Increasing irradiating energy, we could control the pretilt from 90° to 1° with several steps. We believe that this is because the side chain with hydrophobicity in the used polyimide is broken by ion beam exposure. To confirm it, contact angle measurement was carried out. With this result, we can easily control the LC pretilt in the pixel with appropriate exposure conditions which is critical to achieve excellent electrooptic characteristics and good image quality.

  13. Alignment of Duke free electron laser storage ring and optical beam delivery system

    International Nuclear Information System (INIS)

    Duke Free Electron Laser Laboratory (DFELL) hosts a 1.1 GeV electron beam storage ring facility which is capable of generating beams in the range of nearly monochromatic gamma rays to high peak power infra red (IR) laser. In this report specifications and procedures for alignment of OK-4 /Duke storage ring FEL wiggler and optical cavity mirrors will be discussed. The OK-4 FEL lasing has demonstrated a series of world record in the last few years. In August of this year the OK-4 FEL successfully commissioned to laser at 193.7 nm. Also in this article, alignment of the γ-ray and UV optical beam delivery system that is currently in progress will be described. (authors)

  14. Laser propagation characteristics in laser-based alignment experiment at the KEKB injector linac

    International Nuclear Information System (INIS)

    A new laser-based alignment system is under development at the KEKB injector linac. Towards the Super-KEKB project, the new system is strongly required for increasing the operation stability and enhancing the quality of electron and positron beams. The new laser optics for the generation of so-called Airy beam has been developed for the laser-based alignment system. The new system comprises a flat mirror with two apertures of different diameter and spherical mirror. By using this system, the 100-m-long laser propagating is tested, and its profile is measured. It is confirmed that the measured profile has a good agreement with the simulation result. We report the overview of the new alignment system, the preliminary test result, and the simulation result in detail. (author)

  15. An Ant-Based Model for Multiple Sequence Alignment

    CERN Document Server

    Guinand, Frédéric

    2008-01-01

    Multiple sequence alignment is a key process in today's biology, and finding a relevant alignment of several sequences is much more challenging than just optimizing some improbable evaluation functions. Our approach for addressing multiple sequence alignment focuses on the building of structures in a new graph model: the factor graph model. This model relies on block-based formulation of the original problem, formulation that seems to be one of the most suitable ways for capturing evolutionary aspects of alignment. The structures are implicitly built by a colony of ants laying down pheromones in the factor graphs, according to relations between blocks belonging to the different sequences.

  16. Beam shaping for laser-based adaptive optics in astronomy

    OpenAIRE

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-01-01

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics syst...

  17. Automatic laser beam alignment using blob detection for an environment monitoring spectroscopy

    Science.gov (United States)

    Khidir, Jarjees; Chen, Youhua; Anderson, Gary

    2013-05-01

    This paper describes a fully automated system to align an infra-red laser beam with a small retro-reflector over a wide range of distances. The component development and test were especially used for an open-path spectrometer gas detection system. Using blob detection under OpenCV library, an automatic alignment algorithm was designed to achieve fast and accurate target detection in a complex background environment. Test results are presented to show that the proposed algorithm has been successfully applied to various target distances and environment conditions.

  18. The proposed alignment system for the Final Focus Test Beam at SLAC

    International Nuclear Information System (INIS)

    This report describes the current state of work in progress with respect to the geometry, alignment requirements, scenarios, and hardware for meeting the tolerances of the Final Focus Test Beam (FFTB) at SLAC. The methods and systems proposed acknowledge that component motion at the micron level, from whatever cause (ground motion, thermal effects, etc.) must be measured on-line and compensated for on relatively short time scales. To provide an integrated alignment/positioning package, some unique designs for reference systems, calibration of effect electric and magnetic centers, and component movers are introduced. 24 refs., 28 figs

  19. Agent-based argumentation for ontology alignments

    OpenAIRE

    Laera, Loredana; Tamma, Valentina; Bench-Capon, Trevor; Euzenat, Jérôme

    2006-01-01

    laera2006a International audience When agents communicate they do not necessarily use the same vocabulary or ontology. For them to interact successfully they must find correspondences between the terms used in their ontologies. While many proposals for matching two agent ontologies have been presented in the literature, the resulting alignment may not be satisfactory to both agents and can become the object of further negotiation between them. This paper describes our work constructing ...

  20. Alignment analysis of urban railways based on passenger travel demand

    DEFF Research Database (Denmark)

    Andersen, Jonas Lohmann Elkjær; Landex, Alex

    2010-01-01

    , this article presents a computerised GIS based methodology that can be used as decision support for selecting the best alignment. The methodology calculates travel potential within defined buffers surrounding the alignment. The methodology has three different approaches depending on the desired level of detail......: the simple but straight-forward to implement line potential approach that perform corridor analysis, the detailed catchment area analysis based on stops on the alignment and the refined service area analysis that uses search distances in street networks. All three approaches produce trustworthy results...

  1. Scattering of field-aligned beam ions upstream of Earth's bow shock

    Directory of Open Access Journals (Sweden)

    A. Kis

    2007-03-01

    Full Text Available Field-aligned beams are known to originate from the quasi-perpendicular side of the Earth's bow shock, while the diffuse ion population consists of accelerated ions at the quasi-parallel side of the bow shock. The two distinct ion populations show typical characteristics in their velocity space distributions. By using particle and magnetic field measurements from one Cluster spacecraft we present a case study when the two ion populations are observed simultaneously in the foreshock region during a high Mach number, high solar wind velocity event. We present the spatial-temporal evolution of the field-aligned beam ion distribution in front of the Earth's bow shock, focusing on the processes in the deep foreshock region, i.e. on the quasi-parallel side. Our analysis demonstrates that the scattering of field-aligned beam (FAB ions combined with convection by the solar wind results in the presence of lower-energy, toroidal gyrating ions at positions deeper in the foreshock region which are magnetically connected to the quasi-parallel bow shock. The gyrating ions are superposed onto a higher energy diffuse ion population. It is suggested that the toroidal gyrating ion population observed deep in the foreshock region has its origins in the FAB and that its characteristics are correlated with its distance from the FAB, but is independent on distance to the bow shock along the magnetic field.

  2. Constructive Alignment for Teaching Model-Based Design for Concurrency

    DEFF Research Database (Denmark)

    Brabrand, Claus

    2007-01-01

    "How can we make sure our students learn what we want them to?" is the number one question in teaching. This paper is intended to provide the reader with: i) a general answer to this question based on the theory of constructive alignment by John Biggs; ii) relevant insights for bringing this answ...... from theory to practice; and iii) specific insights and experiences from using constructive alignment in teaching model-based design for concurrency (as a case study in implementing alignment)......."How can we make sure our students learn what we want them to?" is the number one question in teaching. This paper is intended to provide the reader with: i) a general answer to this question based on the theory of constructive alignment by John Biggs; ii) relevant insights for bringing this answer...

  3. Fr-TM-align: a new protein structural alignment method based on fragment alignments and the TM-score

    Directory of Open Access Journals (Sweden)

    Skolnick Jeffrey

    2008-12-01

    Full Text Available Abstract Background Protein tertiary structure comparisons are employed in various fields of contemporary structural biology. Most structure comparison methods involve generation of an initial seed alignment, which is extended and/or refined to provide the best structural superposition between a pair of protein structures as assessed by a structure comparison metric. One such metric, the TM-score, was recently introduced to provide a combined structure quality measure of the coordinate root mean square deviation between a pair of structures and coverage. Using the TM-score, the TM-align structure alignment algorithm was developed that was often found to have better accuracy and coverage than the most commonly used structural alignment programs; however, there were a number of situations when this was not true. Results To further improve structure alignment quality, the Fr-TM-align algorithm has been developed where aligned fragment pairs are used to generate the initial seed alignments that are then refined using dynamic programming to maximize the TM-score. For the assessment of the structural alignment quality from Fr-TM-align in comparison to other programs such as CE and TM-align, we examined various alignment quality assessment scores such as PSI and TM-score. The assessment showed that the structural alignment quality from Fr-TM-align is better in comparison to both CE and TM-align. On average, the structural alignments generated using Fr-TM-align have a higher TM-score (~9% and coverage (~7% in comparison to those generated by TM-align. Fr-TM-align uses an exhaustive procedure to generate initial seed alignments. Hence, the algorithm is computationally more expensive than TM-align. Conclusion Fr-TM-align, a new algorithm that employs fragment alignment and assembly provides better structural alignments in comparison to TM-align. The source code and executables of Fr-TM-align are freely downloadable at: http://cssb.biology.gatech.edu/skolnick/files/FrTMalign/.

  4. Aperture alignment in autocollimator-based deflectometric profilometers.

    Science.gov (United States)

    Geckeler, R D; Artemiev, N A; Barber, S K; Just, A; Lacey, I; Kranz, O; Smith, B V; Yashchuk, V V

    2016-05-01

    During the last ten years, deflectometric profilometers have become indispensable tools for the precision form measurement of optical surfaces. They have proven to be especially suitable for characterizing beam-shaping optical surfaces for x-ray beamline applications at synchrotrons and free electron lasers. Deflectometric profilometers use surface slope (angle) to assess topography and utilize commercial autocollimators for the contactless slope measurement. To this purpose, the autocollimator beam is deflected by a movable optical square (or pentaprism) towards the surface where a co-moving aperture limits and defines the beam footprint. In this paper, we focus on the precise and reproducible alignment of the aperture relative to the autocollimator's optical axis. Its alignment needs to be maintained while it is scanned across the surface under test. The reproducibility of the autocollimator's measuring conditions during calibration and during its use in the profilometer is of crucial importance to providing precise and traceable angle metrology. In the first part of the paper, we present the aperture alignment procedure developed at the Advanced Light Source, Lawrence Berkeley National Laboratory, USA, for the use of their deflectometric profilometers. In the second part, we investigate the topic further by providing extensive ray tracing simulations and calibrations of a commercial autocollimator performed at the Physikalisch-Technische Bundesanstalt, Germany, for evaluating the effects of the positioning of the aperture on the autocollimator's angle response. The investigations which we performed are crucial for reaching fundamental metrological limits in deflectometric profilometry. PMID:27250378

  5. RNA-RNA interaction prediction based on multiple sequence alignments

    CERN Document Server

    Li, Andrew X; Qin, Jing; Reidys, Christian M

    2010-01-01

    Recently, $O(N^6)$ time and $O(N^4)$ space dynamic programming algorithms have become available that compute the partition function of RNA-RNA interaction complexes for pairs of RNA sequences. These algorithms and the biological requirement of more reliable interactions motivate to utilize the additional information contained in multiple sequence alignments and to generalize the above framework to the partition function and base pairing probabilities for multiple sequence alignments.

  6. Liquid Crystal Alignment on Solution Derived Zinc Oxide Films via Ion Beam Irradiation.

    Science.gov (United States)

    Park, Hong-Gyu; Han, Jae-Jun; Seo, Dae-Shik

    2016-03-01

    A 75-nm-thick ZnO film was deposited by a sol-gel method on indium-tin oxide (ITO)-coated glass. This film served as a liquid crystal (LC) alignment layer. We report the fabrication and characteristics of this film after ion-beam (IB) irradiation. Uniform LC alignment was achieved at an IB incident energy above 2400 eV. The IB-treated ZnO surface was analyzed by X-ray photoelectron spectroscopy (XPS), monitoring the intensity of the Zn 2p and O 1s peaks as a function of IB-irradiation energy density. The electro-optical (EO) characteristics of a twisted nematic-liquid crystal display (TN-LCD) were comparable to rubbed polyimide. PMID:27455726

  7. Electron-beam source development for magnetic field alignment on MFTF-B

    International Nuclear Information System (INIS)

    For proper physics operation of the Mirror Fusion Test Facility (MFTF-B) tandem mirror experiment, alignment of the superconducting magnet coils is critical. A narrow, low-energy electron beam is used to trace out the field lines along the axis of the machine. Six crossed-wire detector assemblies are located at various axial positions. The crossed-wire detector is used to locate the electron beam and can trace out flux tubes up to 20 cm in radius. In this paper, the authors describe the design and prototype development of a 1 mA, 10 kV e-beam source used for this diagnostic. Dispenser cathodes are used due to their long lifetime operating at rather high current densities. Experimental results from a prototype gun operating in a 1 kG field are presented. In most cases, the beam diameter was found to match closely the limiting aperture on the e-beam source grid. Also, the effect of secondary-electron emission off the detectors is investigated. Data on the poisoning of dispenser cathodes is also presented

  8. Novel method for the production of spin-aligned RI beams in projectile fragmentation reaction with the dispersion matching technique

    International Nuclear Information System (INIS)

    A novel method to produce spin-aligned rare-isotope (RI) beam has been developed, that is the two-step projectile fragmentation method with a technique of dispersion matching. The present method was verified in an experiment at the RIKEN RIBF, where an RI beam of 32Al with spin alignment of 8(1) % was successfully produced from a primary beam of 48Ca, with 33Al as an intermediate nucleus. Figure of merit of the present method was found to be improved by a factor larger than 50 compared with a conventional method employing single-step projectile fragmentation.

  9. Novel method for the production of spin-aligned RI beams in projectile fragmentation reaction with the dispersion matching technique

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Y., E-mail: yuichikawa@phys.titech.ac.jp [Tokyo Institute of Technology, Department of Physics (Japan); Ueno, H. [RIKEN Nishina Center (Japan); Ishii, Y. [Tokyo Institute of Technology, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Yoshimi, A. [Okayama University, Research Core for Extreme Quantum World (Japan); Kameda, D.; Watanabe, H.; Aoi, N. [RIKEN Nishina Center (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Balabanski, D. L. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (Bulgaria); Chevrier, R.; Daugas, J. M. [CEA, DAM, DIF (France); Fukuda, N. [RIKEN Nishina Center (Japan); Georgiev, G. [CSNSM, IN2P3-CNRS, Universite Paris-sud (France); Hayashi, H.; Iijima, H. [Tokyo Institute of Technology, Department of Physics (Japan); Inabe, N. [RIKEN Nishina Center (Japan); Inoue, T. [Tokyo Institute of Technology, Department of Physics (Japan); Ishihara, M.; Kubo, T. [RIKEN Nishina Center (Japan); and others

    2013-05-15

    A novel method to produce spin-aligned rare-isotope (RI) beam has been developed, that is the two-step projectile fragmentation method with a technique of dispersion matching. The present method was verified in an experiment at the RIKEN RIBF, where an RI beam of {sup 32}Al with spin alignment of 8(1) % was successfully produced from a primary beam of {sup 48}Ca, with {sup 33}Al as an intermediate nucleus. Figure of merit of the present method was found to be improved by a factor larger than 50 compared with a conventional method employing single-step projectile fragmentation.

  10. Membrane based Deformable Mirror: Intrinsic aberrations and alignment issues

    OpenAIRE

    Bayanna, A. Raja; Louis, Rohan E.; Chatterjee, S; Mathew, Shibu K.; Venkatakrishnan, P

    2015-01-01

    A Deformable Mirror (DM) is an important component of an Adaptive Optics system. It is known that an on-axis spherical/parabolic optical component, placed at an angle to the incident beam introduces defocus as well as astigmatism in the image plane. Although the former can be compensated by changing the focal plane position, the latter cannot be removed by mere optical re-alignment. Since the DM is to be used to compensate a turbulence-induced curvature term in addition to other aberrations, ...

  11. Anisotropy and Raman absorption of the polyimide surface irradiated by the ion beam for liquid crystal alignment

    International Nuclear Information System (INIS)

    In this paper, polyimide surfaces irradiated by an ion-beam for liquid crystal alignment are investigated by using atomic force microscopy, Raman spectroscopy, and spectroscopic ellipsometry. A liquid crystal cell aligned homogeneously through the ion-beam exposure exhibits electro-optic switching behavior similar to that of a rubbing-aligned liquid crystal cell. However, we found that the surface morphology and bonding molecules of ion-beam-treated polyimide surfaces show properties very different from mechanically-rubbed ones. Experimental results show that optical anisotropy of ion-beam-treated polyimide surfaces results in the formation of hydrogenated amorphous carbon-like structure with a short main-chain, while mechanical rubbing has little effect on structural and compositional variations of polyimide layers

  12. Transfer Alignment for Space Vehicles Launched from a Moving Base

    Directory of Open Access Journals (Sweden)

    S. K. Chaudhuri

    2005-07-01

    Full Text Available Alignment of the inertial measurement unit (IMU is a prerequisite for any space vehicle with self-contained navigation and guidance for any mission-critical application. Normally, inertialmeasurement unit is aligned through gyro-compassing using the stored data for heading. In case of launch from a moving base, it is essential to align the inertial measurement unit in the vehicle (slave unit with that mounted on the moving platform (master unit. The master inertial navigation system is more accurate, stable, and calibrated wrt the slave unit. An error propagation system involving the misalignment between the master and the slave has been formulated involving the three misalignment angles, three velocity errors, and three positional errors. The manoeuvre of the moving base excites the sensors of both the master and the slave inertial navigation systems for the generation of data to be used in aligning the slave inertial measurement unit of the inertial navigation system (strapdown mode. The entire duration of manoeuvre has to be reduced to a minimum with minimum effort of manoeuvre. This involves the deployment of an adaptive estimator and a linear quadratic Gaussian regulator for alignment of the strapdown slave inertial navigation system.

  13. Electron-beam source development for magnetic field alignment of MFTF-B

    International Nuclear Information System (INIS)

    For proper physics operation of the Mirror Fusion Test Facility (MFTF-B) tandem mirror experiment, alignment of the superconducting magnet coils is critical. A narrow (1 mm diameter), low-energy electron beam is used to trace out the field lines along the axis of the machine. Six crossed-wire detector assemblies are located at various axial positions. The crossed-wire detector is used to locate the electron beam and can trace out flux tubes up to 20 cm in radius. In this paper, we describe the design and prototype development of a 1 mA, 10 kV e-beam source used for this diagnostic. Dispenser cathodes are used due to their long lifetime operating at rather high current densities. The current range of 0.1 to 1 mA was chosen to provide good signal-to-noise, while the energy range of 1 to 10 kV is necessary to closely follow the field lines and to avoid space-charge spreading of the beam. Experimental results from a prototype gun operating in a 1 kG field are presented

  14. Relation based Ontology Matching using Alignment Strategies

    Directory of Open Access Journals (Sweden)

    Mr. S.Vivekanandan,

    2011-04-01

    Full Text Available The set of relation within a knowledge domain will be expressed with a help of Ontology, but data within the knowledge domain get scattered all over its space. To get a most precise result there must be necessary to relate the concepts or keywords within a domain. One of the efficient ways of matching or relating data must be done by implementing ontology within a domain. It aims to make data sharable.Unfortunately, the ontology is widely distributed as well as heterogeneous. The main aim of Ontology matching is to determine the relationship between the concepts and to find the Semantical mappingsbetween two given ontologies. This problem lies at the heart of numerous information processing applications. In order to dilute the problem evolution of Upper ontology have taken place. The upperontology will act as a base for representing concepts in all the domains, the primary objective is to extract or representing the general concepts throughout the domains based on the ontological structure.

  15. Graphics processing unit-based alignment of protein interaction networks.

    Science.gov (United States)

    Xie, Jiang; Zhou, Zhonghua; Ma, Jin; Xiang, Chaojuan; Nie, Qing; Zhang, Wu

    2015-08-01

    Network alignment is an important bridge to understanding human protein-protein interactions (PPIs) and functions through model organisms. However, the underlying subgraph isomorphism problem complicates and increases the time required to align protein interaction networks (PINs). Parallel computing technology is an effective solution to the challenge of aligning large-scale networks via sequential computing. In this study, the typical Hungarian-Greedy Algorithm (HGA) is used as an example for PIN alignment. The authors propose a HGA with 2-nearest neighbours (HGA-2N) and implement its graphics processing unit (GPU) acceleration. Numerical experiments demonstrate that HGA-2N can find alignments that are close to those found by HGA while dramatically reducing computing time. The GPU implementation of HGA-2N optimises the parallel pattern, computing mode and storage mode and it improves the computing time ratio between the CPU and GPU compared with HGA when large-scale networks are considered. By using HGA-2N in GPUs, conserved PPIs can be observed, and potential PPIs can be predicted. Among the predictions based on 25 common Gene Ontology terms, 42.8% can be found in the Human Protein Reference Database. Furthermore, a new method of reconstructing phylogenetic trees is introduced, which shows the same relationships among five herpes viruses that are obtained using other methods. PMID:26243827

  16. A convenient alignment approach for x-ray imaging experiments based on laser positioning devices

    International Nuclear Information System (INIS)

    This study presents a two-laser alignment approach for facilitating the precise alignment of various imaging and measuring components with respect to the x-ray beam. The first laser constantly pointed to the output window of the source, in a direction parallel to the path along which the components are placed. The second laser beam, originating from the opposite direction, was calibrated to coincide with the first laser beam. Thus, a visible indicator of the direction of the incident x-ray beam was established, and the various components could then be aligned conveniently and accurately with its help.

  17. Superior optical properties of homogeneous liquid crystal alignment on a tin (IV) oxide surface sequentially modulated via ion beam irradiation.

    Science.gov (United States)

    Kang, Young-Gu; Park, Hong-Gyu; Kim, Hyung-Jun; Kim, Young-Hwan; Oh, Byeong-Yun; Kim, Byoung-Yong; Kim, Dai-Hyun; Seo, Dae-Shik

    2010-10-11

    We first investigated the alignment characteristics of tin (IV) oxide (SnO(2)) thin films deposited by radio-frequency (RF) magnetron sputtering. This study demonstrates that liquid crystal (LC) molecules could be aligned homogeneously by controlling the Ion Beam (IB) irradiation energy densities. We also show that the pretilt angle of the LC molecules has a close relation with the surface energy. X-ray photoelectron spectroscopy (XPS) indicates that a non-stoichiometric SnO(2-x) surface converted by ion beam irradiation can horizontally align the LC molecules. The measured electro-optical (EO) characteristics showed high performance, comparable with those of rubbed and ion-beam irradiated polyimide (PI) layers. PMID:20941057

  18. Search for Anisotropic Light Propagation as a Function of Laser Beam Alignment Relative to the Earth's Velocity Vector

    Directory of Open Access Journals (Sweden)

    Navia C. E.

    2007-01-01

    Full Text Available A laser diffraction experiment was conducted to study light propagation in air. The experiment is easy to reproduce and it is based on simple optical principles. Two optical sensors (segmented photo-diodes are used for measuring the position of diffracted light spots with a precision better than 0.1 μ m. The goal is to look for signals of anisotropic light propagation as function of the laser beam alignment to the Earth’s motion (solar barycenter motion obtained by COBE. Two raster search techniques have been used. First, a laser beam fixed in the laboratory frame scans in space due to Earth’s rotation. Second, a laser beam mounted on a turntable system scans actively in space by turning the table. The results obtained with both methods show that the course of light rays are affected by the motion of the Earth, and a predominant first order quantity with a Δ c/c = − β (1 + 2 a cos θ signature with ˉ a = − 0.393 ± 0.032 describes well the experimental results. This result differs in amount of 21% from the Special Relativity Theory prediction and that supplies the value of a = − 1 2 (isotropy.

  19. Search for anisotropic light propagation as a function of laser beam alignment relative to the Earth's velocity vector

    CERN Document Server

    Navia, C E; Franceschini, D F; Robba, M B; Tsui, K H

    2006-01-01

    A laser diffraction experiment was conducted to study light propagation in air. The experiment is easy to reproduce and it is based on simple optical principles. Two optical sensors (segmented photo-diodes) are used for measuring the position of diffracted light spots with a precision better than $0.1 \\mu m$. The goal is to look for signals of anisotropic light propagation as function of the laser beam alignment to the Earth's motion (solar barycenter motion) obtained by COBE. Two raster search techniques have been used. First, a fixed laser beam in the laboratory frame that scans due to Earth's rotation. Second, an active rotation of the laser beam on a turntable system. The results obtained with both methods show that the course of the light rays are affected by the motion of the Earth, and a predominant quantity of first order with a $\\Delta c/c=-\\beta (1+2a)\\cos \\theta$ signature with $a=-0.4106\\pm 0.0225$ describes well the experimental results. This result differs in a amount of 18% from the Special Rel...

  20. Direct determination of geometric alignment parameters for cone-beam scanners

    Energy Technology Data Exchange (ETDEWEB)

    Mennessier, C; Clackdoyle, R [Laboratoire Hubert Curien, Unite Mixte de Recherche CNRS and Universite Jean Monnet, 18 Rue du Professeur Benoit Lauras, 42000 Saint Etienne (France); Noo, F [Utah Center for Advanced Imaging Research, University of Utah, 729 Arapeen Drive, Salt Lake City, Utah (United States)

    2009-03-21

    This paper describes a comprehensive method for determining the geometric alignment parameters for cone-beam scanners (often called calibrating the scanners or performing geometric calibration). The method is applicable to x-ray scanners using area detectors, or to SPECT systems using pinholes or cone-beam converging collimators. Images of an alignment test object (calibration phantom) fixed in the field of view of the scanner are processed to determine the nine geometric parameters for each view. The parameter values are found directly using formulae applied to the projected positions of the test object marker points onto the detector. Each view is treated independently, and no restrictions are made on the position of the cone vertex, or on the position or orientation of the detector. The proposed test object consists of 14 small point-like objects arranged with four points on each of three orthogonal lines, and two points on a diagonal line. This test object is shown to provide unique solutions for all possible scanner geometries, even when partial measurement information is lost by points superimposing in the calibration scan. For the many situations where the cone vertex stays reasonably close to a central plane (for circular, planar, or near-planar trajectories), a simpler version of the test object is appropriate. The simpler object consists of six points, two per orthogonal line, but with some restrictions on the positioning of the test object. This paper focuses on the principles and mathematical justifications for the method. Numerical simulations of the calibration process and reconstructions using estimated parameters are also presented to validate the method and to provide evidence of the robustness of the technique.

  1. Direct determination of geometric alignment parameters for cone-beam scanners

    International Nuclear Information System (INIS)

    This paper describes a comprehensive method for determining the geometric alignment parameters for cone-beam scanners (often called calibrating the scanners or performing geometric calibration). The method is applicable to x-ray scanners using area detectors, or to SPECT systems using pinholes or cone-beam converging collimators. Images of an alignment test object (calibration phantom) fixed in the field of view of the scanner are processed to determine the nine geometric parameters for each view. The parameter values are found directly using formulae applied to the projected positions of the test object marker points onto the detector. Each view is treated independently, and no restrictions are made on the position of the cone vertex, or on the position or orientation of the detector. The proposed test object consists of 14 small point-like objects arranged with four points on each of three orthogonal lines, and two points on a diagonal line. This test object is shown to provide unique solutions for all possible scanner geometries, even when partial measurement information is lost by points superimposing in the calibration scan. For the many situations where the cone vertex stays reasonably close to a central plane (for circular, planar, or near-planar trajectories), a simpler version of the test object is appropriate. The simpler object consists of six points, two per orthogonal line, but with some restrictions on the positioning of the test object. This paper focuses on the principles and mathematical justifications for the method. Numerical simulations of the calibration process and reconstructions using estimated parameters are also presented to validate the method and to provide evidence of the robustness of the technique.

  2. Direct determination of geometric alignment parameters for cone-beam scanners.

    Science.gov (United States)

    Mennessier, C; Clackdoyle, R; Noo, F

    2009-03-21

    This paper describes a comprehensive method for determining the geometric alignment parameters for cone-beam scanners (often called calibrating the scanners or performing geometric calibration). The method is applicable to x-ray scanners using area detectors, or to SPECT systems using pinholes or cone-beam converging collimators. Images of an alignment test object (calibration phantom) fixed in the field of view of the scanner are processed to determine the nine geometric parameters for each view. The parameter values are found directly using formulae applied to the projected positions of the test object marker points onto the detector. Each view is treated independently, and no restrictions are made on the position of the cone vertex, or on the position or orientation of the detector. The proposed test object consists of 14 small point-like objects arranged with four points on each of three orthogonal lines, and two points on a diagonal line. This test object is shown to provide unique solutions for all possible scanner geometries, even when partial measurement information is lost by points superimposing in the calibration scan. For the many situations where the cone vertex stays reasonably close to a central plane (for circular, planar, or near-planar trajectories), a simpler version of the test object is appropriate. The simpler object consists of six points, two per orthogonal line, but with some restrictions on the positioning of the test object. This paper focuses on the principles and mathematical justifications for the method. Numerical simulations of the calibration process and reconstructions using estimated parameters are also presented to validate the method and to provide evidence of the robustness of the technique. PMID:19242049

  3. Characterization of Laser Beam Shaping Optics Based on Their Ablation Geometry of Thin Films

    Directory of Open Access Journals (Sweden)

    Stefan Rung

    2014-10-01

    Full Text Available Thin film ablation with pulsed nanosecond lasers can benefit from the use of beam shaping optics to transform the Gaussian beam profile with a circular footprint into a Top-Hat beam profile with a rectangular footprint. In general, the quality of the transformed beam profile depends strongly on the beam alignment of the entire laser system. In particular, the adjustment of the beam shaping element is of upmost importance. For an appropriate alignment of the beam shaper, it is generally necessary to observe the intensity distribution near the focal position of the applied focusing optics. Systems with a low numerical aperture (NA can commonly be qualified by means of laser beam profilers, such as a charge-coupled device (CCD camera. However, laser systems for micromachining typically employ focus lenses with a high NA, which generate focal spot sizes of only several microns in diameter. This turns out to be a challenge for common beam profiling measurement systems and complicates the adjustment of the beam shaper strongly. In this contribution, we evaluate the quality of a Top-Hat beam profiling element and its alignment in the working area based on the ablated geometry of single pulse ablation of thin transparent conductive oxides. To determine the best achievable adjustment, we develop a quality index for rectangular laser ablation spots and investigate the influences of different alignment parameters, which can affect the intensity distribution of a Top-Hat laser beam profile.

  4. Analysis of Chimpanzee History Based on Genome Sequence Alignments

    OpenAIRE

    Caswell, Jennifer L.; Richter, Daniel J.; Neubauer, Julie; Schirmer, Christine; Gnerre, Sante; Mallick, Swapan; Reich, David Emil

    2008-01-01

    Population geneticists often study small numbers of carefully chosen loci, but it has become possible to obtain orders of magnitude for more data from overlaps of genome sequences. Here, we generate tens of millions of base pairs of multiple sequence alignments from combinations of three western chimpanzees, three central chimpanzees, an eastern chimpanzee, a bonobo, a human, an orangutan, and a macaque. Analysis provides a more precise understanding of demographic history than was previously...

  5. Robust Non-Frontal Face Alignment with Edge Based Texture

    Institute of Scientific and Technical Information of China (English)

    Hua Li; Shui-Cheng Yan; Li-Zhong Peng

    2005-01-01

    This paper proposes a new algorithm, called Edge-based Texture Driven Shape Model (E-TDSM), for nonfrontal face alignment task. First, the texture is defined as the un-warped edge image contained in the shape rectangle; then,a Bayesian network is constructed to describe the relationship between the shape and texture models; finally, ExpectationMaximization (EM) approach is utilized to infer the optimal texture and position parameters from the observed shape and texture information. Compared with the traditional shape localization algorithms, E-TDSM has the following advantages:1) the un-warped edge-based texture can better predict the shape and is more robust to the illumination and expression variation than the conventional warped gray-level based texture; 2) the presented Bayesian network indicates the logic structure of the face alignment task; and 3) the mutually enhanced shape and texture observations are integrated to infer the optimal parameters of the proposed Bayesian network using EM approach. The extensive experiments on non-frontal face alignment task demonstrate the effectiveness and robustness of the proposed E-TDSM algorithm.

  6. The LACARA Vacuum Laser Accelerator Experiment: Beam Positioning and Alignment in a Strong Magnetic Field

    International Nuclear Information System (INIS)

    LACARA (laser cyclotron auto-resonance accelerator) is a vacuum laser accelerator of electrons that is under construction at the Accelerator Test Facility (ATF), Brookhaven National Laboratory. It is expected that the experiment will be assembled by September 2006; this paper presents progress towards this goal. According to numerical studies, as an electron bunch moves along the LACARA solenoidal magnetic field (∼5.2 T, length ∼1 m), it will be accelerated from 50 to ∼75 MeV by interacting with a 0.8 TW Gaussian-mode circularly polarized optical pulse provided by the ATF CO2 10.6μm laser system. The LACARA laser transport optics must handle 10 J and be capable of forming a Gaussian beam inside the solenoid with a 1.4 mm waist and a Rayleigh range of 60 cm. The electron optics must transport a bunch having input emittance of 0.015 mm-mrad and 100 μm waist through the magnet. Precision alignment between the electron beam and the solenoid magnetic axis is required, and a method to achieve this is described in detail. Emittance- filtering may be necessary to yield an accelerated bunch having a narrow (∼1%) energy-spread

  7. Optimal alignment of mirror based pentaprisms for scanning deflectometric devices

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Samuel K.; Geckeler, Ralf D.; Yashchuk, Valeriy V.; Gubarev, Mikhail V.; Buchheim, Jana; Siewert, Frank; Zeschke, Thomas

    2011-03-04

    In the recent work [Proc. of SPIE 7801, 7801-2/1-12 (2010), Opt. Eng. 50(5) (2011), in press], we have reported on improvement of the Developmental Long Trace Profiler (DLTP), a slope measuring profiler available at the Advanced Light Source Optical Metrology Laboratory, achieved by replacing the bulk pentaprism with a mirror based pentaprism (MBPP). An original experimental procedure for optimal mutual alignment of the MBPP mirrors has been suggested and verified with numerical ray tracing simulations. It has been experimentally shown that the optimally aligned MBPP allows the elimination of systematic errors introduced by inhomogeneity of the optical material and fabrication imperfections of the bulk pentaprism. In the present article, we provide the analytical derivation and verification of easily executed optimal alignment algorithms for two different designs of mirror based pentaprisms. We also provide an analytical description for the mechanism for reduction of the systematic errors introduced by a typical high quality bulk pentaprism. It is also shown that residual misalignments of an MBPP introduce entirely negligible systematic errors in surface slope measurements with scanning deflectometric devices.

  8. A Kalman Filter for Track-based Alignment

    CERN Document Server

    Widl, Edmund; Adam, Wolfgang

    2006-01-01

    An iterative method for track-based global alignment is proposed. It is derived from the Kalman filter and is designed to avoid the inversion of large matrices. The update formulas for the alignment parameters and for the associated covariance matrix are described. The implementation and the computational complexity is discussed, and it is shown how to limit the latter to an acceptable level by restricting the update to detectors that are close in the sense of a certain metrics. The performance of the Kalman filter with respect to precision and speed of convergence is studied in a simplified setup. First results from an implementation in the CMS reconstruction program ORCA are presented, using two sections of the barrel part of the CMS Tracker.

  9. Effect of the annealing temperature and ion-beam bombardment on the properties of solution-derived HfYGaO films as liquid crystal alignment layers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hong-Gyu; Lee, Yun-Gun; Jang, Sang Bok; Lee, Ju Hwan; Jeong, Hae-Chang; Seo, Dae-Shik, E-mail: dsseo@yonsei.ac.kr [Information Display Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Oh, Byeong-Yun [ZeSHTech Co., Ltd., Business Incubator, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2015-11-15

    Hafnium yttrium gallium oxide (HfYGaO) films were applied to liquid crystal displays (LCDs) as liquid crystal (LC) alignment layers, replacing conventional polyimide (PI) layers. The HfYGaO alignment layers were prepared by fabricating solution-processed HfYGaO films, annealing them, and treating them with ion-beam (IB) irradiation. The authors studied the effects of annealing temperature and IB irradiation of the solution-derived HfYGaO films on the orientation of LC molecules. The LC molecules on the solution-derived HfYGaO films were homogeneously and uniformly aligned by IB irradiation, irrespective of the annealing temperature. Atomic force microscopy analyses revealed that the surface reformation of the HfYGaO films induced by IB irradiation strengthened the van der Waals force between the LC molecules and the HfYGaO films, leading to uniform LC alignment. Enhanced electro-optical characteristics were observed in the twisted-nematic (TN) LCDs based on IB-irradiated HfYGaO films compared with those of TN-LCDs based on PI layers, demonstrating the high application potential of the proposed solution-derived HfYGaO films as LC alignment layers.

  10. Membrane based Deformable Mirror: Intrinsic aberrations and alignment issues

    CERN Document Server

    Bayanna, A Raja; Chatterjee, S; Mathew, Shibu K; Venkatakrishnan, P

    2015-01-01

    A Deformable Mirror (DM) is an important component of an Adaptive Optics system. It is known that an on-axis spherical/parabolic optical component, placed at an angle to the incident beam introduces defocus as well as astigmatism in the image plane. Although the former can be compensated by changing the focal plane position, the latter cannot be removed by mere optical re-alignment. Since the DM is to be used to compensate a turbulence-induced curvature term in addition to other aberrations, it is necessary to determine the aberrations induced by such (curved DM surface) an optical element when placed at an angle (other than 0 degree) of incidence in the optical path. To this effect, we estimate to a first order, the aberrations introduced by a DM as a function of the incidence angle and deformation of the DM surface. We record images using a simple setup in which the incident beam is reflected by a 37 channel Micro-machined Membrane Deformable Mirror for various angles of incidence. It is observed that astig...

  11. Development and Validation of a Multipoint Based Laser Alignment System for CLIC

    CERN Document Server

    Stern, G; Lackner, F; Mainaud-Durand, H; Piedigrossi, D; Sandomierski, J; Sosin, M; Geiger, A; Guillaume, S

    2013-01-01

    Alignment is one of the major challenges within CLIC study, since all accelerator components have to be aligned with accuracy up to 10 μm over sliding windows of 200 m. So far, the straight line reference concept has been based on stretched wires coupled with Wire Positioning Sensors. This concept should be validated through inter-comparison with an alternative solution. This paper proposes an alternative concept where laser beam acts as straight line reference and optical shutters coupled with cameras visualise the beam. The principle was first validated by a series of tests using low-cost components. Yet, in order to further decrease measurement uncertainty in this validation step, a high-precision automatised micrometric table and reference targets have been added to the setup. The paper presents the results obtained with this new equipment, in terms of measurement precision. In addition, the paper gives an overview of first tests done at long distance (up to 53 m), having emphasis on beam divergence

  12. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators

    International Nuclear Information System (INIS)

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators

  13. Developmental long trace profiler using optimally aligned mirror based pentaprism

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Samuel K; Morrison, Gregory Y; Yashchuk, Valeriy V; Gubarev, Mikhail V; Geckeler, Ralf D.; Buchheim, Jana; Siewert, Frank; Zeschke, Thomas

    2010-12-20

    A low-budget surface slope measuring instrument, the Developmental Long Trace Profiler (DLTP), was recently brought into operation at the Advanced Light Source Optical Metrology Laboratory. The instrument is based on a precisely calibrated autocollimator and a movable pentaprism. The capability of the DLTP to achieve sub-microradian surface slope metrology has been verified via cross-comparison measurements with other high-performance slope measuring instruments when measuring the same high-quality test optics. In the present work, a further improvement of the DLTP is achieved by replacing the existing bulk pentaprism with a specially designed mirror based pentaprism. A mirror based pentaprism offers the possibility to eliminate systematic errors introduced by inhomogeneity of the optical material and fabrication imperfections of a bulk pentaprism. We provide the details of the mirror based pentaprism design and describe an original experimental procedure for precision mutual alignment of the mirrors. The algorithm of the alignment procedure and its efficiency are verified with rigorous ray tracing simulations. Results of measurements of a spherically curved test mirror and a flat test mirror using the original bulk pentaprism are compared with measurements using the new mirror based pentaprism, demonstrating the improved performance.

  14. Developmental long trace profiler using optimally aligned mirror based pentaprism

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Samuel K; Morrison, Gregory Y.; Yashchuk, Valeriy V.; Gubarev, Mikhail V.; Geckeler, Ralf D.; Buchheim, Jana; Siewert, Frank; Zeschke, Thomas

    2010-07-21

    A low-budget surface slope measuring instrument, the Developmental Long Trace Profiler (DLTP), was recently brought into operation at the Advanced Light Source Optical Metrology Laboratory [Nucl. Instr. and Meth. A 616, 212-223 (2010)]. The instrument is based on a precisely calibrated autocollimator and a movable pentaprism. The capability of the DLTP to achieve sub-microradian surface slope metrology has been verified via cross-comparison measurements with other high-performance slope measuring instruments when measuring the same high-quality test optics. In the present work, a further improvement of the DLTP is achieved by replacing the existing bulk pentaprism with a specially designed mirror based pentaprism. A mirror based pentaprism offers the possibility to eliminate systematic errors introduced by inhomogeneity of the optical material and fabrication imperfections of a bulk pentaprism. We provide the details of the mirror based pentaprism design and describe an original experimental procedure for precision mutual alignment of the mirrors. The algorithm of the alignment procedure and its efficiency are verified with rigorous ray tracing simulations. Results of measurements of a spherically curved test mirror and a flat test mirror using the original bulk pentaprism are compared with measurements using the new mirror based pentaprism, demonstrating the improved performance.

  15. Developmental long trace profiler using optimally aligned mirror based pentaprism

    International Nuclear Information System (INIS)

    A low-budget surface slope measuring instrument, the Developmental Long Trace Profiler (DLTP), was recently brought into operation at the Advanced Light Source Optical Metrology Laboratory (Nucl. Instr. and Meth. A 616, 212-223 (2010)). The instrument is based on a precisely calibrated autocollimator and a movable pentaprism. The capability of the DLTP to achieve sub-microradian surface slope metrology has been verified via cross-comparison measurements with other high-performance slope measuring instruments when measuring the same high-quality test optics. In the present work, a further improvement of the DLTP is achieved by replacing the existing bulk pentaprism with a specially designed mirror based pentaprism. A mirror based pentaprism offers the possibility to eliminate systematic errors introduced by inhomogeneity of the optical material and fabrication imperfections of a bulk pentaprism. We provide the details of the mirror based pentaprism design and describe an original experimental procedure for precision mutual alignment of the mirrors. The algorithm of the alignment procedure and its efficiency are verified with rigorous ray tracing simulations. Results of measurements of a spherically curved test mirror and a flat test mirror using the original bulk pentaprism are compared with measurements using the new mirror based pentaprism, demonstrating the improved performance.

  16. Structure based alignment and clustering of proteins (STRALCP)

    Science.gov (United States)

    Zemla, Adam T.; Zhou, Carol E.; Smith, Jason R.; Lam, Marisa W.

    2013-06-18

    Disclosed are computational methods of clustering a set of protein structures based on local and pair-wise global similarity values. Pair-wise local and global similarity values are generated based on pair-wise structural alignments for each protein in the set of protein structures. Initially, the protein structures are clustered based on pair-wise local similarity values. The protein structures are then clustered based on pair-wise global similarity values. For each given cluster both a representative structure and spans of conserved residues are identified. The representative protein structure is used to assign newly-solved protein structures to a group. The spans are used to characterize conservation and assign a "structural footprint" to the cluster.

  17. Multi-Beam Approach for Accelerating Alignment and Calibration of HyspIRI-Like Imaging Spectrometers

    Science.gov (United States)

    Eastwood, Michael L.; Green, Robert O.; Mouroulis, Pantazis; Hochberg, Eric B.; Hein, Randall C.; Kroll, Linley A.; Geier, Sven; Coles, James B.; Meehan, Riley

    2012-01-01

    A paper describes an optical stimulus that produces more consistent results, and can be automated for unattended, routine generation of data analysis products needed by the integration and testing team assembling a high-fidelity imaging spectrometer system. One key attribute of the system is an arrangement of pick-off mirrors that provides multiple input beams (five in this implementation) to simultaneously provide stimulus light to several field angles along the field of view of the sensor under test, allowing one data set to contain all the information that previously required five data sets to be separately collected. This stimulus can also be fed by quickly reconfigured sources that ultimately provide three data set types that would previously be collected separately using three different setups: Spectral Response Function (SRF), Cross-track Response Function (CRF), and Along-track Response Function (ARF), respectively. This method also lends itself to expansion of the number of field points if less interpolation across the field of view is desirable. An absolute minimum of three is required at the beginning stages of imaging spectrometer alignment.

  18. Shocklets, SLAMS, and field-aligned ion beams in the terrestrial foreshock

    CERN Document Server

    Wilson, L B; Sibeck, D G; Szabo, A; Cattell, C A; Kasper, J C; Maruca, B A; Pulupa, M; Salem, C S; Wilber, M

    2012-01-01

    We present Wind spacecraft observations of ion distributions showing field-aligned beams (FABs) and large-amplitude magnetic fluctuations composed of a series of shocklets and short large-amplitude magnetic structures (SLAMS). We show that the SLAMS are acting like a local quasi-perpendicular shock reflecting ions to produce the FABs. Previous FAB observations reported the source as the quasi-perpendicular bow shock. The SLAMS exhibit a foot-like magnetic enhancement with a leading magnetosonic whistler train, consistent with previous observations. The FABs are found to have T_b ~ 80-850 eV, V_b/V_sw ~ 1-2, T_{b,perp}/T{b,para} ~ 1-10, and n_b/n_i ~ 0.2-14%. Strong ion and electron heating are observed within the series of shocklets and SLAMS increasing by factors \\geq 5 and \\geq 3, respectively. Both the core and halo electron components show strong perpendicular heating inside the feature.

  19. Neural-network-directed alignment of optical systems using the laser-beam spatial filter as an example

    Science.gov (United States)

    Decker, Arthur J.; Krasowski, Michael J.; Weiland, Kenneth E.

    1993-01-01

    This report describes an effort at NASA Lewis Research Center to use artificial neural networks to automate the alignment and control of optical measurement systems. Specifically, it addresses the use of commercially available neural network software and hardware to direct alignments of the common laser-beam-smoothing spatial filter. The report presents a general approach for designing alignment records and combining these into training sets to teach optical alignment functions to neural networks and discusses the use of these training sets to train several types of neural networks. Neural network configurations used include the adaptive resonance network, the back-propagation-trained network, and the counter-propagation network. This work shows that neural networks can be used to produce robust sequencers. These sequencers can learn by example to execute the step-by-step procedures of optical alignment and also can learn adaptively to correct for environmentally induced misalignment. The long-range objective is to use neural networks to automate the alignment and operation of optical measurement systems in remote, harsh, or dangerous aerospace environments. This work also shows that when neural networks are trained by a human operator, training sets should be recorded, training should be executed, and testing should be done in a manner that does not depend on intellectual judgments of the human operator.

  20. Moving State Marine SINS Initial Alignment Based on High Degree CKF

    Directory of Open Access Journals (Sweden)

    Yong-Gang Zhang

    2014-01-01

    Full Text Available A new moving state marine initial alignment method of strap-down inertial navigation system (SINS is proposed based on high-degree cubature Kalman filter (CKF, which can capture higher order Taylor expansion terms of nonlinear alignment model than the existing third-degree CKF, unscented Kalman filter and central difference Kalman filter, and improve the accuracy of initial alignment under large heading misalignment angle condition. Simulation results show the efficiency and advantage of the proposed initial alignment method as compared with existing initial alignment methods for the moving state SINS initial alignment with large heading misalignment angle.

  1. Vertically Aligned Carbon Nanofiber based Biosensor Platform for Glucose Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Al Mamun, Khandaker A.; Tulip, Fahmida S.; MacArthur, Kimberly; McFarlane, Nicole; Islam, Syed K.; Hensley, Dale

    2014-03-01

    Vertically aligned carbon nanofibers (VACNFs) have recently become an important tool for biosensor design. Carbon nanofibers (CNF) have excellent conductive and structural properties with many irregularities and defect sites in addition to exposed carboxyl groups throughout their surfaces. These properties allow a better immobilization matrix compared to carbon nanotubes and offer better resolution when compared with the FET-based biosensors. VACNFs can be deterministically grown on silicon substrates allowing optimization of the structures for various biosensor applications. Two VACNF electrode architectures have been employed in this study and a comparison of their performances has been made in terms of sensitivity, sensing limitations, dynamic range, and response time. The usage of VACNF platform as a glucose sensor has been verified in this study by selecting an optimum architecture based on the VACNF forest density. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129156414500062

  2. Operational Experience with Beam Alignment and Monitoring Using Non-Destructive Beam Position Monitors in the Cyclotron Beamlines at iThemba LABS

    CERN Document Server

    Conradie, J L; Delsink, J L G; Fourie, D T; Kormany, Z; Mansfield, P T; Rohwer, P F; Sakildien, M

    2005-01-01

    At iThemba LABS proton beams, accelerated in a K=200 separated-sector cyclotron with a K=8 solid-pole injector cyclotron, are utilized for the production of radioisotopes and particle radiotherapy. Beams of heavy ions and polarized protons, pre-accelerated in a second injector cyclotron, are available for nuclear physics research. Beam position monitors have been developed for non-destructive alignment and continuous display of the beam position in the beam lines for the more intense beams used for therapy and the production of radioisotopes in cooperation* with Forschungszentrum Jülich. The monitors consist of four-section strip lines. Narrow-band super-heterodyne RF electronic equipment with automatic frequency and gain control measures the signals at the selected harmonic. A control module sequentially processes the signals and delivers calculated horizontal and vertical beam position data via a serial network to the computer control system. Eleven monitors have been installed in the transfer beam line be...

