WorldWideScience

Sample records for beam attenuation lengths

  1. Electron Effective-Attenuation-Length Database

    Science.gov (United States)

    SRD 82 NIST Electron Effective-Attenuation-Length Database (PC database, no charge)   This database provides values of electron effective attenuation lengths (EALs) in solid elements and compounds at selected electron energies between 50 eV and 2,000 eV. The database was designed mainly to provide EALs (to account for effects of elastic-eletron scattering) for applications in surface analysis by Auger-electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).

  2. Flexural wave attenuation in a sandwich beam with viscoelastic periodic cores

    Science.gov (United States)

    Guo, Zhiwei; Sheng, Meiping; Pan, Jie

    2017-07-01

    The flexural-wave attenuation performance of traditional constraint-layer damping in a sandwich beam is improved by using periodic constrained-layer damping (PCLD), where the monolithic viscoelastic core is replaced with two periodically alternating viscoelastic cores. Closed-form solutions of the wave propagation constants of the infinite periodic sandwich beam and the forced response of the corresponding finite sandwich structure are theoretically derived, providing computational support on the analysis of attenuation characteristics. In a sandwich beam with PCLD, the flexural waves can be attenuated by both Bragg scattering effect and damping effect, where the attenuation level is mainly dominated by Bragg scattering in the band-gaps and by damping in the pass-bands. Affected by these two effects, when the parameters of periodic cores are properly selected, a sandwich beam with PCLD can effectively reduce vibrations of much lower frequencies than that with traditional constrained-layer damping. The effects of the parameters of viscoelastic periodic cores on band-gap properties are also discussed, showing that the average attenuation in the desired frequency band can be maximized by tuning the length ratio and core thickness to proper values. The research in this paper could possibly provide useful information for the researches and engineers to design damping structures.

  3. Unfocused beam patterns in nonattenuating and attenuating fluids

    International Nuclear Information System (INIS)

    Goldstein, Albert

    2004-01-01

    The most important aspect of an ultrasound measuring system is knowledge of the transducer beam pattern. At all depths accurate single integral equations have been derived for the full beam pattern of steady state unfocused circular flat piston sources radiating into nonattenuating and attenuating fluids. The axial depth of the beginning of the unattenuated beam pattern far field is found to be at 6.41Y 0 . The unattenuated single integral equations are identical to a Jinc function directivity term at this and deeper depths. For attenuating fluids values of α and z are found that permit the attenuated axial pressure to be represented by a plane wave multiplicative exponential attenuation factor. This knowledge will aid in the experimental design of highly accurate attenuation measurements. Accurate single integral equations for the attenuated full beam pattern are derived using complex Bessel functions

  4. Analytical inversion formula for uniformly attenuated fan-beam projections

    International Nuclear Information System (INIS)

    Weng, Y.; Zeng, G.L.; Gullberg, G.T.

    1997-01-01

    In deriving algorithms to reconstruct single photon emission computed tomography (SPECT) projection data, it is important that the algorithm compensates for photon attenuation in order to obtain quantitative reconstruction results. A convolution backprojection algorithm was derived by Tretiak and Metz to reconstruct two-dimensional (2-D) transaxial slices from uniformly attenuated parallel-beam projections. Using transformation of coordinates, this algorithm can be modified to obtain a formulation useful to reconstruct uniformly attenuated fan-beam projections. Unlike that for parallel-beam projections, this formulation does not produce a filtered backprojection reconstruction algorithm but instead has a formulation that is an inverse integral operator with a spatially varying kernel. This algorithm thus requires more computation time than does the filtered backprojection reconstruction algorithm for the uniformly attenuated parallel-beam case. However, the fan-beam reconstructions demonstrate the same image quality as that of parallel-beam reconstructions

  5. A practical attenuation compensation method for cone beam spect

    International Nuclear Information System (INIS)

    Manglos, S.H.; Jaszczak, R.J.; Floyd, C.E.; Greer, K.L.; Coleman, R.E.

    1987-01-01

    An algorithm for attenuation compensation of cone beam SPECT images has been developed and implemented. The algorithm is based on a multiplicative post-processing method previously used for parallel and fan beam geometries. This method computes the compensation from the estimated average attenuation of photons originating from each image pixel. In the present development, a uniform attenuation coefficient inside of the body contour is assumed, although the method could be extended to include a non-uniform attenuation map. The algorithm is tested with experimental projections of a phantom obtained using a cone beam collimator. Profiles through the reconstructed images are presented as a quantitative test of the improvement due to the compensation. The algorithm provides adequate compensation for attenuation in a simple uniform cylindrical phantom, and the computational time is short compared to that expected for iterative reconstruction techniques. Also observed are image distortions in some reconstructed slices when the source distribution extends beyond the edge of the cone beam axial field-of-view

  6. Exact fan-beam and 4π-acquisition cone-beam SPECT algorithms with uniform attenuation correction

    International Nuclear Information System (INIS)

    Tang Qiulin; Zeng, Gengsheng L.; Wu Jiansheng; Gullberg, Grant T.

    2005-01-01

    This paper presents analytical fan-beam and cone-beam reconstruction algorithms that compensate for uniform attenuation in single photon emission computed tomography. First, a fan-beam algorithm is developed by obtaining a relationship between the two-dimensional (2D) Fourier transform of parallel-beam projections and fan-beam projections. Using this relationship, 2D Fourier transforms of equivalent parallel-beam projection data are obtained from the fan-beam projection data. Then a quasioptimal analytical reconstruction algorithm for uniformly attenuated Radon data, developed by Metz and Pan, is used to reconstruct the image. A cone-beam algorithm is developed by extending the fan-beam algorithm to 4π solid angle geometry. The cone-beam algorithm is also an exact algorithm

  7. Analytical fan-beam and cone-beam reconstruction algorithms with uniform attenuation correction for SPECT

    International Nuclear Information System (INIS)

    Tang Qiulin; Zeng, Gengsheng L; Gullberg, Grant T

    2005-01-01

    In this paper, we developed an analytical fan-beam reconstruction algorithm that compensates for uniform attenuation in SPECT. The new fan-beam algorithm is in the form of backprojection first, then filtering, and is mathematically exact. The algorithm is based on three components. The first one is the established generalized central-slice theorem, which relates the 1D Fourier transform of a set of arbitrary data and the 2D Fourier transform of the backprojected image. The second one is the fact that the backprojection of the fan-beam measurements is identical to the backprojection of the parallel measurements of the same object with the same attenuator. The third one is the stable analytical reconstruction algorithm for uniformly attenuated Radon data, developed by Metz and Pan. The fan-beam algorithm is then extended into a cone-beam reconstruction algorithm, where the orbit of the focal point of the cone-beam imaging geometry is a circle. This orbit geometry does not satisfy Tuy's condition and the obtained cone-beam algorithm is an approximation. In the cone-beam algorithm, the cone-beam data are first backprojected into the 3D image volume; then a slice-by-slice filtering is performed. This slice-by-slice filtering procedure is identical to that of the fan-beam algorithm. Both the fan-beam and cone-beam algorithms are efficient, and computer simulations are presented. The new cone-beam algorithm is compared with Bronnikov's cone-beam algorithm, and it is shown to have better performance with noisy projections

  8. Plasma-parameter measurements using neutral-particle-beam attenuation

    International Nuclear Information System (INIS)

    Foote, J.H.; Molvik, A.W.; Turner, W.C.

    1982-01-01

    Intense and energetic neutral-particle-beam injection used for fueling or heating magnetically confined, controlled-fusion experimental plasmas can also provide diagnostic measurements of the plasmas. The attenuation of an atomic beam (mainly from charge-exchange and ionization interactions) when passing through a plasma gives the plasma line density. Orthogonal arrays of highly collimated detectors of the secondary-electron-emission type have been used in magnetic-mirror experiments to measure neutral-beam attenuation along chords through the plasma volume at different radial and axial positions. The radial array is used to infer the radial plasma-density profile; the axial array, to infer the axial plasma-density profile and the ion angular distribution at the plasma midplane

  9. Design guidelines for flexural wave attenuation of slender beams with local resonators

    International Nuclear Information System (INIS)

    Liu, Yaozong; Yu, Dianlong; Li, Li; Zhao, Honggang; Wen, Jihong; Wen, Xisen

    2007-01-01

    The complex band structures and attenuation spectra of flexural waves in slender beams with periodically mounted local resonators are investigated with transfer matrix method. It is noteworthy that the frequency range and attenuation coefficient of the locally resonant gap become larger in complex band structures if larger resonators were used. But given the total add-on mass of resonators, the attenuation spectra of finite beams with large but few resonators do not demonstrate such phenomena because the attenuation needs several periods to establish. So with the view of application, a large number of small local resonators widely spread along the beam are preferred given the total add-on mass to the beam

  10. Minimal residual cone-beam reconstruction with attenuation correction in SPECT

    International Nuclear Information System (INIS)

    La, Valerie; Grangeat, Pierre

    1998-01-01

    This paper presents an iterative method based on the minimal residual algorithm for tomographic attenuation compensated reconstruction from attenuated cone-beam projections given the attenuation distribution. Unlike conjugate-gradient based reconstruction techniques, the proposed minimal residual based algorithm solves directly a quasisymmetric linear system, which is a preconditioned system. Thus it avoids the use of normal equations, which improves the convergence rate. Two main contributions are introduced. First, a regularization method is derived for quasisymmetric problems, based on a Tikhonov-Phillips regularization applied to the factorization of the symmetric part of the system matrix. This regularization is made spatially adaptive to avoid smoothing the region of interest. Second, our existing reconstruction algorithm for attenuation correction in parallel-beam geometry is extended to cone-beam geometry. A circular orbit is considered. Two preconditioning operators are proposed: the first one is Grangeat's inversion formula and the second one is Feldkamp's inversion formula. Experimental results obtained on simulated data are presented and the shadow zone effect on attenuated data is illustrated. (author)

  11. Brain SPECT with short focal-length cone-beam collimation

    International Nuclear Information System (INIS)

    Park, Mi-Ae; Moore, Stephen C.; Kijewski, Marie Foley

    2005-01-01

    Single-photon emission-computed tomography (SPECT) imaging of deep brain structures is compromised by loss of photons due to attenuation. We have previously shown that a centrally peaked collimator sensitivity function can compensate for this phenomenon, increasing sensitivity over most of the brain. For dual-head instruments, parallel-hole collimators cannot provide variable sensitivity without simultaneously degrading spatial resolution near the center of the brain; this suggests the use of converging collimators. We have designed collimator pairs for dual-head SPECT systems to increase sensitivity, particularly in the center of the brain, and compared the new collimation approach to existing approaches on the basis of performance in estimating activity concentration of small structures at various locations in the brain. The collimator pairs we evaluated included a cone-beam collimator, for increased sensitivity, and a fan-beam collimator, for data sufficiency. We calculated projections of an ellipsoidal uniform background, with 0.9-cm-radius spherical lesions at several locations in the background. From these, we determined ideal signal-to-noise ratios (SNR CRB ) for estimation of activity concentration within the spheres, based on the Cramer-Rao lower bound on variance. We also reconstructed, by an ordered-subset expectation-maximization (OS-EM) procedure, images of this phantom, as well as of the Zubal brain phantom, to allow visual assessment and to ensure that they were free of artifacts. The best of the collimator pairs evaluated comprised a cone-beam collimator with 20 cm focal length, for which the focal point is inside the brain, and a fan-beam collimator with 40 cm focal length. This pair yielded increased SNR CRB , compared to the parallel-parallel pair, throughout the imaging volume. The factor by which SNR CRB increased ranged from 1.1 at the most axially extreme location to 3.5 at the center. The gains in SNR CRB were relatively robust to mismatches

  12. Attenuation maps for SPECT determined using cone beam transmission computed tomography

    International Nuclear Information System (INIS)

    Manglos, S.H.; Bassano, D.A.; Duxbury, C.E.; Capone, R.B.

    1990-01-01

    This paper presents a new method for measuring non-uniform attenuation maps, using a cone beam geometry CT scan acquired on a standard rotating gamma camera normally used for SPECT imaging. The resulting map is intended for use in non-uniform attenuation compensation of SPECT images. The method was implemented using a light-weight point source holder attached to the camera. A cone beam collimator may be used on the gamma camera, but the cone beam CT scans may also be acquired without collimator. In either implementation, the advantages include very high efficiency and resolution limited not by the collimator but by the intrinsic camera resolution (about 4 mm). Several phantoms tested the spatial uniformity, noise, linearity as a function of attenuation coefficient, and spatial resolution. Good quality attenuation maps were obtained, at least for the central slices where no truncation was present

  13. Iterative reconstruction with attenuation compensation from cone-beam projections acquired via nonplanar orbits

    International Nuclear Information System (INIS)

    Zeng, G.L.; Weng, Y.; Gullberg, G.T.

    1997-01-01

    Single photon emission computed tomography (SPECT) imaging with cone-beam collimators provides improved sensitivity and spatial resolution for imaging small objects with large field-of-view detectors. It is known that Tuy's cone-beam data sufficiency condition must be met to obtain artifact-free reconstructions. Even though Tuy's condition was derived for an attenuation-free situation, the authors hypothesize that an artifact-free reconstruction can be obtained even if the cone-beam data are attenuated, provided the imaging orbit satisfies Tuy's condition and the exact attenuation map is known. In the authors' studies, emission data are acquired using nonplanar circle-and-line orbits to acquire cone-beam data for tomographic reconstructions. An extended iterative ML-EM (maximum likelihood-expectation maximization) reconstruction algorithm is derived and used to reconstruct projection data with either a pre-acquired or assumed attenuation map. Quantitative accuracy of the attenuation corrected emission reconstruction is significantly improved

  14. Multiple-energy tissue-cancellation applications of a digital beam attenuator to chest radiography

    International Nuclear Information System (INIS)

    Dobbins, J.T. III.

    1985-01-01

    The digitally-formed primary beam attenuator (DBA) spatially modulates the x-ray fluence incident upon the patient to selectively attenuate regions of interest. The DBA attenuating mask is constructed from CeO 2 powder by a modified printing technique and uses image information from an initial low-dose exposure. Two tissue-cancellation imaging techniques are investigated with the DBA: (1) energy-dependent information is used to form a beam attenuator that attenuates specific tissues in the primary x-ray beam for tissue-cancelled film radiography; (2) the beam attenuator is used to improve image signal-to-noise and scattered radiation properties in traditional energy-subtraction tissue-cancellation imaging with digital detectors. The tissue-cancellation techniques in the primary x-ray beam were capable of adequately removing either soft-tissue or bone from the final compensated film radiograph when using a phantom with well defined soft-tissue and bone sections. However, when tried on an anthropomorphic chest phantom the results were adequate for cancellation of large soft tissue structures, but unsatisfactory for cancellation of bony structures such as the ribs, because of the limited spatial frequency content of the attenuating mask. The second technique (with digital detectors) showed improved uniformity of image signal-to-noise and a two-fold increase in soft-tissue nodule contrast due to improved scattered radiation properties. The tissue-cancelled images contained residual image contributions from the presence of the attenuating mask, but this residual may be correctable by future algorithms

  15. Broad beam X-rays attenuation in silicum glass

    International Nuclear Information System (INIS)

    Risticj, Dj.; Vukovicj, S.; Markovicj, P.

    1987-01-01

    Using broad beam geometry the attenuation for domestic silicum glass have been studied for constant X-ray potentials from 50 to 150 kV. The density of the silicium glass was 2,5x10 3 kg/m 3 . From the attenuation curves the half value layers were obtained. The use of this glass as the biological shield is pointed out. (author). 2 refs.; 2 tabs.; 2 figs

  16. Radiation protection clothing in X-ray diagnostics. Comparison of attenuation equivalents in narrow beam and inverse broad-beam geometry

    International Nuclear Information System (INIS)

    Pichler, Thomas; Schoepf, T.; Ennemoser, O.

    2011-01-01

    Purpose: Standard DIN EN 61 331-1 for attenuation measurements in the narrow and broad beam as well as DIN 6857-1 for the determination of shielding properties in the inverse broad-beam geometry are available for testing the attenuation of protection clothing. The attenuation measurements in the narrow beam don't consider scattered radiation and fluorescence due to the arrangement. This leads to the fact that the protective effect of lead-free materials will be misestimated when compared to lead. Therefore, the differences in attenuation equivalents, determined by both test methods for topical radiation protection aprons, were examined. Materials and Methods: The attenuations in inverse broad-beam geometry according to DIN 6857-1 and in the narrow beam according to DIN EN 61 331-1 were measured using commercially available aprons. They were made of lead, lead-reduced and lead-free materials. For determination of the attenuation equivalents, certificated lead-foils with high purity and a precise thickness of 0.1 to 1.25 mm were used. Results: The measurements in the narrow beam according to DIN EN 61 331-1 showed that nearly all aprons reach the required lead equivalent at mid-range tube voltages of 100 kV. At higher and lower tube voltages, the requirements of DIN EN 61 331-3 were largely not met. In contrast, the testing of the same aprons in inverse broad-beam geometry according to DIN 6857-1 showed that only a few aprons meet the requirements for being classified in the nominal protection class. Conclusion: The measurements suggest that testing method DIN 6857-1 has yet to prevail and that manufacturers are just beginning to develop the appropriate protective materials. (orig.)

  17. An empirical model of diagnostic x-ray attenuation under narrow-beam geometry

    International Nuclear Information System (INIS)

    Mathieu, Kelsey B.; Kappadath, S. Cheenu; White, R. Allen; Atkinson, E. Neely; Cody, Dianna D.

    2011-01-01

    Purpose: The purpose of this study was to develop and validate a mathematical model to describe narrow-beam attenuation of kilovoltage x-ray beams for the intended applications of half-value layer (HVL) and quarter-value layer (QVL) estimations, patient organ shielding, and computer modeling. Methods: An empirical model, which uses the Lambert W function and represents a generalized Lambert-Beer law, was developed. To validate this model, transmission of diagnostic energy x-ray beams was measured over a wide range of attenuator thicknesses [0.49-33.03 mm Al on a computed tomography (CT) scanner, 0.09-1.93 mm Al on two mammography systems, and 0.1-0.45 mm Cu and 0.49-14.87 mm Al using general radiography]. Exposure measurements were acquired under narrow-beam geometry using standard methods, including the appropriate ionization chamber, for each radiographic system. Nonlinear regression was used to find the best-fit curve of the proposed Lambert W model to each measured transmission versus attenuator thickness data set. In addition to validating the Lambert W model, we also assessed the performance of two-point Lambert W interpolation compared to traditional methods for estimating the HVL and QVL [i.e., semilogarithmic (exponential) and linear interpolation]. Results: The Lambert W model was validated for modeling attenuation versus attenuator thickness with respect to the data collected in this study (R 2 > 0.99). Furthermore, Lambert W interpolation was more accurate and less sensitive to the choice of interpolation points used to estimate the HVL and/or QVL than the traditional methods of semilogarithmic and linear interpolation. Conclusions: The proposed Lambert W model accurately describes attenuation of both monoenergetic radiation and (kilovoltage) polyenergetic beams (under narrow-beam geometry).

  18. An empirical model of diagnostic x-ray attenuation under narrow-beam geometry.

    Science.gov (United States)

    Mathieu, Kelsey B; Kappadath, S Cheenu; White, R Allen; Atkinson, E Neely; Cody, Dianna D

    2011-08-01

    The purpose of this study was to develop and validate a mathematical model to describe narrow-beam attenuation of kilovoltage x-ray beams for the intended applications of half-value layer (HVL) and quarter-value layer (QVL) estimations, patient organ shielding, and computer modeling. An empirical model, which uses the Lambert W function and represents a generalized Lambert-Beer law, was developed. To validate this model, transmission of diagnostic energy x-ray beams was measured over a wide range of attenuator thicknesses [0.49-33.03 mm Al on a computed tomography (CT) scanner, 0.09-1.93 mm Al on two mammography systems, and 0.1-0.45 mm Cu and 0.49-14.87 mm Al using general radiography]. Exposure measurements were acquired under narrow-beam geometry using standard methods, including the appropriate ionization chamber, for each radiographic system. Nonlinear regression was used to find the best-fit curve of the proposed Lambert W model to each measured transmission versus attenuator thickness data set. In addition to validating the Lambert W model, we also assessed the performance of two-point Lambert W interpolation compared to traditional methods for estimating the HVL and QVL [i.e., semi-logarithmic (exponential) and linear interpolation]. The Lambert W model was validated for modeling attenuation versus attenuator thickness with respect to the data collected in this study (R2 > 0.99). Furthermore, Lambert W interpolation was more accurate and less sensitive to the choice of interpolation points used to estimate the HVL and/or QVL than the traditional methods of semilogarithmic and linear interpolation. The proposed Lambert W model accurately describes attenuation of both monoenergetic radiation and (kilovoltage) polyenergetic beams (under narrow-beam geometry).

  19. Beam hardening: Analytical considerations of the effective attenuation coefficient of x-ray tomography

    International Nuclear Information System (INIS)

    Alles, J.; Mudde, R. F.

    2007-01-01

    Polychromatic x-ray beams traveling though material are prone to beam hardening, i.e., the high energy part of the incident spectrum gets over represented when traveling farther into the material. This study discusses the concept of a mean attenuation coefficient in a formal way. The total energy fluence is one-to-one related to the traveled distance in case of a polychromatic beam moving through a given, inhomogeneous material. On the basis of this one-to-one relation, it is useful to define a mean attenuation coefficient and study its decrease with depth. Our results are based on a novel parametrization of the energy dependence of the attenuation coefficient that allows for closed form evaluation of certain spectral integrals. This approach underpins the ad hoc semianalytical expressions given in the literature. An analytical model for the average attenuation coefficient is proposed that uses a simple fit of the attenuation coefficient as a function of the photon energy as input. It is shown that a simple extension of this model gives a rather good description of beam hardening for x-rays traveling through water

  20. An inversion formula for the exponential Radon transform in spatial domain with variable focal-length fan-beam collimation geometry

    International Nuclear Information System (INIS)

    Wen Junhai; Liang Zhengrong

    2006-01-01

    Inverting the exponential Radon transform has a potential use for SPECT (single photon emission computed tomography) imaging in cases where a uniform attenuation can be approximated, such as in brain and abdominal imaging. Tretiak and Metz derived in the frequency domain an explicit inversion formula for the exponential Radon transform in two dimensions for parallel-beam collimator geometry. Progress has been made to extend the inversion formula for fan-beam and varying focal-length fan-beam (VFF) collimator geometries. These previous fan-beam and VFF inversion formulas require a spatially variant filtering operation, which complicates the implementation and imposes a heavy computing burden. In this paper, we present an explicit inversion formula, in which a spatially invariant filter is involved. The formula is derived and implemented in the spatial domain for VFF geometry (where parallel-beam and fan-beam geometries are two special cases). Phantom simulations mimicking SPECT studies demonstrate its accuracy in reconstructing the phantom images and efficiency in computation for the considered collimator geometries

  1. An FDK-like cone-beam SPECT reconstruction algorithm for non-uniform attenuated projections acquired using a circular trajectory

    International Nuclear Information System (INIS)

    Huang, Q; Zeng, G L; You, J; Gullberg, G T

    2005-01-01

    In this paper, Novikov's inversion formula of the attenuated two-dimensional (2D) Radon transform is applied to the reconstruction of attenuated fan-beam projections acquired with equal detector spacing and of attenuated cone-beam projections acquired with a flat planar detector and circular trajectory. The derivation of the fan-beam algorithm is obtained by transformation from parallel-beam coordinates to fan-beam coordinates. The cone-beam reconstruction algorithm is an extension of the fan-beam reconstruction algorithm using Feldkamp-Davis-Kress's (FDK) method. Computer simulations indicate that the algorithm is efficient and is accurate in reconstructing slices close to the central slice of the cone-beam orbit plane. When the attenuation map is set to zero the implementation is equivalent to the FDK method. Reconstructed images are also shown for noise corrupted projections

  2. Bunch-length and beam-timing monitors in the SLC final focus

    International Nuclear Information System (INIS)

    Zimmermann, F.; Yocky, G.; Whittum, D.H.; Seidel, M.; Ng, C.K.; McCormick, D.; Bane, K.L.F.

    1998-07-01

    During the 1997/98 luminosity run of the Stanford Linear Collider (SLC), two novel RF-based detectors were brought into operation, in order to monitor the interaction-point (IP) bunch lengths and fluctuations in the relative arrival time of the two colliding beams. Both bunch length and timing can strongly affect the SLC luminosity and had not been monitored in previous years. The two new detectors utilize a broad-band microwave signal, which is excited by the beam through a ceramic gap in the final-focus beam pipe and transported outside of the beam line vault by a 160-ft long X-Band waveguide. The authors describe the estimated luminosity reduction due to bunch-length drift and IP timing fluctuation, the monitor layout, the expected responses and signal levels, calibration measurements, and beam observations

  3. Attenuation of 10 MeV electron beam energy to achieve low doses does not affect Salmonella spp. inactivation kinetics

    International Nuclear Information System (INIS)

    Hieke, Anne-Sophie Charlotte; Pillai, Suresh D.

    2015-01-01

    The effect of attenuating the energy of a 10 MeV electron beam on Salmonella inactivation kinetics was investigated. No statistically significant differences were observed between the D 10 values of either Salmonella 4,[5],12:i:- or a Salmonella cocktail (S. 4,[5],12:i:-, Salmonella Heidelberg, Salmonella Newport, Salmonella Typhimurium, Salmonella) when irradiated with either a non-attenuated 10 MeV eBeam or an attenuated 10 MeV eBeam (~2.9±0.22 MeV). The results show that attenuating the energy of a 10 MeV eBeam to achieve low doses does not affect the inactivation kinetics of Salmonella spp. when compared to direct 10 MeV eBeam irradiation. - Highlights: • 10 MeV eBeam energy was attenuated to 2.9±0.22 MeV using HDPE sheets. • Attenuation of eBeam energy does not affect the inactivation kinetics of Salmonella. • Microbial inactivation is independent of eBeam energy in the range of 3–10 MeV

  4. Validation of attenuation, beam blockage, and calibration estimation methods using two dual polarization X band weather radars

    Science.gov (United States)

    Diederich, M.; Ryzhkov, A.; Simmer, C.; Mühlbauer, K.

    2011-12-01

    The amplitude a of radar wave reflected by meteorological targets can be misjudged due to several factors. At X band wavelength, attenuation of the radar beam by hydro meteors reduces the signal strength enough to be a significant source of error for quantitative precipitation estimation. Depending on the surrounding orography, the radar beam may be partially blocked when scanning at low elevation angles, and the knowledge of the exact amount of signal loss through beam blockage becomes necessary. The phase shift between the radar signals at horizontal and vertical polarizations is affected by the hydrometeors that the beam travels through, but remains unaffected by variations in signal strength. This has allowed for several ways of compensating for the attenuation of the signal, and for consistency checks between these variables. In this study, we make use of several weather radars and gauge network measuring in the same area to examine the effectiveness of several methods of attenuation and beam blockage corrections. The methods include consistency checks of radar reflectivity and specific differential phase, calculation of beam blockage using a topography map, estimating attenuation using differential propagation phase, and the ZPHI method proposed by Testud et al. in 2000. Results show the high effectiveness of differential phase in estimating attenuation, and potential of the ZPHI method to compensate attenuation, beam blockage, and calibration errors.

  5. Measuring the attenuation length of water in the CHIPS-M water Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Amat, F.; Bizouard, P. [Aix Marseille University Saint-Jerome, 13013 Marseille (France); Bryant, J. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Carroll, T.J.; Rijck, S. De [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Germani, S. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Joyce, T. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Kriesten, B. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Marshak, M.; Meier, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Nelson, J.K. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Perch, A.J.; Pfützner, M.M. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Salazar, R. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Thomas, J., E-mail: jennifer.thomas@ucl.ac.uk [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Trokan-Tenorio, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Vahle, P. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Wade, R. [Avenir Consulting, Abingdon, Oxfordshire (United Kingdom); Wendt, C. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Whitehead, L.H. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); and others

    2017-02-01

    The water at the proposed site of the CHIPS water Cherenkov detector has been studied to measure its attenuation length for Cherenkov light as a function of filtering time. A scaled model of the CHIPS detector filled with water from the Wentworth 2W pit, proposed site of the CHIPS deployment, in conjunction with a 3.2 m vertical column filled with this water, was used to study the transmission of 405 nm laser light. Results consistent with attenuation lengths of up to 100 m were observed for this wavelength with filtration and UV sterilization alone.

  6. Exact Reconstruction From Uniformly Attenuated Helical Cone-Beam Projections in SPECT

    International Nuclear Information System (INIS)

    Gullberg, Grant T.; Huang, Qiu; You, Jiangsheng; Zeng, Gengsheng L.

    2008-01-01

    In recent years the development of cone-beam reconstruction algorithms has been an active research area in x-ray computed tomography (CT), and significant progress has been made in the advancement of algorithms. Theoretically exact and computationally efficient analytical algorithms can be found in the literature. However, in single photon emission computed tomography (SPECT), published cone-beam reconstruction algorithms are either approximate or involve iterative methods. The SPECT reconstruction problem is more complicated due to degradations in the imaging detection process, one of which is the effect of attenuation of gamma ray photons. Attenuation should be compensated for to obtain quantitative results. In this paper, an analytical reconstruction algorithm for uniformly attenuated cone-beam projection data is presented for SPECT imaging. The algorithm adopts the DBH method, a procedure consisting of differentiation and backprojection followed by a finite inverse cosh-weighted Hilbert transform. The significance of the proposed approach is that a selected region of interest can be reconstructed even with a detector with a reduced field of view. The algorithm is designed for a general trajectory. However, to validate the algorithm, a numerical study was performed using a helical trajectory. The implementation is efficient and the simulation result is promising

  7. Effect of beam-attenuation modulation on fluctuation measurements by heavy-ion beam probe

    International Nuclear Information System (INIS)

    Ross, D.W.; Sloan, M.L.; Wootton, A.J.

    1991-03-01

    Beam-attenuation modulation arising from density fluctuations along the orbit of the heavy-ion beam probe can distort the local amplitude, coherence, and phase derived from one- and two-point correlation measurements. Path-integral expressions for these effects are derived and applications to TEXT data are discussed. The effects depend critically on the ratio of the average fluctuation amplitude, n e , along the beam path to the local n e at the sample volume. Because the fluctuation amplitude is small in the core and rises sharply toward the plasma edge, the contamination effect is negligible in a radial zone near the edge but rises sharply to the interior of a critical radius. With increasing average plasma density, bar n e , the interior contamination increases strongly and the critical radius moves outward. 16 refs., 12 figs

  8. Estuarine morphometry governs optically active substances, Kd(PAR) and beam attenuation

    DEFF Research Database (Denmark)

    Lund-Hansen, L. C.; Nielsen, J. M.; Blüthgen, J.

    2013-01-01

    estuaries using OACs as input parameters. It is concluded that there are no large differences in OAC concentrations between the two estuaries. The spatial distributions of OACs and optical properties were significantly different and governed by the estuary morphometry, i.e. a power distribution......°N) at high discharges. The major difference was the spatial distribution of the optical properties against distance, best described by significant power functions in the ria, compared to significant linear functions in the coastal plain. It was hypothesized that estuarine morphometry could explain...... this spatial distribution. Partition and multiple regression analyses showed that Chl-a governed Kd(PAR) and beam attenuation coefficient in both estuaries. Significant, high correlations were obtained by multiple regression analyses in the estimation of Kd(PAR) and beam attenuation coefficients in the two...

  9. Measurement of electron beam bunch phase length by rectangular cavities

    International Nuclear Information System (INIS)

    Afanas'ev, V.D.; Rudychev, V.G.; Ushakov, V.I.

    1976-01-01

    An analysis of a phase length of electron bunches with the help of crossed rectangular resonators with the Hsub(102) oscillation type has been made. It has been shown that the electron coordinates after the duplex resonator are described by an ellipse equation for a non-modulated beam. An influence of the initial energy spread upon the electron motion has been studied. It has been ascertained that energy modulation of the electron beam results in displacement of each electron with respect to the ellipse which is proportional to modulation energy, i.e. an error in determination of the phase length of an electron bunch is proportional to the beam energy spread. Relations have been obtained which enable to find genuine values of phases of the analyzed electrons with an accuracy up to linear multipliers

  10. Attenuation of laser power of a focused Gaussian beam during interaction between a laser and powder in coaxial laser cladding

    International Nuclear Information System (INIS)

    Liu Jichang; Li Lijun; Zhang Yuanzhong; Xie Xiaozhu

    2005-01-01

    The power of a focused laser beam with a Gaussian intensity profile attenuated by powder in coaxial laser cladding is investigated experimentally and theoretically, and its resolution model is developed. With some assumptions, it is concluded that the attenuation of laser power is an exponential function and is determined by the powder feed rate, particle moving speed, spraying angles and waist positions and diameters of the laser beam and powder flow, grain diameter and run of the laser beam through the powder flow. The attenuation of laser power increases with powder feed rate or run of laser beam through the powder flow. In the experiment presented, 300 W laser power from a focused Gaussian beam is attenuated by a coaxial powder flow. The experimental results agree well with the values calculated with the developed model

  11. An Analytical-empirical Calculation of Linear Attenuation Coefficient of Megavoltage Photon Beams.

    Science.gov (United States)

    Seif, F; Tahmasebi-Birgani, M J; Bayatiani, M R

    2017-09-01

    In this study, a method for linear attenuation coefficient calculation was introduced. Linear attenuation coefficient was calculated with a new method that base on the physics of interaction of photon with matter, mathematical calculation and x-ray spectrum consideration. The calculation was done for Cerrobend as a common radiotherapy modifier and Mercury. The values of calculated linear attenuation coefficient with this new method are in acceptable range. Also, the linear attenuation coefficient decreases slightly as the thickness of attenuating filter (Cerrobend or mercury) increased, so the procedure of linear attenuation coefficient variation is in agreement with other documents. The results showed that the attenuation ability of mercury was about 1.44 times more than Cerrobend. The method that was introduced in this study for linear attenuation coefficient calculation is general enough to treat beam modifiers with any shape or material by using the same formalism; however, calculating was made only for mercury and Cerrobend attenuator. On the other hand, it seems that this method is suitable for high energy shields or protector designing.

  12. The Effect of CFRP Length on the Failure Mode of Strengthened Concrete Beams

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2014-06-01

    Full Text Available This paper reports the effects of carbon fiber-reinforced polymer (CFRP length on the failure process, pattern and crack propagation for a strengthened concrete beam with an initial notch. The experiments measuring load-bearing capacity for concrete beams with various CFRP lengths have been performed, wherein the crack opening displacements (COD at the initial notch are also measured. The application of CFRP can significantly improve the load-bearing capacity, and the failure modes seem different with various CFRP lengths. The stress profiles in the concrete material around the crack tip, at the end of CFRP and at the interface between the concrete and CFRP are then calculated using the finite element method. The experiment measurements are validated by theoretical derivation and also support the finite element analysis. The results show that CFRP can significantly increase the ultimate load of the beam, while such an increase stops as the length reaches 0.15 m. It is also concluded that the CFRP length can influence the stress distribution at three critical stress regions for strengthened concrete beams. However, the optimum CFRP lengths vary with different critical stress regions. For the region around the crack tip, it is 0.15 m; for the region at the interface it is 0.25 m, and for the region at the end of CFRP, it is 0.30 m. In conclusion, the optimum CFRP length in this work is 0.30 m, at which CFRP strengthening is fully functioning, which thus provides a good reference for the retrofitting of buildings.

  13. Aerodynamic Characteristics of a Flying-Boat Hull Having a Length-Beam Ratio of 15, TED No. NACA 2206

    Science.gov (United States)

    Riebe, John M.; Naeseth, Rodger L.

    1951-01-01

    An investigation was made in the Langley 300 MPH 7- by 10-foot tunnel to determine the aerodynamic characteristics of a flying-boat hull of a length-beam ratio of 15 in the presence of a wing. The investigation was an extension of previous tests made on hulls of length-beam ratios of 6, 9, and 12; these hulls were designed to have approximately the same hydrodynamic performance with respect to spray and resistance characteristics. Comparison with the previous investigation at lower length-beam ratios indicated a reduction in minimum drag coefficients of 0.0006 (10 peroent)with fixed transition when the length-beam ratio was extended from 12 to 15. As with the hulls of lower length-beam ratio, the drag reduction with a length-beam ratio of 15 occurred throughout the range of angle of attack tested and the angle of attack for minimum drag was in the range from 2deg to 3deg. Increasing the length-beam ratio from 12 to 15 reduced the hull longitudinal instability by an mount corresponding to an aerodynamic-center shift of about 1/2 percent of the mean aerodynamic chord of the hypothetical flying boat. At an angle of attack of 2deg, the value of the variation of yawing-moment coefficient with angle of yaw for a length-beam ratio of 15 was 0.00144, which was 0.00007 larger than the value for a length-beam ratio of 12.

  14. An apparatus to measure water optical attenuation length for LHAASO-MD

    Science.gov (United States)

    Li, Cong; Xiao, Gang; Feng, Shaohui; Wang, Lingyu; Li, Xiurong; Zuo, Xiong; Cheng, Ning; Wang, Hui; Gao, Bo; Duan, Zhihao; Liu, Jia; He, Huihai; Saeed, Mohsin; Lhaaso Collaboration

    2018-06-01

    The large high altitude air shower observatory (LHAASO) is being constructed at 4400 m a.s.l. in Daocheng, Sichuan Province, aiming to reveal the secrets of cosmic rays origin. And it has the largest surface muon detector array in the world. Due to the needs of calibration and construction of muon detector, we developed a water optical attenuation measurement device using an 8 m long water tank. The results are presented for filtered water at wavelength of 405 nm, which proves this apparatus can reach an accuracy of about 20% at 100 m. This apparatus has not only a high precision measurement of water attenuation length up to 100 m but is also very convenient to be used, which is crucial for water optical properties study during LHAASO detector construction.

  15. Effect of particulate aggregation in aquatic environments on the beam attenuation and its utility as a proxy for particulate mass.

    Science.gov (United States)

    Boss, Emmanuel; Slade, Wayne; Hill, Paul

    2009-05-25

    Marine aggregates, agglomerations of particles and dissolved materials, are an important particulate pool in aquatic environments, but their optical properties are not well understood. To improve understanding of the optical properties of aggregates, two related studies are presented. In the first, an in situ manipulation experiment is described, in which beam attenuation of undisturbed and sheared suspensions are compared. Results show that in the sheared treatment bulk particle size decreases and beam attenuation increases, consistent with the hypothesis that a significant fraction of mass in suspension is contained in fragile aggregates. Interestingly, the magnitude of increase in beam attenuation is less than expected if the aggregates are modeled as solid spheres. Motivated by this result, a second study is presented, in which marine aggregates are modeled to assess how the beam attenuation of aggregates differs from that of their constituent particles and from solid particles of the same mass. The model used is based on that of Latimer [Appl. Opt. 24, 3231 (1985)] and mass specific attenuation is compared with that based on homogeneous and solid particles, the standard model for aquatic particles. In the modeling we use recent research relating size and solid fraction of aquatic aggregates. In contrast with Mie theory, this model provides a rather size-insensitive mass specific attenuation for most relevant sizes. This insensitivity is consistent with the observations that mass specific beam-attenuation of marine particles is in the range 0.2-0.6m(2)/gr despite large variability in size distribution and composition across varied aquatic environments.

  16. Attenuation coefficient determination of printed ABS and PLA samples in diagnostic radiology standard beams

    International Nuclear Information System (INIS)

    Veneziani, G.R.; Correa, E.L.; Potiens, M.P.A.; Campos, L.L.

    2015-01-01

    IAEA code of practice TRS-457 states that standard phantoms should offer the same primary attenuation and scatter production as relevant body section of a representative patient. Material cost, availability and dimensional stability must also be considered. The goal of this study is to determine the attenuation coefficient of printed ABS and PLA in standard X-ray beams, verifying if phantoms printed with these materials could be an easier-handle substitute for PMMA, enabling the creation of different designs in an easier and cheaper way. Results show that PMMA presents higher attenuation coefficient, followed by PLA and ABS, which means that thinner PMMA layer creates higher radiation attenuation. (author)

  17. Control the length of beam trajectory with a quadruple triplet for heavy ion accelerator

    International Nuclear Information System (INIS)

    Zhang, Zhan; Wei, Shaoqing; Lee, Sang Jin; Kim, Do Gyun; Kim, Jang Youl

    2016-01-01

    Beam trajectory is needed to be controlled in heavy ion accelerator system. Quadruple magnets are widely used in heavy ion accelerator for focusing the transporting particles. A quadruple triplet system which consists of three consecutive quadrupoles, Q1, Q2 and Q3, is used to control beam trajectory at a focused position. Q1 and Q3 have symmetry with respect to Q2. The beam trajectory in magnet system is affected by higher order fields existed in real fields. For quadrupoles, the representation simulation of beam trajectory was carried out to study the beam trajectory and to estimate an effect of higher order field in triplet system. SCALA program was used to simulate the beam trajectory in OperaTM. SCALA can analyze a large number of beam trajectories at the same time by adjusting the size of finite element of the emitter. With OperaTM and MatlabTM programs, the position of focused beam spot in quadruple triplet system can be increased or decreased using evolution strategy (ES) method, therefore the length of triplet system can be controlled. Finally, the quadruple triplet system with the appropriate length and expected beam spot range was suggested in this paper

  18. Control the length of beam trajectory with a quadruple triplet for heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhan; Wei, Shaoqing; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of); Kim, Do Gyun; Kim, Jang Youl [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-12-15

    Beam trajectory is needed to be controlled in heavy ion accelerator system. Quadruple magnets are widely used in heavy ion accelerator for focusing the transporting particles. A quadruple triplet system which consists of three consecutive quadrupoles, Q1, Q2 and Q3, is used to control beam trajectory at a focused position. Q1 and Q3 have symmetry with respect to Q2. The beam trajectory in magnet system is affected by higher order fields existed in real fields. For quadrupoles, the representation simulation of beam trajectory was carried out to study the beam trajectory and to estimate an effect of higher order field in triplet system. SCALA program was used to simulate the beam trajectory in OperaTM. SCALA can analyze a large number of beam trajectories at the same time by adjusting the size of finite element of the emitter. With OperaTM and MatlabTM programs, the position of focused beam spot in quadruple triplet system can be increased or decreased using evolution strategy (ES) method, therefore the length of triplet system can be controlled. Finally, the quadruple triplet system with the appropriate length and expected beam spot range was suggested in this paper.

  19. Measure of the attenuation curve of a beam of X-rays with TLD-100 dosimeters of LiF

    International Nuclear Information System (INIS)

    Bonzi, E. V.; Mainardi, R. T.; Germanier, A.; Delgado, V.

    2011-10-01

    The attenuation curve of a beam of X-rays represents the beam intensity in function of the attenuator thickness interposed between the source and the detector. To know with the major possible precision the attenuation curve is indispensable in procedures of spectral reconstruction. Their periodic measuring also offers valuable information on the correct operation of a tube of X-rays, diagnostic or therapy, when not have a specific detector for that activity. In this work was measured the attenuation curve of a tube of X-rays operated to 50 kV and 0.5 ma, using existent elements in any diagnostic or therapy laboratory with radiations. In the measures commercial aluminum foil was used, bent until 24 times and thermoluminescent dosimeters TLD 100 - LiF. Also, for comparison, was measured this attenuation curve with an ionization chamber brand Capintec model 192. Was determined by X-rays fluorescence the composition of the aluminium foil, since the present elements in the alloy can to affect the form of the attenuation curve. It is interesting to observe that these elements are in very low proportion (ppm) that they do not alter the attenuation capacity of the pure aluminium. Finally in a precision balance we weigh a big piece (30 cm x 100 cm) of aluminium foil and we obtained the thickness in g/c m2. It is possible to obtain attenuation curves of a beam of X-rays, with a high precision procedure and reproducibility. The use of TLD-100 dosimeters of LiF or similar makes that this activity was also quick and simple. (Author)

  20. Adjustable, short focal length permanent-magnet quadrupole based electron beam final focus system

    Directory of Open Access Journals (Sweden)

    J. K. Lim

    2005-07-01

    Full Text Available Advanced high-brightness beam applications such as inverse-Compton scattering (ICS depend on achieving of ultrasmall spot sizes in high current beams. Modern injectors and compressors enable the production of high-brightness beams having needed short bunch lengths and small emittances. Along with these beam properties comes the need to produce tighter foci, using stronger, shorter focal length optics. An approach to creating such strong focusing systems using high-field, small-bore permanent-magnet quadrupoles (PMQs is reported here. A final-focus system employing three PMQs, each composed of 16 neodymium iron boride sectors in a Halbach geometry has been installed in the PLEIADES ICS experiment. The field gradient in these PMQs is 560   T/m, the highest ever reported in a magnetic optics system. As the magnets are of a fixed field strength, the focusing system is tuned by adjusting the position of the three magnets along the beam line axis, in analogy to familiar camera optics. This paper discusses the details of the focusing system, simulation, design, fabrication, and experimental procedure in creating ultrasmall beams at PLEIADES.

  1. Attenuation and Emittance Growth of 450 GeV and 7 TeV Proton Beams in Low-Z Absorber Elements

    CERN Document Server

    Kadi, Y; Goddard, B; Schmidt, R

    2004-01-01

    The intensity of the LHC beams will be several orders of magnitude above the damage thresholds for equipment. Passive protection of accelerator equipment against failures during beam transfer, injection and dumping of the beam with diluters and collimators is foreseen. These protection devices must be robust in case of beam impact, and low-Z materials such as carbon are favored. In these diluters, the reduction of the energy density is determined both by the attenuation due to inelastic nuclear collisions and by the emittance growth of the surviving protons due to elastic scattering processes. The physics principles leading to attenuation and emittance growth for a hadron beam traversing matter are summarised, and FLUKA simulation results for 450 GeV and 7 TeV proton beams on low-Z absorbers are compared with these predictions. Design criteria for the LHC absorbers are derived from these results.

  2. Arbitrary Control of Polarization and Intensity Profiles of Diffraction-Attenuation-Resistant Beams along the Propagation Direction

    Science.gov (United States)

    Corato-Zanarella, Mateus; Dorrah, Ahmed H.; Zamboni-Rached, Michel; Mojahedi, Mo

    2018-02-01

    We report on the theory and experimental generation of a class of diffraction-attenuation-resistant beams with state of polarization (SOP) and intensity that can be controlled on demand along the propagation direction. This control is achieved by a suitable superposition of Bessel beams, whose parameters are systematically chosen based on closed-form analytic expressions provided by the frozen waves method. Using an amplitude-only spatial light modulator, we experimentally demonstrate three scenarios. In the first, the SOP of a horizontally polarized beam evolves to radial polarization and is then changed to vertical polarization, with the beam intensity held constant. In the second, we simultaneously control the SOP and the longitudinal intensity profile, which is chosen such that the beam's central ring can be switched off over predefined space regions, thus generating multiple foci with different SOPs and at different intensity levels along the propagation. Finally, the ability to control the SOP while overcoming attenuation inside lossy fluids is shown experimentally. We envision our proposed method to be of great interest for many applications, such as optical tweezers, atom guiding, material processing, microscopy, and optical communications.

  3. Effective attenuation lengths for quantitative determination of surface composition by Auger-electron spectroscopy and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Jablonski, A.; Powell, C.J.

    2017-01-01

    Highlights: • Effective attenuation lengths (EALs) for determination of surface composition by XPS. • Considerable difference from EALs used for overlayer thickness measurements. • New analytical algorithms for calculating the effective attenuation length. - Abstract: The effective attenuation length (EAL) is normally used in place of the inelastic mean free path (IMFP) to account for elastic-scattering effects when describing the attenuation of Auger electrons and photoelectrons from a planar substrate by an overlayer film. An EAL for quantitative determination of surface composition by Auger-electron spectroscopy (AES) or X-ray photoelectron spectroscopy (XPS) is similarly useful to account for elastic-scattering effects on the signal intensities. We calculated these EALs for four elemental solids (Si, Cu, Ag, and Au) and for energies between 160 eV and 1.4 keV. The XPS calculations were made for two instrumental configurations while the AES calculations were made from the XPS formalism after “switching off” the XPS anisotropy. The EALs for quantitative determination of surface composition by AES and XPS were weak functions of emission angle for emission angles between 0 and 50°. The ratios of the average values of these EALs to the corresponding IMFPs could be fitted to a second-order function of the single-scattering albedo, a convenient measure of the strength of elastic-scattering effects. EALs for quantitative determination of surface composition by AES and XPS for other materials can be simply found from this relationship.

  4. Investigation of the extraction of short diffusion lengths from simulated electron-beam induced current

    Energy Technology Data Exchange (ETDEWEB)

    Wee, D.; Parish, G.; Nener, B. [Microelectronics Research Group, The University of Western Australia, 35 Stirling Highway, 6009 Crawley (Perth) (Australia)

    2010-10-15

    This paper reports on the investigations via 2-D simulation into the accuracy of diffusion length extraction from scanning electron-beam induced current measurements when the diffusion length, L is very short. L is extracted by using the direct method proposed by Chan et al.[1] and later refined by Kurniawan and Ong[2] to take finite junction depth into account. The 2-D simulations were undertaken using Synopsys {sup registered} Sentaurus TCAD and a realistic electron-hole pair generation volume was created using CASINO v2.42[3], a Monte Carlo Scanning Electron Microscope interaction simulation software, and imported into Sentaurus. The voltage and diameter of the electron beam and diffusion length and surface recombination velocity of the semiconductor materials were varied in the simulations to determine the errors in the diffusion length extracted from the EBIC signals as a function of these parameters. The results of the simulation show that the accuracy of the method proposed in[1] is reasonably accurate and that the beam voltage and spot size do not have significant effects on the accuracy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Investigation of the extraction of short diffusion lengths from simulated electron-beam induced current

    International Nuclear Information System (INIS)

    Wee, D.; Parish, G.; Nener, B.

    2010-01-01

    This paper reports on the investigations via 2-D simulation into the accuracy of diffusion length extraction from scanning electron-beam induced current measurements when the diffusion length, L is very short. L is extracted by using the direct method proposed by Chan et al.[1] and later refined by Kurniawan and Ong[2] to take finite junction depth into account. The 2-D simulations were undertaken using Synopsys registered Sentaurus TCAD and a realistic electron-hole pair generation volume was created using CASINO v2.42[3], a Monte Carlo Scanning Electron Microscope interaction simulation software, and imported into Sentaurus. The voltage and diameter of the electron beam and diffusion length and surface recombination velocity of the semiconductor materials were varied in the simulations to determine the errors in the diffusion length extracted from the EBIC signals as a function of these parameters. The results of the simulation show that the accuracy of the method proposed in[1] is reasonably accurate and that the beam voltage and spot size do not have significant effects on the accuracy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Attenuation length measurements of a liquid scintillator with LabVIEW and reliability evaluation of the device

    International Nuclear Information System (INIS)

    Gao Long; Yu Boxiang; Ding Yayun

    2013-01-01

    An attenuation length measurement device was constructed using an oscilloscope and LabVIEW for signal acquisition and processing. The performance of the device has been tested in a variety of ways. The test results show that the set-up has a good stability and high precision (sigma/mean reached 0.4 percent). Besides, the accuracy of the measurement system will decrease by about 17 percent if a filter is used. The attenuation length of a gadolinium-loaded liquid scintillator (Gd-LS) was measured as 15.10±0.35 m where Gd-LS was heavily used in the Daya Bay Neutrino Experiment. In addition, one method based on the Beer-Lambert law was proposed to investigate the reliability of the measurement device, the R-square reached 0.9995. Moreover, three purification methods for Linear Alkyl Benzene (LAB) production were compared in the experiment. (authors)

  7. Single-crystal filters for attenuating epithermal neutrons and gamma rays in reactor beams

    DEFF Research Database (Denmark)

    Rustad, B.M.; Als-Nielsen, Jens Aage; Bahnsen, A.

    1965-01-01

    Cross section of representative samples of bismuth and quartz were measured at room and liquid nitrogen temperatures over neutron energy range of 0.0007 to 2.0 ev to obtain data for design of single-crystal 32-cm bismuth filters for attenuating fast neutrons and γ-rays in reactor beams; filters may...

  8. 2D beam hardening correction for micro-CT of immersed hard tissue

    Science.gov (United States)

    Davis, Graham; Mills, David

    2016-10-01

    Beam hardening artefacts arise in tomography and microtomography with polychromatic sources. Typically, specimens appear to be less dense in the center of reconstructions because as the path length through the specimen increases, so the X-ray spectrum is shifted towards higher energies due to the preferential absorption of low energy photons. Various approaches have been taken to reduce or correct for these artefacts. Pre-filtering the X-ray beam with a thin metal sheet will reduce soft energy X-rays and thus narrow the spectrum. Correction curves can be applied to the projections prior to reconstruction which transform measured attenuation with polychromatic radiation to predicted attenuation with monochromatic radiation. These correction curves can be manually selected, iteratively derived from reconstructions (this generally works where density is assumed to be constant) or derived from a priori information about the X-ray spectrum and specimen composition. For hard tissue specimens, the latter approach works well if the composition is reasonably homogeneous. In the case of an immersed or embedded specimen (e.g., tooth or bone) the relative proportions of mineral and "organic" (including medium and plastic container) species varies considerably for different ray paths and simple beam hardening correction does not give accurate results. By performing an initial reconstruction, the total path length through the container can be determined. By modelling the X-ray properties of the specimen, a 2D correction transform can then be created such that the predicted monochromatic attenuation can be derived as a function of both the measured polychromatic attenuation and the container path length.

  9. Beam-induced heating / bunch length / RF and lessons for 2012

    International Nuclear Information System (INIS)

    Metral, E.

    2012-01-01

    Beam-induced heating has been observed here and there during the 2011 run when the bunch/beam intensity was increased and/or the bunch length was reduced. These observations are first reviewed before mentioning the recent news/work performed during the shutdown. In fact, several possible sources of heating exist and only the RF heating (i.e. coming from the real part of the longitudinal impedance of the machine components) is discussed in some detail in the present paper: 1) comparing the case of a Broad-Band (BB) vs. a Narrow-Band (NB) impedance; 2) discussing the beam spectrum; 3) reminding the usual solutions to avoid/minimize the RF heating; 4) reviewing the different heat transfer mechanisms; 5) mentioning that the synchronous phase shift is a measurement of the power loss and effective impedance. The three current 'hot' topics for the LHC performance, which are the VMTSA, TDI and MKI, are then analyzed in detail and some lessons for 2012 (and after) are finally drawn

  10. Attenuation of a non-parallel beam of gamma radiation by thick shielding-application to the determination of the 235U enrichment with NaI detectors

    International Nuclear Information System (INIS)

    Mortreau, Patricia; Berndt, Reinhard

    2005-01-01

    The traditional method used to determine the Uranium enrichment by nondestructive analysis is based on the 'enrichment meter principle' [1]. It involves measuring the intensity of the 186 keV net peak area of 235 U in 'quasi-infinite' samples. A prominent factor, which affects the peak intensity, is the presence of gamma absorbing material (e.g., container wall, detector cover) between the sample and the detector. Its effect is taken into consideration in a commonly called 'wall thickness' correction factor. Often calculated on the basis of approximations, its performance is adequate for small attenuation factors applicable to the case of narrow beams. However these approximations do not lead to precise results when wide non-parallel beams are attenuated through thick container walls. This paper is dedicated to the calculation by numerical integration of the geometrical correction factor (K wtc ) which describes the effective mean path length of the radiation through the absorbing layer. This factor was calculated as a function of various measurement parameters (types and dimensions of the detector, of the collimator and of the shielding) for the most commonly used collimator shapes and detectors. Both coherent scattering (Rayleigh) and incoherent scattering (Compton) are taken into account for the calculation of the radiation interaction within the detector

  11. Interaction of a finite-length ion beam with a background plasma: Reflected ions at the quasi-parallel bow shock

    International Nuclear Information System (INIS)

    Onsager, T.G.; Winske, D.; Thomsen, M.F.

    1991-01-01

    The coupling of a finite-length, field-aligned, ion beam with a uniform background plasma is investigated using one-dimensional hybrid computer simulations. The finite-length beam is used to study the interaction between the incident solar wind and ions reflected from the Earth's quasi-parallel bow shock, where the reflection process may vary with time. The coupling between the reflected ions and the solar wind is relevant to ion heating at the bow shock and possibly to the formation of hot, flow anomalies and re-formation of the shock itself. The authors find that although there are many similarities between the instabilities driven by the finite-length beam and those predicted by linear theory for an infinite, homogeneous beam, there are also some important differences. Consistent with linear theory, the waves which dominate the interaction are the electromagnetic right-hand polarized resonant and nonresonant modes. However, in addition to the instability growth rates, the length of time that the waves are in contact with the beam is also an important factor in determining which wave mode will dominate the interaction. Whereas linear theory predicts the nonresonant mode to have the larger growth rate for the parameters they investigate, with finite-length beam they find that both the nonresonant and resonant modes contribute to the interaction. They find that the interaction will result in strong coupling, where a significant fraction of the available free energy is converted into thermal energy in a short time, provided the beam is sufficiently dense or sufficiently long

  12. The LCLS Gas Attenuator Revisited

    International Nuclear Information System (INIS)

    Ryutov, D

    2005-01-01

    In the report ''X-ray attenuation cell'' [1] a preliminary analysis of the gas attenuator for the Linac Coherent Light Source (LCLS) was presented. This analysis was carried out for extremely stringent set of specifications. In particular, a very large diameter for the unobstructed beam was set (1 cm) to accommodate the spontaneous radiation; the attenuator was supposed to cover the whole range of energies of the coherent radiation, from 800 eV to 8000 eV; the maximum attenuation was set at the level of 10 4 ; the use of solid attenuators was not allowed, as well as the use of rotating shutters. The need to reach a sufficient absorption at the high-energy end of the spectrum predetermined the choice of Xe as the working gas (in order to have a reasonable absorption at a not-too-high pressure). A sophisticated differential pumping system that included a Penning-type ion pump was suggested in order to minimize the gas leak into the undulator/accelerator part of the facility. A high cost of xenon meant also that an efficient (and expensive) gas-recovery system would have to be installed. The main parameter that determined the high cost and the complexity of the system was a large radius of the orifice. The present viewpoint allows for much smaller size of the orifice, r 0 = 1.5 mm. (1) The use of solid attenuators is also allowed (R.M. Bionta, private communication). It is, therefore, worthwhile to reconsider various parameters of the gas attenuator for these much less stringent conditions. This brief study should be considered as a physics input for the engineering design. As a working gas we consider now the argon, which, on the one hand, provides a reasonable absorption lengths and, on the other hand, is inexpensive enough to be exhausted into the atmosphere (no recovery). The absorption properties of argon are illustrated by Fig.1 where the attenuation factor A is shown for various beam energies, based on Ref. [2]. The other relevant parameters for argon are

  13. Beam displacement as a function of temperature and turbulence length scale at two different laser radiation wavelengths.

    Science.gov (United States)

    Isterling, William M; Dally, Bassam B; Alwahabi, Zeyad T; Dubovinsky, Miro; Wright, Daniel

    2012-01-01

    Narrow laser beams directed from aircraft may at times pass through the exhaust plume of the engines and potentially degrade some of the laser beam characteristics. This paper reports on controlled studies of laser beam deviation arising from propagation through turbulent hot gases, in a well-characterized laboratory burner, with conditions of relevance to aircraft engine exhaust plumes. The impact of the temperature, laser wavelength, and turbulence length scale on the beam deviation has been investigated. It was found that the laser beam displacement increases with the turbulent integral length scale. The effect of temperature on the laser beam angular deviation, σ, using two different laser wavelengths, namely 4.67 μm and 632.8 nm, was recorded. It was found that the beam deviation for both wavelengths may be semiempirically modeled using a single function of the form, σ=a(b+(1/T)(2))(-1), with two parameters only, a and b, where σ is in microradians and T is the temperature in °C. © 2012 Optical Society of America

  14. Radiation induced time dependent attenuation in a fiber

    International Nuclear Information System (INIS)

    Kelly, R.E.; Lyons, P.B.; Looney, L.D.

    1985-01-01

    Characteristics describing the time dependent attenuation coefficient of an optical fiber during and following a very short and intense radiation pulse are analyzed. This problem is important for transmission applications when the fiber is subjected to gamma, electron, or neutron beams. Besides time, the attenuation coefficient is a function of temperature, dose rate, dose, nature of the radiation (n, e, γ), fiber composition and purity, pre-existing solid state defects, and wavelength of the transmitted signal. The peak attenuation for a given fiber is mainly determined by the dose rate and pulse length, but temperature and strain (or athermal) annealing also contribute to a partial recovery during the pulse duration. The peak attenuation per unit dose appears to be smaller at high doses, perhaps caused by particle track overlap, which produces a saturation effect. After pulse termination, the attenuation coefficient tends to recover towards its pre-radiation value at different rates, depending upon the factors mentioned above. In particular, ionized electrons relax back to the positive lattice ions at a rate which depends upon initial separation distance and temperature. The initial separation distance is a function of beam energy. Some electrons will encounter a trap in the lattice and may recombine by quantum mechanical tunneling or be removed by photons (hence, absorption). Besides ionization, radiation may induce lattice displacements which in turn produce additional absorption centers. The displacement contribution has a different time constant than that associated with ionization. These topics, as they influence fiber characteristics, are discussed, along with supporting experimental data

  15. Development of a coherent transition radiation-based bunch length monitor with application to the APS RF thermionic gun beam optimization

    CERN Document Server

    Lumpkin, Alex H; Berg, W J; Borland, M; Happek, U; Lewellen, J W; Sereno, N S

    2001-01-01

    We report further development of an EPICS-compatible bunch length monitor based on the autocorrelation of coherent transition radiation (CTR). In this case the monitor was used to optimize the beam from the S-band thermionic RF gun on the Advanced Photon Source (APS) linac. Bunch lengths of 400-500 fs (FWHM) were measured in the core of the beam, which corresponded to about 100-A peak current in each micropulse. The dependence of the CTR signal on the square of the beam charge for the beam core was demonstrated. We also report the first use of the beam accelerated to 217 MeV for successful visible wavelength SASE FEL experiments.

  16. Electron beam bunch length characterizations using incoherent and coherent transition radiation on the APS SASE FEL project

    CERN Document Server

    Lumpkin, Alex H; Berg, W J; Lewellen, J W; Sereno, N S; Happek, U

    2000-01-01

    The Advanced Photon Source (APS) injector linac has been reconfigured with a low-emittance RF thermionic gun and a photocathode (PC) RF gun to support self-amplified spontaneous emission (SASE) free-electron laser (FEL) experiments. One of the most critical parameters for optimizing SASE performance (gain length) is the electron beam peak current, which requires a charge measurement and a bunch length measurement capability. We report here initial measurements of the latter using both incoherent optical transition radiation (OTR) and coherent transition radiation (CTR). A visible light Hamamatsu C5680 synchroscan streak camera was used to measure the thermionic RF gun beam's bunch length (sigma approx 2-3 ps) via OTR generated by the beam at 220 MeV and 200 mA macropulse average current. In addition, a CTR monitor (Michelson Interferometer) based on a Golay cell as the far-infrared (FIR) detector has been installed at the 40-MeV station in the beamline. Initial observations of CTR signal strength variation wi...

  17. The validity of cone-beam computed tomography in measuring root canal length using a gold standard

    NARCIS (Netherlands)

    Liang, Y.H.; Jiang, L.; Chen, C.; Gao, X.J.; Wesselink, P.R.; Wu, M.K.; Shemesh, H.

    2013-01-01

    Introduction The distance between a coronal reference point and the major apical foramen is important for working length determination. The aim of this in vitro study was to determine the accuracy of root canal length measurements performed with cone-beam computed tomographic (CBCT) scans using a

  18. Design of a digital beam attenuation system for computed tomography: Part I. System design and simulation framework

    International Nuclear Information System (INIS)

    Szczykutowicz, Timothy P.; Mistretta, Charles A.

    2013-01-01

    Purpose: The purpose of this work is to introduce a new device that allows for patient-specific imaging-dose modulation in conventional and cone-beam CT. The device is called a digital beam attenuator (DBA). The DBA modulates an x-ray beam by varying the attenuation of a set of attenuating wedge filters across the fan angle. The ability to modulate the imaging dose across the fan beam represents another stride in the direction of personalized medicine. With the DBA, imaging dose can be tailored for a given patient anatomy, or even tailored to provide signal-to-noise ratio enhancement within a region of interest. This modulation enables decreases in: dose, scatter, detector dynamic range requirements, and noise nonuniformities. In addition to introducing the DBA, the simulation framework used to study the DBA under different configurations is presented. Finally, a detailed study on the choice of the material used to build the DBA is presented. Methods: To change the attenuator thickness, the authors propose to use an overlapping wedge design. In this design, for each wedge pair, one wedge is held stationary and another wedge is moved over the stationary wedge. The composite thickness of the two wedges changes as a function of the amount of overlap between the wedges. To validate the DBA concept and study design changes, a simulation environment was constructed. The environment allows for changes to system geometry, different source spectra, DBA wedge design modifications, and supports both voxelized and analytic phantom models. A study of all the elements from atomic number 1 to 92 were evaluated for use as DBA filter material. The amount of dynamic range and tube loading for each element were calculated for various DBA designs. Tube loading was calculated by comparing the attenuation of the DBA at its minimum attenuation position to a filtered non-DBA acquisition. Results: The design and parametrization of DBA implemented FFMCT has been introduced. A simulation

  19. Attenuation of a non-parallel beam of gamma radiation by thick shielding-application to the determination of the {sup 235}U enrichment with NaI detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mortreau, Patricia [European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen, TP 800 Via Fermi, Ispra (Vatican City State, Holy See,) (Italy)]. E-mail: patricia.mortreau@jrc.it; Berndt, Reinhard [European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen, TP 800 Via Fermi, Ispra (VA) (Italy)

    2005-09-21

    The traditional method used to determine the Uranium enrichment by nondestructive analysis is based on the 'enrichment meter principle' [1]. It involves measuring the intensity of the 186 keV net peak area of {sup 235}U in 'quasi-infinite' samples. A prominent factor, which affects the peak intensity, is the presence of gamma absorbing material (e.g., container wall, detector cover) between the sample and the detector. Its effect is taken into consideration in a commonly called 'wall thickness' correction factor. Often calculated on the basis of approximations, its performance is adequate for small attenuation factors applicable to the case of narrow beams. However these approximations do not lead to precise results when wide non-parallel beams are attenuated through thick container walls. This paper is dedicated to the calculation by numerical integration of the geometrical correction factor (K {sub wtc}) which describes the effective mean path length of the radiation through the absorbing layer. This factor was calculated as a function of various measurement parameters (types and dimensions of the detector, of the collimator and of the shielding) for the most commonly used collimator shapes and detectors. Both coherent scattering (Rayleigh) and incoherent scattering (Compton) are taken into account for the calculation of the radiation interaction within the detector.

  20. Beam Attenuators and the Risk of Unrecognized Large-Fraction Irradiation of Critical Tissues

    International Nuclear Information System (INIS)

    Luka, S.; Marks, J.E.

    2015-01-01

    The use of radiation beam attenuators led to radiation injury of the spinal cord in one patient and of the peripheral nerve in another due to unsuspected large-fraction irradiation. The anatomic distribution of radiation dose was reconstructed in the sagittal plane for the patient who developed radiation myelopathy and in the axial plane for the patient who developed peripheral neuropathy. The actual dose delivered to the injured structure in each patient was taken from the dose distribution and recorded along with the time, number of fractions, and dose per fraction. The patient who developed radiation myelopathy received a total of 46.5 Gy in twenty-three 2.1 Gy fractions in 31 days to the upper cervical spinal cord where the thickness of the neck was less than the central axis thickness due to cervical lordosis and absence of a posterior compensating filter. The patient who developed peripheral neuropathy received 55 Gy in twenty-five 2.2 Gy fractions in 50 days to the femoral nerve using bolus over the groins and an anterior one-half value layer Cerrobend pelvic block to bias the dose anteriorly. Compensating filters and other beam attenuators should be used with caution because they may result in unsuspected large-fraction irradiation and total doses of radiation that exceed the tolerance of critical structures.

  1. Beam Attenuators and the Risk of Unrecognized Large-Fraction Irradiation of Critical Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Luka, S.; Marks, J.E.

    2015-01-15

    The use of radiation beam attenuators led to radiation injury of the spinal cord in one patient and of the peripheral nerve in another due to unsuspected large-fraction irradiation. The anatomic distribution of radiation dose was reconstructed in the sagittal plane for the patient who developed radiation myelopathy and in the axial plane for the patient who developed peripheral neuropathy. The actual dose delivered to the injured structure in each patient was taken from the dose distribution and recorded along with the time, number of fractions, and dose per fraction. The patient who developed radiation myelopathy received a total of 46.5 Gy in twenty-three 2.1 Gy fractions in 31 days to the upper cervical spinal cord where the thickness of the neck was less than the central axis thickness due to cervical lordosis and absence of a posterior compensating filter. The patient who developed peripheral neuropathy received 55 Gy in twenty-five 2.2 Gy fractions in 50 days to the femoral nerve using bolus over the groins and an anterior one-half value layer Cerrobend pelvic block to bias the dose anteriorly. Compensating filters and other beam attenuators should be used with caution because they may result in unsuspected large-fraction irradiation and total doses of radiation that exceed the tolerance of critical structures.

  2. A Main Ring bunch length monitor by detecting two frequency components of the beam

    International Nuclear Information System (INIS)

    Ieiri, T.; Jackson, G.

    1989-01-01

    The bunch length is measured by detecting two revolution frequency harmonics of the beam and taking the ratio of their amplitudes. Two heterodyne receivers have been made to direct them, one at 53MHz and the other at 159MHz. These signals are picked-up by a stripline detector. An analog circuit provides a signal proportional to the bunch length. The monitor measures variation of the bunch length as a function of time in the Main Ring. The measured signal, which sometimes shows that the bunches are tumbling in phase space, can be damped by feedback to the RF amplitude modulator. 9 refs., 12 figs., 1 tab

  3. Intense diagnostic neutral beam development for ITER

    International Nuclear Information System (INIS)

    Rej, D.J.; Henins, I.; Fonck, R.J.; Kim, Y.J.

    1992-01-01

    For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-μs accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance

  4. Nuclear attenuation of fast hadrons produced in charged-current ν and anti ν interactions in neon

    International Nuclear Information System (INIS)

    Burkot, W.; Coghen, T.; Czyzewski, J.

    1996-01-01

    The production of hadrons in charged-current (anti)neutrino interactions is studied with the bubble chamber BEBC exposed to the CERN (anti)neutrino wide-band beam. Fast-hadron production in a neon target is found to be attenuated as compared to that in a hydrogen target. This feature is discussed within theoretical models based on the idea of a hadron formation length. The experimental results favour the 'constituent' over the 'yo-yo' length concept, and suggest a quark cross section in the order of 3 mb. (orig.)

  5. Self-attenuation factors in gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Korun, M.

    1999-01-01

    The relation between the self-attenuation factors and the distribution function describing the number of photons detected in the full-energy peaks, as a function of their path length in the sample is presented. The relations between the self-attenuation factor and the moments of the distribution function, the average path length and the variance are also presented. The use of these relations is illustrated by applying them to self-attenuation factors describing attenuation in cylindrical samples. The results of the calculations are compared with the measured average path lengths and discussed in terms of the properties of the distribution function. (author)

  6. Calibration of a turbidity meter for making estimates of total suspended solids concentrations and beam attenuation coefficients in field experiments

    Science.gov (United States)

    Usry, J. W.; Whitlock, C. H.

    1981-01-01

    Management of water resources such as a reservoir requires using analytical models which describe such parameters as the suspended sediment field. To select or develop an appropriate model requires making many measurements to describe the distribution of this parameter in the water column. One potential method for making those measurements expeditiously is to measure light transmission or turbidity and relate that parameter to total suspended solids concentrations. An instrument which may be used for this purpose was calibrated by generating curves of transmission measurements plotted against measured values of total suspended solids concentrations and beam attenuation coefficients. Results of these experiments indicate that field measurements made with this instrument using curves generated in this study should correlate with total suspended solids concentrations and beam attenuation coefficients in the water column within 20 percent.

  7. An experimental attenuation plate to improve the dose distribution in intraoperative electron beam radiotherapy for breast cancer.

    Science.gov (United States)

    Oshima, T; Aoyama, Y; Shimozato, T; Sawaki, M; Imai, T; Ito, Y; Obata, Y; Tabushi, K

    2009-06-07

    Intraoperative electron beam radiotherapy (IOERT) is a technique in which a single-fraction high dose is intraoperatively delivered to subclinical tumour cells using an electron beam after breast-conserving surgery. In IOERT, an attenuation plate consisting of a pair of metal disks is commonly used to protect the normal tissues posterior to the breast. However, the dose in front of the plate is affected by backscatter, resulting in an unpredictable delivered dose to the tumour cells. In this study, an experimental attenuation plate, termed a shielding plate, was designed using Monte Carlo simulation, which significantly diminished the electron beam without introducing any backscatter radiation. The plate's performance was verified by measurements. It was made of two layers, a first layer (source side) of polymethyl methacrylate (PMMA) and a second layer of copper, which was selected from among other metals (aluminium, copper and lead) after testing for shielding capability and the range and magnitude of backscatter. The optimal thicknesses of the PMMA (0.71 cm) and copper (0.3 cm) layers were determined by changing their thicknesses during simulations. On the basis of these results, a shielding plate was prototyped and depth doses with and without the plate were measured by radiophotoluminescence glass dosimeters using a conventional stationary linear accelerator and a mobile linear accelerator dedicated for IOERT. The trial shielding plate functioned as intended, indicating its applicability in clinical practice.

  8. The small length scale effect for a non-local cantilever beam: a paradox solved.

    Science.gov (United States)

    Challamel, N; Wang, C M

    2008-08-27

    Non-local continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with microstructures or nanostructures. This paper presents some simplified non-local elastic beam models, for the bending analyses of small scale rods. Integral-type or gradient non-local models abandon the classical assumption of locality, and admit that stress depends not only on the strain value at that point but also on the strain values of all points on the body. There is a paradox still unresolved at this stage: some bending solutions of integral-based non-local elastic beams have been found to be identical to the classical (local) solution, i.e. the small scale effect is not present at all. One example is the Euler-Bernoulli cantilever nanobeam model with a point load which has application in microelectromechanical systems and nanoelectromechanical systems as an actuator. In this paper, it will be shown that this paradox may be overcome with a gradient elastic model as well as an integral non-local elastic model that is based on combining the local and the non-local curvatures in the constitutive elastic relation. The latter model comprises the classical gradient model and Eringen's integral model, and its application produces small length scale terms in the non-local elastic cantilever beam solution.

  9. Theoretical study of the attenuation of a gaussian beam penetrating into a dielectric circular wave guide

    International Nuclear Information System (INIS)

    Crenn, J.P.

    1981-07-01

    It is proposed to draw up an approximate formula directly giving the attenuation of a gaussian beam penetrating into a superdimensioned dielectric circular wave guide. This formula is derived from optical laws, i.e. Fresnel's formulae of the reflexion of a wave on a dielectric to which a correcting term due to diffraction has been added. The results given by this formula are compared with the existing results, based on the breakdown of a gaussian beam into propagation modes, thereby enabling their validity and the field of use to be checked. An application is then made to the wave guides that will be employed in the infrared interferometer fitted in JET [fr

  10. Electron Cloud Cyclotron Resonances in the Presence of a Short-bunch-length Relativistic Beam

    International Nuclear Information System (INIS)

    Celata, Christine; Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Wu, Jennifer W.

    2008-01-01

    Computer simulations using the 2D code 'POSINST' were used to study the formation of the electron cloud in the wiggler section of the positron damping ring of the International Linear Collider. In order to simulate an x-y slice of the wiggler (i.e., a slice perpendicular to the beam velocity), each simulation assumed a constant vertical magnetic field. At values of the magnetic field where the cyclotron frequency was an integral multiple of the bunch frequency, and where the field strength was less than approximately 0.6 T, equilibrium average electron densities were up to three times the density found at other neighboring field values. Effects of this resonance between the bunch and cyclotron frequency are expected to be non-negligible when the beam bunch length is much less than the product of the electron cyclotron period and the beam

  11. Determination of particles concentration in Black Sea waters from spectral beam attenuation coefficient

    Science.gov (United States)

    Korchemkina, E. N.; Latushkin, A. A.; Lee, M. E.

    2017-11-01

    The methods of determination of concentration and scattering by suspended particles in seawater are compared. The methods considered include gravimetric measurements of the mass concentration of suspended matter, empirical and analytical calculations based on measurements of the light beam attenuation coefficient (BAC) in 4 spectral bands, calculation of backscattering by particles using satellite measurements in the visible spectral range. The data were obtained in two cruises of the R/V "Professor Vodyanitsky" in the deep-water part of the Black Sea in July and October 2016., Spatial distribution of scattering by marine particles according to satellite data is in good agreement with the contact measurements.

  12. Highly porous nanoberyllium for X-ray beam speckle suppression

    Energy Technology Data Exchange (ETDEWEB)

    Goikhman, Alexander, E-mail: agoikhman@ymail.com; Lyatun, Ivan; Ershov, Petr [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); Snigireva, Irina [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Wojda, Pawel [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); Gdańsk University of Technology, 11/12 G. Narutowicza, Gdańsk 80-233 (Poland); Gorlevsky, Vladimir; Semenov, Alexander; Sheverdyaev, Maksim; Koletskiy, Viktor [A. A. Bochvar High-Technology Scientific Research Institute for Inorganic Materials, Rogova str. 5a, Moscow 123098 (Russian Federation); Snigirev, Anatoly [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)

    2015-04-09

    A speckle suppression device containing highly porous nanoberyllium is proposed for manipulating the spatial coherence length and removing undesirable speckle structure during imaging experiments. This paper reports a special device called a ‘speckle suppressor’, which contains a highly porous nanoberyllium plate squeezed between two beryllium windows. The insertion of the speckle suppressor in an X-ray beam allows manipulation of the spatial coherence length, thus changing the effective source size and removing the undesirable speckle structure in X-ray imaging experiments almost without beam attenuation. The absorption of the nanoberyllium plate is below 1% for 1 mm thickness at 12 keV. The speckle suppressor was tested on the ID06 ESRF beamline with X-rays in the energy range from 9 to 15 keV. It was applied for the transformation of the phase–amplitude contrast to the pure amplitude contrast in full-field microscopy.

  13. Highly porous nanoberyllium for X-ray beam speckle suppression

    International Nuclear Information System (INIS)

    Goikhman, Alexander; Lyatun, Ivan; Ershov, Petr; Snigireva, Irina; Wojda, Pawel; Gorlevsky, Vladimir; Semenov, Alexander; Sheverdyaev, Maksim; Koletskiy, Viktor; Snigirev, Anatoly

    2015-01-01

    A speckle suppression device containing highly porous nanoberyllium is proposed for manipulating the spatial coherence length and removing undesirable speckle structure during imaging experiments. This paper reports a special device called a ‘speckle suppressor’, which contains a highly porous nanoberyllium plate squeezed between two beryllium windows. The insertion of the speckle suppressor in an X-ray beam allows manipulation of the spatial coherence length, thus changing the effective source size and removing the undesirable speckle structure in X-ray imaging experiments almost without beam attenuation. The absorption of the nanoberyllium plate is below 1% for 1 mm thickness at 12 keV. The speckle suppressor was tested on the ID06 ESRF beamline with X-rays in the energy range from 9 to 15 keV. It was applied for the transformation of the phase–amplitude contrast to the pure amplitude contrast in full-field microscopy

  14. CEBAF Upgrade Bunch Length Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mahmoud [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    Many accelerators use short electron bunches and measuring the bunch length is important for efficient operations. CEBAF needs a suitable bunch length because bunches that are too long will result in beam interruption to the halls due to excessive energy spread and beam loss. In this work, bunch length is measured by invasive and non-invasive techniques at different beam energies. Two new measurement techniques have been commissioned; a harmonic cavity showed good results compared to expectations from simulation, and a real time interferometer is commissioned and first checkouts were performed. Three other techniques were used for measurements and comparison purposes without modifying the old procedures. Two of them can be used when the beam is not compressed longitudinally while the other one, the synchrotron light monitor, can be used with compressed or uncompressed beam.

  15. X-ray Beam Spectral Reconstruction Using Laplace Transform and Attenuation Curves

    International Nuclear Information System (INIS)

    Maeng, Seongjin; Lee, Sang Hoo; Kwon, Dahye; Seo, Jihye; Seo, Kyung Won

    2015-01-01

    As the use of X-ray tubes is widely spread mainly for medical diagnostic purposes or industrial applications, there is increasing demand for accurate and convenient way getting of X-ray beam spectral information. While measurement methods may provide quite accurate spectral information, these methods still require expensive detectors (example: HPGe, High Purity Germanium detector) and some conversion of measurement information into real spectrum. It is concluded that Laplace transform-based spectral reconstruction technique given in equations (1) and (2) works well for a 50-kV X-ray source. In this paper we obtained the attenuation curve by the use of MCNPX simulations. We were able to rebuild the X-ray spectrum of 50 kV through this research by Monte Carlo simulation (fitting parameters, a: 1.2921, b: 0.2342, ν: 0.6190, R-squared: 0.9930)

  16. Cone-beam CT image contrast and attenuation-map linearity improvement (CALI) for brain stereotactic radiosurgery procedures

    Science.gov (United States)

    Hashemi, Sayed Masoud; Lee, Young; Eriksson, Markus; Nordström, Hâkan; Mainprize, James; Grouza, Vladimir; Huynh, Christopher; Sahgal, Arjun; Song, William Y.; Ruschin, Mark

    2017-03-01

    A Contrast and Attenuation-map (CT-number) Linearity Improvement (CALI) framework is proposed for cone-beam CT (CBCT) images used for brain stereotactic radiosurgery (SRS). The proposed framework is used together with our high spatial resolution iterative reconstruction algorithm and is tailored for the Leksell Gamma Knife ICON (Elekta, Stockholm, Sweden). The incorporated CBCT system in ICON facilitates frameless SRS planning and treatment delivery. The ICON employs a half-cone geometry to accommodate the existing treatment couch. This geometry increases the amount of artifacts and together with other physical imperfections causes image inhomogeneity and contrast reduction. Our proposed framework includes a preprocessing step, involving a shading and beam-hardening artifact correction, and a post-processing step to correct the dome/capping artifact caused by the spatial variations in x-ray energy generated by bowtie-filter. Our shading correction algorithm relies solely on the acquired projection images (i.e. no prior information required) and utilizes filtered-back-projection (FBP) reconstructed images to generate a segmented bone and soft-tissue map. Ideal projections are estimated from the segmented images and a smoothed version of the difference between the ideal and measured projections is used in correction. The proposed beam-hardening and dome artifact corrections are segmentation free. The CALI was tested on CatPhan, as well as patient images acquired on the ICON system. The resulting clinical brain images show substantial improvements in soft contrast visibility, revealing structures such as ventricles and lesions which were otherwise un-detectable in FBP-reconstructed images. The linearity of the reconstructed attenuation-map was also improved, resulting in more accurate CT#.

  17. Ion beam energy attenuation for fabrication of buried, variable-depth, optical waveguides

    International Nuclear Information System (INIS)

    Bibra, M.L. von; Roberts, A.; Dods, S.D.

    2000-01-01

    Buried waveguides with graded depths have been fabricated using a focussed ion beam, direct-write process in fused silica by irradiation with 3 MeV protons through a tapered film varying in thickness from 5 to 40 μm. The resulting waveguides ramp uniformly from 25 to 80 μm below the substrate surface. The waveguides are also uniform in cross-section along their lengths. This demonstrates the potential for this fabrication technique to direct-write three-dimensional waveguide devices within a substrate

  18. Gamma-ray beam attenuation to assess the influence of soil texture on structure deformation

    International Nuclear Information System (INIS)

    Pires, L.F.; Bacchi, O.O.S.; Dias, N.M.P.

    2006-01-01

    Gamma-ray beam attenuation is a non-invasive technique that permits analysis of soil porosity without disturbing the region of interest of the core sample. The technique has as additional advantage to allow measurements point by point on a millimetric scale in contrast to other methodologies that are invasive and analyze the soil properties in the bulk sample volume. Soil porosity can be used as an important parameter to quantify soil structural damages, which affect soil aeration, water movement and retention. In this study, porosities of three soils different in texture were measured at various positions in order to analyze the impact of the sampling procedure on the structure of each particular soil texture. The gamma-ray attenuation system consisted of an 241 Am radioactive source having an activity of 3.7 GBq, collimated with cylindrical lead collimators of 2 mm diameter. The results obtained show the presence of dense regions near the edges of samples and that different soil textures can suffer distinct deformations at sampling. (author)

  19. Application of a Low-Energy Electron Beam as a Tool for ultrashort bunch length measurement in circular machines

    CERN Document Server

    Nikiforov, D A; Malyutin, D; Matveenko, A; Rusinov, K; Starostenko, A A

    2017-01-01

    A new diagnostic device designed for non-destructive ultrashort bunch length measurement is described. The operating principle of the device and the measuring technique are described. The possible scheme of arrangement of the device elements are described. The results of simulations of EBP application for different beams under investigation are presented. The quality requirements of the low energy testing beam are considered and resolving detector ability is determined.

  20. Analysis of the variation of the attenuation curve in function of the radiation field size for k Vp X-ray beams using the MCNP-5C code

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Marco A.R., E-mail: marco@cetea.com.b, E-mail: marfernandes@fmb.unesp.b [Universidade Estadual Paulista Julio de Mesquita Filho (FMB/UNESP), Botucatu, SP (Brazil). Fac. de Medicina; Ribeiro, Victor A.B. [Universidade Estadual Paulista Julio de Mesquita Filho (IBB/UNESP), Botucatu, SP (Brazil). Inst. de Biociencias; Viana, Rodrigo S.S.; Coelho, Talita S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The paper illustrates the use of the Monte Carlo method, MCNP-5C code, to analyze the attenuation curve behavior of the 50 kVp radiation beam from superficial radiotherapy equipment as Dermopan2 model. The simulations seek to verify the MCNP-5C code performance to study the variation of the attenuation curve - percentage depth dose (PDD) curve - in function of the radiation field dimension used at radiotherapy of skin tumors with 50 kVp X-ray beams. The PDD curve was calculated for six different radiation field sizes with circular geometry of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 cm in diameter. The radiation source was modeled considering a tungsten target with inclination 30 deg, focal point of 6.5 mm in diameter and energy beam of 50 kVp; the X-ray spectrum was calculated with the MCNP-5C code adopting total filtration (beryllium window of 1 mm and aluminum additional filter of 1 mm). The PDD showed decreasing behavior with the attenuation depth similar what is presented on the literature. There was not significant variation at the PDD values for the radiation field between 1.0 and 4.0 cm in diameter. The differences increased for fields of 5.0 and 6.0 cm and at attenuation depth higher than 1.0 cm. When it is compared the PDD values for fields of 3.0 and 6.0 cm in diameter, it verifies the greater difference (12.6 %) at depth of 5.7 cm, proving the scattered radiation effect. The MCNP-5C code showed as an appropriate procedure to analyze the attenuation curves of the superficial radiotherapy beams. (author)

  1. Use of primary beam filtration in estimating mass attenuation coefficients by Compton scattering

    International Nuclear Information System (INIS)

    O'Connor, B.H.; Chang, W.J.

    1985-01-01

    Mass attenuation coefficients (MACs) are frequently estimated over a range of wavelengths in x-ray spectrometry from the intensity of the Compton peak I /SUB C/ associated with a prominent tube line. The MAC μ /SUB ll/ at wavelength lambda is estimated from the MAC at the Compton wavelength lambda /SUB C/ with the approximations μ /SUB ll/ α μ /SUB C/ and μ /SUB C/ α l/I /SUB C/ , Systematic errors may introduce absorption edge bias (AEB) effects into the results, caused by sample components with absorption edges between lambda /SUB C/ and lambda. A procedure is described which eliminates AEB effects by measuring I /SUB C/ using emission radiation from a primary beam filter

  2. Shielding data for hadron-therapy ion accelerators: Attenuation of secondary radiation in concrete

    CERN Document Server

    Agosteo, S; Sagia, E; Silari, M

    2014-01-01

    The secondary radiation field produced by seven different ion species (from hydrogen to nitrogen), impinging onto thick targets made of either iron or ICRU tissue, was simulated with the FLUKA Monte Carlo code, and transported through thick concrete shields: the ambient dose equivalent was estimated and shielding parameters evaluated. The energy for each ion beam was set in order to reach a maximum penetration in ICRU tissue of 290 mm (equivalent to the therapeutic range of 430 MeV/amu carbon ions). Source terms and attenuation lengths are given as a function of emission angle and ion species, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. Trends of source terms and attenuation lengths as a function of neutron emission angle and ion species impinging on tar- get are discussed. A comparison of double differential distributions of neutrons with results from similar simulation works reported in the literature is also included. The aim of this work is to provide shi...

  3. Noise Attenuation Estimation for Maximum Length Sequences in Deconvolution Process of Auditory Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Xian Peng

    2017-01-01

    Full Text Available The use of maximum length sequence (m-sequence has been found beneficial for recovering both linear and nonlinear components at rapid stimulation. Since m-sequence is fully characterized by a primitive polynomial of different orders, the selection of polynomial order can be problematic in practice. Usually, the m-sequence is repetitively delivered in a looped fashion. Ensemble averaging is carried out as the first step and followed by the cross-correlation analysis to deconvolve linear/nonlinear responses. According to the classical noise reduction property based on additive noise model, theoretical equations have been derived in measuring noise attenuation ratios (NARs after the averaging and correlation processes in the present study. A computer simulation experiment was conducted to test the derived equations, and a nonlinear deconvolution experiment was also conducted using order 7 and 9 m-sequences to address this issue with real data. Both theoretical and experimental results show that the NAR is essentially independent of the m-sequence order and is decided by the total length of valid data, as well as stimulation rate. The present study offers a guideline for m-sequence selections, which can be used to estimate required recording time and signal-to-noise ratio in designing m-sequence experiments.

  4. Dose Rate and Mass Attenuation Coefficients of Gamma Ray for Concretes

    CERN Document Server

    Abdel-Latif, A A; Kansouh, W A; El-Sayed, F H

    2003-01-01

    This work is concerned with the study of the leakage gamma ray dose and mass attenuation coefficients for ordinary, basalt and dolomite concretes made from local ores. Concretes under investigation were constructed from gravel, basalt and dolomite ores, and then reconstructed with the addition of 3% steel fibers by weight. Measurements were carried out using a collimated beam from sup 6 sup 0 Co gamma ray source and sodium iodide (3x3) crystal with the genie 2000 gamma spectrometer. The obtained fluxes were transformed to gamma ray doses and displayed in the form of gamma ray dose rates distribution. The displayed curves were used to estimate the linear attenuation coefficients (mu), the relaxation lengths (lambda), half value layer (t sub 1 /2) and tenth value layer (t sub 1 /10). Also, The total mass attenuation coefficients of gamma ray have been calculated to the concerned concretes using XCOM (version 3.1) program and database elements cross sections from Z=1 to 100 at energies from 10 keV to 100 MeV. In...

  5. Effects of energy chirp on bunch length measurement in linear accelerator beams

    Science.gov (United States)

    Sabato, L.; Arpaia, P.; Giribono, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Vaccarezza, C.; Variola, A.

    2017-08-01

    The effects of assumptions about bunch properties on the accuracy of the measurement method of the bunch length based on radio frequency deflectors (RFDs) in electron linear accelerators (LINACs) are investigated. In particular, when the electron bunch at the RFD has a non-negligible energy chirp (i.e. a correlation between the longitudinal positions and energies of the particle), the measurement is affected by a deterministic intrinsic error, which is directly related to the RFD phase offset. A case study on this effect in the electron LINAC of a gamma beam source at the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) is reported. The relative error is estimated by using an electron generation and tracking (ELEGANT) code to define the reference measurements of the bunch length. The relative error is proved to increase linearly with the RFD phase offset. In particular, for an offset of {{7}\\circ} , corresponding to a vertical centroid offset at a screen of about 1 mm, the relative error is 4.5%.

  6. Study of the Hollow Waveguides Physical Parameters Determined the Beam Shape Conservation of the Delivered Radiation

    International Nuclear Information System (INIS)

    Ben-David, M.; Inberg, A.; Katzir, A.; Croitoru, N.

    1999-01-01

    The modification of the laser source beam quality is one of the important factors effect the delivery of laser radiation by a waveguide. In this paper the results of input radiation coupling, radius of bending, length, cross section diameter, waveguide internal wall roughness and coupling lens focal length influence on the beam shape delivered from the flexible hollow waveguides are presented. The conditions for which the beam shape is near to that of the source were found. A theoretical model for the radiation propagation gives quantitative representation of relation between attenuation, beam profile, divergence and above indicated parameters was developed. In this model was supposed that the guiding is produced by multiple incidences on a metal (silver) layer and a dielectric (silver iodine) over layer, by refraction and reflection. The propagation of the rays was calculated using the physical laws of the geometrical optics. For the scattering calculations a random distribution of roughness centers on dielectric layer surface was considered. It was also supposed that the value of the cross section internal diameter (ID=d) was much larger than the transmitted wavelength. The experimental results have shown that losses due to absorption of the propagated radiation in the guiding layers, mainly (AgI), generate satellites of the laser source delivered fundamental Gaussian beam. Increasing of the hollow waveguide internal diameter decreases the attenuation and increases the deviation of beam shape from Gaussian. Off center coupling produce decreasing of the fundamental mode height and generation of the coupled Gaussian beam satellites. The waveguide internal wall roughness produce losses of the coupled radiation and beam profile deviations from that of the laser source. A good correspondence between the theoretical and experimental results obtained

  7. Landing gear noise attenuation

    Science.gov (United States)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  8. Continuously variable focal length lens

    Science.gov (United States)

    Adams, Bernhard W; Chollet, Matthieu C

    2013-12-17

    A material preferably in crystal form having a low atomic number such as beryllium (Z=4) provides for the focusing of x-rays in a continuously variable manner. The material is provided with plural spaced curvilinear, optically matched slots and/or recesses through which an x-ray beam is directed. The focal length of the material may be decreased or increased by increasing or decreasing, respectively, the number of slots (or recesses) through which the x-ray beam is directed, while fine tuning of the focal length is accomplished by rotation of the material so as to change the path length of the x-ray beam through the aligned cylindrical slows. X-ray analysis of a fixed point in a solid material may be performed by scanning the energy of the x-ray beam while rotating the material to maintain the beam's focal point at a fixed point in the specimen undergoing analysis.

  9. Type I parametric down conversion of highly focused Gaussian beams in finite length crystals

    International Nuclear Information System (INIS)

    Jeronimo-Moreno, Yasser; Jáuregui, R

    2014-01-01

    This paper presents a study of the correlations in wave vector space of photon pairs generated by type I spontaneous parametric down conversion using a Gaussian pump beam. The analysis covers both moderate focused and highly focused regimes, paying special attention to the angular spectrum and the conditional angular spectrum. Simple analytic expressions are derived that allow a detailed study of the dependence of these spectra on the waist of the source and the length of the nonlinear crystal. These expressions are in good agreement with numerical expectations and reported experimental results. They are used to make a systematic search of optimization parameters that improve the feasibility of using highly focused Gaussian beams to generate idler and signal photons with predetermined mean values and spread of their transverse wave vectors. (papers)

  10. Intensity limits for propagation of 0.527 μm laser beams through large-scale-length plasmas for inertial confinement fusion

    International Nuclear Information System (INIS)

    Niemann, C.; Divol, L.; Froula, D.H.; Gregori, G.; Jones, O.; Kirkwood, R.K.; MacKinnon, A.J.; Meezan, N.B.; Moody, J.D.; Sorce, C.; Suter, L.J.; Glenzer, S.H.; Bahr, R.; Seka, W.

    2005-01-01

    We have established the intensity limits for propagation of a frequency-doubled (2ω, 527 nm) high intensity interaction beam through an underdense large-scale-length plasma. We observe good beam transmission at laser intensities at or below 2x10 14 W/cm 2 and a strong reduction at intensities up to 10 15 W/cm 2 due to the onset of parametric scattering instabilities. We show that temporal beam smoothing by spectral dispersion allows a factor of 2 higher intensities while keeping the beam spray constant, which establishes frequency-doubled light as an option for ignition and burn in inertial confinement fusion experiments

  11. Further studies on beam breakup growth reduction by cavity cross-couplings in recirculating accelerators: Effects of long pulse length and multiturn recirculation

    International Nuclear Information System (INIS)

    Colombant, D.; Lau, Y.Y.

    1992-01-01

    Cavity cross-coupling was recently found to reduce beam breakup (BBU) growth in a recirculating accelerator known as the Spiral Line Induction Accelerator (SLIA). Here, we extend the analysis in two prespects: ong beam pulse lengths and a SLIA upgrade geometry which accelerates a 10 kA, 35 ns beam to 25 MeV via a 70 cavity, 7 turn recirculation. We found that when the beam pulse length τ exceeds the beam's transit time τ' between cross-coupled cavities, BBU growth may be worsened as a result of the cross-coupling among cavities. This situation is not unlike other long pulse recirculating accelerators where beam recirculation leads to beam breakup of a regenerative type. Thus, the advantage of BBU reduction by cavity cross-coupling is restricted primarily to beams with τ<τ', a condition envisioned for all SLIA geometries. For the 70 gap, 7 turn SLIA upgrade, we found that cavity cross-coupling may reduce BBU growth up to factors of a thousand when the quality factor Q of the deflecting modes are relatively high (like 100). In these high Q cases, the amount of growth reduction depends on the arrangement and sequence of beam recirculation. For Q < or approx. 20, BBU growth reduction by factors of hundreds is observed, but this reduction is insensitive to the sequence of beam recirculation. The above conclusions were based on simple models of cavity coupling that have been used in conventional microwave literature. Not addressed is the detail design consideration that leads to the desired degree of cavity coupling. (orig.)

  12. Measurements of attenuation lengths through concrete and iron for neutrons produced by 800-MeV proton on tantalum target at ISIS

    CERN Document Server

    Nunomiya, T; Wright, P; Nakamura, T; Kim, E; Kurosawa, T; Taniguchi, S; Sasaki, M; Iwase, H; Uwamino, Y; Shibata, T; Ito, S; Perry, D R

    2002-01-01

    A deep penetration experiment through a thick bulk shield was performed at an intense spallation neutron source facility, ISIS, of the Rutherford Appleton Laboratory (RAL), United Kingdom. ISIS is a 800 MeV-200 mu A proton accelerator facility. Neutrons are produced from a tantalum target, and are shielded with approximately 3-m thick steel and 1-m thick ordinary concrete. On top of the shield, we measured the neutron flux attenuation through concrete and iron shields, which were additionally placed up to 120-cm and 60-cm thickness, respectively, using activation detectors of graphite and bismuth. The attenuation lengths of concrete and iron for high-energy neutrons above 20 MeV were obtained from the sup 1 sup 2 C(n, 2n) sup 1 sup 1 C reaction of graphite.

  13. A double expansion method for the frequency response of finite-length beams with periodic parameters

    Science.gov (United States)

    Ying, Z. G.; Ni, Y. Q.

    2017-03-01

    A double expansion method for the frequency response of finite-length beams with periodic distribution parameters is proposed. The vibration response of the beam with spatial periodic parameters under harmonic excitations is studied. The frequency response of the periodic beam is the function of parametric period and then can be expressed by the series with the product of periodic and non-periodic functions. The procedure of the double expansion method includes the following two main steps: first, the frequency response function and periodic parameters are expanded by using identical periodic functions based on the extension of the Floquet-Bloch theorem, and the period-parametric differential equation for the frequency response is converted into a series of linear differential equations with constant coefficients; second, the solutions to the linear differential equations are expanded by using modal functions which satisfy the boundary conditions, and the linear differential equations are converted into algebraic equations according to the Galerkin method. The expansion coefficients are obtained by solving the algebraic equations and then the frequency response function is finally determined. The proposed double expansion method can uncouple the effects of the periodic expansion and modal expansion so that the expansion terms are determined respectively. The modal number considered in the second expansion can be reduced remarkably in comparison with the direct expansion method. The proposed double expansion method can be extended and applied to the other structures with periodic distribution parameters for dynamics analysis. Numerical results on the frequency response of the finite-length periodic beam with various parametric wave numbers and wave amplitude ratios are given to illustrate the effective application of the proposed method and the new frequency response characteristics, including the parameter-excited modal resonance, doubling-peak frequency response

  14. Dose attenuation effect of hip prostheses in a 9-MV photon beam. Commercial treatment planning system versus Monte Carlo calculations

    International Nuclear Information System (INIS)

    Mesbahi, A.; Nejad, F.S.

    2007-01-01

    The purpose of this study was to investigate the dosimetric effect of various hip prostheses on pelvis lateral fields treated by a 9-MV photon beam using Monte Carlo (MC) and effective path-length (EPL) methods. The head of the Neptun 10 pc linac was simulated using the MCNP4C MC code. The accuracy of the MC model was evaluated using measured dosimetric features including depth dose values and dose profiles in a water phantom. The Alfard treatment planning system (TPS) was used for EPL calculations. A virtual water phantom with dimensions of 30 x 30 x 30 cm 3 and a cube with dimensions of 4 x 4 x 4 cm 3 made of various metals centered in 12 cm depth was used for MC and EPL calculations. Various materials including titanium, Co-Cr-Mo, and steel alloys were used as hip prostheses. Our results showed significant attenuation in absorbed dose for points after and inside the prostheses. Attenuations of 32%, 54% and 55% were seen for titanium, Co-Cr-Mo, and steel alloys, respectively, at a distance of 5 cm from the prosthesis. Considerable dose increase (up to 18%) was found at the water-prosthesis interface due to back-scattered electrons using the MC method. The results of EPL calculations for the titanium implant were comparable to the MC calculations. This method, however, was not able to predict the interface effect or calculate accurately the absorbed dose in the presence of the Co-Cr-Mo and steel prostheses. The dose perturbation effect of hip prostheses is significant and cannot be predicted accurately by the EPL method for Co-Cr-Mo or steel prostheses. The use of MC-based TPS is recommended for treatments requiring fields passing through hip prostheses. (author)

  15. Intensity and bunch length measurement for lepton beam in the injection lines of the SPS and LEP

    CERN Document Server

    Boccard, C; Papis, J P; Vos, L

    1995-01-01

    We describe a system which is used operationally to measure the absolute intensity of single lepton bunches in a beam transfer line. It is based on the detailed knowledge of every single item of a complex measuring chain that comprises a beam coupler on one end and an acquisition system on the other end. This knowledge can be acquired by a well tested theoretical model and careful measurement of the transfer function of each processing module. A precision better than 3 % can be obtained and no external calibration is required. A value for the bunch length can be deduced from a spectral intensity measurement at two well chosen frequencies.

  16. Modeling and control of sound radiation by simply supported and cantilever beam coupled with smart material

    Directory of Open Access Journals (Sweden)

    Vitaly Makarenko

    2007-03-01

    Full Text Available  In this paper forced vibration of the beam due to bonded piezoelectric patch is considered. When an external excitation is applied to the beam, it starts to vibrate, and the resulting acoustic response is predicted from the analytical model, which is based on Bernoulli-Euler theory of beam vibration. Analytical research of the sound radiation by a finite elastic beam is done for criteria based on minimal total sound power level. Helmholtz equation and inhomogeneous differential equation for beam transverse motion defines the solution to this problem. Such solutions were found for boundary conditions of simply supported and cantilever beams. In order to solve the task two analytical methods were used for simply supported beam. The solutions received by Fourier transform and Green functions approach give the very similar results, thus, proving methods reliability. At the case studies the exerted voltage, phase, location and piezoelectric actuator length are varied in order to establish their influence on noise attenuation.

  17. Automated path length and M56 measurements at Jefferson Lab

    International Nuclear Information System (INIS)

    Hardy, D.; Tang, J.; Legg, R.

    1997-01-01

    Accurate measurement of path length and path length changes versus momentum (M 56 ) are critical for maintaining minimum beam energy spread in the CEBAF (Continuous Electron Beam Accelerator Facility) accelerator at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The relative path length for each circuit of the beam (1256m) must be equal within 1.5 degrees of 1497 MHz RF phase. A relative path length measurement is made by measuring the relative phases of RF signals from a cavity that is separately excited for each pass of a 4.2 μs pulsed beam. This method distinguishes the path length to less than 0.5 path length error. The development of a VME based automated measurement system for path length and M 56 has contributed to faster machine setup time and has the potential for use as a feedback parameter for automated control

  18. Measurement and analysis. Ultrasonic testing. Study of the attenuation of ultrasonic beams through steels

    International Nuclear Information System (INIS)

    Canella, G.

    1977-01-01

    Anisotropy, inclusions, segregations and grain size are factors affecting the mechanical properties of steel and determining, at the same time, attenuation of an untrasonic beam crossing it. A system was developed, which offers guarantees of good reproducibility (within 5%) obtained with a device applying a constant and uniform pressure on the probe and using oil with very low viscosity and surface tension as couplant liquid. This oil, generally used as penetrant, is excellent by the rapidity of its constant response and by the thin layer formed which is free from air bubbles between probe and piece. Measurements of reflection loss were also carried out and investigated about the influence on such loss of: couplant liquid; type of transducer; type of piezoelectric protection. For transducers whose surface is protected by an hard coat loss by reflection (about 1 dB) varies within the measuring error, for the different couplant liquids. For transducers with unprotected sensitive surface, loss depends on the type of crystal and is significantly reduced (from 3 dB to 0,5 dB approximately) with an appropriate rubber layer. In both cases; loss proved to be independent of frequency. The samples were subjected to different heat treatments and, for each measurement of amplitude and frequency attenuation and structure micrographies were carried out. These methods of inspections can be applied in industry without any great difficulty

  19. Attenuation in Melting Layer of Precipitation

    NARCIS (Netherlands)

    Klaassen, W.

    1988-01-01

    A model of the melting layer is employed on radar measurements to simulate the attenuation of radio waves at 12, 20 and 30GHz. The attenuation in the melting layer is simulated to be slightly larger than that of rain with the same path length and precipitation intensity. The result appears to depend

  20. Beam standardization of X radiation in computed tomography

    International Nuclear Information System (INIS)

    Maia, Ana F.; Caldas, Linda V.E.

    2005-01-01

    The ionization chamber used in dosimetric procedures in computed tomography beams (CT), is a cylindrical chamber, unsealed, with the sensitive length between 10 and 15 cm, named pencil ionization chamber. Because the doses involved in CT procedures are higher s than those in the procedures in radiology, it is very important to ensure the appropriate calibration of pencil ionization chambers and thus the accuracy of Dosimetric procedures. Recently, only the Calibration Laboratory, from Institute de Pesquisas Energeticas e Nucleares, had standards fields of conventional radiodiagnostic, but not arrived to include the energy range used in CT. In this work, will be shown the results obtained in standard field of radiodiagnostic - all qualities of radiodiagnostic of series RQR (direct beam) and RQA (attenuated beam) described in IEC 61267 norm - in an industrial X-ray equipment of the Calibration Laboratory. The recommended qualities for the calibration of TC chambers are the qualities RQA9 and RQR9. The other qualities will be used for calibration of other radiodiagnostic dosimeters and also for a larger study of the energy dependence of the pencil ionization chambers

  1. Short Rayleigh Length Free Electron Lasers

    CERN Document Server

    Crooker, P P; Armstead, R L; Blau, J

    2004-01-01

    Conventional free electron laser (FEL) oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. A new FEL interaction is described and analyzed with a Rayleigh length that is only one tenth the undulator length, or less. The effect of mirror vibration and positioning are more critical in the short Rayleigh length design, but we find that they are still within normal design tolerances.

  2. A self-adaptive metamaterial beam with digitally controlled resonators for subwavelength broadband flexural wave attenuation

    Science.gov (United States)

    Li, Xiaopeng; Chen, Yangyang; Hu, Gengkai; Huang, Guoliang

    2018-04-01

    Designing lightweight materials and/or structures for broadband low-frequency noise/vibration mitigation is an issue of fundamental importance both practically and theoretically. In this paper, by leveraging the concept of frequency-dependent effective stiffness control, we numerically and experimentally demonstrate, for the first time, a self-adaptive metamaterial beam with digital circuit controlled mechanical resonators for strong and broadband flexural wave attenuation at subwavelength scales. The digital controllers that are capable of feedback control of piezoelectric shunts are integrated into mechanical resonators in the metamaterial, and the transfer function is semi-analytically determined to realize an effective bending stiffness in a quadratic function of the wave frequency for adaptive band gaps. The digital as well as analog control circuits as the backbone of the system are experimentally realized with the guarantee stability of the whole electromechanical system in whole frequency regions, which is the most challenging problem so far. Our experimental results are in good agreement with numerical predictions and demonstrate the strong wave attenuation in almost a three times larger frequency region over the bandwidth of a passive metamaterial. The proposed metamaterial could be applied in a range of applications in the design of elastic wave control devices.

  3. Acousto-optic measurements of ultrasound attenuation in tellurium dioxide crystal

    International Nuclear Information System (INIS)

    Voloshinov, V. B.; Lemyaskina, E. A.

    1996-01-01

    The paper is devoted to experimental investigation of ultrasound propagation in tellurium dioxide monocrystal. In particular, attenuation of slow shear acoustic modes in the crystal was measured. The measurements were performed by acousto-optic methods using probing of acoustic column by a laser beam. The paper describes measurements of acoustic attenuation coefficient for slow shear ultrasonic waves propagating at an angle =4.5 O with respect to the (110) direction in the (110) plane. The investigation was made at acoustic frequency f = 100 MHz with pulsed acoustic waves and with an optical beam of a He-Ne laser. It is found that the attenuation coefficient is α = 0.57 cm -1 ± 15 %. The attenuation at acoustic frequencies f ≥ 100 MHz influences performance characteristics of acousto-optical devices based on tellurium dioxide. As proved, spectral resolution of a quasicollinear acoustooptic filter decreases by a factor of 2 compared to a case of the attenuation absence. (authors)

  4. Beam test of a full-length prototype of the BESIII drift chamber with the readout electronics

    International Nuclear Information System (INIS)

    Qin, Z.H.; Chen, Y.B.; Sheng, H.Y.; Wu, L.H.; Liu, J.B.; Zhuang, B.A.; Jiang, X.S.; Zhao, Y.B.; Zhu, K.J.; Yan, Z.K.; Chen, C.; Xu, M.H.; Wang, L.; Ma, X.Y.; Tang, X.; Liu, R.G.; Jin, Y.; Zhu, Q.M.; Zhang, G.F.; Wu, Z.; Li, R.Y.; Zhao, P.P.; Dai, H.L.; Li, X.P.; Li, J.

    2007-01-01

    A full-length prototype of the BESIII drift chamber together with its readout electronics was built and a beam test was performed. Two different methods, namely 'single-threshold method' and 'double-threshold method' for timing measurement, were studied. Test results show that the BESIII drift chamber and its readout electronics can reach their design specifications. The 'double-threshold method' results in a better timing accuracy and noise suppression capabilities as compared with the 'single-threshold method'

  5. Measure of the attenuation curve of a beam of X-rays with TLD-100 dosimeters of LiF; Medicion de la curva de atenuacion de un haz de rayos X con dosimetros TLD-100 de LiF

    Energy Technology Data Exchange (ETDEWEB)

    Bonzi, E. V.; Mainardi, R. T. [Universidad Nacional de Cordoba, Facultad de Matematica, Astronomia y Fisica, Av. Haya de la Torre y Av. Medina Allende s/n, Ciudad Universitaria, Cordoba (Argentina); Germanier, A. [Ministerio de Ciencia y Tecnologia, Ceprocor, Unidad de Estudios Fisicos, Alvarez de Arenas 230, X5004AAP Barrio Juniors, Cordoba (Argentina); Delgado, V. [Universidad Complutense de Madrid, Departamento de Fisica Medica, Ciudad Universitaria, 28040 Madrid (Spain)

    2011-10-15

    The attenuation curve of a beam of X-rays represents the beam intensity in function of the attenuator thickness interposed between the source and the detector. To know with the major possible precision the attenuation curve is indispensable in procedures of spectral reconstruction. Their periodic measuring also offers valuable information on the correct operation of a tube of X-rays, diagnostic or therapy, when not have a specific detector for that activity. In this work was measured the attenuation curve of a tube of X-rays operated to 50 kV and 0.5 ma, using existent elements in any diagnostic or therapy laboratory with radiations. In the measures commercial aluminum foil was used, bent until 24 times and thermoluminescent dosimeters TLD 100 - LiF. Also, for comparison, was measured this attenuation curve with an ionization chamber brand Capintec model 192. Was determined by X-rays fluorescence the composition of the aluminium foil, since the present elements in the alloy can to affect the form of the attenuation curve. It is interesting to observe that these elements are in very low proportion (ppm) that they do not alter the attenuation capacity of the pure aluminium. Finally in a precision balance we weigh a big piece (30 cm x 100 cm) of aluminium foil and we obtained the thickness in g/c m2. It is possible to obtain attenuation curves of a beam of X-rays, with a high precision procedure and reproducibility. The use of TLD-100 dosimeters of LiF or similar makes that this activity was also quick and simple. (Author)

  6. Moderate and intense exercise lifestyles attenuate the effects of aging on telomere length and the survival and composition of T cell subpopulations.

    Science.gov (United States)

    Silva, Léia Cristina Rodrigues; de Araújo, Adriana Ladeira; Fernandes, Juliana Ruiz; Matias, Manuella de Sousa Toledo; Silva, Paulo Roberto; Duarte, Alberto J S; Garcez Leme, Luiz Eugênio; Benard, Gil

    2016-02-01

    Studies indicate that exercise might delay human biological aging, but the effects of long-term exercise on T cell function are not well known. We tested the hypothesis that moderate or intense exercise lifestyle may attenuate the effects of aging on the telomere length and the survival and composition of T cell subpopulations. Elderly (65-85 years) with intense training lifestyle (IT, n = 15), moderate training lifestyle (MT, n = 16), and who never trained (NT, n = 15) were studied. Although the three groups presented the age-associated contraction of the TCD4(+)/TCD8(+) naïve compartments and expansion of the memory compartments, both training modalities were associated with lower proportion of terminally differentiated (CD45RA(+)CCR7(neg)) TCD4(+) and TCD8(+) cells, although among the latter cells, the reduction reached statistical significance only with IT. MT was associated with higher proportion of central memory TCD4(+) cells, while IT was associated with higher proportion of effector memory TCD8(+) cells. However, both training lifestyles were unable to modify the proportion of senescent (CD28(neg)) TCD8(+) cells. Telomeres were longer in T cells in both training groups; with IT, telomere length increased mainly in TCD8(+) cells, whereas with MT, a modest increase in telomere length was observed in both TCD8(+) and TCD4(+) cells. Reduced commitment to apoptosis of resting T cells, as assessed by caspase-3 and Bcl-2 expression, was seen predominantly with IT. Measurement of pro-inflammatory cytokines in serum and peripheral blood mononuclear cell (PBMC)'s supernatants did not show chronic low-grade inflammation in any of the groups. In conclusion, MT and IT lifestyles attenuated some of the effects of aging on the immune system.

  7. Simple computer model for the nonlinear beam--beam interaction in ISABELLE

    International Nuclear Information System (INIS)

    Herrera, J.C.; Month, M.; Peierls, R.F.

    1979-03-01

    The beam--beam interaction for two counter-rotating continuous proton beams crossing at an angle can be simulated by a 1-dimensional nonlinear force. The model is applicable to ISABELLE as well as to the ISR. Since the interaction length is short compared with the length of the beam orbit, the interaction region is taken to be a point. The problem is then treated as a mapping with the remainder of the system taken to be a rotation of phase given by the betatron tune of the storage ring. The evolution of the mean square amplitude of a given distribution of particles is shown for different beam--beam strengths. The effect of round-off error with resulting loss of accuracy for particle trajectories is discussed. 3 figures

  8. Influence of laser beam profiles on received power fluctuation

    Science.gov (United States)

    Dordova, Lucie; Diblik, Jan

    2011-09-01

    Gaussian beam is very often used for the transmission of information in optical wireless links. The usage of this optical beam has its advantages and, of course, disadvantages. This work focuses on possibilities of using laser beams with different distribution of optical intensity - Top Hat beam. Creation of the optical beam with selected optical intensity profile will be briefly described. Optical beams will propagate through the "clear" and stationary atmosphere in the experimental part of this work. These results will be compared with the data obtained after a laser beam is passed through the turbulent and attenuated atmosphere. We will use an ultrasound fog generator for laser beam attenuation testing. To create the turbulence, infra radiators will be applied. Particular results obtained from different atmospheric conditions will be compared and using different types of optical beams will be assessed.

  9. Laser ablation: Laser parameters: Frequency, pulse length, power, and beam charter play significant roles with regard to sampling complex samples for ICP/MS analysis

    International Nuclear Information System (INIS)

    Smith, M.R.; Alexander, M.L.; Hartman, J.S.; Koppenaal, D.W.

    1996-01-01

    Inductively coupled plasma mass spectrometry is used to investigate the influence of laser parameters with regard to sampling complex matrices ranging from relatively homogenous glasses to multi-phase sludge/slurry materials including radioactive Hanford tank waste. The resulting plume composition caused by the pulsed laser is evaluated as a function of wavelength, pulse energy, pulse length, focus, and beam power profiles. The author's studies indicate that these parameters play varying and often synergistic roles regarding quantitative results. (In a companion paper, particle transport and size distribution studies are presented.) The work described here will illustrate other laser parameters such as focusing and consequently power density and beam power profiles which are shown to influence precision and accuracy. Representative sampling by the LA approach is largely dependent on the sample's optical properties as well as laser parameters. Experimental results indicate that optimal laser parameters; short wavelength (UV), relatively low power (300 mJ), low-to-sub ns pulse lengths, and laser beams with reasonable power distributions (i.e., Gaussian or top-hat beam profiles) provide superior precision and accuracy. Remote LA-ICP/MS analyses of radioactive sludges are used to illustrate these optimal conditions laser ablation sampling

  10. Overview of bunch length measurements

    International Nuclear Information System (INIS)

    Lumpkin, A. H.