  3. In vivo pink-beam imaging and fast alignment procedure for rat brain lesion microbeam radiation therapy

    International Nuclear Information System (INIS)

    A fast 50 µm-accuracy alignment procedure has been developed for the radiosurgery of brain lesions in rats, using microbeam radiation therapy. A fast 50 µm-accuracy alignment procedure has been developed for the radiosurgery of brain lesions in rats, using microbeam radiation therapy. In vivo imaging was performed using the pink beam (35–60 keV) produced by the ID17 wiggler at the ESRF opened at 120 mm and filtered. A graphical user interface has been developed in order to define the irradiation field size and to position the target with respect to the skull structures observed in X-ray images. The method proposed here allows tremendous time saving by skipping the swap from white beam to monochromatic beam and vice versa. To validate the concept, the somatosensory cortex or thalamus of GAERS rats were irradiated under several ports using this alignment procedure. The magnetic resonance images acquired after contrast agent injection showed that the irradiations were selectively performed in these two expected brain regions. Image-guided microbeam irradiations have therefore been realised for the first time ever, and, thanks to this new development, the ID17 biomedical beamline provides a major tool allowing brain radiosurgery trials on animal patients

  4. Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner

    DEFF Research Database (Denmark)

    Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan;

    2009-01-01

    heuristics. RESULTS: We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect...

  5. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lund, Ole

    2009-01-01

    this binding event. RESULTS: Here, we present a novel artificial neural network-based method, NN-align that allows for simultaneous identification of the MHC class II binding core and binding affinity. NN-align is trained using a novel training algorithm that allows for correction of bias in the...... training data due to redundant binding core representation. Incorporation of information about the residues flanking the peptide-binding core is shown to significantly improve the prediction accuracy. The method is evaluated on a large-scale benchmark consisting of six independent data sets covering 14...

  6. Space Alignment Based on Regularized Inversion Precoding in Cognitive Transmission

    Directory of Open Access Journals (Sweden)

    R. Yao

    2015-09-01

    Full Text Available For a two-tier Multiple-Input Multiple-Output (MIMO cognitive network with common receiver, the precoding matrix has a compact relationship with the capacity performance in the unlicensed secondary system. To increase the capacity of secondary system, an improved precoder based on the idea of regularized inversion for secondary transmitter is proposed. An iterative space alignment algorithm is also presented to ensure the Quality of Service (QoS for primary system. The simulations reveal that, on the premise of achieving QoS for primary system, our proposed algorithm can get larger capacity in secondary system at low Signal-to-Noise Ratio (SNR, which proves the effectiveness of the algorithm.

  7. Similarity Measurement of Web Sessions Based on Sequence Alignment

    Institute of Scientific and Technical Information of China (English)

    LI Chaofeng; LU Yansheng

    2007-01-01

    The task of clustering Web sessions is to group Web sessions based on similarity and consists of maximizing the intra-group similarity while minimizing the inter-group similarity.The first and foremost question needed to be considered in clustering Web sessions is how to measure the similarity between Web sessions. However, there are many shortcomings in traditional measurements. This paper introduces a new method for measuring similarities between Web pages that takes into account not only the URL but also the viewing time of the visited Web page. Then we give a new method to measure the similarity of Web sessions using sequence alignment and the similarity of Web page access in detail.Experiments have proved that our method is valid and efficient.

  8. Scanning wire beam position monitor for alignment of a high brightness inverse-Compton x-ray source

    CERN Document Server

    Hadmack, Michael R

    2013-01-01

    The Free-Electron Laser Laboratory at the University of Hawai`i has constructed and tested a scanning wire beam position monitor to aid the alignment and optimization of a high spectral brightness inverse-Compton scattering x-ray source. X-rays are produced by colliding the 40 MeV electron beam from a pulsed S-band linac with infrared laser pulses from a mode-locked free-electron laser driven by the same electron beam. The electron and laser beams are focused to 60 {\\mu}m diameters at the interaction point to achieve high scattering efficiency. This wire-scanner allows for high resolution measurements of the size and position of both the laser and electron beams at the interaction point to verify spatial coincidence. Time resolved measurements of secondary emission current allow us to monitor the transverse spatial evolution of the e-beam throughout the duration of a 4 {\\mu}s macro-pulse while the laser is simultaneously profiled by pyrometer measurement of the occulted infrared beam. Using this apparatus we ...

  9. A LabVIEW based user-friendly nano-CT image alignment and 3D reconstruction platform

    CERN Document Server

    Wang, Shenghao; Wang, Zhili; Gao, Kun; Wu, Zhao; Zhu, Peiping; Wu, Ziyu

    2014-01-01

    X-ray nanometer computed tomography (nano-CT) offers applications and opportunities in many scientific researches and industrial areas. Here we present a user-friendly and fast LabVIEW based package running, after acquisition of the raw projection images, a procedure to obtain the inner structure of the sample under analysis. At first, a reliable image alignment procedure fixes possible misalignments among image series due to mechanical errors, thermal expansion and other external contributions, then a novel fast parallel beam 3D reconstruction performs the tomographic reconstruction. The remarkable improved reconstruction after the image calibration confirms the fundamental role of the image alignment procedure. It minimizes blurring and additional streaking artifacts present in a reconstructed slice that cause loss of information and faked structures in the observed material. The nano-CT image alignment and 3D reconstruction LabVIEW package significantly reducing the data process, makes faster and easier th...

  10. A fast and accurate initial alignment method for strapdown inertial navigation system on stationary base

    Institute of Scientific and Technical Information of China (English)

    Xinlong WANG; Gongxun SHEN

    2005-01-01

    In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed.It has been demonstrated that the stationary alignment of SINS can be improved by employing the multiposition technique,but the alignment time of the azimuth error is relatively longer.Over here,the two-position alignment principle is presented.On the basis of this SINS error model,a fast estimation algorithm of the azimuth error for the initial alignment of SINS on stationary base is derived fully from the horizontal velocity outputs and the output rates,and the novel azimuth error estimation algorithm is used for the two-position alignment.Consequently,the speed and accuracy of the SINS's initial alignment is enhanced greatly.The computer simulation results illustrate the efficiency of this alignment method.

  11. A rank-based sequence aligner with applications in phylogenetic analysis.

    Directory of Open Access Journals (Sweden)

    Liviu P Dinu

    Full Text Available Recent tools for aligning short DNA reads have been designed to optimize the trade-off between correctness and speed. This paper introduces a method for assigning a set of short DNA reads to a reference genome, under Local Rank Distance (LRD. The rank-based aligner proposed in this work aims to improve correctness over speed. However, some indexing strategies to speed up the aligner are also investigated. The LRD aligner is improved in terms of speed by storing [Formula: see text]-mer positions in a hash table for each read. Another improvement, that produces an approximate LRD aligner, is to consider only the positions in the reference that are likely to represent a good positional match of the read. The proposed aligner is evaluated and compared to other state of the art alignment tools in several experiments. A set of experiments are conducted to determine the precision and the recall of the proposed aligner, in the presence of contaminated reads. In another set of experiments, the proposed aligner is used to find the order, the family, or the species of a new (or unknown organism, given only a set of short Next-Generation Sequencing DNA reads. The empirical results show that the aligner proposed in this work is highly accurate from a biological point of view. Compared to the other evaluated tools, the LRD aligner has the important advantage of being very accurate even for a very low base coverage. Thus, the LRD aligner can be considered as a good alternative to standard alignment tools, especially when the accuracy of the aligner is of high importance. Source code and UNIX binaries of the aligner are freely available for future development and use at http://lrd.herokuapp.com/aligners. The software is implemented in C++ and Java, being supported on UNIX and MS Windows.

  12. Nova laser alignment control system

    International Nuclear Information System (INIS)

    Alignment of the Nova laser requires control of hundreds of optical components in the ten beam paths. Extensive application of computer technology makes daily alignment practical. The control system is designed in a manner which provides both centralized and local manual operator controls integrated with automatic closed loop alignment. Menudriven operator consoles using high resolution color graphics displays overlaid with transport touch panels allow laser personnel to interact efficiently with the computer system. Automatic alignment is accomplished by using image analysis techniques to determine beam references points from video images acquired along the laser chain. A major goal of the design is to contribute substantially to rapid experimental turnaround and consistent alignment results. This paper describes the computer-based control structure and the software methods developed for aligning this large laser system

  13. The CMS Muon System Alignment

    CERN Document Server

    Martinez Ruiz-Del-Arbol, P

    2009-01-01

    The alignment of the muon system of CMS is performed using different techniques: photogrammetry measurements, optical alignment and alignment with tracks. For track-based alignment, several methods are employed, ranging from a hit and impact point (HIP) algorithm and a procedure exploiting chamber overlaps to a global fit method based on the Millepede approach. For start-up alignment as long as available integrated luminosity is still significantly limiting the size of the muon sample from collisions, cosmic muon and beam halo signatures play a very strong role. During the last commissioning runs in 2008 the first aligned geometries have been produced and validated with data. The CMS offline computing infrastructure has been used in order to perform improved reconstructions. We present the computational aspects related to the calculation of alignment constants at the CERN Analysis Facility (CAF), the production and population of databases and the validation and performance in the official reconstruction. Also...

  14. Error Analysis and Compensation of Gyrocompass Alignment for SINS on Moving Base

    Directory of Open Access Journals (Sweden)

    Bo Xu

    2014-01-01

    Full Text Available An improved method of gyrocompass alignment for strap-down inertial navigation system (SINS on moving base assisted with Doppler velocity log (DVL is proposed in this paper. After analyzing the classical gyrocompass alignment principle on static base, implementation of compass alignment on moving base is given in detail. Furthermore, based on analysis of velocity error, latitude error, and acceleration error on moving base, two improvements are introduced to ensure alignment accuracy and speed: (1 the system parameters are redesigned to decrease the acceleration interference and (2 a data repeated calculation algorithm is used in order to shorten the prolonged alignment time caused by changes in parameters. Simulation and test results indicate that the improved method can realize the alignment on moving base quickly and effectively.

  15. Individual information beam broadcasting system using a PAL-SLM based CGH beam former for the location based information services

    Science.gov (United States)

    Osawa, Shunichi; Itoh, Hideo; Nakamura, Yoshiyuki; Nishimura, Takuichi; Lin, Xin; Tokuda, Masamitsu

    2006-01-01

    As an implementation of ubiquitous information service environments, we have been researching location-based information service systems at indoor and short distance area. The system should provide adequate information services, which fit the user's attributes, such as language, knowledge level and the volume of information, what is so-called "Right now, Here, and for Me" information services. Keeping privacy and security of the user is an important issue. Spatial optical communication technique is used for the system because the technique is easy to implement a location- and direction-based communication system. Information broadcasting in an area can be realized by an omnidirectional modulated light emission. However, the omnidirectional beam causes spill out of secure information to others, and has lower energy conservation than a focused beam communication. In this paper, a new spatial optical information broadcasting system, which can focus modulated beams only to intended users. CGH (Computer Generated Hologram) technique on a SLM (Spatial Light Modulator) is proposed and demonstrated. The system is composed of a PAL-SLM (Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator), an eye-safe semiconductor laser or a semiconductor laser pumped YAG laser for the beam emitter, and an infrared video camera with an infrared LED illuminator for user locator. Experimental results of beam deflecting characteristics are described on beam uniformity, deflecting angle and the enhancement, communication characteristics, and real time tracking of user with a corner-reflecting sheet.

  16. Propagation and stability characteristics of a 500-m-long-distance laser-based fiducial line for high-precision laser-based alignment at the KEKB injector linac

    International Nuclear Information System (INIS)

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators. (author)

  17. Aligning and tracking a beam steerable millimeter-wave radio link

    OpenAIRE

    Leinonen, Tuomas

    2015-01-01

    In order to provide high-throughput mobile broadband in a dense urban information society, upcoming cellular networks will finally employ the under-utilized millimeter-wave (mmW) frequencies. The challenging mmW radio environment, however, necessitates massive cell densification with wireless backhauling using very directional links. This thesis investigates how these links between access points may be aligned efficiently, and how alignment reflects the network organization. The work prov...

  18. Codebook-based interference alignment for uplink MIMO interference channels

    KAUST Repository

    Lee, Hyun Ho

    2014-02-01

    In this paper, we propose a codebook-based interference alignment (IA) scheme in the constant multiple-input multipleoutput (MIMO) interference channel especially for the uplink scenario. In our proposed scheme, we assume cooperation among base stations (BSs) through reliable backhaul links so that global channel knowledge is available for all BSs, which enables BS to compute the transmit precoder and inform its quantized index to the associated user via limited rate feedback link.We present an upper bound on the rate loss of the proposed scheme and derive the scaling law of the feedback load tomaintain a constant rate loss relative to IA with perfect channel knowledge. Considering the impact of overhead due to training, cooperation, and feedback, we address the effective degrees of freedom (DOF) of the proposed scheme and derive the maximization of the effective DOF. From simulation results, we verify our analysis on the scaling law to preserve the multiplexing gain and confirm that the proposed scheme is more effective than the conventional IA scheme in terms of the effective DOF. © 2014 KICS.

  19. Progressive structure-based alignment of homologous proteins: Adopting sequence comparison strategies.

    Science.gov (United States)

    Joseph, Agnel Praveen; Srinivasan, Narayanaswamy; de Brevern, Alexandre G

    2012-09-01

    Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a 1D sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods. PMID:22676903

  20. GaAs-based self-aligned stripe superluminescent diodes processed normal to the cleaved facet

    Science.gov (United States)

    Ghazal, O. M. S.; Lei, D.; Childs, D. T.; Stevens, B. J.; Babazadeh, N.; Hogg, R. A.; Groom, K. M.

    2016-03-01

    We demonstrate GaAs-based superluminescent diodes (SLDs) incorporating a window-like back facet in a self-aligned stripe. SLDs are realised with low spectral modulation depth (SMD) at high power spectral density, without application of anti-reflection coatings. Such application of a window-like facet reduces effective facet reflectivity in a broadband manner. We demonstrate 30mW output power in a narrow bandwidth with only 5% SMD, outline the design criteria for high power and low SMD, and describe the deviation from a linear dependence of SMD on output power as a result of Joule heating in SLDs under continuous wave current injection. Furthermore, SLDs processed normal to the facet demonstrate output powers as high as 20mW, offering improvements in beam quality, ease of packaging and use of real estate.

  1. Optical alignment and characterization of the radial neutron beam duct number 4 of de RP-10 nuclear reactor

    International Nuclear Information System (INIS)

    We show the process of optical axis alignment of the neutrography device and the optical axis of the neutron beam from the radial duct number 4 of the RP-10 Nuclear Reactor, using optical methods, assisted by radiography, which facilitates the location of the optical axis of the neutron beam by the photographic recording of the space, allowing the alignment of the neutrography plate later. In the process, the location and orientation of the source depends on the placement of the fuel elements immersed inside the duct and between the core and the collimator in the Nuclear Reactor wall. This part of the process depends on the reactor operating personnel who calculate optimally the fuel burn and perform the analysis of the spatial distribution of radiation. The power measurement and the final adjustment of the optical axis of the neutron beam with the optical axis of the instrument are shown in this paper, which will make possible neutrography experiments, as well as neutron diffraction, neutron spectroscopy and neutron optics among others. (orig.)

  2. The SPL-based Neutrino Super Beam

    CERN Document Server

    Baussan, E; Bobeth, C; Bouquerel, E; Caretta, O; Cupial, P; Davenne, T; Densham, C; Dracos, M; Fitton, M; Gaudiot, G; Kozien, M; Lacny, L; Lepers, B; Longhin, A; Loveridge, P; Osswald, F; Poussot, P; Rooney, M; Skoczen, B; Szybinski, B; Ustrzycka, A; Vassilopoulos, N; Wilcox, D; Wroblewski, A; Wurtz, J; Zeter, V; Zito, M

    2012-01-01

    The EUROnu Super Beam work package has studied a neutrino beam based on SPL at CERN and aimed at MEMPHYS, a large water Cherenkov detector, proposed for the Laboratoire Souterrain de Modane (Fr\\'ejus tunnel, France), with a baseline of 130 km. The aim of this proposed experiment is to study the CP violation in the neutrino sector. In the study reported here, we have developed the conceptual design of the neutrino beam, especially the target and the magnetic focusing device. Indeed, this beam present several unprecedented challenges, like the high primary proton beam power (4 MW), the high repetition rate (50 Hz) and the low energy of the protons (4.5 GeV). The design is completed by a study of all the main component of the system, starting from the transport system to guide the beam to the target up to the beam dump.

  3. L-GRAAL: Lagrangian graphlet-based network aligner

    OpenAIRE

    Malod-Dognin, Noël; Pržulj, Nataša

    2015-01-01

    Motivation: Discovering and understanding patterns in networks of protein–protein interactions (PPIs) is a central problem in systems biology. Alignments between these networks aid functional understanding as they uncover important information, such as evolutionary conserved pathways, protein complexes and functional orthologs. A few methods have been proposed for global PPI network alignments, but because of NP-completeness of underlying sub-graph isomorphism problem, producing topologically...

  4. Vertical alignment of liquid crystal through ion beam exposure on oxygen-doped SiC films deposited at room temperature

    International Nuclear Information System (INIS)

    The authors report the vertical alignment of liquid crystal (LC) through the ion beam exposure on amorphous oxygen-doped SiC (SiOC) film surfaces deposited at room temperature. The optical transmittance of these films was similar to that of polyimide layers, but much higher than that of SiOx films. The light leakage of a LC cell aligned vertically on SiOC films was much lower than those of a LC cell aligned on polyimide layers or other inorganic films. They found that LC molecules align vertically on ion beam treated SiOC film when the roughness of the electrostatic force microscopy (EFM) data is high on the SiOC film surface, while they align homogeneously when the roughness of the EFM data is low

  5. Energy band alignment of atomic layer deposited HfO2 on epitaxial (110)Ge grown by molecular beam epitaxy

    OpenAIRE

    Hudait, Mantu K.; Zhu, Y.; Maurya, Deepam; Priya, Shashank

    2013-01-01

    The band alignment properties of atomic layer HfO2 film deposited on epitaxial (110)Ge, grown by molecular beam epitaxy, was investigated using x-ray photoelectron spectroscopy. The cross-sectional transmission electron microscopy exhibited a sharp interface between the (110)Ge epilayer and the HfO2 film. The measured valence band offset value of HfO2 relative to (110)Ge was 2.28 +/- 0.05 eV. The extracted conduction band offset value was 2.66 +/- 0.1 eV using the bandgaps of HfO2 of 5.61 eV ...

  6. A Novel Approach to Multiple Sequence Alignment Using Multiobjective Evolutionary Algorithm Based on Decomposition.

    Science.gov (United States)

    Zhu, Huazheng; He, Zhongshi; Jia, Yuanyuan

    2016-03-01

    Multiple sequence alignment (MSA) is a fundamental and key step for implementing other tasks in bioinformatics, such as phylogenetic analyses, identification of conserved motifs and domains, structure prediction, etc. Despite the fact that there are many methods to implement MSA, biologically perfect alignment approaches are not found hitherto. This paper proposes a novel idea to perform MSA, where MSA is treated as a multiobjective optimization problem. A famous multiobjective evolutionary algorithm framework based on decomposition is applied for solving MSA, named MOMSA. In the MOMSA algorithm, we develop a new population initialization method and a novel mutation operator. We compare the performance of MOMSA with several alignment methods based on evolutionary algorithms, including VDGA, GAPAM, and IMSA, and also with state-of-the-art progressive alignment approaches, such as MSAprobs, Probalign, MAFFT, Procons, Clustal omega, T-Coffee, Kalign2, MUSCLE, FSA, Dialign, PRANK, and CLUSTALW. These alignment algorithms are tested on benchmark datasets BAliBASE 2.0 and BAliBASE 3.0. Experimental results show that MOMSA can obtain the significantly better alignments than VDGA, GAPAM on the most of test cases by statistical analyses, produce better alignments than IMSA in terms of TC scores, and also indicate that MOMSA is comparable with the leading progressive alignment approaches in terms of quality of alignments. PMID:25700475

  7. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction

    Directory of Open Access Journals (Sweden)

    Lund Ole

    2009-09-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC molecule plays a central role in controlling the adaptive immune response to infections. MHC class I molecules present peptides derived from intracellular proteins to cytotoxic T cells, whereas MHC class II molecules stimulate cellular and humoral immunity through presentation of extracellularly derived peptides to helper T cells. Identification of which peptides will bind a given MHC molecule is thus of great importance for the understanding of host-pathogen interactions, and large efforts have been placed in developing algorithms capable of predicting this binding event. Results Here, we present a novel artificial neural network-based method, NN-align that allows for simultaneous identification of the MHC class II binding core and binding affinity. NN-align is trained using a novel training algorithm that allows for correction of bias in the training data due to redundant binding core representation. Incorporation of information about the residues flanking the peptide-binding core is shown to significantly improve the prediction accuracy. The method is evaluated on a large-scale benchmark consisting of six independent data sets covering 14 human MHC class II alleles, and is demonstrated to outperform other state-of-the-art MHC class II prediction methods. Conclusion The NN-align method is competitive with the state-of-the-art MHC class II peptide binding prediction algorithms. The method is publicly available at http://www.cbs.dtu.dk/services/NetMHCII-2.0.

  8. Beam shaping for laser-based adaptive optics in astronomy

    CERN Document Server

    Béchet, Clémentine; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-01-01

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques...

  9. Characterization of Laser Beam Shaping Optics Based on Their Ablation Geometry of Thin Films

    OpenAIRE

    Stefan Rung; Johannes Barth; Ralf Hellmann

    2014-01-01

    Thin film ablation with pulsed nanosecond lasers can benefit from the use of beam shaping optics to transform the Gaussian beam profile with a circular footprint into a Top-Hat beam profile with a rectangular footprint. In general, the quality of the transformed beam profile depends strongly on the beam alignment of the entire laser system. In particular, the adjustment of the beam shaping element is of upmost importance. For an appropriate alignment of the beam shaper, it is generally necess...

  10. A Vondrak Low Pass Filter for IMU Sensor Initial Alignment on a Disturbed Base

    Directory of Open Access Journals (Sweden)

    Zengke Li

    2014-12-01

    Full Text Available The initial alignment of the Inertial Measurement Unit (IMU is an important process of INS to determine the coordinate transformation matrix which is used in the integration of Global Positioning Systems (GPS with Inertial Navigation Systems (INS. In this paper a novel alignment method for a disturbed base, such as a vehicle disturbed by wind outdoors, implemented with the aid of a Vondrak low pass filter, is proposed. The basic principle of initial alignment including coarse alignment and fine alignment is introduced first. The spectral analysis is processed to compare the differences between the characteristic error of INS force observation on a stationary base and on disturbed bases. In order to reduce the high frequency noise in the force observation more accurately and more easily, a Vondrak low pass filter is constructed based on the spectral analysis result. The genetic algorithms method is introduced to choose the smoothing factor in the Vondrak filter and the corresponding objective condition is built. The architecture of the proposed alignment method with the Vondrak low pass filter is shown. Furthermore, simulated experiments and actual experiments were performed to validate the new algorithm. The results indicate that, compared with the conventional alignment method, the Vondrak filter could eliminate the high frequency noise in the force observation and the proposed alignment method could improve the attitude accuracy. At the same time, only one parameter needs to be set, which makes the proposed method easier to implement than other low-pass filter methods.

  11. Base-By-Base: Single nucleotide-level analysis of whole viral genome alignments

    Directory of Open Access Journals (Sweden)

    Tcherepanov Vasily

    2004-07-01

    Full Text Available Abstract Background With ever increasing numbers of closely related virus genomes being sequenced, it has become desirable to be able to compare two genomes at a level more detailed than gene content because two strains of an organism may share the same set of predicted genes but still differ in their pathogenicity profiles. For example, detailed comparison of multiple isolates of the smallpox virus genome (each approximately 200 kb, with 200 genes is not feasible without new bioinformatics tools. Results A software package, Base-By-Base, has been developed that provides visualization tools to enable researchers to 1 rapidly identify and correct alignment errors in large, multiple genome alignments; and 2 generate tabular and graphical output of differences between the genomes at the nucleotide level. Base-By-Base uses detailed annotation information about the aligned genomes and can list each predicted gene with nucleotide differences, display whether variations occur within promoter regions or coding regions and whether these changes result in amino acid substitutions. Base-By-Base can connect to our mySQL database (Virus Orthologous Clusters; VOCs to retrieve detailed annotation information about the aligned genomes or use information from text files. Conclusion Base-By-Base enables users to quickly and easily compare large viral genomes; it highlights small differences that may be responsible for important phenotypic differences such as virulence. It is available via the Internet using Java Web Start and runs on Macintosh, PC and Linux operating systems with the Java 1.4 virtual machine.

  12. Effect of upflowing field-aligned electron beams on the electron cyclotron waves in the auroral magnetosphere

    Indian Academy of Sciences (India)

    Sushil Kumar; S K Singh; A K Gwal

    2007-04-01

    The role of low density upflowing field-aligned electron beams (FEBs) on the growth rate of the electron cyclotron waves at the frequencies r < ­e, propagating downward in the direction of the Earth's magnetic field, has been analysed in the auroral region at e/e < 1 where e is the plasma frequency and ­e is the gyrofrequency. The FEBs with low to high energy (b) but with low temperature (∥b) have no effect on these waves. The FEBs with b < 1 keV and ∥b (> 1.5 keV) have been found to have significant effect on the growth rate. Analysis has revealed that it is mainly the ∥b which inhibits the growth rate (magnitude) and the range of frequency (bandwidth) of the instability mainly in the higher frequency spectrum. The inhibition in the growth rate and bandwidth increases with increase in ∥b. The FEBs with less b (giving drift velocity) reduce growth rate more than the beams with larger b. The inhibition of growth rate increases with the increase in the ratio e/e indicating that the beams are more effective at higher altitudes.

  13. An Investigation of the Sampling-Based Alignment Method and its Contributions

    Directory of Open Access Journals (Sweden)

    Juan Luo

    2013-07-01

    Full Text Available By investigating the distribution of phrase pairs in phrase translation tables, the work in this paperdescribes an approach to increase the number of n-gram alignments in phrase translation tables outputbya sampling-based alignment method. This approach consists in enforcing the alignment of n-grams indistinct translation subtables so as to increase the number of n-grams. Standard normal distribution is usedto allot alignment time among translation subtables, which results in adjustment of the distribution of n-grams. This leads to better evaluation results on statistical machine translation tasks than the originalsampling-based alignment approach. Furthermore, thetranslation quality obtained by merging phrasetranslation tables computed from the sampling-basedalignment method and from MGIZA++ is examined

  14. Principles of alignment of multi-beam lasers for thermonuclear purposes

    International Nuclear Information System (INIS)

    The problems of methods and equipment for power pulse laser adjustment, as well as the problem of adjustment automatization are considered. The adjustment of a power 12-channel ''Dolphin'' laser installation on the neodymium glass is taken as a concrete object. The adjustment objects are optical track of laser installation, guidance and laser radiation focusing system on the target, the system of target delivery to the focal volume, control system of element optical quality of laser installation and laser beams, as well as target radiation conditions in vacuum chamber. List of requirements of adjustment beams, possible sources of adjustment beams, equipment complex and laser installation adjustment methods are considered. The principles and scheme solutions of automatic adjustment of optical elements are discussed and the description of working samples of automatic joints is given. The problem of working laser beams imitation by adjusting and the possibilities of automatization of laser radiation space-angle characteristics control are considered. The control scheme of adjustment processes with computer as well as the switching on of adjustment automatic subsystem in the general automatization scheme of the ''Dolphin'' installation are discussed

  15. SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics

    OpenAIRE

    Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf

    2015-01-01

    Motivation: RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of O ( n 6 ) . Subsequently, numerous faster ‘Sankoff-style’ approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks...

  16. Hough Transform Based Corner Detection for Laser Beam Positioning

    International Nuclear Information System (INIS)

    In laser beam alignment in addition to detecting position, one must also determine the rotation of the beam. This is essential when a commissioning new laser beam for National Ignition Facility located at the Lawrence Livermore National Laboratory. When the beam is square, the positions of the corners with respect to one another provides an estimate of the rotation of the beam. This work demonstrates corner detection in the presence or absence of a second order non-uniform illumination caused by a spatial mask. The Hough transform coupled with illumination dependent pre-processing is used to determine the corner points. We show examples from simulated and real NIF images

  17. Hough Transform Based Corner Detection for Laser Beam Positioning

    Energy Technology Data Exchange (ETDEWEB)

    Awwal, A S

    2005-07-26

    In laser beam alignment in addition to detecting position, one must also determine the rotation of the beam. This is essential when a commissioning new laser beam for National Ignition Facility located at the Lawrence Livermore National Laboratory. When the beam is square, the positions of the corners with respect to one another provides an estimate of the rotation of the beam. This work demonstrates corner detection in the presence or absence of a second order non-uniform illumination caused by a spatial mask. The Hough transform coupled with illumination dependent pre-processing is used to determine the corner points. We show examples from simulated and real NIF images.

  18. Base-By-Base version 2: single nucleotide-level analysis of whole viral genome alignments

    Directory of Open Access Journals (Sweden)

    Hillary William

    2011-06-01

    Full Text Available Abstract Background Base-By-Base is a Java-based multiple sequence alignment editor. It is capable of working with protein and DNA molecules, but many of its unique features relate to the manipulation of the genomes of large DNA viruses such as poxviruses, herpesviruses, baculoviruses and asfarviruses (1-400 kb. The tool was built to serve as a platform for comparative genomics at the level of individual nucleotides. Results In version 2, BBB-v2, of Base-By-Base we have added a series of new features aimed at providing the bench virologist with a better platform to view, annotate and analyze these complex genomes. Although a poxvirus genome, for example, may be less than 200 kb, it probably encodes close to 200 proteins using multiple classes of promoters with frequent overlapping of promoters and coding sequences and even some overlapping of genes. The new features allow users to 1 add primer annotations or other data sets in batch mode, 2 export differences between sequences to other genome browsers, 3 compare multiple genomes at a single nucleotide level of detail, 4 create new alignments from subsets/subsequences of a very large master alignment and 5 allow display of summaries of deep RNA sequencing data sets on a genome sequence. Conclusion BBB-v2 significantly improves the ability of virologists to work with genome sequences and provides a platform with which they can use a multiple sequence alignment as the basis for their own editable documents. Also, a .bbb document, with a variety of annotations in addition to the basic coding regions, can be shared among collaborators or made available to an entire research community. The program is available via Virology.ca using Java Web Start and is platform independent; the Java 1.5 virtual machine is required.

  19. Organic electrochemical transistors based on a dielectrophoretically aligned nanowire array

    Directory of Open Access Journals (Sweden)

    Choi WooSeok

    2011-01-01

    Full Text Available Abstract In this study, we synthesized an organic electrochemical transistor (OECT using dielectrophoresis of a carbon nanotube-Nafion (CNT-Nafion suspension. Dielectrophoretically aligned nanowires formed a one-dimensional submicron bundle between triangular electrodes. The CNT-Nafion composite nanowire bundles showed p-type semiconductor characteristics. The drain-source current decreased with increasing gate voltage. The nanowire bundles showed potential as pH sensor because the drain-source current ratio varied linearly according to the gate voltage in pH buffers.

  20. hst2galign: an Automated Galaxy-based Alignment Routine

    Science.gov (United States)

    Anderson, Jay; Ogaz, Sara

    2014-10-01

    This brief document describes the procedure by which the individual images in the Frontier Fields program have been aligned in order to enable the self-calibration procedure (which will be described in a separate document). Along with this document, we will release the FORTRAN source code (hst2galign) that accomplishes the alignment. The source code is provided as-is, with no guarantee that it will work on any particular data set. However, it should work "out of the box" on datasets that are similar to the Frontier Fields. The data products introduced in this ISR are a very early attempt to provide the flt-level pixel constraints in a package that is accessible to more than the handful of experts in HST astrometry. The hope is that users in the community might begin using them and will provide feedback as to what information they might want to see in the bundles and what general analysis packages they might find useful. For that reason, this document is somewhat informally written, since I know that it will be modified and updated as the products and tools are optimized.

  1. LHCb: Experience with LHCb alignment software on first data

    CERN Multimedia

    Deissenroth, M

    2009-01-01

    We report results obtained with different track-based algorithms for the alignment of the LHCb detector with first data. The large-area Muon Detector and Outer Tracker have been aligned with a large sample of tracks from cosmic rays. The three silicon detectors --- VELO, TT-station and Inner Tracker --- have been aligned with beam-induced events from the LHC injection line. We compare the results from the track-based alignment with expectations from detector survey.

  2. A user-friendly nano-CT image alignment and 3D reconstruction platform based on LabVIEW

    Science.gov (United States)

    Wang, Sheng-Hao; Zhang, Kai; Wang, Zhi-Li; Gao, Kun; Wu, Zhao; Zhu, Pei-Ping; Wu, Zi-Yu

    2015-01-01

    X-ray computed tomography at the nanometer scale (nano-CT) offers a wide range of applications in scientific and industrial areas. Here we describe a reliable, user-friendly, and fast software package based on LabVIEW that may allow us to perform all procedures after the acquisition of raw projection images in order to obtain the inner structure of the investigated sample. A suitable image alignment process to address misalignment problems among image series due to mechanical manufacturing errors, thermal expansion, and other external factors has been considered, together with a novel fast parallel beam 3D reconstruction procedure that was developed ad hoc to perform the tomographic reconstruction. We have obtained remarkably improved reconstruction results at the Beijing Synchrotron Radiation Facility after the image calibration, the fundamental role of this image alignment procedure was confirmed, which minimizes the unwanted blurs and additional streaking artifacts that are always present in reconstructed slices. Moreover, this nano-CT image alignment and its associated 3D reconstruction procedure are fully based on LabVIEW routines, significantly reducing the data post-processing cycle, thus making the activity of the users faster and easier during experimental runs.

  3. DIALIGN-T: An improved algorithm for segment-based multiple sequence alignment

    Directory of Open Access Journals (Sweden)

    Kaufmann Michael

    2005-03-01

    Full Text Available Abstract Background We present a complete re-implementation of the segment-based approach to multiple protein alignment that contains a number of improvements compared to the previous version 2.2 of DIALIGN. This previous version is superior to Needleman-Wunsch-based multi-alignment programs on locally related sequence sets. However, it is often outperformed by these methods on data sets with global but weak similarity at the primary-sequence level. Results In the present paper, we discuss strengths and weaknesses of DIALIGN in view of the underlying objective function. Based on these results, we propose several heuristics to improve the segment-based alignment approach. For pairwise alignment, we implemented a fragment-chaining algorithm that favours chains of low-scoring local alignments over isolated high-scoring fragments. For multiple alignment, we use an improved greedy procedure that is less sensitive to spurious local sequence similarities. To evaluate our method on globally related protein families, we used the well-known database BAliBASE. For benchmarking tests on locally related sequences, we created a new reference database called IRMBASE which consists of simulated conserved motifs implanted into non-related random sequences. Conclusion On BAliBASE, our new program performs significantly better than the previous version of DIALIGN and is comparable to the standard global aligner CLUSTAL W, though it is outperformed by some newly developed programs that focus on global alignment. On the locally related test sets in IRMBASE, our method outperforms all other programs that we evaluated.

  4. Correction and alignment strategies for the beam separator of the photoemission electron microscope 3 (PEEM3)

    International Nuclear Information System (INIS)

    A high-resolution aberration-corrected photoemission electron microscope (PEEM3) will be installed on an undulator beamline at the Advanced Light Source at the Lawrence Berkeley National Laboratory. The aim of this instrument is to provide a substantial flux and resolution improvement by employing an electron mirror for correcting both the third-order spherical aberration and the primary chromatic aberration. In order to utilize this concept of correction, a beam separator is a prerequisite. Crucial to achieving a resolution of 5 nm for the high-resolution mode, and a 16-fold increase in throughput at the same resolution as its predecessor, PEEM2, specified as 20 nm at 2% transmission, for the high flux mode is the double-symmetric design of the beam separator, which eliminates all the second-order geometric aberrations. Nonetheless, substantial tuning capabilities must be incorporated into the PEEM3 design to compensate for both systematic and random errors. In this article, we investigate how to correct for nonsystematic imperfections and for systematic uncertainties in the accuracy of the magnetic fields and focus on how degradation of the resolution and the field of view can be minimized. Finally, we outline a tentative correction strategy for PEEM3

  5. Optical encoder based on a nondiffractive beam

    International Nuclear Information System (INIS)

    Optical encoders are used in industrial and laboratory motion equipment to measure rotations and linear displacements. We introduce a design of an optical encoder based on a nondiffractive beam. We expect that the invariant profile and radial symmetry of the nondiffractive beam provide the design with remarkable tolerance to mechanical perturbations. We experimentally demonstrate that the proposed design generates a suitable output sinusoidal signal with low harmonic distortion. Moreover, we present a numerical model of the system based on the angular spectrum approximation whose predictions are in excellent agreement with the experimental results

  6. Kinematic analysis and experimental verification of a eccentric wheel based precision alignment mechanism for LINAC

    International Nuclear Information System (INIS)

    Eccentric wheel based precision alignment system was designed for the remote motorized alignment of proposed proton injector LINAC (SFDTL). As a part of the further development for the alignment and monitoring scheme, a menu driven alignment system is being developed. The paper describes a general kinematic equation (with base line tilt correction) based on the various parameters of the mechanism like eccentricity, wheel diameter, distance between the wheels and the diameter of the cylindrical accelerator component. Based on this equation the extent of the alignment range for the 4 degree of freedom is evaluated and analysis on some of the parameters variation and the theoretical accuracy/resolution is computed. For the same a computer program is written which can compute the various points for the each discrete position of the two motor combinations. The paper also describes the experimentally evaluated values of these positions (for the full extent of area) and the matching/comparison of the two data. These data now can be used for the movement computation required for alignment of the four motors (two front and two rear motors of the support structure). (author)

  7. Alignment of CT images of skull dysmorphology using anatomy-based perpendicular axes

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Sun K [Department of Medical Engineering, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Yong O [Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Institute of Human Tissue Restoration, Seoul (Korea, Republic of); Kim, Hee-Joung [Department of Diagnostic Radiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Nam H [Department of Medical Engineering, Yonsei University College of Medicine, Seoul (Korea, Republic of); Jang, Young Beom [Department of Information and Telecommunication Engineering, Sangmyung University, Cheoan (Korea, Republic of); Kim, Kee-Deog [Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul (Korea, Republic of); Lee, Hye-Yeon [Department of Anatomy, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2003-08-21

    Rigid body registration of 3D CT scans, based on manual identification of homologous landmarks, is useful for the visual analysis of skull dysmorphology. In this paper, a robust and simple alignment method was proposed to allow for the comparison of skull morphologies, within and between individuals with craniofacial anomalies, based on 3D CT scans, and the minimum number of anatomical landmarks, under rigidity and uniqueness constraints. Three perpendicular axes, extracted from anatomical landmarks, define the absolute coordinate system, through a rigid body transformation, to align multiple CT images for different patients and acquisition times. The accuracy of the alignment method depends on the accuracy of the localized landmarks and target points. The numerical simulation generalizes the accuracy requirements of the alignment method. Experiments using a human dried skull specimen, and ten sets of skull CT images (the pre- and post-operative CT scans of four plagiocephaly, and one fibrous dysplasia patients), demonstrated the feasibility of the technique in clinical practice.

  8. Alignment of CT images of skull dysmorphology using anatomy-based perpendicular axes

    International Nuclear Information System (INIS)

    Rigid body registration of 3D CT scans, based on manual identification of homologous landmarks, is useful for the visual analysis of skull dysmorphology. In this paper, a robust and simple alignment method was proposed to allow for the comparison of skull morphologies, within and between individuals with craniofacial anomalies, based on 3D CT scans, and the minimum number of anatomical landmarks, under rigidity and uniqueness constraints. Three perpendicular axes, extracted from anatomical landmarks, define the absolute coordinate system, through a rigid body transformation, to align multiple CT images for different patients and acquisition times. The accuracy of the alignment method depends on the accuracy of the localized landmarks and target points. The numerical simulation generalizes the accuracy requirements of the alignment method. Experiments using a human dried skull specimen, and ten sets of skull CT images (the pre- and post-operative CT scans of four plagiocephaly, and one fibrous dysplasia patients), demonstrated the feasibility of the technique in clinical practice

  9. The SLS storage ring support and alignment systems

    CERN Document Server

    Zelenika, S; Rivkin, L; Rohrer, M; Rossetti, D; Ruland, R; Schlott, V; Streun, A; Wiegand, Peter

    2001-01-01

    Storage rings of third generation synchrotron radiation facilities pose severe challenges for lowering the beam emittances and increasing the lifetimes, requiring thus increasing positioning and alignment precisions that must be preserved over long time spans. This work describes the SLS storage ring mechanical support, alignment and disturbances compensation systems that allow to meet these requirements. In particular, their design, the tests done on the respective prototypes and the applicability of the developed arrangement to beam-based alignment are addressed.

  10. The Optics and Alignment of the Divergent Beam Laboratory X-ray Powder Diffractometer and its Calibration Using NIST Standard Reference Materials.

    Science.gov (United States)

    Cline, James P; Mendenhall, Marcus H; Black, David; Windover, Donald; Henins, Albert

    2015-01-01

    The laboratory X-ray powder diffractometer is one of the primary analytical tools in materials science. It is applicable to nearly any crystalline material, and with advanced data analysis methods, it can provide a wealth of information concerning sample character. Data from these machines, however, are beset by a complex aberration function that can be addressed through calibration with the use of NIST Standard Reference Materials (SRMs). Laboratory diffractometers can be set up in a range of optical geometries; considered herein are those of Bragg-Brentano divergent beam configuration using both incident and diffracted beam monochromators. We review the origin of the various aberrations affecting instruments of this geometry and the methods developed at NIST to align these machines in a first principles context. Data analysis methods are considered as being in two distinct categories: those that use empirical methods to parameterize the nature of the data for subsequent analysis, and those that use model functions to link the observation directly to a specific aspect of the experiment. We consider a multifaceted approach to instrument calibration using both the empirical and model based data analysis methods. The particular benefits of the fundamental parameters approach are reviewed. PMID:26958446

  11. Alignment studies for the CERN linear collider

    International Nuclear Information System (INIS)

    Transverse alignment tolerances of a few microns are required for the CERN Linear Collider (CLIC) in order to limit the emittance blow-up due to transversely deflecting wakefields to reasonable values. Such tight tolerances over long distances can only be obtained by beam-based active alignment systems using precision micromovers and beam position monitors. Development work being carried out at CERN on closed-loop controlled micron-displacement systems, micron-resolution beam position monitors, active optical pre-alignment schemes and beam blow-up computer simulations for given overall alignment tolerances using both one-to-one and dispersion-free correction algorithms is described. (Author) 11 figs., 8 refs

  12. Cyclotron radiation beam control

    International Nuclear Information System (INIS)

    This patent application describes an apparatus for attenuating a beam of particulate radiation comprising a series of modules, each module being constituted by a sphere having a passage, a cupola covering said sphere and a base supporting said sphere, and means for causing movement of the spheres for aligning said passages with an axis of a beam line and arranging said passages out of alignment so as to attenuate the beam. (author)

  13. Genome-based phylogeny of dsDNA viruses by a novel alignment-free method.

    Science.gov (United States)

    Gao, Yang; Luo, Liaofu

    2012-01-15

    Sequence alignment is not directly applicable to whole genome phylogeny since several events such as rearrangements make full length alignments impossible. Here, a novel alignment-free method derived from the standpoint of information theory is proposed and used to construct the whole-genome phylogeny for a population of viruses from 13 viral families comprising 218 dsDNA viruses. The method is based on information correlation (IC) and partial information correlation (PIC). We observe that (i) the IC-PIC tree segregates the population into clades, the membership of each is remarkably consistent with biologist's systematics only with little exceptions; (ii) the IC-PIC tree reveals potential evolutionary relationships among some viral families; and (iii) the IC-PIC tree predicts the taxonomic positions of certain "unclassified" viruses. Our approach provides a new way for recovering the phylogeny of viruses, and has practical applications in developing alignment-free methods for sequence classification. PMID:22100880

  14. Analysis of Computational Complexity for HT-Based Fingerprint Alignment Algorithms on Java Card Environment

    Directory of Open Access Journals (Sweden)

    Cynthia S. Mlambo

    2015-01-01

    Full Text Available In this paper, implementations of three Hough Trans form based fingerprint alignment algorithms are analyzed with respect to time comple xity on Java Card environment. Three algorithms are: Local Match Based Approach (LMBA, Discretized Rotation Based Approach (DRBA, and All Possible to Match Based Approach (A PMBA. The aim of this paper is to present the complexity and implementations of exist ing work of one of the mostly used method of fingerprint alignment, in order that the complexity can be simplified or find the best algorithm with efficient complexity and implementation that c an be easily implemented on Java Card environment for match on card. Efficiency involves the accuracy of the implementation, time taken to perform fingerprint alignment, memory requ ired by the implementation and instruction operations required and used

  15. Liquid Crystal-based Beam Steering Technologies for NASA Applications

    Science.gov (United States)

    Pouch, John; Nguyen, Hung; Miranda, Felix; Bos, Philip; Lavrentovich, Oleg; Wang, Xinghua; Pishnyak, Oleg; Kreminska, Liubov; Golovin, Andrii

    2006-01-01

    Liquid crystal-based beam steering devices can provide electronic beam scanning to angles above 1 milliradian, sub-microradian beam pointing accuracy, as well as wave-front correction to maintain output optical beam quality. The liquid crystal technology effort will be summarized, and the potential application of the resulting devices to NASA space-based scenarios will be described.

  16. mulPBA: an efficient multiple protein structure alignment method based on a structural alphabet.

    Science.gov (United States)

    Léonard, Sylvain; Joseph, Agnel Praveen; Srinivasan, Narayanaswamy; Gelly, Jean-Christophe; de Brevern, Alexandre G

    2014-04-01

    The increasing number of available protein structures requires efficient tools for multiple structure comparison. Indeed, multiple structural alignments are essential for the analysis of function, evolution and architecture of protein structures. For this purpose, we proposed a new web server called multiple Protein Block Alignment (mulPBA). This server implements a method based on a structural alphabet to describe the backbone conformation of a protein chain in terms of dihedral angles. This 'sequence-like' representation enables the use of powerful sequence alignment methods for primary structure comparison, followed by an iterative refinement of the structural superposition. This approach yields alignments superior to most of the rigid-body alignment methods and highly comparable with the flexible structure comparison approaches. We implement this method in a web server designed to do multiple structure superimpositions from a set of structures given by the user. Outputs are given as both sequence alignment and superposed 3D structures visualized directly by static images generated by PyMol or through a Jmol applet allowing dynamic interaction. Multiple global quality measures are given. Relatedness between structures is indicated by a distance dendogram. Superimposed structures in PDB format can be also downloaded, and the results are quickly obtained. mulPBA server can be accessed at www.dsimb.inserm.fr/dsimb_tools/mulpba/ . PMID:23659291

  17. Linear collider accelerator physics issues regarding alignment

    International Nuclear Information System (INIS)

    The next generation of linear colliders will require more stringent alignment tolerances than those for the SLC with regard to the accelerating structures, quadrupoles, and beam position monitors. New techniques must be developed to achieve these tolerances. A combination of mechanical-electrical and beam-based methods will likely be needed

  18. Three-dimensional hindfoot alignment measurements based on biplanar radiographs: comparison with standard radiographic measurements

    International Nuclear Information System (INIS)

    To establish a hindfoot alignment measurement technique based on low-dose biplanar radiographs and compare with hindfoot alignment measurements on long axial view radiographs, which is the current reference standard. Long axial view radiographs and low-dose biplanar radiographs of a phantom consisting of a human foot skeleton embedded in acrylic glass (phantom A) and a plastic model of a human foot in three different hindfoot positions (phantoms B1-B3) were imaged in different foot positions (20 internal to 20 external rotation). Two independent readers measured hindfoot alignment on long axial view radiographs and performed 3D hindfoot alignment measurements based on biplanar radiographs on two different occasions. Time for three-dimensional (3D) measurements was determined. Intraclass correlation coefficients (ICC) were calculated. Hindfoot alignment measurements on long axial view radiographs were characterized by a large positional variation, with a range of 14 /13 valgus to 22 /27 varus (reader 1/2 for phantom A), whereas the range of 3D hindfoot alignment measurements was 7.3 /6.0 to 9.0 /10.5 varus (reader 1/2 for phantom A), with a mean and standard deviation of 8.1 ± 0.6/8.7 ± 1.4 respectively. Interobserver agreement was high (ICC = 0.926 for phantom A, and ICC = 0.886 for phantoms B1-B3), and agreement between different readouts was high (ICC = 0.895-0.995 for reader 1, and ICC = 0.987-0.994 for reader 2) for 3D measurements. Mean duration of 3D measurements was 84 ± 15/113 ± 15 s for reader 1/2. Three-dimensional hindfoot alignment measurements based on biplanar radiographs were independent of foot positioning during image acquisition and reader independent. In this phantom study, the 3D measurements were substantially more precise than the standard radiographic measurements. (orig.)