    1999-01-01

    An overview of particle and photon beam bunch length measurements is presented in the context of free-electron laser (FEL) challenges. Particle-beam peak current is a critical factor in obtaining adequate FEL gain for both oscillators and self-amplified spontaneous emission (SASE) devices. Since measurement of charge is a standard measurement, the bunch length becomes the key issue for ultrashort bunches. Both time-domain and frequency-domain techniques are presented in the context of using electromagnetic radiation over eight orders of magnitude in wavelength. In addition, the measurement of microbunching in a micropulse is addressed

  11. Beam Techniques - Beam Control and Manipulation

    International Nuclear Information System (INIS)

    Minty, Michiko G

    2003-01-01

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization

  12. Beam Techniques - Beam Control and Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Minty, Michiko G

    2003-04-24

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization.

  13. Diffusion length of minority carriers in scanning electron beam annealed silicon

    International Nuclear Information System (INIS)

    Smith, H.J.; Cilliers, R.; Bontemps, A.

    1982-01-01

    Ion implantation has advantages for solar cell production, but necessitates an annealing step. Various new transitory annealing methods have appeared recently. A particularly attractive method is multi-scan electron beam annealing of thermally isolated wafers. Energy is applied homogeneously over the whole target surface and the temperature rises throughout the thickness. Backscattering analysis shows good recrystallization in seconds. However the effect of this total heating on the diffusion length (Lsub(D)) must be investigated particularly in view of the degradation of Lsub(D) due to high temperature oven annealing. The semiconductor-electrolyte diode method was set up to measure the current generated in the cell due to the creation and diffusion of carriers in the silicon under photon irradiation. Comparison with a theoretical model yields Lsub(D). It appears that 3mA.cm - 2 of 15keV electrons recrystallizes damage in 2.5 seconds and does not decrease Lsub(D) in the bulk. In 4 seconds the Lsub(D) decreases and dopant diffusion occurs. On technical grounds this method can thus be applied for solar cell production. (Auth.)

  14. Beam-width spreading of vortex beams in free space

    Science.gov (United States)

    Wang, Weiwei; Li, Jinhong; Duan, Meiling

    2018-01-01

    Based on the extended Huygens-Fresnel principle and the definition of second-order moments of the Wigner distribution function, the analytical expression for the beam-width spreading of Gaussian Schell-model (GSM) vortex beams in free space are derived, and used to study the influence of beam parameters on the beam-width spreading of GSM vortex beams. With the increment of the propagation distance, the beam-width spreading of GSM vortex beams will increase; the bigger the topological charge, spatial correlation length, wavelength and waist width are, the smaller the beam-width spreading is.

  15. Bulk sample self-attenuation correction by transmission measurement

    International Nuclear Information System (INIS)

    Parker, J.L.; Reilly, T.D.

    1976-01-01

    Various methods used in either finding or avoiding the attenuation correction in the passive γ-ray assay of bulk samples are reviewed. Detailed consideration is given to the transmission method, which involves experimental determination of the sample linear attenuation coefficient by measuring the transmission through the sample of a beam of gamma rays from an external source. The method was applied to box- and cylindrically-shaped samples

  16. A Symplectic Beam-Beam Interaction with Energy Change

    International Nuclear Information System (INIS)

    Moshammer, Herbert

    2003-01-01

    The performance of many colliding storage rings is limited by the beam-beam interaction. A particle feels a nonlinear force produced by the encountering bunch at the collision. This beam-beam force acts mainly in the transverse directions so that the longitudinal effects have scarcely been studied, except for the cases of a collision with a crossing angle. Recently, however, high luminosity machines are being considered where the beams are focused extensively at the interaction point (IP) so that the beam sizes can vary significantly within the bunch length. Krishnagopal and Siemann have shown that they should not neglect the bunch length effect in this case. The transverse kick depends on the longitudinal position as well as on the transverse position. If they include this effect, however, from the action-reaction principle, they should expect, at the same time, an energy change which depends on the transverse coordinates. Such an effect is reasonably understood from the fact that the beam-beam force is partly due to the electric field, which can change the energy. The action-reaction principle comes from the symplecticity of the reaction: the electromagnetic influence on a particle is described by a Hamiltonian. The symplecticity is one of the most fundamental requirements when studying the beam dynamics. A nonsymplectic approximation can easily lead to unphysical results. In this paper, they propose a simple, approximately but symplectic mapping for the beam-beam interaction which includes the energy change as well as the bunch-length effect. In the next section, they propose the mapping in a Hamiltonian form, which directly assures its symplecticity. Then in section 3, they study the nature of the mapping by interpreting its consequences. The mapping itself is quite general and can be applied to any distribution function. They show in Section 4 how it appears when the distribution function is a Gaussian in transverse directions. The mapping is applied to the

  17. Cone beam tomography of the heart using single-photon emission-computed tomography

    International Nuclear Information System (INIS)

    Gullberg, G.T.; Christian, P.E.; Zeng, G.L.; Datz, F.L.; Morgan, H.T.

    1991-01-01

    The authors evaluated cone beam single-photon emission-computed tomography (SPECT) of the heart. A new cone beam reconstruction algorithm was used to reconstruct data collected from short scan acquisitions (of slightly more than 180 degrees) of a detector anteriorally traversing a noncircular orbit. The less than 360 degrees acquisition was used to minimize the attenuation artifacts that result from reconstructing posterior projections of 201T1 emissions from the heart. The algorithm includes a new method for reconstructing truncated projections of background tissue activity that eliminates reconstruction ring artifacts. Phantom and patient results are presented which compare a high-resolution cone beam collimator (50-cm focal length; 6.0-mm full width at half maximum [FWHM] at 10 cm) to a low-energy general purpose (LEGP) parallel hole collimator (8.2-mm FWHM at 10 cm) which is 1.33 times more sensitive. The cone beam tomographic results are free of reconstruction artifacts and show improved spatial and contrast resolution over that obtained with the LEGP parallel hole collimator. The limited angular sampling restrictions and truncation problems associated with cone beam tomography do not deter from obtaining diagnostic information. However, even though these preliminary results are encouraging, a thorough clinical study is still needed to investigate the specificity and sensitivity of cone beam tomography

  18. Bunch Length Measurements using Coherent Radiation

    CERN Document Server

    Ischebeck, Rasmus; Barnes, Christopher; Blumenfeld, Ian; Clayton, Chris; Decker, Franz Josef; Deng, Suzhi; Hogan, Mark; Huang Cheng Kun; Iverson, Richard; Johnson, Devon K; Krejcik, Patrick; Lu, Wei; Marsh, Kenneth; Oz, Erdem; Siemann, Robert; Walz, Dieter

    2005-01-01

    The accelerating field that can be obtained in a beam-driven plasma wakefield accelerator depends on the current of the electron beam that excites the wake. In the E-167 experiment, a peak current above 10kA will be delivered at a particle energy of 28GeV. The bunch has a length of a few ten micrometers and several methods are used to measure its longitudinal profile. Among these, autocorrelation of coherent transition radiation (CTR) is employed. The beam passes a thin metallic foil, where it emits transition radiation. For wavelengths greater than the bunch length, this transition radiation is emitted coherently. This amplifies the long-wavelength part of the spectrum. A scanning Michelson interferometer is used to autocorrelate the CTR. However, this method requires the contribution of many bunches to build an autocorrelation trace. The measurement is influenced by the transmission characteristics of the vacuum window and beam splitter. We present here an analysis of materials, as well as possible layouts ...

  19. Beam hardening correction algorithm in microtomography images

    International Nuclear Information System (INIS)

    Sales, Erika S.; Lima, Inaya C.B.; Lopes, Ricardo T.; Assis, Joaquim T. de

    2009-01-01

    Quantification of mineral density of bone samples is directly related to the attenuation coefficient of bone. The X-rays used in microtomography images are polychromatic and have a moderately broad spectrum of energy, which makes the low-energy X-rays passing through a sample to be absorbed, causing a decrease in the attenuation coefficient and possibly artifacts. This decrease in the attenuation coefficient is due to a process called beam hardening. In this work the beam hardening of microtomography images of vertebrae of Wistar rats subjected to a study of hyperthyroidism was corrected by the method of linearization of the projections. It was discretized using a spectrum in energy, also called the spectrum of Herman. The results without correction for beam hardening showed significant differences in bone volume, which could lead to a possible diagnosis of osteoporosis. But the data with correction showed a decrease in bone volume, but this decrease was not significant in a confidence interval of 95%. (author)

  20. Beam hardening correction algorithm in microtomography images

    Energy Technology Data Exchange (ETDEWEB)

    Sales, Erika S.; Lima, Inaya C.B.; Lopes, Ricardo T., E-mail: esales@con.ufrj.b, E-mail: ricardo@lin.ufrj.b [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Assis, Joaquim T. de, E-mail: joaquim@iprj.uerj.b [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico. Dept. de Engenharia Mecanica

    2009-07-01

    Quantification of mineral density of bone samples is directly related to the attenuation coefficient of bone. The X-rays used in microtomography images are polychromatic and have a moderately broad spectrum of energy, which makes the low-energy X-rays passing through a sample to be absorbed, causing a decrease in the attenuation coefficient and possibly artifacts. This decrease in the attenuation coefficient is due to a process called beam hardening. In this work the beam hardening of microtomography images of vertebrae of Wistar rats subjected to a study of hyperthyroidism was corrected by the method of linearization of the projections. It was discretized using a spectrum in energy, also called the spectrum of Herman. The results without correction for beam hardening showed significant differences in bone volume, which could lead to a possible diagnosis of osteoporosis. But the data with correction showed a decrease in bone volume, but this decrease was not significant in a confidence interval of 95%. (author)

  1. Short Rayleigh length free electron lasers

    Directory of Open Access Journals (Sweden)

    W. B. Colson

    2006-03-01

    Full Text Available Conventional free electron laser (FEL oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third to one half of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. We model this interaction using a coordinate system that expands with the rapidly diffracting optical mode from the ends of the undulator to the mirrors. Simulations show that the interaction of the strongly focused optical mode with a narrow electron beam inside the undulator distorts the optical wave front so it is no longer in the fundamental Gaussian mode. The simulations are used to study how mode distortion affects the single-pass gain in weak fields, and the steady-state extraction in strong fields.

  2. Electron attenuation characteristics of LiF

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, B R [Wisconsin Univ., Madison (USA). Div. of Clinical Oncology; Almond, P R

    1976-08-01

    The results of a study, indicating the exponential nature of the attenuation of electrons in LiF, are reported. This conclusion holds good not only for the monoenergetic electrons obtained from several pure ..beta.. emitters but also for the high energy electron beams delivered by radiotherapy facilities.

  3. PULSED MOLECULAR BEAM PRODUCTION WITH NOZZLES

    Energy Technology Data Exchange (ETDEWEB)

    Hagena, Otto-Friedrich

    1963-05-15

    Molecular beam experiments that can be carried out in pulsed operation may be performed at considerably reduced expense for apparatus if, for pulse generation, the gas supply to the beam production system is interrupted as opposed to the usual steady molecular beam. This technique is studied by measuring intensity vs time of molecular beam impulses of varying length, how fast and through which intermediate states the initial intensity of the impulse attains equilibrium, and in which way the intensity of the molecular-beam impulse is affected by the pulse length and by increasing pressure in the first pressure stage. For production of pulses, a magnetically actuated, quick shutting, valve is used whose scaling area is the inlet cone of the nozzle used for the beam generation. The shortest pulses produced had a pulse length of 1.6 ms. (auth)

  4. Estimating the beam attenuation coefficient in coastal waters from AVHRR imagery

    Science.gov (United States)

    Gould, Richard W.; Arnone, Robert A.

    1997-09-01

    This paper presents an algorithm to estimate particle beam attenuation at 660 nm ( cp660) in coastal areas using the red and near-infrared channels of the NOAA AVHRR satellite sensor. In situ reflectance spectra and cp660 measurements were collected at 23 stations in Case I and II waters during an April 1993 cruise in the northern Gulf of Mexico. The reflectance spectra were weighted by the spectral response of the AVHRR sensor and integrated over the channel 1 waveband to estimate the atmospherically corrected signal recorded by the satellite. An empirical relationship between integrated reflectance and cp660 values was derived with a linear correlation coefficient of 0.88. Because the AVHRR sensor requires a strong channel 1 signal, the algorithm is applicable in highly turbid areas ( cp660 > 1.5 m -1) where scattering from suspended sediment strongly controls the shape and magnitude of the red (550-650 nm) reflectance spectrum. The algorithm was tested on a data set collected 2 years later in different coastal waters in the northern Gulf of Mexico and satellite estimates of cp660 averaged within 37% of measured values. Application of the algorithm provides daily images of nearshore regions at 1 km resolution for evaluating processes affecting ocean color distribution patterns (tides, winds, currents, river discharge). Further validation and refinement of the algorithm are in progress to permit quantitative application in other coastal areas. Published by Elsevier Science Ltd

  5. Control algorithms for dynamic attenuators

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Scott S., E-mail: sshsieh@stanford.edu [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States)

    2014-06-15

    Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current

  6. Control algorithms for dynamic attenuators

    International Nuclear Information System (INIS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-01-01

    Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current

  7. Control algorithms for dynamic attenuators.

    Science.gov (United States)

    Hsieh, Scott S; Pelc, Norbert J

    2014-06-01

    The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without

  8. Attenuated Vector Tomography -- An Approach to Image Flow Vector Fields with Doppler Ultrasonic Imaging

    International Nuclear Information System (INIS)

    Huang, Qiu; Peng, Qiyu; Huang, Bin; Cheryauka, Arvi; Gullberg, Grant T.

    2008-01-01

    The measurement of flow obtained using continuous wave Doppler ultrasound is formulated as a directional projection of a flow vector field. When a continuous ultrasound wave bounces against a flowing particle, a signal is backscattered. This signal obtains a Doppler frequency shift proportional to the speed of the particle along the ultrasound beam. This occurs for each particle along the beam, giving rise to a Doppler velocity spectrum. The first moment of the spectrum provides the directional projection of the flow along the ultrasound beam. Signals reflected from points further away from the detector will have lower amplitude than signals reflected from points closer to the detector. The effect is very much akin to that modeled by the attenuated Radon transform in emission computed tomography.A least-squares method was adopted to reconstruct a 2D vector field from directional projection measurements. Attenuated projections of only the longitudinal projections of the vector field were simulated. The components of the vector field were reconstructed using the gradient algorithm to minimize a least-squares criterion. This result was compared with the reconstruction of longitudinal projections of the vector field without attenuation. If attenuation is known, the algorithm was able to accurately reconstruct both components of the full vector field from only one set of directional projection measurements. A better reconstruction was obtained with attenuation than without attenuation implying that attenuation provides important information for the reconstruction of flow vector fields.This confirms previous work where we showed that knowledge of the attenuation distribution helps in the reconstruction of MRI diffusion tensor fields from fewer than the required measurements. In the application of ultrasound the attenuation distribution is obtained with pulse wave transmission computed tomography and flow information is obtained with continuous wave Doppler

  9. Simulation study of LYSO crystal pixels for In-Beam TOF-PET prototype

    International Nuclear Information System (INIS)

    Chen Ze; Hu Zhengguo; Chen Jinda; Zhang Xiuling

    2014-01-01

    In-beam TOF-PET is currently the only feasible method implemented for in-situ and noninvasive monitoring of the precision of the treatment in highly conformal ion radiotherapy. It ensures the safety of patient and accurate implementation of treatment plan. Therefore, we intent to carry out the development of In-beam TOF-PET prototype, which is made of LYSO crystal, for ion radiotherapy. LYSO crystal has perfect properties such as high light yield, fast decay time, good energy and time resolution, which makes it a good candidate. In the development of positron emission tomography (PET) detectors, understanding and optimizing scintillator light collection and energy resolution is critical for achieving high performance, particularly when the design incorporates depth-of-interaction (DOI) encoding or time-of-flight information. Monte Carlo simulations play an important role in guiding research in detector designs and popular software such as Gate now include models of light transport in scintillators. This study uses Gate software to investigate the influence of crystal length and wrapping materials to the light collection. Accurate physical modeling of scintillation detection process, from scintillation light generation through detection, is devised and performed for varying detector attributes, such as the crystal pixel length, light yield, decay time, attenuation length and surface treatment. The dependence of light output and energy resolution is studied and compared with experiment results. The results show that LYSO pixel with length of 5 mm has better light yield and energy resolution, meanwhile prove that it is possible to accurately simulate the light output using Gate. (authors)

  10. Attenuation data of point isotropic neutron sources up to 400MeV in water, ordinary concrete and iron

    Energy Technology Data Exchange (ETDEWEB)

    Kotegawa, Hiroshi; Tanaka, Shun-ichi; Sakamoto, Yukio; Nakane, Yoshihiro; Nakashima, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1994-08-01

    A comprehensive attenuation data of dose equivalent for point isotropic monoenergetic neutron sources up to 400MeV in infinite shields of water, ordinary concrete and iron has been calculated using the ANISN-JR code and a neutron-photon multigroup macroscopic cross section HIL086R. The attenuation factors were fitted to a 4th order polynomial exponent formula, making possible to use easily for point kernel codes. Additional data in finite shielding geometry was also calculated to correct the effect due to infinite medium, giving the maximum correction of 0.23 in the region for more 400 cm distance from neutron source of 400 MeV in iron shield. Effective attenuation length for monoenergetic neutrons have been studied in detail. Subsequently, it was shown that the attenuation length was strongly dependent upon the penetration length and the Moyer`s formula using a single attenuation length brought large error into the dose estimation behind thick shields for the intermediate energy neutrons up to 400 MeV. Furthermore, it was demonstrated that there was difference more than 50 % in the attenuation length of iron between the calculations with HIL086R and HIL086 because of the self-shielding effect. (author).

  11. Producing acoustic 'Frozen Waves': simulated experiments with diffraction/attenuation resistant beams in lossy media.

    Science.gov (United States)

    Prego-Borges, José L; Zamboni-Rached, Michel; Recami, Erasmo; Costa, Eduardo Tavares

    2014-08-01

    The so-called Localized Waves (LW), and the "Frozen Waves" (FW), have raised significant attention in the areas of Optics and Ultrasound, because of their surprising energy localization properties. The LWs resist the effects of diffraction for large distances, and possess an interesting self-reconstruction -self-healing- property (after obstacles with size smaller than the antenna's); while the FWs, a sub-class of LWs, offer the possibility of arbitrarily modeling the longitudinal field intensity pattern inside a prefixed interval, for instance 0⩽z⩽L, of the wave propagation axis. More specifically, the FWs are localized fields "at rest", that is, with a static envelope (within which only the carrier wave propagates), and can be endowed moreover with a high transverse localization. In this paper we investigate, by simulated experiments, various cases of generation of ultrasonic FW fields, with the frequency of f0=1 MHz in a water-like medium, taking account of the effects of attenuation. We present results of FWs for distances up to L=80 mm, in attenuating media with absorption coefficient α in the range 70⩽α⩽170 dB/m. Such simulated FW fields are constructed by using a procedure developed by us, via appropriate finite superpositions of monochromatic ultrasonic Bessel beams. We pay due attention to the selection of the FW parameters, constrained by the rather tight restrictions imposed by experimental Acoustics, as well as to some practical implications of the transducer design. The energy localization properties of the Frozen Waves can find application even in many medical apparatus, such as bistouries or acoustic tweezers, as well as for treatment of diseased tissues (in particular, for the destruction of tumor cells, without affecting the surrounding tissues; also for kidney stone shuttering, etc.). Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Transient attenuation in optical fibers

    International Nuclear Information System (INIS)

    Hopkins, A.A.; Kelly, R.E.; Looney, L.D.; Lyons, P.B.

    1984-01-01

    Low and high energy pulsed electron beams were used to generate radiation-induced transient attenuation in high-OH, Suprasil core, PCS fibers, demonstrating the energy dependence of the radiation damage and recovery mechanisms. A radiation resistant low-OH fiber was studied and its performance contrasted to that of high-OH materials. Several fibers with differing core compositions were also studied

  13. Progress in Long Scale Length Laser-Plasma Interactions

    International Nuclear Information System (INIS)

    Glenzer, S H; Arnold, P; Bardsley, G; Berger, R L; Bonanno, G; Borger, T; Bower, D E; Bowers, M; Bryant, R; Buckman, S.; Burkhart, S C; Campbell, K; Chrisp, M P; Cohen, B I; Constantin, G; Cooper, F; Cox, J; Dewald, E; Divol, L; Dixit, S; Duncan, J; Eder, D; Edwards, J; Erbert, G; Felker, B; Fornes, J; Frieders, G; Froula, D H; Gardner, S D; Gates, C; Gonzalez, M; Grace, S; Gregori, G; Greenwood, A; Griffith, R; Hall, T; Hammel, B A; Haynam, C; Heestand, G; Henesian, M; Hermes, G; Hinkel, D; Holder, J; Holdner, F; Holtmeier, G; Hsing, W; Huber, S; James, T; Johnson, S; Jones, O S; Kalantar, D; Kamperschroer, J H; Kauffman, R; Kelleher, T; Knight, J; Kirkwood, R K; Kruer, W L; Labiak, W; Landen, O L; Langdon, A B; Langer, S; Latray, D; Lee, A; Lee, F D; Lund, D; MacGowan, B; Marshall, S; McBride, J; McCarville, T; McGrew, L; Mackinnon, A J; Mahavandi, S; Manes, K; Marshall, C; Mertens, E; Meezan, N; Miller, G; Montelongo, S; Moody, J D; Moses, E; Munro, D; Murray, J; Neumann, J; Newton, M; Ng, E; Niemann, C; Nikitin, A; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rekow, V; Rinnert, R; Riordan, B; Rhodes, M.

    2003-01-01

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 mm and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3ω) with a total intensity of 2 x 10 15 W cm -2 . The targets were filled with 1 atm of CO 2 producing of up to 7 mm long homogeneously heated plasmas with densities of n e = 6 x 10 20 cm -3 and temperatures of T e = 2 keV. The high energy in a NIF quad of beams of 16kJ, illuminating the target from one direction, creates unique conditions for the study of laser plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last ∼1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 6% for the smallest length (∼2 mm). increasing to 12% for ∼7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modeling of the laser-plasma interactions at ignition-size scale lengths

  14. Impedance studies of 2D azimuthally symmetric devices of finite length

    CERN Document Server

    Biancacci, N; Métral, E; Salvant, B; Migliorati, M; Palumbo, L

    2014-01-01

    In particle accelerators, the beam quality can be strongly affected by the interaction with self-induced electromagnetic fields excited by the beam in the passage through the elements of the accelerator. The beam coupling impedance quantifies this interaction and allows predicting the stability of the dynamics of high intensity, high brilliance beams. The coupling impedance can be evaluated with finite element methods or using analytical approaches, such as field matching or mode matching. In this paper we present an application of the mode matching technique for an azimuthally uniform structure of finite length: a cylindrical cavity loaded with a toroidal slab of lossy dielectric, connected with cylindrical beam pipes. In order to take into account the finite length of the structure, with respect to the infinite length approximation, we decompose the fields in the cavity into a set of orthonormal modes. We obtain a complete set of equations using the magnetic field matching and the nonuniform convergence of ...

  15. Dose attenuation by a carbon fiber linac couch and modeling with a treatment planning system

    International Nuclear Information System (INIS)

    Sanchez Galiano, P.; Garcia Sancho, J.M.; Crelgo, D.; Pamos, M.; Fernandez, J.; Vivanco, J.

    2010-01-01

    The purpose of this work is to investigate the attenuation caused by a carbon fiber linac treatment couch and the ability of a commercial radiotherapy treatment planning system to simulate it. The attenuation caused by an Exact treatment couch in a Varian Clinac 2100 C/D was characterized in detail. Both 6 MV and 18 MV photon beams were studied. The treatment couch was modeled and incorporated to Elekta XiO treatment planning system. Measured and computed attenuation values were compared. As a result we found that the attenuation caused by this complex treatment couch is strongly dependent on the incidence angle of the beam. The measured attenuation values reach 16% for 6 MV and 10% for 18 MV. The model incorporated to the treatment planning software allows reducing the differences between measured and calculated data below 2.5% and 2.0% for 6 MV and 18 MV respectively. In conclusion, it is strongly recommended accounting for the perturbation caused by this carbon fiber treatment couch when the beam intersects it. The treatment planning system studied can simulate this treatment couch accurately. Clinical implementation of the described method requires a reliable procedure to reproduce the same patient geometry in the treatment delivery and planning. (Author).

  16. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    Science.gov (United States)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from

  17. GPR measurements of attenuation in concrete

    Science.gov (United States)

    Eisenmann, David; Margetan, Frank J.; Pavel, Brittney

    2015-03-01

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.

  18. GPR measurements of attenuation in concrete

    International Nuclear Information System (INIS)

    Eisenmann, David; Margetan, Frank J.; Pavel, Brittney

    2015-01-01

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups

  19. GPR measurements of attenuation in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, David, E-mail: djeisen@cnde.iastate.edu; Margetan, Frank J., E-mail: djeisen@cnde.iastate.edu; Pavel, Brittney, E-mail: djeisen@cnde.iastate.edu [Center for Nondestructive Evaluation, Iowa State University, 1915 Scholl Road, Ames, IA 50011-3042 (United States)

    2015-03-31

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.

  20. Suppression of propagating TE modes in the FNAL antiproton source stochastic beam cooling system

    International Nuclear Information System (INIS)

    Barry, W.C.

    1985-05-01

    A method of attenuating the propagation of waveguide modes in the stochastic cooling array beam pipes to be utilized in the accumulator and debuncher rings of the Fermilab antiproton source is described. The attenuation method treated involves lining the vertical walls of the beam pipes with a ferrimagnetic material. The general solution for propagation in a nonhomogeneously loaded waveguide is presented along with numerical results specific to the antiproton source beam cooling system. Also described is a broadband, automated technique for the simultaneous measurement of complex μ and epsilon developed to aid in the characterization of different ferrite materials. Permittivity and permeability data for a typical ferrite are presented along with a discussion of the effects of these parameters on waveguide mode attenuation in the ferrite lined beam pipes

  1. On the Attenuation of Neutrons and Photons in a Duct Filled with a Helical Plug

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, E; Krell, Aa

    1966-12-15

    Neutron and gamma ray attenuation has been studied in a cylindrical duct, length/diam. ratio 7, partly (36 vol.%) filled by a helical (screw-like) plug with adjustable number of turns. The total neutron leakage through the duct decreased by a factor of six from zero to 0.5 turn, and by an additional factor of three from 0.5 to 2 turns (saturation value). The leakage with less than 0.5 turn is governed by fast flux and above 0.5 turn by epithermal flux. It is observed that the attenuation calculation in a homogenized, infinite material combined with the predicted attenuation in a duct give the measured saturation attenuation. The length coordinates used must be slightly modified in this case. The attenuation of gamma in the saturation case (3 turns) equals that predicted without the duct attenuation in a homogenized infinite material.

  2. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation

    Science.gov (United States)

    Chundong, HU; Yongjian, XU; Yuanlai, XIE; Yahong, XIE; Lizhen, LIANG; Caichao, JIANG; Sheng, LIU; Jianglong, WEI; Peng, SHENG; Zhimin, LIU; Ling, TAO; the NBI Team

    2018-04-01

    Two sets of neutral beam injectors (NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with in-depth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that (1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline, (2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and (3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.

  3. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    Science.gov (United States)

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  4. High current beam transport with multiple beam arrays

    International Nuclear Information System (INIS)

    Kim, C.H.

    1985-05-01

    Highlights of recent experimental and theoretical research progress on the high current beam transport of single and multiple beams by the Heavy Ion Fusion Accelerator Research (HIFAR) group at the Lawrence Berkeley Laboratory (LBL) are presented. In the single beam transport experiment (SBTE), stability boundaries and the emittance growth of a space charge dominated beam in a long quadrupole transport channel were measured and compared with theory and computer simulations. Also, a multiple beam ion induction linac (MBE-4) is being constructed at LBL which will permit study of multiple beam transport arrays, and acceleration and bunch length compression of individually focused beamlets. Various design considerations of MBE-4 regarding scaling laws, nonlinear effects, misalignments, and transverse and longitudinal space charge effects are summarized. Some aspects of longitudinal beam dynamics including schemes to generate the accelerating voltage waveforms and to amplify beam current are also discussed

  5. Beam Dynamics Simulation for the CTF3 Drive Beam Accelerator

    CERN Document Server

    Schulte, Daniel

    2000-01-01

    A new CLIC Test Facility (CTF3) at CERN will serve to study the drive beam generation for the Compact Linear Collider (CLIC). CTF3 has to accelerate a 3.5 A electron beam in almost fully-loaded structures. The pulse contains more than 2000 bunches, one in every second RF bucket, and has a length of more than one microsecond. Different options for the lattice of the drive-beam accelerator are presented, based on FODO-cells and triplets as well as solenoids. The transverse stability is simulated, including the effects of beam jitter, alignment and beam-based correction.

  6. Temporal and frequency characteristics of a narrow light beam in sea water.

    Science.gov (United States)

    Luchinin, Alexander G; Kirillin, Mikhail Yu

    2016-09-20

    The structure of a light field in sea water excited by a unidirectional point-sized pulsed source is studied by Monte Carlo technique. The pulse shape registered at the distances up to 120 m from the source on the beam axis and in its axial region is calculated with a time resolution of 1 ps. It is shown that with the increase of the distance from the source the pulse splits into two parts formed by components of various scattering orders. Frequency and phase responses of the beam are calculated by means of the fast Fourier transform. It is also shown that for higher frequencies, the attenuation of harmonic components of the field is larger. In the range of parameters corresponding to pulse splitting on the beam axis, the attenuation of harmonic components in particular spectral ranges exceeds the attenuation predicted by Bouguer law. In this case, the transverse distribution of the amplitudes of these harmonics is minimal on the beam axis.

  7. Ultrashort electron bunch length measurement with diffraction radiation deflector

    Science.gov (United States)

    Xiang, Dao; Huang, Wen-Hui

    2007-01-01

    In this paper, we propose a novel method to measure electron bunch length with a diffraction radiation (DR) deflector which is composed of a DR radiator and three beam position monitors (BPMs). When an electron beam passes through a metallic aperture which is tilted by 45 degrees with respect to its trajectory, backward DR that propagates perpendicular to the beam’s trajectory is generated which adds a transverse deflection to the beam as a result of momentum conservation. The deflection is found to be largely dependent on the bunch length and could be easily observed with a downstream BPM. Detailed investigations show that this method has wide applicability, high temporal resolution, and great simplicity.

  8. Ultrashort electron bunch length measurement with diffraction radiation deflector

    Directory of Open Access Journals (Sweden)

    Dao Xiang

    2007-01-01

    Full Text Available In this paper, we propose a novel method to measure electron bunch length with a diffraction radiation (DR deflector which is composed of a DR radiator and three beam position monitors (BPMs. When an electron beam passes through a metallic aperture which is tilted by 45 degrees with respect to its trajectory, backward DR that propagates perpendicular to the beam’s trajectory is generated which adds a transverse deflection to the beam as a result of momentum conservation. The deflection is found to be largely dependent on the bunch length and could be easily observed with a downstream BPM. Detailed investigations show that this method has wide applicability, high temporal resolution, and great simplicity.

  9. Propagation of Gaussian laser beam in cold plasma of Drude model

    International Nuclear Information System (INIS)

    Wang Ying; Yuan Chengxun; Zhou Zhongxiang; Li Lei; Du Yanwei

    2011-01-01

    The propagation characters of Gaussian laser beam in plasmas of Drude model have been investigated by complex eikonal function assumption. The dielectric constant of Drude model is representative and applicable in describing the cold unmagnetized plasmas. The dynamics of ponderomotive nonlinearity, spatial diffraction, and collision attenuation is considered. The derived coupling equations determine the variations of laser beam and irradiation attenuation. The modified laser beam-width parameter F, the dimensionless axis irradiation intensity I, and the spatial electron density distribution n/n 0 have been studied in connection with collision frequency, initial laser intensity and beam-width, and electron temperature of plasma. The variations of laser beam and plasma density due to different selections of parameters are reasonably explained, and results indicate the feasible modification of the propagating characters of laser beam in plasmas, which possesses significance to fast ignition, extended propagation, and other applications.

  10. Experimental determination of probe-length requirements for studies of the turbulent wake behind a cylinder

    International Nuclear Information System (INIS)

    Sheih, C.M.; Finnigan, J.J.; Bradley, E.F.; Mulhearn, P.J.

    1979-01-01

    The attenuation of turbulence and mean velocity signals due to the line averaging imposed by hot wires when used in the wake of an isolated circular cylinder has been investigated in a wind tunnel by measurements using several choices of hot-wire length, cylinder diameter, and freestream mean velocity. The results are presented graphically in order to provide a practical method for determining attenuation of the turbulence and mean velocity signals obtained in a wake. The length scale of the wake can be defined as L=0.6[(x-x/sub o/) d]/sup 1/2/, where x is the downstream distance from the cylinder, d is the cylinder diameter, and x/sub o/=25d. For all the wires tested, the attenuation of the measured turbulence signal is limited to within 5% only if the wire length is smaller than 0.1 L. For a wire normal to the cylinder and cross wind, the attenuation of the signal of the mean velocity-defect factor, expressed as (1-u/u/sub infinity/), where u and u/sub infinity/ are local and free-stream velocities, respectively, is less than 5% only if the wire is less than 0.5 L in length

  11. Megavoltage photon beam attenuation by carbon fiber couch tops and its prediction using correction factors

    International Nuclear Information System (INIS)

    Hayashi, Naoki; Shibamoto, Yuta; Obata, Yasunori; Kimura, Takashi; Nakazawa, Hisato; Hagiwara, Masahiro; Hashizume, Chisa I.; Mori, Yoshimasa; Kobayashi, Tatsuya

    2010-01-01

    The purpose of this study was to evaluate the effect of megavoltage photon beam attenuation (PBA) by couch tops and to propose a method for correction of PBA. Four series of phantom measurements were carried out. First, PBA by the exact couch top (ECT, Varian) and Imaging Couch Top (ICT, BrainLAB) was evaluated using a water-equivalent phantom. Second, PBA by Type-S system (Med-Tec), ECT and ICT was compared with a spherical phantom. Third, percentage depth dose (PDD) after passing through ICT was measured to compare with control data of PDD. Forth, the gantry angle dependency of PBA by ICT was evaluated. Then, an equation for PBA correction was elaborated and correction factors for PBA at isocenter were obtained. Finally, this method was applied to a patient with hepatoma. PBA of perpendicular beams by ICT was 4.7% on average. With the increase in field size, the measured values became higher. PBA by ICT was greater than that by Type-S system and ECT. PBA increased significantly as the angle of incidence increased, ranging from 4.3% at 180 deg to 11.2% at 120 deg. Calculated doses obtained by the equation and correction factors agreed quite well with the measured doses between 120 deg and 180 deg of angles of incidence. Also in the patient, PBA by ICT was corrected quite well by the equation and correction factors. In conclusion, PBA and its gantry angle dependency by ICT were observed. This simple method using the equation and correction factors appeared useful to correct the isocenter dose when the PBA effect cannot be corrected by a treatment planning system. (author)

  12. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients.

    Science.gov (United States)

    Burger, C; Goerres, G; Schoenes, S; Buck, A; Lonn, A H R; Von Schulthess, G K

    2002-07-01

    The CT data acquired in combined PET/CT studies provide a fast and essentially noiseless source for the correction of photon attenuation in PET emission data. To this end, the CT values relating to attenuation of photons in the range of 40-140 keV must be transformed into linear attenuation coefficients at the PET energy of 511 keV. As attenuation depends on photon energy and the absorbing material, an accurate theoretical relation cannot be devised. The transformation implemented in the Discovery LS PET/CT scanner (GE Medical Systems, Milwaukee, Wis.) uses a bilinear function based on the attenuation of water and cortical bone at the CT and PET energies. The purpose of this study was to compare this transformation with experimental CT values and corresponding PET attenuation coefficients. In 14 patients, quantitative PET attenuation maps were calculated from germanium-68 transmission scans, and resolution-matched CT images were generated. A total of 114 volumes of interest were defined and the average PET attenuation coefficients and CT values measured. From the CT values the predicted PET attenuation coefficients were calculated using the bilinear transformation. When the transformation was based on the narrow-beam attenuation coefficient of water at 511 keV (0.096 cm(-1)), the predicted attenuation coefficients were higher in soft tissue than the measured values. This bias was reduced by replacing 0.096 cm(-1) in the transformation by the linear attenuation coefficient of 0.093 cm(-1) obtained from germanium-68 transmission scans. An analysis of the corrected emission activities shows that the resulting transformation is essentially equivalent to the transmission-based attenuation correction for human tissue. For non-human material, however, it may assign inaccurate attenuation coefficients which will also affect the correction in neighbouring tissue.

  13. Attenuation of photon beams from radionuclides. Pt. 6

    International Nuclear Information System (INIS)

    Dorner, R.; Vogt, H.G.

    1982-04-01

    Point kernel shielding calculations have been performed for water for the photons of radioactive nuclides, comprising gamma rays, characteristic X-rays, annihilation photons as well as internal and external bremsstrahlung. The calculations refer to an isotropic point source and an infinite homogeneous medium. The results are presented for 137 radionuclides by tables of dose rate constants and sets of figures of the reciprocal attenuation factor S -1 . The shielding curves cover the range of 10 -8 -1 <1 and water thicknesses up to 340 cm. (orig./HP)

  14. Factors influencing seismic wave attenuation in the lithosphere in continental rift zones

    Directory of Open Access Journals (Sweden)

    А. А. Dobrynina

    2017-01-01

    Full Text Available Attenuation of seismic waves in the crust and the upper mantle has been studied in three global rift systems: the Baikal rift system (Eurasia, the North Tanzanian divergence zone (Africa and the Basin and Range Province (North America. Using the records of direct and coda waves of regional earthquakes, the single scattering theory [Aki, Chouet, 1975], the hybrid model from [Zeng, 1991] and the approach described in [Wennerberg, 1993], we estimated the seismic quality factor (QC, frequency parameter (n, attenuation coefficient (δ, and total attenuation (QT. In addition, we evaluated the contributions of two components into total attenuation: intrinsic attenuation (Qi, and scattering attenuation (Qsc. Values of QC are strongly dependent on the frequency within the range of 0.2–16 Hz, as well as on the length of the coda processing window. The observed increase of QC with larger lengths of the coda processing window can be interpreted as a decrease in attenuation with increasing depth. Having compared the depth variations in the attenuation coefficient (δ and the frequency (n with the velocity structures of the studied regions, we conclude that seismic wave attenuation changes at the velocity boundaries in the medium. Moreover, the comparison results show that the estimated variations in the attenuation parameters with increasing depth are considerably dependent on utilized velocity models of the medium. Lateral variations in attenuation of seismic waves correlate with the geological and geophysical characteristics of the regions, and attenuation is primarily dependent on the regional seismic activity and regional heat flow. The geological inhomogeneities of the medium and the age of crust consolidation are secondary factors. Our estimations of intrinsic attenuation (Qi and scattering attenuation (Qsc show that in all the three studied regions, intrinsic attenuation is the major contributor to total attenuation. Our study shows that the

  15. Vibration attenuation and shape control of surface mounted, embedded smart beam

    Directory of Open Access Journals (Sweden)

    Vivek Rathi

    Full Text Available Active Vibration Control (AVC using smart structure is used to reduce the vibration of a system by automatic modification of the system structural response. AVC is widely used, because of its wide and broad frequency response range, low additional mass, high adaptability and good efficiency. A lot of research has been done on Finite Element (FE models for AVC based on Euler Bernoulli Beam Theory (EBT. In the present work Timoshenko Beam Theory (TBT is used to model a smart cantilever beam with surface mounted sensors / actuators. A Periodic Output Feedback (POF Controller has been designed and applied to control the first three modes of vibration of a flexible smart cantilever beam. The difficulties encountered in the usage of surface mounted piezoelectric patches in practical situations can be overcome by the use of embedded shear sensors / actuators. A mathematical model of a smart cantilever beam with embedded shear sensors and actuators is developed. A POF Controller has been designed and applied to control of vibration of a flexible smart cantilever beam and effect of actuator location on the performance of the controller is investigated. The mathematical modeling and control of a Multiple Input multiple Output (MIMO systems with two sensors and two actuators have also been considered.

  16. High-brightness electron beam diagnostics at the ATF

    International Nuclear Information System (INIS)

    Wang, X.J.; Ben-Zvi, I.

    1996-01-01

    The Brookhaven Accelerator Test Facility (ATF) is a dedicated user facility for accelerator physicists. Its design is optimized to explore laser acceleration and coherent radiation production. To characterize the low-emittance, picoseconds long electron beam produced by the ATF's photocathode RF gun, we have installed electron beam profile monitors for transverse emittance measurement, and developed a new technique to measure electron beam pulse length by chirping the electron beam energy. We have also developed a new technique to measure the ps slice emittance of a 10 ps long electron beam. Stripline beam position monitors were installed along the beam to monitor the electron beam position and intensity. A stripline beam position monitor was also used to monitor the timing jitter between the RF system and laser pulses. Transition radiation was used to measure electron beam energy, beam profile and electron beam bunch length

  17. Measurement of the x-ray mass-attenuation coefficients of gold, derived quantities between 14 keV and 21 keV and determination of the bond lengths of gold

    International Nuclear Information System (INIS)

    Glover, J L; Chantler, C T; Barnea, Z; Rae, N A; Tran, C Q

    2010-01-01

    The x-ray mass-attenuation coefficients of gold are measured at 91 energies between 14 keV and 21 keV using synchrotron radiation. The measurements are accurate to between 0.08% and 0.1%. The photoelectric mass-absorption coefficients and the imaginary component of the form factors of gold are also determined. The results include the L I edge and are the most accurate and extensive gold dataset available in this energy range. An analysis of the L I edge XAFS showed excellent agreement between the measured and simulated XAFS and yielded highly accurate values of the bond lengths of gold. When our results are compared with earlier measurements and with predictions of major theoretical tabulations, significant discrepancies are noted. The comparison raises questions about the nature of discrepancies between experimental and theoretical values of mass-attenuation coefficients.

  18. Raman scattering and attenuated-total-reflection studies of surface-plasmon polaritons

    International Nuclear Information System (INIS)

    Kurosawa, K.; Pierce, R.M.; Ushioda, S.; Hemminger, J.C.

    1986-01-01

    We have made in situ measurements of attenuated total reflection (ATR) and Raman scattering from a layered structure consisting of a glass prism, a thin silver film, an MgF 2 spacer, and a liquid mixture whose refractive index is matched to that of MgF 2 . When the incident angle of the laser beam coincides with the ATR angle, the surface-plasmon polariton (SPP) of the silver film is excited resonantly and the Raman scattering intensity of the liquid shows a maximum. The same effect is observed at the frequency of the Stokes scattered light. By measuring the decrease of the Raman scattering intensity of the liquid with increase of the thickness of the MgF 2 spacer layer, we have determined the decay length (l/sub d/) of the SPP field into the liquid. The measured value of l/sub d/ = 1539 A agrees with the calculated value, 1534 A

  19. Second-harmonic generation of practical Bessel beams

    Science.gov (United States)

    Huang, Jin H.; Ding, Desheng; Hsu, Yin-Sung

    2009-11-01

    A fast Gaussian expansion approach is used to investigate fundamental and second-harmonic generation in practical Bessel beams of finite aperture. The analysis is based on the integral solutions of the KZK equation under the quasilinear approximation. The influence of the medium's attenuation on the beam profile is considered. Analysis results show that the absorption parameter has a significant effect on the far-field beam profile of the second harmonic. Under certain circumstances, the second harmonic of a practical Bessel beam still has the main properties of an ideal Bessel beam of infinite aperture when it propagates within its depth of field.

  20. The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine

    International Nuclear Information System (INIS)

    Mullett, J D; Dodd, R; Williams, C J; Triantos, G; Dearden, G; Shenton, A T; Watkins, K G; Carroll, S D; Scarisbrick, A D; Keen, S

    2007-01-01

    This work involves a study on laser ignition (LI) in an internal combustion (IC) engine and investigates the effects on control of engine combustion performance and stability of varying specific laser parameters (beam energy, beam quality, minimum beam waist size, focal point volume and focal length). A Q-switched Nd : YAG laser operating at the fundamental wavelength 1064 nm was successfully used to ignite homogeneous stoichiometric gasoline and air mixtures in one cylinder of a 1.6 litre IC test engine, where the remaining three cylinders used conventional electrical spark ignition (SI). A direct comparison between LI and conventional SI is presented in terms of changes in coefficient of variability in indicated mean effective pressure (COV IMEP ) and the variance in the peak cylinder pressure position (Var PPP ). The laser was individually operated in three different modes by changing the diameter of the cavity aperture, where the results show that for specific parameters, LI performed better than SI in terms of combustion performance and stability. Minimum ignition energies for misfire free combustion ranging from 4 to 28 mJ were obtained for various optical and laser configurations and were compared with the equivalent minimum optical breakdown energies in air

  1. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao-Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Jia, Lin-Lin; Qi, Jie; Song, Xin-Ai; Tan, Hong [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China)

    2015-05-01

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines

  2. Short bunch length detector for ion beam with high bunch density

    International Nuclear Information System (INIS)

    Tron, A.M.; Shako, V.V.

    1993-01-01

    The secondary electron rf monitors for short ion bunch phase distribution measurements are presented. Construction particularities of the monitors, influence of space charge of both the primary and the secondary electron beams on the phase resolution, thermal regime of the target during beam-target interaction are considered

  3. Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling

    International Nuclear Information System (INIS)

    Chwalla, M; Fitzsimons, E; Danzmann, K; Fernández Barranco, G; Gerberding, O; Heinzel, G; Lieser, M; Schuster, S; Schwarze, T S; Tröbs, M; Zwetz, M; Killow, C J; Perreur-Lloyd, M; Robertson, D I; Ward, H

    2016-01-01

    The laser interferometer space antenna (LISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams couple into the length measurement and represent a significant noise source. Imaging systems will be used to reduce this tilt-to-length coupling. We designed and constructed an optical test bed to experimentally investigate tilt-to-length coupling. It consists of two separate structures, a minimal optical bench and a telescope simulator. The minimal optical bench comprises the science interferometer where the local laser is interfered with light from a remote spacecraft. In our experiment, a simulated version of this received beam is generated on the telescope simulator. The telescope simulator provides a tilting beam, a reference interferometer and an additional static beam as a phase reference. The tilting beam can either be a flat-top beam or a Gaussian beam. We avoid tilt-to-length coupling in the reference interferometer by using a small photo diode placed at an image of the beam rotation point. We show that the test bed is operational with an initial measurement of tilt-to-length coupling without imaging systems. Furthermore, we show the design of two different imaging systems whose performance will be investigated in future experiments. (paper)

  4. Observations of the beam-beam interaction

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1985-11-01

    The observed complexity of the beam-beam interaction is the subject of this paper. The varied observations obtained from many storage rings happen to be sufficiently similar that a prescription can be formulated to describe the behavior of the luminosity as a function of beam current including the peak value. This prescription can be used to interpret various methods for improving the luminosity. Discussion of these improvement methods is accompanied with examples from actual practice. The consequences of reducing the vertical betatron function (one of the most used techniques) to near the value of the bunch length are reviewed. Finally, areas needing further experimental and calculational studies are pointed out as they are uncovered

  5. Flat-topped beam transmittance in anisotropic non-Kolmogorov turbulent marine atmosphere

    Science.gov (United States)

    Ata, Yalçın; Baykal, Yahya

    2017-10-01

    Turbulence affects optical propagation, and, as a result, the intensity is attenuated along the path of propagation. The attenuation becomes significant when the turbulence becomes stronger. Transmittance is a measure indicating how much power is collected at the receiver after the optical wave propagates in the turbulent medium. The on-axis transmittance is formulated when a flat-topped optical beam propagates in a marine atmosphere experiencing anisotropic non-Kolmogorov turbulence. Variations in the transmittance are evaluated versus the beam source size, beam number, link distance, power law exponent, anisotropy factor, and structure constant. It is found that larger beam source sizes and beam numbers yield higher transmittance values; however, as the link distance, power law exponent, anisotropy factor, or structure constant increase, transmittance values are lowered. Our results will help in the performance evaluations of optical wireless communication and optical imaging systems operating in a marine atmosphere.

  6. Quantitative analysis of artifacts in 4D DSA: the relative contributions of beam hardening and scatter to vessel dropout behind highly attenuating structures

    Science.gov (United States)

    Hermus, James; Szczykutowicz, Timothy P.; Strother, Charles M.; Mistretta, Charles

    2014-03-01

    When performing Computed Tomographic (CT) image reconstruction on digital subtraction angiography (DSA) projections, loss of vessel contrast has been observed behind highly attenuating anatomy, such as dental implants and large contrast filled aneurysms. Because this typically occurs only in a limited range of projection angles, the observed contrast time course can potentially be altered. In this work, we have developed a model for acquiring DSA projections that models both the polychromatic nature of the x-ray spectrum and the x-ray scattering interactions to investigate this problem. In our simulation framework, scatter and beam hardening contributions to vessel dropout can be analyzed separately. We constructed digital phantoms with large clearly defined regions containing iodine contrast, bone, soft issue, titanium (dental implants) or combinations of these materials. As the regions containing the materials were large and rectangular, when the phantoms were forward projected, the projections contained uniform regions of interest (ROI) and enabled accurate vessel dropout analysis. Two phantom models were used, one to model the case of a vessel behind a large contrast filled aneurysm and the other to model a vessel behind a dental implant. Cases in which both beam hardening and scatter were turned off, only scatter was turned on, only beam hardening was turned on, and both scatter and beam hardening were turned on, were simulated for both phantom models. The analysis of this data showed that the contrast degradation is primarily due to scatter. When analyzing the aneurysm case, 90.25% of the vessel contrast was lost in the polychromatic scatter image, however only 50.5% of the vessel contrast was lost in the beam hardening only image. When analyzing the teeth case, 44.2% of the vessel contrast was lost in the polychromatic scatter image and only 26.2% of the vessel contrast was lost in the beam hardening only image.

  7. Electron attenuation in free, neutral ethane clusters.

    Science.gov (United States)

    Winkler, M; Myrseth, V; Harnes, J; Børve, K J

    2014-10-28

    The electron effective attenuation length (EAL) in free, neutral ethane clusters has been determined at 40 eV kinetic energy by combining carbon 1s x-ray photoelectron spectroscopy and theoretical lineshape modeling. More specifically, theory is employed to form model spectra on a grid in cluster size (N) and EAL (λ), allowing N and λ to be determined by optimizing the goodness-of-fit χ(2)(N, λ) between model and observed spectra. Experimentally, the clusters were produced in an adiabatic-expansion setup using helium as the driving gas, spanning a range of 100-600 molecules in mean cluster size. The effective attenuation length was determined to be 8.4 ± 1.9 Å, in good agreement with an independent estimate of 10 Å formed on the basis of molecular electron-scattering data and Monte Carlo simulations. The aggregation state of the clusters as well as the cluster temperature and its importance to the derived EAL value are discussed in some depth.

  8. Particle beam accelerator

    International Nuclear Information System (INIS)

    Turner, N.L.

    1982-01-01

    A particle beam accelerator is described which has several electrodes that are selectively short circuited together synchronously with changes in the magnitude of a DC voltage applied to the accelerator. By this method a substantially constant voltage gradient is maintained along the length of the unshortened electrodes despite variations in the energy applied to the beam by the accelerator. The invention has particular application to accelerating ion beams that are implanted into semiconductor wafers. (U.K.)

  9. Vibration Properties of a Steel-PMMA Composite Beam

    OpenAIRE

    He, Yuyang; Jin, Xiaoxiong

    2015-01-01

    A steel-polymethyl methacrylate (steel-PMMA) beam was fabricated to investigate the vibration properties of a one-dimensional phononic crystal structure. The experimental system included an excitation system, a signal acquisition system, and a data analysis and processing system. When an excitation signal was exerted on one end of the beam, the signals of six response points were collected with acceleration sensors. Subsequent signal analysis showed that the beam was attenuated in certain fre...

  10. Cavity beam position monitor system for the Accelerator Test Facility 2

    Science.gov (United States)

    Kim, Y. I.; Ainsworth, R.; Aryshev, A.; Boogert, S. T.; Boorman, G.; Frisch, J.; Heo, A.; Honda, Y.; Hwang, W. H.; Huang, J. Y.; Kim, E.-S.; Kim, S. H.; Lyapin, A.; Naito, T.; May, J.; McCormick, D.; Mellor, R. E.; Molloy, S.; Nelson, J.; Park, S. J.; Park, Y. J.; Ross, M.; Shin, S.; Swinson, C.; Smith, T.; Terunuma, N.; Tauchi, T.; Urakawa, J.; White, G. R.

    2012-04-01

    The Accelerator Test Facility 2 (ATF2) is a scaled demonstrator system for final focus beam lines of linear high energy colliders. This paper describes the high resolution cavity beam position monitor (BPM) system, which is a part of the ATF2 diagnostics. Two types of cavity BPMs are used, C-band operating at 6.423 GHz, and S-band at 2.888 GHz with an increased beam aperture. The cavities, electronics, and digital processing are described. The resolution of the C-band system with attenuators was determined to be approximately 250 nm and 1μm for the S-band system. Without attenuation the best recorded C-band cavity resolution was 27 nm.

  11. Spinal axis irradiation with electrons: Measurements of attenuation by the spinal processes

    International Nuclear Information System (INIS)

    Muller-Runkel, R.; Vijayakumar, S.

    1986-01-01

    Electrons may be used beneficially for spinal axis irradiation in medulloblastoma children to avoid some of the long-term sequelae induced by megavoltage photons. However, the attenuation by the intervening bone ought to be considered. Three-dimensional computer treatment planning with inhomogeneity correction for electron beams is not yet generally available, and alternate methods are needed to evaluate the attenuation by the complex bony structure of the spine. Here, we present our experimental data showing the alteration in the electron isodoses due to the intervening spinous processes. Film dosimetric measurements were made in the vertebral columns obtained from autopsies of a goat, a dog, and a child. Our results show that electron beam therapy for the spinal axis is a viable option

  12. Longitudinal Beam measurements at the LHC: The LHC Beam Quality Monitor

    CERN Document Server

    Papotti, G; Follin, F; Wehrle, U

    2011-01-01

    The LHC Beam Quality Monitor is a system that measures individual bunch lengths and positions, similarly to the twin system SPS Beam Quality Monitor, from which it was derived. The pattern verification that the system provides is vital during the injection process to verify the correctness of the injected pattern, while the bunch length measurement is fed back to control the longitudinal emittance blow up performed during the energy ramp and provides a general indication of the health of the RF system. The algorithms used, the hardware implementation and the system integration in the LHC control infrastructure are presented in this paper, along with possible improvements.

  13. The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Mullett, J D [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Dodd, R [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Williams, C J [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Triantos, G [Powertrain Control Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Dearden, G [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Shenton, A T [Powertrain Control Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Watkins, K G [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Carroll, S D [Ford Motor Company, Dunton Research and Engineering Centre, Laindon, Basildon, Essex, SS15 6EE (United Kingdom); Scarisbrick, A D [Ford Motor Company, Dunton Research and Engineering Centre, Laindon, Basildon, Essex, SS15 6EE (United Kingdom); Keen, S [GSI Group, Cosford Lane, Swift Valley, Rugby, Warwickshire, CV21 1QN (United Kingdom)

    2007-08-07

    This work involves a study on laser ignition (LI) in an internal combustion (IC) engine and investigates the effects on control of engine combustion performance and stability of varying specific laser parameters (beam energy, beam quality, minimum beam waist size, focal point volume and focal length). A Q-switched Nd : YAG laser operating at the fundamental wavelength 1064 nm was successfully used to ignite homogeneous stoichiometric gasoline and air mixtures in one cylinder of a 1.6 litre IC test engine, where the remaining three cylinders used conventional electrical spark ignition (SI). A direct comparison between LI and conventional SI is presented in terms of changes in coefficient of variability in indicated mean effective pressure (COV{sub IMEP}) and the variance in the peak cylinder pressure position (Var{sub PPP}). The laser was individually operated in three different modes by changing the diameter of the cavity aperture, where the results show that for specific parameters, LI performed better than SI in terms of combustion performance and stability. Minimum ignition energies for misfire free combustion ranging from 4 to 28 mJ were obtained for various optical and laser configurations and were compared with the equivalent minimum optical breakdown energies in air.

  14. Pulsed x-ray induced attenuation measurements of single mode optical fibers and coupler materials

    International Nuclear Information System (INIS)

    Johan, A.; Charre, P.

    1994-01-01

    Pulsed X-ray induced transient radiation attenuation measurements of single mode optical fibers have been performed versus total dose, light wavelength, optical power and fiber coil diameter in order to determine the behavior of parameters sensitive to ionizing radiation. The results did not show any photobleaching phenomenon and the attenuation was found independent of the spool diameter. As expected, transient attenuation was lower for higher wave-lengths. The recovery took place in the millisecond range and was independent of total dose, light wavelength and optical power. In optical modules and devices a large range of behaviors was observed according to coupler material i.e., Corning coupler showed a small peak attenuation that remained more than one day later; on the other hand LiTaO 3 material experienced an order of magnitude higher peak attenuation and a recovery in the millisecond range. For applications with optical fibers and integrated optics devices the authors showed that in many cases the optical fiber (length above 100 m) is the most sensitive device in a transient ionizing radiation field

  15. Long-pulse beam acceleration of MeV-class H(-) ion beams for ITER NB accelerator.

    Science.gov (United States)

    Umeda, N; Kashiwagi, M; Taniguchi, M; Tobari, H; Watanabe, K; Dairaku, M; Yamanaka, H; Inoue, T; Kojima, A; Hanada, M

    2014-02-01

    In order to realize neutral beam systems in International Thermonuclear Experimental Reactor whose target is to produce a 1 MeV, 200 A/m(2) during 3600 s D(-) ion beam, the electrostatic five-stages negative ion accelerator so-called "MeV accelerator" has been developed at Japan Atomic Energy Agency. To extend pulse length, heat load of the acceleration grids was reduced by controlling the ion beam trajectory. Namely, the beam deflection due to the residual magnetic field of filter magnet was suppressed with the newly developed extractor with a 0.5 mm off-set aperture displacement. The new extractor improved the deflection angle from 6 mrad to 1 mrad, resulting in the reduction of direct interception of negative ions from 23% to 15% of the total acceleration power, respectively. As a result, the pulse length of 130 A/m(2), 881 keV H(-) ion beam has been successfully extended from a previous value of 0.4 s to 8.7 s. This is the first long pulse negative ion beam acceleration over 100 MW/m(2).

  16. Intercomparison of medium-energy neutron attenuation in iron and concrete

    International Nuclear Information System (INIS)

    Hirayama, H.

    1999-01-01

    Neutron attenuation of medium energy below 1 GeV has not been well understood until now. It is desired to obtain common agreements concerning the behaviours of neutrons inside various materials. This is necessary in order to agree on definitions of the attenuation length, which is very important for shielding calculations involving high energy accelerators. As one attempt, it was proposed by Japanese attendants of SATIF-2 to compare the attenuation of medium-energy neutrons inside iron and concrete shields between various computer codes and data, and was cited as a suitable action for SATIF. The first results from three groups were presented at SATIF-3. It has become clear that neutrons above 20 MeV are important for understanding the attenuation inside materials and that the geometry, planar or spherical, does not affect the results very much. Considering the CPU times required for Monte Carlo calculations and this result, revised problems to be calculated were prepared by the Japanese Working Group and sent to the participants of this action. The geometry is only plane, and calculations are required only for neutrons above 20 MeV. The secondary neutrons from high energy protons, which were calculated by H. Nakashima, are also included in the problem. The results from four groups were sent to the organizer at the end of August. This paper presents a comparison between groups concerning the attenuation length together with the neutron spectrum and the future themes which come from this intercomparison. (author)

  17. Edge plasma density reconstruction for fast monoenergetic lithium beam probing

    International Nuclear Information System (INIS)

    Sasaki, S.; Takamura, S.; Ueda, M.; Iguchi, H.; Fujita, J.; Kadota, K.

    1993-01-01

    Two different electron density reconstruction methods for 8-keV neutral lithium beam probing have been developed for the Compact Helical System (CHS). Density dependences on emission and ionization processes are included by using effective rate coefficients obtained from the collisional radiative model. Since the two methods differ in the way the local beam density in the plasma is determined, the methods have different applicable electron densities. The beam attenuation is calculated by iteration from the electron density profile in method I. In method II, the beam remainder at the observation point z is determined by integrating the Li I emission intensity from z toward the position of emission tail-off. At the emission tail-off, the fast lithium beam is completely attenuated. Selecting an appropriate method enables us to obtain edge electron density profile well inside the last closed flux surface for various ranges of plasma densities (10 12 --5x10 13 cm -3 ). The electron density profiles reconstructed by these two different methods are in good agreement with each other and are consistent with results from ruby laser Thomson scattering

  18. A Beam Quality Monitor for LHC Beams in the SPS

    CERN Document Server

    Papotti, G

    2008-01-01

    The SPS Beam Quality Monitor (BQM) system monitors the longitudinal parameters of the beam before extraction to the LHC to prevent losses and degradation of the LHC luminosity by the injection of low quality beams. It is implemented in two priority levels. At the highest level the SPS-LHC synchronization and global beam structure are verified. If the specifications are not met, the beam should be dumped in the SPS before extraction. On the second level, individual bunch position, length and stability are checked for beam quality assessment. Tolerances are adapted to the mode of operation and extraction to the LHC can also be inhibited. Beam parameters are accessed by acquiring bunch profiles with a longitudinal pick up and fast digital oscilloscope. The beam is monitored for instabilities during the acceleration cycle and thoroughly checked a few ms before extraction for a final decision on extraction interlock. Dedicated hardware and software components implementing fast algorithms are required. In this pape...

  19. Fast neutron attenuation measurements for detection of illicit materials

    International Nuclear Information System (INIS)

    Lee, Hee Seock; Chung, Chin Wha; Guon, Ki Il; Lee, Bo Young; Ko, Seung Kook; Shin, Yong Mu

    2002-01-01

    Experiments were carried out to develop a novel method using neutron attenuation for the detection of illicit materials. By using pulsed fast neutrons generated from a Bi target bombarded with a 2 GeV electron beam, attenuation spectra of C, N, and O have been measured to study the feasibility of a practical application. The spectral dependence on the material thickness and the geometrical distribution as well as the ability to identify different elements in a layered environment have been studied. For the elements mentioned here, the total cross sections have been obtained from the measured attenuation spectra and compared with ENDF-VI, which showed good agreement. The study confirms that a conventional low energy electron linac can be put into a practical use, and some practical idea is presented

  20. Analysis of emissions from prebunched electron beams

    Directory of Open Access Journals (Sweden)

    Jia Qika

    2017-07-01

    Full Text Available The emissions of the prebunched electron beam, including the coherent spontaneous emission and the self-amplified stimulated emission, are analyzed by using one-dimensional FEL theory. Neglecting the interaction of the electrons and the radiation field, the formula of the coherent spontaneous emission is given, the power of which is proportional to the square of the initial bunching factor and of the undulator length. For the general emission case of the prebunched electron beam, the evolution equation of the optical field is deducted. Then the analytical expression of the emission power is obtained for the resonant case; it is applicable to the regions from the low gain to the high gain. It is found that when the undulator length is shorter than four gain lengths, the emission is just the coherent spontaneous emission, and conversely, it is the self-amplified stimulated emission growing exponentially. For the nonresonant prebunched electron beam, the variations of the emission intensity with the detuning parameter for different interaction length are presented. The radiation field characters of the prebunched electron beam are discussed and compared with that of the seeded FEL amplifier.

  1. Generation of an intense ion beam by a pinched relativistic electron beam

    International Nuclear Information System (INIS)

    Gilad, P.; Zinamon, Z.

    1976-01-01

    The pinched electron beam of a pulsed electron accelerator is used to generate an intense beam of ions. A foil anode and vacuum drift tube are used. The space charge field of the pinched beam in the tube accelerates ions from the foil anode. Ion currents of 10 kA at a density of 5kA/cm 2 with pulse length of 50 ns are obtained using a 5 kJ, 450 kV, 3 Ω diode. (author)

  2. Cavity beam position monitor system for the Accelerator Test Facility 2

    Directory of Open Access Journals (Sweden)

    Y. I. Kim

    2012-04-01

    Full Text Available The Accelerator Test Facility 2 (ATF2 is a scaled demonstrator system for final focus beam lines of linear high energy colliders. This paper describes the high resolution cavity beam position monitor (BPM system, which is a part of the ATF2 diagnostics. Two types of cavity BPMs are used, C-band operating at 6.423 GHz, and S-band at 2.888 GHz with an increased beam aperture. The cavities, electronics, and digital processing are described. The resolution of the C-band system with attenuators was determined to be approximately 250 nm and 1  μm for the S-band system. Without attenuation the best recorded C-band cavity resolution was 27 nm.

  3. Electron bunch length measurement with a wakefield radiation decelerator

    Directory of Open Access Journals (Sweden)

    Weiwei Li

    2014-03-01

    Full Text Available In this paper, we propose a novel method to measure the electron bunch length with a dielectric wakefield radiation (DWR decelerator which is composed of two dielectric-lined waveguides (DLWs and an electron spectrometer. When an electron beam passes through a DLW, the DWR is excited which leads to an energy loss of the electron beam. The energy loss is found to be largely dependent on the electron bunch length and can be easily measured by an electron spectrometer which is essential for a normal accelerator facility. Our study shows that this method has a high resolution and a great simplicity.

  4. Stress Concentration Factor and Stress Intensity Factor with U-notch and Crack in the Beam

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Bo Seong; Lee, Kwang Ho [Kyungpook National Univ., Daegu (Korea, Republic of)

    2016-05-15

    The stress concentration factors and stress intensity factors for a simple beam and a cantilever are analyzed by using finite element method and photoelasticity. Using the analyzed results, the estimated graphs on stress concentration factors and stress intensity factors are obtained. To analyze stress concentration factors of notch, the dimensionless notch length H(height of specimen)/h=1.1-2 and dimensionless gap space r(radius at the notch tip)/h=0.1~0.5 are used, where h=H-c and c is the notch length. As the notch gap length increases and the gap decreases, the stress concentration factors increase. Stress concentration factors of a simple beam are greater than those of a cantilever beam. However, actually, the maximum stress values under a load, a notch length and a gap occur more greatly in the cantilever beam than in the simple beam. To analyze stress intensity factors, the normalized crack length α(crack length)/H=0.2~0.5 is used. As the length of the crack increases, the normalized stress intensity factors increase. The stress intensity factors under a constant load and a crack length occur more greatly in the cantilever beam than in the simple beam.

  5. An in situ measurement of the radio-frequency attenuation in ice at Summit Station, Greenland

    OpenAIRE

    Avva, J.; Kovac, J. M.; Miki, C.; Saltzberg, D.; Vieregg, A. G.

    2014-01-01

    We report an in situ measurement of the electric field attenuation length Lα at radio frequencies for the bulk ice at Summit Station, Greenland, made by broadcasting radio-frequency signals vertically through the ice and measuring the relative power in the return ground bounce signal. We find the depth-averaged field attenuation length to be hLαi = 947+92 −85 m at 75 MHz. While this measurement has clear radioglaciological applications, the radio clarity of the ice also has implications for t...

  6. 0-6722 : spread prestressed concrete slab beam bridges.

    Science.gov (United States)

    2014-08-01

    The Texas Department of Transportation uses : precast prestressed concrete slab beam bridges for : shorter-span bridges of approximately 3050 ft in : length. Conventional slab beam bridges have slab : beams placed immediately adjacent to one anoth...

  7. The effect of nonlinear propagation on heating of tissue: A numerical model of diagnostic ultrasound beams

    Science.gov (United States)

    Cahill, Mark D.; Humphrey, Victor F.; Doody, Claire

    2000-07-01

    Thermal safety indices for diagnostic ultrasound beams are calculated under the assumption that the sound propagates under linear conditions. A non-axisymmetric finite difference model is used to solve the KZK equation, and so to model the beam of a diagnostic scanner in pulsed Doppler mode. Beams from both a uniform focused rectangular source and a linear array are considered. Calculations are performed in water, and in attenuating media with tissue-like characteristics. Attenuating media are found to exhibit significant nonlinear effects for finite-amplitude beams. The resulting loss of intensity by the beam is then used as the source term in a model of tissue heating to estimate the maximum temperature rises. These are compared with the thermal indices, derived from the properties of the water-propagated beams.

  8. Final design of kaon beam K2 at KEK

    International Nuclear Information System (INIS)

    Kurokawa, Shin-ichi; Yamamoto, Akira.

    1977-09-01

    Final design of the 2.3 GeV/c kaon beam K2 is given. The K2 beam starts from the production target in slow extracted beam. Momentum range is 1 GeV/c through 2.3 GeV/c. Nominal total beam length is 27.9 m and solid-angle momentum acceptance is 6.25 msr%ΔP/P. Using a platinum target of diameter 3 mm and length 6 cm, 2.0 GeV/c beam fluxes of 1.0 x 10 6 K + and 5.2 x 10 5 K - per 10 12 13 GeV/c incident protons are expected at the final focus. (auth.)

  9. Photoelectron spectroscopy of liquid water and aqueous solution: Electron effective attenuation lengths and emission-angle anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Ottosson, Niklas [Department of Physics, Uppsala University, SE-75121 Uppsala (Sweden); Faubel, Manfred [Max-Planck-Institut fuer Dynamik und Selbstorganisation, Bunsenstrasse 10, D-37073 Goettingen (Germany); Bradforth, Stephen E. [Department of Chemistry, University of Southern California, Los Angeles, CA 90089 (United States); Jungwirth, Pavel [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, and Center for Biomolecules and Complex Molecular Systems, Flemingovo nam. 2, 16610 Prague 6 (Czech Republic); Winter, Bernd, E-mail: winter@bessy.d [Helmholtz-Zentrum Berlin fuer Materialien und Energie, and BESSY, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Max-Born-Institut, Max-Born-Strasse 2A, D-12489 Berlin (Germany)

    2010-03-15

    Photoelectron (PE) spectroscopy measurements from liquid water and from a 4 m NaI aqueous solution are performed using a liquid microjet in combination with soft X-ray synchrotron radiation. From the oxygen 1s PE signal intensity from liquid water, measured as a function of photon energy (up to 1500 eV), we quantitatively determine relative electron inelastic effective attenuation lengths (EAL) for (photo)electron kinetic energies in the 70-900 eV range. In order to determine the absolute electron escape depths a calibration point is needed, which is not directly accessible by experiment. This information can instead be indirectly derived by comparing PE experiments and molecular dynamics (MD) simulations of an aqueous solution interface where density profiles of water, anions, and cations are distinctively different. We have chosen sodium iodide in water because iodide has a considerable propensity for the solution surface, whereas the sodium cation is repelled from the surface. By measuring the intensities of photoelectrons emitted from different orbitals of different symmetries from each aqueous ion we also evaluate whether gas-phase ionization cross sections and asymmetry parameters can describe the photoemission from ions at and near the aqueous solution/vapor interface. We show that gas-phase data reproduce surprisingly well the experimental observations for hydrated ions as long as the photon energy is sufficiently far above the ionization threshold. Electrons detected at the higher photon energies originate predominantly from deeper layers, suggesting that bulk-solution electron elastic scattering is relatively weak.

  10. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation.

    Science.gov (United States)

    Han, B X; Kalvas, T; Tarvainen, O; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P

    2012-02-01

    The H(-) injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with ∼38 mA beam current in the linac at 60 Hz with a pulse length of up to ∼1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  11. Performance study of a fan beam collimator designed for a multi-modality small animal imaging device

    International Nuclear Information System (INIS)

    Sabbir Ahmed, ASM; Kramer, Gary H.; Semmler, Wolfrad; Peter, Jorg

    2011-01-01

    This paper describes the methodology to design and conduct the performances of a fan beam collimator. This fan beam collimator was designed to use with a multi-modality small animal imaging device and the performance of the collimator was studied for a 3D geometry. Analytical expressions were formulated to calculate the parameters for the collimator. A Monte Carlo model was developed to analyze the scattering and image noises for a 3D object. The results showed that the performance of the fan beam collimator was strongly dependent on the source distribution and position. The fan beam collimator showed increased counting efficiency in comparison to a parallel hole collimator. Inside attenuating medium, the increased attenuating effect outweighed the fan beam increased counting efficiency.

  12. Electron cooling of a bunched ion beam in a storage ring

    Science.gov (United States)

    Zhao, He; Mao, Lijun; Yang, Jiancheng; Xia, Jiawen; Yang, Xiaodong; Li, Jie; Tang, Meitang; Shen, Guodong; Ma, Xiaoming; Wu, Bo; Wang, Geng; Ruan, Shuang; Wang, Kedong; Dong, Ziqiang

    2018-02-01

    A combination of electron cooling and rf system is an effective method to compress the beam bunch length in storage rings. A simulation code based on multiparticle tracking was developed to calculate the bunched ion beam cooling process, in which the electron cooling, intrabeam scattering (IBS), ion beam space-charge field, transverse and synchrotron motion are considered. Meanwhile, bunched ion beam cooling experiments have been carried out in the main cooling storage ring (CSRm) of the Heavy Ion Research Facility in Lanzhou, to investigate the minimum bunch length obtained by the cooling method, and study the dependence of the minimum bunch length on beam and machine parameters. The experiments show comparable results to those from simulation. Based on these simulations and experiments, we established an analytical model to describe the limitation of the bunch length of the cooled ion beam. It is observed that the IBS effect is dominant for low intensity beams, and the space-charge effect is much more important for high intensity beams. Moreover, the particles will not be bunched for much higher intensity beam. The experimental results in CSRm show a good agreement with the analytical model in the IBS dominated regime. The simulation work offers us comparable results to those from the analytical model both in IBS dominated and space-charge dominated regimes.

  13. Longitudinal Diagnostics for Short Electron Beam Bunches

    Energy Technology Data Exchange (ETDEWEB)

    Loos, H.; /SLAC

    2010-06-11

    Single-pass free electron lasers require high peak currents from ultra-short electron bunches to reach saturation and an accurate measurement of bunch length and longitudinal bunch profile is necessary to control the bunch compression process from low to high beam energy. The various state-of-the-art diagnostics methods from ps to fs time scales using coherent radiation detection, RF deflection, and other techniques are presented. The use of linear accelerators as drivers for free electron lasers (FEL) and the advent of single-pass (SASE) FELs has driven the development of a wide range of diagnostic techniques for measuring the length and longitudinal distribution of short and ultra-short electron bunches. For SASE FELs the radiation power and the length of the undulator needed to achieve saturation depend strongly on the charge density of the electron beam. In the case of X-ray FELs, this requires the accelerator to produce ultra-high brightness beams with micron size transverse normalized emittances and peak currents of several kA through several stages of magnetic bunch compression. Different longitudinal diagnostics are employed to measure the peak current and bunch profile along these stages. The measurement techniques can be distinguished into different classes. Coherent methods detect the light emitted from the beam by some coherent radiation process (spectroscopic measurement), or directly measure the Coulomb field traveling with the beam (electro-optic). Phase space manipulation techniques map the time coordinate onto a transverse dimension and then use conventional transverse beam diagnostics (transverse deflector, rf zero-phasing). Further methods measure the profile or duration of an incoherent light pulse emitted by the bunch at wavelengths much shorted than the bunch length (streak camera, fluctuation technique) or modulate the electron beam at an optical wavelength and then generate a narrow bandwidth radiation pulse with the longitudinal profile of

  14. Earth-Space Link Attenuation Estimation via Ground Radar Kdp

    Science.gov (United States)

    Bolen, Steven M.; Benjamin, Andrew L.; Chandrasekar, V.

    2003-01-01

    A method of predicting attenuation on microwave Earth/spacecraft communication links, over wide areas and under various atmospheric conditions, has been developed. In the area around the ground station locations, a nearly horizontally aimed polarimetric S-band ground radar measures the specific differential phase (Kdp) along the Earth-space path. The specific attenuation along a path of interest is then computed by use of a theoretical model of the relationship between the measured S-band specific differential phase and the specific attenuation at the frequency to be used on the communication link. The model includes effects of rain, wet ice, and other forms of precipitation. The attenuation on the path of interest is then computed by integrating the specific attenuation over the length of the path. This method can be used to determine statistics of signal degradation on Earth/spacecraft communication links. It can also be used to obtain real-time estimates of attenuation along multiple Earth/spacecraft links that are parts of a communication network operating within the radar coverage area, thereby enabling better management of the network through appropriate dynamic routing along the best combination of links.

  15. Effective x-ray attenuation measurements with full field digital mammography

    International Nuclear Information System (INIS)

    Heine, John J.; Behera, Madhusmita

    2006-01-01

    This work shows that effective x-ray attenuation coefficients may be estimated by applying Beer's Law to phantom image data acquired with the General Electric Senographe 2000D full field digital mammography system. Theoretical developments are provided indicating that an approximate form of the Beer's relation holds for polychromatic x-ray beams. The theoretical values were compared with experimentally determined measured values, which were estimated at various detector locations. The measured effective attenuation coefficients are in agreement with those estimated with theoretical developments and numerical integration. The work shows that the measured quantities show little spatial variation. The main ideas are demonstrated with polymethylmethacrylate and breast tissue equivalent phantom imaging experiments. The work suggests that the effective attenuation coefficients may be used as known values for radiometric standardization applications that compensate for the image acquisition influences. The work indicates that it is possible to make quantitative attenuation coefficient measurements from a system designed for clinical purposes

  16. Predicting factors for conversion from fluoroscopy guided Percutaneous transthoracic needle biopsy to cone-beam CT guided Percutaneous transthoracic needle biopsy

    International Nuclear Information System (INIS)

    Lee, Kang Ji; Han, Young Min; Jin, Gong Yong; Song, Ji Soo

    2015-01-01

    To evaluate the predicting factors for conversion from fluoroscopy guided percutaneous transthoracic needle biopsy (PTNB) to cone-beam CT guided PTNB. From January 2011 to December 2012, we retrospectively identified 38 patients who underwent cone-beam CT guided PTNB with solid pulmonary lesions, and 76 patients who underwent fluoroscopy guided PTNB were matched to the patients who underwent cone-beam CT guided PTNB for age, sex, and lesion location. We evaluated predicting factors such as, long-axis diameter, short-axis diameter, anterior-posterior diameter, and CT attenuation value of the solid pulmonary lesion affecting conversion from fluoroscopy guided PTNB to cone-beam CT guided PTNB. Pearson χ 2 test, Fisher exact test, and independent t test were used in statistical analyses; in addition, we also used receiver operating characteristics curve to find the proper cut-off values affecting the conversion to cone-beam CT guided PTNB. Short-axis, long-axis, anterior-posterior diameter and CT attenuation value of the solid pulmonary lesion in patients who underwent fluoroscopy guided PTNB were 2.70 ± 1.57 cm, 3.40 ± 1.92 cm, 3.06 ± 1.81 cm, and 35.67 ± 15.70 Hounsfield unit (HU), respectively. Short-axis, long-axis, anterior-posterior diameter and CT attenuation value of the solid pulmonary lesion in patients who underwent cone-beam CT guided PTNB were 1.60 ± 1.30 cm, 2.20 ± 1.45 cm, 1.91 ± 1.99 cm, and 18.32 ± 23.11 HU, respectively. Short-axis, long-axis, anterior-posterior diameter, and CT attenuation value showed a significantly different mean value between the 2 groups (p = 0.001, p < 0.001, p = 0.003, p < 0.001, respectively). Odd ratios of CT attenuation value and short-axis diameter of the solid pulmonary lesion were 0.952 and 0.618, respectively. Proper cut-off values affecting the conversion to cone-beam CT guided PTNB were 1.65 cm (sensitivity 68.4%, specificity 71.1%) in short-axis diameter and 29.50 HU (sensitivity 65.8%, specificity 65.8%) in

  17. Effectiveness of the use of emission data by fan beam collimator for TCT on TCT/ECT simultaneous acquisition

    International Nuclear Information System (INIS)

    Takahashi, Yasuyuki; Nishimura, Yoshihiro; Murase, Kenya

    2003-01-01

    On transmission CT (TCT)/emission CT (ECT) simultaneous acquisition in the three detector SPECT system (one fan beam collimator for TCT and two parallel-hole collimators for ECT), count loss of the ECT data of the fan beam collimator for TCT occurs, which may deteriorate image quality. We thought that it might be possible to retrieve the ECT counts and improve image quality, when ECT data of the fan beam collimator for TCT were added to ECT data of two other parallel-hole collimators. To prove our hypothesis, we performed a phantom and clinical studies. We compared the ECT images of the following protocols: ECT data of a fan beam collimator+ECT data of two parallel beam collimators with attenuation correction (protocol A), ECT data of two parallel beam collimators with attenuation correction (protocol B), ECT data of two parallel beam collimators without attenuation correction (protocol C). In the phantom study, pixel counts of protocol A were as 1.3 to 1.6 times as protocol B. Profile curve improved up to 7 to 10%. Clinical images also improved. In conclusion, ECT data of the fan beam collimator for TCT can be retrieved to increase ECT counts, which improved image quality. (author)

  18. Spread prestressed concrete slab beam bridges.

    Science.gov (United States)

    2015-04-01

    TxDOT uses prestressed slab beam bridges for short-span bridges ranging from approximately 3050 ft in : length. These bridges have precast, pretensioned slab beams placed immediately adjacent to one another : with a cast-in-place slab made composi...

  19. Edge imaging in intense beams

    Directory of Open Access Journals (Sweden)

    S. Bernal

    2002-06-01

    Full Text Available The appearance of rings of charge observed near the edge of beams from high-perveance guns is described with a simple ray tracing technique inspired by the particle-core model. We illustrate the technique, which has no analog in light optics, with examples from experiments employing solenoid focusing of an electron beam. The rings of charge result from the combined effects of external focusing and space-charge forces acting on paraxial fringe particles with relatively large initial transverse velocities. The model is independent of the physical mechanisms responsible for the fringe particles. Furthermore, the focal length for edge imaging in a uniform focusing channel is derived using a linearized trajectory equation for the motion of fringe particles. Counterintuitively, the focal length decreases as the beam current increases.

  20. Shielding measurements for a 230 MeV proton beam

    International Nuclear Information System (INIS)

    Siebers, J.V.

    1990-01-01

    Energetic secondary neutrons produced as protons interact with accelerator components and patients dominate the radiation shielding environment for proton radiotherapy facilities. Due to the scarcity of data describing neutron production, attenuation, absorbed dose, and dose equivalent values, these parameters were measured for 230 MeV proton bombardment of stopping length Al, Fe, and Pb targets at emission angles of 0 degree, 22 degree, 45 degree, and 90 degree in a thick concrete shield. Low pressure tissue-equivalent proportional counters with volumes ranging from 1 cm 3 to 1000 cm 3 were used to obtain microdosimetric spectra from which absorbed dose and radiation quality are deduced. Does equivalent values and attenuation lengths determined at depth in the shield were found to vary sharply with angle, but were found to be independent of target material. Neutron dose and radiation length values are compared with Monte Carlo neutron transport calculations performed using the Los Alamos High Energy Transport Code (LAHET). Calculations used 230 MeV protons incident upon an Fe target in a shielding geometry similar to that used in the experiment. LAHET calculations overestimated measured attenuation values at 0 degree, 22 degree, and 45 degree, yet correctly predicted the attenuation length at 90 degree. Comparison of the mean radiation quality estimated with the Monte Carlo calculations with measurements suggest that neutron quality factors should be increased by a factor of 1.4. These results are useful for the shielding design of new facilities as well as for testing neutron production and transport calculations

  1. The 50 MeV Beam Test Facility at LBL

    International Nuclear Information System (INIS)

    Leemans, W.; Behrsing, G.; Kim, K.J.; Krupnick, J.; Matuk, C.; Selph, F.; Chattopadhyay, S.

    1993-05-01

    A new beam line, expected to be built by September 1993, will transport the 50 MeV electron beam from the ALS LINAC into an experimental area to support various R ampersand D activities in the Center for Beam Physics at LBL. A variety of experiments are planned involving the interaction of such a relativistic electron beam with plasmas (plasma focusing), laser beams (generation of femtosecond X-ray pulses) and electromagnetic cavities (Crab cavities etc....). The beam line is designed using the measured emittance and Twiss parameters of the ALS linac. It accommodates the different requirements of the various experiments on the electron beam properties (charge, energy, pulse length) and on the handling of the beam before and after the interaction point. Special attention has also been given to incorporate diagnostics for measuring the beam properties (such as the electron energy, bunch length and charge) needed in the interpretation of the experiments

  2. Fast electron beam charge injection and switching in dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Fitting, Hans-Joachim; Schreiber, Erik [Institute of Physics, University of Rostock, Universitaetsplatz 3, 18051 Rostock (Germany); Touzin, Matthieu [Laboratoire de Structure et Proprietes de l' Etat Solide, UMR CNRS 8008, Universite de Lille 1, 59655 Villeneuve d' Ascq (France)

    2011-04-15

    Basic investigations of secondary electrons (SE) relaxation and attenuation are made by means of Monte Carlo simulations using ballistic electron scattering and interactions with optical and acoustic phonons as well as impact ionization of valence band electrons. Then the electron beam induced selfconsistent charge transport and secondary electron emission in insulators are described by means of an electron-hole flight-drift model (FDM). Ballistic secondary electrons and holes, their attenuation and drift, as well as their recombination, trapping, and field- and temperature-dependent Poole-Frenkel detrapping are included. Whereas the initial switching-on of the secondary electron emission proceeds over milli-seconds due to long-lasting selfconsistent charging, the switching-off process occurs much faster, even over femto-seconds. Thus a rapid electron beam switching becomes possible with formation of ultra-short electron beam pulses offering an application in stroboscopic electron microscopy and spectroscopy. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. The derivation of a bistable criterion for double V-beam mechanisms

    International Nuclear Information System (INIS)

    Wu, Cho-Chun; Chen, Rongshun; Lin, Meng-Ju

    2013-01-01

    This study presents the theoretical derivation of the discriminant D as a structural and material criterion for determining whether bistability can occur in micromechanically bistable mechanisms. When D < 0, the mechanism displays bistable behavior if an appropriate force is applied to push the bistable mechanism, whereas when D > 0, bistable behavior cannot occur. The proposed V-beam bistable mechanism was successfully fabricated with various beam lengths and tilted angles. The experiments conducted in this study validated the theoretical study of bistability. A comparison of the theoretical solutions and experimental results shows good agreement. Results further show that to design a bistable V-beam mechanism, the tilted angle should be larger for the same beam length, whereas the beam length should be longer for the same tilted angle. The developed discriminant D can be used to predict if a bistable mechanism can achieve bistable behavior based on structural sizes and material properties. Consequently, researchers can reduce trial-and-error experiments when designing a bistable mechanism. A V-beam with a larger tilted angle of up to 5° was successfully fabricated to act as a bistable mechanism, compared to a 3.5° tilted angle in existing studies. Consequently, the proposed method has the advantages of shorter beam lengths and smaller device areas. (paper)

  4. Gamma-ray attenuation to measure water contents and/or bulk densities of porous materials

    International Nuclear Information System (INIS)

    Ferraz, E.S.B.

    1983-01-01

    Attenuation of gamma radiation during transmission through soil and porous materials has been used for approximately three decades as a method for determining volumetric water content, theta, and bulk density, rho. This method is particularly suited for laboratory determinations of theta and rho in soil columns but it also has been used with success under field conditions. Measurements of attentuation of a collimated beam of monoernergetic gamma-rays has been used successfully by many investigators to provide rapid, non-destructive determinations for small volumes of soil. For stable soils, i.e. soils which do not swell upon wetting or shrink upon drying, rho may be assumed to remain constant during water flow through the soil, and thus changes in intensity or transmitted radiation may be attributed to changes in water content, theta. However, for unstable soils, the dry bulk density is subject to change with time during water flow through the soil and cannot be assumed to be a constant. Several investigators have utilized either a single beam of dual-energy gamma photons or two separate monoenergetic photon beams with greatly different energies to simultaneously determine theta and rho in these soils. A general review of gamma-ray attenuation methods for determining theta and rho in laboratory soil cores and in field soil profiles is reported in this paper. Theoretical equations for transmission and attenuation of gamma radiation in soils are presented for both single and double beams of gamma photons. Sensitivity, precision, accuracy, and experimental errors for the method are evaluated and discussed with respect to the theory. (author)

  5. Relationship between attenuation coefficients and dose-spread kernels

    International Nuclear Information System (INIS)

    Boyer, A.L.

    1988-01-01

    Dose-spread kernels can be used to calculate the dose distribution in a photon beam by convolving the kernel with the primary fluence distribution. The theoretical relationships between various types and components of dose-spread kernels relative to photon attenuation coefficients are explored. These relations can be valuable as checks on the conservation of energy by dose-spread kernels calculated by analytic or Monte Carlo methods

  6. Microwave attenuation with composite of copper microwires

    International Nuclear Information System (INIS)

    Gorriti, A.G.; Marin, P.; Cortina, D.; Hernando, A.

    2010-01-01

    It is shown that copper microwires composite media attenuates microwave reflection of metallic surfaces. We show how the distance to the metallic surface, as well as the length and volume fraction of microwires, determine the frequency of maximum absorption and the return loss level. Furthermore, we were able to fit the experimental results with a theoretical model based on Maxwell-Garnett mixing formula.

  7. Microwave attenuation with composite of copper microwires

    Energy Technology Data Exchange (ETDEWEB)

    Gorriti, A.G.; Marin, P. [Instituto de Magnetismo Aplicado, (UCM-ADIF-CSIC) and Departamento de Fisica de Materiales (UCM). P.O. Box 155, Las Rozas, Madrid 28230 (Spain); Cortina, D. [Micromag S.L., Las Rozas, Madrid 28230 (Spain); Hernando, A., E-mail: antonio.hernando@adif.e [Instituto de Magnetismo Aplicado, (UCM-ADIF-CSIC) and Departamento de Fisica de Materiales (UCM). P.O. Box 155, Las Rozas, Madrid 28230 (Spain); Micromag S.L., Las Rozas, Madrid 28230 (Spain)

    2010-05-15

    It is shown that copper microwires composite media attenuates microwave reflection of metallic surfaces. We show how the distance to the metallic surface, as well as the length and volume fraction of microwires, determine the frequency of maximum absorption and the return loss level. Furthermore, we were able to fit the experimental results with a theoretical model based on Maxwell-Garnett mixing formula.

  8. Determination of H, C, N, O content of bulk materials from neutron-attenuation measurements

    International Nuclear Information System (INIS)

    Overley, J.C.

    1985-01-01

    Several bulk samples ranging from chemical compounds to cereal grains have been nondestructively analyzed through neutron-attenuation measurements. A fast-neutron continuum was produced by an accelerator. Attenuations were measured by pulsed-beam, time-of-flight techniques. Average hydrogen, carbon, nitrogen, and oxygen contents were deduced by comparing attenuations to those measured for pure elements. Statistical precisions of 0.3-0.7 atomic percent were achieved for each element in about 10 min. Comparisons with results of other analysis techniques indicate that similar levels of accuracy are possible, even in the presence of small amounts of heavier elements. (author)

  9. Measurement of Rayleigh Wave Beams Using Angle Beam Wedge Transducers as the Transmitter and Receiver with Consideration of Beam Spreading.

    Science.gov (United States)

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo

    2017-06-20

    A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably.

  10. A new technique to characterize CT scanner bow-tie filter attenuation and applications in human cadaver dosimetry simulations

    Science.gov (United States)

    Li, Xinhua; Shi, Jim Q.; Zhang, Da; Singh, Sarabjeet; Padole, Atul; Otrakji, Alexi; Kalra, Mannudeep K.; Xu, X. George; Liu, Bob

    2015-01-01

    Purpose: To present a noninvasive technique for directly measuring the CT bow-tie filter attenuation with a linear array x-ray detector. Methods: A scintillator based x-ray detector of 384 pixels, 307 mm active length, and fast data acquisition (model X-Scan 0.8c4-307, Detection Technology, FI-91100 Ii, Finland) was used to simultaneously detect radiation levels across a scan field-of-view. The sampling time was as short as 0.24 ms. To measure the body bow-tie attenuation on a GE Lightspeed Pro 16 CT scanner, the x-ray tube was parked at the 12 o’clock position, and the detector was centered in the scan field at the isocenter height. Two radiation exposures were made with and without the bow-tie in the beam path. Each readout signal was corrected for the detector background offset and signal-level related nonlinear gain, and the ratio of the two exposures gave the bow-tie attenuation. The results were used in the geant4 based simulations of the point doses measured using six thimble chambers placed in a human cadaver with abdomen/pelvis CT scans at 100 or 120 kV, helical pitch at 1.375, constant or variable tube current, and distinct x-ray tube starting angles. Results: Absolute attenuation was measured with the body bow-tie scanned at 80–140 kV. For 24 doses measured in six organs of the cadaver, the median or maximum difference between the simulation results and the measurements on the CT scanner was 8.9% or 25.9%, respectively. Conclusions: The described method allows fast and accurate bow-tie filter characterization. PMID:26520720

  11. Inhomogeneity of neutron and gamma-ray attenuation in biological shields

    Energy Technology Data Exchange (ETDEWEB)

    El-bakkoush, F A; El-Ghobary, A M; Megahid, R M [Reactor and Neutron physics Department, Nuclear Research Center, A.E.A., Cairo (Egypt)

    1997-12-31

    Measurements have been carried-out to investigate the attenuation properties of some materials which are used as biological shields around nuclear radiation sources. Investigation was performed by measuring the transmitted fast neutron and gamma-spectra through cylindrical samples of magnetite- limonite, steel and cellulose shields. The neutron and gamma spectra were measured by a neutron-gamma spectrometer with stilbene scintillator. Discrimination between neutron and gamma pulses was achieved by a discrimination method. The obtained results are displayed in the form of neutron and gamma spectra and attenuation relations which are used to derive the total macroscopic cross-sections for neutrons and total linear attenuation coefficients for gamma-rays. The values of neutron and gamma relaxation lengths are also derived for the investigated materials. 10 figs., 1 tabs.

  12. The LBL multiple beam experiments

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Keefe, D.; Kim, C.; Meuth, H.; Warwick, A.

    1987-01-01

    The multiple-beam induction linac approach to a heavy ion driver for inertial confinement fusion features continuous current amplification along the accelerator and a minimum of beam manipulations from source to pellet. Current amplification and bunch length control require careful shaping of the accelerating voltages. MBE-4 is designed as a four-beam induction linac that models much of the accelerator physics of the electrostatically focused section of a significantly longer induction accelerator. Four space-charge-dominated Cs + beams, initially about one meter in length at a current of 13 mA, are focused by electrostatic quadrupoles and accelerated in parallel from 200 to nearly 600 keV. The energy will reach approximately one MeV when the accelerator is complete. Experiments have proceeded in parallel with the construction of the apparatus which began in FY 85 and is now more than half complete. The results show a current amplification, so far, by a factor of 2.8 in good agreement with the longitudinal acceleration calculations. 9 refs

  13. What is the real value of diffusion length in GaN?

    International Nuclear Information System (INIS)

    Yakimov, E.B.

    2015-01-01

    Highlights: • The applicability of SEM methods for diffusion length measurements in GaN is discussed. • The discussion is based on our own experiments and on the available literature data. • A study of EBIC dependence on beam energy suits well for a small diffusion length. • The most reliable diffusion length values in the state-of-the-art n-GaN are evaluated. - Abstract: The applicability of scanning electron microscopy methods for excess carrier diffusion length measurements in GaN is discussed. The discussion is based on author’s experiments and on the available literature data. It is shown that for semiconductors with submicron diffusion length special attention should be paid to the choice of measuring method and experimental conditions. Some reasons for diffusion length overestimation and underestimation are analyzed. It is shown that a measurement of collected current dependence on electron beam energy is the most suitable method for submicron diffusion length evaluations because it is much easier to meet conditions for a proper application of this method than for other widely used methods. The analysis of data previously reported in literature and author’s results have shown that the diffusion length values in the range from 70 to 400 nm are the most reliable for state-of-the-art n-GaN epilayers

  14. Beam profile for Malaysian electron accelerator

    International Nuclear Information System (INIS)

    Abu Bakar Ghazali; Muhamad Zahidee Taat

    2007-01-01

    This paper comprises of two calculations that require in designing a dose profile for an electron accelerator machine before its fabrication. The first is to calculate the beam deflection due to changes of high voltage (HV) supply as well as the deflection coil currents so that the electron beam will only scan at the window foil of 18 cm length and 6 cm width. Secondly, we also require to calculate the beam profile at 50 mm underneath the window foil. The electron gun that produces a beam of 10 mm diameter has to be oscillated in a sawtooth wave for the prescribed window size at frequencies of 50 Hz and 400 Hz along the length and width directions respectively. For the beam deflection, we apply a basic formula from Lorentz force law to obtain a set of HV supply and the coil current that is suitable for both deflections and this result can assist in designing the coil current against HV changes via an electronic controller. The dose profile was calculated using the RMS current formulation along the length direction. We found that the measured and the calculated RMS currents are in comparable for the case of 1 MeV, 50 mA accelerator facility that is going to be installed at Nuclear Malaysia complex. A similar measurement will be carried out for our locally designed accelerator of 150 KeV, 10 mA after fabrication and installation of the machine are completed. (Author)

  15. Longitudinal impedance of a step-in for a round beam at arbitrary beam energy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Khateeb, A.M., E-mail: a.alkhateeb@gsi.d [FAIR-Accelerator Theory Group, GSI Darmstadt, Planckstr. 1, D-64291 Darmstadt (Germany); Boine-Frankenheim, O.; Plotnikov, A. [FAIR-Accelerator Theory Group, GSI Darmstadt, Planckstr. 1, D-64291 Darmstadt (Germany); Shim, S.Y. [FAIR Division, Magnettechnik/Kryotechnik, GSI Darmstadt, Planckstr. 1, D-64291 Darmstadt (Germany); Haenichen, L. [Technische Universitaet Darmstadt, Institut fuer Theorie elektromagnetischer Felder, TEMF, Schlossgartenstr. 8, D-64289 Darmstadt (Germany)

    2011-01-21

    Contribution of step-in geometric discontinuity to the longitudinal coupling impedance has been obtained analytically using exact field matching. We assumed a perfectly conducting beam-pipe wall of two different radii connected coaxially at z=0 so that the contribution to the longitudinal coupling impedance is purely due to the beam-pipe geometric discontinuity. We also obtained the longitudinal loss factor for a Gaussian beam as a function of beam energy and bunch length. Results have been analyzed numerically for some representative parameters close to real machine parameters. Analytical results have also been compared with numerical simulation from CST at relativistic beam energies. We found a very good agreement between theory and simulation.

  16. E-beam heated linear solenoid reactors

    International Nuclear Information System (INIS)

    Benford, J.; Bailey, V.; Oliver, D.

    1976-01-01

    A conceptual design and system analysis shows that electron beam heated linear solenoidal reactors are attractive for near term applications which can use low gain fusion sources. Complete plant designs have been generated for fusion based breeders of fissile fuel over a wide range of component parameters (e.g., magnetic fields, reactor lengths, plasma densities) and design options (e.g., various radial and axial loss mechanisms). It appears possible that a reactor of 100 to 300 meters length operating at power levels of 1000 MWt can economically produce 2000 to 8000 kg/yr of 233 U to supply light water reactor fuel needs beyond 2000 A.D. Pure fusion reactors of 300 to 500 meter lengths are possible. Physics and operational features of reactors are described. Beam heating by classical and anomalous energy deposition is reviewed. The technology of the required beams has been developed to MJ/pulse levels, within a factor of 20 of that needed for full scale production reactors. The required repetitive pulsing appears practical

  17. Beam position monitor readout and control in the SLC linac

    International Nuclear Information System (INIS)

    Bogart, J.; Phinney, N.; Ross, M.; Yaffe, D.

    1985-04-01

    A beam position monitoring system has been implemented in the first third of the SLC linac which provides a complete scan of the trajectory on a single beam pulse. The data is collected from the local micro-computers and viewed with an updating display at a console or passed on to application programs. The system must operate with interlaced beams so the scans are also interlaced, providing each user with the ability to select the beam, the update rate, and the attenuation level in the digitizing hardware. In addition each user calibrates the hardware for his beam. A description of the system architecture will be presented. 6 refs., 4 figs

  18. Exploratory experimental investigations on post-tensioned structural glass beams

    DEFF Research Database (Denmark)

    Louter, C.; Nielsen, Jens Henrik; Belis, J.

    2013-01-01

    This paper discusses two projects on post-tensioned glass beams, performed at EPFL and DTU, respectively. In these projects small scale glass beams (length of 1.5m and 1m) are post-tensioned by means of steel threaded rods tensioned at the beam ends. The purpose of post-tensioning glass beams...

  19. Calibration methodology for instruments utilized in X radiation beams, diagnostic level

    International Nuclear Information System (INIS)

    Penha, M. da; Potiens, A.; Caldas, L.V.E.

    2004-01-01

    Methodologies for the calibration of diagnostic radiology instruments were established at the Calibration Laboratory of IPEN. The methods may be used in the calibration procedures of survey meters used in radiation protection measurements (scattered radiation), instruments used in direct beams (attenuated and non attenuated beams) and quality control instruments. The established qualities are recommended by the international standards IEC 1267 and ISO 4037-3. Two ionization chambers were used as reference systems, one with a volume of 30 cm 3 for radiation protection measurements, and the other with a volume of 1 cm 3 for direct beam measurements. Both are traceable to the German Primary Laboratory of Physikalisch-Technische Bundesanstalt (PTB). In the case of calibration of quality control instruments, a non-invasive method using the measurement of the spectrum endpoint was established with a portable gamma and X-ray Intertechnique spectrometer system. The methods were applied to survey meters (radiation protection measurements), ionization chambers (direct beam measurements) and k Vp meters (invasive and non-invasive instruments). (Author)

  20. Calibration methodology for instruments utilized in X radiation beams, diagnostic level

    Energy Technology Data Exchange (ETDEWEB)

    Penha, M. da; Potiens, A.; Caldas, L.V.E. [Instituto de Pesquisas Energeticas e Nucleares, Comissao Nacional de Energia Nuclear, Sao Paulo (Brazil)]. E-mail: mppalbu@ipen.br

    2004-07-01

    Methodologies for the calibration of diagnostic radiology instruments were established at the Calibration Laboratory of IPEN. The methods may be used in the calibration procedures of survey meters used in radiation protection measurements (scattered radiation), instruments used in direct beams (attenuated and non attenuated beams) and quality control instruments. The established qualities are recommended by the international standards IEC 1267 and ISO 4037-3. Two ionization chambers were used as reference systems, one with a volume of 30 cm{sup 3} for radiation protection measurements, and the other with a volume of 1 cm{sup 3} for direct beam measurements. Both are traceable to the German Primary Laboratory of Physikalisch-Technische Bundesanstalt (PTB). In the case of calibration of quality control instruments, a non-invasive method using the measurement of the spectrum endpoint was established with a portable gamma and X-ray Intertechnique spectrometer system. The methods were applied to survey meters (radiation protection measurements), ionization chambers (direct beam measurements) and k Vp meters (invasive and non-invasive instruments). (Author)

  1. Attenuation (1/Q) estimation in reflection seismic records

    International Nuclear Information System (INIS)

    Raji, Wasiu; Rietbrock, Andreas

    2013-01-01

    Despite its numerous potential applications, the lack of a reliable method for determining attenuation (1/Q) in seismic data is an issue when utilizing attenuation for hydrocarbon exploration. In this paper, a new method for measuring attenuation in reflection seismic data is presented. The inversion process involves two key stages: computation of the centroid frequency for the individual signal using a variable window length and fast Fourier transform; and estimation of the difference in the centroid frequency and travel time for paired incident and transmitted signals. The new method introduces a shape factor and a constant which allows several spectral shapes to be used to represent a real seismic signal without altering the mathematical model. Application of the new method to synthetic data shows that it can provide reliable estimates of Q using any of the spectral shapes commonly assumed for real seismic signals. Tested against two published methods of Q measurement, the new method shows less sensitivity to interference from noise and change of frequency bandwidth. The method is also applied to a 3D data set from the Gullfaks field, North Sea, Norway. The trace length is divided into four intervals: AB, BC, CD, and DE. Results show that interval AB has the lowest 1/Q value, and that interval BC has the highest 1/Q value. The values of 1/Q measured in the CDP stack using the new method are consistent with those measured using the classical spectral ratio method. (paper)

  2. Design of a digital beam attenuation system for computed tomography. Part II. Performance study and initial results

    International Nuclear Information System (INIS)

    Szczykutowicz, Timothy P.; Mistretta, Charles A.

    2013-01-01

    Purpose: The purpose of this work is to present a performance study of the digital beam attenuator (DBA) for implementing fluence field modulated CT (FFMCT) using a simulation framework developed to model the incorporation of the DBA into an existing CT system. Additionally, initial results will be presented using a prototype DBA and the realization of the prototype will be described. To our knowledge, this study represents the first experimental use of a device capable of modulating x-ray fluence as a function of fan angle using a CT geometry. Methods: To realize FFMCT, the authors propose to use a wedge design in which one wedge is held stationary and another wedge is moved over the stationary wedge. Due to the wedge shape, the composite thickness of the two wedges changes as a function of the amount of overlap between the wedges. This design allows for the wedges to modulate the photon fluence incident onto a patient. Using a simulation environment, the effect of changing the number of wedges has on dose, scatter, detector dynamic range, and noise uniformity is explored. Experimental results are presented using a prototype DBA having ten Fe wedges and a c-arm CT system geometry. The experimental DBA results are compared to non-DBA scans using scatter and detector dynamic range as metrics. Both flat field and bowtie filtered CT acquisitions were simulated for comparison with the DBA. Results: Numerical results suggest that substantial gains in noise uniformity and scatter-to-primary ratio (SPR) can be obtained using only seven wedges. After seven wedges, the decrease in noise ununiformity and SPR falls off at a lower rate. Simulations comparing CT acquisitions between flat field, bowtie enabled, and DBA CT acquisitions suggest DBA-FFMCT can reduce dose relative to flat field CT by ≈3 times. A bowtie filter under the same imaging conditions was shown to only allow a dose reduction of 1.65 times. Experimentally, a 10 wedge DBA prototype result showed a SPR

  3. Electron Bunch Length Diagnostic With Coherent Smith-Purcell Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, D.C.

    1997-05-12

    The authors have designed a new technique for measuring subpicosecond electron bunch lengths using coherent Smith-Purcell radiation. This new diagnostic technique involves passing the electron beam in close proximity of a grating with a period comparable to the electron bunch length. The emitted Smith-Purcell radiation will have a coherent component whose angular position and distribution are directly related to the electron bunch length and longitudinal profile, respectively. This new diagnostic technique is inherently simple, inexpensive and non-intercepting. The authors show that the new technique is also scaleable to femtosecond regime.

  4. Electron Bunch Length Diagnostic With Coherent Smith-Purcell Radiation

    International Nuclear Information System (INIS)

    Nguyen, D.C.

    1997-01-01

    The authors have designed a new technique for measuring subpicosecond electron bunch lengths using coherent Smith-Purcell radiation. This new diagnostic technique involves passing the electron beam in close proximity of a grating with a period comparable to the electron bunch length. The emitted Smith-Purcell radiation will have a coherent component whose angular position and distribution are directly related to the electron bunch length and longitudinal profile, respectively. This new diagnostic technique is inherently simple, inexpensive and non-intercepting. The authors show that the new technique is also scaleable to femtosecond regime

  5. Electron beam solenoid reactor concept

    International Nuclear Information System (INIS)

    Bailey, V.; Benford, J.; Cooper, R.; Dakin, D.; Ecker, B.; Lopez, O.; Putman, S.; Young, T.S.T.

    1977-01-01

    The electron Beam Heated Solenoid (EBHS) reactor is a linear magnetically confined fusion device in which the bulk or all of the heating is provided by a relativistic electron beam (REB). The high efficiency and established technology of the REB generator and the ability to vary the coupling length make this heating technique compatible with several radial and axial enery loss reduction options including multiple-mirrors, electrostatic and gas end-plug techniques. This paper addresses several of the fundamental technical issues and provides a current evaluation of the concept. The enhanced confinement of the high energy plasma ions due to nonadiabatic scattering in the multiple mirror geometry indicates the possibility of reactors of the 150 to 300 meter length operating at temperatures > 10 keV. A 275 meter EBHS reactor with a plasma Q of 11.3 requiring 33 MJ of beam eneergy is presented

  6. Backprojection filtering for variable orbit fan-beam tomography

    International Nuclear Information System (INIS)

    Gullberg, G.T.; Zeng, G.L.

    1995-01-01

    Backprojection filtering algorithms are presented for three variable Orbit fan-beam geometries. Expressions for the fan beam projection and backprojection operators are given for a flat detector fan-beam geometry with fixed focal length, with variable focal length, and with fixed focal length and off-center focusing. Backprojection operators are derived for each geometry using transformation of coordinates to transform from a parallel geometry backprojector to a fan-beam backprojector for the appropriate geometry. The backprojection operator includes a factor which is a function of the coordinates of the projection ray and the coordinates of the pixel in the backprojected image. The backprojection filtering algorithm first backprojects the variable orbit fan-beam projection data using the appropriately derived backprojector to obtain a 1/r blurring of the original image then takes the two-dimensional (2D) Fast Fourier Transform (FFT) of the backprojected image, then multiples the transformed image by the 2D ramp filter function, and finally takes the inverse 2D FFT to obtain the reconstructed image. Computer simulations verify that backprojectors with appropriate weighting give artifact free reconstructions of simulated line integral projections. Also, it is shown that it is not necessary to assume a projection model of line integrals, but the projector and backprojector can be defined to model the physics of the imaging detection process. A backprojector for variable orbit fan-beam tomography with fixed focal length is derived which includes an additional factor which is a function of the flux density along the flat detector. It is shown that the impulse response for the composite of the projection and backprojection operations is equal to 1/r

  7. Comparison of SW and TW non-synchronous accelerating cavities as used in electron beam storage rings

    International Nuclear Information System (INIS)

    Zolfaghari, A.; Demos, P.T.; Flanz, J.B.; Jacobs, K.

    1991-01-01

    The authors relate the parameters of detuned standing wave (SW) and non-synchronous beam travelling wave (TW) accelerating cavities of equivalent equilibrium performance when used to compensate for radiation and parasitic energy losses by electrons circulating in a high energy electron storage ring. The relationship is expressed in terms of the coupling parameter β and cavity tuning angle ψ of the TW accelerator's equivalent SW system. A given TW cavity corresponds to a standing wave system possessing specific settings of β and ψ. This is shown for the constant impedance TW waveguide, for which β and ψ can be expressed as explicit functions of TW cavity length 1, attenuation factor I, RF electric field phase velocity V p , and shunt impedance r. Coupling parameter β depends additionally on SW cavity shunt impedance R. The basis they have used for formulating the equivalence of the two systems follows Travelling Wave Cavity Non-Synchronous Beam Loading theory developed by G.A. Loew and Standing Wave Circuit Analysis theory as described by P.B. Wilson

  8. The development of an experimental set-up for the measurement of acoustic attenuation in sea-water and studies of the usefulness of acoustic attenuation as a parameter in oceanographic research

    International Nuclear Information System (INIS)

    Barkmann, R.

    1982-01-01

    A senson element is described for the measurement of ultrasound wave attenuation in water. This device has been developed for in-situ measurements of the additional attenuation caused by particles or air bubbles. Results are presented for the attenuation variations induced by ions and solid-state particles. The method is based on the emission of a 80 μs acoustic sine wave burst at about 10 MHz in a water container of 10 cm length. Then the amplitudes of the decaying echos are registrated, which are caused by reflections at the transducer and the reflector. The sound attenuation coefficient is obtained from the amplitude ratio of the first two echos, taking into account corrections caused by diffraction and reflection effects. (orig./RW) [de

  9. VIVITRON beam transport

    International Nuclear Information System (INIS)

    Nadji, A.

    1989-07-01

    The VIVITRON is a new 35 MV particle accelerator which presents a great number of innovations. One of the major problem is the beam transport in this electrostatic machine of 50 m length for ions with masses between 1 and 200. Our work consisted in the study of various experimental and theoretical aspects of the beam transport in Tandem accelerators from the ion source to the analysing magnet. Calculations of the beam optics were performed with a Strasbourg version of the computer code Transport. They allowed us to optimize the beam transport parameters of the VIVITRON elements. Special attention has been focused on the design of the charge state selector to be installed in the terminal of the new machine. Beam transmission measurements were carried out in the Strasbourg MP 10 Tandem accelerator for ions beams of masses between 1 and 127 and for terminal voltages from 9 to 15 MV. Partial and total transmissions were obtained and explanations of the beam losses were proposed in terms of the vacuum pressure and/or the optics of the beam accelerator system. The results have been extrapolated to the VIVITRON for which the best working conditions are now clearly defined [fr

  10. GANIL beam profile detectors

    International Nuclear Information System (INIS)

    Tribouillard, C.

    1997-01-01

    In the design phase of GANIL which started in 1977, one of the priorities of the project management was equipping the beamlines with a fast and efficient system for visualizing the beam position, thus making possible adjustment of the beam transport lines optics and facilitating beam control. The implantation of some thirty detectors was foreseen in the initial design. The assembly of installed detectors (around 190) proves the advantages of these detectors for displaying all the beams extracted from GANIL: transfer and transport lines, beam extracted from SISSI, very high intensity beam, secondary ion beams from the production target of the LISE and SPEG spectrometers, different SPIRAL project lines. All of these detectors are based on standard characteristics: - standard flange diameter (DN 160) with a standard booster for all the sensors; - identical analog electronics for all the detectors, with networking; - unique display system. The new micro-channel plate non-interceptive detectors (beam profile and ion packet lengths) make possible in-line control of the beam quality and accelerator stability. (author)

  11. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    CERN Document Server

    Kotnig, C

    2015-01-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets' refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  12. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    Science.gov (United States)

    Kotnig, C.; Tavian, L.

    2015-12-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets’ refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  13. Chord length distribution for a compound capsule

    International Nuclear Information System (INIS)

    Pitřík, Pavel

    2017-01-01

    Chord length distribution is a factor important in the calculation of ionisation chamber responses. This article describes Monte Carlo calculations of the chord length distribution for a non-convex compound capsule. A Monte Carlo code was set up for generation of random chords and calculation of their lengths based on the input number of generations and cavity dimensions. The code was written in JavaScript and can be executed in the majority of HTML viewers. The plot of occurrence of cords of different lengths has 3 peaks. It was found that the compound capsule cavity cannot be simply replaced with a spherical cavity of a triangular design. Furthermore, the compound capsule cavity is directionally dependent, which must be taken into account in calculations involving non-isotropic fields of primary particles in the beam, unless equilibrium of the secondary charged particles is attained. (orig.)

  14. A 70 MHz pulsing beam system for protons

    International Nuclear Information System (INIS)

    An Shizhong; Zhang Tianjue; Wu Longcheng; Lv Yinlong; Song Guofang; Guan Fengping; Jia Xianlu

    2008-01-01

    A test beam line for pulsed beam generation for 10 MeV central region model (CRM) of a compact cyclotron is under construction as China Institute of Atomic Energy (CIAE). A 70 MHz continuous H - beam with the energy of dozens of keV or a hundred keV will be pulsed to pulse length of less than 10 ns with the repetition rate of 1-8 MHz. A 70.487 MHz buncher will be used to compress the DC beam into the RF phase acceptance of ±30° of the CRM cyclotron. The 2.2 MHz sine waveform will be used for the chopper. A pulse with the repetition rate to 4.4 MHz and pulse length less than 10 ns is expected after CRM cyclotron. (authors)

  15. On the attenuation of the ambient seismic field

    International Nuclear Information System (INIS)

    Weemstra, C.

    2013-01-01

    Although myriad applications exploiting the ambient seismic field have been reported to date, comparatively little attention has been paid to its potential to resolve subsurface attenuation. The ambient seismic field, however, may ultimately prove itself an invaluable asset in constraining subsurface attenuation structure. Especially areas with dense seismometer coverage hold great potential. Moreover, since this coverage continues to grow, significant developments may await in the future. Subsurface structure in terms of attenuation is of great importance for many reasons. For example, knowledge of the attenuation structure may aid in predicting ground motions caused by future large earthquakes. From a scientific perspective, a great deal of new information may be extracted, potentially fostering research in related fields (e.g., geodynamics, hydrology). Both from an environmental and economic point of view, inversion of the ambient seismic wavefield for attenuation structure may in the future provide a means to image hydrocarbon reservoirs. In sufficiently diffuse wavefields, simple cross-correlation of long noise time series recorded by two receivers results in the response at one of the receivers as if there was a source at the position of the other. I present a case study that shows that thus retrieved surface waves can be used to recover attenuation beneath an array of ocean-bottom seismometers. Given the small aperture of the seismic survey, this is unprecedented. Unambiguous interpretation of recovered attenuation values is of major importance. Lack of understanding of the effect that preprocessing has on the amplitude of the noise cross-correlation prevents such unambiguous interpretation. I carefully examine the effect spectral whitening has on the noise cross-correlation. Emphasis is given to the dependence of the amplitudes on the length of the time windows employed in the cross-correlation procedure. Short time-window lengths may require an additional

  16. Thoughts of fast beam aborts for the international linear collider

    International Nuclear Information System (INIS)

    Mattison, T.