  19. A new automatic alignment technology for single mode fiber-waveguide based on improved genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yu; CHEN Zhuang-zhuang; LI Ya-juan; DUAN Jian

    2009-01-01

    A novel automatic alignment algorithm of single mode fiber-waveguide based on improved genetic algorithm is proposed. The genetic searching is based on the dynamic crossover operator and the adaptive mutation operator to solve the premature convergence of simple genetic algorithm The improved genetic algorithm combines with hill-climbing method and pattern searching algorithm, to solve low precision of simple genetic algorithm in later searching. The simulation results indicate that the improved genetic algorithm can rise the alignment precision and reach the coupling loss of 0.01 dB when platform moves near 207 space points averagely.

  20. Pattern-based Ontology Matching and Ontology Alignment Evaluation

    OpenAIRE

    Zamazal, Ondřej

    2006-01-01

    Ontology Matching is one of the hottest topic within the Semantic Web of recent years. There is still ample of space for improvement in terms of performance. Furthermore, current ontology matchers mostly concentrate on simple entity to entity matching. However, matching of whole structures could bring some additional complex relationships. These structures of ontologies can be captured as ontology patterns. The main theme of this thesis is an examination of pattern-based ontology matching enh...

  1. Plasma-Based Ion Beam Sources

    International Nuclear Information System (INIS)

    Ion beam sources cover a broad spectrum of scientific and technical applications delivering ion currents between less than 1 mA and about 100 A at acceleration voltages between 100 V and 100 kV. The ions are mostly generated by electron collisions in a gas discharge and then extracted from the discharge plasma, focused and post-accelerated by single- or multi-aperture electrode systems. Some important applications require the neutralization of the exhausted beam either by charge exchange or by admixture of electrons. In the first part of the paper, the theory of ionization by electron impact, the energy and carrier balances in the plasma, and the extraction and focusing mechanisms will be outlined. The principles of the preferred gas discharges and of the ion beam sources based on them are discussed; i.e. of the Penning, bombardment, arc, duoplasmatron, radio frequency, and microwave types. In the second part of the paper, the special requirements of the different applications are described together with the related source hardware. One distinguishes: 1. Single-aperture ion sources producing protons, heavy ions, isotope ions, etc. for particle accelerators, ion microprobes, mass spectrometers, isotope separators, etc.; quality determinative quantities are brightness, emittance, energy width, etc. 2. Broad-beam multi-aperture injector sources for fusion machines with positive or negative deuterium ions; very high beam densities, small portions of molecular ions, flat beam profiles with small divergence angles, etc. are required. 3. Broad-beam multi-aperture ion thrusters for space propulsion operated with singly charged xenon ions; high efficiencies, reliable operation, and long lifetimes are most important. Spin-offs are applied in industry for material processing. Referring to these applications, the following sources will be described in some detail: 1. Cold cathode and filament driven sources, capillary arc and plasmatron types, microwave and ECR-sources. 2

  2. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework

    Directory of Open Access Journals (Sweden)

    Toh Hiroyuki

    2008-04-01

    Full Text Available Abstract Background Structural alignment of RNAs is becoming important, since the discovery of functional non-coding RNAs (ncRNAs. Recent studies, mainly based on various approximations of the Sankoff algorithm, have resulted in considerable improvement in the accuracy of pairwise structural alignment. In contrast, for the cases with more than two sequences, the practical merit of structural alignment remains unclear as compared to traditional sequence-based methods, although the importance of multiple structural alignment is widely recognized. Results We took a different approach from a straightforward extension of the Sankoff algorithm to the multiple alignments from the viewpoints of accuracy and time complexity. As a new option of the MAFFT alignment program, we developed a multiple RNA alignment framework, X-INS-i, which builds a multiple alignment with an iterative method incorporating structural information through two components: (1 pairwise structural alignments by an external pairwise alignment method such as SCARNA or LaRA and (2 a new objective function, Four-way Consistency, derived from the base-pairing probability of every sub-aligned group at every multiple alignment stage. Conclusion The BRAliBASE benchmark showed that X-INS-i outperforms other methods currently available in the sum-of-pairs score (SPS criterion. As a basis for predicting common secondary structure, the accuracy of the present method is comparable to or rather higher than those of the current leading methods such as RNA Sampler. The X-INS-i framework can be used for building a multiple RNA alignment from any combination of algorithms for pairwise RNA alignment and base-pairing probability. The source code is available at the webpage found in the Availability and requirements section.

  3. Image-based quantification of fiber alignment within electrospun tissue engineering scaffolds is related to mechanical anisotropy.

    Science.gov (United States)

    Fee, Timothy; Downs, Crawford; Eberhardt, Alan; Zhou, Yong; Berry, Joel

    2016-07-01

    It is well documented that electrospun tissue engineering scaffolds can be fabricated with variable degrees of fiber alignment to produce scaffolds with anisotropic mechanical properties. Several attempts have been made to quantify the degree of fiber alignment within an electrospun scaffold using image-based methods. However, these methods are limited by the inability to produce a quantitative measure of alignment that can be used to make comparisons across publications. Therefore, we have developed a new approach to quantifying the alignment present within a scaffold from scanning electron microscopic (SEM) images. The alignment is determined by using the Sobel approximation of the image gradient to determine the distribution of gradient angles with an image. This data was fit to a Von Mises distribution to find the dispersion parameter κ, which was used as a quantitative measure of fiber alignment. We fabricated four groups of electrospun polycaprolactone (PCL) + Gelatin scaffolds with alignments ranging from κ = 1.9 (aligned) to κ = 0.25 (random) and tested our alignment quantification method on these scaffolds. It was found that our alignment quantification method could distinguish between scaffolds of different alignments more accurately than two other published methods. Additionally, the alignment parameter κ was found to be a good predictor the mechanical anisotropy of our electrospun scaffolds. The ability to quantify fiber alignment within and make direct comparisons of scaffold fiber alignment across publications can reduce ambiguity between published results where cells are cultured on "highly aligned" fibrous scaffolds. This could have important implications for characterizing mechanics and cellular behavior on aligned tissue engineering scaffolds. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1680-1686, 2016. PMID:26939754

  4. Spot Scanning Proton Beam Therapy for Prostate Cancer: Treatment Planning Technique and Analysis of Consequences of Rotational and Translational Alignment Errors

    International Nuclear Information System (INIS)

    Purpose: Conventional proton therapy with passively scattered beams is used to treat a number of tumor sites, including prostate cancer. Spot scanning proton therapy is a treatment delivery means that improves conformal coverage of the clinical target volume (CTV). Placement of individual spots within a target is dependent on traversed tissue density. Errors in patient alignment perturb dose distributions. Moreover, there is a need for a rational planning approach that can mitigate the dosimetric effect of random alignment errors. We propose a treatment planning approach and then analyze the consequences of various simulated alignment errors on prostate treatments. Methods and Materials: Ten control patients with localized prostate cancer underwent treatment planning for spot scanning proton therapy. After delineation of the clinical target volume, a scanning target volume (STV) was created to guide dose coverage. Errors in patient alignment in two axes (rotational and yaw) as well as translational errors in the anteroposterior direction were then simulated, and dose to the CTV and normal tissues were reanalyzed. Results: Coverage of the CTV remained high even in the setting of extreme rotational and yaw misalignments. Changes in the rectum and bladder V45 and V70 were similarly minimal, except in the case of translational errors, where, as a result of opposed lateral beam arrangements, much larger dosimetric perturbations were observed. Conclusions: The concept of the STV as applied to spot scanning radiation therapy and as presented in this report leads to robust coverage of the CTV even in the setting of extreme patient misalignments.

  5. Skeleton-based human action recognition using multiple sequence alignment

    Science.gov (United States)

    Ding, Wenwen; Liu, Kai; Cheng, Fei; Zhang, Jin; Li, YunSong

    2015-05-01

    Human action recognition and analysis is an active research topic in computer vision for many years. This paper presents a method to represent human actions based on trajectories consisting of 3D joint positions. This method first decompose action into a sequence of meaningful atomic actions (actionlets), and then label actionlets with English alphabets according to the Davies-Bouldin index value. Therefore, an action can be represented using a sequence of actionlet symbols, which will preserve the temporal order of occurrence of each of the actionlets. Finally, we employ sequence comparison to classify multiple actions through using string matching algorithms (Needleman-Wunsch). The effectiveness of the proposed method is evaluated on datasets captured by commodity depth cameras. Experiments of the proposed method on three challenging 3D action datasets show promising results.

  6. Structural and band alignment properties of Al2O3 on epitaxial Ge grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy

    OpenAIRE

    Hudait, Mantu K.; Zhu, Yizheng; Maurya, Deepam; Priya, Shashank; Patra, Prabir K.; Ma, Anson W. K.; Aphale, Ashish; Macwan, Isaac

    2013-01-01

    Structural and band alignment properties of atomic layer Al2O3 oxide film deposited on crystallographically oriented epitaxial Ge grown in-situ on (100), (110), and (111)A GaAs substrates using two separate molecular beam epitaxy chambers were investigated using cross-sectional transmission microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). High-resolution triple axis x-ray measurement demonstrated pseudomorphic and high-quality Ge epitaxial layer on crystallographically oriented Ga...

  7. EDITORIAL: Negative ion based neutral beam injection

    Science.gov (United States)

    Hemsworth, R. S.

    2006-06-01

    It is widely recognized that neutral beam injection (NBI), i.e. the injection of high energy, high power, beams of H or D atoms, is a flexible and reliable system that has been the main heating system on a large variety of fusion devices, and NBI has been chosen as one of the three heating schemes of the International Tokomak Reactor (ITER). To date, all the NBI systems but two have been based on the neutralization (in a simple gas target) of positive hydrogen or deuterium ions accelerated to 1 MeV/nucleon. Unfortunately H- and D- are difficult to create, and the very characteristic that makes them attractive, the ease with which the electron is detached from the ion, means that it is difficult to create high concentrations or fluxes of them, and it is difficult to avoid substantial, collisional, losses in the extraction and acceleration processes. However, there has been impressive progress in negative ion sources and accelerators over the past decade, as demonstrated by the two pioneering, operational, multi-megawatt, negative ion based, NBI systems at LHD (180 keV, H0) and JT-60U (500 keV, D0), both in Japan. Nevertheless, the system proposed for ITER represents a substantial technological challenge as an increase is required in beam energy, to 1 MeV, D0, accelerated ion (D-) current, to 40 A, accelerated current density, 200 A m-2 of D-, and pulse length, to 1 h. At the Fourth IAEA Technical Meeting on Negative Ion Based Neutral Beam Injectors, hosted by the Consorzio RFX, Padova, Italy, 9-11 May 2005, the status of the R&D aimed at the realization of the injectors for ITER was presented. Because of the importance of this development to the success of the ITER project, participants at that meeting were asked if they were interested in rewriting and extending their contributions as a submission to Nuclear Fusion. Technology papers were accepted because of the very nature of the subject. The submissions underwent the regular double-referee peer-review process

  8. DOPA: GPU-based protein alignment using database and memory access optimizations

    NARCIS (Netherlands)

    Hasan, L.; Kentie, M.; Al-Ars, Z.

    2011-01-01

    Background Smith-Waterman (S-W) algorithm is an optimal sequence alignment method for biological databases, but its computational complexity makes it too slow for practical purposes. Heuristics based approximate methods like FASTA and BLAST provide faster solutions but at the cost of reduced accurac

  9. A prototype distributed object-oriented architecture for image-based automatic laser alignment

    International Nuclear Information System (INIS)

    Designing a computer control system for the National Ignition Facility (NIF) is a complex undertaking because of the system's large size and its distributed nature. The controls team is addressing that complexity by adopting the object-oriented programming paradigm, designing reusable software frameworks, and using the Common Object Request Broker Architecture (CORBA) for distribution. A prototype system for image-based automatic laser alignment has been developed to evaluate and gain experience with CORBA and OOP in a small distributed system. The prototype is also important in evaluating alignment concepts, image processing techniques, speed and accuracy of automatic alignment objectives for the NIF, and control hardware for aligment devices. The prototype system has met its inital objectives and provides a basis for continued development

  10. Study and development of a laser based alignment system for the compact linear collider

    CERN Document Server

    AUTHOR|(CDS)2083149

    The first objective of the PhD thesis is to develop a new type of positioning sensor to align components at micrometre level over 200 m with respect to a laser beam as straight line reference. The second objective is to estimate the measurement accuracy of the total alignment system over 200 m. The context of the PhD thesis is the Compact Linear Collider project, which is a study for a future particle accelerator. The proposed positioning sensor is made of a camera and an open/close shutter. The sensor can measure the position of the laser beam with respect to its own coordinate system. To do a measurement, the shutter closes, a laser spot appears on it, the camera captures a picture of the laser spot and the coordinates of the laser spot centre are reconstructed in the sensor coordinate system with image processing. Such a measurement requires reference targets on the positioning sensor. To reach the rst objective of the PhD thesis, we used laser theory...

  11. A novel fully automatic scheme for fiducial marker-based alignment in electron tomography.

    Science.gov (United States)

    Han, Renmin; Wang, Liansan; Liu, Zhiyong; Sun, Fei; Zhang, Fa

    2015-12-01

    Although the topic of fiducial marker-based alignment in electron tomography (ET) has been widely discussed for decades, alignment without human intervention remains a difficult problem. Specifically, the emergence of subtomogram averaging has increased the demand for batch processing during tomographic reconstruction; fully automatic fiducial marker-based alignment is the main technique in this process. However, the lack of an accurate method for detecting and tracking fiducial markers precludes fully automatic alignment. In this paper, we present a novel, fully automatic alignment scheme for ET. Our scheme has two main contributions: First, we present a series of algorithms to ensure a high recognition rate and precise localization during the detection of fiducial markers. Our proposed solution reduces fiducial marker detection to a sampling and classification problem and further introduces an algorithm to solve the parameter dependence of marker diameter and marker number. Second, we propose a novel algorithm to solve the tracking of fiducial markers by reducing the tracking problem to an incomplete point set registration problem. Because a global optimization of a point set registration occurs, the result of our tracking is independent of the initial image position in the tilt series, allowing for the robust tracking of fiducial markers without pre-alignment. The experimental results indicate that our method can achieve an accurate tracking, almost identical to the current best one in IMOD with half automatic scheme. Furthermore, our scheme is fully automatic, depends on fewer parameters (only requires a gross value of the marker diameter) and does not require any manual interaction, providing the possibility of automatic batch processing of electron tomographic reconstruction. PMID:26433028

  12. Application of Diamond Based Beam Loss Monitors

    OpenAIRE

    Hempel, Maria

    2013-01-01

    The LHC has an operational stored energy of 130MJ per beam. Only a small percentage of beam losses in the LHC equipment can damage material or lead to magnet quenches. Therefore, it is important to monitor different types of beam losses, e.g. scattering on residual gas particles, UFOs, collisions and injection losses. A detailed understanding of beam loss mechanisms is necessary to reduce them and ensure save operation. Two different beam loss monitors are installed in the LHC tunnel: ionizat...

  13. DOPA: GPU-based protein alignment using database and memory access optimizations

    Directory of Open Access Journals (Sweden)

    Hasan Laiq

    2011-07-01

    Full Text Available Abstract Background Smith-Waterman (S-W algorithm is an optimal sequence alignment method for biological databases, but its computational complexity makes it too slow for practical purposes. Heuristics based approximate methods like FASTA and BLAST provide faster solutions but at the cost of reduced accuracy. Also, the expanding volume and varying lengths of sequences necessitate performance efficient restructuring of these databases. Thus to come up with an accurate and fast solution, it is highly desired to speed up the S-W algorithm. Findings This paper presents a high performance protein sequence alignment implementation for Graphics Processing Units (GPUs. The new implementation improves performance by optimizing the database organization and reducing the number of memory accesses to eliminate bandwidth bottlenecks. The implementation is called Database Optimized Protein Alignment (DOPA and it achieves a performance of 21.4 Giga Cell Updates Per Second (GCUPS, which is 1.13 times better than the fastest GPU implementation to date. Conclusions In the new GPU-based implementation for protein sequence alignment (DOPA, the database is organized in equal length sequence sets. This equally distributes the workload among all the threads on the GPU's multiprocessors. The result is an improved performance which is better than the fastest available GPU implementation.

  14. Tibial base design and patient morphology affecting tibial coverage and rotational alignment after total knee arthroplasty

    OpenAIRE

    Clary, Chadd; Aram, Luke; Deffenbaugh, Daren; Heldreth, Mark

    2014-01-01

    Purpose To understand interactions between total knee arthroplasty tibial base design attributes, variations in tibial morphology, and the resulting tibial coverage and rotational alignment. Methods Tibial anthropometric measurements, including aspect ratio (medial–lateral width/anterior–posterior length) and tibial asymmetry, were taken for 14,791 total knee arthroplasty patients and compared with the ability of four different commercial tibial base designs to cover the resected plateau. The...

  15. Multi-feature-based robust face detection and coarse alignment method via multiple kernel learning

    Science.gov (United States)

    Sun, Bo; Zhang, Di; He, Jun; Yu, Lejun; Wu, Xuewen

    2015-10-01

    Face detection and alignment are two crucial tasks to face recognition which is a hot topic in the field of defense and security, whatever for the safety of social public, personal property as well as information and communication security. Common approaches toward the treatment of these tasks in recent years are often of three types: template matching-based, knowledge-based and machine learning-based, which are always separate-step, high computation cost or fragile robust. After deep analysis on a great deal of Chinese face images without hats, we propose a novel face detection and coarse alignment method, which is inspired by those three types of methods. It is multi-feature fusion with Simple Multiple Kernel Learning1 (Simple-MKL) algorithm. The proposed method is contrasted with competitive and related algorithms, and demonstrated to achieve promising results.

  16. Avalanche for shape and feature-based virtual screening with 3D alignment.

    Science.gov (United States)

    Diller, David J; Connell, Nancy D; Welsh, William J

    2015-11-01

    This report introduces a new ligand-based virtual screening tool called Avalanche that incorporates both shape- and feature-based comparison with three-dimensional (3D) alignment between the query molecule and test compounds residing in a chemical database. Avalanche proceeds in two steps. The first step is an extremely rapid shape/feature based comparison which is used to narrow the focus from potentially millions or billions of candidate molecules and conformations to a more manageable number that are then passed to the second step. The second step is a detailed yet still rapid 3D alignment of the remaining candidate conformations to the query conformation. Using the 3D alignment, these remaining candidate conformations are scored, re-ranked and presented to the user as the top hits for further visualization and evaluation. To provide further insight into the method, the results from two prospective virtual screens are presented which show the ability of Avalanche to identify hits from chemical databases that would likely be missed by common substructure-based or fingerprint-based search methods. The Avalanche method is extended to enable patent landscaping, i.e., structural refinements to improve the patentability of hits for deployment in drug discovery campaigns. PMID:26458937

  17. Extended particle-based simulation for magnetic-aligned compaction of hard magnetic particles

    International Nuclear Information System (INIS)

    In order to understand the magnetic-aligned compaction process, we develop a three-dimensional (3D) discrete element method for simulating the motion of hard magnetic particles subjected to strong compression and magnetic fields. The proposed simulation model also considers the exact magnetic force involved via the calculation of the magnetic moment. First, to validate the simulation model, single-action compaction in the absence of a magnetic field was calculated. The calculated compaction curves are in good quantitative agreement with experimental ones. Based on this simulation model, the alignment behavior of Nd–Fe–B particles during compression under the application of a static magnetic field. The developed simulation model enables the visualization of particle behavior including the misorientation of the magnetization easy axis, which provided the quantitative relationships between applied pressure and particle misorientation. - Highlights: • A practical 3D DEM simulation technique for magnetic-aligned compaction was developed. • An extended simulation model was introduced for hard magnetic particles. • Magnetic-aligned compaction was simulated using the developed simulation model

  18. Extended particle-based simulation for magnetic-aligned compaction of hard magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Soda, Rikio; Takagi, Kenta; Ozaki, Kimihiro, E-mail: r-soda@aist.go.jp

    2015-12-15

    In order to understand the magnetic-aligned compaction process, we develop a three-dimensional (3D) discrete element method for simulating the motion of hard magnetic particles subjected to strong compression and magnetic fields. The proposed simulation model also considers the exact magnetic force involved via the calculation of the magnetic moment. First, to validate the simulation model, single-action compaction in the absence of a magnetic field was calculated. The calculated compaction curves are in good quantitative agreement with experimental ones. Based on this simulation model, the alignment behavior of Nd–Fe–B particles during compression under the application of a static magnetic field. The developed simulation model enables the visualization of particle behavior including the misorientation of the magnetization easy axis, which provided the quantitative relationships between applied pressure and particle misorientation. - Highlights: • A practical 3D DEM simulation technique for magnetic-aligned compaction was developed. • An extended simulation model was introduced for hard magnetic particles. • Magnetic-aligned compaction was simulated using the developed simulation model.

  19. Track based alignment of the CMS silicon tracker and its implication on physics performance

    Energy Technology Data Exchange (ETDEWEB)

    Draeger, Jula

    2011-08-15

    In order to fully exploit the discovery potential of the CMS detector for new physics beyond the Standard Model at the high luminosity and centre-of-mass energy provided by the Large Hadron Collider, a careful calibration of the detector and profound understanding of its impact on physics performance are necessary to provide realistic uncertainties for the measurements of physics processes. This thesis describes the track-based alignment of the inner tracking system of CMS with the Millepede II algorithm. Using the combined information of tracks from cosmic rays and collisions taken in 2010, a remarkable local alignment precision has been reached that meets the design specification for most regions of the detector and takes into account instabilities of the detector geometry over time. In addition, the impact of the alignment of b tagging or the Z boson resonance are investigated. The latter is studied to investigate the impact of correlated detector distortions which hardly influence the overall solution of the minimisation problem but introduce biases in the track parameters and thus the derived physics quantities. The determination and constraint of these weak modes present the future challenge of the alignment task at CMS. (orig.)

  20. Track based alignment of the CMS silicon tracker and its implication on physics performance

    International Nuclear Information System (INIS)

    In order to fully exploit the discovery potential of the CMS detector for new physics beyond the Standard Model at the high luminosity and centre-of-mass energy provided by the Large Hadron Collider, a careful calibration of the detector and profound understanding of its impact on physics performance are necessary to provide realistic uncertainties for the measurements of physics processes. This thesis describes the track-based alignment of the inner tracking system of CMS with the Millepede II algorithm. Using the combined information of tracks from cosmic rays and collisions taken in 2010, a remarkable local alignment precision has been reached that meets the design specification for most regions of the detector and takes into account instabilities of the detector geometry over time. In addition, the impact of the alignment of b tagging or the Z boson resonance are investigated. The latter is studied to investigate the impact of correlated detector distortions which hardly influence the overall solution of the minimisation problem but introduce biases in the track parameters and thus the derived physics quantities. The determination and constraint of these weak modes present the future challenge of the alignment task at CMS. (orig.)

  1. A substitution matrix for structural alphabet based on structural alignment of homologous proteins and its applications.

    Science.gov (United States)

    Tyagi, Manoj; Gowri, Venkataraman S; Srinivasan, Narayanaswamy; de Brevern, Alexandre G; Offmann, Bernard

    2006-10-01

    Analysis of protein structures based on backbone structural patterns known as structural alphabets have been shown to be very useful. Among them, a set of 16 pentapeptide structural motifs known as protein blocks (PBs) has been identified and upon which backbone model of most protein structures can be built. PBs allows simplification of 3D space onto 1D space in the form of sequence of PBs. Here, for the first time, substitution probabilities of PBs in a large number of aligned homologous protein structures have been studied and are expressed as a simplified 16 x 16 substitution matrix. The matrix was validated by benchmarking how well it can align sequences of PBs rather like amino acid alignment to identify structurally equivalent regions in closely or distantly related proteins using dynamic programming approach. The alignment results obtained are very comparable to well established structure comparison methods like DALI and STAMP. Other interesting applications of the matrix have been investigated. We first show that, in variable regions between two superimposed homologous proteins, one can distinguish between local conformational differences and rigid-body displacement of a conserved motif by comparing the PBs and their substitution scores. Second, we demonstrate, with the example of aspartic proteinases, that PBs can be efficiently used to detect the lobe/domain flexibility in the multidomain proteins. Lastly, using protein kinase as an example, we identify regions of conformational variations and rigid body movements in the enzyme as it is changed to the active state from an inactive state. PMID:16894618

  2. Application of diamond based beam loss monitors

    International Nuclear Information System (INIS)

    The LHC has an operational stored energy of 130MJ per beam. Only a small percentage of beam losses in the LHC equipment can damage material or lead to magnet quenches. Therefore, it is important to monitor different types of beam losses, e.g. scattering on residual gas particles, UFOs, collisions and injection losses. A detailed understanding of beam loss mechanisms is necessary to reduce them and ensure save operation. Two different beam loss monitors are installed in the LHC tunnel: ionization chambers and diamond sensors. Ionization chambers trigger a beam dump if beam losses exceed a certain threshold. They have a time resolution of 40um (half LHC turn) which is not sufficient to resolve bunch-by-bunch beam losses. Diamond sensors have a nanosecond time resolution and can therefore detect bunch-by-bunch beam losses. This time resolution allows an analysis of various types of beam losses and an understanding of the mechanisms. For the first time beam loss intensities were measured bunch-by-bunch caused by different origins of losses. Beam loss measurements using diamond sensors will be presented. The results are compared to simulations and good qualitative agreement was found. The potential of diamond sensors for LHC and experiment applications are discussed.

  3. Application of diamond based beam loss monitors

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); CERN, Geneva (Switzerland); Baer, Tobias [CERN, Geneva (Switzerland); Hamburg Univ. (Germany); Castro Carballo, Elena Maria [DESY, Zeuthen (Germany); Lohmann, Wolfgang [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); Schmidt, Ruediger [CERN, Geneva (Switzerland)

    2013-07-01

    The LHC has an operational stored energy of 130MJ per beam. Only a small percentage of beam losses in the LHC equipment can damage material or lead to magnet quenches. Therefore, it is important to monitor different types of beam losses, e.g. scattering on residual gas particles, UFOs, collisions and injection losses. A detailed understanding of beam loss mechanisms is necessary to reduce them and ensure save operation. Two different beam loss monitors are installed in the LHC tunnel: ionization chambers and diamond sensors. Ionization chambers trigger a beam dump if beam losses exceed a certain threshold. They have a time resolution of 40um (half LHC turn) which is not sufficient to resolve bunch-by-bunch beam losses. Diamond sensors have a nanosecond time resolution and can therefore detect bunch-by-bunch beam losses. This time resolution allows an analysis of various types of beam losses and an understanding of the mechanisms. For the first time beam loss intensities were measured bunch-by-bunch caused by different origins of losses. Beam loss measurements using diamond sensors will be presented. The results are compared to simulations and good qualitative agreement was found. The potential of diamond sensors for LHC and experiment applications are discussed.

  4. A test beam upgrade based on the BEPC-LINAC

    International Nuclear Information System (INIS)

    A total of three beam lines, E1, E2 and E3 have based on the LINAC of BEPC. The E1 beam is to be used for intense slow-positron facility. The E2 is a primary positron or electron beam with an energy of 1.3-1.5 GeV. The E3 is a secondary electron or pion test beam with a momentum can be adjustable continuously. The position accuracy of a detected particle is 0.2-0.4 mm with an event rate of 3 - 4 Hz. This beam has been successfully used for some detectors beam test. (author)

  5. STED microscopy based on axially symmetric polarized vortex beams

    Science.gov (United States)

    Zhehai, Zhou; Lianqing, Zhu

    2016-03-01

    A stimulated emission depletion (STED) microscopy scheme using axially symmetric polarized vortex beams is proposed based on unique focusing properties of such kinds of beams. The concept of axially symmetric polarized vortex beams is first introduced, and the basic principle about the scheme is described. Simulation results for several typical beams are then shown, including radially polarized vortex beams, azimuthally polarized vortex beams, and high-order axially symmetric polarized vortex beams. The results indicate that sharper doughnut spots and thus higher resolutions can be achieved, showing more flexibility than previous schemes based on flexible modulation of both phase and polarization for incident beams. Project supported by the National Natural Science Foundation of China (Grant Nos. 61108047 and 61475021), the Natural Science Foundation of Beijing, China (Grant No. 4152015), the Program for New Century Excellent Talents in Universities of China (Grant No. NCET-13-0667), and the Top Young Talents Support Program of Beijing, China (Grant No. CIT&TCD201404113).

  6. Bright single photon source based on self-aligned quantum dot-cavity systems

    OpenAIRE

    Maier, Sebastian; Gold, Peter; Forchel, Alfred; Gregersen, Niels; Mørk, Jesper; Höfling, Sven; Schneider, Christian; Kamp, Martin

    2014-01-01

    We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum dot to a Gaussian shaped nanohill defect that naturally arises during epitaxial growth in a self-aligned manner. We investigate the morphology of these defects and characterize the photonic operation...

  7. DOPA: GPU-based protein alignment using database and memory access optimizations

    OpenAIRE

    Hasan Laiq; Kentie Marijn; Al-Ars Zaid

    2011-01-01

    Abstract Background Smith-Waterman (S-W) algorithm is an optimal sequence alignment method for biological databases, but its computational complexity makes it too slow for practical purposes. Heuristics based approximate methods like FASTA and BLAST provide faster solutions but at the cost of reduced accuracy. Also, the expanding volume and varying lengths of sequences necessitate performance efficient restructuring of these databases. Thus to come up with an accurate and fast solution, it is...

  8. The AAG's ALIGNED Toolkit: A Place-based Approach to Fostering Diversity in the Geosciences

    Science.gov (United States)

    Rodrigue, C. M.

    2012-12-01

    Where do we look to attract a more diverse group of students to academic programs in geography and the geosciences? What do we do once we find them? This presentation introduces the ALIGNED Toolkit developed by the Association of American Geographers, with funding from the NSF's Opportunities to Enhance Diversity in the Geosciences (OEDG) Program. ALIGNED (Addressing Locally-tailored Information Infrastructure and Geoscience Needs for Enhancing Diversity) seeks to align the needs of university departments and underrepresented students by drawing upon the intellectual wealth of geography and spatial science to provide better informed, knowledge-based action to enhance diversity in higher education and the geoscience workforce. The project seeks to inform and transform the ways in which departments and programs envision and realize their own goals to enhance diversity, promote inclusion, and broaden participation. We also seek to provide the data, information, knowledge, and best practices needed in order to enhance the recruitment and retention of underrepresented students. The ALIGNED Toolkit is currently in a beta release, available to 13 pilot departments and 50 testing departments of geography/geosciences. It consolidates a variety of data from departments, the U.S. Census Bureau, and the U.S. Department of Education's National Center for Education Statistics to provide interactive, GIS-based visualizations across multiple scales. It also incorporates a place-based, geographic perspective to support departments in their efforts to enhance diversity. A member of ALIGNED's senior personnel, who is also a representative of one of the pilot departments, will provide an overview and preview of the tool while sharing her department's experiences in progressing toward its diversity goals. A brief discussion on how geoscience departments might benefit from the ALIGNED approach and resources will follow. Undergraduate advisors, graduate program directors, department

  9. In vitro cardiomyocyte-driven biogenerator based on aligned piezoelectric nanofibers

    Science.gov (United States)

    Liu, Xia; Zhao, Hui; Lu, Yingxian; Li, Song; Lin, Liwei; Du, Yanan; Wang, Xiaohong

    2016-03-01

    Capturing the body's mechanical energy from the heart, lungs, and diaphragm can probably meet the requirements for in vivo applications of implantable biomedical devices. In this work, we present a novel contractile cardiomyocyte (CM)-driven biogenerator based on piezoelectric nanofibers (NFs) uniaxially aligned on a PDMS thin film. Flexible nanostructures interact with the CMs, as a physical cue to guide the CMs to align in a specific way, and create mechanical interfaces of contractile CMs and piezoelectric NFs. As such, the cellular construct features specific alignment and synchronous contraction, which realizes the maximal resultant force to drive the NFs to bend periodically. Studies on contraction mapping show that neonatal rat CMs self-assemble into a functional bio-bot film with well-defined axes of force generation. Consequently, the biogenerator produces an average voltage of 200 mV and current of 45 nA at the cell concentration of 1.0 million per ml, offering a biocompatible and scalable platform for biological energy conversion.Capturing the body's mechanical energy from the heart, lungs, and diaphragm can probably meet the requirements for in vivo applications of implantable biomedical devices. In this work, we present a novel contractile cardiomyocyte (CM)-driven biogenerator based on piezoelectric nanofibers (NFs) uniaxially aligned on a PDMS thin film. Flexible nanostructures interact with the CMs, as a physical cue to guide the CMs to align in a specific way, and create mechanical interfaces of contractile CMs and piezoelectric NFs. As such, the cellular construct features specific alignment and synchronous contraction, which realizes the maximal resultant force to drive the NFs to bend periodically. Studies on contraction mapping show that neonatal rat CMs self-assemble into a functional bio-bot film with well-defined axes of force generation. Consequently, the biogenerator produces an average voltage of 200 mV and current of 45 nA at the cell

  10. A Point Cloud Alignment Algorithm Based on Stereo Vision Using Random Pattern Projection

    Directory of Open Access Journals (Sweden)

    Chen-Sheng Chen

    2016-03-01

    Full Text Available This paper proposes a point cloud alignment algorithm based on stereo vision using Random Pattern Projection (RPP. In the application of stereo vision, it is rather difficult to find correspondences between stereo images of texture-less objects. To overcome this issue, RPP is used to enhance the object’s features, thus increasing the accuracy of the identified correspondences of the stereo images. In the 3D alignment algorithm, the down sample technique is used to filter out the outliers of the point cloud data to improve system efficiency. Furthermore, the extracted features of the down sample point cloud data were applied in the matching process. Finally, the object’s pose was estimated by the alignment algorithm based on object features. In experiments, the maximum error and standard deviation of rotation are respectively about 0.031°and 0.199°, while the maximum error and standard deviation of translation are respectively about 0.565 mm and 0.902 mm . The execution time for pose estimation is about 230ms.

  11. Value-based insurance design: aligning incentives and evidence in pulmonary medicine.

    Science.gov (United States)

    Fendrick, A Mark; Zank, Daniel C

    2013-11-01

    When consumers are required to pay the same out-of-pocket amount for pulmonary services for which clinical benefits depend on patient characteristics, clinical indication, and provider choice, there is an enormous potential for both underutilization and overutilization. Unlike most current one-size-fits-all health plan designs, value-based insurance design (V-BID) explicitly acknowledges clinical heterogeneity across the continuum of care. By adding clinical nuance to benefit design, V-BID seeks to align consumer and provider incentives with value, encouraging the use of high-value services and discouraging the use of low-value interventions. This article describes the concept of V-BID; creates a framework for its development in pulmonary medicine; and outlines how this concept aligns with research, care delivery, and payment reform initiatives. PMID:23929504

  12. Curve aligning approach for gait authentication based on a wearable accelerometer

    International Nuclear Information System (INIS)

    Gait authentication based on a wearable accelerometer is a novel biometric which can be used for identity identification, medical rehabilitation and early detection of neurological disorders. The method for matching gait patterns tells heavily on authentication performances. In this paper, curve aligning is introduced as a new method for matching gait patterns and it is compared with correlation and dynamic time warping (DTW). A support vector machine (SVM) is proposed to fuse pattern-matching methods in a decision level. Accelerations collected from ankles of 22 walking subjects are processed for authentications in our experiments. The fusion of curve aligning with backward–forward accelerations and DTW with vertical accelerations promotes authentication performances substantially and consistently. This fusion algorithm is tested repeatedly. Its mean and standard deviation of equal error rates are 0.794% and 0.696%, respectively, whereas among all presented non-fusion algorithms, the best one shows an EER of 3.03%. (paper)

  13. Structural and band alignment properties of Al2O3 on epitaxial Ge grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy

    Science.gov (United States)

    Hudait, M. K.; Zhu, Y.; Maurya, D.; Priya, S.; Patra, P. K.; Ma, A. W. K.; Aphale, A.; Macwan, I.

    2013-04-01

    Structural and band alignment properties of atomic layer Al2O3 oxide film deposited on crystallographically oriented epitaxial Ge grown in-situ on (100), (110), and (111)A GaAs substrates using two separate molecular beam epitaxy chambers were investigated using cross-sectional transmission microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). High-resolution triple axis x-ray measurement demonstrated pseudomorphic and high-quality Ge epitaxial layer on crystallographically oriented GaAs substrates. The cross-sectional TEM exhibited a sharp interface between the Ge epilayer and each orientation of the GaAs substrate as well as the Al2O3 film and the Ge epilayer. The extracted valence band offset, ΔEv, values of Al2O3 relative to (100), (110), and (111) Ge orientations using XPS measurement were 3.17 eV, 3.34 eV, and 3.10 eV, respectively. Using XPS data, variations in ΔEv related to the crystallographic orientation were ΔEV(110)Ge>ΔEV(100)Ge≥ΔEV(111)Ge and the conduction band offset, ΔEc, related to the crystallographic orientation was ΔEc(111)Ge>ΔEc(110)Ge>ΔEc(100)Ge using the measured ΔEv, bandgap of Al2O3 in each orientation, and well-known Ge bandgap of 0.67 eV. These band offset parameters are important for future application of Ge-based p- and n-channel metal-oxide field-effect transistor design.

  14. Liquid crystal alignment on ion-beam-treated polyimide with a long alkyl side chain: near edge X-ray absorption fine structure spectroscopy analysis.

    Science.gov (United States)

    Seo, Joo-Hong; Hwang, Soo Won; Song, Dong Han; Shin, Jae Hoon; Yoon, Tae-Hoon; Kim, Jae Chang; Yi, Mi Hye

    2009-02-19

    Liquid crystal alignment on ion-beam-treated polyimides with a long alkyl side chain was investigated using near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The long alkyl side chains and the asymmetric distribution and orientational order of the pi-bonds of the polyimide surface can be determined by analyzing the angular dependent resonance intensities of the NEXAFS measurements. Herein, we demonstrate that the pretilt angle of the LC cell made by our method decreases as more long alkyl side chains are destroyed. Additionally, the tilt direction of the LC molecules can be determined from the asymmetric distribution of pi-bonds of the polyimide created by the ion beam irradiation. PMID:19161281

  15. Scatter-free propagation of low-energy protons in the magnetosheath: Implications for the production of field-aligned ion beams by nonthermal leakage

    International Nuclear Information System (INIS)

    We investigate the scatter-free propagation of low-energy (1--5 keV) protons in the magnetosheath by following test particle trajectories in a model of the magnetosheath fields previously obtained from gasdynamic simulations. We concentrate on those ions energized by near-specular reflection at the quasi-perpendicular shock: the reflected-gyrating ions. Our results indicate that for the most common orientations of the interplanetary field, it is unlikely that such ions when scattered in pitch angle behind the near-perpendicular bow shock (theta/sub Bn/> or =800) can contribute to upstream field-aligned beams leaving the bow shock at shock-normal angles (theta/sub Bn/) greater than 450. Reflected-gyrating ions similarly scattered behind the quasi-perpendicular shock (theta/sub Bn/> or =450) are more likely to contribute to such beams by leaking from the bow shock close to where they entered the magnetosheath

  16. 3-d structure-based amino acid sequence alignment of esterases, lipases and related proteins

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, M.K.; Doctor, B.P.; Cygler, M.; Schrag, J.D.; Sussman, J.L.

    1993-05-13

    Acetylcholinesterase and butyrylcholinesterase, enzymes with potential as pretreatment drugs for organophosphate toxicity, are members of a larger family of homologous proteins that includes carboxylesterases, cholesterol esterases, lipases, and several nonhydrolytic proteins. A computer-generated alignment of 18 of the proteins, the acetylcholinesases, butyrylcholinesterases, carboxylesterases, some esterases, and the nonenzymatic proteins has been previously presented. More recently, the three-dimensional structures of two enzymes enzymes in this group, acetylcholinesterase from Torpedo californica and lipase from Geotrichum candidum, have been determined. Based on the x-ray structures and the superposition of these two enzymes, it was possible to obtain an improved amino acid sequence alignment of 32 members of this family of proteins. Examination of this alignment reveals that 24 amino acids are invariant in all of the hydrolytic proteins, and an additional 49 are well conserved. Conserved amino acids include those of the active site, the disulfide bridges, the salt bridges, in the core of the proteins, and at the edges of secondary structural elements. Comparison of the three-dimensional structures makes it possible to find a well-defined structural basis for the conservation of many of these amino acids.

  17. Sequence Comparison Alignment-Free Approach Based on Suffix Tree and L-Words Frequency

    Directory of Open Access Journals (Sweden)

    Inês Soares

    2012-01-01

    Full Text Available The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of gaps (insertions/deletions. In such cases, an alternative alignment-free method would prove valuable. Our method starts by a computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all possible words with a preset length L—L-words—in each sequence is rapidly calculated. Based on the L-words frequency profile of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on the web.

  18. Digital Beam Steering Device Based on Decoupled Birefringent Prism Deflector and Polarization Rotator

    Science.gov (United States)

    Pishnyak, Oleg; Kreminska, Lyubov; Laventovich, Oleg D.; Pouch, John J.; Miranda, Felix A.; Winker, Bruce K.

    2004-01-01

    We describe digital beam deflectors (DBDs) based on liquid crystals. Each stage of the device comprises a polarization rotator and a birefringent prism deflector. The birefringent prism deflects the beam by an angle that depends on polarization of the incident beam. The prism can be made of the uniaxial smectic A (SmA) liquid crystal (LC) or a solid crystal such as yttrium orthovanadate (YVO4). SmA prisms have high birefringence and can be constructed in a variety of shapes, including single prisms and prismatic blazed gratings of different angles and profiles. We address the challenges of uniform alignment of SmA, such as elimination of focal conic domains. Rotation of linear polarization is achieved by an electrically switched twisted nematic (TN) cell. A DBD composed of N rotator-deflector pairs steers the beam into 2(sup N) directions. As an example, we describe a four-stage DBD deflecting normally incident laser beam within the range of +/- 56 mrad with 8 mrad steps. Redirection of the beam is achieved by switching the TN cells.

  19. A Method for SINS Alignment with Large Initial Misalignment Angles Based on Kalman Filter with Parameters Resetting

    Directory of Open Access Journals (Sweden)

    Xixiang Liu

    2014-01-01

    Full Text Available In the initial alignment process of strapdown inertial navigation system (SINS, large initial misalignment angles always bring nonlinear problem, which causes alignment failure when the classical linear error model and standard Kalman filter are used. In this paper, the problem of large misalignment angles in SINS initial alignment is investigated, and the key reason for alignment failure is given as the state covariance from Kalman filter cannot represent the true one during the steady filtering process. According to the analysis, an alignment method for SINS based on multiresetting the state covariance matrix of Kalman filter is designed to deal with large initial misalignment angles, in which classical linear error model and standard Kalman filter are used, but the state covariance matrix should be multireset before the steady process until large misalignment angles are decreased to small ones. The performance of the proposed method is evaluated by simulation and car test, and the results indicate that the proposed method can fulfill initial alignment with large misalignment angles effectively and the alignment accuracy of the proposed method is as precise as that of alignment with small misalignment angles.

  20. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez and J. Pivarski

    2011-01-01

    Alignment efforts in the first few months of 2011 have shifted away from providing alignment constants (now a well established procedure) and focussed on some critical remaining issues. The single most important task left was to understand the systematic differences observed between the track-based (TB) and hardware-based (HW) barrel alignments: a systematic difference in r-φ and in z, which grew as a function of z, and which amounted to ~4-5 mm differences going from one end of the barrel to the other. This difference is now understood to be caused by the tracker alignment. The systematic differences disappear when the track-based barrel alignment is performed using the new “twist-free” tracker alignment. This removes the largest remaining source of systematic uncertainty. Since the barrel alignment is based on hardware, it does not suffer from the tracker twist. However, untwisting the tracker causes endcap disks (which are aligned ...

  1. Bright single photon source based on self-aligned quantum dot–cavity systems

    DEFF Research Database (Denmark)

    Maier, Sebastian; Gold, Peter; Forchel, Alfred;

    2014-01-01

    We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum...... dot to a Gaussian shaped nanohill defect that naturally arises during epitaxial growth in a self-aligned manner. We investigate the morphology of these defects and characterize the photonic operation mechanism. Our results show that these naturally arising coupled quantum dot-defects provide a new...

  2. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez.

    Since June of 2009, the muon alignment group has focused on providing new alignment constants and on finalizing the hardware alignment reconstruction. Alignment constants for DTs and CSCs were provided for CRAFT09 data reprocessing. For DT chambers, the track-based alignment was repeated using CRAFT09 cosmic ray muons and validated using segment extrapolation and split cosmic tools. One difference with respect to the previous alignment is that only five degrees of freedom were aligned, leaving the rotation around the local x-axis to be better determined by the hardware system. Similarly, DT chambers poorly aligned by tracks (due to limited statistics) were aligned by a combination of photogrammetry and hardware-based alignment. For the CSC chambers, the hardware system provided alignment in global z and rotations about local x. Entire muon endcap rings were further corrected in the transverse plane (global x and y) by the track-based alignment. Single chamber track-based alignment suffers from poor statistic...

  3. SDT: a virus classification tool based on pairwise sequence alignment and identity calculation.

    Directory of Open Access Journals (Sweden)

    Brejnev Muhizi Muhire

    Full Text Available The perpetually increasing rate at which viral full-genome sequences are being determined is creating a pressing demand for computational tools that will aid the objective classification of these genome sequences. Taxonomic classification approaches that are based on pairwise genetic identity measures are potentially highly automatable and are progressively gaining favour with the International Committee on Taxonomy of Viruses (ICTV. There are, however, various issues with the calculation of such measures that could potentially undermine the accuracy and consistency with which they can be applied to virus classification. Firstly, pairwise sequence identities computed based on multiple sequence alignments rather than on multiple independent pairwise alignments can lead to the deflation of identity scores with increasing dataset sizes. Also, when gap-characters need to be introduced during sequence alignments to account for insertions and deletions, methodological variations in the way that these characters are introduced and handled during pairwise genetic identity calculations can cause high degrees of inconsistency in the way that different methods classify the same sets of sequences. Here we present Sequence Demarcation Tool (SDT, a free user-friendly computer program that aims to provide a robust and highly reproducible means of objectively using pairwise genetic identity calculations to classify any set of nucleotide or amino acid sequences. SDT can produce publication quality pairwise identity plots and colour-coded distance matrices to further aid the classification of sequences according to ICTV approved taxonomic demarcation criteria. Besides a graphical interface version of the program for Windows computers, command-line versions of the program are available for a variety of different operating systems (including a parallel version for cluster computing platforms.

  4. Studies on structure-based sequence alignment and phylogenies of beta-lactamases.

    Science.gov (United States)

    Salahuddin, Parveen; Khan, Asad U

    2014-01-01

    The β-lactamases enzymes cleave the amide bond in β-lactam ring, rendering β-lactam antibiotics harmless to bacteria. In this communication we have studied structure-function relationship and phylogenies of class A, B and D beta-lactamases using structure-based sequence alignment and phylip programs respectively. The data of structure-based sequence alignment suggests that in different isolates of TEM-1, mutations did not occur at or near sequence motifs. Since deletions are reported to be lethal to structure and function of enzyme. Therefore, in these variants antibiotic hydrolysis profile and specificity will be affected. The alignment data of class A enzyme SHV-1, CTX-M-15, class D enzyme, OXA-10, and class B enzyme VIM-2 and SIM-1 show sequence motifs along with other part of polypeptide are essentially conserved. These results imply that conformations of betalactamases are close to native state and possess normal hydrolytic activities towards beta-lactam antibiotics. However, class B enzyme such as IMP-1 and NDM-1 are less conserved than other class A and D studied here because mutation and deletions occurred at critically important region such as active site. Therefore, the structure of these beta-lactamases will be altered and antibiotic hydrolysis profile will be affected. Phylogenetic studies suggest that class A and D beta-lactamases including TOHO-1 and OXA-10 respectively evolved by horizontal gene transfer (HGT) whereas other member of class A such as TEM-1 evolved by gene duplication mechanism. Taken together, these studies justify structure-function relationship of beta-lactamases and phylogenetic studies suggest these enzymes evolved by different mechanisms. PMID:24966539

  5. Video-based beam position monitoring at CHESS

    Science.gov (United States)

    Revesz, Peter; Pauling, Alan; Krawczyk, Thomas; Kelly, Kevin J.

    2012-10-01

    CHESS has pioneered the development of X-ray Video Beam Position Monitors (VBPMs). Unlike traditional photoelectron beam position monitors that rely on photoelectrons generated by the fringe edges of the X-ray beam, with VBPMs we collect information from the whole cross-section of the X-ray beam. VBPMs can also give real-time shape/size information. We have developed three types of VBPMs: (1) VBPMs based on helium luminescence from the intense white X-ray beam. In this case the CCD camera is viewing the luminescence from the side. (2) VBPMs based on luminescence of a thin (~50 micron) CVD diamond sheet as the white beam passes through it. The CCD camera is placed outside the beam line vacuum and views the diamond fluorescence through a viewport. (3) Scatter-based VBPMs. In this case the white X-ray beam passes through a thin graphite filter or Be window. The scattered X-rays create an image of the beam's footprint on an X-ray sensitive fluorescent screen using a slit placed outside the beam line vacuum. For all VBPMs we use relatively inexpensive 1.3 Mega-pixel CCD cameras connected via USB to a Windows host for image acquisition and analysis. The VBPM host computers are networked and provide live images of the beam and streams of data about the beam position, profile and intensity to CHESS's signal logging system and to the CHESS operator. The operational use of VBPMs showed great advantage over the traditional BPMs by providing direct visual input for the CHESS operator. The VBPM precision in most cases is on the order of ~0.1 micron. On the down side, the data acquisition frequency (50-1000ms) is inferior to the photoelectron based BPMs. In the future with the use of more expensive fast cameras we will be able create VBPMs working in the few hundreds Hz scale.

  6. Simulation based analysis of laser beam brazing

    Science.gov (United States)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  7. RHIC survey and alignment

    International Nuclear Information System (INIS)

    The Relativistic Heavy Ion Collider consists of two interlaced plane rings, a pair of mirror-symmetric beam injection arcs, a spatially curved beam transfer line from the Alternating Gradient Synchrotron, and a collection of precisely positioned and aligned magnets, on appropriately positioned support stands, threaded on those arcs. RHIC geometry is defined by six beam crossing points exactly in a plane, lying precisely at the vertices of a regular hexagon of specified size position and orientation of this hexagon are defined geodetically. Survey control and alignment procedures, currently in use to construct RHIC, are described

  8. A Dirichlet Process Mixture Based Name Origin Clustering and Alignment Model for Transliteration

    Directory of Open Access Journals (Sweden)

    Chunyue Zhang

    2015-01-01

    Full Text Available In machine transliteration, it is common that the transliterated names in the target language come from multiple language origins. A conventional maximum likelihood based single model can not deal with this issue very well and often suffers from overfitting. In this paper, we exploit a coupled Dirichlet process mixture model (cDPMM to address overfitting and names multiorigin cluster issues simultaneously in the transliteration sequence alignment step over the name pairs. After the alignment step, the cDPMM clusters name pairs into many groups according to their origin information automatically. In the decoding step, in order to use the learned origin information sufficiently, we use a cluster combination method (CCM to build clustering-specific transliteration models by combining small clusters into large ones based on the perplexities of name language and transliteration model, which makes sure each origin cluster has enough data for training a transliteration model. On the three different Western-Chinese multiorigin names corpora, the cDPMM outperforms two state-of-the-art baseline models in terms of both the top-1 accuracy and mean F-score, and furthermore the CCM significantly improves the cDPMM.

  9. Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed

    Science.gov (United States)

    Taylor, Jaime R.

    2003-01-01

    NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.

  10. Reliability of lower limb alignment measures using an established landmark-based method with a customized computer software program.

    Science.gov (United States)

    Sled, Elizabeth A; Sheehy, Lisa M; Felson, David T; Costigan, Patrick A; Lam, Miu; Cooke, T Derek V

    2011-01-01

    The objective of the study was to evaluate the reliability of frontal plane lower limb alignment measures using a landmark-based method by (1) comparing inter- and intra-reader reliability between measurements of alignment obtained manually with those using a computer program, and (2) determining inter- and intra-reader reliability of computer-assisted alignment measures from full-limb radiographs. An established method for measuring alignment was used, involving selection of 10 femoral and tibial bone landmarks. (1) To compare manual and computer methods, we used digital images and matching paper copies of five alignment patterns simulating healthy and malaligned limbs drawn using AutoCAD. Seven readers were trained in each system. Paper copies were measured manually and repeat measurements were performed daily for 3 days, followed by a similar routine with the digital images using the computer. (2) To examine the reliability of computer-assisted measures from full-limb radiographs, 100 images (200 limbs) were selected as a random sample from 1,500 full-limb digital radiographs which were part of the Multicenter Osteoarthritis Study. Three trained readers used the software program to measure alignment twice from the batch of 100 images, with two or more weeks between batch handling. Manual and computer measures of alignment showed excellent agreement (intraclass correlations [ICCs] 0.977-0.999 for computer analysis; 0.820-0.995 for manual measures). The computer program applied to full-limb radiographs produced alignment measurements with high inter- and intra-reader reliability (ICCs 0.839-0.998). In conclusion, alignment measures using a bone landmark-based approach and a computer program were highly reliable between multiple readers. PMID:19882339

  11. Genetic algorithm based fast alignment method for strap-down inertial navigation system with large azimuth misalignment

    Science.gov (United States)

    He, Hongyang; Xu, Jiangning; Qin, Fangjun; Li, Feng

    2015-11-01

    In order to shorten the alignment time and eliminate the small initial misalignment limit for compass alignment of strap-down inertial navigation system (SINS), which is sometimes not easy to satisfy when the ship is moored or anchored, an optimal model based time-varying parameter compass alignment algorithm is proposed in this paper. The contributions of the work presented here are twofold. First, the optimization of compass alignment parameters, which involves a lot of trial-and-error traditionally, is achieved based on genetic algorithm. On this basis, second, the optimal parameter varying model is established by least-square polynomial fitting. Experiments are performed with a navigational grade fiber optical gyroscope SINS, which validate the efficiency of the proposed method.

  12. Applications of power beaming from space-based nuclear power stations. [Laser beaming to airplanes; microwave beaming to ground

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Botts, T.E.; Hertzberg, A.

    1981-01-01

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000/sup 0/K and a liquid drop radiator to reject heat at temperatures of approx. 500/sup 0/K. Higher RBR coolant temperatures (up to approx. 3000/sup 0/K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beaming to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel.

  13. ProbeAlign: incorporating high-throughput sequencing-based structure probing information into ncRNA homology search

    OpenAIRE

    Ge, Ping; Zhong, Cuncong; Zhang, Shaojie

    2014-01-01

    Background Recent advances in RNA structure probing technologies, including the ones based on high-throughput sequencing, have improved the accuracy of thermodynamic folding with quantitative nucleotide-resolution structural information. Results In this paper, we present a novel approach, ProbeAlign, to incorporate the reactivities from high-throughput RNA structure probing into ncRNA homology search for functional annotation. To reduce the overhead of structure alignment on large-scale data,...

  14. Beam-driven, Plasma-based Particle Accelerators

    CERN Document Server

    Muggli, P

    2016-01-01

    We briefly give some of the characteristics of the beam-driven, plasma-based particle accelerator known as the plasma wakefield accelerator (PWFA). We also mention some of the major results that have been obtained since the birth of the concept. We focus on high-energy particle beams where possible.

  15. New ISOL-based radioactive nuclear beam facility at INS

    International Nuclear Information System (INIS)

    An ISOL-based radioactive nuclear beam facility is just about to come into operation at INS. The present status of the INS radioactive nuclear beam project is reported. The capability of the facility and possible experiments are also discussed, including research programs of nuclear physics and nuclear astrophysics. (orig.)

  16. Arc-based smoothing of ion beam intensity on targets

    International Nuclear Information System (INIS)

    By manipulating a set of ion beams upstream of a target, it is possible to arrange for a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. It is found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.

  17. Arc-based smoothing of ion beam intensity on targets

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Alex [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States) and The Virtual National Laboratory for Heavy Ion Fusion Science (United States)

    2012-06-15

    By manipulating a set of ion beams upstream of a target, it is possible to arrange for a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy ('heavy-ion fusion'). Here, we consider an approach to such smoothing that is based on rapidly 'wobbling' each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. It is found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.

  18. Arc-based smoothing of ion beam intensity on targets

    Science.gov (United States)

    Friedman, Alex

    2012-06-01

    By manipulating a set of ion beams upstream of a target, it is possible to arrange for a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy ("heavy-ion fusion"). Here, we consider an approach to such smoothing that is based on rapidly "wobbling" each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. It is found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.

  19. Comparison of LHC collimation setups with manual and semi-automatic collimator alignment

    CERN Document Server

    Valentino, G; Bruce, R; Burkart, F; Cauchi, M; Deboy, D; Redaelli, S; Rossi, A; Sammut, N; Wollmann, D

    2011-01-01

    The LHC collimation system beam-based alignment procedure has recently been upgraded to a semi-automatic process in order to increase its efficiency. In this paper, we describe the parameters used to measure the accuracy, stability and performance of the beam-based alignment of the LHC collimation system. This is followed by a comparison of the results at 450 GeV and 3.5 TeV with (1) a manual alignment and (2) with the results for semi-automatic alignment.

  20. Image Guidance During Head-and-Neck Cancer Radiation Therapy: Analysis of Alignment Trends With In-Room Cone-Beam Computed Tomography Scans

    International Nuclear Information System (INIS)

    Purpose: On-board cone-beam computed tomography (CBCT) is currently available for alignment of patients with head-and-neck cancer before radiotherapy. However, daily CBCT is time intensive and increases the overall radiation dose. We assessed the feasibility of using the average couch shifts from the first several CBCTs to estimate and correct for the presumed systematic setup error. Methods and Materials: 56 patients with head-and-neck cancer who received daily CBCT before intensity-modulated radiation therapy had recorded shift values in the medial–lateral, superior–inferior, and anterior–posterior dimensions. The average displacements in each direction were calculated for each patient based on the first five or 10 CBCT shifts and were presumed to represent the systematic setup error. The residual error after this correction was determined by subtracting the calculated shifts from the shifts obtained using daily CBCT. Results: The magnitude of the average daily residual three-dimensional (3D) error was 4.8 ± 1.4 mm, 3.9 ± 1.3 mm, and 3.7 ± 1.1 mm for uncorrected, five CBCT corrected, and 10 CBCT corrected protocols, respectively. With no image guidance, 40.8% of fractions would have been >5 mm off target. Using the first five CBCT shifts to correct subsequent fractions, this percentage decreased to 19.0% of all fractions delivered and decreased the percentage of patients with average daily 3D errors >5 mm from 35.7% to 14.3% vs. no image guidance. Using an average of the first 10 CBCT shifts did not significantly improve this outcome. Conclusions: Using the first five CBCT shift measurements as an estimation of the systematic setup error improves daily setup accuracy for a subset of patients with head-and-neck cancer receiving intensity-modulated radiation therapy and primarily benefited those with large 3D correction vectors (>5 mm). Daily CBCT is still necessary until methods are developed that more accurately determine which patients may benefit from

  1. Automatic learning-based beam angle selection for thoracic IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Amit, Guy; Marshall, Andrea [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9 (Canada); Purdie, Thomas G., E-mail: tom.purdie@rmp.uhn.ca; Jaffray, David A. [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Techna Institute, University Health Network, Toronto, Ontario M5G 1P5 (Canada); Levinshtein, Alex [Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4 (Canada); Hope, Andrew J.; Lindsay, Patricia [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Pekar, Vladimir [Philips Healthcare, Markham, Ontario L6C 2S3 (Canada)

    2015-04-15

    Purpose: The treatment of thoracic cancer using external beam radiation requires an optimal selection of the radiation beam directions to ensure effective coverage of the target volume and to avoid unnecessary treatment of normal healthy tissues. Intensity modulated radiation therapy (IMRT) planning is a lengthy process, which requires the planner to iterate between choosing beam angles, specifying dose–volume objectives and executing IMRT optimization. In thorax treatment planning, where there are no class solutions for beam placement, beam angle selection is performed manually, based on the planner’s clinical experience. The purpose of this work is to propose and study a computationally efficient framework that utilizes machine learning to automatically select treatment beam angles. Such a framework may be helpful for reducing the overall planning workload. Methods: The authors introduce an automated beam selection method, based on learning the relationships between beam angles and anatomical features. Using a large set of clinically approved IMRT plans, a random forest regression algorithm is trained to map a multitude of anatomical features into an individual beam score. An optimization scheme is then built to select and adjust the beam angles, considering the learned interbeam dependencies. The validity and quality of the automatically selected beams evaluated using the manually selected beams from the corresponding clinical plans as the ground truth. Results: The analysis included 149 clinically approved thoracic IMRT plans. For a randomly selected test subset of 27 plans, IMRT plans were generated using automatically selected beams and compared to the clinical plans. The comparison of the predicted and the clinical beam angles demonstrated a good average correspondence between the two (angular distance 16.8° ± 10°, correlation 0.75 ± 0.2). The dose distributions of the semiautomatic and clinical plans were equivalent in terms of primary target volume

  2. Automatic learning-based beam angle selection for thoracic IMRT

    International Nuclear Information System (INIS)

    Purpose: The treatment of thoracic cancer using external beam radiation requires an optimal selection of the radiation beam directions to ensure effective coverage of the target volume and to avoid unnecessary treatment of normal healthy tissues. Intensity modulated radiation therapy (IMRT) planning is a lengthy process, which requires the planner to iterate between choosing beam angles, specifying dose–volume objectives and executing IMRT optimization. In thorax treatment planning, where there are no class solutions for beam placement, beam angle selection is performed manually, based on the planner’s clinical experience. The purpose of this work is to propose and study a computationally efficient framework that utilizes machine learning to automatically select treatment beam angles. Such a framework may be helpful for reducing the overall planning workload. Methods: The authors introduce an automated beam selection method, based on learning the relationships between beam angles and anatomical features. Using a large set of clinically approved IMRT plans, a random forest regression algorithm is trained to map a multitude of anatomical features into an individual beam score. An optimization scheme is then built to select and adjust the beam angles, considering the learned interbeam dependencies. The validity and quality of the automatically selected beams evaluated using the manually selected beams from the corresponding clinical plans as the ground truth. Results: The analysis included 149 clinically approved thoracic IMRT plans. For a randomly selected test subset of 27 plans, IMRT plans were generated using automatically selected beams and compared to the clinical plans. The comparison of the predicted and the clinical beam angles demonstrated a good average correspondence between the two (angular distance 16.8° ± 10°, correlation 0.75 ± 0.2). The dose distributions of the semiautomatic and clinical plans were equivalent in terms of primary target volume

  3. Channels Reallocation In Cognitive Radio Networks Based On DNA Sequence Alignment

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Singh

    2010-06-01

    Full Text Available Nowadays, It has been shown that spectrum scarcity increased due to tremendous growth of new playersin wireless base system by the evolution of the radio communication. Resent survey found that there aremany areas of the radio spectrum that are occupied by authorized user/primary user (PU, which are notfully utilized. Cognitive radios (CR prove to next generation wireless communication system thatproposed as a way to reuse this under-utilised spectrum in an opportunistic and non-interfering basis. ACR is a self-directed entity in a wireless communications environment that senses its environment, trackschanges, and reacts upon its findings and frequently exchanges information with the networks forsecondary user (SU. However, CR facing collision problem with tracks changes i.e. reallocating of otherempty channels for SU while PU arrives. In this paper, channels reallocation technique based on DNAsequence alignment algorithm for CR networks has been proposed.

  4. Channels Reallocation In Cognitive Radio Networks Based On DNA Sequence Alignment

    CERN Document Server

    Singh, Santosh Kumar; Pathak, Vibhakar; 10.5121/ijngn.2010.2203

    2010-01-01

    Nowadays, It has been shown that spectrum scarcity increased due to tremendous growth of new players in wireless base system by the evolution of the radio communication. Resent survey found that there are many areas of the radio spectrum that are occupied by authorized user/primary user (PU), which are not fully utilized. Cognitive radios (CR) prove to next generation wireless communication system that proposed as a way to reuse this under-utilised spectrum in an opportunistic and non-interfering basis. A CR is a self-directed entity in a wireless communications environment that senses its environment, tracks changes, and reacts upon its findings and frequently exchanges information with the networks for secondary user (SU). However, CR facing collision problem with tracks changes i.e. reallocating of other empty channels for SU while PU arrives. In this paper, channels reallocation technique based on DNA sequence alignment algorithm for CR networks has been proposed.

  5. Structure-Based Alignment and Consensus Secondary Structures for Three HIV-Related RNA Genomes.

    Directory of Open Access Journals (Sweden)

    Christopher A Lavender

    2015-05-01

    Full Text Available HIV and related primate lentiviruses possess single-stranded RNA genomes. Multiple regions of these genomes participate in critical steps in the viral replication cycle, and the functions of many RNA elements are dependent on the formation of defined structures. The structures of these elements are still not fully understood, and additional functional elements likely exist that have not been identified. In this work, we compared three full-length HIV-related viral genomes: HIV-1NL4-3, SIVcpz, and SIVmac (the latter two strains are progenitors for all HIV-1 and HIV-2 strains, respectively. Model-free RNA structure comparisons were performed using whole-genome structure information experimentally derived from nucleotide-resolution SHAPE reactivities. Consensus secondary structures were constructed for strongly correlated regions by taking into account both SHAPE probing structural data and nucleotide covariation information from structure-based alignments. In these consensus models, all known functional RNA elements were recapitulated with high accuracy. In addition, we identified multiple previously unannotated structural elements in the HIV-1 genome likely to function in translation, splicing and other replication cycle processes; these are compelling targets for future functional analyses. The structure-informed alignment strategy developed here will be broadly useful for efficient RNA motif discovery.

  6. Aligned carbon nanotube based ultrasonic microtransducers for durability monitoring in civil engineering.

    Science.gov (United States)

    Lebental, B; Chainais, P; Chenevier, P; Chevalier, N; Delevoye, E; Fabbri, J-M; Nicoletti, S; Renaux, P; Ghis, A

    2011-09-30

    Structural health monitoring of porous materials such as concrete is becoming a major component in our resource-limited economy, as it conditions durable exploitation of existing facilities. Durability in porous materials depends on nanoscale features which need to be monitored in situ with nanometric resolution. To address this problem, we put forward an approach based on the development of a new nanosensor, namely a capacitive micrometric ultrasonic transducer whose vibrating membrane is made of aligned single-walled carbon nanotubes (SWNT). Such sensors are meant to be embedded in large numbers within a porous material in order to provide information on its durability by monitoring in situ neighboring individual micropores. In the present paper, we report on the feasibility of the key building block of the proposed sensor: we have fabricated well-aligned, ultra-thin, dense SWNT membranes that show above-nanometer amplitudes of vibration over a large range of frequencies spanning from 100 kHz to 5 MHz. PMID:21891837

  7. STAR3D: a stack-based RNA 3D structural alignment tool.

    Science.gov (United States)

    Ge, Ping; Zhang, Shaojie

    2015-11-16

    The various roles of versatile non-coding RNAs typically require the attainment of complex high-order structures. Therefore, comparing the 3D structures of RNA molecules can yield in-depth understanding of their functional conservation and evolutionary history. Recently, many powerful tools have been developed to align RNA 3D structures. Although some methods rely on both backbone conformations and base pairing interactions, none of them consider the entire hierarchical formation of the RNA secondary structure. One of the major issues is that directly applying the algorithms of matching 2D structures to the 3D coordinates is particularly time-consuming. In this article, we propose a novel RNA 3D structural alignment tool, STAR3D, to take into full account the 2D relations between stacks without the complicated comparison of secondary structures. First, the 3D conserved stacks in the inputs are identified and then combined into a tree-like consensus. Afterward, the loop regions are compared one-to-one in accordance with their relative positions in the consensus tree. The experimental results show that the prediction of STAR3D is more accurate for both non-homologous and homologous RNAs than other state-of-the-art tools with shorter running time. PMID:26184875

  8. Aligned carbon nanotube based ultrasonic microtransducers for durability monitoring in civil engineering

    Science.gov (United States)

    Lebental, B.; Chainais, P.; Chenevier, P.; Chevalier, N.; Delevoye, E.; Fabbri, J.-M.; Nicoletti, S.; Renaux, P.; Ghis, A.

    2011-09-01

    Structural health monitoring of porous materials such as concrete is becoming a major component in our resource-limited economy, as it conditions durable exploitation of existing facilities. Durability in porous materials depends on nanoscale features which need to be monitored in situ with nanometric resolution. To address this problem, we put forward an approach based on the development of a new nanosensor, namely a capacitive micrometric ultrasonic transducer whose vibrating membrane is made of aligned single-walled carbon nanotubes (SWNT). Such sensors are meant to be embedded in large numbers within a porous material in order to provide information on its durability by monitoring in situ neighboring individual micropores. In the present paper, we report on the feasibility of the key building block of the proposed sensor: we have fabricated well-aligned, ultra-thin, dense SWNT membranes that show above-nanometer amplitudes of vibration over a large range of frequencies spanning from 100 kHz to 5 MHz.

  9. Aligned carbon nanotube based ultrasonic microtransducers for durability monitoring in civil engineering

    International Nuclear Information System (INIS)

    Structural health monitoring of porous materials such as concrete is becoming a major component in our resource-limited economy, as it conditions durable exploitation of existing facilities. Durability in porous materials depends on nanoscale features which need to be monitored in situ with nanometric resolution. To address this problem, we put forward an approach based on the development of a new nanosensor, namely a capacitive micrometric ultrasonic transducer whose vibrating membrane is made of aligned single-walled carbon nanotubes (SWNT). Such sensors are meant to be embedded in large numbers within a porous material in order to provide information on its durability by monitoring in situ neighboring individual micropores. In the present paper, we report on the feasibility of the key building block of the proposed sensor: we have fabricated well-aligned, ultra-thin, dense SWNT membranes that show above-nanometer amplitudes of vibration over a large range of frequencies spanning from 100 kHz to 5 MHz.

  10. Aligned carbon nanotube based ultrasonic microtransducers for durability monitoring in civil engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lebental, B [Universite Paris-Est, IFSTTAR, 58 boulevard Lefebvre, 75732 Paris Cedex 15 (France); Chainais, P [INRIA Lille-Nord Europe (SEQUEL), 40 avenue Halley, 59650 Villeneuve d' Ascq (France); Chenevier, P [SPEC, IRAMIS, CEA/Saclay, Gif-sur-Yvette (France); Chevalier, N; Delevoye, E; Fabbri, J-M; Nicoletti, S; Renaux, P; Ghis, A, E-mail: berengere.lebental@ifsttar.fr [CEA, LETI, MINATEC Campus, F-38054 Grenoble (France)

    2011-09-30

    Structural health monitoring of porous materials such as concrete is becoming a major component in our resource-limited economy, as it conditions durable exploitation of existing facilities. Durability in porous materials depends on nanoscale features which need to be monitored in situ with nanometric resolution. To address this problem, we put forward an approach based on the development of a new nanosensor, namely a capacitive micrometric ultrasonic transducer whose vibrating membrane is made of aligned single-walled carbon nanotubes (SWNT). Such sensors are meant to be embedded in large numbers within a porous material in order to provide information on its durability by monitoring in situ neighboring individual micropores. In the present paper, we report on the feasibility of the key building block of the proposed sensor: we have fabricated well-aligned, ultra-thin, dense SWNT membranes that show above-nanometer amplitudes of vibration over a large range of frequencies spanning from 100 kHz to 5 MHz.

  11. A nonlinear biomechanical model based registration method for aligning prone and supine MR breast images.

    Science.gov (United States)

    Han, Lianghao; Hipwell, John H; Eiben, Björn; Barratt, Dean; Modat, Marc; Ourselin, Sebastien; Hawkes, David J

    2014-03-01

    Preoperative diagnostic magnetic resonance (MR) breast images can provide good contrast between different tissues and 3-D information about suspicious tissues. Aligning preoperative diagnostic MR images with a patient in the theatre during breast conserving surgery could assist surgeons in achieving the complete excision of cancer with sufficient margins. Typically, preoperative diagnostic MR breast images of a patient are obtained in the prone position, while surgery is performed in the supine position. The significant shape change of breasts between these two positions due to gravity loading, external forces and related constraints makes the alignment task extremely difficult. Our previous studies have shown that either nonrigid intensity-based image registration or biomechanical modelling alone are limited in their ability to capture such a large deformation. To tackle this problem, we proposed in this paper a nonlinear biomechanical model-based image registration method with a simultaneous optimization procedure for both the material parameters of breast tissues and the direction of the gravitational force. First, finite element (FE) based biomechanical modelling is used to estimate a physically plausible deformation of the pectoral muscle and the major deformation of breast tissues due to gravity loading. Then, nonrigid intensity-based image registration is employed to recover the remaining deformation that FE analyses do not capture due to the simplifications and approximations of biomechanical models and the uncertainties of external forces and constraints. We assess the registration performance of the proposed method using the target registration error of skin fiducial markers and the Dice similarity coefficient (DSC) of fibroglandular tissues. The registration results on prone and supine MR image pairs are compared with those from two alternative nonrigid registration methods for five breasts. Overall, the proposed algorithm achieved the best registration

  12. Beam Position Monitoring at CLIC

    CERN Document Server

    Prochnow, J

    2003-01-01

    At the European Organisation for Nuclear Research CERN in Geneva, Switzerland the design of the Compact LInear Collider (CLIC) for high energy physics is studied. To achieve the envisaged high luminosity the quadrupole magnets and radio-frequency accelerating structures have to be actively aligned with micron precision and submicron resolution. This will be done using beam-based algorithms which rely on beam position information inside of quadrupoles and accelerating structures. After a general introduction to the CLIC study and the alignment algorithms, the concept of the interaction between beams and radio-frequency structures is given. In the next chapter beam measurements and simulations are described which were done to study the performance of cavity beam position monitors (BPM). A BPM design is presented which is compatible with the multi-bunch operation at CLIC and could be used to align the quadrupoles. The beam position inside the accelerating structures will be measured by using the structures thems...

  13. Remote sensing of local structure of the quasi-perpendicular Earth's bow shock by using field-aligned beams

    Directory of Open Access Journals (Sweden)

    B. Miao

    2009-03-01

    Full Text Available Field-aligned ion beams (FABs originate at the quasi-perpendicular Earth's bow shock and constitute an important ion population in the foreshock region. The bulk velocity of these FABs depends significantly on the shock normal angle, which is the angle between shock normal and upstream interplanetary magnetic field (IMF. This dependency may therefore be taken as an indicator of the local structure of the shock. Applying the direct reflection model to Cluster measurements, we have developed a method that uses proton FABs in the foreshock region for remote sensing of the local shock structure. The comparison of the model results with the multi-spacecraft observations of FAB events shows very good agreement in terms of wave amplitude and frequency of surface waves at the shock front.

  14. Nanofibre-assisted alignment of carbon nanotubes in macroscopic polymer matrix via a scaffold-based method

    Directory of Open Access Journals (Sweden)

    2010-01-01

    Full Text Available A facile way for alignment of carbon nanotubes in macroscopic polymer matrix was developed by combining electrospinning and in-situ polymerization. The approach is based on the formation of nanofibre scaffolds with wellaligned arrays, which is filled with carbon nanotubes (CNTs. CNTs will be well aligned in macroscopic polymer matrix when the aligned nanofibre scaffold containing CNTs has been incorporated into the poly(methyl methacrylate (PMMA matrix by in-situ polymerization. We demonstrate that this scaffold approach is broadly applicable and allows for the fabrication of nanocomposites with accurately aligned nanofillers. The results presented in this report show that the approach is ideal by using polyacrylonitrile (PAN nanofibres as a scaffold of multiwalled carbon nanotubes (MWNTs, and PMMA as the macroscopic polymer matrix. The tensile strength (7.2 wt% MWNTs/PAN nanofibres loadings reaches 48.61 MPa, 87% higher than that pure PMMA, and the tensile modulus is increased by 175%.

  15. Alignment of the magnet and a positioning method

    Science.gov (United States)

    Kim, Dae-Il

    2015-10-01

    The 100-MeV proton linac and magnets for the KOMAC (Korea Multi-purpose Accelerator Complex) were installed in the tunnel and the beamlines. The fiducialization process was accomplished with the measurement of mechanical shape and the transfer of the coordinates to the fiducial points that are used in two laser-trackers based alignments. The reference points called the alignment network were set up on the wall inside tunnel. The linac and the beam transport magnets were aligned based on the survey results of the alignment networks. In this paper, the alignment procedure and the alignment results are presented, and an algorithm that was developed to manipulate the adjusters of the magnetsis introduced.

  16. Radiological Outcomes and Operative Time following Total Knee Arthroplasty using Accelerometer-based, Portable Navigation versus Conventional Inter-Medullary Alignment Guides

    Science.gov (United States)

    MacDessi, Samuel; Solayar, GN; Thatcher, N; Chen, Darren B

    2016-01-01

    Objectives: Accelerometer-based, portable navigation instrumentation is a new method of achieving desired resection alignments in total knee arthroplasty (TKA). Methods: After randomisation and the application of exclusion criteria, 79 knees were analysed. 42 patients which underwent TKA using conventional intra-medullary (IM) alignment guides were compared to 37 patients with the use of accelerometer-based, portable navigation device (KneeAlign; OrthoAlign Inc, Aliso Viejo, California). Radiographic results were obtained from post-operative computer-tomography following the CT Perth Protocol. Results: In the IM cohort, 81.0% of patients had a coronal alignment within 3° of a neutral mechanical axis (vs 83.8% with KneeAlign, p=0.74), 81.0% had a femoral coronal alignment within 2° of perpendicular to the femoral mechanical axis (vs 89.2% with KneeAlign, p=0.31), and 92.9% had a tibial coronal alignment within 2° of perpendicular to the tibial mechanical axis (vs 81.1% with KneeAlign, p=0.12). Regarding sagittal alignment, the IM cohort had 90.5% of patients with femoral component alignment within 2° of optimum (vs 91.9% with KneeAlign, p=0.83) and 92.9% had a tibial component alignment within 2° of the optimal tibial slope (vs 89.2% with KneeAlign, p=0.57). The mean tourniquet time (from incision to completion of coronal bone resections) in the IM cohort was 16.5± 8.9 minutes vs 22.2 ± 7.6 minutes in the KneeAlign cohort (p<0.003). Conclusion: Accelerometer-based, portable navigation has a statistically similar outcome in alignment following TKA as IM guides. It is noted that using the portable navigation device does prolong surgical time compared to conventional IM surgery and this may be due to the learning curve.

  17. Control of Beam Halo-Chaos Based on Self-Field-Intensity of Particle Beam

    Institute of Scientific and Technical Information of China (English)

    YU Hai-Jun; BAI Long; WENG Jia-Qiang; LUO Xiao-Shu

    2008-01-01

    @@ The KV beam through an axisymmetric periodic-focusing magnetic field is studied using the particle-core model.A new variable of the self-field-intensity of particle beam is selected,and an idea of self-field feedback controller is proposed based on the variable for controlling the halo-chaos.We perform multiparticle simulation to control the halo by using the self-field feedback controller.

  18. An Electron Beam Profile Instrument Based on FBGs

    Directory of Open Access Journals (Sweden)

    Dan Sporea

    2014-08-01

    Full Text Available Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam localization and the beam profile/energy distribution in the beam are parameters of interest for charged particle accelerator installations when they are used in scientific investigations, industrial applications or medical treatments. The transverse profile of the beam, its position, its centroid location, and its focus or flatness depend on the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs was demonstrated. Its operating principle relies on the measurement of the peak wavelength changes for an array of FBG sensors as function of the temperature following the exposure to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force cooled to a reference temperature with which the temperature influencing each sensor during beam exposure is compared. Commercially available FBGs, and FBGs written in radiation resistant optical fibers, were tested under electron beam irradiation in order to study their possible use in this application.

  19. Reactor - and accelerator-based filtered beams

    International Nuclear Information System (INIS)

    The neutrons produced in high flux nuclear reactors and in accelerator, induced fission and spallation reactions, represent the most intense sources of neutrons available for research. However, the neutrons from these sources are not monoenergetic, covering the broad range extending from 10-3 eV up to 107 eV or so. In order to make quantitative measurements of the effects of neutrons and their dependence on neutron energy it is desirable to have mono-energetic neutron sources. The paper describes briefly methods of obtaining mono-energetic neutrons and different methods of filtration. This is followed by more detailed discussion of neutron window filters and a summary of the filtered beam facilities using this technique. The review concludes with a discussion of the main applications of filtered beams and their present and future importance

  20. On using the beaming effect to measure spin-orbit alignment in stellar binaries with Sun-like components

    CERN Document Server

    Shporer, Avi; Mazeh, Tsevi; Zucker, Shay

    2011-01-01

    The beaming effect (aka Doppler boosting) induces a variation in the observed flux of a luminous object, following its observed radial velocity variation. We describe a photometric signal induced by the beaming effect during eclipse of binary systems, where the stellar components are late type Sun-like stars. The shape of this signal is sensitive to the angle between the eclipsed star's spin axis and the orbital angular momentum axis, thereby allowing its measurement. We show that during eclipse there are in fact two effects, superimposed on the known eclipse light curve. One effect is produced by the rotation of the eclipsed star, and is the photometric analog of the spectroscopic Rossiter-McLaughlin effect, thereby it contains information about the sky-projected spin-orbit angle. The other effect is produced by the varying weighted difference, during eclipse, between the beaming signals of the two stars. We give approximated analytic expressions for the amplitudes of the two effects, and present a numerical...

  1. First Experiences of Beam Presence Detection Based on Dedicated Beam Position Monitors

    CERN Document Server

    Jalal, A; Gasior, M; Todd, B

    2011-01-01

    High intensity particle beam injection into the LHC is only permitted when a low intensity pilot beam is already circulating in the LHC. This requirement addresses some of the risks associated with high intensity injection, and is enforced by a so-called Beam Presence Flag (BPF) system which is part of the interlock chain between the LHC and its injector complex. For the 2010 LHC run, the detection of the presence of this pilot beam was implemented using the LHC Fast Beam Current Transformer (FBCT) system. However, the primary function of the FBCTs, that is reliable measurement of beam currents, did not allow the BPF system to satisfy all quality requirements of the LHC Machine Protection System (MPS). Safety requirements associated with high intensity injections triggered the development of a dedicated system, based on Beam Position Monitors (BPM). This system was meant to work first in parallel with the FBCT BPF system and eventually replace it. At the end of 2010 and in 2011, this new BP...

  2. Ion beam analysis based on cellular nonlinear networks

    OpenAIRE

    Senger, V.; R. Tetzlaff; H. Reichau; Ratzinger, U.

    2011-01-01

    The development of a non- destructive measurement method for ion beam parameters has been treated in various projects. Although results are promising, the high complexity of beam dynamics has made it impossible to implement a real time process control up to now. In this paper we will propose analysing methods based on the dynamics of Cellular Nonlinear Networks (CNN) that can be implemented on pixel parallel CNN based architectures and yield satisfying results even at low re...

  3. Ion beam analysis based on cellular nonlinear networks

    Science.gov (United States)

    Senger, V.; Tetzlaff, R.; Reichau, H.; Ratzinger, U.

    2011-07-01

    The development of a non- destructive measurement method for ion beam parameters has been treated in various projects. Although results are promising, the high complexity of beam dynamics has made it impossible to implement a real time process control up to now. In this paper we will propose analysing methods based on the dynamics of Cellular Nonlinear Networks (CNN) that can be implemented on pixel parallel CNN based architectures and yield satisfying results even at low resolutions.

  4. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2010-01-01

    The main developments in muon alignment since March 2010 have been the production, approval and deployment of alignment constants for the ICHEP data reprocessing. In the barrel, a new geometry, combining information from both hardware and track-based alignment systems, has been developed for the first time. The hardware alignment provides an initial DT geometry, which is then anchored as a rigid solid, using the link alignment system, to a reference frame common to the tracker. The “GlobalPositionRecords” for both the Tracker and Muon systems are being used for the first time, and the initial tracker-muon relative positioning, based on the link alignment, yields good results within the photogrammetry uncertainties of the Tracker and alignment ring positions. For the first time, the optical and track-based alignments show good agreement between them; the optical alignment being refined by the track-based alignment. The resulting geometry is the most complete to date, aligning all 250 DTs, ...

  5. Alignment and integration of complex networks by hypergraph-based spectral clustering

    CERN Document Server

    Michoel, Tom

    2012-01-01

    Complex networks possess a rich, multi-scale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address such problems. Here we introduce a framework for multi-network analysis based on hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for tripartite community detection in folksonomies, for local and global alignment of protein-protein interaction networks between multiple species and for detecting clusters of overlapping regulatory pathways in directed networks.

  6. Alternate transmission relaying based on interference alignment in 3-relay half-duplex MIMO systems

    KAUST Repository

    Park, Seongho

    2012-09-01

    In a half-duplex relaying, the capacity pre-log factor 1/2 is a major drawback in spectral efficiency. This paper proposes a linear precoding/decoding scheme and an alternate relaying protocol in a dual-hop half-duplex system where three relays help the communication between the source and the destination. In our proposed scheme, we consider a phase incoherent method in relays in which the source alternately transmits message signals to the different relays. In addition, we propose a linear interference alignment scheme which can suppress the inter-relay interference resulting from the phase incoherence of relaying. Based on our analysis of degrees of freedom and our simulation results, we show that our proposed scheme achieves additional degrees of freedom compared to the conventional half-duplex relaying. © 2012 IEEE.

  7. A Parallel Non-Alignment Based Approach to Efficient Sequence Comparison using Longest Common Subsequences

    Science.gov (United States)

    Bhowmick, S.; Shafiullah, M.; Rai, H.; Bastola, D.

    2010-11-01

    Biological sequence comparison programs have revolutionized the practice of biochemistry, and molecular and evolutionary biology. Pairwise comparison of genomic sequences is a popular method of choice for analyzing genetic sequence data. However the quality of results from most sequence comparison methods are significantly affected by small perturbations in the data and furthermore, there is a dearth of computational tools to compare sequences beyond a certain length. In this paper, we describe a parallel algorithm for comparing genetic sequences using an alignment free-method based on computing the Longest Common Subsequence (LCS) between genetic sequences. We validate the quality of our results by comparing the phylogenetic tress obtained from ClustalW and LCS. We also show through complexity analysis of the isoefficiency and by empirical measurement of the running time that our algorithm is very scalable.

  8. Bright single photon source based on self-aligned quantum dot-cavity systems.

    Science.gov (United States)

    Maier, Sebastian; Gold, Peter; Forchel, Alfred; Gregersen, Niels; Mørk, Jesper; Höfling, Sven; Schneider, Christian; Kamp, Martin

    2014-04-01

    We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum dot to a Gaussian shaped nanohill defect that naturally arises during epitaxial growth in a self-aligned manner. We investigate the morphology of these defects and characterize the photonic operation mechanism. Our results show that these naturally arising coupled quantum dot-defects provide a new avenue for efficient (up to 42% demonstrated) and pure (g(2)(0) value of 0.023) single-photon emission. PMID:24718190

  9. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    Science.gov (United States)

    Taylor, Jaime; Rakoczy, John; Steincamp, James

    2003-01-01

    Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.

  10. REFINTO: An Ontology-Based Requirements Engineering Framework for Business-IT Alignment in Financial Services

    OpenAIRE

    Umoh, Emem Koffi

    2016-01-01

    Business-IT alignment has been a top research topic for three decades now andconsistently ranks high on CIO priorities and concerns. In spite of its seemingadvantages, sustainable business-IT alignment remains elusive in practice. This canbe attributed to the language and knowledge gaps which impede mutualunderstanding between business and IT stakeholders. It can also be attributed to thelimitations imposed by approaching alignment solely from a strategic perspective.This thesis argues for an...

  11. Image alignment

    Science.gov (United States)

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  12. The CMS Tracker Alignment Strategy

    CERN Document Server

    Weber, Martin

    2006-01-01

    CMS silicon Tracker alignment consists of three key components: Survey during tracker construction, measurements with the Laser Alignment System during operation and track based alignment. Methods and results are explained in detail, with a special focus on track based alignment due to its enormous complexity and numerical challenges.

  13. Direct comparative study on the energy level alignments in unoccupied/occupied states of organic semiconductor/electrode interface by constructing in-situ photoemission spectroscopy and Ar gas cluster ion beam sputtering integrated analysis system

    International Nuclear Information System (INIS)

    Through the installation of electron gun and photon detector, an in-situ photoemission and damage-free sputtering integrated analysis system is completely constructed. Therefore, this system enables to accurately characterize the energy level alignments including unoccupied/occupied molecular orbital (LUMO/HOMO) levels at interface region of organic semiconductor/electrode according to depth position. Based on Ultraviolet Photoemission Spectroscopy (UPS), Inverse Photoemission Spectroscopy (IPES), and reflective electron energy loss spectroscopy, the occupied/unoccupied state of in-situ deposited Tris[4-(carbazol-9-yl)phenyl]amine (TCTA) organic semiconductors on Au (ELUMO: 2.51 eV and EHOMO: 1.35 eV) and Ti (ELUMO: 2.19 eV and EHOMO: 1.69 eV) electrodes are investigated, and the variation of energy level alignments according to work function of electrode (Au: 4.81 eV and Ti: 4.19 eV) is clearly verified. Subsequently, under the same analysis condition, the unoccupied/occupied states at bulk region of TCTA/Au structures are characterized using different Ar gas cluster ion beam (Ar GCIB) and Ar ion sputtering processes, respectively. While the Ar ion sputtering process critically distorts both occupied and unoccupied states in UPS/IPES spectra, the Ar GCIB sputtering process does not give rise to damage on them. Therefore, we clearly confirm that the in-situ photoemission spectroscopy in combination with Ar GCIB sputtering allows of investigating accurate energy level alignments at bulk/interface region as well as surface region of organic semiconductor/electrode structure.

  14. Performance and perspectives of the diamond based Beam Condition Monitor for beam loss monitoring at CMS

    CERN Document Server

    AUTHOR|(CDS)2080862

    2015-01-01

    At CMS, a beam loss monitoring system is operated to protect the silicon detectors from high particle rates, arising from intense beam loss events. As detectors, poly-crystalline CVD diamond sensors are placed around the beam pipe at several locations inside CMS. In case of extremely high detector currents, the LHC beams are automatically extracted from the LHC rings.Diamond is the detector material of choice due to its radiation hardness. Predictions of the detector lifetime were made based on FLUKA monte-carlo simulations and irradiation test results from the RD42 collaboration, which attested no significant radiation damage over several years.During the LHC operational Run1 (2010 â?? 2013), the detector efficiencies were monitored. A signal decrease of about 50 times stronger than expectations was observed in the in-situ radiation environment. Electric field deformations due to charge carriers, trapped in radiation induced lattice defects, are responsible for this signal decrease. This so-called polarizat...

  15. Single laser beam based passive optical sorter

    Czech Academy of Sciences Publication Activity Database

    Brzobohatý, Oto; Karásek, Vítězslav; Šiler, Martin; Chvátal, Lukáš; Čižmár, T.; Zemánek, Pavel

    Bellingham: SPIE, 2013, 863715:1-8. ISSN 0277-786X. [Conference on Complex Light and Optical Forces /7./ part of Photonics West. San Francisco (US), 05.02.2013-07.02.2013] R&D Projects: GA TA ČR TE01020233; GA ČR GA202/09/0348; GA ČR GPP205/11/P294; GA MŠk LH12018; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : optical trapping * optical sorting * tractor beam * particle delivery Subject RIV: BH - Optics, Masers, Lasers

  16. Dual-band relativistic backward wave oscillators based on a single beam and dual beams

    Science.gov (United States)

    Ting, Wang; Jian-de, Zhang; Bao-liang, Qian; Xiao-ping, Zhang

    2010-04-01

    Two types of relativistic backward wave oscillators (RBWOs) used to produce dual-band microwaves are proposed and investigated by use of the particle-in-cell (PIC) simulation code KARAT [V. P. Tarakanov, User's Manual for Code Karat (Berkeley Research Associates, Springfield, VA, 1992)]. The first type of RBWO, for generation of C-band and X-band microwaves, is designed based on a single beam and a sectioned structure. With an electron beam of 650 keV and 5.0 kA guided by a magnetic field of 2.0 T, an average power of 380 MW with a total power conversion efficiency of 11.7% is obtained and the frequencies are 5.48 and 9.60 GHz, respectively. By changing the distance between the two sections, single-band oscillations are realized with higher power conversion efficiency than that of the dual-band oscillation. The second type, based on a coaxial structure and dual parallel annular beams, is a dual-band RBWO designed with separated beam-wave interaction regions for generation of C-band and X-band microwaves. With a dual beam of 650 keV and 11.8 kA (the outer beam current is 6.4 kA and inner beam current is 5.4 kA) guided by a magnetic field of 2.0 T, an output power of 1400 MW with a total power conversion efficiency of 18.3% is generated and the frequencies are 4.60 and 8.40 GHz, respectively. PIC simulations demonstrate that the two beam-wave interaction regions operate independently. The two types of dual-band RBWO are also compared and analyzed.

  17. A study on the plasma polymer thin film surface modification for DNA alignment by using high energy electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang-Jin, E-mail: bluescreen@skku.edu [Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Hyung Jin; Hong, Byungyou [School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Boo, Jin-Hyo, E-mail: jhboo@skku.edu [Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2011-08-01

    The plasma polymer thin films were deposited on Si(100) substrate by PECVD (plasma enhanced chemical vapor deposition) method. Liquid cyclohexene was used as single organic precursor. It was heated up to 60 deg. C and bubbled up by hydrogen gas, which flow rate was 50 sccm (standard cubic centimeters per min). Deposition temperature was room temperature. Plasma was ignited by a radio frequency (RF; 13.56 MHz) of 10 W. As-deposited plasma polymer thin films were treated by e-beam of 300 keV with various adsorption radiation doses. The plasma polymer films, which were treated by high energy e-beam (HEEB), were investigated by FT-IR (Fourier Transform Infrared), XPS (X-ray Photoelectron Spectroscopy), AFM (Atomic Force Microscopy), and the water contact angles. From IR spectra, the intensity of -OH functional group is increased by increasing electron dose rate. XPS results also show that the intensity of O{sub 1s} peak is increased by increasing electron dose rate. C{sub 1s} peak shows that oxygen bonded at carbon site. The water contact angles are decreased by increasing electron dose rate. From the AFM analysis, we observed the formation of {lambda}-DNA (deoxyribonucleic acid) array on plasma polymer film, which was treated by HEEB with 14 kGy of adsorption radiation dose.

  18. Enhanced field electron emission from aligned diamond-like carbon nanorod arrays prepared by reactive ion beam etching

    Science.gov (United States)

    Zhao, Yong; Qin, Shi-Qiao; Zhang, Xue-Ao; Chang, Sheng-Li; Li, Hui-Hui; Yuan, Ji-Ren

    2016-05-01

    Homogeneous diamond-like carbon (DLC) films were deposited on Si supports by a pulsed filtered cathodic vacuum arc deposition system. Using DLC films masked by Ni nanoparticles as precursors, highly aligned diamond-like carbon nanorod (DLCNR) arrays were fabricated by the etching of inductively coupled radio frequency oxygen plasma. The as-prepared DLCNR arrays exhibit excellent field emission properties with a low turn-on field of 2.005 V μm‑1 and a threshold field of 4.312 V μm‑1, respectively. Raman spectroscopy and x-ray photoelectron spectroscopy were employed to determine the chemical bonding structural change of DLC films before and after etching. It is confirmed that DLC films have good connection with Si supports via the formation of the SiC phase, and larger conductive sp2 domains are formed in the as-etched DLC films, which play essential roles in the enhanced field emission properties for DLCNR arrays.

  19. Fast statistical alignment.

    Directory of Open Access Journals (Sweden)

    Robert K Bradley

    2009-05-01

    Full Text Available We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multiple alignments which are accompanied by estimates of the alignment accuracy and uncertainty for every column and character of the alignment--previously available only with alignment programs which use computationally-expensive Markov Chain Monte Carlo approaches--yet can align thousands of long sequences. Moreover, FSA utilizes an unsupervised query-specific learning procedure for parameter estimation which leads to improved accuracy on benchmark reference alignments in comparison to existing programs. The centroid alignment approach taken by FSA, in combination with its learning procedure, drastically reduces the amount of false-positive alignment on biological data in comparison to that given by other methods. The FSA program and a companion visualization tool for exploring uncertainty in alignments can be used via a web interface at http://orangutan.math.berkeley.edu/fsa/, and the source code is available at http://fsa.sourceforge.net/.

  20. Fast statistical alignment.

    Science.gov (United States)

    Bradley, Robert K; Roberts, Adam; Smoot, Michael; Juvekar, Sudeep; Do, Jaeyoung; Dewey, Colin; Holmes, Ian; Pachter, Lior

    2009-05-01

    We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multiple alignments which are accompanied by estimates of the alignment accuracy and uncertainty for every column and character of the alignment--previously available only with alignment programs which use computationally-expensive Markov Chain Monte Carlo approaches--yet can align thousands of long sequences. Moreover, FSA utilizes an unsupervised query-specific learning procedure for parameter estimation which leads to improved accuracy on benchmark reference alignments in comparison to existing programs. The centroid alignment approach taken by FSA, in combination with its learning procedure, drastically reduces the amount of false-positive alignment on biological data in comparison to that given by other methods. The FSA program and a companion visualization tool for exploring uncertainty in alignments can be used via a web interface at http://orangutan.math.berkeley.edu/fsa/, and the source code is available at http://fsa.sourceforge.net/. PMID:19478997

  1. Consensus-Based Course Design and Implementation of Constructive Alignment Theory in a Power System Analysis Course

    Science.gov (United States)

    Vanfretti, Luigi; Farrokhabadi, Mostafa

    2015-01-01

    This article presents the implementation of the constructive alignment theory (CAT) in a power system analysis course through a consensus-based course design process. The consensus-based design process involves both the instructor and graduate-level students and it aims to develop the CAT framework in a holistic manner with the goal of including…

  2. Resonant microphone based on laser beam deflection

    Science.gov (United States)

    Roark, Kevin; Diebold, Gerald J.