    2006-01-01

    The ILC beam is potentially very destructive, and a fast beam abort system is useful as part of the machine-protection strategy. Scaling laws for kicker pulse power and length optimization are presented. Kicker reference designs for the ILC with full linac aperture, and limited aperture, are presented. Power levels are of order 10 8 W for 100 nsec filling times, and length scales are of order 100 m. Design issues for beam transport to a dump are considered. Separation of the beams at the defining obstruction and energy bandwidth force either a long drift after the septum bend or long quads with large apertures for dispersion control. (author)

  17. A new method for detecting hemoglobin directly in whole blood using photon attenuation techniques

    International Nuclear Information System (INIS)

    Medhat, M.E.

    2014-01-01

    The objective of the proposed work is focused on measuring iron concentration directly in whole blood as tool for estimating hemoglobin and anemic conditions in patients across the world. The investigated method depends on theory of photon attenuation through transmission of low energy in whole blood sample. The mathematical expressions for calculating hemoglobin and iron deficit on blood using photon attenuation are derived. Calculations are carried out for estimating concentration of iron in blood samples taken from children, adults and old patients and therefore measuring their hemoglobin and iron deficit from normal values. Theoretical mass attenuation coefficient values were obtained using the XCOM program. A high-resolution gamma-ray spectrometry based on high purity germanium detector was employed to measure attenuation of strongly collimated monoenergetic gamma beam through blood samples. (author)

  18. Quantitative determination of elastic and inelastic attenuation coefficients by off-axis electron holography

    International Nuclear Information System (INIS)

    Kern, F.; Wolf, D.; Pschera, P.; Lubk, A.

    2016-01-01

    Off-axis electron holography is a well-established transmission electron microscopy technique, typically employed to investigate electric and magnetic fields in and around nanoscale materials, which modify the phase of the reconstructed electron wave function. Here, we elaborate on a detailed analysis of the two characteristic intensity terms that are completing the electron hologram, the conventional image intensity and the interference fringe intensity. We show how both are related to elastic and inelastic scattering absorption at the sample and how they may be separated to analyze the chemical composition of the sample. Since scattering absorption is aperture dependent, a quantitative determination of the corresponding attenuation coefficients (reciprocal mean free path lengths) requires the use of holographic image modi with well-defined objective aperture stops in the back-focal plane of the objective lens. The proposed method extends quantitative electron holography to a correlated three-in-one characterization of electric and magnetic fields, Z-contrast and dielectric losses in materials. - Highlights: • Quantitative determination of attenuation coefficients by electron holography. • Separation of elastic and inelastic attenuation coefficients (mean free path length). • Quantitative determination of the objective aperture semi-angle influence. • Compilation of elastic and inelastic attenuation from different materials.

  19. Quantitative determination of elastic and inelastic attenuation coefficients by off-axis electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Kern, F.; Wolf, D.; Pschera, P.; Lubk, A.

    2016-12-15

    Off-axis electron holography is a well-established transmission electron microscopy technique, typically employed to investigate electric and magnetic fields in and around nanoscale materials, which modify the phase of the reconstructed electron wave function. Here, we elaborate on a detailed analysis of the two characteristic intensity terms that are completing the electron hologram, the conventional image intensity and the interference fringe intensity. We show how both are related to elastic and inelastic scattering absorption at the sample and how they may be separated to analyze the chemical composition of the sample. Since scattering absorption is aperture dependent, a quantitative determination of the corresponding attenuation coefficients (reciprocal mean free path lengths) requires the use of holographic image modi with well-defined objective aperture stops in the back-focal plane of the objective lens. The proposed method extends quantitative electron holography to a correlated three-in-one characterization of electric and magnetic fields, Z-contrast and dielectric losses in materials. - Highlights: • Quantitative determination of attenuation coefficients by electron holography. • Separation of elastic and inelastic attenuation coefficients (mean free path length). • Quantitative determination of the objective aperture semi-angle influence. • Compilation of elastic and inelastic attenuation from different materials.

  20. Performance evaluation of the spectral centroid downshift method for attenuation estimation.

    Science.gov (United States)

    Samimi, Kayvan; Varghese, Tomy

    2015-05-01

    Estimation of frequency-dependent ultrasonic attenuation is an important aspect of tissue characterization. Along with other acoustic parameters studied in quantitative ultrasound, the attenuation coefficient can be used to differentiate normal and pathological tissue. The spectral centroid downshift (CDS) method is one the most common frequencydomain approaches applied to this problem. In this study, a statistical analysis of this method's performance was carried out based on a parametric model of the signal power spectrum in the presence of electronic noise. The parametric model used for the power spectrum of received RF data assumes a Gaussian spectral profile for the transmit pulse, and incorporates effects of attenuation, windowing, and electronic noise. Spectral moments were calculated and used to estimate second-order centroid statistics. A theoretical expression for the variance of a maximum likelihood estimator of attenuation coefficient was derived in terms of the centroid statistics and other model parameters, such as transmit pulse center frequency and bandwidth, RF data window length, SNR, and number of regression points. Theoretically predicted estimation variances were compared with experimentally estimated variances on RF data sets from both computer-simulated and physical tissue-mimicking phantoms. Scan parameter ranges for this study were electronic SNR from 10 to 70 dB, transmit pulse standard deviation from 0.5 to 4.1 MHz, transmit pulse center frequency from 2 to 8 MHz, and data window length from 3 to 17 mm. Acceptable agreement was observed between theoretical predictions and experimentally estimated values with differences smaller than 0.05 dB/cm/MHz across the parameter ranges investigated. This model helps predict the best attenuation estimation variance achievable with the CDS method, in terms of said scan parameters.

  1. Beam induced RF heating

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Bartmann, W; Baudrenghien, P; Berrig, O; Bracco, C; Bravin, E; Bregliozzi, G; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Garlasche, M; Gentini, L; Goddard, B; Grudiev, A; Henrist, B; Jones, R; Kononenko, O; Lanza, G; Lari, L; Mastoridis, T; Mertens, V; Métral, E; Mounet, N; Muller, J E; Nosych, A A; Nougaret, J L; Persichelli, S; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Salvachua, B; Sapinski, M; Schmidt, R; Shaposhnikova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wenninger, J; Wollmann, D; Zerlauth, M

    2012-01-01

    After the 2011 run, actions were put in place during the 2011/2012 winter stop to limit beam induced radio frequency (RF) heating of LHC components. However, some components could not be changed during this short stop and continued to represent a limitation throughout 2012. In addition, the stored beam intensity increased in 2012 and the temperature of certain components became critical. In this contribution, the beam induced heating limitations for 2012 and the expected beam induced heating limitations for the restart after the Long Shutdown 1 (LS1) will be compiled. The expected consequences of running with 25 ns or 50 ns bunch spacing will be detailed, as well as the consequences of running with shorter bunch length. Finally, actions on hardware or beam parameters to monitor and mitigate the impact of beam induced heating to LHC operation after LS1 will be discussed.

  2. Dual-energy attenuation coefficient decomposition with differential filtration and application to a microCT scanner

    International Nuclear Information System (INIS)

    Taschereau, R; Silverman, R W; Chatziioannou, A F

    2010-01-01

    Dual-energy x-ray computed tomography (DECT) has the capability to decompose attenuation coefficients using two basis functions and has proved its potential in reducing beam-hardening artifacts from reconstructed images. The method typically involves two successive scans with different x-ray tube voltage settings. This work proposes an approach to dual-energy imaging through x-ray beam filtration that requires only one scan and a single tube voltage setting. It has been implemented in a preclinical microCT tomograph with minor modifications. Retrofitting of the microCT scanner involved the addition of an automated filter wheel and modifications to the acquisition and reconstruction software. Results show that beam-hardening artifacts are reduced to noise level. Acquisition of a μ-Compton image is well suited for attenuation-correction of PET images while dynamic energy selection (4D viewing) offers flexibility in image viewing by adjusting contrast and noise levels to suit the task at hand. All dual-energy and single energy reference scans were acquired at the same soft tissue dose level of 50 mGy.

  3. Dual-energy attenuation coefficient decomposition with differential filtration and application to a microCT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Taschereau, R; Silverman, R W; Chatziioannou, A F [Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States)], E-mail: rtaschereau@mednet.ucla.edu

    2010-02-21

    Dual-energy x-ray computed tomography (DECT) has the capability to decompose attenuation coefficients using two basis functions and has proved its potential in reducing beam-hardening artifacts from reconstructed images. The method typically involves two successive scans with different x-ray tube voltage settings. This work proposes an approach to dual-energy imaging through x-ray beam filtration that requires only one scan and a single tube voltage setting. It has been implemented in a preclinical microCT tomograph with minor modifications. Retrofitting of the microCT scanner involved the addition of an automated filter wheel and modifications to the acquisition and reconstruction software. Results show that beam-hardening artifacts are reduced to noise level. Acquisition of a {mu}-Compton image is well suited for attenuation-correction of PET images while dynamic energy selection (4D viewing) offers flexibility in image viewing by adjusting contrast and noise levels to suit the task at hand. All dual-energy and single energy reference scans were acquired at the same soft tissue dose level of 50 mGy.

  4. Compact electron beam focusing column

    Science.gov (United States)

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-12-01

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  5. A rotating and warping projector/backprojector for fan-beam and cone-beam iterative algorithm

    International Nuclear Information System (INIS)

    Zeng, G.L.; Hsieh, Y.L.; Gullberg, G.T.

    1994-01-01

    A rotating-and-warping projector/backprojector is proposed for iterative algorithms used to reconstruct fan-beam and cone-beam single photon emission computed tomography (SPECT) data. The development of a new projector/backprojector for implementing attenuation, geometric point response, and scatter models is motivated by the need to reduce the computation time yet to preserve the fidelity of the corrected reconstruction. At each projection angle, the projector/backprojector first rotates the image volume so that the pixelized cube remains parallel to the detector, and then warps the image volume so that the fan-beam and cone-beam rays are converted into parallel rays. In the authors implementation, these two steps are combined so that the interpolation of voxel values are performed only once. The projection operation is achieved by a simple weighted summation, and the backprojection operation is achieved by copying weighted projection array values to the image volume. An advantage of this projector/backprojector is that the system point response function can be deconvolved via the Fast Fourier Transform using the shift-invariant property of the point response when the voxel-to-detector distance is constant. The fan-beam and cone-beam rotating-and-warping projector/backprojector is applied to SPECT data showing improved resolution

  6. Modeling relaxation length and density of acacia mangium wood using gamma - ray attenuation technique

    International Nuclear Information System (INIS)

    Tamer A Tabet; Fauziah Abdul Aziz

    2009-01-01

    Wood density measurement is related to the several factors that influence wood quality. In this paper, density, relaxation length and half-thickness value of eight ages, 3, 5, 7, 10, 11, 13 and 15 year-old of Acacia mangium wood were determined using gamma radiation from 137 Cs source. Results show that Acacia mangium tree of age 3 year has the highest relaxation length of 83.33 cm and least density of 0.43 gcm -3 , while the tree of age 15 year has the least Relaxation length of 28.56 cm and highest density of 0.76 gcm -3 . Results also show that the 3 year-old Acacia mangium wood has the highest half thickness value of 57.75 cm and 15 year-old tree has the least half thickness value of 19.85 cm. Two mathematical models have been developed for the prediction of density, variation with relaxation length and half-thickness value of different age of tree. A good agreement (greater than 85% in most cases) was observed between the measured values and predicted ones. Very good linear correlation was found between measured density and the age of tree (R2 = 0.824), and between estimated density and Acacia mangium tree age (R2 = 0.952). (Author)

  7. Beam transfer line for food irradiation microtron at CAT

    International Nuclear Information System (INIS)

    Kant, Pradeep; Singh, Gurnam

    2003-01-01

    A 10 MeV microtron is being developed at CAT for irradiation of food products. A beam transfer line comprising a 90 deg bending magnet, a quadrupole doublet and a rectangular scanning magnet has been designed to irradiate food products from the upper side. The bending magnet has an edge angle of 22.5 deg. The length of the beam transfer line has been minimized to keep the whole unit as compact as possible. The beam optics has been optimized keeping in view the requirement of a small beam pipe aperture (25mm radius) and a large range of circular as well as elliptical beam sizes on the food product. The speed of the conveyor belt has been assumed to be very small. The results of the beam optics chosen and the variation of the linear charge density on a food product during the scanning are presented in this paper. The effects of path length variation within the scanning magnet and beam size variation during a scanning are also discussed

  8. Use of two monoenergetic gamma-ray attenuation method in wood samples

    International Nuclear Information System (INIS)

    Mortatti, J.; Nascimento Filho, V.F. do; Barros Ferraz, E.S. de

    1983-01-01

    The mass attenuation coefficients for 10 wood species were determined employing the gamma attenuation technique with a single beam comprising two monoenergetics gamma energies from 137 Cs/sup(137m) Ba and 141 Am (662 and 59,6 KeV, respectively). The absorbed radiation was simultaneously measured by means of a 3'' x 3'' Nal (T1) planar solid scintillator crystal connected to a two channel gamma spectrometer. The effect of the 137 Cs/ sup(137m) Ba compton radiation on the not 241 Am counting rates were corrected. Dead time effects were desregarded, as the counting rates were always below 10 5 cpm. (Author) [pt

  9. Determination of metastable fraction in an ion beam extracted from ECR plasma

    International Nuclear Information System (INIS)

    Matsumoto, Atsushi; Ohtani, Shunsuke; Iwai, Tsuruji.

    1982-04-01

    The fraction of metastable-state Ar 2 + (3p 4 1 D) ions in Ar 2 + beam has been determined by an optical attenuation method (OAM) combined with the conventional beam attenuation method. The present OAM is based on observation of spatial decay of specified emission line intensities arising from charge-changed ions, along the beam axis in a target gas cell. The validity of the OAM is discussed in detail. The cross sections for one-electron capture by the ground-state Ar 2 + ( 3 P) ions, σ 21 , and by the metastable-state Ar 2 + ( 1 D) ions, σ 21 *, from Na have been measured independently by the OAM. Both the cross sections are of the order of 10 - 14 cm 2 and σ 21 * is about 1.3 times as large as σ 21 at the collision energy of 1.5 keV. (author)

  10. A scatter model for fast neutron beams using convolution of diffusion kernels

    International Nuclear Information System (INIS)

    Moyers, M.F.; Horton, J.L.; Boyer, A.L.

    1988-01-01

    A new model is proposed to calculate dose distributions in materials irradiated with fast neutron beams. Scattered neutrons are transported away from the point of production within the irradiated material in the forward, lateral and backward directions, while recoil protons are transported in the forward and lateral directions. The calculation of dose distributions, such as for radiotherapy planning, is accomplished by convolving a primary attenuation distribution with a diffusion kernel. The primary attenuation distribution may be quickly calculated for any given set of beam and material conditions as it describes only the magnitude and distribution of first interaction sites. The calculation of energy diffusion kernels is very time consuming but must be calculated only once for a given energy. Energy diffusion distributions shown in this paper have been calculated using a Monte Carlo type of program. To decrease beam calculation time, convolutions are performed using a Fast Fourier Transform technique. (author)

  11. Development of KSTAR Neutral Beam Heating System

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B. H.; Song, W. S.; Yoon, B. J. (and others)

    2007-10-15

    The prototype components of a neutral beam injection (NBI) system have been developed for the KSTAR, and a capability of the manufactured components has been tested. High power ion source, acceleration power supply, other ion source power supplies, neutralizer, bending magnet for ion beam separation, calorimeter, and cryo-sorption pump have been developed by using the domestic technologies and tested for a neutral beam injection of 8 MW per beamline with a pulse duration of 300 seconds. The developed components have been continuously upgraded to achieve the design requirements. The development technology of high power and long pulse neutral beam injection system has been proved with the achievement of 5.2 MW output for a short pulse length and 1.6 MW output for a pulse length of 300 seconds. Using these development technologies, the domestic NB technology has been stabilized under the development of high power ion source, NB beamline components, high voltage and current power supplies, NB diagnostics, NB system operation and control.

  12. Measurement of neutron diffusion length in heavy concrete

    International Nuclear Information System (INIS)

    Krejci, D.

    2007-04-01

    Using an aluminium sampler filled with heavy concrete the neutron diffusion length was determined, measuring thermal and fast neutrons over the whole beam hole with various threshold detectors using gold samples. These calculations should describe the neutron distribution in the whole concrete shield of the reactor and contribute to the investigation of the activation of the concrete shield using reactor parameters like operating time, power and neutron flux. Instrumentation, activation and positioning of the samples in the beam hole of the TRIGA Mark II reactor are described. (nevyjel)

  13. Study of sugar cooking degree to sugar obtention using gamma attenuation

    International Nuclear Information System (INIS)

    Holanda Cavalcanti, J. de.

    1984-01-01

    The application of gamma radiation attenuation methodology in the determination of sugar cooking degree is studied. Several experiments with samples of vacuum equipment during the cooking were made, based on beam intensity variations of a radioactive source of Americium 241. One sensible difference between the sirup emergent radiation and the cooked mass was observed. (M.A.C.) [pt

  14. Statistical modeling of optical attenuation measurements in continental fog conditions

    Science.gov (United States)

    Khan, Muhammad Saeed; Amin, Muhammad; Awan, Muhammad Saleem; Minhas, Abid Ali; Saleem, Jawad; Khan, Rahimdad

    2017-03-01

    Free-space optics is an innovative technology that uses atmosphere as a propagation medium to provide higher data rates. These links are heavily affected by atmospheric channel mainly because of fog and clouds that act to scatter and even block the modulated beam of light from reaching the receiver end, hence imposing severe attenuation. A comprehensive statistical study of the fog effects and deep physical understanding of the fog phenomena are very important for suggesting improvements (reliability and efficiency) in such communication systems. In this regard, 6-months real-time measured fog attenuation data are considered and statistically investigated. A detailed statistical analysis related to each fog event for that period is presented; the best probability density functions are selected on the basis of Akaike information criterion, while the estimates of unknown parameters are computed by maximum likelihood estimation technique. The results show that most fog attenuation events follow normal mixture distribution and some follow the Weibull distribution.

  15. High-current relativistic klystron amplifier development for microsecond pulse lengths

    International Nuclear Information System (INIS)

    Fazio, M.V.; Carlsten, B.E.; Faehl, R.; Kwan, T.J.; Rickel, D.G.; Stringfield, R.M.; Tallerico, P.J.

    1991-01-01

    Los Alamos is extending the performance of the Friedman-type, high-current relativistic klystron amplifier (RKA) to the microsecond regime while attempting to achieve the gigawatt-level peak power capability that has been characteristic of the RKA at shorter pulse lengths. Currently the electron beam power into the device is about 1 GW in microsecond duration pulses, with an effort underway to increase the beam power to 2.5 GW. To data the device has yielded an rf modulated electron beam power of 350 MW, with up to 50 MW coupled into waveguide. Several aspects of RKA operation under investigation that affect RKA beam bunching efficiency and amplifier gain include cavity tuning, beam diameter, beam current, and input rf drive power, and the development of an output coupler that efficiently couples the microwave power from the low impedance beam into rectangular waveguide operating in the dominant mode. Current results from experimental testing and code modeling are presented

  16. High-current relativistic klystron amplifier development for microsecond pulse lengths

    International Nuclear Information System (INIS)

    Fazio, M.V.; Carlsten, B.E.; Faehl, R.J.; Kwan, T.J.; Rickel, D.G.; Stringfield, R.M.; Tallerico, P.J.

    1991-01-01

    Los Alamos is extending the performance of the Friedman-type, high-current relativistic klystron amplifier (RKA) to the microsecond regime while attempting to achieve the gigawatt-level peak power capability that has been characteristic of the RKA at shorter pulse lengths. Currently the electron beam power into the device is about 1 GW in microsecond duration pulses, with an effort underway to increase the beam power to 2.5 GW. To date the device has yielded an rf modulated electron beam power of 350 MW, with up to 50 MW coupled into waveguide. Several aspects of RKA operation under investigation that affect RKA beam bunching efficiency and amplifier gain include cavity tuning, beam diameter, beam current, and input rf drive power, and the development of an output coupler that efficiently couples the microwave power from the low impedance beam into rectangular waveguide operating in the dominant mode. Current results from experimental testing and code modelling are presented. 5 refs., 5 figs

  17. Extended model of restricted beam for FSO links

    Science.gov (United States)

    Poliak, Juraj; Wilfert, Otakar

    2012-10-01

    Modern wireless optical communication systems in many aspects overcome wire or radio communications. Their advantages are license-free operation and broad bandwidth that they offer. The medium in free-space optical (FSO) links is the atmosphere. Operation of outdoor FSO links struggles with many atmospheric phenomena that deteriorate phase and amplitude of the transmitted optical beam. This beam originates in the transmitter and is affected by its individual parts, especially by the lens socket and the transmitter aperture, where attenuation and diffraction effects take place. Both of these phenomena unfavourable influence the beam and cause degradation of link availability, or its total malfunction. Therefore, both of these phenomena should be modelled and simulated, so that one can judge the link function prior to the realization of the system. Not only the link availability and reliability are concerned, but also economic aspects. In addition, the transmitted beam is not, generally speaking, circularly symmetrical, what makes the link simulation more difficult. In a comprehensive model, it is necessary to take into account the ellipticity of the beam that is restricted by circularly symmetrical aperture where then the attenuation and diffraction occur. General model is too computationally extensive; therefore simplification of the calculations by means of analytical and numerical approaches will be discussed. Presented model is not only simulated using computer, but also experimentally proven. One can then deduce the ability of the model to describe the reality and to estimate how far can one go with approximations, i.e. limitations of the model are discussed.

  18. Effect of length/width ratio of tapered beams on the performance of piezoelectric energy harvesters

    International Nuclear Information System (INIS)

    Matova, S P; Renaud, M; Jambunathan, M; Goedbloed, M; Van Schaijk, R

    2013-01-01

    Tapering of the beams as a way to increase the generated output power of cantilever piezoelectric energy harvesters has gained popularity in recent years. The tapering increases the average strain in the beam and consequently the charge generated by the piezoelectric material. Different authors claim an improvement of up to 30% in the generated output power. We have investigated the possibility of using tapered beams in MEMS piezoelectric energy harvesters. Numerical simulations did not suggest any increase in the generated output power and the lack of improvement was confirmed in practice. With the help of the numerical simulations it was further found that the tapering does work but only for certain design configurations, namely for cantilevers with long slender beams. For cantilevers with short wide beams, the tapering has no significant effect on the output power of the harvester. (paper)

  19. Effect of Steel Fiber Addition on Mechanical Properties and gamma-Ray Attenuation for Ordinary Concrete Used in El-Gabal El-Akhdar Area in Libya for Radiation Shielding Purposes

    International Nuclear Information System (INIS)

    Ikraiam, F.A.; Ali, J.M.; Abd El-Latif, A.; Abd ELazziz, A.

    2009-01-01

    This work deals with the study of ordinary concrete reinforced with steel fibers where the concrete was prepared from limestone ores as coarse aggregate, and sand as fine aggregate, in El-Gabal El-Akhdar in Libya in order to study some mechanical properties and gamma ray attenuation. For mechanical properties, compressive and tensile strengths have been studied, where tensile strength improved by a factor 1.189 at 3% steel fiber content in comparison with reference sample (0%), whereas the compressive strength improved by a factor of 1.012 at 1% steel fiber content. In relation to the concrete density, it is found that the optimum density was 2.217g/cm3 at 3% where the factor of improvement was 1.1. For gamma ray attenuation, the measurements have been obtained by a collimated beam of gamma ray from sources 60 Co, 22 Na and 137 Cs using a gamma ray spectrometer MCA cassy with inorganic scintillator Na(Tl). The total linear attenuation coefficient (μ cm - 1), mean free path length (λ), HVT (τ1/2) and TVT (τ1/10) are all evaluated in this study. The study reveals that concrete sample with 3% steel fiber content has the optimum values of all these nuclear parameters

  20. The TMX heavy ion beam probe

    International Nuclear Information System (INIS)

    Hallock, G.A.

    1994-01-01

    A heavy ion beam probe has been used to measure the radial space potential distribution in the central cell of TMX. This was the first beam probe system to utilize computer control, CAMAC instrumentation, and fast time response for broadband fluctuation capabilities. The fast time response was obtained using off-line processing of the energy analyzer detector signals and wideband transimpedance amplifiers. The on-axis space potential was found to be 300--400 V, with φ e /T ec ∼8. The radial potential profile is parabolic when gas box fueling is used. The frequency of observed fluctuations was found to agree with the E x B plasma rotation frequency during the discharge. The measured Tl ++ secondary ion current level is consistent with calculations, given reasonable assumptions for beam attenuation

  1. Shock wave attenuation in a micro-channel

    Science.gov (United States)

    Giordano, J.; Perrier, P.; Meister, L.; Brouillette, M.

    2018-05-01

    This work presents optical measurements of shock wave attenuation in a glass micro-channel. This transparent facility, with a cross section ranging from 1 mm× 150 μm to 1 mm× 500 μm, allowed for the use of high-speed schlieren videography to visualize the propagation of a shock wave within the entire micro-channel and to quantify velocity attenuation of the wave due to wall effects. In this paper, we present the experimental technique and the relevant data treatment we have used to increase the sensitivity of shock wave detection. Then, we compared our experimental results for different channel widths, lengths, and shock wave velocities with the analytical model for shock attenuation proposed by Russell (J Fluid Mech 27(2):305-314, 1967), which assumes laminar flow, and by Mirels (Attenuation in a shock tube due to unsteady-boundary-layer action, NACA Report 1333, 1957) for turbulent flow. We found that these models are inadequate to predict the observed data, owing to the presence of fully developed flow which violates the basic assumption of these models. The data are also compared with the empirical shock attenuation models proposed by Zeitoun (Phys Fluids 27(1):011701, 2015) and Deshpande and Puranik (Shock Waves 26(4):465-475, 2016), where better agreement is observed. Finally, we presented experimental data for the flow field behind the shock wave from measurements of the Mach wave angle which shows globally decreasing flow Mach numbers due to viscous wall effects.

  2. To the problem of the coherence length of neutrons

    International Nuclear Information System (INIS)

    Varga, P.

    1992-11-01

    The challenge of the high accuracy of certain optical measurements, the long coherence length of light provokes one to search for possibilities to enlarge the neutron coherence length. A proposal is made to achieve this by using a five or a four plate Bonse-Hart interferometer. A further problem is, whether the neutron beam is composed of wave packets or of overlapping independent monochromatic waves; it is considered that the former is more likely. (author) 12 refs.; 3 figs

  3. Beam delivery system with a non-digitized diffractive beam splitter for laser-drilling of silicon

    Science.gov (United States)

    Amako, J.; Fujii, E.

    2016-02-01

    We report a beam-delivery system consisting of a non-digitized diffractive beam splitter and a Fourier transform lens. The system is applied to the deep-drilling of silicon using a nanosecond pulse laser in the manufacture of inkjet printer heads. In this process, a circularly polarized pulse beam is divided into an array of uniform beams, which are then delivered precisely to the process points. To meet these requirements, the splitter was designed to be polarization-independent with an efficiency>95%. The optical elements were assembled so as to allow the fine tuning of the effective overall focal length by adjusting the wavefront curvature of the beam. Using the system, a beam alignment accuracy ofbeam array and the throughput was substantially improved (10,000 points on a silicon wafer drilled in ~1 min). This beam-delivery scheme works for a variety of laser applications that require parallel processing.

  4. Two-beam accelerator

    International Nuclear Information System (INIS)

    Sessler, A.M.; Hopkins, D.B.

    1986-06-01

    The Two-Beam Accelerator (TBA) consists of a long high-gradient accelerator structure (HGS) adjacent to an equal-length Free Electron Laser (FEL). In the FEL, a beam propagates through a long series of undulators. At regular intervals, waveguides couple microwave power out of the FEL into the HGS. To replenish energy given up by the FEL beam to the microwave field, induction accelerator units are placed periodically along the length of the FEL. In this manner it is expected to achieve gradients of more than 250 MV/m and thus have a serious option for a 1 TeV x 1 TeV linear collider. The state of present theoretical understanding of the TBA is presented with particular emphasis upon operation of the ''steady-state'' FEL, phase and amplitude control of the rf wave, and suppression of sideband instabilities. Experimental work has focused upon the development of a suitable HGS and the testing of this structure using the Electron Laser Facility (ELF). Description is given of a first test at ELF with a seven-cell 2π/3 mode structure which without preconditioning and with a not-very-good vacuum nevertheless at 35 GHz yielded an average accelerating gradient of 180 MV/m

  5. X-ray beam transfer between hollow fibers for long-distance transport

    International Nuclear Information System (INIS)

    Tanaka, Yoshihito; Matsushita, Ryuki; Shiraishi, Ryutaro; Hasegawa, Takayuki; Ishikawa, Kiyoshi; Sawada, Kei; Kohmura, Yoshiki; Takahashi, Isao

    2016-01-01

    Fiber optics for controlling the x-ray beam trajectory has been examined at the synchrotron facility of SPring-8. Up to now, we have achieved beam deflection by several tens of milli-radian and axis shift of around 75 mm with a 1.5 m-long flexible hollow glass capillary. The achievable beam deflecting angle, axis shift, and timing delay are, in principle, proportional to the length, the square of length and the cube of length, respectively. Thus, for further applications, requiring larger beam shift and pulse delay, longer fibers are indispensable. In order to achieve long-distance transport using the fiber, we thus examined the connection transferring x-rays between fibers in an experimental hutch. The acceptance angle at the input end and the throughput efficiency of the second fiber is consistent with the consideration of the output beam divergence of the first fiber. The enhancement of the transfer efficiency is also discussed for the cases of a closer joint and the use of a refractive lens as a coupler.

  6. X-ray beam transfer between hollow fibers for long-distance transport

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yoshihito, E-mail: tanaka@sci.u-hyogo.ac.jp; Matsushita, Ryuki; Shiraishi, Ryutaro; Hasegawa, Takayuki; Ishikawa, Kiyoshi [Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Sayo-gun, Hyogo 678-1297 (Japan); Sawada, Kei; Kohmura, Yoshiki [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Takahashi, Isao [Department of Physics, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 Japan (Japan)

    2016-07-27

    Fiber optics for controlling the x-ray beam trajectory has been examined at the synchrotron facility of SPring-8. Up to now, we have achieved beam deflection by several tens of milli-radian and axis shift of around 75 mm with a 1.5 m-long flexible hollow glass capillary. The achievable beam deflecting angle, axis shift, and timing delay are, in principle, proportional to the length, the square of length and the cube of length, respectively. Thus, for further applications, requiring larger beam shift and pulse delay, longer fibers are indispensable. In order to achieve long-distance transport using the fiber, we thus examined the connection transferring x-rays between fibers in an experimental hutch. The acceptance angle at the input end and the throughput efficiency of the second fiber is consistent with the consideration of the output beam divergence of the first fiber. The enhancement of the transfer efficiency is also discussed for the cases of a closer joint and the use of a refractive lens as a coupler.

  7. Vibration Properties of a Steel-PMMA Composite Beam

    Directory of Open Access Journals (Sweden)

    Yuyang He

    2015-01-01

    Full Text Available A steel-polymethyl methacrylate (steel-PMMA beam was fabricated to investigate the vibration properties of a one-dimensional phononic crystal structure. The experimental system included an excitation system, a signal acquisition system, and a data analysis and processing system. When an excitation signal was exerted on one end of the beam, the signals of six response points were collected with acceleration sensors. Subsequent signal analysis showed that the beam was attenuated in certain frequency ranges. The lumped mass method was then used to calculate the bandgap of the phononic crystal beam to analyze the vibration properties of a beam made of two different materials. The finite element method was also employed to simulate the vibration of the phononic crystal beam, and the simulation results were consistent with theoretical calculations. The existence of the bandgap was confirmed experimentally and theoretically, which allows for the potential applications of phononic crystals, including wave guiding and filtering, in integrated structures.

  8. Effect of duct shape, Mach number, and lining construction on measured suppressor attenuation and comparison with theory

    Science.gov (United States)

    Olsen, W. A.; Krejsa, E. A.; Coats, J. W.

    1972-01-01

    Noise attenuation was measured for several types of cylindrical suppressors that use a duct lining composed of honeycomb cells covered with a perforated plate. The experimental technique used gave attenuation data that were repeatable and free of noise floors and other sources of error. The suppressor length, the effective acoustic diameter, suppressor shape and flow velocity were varied. The agreement among the attenuation data and two widely used analytical models was generally satisfactory. Changes were also made in the construction of the acoustic lining to measure their effect on attenuation. One of these produced a very broadband muffler.

  9. Phenomenological studies of electron-beam transport in wire-plasma channels

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Beezhold, W.

    1980-01-01

    Multiple electron-beam transport in air through plasma channels is an important method for delivering many intense beams to a bremsstrahlung converter system. This paper reports work intended to optimize this transport technique with emphasis on transport through curved channels and on transport efficiencies. Curved-channel transport allows accelerators such as Sandia's PROTO II and PBFA I facilities to be used as flash x-ray sources for weapon effects simulation without reconfiguring the diodes or developing advanced converters. The formation mechanisms of wire-initiated plasma channels in air were examined and the subsequent transport efficiencies of relativistic electron beams through various-length straight and curved plasma channels were determined. Electron transport efficiency through a channel was measured to be 80 to 100% of a zero length channel for 40 cm long straight channels and for curved channels which re-directed the electron beam through an angle of 90 0 . Studies of simultaneous e-beam transport along two curved channels closely spaced at the converter showed that transport efficiency remained at 80 to 100%. However, it was observed that the two e-beams were displaced towards each other. Transport efficiency was observed to depend only weakly on parameters such as wire material, wire length and shape, diode anode aperture, e-beam injection time, and wire-channel applied voltage. For off-center injection conditions the electron beam strongly perturbed the plasma channel in periodic or regularly spaced patterns even though the total energy lost by the electron beam remained small. Plasma-channel transport, when all experimental parameters have been optimized for maximum transport efficiency, is a workable method for directing electron beams to a converter target

  10. Evaluation of PVDF/MWCNT - ZRO{sub 2} nanocomposites for X-Rays attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Esther L.M.; Oliveira, Arno H., E-mail: esther_machado@outlook.com.br, E-mail: heeren@nuclear.ufmg.br [Universidade Federal de Minas Gerais (CCTN/UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Batista, Adriana S.M., E-mail: adriananuclear@yahoo.com.br [Departamento de Anatomia e Imagem (IMA), Belo Horizonte, MG (Brazil); Ribeiro, Fabíola A.S.; Santos, Adelina P.; Faria, Luiz O., E-mail: adelina@cdtn.br, E-mail: farialo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Recently, polymer-based nanocomposites filled with zirconium oxide (ZrO{sub 2}) nanoparticles have been suggested to be used in radiology procedures as X-rays attenuators. On the other hand, multi walled carbon nanotubes (MWCNT) has been reported to have enhanced X-rays attenuation features, when compared to other materials. In this work polymer-based nanocomposites made of a poly(vinylidene fluoride) [PVDF] homopolymer co-filled with MWCNT and zirconia (ZrO{sub 2}) were prepared, in order to investigate them for radiation shielding purposes. The PVDF matrix was added to 1.3% ZrO{sub 2} and the MWCNT in three different proportions: 0.33%, 0.66% and 1% of MWCNT.The arrangement between these materials causes new properties to be introduced to the constituents due to morphological modifications or electronic interactions between them, resulting in a nanocomposite of higher properties. The radiation shielding characterization was performed by using the X-ray beam of a XRD equipment. Photons with energies of 6.5 keV, 17.5 keV and 22.1 keV, corresponding to the anodes of cobalt, molybdenum and silver respectively, were used. The results are discussed in terms of the attenuation percentage of the nanocomposites produced in relation to the energy of the exposed radiation beam and varying the thickness of the samples. A comparison with cataloged aluminum data is also performed. (author)

  11. A directly heated electron beam line source

    International Nuclear Information System (INIS)

    Iqbal, M.; Masood, K.; Rafiq, M.; Chaudhry, M.A.

    2002-05-01

    A 140-mm cathode length, Electron Beam Line Source with a high degree of focusing of the beam is constructed. The design principles and basic characteristic considerations for electron beam line source consists of parallel plate electrode geometric array as well as a beam power of 35kW are worked out. The dimensions of the beam at the work site are 1.25xl00mm. The gun is designed basically for the study of evaporation and deposition characteristic of refractory metals for laboratory use. However, it may be equally used for melting and casting of these metals. (author)

  12. Beam diagnostics based on virtual instrument technology for HLS

    International Nuclear Information System (INIS)

    Sun Baogen; Lu Ping; Wang Xiaohui; Wang Baoyun; Wang Junhua; Gu Liming; Fang Jia; Ma Tianji

    2009-01-01

    The paper introduce the beam diagnostics system using virtual instrument technology for Hefei Light Source (HLS), which includes a GPIB bus-based DCCT measurement system to measure the beam DC current and beam life, a VXIbus-based closed orbit measurement system to measure the beam position, a PCIbus-based beam profile measurement system to measure the beam profile and emittance, a GPIB-LAN based bunch length system using photoelectric method, and a Ethernet-based photon beam position measurement system. The software is programmed by LabVIEW, which reduces much developing work. (authors)

  13. Effect of flexural crack on plain concrete beam failure mechanism A numerical simulation

    Directory of Open Access Journals (Sweden)

    Abdoullah Namdar

    2016-03-01

    Full Text Available The flexural failure of plain concrete beam occurs along with development of flexural crack on beam. In this paper by using ABAQUS, mechanism failure of plain concrete beam under three steps have been simulated. The cracking moment has been analytically calculated and applied on the both sides of the fixed beam, and flexural crack has been simulated on beam. Displacement, von Mises, load reaction, displacementcrack length, von Mises-crack length and von Mises-displacement of beams have been graphical depicted. Results indicated that, the flexural crack governs beam mechanism failure and its effects on beam resistance failure. It has been found that the flexural crack in initial stage it developed slowly and changes to be fast at the final stage of collapsing beam due to reduction of the flexural resistance of beam. Increasing mechanical properties of concrete, collapse displacement is reduced.

  14. Ultrasonic attenuation in niobium II: measurements near Bsub(c2)

    International Nuclear Information System (INIS)

    Forgan, E.M.; Gough, C.E.

    1978-01-01

    The attenuation of 10 to 90 MHz longitudinal sound waves has been measured from 1.2 K upwards in the superconducting mixed state of niobium near Bsub(c2). The attenuation was determined as a function of the directly measured average induction, B, within single crystal specimens which had resistance ratios ranging from 83 to 3380. The specimens tended to the 'clean' limit (electron mean free path, 1 much greater than xi 0 , the superconducting coherence length) in which there is a strong purity dependence of the relative attenuation. For the purest crystals close to Bsub(C2), the results are in reasonable agreement with the purity and field dependence predicted by microscopic theories, and agree over a much wider field range with a phenomenological modification of these theories. Measurements of attenuation and other transport properties in clean type II superconductors by other authors are discussed and it is shown that many of the evident discrepancies can be attributed to neglect of the effects of magnetic irreversibility and crystalline anisotropy. (author)

  15. Determination of Longitudinal Electron Bunch Lengths on Picosecond Time Scales

    CERN Document Server

    Martínez, C; Calviño, F

    1999-01-01

    At CERN (European Laboratory for Particle Physics) the CLIC (Compact Linear Collider) study is pursuing the design of an electron-positron high-energy linear collider using an innovative concept for the RF (Radio Frequency) power production, the socalled two-beam acceleration scheme. In order to keep the length of the collider in a reasonable range while being able of accelerating electrons and positrons up to 5 TeV, the normal-conducting accelerating structures should operate at very high frequency (in this case 30 GHz). The RF power necessary to feed the accelerating cavities is provided by a second electron beam, the drive beam, running parallel to the main beam. The CLIC Test Facility (CTF) was build with the main aim of studying and demonstrating the feasibility of the two beam acceleration scheme and technology. It is composed of two beams, the drive beam that will generate the 30 GHz RF power and the main beam which will be accelerated by this power. In order to have a good efficiency for the power gen...

  16. Self-focusing of laser beams in magnetized relativistic electron beams

    International Nuclear Information System (INIS)

    Whang, M.H.; Ho, A.Y.; Kuo, S.P.

    1989-01-01

    Recently, there is considerable interest in radiation focusing and optical guiding using the resonant interaction between the radiation field and electron beam. The result of radiation focusing has been shown to play a central role in the practical utilization of the FEL. This result allows the device to use longer interaction length for achieving higher output power. Likewise, the possibility of self-focusing of the laser beam in cyclotron resonance with a relativistic electron beam is also an important issue in the laser acceleration concepts for achieving high-gradient electron acceleration. The effectiveness of the acceleration process relies strongly on whether the laser intensity can be maintained at the desired level throughout the interaction. In this work, the authors study the problem concerning the self-focusing of laser beam in the relativistic electron beams under the cyclotron auto-resonance interaction. They assume that there is no electron density perturbation prohibited from the background magnetic field for the time scale of interest. The nonlinearity responsible for self-focusing process is introduced by the energy dependence of the relativistic mass of electrons. The plasma frequency varies with the electron energy which is proportional to the radiation amplitude. They then examine such a relativistic nonlinear effect on the propagation of a Gaussian beam in the electron beam. A parametric study of the dependence of the laser beam width on the axial position for various electron beam density has been performed

  17. A SPECT reconstruction method for extending parallel to non-parallel geometries

    International Nuclear Information System (INIS)

    Wen Junhai; Liang Zhengrong

    2010-01-01

    Due to its simplicity, parallel-beam geometry is usually assumed for the development of image reconstruction algorithms. The established reconstruction methodologies are then extended to fan-beam, cone-beam and other non-parallel geometries for practical application. This situation occurs for quantitative SPECT (single photon emission computed tomography) imaging in inverting the attenuated Radon transform. Novikov reported an explicit parallel-beam formula for the inversion of the attenuated Radon transform in 2000. Thereafter, a formula for fan-beam geometry was reported by Bukhgeim and Kazantsev (2002 Preprint N. 99 Sobolev Institute of Mathematics). At the same time, we presented a formula for varying focal-length fan-beam geometry. Sometimes, the reconstruction formula is so implicit that we cannot obtain the explicit reconstruction formula in the non-parallel geometries. In this work, we propose a unified reconstruction framework for extending parallel-beam geometry to any non-parallel geometry using ray-driven techniques. Studies by computer simulations demonstrated the accuracy of the presented unified reconstruction framework for extending parallel-beam to non-parallel geometries in inverting the attenuated Radon transform.

  18. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zou, G. Q.; Lei, G. J.; Cao, J. Y.; Duan, X. R. [Southwestern Institute of Physics, Chengdu, 610041 (China)

    2012-07-15

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage ({approx}100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  19. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak.

    Science.gov (United States)

    Zou, G Q; Lei, G J; Cao, J Y; Duan, X R

    2012-07-01

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage (∼100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  20. Manufacture of electrostatic septum for extracting particle beam

    International Nuclear Information System (INIS)

    Tokumoto, Shuichi

    1979-01-01

    In the main ring of National Laboratory for High Energy Physics, fast and slow extractions of accelerated proton beam are carried out by using electrostatic septa. The electrostatic septum is an apparatus to deflect beam by an electrostatic field, basically composed of a couple of parallel plate electrodes installed in a vacuum chamber. The electrostatic septum is required to satisfy the following two conditions: it must be very thin and flat to reduce the loss of extracted beam, and sufficiently high electric field must be generated to deflect beam in a limited length. The structure and manufacture of electrostatic septa are described. The manufacturing is explained by dividing a septum into an anode and a cathode, terminals introducing high voltage, a vacuum chamber, and high voltage circuit. The performance is also described on the experiments for no-beam condition and beam extraction. Beam extraction has been carried out over 1500 hours thus far, the average beam intensity being 1 x 10 12 ppp, and extraction efficiency more than 90%. There have been no serious failure to affect the performance nor metal wire breakage. They have satisfied their purposes, being used for both fast and slow extractions. Presently, lengthening of the electrostatic field region is being planned to increase the length of the septa to 1.5 m per unit. (Wakatsuki, Y.)

  1. Determination of two-dimensional correlation lengths in an anisotropic two-component flow

    International Nuclear Information System (INIS)

    Thomson, O.

    1994-05-01

    Former studies have shown that correlation methods can be used for determination of various two-component flow parameters, among these the correlation length. In cases where the flow can be described as a mixture, in which the minority component forms spatially limited perturbations within the majority component, this parameter gives a good indication of the maximum extension of these perturbations. In the former studies, spherical symmetry of the perturbations has been assumed, and the correlation length has been measured in the direction of the flow (axially) only. However, if the flow structure is anisotropic, the correlation length will be different in different directions. In the present study, the method has been developed further, allowing also measurements perpendicular to the flow direction (radially). The measurements were carried out using laser beams and the two-component flows consisted of either glass beads and air or air and water. In order to make local measurements of both the axial and radial correlation length simultaneously, it is necessary to use 3 laser beams and to form the triple cross-covariance. This lead to some unforeseen complications, due to the character of this function. The experimental results are generally positive and size determinations with an accuracy of better than 10% have been achieved in most cases. Less accurate results appeared only for difficult conditions (symmetrical signals), when 3 beams were used. 5 refs, 13 figs, 3 tabs

  2. Neutral-beam deposition in large, finite-beta noncircular tokamak plasmas

    International Nuclear Information System (INIS)

    Wieland, R.M.; Houlberg, W.A.

    1982-02-01

    A parametric pencil beam model is introduced for describing the attenuation of an energetic neutral beam moving through a tokamak plasma. The nonnegligible effects of a finite beam cross section and noncircular shifted plasma cross sections are accounted for in a simple way by using a smoothing algorithm dependent linearly on beam radius and by including information on the plasma flux surface geometry explicitly. The model is benchmarked against more complete and more time-consuming two-dimensional Monte Carlo calculations for the case of a large D-shaped tokamak plasma with minor radius a = 120 cm and elongation b/a = 1.6. Deposition profiles are compared for deuterium beam energies of 120 to 150 keV, central plasma densities of 8 x 10 13 - 2 x 10 14 cm -3 , and beam orientation ranging from perpendicular to tangential to the inside wall

  3. Obtaining the mass attenuation coefficient of the wood to a beam of gamma-ray of 241Am

    International Nuclear Information System (INIS)

    Costa, Vladimir Eliodoro; Rezende, Marcos Antonio de

    2009-01-01

    Full text: The quality of wood produced in Brazil reforestation has been the subject of many discussions in the Forestry Sector. SeEKXing to produce a rapid growth and wood quality, the Forestry Sector, found in Applied Nuclear Physics, a precise method of determining the density of wood known as ad hoc technique of attenuation of gamma-ray. The radioisotope used in this technique is that it has a picture 241 Am peak of 59.6 keV gamma-ray. This work has the objective of determining the mass attenuation coefficient of wood of the genus Eucalyptus for 241 Am radioisotope. We used 324 samples of wood from six different treatments: a seminal of Eucalyptus grandis; two clones of E. grandis; three clones of the hybrid E. grandis x E. urophylla. The same assay was used for the six treatments. It was determined the basic density of the samples by the method of immersion in water and then the basic density was converted into apparent density in the moisture equilibrium and it was determined the attenuation coefficient of mass. Preliminary results showed that the attenuation coefficient of mass did not vary between treatments, and its average value 0.1822 ± 0.0015. It was to here that the attenuation coefficient of mass in the wood of the genus Eucalyptus in moisture equilibrium can be constant. (author)

  4. Calculations and measurements of β-ray attenuation for determining density in an inhomogenous medium

    International Nuclear Information System (INIS)

    Williamson, T.G.; Mackinnon, J.G.; Frisch, A.F.; Jenkins, R.W. Jr.

    1980-01-01

    A model for the distribution of tobacco strands in a cigarette is proposed to explain the discrepancy between density as measured by weight and volume and that as measured by β-ray attenuation and to explain the large deviation of the β-ray measurements from the mean value. The parameters which contribute to this uncertainty are slope of the β-ray attenuation curve, the mean path length through the mass element, and the material volume fraction. (author)

  5. Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 Micro and Nano-particles for radiation shielding

    Science.gov (United States)

    Verdipoor, Khatibeh; Alemi, Abdolali; Mesbahi, Asghar

    2018-06-01

    Novel shielding materials for photons based on silicon resin and WO3, PbO, and Bi2O3 Micro and Nano-particles were designed and their mass attenuation coefficients were calculated using Monte Carlo (MC) method. Using lattice cards in MCNPX code, micro and nanoparticles with sizes of 100 nm and 1 μm was designed inside a silicon resin matrix. Narrow beam geometry was simulated to calculate the attenuation coefficients of samples against mono-energetic beams of Co60 (1.17 and 1.33 MeV), Cs137 (663.8 KeV), and Ba133 (355.9 KeV). The shielding samples made of nanoparticles had higher mass attenuation coefficients, up to 17% relative to those made of microparticles. The superiority of nano-shields relative to micro-shields was dependent on the filler concentration and the energy of photons. PbO, and Bi2O3 nanoparticles showed higher attenuation compared to WO3 nanoparticles in studied energies. Fabrication of novel shielding materials using PbO, and Bi2O3 nanoparticles is recommended for application in radiation protection against photon beams.

  6. Superconducting wiggler magnets for beam-emittance damping rings

    CERN Document Server

    Schoerling, Daniel

    2012-01-01

    Ultra-low emittance beams with a high bunch charge are necessary for the luminosity performance of linear electron-positron colliders, such as the Compact Linear Collider (CLIC). An effective way to create ultra-low emittance beams with a high bunch charge is to use damping rings, or storage rings equipped with strong damping wiggler magnets. The remanent field of the permanent magnet materials and the ohmic losses in normal conductors limit the economically achievable pole field in accelerator magnets operated at around room temperature to below the magnetic saturation induction, which is 2.15 T for iron. In wiggler magnets, the pole field in the center of the gap is reduced further like the hyperbolic cosine of the ratio of the gap size and the period length multiplied by pi. Moreover, damping wiggler magnets require relatively large gaps because they have to accept the un-damped beam and to generate, at a small period length, a large magnetic flux density amplitude to effectively damp the beam emittance....

  7. The LBL [Lawrence Berkeley Laboratory] multiple beam experiments

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Keefe, D.; Kim, C.; Meuth, H.; Warwick, A.

    1987-03-01

    The multiple-beam induction linac approach to a heavy ion driver for inertial confinement, fusion features continuous current amplification along the accelerator and a minimum of beam manipulations from source to pellet. Current amplification and bunch length control require careful shaping of the accelerating voltages. MBE-4 is designed as a four-beam induction linac that models much of the accelerator physics of the electrostatically focused section of a significantly longer induction accelerator. Four space-charge-dominated Cs + beams, initially about one meter in length at a current of 13 mA, are focused by electrostatic quadrupoles and accelerated in parallel from 200 to nearly 600 keV. The energy will reach approximately one MeV when the accelerator is complete. Experiments have proceeded in parallel with the construction of the apparatus which began in FY 85 and is now more than half complete. The results show a current amplification, so far, by a factor of 2.8 in good agreement with the longitudinal acceleration calculations

  8. Synchronization trigger for HSFC in the optical diagnosis of intense electron beam cathodes

    International Nuclear Information System (INIS)

    Yang Jie; Shu Ting; Zhang Jun; Yang Jianhua; Liu Lie; Yin Yi; Luo Ling

    2010-01-01

    This paper presents an intense electron beam cathodes optical diagnosis platform, which consists of an accelerator using a water-dielectric helical pulse forming line (PFL) and a high speed framing camera (HSFC-PRO) with an minimum exposure of 3 ns. HSFC-PRO must work synchronously with the explosive process of the intense electron beam cathodes in order to obtain correct data. On one hand, the high voltage electrical pulse from the PFL is delayed by a water-dielectric helix line with a nearly 110ns electrical length. On the other hand, The synchronization trigger signal for the HSFC-PRO is obtained from the pre d elayed high voltage electrical pulse from the PFL. A TTL signal (5 V) with rising edge is required to trigger the HSFC. The rise time (10% to 90%) should be <20ns. As a result, the negative-edge attenuated electrical pulse with a about 25 ns rise time from the PFL can not trigger the HSFC immediately.Consequently, the polarity of the attenuated high voltage electrical pulse from the PFL is reversed by a pulse transformer. Then it is converted subsequently into a TTL signal (5 V) with rising edge via a monostable multivibrator , The rise time (10% to 90%) is <5 ns, which is suitable for HSFC absequently. This established optical diagnosis platform can supply an electrical pulse with its output voltage of 200-400 kV, risetime of ∼35ns and pulse width(FWHM) of ∼110ns. By means of delaying the electrical pulse, the synchronization trigger problem of the HSFC-PRO has been solved properly, with correlative time precision of about ns level, which sets a running start for the following intensive research of explosive emission cathodes. (authors)

  9. ORIC Beam Energy Increase

    CERN Document Server

    Mallory, Merrit L; Dowling, Darryl; Hudson, Ed; Lord, Dick; Tatum, Alan

    2005-01-01

    The detection of and solution to a beam interference problem in the Oak Ridge Isochronous Cyclotron (ORIC) extraction system has yielded a 20% increase in the proton beam energy. The beam from ORIC was designed to be extracted before the nu r equal one resonance. Most cyclotrons extract after the nu r equal one resonance, thus getting more usage of the magnetic field for energy acceleration. We have now determined that the electrostatic deflector septum interferes with the last accelerated orbit in ORIC, with the highest extraction efficiency obtained near the maximum nu r value. This nu r provides a rotation in the betatron oscillation amplitude that is about the same length as the electrostatic septum thus allowing the beam to jump over the interference problem with the septum. With a thinned septum we were able to tune the beam through the nu r equal one resonance and achieve a 20% increase in beam energy. This nu r greater than one extraction method may be desirable for very high field cyclotrons since it...

  10. Two media method for linear attenuation coefficient determination of irregular soil samples

    International Nuclear Information System (INIS)

    Vici, Carlos Henrique Georges

    2004-01-01

    In several situations of nuclear applications, the knowledge of gamma-ray linear attenuation coefficient for irregular samples is necessary, such as in soil physics and geology. This work presents the validation of a methodology for the determination of the linear attenuation coefficient (μ) of irregular shape samples, in such a way that it is not necessary to know the thickness of the considered sample. With this methodology irregular soil samples (undeformed field samples) from Londrina region, north of Parana were studied. It was employed the two media method for the μ determination. It consists of the μ determination through the measurement of a gamma-ray beam attenuation by the sample sequentially immersed in two different media, with known and appropriately chosen attenuation coefficients. For comparison, the theoretical value of μ was calculated by the product of the mass attenuation coefficient, obtained by the WinXcom code, and the measured value of the density sample. This software employs the chemical composition of the samples and supplies a table of the mass attenuation coefficients versus the photon energy. To verify the validity of the two media method, compared with the simple gamma ray transmission method, regular pome stone samples were used. With these results for the attenuation coefficients and their respective deviations, it was possible to compare the two methods. In this way we concluded that the two media method is a good tool for the determination of the linear attenuation coefficient of irregular materials, particularly in the study of soils samples. (author)

  11. Bending of marble with intrinsic length scales: a gradient theory with surface energy and size effects

    International Nuclear Information System (INIS)

    Vardoulakis, I.; Kourkoulis, S.K.; Exadaktylos, G.

    1998-01-01

    A gradient bending theory is developed based on a strain energy function that includes the classical Bernoulli-Euler term, the shape correction term (microstructural length scale) introduced by Timoshenko, and a term associated with surface energy (micromaterial length scale) accounting for the bending moment gradient effect. It is shown that the last term is capable to interpret the size effect in three-point bending (3PB), namely the decrease of the failure load with decreasing beam length for the same aspect ratio. This theory is used to describe the mechanical behaviour of Dionysos-Pentelikon marble in 3PB. Series of tests with prismatic marble beams of the same aperture but with different lengths were conducted and it was concluded that the present theory predicts well the size effect. (orig.)

  12. Attenuation of the neutron and γ ray dose in concrete channels

    International Nuclear Information System (INIS)

    Paratte, J.M.

    1983-08-01

    The calculations of the γ and neutron dose in concrete channels is described. The method is based on the Monte Carlo procedure. One series of results obtained in straight channels shows the influence of the source spectra and geometry and thus the channel form. A second series shows the attenuation produced by bends along the length of the channel; the variation of the branch length is also studied. The results are generalised and represented by a simple formula. The parameters are adjusted to the curves obtained by the Monte Carlo programme. (G.T.H.)

  13. Foil focusing of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-26

    When an intense relativistic electron beams (IREB) passes through a grounded metal foil, the transverse electric field due to the beam space charge is locally shorted out, and the beam is focused by the magnetic field of its current. The effect can be treated as focusing by a thin lens with first order aberration. Expressions for the focal length and aberration coefficient of the equivalent thin lens are developed in this note. These are then applied to practical examples representative of IREB research at Los Alamos National Laboratory.

  14. Thermal self-focusing with multiple beams

    International Nuclear Information System (INIS)

    Craxton, R.S.; McCrory, R.L.

    1986-07-01

    Self-focusing in underdense plasmas in the presence of overlapping beams is of interest for multibeam laser-irradiation systems. The hydrodynamics/ray-tracing simulation code SAGE is used to model thermal self-focusing in two-dimensional line-focus geometry with beams incident obliquely at different angles. The conjecture that multiple overlapping beams may suppress self-focusing is investigated for parameters appropriate to reactor-sized targets; in particular, the dependence upon intensity, scale length and pulse width is examined. While the full problem is three-dimensional, insight may be gained from two-dimensional simulations

  15. Size effects on free vibration of heterogeneous beams

    Directory of Open Access Journals (Sweden)

    Hassanati Bahman

    2018-01-01

    Full Text Available In this paper the influence of microstructure on the free vibration of geometrically similar heterogeneous beams with free-free boundary conditions was numerically investigated by detailed finite element analysis (FEA to identify and quantify any effect of beam size on transverse modal frequencies when the microstructural scale is comparable to the overall size. ANSYS Mechanical APDL was used to generate specific unit cells at the microstructural scale comprised of two isotropic materials with different material properties. Unit cell variants containing voids and inclusions were considered. At the macroscopic scale, four beam sizes consisting of one, two, three or four layers of defined unit cells were represented by repeatedly regenerating the unit cell as necessary. In all four beam sizes the aspect ratio was kept constant. Changes to the volume fractions of each material were introduced while keeping the homogenized properties of the beam fixed. The influence of the beam surface morphology on the results was also investigated. The ANSYS results were compared with the analytical results from solution to Timoshenko beam and nonlocal Timoshenko beam as well as numerical results for a Micropolar beam. In nonlocal Timoshenko beams the Eringen’s small length scale coefficients were estimated for some of the studied models. Numerical analyses based on Micropolar theory were carried out to study the modal frequencies and a method was suggested to estimate characteristic length in bending and coupling number via transverse vibration which verifies the use of Micropolar elasticity theory in dynamic analysis.