    2004-07-01

    A microphone consisting of a flexible membrane coupled to a Helmholtz resonator can be constructed to have a resonance at a specific frequency making it, unlike conventional broadband microphones, a frequency selective detector of sound. The present device uses a laser beam reflected from the membrane and directed onto a split photodiode to record the motion of the membrane. Since the microphone has a lightly damped resonance, both the thermal noise fluctuations in the displacement of the membrane from its equilibrium position and the response of the microphone to sound at the resonance frequency are large. The large amplitude of both the signal and the noise fluctuations means that effect of amplifier noise on the microphone's sensitivity is diminished relative to that in broadband microphones. Applications of the microphone include photoacoustic detection of gases employing low power lasers.

  3. The HIP Algorithm for Track Based Alignment and its Application to the CMS Pixel Detector

    CERN Document Server

    Karimäki, Veikko; Schilling, Frank-Peter

    2006-01-01

    Good geometrical alignment is essential to fully benefit from the excellent intrinsic resolution of the CMS silicon tracker. Since the tracker consists of about 20000 independent silicon sensors, of the order 100k parameters are needed for the alignment. The determination of these constants with the required precision of about 10 um is an extremely challenging task. In this paper an effective and computationally practical alignment algorithm is presented. it is suitable for performing fine-calibration of the position and orientation of detector structures consisting of a number of pixel or strip modules as well as the alignment of individual modules. The performance of the algorithm is studied by applying it to the alignment of the CMS Pixel detector.

  4. Optical beam steering based on electromagnetically induced transparency

    International Nuclear Information System (INIS)

    We propose a scheme that provides all-optically-controlled steering of light beam. The system is based on steep dispersion of a coherently driven medium. Using the eikonal equation, we study the steering angle, the spread of the optical beam, and the limits set by residual absorption of the medium under conditions of electromagnetically induced transparency. Implementation of another scheme for ultrashort pulses is also discussed

  5. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Z. Szillasi and G. Gomez.

    2013-01-01

    When CMS is opened up, major components of the Link and Barrel Alignment systems will be removed. This operation, besides allowing for maintenance of the detector underneath, is needed for making interventions that will reinforce the alignment measurements and make the operation of the alignment system more reliable. For that purpose and also for their general maintenance and recalibration, the alignment components will be transferred to the Alignment Lab situated in the ISR area. For the track-based alignment, attention is focused on the determination of systematic uncertainties, which have become dominant, since now there is a large statistics of muon tracks. This will allow for an improved Monte Carlo misalignment scenario and updated alignment position errors, crucial for high-momentum muon analysis such as Z′ searches.

  6. PicXAA-Web: a web-based platform for non-progressive maximum expected accuracy alignment of multiple biological sequences

    OpenAIRE

    Sahraeian, Sayed Mohammad Ebrahim; Yoon, Byung-Jun

    2011-01-01

    In this article, we introduce PicXAA-Web, a web-based platform for accurate probabilistic alignment of multiple biological sequences. The core of PicXAA-Web consists of PicXAA, a multiple protein/DNA sequence alignment algorithm, and PicXAA-R, an extension of PicXAA for structural alignment of RNA sequences. Both PicXAA and PicXAA-R are probabilistic non-progressive alignment algorithms that aim to find the optimal alignment of multiple biological sequences by maximizing the expected accuracy...

  7. RNA Structural Alignments, Part I

    DEFF Research Database (Denmark)

    Havgaard, Jakob Hull; Gorodkin, Jan

    Simultaneous alignment and secondary structure prediction of RNA sequences is often referred to as "RNA structural alignment." A class of the methods for structural alignment is based on the principles proposed by Sankoff more than 25 years ago. The Sankoff algorithm simultaneously folds and aligns...

  8. Integration of biaxally aligned conducting oxides with silicon using ion-beam assisted deposited MgO templates

    Energy Technology Data Exchange (ETDEWEB)

    Park, B. H. (Bae Ho); Groves, J. R. (James R.); DePaula, R. F. (Raymond Felix); Jia, Quanxi; Arendt, P. N. (Paul N.); Emmert, L. A. (Luke A.)

    2001-01-01

    Two conducting oxides, La{sub 0.5}Sr{sub 0.5}CoO{sub 3}(LSCO) and SrRuO{sub 3}, were deposited by pulsed laser ablation onto silicon substrates coated with biaxially textured MgO on an amorphous silicon nitride isolation layer. Comparison is made between templates using just 10 nm of ion-beam assisted deposited (IBAD) MgO and substrates with an additional 100 nm of homoepitaxial MgO. Both of these conducting oxide layers exhibited in-plane and out-of-plane texture, on the order of that obtained by the underlying MgO. The SrRuO{sub 3} was c-axis oriented on both substrates, but exhibited a slightly sharper out-of-plane texture when the homoepitaxial MgO layer was included. On the other hand, the LSCO showed only (100) orientation when deposited directly on the IBAD-MgO templates, whereas a significant (110) peak was observed for films on the homoepitaxial MgO. A simple calculation of the distribution of grain boundary angles, assuming a normal distribution of grains, is also presented.

  9. A Toolbox of Metrology-Based Techniques for Optical System Alignment

    Science.gov (United States)

    Coulter, Phillip; Ohl, Raymond G.; Blake, Peter N.; Bos, Brent J.; Casto, Gordon V.; Eichhorn, William L.; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hagopian, John G.; Hayden, Joseph E.; Hicks, Samantha L.; Kubalak, Dave; Mclean, Kyle F.; McMann, Joseph; Redman, Kevin; Wenzel, Greg; Young, Jerrod

    2016-01-01

    The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a toolbox format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.

  10. Design of a neutrino source based on beta beams

    Science.gov (United States)

    Wildner, E.; Hansen, C.; Benedetto, E.; Jensen, E.; Stora, T.; Mendonca, T. Melo; Vlachoudis, V.; Bouquerel, E.; Marie-Jeanne, M.; Balint, P.; Fourel, C.; Giraud, J.; Jacob, J.; Lamy, T.; Latrasse, L.; Sortais, P.; Thuillier, T.; Mitrofanov, S.; Loiselet, M.; Keutgen, Th.; Delbar, Th.; Debray, F.; Trophime, C.; Veys, S.; Daversin, C.; Zorin, V.; Izotov, I.; Skalyga, V.; Chancé, A.; Payet, J.; Burt, G.; Dexter, A. C.; Kravchuk, V. L.; Marchi, T.; Cinausero, M.; Gramegna, F.; De Angelis, G.; Prete, G.; Collazuol, G.; Mezzetto, M.; Vardaci, E.; Di Nitto, A.; Brondi, A.; La Rana, G.; Moro, R.; Palladino, V.; Gelli, N.; Mazzocco, M.; Signorini, C.; Hirsh, T. Y.; Hass, M.; Berkovits, D.; Stahl, A.; Schaumann, M.; Wehner, J.

    2014-07-01

    "Beta beams" produce collimated pure electron (anti)neutrino beams by accelerating beta active ions to high energies and having them decay in a racetrack shaped storage ring of 7 km circumference, the decay ring. EUROnu beta beams are based on CERN infrastructures and existing machines. Using existing machines may be an advantage for the cost evaluation, but will also constrain the physics performance. The isotope pair of choice for the beta beam is He6 and Ne18. However, before the EUROnu studies one of the required isotopes, Ne18, could not be produced in rates that satisfy the needs for physics of the beta beam. Therefore, studies of alternative beta emitters, Li8 and B8, with properties interesting for a beta beam have been proposed and have been studied within EUROnu. These alternative isotopes could be produced by using a small storage ring, in which the beam traverses a target, creating the Li8 and B8 isotopes. This production ring, the injection linac and the target system have been evaluated. Measurements of the cross section of the reactions to produce the beta beam isotopes show interesting results. A device to collect the produced isotopes from the target has been developed and tested. However, the yields of Li8 and B8, using the production ring for production of Li8 and B8, is not yet, according to simulations, giving the rates of isotopes that would be needed. Therefore, a new method of producing the Ne18 isotope has been developed and tested giving good production rates. A 60 GHz ECRIS prototype, the first in the world, was developed and tested for ion production with contributions from EUROnu. The decay ring lattices for the Li8 and B8 have been developed and the lattice for He6 and Ne18 has been optimized to ensure the high intensity ion beam stability.

  11. Alignment Based Kernel Learning with a Continuous Set of Base Kernels

    CERN Document Server

    Afkanpour, Arash; Bowling, Michael

    2011-01-01

    The success of kernel-based learning methods depend on the choice of kernel. Recently, kernel learning methods have been proposed that use data to select the most appropriate kernel, usually by combining a set of base kernels. We introduce a new algorithm for kernel learning that combines a {\\em continuous set of base kernels}, without the common step of discretizing the space of base kernels. We demonstrate that our new method achieves state-of-the-art performance across a variety of real-world datasets. Furthermore, we explicitly demonstrate the importance of combining the right dictionary of kernels, which is problematic for methods based on a finite set of base kernels chosen a priori. Our method is not the first approach to work with continuously parameterized kernels. However, we show that our method requires substantially less computation than previous such approaches, and so is more amenable to multiple dimensional parameterizations of base kernels, which we demonstrate.

  12. Development of digital beam position monitor based on software radio

    International Nuclear Information System (INIS)

    Digital beam position monitor processor is the key part of a beam position system. A BPM processor based on software radio is much better than traditional processors in terms of the resolution and flexibility. In this paper, we report technical specifications and design considerations of the digital beam position monitor developed at Shanghai Synchrotron Radiation Facility (SSRF). The turn-by-turn electronic resolution of the processor is better than 1.5 μm, when the input power is larger than -30 dBm, and the resolution is better than 2 μm in a test in the SSRF storage ring, with the beam current of over 150 mA. (authors)

  13. Transformer ratio improvement for beam based plasma accelerators

    International Nuclear Information System (INIS)

    Increasing the transformer ratio of wakefield accelerating systems improves the viability of present novel accelerating schemes. The use of asymmetric bunches to improve the transformer ratio of beam based plasma systems has been proposed for some time[1, 2] but suffered from lack appropriate beam creation systems. Recently these impediments have been overcome [3, 4] and the ability now exists to create bunches with current profiles shaped to overcome the symmetric beam limit of R ≤ 2. We present here work towards experiments designed to measure the transformer ratio of such beams, including theoretical models and simulations using VORPAL (a 3D capable PIC code) [5]. Specifically we discuss projects to be carried out in the quasi-nonlinear regime [6] at the UCLA Neptune Laboratory and the Accelerator Test Facility at Brookhaven National Lab.

  14. MOTION COMPENSATION FOR WIDE BEAM SAR BASED ON FREQUENCY DIVISION

    Institute of Scientific and Technical Information of China (English)

    Zheng Xiaoshuang; Yu Weidong; Li Zaoshe

    2008-01-01

    Aperture-dependent motion compensation is important for wide beam Synthetic Aperture Radar (SAR) data processing. This paper studies a wide beam motion compensation algorithm based on frequency division. It takes blocks along azimuth dimension in frequency domain and applies an-gle-variant motion compensation in time domain. With this frequency division based motion com-pensation approach,the effects of aperture-dependent residual phase errors are corrected precisely. The rationale and procedure of this algorithm are introduced in detail. Point targets and images of a P-band airborne SAR with motion errors are simulated to validate this algorithm. Compared with the wide beam motion compensation algorithms based on time division,the proposed algorithm has better performance,especially in terms of high-frequency motion errors.

  15. Combining peak- and chromatogram-based retention time alignment algorithms for multiple chromatography-mass spectrometry datasets

    Directory of Open Access Journals (Sweden)

    Hoffmann Nils

    2012-08-01

    Full Text Available Abstract Background Modern analytical methods in biology and chemistry use separation techniques coupled to sensitive detectors, such as gas chromatography-mass spectrometry (GC-MS and liquid chromatography-mass spectrometry (LC-MS. These hyphenated methods provide high-dimensional data. Comparing such data manually to find corresponding signals is a laborious task, as each experiment usually consists of thousands of individual scans, each containing hundreds or even thousands of distinct signals. In order to allow for successful identification of metabolites or proteins within such data, especially in the context of metabolomics and proteomics, an accurate alignment and matching of corresponding features between two or more experiments is required. Such a matching algorithm should capture fluctuations in the chromatographic system which lead to non-linear distortions on the time axis, as well as systematic changes in recorded intensities. Many different algorithms for the retention time alignment of GC-MS and LC-MS data have been proposed and published, but all of them focus either on aligning previously extracted peak features or on aligning and comparing the complete raw data containing all available features. Results In this paper we introduce two algorithms for retention time alignment of multiple GC-MS datasets: multiple alignment by bidirectional best hits peak assignment and cluster extension (BIPACE and center-star multiple alignment by pairwise partitioned dynamic time warping (CeMAPP-DTW. We show how the similarity-based peak group matching method BIPACE may be used for multiple alignment calculation individually and how it can be used as a preprocessing step for the pairwise alignments performed by CeMAPP-DTW. We evaluate the algorithms individually and in combination on a previously published small GC-MS dataset studying the Leishmania parasite and on a larger GC-MS dataset studying grains of wheat (Triticum aestivum. Conclusions We

  16. A Self-Alignment Algorithm for SINS Based on Gravitational Apparent Motion and Sensor Data Denoising

    OpenAIRE

    Yiting Liu; Xiaosu Xu; Xixiang Liu; Yiqing Yao; Liang Wu; Jin Sun

    2015-01-01

    Initial alignment is always a key topic and difficult to achieve in an inertial navigation system (INS). In this paper a novel self-initial alignment algorithm is proposed using gravitational apparent motion vectors at three different moments and vector-operation. Simulation and analysis showed that this method easily suffers from the random noise contained in accelerometer measurements which are used to construct apparent motion directly. Aiming to resolve this problem, an online sensor data...

  17. Value-Based Business-IT Alignment in Networked Constellations of Enterprises

    OpenAIRE

    Wieringa, Roel; Gordijn, Jaap; Eck, van, C.F.; Cox, K.; Dubois, E.; Pigneur, Y.; Bleistein, S.J.; Verner, J; Davis, A.M.; Wieringa, R.J.

    2005-01-01

    Business-ICT alignment is the problem of matching ICTservices with the requirements of the business. In businesses of any significant size, business-ICT alignment is a hard problem, which is currently not solved completely. With the advent of networked constellations of enterprises, the problem gets a new dimension, because in such a network, there is not a single point of authority for making decisions about ICT support to solve conflicts in requirements these various enterprises may have. N...

  18. A GaAs-based self-aligned stripe distributed feedback laser

    Science.gov (United States)

    Lei, H.; Stevens, B. J.; Fry, P. W.; Babazadeh, N.; Ternent, G.; Childs, D. T.; Groom, K. M.

    2016-08-01

    We demonstrate operation of a GaAs-based self-aligned stripe (SAS) distributed feedback (DFB) laser. In this structure, a first order GaInP/GaAs index-coupled DFB grating is built within the p-doped AlGaAs layer between the active region and the n-doped GaInP opto-electronic confinement layer of a SAS laser structure. In this process no Al-containing layers are exposed to atmosphere prior to overgrowth. The use of AlGaAs cladding affords the luxury of full flexibility in upper cladding design, which proved necessary due to limitations imposed by the grating infill and overgrowth with the GaInP current block layer. Resultant devices exhibit single-mode lasing with high side-mode-suppression of >40 dB over the temperature range 20 °C–70 °C. The experimentally determined optical profile and grating confinement correlate well with those simulated using Fimmwave.

  19. Evaporation-based method for preparing gelatin foams with aligned tubular pore structures.

    Science.gov (United States)

    Frazier, Shane D; Srubar, Wil V

    2016-05-01

    Gelatin-based foams with aligned tubular pore structures were prepared via liquid-to-gas vaporization of tightly bound water in dehydrated gelatin hydrogels. This study elucidates the mechanism of the foaming process by investigating the secondary (i.e., helical) structure, molecular interactions, and water content of gelatin films before and after foaming using X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry and thermogravimetric analysis (TGA), respectively. Experimental data from gelatin samples prepared at various gelatin-to-water concentrations (5-30wt.%) substantiate that resulting foam structures are similar in pore diameter (approximately 350μm), shape, and density (0.05-0.22g/cm(3)) to those fabricated using conventional methods (e.g., freeze-drying). Helical structures were identified in the films but were not evident in the foamed samples after vaporization (~150°C), suggesting that the primary foaming mechanism is governed by the vaporization of water that is tightly bound in secondary structures (i.e., helices, β-turns, β-sheets) that are present in dehydrated gelatin films. FTIR and TGA data show that the foaming process leads to more disorder and reduced hydrogen bonding to hydroxyl groups in gelatin and that no thermal degradation of gelatin occurs before or after foaming. PMID:26952448

  20. Centered Kernel Alignment Enhancing Neural Network Pretraining for MRI-Based Dementia Diagnosis

    Science.gov (United States)

    Cárdenas-Peña, David; Collazos-Huertas, Diego; Castellanos-Dominguez, German

    2016-01-01

    Dementia is a growing problem that affects elderly people worldwide. More accurate evaluation of dementia diagnosis can help during the medical examination. Several methods for computer-aided dementia diagnosis have been proposed using resonance imaging scans to discriminate between patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and healthy controls (NC). Nonetheless, the computer-aided diagnosis is especially challenging because of the heterogeneous and intermediate nature of MCI. We address the automated dementia diagnosis by introducing a novel supervised pretraining approach that takes advantage of the artificial neural network (ANN) for complex classification tasks. The proposal initializes an ANN based on linear projections to achieve more discriminating spaces. Such projections are estimated by maximizing the centered kernel alignment criterion that assesses the affinity between the resonance imaging data kernel matrix and the label target matrix. As a result, the performed linear embedding allows accounting for features that contribute the most to the MCI class discrimination. We compare the supervised pretraining approach to two unsupervised initialization methods (autoencoders and Principal Component Analysis) and against the best four performing classification methods of the 2014 CADDementia challenge. As a result, our proposal outperforms all the baselines (7% of classification accuracy and area under the receiver-operating-characteristic curve) at the time it reduces the class biasing. PMID:27148392

  1. Model-based peak alignment of metabolomic profiling from comprehensive two-dimensional gas chromatography mass spectrometry

    Directory of Open Access Journals (Sweden)

    Jeong Jaesik

    2012-02-01

    Full Text Available Abstract Background Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC/TOF-MS has been used for metabolite profiling in metabolomics. However, there is still much experimental variation to be controlled including both within-experiment and between-experiment variation. For efficient analysis, an ideal peak alignment method to deal with such variations is in great need. Results Using experimental data of a mixture of metabolite standards, we demonstrated that our method has better performance than other existing method which is not model-based. We then applied our method to the data generated from the plasma of a rat, which also demonstrates good performance of our model. Conclusions We developed a model-based peak alignment method to process both homogeneous and heterogeneous experimental data. The unique feature of our method is the only model-based peak alignment method coupled with metabolite identification in an unified framework. Through the comparison with other existing method, we demonstrated that our method has better performance. Data are available at http://stage.louisville.edu/faculty/x0zhan17/software/software-development/mspa. The R source codes are available at http://www.biostat.iupui.edu/~ChangyuShen/CodesPeakAlignment.zip. Trial Registration 2136949528613691

  2. Application of diamond based beam loss monitors at LHC

    International Nuclear Information System (INIS)

    collimators. Ionization chambers have a time resolution of 40 s that is a half LHC turn and in case of a large beam loss, they request a beam dump. Another type of beam loss monitors are diamond sensors because of a time resolution of about one nanosecond and high radiation hardness. One diamond detector system is located in the cleaning region of the LHC and is able to detect various types of beam losses. Another diamond detector system (BCM1F) is installed inside the CMS detector to protect the CMS from adverse beam conditions. BCM1F monitors also the luminosity during collisions and delivers important beam parameters. Additional condition monitors, based on the BCM1F system, are located next to CMS, near to LHCb and ALICE to measure large beam losses in the LHC ring. The process of a beam loss due to dust particles is explained, and additional simulations were done to understand these process in more detail. The result of the simulation are also given. Beam loss data recorded by the diamond sensors in the cleaning region and the BCM1F diamonds are presented.

  3. Application of diamond based beam loss monitors at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria

    2013-04-15

    the LHC, especially near each quadrupole and next to collimators. Ionization chambers have a time resolution of 40 s that is a half LHC turn and in case of a large beam loss, they request a beam dump. Another type of beam loss monitors are diamond sensors because of a time resolution of about one nanosecond and high radiation hardness. One diamond detector system is located in the cleaning region of the LHC and is able to detect various types of beam losses. Another diamond detector system (BCM1F) is installed inside the CMS detector to protect the CMS from adverse beam conditions. BCM1F monitors also the luminosity during collisions and delivers important beam parameters. Additional condition monitors, based on the BCM1F system, are located next to CMS, near to LHCb and ALICE to measure large beam losses in the LHC ring. The process of a beam loss due to dust particles is explained, and additional simulations were done to understand these process in more detail. The result of the simulation are also given. Beam loss data recorded by the diamond sensors in the cleaning region and the BCM1F diamonds are presented.

  4. Beam pattern evaluation for cyclotron operations based on neural networks

    International Nuclear Information System (INIS)

    A beam pattern evaluation method using neural network has been developed to assist non-expert cyclotron operators. While an expert operator can easily tell beam accelerating conditions by the beam pattern measured by a scanned beam probe, it is not easy for non-expert operators to evaluate the pattern. The followings are the summarized procedure of the proposed method. First, the features of the beam patterns, which correspond to the view points of the experts, are extracted using Gabor expansion. A neural network algorithm is applied to calculate the Gabor expansion. Next, the number of the extracted features is reduced by averaging the features of high frequency ranges in five partial zones. The idea of this process is based on the fact that the operators do not pay attention to the details of the high frequency components of the patterns. Finally, the pattern evaluation process by the expert operators is learned by the back-propagation algorithm on a multi-layered feed forward neural network. Parallel processing architecture of the feature extraction network, and the learning capability of the non-linear clustering network are very useful for the evaluation model of beam patterns. (author)

  5. Development of fiber beam loss monitor based on Cerenkov principle

    International Nuclear Information System (INIS)

    Background: A new type of beam loss monitor (BLM) system is needed in the synchrotron radiation light source or FEL facility to monitor the real-time beam loss inside the small-gap insertion devices. Purpose: A BLM system was developed with optical fiber as the probe to meet the requirements of SSRF. Methods: The whole system consists of a 30-m long step-index fiber, photomultiplier tubes (PMT), a 10-bit 8-GS/s high-speed waveform digitizer and a PXI input-output controller. The software was developed under the Linux system based on Experimental Physics and Industrial Control System (EPICS). A new measurement and corresponding calculation method were designed to make the system work well with the multi-bunch operation mode in the storage ring of SSRF. Results: The BLM system worked well at SSRF. And the results of beam experiments showed that the system could detect beam loss properly even at the 1-mA low current case. Conclusions: This system could be used in the detection of beam loss dose and position. In the experiments the counts of light pulses can be used as a rough estimation of beam loss dose. The noise floor is about 3.56% of the total count in the 220-mA top-up user operation mode. (authors)

  6. Fast Statistical Alignment

    OpenAIRE

    Bradley, Robert K.; Adam Roberts; Michael Smoot; Sudeep Juvekar; Jaeyoung Do; Colin Dewey; Ian Holmes; Lior Pachter

    2009-01-01

    We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multi...

  7. Strategic Alignment of Business Intelligence

    OpenAIRE

    Cederberg, Niclas

    2010-01-01

    This thesis is about the concept of strategic alignment of business intelligence. It is based on a theoretical foundation that is used to define and explain business intelligence, data warehousing and strategic alignment. By combining a number of different methods for strategic alignment a framework for alignment of business intelligence is suggested. This framework addresses all different aspects of business intelligence identified as relevant for strategic alignment of business intelligence...

  8. Experimental demonstration of dielectric structure based two beam acceleration.

    Energy Technology Data Exchange (ETDEWEB)

    Gai, W.; Conde, M. E.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.; Zou, P.

    2000-11-28

    We report on the experimental results of the dielectric based two beam accelerator (step-up transformer). By using a single high charge beam, we have generated and extracted a high power RF pulse from a 7.8 GHz primary dielectric structure and then subsequently transferred to a second accelerating structure with higher dielectric constant and smaller transverse dimensions. We have measured the energy change of a second (witness) beam passing through the acceleration stage. The measured gradient is >4 times the deceleration gradient. The detailed experiment of set-up and results of the measurements are dimmed. Future plans for the development of a 100 MeV demonstration accelerator based on this technique is presented.

  9. Markov Random Field Based Automatic Image Alignment for ElectronTomography

    Energy Technology Data Exchange (ETDEWEB)

    Moussavi, Farshid; Amat, Fernando; Comolli, Luis R.; Elidan, Gal; Downing, Kenneth H.; Horowitz, Mark

    2007-11-30

    Cryo electron tomography (cryo-ET) is the primary method for obtaining 3D reconstructions of intact bacteria, viruses, and complex molecular machines ([7],[2]). It first flash freezes a specimen in a thin layer of ice, and then rotates the ice sheet in a transmission electron microscope (TEM) recording images of different projections through the sample. The resulting images are aligned and then back projected to form the desired 3-D model. The typical resolution of biological electron microscope is on the order of 1 nm per pixel which means that small imprecision in the microscope's stage or lenses can cause large alignment errors. To enable a high precision alignment, biologists add a small number of spherical gold beads to the sample before it is frozen. These beads generate high contrast dots in the image that can be tracked across projections. Each gold bead can be seen as a marker with a fixed location in 3D, which provides the reference points to bring all the images to a common frame as in the classical structure from motion problem. A high accuracy alignment is critical to obtain a high resolution tomogram (usually on the order of 5-15nm resolution). While some methods try to automate the task of tracking markers and aligning the images ([8],[4]), they require user intervention if the SNR of the image becomes too low. Unfortunately, cryogenic electron tomography (or cryo-ET) often has poor SNR, since the samples are relatively thick (for TEM) and the restricted electron dose usually results in projections with SNR under 0 dB. This paper shows that formulating this problem as a most-likely estimation task yields an approach that is able to automatically align with high precision cryo-ET datasets using inference in graphical models. This approach has been packaged into a publicly available software called RAPTOR-Robust Alignment and Projection estimation for Tomographic Reconstruction.

  10. Accelerator Based Neutron Beams for Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  11. Accelerator Based Neutron Beams for Neutron Capture Therapy

    International Nuclear Information System (INIS)

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  12. Induced base transistor fabricated by molecular beam epitaxy

    Science.gov (United States)

    Chang, C.-Y.; Liu, W. C.; Jame, M. S.; Wang, Y. H.; Luryi, S.

    1986-09-01

    A novel three-terminal hot-electron device, the induced base transistor (IBT), has been fabricated by molecular beam epitaxy. Two-dimensional electron gas induced by the applied collector field in an undoped GaAs quantum well is used as the base of the IBT. The common-base current gain alpha has been achieved as high as 0.96 under a collector bias of 2.5 V and an emitter current of 3 mA.

  13. Automatic Computer Algorithms for Beam-based Setup of the LHC Collimators

    CERN Document Server

    Valentino, G; Assmann, R W; Bruce, R; Redaelli, S; Salvachua, B; Wollmann, D

    2012-01-01

    Beam-based setup of the LHC collimators is necessary to establish the beam centers and beam sizes at the collimator locations and determine the operational settings during various stages of the LHC machine cycle.

  14. Sound beam manipulation based on temperature gradients

    International Nuclear Information System (INIS)

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking

  15. Sound beam manipulation based on temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Feng [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500 (China); Quan, Li; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  16. Aligning Theory and Design: The Development of an Online Learning Intervention to Teach Evidence-based Practice for Maximal Reach

    OpenAIRE

    Delagran, Louise; Vihstadt, Corrie; Evans, Roni

    2015-01-01

    Background: Online educational interventions to teach evidence-based practice (EBP) are a promising mechanism for overcoming some of the barriers to incorporating research into practice. However, attention must be paid to aligning strategies with adult learning theories to achieve optimal outcomes. Methods: We describe the development of a series of short self-study modules, each covering a small set of learning objectives. Our approach, informed by design-based research (DBR), involved 6 pha...

  17. National negative-ion-based neutral-beam development plan

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W.S.; Pyle, R.V. (eds.)

    1983-08-01

    The plan covers facilities required, program milestones, and decision points. It includes identification of applications, experiments, theoretical research areas, development of specific technologies and reactor development and demonstration facilities required to bring about the successful application of negative-ion-based neutral beams. Particular emphasis is placed on those activities leading to use on existing plasma confinement experiments or their upgrades.

  18. National negative-ion-based neutral-beam development plan

    International Nuclear Information System (INIS)

    The plan covers facilities required, program milestones, and decision points. It includes identification of applications, experiments, theoretical research areas, development of specific technologies and reactor development and demonstration facilities required to bring about the successful application of negative-ion-based neutral beams. Particular emphasis is placed on those activities leading to use on existing plasma confinement experiments or their upgrades

  19. Results of beam based gain calibration for beam position monitor at J-PARC Main Ring

    International Nuclear Information System (INIS)

    Beam Position Monitor (BPM) is one of the essential elements in a synchrotron facility, obtaining the circulating beam information for stabilization of the closed orbit. The accuracy of beam positions greatly affects the orbit stabilization, however, actual signal strength from a BPM depends on individuality such as 1) signal transmission for a long distance, 2) processing circuit, and 3) contact resistance at the connected parts, etc. These things cause deviations in the gain of the signal response. The gains are different from each other even in one BPM. In order to correct this relative gain deviations between electrodes, a Beam Based Gain Calibration (BBGC) method has been proposed. Development of a new method for adequate gain calibration has been an urgent issue for J-PARC Main Ring. It has been found that an analysis using Total Least Square fitting (TLS) adequately reproduces the BPM gain with sufficient accuracy. The gains obtained from the data are varied in the range of less than ±5%, and the accuracy is within ±0.6%. (author)

  20. Note: A simple image processing based fiducial auto-alignment method for sample registration

    Science.gov (United States)

    Robertson, Wesley D.; Porto, Lucas R.; Ip, Candice J. X.; Nantel, Megan K. T.; Tellkamp, Friedjof; Lu, Yinfei; Dwayne Miller, R. J.

    2015-08-01

    A simple method for the location and auto-alignment of sample fiducials for sample registration using widely available MATLAB/LabVIEW software is demonstrated. The method is robust, easily implemented, and applicable to a wide variety of experiment types for improved reproducibility and increased setup speed. The software uses image processing to locate and measure the diameter and center point of circular fiducials for distance self-calibration and iterative alignment and can be used with most imaging systems. The method is demonstrated to be fast and reliable in locating and aligning sample fiducials, provided here by a nanofabricated array, with accuracy within the optical resolution of the imaging system. The software was further demonstrated to register, load, and sample the dynamically wetted array.

  1. Lock-in based detection scheme for a hydrogen beam

    International Nuclear Information System (INIS)

    Full text: In this work we present the data acquisition for a atomic hydrogen beamline that will be used to simulate an antihydrogen beam. Single particle detection of the hydrogen atoms will be done using a quadrupole mass spectrometer. Since a high background count of hydrogen is expected, special treatment of the data is necessary. Therefore a tuning-fork chopper will be used to produce a bunched hydrogen beam. Afterwards the noise will be removed with a software based lock-in amplifier. (author)

  2. Application of vertex and mass constraints in track-based alignment

    International Nuclear Information System (INIS)

    The software alignment of planar tracking detectors using samples of charged particle trajectories may lead to global detector distortions that affect vertex and momentum resolution. We present an alignment procedure that constrains such distortions by making use of samples of decay vertices reconstructed from two or more trajectories and putting constraints on their invariant mass. We illustrate the method by using a sample of invariant-mass constrained vertices from D0→K−π+ decays to remove a curvature bias in the LHCb spectrometer

  3. Application of vertex and mass constraints in track-based alignment

    CERN Document Server

    Amoraal, J; Blusk, S; Borghi, S; Cattaneo, M; Chiapolini, N; Conti, G; Deissenroth, M; Dupertuis, F; van der Eijk, R; Fave, V; Gersabeck, M; Hicheur, A; Hulsbergen, W; Hutchcroft, D; Kozlinskiy, A; Lambert, R W; Maciuc, F; Märki, R; Martinelli, M; Merk, M; Needham, M; Nicolas, L; Palacios, J; Parkes, C; Pellegrino, A; Pozzi, S; Raven, G; Rodrigues, E; Salzmann, C; Schiller, M; Schneider, O; Simioni, E; Steinkamp, O; van Tilburg, J; Tuning, N; Uwer, U; Vecchi, S; Viret, S

    2013-01-01

    The software alignment of planar tracking detectors using samples of charged particle trajectories may lead to global detector distortions that affect vertex and momentum resolution. We present an alignment procedure that constrains such distortions by making use of samples of decay vertices reconstructed from two or more trajectories and putting constraints on their invariant mass. We illustrate the method by using a sample of invariant-mass constrained vertices from D^0 --> K^- pi^+ decays to remove a curvature bias in the LHCb spectrometer.

  4. Design studies for a long base-line neutrino beam

    CERN Document Server

    Ball, A E; Vassilopoulos, N

    1995-01-01

    Strong interest has recently been shown in very long base-line neutrino beams, directed at existing or planned massive detector facilities, in order to extend the search for neutrino oscillations. Among such possibilities are beams from CERN pointing towards the Gran Sasso Underground Laboratory in the Ionian Sea off the west coast of the Peloponnese. In order to establish the basic parameters, a number of possible configurations for such beams have been studies covering a range of neutrino energy bands, estimates of the neutrino fluxes, event rates and backgrounds at typical detectors are reported. Considerations have been gioven to the optimum lenght and radius of the decay tunnels. It is shown that with one year of operation, a neutrino oscillation search down to limits of sin2 Ø = 0.01 and m2 = 0.001eV2 could be made with currently proposed detectors.

  5. LASER-BASED PROFILE MONITOR FOR ELECTRON BEAMS

    International Nuclear Information System (INIS)

    High performance TeV energy electron / positron colliders (LC) are the first machines to require online, non-invasive beam size monitors for micron and sub-micron for beam phase space optimization. Typical beam densities in the LC are well beyond the threshold density for single pulse melting and vaporization of any material, making conventional wire scanners ineffective. Using a finely focused, diffraction limited high power laser, it is possible to devise a sampling profile monitor that, in operation, resembles a wire scanner. Very high resolution laser-based profile monitors have been developed and tested, first at FFTB (SLAC) and later at SLC and ATF. The monitor has broad applicability and we review here the technology, application and status of ongoing research programs

  6. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2011-01-01

    A new set of muon alignment constants was approved in August. The relative position between muon chambers is essentially unchanged, indicating good detector stability. The main changes concern the global positioning of the barrel and of the endcap rings to match the new Tracker geometry. Detailed studies of the differences between track-based and optical alignment of DTs have proven to be a valuable tool for constraining Tracker alignment weak modes, and this information is now being used as part of the alignment procedure. In addition to the “split-cosmic” analysis used to investigate the muon momentum resolution at high momentum, a new procedure based on reconstructing the invariant mass of di-muons from boosted Zs is under development. Both procedures show an improvement in the momentum precision of Global Muons with respect to Tracker-only Muons. Recent developments in track-based alignment include a better treatment of the tails of residual distributions and accounting for correla...

  7. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Gervasio Gomez

    The main progress of the muon alignment group since March has been in the refinement of both the track-based alignment for the DTs and the hardware-based alignment for the CSCs. For DT track-based alignment, there has been significant improvement in the internal alignment of the superlayers inside the DTs. In particular, the distance between superlayers is now corrected, eliminating the residual dependence on track impact angles, and good agreement is found between survey and track-based corrections. The new internal geometry has been approved to be included in the forthcoming reprocessing of CRAFT samples. The alignment of DTs with respect to the tracker using global tracks has also improved significantly, since the algorithms use the latest B-field mapping, better run selection criteria, optimized momentum cuts, and an alignment is now obtained for all six degrees of freedom (three spatial coordinates and three rotations) of the aligned DTs. This work is ongoing and at a stage where we are trying to unders...

  8. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2011-01-01

    The Muon Alignment work now focuses on producing a new track-based alignment with higher track statistics, making systematic studies between the results of the hardware and track-based alignment methods and aligning the barrel using standalone muon tracks. Currently, the muon track reconstruction software uses a hardware-based alignment in the barrel (DT) and a track-based alignment in the endcaps (CSC). An important task is to assess the muon momentum resolution that can be achieved using the current muon alignment, especially for highly energetic muons. For this purpose, cosmic ray muons are used, since the rate of high-energy muons from collisions is very low and the event statistics are still limited. Cosmics have the advantage of higher statistics in the pT region above 100 GeV/c, but they have the disadvantage of having a mostly vertical topology, resulting in a very few global endcap muons. Only the barrel alignment has therefore been tested so far. Cosmic muons traversing CMS from top to bottom are s...

  9. Bilayer Beams and Relay Sharing based OFDMA Cellular Architecture

    Directory of Open Access Journals (Sweden)

    Yanxiong Pan

    2011-08-01

    Full Text Available Over the past decade, researchers have been putting a lot of energy on co-channel interference suppression in the forthcoming fourth generation (4G wireless networks. Existing approaches to interference suppression are mainly based on signal processing, cooperative communication or coordination techniques. Though good performance has been attained already, a more complex receiver is needed, and there is still room for improvement through other ways.Considering spatial frequency reuse, which provides an easier way to cope with the co-channel interference, this paper proposed a bilayer beams and relay sharing based (BBRS OFDMA cellular architecture and corresponding frequency planning scheme. The main features of the novel architecture are as follows. Firstly, the base station (BS uses two beams, one composed of six wide beams providing coverage to mobile stations (MSs that access to the BS, and the other composed of six narrow beams communicating with fixed relay stations (FRSs. Secondly, in the corresponding frequency planning scheme, soft frequency reuse is considered on all FRSs further. System-level simulation results demonstrate that better coverage performance is obtained and the mean data rate of MSs near the cell edge is improved significantly. The BBRS cellular architecture provides a practical method to interference suppression in 4G networks since a better tradeoff between performance and complexity is achieved.

  10. Clinical results of proton beam therapy for skull base chordoma

    International Nuclear Information System (INIS)

    Purpose: To evaluate clinical results of proton beam therapy for patients with skull base chordoma. Methods and materials: Thirteen patients with skull base chordoma who were treated with proton beams with or without X-rays at the University of Tsukuba between 1989 and 2000 were retrospectively reviewed. A median total tumor dose of 72.0 Gy (range, 63.0-95.0 Gy) was delivered. The patients were followed for a median period of 69.3 months (range, 14.6-123.4 months). Results: The 5-year local control rate was 46.0%. Cause-specific, overall, and disease-free survival rates at 5 years were 72.2%, 66.7%, and 42.2%, respectively. The local control rate was higher, without statistical significance, for those with preoperative tumors <30 mL. Partial or subtotal tumor removal did not yield better local control rates than for patients who underwent biopsy only as the latest surgery. Conclusion: Proton beam therapy is effective for patients with skull base chordoma, especially for those with small tumors. For a patient with a tumor of <30 mL with no prior treatment, biopsy without tumor removal seems to be appropriate before proton beam therapy

  11. CloudAligner: A fast and full-featured MapReduce based tool for sequence mapping

    Directory of Open Access Journals (Sweden)

    Shi Weisong

    2011-06-01

    Full Text Available Abstract Background Research in genetics has developed rapidly recently due to the aid of next generation sequencing (NGS. However, massively-parallel NGS produces enormous amounts of data, which leads to storage, compatibility, scalability, and performance issues. The Cloud Computing and MapReduce framework, which utilizes hundreds or thousands of shared computers to map sequencing reads quickly and efficiently to reference genome sequences, appears to be a very promising solution for these issues. Consequently, it has been adopted by many organizations recently, and the initial results are very promising. However, since these are only initial steps toward this trend, the developed software does not provide adequate primary functions like bisulfite, pair-end mapping, etc., in on-site software such as RMAP or BS Seeker. In addition, existing MapReduce-based applications were not designed to process the long reads produced by the most recent second-generation and third-generation NGS instruments and, therefore, are inefficient. Last, it is difficult for a majority of biologists untrained in programming skills to use these tools because most were developed on Linux with a command line interface. Results To urge the trend of using Cloud technologies in genomics and prepare for advances in second- and third-generation DNA sequencing, we have built a Hadoop MapReduce-based application, CloudAligner, which achieves higher performance, covers most primary features, is more accurate, and has a user-friendly interface. It was also designed to be able to deal with long sequences. The performance gain of CloudAligner over Cloud-based counterparts (35 to 80% mainly comes from the omission of the reduce phase. In comparison to local-based approaches, the performance gain of CloudAligner is from the partition and parallel processing of the huge reference genome as well as the reads. The source code of CloudAligner is available at http

  12. Active MMW/Terahertz Security System Based on Bessel Beams

    OpenAIRE

    Igor Minin; Oleg Minin

    2013-01-01

    The novel concept of the security system based on THz Bessel beams is offered. The system is based on a novel THz diffractive optics for scanning the person (without the application of THz laser) and on a sensitive scheme for the detection of the reflected and scattered THz radiation. The development of enabling technology, namely, sensitive detector arrays and Millimeter wave/THz diffractive optics, will allow building compact, easy-to-use millimeter wave/THz imaging systems without expensiv...

  13. Alignment methods for the OPERA drift tube detector

    Science.gov (United States)

    Büttner, B.; Ebert, J.; Ferber, T.; Göllnitz, C.; Goloubkov, D.; Hagner, C.; Hierholzer, M.; Hollnagel, A.; Lenkeit, J.; Rostovtseva, I.; Schmidt-Parzefall, W.; Wonsak, B.; Zaitsev, Y.

    2014-05-01

    The goal of the OPERA experiment is to give the first direct evidence for neutrino oscillations in the channel νμ→ντ. The OPERA detector is designed to observe the appearance of tau neutrinos in the originally pure muon neutrino CNGS beam. An important part of the magnetic spectrometer is the Precision Tracker (PT), a drift tube detector consisting of 9504 drift tubes. Its main task is the determination of the muon charge and momentum. The alignment strategy for the PT consists of two parts: the hardware measurement by theodolite and the software alignment using long muon tracks. In this paper, the hardware and the software alignment are described, and the track-based alignment methods are explained in detail. Results of the software alignment are presented with a focus on the analysis of cosmic particles.

  14. Alignment methods for the OPERA drift tube detector

    International Nuclear Information System (INIS)

    The goal of the OPERA experiment is to give the first direct evidence for neutrino oscillations in the channel νμ→ντ. The OPERA detector is designed to observe the appearance of tau neutrinos in the originally pure muon neutrino CNGS beam. An important part of the magnetic spectrometer is the Precision Tracker (PT), a drift tube detector consisting of 9504 drift tubes. Its main task is the determination of the muon charge and momentum. The alignment strategy for the PT consists of two parts: the hardware measurement by theodolite and the software alignment using long muon tracks. In this paper, the hardware and the software alignment are described, and the track-based alignment methods are explained in detail. Results of the software alignment are presented with a focus on the analysis of cosmic particles

  15. Identification of Anoectochilus based on rDNA ITS sequences alignment and SELDI-TOF-MS

    OpenAIRE

    Gao, Chuan; Zhang, Fusheng; Zhang, Jun; Guo, Shunxing; Shao, Hongbo

    2009-01-01

    The internal transcribed spacer (ITS) sequences alignment and proteomic difference of Anoectochilus interspecies have been studied by means of ITS molecular identification and surface enhanced laser desorption ionization time of flight mass spectrography. Results showed that variety certification on Anoectochilus by ITS sequences can not determine species, and there is proteomic difference among Anoectochilus interspecies. Moreover, proteomic finger printings of five Anoectochilus species hav...

  16. Enhanced needle localization in ultrasound using beam steering and learning-based segmentation.

    Science.gov (United States)

    Hatt, Charles R; Ng, Gary; Parthasarathy, Vijay

    2015-04-01

    Segmentation of needles in ultrasound images remains a challenging problem. In this paper, we introduce a machine learning-based method for needle segmentation in 2D beam-steered ultrasound images. We used a statistical boosting approach to train a pixel-wise classifier for needle segmentation. The Radon transform was then used to find the needle position and orientation from the segmented image. We validated our method with data from ex vivo specimens and clinical nerve block procedures, and compared the results to those obtained using previously reported needle segmentation methods. Results show improved localization success and accuracy using the proposed method. For the ex vivo datasets, assuming that the needle orientation was known a priori, the needle was successfully localized in 86.2% of the images, with a mean targeting error of 0.48mm. The robustness of the proposed method to a lack of a priori knowledge of needle orientation was also demonstrated. For the clinical datasets, assuming that the needle orientation was closely aligned with the beam steering angle selected by the physician, the needle was successfully localized in 99.8% of the images, with a mean targeting error 0.19mm. These results indicate that the learning-based segmentation method may allow for increased targeting accuracy and enhanced visualization during ultrasound-guided needle procedures. PMID:25063736

  17. Design study of a beam energy recovery system for a negative-ion-based neutral beam injector

    International Nuclear Information System (INIS)

    A beam energy recovery system for future neutral beam injectors based on negative ions has been designed. Residual negative ions are recovered electrically, while residual positive ions are decelerated on a soft-landing beam dump. This design simplifies the beam energy recovery power supply system an reduces the heat flux on the beam dump. Residual ions are separated into negative and positive ions by the stray magnetic field from the Fusion Engineering Reactor (FER). The next Japanese tokamak reactor. Each ion beam is also guided to the collector electrode and the soft-landing beam dump by the stray magnetic field. In the 500-keV/20-MW injector designed for FER, the total power efficiency can be improved from 46 to 59% by recovering the negative ions

  18. A user-friendly nano-CT image alignment and 3D reconstruction platform based on LabVIEW

    OpenAIRE

    Wang, Shenghao; Zhang, Kai; Wang, Zhili; Gao, Kun; Wu, Zhao; Zhu, Peiping; Wu, Ziyu

    2014-01-01

    X-ray computed tomography at the nanometer scale (nano-CT) offers a wide range of applications in scientific and industrial areas. Here we describe a reliable, user-friendly and fast software package based on LabVIEW that may allow to perform all procedures after the acquisition of raw projection images in order to obtain the inner structure of the investigated sample. A suitable image alignment process to address misalignment problems among image series due to mechanical manufacturing errors...

  19. Alignment validation

    CERN Document Server

    Golling, T

    2007-01-01

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under construction at CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector and the muon system requires an accurate alignment of all detector elements. Alignment information is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  20. Vacuum mechatronic laser alignment system on the Nova laser

    International Nuclear Information System (INIS)

    The experiments conducted on NOVA are done to investigate inertially confined laser fusion reactions. To this end, the ten beams of the laser are aligned to within 30mm. The target chamber employs a vacuum mechatronic based reticle/target positioning system to accomplish this. It is a five degree-of-freedom chamber resident system, known as the Alignment Aids Positioner or AAP. The AAP aids in beam and diagnostic alignment by accurately positioning a reticle at target chamber center to with 7mm. The AAP system increases target positioning and alignment flexibility and accuracy through the use of a computer controlled multi degree-of-freedom stage assembly. This device uses microstepping DC stepper motors with encoders to achieve closed loop control in a 10-6 torr vacuum. The AAP has two positioning regimes to move the alignment reticle and do beam alignment. One is course positioning in the Y-Z plane that moves a high resolution stage assembly to target chamber center. The other regime is high resolution movement in the X,Y,Z and q directions. 5 refs., 9 figs

  1. ATLAS Muon Endcap Alignment

    CERN Document Server

    Bensinger, J R

    2005-01-01

    To align the endcap muon chambers of the ATLAS experiment, an optical grid is set up between aluminum “alignment bars” nested in each layer of chambers. Optical lines are made of laser diodes and CCD cameras that form an alignment grid. The alignment bars are self-aligning. They are then carefully measured using a large coordinate measuring machine (CMM). The subsequent shape changes of the bar are determined by calculations that are corrected by the readings of the internal monitors. The relationship between the bars is then established by a network of sensors that measure the bearing angle of light sources on the other parts of the system. The system is over-determined and the location and orientation of each bar is determined using a fitting program. Chambers are then referenced to the alignment grid using proximity sensors. This information is used to provide corrections to the nominal chamber positions before calculating track momentum. The performance of the system has been validated in a test beam ...