  16. A nonlinear beam model to describe the postbuckling of wide neo-Hookean beams

    Science.gov (United States)

    Lubbers, Luuk A.; van Hecke, Martin; Coulais, Corentin

    2017-09-01

    Wide beams can exhibit subcritical buckling, i.e. the slope of the force-displacement curve can become negative in the postbuckling regime. In this paper, we capture this intriguing behaviour by constructing a 1D nonlinear beam model, where the central ingredient is the nonlinearity in the stress-strain relation of the beams constitutive material. First, we present experimental and numerical evidence of a transition to subcritical buckling for wide neo-Hookean hyperelastic beams, when their width-to-length ratio exceeds a critical value of 12%. Second, we construct an effective 1D energy density by combining the Mindlin-Reissner kinematics with a nonlinearity in the stress-strain relation. Finally, we establish and solve the governing beam equations to analytically determine the slope of the force-displacement curve in the postbuckling regime. We find, without any adjustable parameters, excellent agreement between the 1D theory, experiments and simulations. Our work extends the understanding of the postbuckling of structures made of wide elastic beams and opens up avenues for the reverse-engineering of instabilities in soft and metamaterials.

  17. Bolt beam propagation analysis

    Science.gov (United States)

    Shokair, I. R.

    BOLT (Beam on Laser Technology) is a rocket experiment to demonstrate electron beam propagation on a laser ionized plasma channel across the geomagnetic field in the ion focused regime (IFR). The beam parameters for BOLT are: beam current I(sub b) = 100 Amps, beam energy of 1--1.5 MeV (gamma =3-4), and a Gaussian beam and channel of radii r(sub b) = r(sub c) = 1.5 cm. The N+1 ionization scheme is used to ionize atomic oxygen in the upper atmosphere. This scheme utilizes 130 nm light plus three IR lasers to excite and then ionize atomic oxygen. The limiting factor for the channel strength is the energy of the 130 nm laser, which is assumed to be 1.6 mJ for BOLT. At a fixed laser energy and altitude (fixing the density of atomic oxygen), the range can be varied by adjusting the laser tuning, resulting in a neutralization fraction axial profile of the form: f(z) = f(sub 0) e(exp minus z)/R, where R is the range. In this paper we consider the propagation of the BOLT beam and calculate the range of the electron beam taking into account the fact that the erosion rates (magnetic and inductive) vary with beam length as the beam and channel dynamically respond to sausage and hose instabilities.

  18. Emittance growth rates for displaced beams

    International Nuclear Information System (INIS)

    Anderson, O.A.

    1993-05-01

    Emittance growth rates have been previously analyzed for nonuniform beams in linear channels and for initially uniform mismatched beams in nonlinear channels. These studies were for centered beams. Additional emittance growth can arise in cases where the beam is initially displaced. The purpose of this study is to obtain growth rates for displaced beams. This work differs from studies involving random displacement of electrodes. Our analysis assumes instead that the focusing system is perfectly aligned but that the beam is initially displaced with respect to the equilibrium axis. If the focusing force is slightly nonlinear, we find a gradual transfer of the potential energy of beam displacement into kinetic energy associated with emittance growth. We present explicit results for the emittance growth distance as a function of the nonlinearity of the channel. These results will have practical importance for designers of accelerators and transport systems when setting realistic tolerances for initial beam alignment. These tolerances will depend on the nonlinearity and the length of the system

  19. Application of methodology for calibration of instruments utilized in dosimetry of high energy beams, for radiodiagnosis

    International Nuclear Information System (INIS)

    Potiens, Maria P.A.; Caldas, Linda V.E.

    2000-01-01

    The radiation qualities recommended by the IEC 1267 standard for the calibration of instruments used in diagnostic radiology measurements were established using a neo-diagnomax X-ray system (125 kV). The RQR radiation qualities are recommended to test ionization chambers used in non attenuated beams, and the RQA radiation qualities in attenuated beams (behind a phantom). To apply the methodology, 6 ionization chambers commonly used in diagnostic radiology were tested. The higher energy dependence (17%) was obtained for an ionization chamber recommended for mammography beams, that is not the case of the X radiation system used in this work. The other ionization chambers presented good performance in terms of energy (maximum of 5%), therefore within the limits of the international recommendations for this kind of instrument. (author)

  20. CLIC Drive Beam Position Monitor

    CERN Document Server

    Smith, S; Gudkov, D; Soby, L; Syratchev, I

    2011-01-01

    CLIC, an electron-positron linear collider proposed to probe the TeV energy scale, is based on a two-beam scheme where RF power to accelerate a high energy luminosity beam is extracted from a high current drive beam. The drive beam is efficiently generated in a long train at modest frequency and current then compressed in length and multiplied in frequency via bunch interleaving. The drive beam decelerator requires >40000 quadrupoles, each holding a beam position monitor (BPM). Though resolution requirements are modest (2 microns) these BPMs face several challenges. They must be compact and inexpensive. They must operate below waveguide cutoff to insure locality of position signals, ruling out processing at the natural 12 GHz bunch spacing frequency. Wakefields must be kept low. We find compact conventional stripline BPM with signals processed below 40 MHz can meet requirements. Choices of mechanical design, operating frequency, bandwidth, calibration and processing algorithm are presented. Calculations of wa...

  1. Modeled and Measured Dynamics of a Composite Beam with Periodically Varying Foam Core

    Science.gov (United States)

    Cabell, Randolph H.; Cano, Roberto J.; Schiller, Noah H.; Roberts Gary D.

    2012-01-01

    The dynamics of a sandwich beam with carbon fiber composite facesheets and foam core with periodic variations in material properties are studied. The purpose of the study is to compare finite element predictions with experimental measurements on fabricated beam specimens. For the study, three beams were fabricated: one with a compliant foam core, a second with a stiffer core, and a third with the two cores alternating down the length of the beam to create a periodic variation in properties. This periodic variation produces a bandgap in the frequency domain where vibrational energy does not readily propagate down the length of the beam. Mode shapes and natural frequencies are compared, as well as frequency responses from point force input to velocity response at the opposite end of the beam.

  2. SU-F-BRE-10: Methods to Simulate and Measure the Attenuation for Modeling a Couch Top with Rails for FFF Treatment Delivery On the Varian Edge Linac

    International Nuclear Information System (INIS)

    Gulam, M; Gardner, S; Zhao, B; Snyder, K; Song, K; Li, H; Gordon, J; Wen, N; Chetty, I; Kearns, W

    2014-01-01

    Purpose: To measure attenuation for modelling of the KVue Couchtop for 6X and 10X FFF SRS/SBRT treatment Methods: Treatment planning simulation studies were done using 6X FFF beams to estimate the dosimetric impact of KVue couchtops (including the Q-Fix IGRT [carbon fiber] and Calypso [nonconductive Kevlar material]) with a structure model obtained from a research workstation (Eclipse, advanced planning interface (API) v13). Prior to installation on the Varian Edge linac, the couchtop along with (Kevlar) rails were CT scanned with the rails at various positions. An additional scan with the couchtop 15cm above the CT table top was obtained with 20cm solid water to facilitate precised/indexed data acquisition. Measurements for attenuation were obtained for field sizes of 2, 4 and 10 cm 2 at 42 gantry angles including 6 pairs of opposing fields and other angles for oblique delivery where the beams traversed the couchtop and or rails. The delivery was fully automated with xml scripts running in developer mode. The results were then used to determine an accurate structure model for AAA (Eclipse v11) planning of IMRT and RapidArc delivery. Results: The planning simulation relative dose attenuation for oblique entry was not significantly different than the Exact IGRT or BrainLab iBeam couch except that the rails added 6% additional attenuation. The relative attenuation measurements for PA, PA (rails: inner position), oblique, oblique (rails: outer position), oblique (rails: inner position) were: −2.0%, −2.5%, −15.6%, −2.5%, −5.0% for 6X FFF and −1.4%, −1.5%, −12.2%, − 2.5%, −5.0% for 10X FFF with slight decrease in attenuation versus field size. A Couch structure model (with HU values) was developed. Calculation compared to measurement showed good agreement except for oblique (rails: outer position) where differences approached a magnitude of 6%. Conclusion: A model of the couch structures has been developed accounting for attenuation for FFF beams

  3. Dynamic bowtie filter for cone-beam/multi-slice CT.

    Directory of Open Access Journals (Sweden)

    Fenglin Liu

    Full Text Available A pre-patient attenuator ("bowtie filter" or "bowtie" is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB filled in with heavy liquid and a weakly attenuating bowtie (WB immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV. The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection.

  4. The relative contributions of scatter and attenuation corrections toward improved brain SPECT quantification

    International Nuclear Information System (INIS)

    Stodilka, Robert Z.; Msaki, Peter; Prato, Frank S.; Nicholson, Richard L.; Kemp, B.J.

    1998-01-01

    Mounting evidence indicates that scatter and attenuation are major confounds to objective diagnosis of brain disease by quantitative SPECT. There is considerable debate, however, as to the relative importance of scatter correction (SC) and attenuation correction (AC), and how they should be implemented. The efficacy of SC and AC for 99m Tc brain SPECT was evaluated using a two-compartment fully tissue-equivalent anthropomorphic head phantom. Four correction schemes were implemented: uniform broad-beam AC, non-uniform broad-beam AC, uniform SC+AC, and non-uniform SC+AC. SC was based on non-stationary deconvolution scatter subtraction, modified to incorporate a priori knowledge of either the head contour (uniform SC) or transmission map (non-uniform SC). The quantitative accuracy of the correction schemes was evaluated in terms of contrast recovery, relative quantification (cortical:cerebellar activity), uniformity ((coefficient of variation of 230 macro-voxels) x100%), and bias (relative to a calibration scan). Our results were: uniform broad-beam (μ=0.12cm -1 ) AC (the most popular correction): 71% contrast recovery, 112% relative quantification, 7.0% uniformity, +23% bias. Non-uniform broad-beam (soft tissue μ=0.12cm -1 ) AC: 73%, 114%, 6.0%, +21%, respectively. Uniform SC+AC: 90%, 99%, 4.9%, +12%, respectively. Non-uniform SC+AC: 93%, 101%, 4.0%, +10%, respectively. SC and AC achieved the best quantification; however, non-uniform corrections produce only small improvements over their uniform counterparts. SC+AC was found to be superior to AC; this advantage is distinct and consistent across all four quantification indices. (author)

  5. Measurement of the dechanneling length for high-energy negative pions

    International Nuclear Information System (INIS)

    Scandale, W.; Losito, R.; Bagli, E.; Bandiera, L.; Dalpiaz, P.; Fiorini, M.; Guidi, V.; Mazzolari, A.; Vincenzi, D.; Della Mea, G.; Vallazza, E.; Afonin, A.G.; Chesnokov, Yu.A.; Maisheev, V.A.; Yazynin, I.A.; Kovalenko, A.D.; Taratin, A.M.; Denisov, A.S.; Gavrikov, Yu.A.; Ivanov, Yu.M.

    2013-01-01

    We studied the dechanneling length of 150 GeV/cπ − interacting with a short bent silicon crystal. Dechanneling length measures the rate and the strength of incoherent interactions of channeled particles in a crystal. The mechanism of dechanneling of negatively charged particles has been elucidated through simulation and experiment. It was found that the dechanneling length for negative particles is comparable to the nuclear dechanneling length for positive charges. Indeed, dechanneling of negative particles occurs as a result of incoherent interactions with the nuclei because the trajectories of such particles always intersect atomic planes, explaining the lower channeling efficiency for such particles. Obtained results can be useful for the design of crystals for manipulating high-energy negative particle beams through channeling

  6. Beam Characterization at the Neutron Radiography Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  7. Spatial-temporal dynamics of broadband terahertz Bessel beam propagation

    International Nuclear Information System (INIS)

    Semenova, V A; Kulya, M S; Bespalov, V G

    2016-01-01

    The unique properties of narrowband and broadband terahertz Bessel beams have led to a number of their applications in different fields, for example, for the depth of focusing and resolution enhancement in terahertz imaging. However, broadband terahertz Bessel beams can probably be also used for the diffraction minimization in the short-range broadband terahertz communications. For this purpose, the study of spatial-temporal dynamics of the broadband terahertz Bessel beams is needed. Here we present a simulation-based study of the propagating in non-dispersive medium broadband Bessel beams generated by a conical axicon lens. The algorithm based on scalar diffraction theory was used to obtain the spatial amplitude and phase distributions of the Bessel beam in the frequency range from 0.1 to 3 THz at the distances 10-200 mm from the axicon. Bessel beam field is studied for the different spectral components of the initial pulse. The simulation results show that for the given parameters of the axicon lens one can obtain the Gauss-Bessel beam generation in the spectral range from 0.1 to 3 THz. The length of non-diffraction propagation for a different spectral components was measured, and it was shown that for all spectral components of the initial pulse this length is about 130 mm. (paper)

  8. Initial Observations of Micropulse Elongation of Electron Beams in a SCRF Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Thurman-Keup, R. [Fermilab; Edstrom Jr., D. [Fermilab; Ruan, J. [Fermilab; Santucci, J. [Fermilab

    2016-10-09

    Commissioning at the SCRF accelerator at the Fermilab Accelerator Science and Technology (FAST) Facility has included the implementation of a versatile bunch-length monitor located after the 4-dipole chicane bunch compressor for electron beam energies of 20-50 MeV and integrated charges in excess of 10 nC. The team has initially used a Hamamatsu C5680 synchroscan streak camera to assess the effects of space charge on the electron beam bunch lengths. An Al-coated Si screen was used to generate optical transition radiation (OTR) resulting from the beam’s interaction with the screen. The chicane bypass beamline allowed the measurements of the bunch length without the compression stage at the downstream beamline location using OTR and the streak camera. We have observed electron beam bunch lengths from 5 to 16 ps (sigma) for micropulse charges of 60 pC to 800 pC, respectively. We also report a compressed sub-ps micropulse case.

  9. Beam measurements of the SPS longitudinal impedance

    CERN Document Server

    Lasheen, A

    2017-01-01

    Longitudinal instabilities are one of the main limitationsin the CERN SPS to reach the beam parameters requiredfor the High Luminosity LHC project. In preparation tothe SPS upgrade, possible remedies are studied by perform-ing macroparticle simulations using the machine impedancemodel obtained from electromagnetic simulations and mea-surements. To benchmark the impedance model, the resultsof simulations are compared with various beam measure-ments. In this study, the reactive part of the impedance wasprobed by measuring the quadrupole frequency shift withintensity, obtained from bunch length oscillations at mis-matched injection into the SPS. This method was appliedover many last years to follow up the evolution of the SPSimpedance, injecting bunches with the same bunch length.A novel approach, giving significantly more information,consists in varying the injected bunch length. The compari-son of these measurements with macroparticle simulationsallowed to test the existing model and identify some missingSPS i...

  10. Optimization of Natural Frequencies and Sound Power of Beams Using Functionally Graded Material

    Directory of Open Access Journals (Sweden)

    Nabeel T. Alshabatat

    2014-01-01

    Full Text Available This paper presents a design method to optimize the material distribution of functionally graded beams with respect to some vibration and acoustic properties. The change of the material distribution through the beam length alters the stiffness and the mass of the beam. This can be used to alter a specific beam natural frequency. It can also be used to reduce the sound power radiated from the vibrating beam. Two novel volume fraction laws are used to describe the material volume distributions through the length of the FGM beam. The proposed method couples the finite element method (for the modal and harmonic analysis, Lumped Parameter Model (for calculating the power of sound radiation, and an optimization technique based on Genetic Algorithm. As a demonstration of this technique, the optimization procedure is applied to maximize the fundamental frequency of FGM cantilever and clamped beams and to minimize the sound radiation from vibrating clamped FGM beam at a specific frequency.

  11. Gaussian beam profile shaping apparatus, method therefore and evaluation thereof

    International Nuclear Information System (INIS)

    Dickey, F.M.; Holswade, S.C.; Romero, L.A.

    1999-01-01

    A method and apparatus maps a Gaussian beam into a beam with a uniform irradiance profile by exploiting the Fourier transform properties of lenses. A phase element imparts a design phase onto an input beam and the output optical field from a lens is then the Fourier transform of the input beam and the phase function from the phase element. The phase element is selected in accordance with a dimensionless parameter which is dependent upon the radius of the incoming beam, the desired spot shape, the focal length of the lens and the wavelength of the input beam. This dimensionless parameter can also be used to evaluate the quality of a system. In order to control the radius of the incoming beam, optics such as a telescope can be employed. The size of the target spot and the focal length can be altered by exchanging the transform lens, but the dimensionless parameter will remain the same. The quality of the system, and hence the value of the dimensionless parameter, can be altered by exchanging the phase element. The dimensionless parameter provides design guidance, system evaluation, and indication as to how to improve a given system. 27 figs

  12. Attenuation studies near K-absorption edges using Compton scattered 241Am gamma rays

    International Nuclear Information System (INIS)

    Abdullah, K.K.; Ramachandran, N.; Karunakaran Nair, K.; Babu, B.R.S.; Joseph, Antony; Thomas, Rajive; Varier, K.M.

    2008-01-01

    We have carried out photon attenuation measurements at several energies in the range from 49.38 keV to 57.96 keV around the K-absorption edges of the rare earth elements Sm, Eu, Gd, Tb, Dy and Er using 59.54 keV gamma rays from 241 Am source after Compton scattering from an aluminium target. Pellets of oxides of the rare earth elements were chosen as mixture absorbers in these investigations. A narrow beam good geometry set-up was used for the attenuation measurements. The scattered gamma rays were detected by an HPGe detector. The results are consistent with theoretical values derived from the XCOM package. (author)

  13. Simulation of the electron acoustic instability for a finite-size electron beam system

    International Nuclear Information System (INIS)

    Lin, C.S.; Winske, D.

    1987-01-01

    Satellite observations at midlatitudes (≅20,000 km) near the earth's dayside polar cusp boundary layer indicate that the upward electron beams have a narrow latitudinal width up to 0.1 0 . In the cusp boundary layer where the electron population consists of a finite-size electron beam in a background of uniform cold and hot electrons, the electron acoustic mode is unstable inside the electron beam but damped outside the electron beam. Simulations of the electron acoustic instability for a finite-size beam system are carried out with a particle-in-cell code to investigate the heating phenomena associated with the instability and the width of the heating region. The simulations show that the finite-size electron beam radiates electrostatic electron acoustic waves. The decay length of the electron acoustic waves outside the beam in the simulation agrees with the spatial decay length derived from the linear dispersion equation

  14. Correction of aberrations in beams filling elliptical phase-space areas

    International Nuclear Information System (INIS)

    Wollnik, H.

    1988-01-01

    For the optimization of an optical system it is advantageous to amend the system by a virtual object lens so that the calculation always starts from an upright phase-space distribution. Furthermore, in case of a beam filling an elliptical phase-space volume, the most extreme rays of a beam, filling a parallelogram-like phase-space volume, do not exist, so that the corresponding sum of aberrations is smaller. For an optimization thus corresponding attenuation factors should be taken into accout

  15. Effect of electron beam irradiation on seed germination

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seunghee; Bae, Youngmin [Changwon Univ., Changwon (Korea, Republic of)

    2013-07-01

    Effect of electron beam irradiation on seed germination was investigated in this research. Electron beam of 0.5, 1.0, 1.5 and 2.0 kGy was irradiated to the seeds of lettuce, green onion and cucumber, and the irradiated seeds were incubated at 25 .deg. Cn Nitsch medium solidified with 0.2% Phytagel. Germination percentage and the length of the sprouts were determined after 72 hours. Germination percentage of lettuce seeds was greatly reduced by the irradiation, and that of the green onion and cucumber were moderately reduced or unchanged by the irradiation. Although average length of the lettuce sprouts was reduced severely, that of the green onion and cucumber was unchanged or moderately reduced. Conclusively, electron beam irradiation might be a useful way of disinfecting some plant seeds including green onion and cucumber.

  16. Effect of electron beam irradiation on seed germination

    International Nuclear Information System (INIS)

    Han, Seunghee; Bae, Youngmin

    2013-01-01

    Effect of electron beam irradiation on seed germination was investigated in this research. Electron beam of 0.5, 1.0, 1.5 and 2.0 kGy was irradiated to the seeds of lettuce, green onion and cucumber, and the irradiated seeds were incubated at 25 .deg. Cn Nitsch medium solidified with 0.2% Phytagel. Germination percentage and the length of the sprouts were determined after 72 hours. Germination percentage of lettuce seeds was greatly reduced by the irradiation, and that of the green onion and cucumber were moderately reduced or unchanged by the irradiation. Although average length of the lettuce sprouts was reduced severely, that of the green onion and cucumber was unchanged or moderately reduced. Conclusively, electron beam irradiation might be a useful way of disinfecting some plant seeds including green onion and cucumber

  17. Characterisation of electron beams from laser-driven particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A. [Physics Department, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  18. Electron acceleration by longitudinal electric field of a gaussian laser beam

    International Nuclear Information System (INIS)

    Takeuchi, Satoshi; Sugihara, Ryo; Shimoda, Koichi.

    1991-11-01

    It is shown that the longitudinal electric field of a transverse magnetic mode of a Gaussian laser beam accelerates an electron to an ultra-relativistic energy. The electron is captured and accelerated in a length of the order of the Rayleigh range. The ultimate energy increment of the electron with a single laser beam is given by the product of transverse field intensity and the beam waist, and can be of the order of 100MeV. This fact implies that a multi-stage acceleration enables TeV-order-acceleration in a length of a few kilometers with the present state of the art. (author)

  19. RF Plasma Source for Heavy Ion Beam Charge Neutralization

    Science.gov (United States)

    Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.

    2003-10-01

    Highly ionized plasmas are being employed as a medium for charge neutralizing heavy ion beams in order to focus to a small spot size. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 0-10 gauss. The goal is to operate the source at pressures 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Recently, pulsed operation of the source has enabled operation at pressures in the 10-6 Torr range with densities of 10^11 cm-3. Near 100% ionization has been achieved. The source has been integrated with NTX and is being used in the experiments. The plasma is approximately 10 cm in length in the direction of the beam propagation. Modifications to the source will be presented that increase its length in the direction of beam propagation.

  20. Generation and propagation of radially polarized beams in optical fibers

    DEFF Research Database (Denmark)

    Ramachandran, Siddharth; Kristensen, P; Yan, M F

    2009-01-01

    Beams with polarization singularities have attracted immense recent attention in a wide array of scientific and technological disciplines. We demonstrate a class of optical fibers in which these beams can be generated and propagated over long lengths with unprecedented stability, even...

  1. Lightweight HPC beam OMEGA

    Science.gov (United States)

    Sýkora, Michal; Jedlinský, Petr; Komanec, Jan

    2017-09-01

    In the design and construction of precast bridge structures, a general goal is to achieve the maximum possible span length. Often, the weight of individual beams makes them difficult to handle, which may be a limiting factor in achieving the desired span. The design of the OMEGA beam aims to solve a part of these problems. It is a thin-walled shell made of prestressed high-performance concrete (HPC) in the shape of inverted Ω character. The concrete shell with prestressed strands is fitted with a non-stressed tendon already in the casting yard and is more easily transported and installed on the site. The shells are subsequently completed with mild steel reinforcement and cores are cast in situ together with the deck. The OMEGA beams can also be used as an alternative to steel - concrete composite bridges. Due to the higher production complexity, OMEGA beam can hardly substitute conventional prestressed beams like T or PETRA completely, but it can be a useful alternative for specific construction needs.

  2. Determination of gamma ray attenuation coefficient of archaeological ceramics from Parana State, Brazil

    International Nuclear Information System (INIS)

    Silva, Richard M.C.; Appoloni, Carlos R.; Parreira, Paulo S.; Coimbra, Melayne M.; Aragao, Pedro H.A.

    1997-01-01

    This work demonstrates an alternative methodology for the linear attenuation coefficient determination (μρ) of irregular form samples. This methodology aims the study of indigenous archaeological ceramics from the region of Londrina, North of Parana State, Brazil. These ceramics are from Padre Carlos Weiss Historic Museum, Londrina University and belong to the Kaingaing tradition. Firstly, μρ determination by two mean method was performed by the gamma ray beam attenuation of the immersed ceramics, by using two different means with well-known linear attenuation coefficient. Beyond, the deduction of the equation for the μρ determination by the two-means methods, was also realized. By the other side, μρ theoretical value was determined with the XCOM computer program. This program uses the ceramics chemistry composition and provides an energy versus mass attenuation coefficient table. To verify the two-means method efficiency, five ceramics sample of thickness 1.15 cm and 1.87 cm were prepared with homogeneous clay. Theses ceramics, we used for the μρ determination using the attenuation method, and two-means method. The results and the μρ obtained deviation were compared for these samples, for the two methods. With the obtained results, it was concluded that the two-means method is applicable for the mass attenuation coefficient determination for the archaeometry studies. (author). 6 refs., 1 fig., 5 tabs

  3. Semi-analytical solution to arbitrarily shaped beam scattering

    Science.gov (United States)

    Wang, Wenjie; Zhang, Huayong; Sun, Yufa

    2017-07-01

    Based on the field expansions in terms of appropriate spherical vector wave functions and the method of moments scheme, an exact semi-analytical solution to the scattering of an arbitrarily shaped beam is given. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are presented to a spheroid and a circular cylinder of finite length, and the scattering properties are analyzed concisely.

  4. MODELLING THE DELAMINATION FAILURE ALONG THE CFRP-CFST BEAM INTERACTION SURFACE USING DIFFERENT FINITE ELEMENT TECHNIQUES

    Directory of Open Access Journals (Sweden)

    AHMED W. AL-ZAND

    2017-01-01

    Full Text Available Nonlinear finite element (FE models are prepared to investigate the behaviour of concrete-filled steel tube (CFST beams strengthened by carbon fibre reinforced polymer (CFRP sheets. The beams are strengthened from the bottom side only by varied sheet lengths (full and partial beam lengths and then subjected to ultimate flexural loads. Three surface interaction techniques are used to implement the bonding behaviour between the steel tube and the CFRP sheet, namely, full tie interaction (TI, cohesive element (CE and cohesive behaviour (CB techniques using ABAQUS software. Results of the comparison between the FE analysis and existing experimental study confirm that the FE models with the TI technique could be applicable for beams strengthened by CFRP sheets with a full wrapping length; the technique could not accurately implement the CFRP delamination failure, which occurred for beams with a partial wrapping length. Meanwhile, the FE models with the CE and CB techniques are applicable in the implementation of both CFRP failures (rapture and delamination for both full and partial wrapping lengths, respectively. Where, the ultimate loads' ratios achieved by the FE models using TI, CE and CB techniques about 1.122, 1.047 and 1.045, respectively, comparing to the results of existing experimental tests.

  5. JPRS Report, Science & Technology, China

    Science.gov (United States)

    1992-10-09

    electron microscopy. Data indicate that the RHDV may like the parvovirus of the family Parvoviridae. JPRS-CST-92-018 9 October 1992 CHEMICAL...cm Field attenuation constant o-0.178/m Accelerator length 35.128 m Accelerator tube vacuum 5 x 10ś Torr (w/o beam); 5 x 10-6 Torr (with beam

  6. In-beam background suppression shield

    DEFF Research Database (Denmark)

    Santoro, V.; Cai, Xiao Xiao; DiJulio, D. D.

    2015-01-01

    The long (3 ms) proton pulse of the European Spallation Source (ESS) gives rise to unique and potentially high backgrounds for the instrument suite. In such a source an instrument's capabilities will be limited by its Signal to Noise (S/N) ratio. The instruments with a direct view of the moderator......, which do not use a bender to help mitigate the fast neutron background, are the most challenging. For these beam lines we propose the innovative shielding of placing blocks of material directly into the guide system, which allow a minimum attenuation of the cold and thermal fluxes relative...... to the background suppression. This shielding configuration has been worked into a beam line model using Geant4. We study particularly the advantages of single crystal sapphire and silicon blocks....

  7. Beam density equalization in a channel with nonlinear optics

    International Nuclear Information System (INIS)

    Batygin, Yu.K.; Kushin, V.V.; Nesterov, N.A.; Plotnikov, S.V.

    1993-01-01

    Simulation of beam density equalization in 2.85 m length transport channel covering two quadrupole lenses and two octupole lenses was carried out to obtain irradiation homogeneous field of track membrane materials. 0.3 MeV/nucleon energy and 1/8 electron-charge-mass ratio ion beam was supplied to the system inlet. Equalization of beam density function equal to about 80% was obtained. 4 refs., 1 fig

  8. Stability of a short Rayleigh length laser resonator

    Directory of Open Access Journals (Sweden)

    P. P. Crooker

    2005-04-01

    Full Text Available Motivated by the prospect of constructing a short Rayleigh length free-electron laser in a high-vibration environment, we demonstrate the use of a collection of rays to study the effect of mirror vibration and distortion on the behavior of the fundamental optical mode of a cold-cavity resonator. We find that the ray collection accurately describes both on-axis and off-axis optical beams. We show that a tilt or transverse shift of a mirror causes the optical mode to rock about the original resonator axis, while a longitudinal mirror shift or a change in the mirror’s radius of curvature causes the beam diameter at a mirror to successively dilate and contract on the mirror. Results are in excellent agreement with analytic calculations and wave front propagation simulations as long as the mirrors remain large with respect to the beam diameter.

  9. Parameters affecting profile shape of a high energy low current thin ion beam. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Salam, F W; Moustafa, O A; El-Khabeary, H [Accelerators Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    The shape of the profile of a high energy, low current beam of finite length has beam investigated. The beam profile shape depends on the initial beam radius, beam perveance, atomic mass number, charge state of ions, and beam length. These parameters can affect the relation between the initial beam radius and the corresponding final one. An optimum initial beam radius corresponding to minimum final beam at the target has been formulated and the relation between them is deduced taking account of the space charge effect. The minimum beam radius at the target was found to be equal to 2.3 of the optimum initial radius. It is concluded that in order to obtain a small beam radius at a target placed at a finite distance from an ion source, a beam of a low perveance, low atomic mass number and high number of electronic charge is required. This is an important detection for micro machining applications using the oscillating electron ion source which produces nearly paraxial thin beam of low perveance. 12 figs.

  10. Neutrons production in thick targets of Be and {sup 238}U bombarded by 100 MeV/u deuterons and in a thick target of C bombarded by 95 MeV/u {sup 36}Ar. Attenuation in concrete and dose equivalent rate of the activated uranium; Neutrons produits dans des cibles epaisses de Be et {sup 238}U irradiees par des deutons de 100 MeV/u et dans une cible epaisse de C irradiee par des {sup 36}Ar de 95 MeV/u. Longueurs d'attenuation dans du beton et debit d'equivalent de dose resultant de l'activation de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Pauwels, N.; Proust, J.; Clapier, F.; Gara, P.; Obert, J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Mirea, M. [Institute of Physics and Nuclear Engineering, Bucharest (Romania); Belier, G.; Ethvignot, T.; Granier, T. [CEA/DAM-Ile de France, 91 - Bruyeres-Le-Chatel (France). Service de Physique Nucleaire; Liang, C.F. [Paris-11 Univ., 91 - Orsay (France). Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse; Bajard, M.; Leroy, R.; Villari, A.C.C. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)

    1999-09-01

    Neutrons production in thick targets of Be and {sup 238}U bombarded by 100 MeV/u deuterons and in a thick target of C bombarded by 95 MeV/u {sup 36}Ar. Attenuation in concrete and dose equivalent rate of the activated uranium. The yields of secondary neutrons produced by the interaction of a beam with thick target were determined with activation detectors. Three projectile-target couples have been studied: deuterons (100 MeV/u)+{sup 238}U, deuterons (100 MeV/u)+{sup 9}Be and {sup 36}Ar (95 MeV/u)+{sup 12}C. At 0 deg.. the yields were also measured after a piece of concrete and the corresponding attenuation length evaluated. The dose rate of the uranium target was monitored during several days after the end of the irradiation. (author)

  11. Developments in non-destructive beam diagnostics

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1981-01-01

    With the large average beam currents being achieved in accelerators and storage rings, there is an increasing need for non-destructive beam diagnostic devices. For continuous beams, position monitors of the capacitive pick-up type are replaced by resonant devices that respond to the transverse displacement of the beam centroid. Bunch length monitors of the SLAC type using resonant cavities operating in the TM 010 mode can be used for continuous beams. The more detailed information derivable from beam profile scanners requires development of improved non-destructive devices. Profile monitors which scan the visible light produced by high current beams may be more reliable than ones using the residual ionization if the light intensity from gas molecules following nonionizing collisions with beam particles gives a measure of the beam current density independent of the local electron density. The intense Balmer series lines from neutral hydrogen beams have been used successfully to measure beam profiles. At CRNL and at LASL, beam light profile monitors are being developed for high average current accelerators. Three or more projections will be recorded to allow tomographic reconstruction of the two-dimensional beam current density. Light detection is either by intensified Reticons or ISIT vidicons. The use of three or more beam light monitors on a beam transport line will also permit estimates of the transverse emittance to be made through the reconstruction technique

  12. Analysis of optical attenuation from measured visibility data in islamabad, pakistan

    International Nuclear Information System (INIS)

    Khan, R.; Khan, M.S.

    2018-01-01

    FSOL (Free-Space Optical Links) are becoming very popular due to the inherent advantages of high data rates, rapid deployment, portability, cost effective and immunity to electromagnetic interference. FSOL is a line-of-sight technology that uses a modulated beam of light to transmit and receive the data of multiple of Giga Bit per second. FSOL uses the free space or atmosphere as a communication channel. Optical signal launched at transmitter end, travels through the atmosphere and reaches to the receiver, is severely affected by the local atmospheric conditions. Atmosphere contains different atmospheric particulates like fog, rain, snow, smog, clouds and haze. These atmospheric particulates, particularly fog, effect the propagation of optical signal passing through the atmosphere and cause significant amount of optical attenuation. In order to deploy FSO system, a detailed analysis of local weather condition is much more important. Here, we present the measured visibility data for analysis of optical attenuation. Visibility data was measured at COMSATS Institute of Information Technology from 2009-2012. Percentage CDF (Cumulative Distribution Function) is used to find out the detailed insight about the optical attenuation of FSOL. Yearly based CDFs is compared with each other which clearly suggest that almost 99% of time optical attenuation remains within the range of 2 dB/km. (author)

  13. Performance and calibration of wave length shifting fibers for K2K SciBar detector

    International Nuclear Information System (INIS)

    Morita, Taichi

    2004-01-01

    The wave length shifting (WLS) fibers (Kuraray Y11 (200) MS) are used for light collection from scintillators in the SciBar detector. The performance of WLS fibers was measured before installation. Because the number of WLS fibers is about 15,000, it is necessary to make a system to measure attenuation length of WLS fibers efficiently. I will report the pre-calibration method for measurement and the performance of the WLS fibers in SciBar detector. (author)

  14. Disruption effects on the beam size measurement

    Energy Technology Data Exchange (ETDEWEB)

    Raimondi, P.; Decker, F.J.; Chen, P.

    1995-06-01

    At the SLC Final Focus with higher currents and smaller beam sizes, the disruption parameter D{sub y} is close to one and so the pinch effect should produce a luminosity enhancement. Since a flat beam-beam function is fit to deflection scan data to measure the beam size, disruption can affect the measurement. Here the authors discuss the quantitative effects of disruption for typical SLC beam parameters. With 3.5 10{sup 10} particles per pulse, bunch length of 0.8 mm and beam sizes of 2.1 {mu}m horizontally and 0.55 {mu}m vertically, the measured vertical size can be as much as 25% bigger than the real one. Furthermore during the collision the spot size actually decrease, producing an enhancement factor H{sub D} of about 1.25. This would yield to a true luminosity which is 1.6 times that which is estimated from the beam-beam deflection fit.

  15. Disruption effects on the beam size measurement

    International Nuclear Information System (INIS)

    Raimondi, P.; Decker, F.J.; Chen, P.

    1995-01-01

    At the SLC Final Focus with higher currents and smaller beam sizes, the disruption parameter D y is close to one and so the pinch effect should produce a luminosity enhancement. Since a flat beam-beam function is fit to deflection scan data to measure the beam size, disruption can affect the measurement. Here the authors discuss the quantitative effects of disruption for typical SLC beam parameters. With 3.5 10 10 particles per pulse, bunch length of 0.8 mm and beam sizes of 2.1 μm horizontally and 0.55 μm vertically, the measured vertical size can be as much as 25% bigger than the real one. Furthermore during the collision the spot size actually decrease, producing an enhancement factor H D of about 1.25. This would yield to a true luminosity which is 1.6 times that which is estimated from the beam-beam deflection fit

  16. Horizontal beam tubes in FRM-II

    International Nuclear Information System (INIS)

    Coors, D.; Vanvor, D.

    2001-01-01

    The new research reactor in Garching FRM-II is equipped with 10 leak tight horizontal beam tubes (BT1 - BT10), each of them consisting of a beam tube structure taking an insert with neutron channels. The design of all beam tube structures is similar whereas the inserts are adapted to the special requirements of the using of each beam tube. Inside the reflector tank the beam tube structures are shaped by the inner cones which are made of Al-alloy with circular and rectangular cross sections. They are located in the region of maximum neutron flux (exception BT10), they are directly connected to the flanges of the reflector tank, their lengths are about 1.5 m (exception BT10) and their axes are directed tagentially to the core centre thus contributing to a low γ-noise at the experiments. (orig.)

  17. Advanced numerical studies of the neutralized drift compression of intense ion beam pulses

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2007-10-01

    Full Text Available Longitudinal bunch compression of intense ion beams for warm dense matter and heavy ion fusion applications occurs by imposing an axial velocity tilt onto an ion beam across the acceleration gap of a linear induction accelerator, and subsequently allowing the beam to drift through plasma in order to neutralize its space-charge and current as the pulse compresses. The detailed physics and implications of acceleration gap effects and focusing aberration on optimum longitudinal compression are quantitatively reviewed using particle-in-cell simulations, showing their dependence on many system parameters. Finite-size gap effects are shown to result in compression reduction, due to an increase in the effective longitudinal temperature imparted to the beam, and a decrease in intended fractional tilt. Sensitivity of the focal plane quality to initial longitudinal beam temperature is explored, where slower particles are shown to experience increased levels of focusing aberration compared to faster particles. A plateau effect in axial compression is shown to occur for larger initial pulse lengths, where the increases in focusing aberration over the longer drift lengths involved dominate the increases in relative compression, indicating a trade-off between current compression and pulse duration. The dependence on intended fractional tilt is also discussed and agrees well with theory. A balance between longer initial pulse lengths and larger tilts is suggested, since both increase the current compression, but have opposite effects on the final pulse length, drift length, and amount of longitudinal focusing aberration. Quantitative examples are outlined that explore the sensitive dependence of compression on the initial kinetic energy and thermal distribution of the beam particles. Simultaneous transverse and longitudinal current density compression can be achieved in the laboratory using a strong final-focus solenoid, and simulations addressing the effects

  18. Fractional Fourier transform for confluent hypergeometric beams

    International Nuclear Information System (INIS)

    Tang, Bin; Jiang, Chun; Zhu, Haibin

    2012-01-01

    Based on the definition of the fractional Fourier transform (FRFT) in the cylindrical coordinate system, the propagation properties of a new family of paraxial laser beams named confluent hypergeometric (HyG) beams, of which intensity profile is similar to that for the Bessel modes, passing through FRFT optical systems have been studied in detail by some typical numerical examples. The results indicate that the normalized intensity distribution of a HyG beam in the FRFT plane is closely related to not only the fractional order p but also the beam parameters m,n, and focal length f. -- Highlights: ► We study the propagation of a HyG beam through FRFT optical systems. ► The intensity of the beam in the FRFT plane is closely related to some parameters. ► We can control the properties of HyG beams by properly choosing the parameters.

  19. Quantitative Analysis of Electron Beam Damage in Organic Thin Films

    OpenAIRE

    Leijten, Zino J. W. A.; Keizer, Arthur D. A.; de With, Gijsbertus; Friedrich, Heiner

    2017-01-01

    In transmission electron microscopy (TEM) the interaction of an electron beam with polymers such as P3HT:PCBM photovoltaic nanocomposites results in electron beam damage, which is the most important factor limiting acquisition of structural or chemical data at high spatial resolution. Beam effects can vary depending on parameters such as electron dose rate, temperature during imaging, and the presence of water and oxygen in the sample. Furthermore, beam damage will occur at different length s...

  20. Direct generation of abruptly focusing vortex beams using a 3/2 radial phase-only pattern.

    Science.gov (United States)

    Davis, Jeffrey A; Cottrell, Don M; Zinn, Jonathan M

    2013-03-20

    Abruptly focusing Airy beams have previously been generated using a radial cubic phase pattern that represents the Fourier transform of the Airy beam. The Fourier transform of this pattern is formed using a system length of 2f, where f is the focal length of the Fourier transform lens. In this work, we directly generate these abruptly focusing Airy beams using a 3/2 radial phase pattern encoded onto a liquid crystal display. The resulting optical system is much shorter. In addition, we can easily produce vortex patterns at the focal point of these beams. Experimental results match theoretical predictions.

  1. Preliminary investigations on high energy electron beam tomography

    Energy Technology Data Exchange (ETDEWEB)

    Baertling, Yves; Hoppe, Dietrich; Hampel, Uwe

    2010-12-15

    In computed tomography (CT) cross-sectional images of the attenuation distribution within a slice are created by scanning radiographic projections of an object with a rotating X-ray source detector compound and subsequent reconstruction of the images from these projection data on a computer. CT can be made very fast by employing a scanned electron beam instead of a mechanically moving X-ray source. Now this principle was extended towards high-energy electron beam tomography with an electrostatic accelerator. Therefore a dedicated experimental campaign was planned and carried out at the Budker Institute of Nuclear Physics (BINP), Novosibirsk. There we investigated the capabilities of BINP's accelerators as an electron beam generating and scanning unit of a potential high-energy electron beam tomography device. The setup based on a 1 MeV ELV-6 (BINP) electron accelerator and a single detector. Besides tomographic measurements with different phantoms, further experiments were carried out concerning the focal spot size and repeat accuracy of the electron beam as well as the detector's response time and signal to noise ratio. (orig.)

  2. Off-Axis Gaussian Beams with Random Displacement in Atmospheric Turbulence

    Directory of Open Access Journals (Sweden)

    Yahya Baykal

    2006-10-01

    Full Text Available Our recent work in which we study the propagation of the general Hermite-sinusoidal-Gaussian laser beams in wireless broadband access telecommunication systems is elaborated in this paper to cover the special case of an off-axis Gaussian beam. We mainly investigate the propagation characteristics in atmospheric turbulence of an off-axis Gaussian beam possessing Gaussian distributed random displacement parameters. Our interest is to search for different types of laser beams that will improve the performance of a wireless broadband access system when atmospheric turbulence is considered. Our formulation is based on the basic solution of the second order mutual coherence function evaluated at the receiver plane. For fixed turbulence strength, the coherence length calculated at the receiver plane is found to decrease as the variance of the random displacement is increased. It is shown that as the turbulence becomes stronger, coherence lengths due to off-axis Gaussian beams tend to approach the same value, irrespective of the variance of the random displacement. As expected, the beam spreading is found to be pronounced for larger variance of displacement parameter. Average intensity profiles when atmospheric turbulence is present are plotted for different values of the variance of the random displacement parameter of the off-axis Gaussian beam.

  3. Mechanical design for modification of a neutral beam for off-axis injection

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, P.M. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)], E-mail: anderson@fusion.gat.com; Hong, R.-M. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)

    2009-06-15

    DIII-D is planning to implement off-axis neutral beam current drive by neutral beam injection through a midplane port at angles up to 15 deg. from horizontal. To accommodate the beam-line tilting, the following modifications are planned: (1) move the beam line away from the tokamak by 0.39 m to allow for a 0.68 m inside diameter welded bellows of necessary length to provide 15 deg. of vertical motion between the vessel port and the beam line; (2) reduce the vertical height of the injected beam from 0.48 m to 0.43 m to provide clearance for the inclined beam as it passes through the length of the vessel port; (3) add a linkage system between the front of the beam line and the tokamak to restrain the NB against the vacuum loading from the bellows while maintaining zero roll about the axis of the beam line as it is moved about a virtual pivot axis; (4) add a forward and two rear vertical actuators for raising and lowering the beam line (These actuators require coordinated position control to rotate the NB about a virtual pivot axis.); (5) incorporate lateral restraint to comply with seismic requirements.

  4. Coherent Smith-Purcell radiation as a pulse length diagnostic

    International Nuclear Information System (INIS)

    Lampel, M.C.

    1997-01-01

    Recently, Smith-Purcell radiation has been studied as a candidate for laser-type radiation production in the submillimeter regime. With appropriate choices of beam energy, impact parameter, and grating spacing, there is good coupling to strongly polarized, forward directed radiation. Another regime of possible interest is to use Smith-Purcell radiation as a pulse length diagnostic for medium to high energy electron beams of extremely short pulse duration, on the order of tens of femtoseconds to 1000 fs. Strongly in favor of development of such a diagnostic is its relatively non-destructive nature. With the electron beam passing near, but not through, a metal grating, reaction of the beam distribution itself to the production of the radiation is reduced relative to the much stronger scattering induced by passage through a foil. By careful choice of parameters usable diagnostic radiation ought to be produced with acceptably small emittance growth for an on-line beam monitor, even for the extremely bright electron beams proposed for X-ray FELs, Compton backscatter X-ray sources, or laser/plasma accelerator schemes. In this paper coherent and incoherent Smith-Purcell radiation is examined for reasonable operating parameters of the SATURNUS system at UCLA, with comparisons with results reported from the accelerator test facility (ATF) at Brookhaven National Laboratory. (orig.)

  5. LSST beam simulator

    International Nuclear Information System (INIS)

    Tyson, J A; Klint, M; Sasian, J; Claver, C; Muller, G; Gilmor, K

    2014-01-01

    It is always important to test new imagers for a mosaic camera before device acceptance and constructing the mosaic. This is particularly true of the LSST CCDs due to the fast beam illumination: at long wavelengths there can be significant beam divergence (defocus) inside the silicon because of the long absorption length for photons near the band gap. Moreover, realistic sky scenes need to be projected onto the CCD focal plane Thus, we need to design and build an f/1.2 re-imaging system. The system must simulate the entire LSST 1 operation, including a sky with galaxies and stars with approximately black-body spectra superimposed on a spatially diffuse night sky emission with its complex spectral features

  6. Multiobjective optimization design of an rf gun based electron diffraction beam line

    Directory of Open Access Journals (Sweden)

    Colwyn Gulliford

    2017-03-01

    Full Text Available Multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line comprised of a 100  MV/m 1.6-cell normal conducting rf (NCRF gun, as well as a nine-cell 2π/3 bunching cavity placed between two solenoids, have been performed. These include optimization of the normalized transverse emittance as a function of bunch charge, as well as optimization of the transverse coherence length as a function of the rms bunch length of the beam at the sample location for a fixed charge of 10^{6} electrons. Analysis of the resulting solutions is discussed in terms of the relevant scaling laws, and a detailed description of one of the resulting solutions from the coherence length optimizations is given. For a charge of 10^{6} electrons and final beam sizes of σ_{x}≥25  μm and σ_{t}≈5  fs, we found a relative coherence length of L_{c,x}/σ_{x}≈0.07 using direct optimization of the coherence length. Additionally, based on optimizations of the emittance as a function of final bunch length, we estimate the relative coherence length for bunch lengths of 30 and 100 fs to be roughly 0.1 and 0.2  nm/μm, respectively. Finally, using the scaling of the optimal emittance with bunch charge, for a charge of 10^{5} electrons, we estimate relative coherence lengths of 0.3, 0.5, and 0.92  nm/μm for final bunch lengths of 5, 30 and 100 fs, respectively.

  7. Spot size predictions of a focused ion beam based on laser cooling

    NARCIS (Netherlands)

    Haaf, ten G.; Wouters, S.H.W.; Geer, van der S.B.; Mutsaers, P.H.A.; Luiten, O.J.; Vredenbregt, E.J.D.

    2014-01-01

    The Atomic Beam Laser Cooled Ion Source (ABLIS) is a new source for focused ion beam instruments, which are used in the semiconductor industry, to image and modify structures on the nanometer length scale. The ABLIS employs laser cooling and compression of an atomic beam of rubidium to increase its

  8. SPECT reconstruction of combined cone beam and parallel hole collimation with experimental data

    International Nuclear Information System (INIS)

    Li, Jianying; Jaszczak, R.J.; Turkington, T.G.; Greer, K.L.; Coleman, R.E.

    1993-01-01

    The authors have developed three methods to combine parallel and cone bean (P and CB) SPECT data using modified Maximum Likelihood-Expectation Maximization (ML-EM) algorithms. The first combination method applies both parallel and cone beam data sets to reconstruct a single intermediate image after each iteration using the ML-EM algorithm. The other two iterative methods combine the intermediate parallel beam (PB) and cone beam (CB) source estimates to enhance the uniformity of images. These two methods are ad hoc methods. In earlier studies using computer Monte Carlo simulation, they suggested that improved images might be obtained by reconstructing combined P and CB SPECT data. These combined collimation methods are qualitatively evaluated using experimental data. An attenuation compensation is performed by including the effects of attenuation in the transition matrix as a multiplicative factor. The combined P and CB images are compared with CB-only images and the result indicate that the combined P and CB approaches suppress artifacts caused by truncated projections and correct for the distortions of the CB-only images

  9. Progress toward a microsecond duration, repetitive, intense-ion beam for active spectroscopic measurements on ITER

    International Nuclear Information System (INIS)

    Davis, H.A.; Bartsch, R.R.; Barnes, C.W.

    1996-01-01

    The authors describe the design of an intense, pulsed, repetitive, neutral beam based on magnetically insulated diode technology for injection into ITER for spectroscopic measurements of thermalizing alpha particle and thermal helium density profiles, ion temperature, plasma rotation, and low Z impurity concentrations in the confinement region. The beam is being developed to enhance low signal-to-noise ratios expected with conventional steady-state ion beams because of severe beam attenuation and intense bremstrahlung emission. A 5 GW (e.g., 100 keV, 50 kA) one-microsecond-duration beam would increase the signal by 10 3 compared to a conventional 5 MW beam with signal-to-noise ratios comparable to those from a chopped conventional beam in one second

  10. Five second helium neutral beam injection using argon-frost cryopumping techniques

    International Nuclear Information System (INIS)

    Phillips, J.C.; Kellman, D.H.; Hong, R.; Kim, J.; Laughon, G.M.

    1995-01-01

    High power helium neutral beams for the heating of tokamak discharges can now be provided for 5 s by using argon cryopumping (of the helium gas) in the beamlines. The DIII-D neutral beam system has routinely provided up to 20 MW of deuterium neutral beam heating in support of experiments on the DIII-D tokamak. Operation of neutral beams with helium has historically presented a problem in that pulse lengths have been limited to 500 ms due to reliance solely on volume pumping of the helium gas. Helium is not condensed on the cryopanels. A system has now been installed to deposit a layer of argon frost on the DIII-D neutral beam cryopanels, between tokamak injection pulses. The layer serves to trap helium on the cryopanels providing sufficient pumping speed for 5 s helium beam extraction. The argon frosting hardware is now present on two of four DIII-D neutral beamlines, allowing injection of up to 6 MW of helium neutral beams per discharge, with pulse lengths of up to 5 s. The argon frosting system is described, along with experimental results demonstrating its effectiveness as a method of economically extending the capabilities of cryogenic pumping panels to allow multi-second helium neutral beam injection

  11. Simulating the influence of scatter and beam hardening in dimensional computed tomography

    Science.gov (United States)

    Lifton, J. J.; Carmignato, S.

    2017-10-01

    Cone-beam x-ray computed tomography (XCT) is a radiographic scanning technique that allows the non-destructive dimensional measurement of an object’s internal and external features. XCT measurements are influenced by a number of different factors that are poorly understood. This work investigates how non-linear x-ray attenuation caused by beam hardening and scatter influences XCT-based dimensional measurements through the use of simulated data. For the measurement task considered, both scatter and beam hardening are found to influence dimensional measurements when evaluated using the ISO50 surface determination method. On the other hand, only beam hardening is found to influence dimensional measurements when evaluated using an advanced surface determination method. Based on the results presented, recommendations on the use of beam hardening and scatter correction for dimensional XCT are given.

  12. Beam studies with a LNB detector system

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzkopf, Joachim; Judin, Vitali; Mueller, Anke-Susanne [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany)

    2013-07-01

    At ANKA, the synchrotron of the KIT (Karlsruhe Institue of Technology), beam studies with a detector system better known for its use in the entertainment industry have been carried out. The system basically consists of a LNB (Low Noise Block), usually part of a satellite TV receiver. One possible application in accelerator physics is the monitoring of the bunch length. This presentation reports on beam experiments with this inexpensive detector.

  13. Dynamic Stresses in the LHC TCDS Diluter from 7 TeV Beam Loading

    CERN Document Server

    Goddard, B; Presland, A; Weterings, W

    2006-01-01

    In the event of an unsynchronised beam abort, the MSD extraction septum of the LHC beam dumping system is protected from damage by the TCDS diluter. The simultaneous constraints of obtaining sufficient beam dilution while ensuring the survival of the TCDS make the design difficult, with high thermally induced dynamic stresses occurring in the material needed to attenuate the particle showers induced by the primary beam impact. In this paper, full 3D simulations are described where the worst-case beam loading has been used to generate the local temperature rise and to follow the resulting time evolution of the mechanical stresses. The results and the accompanying design changes for the TCDS, to provide an adequate performance margin, are detailed.

  14. Effects of attenuation map accuracy on attenuation-corrected micro-SPECT images

    NARCIS (Netherlands)

    Wu, C.; Gratama van Andel, H.A.; Laverman, P.; Boerman, O.C.; Beekman, F.J.

    2013-01-01

    Background In single-photon emission computed tomography (SPECT), attenuation of photon flux in tissue affects quantitative accuracy of reconstructed images. Attenuation maps derived from X-ray computed tomography (CT) can be employed for attenuation correction. The attenuation coefficients as well

  15. Polymer composites with carbon nanotube for application of radiation attenuator in medical procedures

    Energy Technology Data Exchange (ETDEWEB)

    Fontainha, C.C.P.; Nunes, M.; Rosas, V.A., E-mail: crissia@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Anatomia e Imagem; Furtado, C.A.; Faria, L.O. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Medical radiology offers great benefit to patients, however, the radiation contributes for the workers and individuals exposure, significantly increasing dose to population. New attenuators materials have been widely investigated for radiation shielding to apply in medical procedures. Polymeric composites filled with attenuating metals and functionalized with carbon nanotubes (NTC) are being largely developed. In this work, composites were produced for radiation attenuation in radiodiagnostic imaging procedures. Two types of polymer matrices, polyvinylidene fluoride, PVDF, and its copolymer, poly(vinylidene-trifluorylene fluoride), P(VDF-TrFE), were filled bismuth oxide nanoparticles. Carbon nanotubes were added with different concentrations at the solution of attenuator metal under controlled magnetic stirring. The composites were characterized by differential heat flow scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and dispersive energy X-ray spectrometry (EDS) for thermal analysis. In this setup, one reference measure is directly exposed to the x-rays being diffracted by single crystal of Si (111). Another measure the attenuated beam is performed with the composite sample under detector. The samples present a good dispersion of the attenuator metal and the nanotube carbon. On the other hand, composites with PVDF matrix lost their plasticity, stiffening their structure, becoming brittle, even using the same methodology of synthesis. The P(VDF-Trfe) matrix showed better maleability than PVDF matrix. The cheaptube dispersion in the P(VDF-Trfe) matrix presented better than the 3100 carbon nanotubes. The attenuation for 8.047 keV monoenergetic photons was about 90% to 100 μm thickness for all composites. (author)

  16. Polymer composites with carbon nanotube for application of radiation attenuator in medical procedures

    International Nuclear Information System (INIS)

    Fontainha, C.C.P.; Nunes, M.; Rosas, V.A.

    2017-01-01

    Medical radiology offers great benefit to patients, however, the radiation contributes for the workers and individuals exposure, significantly increasing dose to population. New attenuators materials have been widely investigated for radiation shielding to apply in medical procedures. Polymeric composites filled with attenuating metals and functionalized with carbon nanotubes (NTC) are being largely developed. In this work, composites were produced for radiation attenuation in radiodiagnostic imaging procedures. Two types of polymer matrices, polyvinylidene fluoride, PVDF, and its copolymer, poly(vinylidene-trifluorylene fluoride), P(VDF-TrFE), were filled bismuth oxide nanoparticles. Carbon nanotubes were added with different concentrations at the solution of attenuator metal under controlled magnetic stirring. The composites were characterized by differential heat flow scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and dispersive energy X-ray spectrometry (EDS) for thermal analysis. In this setup, one reference measure is directly exposed to the x-rays being diffracted by single crystal of Si (111). Another measure the attenuated beam is performed with the composite sample under detector. The samples present a good dispersion of the attenuator metal and the nanotube carbon. On the other hand, composites with PVDF matrix lost their plasticity, stiffening their structure, becoming brittle, even using the same methodology of synthesis. The P(VDF-Trfe) matrix showed better maleability than PVDF matrix. The cheaptube dispersion in the P(VDF-Trfe) matrix presented better than the 3100 carbon nanotubes. The attenuation for 8.047 keV monoenergetic photons was about 90% to 100 μm thickness for all composites. (author)

  17. Propagation of a nonrelativistic electron beam in a plasma in a magnetic field

    International Nuclear Information System (INIS)

    Okuda, H.; Horton, R.; Ono, M.; Ashour-Abdalla, M.

    1987-01-01

    Propagation of a nonrelativistic electron beam in a plasma in a strong magnetic field has been studied using electrostatic one-dimensional particle simulation models. Electron beams of finite pulse length and of continuous injection are followed in time to study the effects of beam--plasma interaction on the beam propagation. For the case of pulsed beam propagation, it is found that the beam distribution rapidly spreads in velocity space generating a plateaulike distribution with a high energy tail extending beyond the initial beam velocity. This rapid diffusion takes place within a several amplification length of the beam--plasma instability given by (ω/sub p/ω 2 /sub b/) -1 /sup // 3 V 0 , where ω/sub p/, ω/sub b/, and V 0 are the target plasma, beam--plasma frequencies, and the beam drift speed. This plateaulike distribution, however, becomes unstable as the high energy tail electrons free-stream, generating a secondary beam. A similar process is observed to take place for the case of continuous beam injection when the beam density is small compared with the total density n/sub b//n/sub t/<1. In particular, the electron velocity distribution is found monotonically decreasing in energy, having a high energy tail whose energy reaches twice the initial beam energy. Such an electron distribution is also seen in laboratory experiments and in computer simulations performed for a uniform, periodic system

  18. A beam energy measurement system at NIRS-930 cyclotron

    International Nuclear Information System (INIS)

    Hojo, S.; Honma, T.; Sakamoto, Y.; Miyahara, N.; Okada, T.; Komatsu, K.; Tsuji, N.; Yamada, S.

    2005-01-01

    A beam energy measurement system employing a set of capacitive probes has been developed at NIRS-930 cyclotron. Principle of the measurement is applying a modified-TOF method, so that the two proves are installed at one of the straight section in the beam transport line. Usually they are separated about 5.8 m, which is equivalent to the almost final path length of the beam extracted in the cyclotron. In the measurement, two beam signals are superimposed by adjusting a position of the downstream-probe along the beam direction with watching an oscilloscope screen roughly. In order to determine the beam energy accurately the signals are processed by MCA with suitable electric module. (author)

  19. Collider and Detector Protection at Beam Accidents

    Science.gov (United States)

    Rakhno, I. L.; Mokhov, N. V.; Drozhdin, A. I.