  2. A Case Study of the Alignment between Curriculum and Assessment in the New York State Earth Science Standards-Based System

    Science.gov (United States)

    Contino, Julie

    2013-01-01

    In a standards-based system, it is important for all components of the system to align in order to achieve the intended goals. No Child Left Behind law mandates that assessments be fully aligned with state standards, be valid, reliable and fair, be reported to all stakeholders, and provide evidence that all students in the state are meeting the…

  3. Chip electrochromatographic systems: Novel vertically aligned carbon nanotube and silica monoliths based separations

    Science.gov (United States)

    Goswami, Shubhodeep

    2009-12-01

    Miniaturized chemical analysis systems, also know as 'lab-on-a-chip' devices have been rapidly developing over the last decade. Capillary electrochromatography (CEC), a multidimensional separation technique combining capillary electrophoresis (CE) and liquid chromatography (LC) has been of great interest for chip based applications. Preliminary work has been undertaken to develop vertically aligned carbon nanotubes and photopolymerizable silica solgel as novel stationary phase materials for 'chip CEC' separations. Patterned growth of CNTs in a specific location of the channel has been carried out using a solid phase Fe-Al catalyst as well as a vapor deposited ferrocene catalyst. Characterization of the CNT "forests" was achieved using optical microscopy, secondary electron microscopy, high resolution tunneling electron microscopy and Raman spectroscopy. Proof-of-concept applications were demonstrated using reversed phase CEC separations as well as solid phase extraction of a glycosylated protein using concanavilin A immobilized onto the CNT bed. Photopolymerizable silica solgel materials were developed as stationary phase for microfluidic electrochromatographic separations in disposable polydimethylsiloxane (PDMS) chip devices. Effect on morphology and pore size of gels were studied as function of UV and solgel polymerization conditions, porogen, salt additives, geometry and hydrolyzable methoxy-ies. Structural morphologies were studied with Secondary Electron Microscopy (SEM). Pore size and pore volumes were characterized by thermal porometry, nitrogen BET adsorptions and differential scanning calorimetry. Computational fluid dynamics and confocal microscopy tools were employed to study the transport of fluids and model analytes. These investigations were directed towards evolving improved strategies for rinsing of uncrosslinked monomers to form porous monoliths as well as to effect a desired separation under a set of electrochromatograhic conditions

  4. Computerized tomography based “patient specific blocks” improve postoperative mechanical alignment in primary total knee arthroplasty

    Science.gov (United States)

    Vaishya, Raju; Vijay, Vipul; Birla, Vikas P; Agarwal, Amit K

    2016-01-01

    AIM: To compare the postoperative mechanical alignment achieved after total knee arthroplasty (TKA) using computer tomography (CT) based patient specific blocks (PSB) to conventional instruments (CI). METHODS: Total 80 knees were included in the study, with 40 knees in both the groups operated using PSB and CI. All the knees were performed by a single surgeon using the same cruciate sacrificing implants. In our study we used CT based PSB to compare with CI. Postoperative mechanical femoro-tibial angle (MFT angle) was measured on long leg x-rays using picture archiving and communication system (PACS). We compared mechanical alignment achieved using PSB and CI in TKA using statistical analysis. RESULTS: The PSB group (group 1) included 17 females and seven males while in CI group (group 2) there were 15 females and eight males. The mean age of patients in group 1 was 60.5 years and in group 2 it was 60.2 years. The mean postoperative MFT angle measured on long-leg radiographs in group 1 was 178.23° (SD = 2.67°, range: 171.9° to 182.5°) while in group 2, the mean MFT angle was 175.73° (SD = 3.62°, range: 166.0° to 179.8°). There was significant improvement in postoperative mechanical alignment (P value = 0.001), in PSB group compared to CI. Number of outliers were also found to be less in group operated with PSB (7 Knee) compared to those operated with CI (17 Knee). CONCLUSION: PSB improve mechanical alignment after total knee arthroplasty, compared to CI. This may lead to lower rates of revision in the PSB based TKA as compared to the conventional instrumentation.

  5. Alignment and integration of large optical systems based on advanced metrology.

    Science.gov (United States)

    Aliverti, M.; Riva, M.; Moschetti, M.; Pariani, G.; Genoni, M.; Zerbi, F. M.

    Optical alignment is a key activity in opto-mechanical system Integration. Traditional techniques require adjustable mounting, driven by optical references that allows the tuning of the optics position along all 6 Degree of Freedom. Nevertheless, the required flexibility imposes reduced stiffness and consequently less stability of the system. The Observatory of Brera (OAB) started few years ago a research activity focused onto the overcoming of this limits exploiting the high metrology performances of Coordinate Measuring Machines (CMM) with the main objectives of relax the manufacturing tolerances and maximize mounting stiffness. Through the T-REX grants, OAB acquired all the instrumentation needed for that activity furthermore considering the ESPRESSO project training and testing also oriented to large scale instrumentation like the E-ELT one. We will present in this paper the definition of the VLTs convergence point and the feasibility study of large mirrors alignment done by mechanical measurements methods. skip=8pt

  6. A compensation alignment method for surface irregularity based on Zernike coefficients

    Science.gov (United States)

    Li, Lian; Ma, TianMeng

    2014-11-01

    Surface irregularity of optical elements is one of the errors caused in manufacturing process. The primary aberration caused by surface irregularity is astigmatism which can hardly be removed in traditional alignment method. An alignment method by rotating the lens for compensating the deterioration of the image quality caused by surface irregularity is put forward in the paper, and the mathematical model of the method is established. The calculation of the rotate angle is described in detail. A numerical simulation of the method has been performed for a four-lens precision optical system to verify the ability and accuracy of the method. The results show that the astigmatism of the optical system caused by the surface irregularity can completely be removed, and the image quality can be improved effectively. The method is especially suitable for the optical system which demands a very high image quality.

  7. Information Technology Project Portfolio and Strategy Alignment Assessment Based on Data Envelopment Analysis

    Directory of Open Access Journals (Sweden)

    Marisa Analía Sánchez

    2012-11-01

    Full Text Available Recent researches have shown that companies face considerable difficulties in assessing the strategy value contribution of Information Technology (IT investments. One of the major obstacles to achieving strategy alignment is that organizations find extremely difficult to link and quantify the IT investments benefits with strategic goals. The aim of this paper is to define an approach to assess portfolio-strategy alignment. To this end a formal specification of Kaplan and Norton Strategy Map is developed utilizing Unified Modeling Language (UML. The approach uses the Strategy Map as a framework for defining the portfolio value contribution and Data Envelopment Analysis (DEA is used as the methodology for measuring efficiency of project portfolios.DOI:10.5585/gep.v3i2.66

  8. Cardiac rate detection method based on the beam splitter prism

    Science.gov (United States)

    Yang, Lei; Liu, Xiaohua; Liu, Ming; Zhao, Yuejin; Dong, Liquan; Zhao, Ruirui; Jin, Xiaoli; Zhao, Jingsheng

    2013-09-01

    A new cardiac rate measurement method is proposed. Through the beam splitter prism, the common-path optical system of transmitting and receiving signals is achieved. By the focusing effect of the lens, the small amplitude motion artifact is inhibited and the signal-to-noise is improved. The cardiac rate is obtained based on the PhotoPlethysmoGraphy (PPG). We use LED as the light source and use photoelectric diode as the receiving tube. The LED and the photoelectric diode are on the different sides of the beam splitter prism and they form the optical system. The signal processing and display unit is composed by the signal processing circuit, data acquisition device and computer. The light emitted by the modulated LED is collimated by the lens and irradiates the measurement target through the beam splitter prism. The light reflected by the target is focused on the receiving tube through the beam splitter prism and another lens. The signal received by the photoelectric diode is processed by the analog circuit and obtained by the data acquisition device. Through the filtering and Fast Fourier Transform, the cardiac rate is achieved. We get the real time cardiac rate by the moving average method. We experiment with 30 volunteers, containing different genders and different ages. We compare the signals captured by this method to a conventional PPG signal captured concurrently from a finger. The results of the experiments are all relatively agreeable and the biggest deviation value is about 2bmp.

  9. Damage identification in beams by a response surface based technique

    Directory of Open Access Journals (Sweden)

    Teidj S.

    2014-01-01

    Full Text Available In this work, identification of damage in uniform homogeneous metallic beams was considered through the propagation of non dispersive elastic torsional waves. The proposed damage detection procedure consisted of the following sequence. Giving a localized torque excitation, having the form of a short half-sine pulse, the first step was calculating the transient solution of the resulting torsional wave. This torque could be generated in practice by means of asymmetric laser irradiation of the beam surface. Then, a localized defect assumed to be characterized by an abrupt reduction of beam section area with a given height and extent was placed at a known location of the beam. Next, the response in terms of transverse section rotation rate was obtained for a point situated afterwards the defect, where the sensor was positioned. This last could utilize in practice the concept of laser vibrometry. A parametric study has been conducted after that by using a full factorial design of experiments table and numerical simulations based on a finite difference characteristic scheme. This has enabled the derivation of a response surface model that was shown to represent adequately the response of the system in terms of the following factors: defect extent and severity. The final step was performing the inverse problem solution in order to identify the defect characteristics by using measurement.

  10. Morphing Downwind-Aligned Rotor Concept Based on a 13-MW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ichter, Brian; Steele, Adam; Loth, Eric; Moriarty, Patrick; Selig, Michael

    2016-04-01

    To alleviate the mass-scaling issues associated with conventional upwind rotors of extreme-scale wind turbines (>/=10 MW), a morphing downwind-aligned rotor (MoDaR) concept is proposed herein. The concept employs a downwind rotor with blades whose elements are stiff (no intentional flexibility) but with hub-joints that can be unlocked to allow for moment-free downwind alignment. Aligning the combination of gravitational, centrifugal and thrust forces along the blade path reduces downwind cantilever loads, resulting in primarily tensile loading. For control simplicity, the blade curvature can be fixed with a single morphing degree of freedom using a near-hub joint for coning angle: 22 degrees at rated conditions. The conventional baseline was set as the 13.2-MW Sandia 100-m all glass blade in a three-bladed upwind configuration. To quantify potential mass savings, a downwind load-aligning, two-bladed rotor was designed. Because of the reduced number of blades, the MoDaR concept had a favorable 33% mass reduction. The blade reduction and coning led to a reduction in rated power, but morphing increased energy capture at lower speeds such that both the MoDaR and conventional rotors have the same average power: 5.4 MW. A finite element analysis showed that quasi-steady structural stresses could be reduced, over a range of operating wind speeds and azimuthal angles, despite the increases in loading per blade. However, the concept feasibility requires additional investigation of the mass, cost and complexity of the morphing hinge, the impact of unsteady aeroelastic influence because of turbulence and off-design conditions, along with system-level Levelized Cost of Energy analysis.

  11. A J2EE based server for muon spectrometer alignment monitoring in the ATLAS detector

    International Nuclear Information System (INIS)

    We describe the software chain for the Atlas muon optical alignment system, dedicated to the measurement of geometry corrections for the Muon Spectrometer chambers positions. The corrections are then used inside the reconstruction software. We detail in particular the architecture of the monitoring application, deployed in a J2EE server, and the monitoring tools that have been developed for the daily follow up. The system has been in production during the whole Run 1 period (2010-2013).

  12. Second language writing classification system based on word-alignment distribution

    OpenAIRE

    Katsunori Kotani; Takehiko Yoshimi

    2010-01-01

    The present paper introduces an automatic classification system for assisting second language(L2) writing evaluation. This system, which classifies sentences written by L2 learners as eithernative speaker-like or learner-like sentences, is constructed by machine learning algorithmsusing word-alignment distributions as classification features for detecting word-bywordtranslated expressions. The experimental results demonstrated that our classificationsystem provided adequate classification res...

  13. Complementary characterization data in support of uniaxially aligned electrospun nanocomposites based on a model PVOH-epoxy system.

    Science.gov (United States)

    Karimi, Samaneh; Staiger, Mark P; Buunk, Neil; Fessard, Alison; Tucker, Nick

    2016-06-01

    This paper presents complementary data corresponding to characterization tests done for our research article entitled "Uniaxially aligned electrospun fibers for advanced nanocomposites based on a model PVOH-epoxy system" (Karimi et al., 2016) [1]. Poly(vinyl alcohol) and epoxy resin were selected as a model system and the effect of electrospun fiber loading on polymer properties was examined in conjunction with two manufacturing methods. A novel electrospinning technology for production of uniaxially aligned nanofiber arrays was used. A conventional wet lay-up fabrication method is compared against a novel, hybrid electrospinning-electrospraying approach. The structure and thermomechanical properties of resulting composite materials were examined using scanning electron microscopy, dynamic mechanical analysis, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, and tensile testing. For discussion of obtained results please refer to the research paper (Karimi et al., 2016) [1]. PMID:26977430

  14. Complementary characterization data in support of uniaxially aligned electrospun nanocomposites based on a model PVOH-epoxy system

    Directory of Open Access Journals (Sweden)

    Samaneh Karimi

    2016-06-01

    Full Text Available This paper presents complementary data corresponding to characterization tests done for our research article entitled “Uniaxially aligned electrospun fibers for advanced nanocomposites based on a model PVOH-epoxy system” (Karimi et al., 2016 [1]. Poly(vinyl alcohol and epoxy resin were selected as a model system and the effect of electrospun fiber loading on polymer properties was examined in conjunction with two manufacturing methods. A novel electrospinning technology for production of uniaxially aligned nanofiber arrays was used. A conventional wet lay-up fabrication method is compared against a novel, hybrid electrospinning–electrospraying approach. The structure and thermomechanical properties of resulting composite materials were examined using scanning electron microscopy, dynamic mechanical analysis, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, and tensile testing. For discussion of obtained results please refer to the research paper (Karimi et al., 2016 [1].

  15. Metallic filament formation by aligned oxygen vacancies in ZnO-based resistive switches

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Tingkun, E-mail: gutk@sdu.edu.cn [School of Electrical Engineering, Shandong University, Jinan 250061 (China)

    2014-05-28

    The electronic structure of ZnO with defects of oxygen vacancies were investigated by using first-principles methods. Some structure models were constructed in order to investigate the effects of the distribution of oxygen vacancies on the electronic properties of ZnO. By analyzing the calculated results, we found that only the aligned oxygen vacancies can form the conducting channel in ZnO, and the transformation of the oxygen vacancy from charged state to neutral state is consistent with the energetics rule of the forming aligned oxygen vacancies. As for the heterojunction of Pt/ZnO/Pt, the oxygen vacancies near the interface of Pt/ZnO depress the local Schottky barrier effectively, and the aligned oxygen vacancies in ZnO form a conducting filament connecting two Pt electrodes. The metallic filament formation in Pt/ZnO/Pt resistive switching cells should be closely related to the carrier injection from Pt electrode into ZnO and the arrangement of oxygen vacancies in ZnO slab.

  16. Dynamic Terahertz Beam Steering Based on Graphene Metasurfaces

    OpenAIRE

    Liu, Liming; Zarate, Yair; Hattori, Haroldo T.

    2015-01-01

    A full (2$\\pi$) phase modulation is critical for efficient wavefront manipulation. In this article, a metasurface based on graphene long/short-strip resonators is used to implement a dynamic 2$\\pi$ phase modulation by applying different voltages to different graphene resonators. The configuration is found to have high reflection efficiency (minimum 56%) and has a full phase modulation in a wide frequency range. Terahertz (THz) beam steering as large as 120 degrees ($\\pm60^\\circ$) is demonstra...

  17. High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes.

    Science.gov (United States)

    Yan, Jing; Jeong, Young Gyu

    2016-06-22

    Piezoelectric nanogenerators, harvesting energy from mechanical stimuli in our living environments, hold great promise to power sustainable self-sufficient micro/nanosystems and mobile/portable electronics. BaTiO3 as a lead-free material with high piezoelectric coefficient and dielectric constant has been widely examined to realize nanogenerators, capacitors, sensors, etc. In this study, polydimethylsiloxane (PDMS)-based flexible composites including BaTiO3 nanofibers with different alignment modes were manufactured and their piezoelectric performance was examined. For the study, BaTiO3 nanofibers were prepared by an electrospinning technique utilizing a sol-gel precursor and following calcination process, and they were then aligned vertically or horizontally or randomly in PDMS matrix-based nanogenerators. The morphological structures of BaTiO3 nanofibers and their nanogenerators were analyzed by using SEM images. The crystal structures of the nanogenerators before and after poling were characterized by X-ray diffraction. The dielectric and piezoelectric properties of the nanogenerators were investigated as a function of the nanofiber alignment mode. The nanogenerator with BaTiO3 nanofibers aligned vertically in the PDMS matrix sheet achieved high piezoelectric performance of an output power of 0.1841 μW with maximum voltage of 2.67 V and current of 261.40 nA under a low mechanical stress of 0.002 MPa, in addition to a high dielectric constant of 40.23 at 100 Hz. The harvested energy could thus power a commercial LED directly or be stored into capacitors after rectification. PMID:27237223

  18. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter

    Directory of Open Access Journals (Sweden)

    Youngchul Bae

    2016-05-01

    Full Text Available An optical sensor such as a laser range finder (LRF or laser displacement meter (LDM uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision.

  19. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter.

    Science.gov (United States)

    Bae, Youngchul

    2016-01-01

    An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC) voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD) circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision. PMID:27223291

  20. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter

    Science.gov (United States)

    Bae, Youngchul

    2016-01-01

    An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC) voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD) circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision. PMID:27223291

  1. Particle Beam Therapy for Cancer of the Skull Base, Nasal Cavity, and Paranasal Sinus

    OpenAIRE

    Fukumitsu, Nobuyoshi

    2012-01-01

    Particle beam therapy has been rapidly developed in these several decades. Proton and carbon ion beams are most frequently used in particle beam therapy. Proton and carbon ion beam radiotherapy have physical and biological advantage to the conventional photon radiotherapy. Cancers of the skull base, nasal cavity, and paranasal sinus are rare; however these diseases can receive the benefits of particle beam radiotherapy. This paper describes the clinical review of the cancer of the skull base,...

  2. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    Since December, the muon alignment community has focused on analyzing the data recorded so far in order to produce new DT and CSC Alignment Records for the second reprocessing of CRAFT data. Two independent algorithms were developed which align the DT chambers using global tracks, thus providing, for the first time, a relative alignment of the barrel with respect to the tracker. These results are an important ingredient for the second CRAFT reprocessing and allow, for example, a more detailed study of any possible mis-modelling of the magnetic field in the muon spectrometer. Both algorithms are constructed in such a way that the resulting alignment constants are not affected, to first order, by any such mis-modelling. The CSC chambers have not yet been included in this global track-based alignment due to a lack of statistics, since only a few cosmics go through the tracker and the CSCs. A strategy exists to align the CSCs using the barrel as a reference until collision tracks become available. Aligning the ...

  3. Beam-Based Diagnostics of RF-Breakdown in the Two-Beam Test-Stand in CTF3

    CERN Document Server

    Johnson, M

    2007-01-01

    The general outline of a beam-based diagnostic method of RF-breakdown, using BPMs, at the two-beam test-stand in CTF3 is discussed. The basic components of the set-up and their functions in the diagnostic are described. Estimations of the expected error in the measured parameters are performed.

  4. Laser diagnostics for picosecond e-beams

    International Nuclear Information System (INIS)

    We propose a novel approach to picosecond e-bunch/laser pulse synchronization and spatial alignment based upon refraction and reflection of a laser beam on a plasma column created by relativistic electrons traveling through a gas or solid optical material. The technique may be used in laser accelerators and for general subpicosecond e-beam diagnostics

  5. Reliable Alignment in Total Knee Arthroplasty by the Use of an iPod-Based Navigation System

    Science.gov (United States)

    Koenen, Paola; Schneider, Marco M.; Fröhlich, Matthias; Driessen, Arne; Bouillon, Bertil; Bäthis, Holger

    2016-01-01

    Axial alignment is one of the main objectives in total knee arthroplasty (TKA). Computer-assisted surgery (CAS) is more accurate regarding limb alignment reconstruction compared to the conventional technique. The aim of this study was to analyse the precision of the innovative navigation system DASH® by Brainlab and to evaluate the reliability of intraoperatively acquired data. A retrospective analysis of 40 patients was performed, who underwent CAS TKA using the iPod-based navigation system DASH. Pre- and postoperative axial alignment were measured on standardized radiographs by two independent observers. These data were compared with the navigation data. Furthermore, interobserver reliability was measured. The duration of surgery was monitored. The mean difference between the preoperative mechanical axis by X-ray and the first intraoperatively measured limb axis by the navigation system was 2.4°. The postoperative X-rays showed a mean difference of 1.3° compared to the final navigation measurement. According to radiographic measurements, 88% of arthroplasties had a postoperative limb axis within ±3°. The mean additional time needed for navigation was 5 minutes. We could prove very good precision for the DASH system, which is comparable to established navigation devices with only negligible expenditure of time compared to conventional TKA. PMID:27313898

  6. Development of Microcontroller-Based Ball and Beam Trainer Kit

    Directory of Open Access Journals (Sweden)

    Gunawan Dewantoro

    2015-03-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE A ball and beam trainer kit based on microcontroller was developed for teaching control system course for the sophomore students. This specially-purposed kit consists of a ball located on a beam with a fixed axle at one of its end. At the other end, a servomotor was employed to control the position of the ball by adjusting the rotation angle of the servomotor. Seven predetermined positions were set to 10, 20, 30, 40, 50, 60, and 70 cm relative to the fixed axle of the beam. The Proportional-Integral-Derivative (PID scheme was then used to compensate the error. This kit is equipped with a user interface to configure controller coefficients, select the set points, plot the actual ball position, and display parameter values. The user interface program runs on PC or notebook connected to microcontroller via serial communications. A questionnaire-based assessment about the use of this kit was conducted by 17 students taking the course, giving a rating value of 94.12%.

  7. GEM-based thermal neutron beam monitors for spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Croci, G., E-mail: Gabriele.Croci@cern.ch [Istituto di Fisica del Plasma “P. Caldirola”—CNR, Milan (Italy); Sez. INFN Milano-Bicocca, Milano (Italy); Claps, G. [Laboratori Nazionali di Frascati—INFN, Frascati (Italy); Caniello, R. [Istituto di Fisica del Plasma “P. Caldirola”—CNR, Milan (Italy); Cazzaniga, C. [Dipartimento di Fisica “G. Occhialini”, University of Milano-Bicocca (Italy); Grosso, G. [Istituto di Fisica del Plasma “P. Caldirola”—CNR, Milan (Italy); Murtas, F. [Laboratori Nazionali di Frascati—INFN, Frascati (Italy); Tardocchi, M.; Vassallo, E. [Istituto di Fisica del Plasma “P. Caldirola”—CNR, Milan (Italy); Gorini, G. [Dipartimento di Fisica “G. Occhialini”, University of Milano-Bicocca (Italy); Sez. INFN Milano-Bicocca, Milano (Italy); Horstmann, C.; Kampmann, R.; Nowak, G.; Stoermer, M. [Institute of Materials Research, Helmholtz-Zentrum Geesthacht (Germany)

    2013-12-21

    The development of new large area and high flux thermal neutron detectors for future neutron spallation sources, like the European Spallation Source (ESS) is motivated by the problem of {sup 3}He shortage. In the framework of the development of ESS, GEM (Gas Electron Multiplier) is one of the detector technologies that are being explored as thermal neutron sensors. A first prototype of GEM-based thermal neutron beam monitor (bGEM) has been built during 2012. The bGEM is a triple GEM gaseous detector equipped with an aluminum cathode coated by 1μm thick B{sub 4}C layer used to convert thermal neutrons to charged particles through the {sup 10}B(n,{sup 7}Li)α nuclear reaction. This paper describes the results obtained by testing a bGEM detector at the ISIS spallation source on the VESUVIO beamline. Beam profiles (FWHM{sub x}=31 mm and FWHM{sub y}=36 mm), bGEM thermal neutron counting efficiency (≈1%), detector stability (3.45%) and the time-of-flight spectrum of the beam were successfully measured. This prototype represents the first step towards the development of thermal neutrons detectors with efficiency larger than 50% as alternatives to {sup 3}He-based gaseous detectors.

  8. Proposal for an alignment method of the CLIC linear accelerator - From geodesic networks to the active pre-alignment

    International Nuclear Information System (INIS)

    The compact linear collider (CLIC) is the particle accelerator project proposed by the european organization for nuclear research (CERN) for high energy physics after the large hadron collider (LHC). Because of the nano-metric scale of the CLIC leptons beams, the emittance growth budget is very tight. It induces alignment tolerances on the positions of the CLIC components that have never been achieved before. The last step of the CLIC alignment will be done according to the beam itself. It falls within the competence of the physicists. However, in order to implement the beam-based feedback, a challenging pre-alignment is required: 10 μm at 3σ along a 200 m sliding window. For such a precision, the proposed solution must be compatible with a feedback between the measurement and repositioning systems. The CLIC pre-alignment will have to be active. This thesis does not demonstrate the feasibility of the CLIC active pre-alignment but shows the way to the last developments that have to be done for that purpose. A method is proposed. Based on the management of the Helmert transformations between Euclidean coordinate systems, from the geodetic networks to the metrological measurements, this method is likely to solve the CLIC pre-alignment problem. Large scale facilities have been built and Monte-Carlo simulations have been made in order to validate the mathematical modeling of the measurement systems and of the alignment references. When this is done, it will be possible to extrapolate the modeling to the entire CLIC length. It will be the last step towards the demonstration of the CLIC pre-alignment feasibility. (author)

  9. An energy-based beam hardening model in tomography

    Energy Technology Data Exchange (ETDEWEB)

    Casteele, E van de; Dyck, D van; Sijbers, J; Raman, E [Vision Lab, Physics Departement, University of Antwerp (RUCA) (Belgium)

    2002-12-07

    As a consequence of the polychromatic x-ray source, used in micro-computer tomography ({mu}CT) and in medical CT, the attenuation is no longer a linear function of absorber thickness. If this nonlinear beam hardening effect is not compensated, the reconstructed images will be corrupted by cupping artefacts. In this paper, a bimodal energy model for the detected energy spectrum is presented, which can be used for reduction of artefacts caused by beam hardening in well-specified conditions. Based on the combination of the spectrum of the source and the detector efficiency, the assumption is made that there are two dominant energies which can describe the system. The validity of the proposed model is examined by fitting the model to the experimental datapoints obtained on a microtomograph for different materials and source voltages.

  10. Filter model based dwell time algorithm for ion beam figuring

    Science.gov (United States)

    Li, Yun; Xing, Tingwen; Jia, Xin; Wei, Haoming

    2010-10-01

    The process of Ion Beam Figuring (IBF) can be described by a two-dimensional convolution equation which including dwell time. Solving the dwell time is a key problem in IBF. Theoretically, the dwell time can be solved from a two-dimensional deconvolution. However, it is often ill-posed]; the suitable solution of that is hard to get. In this article, a dwell time algorithm is proposed, depending on the characters of IBF. Usually, the Beam Removal Function (BRF) in IBF is Gaussian, which can be regarded as a headstand Gaussian filter. In its stop-band, the filter has various filtering abilities for various frequencies. The dwell time algorithm proposed in this article is just based on this concept. The Curved Surface Smooth Extension (CSSE) method and Fast Fourier Transform (FFT) algorithm are also used. The simulation results show that this algorithm is high precision, effective, and suitable for actual application.

  11. Neutron beam monitor based on a boron-coated GEM

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jian-Rong; LI Yi; SUN Zhi-Jia; LIU Ben; WANG Yan-Feng; YANG Gui-An; ZHOU Liang; XU Hong; DONG Jing; YANG Lei

    2011-01-01

    A new thermal neutron beam monitor with a Gas Electron Multiplier (GEM) is developed to meet the needs of the next generation of neutron facilities. A prototype chamber has been constructed with two 100 mm×100 mm GEM foils. Enriched boron-10 is coated on one surface of the aluminum cathode plate as the neutron convertor. 96 channel pads with an area of 8 mm×8 mm each are used for fast signal readout.In order to study the basic characteristics of a boron-coated GEM, several irradiation tests were carried out with α source 239pu and neutron source 241Am(Be). The signal induced by the neutron source has a high signal-to-noise ratio. A clear image obtained from α source 239pu is presented, which shows that the neutron beam monitor based on a boron-coated GEM has a good two-dimensional imaging ability.

  12. Identification of Anoectochilus based on rDNA ITS sequences alignment and SELDI-TOF-MS

    Directory of Open Access Journals (Sweden)

    Chuan Gao, Fusheng Zhang, Jun Zhang, Shunxing Guo, Hongbo Shao

    2009-01-01

    Full Text Available The internal transcribed spacer (ITS sequences alignment and proteomic difference of Anoectochilus interspecies have been studied by means of ITS molecular identification and surface enhanced laser desorption ionization time of flight mass spectrography. Results showed that variety certification on Anoectochilus by ITS sequences can not determine species, and there is proteomic difference among Anoectochilus interspecies. Moreover, proteomic finger printings of five Anoectochilus species have been established for identifying species, and genetic relationships of five species within Anoectochilus have been deduced according to proteomic differences among five species.

  13. Eringen's small length scale coefficient for buckling of nonlocal Timoshenko beam based on microstructured beam model

    Science.gov (United States)

    Zhang, Z.; Challamel, N.; Wang, C. M.

    2013-09-01

    This paper presents the determination of Eringen's small length scale coefficient e0 for buckling of nonlocal Timoshenko beam from a microstructured beam model. The microstructured beam model is composed of discrete rigid elements (of equal length), which are connected by rotational and shear springs that model the bending and shearing behaviors in a beam. The exact solution of e0 is given for nonlocal Timoshenko beam with small length scale term appearing in the normal stress-strain relation only. It is shown that e0 approaches 1/√12 ≈0.289 which coincides with the one calibrated for nonlocal Euler beams.

  14. First successful beam test of niobium based superconducting linac at Nuclear Science Centre

    International Nuclear Information System (INIS)

    To increase the energy of the ion beam from Pelletron accelerator, a superconducting booster linear accelerator (linac) is under construction. Quarter wave resonator (QWR) made by niobium has been chosen as the accelerating unit of our Linac. Recently eight resonators along with a superconducting solenoid had been installed and aligned in the first linac cryostat. In the on-line test beam transmission through the linac was measured to be ∼100%. A pulsed beam of 28Si+7, 90 MeV, 1.5 ns FWHM was injected into the superbuncher which produced a beam of 300 ps FWHM at the entrance of linac. By turning on resonators one by one in linac cryostat and carefully adjusting their reference phases, a total energy gain of ∼ 6 MeV was measured at the exit of linac. Details of different systems of the linac and its on line beam experiment is presented in this paper. (author)

  15. Improving the quality of biomarker candidates in untargeted metabolomics via peak table-based alignment of comprehensive two-dimensional gas chromatography-mass spectrometry data.

    Science.gov (United States)

    Bean, Heather D; Hill, Jane E; Dimandja, Jean-Marie D

    2015-05-15

    The potential of high-resolution analytical technologies like GC×GC/TOF MS in untargeted metabolomics and biomarker discovery has been limited by the development of fully automated software that can efficiently align and extract information from multiple chromatographic data sets. In this work we report the first investigation on a peak-by-peak basis of the chromatographic factors that impact GC×GC data alignment. A representative set of 16 compounds of different chromatographic characteristics were followed through the alignment of 63 GC×GC chromatograms. We found that varying the mass spectral match parameter had a significant influence on the alignment for poorly-resolved peaks, especially those at the extremes of the detector linear range, and no influence on well-chromatographed peaks. Therefore, optimized chromatography is required for proper GC×GC data alignment. Based on these observations, a workflow is presented for the conservative selection of biomarker candidates from untargeted metabolomics analyses. PMID:25857541

  16. Magnetic field aligned assembly of nonmagnetic composite dumbbells in nanoparticle-based aqueous ferrofluid.

    Science.gov (United States)

    Takahashi, Hayato; Nagao, Daisuke; Watanabe, Kanako; Ishii, Haruyuki; Konno, Mikio

    2015-05-26

    Monodisperse, nonmagnetic, asymmetrical composite dumbbells in a suspension of magnetic nanoparticles (ferrofluid) were aligned by application of an external magnetic field to the ferrofluid. The asymmetrical composite dumbbells were prepared by two-step soap-free emulsion polymerization consisting of the first polymerization to coat spherical silica cores with cross-linked poly(methyl methacrylate) (PMMA) shell and the second polymerization to protrude a polystyrene (PSt) lobe from the core-shell particles. A chain structure of nonmagnetic dumbbells oriented to the applied magnetic field was observed at nanoparticle content of 2.0 vol % and field strengths higher than 1.0 mT. A similar chain structure of the dumbbells was observed under application of alternating electric field at strengths higher than 50 V/mm. Parallel and orthogonally combined applications of the electric and magnetic fields were also conducted to examine independence of the electric and magnetic applications as operational factors in the dumbbell assembling. Dumbbell chains stiffer than those in a single application of external field were formed in the parallel combined application of electric and magnetic fields. The orthogonal combination of the different applied fields could form a magnetically aligned chain structure of the nonmagnetic dumbbells oriented to the electric field. The present work experimentally indicated that the employment of inverse magnetorheological effect for nonmagnetic, anisotropic particles can be a useful method for the simultaneous controls over the orientation and the positon of anisotropic particles in their assembling. PMID:25927488

  17. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film

    Science.gov (United States)

    Qiu, Lin; Wang, Xiaotian; Su, Guoping; Tang, Dawei; Zheng, Xinghua; Zhu, Jie; Wang, Zhiguo; Norris, Pamela M.; Bradford, Philip D.; Zhu, Yuntian

    2016-01-01

    It has been more than a decade since the thermal conductivity of vertically aligned carbon nanotube (VACNT) arrays was reported possible to exceed that of the best thermal greases or phase change materials by an order of magnitude. Despite tremendous prospects as a thermal interface material (TIM), results were discouraging for practical applications. The primary reason is the large thermal contact resistance between the CNT tips and the heat sink. Here we report a simultaneous sevenfold increase in in-plane thermal conductivity and a fourfold reduction in the thermal contact resistance at the flexible CNT-SiO2 coated heat sink interface by coupling the CNTs with orderly physical overlapping along the horizontal direction through an engineering approach (shear pressing). The removal of empty space rapidly increases the density of transport channels, and the replacement of the fine CNT tips with their cylindrical surface insures intimate contact at CNT-SiO2 interface. Our results suggest horizontally aligned CNT arrays exhibit remarkably enhanced in-plane thermal conductivity and reduced out-of-plane thermal conductivity and thermal contact resistance. This novel structure makes CNT film promising for applications in chip-level heat dissipation. Besides TIM, it also provides for a solution to anisotropic heat spreader which is significant for eliminating hot spots. PMID:26880221

  18. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film

    Science.gov (United States)

    Qiu, Lin; Wang, Xiaotian; Su, Guoping; Tang, Dawei; Zheng, Xinghua; Zhu, Jie; Wang, Zhiguo; Norris, Pamela M.; Bradford, Philip D.; Zhu, Yuntian

    2016-02-01

    It has been more than a decade since the thermal conductivity of vertically aligned carbon nanotube (VACNT) arrays was reported possible to exceed that of the best thermal greases or phase change materials by an order of magnitude. Despite tremendous prospects as a thermal interface material (TIM), results were discouraging for practical applications. The primary reason is the large thermal contact resistance between the CNT tips and the heat sink. Here we report a simultaneous sevenfold increase in in-plane thermal conductivity and a fourfold reduction in the thermal contact resistance at the flexible CNT-SiO2 coated heat sink interface by coupling the CNTs with orderly physical overlapping along the horizontal direction through an engineering approach (shear pressing). The removal of empty space rapidly increases the density of transport channels, and the replacement of the fine CNT tips with their cylindrical surface insures intimate contact at CNT-SiO2 interface. Our results suggest horizontally aligned CNT arrays exhibit remarkably enhanced in-plane thermal conductivity and reduced out-of-plane thermal conductivity and thermal contact resistance. This novel structure makes CNT film promising for applications in chip-level heat dissipation. Besides TIM, it also provides for a solution to anisotropic heat spreader which is significant for eliminating hot spots.

  19. Simple scalable nucleotic FPGA based short read aligner for exhaustive search of substitution errors

    Directory of Open Access Journals (Sweden)

    Fehér Péter

    2015-12-01

    Full Text Available With the advent of the new and continuously improving technologies, in a couple of years DNA sequencing can be as commonplace as a simple blood test. The growth of sequencing efficiency has a larger exponent than the Moore’s law of standard processors, hence alignment and further processing of sequenced data is the bottleneck. The usage of FPGA (Field Programmable Gate Arrays technology may provide an efficient alternative. We propose a simple algorithm for DNA sequence alignment, which can be realized efficiently by nucleotic principal agents of Non.Neumann nature. The prototype FPGA implementation runs on a small Terasic DE1-SoC demo board with a Cyclone V chip. We present test results and furthermore analyse the theoretical scalability of this system, showing that the execution time is independent of the length of reference genome sequences. A special advantage of this parallel algorithm is that it performs exhaustive search producing all match variants up to a predetermined number of point (mutation errors.

  20. Microcontroller based two axis microtron beam extraction system

    International Nuclear Information System (INIS)

    Microtron is an electron accelerator which is used to accelerate the electron beam. The Microtron consists of electro magnet with two poles separated by yoke for completion of path for magnetic flux lines. A compact Microtron capable of accelerating electrons up to 12 MeV has been developed in RRCAT. The beam from the Microtron has to be extracted from various orbits depending upon the user requirement (X-Y stage is built with an accuracy of 100 μm). This paper describes the design and development of microcontroller based two axis beam extraction system for Microtron, with a resolution of 50 μm to position the extraction tube with respect to selected orbit. Two axis motion controller is developed using current controlled micro-stepping driver mechanism, which uses Bipolar Chopper Drive for driving stepper motors. Each phase has 2A continuous driving capability. The system is provided with user selectable controls like speed, steps, direction, and mode. This system is provided with RS-232 interface, to accept commands from PC. This system also has local keyboard and LCD interface to use in Stand-alone mode (local Mode). (author)

  1. Design studies for a long base-line neutrino beam

    Energy Technology Data Exchange (ETDEWEB)

    Ball, A.E. [European Lab. for Particle Physics (CERN), Geneva (Switzerland); Katsanevas, S. [University of Athens, 104 Solonos, GR-106 80 Athens (Greece); Vassilopoulos, N. [University of Athens, 104 Solonos, GR-106 80 Athens (Greece)

    1996-12-11

    Strong interest has recently been shown in very long base-line neutrino beams, directed at existing or planned massive detector facilities, in order to extend the search for neutrino oscillations. Among such possibilities are beams from CERN pointing towards the Gran Sasso Underground Laboratory in Italy and the NESTOR Underwater Laboratory in the Ionian Sea off the west coast of the Peloponnese. In order to establish the basic parameters, a number of possible configurations for such beams have been studied covering a range of neutrino energy bands; estimates of the neutrino fluxes, event rates and backgrounds at typical detectors are reported. Considerations have been given to the optimum length and radius of the decay tunnels. It is shown that with one year of operation, a neutrino oscillation search down to limits of sin{sup 2} 2{theta}=1.1 x 10{sup -2} and {Delta}m{sup 2}=3.5 x 10{sup -4} eV{sup 2} could be made with currently proposed detectors. (orig.).

  2. Design studies for a long base-line neutrino beam

    International Nuclear Information System (INIS)

    Strong interest has recently been shown in very long base-line neutrino beams, directed at existing or planned massive detector facilities, in order to extend the search for neutrino oscillations. Among such possibilities are beams from CERN pointing towards the Gran Sasso Underground Laboratory in Italy and the NESTOR Underwater Laboratory in the Ionian Sea off the west coast of the Peloponnese. In order to establish the basic parameters, a number of possible configurations for such beams have been studied covering a range of neutrino energy bands; estimates of the neutrino fluxes, event rates and backgrounds at typical detectors are reported. Considerations have been given to the optimum length and radius of the decay tunnels. It is shown that with one year of operation, a neutrino oscillation search down to limits of sin2 2θ=1.1 x 10-2 and Δm2=3.5 x 10-4 eV2 could be made with currently proposed detectors. (orig.)

  3. Apparent beam size definition of focused ion beams based on scanning electron microscopy images of nanodots

    OpenAIRE

    Vladov, Nikola; Segal, Joel; Ratchev, Svetan

    2015-01-01

    In this paper the new term apparent beam size of Focused Ion Beam (FIB) is introduced and an original method of its evaluation is demonstrated. Traditional methods of measuring the beam size, like the knife edge method, provide information about the quality of the beam itself but practically they do not give information on the FIB sputtering resolution. To do this, it is necessary to take into account the material dependant interaction of the beam with the specimen and the gas precursor in th...

  4. Highly Stretchable Supercapacitors Based on Aligned Carbon Nanotube/Molybdenum Disulfide Composites.

    Science.gov (United States)

    Lv, Tian; Yao, Yao; Li, Ning; Chen, Tao

    2016-08-01

    Stretchable supercapacitors that can sustain their performance under unpredictable tensile force are important elements for practical applications of various portable and wearable electronics. However, the stretchability of most reported supercapacitors was often lower than 100 % because of the limitation of the electrodes used. Herein we developed all-solid-state supercapacitors with a stretchability as high as 240 % by using aligned carbon nanotube composites with compact structure as electrodes. By combined with pseudocapacitive molybdenum disulfide nanosheets, the newly developed supercapacitor showed a specific capacitance of 13.16 F cm(-3) , and also showed excellent cycling retention (98 %) after 10 000 charge-discharge cycles. This work also presents a general and effective approach in developing high-performance electrodes for flexible and stretchable electronics. PMID:27328623

  5. Displacement Analysis of Building Movement by using the Survey of Align Network at KOMAC

    International Nuclear Information System (INIS)

    100MeV proton linac has been operated and provided to beam users in KOMAC (Korea Multi-purpose Accelerator Complex). Proton linac is composed of a 50keV proton injector, a 3MeV RFQ, 20MeV DTL tanks, 100MeV DTL tanks, beam dump and beam line for 20MeV and 100MeV. To align the accelerator components, the align networks based on reference point were installed on the wall inside tunnel. The survey works of align networks were accomplished by using the laser tracker. In this paper, the survey of align networks is performed and its results are presented. In recent survey of align networks, it was monitored to move the locations. The analysis of displacement was confirmed by compare the align networks. This analysis was used to re-align the accelerator components which can be compensated location of reference points. The displacement monitoring should be performed during the long-term period and need to find the other method for real-time, not the survey of align networks

  6. Radially Polarized Bessel-Gauss Beams in ABCD Optical Systems and Fiber-Based Generation

    OpenAIRE

    Schimpf, Damian; Putnam, William P.; Grogan, Michael D.; Ramachandran, Siddharth; Kaertner, Franz

    2013-01-01

    We derive solutions for radially polarized Bessel-Gauss beams in ABCD optical systems by superimposing decentered Gaussian beams with linear polarization states. We experimentally confirm the expression by employing a fiber-based mode-converter.

  7. The generation of arbitrary vector beams using a division of a wavefront-based setup

    Science.gov (United States)

    Kalita, Ranjan; Gaffar, Md; Boruah, Bosanta R.

    2016-07-01

    In this paper, we introduce an arbitrary vector-beam-forming scheme using a simple arrangement involving only one liquid crystal spatial light modulator. An arbitrary vector beam can be obtained by overlapping two orthogonally polarized beams. In most of the existing vector-beam-forming schemes the two orthogonally polarized beams are essentially copies of a single incident wavefront. However, in the proposed scheme the two orthogonally polarized beams correspond to two separated parts of a single incident wavefront. Taking a cue from the two-beam interference phenomenon, the present scheme can be referred to as a division of a wavefront-based scheme. The proposed setup offers certain important advantages and is more suitable for the generation of higher average-power vector beams. We demonstrate the working of the vector-beam-forming scheme by generating various vector beams such as radially polarized, azimuthally polarized, and Bessel–Gauss beams and also a boat-shaped beam in the focal volume of a low-numerical-aperture focusing lens. The boat-shaped beam comprises a dark center surrounded by intense light from all but one direction. The beam is realized at the focus of an azimuthally polarized beam in the presence of a moderate amount of coma in the beam. The experimental results obtained using the proposed setup are verified by comparing them with the theoretical results.

  8. Free vibration of functionally graded beams based on both classical and first-order shear deformation beam theories

    Institute of Scientific and Technical Information of China (English)

    李世荣; 万泽青; 张静华

    2014-01-01

    The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by considering the shear deforma-tion and the axial, transversal, rotational, and axial-rotational coupling inertia forces on the assumption that the material properties vary arbitrarily in the thickness direction. By using the numerical shooting method to solve the eigenvalue problem of the coupled ordinary differential equations with different boundary conditions, the natural frequen-cies of the FGM Timoshenko beams are obtained numerically. In a special case of the classical beam theory, a proportional transformation between the natural frequencies of the FGM and the reference homogenous beams is obtained by using the mathematical similarity between the mathematical formulations. This formula provides a simple and useful approach to evaluate the natural frequencies of the FGM beams without dealing with the tension-bending coupling problem. Approximately, this analogous transition can also be extended to predict the frequencies of the FGM Timoshenko beams. The numerical results obtained by the shooting method and those obtained by the analogous transformation are presented to show the effects of the material gradient, the slenderness ratio, and the boundary conditions on the natural frequencies in detail.

  9. Beyond Alignment

    DEFF Research Database (Denmark)

    Beyond Alignment: Applying Systems Thinking to Architecting Enterprises is a comprehensive reader about how enterprises can apply systems thinking in their enterprise architecture practice, for business transformation and for strategic execution. The book's contributors find that systems thinking...... is a valuable way of thinking about the viable enterprise and how to architect it....

  10. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    International Nuclear Information System (INIS)

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  11. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Soevik, Aaste; Skogmo, Hege K. (Dept. of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo (Norway)), E-mail: aste.sovik@nvh.no; Roedal, Jan (Dept. of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo (Norway)); Lervaag, Christoffer; Eilertsen, Karsten; Malinen, Eirik (Dept. of Medical Physics, The Norwegian Radium Hospital, Oslo Univ. Hospital, Oslo (Norway))

    2010-10-15

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  12. Tidal alignment of galaxies

    CERN Document Server

    Blazek, Jonathan; Seljak, Uroš

    2015-01-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between ...

  13. Beam position monitoring at CLIC

    OpenAIRE

    Prochnow, Jan Erik

    2003-01-01

    At the European Organisation for Nuclear Research CERN in Geneva, Switzerland the design of the Compact LInear Collider (CLIC) for high energy physics is studied. To achieve the envisaged high luminosity the quadrupole magnets and radio-frequency accelerating structures have to be actively aligned with micron precision and submicron resolution. This will be done using beam-based algorithms which rely on beam position information inside of quadrupoles and accelerating structures. After a gener...

  14. Converter of laser beams with circular polarization to cylindrical vector beams based on anisotropic crystals

    Science.gov (United States)

    Paranin, Vyacheslav D.; Karpeev, Sergey V.; Kazanskiy, Nikolay L.; Krasnov, Andrey P.

    2016-03-01

    The optical system for converting laser beams with circular polarization to cylindrical vector beams on the basis of anisotropic crystals has been developed. The experimental research of beam formation quality has been carried out on the both polarization and structural characteristics. The research showed differences in the formation of the azimuthal and radial polarizations for Gaussian modes and Bessel beams. The boundaries of changes of the optical system parameters to form different types of polarizations with different amplitude and phase distributions have been identified.

  15. Beam-based optical tuning of the final focus test beam

    International Nuclear Information System (INIS)

    In order to reduce the SLAC 46.6 GeV beam to submicron sizes, the Final Focus Test Beam (FFTB) must meet tight tolerances on many aberrations. These aberrations include: mismatch and coupling of the incoming beam; dispersion; chromaticity; lattice errors in the chromatic correction sections; lattice coupling; and residual sextupole content in the quadrupoles. In order to address these aberrations, the authors have developed a procedure which combines trajectory analysis, use of intermediate wire scanners, and a pair of novel beam size monitors at the IP. This procedure allows the FFTB IP spot to be reduced to sizes under 100 nanometers

  16. Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics

    Science.gov (United States)

    Park, Byoungchoo; Bae, In-Gon; Huh, Yoon Ho

    2016-01-01

    We herein report on a remarkably simple, fast, and economic way of fabricating homogeneous and well oriented silver nanowires (AgNWs) that exhibit strong in-plane electrical and optical anisotropies. Using a small quantity of AgNW suspension, the horizontal-dip (H-dip) coating method was applied, in which highly oriented AgNWs were deposited unidirectionally along the direction of coating over centimetre-scale lengths very rapidly. In applying the H-dip-coating method, we adjusted the shear strain rate of the capillary flow in the Landau-Levich meniscus of the AgNW suspension, which induced a high degree of uniaxial orientational ordering (0.37-0.43) of the AgNWs, comparable with the ordering seen in archetypal nematic liquid crystal (LC) materials. These AgNWs could be used to fabricate not only transparent electrodes, but also LC-alignment electrodes for LC devices and/or polarising electrodes for organic photovoltaic devices, having the potential to revolutionise the architectures of a number of polarisation-selective opto-electronic devices for use in printed/organic electronics.

  17. Ground-Based and Space-Based Laser Beam Power Applications

    Science.gov (United States)

    Bozek, John M.

    1995-01-01

    A space power system based on laser beam power is sized to reduce mass, increase operational capabilities, and reduce complexity. The advantages of laser systems over solar-based systems are compared as a function of application. Power produced from the conversion of a laser beam that has been generated on the Earth's surface and beamed into cislunar space resulted in decreased round-trip time for Earth satellite electric propulsion tugs and a substantial landed mass savings for a lunar surface mission. The mass of a space-based laser system (generator in space and receiver near user) that beams down to an extraterrestrial airplane, orbiting spacecraft, surface outpost, or rover is calculated and compared to a solar system. In general, the advantage of low mass for these space-based laser systems is limited to high solar eclipse time missions at distances inside Jupiter. The power system mass is less in a continuously moving Mars rover or surface outpost using space-based laser technology than in a comparable solar-based power system, but only during dust storm conditions. Even at large distances for the Sun, the user-site portion of a space-based laser power system (e.g., the laser receiver component) is substantially less massive than a solar-based system with requisite on-board electrochemical energy storage.