    2003-12-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occured at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section.

  20. Collider and Detector Protection at Beam Accidents

    International Nuclear Information System (INIS)

    Rakhno, I.L.; Mokhov, N.V.; Drozhdin, A.I.

    2003-01-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occurred at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section

  1. Collider and detector protection at beam accidents

    International Nuclear Information System (INIS)

    Rakhno, I.L.; Mokhov, N.V.; Drozhdin, A.I.

    2003-01-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occurred at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section

  2. Plasma heating by a relativistic electron beam

    International Nuclear Information System (INIS)

    Janssen, G.C.A.M.

    1983-01-01

    This thesis is devoted to the interaction of a Relativistic Electron Beam (REB) with a plasma. The goal of the experiment described herein is to study in detail the mechanism of energy transfer from the beam to the plasma. The beam particles have an energy of 800 keV, a current of 6 kA, a diameter of 3 cm and an adjustable pulse length of 50-150 ns. This beam is injected into cold hydrogen and helium plasmas with densities ranging from 10 18 to 10 20 m -3 . First, the technical aspects of the experiment are described. Then measurements on the hf fields excited by the REB-plasma are presented (optical line profiles and spectra of beam electrons). The final section is devoted to plasma heating. (Auth.)

  3. Large photonic band gaps and strong attenuations of two-segment-connected Peano derivative networks

    International Nuclear Information System (INIS)

    Lu, Jian; Yang, Xiangbo; Zhang, Guogang; Cai, Lianzhang

    2011-01-01

    In this Letter, based on ancient Peano curves we construct four kinds of interesting Peano derivative networks composed of one-dimensional (1D) waveguides and investigate the optical transmission spectra and photonic attenuation behavior of electromagnetic (EM) waves in one- and two-segment-connected networks. It is found that for some two-segment-connected networks large photonic band gaps (PBGs) can be created and the widths of large PBGs can be controlled by adjusting the matching ratio of waveguide length and are insensitive to generation number. Diamond- and hexagon-Peano networks are good selectable structures for the designing of optical devices with large PBG(s) and strong attenuation(s). -- Highlights: → Peano and Peano derivative networks composed of 1D waveguides are designed. → Large PBGs with strong attenuations have been created by these fractal networks. → New approach for designing optical devices with large PBGs is proposed. → Diamond- and hexagon-Peano networks with d2:d1=2:1 are good selectable structures.

  4. Fixed target beams

    CERN Document Server

    Kain, V; Cettour-Cave, S; Cornelis, K; Fraser, M A; Gatignon, L; Goddard, B; Velotti, F

    2017-01-01

    The CERN SPS (Super Proton Synchrotron) serves asLHC injector and provides beam for the North Area fixedtarget experiments. At low energy, the vertical acceptancebecomes critical with high intensity large emittance fixed tar-get beams. Optimizing the vertical available aperture is a keyingredient to optimize transmission and reduce activationaround the ring. During the 2016 run a tool was developed toprovide an automated local aperture scan around the entirering.The flux of particles slow extracted with the1/3inte-ger resonance from the Super Proton Synchrotron at CERNshould ideally be constant over the length of the extractionplateau, for optimum use of the beam by the fixed target ex-periments in the North Area. The extracted intensity is con-trolled in feed-forward correction of the horizontal tune viathe main SPS quadrupoles. The Mains power supply noiseat 50 Hz and harmonics is also corrected in feed-forwardby small amplitude tune modulation at the respective fre-quencies with a dedicated additional quad...

  5. Post-tensioning and splicing of precast/prestressed bridge beams to extend spans

    Science.gov (United States)

    Collett, Brandon S.; Saliba, Joseph E.

    2002-06-01

    This paper explores the status and techniques of post-tensioning and splicing precast concrete I-beams in bridge applications. It will look at the current practices that have been used in the United States and comment on the advantages of these techniques. Representative projects are presented to demonstrate the application and success of specific methods used. To demonstrate the benefits of using post-tensioning and splicing to extend spans, multiple analysis of simple span post-tensioned I-beams were performed varying such characteristics as beam spacing, beam sections, beam depth and concrete strength. Tables were then developed to compare the maximum span length of a prestressed I-beam versus a one segment or a spliced three segment post-tensioned I-beam. The lateral stability of the beam during fabrication, transportation and erection is also examined and discussed. These tables are intended to aid designers and owners in preliminary project studies to determine if post-tensioning can be beneficial to their situation. AASHTO Standard Specifications(2) will be used as basic guidelines and specifications. In many cases, post-tensioning was found to extend the maximum span length of a typical 72-inch precast I-beam more than 40 feet over conventional prestress.

  6. Electron Bunch Length Measurement for LCLS at SLAC

    International Nuclear Information System (INIS)

    Zelazny, M.; Allison, S.; Chevtsov, Sergei; Emma, P.; Kotturi, K.d.; Loos, H.; Peng, S.; Rogind, D.; Straumann, T.

    2007-01-01

    At Stanford Linear Accelerator Center (SLAC) a Bunch Length Measurement system has been developed to measure the length of the electron bunch for its new Linac Coherent Light Source (LCLS). This destructive measurement uses a transverse-mounted RF deflector (TCAV) to vertically streak the electron beam and an image taken with an insertable screen and a camera. The device control software was implemented with the Experimental Physics and Industrial Control System (EPICS) toolkit. The analysis software was implemented in Matlab(trademark) using the EPICS/Channel Access Interface for Scilab(trademark) and Matlab(trademark) (labCA). This architecture allowed engineers and physicists to develop and integrate their control and analysis without duplication of effort

  7. SU-F-T-283: A Novel Device to Enable Portal Dosimetry for Flattening Filter Free Beams

    Energy Technology Data Exchange (ETDEWEB)

    Faught, A; Wu, Q; Adamson, J [Duke University Medical Center, Durham, NC (United States)

    2016-06-15

    Purpose: Varian’s electronic portal imaging device (EPID) based portal dosimetry tool is a popular and effective means of performing IMRT QA. EPIDs for older models of the TrueBeam accelerator utilize a 40cmx30cm Image Detection Unit (IDU) that saturates at the center for standard source to imager distances with high dose rate flattening filter free (FFF) beams. This makes portal dosimetry not possible and an alternative means of IMRT QA necessary. We developed a filter that would attenuate the beam to a dose rate measureable by the IDU for portal dosimetry IMRT QA. Methods: Multipurpose 304 stainless steel plates were placed on an accessory tray to attenuate the beam. Profiles of an open field measured on the IDU were acquired with varying number of plates to assess the thickness needed to reduce the maximum dose rates of 6XFFF and 10XFFF beams to measurable levels. A new portal dose image prediction (PDIP) model was commissioned based on open field measurements with plates in position, and a modified beam profile was input to portal dosimetry calibration at the console to empirically correct for attenuation and scatter. The portal dosimetry tool was used to assess agreement between predicted and measured doses for open 25×25cm{sup 2} fields and intensity modulated fields using 6XFFF and 10XFFF beams. Results: Thicknesses of 2.5cm and 3.8cm of steel were required to reduce the highest dose rates to a measureable level for 6XFFF and 10XFFF, respectively. Gamma analysis using a 3%/3mm relative criterion with the filter in place and using the new PDIP model resulted in 98.2% and 93.6% of pixels passing while intensity modulated fields showed passing rates of 98.2% and 99.0%. Conclusion: Use of the filter allows for portal dosimetry to be used for IMRT QA of FFF plans in place of purchasing a second option for IMRT QA.

  8. A Fourier reconstruction algorithm with constant attenuation compensation using 1800 acquisition data for SPECT

    International Nuclear Information System (INIS)

    Tang Qiulin; Zeng, Gengsheng L; Gullberg, Grant T

    2007-01-01

    In this paper, we develop an approximate analytical reconstruction algorithm that compensates for uniform attenuation in 2D parallel-beam SPECT with a 180 0 acquisition. This new algorithm is in the form of a direct Fourier reconstruction. The complex variable central slice theorem is used to derive this algorithm. The image is reconstructed with the following steps: first, the attenuated projection data acquired over 180 deg. are extended to 360 deg. and the value for the uniform attenuator is changed to a negative value. The Fourier transform (FT) of the image in polar coordinates is obtained from the Fourier transform of an analytic function interpolated from an extension of the projection data according to the complex central slice theorem. Finally, the image is obtained by performing a 2D inverse Fourier transform. Computer simulations and comparison studies with a 360 deg. full-scan algorithm are provided

  9. Electron beam treatment planning: A review of dose computation methods

    International Nuclear Information System (INIS)

    Mohan, R.; Riley, R.; Laughlin, J.S.

    1983-01-01

    Various methods of dose computations are reviewed. The equivalent path length methods used to account for body curvature and internal structure are not adequate because they ignore the lateral diffusion of electrons. The Monte Carlo method for the broad field three-dimensional situation in treatment planning is impractical because of the enormous computer time required. The pencil beam technique may represent a suitable compromise. The behavior of a pencil beam may be described by the multiple scattering theory or, alternatively, generated using the Monte Carlo method. Although nearly two orders of magnitude slower than the equivalent path length technique, the pencil beam method improves accuracy sufficiently to justify its use. It applies very well when accounting for the effect of surface irregularities; the formulation for handling inhomogeneous internal structure is yet to be developed

  10. Intense non-relativistic cesium ion beam

    International Nuclear Information System (INIS)

    Lampel, M.C.

    1984-02-01

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm

  11. UV laser ionization and electron beam diagnostics for plasma lenses

    International Nuclear Information System (INIS)

    Govil, R.; Volfbeyn, P.; Leemans, W.

    1995-04-01

    A comprehensive study of focusing of relativistic electron beams with overdense and underdense plasma lenses requires careful control of plasma density and scale lengths. Plasma lens experiments are planned at the Beam Test Facility of the LBL Center for Beam Physics, using the 50 MeV electron beam delivered by the linac injector from the Advanced Light Source. Here we present results from an interferometric study of plasmas produced in tri-propylamine vapor with a frequency quadrupled Nd:YAG laser at 266 nm. To study temporal dynamics of plasma lenses we have developed an electron beam diagnostic using optical transition radiation to time resolve beam size and divergence. Electron beam ionization of the plasma has also been investigated

  12. Free and Forced Vibrations of Periodic Multispan Beams

    Directory of Open Access Journals (Sweden)

    Liping Zhu

    1994-01-01

    Full Text Available In this study, the following two topics are considered for uniform multispan beams of both finite and infinite lengths with rigid transversal and elastic rotational constraints at each support: (a free vibration and the associated frequencies and mode shapes; (b forced vibration under a convected harmonic loading. The concept of wave propagation in periodic structures of Brillouin is utilized to investigate the wave motion at periodic supports of a multispan beam. A dispersion equation and its asymptotic form is obtained to determine the natural frequencies. For the special case of zero rotational spring stiffness, an explicit asymptotic expression for the natural frequency is also given. New expressions for the mode shapes are obtained in the complex form for multispan beams of both finite and infinite lengths. The orthogonality conditions of the mode shapes for two cases are formulated. The exact responses of both finite and infinite span beams under a convected harmonic loading are obtained. Thus, the position and the value of each peak in the harmonic response function can be determined precisely, as well as the occurrence of the so-called coincidence phenomenon, when the response is greatly enhanced.

  13. Filamentation of a converging heavy ion beam

    International Nuclear Information System (INIS)

    Lee, E.P.; Buchanan, H.L.; Rosenbluth, M.N.

    1980-01-01

    A major concern in the use of heavy ion beams as igniters in pellet fusion systems is the vulnerability of the beam to the transverse flamentation instability. The undesirable consequence of this mode is the transverse heating of the beam to the extent that convergence on the pellet becomes impossible. This work considers the case of a beam injected into a gas filled reactor vessel, where finite pulse length and propagation distance play an important role in limiting growth. Two geometries are analyzed: a nonconverging case where the radius at injection is nearly equal to the desired radius at the pellet, and a converging case in which the injection radius is large and the beam is pre-focused to converge at the target. It is found that a cold beam will be severely disrupted if the product of the magnetic plasma frequency and the propagation distance is much larger than unity

  14. Cement-based materials' characterization using ultrasonic attenuation

    Science.gov (United States)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  15. Reference Beam Pattern Design for Frequency Invariant Beamforming Based on Fast Fourier Transform

    Directory of Open Access Journals (Sweden)

    Wang Zhang

    2016-09-01

    Full Text Available In the field of fast Fourier transform (FFT-based frequency invariant beamforming (FIB, there is still an unsolved problem. That is the selection of the reference beam to make the designed wideband pattern frequency invariant (FI over a given frequency range. This problem is studied in this paper. The research shows that for a given array, the selection of the reference beam pattern is determined by the number of sensors and the ratio of the highest frequency to the lowest frequency of the signal (RHL. The length of the weight vector corresponding to a given reference beam pattern depends on the reference frequency. In addition, the upper bound of the weight length to ensure the FI property over the whole frequency band of interest is also given. When the constraints are added to the reference beam, it does not affect the FI property of the designed wideband beam as long as the symmetry of the reference beam is ensured. Based on this conclusion, a scheme for reference beam design is proposed.

  16. Neutral beam development plan

    International Nuclear Information System (INIS)

    Staten, H.S.

    1980-08-01

    The national plan is presented for developing advanced injection systems for use on upgrades of existing experiments, and use on future facilities such as ETF, to be built in the late 1980's or early 90's where power production from magnetic fusion will move closer to a reality. Not only must higher power and longer pulse length systems be developed , but they must operate reliably; they must be a tool for the experimenter, not the experiment itself. Neutral beam systems handle large amounts of energy and as such, they often are as complicated as the plasma physics experiment itself. This presents a significant challenge to the neutral beam developer

  17. Measuring minority-carrier diffusion length using a Kelvin probe force microscope

    International Nuclear Information System (INIS)

    Shikler, R.; Fried, N.; Meoded, T.; Rosenwaks, Y.

    2000-01-01

    A method based on Kelvin probe force microscopy for measuring minority-carrier diffusion length in semiconductors is described. The method is based on measuring the surface photovoltage between the tip of an atomic force microscope and the surface of an illuminated semiconductor junction. The photogenerated carriers diffuse to the junction and change the contact potential difference between the tip and the sample, as a function of the distance from the junction. The diffusion length L is then obtained by fitting the measured contact potential difference using the minority-carrier continuity equation. The method was applied to measurements of electron diffusion length in GaP pn and Schottky junctions. The measured diffusion length was found to be ∼2 μm, in good agreement with electron beam induced current measurements

  18. Parametric instabilities in an electron beam plasma system

    International Nuclear Information System (INIS)

    Nakach, R.; Cuperman, S.; Gell, Y.; Levush, B.

    1981-01-01

    The excitation of low frequency parametric instabilities by a finite wave length pump in a system consisting of a warm electron plasma traversed by a warm electron beam is investigated in a fluid dissipationless model. The dispersion relation for the three-dimensional problem in a magnetized plasma with arbitrary directions for the waves is derived, and the one-dimensional case is analyzed numerically. For the one-dimensional back-scattering decay process, it is found that when the plasma-electron Debye length (lambda sub(D)sup(p)) is larger than the beam-electron Debye length (lambda sub(D)sup(b)), two low frequency electrostatic instability branches with different growth rates may simultaneously exist. When lambda sub(D)sup(p) approximately lambda sub(D)sup(b), the large growth rate instability found in the analysis depends strongly on the amplitude of the pump field. In the case (lambda sub(D)sup(p) < lambda sub(D)sup(b)) only one low frequency instability branch is generally excited

  19. Propagation of a nonrelativistic electron beam in a plasma in a magnetic field

    International Nuclear Information System (INIS)

    Okuda, H.; Horton, R.; Ono, M.; Ashour-Abdalla, M.

    1986-10-01

    Propagation of a nonrelativistic electron beam in a plasma in a strong magnetic field has been studied using electrostatic one-dimensional particle simulation models. Electron beams of finite pulse length and of continuous injection are followed in time to study the effects of beam-plasma interaction on the beam propagation. For the case of pulsed beam propagation, it is found that the beam distribution rapidly spreads in velocity space generating a plateaulike distribution with a high energy tail extending beyond the initial beam velocity

  20. Study of radiation dose attenuation by skull bone in head during radiotherapy treatment using MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Artur F.; Boia, Leonardo S.; Trombetta, Debora M.; Martins, Maximiano C.; Reis Junior, Juraci P.; Silva, Ademir X., E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Batista, Delano V.S., E-mail: delano@inca.gov.b [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil). Dept. de Fisica Medica

    2011-07-01

    In this study the MCNPX code was used to investigate possible influences of the attenuation beam by the surface bone during radiotherapy treatments of the skull. The computer simulation was performed on topographic image obtained from the National Cancer Institute, in Rio de Janeiro, database of patients treated with radiotherapy. The image segmentation process were performed using the SAPDI program developed to this purpose. The segmented image conversion for the input file recognized by MCNPX code was performed by SCAN2MCNP Software. The simulation was done using 10MeV Clinac 2300C spectrum considering two opposite parallel beams, with field size 2x2 and 4x4 cm{sup 2}, incident on a slice located above the eyes, containing two row of detectors positioned on the central region with a radius of 0.03 cm and arranged perpendicular to the radiation beams. After analyze the results, the relative error values in the range of 2 at 4% for the high dose region, and 26 at 37% for the low dose area were found, respectively. These differences were attributed to the radiation field attenuation on the bone surface at the entrance of the beam. It was observed that most situations on the high dose region the beam profile, from more realistic scenarios, became smaller than the one obtained when the tomography image was considered consisting of water. However for the low dose area the profile, obtained of the realistic situation, became higher than the one which was obtained when the tomography image was considered consisting of water. The results showed significant differences between both analyzed cases which show the need to use a correction factor by the treatment planning system used in radiotherapy services when the real chemical composition of patient head is unconsidered during the patient treatment planning. (author)

  1. Study of radiation dose attenuation by skull bone in head during radiotherapy treatment using MCNP

    International Nuclear Information System (INIS)

    Menezes, Artur F.; Boia, Leonardo S.; Trombetta, Debora M.; Martins, Maximiano C.; Reis Junior, Juraci P.; Silva, Ademir X.; Batista, Delano V.S.

    2011-01-01

    In this study the MCNPX code was used to investigate possible influences of the attenuation beam by the surface bone during radiotherapy treatments of the skull. The computer simulation was performed on topographic image obtained from the National Cancer Institute, in Rio de Janeiro, database of patients treated with radiotherapy. The image segmentation process were performed using the SAPDI program developed to this purpose. The segmented image conversion for the input file recognized by MCNPX code was performed by SCAN2MCNP Software. The simulation was done using 10MeV Clinac 2300C spectrum considering two opposite parallel beams, with field size 2x2 and 4x4 cm 2 , incident on a slice located above the eyes, containing two row of detectors positioned on the central region with a radius of 0.03 cm and arranged perpendicular to the radiation beams. After analyze the results, the relative error values in the range of 2 at 4% for the high dose region, and 26 at 37% for the low dose area were found, respectively. These differences were attributed to the radiation field attenuation on the bone surface at the entrance of the beam. It was observed that most situations on the high dose region the beam profile, from more realistic scenarios, became smaller than the one obtained when the tomography image was considered consisting of water. However for the low dose area the profile, obtained of the realistic situation, became higher than the one which was obtained when the tomography image was considered consisting of water. The results showed significant differences between both analyzed cases which show the need to use a correction factor by the treatment planning system used in radiotherapy services when the real chemical composition of patient head is unconsidered during the patient treatment planning. (author)

  2. Propagation of partially coherent vector anomalous vortex beam in turbulent atmosphere

    Science.gov (United States)

    Zhang, Xu; Wang, Haiyan; Tang, Lei

    2018-01-01

    A theoretical model is proposed to describe a partially coherent vector anomalous vortex(AV) beam. Based on the extended Huygens-Fresnel principle, analytical propagation formula for the proposed beams in turbulent atmosphere is derived. The spectral properties of the partially coherent vector AV beam are explored by using the unified theory of coherence and polarization in detail. It is interesting to find that the turbulence of atmosphere and the source parameter of the partially coherent vector AV beam( order, topological charge, coherence length, beam waist size etc) have significantly impacted the propagation properties of the partially coherent vector AV beam in turbulent atmosphere.

  3. Stability Analysis of Nonuniform Rectangular Beams Using Homotopy Perturbation Method

    Directory of Open Access Journals (Sweden)

    Seval Pinarbasi

    2012-01-01

    Full Text Available The design of slender beams, that is, beams with large laterally unsupported lengths, is commonly controlled by stability limit states. Beam buckling, also called “lateral torsional buckling,” is different from column buckling in that a beam not only displaces laterally but also twists about its axis during buckling. The coupling between twist and lateral displacement makes stability analysis of beams more complex than that of columns. For this reason, most of the analytical studies in the literature on beam stability are concentrated on simple cases: uniform beams with ideal boundary conditions and simple loadings. This paper shows that complex beam stability problems, such as lateral torsional buckling of rectangular beams with variable cross-sections, can successfully be solved using homotopy perturbation method (HPM.

  4. Attenuation measures of the BrainLAB imaging couch and validation on the treatment planning system Eclipse; Medidas de atenuacao da mesa BrainLAB imaging couch e validacao no sistema de planejamento Eclipse

    Energy Technology Data Exchange (ETDEWEB)

    Serante, Alexandre R., E-mail: alexandre.serante@gmail.com [Clinica de Radioterapia Inga, Nitero, RJ (Brazil); Goncalves, Joao G. [Instituto Oncologico, Juiz de Fora, MG (Brazil); Neves-Junior, Wellington F.P.; Leite, Joao Paulo S.; Haddad, Cecilia M.K. [Hospital Sirio-Libanes, Sao Paulo, SP (Brazil). Servico de Radioterapia. Sociedade Beneficente de Senhoras

    2015-12-15

    In this work, attenuation measurements were performed for the beams of energy 6 and 15MV for the couch table BrainLAB Imaging Couch, consisting of carbon fiber. The measurements were performed in the Linac Novalis-Tx (Varian) for 5 x 5 and 10 x 10 cm² field sizes, varying gantry positions. The measured data were compared with the values calculated with the treatment planning system Eclipse, calculated with the algorithm AAA, in order to validate the model of the couch included in your library. The highest attenuation for the field size of 10 x 10 cm² was 7,5% and 4,8% for the beams 6 and 15 MV, respectively. With the field size of 5 x 5 cm² the highest attenuation value was 8,1% and 5,3%, for the beams 6 and 15 MV, respectively. Both measured at gantry position 120 deg C. From the attenuation data measured with an ionization chamber, it was possible to modify the model of the couch in Eclipse to obtain the smallest difference between measured and predicted values by the TPS. (author)

  5. A line beam electron gun for rapid thermal processing

    Science.gov (United States)

    Pauli, M.; Müller, J.; Hartkopf, K.; Barth, T.

    1992-04-01

    A line beam electron gun based on the Pierce gun type was developed. The line cathode was realized by a directly heated tungsten rod. The temperature distribution along the tungsten rod was simulated numerically. The simulation shows a flat temperature across 2/3 of the cathode length and it agrees with appropriate measurable parameters. The beam profiles of the electron gun perpendicular to the line direction were examined as a function of electrical and geometrical parameters: The space-charge distribution in front of the cathode was found to be responsible for the shape of the beam profile. The shape of the beam profile is weakly influenced by the acceleration to the anode. The heating current induced voltage drop along the cathode was found to be responsible for the nonuniform emission in line direction. A model for the emission behavior of the line beam electron gun was developed. The model is based on the results of the measurements and on a numerical simulation of the potential distribution in the area between Pierce reflectors and anode. The emission model shows a solution to homogenize the emission by a suitable variation of geometrical parameters in line direction. A linear variation was realized in experiment which enables a uniform emission across 2/3 of the cathode length. The beam profile is adjustable by a bias voltage between the cathode and the Pierce reflectors.

  6. Measurement of photon mass attenuation coefficients of plutonium from 60 to 2615 keV

    International Nuclear Information System (INIS)

    Rettschlag, M.; Berndt, R.; Mortreau, P.

    2007-01-01

    Measurements have been made to determine plutonium photon mass attenuation coefficients by using a collimated-beam transmission method in the energy range from 60 to 2615 keV. These experimental results were compared with previous experimental and theoretical data. Good agreements are observed in the 240-800 keV energy range, whereas differences up to maximum 10% are observed out of these limits

  7. Review of electron beam macroinstabilities and other EBIS related stability and issues

    International Nuclear Information System (INIS)

    Hershcovitch, A.

    1998-01-01

    Plasma magnetohydrodynamics and macroinstability theories are briefly reviewed. Although the configuration of any EBIS is inherently susceptible to a number of classical beam instabilities, the small radial dimension of an EBIS plasma prevents modes from occurring in EBIS traps with low beam compression due to physical limitation. In EBIS devices with high electron beam compression, where the potential for beam instabilities is great, the radial dimension is smaller than the Debye length, which renders any plasma theory invalid. However, a RHIC EBIS is expected to have a diameter which is much larger than the Debye length. Hence, it may be the first EBIS, in which the various plasma theories could be valid. For this and similar future devices, a framework is established to analyze and offer remedies plasma instabilities in EBIS. copyright 1998 American Institute of Physics

  8. Debye-scale solitary structures measured in a beam-plasma laboratory experiment

    Directory of Open Access Journals (Sweden)

    B. Lefebvre

    2011-01-01

    Full Text Available Solitary electrostatic pulses have been observed in numerous places of the magnetosphere such as the vicinity of reconnection current sheets, shocks or auroral current systems, and are often thought to be generated by energetic electron beams. We present results of a series of experiments conducted at the UCLA large plasma device (LAPD where a suprathermal electron beam was injected parallel to a static magnetic field. Micro-probes with tips smaller than a Debye length enabled the detection of solitary pulses with positive electric potential and half-widths 4–25 Debye lengthsDe, over a set of experiments with various beam energies, plasma densities and magnetic field strengths. The shape, scales and amplitudes of the structures are similar to those observed in space, and consistent with electron holes. The dependance of these properties on the experimental parameters is shown. The velocities of the solitary structures (1–3 background electron thermal velocities are found to be much lower than the beam velocities, suggesting an excitation mechanism driven by parallel currents associated to the electron beam.

  9. Generation and propagation characteristics of a localized hollow beam

    Science.gov (United States)

    Xia, Meng; Wang, Zhizhang; Yin, Yaling; Zhou, Qi; Xia, Yong; Yin, Jianping

    2018-05-01

    A succinct experimental scheme is demonstrated to generate a localized hollow beam by using a π-phase binary bitmap and a convergent thin lens. The experimental results show that the aspect ratio of the dark-spot size of the hollow beam can be effectively controlled by the focal length of the lens. The measured beam profiles in free space also agree with the theoretical modeling. The studies hold great promise that such a hollow beam can be used to cool trapped atoms (or molecules) by Sisyphus cooling and to achieve an optically-trapped Bose–Einstein condensate by optical-potential evaporative cooling.

  10. Thermal, epithermal and thermalized neutron attenuation properties of ilmenite-serpentine heat resistant concrete shield

    International Nuclear Information System (INIS)

    Kany, A.M.I.; El-Gohary, M.I.; Kamal, S.M.

    1994-01-01

    Experimental measurements were carried out to study the attenuation properties of low-energy neutrons transmitted through unheated and preheated barriers of heavy-weight, highly hydrated and heat-resistant concrete shields. The concrete shields under investigation have been prepared from naturally occurring ilmenite and serpentine Egyptian ores. A collimated beam obtained from an Am-Be source was used as a source of neutrons, while the measurements of total thermal, epithermal, and thermalized neutron fluxes were performed using a BF-3 detector, multichannel analyzer and Cd filter. Results show that the ilmenite-serpentine concrete proved to be a better thermal, epithermal and thermalized neutron attenuator than the ordinary concrete especially at a high temperature of concrete exposure. (Author)

  11. Electron attenuation anisotropy at crystal surfaces from LEED

    Czech Academy of Sciences Publication Activity Database

    Romanyuk, Olexandr; Bartoš, Igor

    2009-01-01

    Roč. 603, č. 17 (2009), s. 2789-2792 ISSN 0039-6028 R&D Projects: GA ČR GA202/07/0601; GA AV ČR IAA100100628 Institutional research plan: CEZ:AV0Z10100521 Keywords : electron attenuation length, low energy electron diffraction, photoelectron diffraction, electron–solid scattering and transmission, copper * low energy electron diffraction * photoelectron diffraction * electron–solid scattering and transmission * copper Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.798, year: 2009 http://dx.doi.org/10.1016/j.susc.2009.07.024

  12. Relativistic electron-beam transport in curved channels

    International Nuclear Information System (INIS)

    Vittitoe, C.N.; Morel, J.E.; Wright, T.P.

    1982-01-01

    Collisionless single particle trajectories are modeled for a single plasma channel having one section curved in a circular arc. The magnetic field is developed by superposition of straight and curved channel segments. The plasma density gives charge and beam-current neutralization. High transport efficiencies are found for turning a relativistic electron beam 90 0 under reasonable conditions of plasma current, beam energy, arc radius, channel radius, and injection distributions in velocity and in position at the channel entrance. Channel exit distributions in velocity and position are found consistent with those for a straight plasma channel of equivalent length. Such transport problems are important in any charged particle-beam application constrained by large diode-to-target distance or by requirements of maximum power deposition in a confined area

  13. Intense pulsed ion beams for fusion applications

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1980-04-01

    The subject of this review paper is the field of intense pulsed ion beam generation and the potential application of the beams to fusion research. Considerable progress has been made over the past six years. The ion injectors discussed utilize the introduction of electrons into vacuum acceleration gaps in conjunction with high voltage pulsed power technology to achieve high output current. Power levels from injectors exceeding 1000 MW/cm 2 have been obtained for pulse lengths on the order of 10 -7 sec. The first part of the paper treats the physics and technology of intense ion beams. The second part is devoted to applications of intense ion beams in fusion research. A number of potential uses in magnetic confinement systems have been proposed

  14. Neutral-beam-heating applications and development

    International Nuclear Information System (INIS)

    Menon, M.M.

    1981-01-01

    The technique of heating the plasma in magnetically confined fusion devices by the injection of intense beams of neutral atoms is described. The basic principles governing the physics of neutral beam heating and considerations involved in determining the injection energy, power, and pulse length required for a fusion reactor are discussed. The pertinent experimental results from various fusion devices are surveyed to illustrate the efficacy of this technique. The second part of the paper is devoted to the technology of producing the neutral beams. A state-of-the-art account o the development of neutral injectors is presented, and the prospects for utilizing neutral injection to heat the plasma in a fusion reactor are examined

  15. THERMODYNAMIC INTERACTION OF THE PRIMARY PROTON BEAM WITH A MERCURY JET TARGET AT A NEUTRINO FACTORY SOURCE

    International Nuclear Information System (INIS)

    SIMOS, N.; LUDEWIG, H.; KIRK, H.; THIEBERGER, P.; MCDONALD, K.

    2001-01-01

    This paper addresses the thermodynamic interaction of an intense proton beam with the proposed mercury jet target at a neutrino factory or muon collider source, and the consequences of the generated pressure waves on the target integrity. Specifically, a 24 GeV proton beam with approximately 1.6e13 protons per pulse and a pulse length of 2 nanosec will interact with a 1 cm diameter mercury jet within a 20 Tesla magnetic field. In one option, a train of six such proton pulses is to be delivered on target within 2 microsec, in which case the state of the mercury jet following the interaction with each pulse is critical. Using the equation of state for mercury from the SESAME library, in combination with the energy deposition rates calculated the by the hadron interaction code MARS, the induced 3-D pressure field in the target is estimated. The consequent pressure wave propagation and attenuation in the mercury jet is calculated using an ANSYS code transient analysis, and the state of the mercury jet at the time of arrival of the subsequent pulse is assessed. The amplitude of the pressure wave reaching the nozzle that ejects the mercury jet into the magnetic field is estimated and the potential for mechanical damage is addressed

  16. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners.

    Science.gov (United States)

    Kinahan, Paul E; Hasegawa, Bruce H; Beyer, Thomas

    2003-07-01

    A synergy of positron emission tomography (PET)/computed tomography (CT) scanners is the use of the CT data for x-ray-based attenuation correction of the PET emission data. Current methods of measuring transmission use positron sources, gamma-ray sources, or x-ray sources. Each of the types of transmission scans involves different trade-offs of noise versus bias, with positron transmission scans having the highest noise but lowest bias, whereas x-ray scans have negligible noise but the potential for increased quantitative errors. The use of x-ray-based attenuation correction, however, has other advantages, including a lack of bias introduced from post-injection transmission scanning, which is an important practical consideration for clinical scanners, as well as reduced scan times. The sensitivity of x-ray-based attenuation correction to artifacts and quantitative errors depends on the method of translating the CT image from the effective x-ray energy of approximately 70 keV to attenuation coefficients at the PET energy of 511 keV. These translation methods are usually based on segmentation and/or scaling techniques. Errors in the PET emission image arise from positional mismatches caused by patient motion or respiration differences between the PET and CT scans; incorrect calculation of attenuation coefficients for CT contrast agents or metallic implants; or keeping the patient's arms in the field of view, which leads to truncation and/or beam-hardening (or x-ray scatter) artifacts. Proper interpretation of PET emission images corrected for attenuation by using the CT image relies on an understanding of the potential artifacts. In cases where an artifact or bias is suspected, careful inspection of all three available images (CT and PET emission with and without attenuation correction) is recommended. Copyright 2003 Elsevier Inc. All rights reserved.

  17. Spherical aberration compensation method for long focal-length measurement based on Talbot interferometry

    Science.gov (United States)

    Luo, Yupeng; Huang, Xiao; Bai, Jian; Du, Juan; Liu, Qun; Luo, Yujie; Luo, Jia

    2017-08-01

    Large-aperture and long focal-length lens is widely used in high energy laser system. The method based on Talbot interferometry is a reliable method to measure the focal length of such elements. By employing divergent beam and two gratings of different periods, this method could realize full-aperture measurement, higher accuracy and better repeatability. However, it does not take into account the spherical aberration of the measured lens resulting in the moiré fringes bending, which will introduce measurement error. Furthermore, in long-focal measurement with divergent beam, this error is an important factor affecting the measurement accuracy. In this paper, we propose a new spherical aberration compensation method, which could significantly reduce the measurement error. Characterized by central-symmetric scanning window, the proposed method is based on the relationship between spherical aberration and the lens aperture. Angle data of moiré fringes in each scanning window is retrieved by Fourier analysis and statistically fitted to estimate a globally optimum value for spherical-aberration-free focal length calculation. Simulation and experiment have been carried out. Compared to the previous work, the proposed method is able to reduce the relative measurement error by 50%. The effect of scanning window size and shift step length on the results is also discussed.

  18. Calculation of neutral beam deposition accounting for excited states

    International Nuclear Information System (INIS)

    Gianakon, T.A.

    1992-09-01

    Large-scale neutral-beam auxillary heating of plasmas has led to new plasma operational regimes which are often dominated by fast ions injected via the absorption of an energetic beam of hydrogen neutrals. An accurate simulation of the slowing down and transport of these fast ions requires an intimate knowledge of the hydrogenic neutral deposition on each flux surface of the plasma. As a refinement to the present generation of transport codes, which base their beam deposition on ground-state reaction rates, a new set of routines, based on the excited states of hydrogen, is presented as mechanism for computing the attenuation and deposition of a beam of energetic neutrals. Additionally, the numerical formulations for the underlying atomic physics for hydrogen impacting on the constiuent plasma species is developed and compiled as a numerical database. Sample results based on this excited state model are compared with the ground-state model for simple plasma configurations

  19. Cherenkov interaction of hollow electron beam with a dielectric waveguide

    International Nuclear Information System (INIS)

    Karbushev, N.I.; Shlapakovskij, A.S.

    1989-01-01

    The waveguide excitation methods are used to study magnetized hollow electron beam interaction with electromagnetic waves of a waveguide with a dielectric bush. Characteristic equation with explicit presentation of depression coefficients and the beam coupling with the synchronous wave is derived. Dependences of depression and coupling coefficients on the beam and waveguide parameters are studied. the current limiting values of small and large space charge regimes are determined. Coefficients of synchronous wave amplification by a beam and oscillation set up conditions in the considered finite length system are determined

  20. Generation and application of Bessel beam in alignment works

    International Nuclear Information System (INIS)

    Gale, D. M.

    2009-01-01

    The divergence of a Gaussian laser beam is a limiting factor for optical alignment tasks at large distances. Bessel beams have almost zero divergence but are still not widely used. We discuss the construction of an alignment telescope based on Bessel beam generation using a commercial laser diode module. The Bessel beam is generated with conical or plano-convex lenses, and projected using a commercial CCD camera lens to extend the useful range of the beam. Our Bessel beams have diameters of between 0.5 - 1mm over beam lengths of 15m, representing a six-fold improvement compared to Gaussian beams, while the transverse beam structure (Bessel pattern) provides an excellent alignment aid for use with beam target. Another advantage of Bessel beams is their self-regeneration property, which allows the use of multiple beam targets with minimum beam degradation. We are using our crosshair targets with crosshair targets to align optical components in a large astronomical telescope, and can achieve precisions of tens of microns over distances of 20m using purely visual methods. (Author)

  1. Assessment of the effectiveness of attenuation of leaded aprons through TLD dosimetry and Monte Carlo simulation method

    Energy Technology Data Exchange (ETDEWEB)

    Olaya D, H.; Diaz M, J. A.; Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, 150003 Tunja, Boyaca (Colombia); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2016-10-15

    Were performed experimental setups using an X-ray equipment continuous emission Pantak DXT-3000 and three types of leaded aprons with thickness of 0.25, 0.5 and 0.75 mm coated with Mylar Fiber coated Mylar on its surface. Apron was located at a distance of 2.5 m with respect focus in order to cover a radiation field size of a meter in diameter. At the beam output were added aluminum filtration in order to reproduce qualities of narrow beams N-40 (E{sub efective} = 33 keV), N-80 (E{sub efective} = 65 keV) and N-100 (E{sub efective} = 83 keV) according to the ISO standard 4037 (1-3). Each lead apron were fixed 10 TLD dosimeters over its surface, 5 dosimeters before and 5 dosimeters after with respect to X-ray beam and were calibrated for Harshaw 4500 thermoluminescent reader system order to assess the attenuation of each apron. Were performed dosimeters readings and were calculated the attenuation coefficients for each effective energy of X-ray quality. In order to confirm the method of effective energy of ISO-4037 and evaluate effectiveness of lead aprons based on energy range for each medical practice was made a Monte Carlo simulation using code GEANT-4, calculating the fluence and absorbed dose in each one of the dosimeters Monte Carlo, then coefficients of linear attenuation were calculated and compared with the experimental data and reported by the National Institute of Standards and Technology (Nist). Finally, results are consistent between theoretical calculation and experimental measures. This work will serve to make assessments for other personalized leaded protections. (Author)

  2. Torsion sensing based on patterned piezoelectric beams

    Science.gov (United States)

    Cha, Youngsu; You, Hangil

    2018-03-01

    In this study, we investigated the sensing characteristics of piezoelectric beams under torsional loads. We used partially patterned piezoelectric beams to sense torsion. In particular, the piezoelectric patches are located symmetrically with respect to the line of the shear center of the beam. The patterned piezoelectric beam is modeled as a slender beam, and its electrical responses are obtained by piezoelectric electromechanical equations. To validate the modeling framework, experiments are performed using a setup that forces pure torsional deformation. Three different geometric configurations of the patterned piezoelectric layer are used for the experiments. The frequency and amplitude of the forced torsional load are systematically varied in order to study the behavior of the piezoelectric sensor. Experimental results demonstrate that two voltage outputs of the piezoelectric beam are approximately out of phase with identical amplitude. Moreover, the length of the piezoelectric layers has a significant influence on the sensing properties. Our theoretical predictions using the model support the experimental findings.

  3. Beam dynamics in linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1990-09-01

    In this paper, we discuss some basic beam dynamics issues related to obtaining and preserving the luminosity of a next generation linear collider. The beams are extracted from a damping ring and compressed in length by the first bunch compressor. They are then accelerated in a preaccelerator linac up to an energy appropriate for injection into a high gradient linac. In many designs this pre-acceleration is followed by another bunch compression to reach a short bunch. After acceleration in the linac, the bunches are finally focused transversely to a small spot. 27 refs., 1 fig

  4. Comparing Transition-Edge Sensor Response Times in a Modified Contact Scheme with Different Support Beams

    Science.gov (United States)

    Beyer, A. D.; Kenyon, M. E.; Bumble, B.; Runyan, M. C.; Echternach, P. E.; Holmes, W. A.; Bock, J. J.; Bradford, C. M.

    2013-01-01

    We present measurements of the thermal conductance, G, and effective time constants, tau, of three transition-edge sensors (TESs) populated in arrays operated from 80-87mK with T(sub C) approximately 120mK. Our TES arrays include several variations of thermal architecture enabling determination of the architecture that demonstrates the minimum noise equivalent power (NEP), the lowest tau and the trade-offs among designs. The three TESs we report here have identical Mo/Cu bilayer thermistors and wiring structures, while the thermal architectures are: 1) a TES with straight support beams of 1mm length, 2) a TES with meander support beams of total length 2mm and with 2 phononfilter blocks per beam, and 3) a TES with meander support beams of total length 2mm and with 6 phonon-filter blocks per beam. Our wiring scheme aims to lower the thermistor normal state resistance R(sub N) and increase the sharpness of the transition alpha=dlogR/dlogT at the transition temperature T(sub C). We find an upper limit of given by (25+/-10), and G values of 200fW/K for 1), 15fW/K for 2), and 10fW/K for 3). The value of alpha can be improved by slightly increasing the length of our thermistors.

  5. Coherent Smith-Purcell radiation as a diagnostic for sub-picosecond electron bunch length

    International Nuclear Information System (INIS)

    Nguyen, D.C.

    1996-01-01

    We suggest a novel technique of measuring sub-picosecond electron bunch length base on coherent Smith-Purcell radiation (SPR) emitted when electrons pass close to the surface of a metal grating. With electron bunch lengths comparable to the grating period, we predict that coherent SPR will be emitted at large angles with respect to direction of beam propagation. As the bunch length shortens, the coherent SPR will be enhanced over the incoherent component that is normally observed at small angles. Furthermore, the angular distribution of the coherent SPR will be shifted toward smaller angles as the bunch length becomes much smaller than the grating period. By measuring the angular distribution of the coherent SPR, one can determine the bunch length of sub-picosecond electron pulses. This new technique is easy to implement and appears capable of measuring femtosecond electron bunch lengths

  6. A 200 MHz 35 MW Multiple Beam Klystron for Accelerator Applications. Final Report

    International Nuclear Information System (INIS)

    Ives, R. Lawrence; Read, Michael; Ferguson, Patrick; Marsden, David

    2011-01-01

    Calabazas Creek Research, Inc. (CCR) performed initial development of a compact and reliable 35 MW, multiple beam klystron (MBK) at 200 MHz with a pulse length of 0.125 ms and a 30 Hz repetition rate. The device was targeted for acceleration and ionization cooling of a muon collider, but there are several other potential applications in this frequency range. The klystron uses multiple beams propagating in individual beam tunnels to reduce space charge and allow reduction in the accelerating voltage. This allows a significant reduction in length over a single beam source. More importantly this allows more efficient and less expensive power supplies. At 200 MHz, the interaction circuit for a single beam klystron would be more than six meters long to obtain 50% efficiency and 50 dB gain. This would require a beam voltage of approximately 400 kV and current of 251 A for a microperveance of 1.0. For an eight beam MBK with the same beam perveance, a three meter long interaction circuit achieves the same power and gain. Each beam operates at 142 kV and 70A. The Phase I demonstrated that this device could be fabricated with funding available in a Phase II program and could achieve the program specifications.

  7. Boundary controllability for a nonlinear beam equation

    Directory of Open Access Journals (Sweden)

    Xiao-Min Cao

    2015-09-01

    Full Text Available This article concerns a nonlinear system modeling the bending vibrations of a nonlinear beam of length $L>0$. First, we derive the existence of long time solutions near an equilibrium. Then we prove that the nonlinear beam is locally exact controllable around the equilibrium in $H^4(0,L$ and with control functions in $H^2(0,T$. The approach we used are open mapping theorem, local controllability established by linearization, and the induction.

  8. Yield calculations for a facility for short-lived nuclear beams

    CERN Document Server

    Jiang, C L; Gomes, I; Heinz, A M; Nolen, Jerry A; Rehm, K E; Savard, G; Schiffer, J P

    2002-01-01

    Yields for a broad range of radioactive nuclei produced by spallation reactions, neutron-induced fission, in-flight projectile fragmentation and in-flight fission have been calculated for beams of stable nuclei at energies of 100-1000 MeV/u. Calculations of cross-sections and yields, attenuation effects due to absorption, production from secondary reactions, and transport efficiencies for mass selection are discussed. Rare isotope yields as functions of bombarding energies for both reaccelerated and directly produced fast-fragmentation beams are presented. This information provides a foundation for a cost-effective design of a next generation rare isotope accelerator.

  9. The measurement of attenuation coefficients at low photon energies using fluorescent x-radiation

    International Nuclear Information System (INIS)

    Peaple, L.H.J.; White, D.R.

    1978-03-01

    A rapid and accurate method has been developed to measure low energy attenuation coefficients for materials of importance in radiation dosimetry. It employs a collimated beam of fluorescent x-rays from which the required radiation is selected by means of a high resolution germanium detector and multi-channel analyser. The method is described in detail and its accuracy and application outlined with reference to the results from nine different materials. (author)

  10. Ion-molecule interactions in crossed-beams

    International Nuclear Information System (INIS)

    Hansen, S.G.

    1980-09-01

    Interactions of the ions N + , F + , and CO 2 + with H 2 and/or its isotopes were examined using the crossed-beam technique in the low ( + ( 3 P) + H 2 → NH + + H, complex formation dominates up to 1.9 eV and a substantial interaction occurs between all collision partners up to 3.6 eV. The distribution of N + scattered nonreactively from H 2 also showed a long-lived complex channel below 1.9 eV. The reaction F + ( 3 P) + H 2 →FH + + H proceeded by a direct reaction mechanism at 0.20 to 1.07 eV. The reaction CO 2 + + D 2 → DCO 2 + + D gives asymmetric product distributions at 0.27 eV and above, indicating a direct reaction mechanism. Results indicated that there are probably barriers in the exit channels for DCO 2 + , DCO + , and D 2 O + products. The electronic state distributions of the N + , F + , and CO 2 + beams was investigated using beam attenuation and total luminescence techniques

  11. Overview of the CERN Linac4 beam instrumentation

    CERN Document Server

    Roncarolo, F; Bravin, E; Dehning, B; Duraffourg, M; Gerard, D; Holzer, E B; Lenardon, F; Focker, G; Raich, U; Soby, L; Sordet, M; Tan, J; Tranquille, G; Vuitton, C; Zamantzas, C; Cheymol, B

    2010-01-01

    The CERN LINAC4 will represent the first upgrade of the LHC injection chain, by accelerating H- ions from 45 KeV to 160 MeV for charge-exchange injection into the PS Booster. In order to provide its safe and efficient commissioning and operation, a wide variety of beam diagnostics devices has been designed for installation at convenient locations all over the accelerator length and in the transfer line to the PS Booster. This paper gives an overview of all instrumentation devices, including those to measure beam position, transverse and longitudinal profile, beam current and beam loss. The well advanced status of the system design and the main instrument features are discussed

  12. Intercomparison of attenuation correction algorithms for single-polarized X-band radars

    Science.gov (United States)

    Lengfeld, K.; Berenguer, M.; Sempere Torres, D.

    2018-03-01

    Attenuation due to liquid water is one of the largest uncertainties in radar observations. The effects of attenuation are generally inversely proportional to the wavelength, i.e. observations from X-band radars are more affected by attenuation than those from C- or S-band systems. On the other hand, X-band radars can measure precipitation fields in higher temporal and spatial resolution and are more mobile and easier to install due to smaller antennas. A first algorithm for attenuation correction in single-polarized systems was proposed by Hitschfeld and Bordan (1954) (HB), but it gets unstable in case of small errors (e.g. in the radar calibration) and strong attenuation. Therefore, methods have been developed that restrict attenuation correction to keep the algorithm stable, using e.g. surface echoes (for space-borne radars) and mountain returns (for ground radars) as a final value (FV), or adjustment of the radar constant (C) or the coefficient α. In the absence of mountain returns, measurements from C- or S-band radars can be used to constrain the correction. All these methods are based on the statistical relation between reflectivity and specific attenuation. Another way to correct for attenuation in X-band radar observations is to use additional information from less attenuated radar systems, e.g. the ratio between X-band and C- or S-band radar measurements. Lengfeld et al. (2016) proposed such a method based isotonic regression of the ratio between X- and C-band radar observations along the radar beam. This study presents a comparison of the original HB algorithm and three algorithms based on the statistical relation between reflectivity and specific attenuation as well as two methods implementing additional information of C-band radar measurements. Their performance in two precipitation events (one mainly convective and the other one stratiform) shows that a restriction of the HB is necessary to avoid instabilities. A comparison with vertically pointing

  13. Determination of equivalent copper thickness of patient equivalent phantoms in terms of attenuation, used in radiology

    International Nuclear Information System (INIS)

    Jansen, J.Th.M.; Suliman, I.I.; Zoetelief, J.

    2002-01-01

    Full text: In the radiation protection research programme of the European Union, as part of the DIMOND concerted action, constancy check protocols for fluoroscopic systems have been developed. For practical reasons copper filters are preferred to patients and tissue equivalent, water or PMMA, phantoms. The objectives are to derive patient entrance surface dose rates and the dose rate at the image intensifier input. The protocol states that copper sheets of either 1 mm or 1.5 mm thick may be used. The present study investigates the equivalent thickness of copper filters compared to PMMA phantoms in terms of attenuation for both geometries and different tube voltage and filter combinations. The geometry to determine the patient entrance surface dose is with the copper filter close to the image intensifier. The ionisation chamber is placed on the side of the copper sheet nearest to the X-ray tube. The inverse square law is used to correct for differences in position. Measurements are performed with different settings and with and without the use of an anti-scatter grid. The geometry to determine the air kerma rate at the image intensifier is with the copper filter attached to the X-ray tube diaphragm. The ionisation chamber is placed on the surface of the image intensifier housing. Again measurements are performed with different settings and with and without anti-scatter grid. If necessary, the inverse square law correction is applied. Two different radiation beam sizes are used, i.e., a small beam with a diameter of 0.10 m at a distance of 1.00 m from the focus and a large beam with a diameter of 0.23 m at a distance of 1.00 m from the focus. The applied tube voltages and PMMA phantom thickness combinations are 60 kV, 13 cm; 80 kV, 14 cm; 100 kV, 16 cm; 120 kV, 17 cm; 150 kV, 18 cm; 150 kV, 20 cm and 150 kV, 30 cm. The spectra for the different tube voltages are generated with the IPEM Report 78 software at an anode angle of 16 degree, 0% ripple and 2.5 mm added

  14. INTERACTION OF A 24 GeV PROTON BEAM WITH A MUON COLLIDER MERCURY JET TARGET EXPERIMENTAL RESULTS AND THERMODYNAMIC ASSESSMENT

    International Nuclear Information System (INIS)

    SIMOS, N.; KIRK, H.; FINFROCK, C.; GREENE, G.; LUDEWIG, H.; MCDONALD, K.; MOKHOV, N.

    2001-01-01

    A muon collider or a neutrino factory based on a muon storage ring require intense beams of muons that can be generated by a 1-4 MW proton beam incident on a moving target inside a 20-T solenoid magnet, with a mercury jet as a preferred example. This paper addresses the thermodynamic interaction of the intense proton beam with the proposed mercury jet target, and the consequences of the generated pressure waves on the target integrity. Specifically, a 24 GeV proton beam with approximately 16 TP (1 TP = 10 12 protons) per pulse and a pulse length of 2 ns will interact with a 1 cm diameter mercury jet within the 20-Tesla magnetic field. In one option, a train of six such proton pulses is to be delivered on target within 2 micros, in which case the state of the mercury jet following the interaction with each pulse is critical. Using the equation of state for mercury from the SESAME library, in combination with the energy deposition rates calculated the by the hadron interaction code MARS, the induced 3-D pressure field in the target is estimated. The consequent pressure wave propagation and attenuation in the mercury jet is calculated using a transient analysis based on finite element modeling, and the state of the mercury jet at the time of arrival of the subsequent pulse is assessed. Issues associated with the use of a liquid metal jet as a target candidate are addressed. Lastly, some experimental results from the BNL E951 experiment are presented and discussed

  15. Monitoring moisture movements in building materials using x-ray attenuation

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Scheffler, Gregor A.; Janssen, Hans

    2012-01-01

    analysis with a composite model consisting of a dry porous material and a thickness of water equivalent to the moisture content of the material. The current formulation of this composite model relies on certain assumptions, including a monochromatic x-ray photon beam source (i.e., x-ray photons of a single....... Implications of this inconsistency are introduced and discussed. This paper presents both an overview of fundamental descriptions of the x-ray attenuation measurement technique and results from a parametric experimental study of various porous construction materials, including calcium silicate board, aerated...

  16. Laser-driven acceleration with Bessel and Gaussian beams

    International Nuclear Information System (INIS)

    Hafizi, B.; Esarey, E.; Sprangle, P.

    1997-01-01

    The possibility of enhancing the energy gain in laser-driven accelerators by using Bessel laser beams is examined. Scaling laws are derived for the propagation length, acceleration gradient, and energy gain in various accelerators for both Gaussian and Bessel beam drivers. For equal beam powers, the energy gain can be increased by a factor of N 1/2 by utilizing a Bessel beam with N lobes, provided that the acceleration gradient is linearly proportional to the laser field. This is the case in the inverse free electron laser and the inverse Cherenkov accelerators. If the acceleration gradient is proportional to the square of the laser field (e.g., the laser wakefield, plasma beat wave, and vacuum beat wave accelerators), the energy gain is comparable with either beam profile. copyright 1997 American Institute of Physics

  17. Beam propagation considerations in the Aurora laser system

    International Nuclear Information System (INIS)

    Rosoche, L.A.; Mc Leod, J.; Hanlon, J.A.

    1987-01-01

    Aurora is a high-power KrF laser system now being constructed for inertial confinement fusion (ICF) studies. It will use optical angular multiplexing and serial amplification by electron-beam-driven KrF amplifiers to deliver a stacked, multikilojoule 5-ns-duration laser pulse to ICF targets. The requirements of angular multiplexing KrF lasers at the multikilojoule level dictate path lengths on the order of 1 km. The inherent complicated path crossings produced by angular multiplexing and pulse stacking do not allow isolation of individual beam lines, so the optical quality of the long beam paths must be controlled. Propagation of the 248-nm light beams over long paths in air is affected by scattering, absorption thermal gradients and turbulence, beam alignment, and control and optical component figure errors

  18. New lens system using toroidal magnetic field for intense ion beam

    International Nuclear Information System (INIS)

    Mohri, Akihiro; Ikuta, Kazunari; Fujita, Junji.

    1976-11-01

    The use of toroidal magnetic field as a lens system is proposed for producing intense ion beam. The characteristics of the lens system are obtained both analytically and numerically. Some examples of ray-trajectories are presented for different focal lengths. The system is applicable to neutral beam injection heating and micro-pellet implosion for nuclear fusion, and to the other fields such as ion beam X-ray lasers. (auth.)

  19. Magnetic compound refractive lens for focusing and polarizing cold neutron beams

    International Nuclear Information System (INIS)

    Littrell, K. C.; Velthuis, S. G. E. te; Felcher, G. P.; Park, S.; Kirby, B. J.; Fitzsimmons, M. R.

    2007-01-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given

  20. Magnetic compound refractive lens for focusing and polarizing cold neutron beams.

    Science.gov (United States)

    Littrell, K C; te Velthuis, S G E; Felcher, G P; Park, S; Kirby, B J; Fitzsimmons, M R

    2007-03-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given.

  1. Effect of length and location of edentulous area on the accuracy of prosthetic treatment plan incorporation into cone-beam computed tomography scans.

    Science.gov (United States)

    Jamjoom, Faris Z; Kim, Do-Gyoon; Lee, Damian J; McGlumphy, Edwin A; Yilmaz, Burak

    2018-02-05

    Effects of length and location of the edentulous area on the accuracy of prosthetic treatment plan incorporation into cone-beam computed tomography (CBCT) scans has not been investigated. To evaluate the effect of length and location of the edentulous area on the accuracy of prosthetic treatment plan incorporation into CBCT scans using different methods. Direct digital scans of a completely dentate master model with removable radiopaque teeth were made using an intraoral scanner, and digital scans of stone duplicates of the master model were made using a laboratory scanner. Specific teeth were removed to simulate different clinical situations and their CBCT scans were made. Surface scans were registered onto the CBCT scans. Radiographic templates for each clinical situation were also fabricated and used during CBCT scans of the master models. Using metrology software, three-dimensional (3D) deviation was measured on standard tesselation language (STL) files created from the CBCT scans against an STL file of the master model created from a CBCT scan. Statistical analysis was done using the MIXED procedure in a statistical software and Tukey HSD test (α =.05). The interaction between location and method was significant (P = .009). Location had no significant effect on registration methods (P > .05), but on the radiographic templates (P = .011). Length of the edentulous area did not have any significant effect (P > .05). Accuracy of digital image registration methods was similar and higher than that of radiographic templates in all clinical situations. Tooth-bound radiographic templates were significantly more accurate than the free-end templates. The results of this study suggest using image registration instead of radiographic templates when planning dental implants, particularly in free-end situations. © 2018 Wiley Periodicals, Inc.