  18. A Rapid Transfer Alignment Method for SINS Based on the Added Backward-Forward SINS Resolution and Data Fusion

    Directory of Open Access Journals (Sweden)

    Xixiang Liu

    2013-01-01

    Full Text Available Two viewpoints are given: (1 initial alignment of strapdown inertial navigation system (SINS can be fulfilled with a set of inertial sensor data; (2 estimation time for sensor errors can be shortened by repeated data fusion on the added backward-forward SINS resolution results and the external reference data. Based on the above viewpoints, aiming to estimate gyro bias in a shortened time, a rapid transfer alignment method, without any changes for Kalman filter, is introduced. In this method, inertial sensor data and reference data in one reference data update cycle are stored, and one backward and one forward SINS resolutions are executed. Meanwhile, data fusion is executed when the corresponding resolution ends. With the added backward-forward SINS resolution, in the above mentioned update cycle, the estimating operations for gyro bias are added twice, and the estimation time for it is shortened. In the ship swinging condition, with the “velocity plus yaw” matching, the effectiveness of this method is proved by the simulation.

  19. Beam Diagnostics for Laser Undulator Based on Compton Backward Scattering

    CERN Document Server

    Kuroda, R

    2005-01-01

    A compact soft X-ray source is required in various research fields such as material and biological science. The laser undulator based on Compton backward scattering has been developed as a compact soft X-ray source for the biological observation at Waseda University. It is performed in a water window region (250eV - 500 eV) using the interaction between 1047 nm Nd:YLF laser (10ps FWHM) and about 5 MeV high quality electron beam (10ps FWHM) generated from rf gun system. The range of X-ray energy in the water window region has K-shell absorption edges of Oxygen, Carbon and Nitrogen, which mainly constitute of living body. Since the absorption coefficient of water is much smaller than the protein's coefficient in this range, a dehydration of the specimens is not necessary. To generate the soft X-ray pulse stably, the electron beam diagnostics have been developed such as the emittance measurement using double slit scan technique, the bunch length measurement using two frequency analysis technique. In this confere...

  20. Research of fiber Bragg grating geophone based on cantilever beam

    Science.gov (United States)

    Wang, Liang; Chen, Shao-hua; Tao, Guo; Lu, Gui-wu; Zhao, Kun

    2009-07-01

    Along with the development of seismic exploration, the demand of frequency, dynamic range, precision and resolution ration is increased. However, the traditional geophone has disadvantages of narrower bandwidth, lower dynamic range and resolution, and cannot meet the new needs of seismic exploration. Geophone technology is a choke point, which constrains the development of petroleum prospecting in recent years. Fiber Bragg Grating seism demodulation technology is the newest kind of seism demodulation technology. The sensing probe of the Fiber Bragg Grating geophone is made up of Fiber Bragg Gating. The information which it collects is embodied by wavelength. The modulation-demodulation is accomplished by Fiber Bragg Gating geophone directly. In this paper, we design different size Fiber Bragg Grating geophones based on the transmission properties of Fiber Bragg Grating and cantilever beam method. Beryllium bronze and stainless steel are chosen as the elastic beam and shell materials, respectively. The parameters such as response function and sensitivity are given theoretically. In addition, we have simulated the transmission characteristics of Fiber Bragg Grating geophone by virtue of finite element analysis. The influences of wavelength, mass block, fiber length on the characteristics of geophones are discussed in detail, and finally the appropriate structural parameters are presented.

  1. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    S. Szillasi

    2013-01-01

    The CMS detector has been gradually opened and whenever a wheel became exposed the first operation was the removal of the MABs, the sensor structures of the Hardware Barrel Alignment System. By the last days of June all 36 MABs have arrived at the Alignment Lab at the ISR where, as part of the Alignment Upgrade Project, they are refurbished with new Survey target holders. Their electronic checkout is on the way and finally they will be recalibrated. During LS1 the alignment system will be upgraded in order to allow more precise reconstruction of the MB4 chambers in Sector 10 and Sector 4. This requires new sensor components, so called MiniMABs (pictured below), that have already been assembled and calibrated. Image 6: Calibrated MiniMABs are ready for installation For the track-based alignment, the systematic uncertainties of the algorithm are under scrutiny: this study will enable the production of an improved Monte Carlo misalignment scenario and to update alignment position errors eventually, crucial...

  2. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2012-01-01

      A new muon alignment has been produced for 2012 A+B data reconstruction. It uses the latest Tracker alignment and single-muon data samples to align both DTs and CSCs. Physics validation has been performed and shows a modest improvement in stand-alone muon momentum resolution in the barrel, where the alignment is essentially unchanged from the previous version. The reference-target track-based algorithm using only collision muons is employed for the first time to align the CSCs, and a substantial improvement in resolution is observed in the endcap and overlap regions for stand-alone muons. This new alignment is undergoing the approval process and is expected to be deployed as part of a new global tag in the beginning of December. The pT dependence of the φ-bias in curvature observed in Monte Carlo was traced to a relative vertical misalignment between the Tracker and barrel muon systems. Moving the barrel as a whole to match the Tracker cures this pT dependence, leaving only the &phi...

  3. PASS2 database for the structure-based sequence alignment of distantly related SCOP domain superfamilies: update to version 5 and added features.

    Science.gov (United States)

    Gandhimathi, Arumugam; Ghosh, Pritha; Hariharaputran, Sridhar; Mathew, Oommen K; Sowdhamini, R

    2016-01-01

    Structure-based sequence alignment is an essential step in assessing and analysing the relationship of distantly related proteins. PASS2 is a database that records such alignments for protein domain superfamilies and has been constantly updated periodically. This update of the PASS2 version, named as PASS2.5, directly corresponds to the SCOPe 2.04 release. All SCOPe structural domains that share less than 40% sequence identity, as defined by the ASTRAL compendium of protein structures, are included. The current version includes 1977 superfamilies and has been assembled utilizing the structure-based sequence alignment protocol. Such an alignment is obtained initially through MATT, followed by a refinement through the COMPARER program. The JOY program has been used for structural annotations of such alignments. In this update, we have automated the protocol and focused on inclusion of new features such as mapping of GO terms, absolutely conserved residues among the domains in a superfamily and inclusion of PDBs, that are absent in SCOPe 2.04, using the HMM profiles from the alignments of the superfamily members and are provided as a separate list. We have also implemented a more user-friendly manner of data presentation and options for downloading more features. PASS2.5 version is available at http://caps.ncbs.res.in/pass2/. PMID:26553811

  4. Optics analysis of Final Focus Test Beam with the help of methods based on Lie algebra

    International Nuclear Information System (INIS)

    The Final Focus Test Beam being built at SLAC is a test bed for future linear collider final focus systems. The parameters and the optics of the FFTB are presented in chapter one. The mathematical tools for this thesis which are based on Lie algebras are then reviewed in chapter two. One relies particularly on the Lie transformations together with the similarity transformation and the Campbell-Baler-Haussdorff theorem for the manipulation of Hamiltonians. Chapter three presents the application of these methods to magnetic optics in accelerators; the separation of linear and non-linear effects and the building of the total Hamiltonian of the line from the thin-lens formulation. Chapter four analytically establishes a catalog of aberrations, up to order five in the Hamiltonians, at the FFTB. The emphasis is put on the methods of analysis. It is shown that the system has a significant fifth-order aberration and that no higher-order aberration appears. Finally chapter six presents some stability tolerances - alignment strength and multipole content - for the FFTB. In the conclusion the present situation of these methods, as well as possible computer codes using them, are reviewed

  5. Aligning molecules with intense nonresonant laser fields

    DEFF Research Database (Denmark)

    Larsen, J.J.; Safvan, C.P.; Sakai, H.;

    1999-01-01

    Molecules in a seeded supersonic beam are aligned by the interaction between an intense nonresonant linearly polarized laser field and the molecular polarizability. We demonstrate the general applicability of the scheme by aligning I2, ICl, CS2, CH3I, and C6H5I molecules. The alignment is probed by...... mass selective two dimensional imaging of the photofragment ions produced by femtosecond laser pulses. Calculations on the degree of alignment of I2 are in good agreement with the experiments. We discuss some future applications of laser aligned molecules....

  6. Dynamic Terahertz Beam Steering Based on Graphene Metasurfaces

    CERN Document Server

    Liu, Liming; Hattori, Haroldo T

    2016-01-01

    A full (2$\\pi$) phase modulation is critical for efficient wavefront manipulation. In this article, we propose a metasurface based on graphene long/short-strip resonators which are capable of implementing a dynamic 2$\\pi$ phase modulation by applying different voltages to different graphene resonators. The configuration is found to have high reflection efficiency (minimum 56%) and has a full phase modulation in a wide frequency range. Terahertz (THz) beam steering as large as 120 degrees ($\\pm60^\\circ$) is demonstrated in a broad frequency range (1.2 to 1.9 THz) by changing the Fermi levels of different graphene resonators accordingly. This metasurface can provide a new platform for effectively manipulating THz waves.

  7. Embedded design based virtual instrument program for positron beam automation

    Energy Technology Data Exchange (ETDEWEB)

    Jayapandian, J.; Gururaj, K.; Abhaya, S.; Parimala, J. [Material Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, TN (India); Amarendra, G. [Material Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, TN (India)], E-mail: amar@igcar.gov.in

    2008-10-31

    Automation of positron beam experiment with a single chip embedded design using a programmable system on chip (PSoC) which provides easy interfacing of the high-voltage DC power supply is reported. Virtual Instrument (VI) control program written in Visual Basic 6.0 ensures the following functions (i) adjusting of sample high voltage by interacting with the programmed PSoC hardware, (ii) control of personal computer (PC) based multi channel analyzer (MCA) card for energy spectroscopy, (iii) analysis of the obtained spectrum to extract the relevant line shape parameters, (iv) plotting of relevant parameters and (v) saving the file in the appropriate format. The present study highlights the hardware features of the PSoC hardware module as well as the control of MCA and other units through programming in Visual Basic.

  8. Embedded design based virtual instrument program for positron beam automation

    Science.gov (United States)

    Jayapandian, J.; Gururaj, K.; Abhaya, S.; Parimala, J.; Amarendra, G.

    2008-10-01

    Automation of positron beam experiment with a single chip embedded design using a programmable system on chip (PSoC) which provides easy interfacing of the high-voltage DC power supply is reported. Virtual Instrument (VI) control program written in Visual Basic 6.0 ensures the following functions (i) adjusting of sample high voltage by interacting with the programmed PSoC hardware, (ii) control of personal computer (PC) based multi channel analyzer (MCA) card for energy spectroscopy, (iii) analysis of the obtained spectrum to extract the relevant line shape parameters, (iv) plotting of relevant parameters and (v) saving the file in the appropriate format. The present study highlights the hardware features of the PSoC hardware module as well as the control of MCA and other units through programming in Visual Basic.

  9. Embedded design based virtual instrument program for positron beam automation

    International Nuclear Information System (INIS)

    Automation of positron beam experiment with a single chip embedded design using a programmable system on chip (PSoC) which provides easy interfacing of the high-voltage DC power supply is reported. Virtual Instrument (VI) control program written in Visual Basic 6.0 ensures the following functions (i) adjusting of sample high voltage by interacting with the programmed PSoC hardware, (ii) control of personal computer (PC) based multi channel analyzer (MCA) card for energy spectroscopy, (iii) analysis of the obtained spectrum to extract the relevant line shape parameters, (iv) plotting of relevant parameters and (v) saving the file in the appropriate format. The present study highlights the hardware features of the PSoC hardware module as well as the control of MCA and other units through programming in Visual Basic

  10. Planar metamaterial-based beam-scanning broadband microwave antenna

    International Nuclear Information System (INIS)

    The broadband directive emission from the use of waveguided metamaterials is numerically and experimentally reported. The metamaterials, which are composed of non-resonant circular complementary closed ring structures printed on a dielectric substrate, are designed to obey the refractive index of a Luneburg lens. An arc array of planar radiating slot antennas placed at the periphery of the lens is used as wave launchers. A prototype of the lens associated with the feed structures has been fabricated using standard lithography techniques. To experimentally demonstrate the broadband focusing properties and directive emissions, far-field radiation patterns have been measured. Furthermore, this metamaterial-based lens can be used to achieve beam-scanning with a coverage of up to 120 °. Far-field measurements agree qualitatively with calculated near-field distributions

  11. Proton beam micromachining on strippable aqueous base developable negative resist

    Energy Technology Data Exchange (ETDEWEB)

    Rajta, I. [Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, P.O. Box 51 (Hungary)]. E-mail: rajta@atomki.hu; Baradacs, E. [University of Debrecen, Department of Environmental Physics, H-4026 Debrecen, Poroszlay u. 6 (Hungary); Chatzichristidi, M. [Institute of Microelectronics, NCSR-' Demokritos' , POB 62230, 153 10 Ag. Paraskevi (Greece); Valamontes, E.S. [Department of Electronics Technological Educational Institute of Athens, 12210 Aegaleo (Greece); Uzonyi, I. [Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, P.O. Box 51 (Hungary); Raptis, I. [Institute of Microelectronics, NCSR-' Demokritos' , POB 62230, 153 10 Ag. Paraskevi (Greece)

    2005-04-01

    Nowadays a significant amount of research effort is devoted to the development of technologies for the fabrication of microcomponents and microsystems worldwide. In certain applications of micromachining high aspect ratio (HAR) structures are required. However, the resist materials used in HAR technologies are usually not compatible with the IC fabrication, either because they cannot be stripped away or because they are developed in organic solvents. In the present work the application of a novel chemically amplified resist for proton beam micromachining is presented. The resist based on epoxy and polyhydroxystyrene polymers is developed in the IC standard aqueous developers. The exposed areas can be stripped away using conventional organic stripping solutions. In order to test the exposure dose sensitivity and the lateral resolution, various test structures were irradiated. Using this formulation 5-8 {mu}m wide lines with aspect ratio 4-6 were resolved.

  12. Proton beam micromachining on strippable aqueous base developable negative resist

    International Nuclear Information System (INIS)

    Nowadays a significant amount of research effort is devoted to the development of technologies for the fabrication of microcomponents and microsystems worldwide. In certain applications of micromachining high aspect ratio (HAR) structures are required. However, the resist materials used in HAR technologies are usually not compatible with the IC fabrication, either because they cannot be stripped away or because they are developed in organic solvents. In the present work the application of a novel chemically amplified resist for proton beam micromachining is presented. The resist based on epoxy and polyhydroxystyrene polymers is developed in the IC standard aqueous developers. The exposed areas can be stripped away using conventional organic stripping solutions. In order to test the exposure dose sensitivity and the lateral resolution, various test structures were irradiated. Using this formulation 5-8 μm wide lines with aspect ratio 4-6 were resolved

  13. SAR IMAGE ENHANCEMENT BASED ON BEAM SHARPENING TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    LIYong; ZI-IANGKun-hui; ZHUDai-yin; ZHUZhao-da

    2004-01-01

    A major problem encountered in enhancing SAR image is the total loss of phase information and the unknown parameters of imaging system. The beam sharpening technique, combined with synthetic aperture radiation pattern estimation provides an approach to process this kind of data to achieve higher apparent resolution. Based on the criterion of minimizing the expected quadratic estimation error, an optimum FIR filter with a symmetrical structure is designed whose coefficients depend on the azimuth response of local isolated prominent points because this response can be approximately regarded as the synthetic aperture radiation pattern of the imaging system. The point target simulation shows that the angular resolution is improved by a ratio of almost two to one. The processing results of a live SAR image demonstrate the validity of the method.

  14. Towards an Evidence Based Score Card for Aligning Risk Management and Sustainability Goals for Essential NORM Industries: Case Study - Phosphates

    International Nuclear Information System (INIS)

    Approaches to regulating NORM industries risk suffering blight from over-conservative methodologies, whether based on worst case models, extreme event scenarios or unmediated application of the precautionary principle: the outcome can be a significant overestimation of risk and a consequent penalty on both producers and consumers in terms of access to and affordability of the intermediate and end products those industries provide. In particular, for historical reasons derived perhaps from the potentially distracting regulatory focus on what is usually trace radioactivity in products and by-products containing NORM, there is a damaging tendency to seek risk management models and best practices from nuclear industries in general rather than from those sectors to which the end products of NORM industries are specifically aligned. This risk is particularly visible in the phosphate sector, an industry now pivotal to long term security and sustainability in both food production and energy supply, plant based or nuclear. Premised on a companion paper which sets out the theory of 'constructive regulation', presented in 2008 at the 12th International Congress of the International Radiation Protection Association, Buenos Aires, this paper proposes the use of an evidence based score carding system to ensure the future alignment of risk management and sustainability goals for NORM industries, starting with phosphates. The score card elements are broken out into three primary categories along the lines defined in the concept of triple bottom line performance measurement, comprising economic, social and environmental elements. The question is put as to what role constructive regulation and best practices can play in ensuring that the outcome of the regulatory process is the preservation and enhancement of the capability of these industries to deliver sustainable returns to the customers and stakeholders who depend on them. Score carding will facilitate transparent, objective

  15. A Base-Emitter Self-Aligned Multi-Finger Si1-xGex/Si Power Heterojunction Bipolar Transistor

    Institute of Scientific and Technical Information of China (English)

    XUE Chun-Lai; YAO Fei; SHI Wen-Hua; CHENG Bu-Wen; WANG Hong-Jie; YU Jin-Zhong; WANG Qi-Ming

    2007-01-01

    With a crystal orientation dependent on the etch rate of Si in KOH-based solution, a base-emitter self-aligned large-area multi-finger configuration power SiGe heterojunction bipolar transistor (HBT) device (with an emitter area of about 880μm2) is fabricated with 2μm double-mesa technology. The maximum dc current gain is 226.1. The collector-emitter junction breakdown voltage BVCEO is 10V and the collector-base junction breakdown voltage BVcBo is 16 V with collector doping concentration of 1 × 1017 cm-3 and thickness of 400nm. The device exhibited a maximum oscillation frequency fmax of 35.5 GHz and a cut-off frequency fT of 24.9 GHz at a dc bias point of Ic = 70 mA and the voltage between collector and emitter is VCE = 3 V. Load pull measurements in class-A operation of the SiGe HBT are performed at 1.9 GHz with input power ranging from 0dBm to 21 dBm.A maximum output power of 29.9dBm (about 977mW) is obtained at an input power of 18.5dBm with a gain of 11.47dB. Compared to a non-self-aligned SiGe HBT with the same heterostructure and process, fmax and fT are improved by about 83.9% and 38.3%, respectively.

  16. Alignment of the ATLAS Inner Detector tracking system

    International Nuclear Information System (INIS)

    ATLAS is a multipurpose experiment that records the products of the LHC collisions. To reconstruct trajectories of charged particles produced in these collisions, ATLAS is equipped with a tracking system built of silicon planar sensors and drift-tube based detectors. They constitute the ATLAS Inner Detector. In order to achieve its scientific goals, the alignment of the ATLAS tracking system requires the determination of its almost 36000 degrees of freedom (DoF) with high accuracy. Thus the demanded precision for the alignment of the silicon sensors is below 10 micrometers. This implies to use a large sample of high momentum and isolated charge particle tracks. The high level trigger selects those tracks online. Then the raw data with the hits information of the triggered tracks is stored in a calibration stream. Tracks from cosmic trigger during empty LHC bunches are also used as input for the alignment. The implementation of the track based alignment within the ATLAS software framework unifies different alignment approaches and allows the alignment of all tracking subsystems together. Primary vertexing and beam spot constraints have also been implemented, as well as constraints on survey measurements. As alignment algorithms are based on minimization of the track-hit residuals, one needs to solve a linear system with large number of DoF. The solving involves the inversion or diagonalization of a large matrix that may be dense. The alignment jobs are executed at the CERN Analysis Facility. The event processing is run in parallel in many jobs. The output matrices from all jobs are added before solving. We will present the results of the alignment of the ATLAS detector using real data recorded during the LHC start up run in 2009 plus the recent 7 TeV data collected during 2010 run. Validation of the alignment was performed by measuring the alignment observables as well as many other physics observables, notably resonance invariant masses. The results of the

  17. CMS Muon Alignment: System Description and first results

    CERN Document Server

    Sobron, M

    2008-01-01

    The CMS detector has been instrumented with a precise and complex opto-mechanical alignment subsystem that provides a common reference frame between Tracker and Muon detection systems by means of a net of laser beams. The system allows a continuous and accurate monitoring of the muon chambers positions with respect to the Tracker body. Preliminary results of operation during the test of the CMS 4T solenoid magnet, performed in 2006, are presented. These measurements complement the information provided by the use of survey techniques and the results of alignment algorithms based on muon tracks crossing the detector.

  18. Performance of positive ion based high power ion source of EAST neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chundong; Xie, Yahong, E-mail: xieyh@ipp.ac.cn; Xie, Yuanlai; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Jiang, Caichao; Li, Jun; Liu, Zhimin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-02-15

    The positive ion based source with a hot cathode based arc chamber and a tetrode accelerator was employed for a neutral beam injector on the experimental advanced superconducting tokamak (EAST). Four ion sources were developed and each ion source has produced 4 MW @ 80 keV hydrogen beam on the test bed. 100 s long pulse operation with modulated beam has also been tested on the test bed. The accelerator was upgraded from circular shaped to diamond shaped in the latest two ion sources. In the latest campaign of EAST experiment, four ion sources injected more than 4 MW deuterium beam with beam energy of 60 keV into EAST.

  19. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide

    Science.gov (United States)

    Akbari, Abozar; Sheath, Phillip; Martin, Samuel T.; Shinde, Dhanraj B.; Shaibani, Mahdokht; Banerjee, Parama Chakraborty; Tkacz, Rachel; Bhattacharyya, Dibakar; Majumder, Mainak

    2016-03-01

    Graphene-based membranes demonstrating ultrafast water transport, precise molecular sieving of gas and solvated molecules shows great promise as novel separation platforms; however, scale-up of these membranes to large-areas remains an unresolved problem. Here we demonstrate that the discotic nematic phase of graphene oxide (GO) can be shear aligned to form highly ordered, continuous, thin films of multi-layered GO on a support membrane by an industrially adaptable method to produce large-area membranes (13 × 14 cm2) in 90%) for charged and uncharged organic probe molecules with a hydrated radius above 5 Å as well as modest (30-40%) retention of monovalent and divalent salts. The highly ordered graphene sheets in the plane of the membrane make organized channels and enhance the permeability (71+/-5 l m-2 hr-1 bar-1 for 150+/-15 nm thick membranes).

  20. A novel alignment repulsion algorithm for flocking of multi-agent systems based on the number of neighbours per agent

    Science.gov (United States)

    Kahani, R.; Sedigh, A. K.; Mahjani, M. Gh.

    2015-12-01

    In this paper, an energy-based control methodology is proposed to satisfy the Reynolds three rules in a flock of multiple agents. First, a control law is provided that is directly derived from the passivity theorem. In the next step, the Number of Neighbours Alignment/Repulsion algorithm is introduced for a flock of agents which loses the cohesion ability and uniformly joint connectivity condition. With this method, each agent tries to follow the agents which escape its neighbourhood by considering the velocity of escape time and number of neighbours. It is mathematically proved that the motion of multiple agents converges to a rigid and uncrowded flock if the group is jointly connected just for an instant. Moreover, the conditions for collision avoidance are guaranteed during the entire process. Finally, simulation results are presented to show the effectiveness of the proposed methodology.

  1. Spartans: Single-Sample Periocular-Based Alignment-Robust Recognition Technique Applied to Non-Frontal Scenarios.

    Science.gov (United States)

    Juefei-Xu, Felix; Luu, Khoa; Savvides, Marios

    2015-12-01

    In this paper, we investigate a single-sample periocular-based alignment-robust face recognition technique that is pose-tolerant under unconstrained face matching scenarios. Our Spartans framework starts by utilizing one single sample per subject class, and generate new face images under a wide range of 3D rotations using the 3D generic elastic model which is both accurate and computationally economic. Then, we focus on the periocular region where the most stable and discriminant features on human faces are retained, and marginalize out the regions beyond the periocular region since they are more susceptible to expression variations and occlusions. A novel facial descriptor, high-dimensional Walsh local binary patterns, is uniformly sampled on facial images with robustness toward alignment. During the learning stage, subject-dependent advanced correlation filters are learned for pose-tolerant non-linear subspace modeling in kernel feature space followed by a coupled max-pooling mechanism which further improve the performance. Given any unconstrained unseen face image, the Spartans can produce a highly discriminative matching score, thus achieving high verification rate. We have evaluated our method on the challenging Labeled Faces in the Wild database and solidly outperformed the state-of-the-art algorithms under four evaluation protocols with a high accuracy of 89.69%, a top score among image-restricted and unsupervised protocols. The advancement of Spartans is also proven in the Face Recognition Grand Challenge and Multi-PIE databases. In addition, our learning method based on advanced correlation filters is much more effective, in terms of learning subject-dependent pose-tolerant subspaces, compared with many well-established subspace methods in both linear and non-linear cases. PMID:26285149

  2. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  3. Theoretical and numerical studies on the transport of transverse beam quality in plasma-based accelerators

    OpenAIRE

    Mehrling, Timon

    2014-01-01

    This work examines effects, which impact the transverse quality of electron-beams in plasma-based accelerators, by means of theoretical and numerical methods. Plasma-based acceleration is a promising candidate for future particle accelerator technologies. In plasma-based acceleration, highly intense laser beams or high-current relativistic particle beams are focused into a plasma to excite plasma-waves with extreme transverse and longitudinal electric fields. The amplitude of these fields exc...

  4. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    M. Dallavalle

    2013-01-01

    A new Muon misalignment scenario for 2011 (7 TeV) Monte Carlo re-processing was re-leased. The scenario is based on running of standard track-based reference-target algorithm (exactly as in data) using single-muon simulated sample (with the transverse-momentum spectrum matching data). It used statistics similar to what was used for alignment with 2011 data, starting from an initially misaligned Muon geometry from uncertainties of hardware measurements and using the latest Tracker misalignment geometry. Validation of the scenario (with muons from Z decay and high-pT simulated muons) shows that it describes data well. The study of systematic uncertainties (dominant by now due to huge amount of data collected by CMS and used for muon alignment) is finalised. Realistic alignment position errors are being obtained from the estimated uncertainties and are expected to improve the muon reconstruction performance. Concerning the Hardware Alignment System, the upgrade of the Barrel Alignment is in progress. By now, d...

  5. Proton beam micromachining on strippable aqueous base developable negative resist

    International Nuclear Information System (INIS)

    Complete text of publication follows. Proton Beam Micromachining (PBM, also known as P-beam writing), a novel direct- write process for the production of 3D microstructures, can be used to make multilevel structures in a single layer of resist by varying the ion energy. The interaction between the bombarding ions and the target material is mainly ionization, and very few ions suffer high angle nuclear collisions, therefore structures made with PBM have smooth near vertical side walls. The most commony applied resists in PBM are the positive, conventional, polymethyl methacrylate (PMMA); and the negative, chemically amplified, SU-8 (Micro Chem Corp). SU-8 is an epoxy based resist suitable also for LIGA and UV-LIGA processes, it offers good sensitivity, good process latitude, very high aspect ratio and therefore it dominates in the high aspect ratio micromachining applications. SU-8 requires 30 nC/mm2 fluence for PBM irradiations at 2 MeV protons. Its crosslinking chemistry is based on the eight epoxy rings in the polymer chain, which provide a very dense three dimensional network in the presence of suitably activated photo acid generators (PAGs) which is very difficult to be stripped away after development. Thus, stripping has to be assisted with plasma processes or with special liquid removers. Moreover, the SU-8 developer is organic, propylene glycol methyl ether acetate (PGMEA), and thus environmentally non-friendly. To overcome the SU-8 stripping limitations, design of a negative resist system where solubility change is not based solely on cross- linking but also on the differentiation of hydrophilicity between exposed and non-exposed areas is desirable. A new resist formulation, fulfilling the above specifications has been developed recently [1]. This formulation is based on a specific grade epoxy novolac (EP) polymer, a partially hydrogenated poly-4-hydroxy styrene (PHS) polymer, and an onium salt as photoacid generator (PAG), and has been successfully applied

  6. Development of Research-Based Protocol Aligned to Predict High Levels of Teaching Quality

    Science.gov (United States)

    Schumacher, Gary; Grigsby, Bettye; Vesey, Winona

    2011-01-01

    This study proposes a research-based teacher selection protocol. The protocol is intended to offer school district hiring authorities a tool to identify teacher candidates with the behaviors expected to predict effective teaching. It is hypothesized that a particular series of research-based interview questions focusing on teaching behaviors in…

  7. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device.

    Science.gov (United States)

    Cheng, Jiyi; Gu, Chenglin; Zhang, Dapeng; Chen, Shih-Chi

    2015-11-01

    In this Letter, we present a digital micromirror device (DMD)-based ultrafast beam shaper, i.e., DUBS. To our knowledge, the DUBS is the first binary laser beam shaper that can generate high-resolution (1140×912 pixels) arbitrary beam modes for femtosecond lasers at a rate of 4.2 kHz; the resolution and pattern rate are limited by the DMD. In the DUBS, the spectrum of the input pulsed laser is first angularly dispersed by a transmission grating and subsequently imaged to a DMD with beam modulation patterns; the transmission grating and a high-reflectivity mirror together compensate the angular dispersion introduced by the DMD. The mode of the output beam is monitored by a CCD camera. In the experiments, the DUBS is programmed to generate four different beam modes, including an Airy beam, Bessel beam, Laguerre-Gaussian (LG) beam, and a custom-designed "peace-dove" beam via the principle of binary holography. To verify the high shaping rate, the Airy beam and LG beam are generated alternately at 4.2 kHz, i.e., the maximum pattern rate of our DMD. The overall efficiency of the DUBS is measured to be 4.7%. With the high-speed and high-resolution beam-shaping capability, the DUBS may find important applications in nonlinear microscopy, optical manipulation, and microscale/nanoscale laser machining, etc. PMID:26512472

  8. Organizational Alignment Through Information Technology: A Web-Based Approach to Change

    Science.gov (United States)

    Heinrichs, W.; Smith, J.

    1999-01-01

    This paper reports on the effectiveness of web-based internet tools and databases to facilitate integration of technical organizations with interfaces that minimize modification of each technical organization.

  9. Monte Carlo simulation of beam characteristics from small fields based on TrueBeam flattening-filter-free mode

    International Nuclear Information System (INIS)

    Through the Monte Carlo (MC) simulation of 6 and 10 MV flattening-filter-free (FFF) beams from Varian TrueBeam accelerator, this study aims to find the best incident electron distribution for further studying the small field characteristics of these beams. By incorporating the training materials of Varian on the geometry and material parameters of TrueBeam Linac head, the 6 and 10 MV FFF beams were modelled using the BEAMnrc and DOSXYZnrc codes, where the percentage depth doses (PDDs) and the off-axis ratios (OARs) curves of fields ranging from 4 × 4 to 40 × 40 cm2 were simulated for both energies by adjusting the incident beam energy, radial intensity distribution and angular spread, respectively. The beam quality and relative output factor (ROF) were calculated. The simulations and measurements were compared using Gamma analysis method provided by Verisoft program (PTW, Freiburg, Germany), based on which the optimal MC model input parameters were selected and were further used to investigate the beam characteristics of small fields. The Full Width Half Maximum (FWHM), mono-energetic energy and angular spread of the resultant incident Gaussian radial intensity electron distribution were 0.75 mm, 6.1 MeV and 0.9° for the nominal 6 MV FFF beam, and 0.7 mm, 10.8 MeV and 0.3° for the nominal 10 MV FFF beam respectively. The simulation was mostly comparable to the measurement. Gamma criteria of 1 mm/1 % (local dose) can be met by all PDDs of fields larger than 1 × 1 cm2, and by all OARs of no larger than 20 × 20 cm2, otherwise criteria of 1 mm/2 % can be fulfilled. Our MC simulated ROFs agreed well with the measured ROFs of various field sizes (the discrepancies were less than 1 %), except for the 1 × 1 cm2 field. The MC simulation agrees well with the measurement and the proposed model parameters can be clinically used for further dosimetric studies of 6 and 10 MV FFF beams

  10. Development of a beam test telescope based on the Alibava readout system

    Science.gov (United States)

    Marco-Hernández, R.

    2011-01-01

    A telescope for a beam test have been developed as a result of a collaboration among the University of Liverpool, Centro Nacional de Microelectrónica (CNM) of Barcelona and Instituto de Física Corpuscular (IFIC) of Valencia. This system is intended to carry out both analogue charge collection and spatial resolution measurements with different types of microstrip or pixel silicon detectors in a beam test environment. The telescope has four XY measurement as well as trigger planes (XYT board) and it can accommodate up to twelve devices under test (DUT board). The DUT board uses two Beetle ASICs for the readout of chilled silicon detectors. The board could operate in a self-triggering mode. The board features a temperature sensor and it can be mounted on a rotary stage. A peltier element is used for cooling the DUT. Each XYT board measures the track space points using two silicon strip detectors connected to two Beetle ASICs. It can also trigger on the particle tracks in the beam test. The board includes a CPLD which allows for the synchronization of the trigger signal to a common clock frequency, delaying and implementing coincidence with other XYT boards. An Alibava mother board is used to read out and to control each XYT/DUT board from a common trigger signal and a common clock signal. The Alibava board has a TDC on board to have a time stamp of each trigger. The data collected by each Alibava board is sent to a master card by means of a local data/address bus following a custom digital protocol. The master board distributes the trigger, clock and reset signals. It also merges the data streams from up to sixteen Alibava boards. The board has also a test channel for testing in a standard mode a XYT or DUT board. This board is implemented with a Xilinx development board and a custom patch board. The master board is connected with the DAQ software via 100M Ethernet. Track based alignment software has also been developed for the data obtained with the DAQ software.

  11. Development of a beam test telescope based on the Alibava readout system

    Energy Technology Data Exchange (ETDEWEB)

    Marco-Hernandez, R, E-mail: rmarco@ific.uv.es [Intituto de Fisica Corpuscular (CSIC-UV), Edificicio Institutos de Investigacion, PolIgono de La Coma, s/n. E-46980 Paterna (Valencia) (Spain)

    2011-01-15

    A telescope for a beam test have been developed as a result of a collaboration among the University of Liverpool, Centro Nacional de Microelectronica (CNM) of Barcelona and Instituto de Fisica Corpuscular (IFIC) of Valencia. This system is intended to carry out both analogue charge collection and spatial resolution measurements with different types of microstrip or pixel silicon detectors in a beam test environment. The telescope has four XY measurement as well as trigger planes (XYT board) and it can accommodate up to twelve devices under test (DUT board). The DUT board uses two Beetle ASICs for the readout of chilled silicon detectors. The board could operate in a self-triggering mode. The board features a temperature sensor and it can be mounted on a rotary stage. A peltier element is used for cooling the DUT. Each XYT board measures the track space points using two silicon strip detectors connected to two Beetle ASICs. It can also trigger on the particle tracks in the beam test. The board includes a CPLD which allows for the synchronization of the trigger signal to a common clock frequency, delaying and implementing coincidence with other XYT boards. An Alibava mother board is used to read out and to control each XYT/DUT board from a common trigger signal and a common clock signal. The Alibava board has a TDC on board to have a time stamp of each trigger. The data collected by each Alibava board is sent to a master card by means of a local data/address bus following a custom digital protocol. The master board distributes the trigger, clock and reset signals. It also merges the data streams from up to sixteen Alibava boards. The board has also a test channel for testing in a standard mode a XYT or DUT board. This board is implemented with a Xilinx development board and a custom patch board. The master board is connected with the DAQ software via 100M Ethernet. Track based alignment software has also been developed for the data obtained with the DAQ software.

  12. 100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors

    International Nuclear Information System (INIS)

    Nanoscale sensors based on single-walled carbon nanotube (SWNT) networks have been considered impractical due to several fundamental limitations such as a poor sensitivity and small signal-to-noise ratio. Herein, we present a strategy to overcome these fundamental problems and build highly-sensitive low-noise nanoscale sensors simply by controlling the structure of the SWNT networks. In this strategy, we prepared nanoscale width channels based on aligned SWNT networks using a directed assembly strategy. Significantly, the aligned network-based sensors with narrower channels exhibited even better signal-to-noise ratio than those with wider channels, which is opposite to conventional random network-based sensors. As a proof of concept, we demonstrated 100 nm scale low-noise sensors to detect mercury ions with the detection limit of ∼1 pM, which is superior to any state-of-the-art portable detection system and is below the allowable limit of mercury ions in drinking water set by most government environmental protection agencies. This is the first demonstration of 100 nm scale low-noise sensors based on SWNT networks. Considering the increased interests in high-density sensor arrays for healthcare and environmental protection, our strategy should have a significant impact on various industrial applications.

  13. 100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors

    Science.gov (United States)

    Lee, Minbaek; Lee, Joohyung; Kim, Tae Hyun; Lee, Hyungwoo; Lee, Byung Yang; Park, June; Jhon, Young Min; Seong, Maeng-Je; Hong, Seunghun

    2010-02-01

    Nanoscale sensors based on single-walled carbon nanotube (SWNT) networks have been considered impractical due to several fundamental limitations such as a poor sensitivity and small signal-to-noise ratio. Herein, we present a strategy to overcome these fundamental problems and build highly-sensitive low-noise nanoscale sensors simply by controlling the structure of the SWNT networks. In this strategy, we prepared nanoscale width channels based on aligned SWNT networks using a directed assembly strategy. Significantly, the aligned network-based sensors with narrower channels exhibited even better signal-to-noise ratio than those with wider channels, which is opposite to conventional random network-based sensors. As a proof of concept, we demonstrated 100 nm scale low-noise sensors to detect mercury ions with the detection limit of ~1 pM, which is superior to any state-of-the-art portable detection system and is below the allowable limit of mercury ions in drinking water set by most government environmental protection agencies. This is the first demonstration of 100 nm scale low-noise sensors based on SWNT networks. Considering the increased interests in high-density sensor arrays for healthcare and environmental protection, our strategy should have a significant impact on various industrial applications.

  14. Carbon nanotube alignment driven rapid actuations

    International Nuclear Information System (INIS)

    Suspended micro-beams made from aligned carbon nanotubes and parylene deflect reversibly in an ac field and the deflection rate is three orders of magnitude greater than those for existing devices. The direction of beam deflection is determined by the area moment of inertia and the actuation mechanism involves rapid accumulation of charges at tube surfaces, the creation of Coulomb repulsive forces between tubes, beam dilation and the formation of compressive stresses at beam ends. Tube alignment plays a crucial role in the first step as is verified by experimental data and calculation. (paper)

  15. Two-color beam generation based on wakefield excitation

    Science.gov (United States)

    Bettoni, S.; Prat, E.; Reiche, S.

    2016-05-01

    Several beam manipulation methods have been studied and experimentally tested to generate two-color photon beams in free electron laser facilities to accommodate the user requests. We propose to use the interaction of the beam with an oscillating longitudinal wakefield source to obtain a suitable electron beam structure. The bunch generates two subpulses with different energies and delayed in time passing through a magnetic chicane after its longitudinal phase space has been modulated by the wakefield source. According to this approach the power of the emitted radiation is not degraded compared to the monochromatic beam, and the setup in the machine is quite simple because the bunch is manipulated only in the high energy section, where it is more rigid. We present the design applied to SwissFEL. We identified the parameters and the corresponding range of tunability of the time and energy separation among the two subbunches.

  16. Ergodic Secret Alignment

    CERN Document Server

    Bassily, Raef

    2010-01-01

    In this paper, we introduce two new achievable schemes for the fading multiple access wiretap channel (MAC-WT). In the model that we consider, we assume that perfect knowledge of the state of all channels is available at all the nodes in a causal fashion. Our schemes use this knowledge together with the time varying nature of the channel model to align the interference from different users at the eavesdropper perfectly in a one-dimensional space while creating a higher dimensionality space for the interfering signals at the legitimate receiver hence allowing for better chance of recovery. While we achieve this alignment through signal scaling at the transmitters in our first scheme (scaling based alignment (SBA)), we let nature provide this alignment through the ergodicity of the channel coefficients in the second scheme (ergodic secret alignment (ESA)). For each scheme, we obtain the resulting achievable secrecy rate region. We show that the secrecy rates achieved by both schemes scale with SNR as 1/2log(SNR...

  17. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Gervasio Gomez

    2012-01-01

      The new alignment for the DT chambers has been successfully used in physics analysis starting with the 52X Global Tag. The remaining main areas of development over the next few months will be preparing a new track-based CSC alignment and producing realistic APEs (alignment position errors) and MC misalignment scenarios to match the latest muon alignment constants. Work on these items has been delayed from the intended timeline, mostly due to a large involvement of the muon alignment man-power in physics analyses over the first half of this year. As CMS keeps probing higher and higher energies, special attention must be paid to the reconstruction of very-high-energy muons. Recent muon POG reports from mid-June show a φ-dependence in curvature bias in Monte Carlo samples. This bias is observed already at the tracker level, where it is constant with muon pT, while it grows with pT as muon chamber information is added to the tracks. Similar studies show a much smaller effect in data, at le...

  18. Aligning Web-Based Tools to the Research Process Cycle: A Resource for Collaborative Research Projects

    Science.gov (United States)

    Price, Geoffrey P.; Wright, Vivian H.

    2012-01-01

    Using John Creswell's Research Process Cycle as a framework, this article describes various web-based collaborative technologies useful for enhancing the organization and efficiency of educational research. Visualization tools (Cacoo) assist researchers in identifying a research problem. Resource storage tools (Delicious, Mendeley, EasyBib)…

  19. Seeking the perfect alignment

    CERN Multimedia

    2002-01-01

    The first full-scale tests of the ATLAS Muon Spectrometer are about to begin in Prévessin. The set-up includes several layers of Monitored Drift Tubes Chambers (MDTs) and will allow tests of the performance of the detectors and of their highly accurate alignment system.   Monitored Drift Chambers in Building 887 in Prévessin, where they are just about to be tested. Muon chambers are keeping the ATLAS Muon Spectrometer team quite busy this summer. Now that most people go on holiday, the beam and alignment tests for these chambers are just starting. These chambers will measure with high accuracy the momentum of high-energy muons, and this implies very demanding requirements for their alignment. The MDT chambers consist of drift tubes, which are gas-filled metal tubes, 3 cm in diameter, with wires running down their axes. With high voltage between the wire and the tube wall, the ionisation due to traversing muons is detected as electrical pulses. With careful timing of the pulses, the position of the muon t...

  20. Shape-based Assessment of Vertebral Fracture Risk in Postmenopausal Women Using Discriminative Shape Alignment

    DEFF Research Database (Denmark)

    Crimi, Alessandro; Loog, Marco; de Bruijne, Marleen;

    2012-01-01

    RATIONALE AND OBJECTIVES: Risk assessment of future osteoporotic vertebral fractures is currently based mainly on risk factors, such as bone mineral density, age, prior fragility fractures, and smoking. It can be argued that an osteoporotic vertebral fracture is not exclusively an abrupt event but...... the result of a decaying process. To evaluate fracture risk, a shape-based classifier, identifying possible small prefracture deformities, may be constructed. MATERIALS AND METHODS: During a longitudinal case-control study, a large population of postmenopausal women, fracture free at baseline, were...... followed. The 22 women who sustained at least one lumbar fracture on follow-up represented the case group. The control group comprised 91 women who maintained skeletal integrity and matched the case group according to the standard osteoporosis risk factors. On radiographs, a radiologist and two technicians...

  1. Towards 3D ultrasound image based soft tissue tracking: a transrectal ultrasound prostate image alignment system

    CERN Document Server

    Baumann, Michael; Daanen, Vincent; Troccaz, Jocelyne

    2007-01-01

    The emergence of real-time 3D ultrasound (US) makes it possible to consider image-based tracking of subcutaneous soft tissue targets for computer guided diagnosis and therapy. We propose a 3D transrectal US based tracking system for precise prostate biopsy sample localisation. The aim is to improve sample distribution, to enable targeting of unsampled regions for repeated biopsies, and to make post-interventional quality controls possible. Since the patient is not immobilized, since the prostate is mobile and due to the fact that probe movements are only constrained by the rectum during biopsy acquisition, the tracking system must be able to estimate rigid transformations that are beyond the capture range of common image similarity measures. We propose a fast and robust multi-resolution attribute-vector registration approach that combines global and local optimization methods to solve this problem. Global optimization is performed on a probe movement model that reduces the dimensionality of the search space a...

  2. Aligned carbon nanotube based ultrasonic microtransducers for durability monitoring in civil engineering

    OpenAIRE

    LEBENTAL, Bérengère; Chainais, Pierre; CHENEVIER, Pascale; Chevalier, Nicolas; Delevoye, Eric; Fabbri, Jean-Marc; Nicoletti, Sergio; Renaux, Philippe; Ghis, Anne

    2011-01-01

    International audience Structural health monitoring of porous materials such as concrete is becoming a major component in our resource-limited economy, as it conditions durable exploitation of existing facilities. Durability in porous materials depends on nanoscale features which need to be monitored in situ with nanometric resolution. To address this problem, we put forward an approach based on the development of a new nanosensor, namely a capacitive micrometric ultrasonic transducer whos...

  3. Aligning collections budget with program priorities: A modified zero-based approach

    OpenAIRE

    Chan, GRYC

    2008-01-01

    The paper discusses the impact of zero-based budgeting on the budget allocation process at the University of Hong Kong Libraries (HKUL). The challenges and strategies to optimize the collections budget in reallocating resources from print to electronic publication within an environment of inflationary increases and reduced funding increases are addressed. An examination into HKUL's past and current practices compares and contrasts the use of different budget allocation methodologies. A recent...

  4. Sagnac Interferometer Based Generation of Controllable Cylindrical Vector Beams

    Directory of Open Access Journals (Sweden)

    Cristian Acevedo

    2016-01-01

    Full Text Available We report on a novel experimental geometry to generate cylindrical vector beams in a very robust manner. Continuous control of beams’ properties is obtained using an optically addressable spatial light modulator incorporated into a Sagnac interferometer. Forked computer-generated holograms allow introducing different topological charges while orthogonally polarized beams within the interferometer permit encoding the spatial distribution of polarization. We also demonstrate the generation of complex waveforms obtained by combining two orthogonal beams having both radial modulations and azimuthal dislocations.

  5. Calibration and alignment of the CMS silicon tracking detector

    Energy Technology Data Exchange (ETDEWEB)

    Stoye, M.

    2007-07-15

    The Large Hadron Collider (LHC) will dominate the high energy physics program in the coming decade. The discovery of the standard model Higgs boson and the discovery of super-symmetric particles are within the reach at the energy scale explored by the LHC. However, the high luminosity and the high energy of the colliding protons lead to challenging demands on the detectors. The hostile radiation environment requires irradiation hard detectors, where the innermost subdetectors, consisting of silicon modules, are most affected. This thesis is devoted to the calibration and alignment of the silicon tracking detector. Electron test beam data, taken at DESY, have been used to investigate the performance of detector modules which previously were irradiated with protons up to a dose expected after 10 years of operation. The irradiated sensors turned out to be still better than required. The performance of the inner tracking systems will be dominated by the degree to which the positions of the sensors can be determined. Only a track based alignment procedure can reach the required precision. Such an alignment procedure is a major challenge given that about 50000 geometry constants need to be measured. Making use of the novel {chi}{sup 2} minimization program Millepede II an alignment strategy has been developed in which all detector components are aligned simultaneously, as many sources of information as possible are used, and all correlations between the position parameters of the detectors are taken into account. Utilizing simulated data, a proof of concept of the alignment strategy is shown. (orig.)

  6. Calibration/Survey/Alignment studies of STAR HFT Pixel Detector

    Science.gov (United States)

    Ma, Long

    2013-10-01

    As a critical component of the STAR inner tracking detector - Heavy Flavor Tracker (HFT), the pixel detector consists of 10 sectors with 400 million 20x20-micrometer pixels forming the two innermost layers of the HFT at radii of 2.5 and 8 cm, respectively. In Run-13, a three-sector prototype was installed and successfully integrated into STAR. To achieve physics goals of HFT, the alignment calibration of pixel detector to a high precision of ~10 microns is essential. The precision alignment to map out each pixel position within the sector is carried out via a survey measurement utilizing a Coordinate Measurement Machine with a repeatability of a few micrometers. The global position parameters of the pixel sectors with respect to the STAR TPC will be obtained via a track-based alignment method with beam collisions. Particularly, the sensitive area of the pixel detector is designed to have some overlaps in order to complete the relative alignment between sectors using tracks passing through the overlap region. In this presentation, we will present the alignment calibration procedure for the HFT pixel detector. Status of the alignment calibration for the pixel detector prototype in Run-13 will be discussed. for the STAR Collaboration

  7. Calibration and alignment of the CMS silicon tracking detector

    International Nuclear Information System (INIS)

    The Large Hadron Collider (LHC) will dominate the high energy physics program in the coming decade. The discovery of the standard model Higgs boson and the discovery of super-symmetric particles are within the reach at the energy scale explored by the LHC. However, the high luminosity and the high energy of the colliding protons lead to challenging demands on the detectors. The hostile radiation environment requires irradiation hard detectors, where the innermost subdetectors, consisting of silicon modules, are most affected. This thesis is devoted to the calibration and alignment of the silicon tracking detector. Electron test beam data, taken at DESY, have been used to investigate the performance of detector modules which previously were irradiated with protons up to a dose expected after 10 years of operation. The irradiated sensors turned out to be still better than required. The performance of the inner tracking systems will be dominated by the degree to which the positions of the sensors can be determined. Only a track based alignment procedure can reach the required precision. Such an alignment procedure is a major challenge given that about 50000 geometry constants need to be measured. Making use of the novel χ2 minimization program Millepede II an alignment strategy has been developed in which all detector components are aligned simultaneously, as many sources of information as possible are used, and all correlations between the position parameters of the detectors are taken into account. Utilizing simulated data, a proof of concept of the alignment strategy is shown. (orig.)

  8. Alignment of the drift tube detector at the neutrino oscillation experiment OPERA; Alignment des Driftroehrendetektors am Neutrino-Oszillationsexperiment OPERA

    Energy Technology Data Exchange (ETDEWEB)

    Goellnitz, Christoph

    2012-09-15

    The present thesis was composed during the course of the OPERA experiment, which aims to give a direct evidence for neutrino oscillations in the channel {nu}{sub {mu}} {yields} {nu}{sub {tau}}. The OPERA detector is designed to observe the appearance of tau neutrinos in an originally pure muon neutrino beam, the CNGS beam. As important part of the detector the precision tracker (PT), a drift tube detector, consists of 9504 drift tubes in 198 modules. In this thesis, several parts of the slow control of the PT are developed and implemented to ensure operation during data taking over several years. The main part is the geometric calibration, the alignment of the detector. The alignment procedure contains both hardware and software parts, the software methods are developed and applied. Using straight particle tracks, the detector components are geometrically corrected. A special challenge for the alignment for the PT is the fact that at this kind of low-rate experiment only a small number of particle tracks is available. With software-based corrections of the module rotation, a systematic error of 0.2 mrad has been attained, for corrections of translation, a systematic error of 32 {mu}m is reached. For the alignment between two adjacent PT walls, the statistical error is less than 8 {mu}m. All results of the position monitoring system are considered. All developed methods are tested with Monte Carlo simulations. The detector requirements ({Delta}p/p {<=} 0.25 below 25 GeV) are met. The analysis of the momentum measurement for high energies above 25 GeV demonstrates the resulting improvement. The mean momentum is falling significantly using the new alignment values. The significance of the detector alignment becomes most evident in the analysis of cosmic particles. The muon charge ratio R{sub {mu}} is expected not to be angular dependent. The {chi}{sup 2} probability of the measured distribution improves up to 58%. The muon charge ratio was also investigated in

  9. SU-E-J-181: Effect of Prostate Motion On Combined Brachytherapy and External Beam Dose Based On Daily Motion of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, V; McLaughlin, P [Providence Cancer Center, Southfield, MI (United States); University of Michigan, Ann Arbor, MI (United States); Ealbaj, J [University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Purpose: In this study, the adequacy of target expansions on the combined external beam and implant dose was examined based on the measured daily motion of the prostate. Methods: Thirty patients received an I–125 prostate implant prescribed to dose of 90Gy. This was followed by external beam to deliver a dose of 90Gyeq (external beam equivalent) to the prostate over 25 to 30 fractions. An ideal IMRT plan was developed by optimizing the external beam dose based on the delivered implant dose. The implant dose was converted to an equivalent external beam dose using the linear quadratic model. Patients were set up on the treatment table by daily orthogonal imaging and aligning the marker seeds in the prostate. Orthogonal images were obtained at the end of treatment to assess prostate intrafraction motion. Based on the observed motion of the markers between the initial and final images, 5 individual plans showing the actual dose delivered to the patient were calculated. A final true dose distribution was established based on summing the implant dose and the 5 external beam plans. Dose to the prostate, seminal vesicles, lymphnodes and normal tissues, rectal wall, urethra and lower sphincter were calculated and compared to ideal. On 18 patients who were sexually active, dose to the corpus cavernosum and internal pudendal artery was also calculated. Results: The average prostate motion in 3 orthogonal directions was less than 1 mm with a standard deviation of less than +2 mm. Dose and volume parameters showed that there was no decrease in dose to the targets and a marginal decrease in dose to in normal tissues. Conclusion: Dose delivered by seed implant moves with the prostate, decreasing the impact of intrafractions dose movement on actual dose delivered. Combined brachytherapy and external beam dose delivered to the prostate was not sensitive to prostate motion.

  10. Study of biomaterials by ion-beam based methods

    International Nuclear Information System (INIS)

    The extension lifetime of prosthetic devices, dental materials and orthodontic devices is one main goal of the international medical supply community. In the frame of an interdisciplinary national project, IFIN-HH has started experimentation on some alternative procedures to study the wear/corrosion phenomena of biological materials by using ion-beam based techniques. Since joint prostheses are mechanical bearings there are concerns over friction and wear just as there are with any bearing. These concerns date back to the early introduction of total hip prostheses and were shown to be justified by the early failures due to wear. Subsequently, changes in materials and designs reduced the incidence of wear failure to a low level at which failures due to other mechanisms became dominant. Interest turned to preventing femoral component fracture, reducing the rates of infection, and reducing the rates of loosening. Attention to wear as a mechanism of failure has recently increased. The failure rate for joint replacement at the hip or knee has been progressively reduced. The biologic effects of wear debris have been recognized; wearing out of the prosthesis is no longer a prerequisite for an adverse outcome. There is an active search for new materials with increased wear resistance. In the case of metallic component from hip, knee prostheses and dental alloys, we present the optimum nuclear reactions according with the main parameters of our U-120 Cyclotron (p, d, Emax = 13 MeV and α particle, Emax = 26 MeV). In the case of polymers, one of an articulating couple of the prosthetic devices, direct activation causes severe changes in its surface morphology and its structure (formation of defects and free radicals). We have developed an indirect activation mode using the principle of recoil ion implantation, applied to 56Co radioactive ions generated by proton particle beams on a Fe target (thickness ∼ 10 mm). A thin target of elementary composition A is bombarded by the

  11. ALIGNING INFORMATION SECURITY WITH THE IMAGE OF THE ORGANIZATION AND PRIORITIZATION BASED ON FUZZY LOGIC FOR THE INDUSTRIAL AUTOMATION SECTOR

    Directory of Open Access Journals (Sweden)

    Adolfo Alberto Vanti

    2011-12-01

    Full Text Available This paper develops the strategic alignment of organizational behavior through the organizations´ image, prioritization and information security practices. To this end, information security is studied based on the business requirements of confidentiality, integrity and availability by applying a tool which integrates the strategic, tactical and operational vision through the following framework: Balanced Scorecard - BSC (strategic x Control Objectives for Information and Related Technology - COBIT (tactical x International Organization for Standardization - ISO/International Electro Technical Commission - IEC27002 (operational. Another image instrument of the organization is applied in parallel with this analysis to identify and analyze performance involving profiles related to mechanistic, psychic prisons, political systems, instruments of domination, organisms, cybernetics, flux and transformation (MORGAN, 1996. Finally, a model of strategic prioritization, based on compensatory fuzzy logic (ESPIN and VANTI, 2005, is applied. The method was applied to an industrial company located in southern Brazil. The results with the application show two organizational images: "organism" and "flux and transformation ". The strategic priorities indicated a significant search for new business services and international markets. Regarding protection of information, security found the gap between "minimum" and "Reasonable" and in domain 8 (HR of standard ISO/IEC27002, considered 71% protection as "inappropriate" and "minimal" in the IT Governance context.

  12. Enhancement of light extraction from aligned SiGe-based photonic crystal slabs

    International Nuclear Information System (INIS)

    Full text: During the last decades silicon-based photonics has become an intensive research field due to its compatibility with standard metal-oxide-semiconductor (MOS) technology. Si/Ge photonic crystals are promising optical devices for enhancing spontaneous emission rates of embedded quantum emitters. For this work hexagonal photonic crystal slabs were produced on SOI substrates with embedded Ge quantum dots which were grown on predefined positions at high symmetry points between the photonic crystal holes. This is a promising approach for the design of photonic crystals with enhanced photoluminescence only at specific telecom-wavelengths, where photonic crystal modes have high electric fields and high LDOS at the position of the quantum dots. (author)

  13. Cavity beam position monitors

    International Nuclear Information System (INIS)

    Beam-based alignment and feedback systems are essential for the operation of future linear colliders and free electron lasers. A certain number of beam position monitors with a resolution in the submicron range are needed at selected locations. Most beam position monitors detect the electric or the magnetic field excited by a beam of charged particles at different locations around the beam pipe. In resonant monitors, however, the excitation of special field configurations by an off-center beam is detected. These structures offer a large signal per micron displacement. This paper is an attempt to summarize the fundamental characteristics of resonant monitors, their advantages and shortcomings. Emphasis will be on the design of cylindrical cavities, in particular on the estimation of expected signals, of resolution limits and the resulting beam distortion. This includes also a short introduction into numerical methods. Fabrication, tuning, and other practical problems will be reviewed briefly. Finally, some resonant devices used for beam position diagnostics will be discussed and listed

  14. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    CERN Document Server

    Thurman-Keup, R; Hahn, A; Hurh, P; Lorman, E; Lundberg, C; Meyer, T; Miller, D; Pordes, S; Valishev, A

    2011-01-01

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. However, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measur...

  15. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    International Nuclear Information System (INIS)

    We discuss the design and current status of experiments to couple the THUNDER undulator to the LOASIS Lawrence Berkeley National Laboratory (LBNL) laser wakefield accelerator (LWFA). Currently the LWFA has achieved quasi-monoenergetic electron beams with energies up to 1 GeV. These ultra-short, high-peak-current, electron beams are ideal for driving a compact XUV free electron laser (FEL). Understanding the electron beam properties such as the energy spread and emittance is critical for achieving high quality light sources with high brightness. By using an insertion device such as an undulator and observing changes in the spontaneous emission spectrum, the electron beam energy spread and emittance can be measured with high precision. The initial experiments will use spontaneous emission from 1.5 m of undulator. Later experiments will use up to 5 m of undulator with a goal of a high gain, XUV FEL.

  16. Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper

    DEFF Research Database (Denmark)

    Tauro, Sandeep; Bañas, Andrew Rafael; Palima, Darwin;

    2011-01-01

    We report the first experimental demonstration of Gaussian beam-shaping based on the Generalized Phase Contrast (GPC) approach. We show that, when using a dynamic spatial light modulator (SLM), this approach can rapidly generate arbitrarily shaped beams. Moreover, we demonstrate that low-cost bin......We report the first experimental demonstration of Gaussian beam-shaping based on the Generalized Phase Contrast (GPC) approach. We show that, when using a dynamic spatial light modulator (SLM), this approach can rapidly generate arbitrarily shaped beams. Moreover, we demonstrate that low...

  17. Amperometric Non-Enzymatic Hydrogen Peroxide Sensor Based on Aligned Zinc Oxide Nanorods

    Science.gov (United States)

    Al-Hardan, Naif H.; Abdul Hamid, Muhammad Azmi; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim

    2016-01-01

    Zinc oxide (ZnO) nanorods (NRs) have been synthesized via the hydrothermal process. The NRs were grown over a conductive glass substrate. A non-enzymatic electrochemical sensor for hydrogen peroxide (H2O2), based on the prepared ZnO NRs, was examined through the use of current-voltage measurements. The measured currents, as a function of H2O2 concentrations ranging from 10 μM to 700 μM, revealed two distinct behaviours and good performance, with a lower detection limit (LOD) of 42 μM for the low range of H2O2 concentrations (first region), and a LOD of 143.5 μM for the higher range of H2O2 concentrations (second region). The prepared ZnO NRs show excellent electrocatalytic activity. This enables a measurable and stable output current. The results were correlated with the oxidation process of the H2O2 and revealed a good performance for the ZnO NR non-enzymatic H2O2 sensor. PMID:27367693

  18. Amperometric Non-Enzymatic Hydrogen Peroxide Sensor Based on Aligned Zinc Oxide Nanorods

    Directory of Open Access Journals (Sweden)

    Naif H. Al-Hardan

    2016-06-01

    Full Text Available Zinc oxide (ZnO nanorods (NRs have been synthesized via the hydrothermal process. The NRs were grown over a conductive glass substrate. A non-enzymatic electrochemical sensor for hydrogen peroxide (H2O2, based on the prepared ZnO NRs, was examined through the use of current-voltage measurements. The measured currents, as a function of H2O2 concentrations ranging from 10 μM to 700 μM, revealed two distinct behaviours and good performance, with a lower detection limit (LOD of 42 μM for the low range of H2O2 concentrations (first region, and a LOD of 143.5 μM for the higher range of H2O2 concentrations (second region. The prepared ZnO NRs show excellent electrocatalytic activity. This enables a measurable and stable output current. The results were correlated with the oxidation process of the H2O2 and revealed a good performance for the ZnO NR non-enzymatic H2O2 sensor.

  19. Alignment Methods Developed for the Validation of the Thermal and Mechanical Behaviour of the Two Beam Test Modules for the CLIC Project

    CERN Document Server

    Mainaud Durand, Helene; Sosin, Mateusz; Rude, Vivien

    2014-01-01

    CLIC project will consist of more than 20 000 two meters long modules. A test setup made of three modules is being built at CERN to validate the assembly and integration of all components and technical systems and to validate the short range strategy of pre-alignment. The test setup has been installed in a room equipped with a sophisticated system of ventilation able to reproduce the environmental conditions of the CLIC tunnel. Some of the components have been equipped with electrical heaters to simulate the power dissipation, combined with a water cooling system integrated in the RF components. Using these installations, to have a better understanding of the thermal and mechanical behaviour of a module under different operation modes, machine cycles have been simulated; the misalignment of the components and their supports has been observed. This paper describes the measurements methods developed for such a project and the results obtained.

  20. Fabrication and characterization of Mach–Zehnder interferometer based on a hollow optical fiber filled with radial-aligned liquid crystal

    Science.gov (United States)

    Ho, Bo-Yan; Peng, Fenglin; Wu, Shin-Tson; Hwang, Shug-June

    2016-07-01

    We demonstrate a high sensitivity all-fiber Mach–Zehnder interferometer (MZI) based on radial-aligned liquid crystal (LC) in a hollow optical fiber (HOF). The transmission spectrum of the liquid crystal-filled fiber MZI (LCF-MZI) was measured at different temperatures, and the thermal-induced wavelength shift of the interference spectrum probed. The experimental results indicate that the LC alignment and refractive indices inside the hollow capillary are significantly influenced by the temperature, which in turn changes the optical properties of LCF-MZI. Our experimental data on notch wavelength shift agree well with the measured refractive index temperature gradient.

  1. Negative-ion-based neutral beams for fusion

    International Nuclear Information System (INIS)

    To maximize the usefulness of an engineering test reactor (e.g., ITER, TIBER), it is highly desirable that it operate under steady-state conditions. The most attractive option for maintaining the circulating current needed in the center of the plasma is the injection of powerful beams of neutral deuterium atoms. The beam simultaneously heats the plasma. At the energies required, in excess of 500 keV, such beams can be made by accelerating D- ions and then removing the electron. Sources are being developed that generate the D- ions in the volume of a specially constructed plasma discharge, without the addition of cesium. These sources must operate with minimum gas flow, to avoid stripping the D- beam, and with minimum electron output. We are designing at LBL highly efficient electrostatic accelerators that combine electric strong-focusing with dc acceleration and offer the possibility of varying the beam energy at constant current while minimizing breakdown. Some form of rf acceleration may also be required. To minimize irradiation of the ion sources and accelerators, the D- beam can be transported through a maze in the neutron shielding. The D- ions can be converted to neutrals in a gas or plasma target, but advances in laser and mirror technology may make possible very efficient photodetachment systems by the time an ETR becomes operational. 9 refs., 4 figs

  2. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez and Y. Pakhotin

    2012-01-01

      A new track-based alignment for the DT chambers is ready for deployment: an offline tag has already been produced which will become part of the 52X Global Tag. This alignment was validated within the muon alignment group both at low and high momentum using a W/Z skim sample. It shows an improved mass resolution for pairs of stand-alone muons, improved curvature resolution at high momentum, and improved DT segment extrapolation residuals. The validation workflow for high-momentum muons used to depend solely on the “split cosmics” method, looking at the curvature difference between muon tracks reconstructed in the upper or lower half of CMS. The validation has now been extended to include energetic muons decaying from heavily boosted Zs: the di-muon invariant mass for global and stand-alone muons is reconstructed, and the invariant mass resolution is compared for different alignments. The main areas of development over the next few months will be preparing a new track-based C...

  3. Electron beam based transversal profile measurements of intense ion beams; Elektronenstrahl-Diagnostik zur Bestimmung vom transversalen Profil intensiver Ionenstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    El Moussati, Said

    2014-11-03

    A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the

  4. Study of the TI 8 optics and beam stability based on beam trajectories

    CERN Document Server

    Wenninger, J

    2006-01-01

    The optics and the stability of the SPS-LHC transfer line TI 8 was studied with beam trajectories during its commissioning in October 2004. Steering magnet response measurements were used to analyze the quality of the steering magnets and of the beam position monitors. A simultaneous fit of the quadrupole strengths was used to search for setting or calibration errors. A large setting error of a quadrupole was identified with this technique, as well as a 1% phase advance error in the vertical plane. Residual coupling between the planes was evaluated using high statistics samples of trajectories. The same high statistics sample were analysed using the Model Independent Analysis technique to understand possible sources of trajectory movements. The transfer line was found to be very stable and the dominant source of position jitter seems to be due to the ripple of the extraction septum.

  5. The CMS Silicon Tracker Alignment

    CERN Document Server

    Castello, R

    2008-01-01

    The alignment of the Strip and Pixel Tracker of the Compact Muon Solenoid experiment, with its large number of independent silicon sensors and its excellent spatial resolution, is a complex and challenging task. Besides high precision mounting, survey measurements and the Laser Alignment System, track-based alignment is needed to reach the envisaged precision.\\\\ Three different algorithms for track-based alignment were successfully tested on a sample of cosmic-ray data collected at the Tracker Integration Facility, where 15\\% of the Tracker was tested. These results, together with those coming from the CMS global run, will provide the basis for the full-scale alignment of the Tracker, which will be carried out with the first \\emph{p-p} collisions.

  6. Commissioning and Initial Performance of the LHC Beam-Based Feedback Systems

    CERN Document Server

    Boccardi, A; Calvo Giraldo, E; Denz, R; Gasior, M; Gonzalez, JL; Jackson, S; Jensen, LK; Jones, OR; King, Q; Kruk, G; Lamont, M; Page, S; Steinhagen, RJ; Wenninger, J

    2010-01-01

    The LHC deploys a comprehensive suite of beam-based feedbacks for safe and reliable machine operation. This contribution summarises the commissioning and early results of the LHC feedback control systems on orbit, tune, chromaticity, and energy. Their performance – strongly linked to the associated beam instrumentation, external beam perturbation sources and optics uncertainties – is evaluated and compared with the initial feedback design assumptions

  7. Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper

    OpenAIRE

    Tauro, Sandeep; Bañas, Andrew Rafael; Palima, Darwin; Glückstad, Jesper

    2011-01-01

    We report the first experimental demonstration of Gaussian beam-shaping based on the Generalized Phase Contrast (GPC) approach. We show that, when using a dynamic spatial light modulator (SLM), this approach can rapidly generate arbitrarily shaped beams. Moreover, we demonstrate that low-cost binary-phase optics fabricated using photolithography and chemical etching techniques can replace the SLM in static and high power beam shaping applications. The design parameters for the binary-phase el...

  8. Generation of a family of Pearcey beams based on Fresnel diffraction catastrophes

    International Nuclear Information System (INIS)

    Based on the theory of differential geometry and Fresnel diffraction catastrophes, we theoretically prove that the cusped caustic of Pearcey beams are the evolute of a parabola and thus identify the key factor determining the optical structure of Pearcey beams. We numerically simulate and experimentally generate a family of Pearcey beams with various optical topological structures using different parabolas. We then investigate their optical structures and propagation properties. (paper)

  9. CVTree3 Web Server for Whole-genome-based and Alignment-free Prokaryotic Phylogeny and Taxonomy

    Institute of Scientific and Technical Information of China (English)

    Guanghong Zuo; Bailin Hao

    2015-01-01

    A faithful phylogeny and an objective taxonomy for prokaryotes should agree with each other and ultimately follow the genome data. With the number of sequenced genomes reaching tens of thousands, both tree inference and detailed comparison with taxonomy are great challenges. We now provide one solution in the latest Release 3.0 of the alignment-free and whole-genome-based web server CVTree3. The server resides in a cluster of 64 cores and is equipped with an interactive, collapsible, and expandable tree display. It is capable of comparing the tree branching order with prokaryotic classification at all taxonomic ranks from domains down to species and strains. CVTree3 allows for inquiry by taxon names and trial on lineage modifications. In addition, it reports a summary of monophyletic and non-monophyletic taxa at all ranks as well as produces print-quality subtree figures. After giving an overview of retrospective verification of the CVTree approach, the power of the new server is described for the mega-classification of prokaryotes and determination of taxonomic placement of some newly-sequenced genomes. A few discrepancies between CVTree and 16S rRNA analyses are also summarized with regard to possible taxonomic revisions. CVTree3 is freely accessible to all users at http://tlife.fudan.edu.cn/cvtree3/without login requirements.

  10. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal

    International Nuclear Information System (INIS)

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface

  11. Prediction of Antimicrobial Peptides Based on Sequence Alignment and Support Vector Machine-Pairwise Algorithm Utilizing LZ-Complexity

    Directory of Open Access Journals (Sweden)

    Xin Yi Ng

    2015-01-01

    Full Text Available This study concerns an attempt to establish a new method for predicting antimicrobial peptides (AMPs which are important to the immune system. Recently, researchers are interested in designing alternative drugs based on AMPs because they have found that a large number of bacterial strains have become resistant to available antibiotics. However, researchers have encountered obstacles in the AMPs designing process as experiments to extract AMPs from protein sequences are costly and require a long set-up time. Therefore, a computational tool for AMPs prediction is needed to resolve this problem. In this study, an integrated algorithm is newly introduced to predict AMPs by integrating sequence alignment and support vector machine- (SVM- LZ complexity pairwise algorithm. It was observed that, when all sequences in the training set are used, the sensitivity of the proposed algorithm is 95.28% in jackknife test and 87.59% in independent test, while the sensitivity obtained for jackknife test and independent test is 88.74% and 78.70%, respectively, when only the sequences that has less than 70% similarity are used. Applying the proposed algorithm may allow researchers to effectively predict AMPs from unknown protein peptide sequences with higher sensitivity.

  12. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide

    Science.gov (United States)

    Akbari, Abozar; Sheath, Phillip; Martin, Samuel T.; Shinde, Dhanraj B.; Shaibani, Mahdokht; Banerjee, Parama Chakraborty; Tkacz, Rachel; Bhattacharyya, Dibakar; Majumder, Mainak

    2016-01-01

    Graphene-based membranes demonstrating ultrafast water transport, precise molecular sieving of gas and solvated molecules shows great promise as novel separation platforms; however, scale-up of these membranes to large-areas remains an unresolved problem. Here we demonstrate that the discotic nematic phase of graphene oxide (GO) can be shear aligned to form highly ordered, continuous, thin films of multi-layered GO on a support membrane by an industrially adaptable method to produce large-area membranes (13 × 14 cm2) in 90%) for charged and uncharged organic probe molecules with a hydrated radius above 5 Å as well as modest (30–40%) retention of monovalent and divalent salts. The highly ordered graphene sheets in the plane of the membrane make organized channels and enhance the permeability (71±5 l m−2 hr−1 bar−1 for 150±15 nm thick membranes). PMID:26947916

  13. Effect of gamma irradiation on Schottky-contacted vertically aligned ZnO nanorod-based hydrogen sensor

    Science.gov (United States)

    Ranwa, Sapana; Singh Barala, Surendra; Fanetti, Mattia; Kumar, Mahesh

    2016-08-01

    We report the impact of gamma irradiation on the performance of a gold Schottky-contacted ZnO nanorod-based hydrogen sensor. RF-sputtered vertically aligned highly c-axis-oriented ZnO NRs were grown on Si(100) substrate. X-ray diffraction shows no significant change in crystal structure at low gamma doses from 1 to 5 kGy. As gamma irradiation doses increase to 10 kGy, the single crystalline ZnO structure converts to polycrystalline. The photoluminescence spectra also shows suppression of the near-band emission peak and the huge wide-band spectrum indicates the generation of structural defects at high gamma doses. At 1 kGy, the hydrogen sensor response was enhanced from 67% to 77% for 1% hydrogen in pure argon at a 150 °C operating temperature. However, at 10 kGy, the relative response decreases to 33.5%. High gamma irradiation causes displacement damage and defects in ZnO NRs, and as a result, degrades the sensor’s performance as a result. Low gamma irradiation doses activate the ZnO NR surface through ionization, which enhances the sensor performance. The relative response of the hydrogen sensor was enhanced by ∼14.9% with respect to pristine ZnO using 1 kGy gamma ray treatment.

  14. GraphAlignment: Bayesian pairwise alignment of biological networks

    Directory of Open Access Journals (Sweden)

    Kolář Michal

    2012-11-01

    Full Text Available Abstract Background With increased experimental availability and accuracy of bio-molecular networks, tools for their comparative and evolutionary analysis are needed. A key component for such studies is the alignment of networks. Results We introduce the Bioconductor package GraphAlignment for pairwise alignment of bio-molecular networks. The alignment incorporates information both from network vertices and network edges and is based on an explicit evolutionary model, allowing inference of all scoring parameters directly from empirical data. We compare the performance of our algorithm to an alternative algorithm, Græmlin 2.0. On simulated data, GraphAlignment outperforms Græmlin 2.0 in several benchmarks except for computational complexity. When there is little or no noise in the data, GraphAlignment is slower than Græmlin 2.0. It is faster than Græmlin 2.0 when processing noisy data containing spurious vertex associations. Its typical case complexity grows approximately as O(N2.6. On empirical bacterial protein-protein interaction networks (PIN and gene co-expression networks, GraphAlignment outperforms Græmlin 2.0 with respect to coverage and specificity, albeit by a small margin. On large eukaryotic PIN, Græmlin 2.0 outperforms GraphAlignment. Conclusions The GraphAlignment algorithm is robust to spurious vertex associations, correctly resolves paralogs, and shows very good performance in identification of homologous vertices defined by high vertex and/or interaction similarity. The simplicity and generality of GraphAlignment edge scoring makes the algorithm an appropriate choice for global alignment of networks.

  15. Application of Diamond Based Beam Loss Monitors at LHC

    CERN Document Server

    Hempel, Maria; Rüdiger, S.

    2013-05-14

    The Large Hadron Collider (LHC) was conceived in the 1980s and started the operation in 2008. It needed more than 20 years to plan and construct this accelerator and its experiments. Four main experiments are located around the ring, Compact Muon Solenoid (CMS), A Toroidal LHC Apparatus (ATLAS), A Large Ion Collider Experiment (ALICE) and LHC beauty (LHCb). Two beams that traveling in opposite direction in the LHC tunnel, collide in each of the experiments. The navigation of the beams is done by over 10000 magnets and each beam has a stored energy of 362MJ which correspond to the kinetic energy of a train like the TGV travelling of 150km/h. Only a small percentage of that energy can damage the material in the LHC ring or the magnets. This would mean a repair time of months or years, without taking any data. To avoid such a scenario, it is important to monitor the beam condition and measure the amount of losses of the beam. Such losses can for example happen due to dust particles in the vacuum chambers or due...

  16. 200-mm-diameter neutral beam source based on inductively coupled plasma etcher and silicon etching

    International Nuclear Information System (INIS)

    The authors developed a neutral beam source consisting of a 200-mm-diameter inductively coupled plasma etcher and a graphite neutralization aperture plate based on the design of a neutral beam source that Samukawa et al. [Jpn. J. Appl. Phys., Part 2 40, L779 (2001)] developed. They measured flux and energy of neutral particles, ions, and photons using a silicon wafer with a thermocouple and a Faraday cup and calculated the neutralization efficiency. An Ar neutral beam flux of more than 1 mA/cm2 in equivalent current density and a neutralization efficiency of more than 99% were obtained. The spatial uniformity of the neutral beam flux was within ±6% within a 100 mm diameter. Silicon etching using a F2-based neutral beam was done at an etch rate of about 47 nm/min, while Cl2-based neutral beam realized completely no undercut. The uniformity of etch rate was less than ±5% within the area. The etch rate increased by applying bias power to the neutralization aperture plate, which shows that accelerated neutral beam was successfully obtained. These results indicate that the neutral beam source is scalable, making it possible to obtain a large-diameter and uniform neutral beam, which is inevitable for application to mass production.

  17. Negative ion based neutral beam injector for JT-60U

    Science.gov (United States)

    Okumura, Y.; Araki, M.; Hanada, M.; Inoue, T.; Kunieda, S.; Kuriyama, M.; Matsuoka, M.; Mizuno, M.; Ohara, Y.; Tanaka, M.; Watanabe, K.

    1992-10-01

    A 500 keV, 10 MW neutral beam injector is to be constructed in JT-60 Upgrade for the experiments of current drive and heating of heat density core plasmas. This is the first neutral beam injector in the world using negative ions as the primary ions. In the design, D- ion beams of 44 A, 500 keV are produced by two ion sources (22 A/each ion source) and neutralized in a long gas neutralizer. The total system efficiency is about 40%. The ion source is a cesium-seeded multicusp volume source having a three stage electrostatic accelerator. To reduce the stripping loss of D- ions in the accelerator, the ion source should be operated at a low pressure of 0.3 Pa with a current density of 13 mA/cm2. The first test of the full-size negative ion source is scheduled from middle of 1993.

  18. Concept for an advanced exotic beam facility based on ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K.E.; Ahmad, I.; Back, B.B. [and others

    1995-08-01

    The acceleration of beams of unstable nuclei has opened up new research frontiers. Experiments at existing accelerators, and particularly at the first generation of radioactive ion beam facilities, have demonstrated convincingly that unique information becomes accessible. Critical cross sections for astrophysical processes that were impossible to obtain previously, qualitatively new and unexpected nuclear structure effects in nuclei far from stability, completely new approaches to studies of nuclear decays, reactions and structure, all have triggered much excitement for this new dimension in nuclear research. To explore this new dimension, an extension of present technical capabilities and facilities is needed. This need and its scientific basis were discussed in various workshops and symposia and in the Isospin Laboratory (ISL) White Paper. A report by the European community was published recently on prospects of radioactive beam facilities in Europe, and some next-generation projects for such facilities are starting in both Europe and Japan.

  19. A DSP based data acquisition module for colliding beam accelerators

    International Nuclear Information System (INIS)

    In 1999, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory will accelerate and store two beams of gold ions. The ions will then collide head on at a total energy of nearly 40 trillion electron volts. Attaining these conditions necessitates real-time monitoring of beam parameters and for this purpose a flexible data acquisition platform has been developed. By incorporating a floating point digital signal processor (DSP) and standard input/output modules, this system can acquire and process data from a variety of beam diagnostic devices. The DSP performs real time corrections, filtering, and data buffering to greatly reduce control system computation and bandwidth requirements. We will describe the existing hardware and software while emphasizing the compromises required to achieve a flexible yet cost effective system. Applications in several instrumentation systems currently construction will also be presented

  20. Compact, high power electron beam based terahertz sources.

    Energy Technology Data Exchange (ETDEWEB)

    Biedron, S. G.; Lewellen, J. W.; Milton, S. V.; Gopalsami, N.; Schneider, J. F.; Skubal, L.; Li, Y. L.; Virgo, M.; Gallerano, G. P.; Doria, A.; Giovenale, E.; Messina, G.; Spasovsky, I. P.; Office of The Director-Applied Science and Technology; Univ. of Maryland; ENEA

    2007-08-01

    Although terahertz (THz) radiation was first observed about 100 years ago, this portion of the electromagnetic spectrum at the boundary between the microwaves and the infrared has been, for a long time, rather poorly explored. This situation changed with the rapid development of coherent THz sources such as solid-state oscillators, quantum cascade lasers, optically pumped solid-state devices, and novel coherent radiator devices. These in turn have stimulated a wide variety of applications from material science to telecommunications, from biology to biomedicine. Recently, there have been two related compact coherent radiation devices invented able to produce up to megawatts of peak THz power by inducing a ballistic bunching effect on the electron beam, forcing the beam to radiate coherently. An introduction to the two systems and the corresponding output photon beam characteristics will be provided.

  1. Microchannel plate based detector for a heavy ion beam spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.I.

    1979-10-01

    The design parameters and operating characteristics of the detector used in the Brutus and Fannie heavy ion beam spectrometers at the SuperHILAC facility are described. The detector utilizes a 25 mm diameter microchannel plate array to obtain gains of 10/sup 2/ to 10/sup 8/ with a linear dynamic range of 10/sup 3/. It has had over three years of almost maintenance-free service, detecting ion beams from carbon to xenon with energies between 1.2 and 8.5 MeV per nucleon.

  2. Microchannel plate based detector for a heavy ion beam spectrometer

    International Nuclear Information System (INIS)

    The design parameters and operating characteristics of the detector used in the Brutus and Fannie heavy ion beam spectrometers at the SuperHILAC facility are described. The detector utilizes a 25 mm diameter microchannel plate array to obtain gains of 102 to 108 with a linear dynamic range of 103. It has had over three years of almost maintenance-free service, detecting ion beams from carbon to xenon with energies between 1.2 and 8.5 MeV per nucleon

  3. Photovoltaic-Concentrator Based Power Beaming For Space Elevator Application

    International Nuclear Information System (INIS)

    The MClimber team, at the Student Space Systems Fabrication Laboratory of the University of Michigan, has developed a prototype robotic climber for competition in the NASA sponsored Power Beaming Challenge. This paper describes the development of the system that utilizes a simple telescope to deliver an 8 kW beam to a photovoltaic panel in order to power a one kilometer climb. Its unique approach utilizes a precision GPS signal to track the panel. Fundamental systems of the project were implemented using a design strategy focusing on robustness and modularity. Development of this design and its results are presented.

  4. An electron beam treatment planning system based on CT images

    International Nuclear Information System (INIS)

    This is a report on the computerization of the electron beam treatment planning system at the Cancer Institute Hospital. The computer aided calculation of electron beam dose distributions utilizes table look-up and interpolation of measured central axis depth doses and off-center ratios (OCR). Inhomogeneity correction is applied by the absorption equivalent thickness (AET) method. When OCR is expressed as a function of x-L instead of x/L, OCR is nearly independent of field size and shape, where x is the distance of the point from the central axis and L is half width. (author)

  5. Amorphous Silicon Position Detectors for the Link Alignment System of the CMS Detector: Users Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.

    2007-07-01

    We present the general characteristics, calibration procedures and measured performance of the Amorphous Silicon Position Detectors installed in the Link Alignment System of the CMS Detector for laser beam detection and reconstruction and give the Data Base to be used as a Handbook during CMS operation. (Author) 10 refs.

  6. Amorphous Silicon Position Detectors for the Link Alignment System of the CMS Detector: Users Handbook

    International Nuclear Information System (INIS)

    We present the general characteristics, calibration procedures and measured performance of the Amorphous Silicon Position Detectors installed in the Link Alignment System of the CMS Detector for laser beam detection and reconstruction and give the Data Base to be used as a Handbook during CMS operation. (Author) 10 refs

  7. Ion-beam-assisted deposition of biaxially aligned yttria-stabilized zirconia template films on metallic substrates for YBCO-coated conductors

    Science.gov (United States)

    Ma, B.; Li, M.; Fisher, B. L.; Balachandran, U.

    2002-07-01

    Biaxially textured yttria-stabilized zirconia (YSZ) films were grown on mechanically polished Hastelloy C276 (HC) substrates by ion-beam-assisted deposition and electron-beam evaporation. The surface root-mean-square (RMS) roughness of the polished HC substrates was ≈3 nm, as measured by atomic force microscopy (AFM). A water-cooled sample stage was used to hold the substrate temperature below 100 °C during deposition. RMS roughness of ≈3.3 nm was measured on the deposited YSZ films by AFM. X-ray pole figures were conducted for texture analysis; in-plane texture measured from YSZ (111) φ-scan FWHM was 13.2° and out-of-plane texture from the YSZ (002) ω-scan FWHM was 7.7°. An ≈10 nm thick CeO2 buffer layer was deposited on the YSZ film at 800 °C before YBCO films were ablated by pulsed laser deposition at 780 °C in a 250 mTorr flowing oxygen environment. Good in-plane texture with FWHM ≈ 7° was observed in YBCO films. Tc = 90 K, with sharp transition, and transport Jc of ≈2.2 × 106 A cm-2 were observed in a 0.5 μm thick, 5 mm wide, and 1 cm long sample at 77 K in self-field.

  8. Ion-beam-assisted deposition of biaxially aligned yttria-stabilized zirconia template films on metallic substrates for YBCO-coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Ma, B. [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States)]. E-mail: bma@anl.gov; Li, M.; Fisher, B.L.; Balachandran, U. [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States)

    2002-07-01

    Biaxially textured yttria-stabilized zirconia (YSZ) films were grown on mechanically polished Hastelloy C276 (HC) substrates by ion-beam-assisted deposition and electron-beam evaporation. The surface root-mean-square (RMS) roughness of the polished HC substrates was {approx}3 nm, as measured by atomic force microscopy (AFM). A water-cooled sample stage was used to hold the substrate temperature below 100 deg. C during deposition. RMS roughness of {approx}3.3 nm was measured on the deposited YSZ films by AFM. X-ray pole figures were conducted for texture analysis; in-plane texture measured from YSZ (111) {phi}-scan FWHM was 13.2 deg. and out-of-plane texture from the YSZ (002) {omega}-scan FWHM was 7.7 deg. An {approx}10 nm thick CeO{sub 2} buffer layer was deposited on the YSZ film at 800 deg. C before YBCO films were ablated by pulsed laser deposition at 780 deg. C in a 250 mTorr flowing oxygen environment. Good in-plane texture with FWHM {approx}7 deg. was observed in YBCO films. T{sub c} 90 K, with sharp transition, and transport J{sub c} of {approx}2.2x10{sup 6} A cm{sup -2} were observed in a 0.5 {mu}m thick, 5 mm wide, and 1 cm long sample at 77 K in self-field. (author)

  9. Ion-beam-assisted deposition of biaxially aligned yttria-stabilized zirconia template films on metallic substrates for YBCO-coated conductors

    International Nuclear Information System (INIS)

    Biaxially textured yttria-stabilized zirconia (YSZ) films were grown on mechanically polished Hastelloy C276 (HC) substrates by ion-beam-assisted deposition and electron-beam evaporation. The surface root-mean-square (RMS) roughness of the polished HC substrates was ∼3 nm, as measured by atomic force microscopy (AFM). A water-cooled sample stage was used to hold the substrate temperature below 100 deg. C during deposition. RMS roughness of ∼3.3 nm was measured on the deposited YSZ films by AFM. X-ray pole figures were conducted for texture analysis; in-plane texture measured from YSZ (111) φ-scan FWHM was 13.2 deg. and out-of-plane texture from the YSZ (002) ω-scan FWHM was 7.7 deg. An ∼10 nm thick CeO2 buffer layer was deposited on the YSZ film at 800 deg. C before YBCO films were ablated by pulsed laser deposition at 780 deg. C in a 250 mTorr flowing oxygen environment. Good in-plane texture with FWHM ∼7 deg. was observed in YBCO films. Tc 90 K, with sharp transition, and transport Jc of ∼2.2x106 A cm-2 were observed in a 0.5 μm thick, 5 mm wide, and 1 cm long sample at 77 K in self-field. (author)

  10. Proposing a Laser Based Beam Size Monitor for the Future Linear Collider

    International Nuclear Information System (INIS)

    Compton scattering techniques for the measurement of the transverse beam size of particle beams at future linear colliders (FLC) are proposed. At several locations of the beam delivery system (BDS) of the FLC, beam spot sizes ranging from several hundreds to a few micrometers have to be measured. This is necessary to verify beam optics, to obtain the transverse beam emittance, and to achieve the highest possible luminosity. The large demagnification of the beam in the BDS and the high beam power puts extreme conditions on any measuring device. With conventional techniques at their operational limit in FLC scenarios, new methods for the detection of the transverse beam size have to be developed. For this laser based techniques are proposed capable of measuring high power beams with sizes in the micrometer range. In this paper general aspects and critical issues of a generic device are outlined and specific solutions proposed. Plans to install a laser wire experiment at an accelerator test facility are presented

  11. The alignment of the CMS Silicon Tracker

    International Nuclear Information System (INIS)

    The complex system of the CMS all-silicon Tracker, with 15 148 silicon strip and 1440 silicon pixel modules, requires sophisticated alignment procedures. In order to achieve an optimal track-parameter resolution, the position and orientation of its modules need to be determined with a precision of few micrometers. We present results of the alignment of the full Tracker, in its final position, used for the reconstruction of the first collisions recorded by the CMS experiment. The aligned geometry is based on the analysis of several million reconstructed tracks recorded during the commissioning of the CMS experiment, both with cosmic rays and with the first proton-proton collisions. The geometry has been systematically monitored in the different periods of operation of the CMS detector. The results have been validated by several data-driven studies (laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution) and compared with predictions obtained from a detailed detector simulation. (author)

  12. The Alignment of the CMS Silicon Tracker

    International Nuclear Information System (INIS)

    The complex system of the CMS all-silicon Tracker, with 15148 silicon strips and 1440 silicon pixel modules, requires sophisticated alignment procedures. In order to achieve an optimal track-parameter resolution, the position and orientation of its modules need to be determined with a precision of few micrometers. We present results of the alignment of the full Tracker, in its final position, used for the reconstruction of the first collisions recorded by the CMS experiment. The aligned geometry is based on the analysis of several million reconstructed tracks recorded during the commissioning of the CMS experiment, both with cosmic rays and with the first proton-proton collisions. The geometry has been systematically monitored in the different periods of operation of the CMS detector. The results have been validated by several data-driven studies (laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution) and compared with predictions obtained from a detailed detector simulation.

  13. Development and Testing of Atomic Beam-Based Plasma Edge Diagnostics in the CIEMAT Fusion Devices

    International Nuclear Information System (INIS)

    In this report the development of plasma edge diagnostic based on atomic beam techniques fir their application in the CIEMAT fusion devices is described. The characterisation of the beams in laboratory experiments at the CSIC, together with first results in the Torsatron TJ-II are reported. Two types of beam diagnostics have been developed: a thermal (effusive) Li and a supersonic, pulsed He beams. This work has been carried out in collaboration between the institutions mentioned above under partial financial support by EURATOM. (Author) 17 refs

  14. Beam overlapping in a multipass Ti:sapphire amplifier based on a parabolic mirror

    Science.gov (United States)

    Yang, Shengyi

    2005-06-01

    According to laser beam transporting in a multipass Ti:sapphire amplifier based on a parabolic mirror, the influential factors to induce astigmatism are analyzed. The beam waists of the laser beam transporting in the multipass amplifier are calculated by ABCD law in sagittal and tangential planes, respectively, and are compared with each other. Our analyses of these influential factors provide valuable data to optimize this design of multipass Ti:sapphire amplifier, and our experimental results of getting Gaussian beam from such a kind of amplifier confirmed our theoretical analyses.

  15. An adaptive laser beam shaping technique based on a genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Ping Yang; Yuan Liu; Wei Yang; Minwu Ao; Shijie Hu; Bing Xu; Wenhan Jiang

    2007-01-01

    @@ A new adaptive beam intensity shaping technique based on the combination of a 19-element piezo-electricity deformable mirror (DM) and a global genetic algorithm is presented. This technique can adaptively adjust the voltages of the 19 actuators on the DM to reduce the difference between the target beam shape and the actual beam shape. Numerical simulations and experimental results show that within the stroke range of the DM, this technique can be well used to create the given beam intensity profiles on the focal plane.

  16. Metamaterial-based polarization scrambler for uniform illumination of laser beam

    CERN Document Server

    Ling, Xiaohui; Zhao, Chujun; Wen, Shuangchun; Fan, Dianyuan

    2011-01-01

    The uniform illumination of laser beam is imperative to inertial confinement fusion. As a uniform illumination technique, polarization smoothing reduces the beam non-uniformity by creating two orthogonally polarized beams with a selected angular separation or by an optic which scrambles the polarization in the near field. Here, we propose and demonstrate a metamaterial-based polarization scrambler for improving the illumination uniformity of laser beam by exploiting the ability of metamaterial in local polarization manipulation of beam upon transmission by tuning its local geometry. As a proof-of-principle, we exemplify this idea numerically in a simplified beam smoothing system using a typical L-shaped plasmonic metamaterial with locally varying structure geometry, from which the desired far-field polarization distribution can be obtained. The calculating results illustrate that this scrambler can effectively suppress the small-scale non-uniformity of the speckle pattern and shows a nearly same smoothing eff...

  17. A microwave chip-based beam splitter for low-energy guided electrons

    CERN Document Server

    Hammer, J; Weber, Ph; Hommelhoff, P

    2014-01-01

    We demonstrate the splitting of a low-energy electron beam by means of a microwave pseudopotential formed above a planar chip substrate. Beam splitting arises from smoothly transforming the transverse guiding potential for an electron beam from a single-well harmonic confinement into a double-well, thereby generating two separated output beams with $5\\,$mm lateral spacing. Efficient beam splitting is observed for electron kinetic energies up to $3\\,$eV, in excellent agreement with particle tracking simulations. Furthermore, we present a beam splitter potential that is numerically optimized towards coherent and adiabatic splitting of guided electron wave packets. Prospects for electron-based quantum matter-wave optics applications are discussed.

  18. The refined theory of deep rectangular beams based on general solutions of elasticity

    Institute of Scientific and Technical Information of China (English)

    GAO; Yang; WANG; Minzhong

    2006-01-01

    The problem of deducing one-dimensional theory from two-dimensional theory for a homogeneous isotropic beam is investigated. Based on elasticity theory, the refined theory of rectangular beams is derived by using Papkovich-Neuber solution and Lur'e method without ad hoc assumptions. It is shown that the displacements and stresses of the beam can be represented by the angle of rotation and the deflection of the neutral surface. Based on the refined beam theory, the exact equations for the beam without transverse surface loadings are derived and consist of two governing differential equations: the fourth-order equation and the transcendental equation. The approximate equations for the beam under transverse loadings are derived directly from the refined beam theory and are almost the same as the governing equations of Timoshenko beam theory. In two examples, it is shown that the new theory provides better results than Levinson's beam theory when compared with those obtained from the linear theory of elasticity.

  19. Programmable agile beam steering based on a liquid crystal prism

    International Nuclear Information System (INIS)

    To meet the application need for agile precision beam steering, a novel liquid crystal prism device with a simple structure, convenient control, low cost and applicable performance is presented, and analysed theoretically and experimentally. The relationships between the optical path and the thickness of the liquid crystal cell under different voltages are investigated quantitatively by using a theoretical model. Analysis results show that the optical path profile of the liquid crystal prism has a quasi-linear slope and the standard deviation of the linear slope is less than 16 nm. The slope ratio can be changed by a voltage, which achieves the programmable beam steering and control. Practical liquid crystal prism devices are fabricated. Their deflection angles and wavefront profiles with different voltages are experimentally tested. The results are in good agreement with the simulated results. The results imply that the agile beam steering in a scope of 100 μrad with a micro-rad resolution is substantiated in the device. The two-dimensional beam steering is also achieved by cascading two liquid crystal prism devices. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Fuel cladding integrity analysis during beam trip transients for China lead-based demonstration reactor

    International Nuclear Information System (INIS)

    Highlights: • Beam trip effect on Accelerator Driven sub-critical System (ADS) is remained a critical issue on ADS reactor technology. • The CFD model of fuel pin of China Lead-based Demonstration Reactor (CLEAR-III) was established. • The thermal hydraulic behaviors of fuel pin during beam trip transient of CLEAR-III were studied. • The thermal stress variation of fuel cladding during beam trip transient of CLEAR-III was evaluated. • Results reveal that beam trip effect on fuel cladding is so small that can be neglected. - Abstract: Frequent beam trips as experienced in the existing high-power proton accelerators may cause thermal fatigue in Accelerator-Driven System (ADS) components, which may lead to degradation of their structural integrity and reduction of their lifetime. In this paper, we focus on the strength and integrity of fuel cladding during the beam trip transients of China Lead-based Demonstration Reactor (CLEAR-III). Typical frequent beam trips and fuel burn-up are addressed to investigate the acceptable beam trip frequency limitation. Correspondingly, the variation magnitude of temperature and thermal stress of fuel cladding are simulated by ANSYS code. Besides, the behavior of cladding material T91 under irradiation, creep and Lead Bismuth Eutectic (LBE) corrosion conditions has been discussed. It shows that beam trips have little influence on the cladding integrity and the acceptable beam trip frequency of the fuel cladding within 10 s of the beam trip time duration is more than 2.5 × 105 times per year, consequently the CLEAR-III’s fuel claddings are expected to have a good resistance to the thermal–mechanical effects induced by beam trips