  2. Diagnosis of Weibel instability evolution in the rear surface density scale lengths of laser solid interactions via proton acceleration

    International Nuclear Information System (INIS)

    Scott, G G; Brenner, C M; Clarke, R J; Green, J S; Heathcote, R I; Rusby, D R; McKenna, P; Neely, D; Bagnoud, V; Zielbauer, B; Gonzalez-Izquierdo, B; Powell, H W

    2017-01-01

    It is shown for the first time that the spatial and temporal distribution of laser accelerated protons can be used as a diagnostic of Weibel instability presence and evolution in the rear surface scale lengths of a solid density target. Numerical modelling shows that when a fast electron beam is injected into a decreasing density gradient on the target rear side, a magnetic instability is seeded with an evolution which is strongly dependent on the density scale length. This is manifested in the acceleration of a filamented proton beam, where the degree of filamentation is also found to be dependent on the target rear scale length. Furthermore, the energy dependent spatial distribution of the accelerated proton beam is shown to provide information on the instability evolution on the picosecond timescale over which the protons are accelerated. Experimentally, this is investigated by using a controlled prepulse to introduce a target rear scale length, which is varied by altering the time delay with respect to the main pulse, and similar trends are measured. This work is particularly pertinent to applications using laser pulse durations of tens of picoseconds, or where a micron level density scale length is present on the rear of a solid target, such as proton-driven fast ignition, as the resultant instability may affect the uniformity of fuel energy coupling. (paper)

  3. MicroCT Bone Densitometry: Context Sensitivity, Beam Hardening Correction and the Effect of Surrounding Media

    Directory of Open Access Journals (Sweden)

    Philip L. Salmon

    2014-12-01

    Full Text Available The context-sensitivity of microCT bone densitometry due to beam hardening artefacts was assessed. Bones and teeth are scanned with varying thickness of surrounding media (water, alcohol, biological tissue and it is important to understand how this affects reconstructed attenuation (“density” of the mineralized tissue. Aluminium tubes and rods with thickness 0.127mm–5mm were scanned both in air or surrounded by up to 2cm of water. Scans were performed with different energy filters and degrees of software beam hardening correction (BHC. Also tested were the effects of signal-to-noise ratio, magnification and truncation. The thickness of an aluminium tube significantly affected its mean reconstructed attenuation. This effect of thickness could be reduced substantially by BHC for scans in air, but not for scans in water. Varying thickness of surrounding water also changed the mean attenuation of an aluminium tube. This artefact could be almost eliminated by an optimal BHC value. The “cupping” artefact of heterogeneous attenuation (elevated at outer surfaces could be corrected if aluminium was scanned in air, but in water BHC was much less effective. Scan truncation, changes to magnification and signal-to-noise ratio also caused artificial changes to measured attenuation. Measurement of bone mineral density by microCT is highly context sensitive. A surrounding layer of liquid or biological tissue reduces the ability of software BHC to remove bone density artefacts. Sample thickness, truncation, magnification and signal to noise ratio also affect reconstructed attenuation. Thus it is important for densitometry that sample and calibration phantom dimensions and mounting materials are standardised.

  4. Diagnostics Neutral Beam Injector at the TCV Tokamak

    International Nuclear Information System (INIS)

    Mlynar, J.; Shukaev, A.N.; Bosshard, P.; Duval, B.P.; Ivanov, A.A.; Kollegov, M.; Kolmogorov, V.V.; Llobet, X.; Pitts, R.A.; Weisen, H.

    2001-10-01

    Within this report we summarize the technical and experimental effort made on diagnostics neutral beam injector (DNBI) which was installed at tokamak TCV last year. Basic components of DNBI are reviewed, its remote control is presented in more detail. Profile and attenuation studies are referred to. First experimental results obtained with DNBI, which led to a decision to upgrade the machine, are discussed in the last section. (author)

  5. High current beam transport experiments at GSI

    International Nuclear Information System (INIS)

    Klabunde, J.; Schonlein, A.; Spadtke, P.

    1985-01-01

    The status of the high current ion beam transport experiment is reported. 190 keV Ar 1+ ions were injected into six periods of a magnetic quadrupole channel. Since the pulse length is > 0.5 ms partial space charge neutralization occurs. In our experiments, the behavior of unneutralized and partially space charge compensated beams is compared. With an unneutralized beam, emittance growth has been measured for high intensities even in case of the zero-current phase advance sigma 0 0 . This initial emittance growth at high tune depression we attribute to the homogenization effect of the space charge density. An analytical formula based on this assumption describes the emittance growth very well. Furthermore the predicted envelope instabilities for sigma 0 > 90 0 were observed even after 6 periods. In agreement with the theory, unstable beam transport was also experimentally found if a beam with different emittances in the two transverse phase planes was injected into the transport channel. Although the space charge force is reduced for a partially neutralized beam a deterioration of the beam quality was measured in a certain range of beam parameters. Only in the range where an unneutralized beam shows the initial emittance growth, the partial neutralization reduces this effect, otherwise the partially neutralized beam is more unstable

  6. Electron beam properties and impedance characterization for storage rings used for free electron lasers

    International Nuclear Information System (INIS)

    Dattoli, G.; Mezi, L.; Renieri, A.; Migliorati, M.; Walker, R.

    2000-01-01

    Good electron beam qualities and stability are the crucial features of Storage Rings dedicated to synchrotron radiation sources or to Free Electron Laser. Most of these characteristics depends on the coupling of the e-beam with the machine environment, which can be in turn modelled in terms of a characteristic impedance, whose absolute value and structure can be used to specify both the stability (longitudinal and transverse) of the beam and its qualities (energy spread, bunch length, peak current ...). In this paper are considered two specific examples of Storage Rings used for FEL operation and analyze their performances by means of semi analytical and numerical methods. The analysis is aimed at clarifying the dependence of beam energy spread and bunch length on beam current and at providing a set of parameters useful for the optimization of Free Electron Laser or synchrotron radiation sources [it

  7. Beam dynamics verification in linacs of linear colliders

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1989-01-01

    The SLAC two-mile linac has been upgraded to accelerate high current, low emittance electron and positron beams to be used in the SLAC Linear Collider (SLC). After the upgrade was completed, extensive beam studies were made to verify that the design criteria have been met. These tests involved the measurement of emittance, beam phase space orientation, energy dispersion, trajectory oscillations, bunch length, energy spectrum and wakefields. The methods, the systems and the data cross checks are compared for the various measurements. Implications for the next linear collider are discussed. 12 refs., 13 figs., 2 tabs

  8. Ion beam focusing by the atomic chains of a crystal lattice

    International Nuclear Information System (INIS)

    Shulga, V.I.

    1975-01-01

    A study is made of the focusing of a parallel ion beam by a pair of close packed atomic chains of a crystal. The focal length of this system has been calculated to the approximation of continuous potential of chain in the general form and also for a number of specific potentials of ion-atom interactions. Ar ion beam focusing by a Cu chain pair is discusssed in detail. For this case, the focal length has been calculated as a function of ion energy using the method of computer simulation of ion trajectories in the chain field. The calculations were made on the basis of the Born-Mayer potential with various constants. A pronounced dependence of focal length on the constant in this potential has been found. (author)

  9. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (MACINTOSH VERSION)

    Science.gov (United States)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  10. Bulk Cutting of Carbon Nanotubes Using Electron Beam Irradiation

    Science.gov (United States)

    Ziegler, Kirk J. (Inventor); Rauwald, Urs (Inventor); Hauge, Robert H. (Inventor); Schmidt, Howard K. (Inventor); Smalley, Richard E. (Inventor); Kittrell, W. Carter (Inventor); Gu, Zhenning (Inventor)

    2013-01-01

    According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.

  11. Analysis for Behavior of Reinforcement Lap Splices in Deep Beams

    Directory of Open Access Journals (Sweden)

    Ammar Yaser Ali

    2018-03-01

    Full Text Available The present study includes an experimental and theoretical investigation of reinforced concrete deep beams containing tensile reinforcement lap splices at constant moment zone under static load. The study included two stages: in the first one, an experimental work included testing of eight simply supported RC deep beams having a total length (L = 2000 mm, overall depth (h= 600 mm and width (b = 150 mm. The tested specimens were divided into three groups to study the effect of main variables: lap length, location of splice, internal confinement (stirrups and external confinement (strengthening by CFRP laminates. The experimental results showed that the use of CFRP as external strengthening in deep beam with lap spliced gives best behavior such as increase in stiffness, decrease in deflection, delaying the cracks appearance and reducing the crack width. The reduction in deflection about (14-21 % than the unstrengthened beam and about (5-14 % than the beam with continuous bars near ultimate load. Also, it was observed that the beams with unstrengthened tensile reinforcement lap splices had three types of cracks: flexural, flexural-shear and splitting cracks while the beams with strengthened tensile reinforcement lap splices or continuous bars don’t observe splitting cracks. In the second stage, a numerical analysis of three dimensional finite element analysis was utilized to explore the behavior of the RC deep beams with tensile reinforcement lap splices, in addition to parametric study of many variables. The comparison between the experimental and theoretical results showed reasonable agreement. The average difference of the deflection at service load was less than 5%.

  12. Implications of the Electrostatic Approximation in the Beam Frame on the Nonlinear Vlasov-Maxwell Equations for Intense Beam Propagation

    International Nuclear Information System (INIS)

    Davidson, Ronald C.; Lee, W. Wei-li; Hong Qin; Startsev, Edward

    2001-01-01

    This paper develops a clear procedure for solving the nonlinear Vlasov-Maxwell equations for a one-component intense charged particle beam or finite-length charge bunch propagating through a cylindrical conducting pipe (radius r = r(subscript)w = const.), and confined by an applied focusing force. In particular, the nonlinear Vlasov-Maxwell equations are Lorentz-transformed to the beam frame ('primed' variables) moving with axial velocity relative to the laboratory. In the beam frame, the particle motions are nonrelativistic for the applications of practical interest, already a major simplification. Then, in the beam frame, we make the electrostatic approximation which fully incorporates beam space-charge effects, but neglects any fast electromagnetic processes with transverse polarization (e.g., light waves). The resulting Vlasov-Maxwell equations are then Lorentz-transformed back to the laboratory frame, and properties of the self-generated fields and resulting nonlinear Vlasov-Maxwell equations in the laboratory frame are discussed

  13. Dose attenuation by a carbon fiber linac couch and modeling with a treatment planning system; Medida de la atenuacion producida por la mesa de tratamiento de un acelerador lineal y su modelado en un sistema de planificacion

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Galiano, P.; Garcia Sancho, J.M.; Crelgo, D.; Pamos, M.; Fernandez, J.; Vivanco, J.

    2010-07-01

    The purpose of this work is to investigate the attenuation caused by a carbon fiber linac treatment couch and the ability of a commercial radiotherapy treatment planning system to simulate it. The attenuation caused by an Exact{copyright} treatment couch in a Varian{copyright} Clinac{copyright} 2100 C/D was characterized in detail. Both 6 MV and 18 MV photon beams were studied. The treatment couch was modeled and incorporated to Elekta{copyright} XiO{copyright} treatment planning system. Measured and computed attenuation values were compared. As a result we found that the attenuation caused by this complex treatment couch is strongly dependent on the incidence angle of the beam. The measured attenuation values reach 16% for 6 MV and 10% for 18 MV. The model incorporated to the treatment planning software allows reducing the differences between measured and calculated data below 2.5% and 2.0% for 6 MV and 18 MV respectively. In conclusion, it is strongly recommended accounting for the perturbation caused by this carbon fiber treatment couch when the beam intersects it. The treatment planning system studied can simulate this treatment couch accurately. Clinical implementation of the described method requires a reliable procedure to reproduce the same patient geometry in the treatment delivery and planning. (Author).

  14. Nonlinear behavior of capacitive micro-beams based on strain gradient theory

    International Nuclear Information System (INIS)

    Fathalilou, Mohammad; Sadeghi, Morteza; Rezazadeh, Ghader

    2014-01-01

    This paper studies the size dependent behavior of materials in MEMS structures. This behavior becomes noticeable for a structure when the characteristic size such as thickness or diameter is close to its internal length-scale parameter and is insignificant for the high ratio of the characteristic size to the length-scale parameter, which is the case of the silicon base micro-beams. However, in some types of micro-beams like gold or nickel bases, the size dependent effect cannot be overlooked. In such cases, ignoring this behavior in modeling will lead to incorrect results. Some previous researchers have applied classic beam theory on their models and imposed a considerable hypothetical value of residual stress to match their theoretical results with the experimental ones. The equilibrium positions or fixed points of the gold and nickel micro-beams are obtained and shown that for a given DC voltage, there is a considerable difference between the obtained fixed points using classic beam theory, modified couple stress theory, and modified strain gradient theory. In addition, it is shown that the calculated static and dynamic pull-in voltages using higher order theories are much closer to the experimental results and are higher several times than those obtained by classic beam theory.

  15. Emittance growth of bunched beams in bends

    International Nuclear Information System (INIS)

    Carlsten, B.E.; Raubenheimer, T.O.

    1995-01-01

    Talman [Phys. Rev. Lett. 56, 1429 (1986)] has proposed a novel relativistic effect that occurs when a charged particle beam is bent in the magnetic field from an external dipole. The consequence of this effect is that the space-charge forces from the particles do not exhibit the usual inverse-square energy dependence and some part of them are, in fact, independent of energy. This led to speculation that this effect could introduce significant emittance growth for a bending electron beam. Subsequently, it was shown that this effect's influence on the beam's transverse motion is canceled for a dc beam by a potential depression within the beam (to first order in the beam radius divided by the bend radius). In this paper, we extend the analysis to include short bunch lengths (as compared to the beam pipe dimensions) and find that there is no longer the cancellation for forces both transverse to and in the direction of motion. We provide an estimate for the emittance growth as a function of bend angle, beam radius, and current, and for magnetic compression of an electron bunch

  16. The System of Nanosecond 280-KeV He+ Pulsed Beam

    International Nuclear Information System (INIS)

    Junphong, P.; Ano, V.; Lekprasert, B.; Suwannakachorn, D.; Thongnopparat, N.; Vilaithong, T.; Chiang Mai U.; Wiedemann, H.; SLAC/SLAC, SSRL

    2006-01-01

    At Fast Neutron Research Facility, the 150 kV-pulses neutron generator is being upgraded to a 280-kV-pulsed-He beam for time-of-flight Rutherford backscattering spectrometry. It involves replacing the existing beam line elements by a multicusp ion source, a 400-kV accelerating tube, 45-double focusing dipole magnet and quadrupole lens. The multicusp ion source is a compact filament-driven of 2.6 cm in diameter and 8 cm in length. The current extracted is 20.4 μ A with 13 kV of extraction voltage and 8.8 kV of Einzel lens voltage. The beam emittance has found to vary between 6-12 mm mrad. The beam transport system has to be redesigned based on the new elements. The important part of a good pulsed beam depends on the pulsing system. The two main parts are the chopper and buncher. An optimized geometry for the 280 keV pulsed helium ion beam will be presented and discussed. The PARMELA code has been used to optimize the space charge effect, resulting in pulse width of less than 2 ns at a target. The calculated distance from a buncher to the target is 4.6 m. Effects of energy spread and phase angle between chopper and buncher have been included in the optimization of the bunch length

  17. Ghost imaging and its visibility with partially coherent elliptical Gaussian Schell-model beams

    International Nuclear Information System (INIS)

    Luo, Meilan; Zhu, Weiting; Zhao, Daomu

    2015-01-01

    The performances of the ghost image and the visibility with partially coherent elliptical Gaussian Schell-model beams have been studied. In that case we have derived the condition under which the goal ghost image is achievable. Furthermore, the visibility is assessed in terms of the parameters related to the source to find that the visibility reduces with the increase of the beam size, while it is a monotonic increasing function of the transverse coherence length. More specifically, it is found that the inequalities of the source sizes in x and y directions, as well as the transverse coherence lengths, play an important role in the ghost image and the visibility. - Highlights: • We studied the ghost image and visibility with partially coherent EGSM beams. • We derived the condition under which the goal ghost image is achievable. • The visibility is assessed in terms of the parameters related to the source. • The source sizes and coherence lengths play role in the ghost image and visibility.

  18. Track length estimation applied to point detectors

    International Nuclear Information System (INIS)

    Rief, H.; Dubi, A.; Elperin, T.

    1984-01-01

    The concept of the track length estimator is applied to the uncollided point flux estimator (UCF) leading to a new algorithm of calculating fluxes at a point. It consists essentially of a line integral of the UCF, and although its variance is unbounded, the convergence rate is that of a bounded variance estimator. In certain applications, involving detector points in the vicinity of collimated beam sources, it has a lower variance than the once-more-collided point flux estimator, and its application is more straightforward

  19. Device for irradiation of a target surface by a variable electron beam, especially electron beam generator, in order to produce semiconductor components

    International Nuclear Information System (INIS)

    Wolfe, J.E.

    1978-01-01

    For the lithographic device there is used a field emission source for thermal ions with a tungsten cathode and a zirconium top as an electron gain. For production of IC chips the electron beam of 1000 A/cm 2 can be focused on a mask template, mounted on a x/Y table, by means of a system of lenses. The electromagnetic focusing device with a small aberration coefficient is designed in such a way that there is obtained a large focal length on the image side as compared to the focal length on the object side. Thereby a small angular deflection of the beam in the focusing device causes a large deflection at the target. The control is performed by a processor. (RW) [de

  20. Neutral beam in ALVAND IIC tokamak

    International Nuclear Information System (INIS)

    Ghrannevisse, M.; Moradshahi, M.; Avakian, M.

    1992-01-01

    Neutral beams have a wide application in tokamak experiments. It used to heat; fuel; adjust electric potentials in plasmas and diagnose particles densities and momentum distributions. It may be used to sustain currents in tokamaks to extend the pulse length. A 5 KV; 500 mA ion source has been constructed by plasma physics group, AEOI and it used to produce plasma and study the plasma parameters. Recently this ion source has been neutralized and it adapted to a neutral beam source; and it used to heat a cylindrical DC plasma and the plasma of ALVAND IIC Tokamak which is a small research tokamak with a minor radius of 12.6 cm, and a major radius of 45.5 cm. In this paper we report the neutralization of the ion beam and the results obtained by injection of this neutral beam into plasmas. (author) 2 refs., 4 figs

  1. Pseudo ribbon metal ion beam source

    International Nuclear Information System (INIS)

    Stepanov, Igor B.; Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-01-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface

  2. Pseudo ribbon metal ion beam source.

    Science.gov (United States)

    Stepanov, Igor B; Ryabchikov, Alexander I; Sivin, Denis O; Verigin, Dan A

    2014-02-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  3. Attenuation of thermal neutrons by an imperfect single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Naguib, K.; Adib, M. [National Research Centre, Cairo (Egypt). Reactor and Neutron Physics Dept.

    1996-06-14

    A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3-40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range. (author).

  4. Attenuation of thermal neutrons by an imperfect single crystal

    Science.gov (United States)

    Naguib, K.; Adib, M.

    1996-06-01

    A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3 - 40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range.

  5. Effects of hole tapering on cone-beam collimation for brain SPECT imaging

    International Nuclear Information System (INIS)

    Park, Mi-Ae; Kijewski, Marie Foley; Moore, Stephen C.

    2006-01-01

    New collimator manufacturing technologies, such as photoetching, electrical discharge machining, and stereolithography, expand the range of possible cone-beam collimator configurations. For example, it might now be possible for brain SPECT to make a short-focusing cone-beam collimator with tapered holes that increase in size with distance from the collimator surface; conventional lead-casting techniques produce holes of constant size and, consequently, varying septal thicknesses. Moreover, the changes in hole shape and loss of close packing due to focusing leads to thicker septa in the collimator periphery, especially for shorter focal lengths. We investigated the potential advantages of new cone-beam collimator manufacturing processes, and proposed a new design for very short focal-length collimators for brain SPECT imaging. We compared three cone-beam collimators, a conventional collimator manufactured using casting techniques (CC), a novel collimator with uniform hole sizes on the collimator surface and constant hole size through the collimator thickness (FC), and a novel collimator with uniform hole sizes and tapered holes (TC). We determined the resolution of each collimator analytically for focal lengths ranging from 20-50 cm, and adjusted the entrance hole sizes of FC and TC to equalize resolution of all collimators. Sensitivity was calculated at several locations by Monte Carlo simulation. Sensitivity was higher at all points for TC and FC than for CC, and higher for TC than for FC. The differences in sensitivity were larger for shorter focal lengths. For a point on the focal line at 10 cm in front of the collimator entrance surface, the sensitivity gain for TC compared to CC was 7% and 45% for focal lengths of 50 and 20 cm, respectively. The sensitivity gain for a 20-cm focal length, compared to CC, averaged over all locations, was 44% for TC and 23% for FC. We have shown that the new collimator designs made possible by new manufacturing techniques will

  6. Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides

    International Nuclear Information System (INIS)

    Yu Tianbao; Zhou Haifeng; Yang Jianyi; Jiang Xiaoqing; Wang Minghua; Gong Zhao

    2008-01-01

    Ultracompact 1 x N (N > 2) beam splitters based on coupling of multiple photonic crystal waveguides (PCWs) are numerically demonstrated. The operation of the devices is on the basis of the self-imaging phenomenon. Variation of the effective index of modified rods induces the transverse redistribution of the N-fold images with the same coupling length, and uniform or free splitting can be achieved. The devices with three and four output channels are discussed in details as examples. Results show that this kind of beam splitters are very short. At the operating wavelength of 1.55 μm, the splitting length of the devices is only 35 μm even if the output channel number reaches 20. It provides a new method and a compact model to export freely the beam to N channels in PCW devices and can find practical applications in future photonic integrated circuits

  7. Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Yu Tianbao; Zhou Haifeng; Yang Jianyi; Jiang Xiaoqing; Wang Minghua [Department of Information Science and Electronic Engineering, Zhejiang University, 310027 Hangzhou (China); Gong Zhao [Zhejiang University City College, 310027 Hangzhou (China)

    2008-05-07

    Ultracompact 1 x N (N > 2) beam splitters based on coupling of multiple photonic crystal waveguides (PCWs) are numerically demonstrated. The operation of the devices is on the basis of the self-imaging phenomenon. Variation of the effective index of modified rods induces the transverse redistribution of the N-fold images with the same coupling length, and uniform or free splitting can be achieved. The devices with three and four output channels are discussed in details as examples. Results show that this kind of beam splitters are very short. At the operating wavelength of 1.55 {mu}m, the splitting length of the devices is only 35 {mu}m even if the output channel number reaches 20. It provides a new method and a compact model to export freely the beam to N channels in PCW devices and can find practical applications in future photonic integrated circuits.

  8. The SPS Beam quality monitor, from design to operation

    CERN Document Server

    Papotti, G; Follin, F; Shaposhnikova, E

    2011-01-01

    The SPS Beam Quality Monitor is a system that monitors longitudinal beam parameters on a cycle-by-cycle basis and prevents extraction to the LHC in case the specifications are not met. This avoids losses, unnecessary stress of machine protection components and luminosity degradation, additionally helping efficiency during the filling process. The system has been operational since the 2009 LHC run, checking the beam pattern, its correct position with respect to the LHC references, individual bunch lengths and stability. In this paper the algorithms used, the hardware implementation and the operational aspects are presented.

  9. A facility to produce collimated neutron beams at the Legnaro Laboratories

    International Nuclear Information System (INIS)

    Colautti, P.; Talpo, G.; Tornielli, G.

    1988-01-01

    The 7 MV Van de Graaff and the 16 MV Tandem accelerators at the Legnaro National Laboratories can be used to produce fast neutron fluxes of moderate intensity, ranging in energy from 1 MeV to 50 MeV. A W-polyethylene-Pb cylindrical collimator has been constructed in order to produce a collimated neutron beam, with well defined dose and microdose characteristics for radiobiological experiments. The collimator can be assembled in different configurations allowing both for different thicknesses and different beam apertures. Dosimetric measurements have been made with a d(4.5)+Be source. These demonstrate sharp beam edges with attenuation behind the shield of 20% with the 15 cm collimator and 1.5% with the 50 cm collimator. (author)

  10. Extension of filament propagation in water with Bessel-Gaussian beams

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, G.; Sayrac, M.; Boran, Y.; Kolomenskii, A. A. [Department of Physics, Texas A& M University, College Station, Texas 77843 (United States); Kaya, N.; Schuessler, H. A. [Department of Physics, Texas A& M University, College Station, Texas 77843 (United States); Science and Petroleum, Texas A& M University at Qatar, Doha 23874 (Qatar); Strohaber, J. [Department of Physics, Texas A& M University, College Station, Texas 77843 (United States); Department of Physics, Florida A& M University, Tallahassee, Florida 32307 (United States); Amani, M. [Science and Petroleum, Texas A& M University at Qatar, Doha 23874 (Qatar)

    2016-03-15

    We experimentally studied intense femtosecond pulse filamentation and propagation in water for Bessel-Gaussian beams with different numbers of radial modal lobes. The transverse modes of the incident Bessel-Gaussian beam were created from a Gaussian beam of a Ti:sapphire laser system by using computer generated hologram techniques. We found that filament propagation length increased with increasing number of lobes under the conditions of the same peak intensity, pulse duration, and the size of the central peak of the incident beam, suggesting that the radial modal lobes may serve as an energy reservoir for the filaments formed by the central intensity peak.

  11. Grazing incidence beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V.K.

    1985-01-01

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.

  12. Focusing and guiding intense electron beams by a superconductor tube

    International Nuclear Information System (INIS)

    Roth, P.

    1996-01-01

    An intense electron beam travelling axially through the opening of a superconductor tube was studied. Model calculations showed that the beam is focused by the superconductor tube when the space-charge effect of the beam electrons is compensated. The tube functions as a lens for electrons injected parallel to the tube axis and also for electrons having a small initial radial velocity component. The electron trajectories were computed, and the focal length of the superconductor tube was estimated. (author). 2 figs., 6 refs

  13. Focusing and guiding intense electron beams by a superconductor tube

    Energy Technology Data Exchange (ETDEWEB)

    Roth, P

    1997-12-31

    An intense electron beam travelling axially through the opening of a superconductor tube was studied. Model calculations showed that the beam is focused by the superconductor tube when the space-charge effect of the beam electrons is compensated. The tube functions as a lens for electrons injected parallel to the tube axis and also for electrons having a small initial radial velocity component. The electron trajectories were computed, and the focal length of the superconductor tube was estimated. (author). 2 figs., 6 refs.

  14. Acceleration of laser-injected electron beams in an electron-beam driven plasma wakefield accelerator

    International Nuclear Information System (INIS)

    Knetsch, Alexander

    2018-03-01

    Plasma wakefields deliver accelerating fields that are approximately a 100 times higher than those in conventional radiofrequency or even superconducting radiofrequency cavities. This opens a transformative path towards novel, compact and potentially ubiquitous accelerators. These prospects, and the increasing demand for electron accelerator beamtime for various applications in natural, material and life sciences, motivate the research and development on novel plasma-based accelerator concepts. However, these electron beam sources need to be understood and controlled. The focus of this thesis is on electron beam-driven plasma wakefield acceleration (PWFA) and the controlled injection and acceleration of secondary electron bunches in the accelerating wake fields by means of a short-pulse near-infrared laser. Two laser-triggered injection methods are explored. The first one is the Trojan Horse Injection, which relies on very good alignment and timing control between electron beam and laser pulse and then promises electron bunches with hitherto unprecedented quality as regards emittance and brightness. The physics of electron injection in the Trojan Horse case is explored with a focus on the final longitudinal bunch length. Then a theoretical and numerical study is presented that examines the physics of Trojan Horse injection when performed in an expanding wake generated by a smooth density down-ramp. The benefits are radically decreased drive-electron bunch requirements and a unique bunch-length control that enables longitudinal electron-bunch shaping. The second laser-triggered injection method is the Plasma Torch Injection, which is a versatile, all-optical laser-plasma-based method capable to realize tunable density downramp injection. At the SLAC National Laboratory, the first proof-of-principle was achieved both for Trojan Horse and Plasma Torch injection. Setup details and results are reported in the experimental part of the thesis along with the commissioning

  15. Velocity bunching of high-brightness electron beams

    Directory of Open Access Journals (Sweden)

    S. G. Anderson

    2005-01-01

    Full Text Available Velocity bunching has been recently proposed as a tool for compressing electron beam pulses in modern high brightness photoinjector sources. This tool is familiar from earlier schemes implemented for bunching dc electron sources, but presents peculiar challenges when applied to high current, low emittance beams from photoinjectors. The main difficulty foreseen is control of emittance oscillations in the beam in this scheme, which can be naturally considered as an extension of the emittance compensation process at moderate energies. This paper presents two scenarios in which velocity bunching, combined with emittance control, is to play a role in nascent projects. The first is termed ballistic bunching, where the changing of relative particle velocities and positions occur in distinct regions, a short high gradient linac, and a drift length. This scenario is discussed in the context of the proposed ORION photoinjector. Simulations are used to explore the relationship between the degree of bunching, and the emittance compensation process. Experimental measurements performed at the UCLA Neptune Laboratory of the surprisingly robust bunching process, as well as accompanying deleterious transverse effects, are presented. An unanticipated mechanism for emittance growth in bends for highly momentum chirped beam was identified and studied in these experiments. The second scenario may be designated as phase space rotation, and corresponds closely to the recent proposal of Ferrario and Serafini. Its implementation for the compression of the electron beam pulse length in the PLEIADES inverse Compton scattering (ICS experiment at LLNL is discussed. It is shown in simulations that optimum compression may be obtained by manipulation of the phases in low gradient traveling wave accelerator sections. Measurements of the bunching and emittance control achieved in such an implementation at PLEIADES, as well as aspects of the use of velocity-bunched beam directly

  16. Bunched beam neutralization

    International Nuclear Information System (INIS)

    Gammel, G.M.; Maschke, A.W.; Mobley, R.M.

    1979-01-01

    One of the steps involved in producing an intense ion beam from conventional accelerators for Heavy Ion Fusion (HIF) is beam bunching. To maintain space charge neutralized transport, neutralization must occur more quickly as the beam bunches. It has been demonstrated at BNL that a 60 mA proton beam from a 750 kV Cockcroft--Walton can be neutralized within a microsecond. The special problem in HIF is that the neutralization must occur in a time scale of nanoseconds. To study neutralization on a faster time scale, a 40 mA, 450 kV proton beam was bunched at 16 MHz. A biased Faraday cup sampled the bunched beam at the position where maximum bunching was nominally expected, about 2.5 meters from the buncher. Part of the drift region, about 1.8 meters, was occupied by a series of Gabor lenses. In addition to enhancing beam transport by transverse focussing, the background cloud of electrons in the lenses provided an extra degree of neutralization. With no lens, the best bunch factor was at least 20. Bunch factor is defined here as the ratio of the distance between bunches to the FWHM bunch length. With the lens, it was hoped that the increased plasma frequency would decrease the neutralization time and cause an increase in the bunch factor. In fact, with the lens, the instantaneous current increased about three times, but the bunch factor dropped to about 10. Even with the lens, the FWHM of the bunches at the position of maximum bunching was still comparable to or less than the oscillation period of the surrounding electron plasma. Thus, the electron density in the lens must increase before neutralization could be effective in this case, or bunching should be done at a lower frequency

  17. [Alveolar bone thickness and root length changes in the treatment of skeletal Class III patients facilitated by improved corticotomy: a cone-beam CT analysis].

    Science.gov (United States)

    Wu, Jiaqi; Jiang, Jiuhui; Xu, Li; Liang, Cheng; Li, Cuiying; Xu, Xiao

    2015-04-01

    To evaluate the alveolar bone thickness and root length changes of anterior teeth with cone-beam computed tomography (CBCT). CBCT scans were taken for 12 skeletal Class III patients who accepted the improved corticotomy (IC) procedures during pre-surgical orthodontics. The CBCT data in T1 (the maxillary dental arch was aligned and leveled) and T2 (extraction space closure) were superimposed and the alveolar bone thickness at root apex level and root length measurements were done. From T1 to T2, the buccal alveolar bone thickness for the upper lateral incisors increased from (1.89±0.83) to (2.47±1.02) mm (P<0.05), and for central incisors and for canines from (2.32±0.71) to (2.68±1.48) mm and from (2.28±1.08) to (2.41±1.40) mm, respectively. According to Sharpe Grading System, the root resorption grade for 69 teeth of 72 was located in Grade 1, two teeth in Grade 2, one tooth in Grade 3. The improved corticotomy had the potential to increase the buccal alveolar bone thickness and the root resorption in most teeth was in Grade 1 according to Sharpe grading system.

  18. Flexural Behavior of Self-Compacting RC Continuous Beams Strengthened by CFRP Sheets

    Directory of Open Access Journals (Sweden)

    Sabih Z. Al-Sarraf

    2018-01-01

    Full Text Available This search presented an experimental study of the flexural behavior of self-compacting reinforced concrete continuous beams externally strengthened by carbon fiber reinforced polymer (CFRP Sheets. The practical study contained eight self-compacting reinforced concrete continuous beams (with two span, each span had (1500 mm length and (150x250 mm cross sectional dimensions. Seven of these beams strengthened externally by CFRP sheets with and without external anchorage. The experimental variables included location of CFRP sheets and anchor type and location. The results, shows that the beams strengthened externally by CFRP sheets provided improvement in ultimate loads reached (60.71%. The usage of CFRP in the anchorage zone indicated an effective method in comparison to increasing the CFRP sheets lengths or extending them up to the support or under the loading points. Test results also showed that side strengthening provided an effective tool for increasing the load at the cracking stage and also the load capacity and reducing flexural crack widths.

  19. Multi-beam laser heterodyne measurement with ultra-precision for Young modulus based on oscillating mirror modulation

    Science.gov (United States)

    Li, Y. Chao; Ding, Q.; Gao, Y.; Ran, L. Ling; Yang, J. Ru; Liu, C. Yu; Wang, C. Hui; Sun, J. Feng

    2014-07-01

    This paper proposes a novel method of multi-beam laser heterodyne measurement for Young modulus. Based on Doppler effect and heterodyne technology, loaded the information of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by mass variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain value of Young modulus of the sample by the calculation. This novel method is used to simulate measurement for Young modulus of wire under different mass by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.3%.

  20. Dynamic Analysis and Vibration Attenuation of Cable-Driven Parallel Manipulators for Large Workspace Applications

    Directory of Open Access Journals (Sweden)

    Jingli Du

    2013-01-01

    Full Text Available Cable-driven parallel manipulators are one of the best solutions to achieving large workspace since flexible cables can be easily stored on reels. However, due to the negligible flexural stiffness of cables, long cables will unavoidably vibrate during operation for large workspace applications. In this paper a finite element model for cable-driven parallel manipulators is proposed to mimic small amplitude vibration of cables around their desired position. Output feedback of the cable tension variation at the end of the end-effector is utilized to design the vibration attenuation controller which aims at attenuating the vibration of cables by slightly varying the cable length, thus decreasing its effect on the end-effector. When cable vibration is attenuated, motion controller could be designed for implementing precise large motion to track given trajectories. A numerical example is presented to demonstrate the dynamic model and the control algorithm.

  1. In Situ Focused Beam Reflectance Measurement (FBRM, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR and Raman Characterization of the Polymorphic Transformation of Carbamazepine

    Directory of Open Access Journals (Sweden)

    Sohrab Rohani

    2012-02-01

    Full Text Available The objective of this work was to study the polymorphic transformation of carbamazepine from Form II to Form III in 1-propanol during seeded isothermal batch crystallization. First, the pure Form II and Form III were obtained and characterized. Then their solubilities and metastable zone limits were measured by in-situ attenuated total reflectance Fourier transform infrared (ATR-FTIR spectroscopy and focused beam reflectance measurement (FBRM. A transition temperature at about 34.2 °C was deduced suggesting the enantiotropic nature of this compound over the studied temperature range. To quantify the polymorph ratio during the transformation process, a new in-situ quantitative method was developed to measure the fraction of Form II by Raman spectroscopy. Successful tracking of the nucleation of the stable form and the transformation from Form II to Form III during isothermal crystallization was achieved by Raman spectroscopy and FBRM. The results from these three in-situ techniques, FBRM, FTIR and Raman were consistent with each other. The results showed a strong dependency on the amount of seeds added during isothermal crystallization.

  2. Computed-tomography attenuation values of the peritoneum reflect the severity of peritonitis due to upper gastrointestinal perforations

    International Nuclear Information System (INIS)

    Tsujimoto, Hironori; Yaguchi, Yoshihisa; Hiraki, Shuichi; Kinoshita, Manabu; Yamamoto, Junji; Hase, Kazuo; Ono, Satoshi

    2011-01-01

    The aim of this study was to evaluate computed tomography (CT) attenuation values of the peritoneum and to relate these values to the severity of peritonitis in patients with upper gastrointestinal tract (UGI) perforations. A total of 27 consecutive patients with UGI perforations who underwent CT and emergency laparotomy in our hospital were enrolled in this study. The CT attenuation values of the peritoneum were measured at a workstation by 2 independent investigators, and these values were analyzed in relation to the severity of illness. There were significant negative correlations between the peritoneal CT attenuation values and the sequential organ failure assessment score, acute physiology and chronic health evaluation II score, and the Mannheim peritonitis index. There was a significant negative correlation between the peritoneal CT attenuation values and the length of stay in the intensive care unit. Furthermore, patients with dysfunctions in ≥3 organs had significantly lower peritoneal CT attenuation values than those with dysfunction in ≤2 organs. In conclusion, evaluation of peritoneal CT attenuation values in peritonitis patients is simple and can be employed for objective assessment of the severity of peritonitis. (author)

  3. Assessment of the effectiveness of attenuation of leaded aprons through TLD dosimetry and Monte Carlo simulation method

    International Nuclear Information System (INIS)

    Olaya D, H.; Diaz M, J. A.; Martinez O, S. A.; Vega C, H. R.

    2016-10-01

    Were performed experimental setups using an X-ray equipment continuous emission Pantak DXT-3000 and three types of leaded aprons with thickness of 0.25, 0.5 and 0.75 mm coated with Mylar Fiber coated Mylar on its surface. Apron was located at a distance of 2.5 m with respect focus in order to cover a radiation field size of a meter in diameter. At the beam output were added aluminum filtration in order to reproduce qualities of narrow beams N-40 (E_e_f_e_c_t_i_v_e = 33 keV), N-80 (E_e_f_e_c_t_i_v_e = 65 keV) and N-100 (E_e_f_e_c_t_i_v_e = 83 keV) according to the ISO standard 4037 (1-3). Each lead apron were fixed 10 TLD dosimeters over its surface, 5 dosimeters before and 5 dosimeters after with respect to X-ray beam and were calibrated for Harshaw 4500 thermoluminescent reader system order to assess the attenuation of each apron. Were performed dosimeters readings and were calculated the attenuation coefficients for each effective energy of X-ray quality. In order to confirm the method of effective energy of ISO-4037 and evaluate effectiveness of lead aprons based on energy range for each medical practice was made a Monte Carlo simulation using code GEANT-4, calculating the fluence and absorbed dose in each one of the dosimeters Monte Carlo, then coefficients of linear attenuation were calculated and compared with the experimental data and reported by the National Institute of Standards and Technology (Nist). Finally, results are consistent between theoretical calculation and experimental measures. This work will serve to make assessments for other personalized leaded protections. (Author)

  4. Manufacturing prototypes for LIPAC beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, F., E-mail: fernando.arranz@ciemat.es [CIEMAT, Madrid (Spain); Brañas, B.; Iglesias, D. [CIEMAT, Madrid (Spain); Nomen, O. [IREC, Barcelona (Spain); Rapisarda, D.; Lapeña, J.; Muñoz, A. [CIEMAT, Madrid (Spain); Szcepaniak, B. [GALVANO-T, Windeck (Germany); Manini, J. [CARMAN, Madrid (Spain); Gómez, J. [TRINOS VACUUM, Valencia (Spain)

    2014-10-15

    Highlights: •Electroforming of copper and electronbeam welding techniques are compared. •Mechanical properties of Cu–stainless steel joint by electroforming are presented. •Achieved manufacturing tolerances are shown. •The difficulties and solutions for the complicated manufacturing are explained. -- Abstract: The purpose of the research is to define the most adequate manufacturing process for the dump of a linear deuteron accelerator. The deuteron beam can be pulsed as well as continuous with energies up to 9 MeV. The maximum beam power is 1.12 MW corresponding to a beam current of 125 mA. The requirements on the surface on which the deuterons will be stopped are quite demanding and the length and slenderness of the cone poses a considerable difficulty in the manufacturing process. The design of the beam dump is based on a copper cone 2500 mm long, 300 mm aperture and 5 to 6.5 mm thickness. Basically only two technologies were found feasible for the manufacturing of the cone: Electroforming and Electron Beam Welding (EBW). The article shows the main results found when manufacturing different prototypes.

  5. Beam monitor system for an x-ray free electron laser and compact laser

    Directory of Open Access Journals (Sweden)

    Y. Otake

    2013-04-01

    Full Text Available A beam-monitor system for XFEL/SPring 8, “SACLA,” has been constructed. In order to maintain a stable self-amplified spontaneous emission (SASE interaction, the straightness and overlap of the axes to within 3  μm between the electron beams and the radiated x rays for an undulator section of about 100 m length is necessary. This straightness means relative alignment to an experimental target sample. Furthermore, a temporal stability of 30 fs in order to maintain a constant peak beam current is also necessary to conduct stable SASE lasing. The monitor system was developed to satisfy these spatial and temporal stability and resolution criteria. The system comprises spatial monitors, such as cavity-type beam-position monitors and screen monitors, as well as temporal measurement instruments, such as current monitors, waveguide spectrometers, coherent synchrotron-radiation detectors, a streak camera, and an rf deflector. Commissioning of SACLA started from March 2011, and the monitors performed sufficient roles to tune the beams for lasing. The achieved overall performances of the system, including data acquisition, are: the beam position monitor has a spatial resolution of 600 nm in rms; the bunch-length monitors show ability to observe bunch lengths from 1 ns in an injector with velocity bunching to less than 30 fs after three-stage bunch compressors. The less than 3  μm spatial resolution of the screen monitor was also confirmed during practical beam operation. Owing to these fulfilled performances, such as the high spatial and temporal resolutions, stable lasing of SACLA has been achieved.

  6. Bending and Shear Stresses Developed by the Instantaneous Arrest of the Root of a Moving Cantilever Beam

    Science.gov (United States)

    Stowell, Elbridge, Z; Schwartz, Edward B; Houbolt, John C

    1945-01-01

    A theoretical and experimental investigation has been made of the behavior of a cantilever beam in transverse motion when its root is suddenly brought to rest. Equations are given for determining the stresses, the deflections, and the accelerations that arise in the beam as a result of the impact. The theoretical equations, which have been confirmed experimentally, reveal that, at a given percentage of the distance from root to tip, the bending stresses for a particular mode are independent of the length of the beam, whereas the shear stresses vary inversely with the length.

  7. Deflagration wave formed by ion beam, 2

    International Nuclear Information System (INIS)

    Abe, T.; Kasuya, K.; Niu, K.; Tamba, M.

    1979-06-01

    Analyses are given for structures of deflagration waves formed by ion beams in spherical targets. The singularity at the sonic point disappears in the spherical target if the beam pressure is in balance with the plasma pressure. The expanding supersonic flow of the background plasma can be connected with the subsonic flow in the core of the target through the deflagration wave. The length and the strength of the deflagration wave in the spherical target is comparable with the corresponding ones in the slab target. (author)

  8. Electro-Magnetic Bunch Length Measurement in LEP

    CERN Document Server

    Vos, L

    1998-01-01

    Bunch lengths between 3 and 12 mm have been measured routinely in LEP in 1997 with a small (7 mm diameter) button electrode. The measurement method is based on the spectral analysis of the electrode signal and relies on the fact that the transfer function of the complete set-up, including the signal cable, can be computed rather exactly thus eliminating the need for external calibration. The information of beam intensity is recovered as a by-product. It provides an interesting internal validation of the measurement by comparison with the normal intensity measurement. The system has been used to detect subtle but real bunch length changes with bunch intensity which can be attributed to the inductive impedance in LEP. A value for the imaginary (inductive) longitudinal impedance is derived from the observations. An indication for the resistive part of the impedance is given as well.

  9. Low-energy beam transport using space-charge lenses

    International Nuclear Information System (INIS)

    Meusel, O.; Bechtold, A.; Pozimski, J.; Ratzinger, U.; Schempp, A.; Klein, H.

    2005-01-01

    Space-charge lenses (SCL) of the Gabor type provide strong cylinder symmetric focusing for low-energy ion beams using a confined nonneutral plasma. They need modest magnetic and electrostatic field strength and provide a short installation length when compared to conventional LEBT-lenses like quadrupoles and magnetic solenoids. The density distribution of the enclosed space charge within the Gabor lens is given by the confinement in transverse and longitudinal directions. In the case of a positive ion beam, the space charge of the confined electron cloud may cause an overcompensation of the ion beam space-charge force and consequently focuses the beam. To investigate the capabilities of an SCL double-lens system for ion beam into an RFQ, a test injector was installed at IAP and put into operation successfully. Furthermore, to study the focusing capabilities of this lens at beam energies up to 500 keV, a high-field Gabor lens was built and installed downstream of the RFQ. Experimental results of the beam injection into the RFQ are presented as well as those of these first bunched beam-focusing tests with the 110 A keV He + beam

  10. Influence of detector collimation and beam pitch for identification and image quality of ground-glass attenuation and nodules on 16- and 64-detector row CT systems: experimental study using chest phantom.

    Science.gov (United States)

    Ohno, Yoshiharu; Koyama, Hisanobu; Kono, Astushi; Terada, Mari; Inokawa, Hiroyasu; Matsumoto, Sumiaki; Sugimura, Kazuro

    2007-12-01

    The purpose of the present study was to determine the influence of detector collimation and beam pitch for identification and image quality of ground-glass attenuation (GGA) and nodules on 16- and 64-detector row CTs, by using a commercially available chest phantom. A chest CT phantom including simulated GGAs and nodules was scanned with different detector collimations, beam pitches and tube currents. The probability and image quality of each simulated abnormality was visually assessed with a five-point scoring system. ROC-analysis and ANOVA were then performed to compare the identification and image quality of either protocol with standard values. Detection rates of low-dose CTs were significantly reduced when tube currents were set at 40mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32mmx1.0mm for low pitch, and at 100mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32mmx1.0mm for high pitch (pdetector collimation 16 and 64x0.5mm and 16 and 32x1.0mm for low pitch, and at 150mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32x1.0mm for high pitch (pDetector collimation and beam pitch were important factors for the image quality and identification of GGA and nodules by 16- and 64-detector row CT.

  11. Performance test results of ion beam transport for SST-1 neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Jana, M R; Mattoo, S K [Institute for Plasma Research Bhat, Gandhinagar-382428, Gujarat (India); Uhlemann, R, E-mail: mukti@ipr.res.i [Forschungszentrum Juelich, Institute fur Energieforschung IEF-4, Plasmaphysik D-52425 Juelich (Germany)

    2010-02-01

    A neutral beam injector is built at IPR to heat the plasma of SST-1 and its upgrade. It delivers a maximum beam power of 1.7 MW for 55 kV Hydrogen beam or 80 kV Deuterium beam. At lower beam voltage, the delivered power falls to 500 kW at 30 kV Hydrogen beam which is adequate to heat SST-1 plasma ions to {approx} 1 keV. Process of acceleration of ions to the required beam voltage, conversion of ions to neutrals and removal of un-neutralized ions and the beam diagnostic systems occupy a large space. The consequence is that linear extent of the neutral beam injector is at least a few meters. Also, port access provides a very narrow duct. Even a very good injector design and fabrication practices keep beam divergence at a very low but finite value. The result is beam transport becomes an important issue. Since a wide area beam is constructed by hundreds of beam lets, it becomes essential they be focused in such a way that beam transport loss is minimized. Horizontal and vertical focal lengths are two parameters, in addition to beam divergence, which give a description of the beam transport. We have obtained these two parameters for our injector by using beam transport code; making several hundred simulation runs by varying optical parameters of the beam. The selected parameters set has been translated into the engineering features of the extractor grid set of the ion source. Aperture displacement technique is used to secure the horizontal beam focusing at 5.4 m. Combination of both aperture displacement and inclining of two grid halves to {approx} 17 mrad are secured for vertical beam focusing at 7 m from earth grid of the ion source. The gaps between the design, engineered and performance tested values usually arise due to lack of exercising control over fabrication processes or due to inaccuracies in the assumption made in the model calculations of beam optics and beam transport. This has been the case with several injectors, notably with JET injector. To overcome

  12. Breakdown simulations in a focused microwave beam within the simplified model

    International Nuclear Information System (INIS)

    Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.; Nusinovich, G. S.

    2016-01-01

    The simplified model is proposed to simulate numerically air breakdown in a focused microwave beam. The model is 1D from the mathematical point of view, but it takes into account the spatial non-uniformity of microwave field amplitude along the beam axis. The simulations are completed for different frequencies and different focal lengths of microwave beams. The results demonstrate complicated regimes of the breakdown evolution which represents a series of repeated ionization waves. These waves start at the focal point and propagate towards incident microwave radiation. The ionization wave parameters vary during propagation. At relatively low frequencies, the propagation regime of subsequent waves can also change qualitatively. Each next ionization wave is less pronounced than the previous one, and the breakdown evolution approaches the steady state with relatively small plasma density. The ionization wave parameters are sensitive to the weak source of external ionization, but the steady state is independent on such a source. As the beam focal length decreases, the stationary plasma density increases and the onset of the steady state occurs faster.

  13. Dependence of electron beam instability growth rates on the beam-plasma system parameters

    International Nuclear Information System (INIS)

    Strangeway, R.J.

    1982-01-01

    Electron beam instabilites are studied by using a simple model for an electron beam streaming through a cold plasma, the beam being of finite width perpendicular to the ambient magnetic field. Through considerations of finite geometry and the coldness of the beam and background plasma, an instability similar to the two stream instability is assumed to be the means for wave growth in the system. Having found the maximum growth rate for one set of beam-plasma system parameters, this maximum growth rate is traced as these parameters are varied. The parameters that describe the system are the beam velocity (v/sub b/), electron gyrofrequency to ambient electron plasma frequency ratio (Ω/sub e//ω/sub p/e), the beam to background number density ratio (n/sub b//n/sub a/), and the beam width (a). When Ω/sub e//ω/sub p/e>1, a mode with Ω/sub e/<ω<ω/sub u/hr is found to be unstable, where Ω is the wave frequency and ω/sub u/hr is the upper hybrid resonance frequency. For low values of n/sub b//n/sub a/ and Ω/sub e/<ω/sub p/e, this mode is still present with ω/sub p/e<ω<ω/sub u/hr. If the beam density is large, n/sub b//n/sub a/approx. =1, the instability occures for frequencies just above the electron gyrofrequency. This mode may well be that observed in laboratory plasma before the system undergoes the beam-plasma discharge. There is another instability present, which occurs for ωapprox. =ω/sub p/e. The growth rates for this mode, which are generally larger than those found for the ωapprox. =ωuhr mode, are only weakly dependent on Ω/sub d//ω/sub p/e. That this mode is not always observed in the laboratory implies that some factors not considered in the present theory suppress this mode, specifically, finite beam length

  14. Bragg reflection transmission filters for variable resolution monochromators

    International Nuclear Information System (INIS)

    Chapman, D.

    1989-01-01

    There are various methods for improving the angular and spectral resolution of monochromator and analyzer systems. The novel system described here, though limited to higher x-ray energies (>20keV), is based on a dynamical effect occurring on the transmitted beam with a thin perfect crystal plate set in the Bragg reflection case. In the case of Bragg reflection from a perfect crystal, the incident beam is rapidly attenuated as it penetrates the crystal in the range of reflection. This extinction length is of the order of microns. The attenuation length, which determines the amount of normal transmission through the plate is generally much longer. Thus, in the range of the Bragg reflection the attenuation of the transmitted beam can change by several orders of magnitude with a small change in energy or angle. This thin crystal plate cuts a notch in the transmitted beam with a width equal to its Darwin width, thus acting as a transmission filter. When used in a non-dispersive mode with other monochromator crystals, the filter when set at the Bragg angle will reflect the entire Darwin width of the incident beam and transmit the wings of the incident beam distribution. When the element is offset in angle by some fraction of the Darwin width, the filter becomes useful in adjusting the angular width of the transmitted beam and removing a wing. Used in pairs with a symmetric offset, the filters can be used to continuously adjust the intrinsic angular divergence of the beam with good wing reduction. Instances where such filters may be useful are in improving the angular resolution of a small angle scattering camera. These filters may be added to a Bonse-Hart camera with one pair on the incident beam to reduce the intrinsic beam divergence and a second pair on the analyzer arm to improve the analyzer resolution. 2 refs., 3 Figs

  15. Transport and acceleration of the high-current ion beam in magneto-isolated gap

    International Nuclear Information System (INIS)

    Karas', V.I.; Kornilov, E.A.; Manuilenko, O.V.; Fedorovskaya, O.V.; Tarakanov, V.P.

    2015-01-01

    The possibility of transportation and acceleration of the high-current ion beam in the magneto-isolated gap has been demonstrated. Found the parameters of the system and beams (the magnetic field produced by the coils with opposing currents, the size of the system, and the parameters of the beams), under which the uniform acceleration of the high-current ion beam all along the gap length is realized. It is shown that the quality of the ion beam, during transport and acceleration, at the exit of the gap is acceptable for many technological applications.

  16. Transport of a relativistic electron beam through hydrogen gas

    International Nuclear Information System (INIS)

    Haan, P. de.

    1981-01-01

    In this thesis the author describes the transport properties of an electron beam through vacuum and through hydrogen gas with pressure ranging from 25 to 1000 Pa. Maximum beam energy and current are 0.8 MeV and 6 kA, respectively. The pulse length is around 150 ns. A description is given of the experimental device. Also the diagnostics for probing the beam and the plasma, produced by the beam, are discussed, as well as the data acquisition system. The interaction between the beam and hydrogen gas with a pressure around 200 Pa is considered. A plasma with density around 10 19 m -3 is produced within a few nanoseconds. Measurements yield the atomic hydrogen temperature, electron density, beam energy loss, and induced plasma current and these are compared with the results of a model combining gas ionization and dissociation, and turbulent plasma heating. The angular distribution of the beam electrons about the magnetic field axis is discussed. (Auth.)

  17. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (IBM PC VERSION)

    Science.gov (United States)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  18. Laser interferometric method for determining the carrier diffusion length in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Manukhov, V. V. [Saint Petersburg State University (Russian Federation); Fedortsov, A. B.; Ivanov, A. S., E-mail: ivaleks58@gmail.com [Saint Petersburg Mining University (Russian Federation)

    2015-09-15

    A new laser interferometric method for measuring the carrier diffusion length in semiconductors is proposed. The method is based on the interference–absorption interaction of two laser radiations in a semiconductor. Injected radiation generates additional carriers in a semiconductor, which causes a change in the material’s optical constants and modulation of the probing radiation passed through the sample. When changing the distance between carrier generation and probing points, a decrease in the carrier concentration, which depends on the diffusion length, is recorded. The diffusion length is determined by comparing the experimental and theoretical dependences of the probe signal on the divergence of the injector and probe beams. The method is successfully tested on semiconductor samples with different thicknesses and surface states and can be used in scientific research and the electronics industry.

  19. A proposal for PET/MRI attenuation correction with μ-values measured using a fixed-position radiation source and MRI segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Hiroshi, E-mail: kwgc@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Hirano, Yoshiyuki, E-mail: yhirano@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Yoshida, Eiji, E-mail: rush@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kershaw, Jeff, E-mail: len@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shiraishi, Takahiro, E-mail: tshira@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Suga, Mikio, E-mail: mikio.suga@faculty.chiba-u.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Graduate School of Engineering of Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Ikoma, Yoko, E-mail: ikoma@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Obata, Takayuki, E-mail: t_obata@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Ito, Hiroshi, E-mail: hito@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Yamaya, Taiga, E-mail: taiga@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2014-01-11

    Several MRI-based attenuation correction methods have been reported for PET/MRI; these methods are expected to make efficient use of high-quality anatomical MRIs and reduce the radiation dose for PET/MRI scanning. The accuracy of the attenuation map (μ-map) from an MRI depends on the accuracy of tissue segmentation and the attenuation coefficients to be assigned (μ-values). In this study, we proposed an MRI-based μ-value estimation method with a non-rotational radiation source to construct a suitable μ-map for PET/MRI. The proposed method uses an accurately segmented tissue map, the partial path length of each tissue, and detected intensities of attenuated radiation from a fixed-position (rather than a rotating) radiation source to obtain the μ-map. We estimated the partial path length from a virtual blank scan of fixed-point radiation with the same scanner geometry using the known tissue map from MRI. The μ-values of every tissue were estimated by inverting a linear relationship involving the partial path lengths and measured radioactivity intensity. Validation of the proposed method was performed by calculating a fixed- point data set based upon real a real transmission scan. The root-mean-square error between the μ-values derived from a conventional transmission scan and those obtained with our proposed method were 2.4±1.4%, 17.4±9.1% and 6.6±4.3% for brain, bone and soft tissue other than brain, respectively. Although the error estimates for bone and soft tissue are not insignificant, the method we propose is able to estimate the brain μ-value accurately and it is this factor that most strongly affects the quantitative value of PET images because of the large volumetric ratio of the brain. -- Highlights: • An MRI-derived µ-map for the attenuation correction of PET images is proposed. • Method relies on segmentation of MRI and a fixed-point source transmission scan. • Tissue segmentation reduces the number of unknown µ-values. • Method

  20. A proposal for PET/MRI attenuation correction with μ-values measured using a fixed-position radiation source and MRI segmentation

    International Nuclear Information System (INIS)

    Kawaguchi, Hiroshi; Hirano, Yoshiyuki; Yoshida, Eiji; Kershaw, Jeff; Shiraishi, Takahiro; Suga, Mikio; Ikoma, Yoko; Obata, Takayuki; Ito, Hiroshi; Yamaya, Taiga

    2014-01-01

    Several MRI-based attenuation correction methods have been reported for PET/MRI; these methods are expected to make efficient use of high-quality anatomical MRIs and reduce the radiation dose for PET/MRI scanning. The accuracy of the attenuation map (μ-map) from an MRI depends on the accuracy of tissue segmentation and the attenuation coefficients to be assigned (μ-values). In this study, we proposed an MRI-based μ-value estimation method with a non-rotational radiation source to construct a suitable μ-map for PET/MRI. The proposed method uses an accurately segmented tissue map, the partial path length of each tissue, and detected intensities of attenuated radiation from a fixed-position (rather than a rotating) radiation source to obtain the μ-map. We estimated the partial path length from a virtual blank scan of fixed-point radiation with the same scanner geometry using the known tissue map from MRI. The μ-values of every tissue were estimated by inverting a linear relationship involving the partial path lengths and measured radioactivity intensity. Validation of the proposed method was performed by calculating a fixed- point data set based upon real a real transmission scan. The root-mean-square error between the μ-values derived from a conventional transmission scan and those obtained with our proposed method were 2.4±1.4%, 17.4±9.1% and 6.6±4.3% for brain, bone and soft tissue other than brain, respectively. Although the error estimates for bone and soft tissue are not insignificant, the method we propose is able to estimate the brain μ-value accurately and it is this factor that most strongly affects the quantitative value of PET images because of the large volumetric ratio of the brain. -- Highlights: • An MRI-derived µ-map for the attenuation correction of PET images is proposed. • Method relies on segmentation of MRI and a fixed-point source transmission scan. • Tissue segmentation reduces the number of unknown µ-values. • Method

  1. Flexural behaviour of reinforced concrete beams with discrete steel – polypropylene fibres

    Directory of Open Access Journals (Sweden)

    Amizah Wan Jusoh Wan

    2017-01-01

    Full Text Available This paper discusses the experimental results on the flexural test of concrete containing different proportions of steel fibre (SF and polypropylene fibre (PPF. The flexural test was carried out under 4-point bending load and followed the relevant standards to FRC. Hooked-end deformed SF fibre with 60 mm length and fibrillated virgin PPF fibre with 19 mm length were used in this study. Meanwhile, the concrete was designed for high strength concrete of C60. The mixture included both single SF and PPF, and also the combination of both fibres; Control beam (PC, beam with 75%SF, beam with 75%SF + 25%PPF and beam with 25%PPF. The total fibre volume fraction (Vf was fixed at 1.5%. The experimental results show that the percentage proportion of combined SF-PPF at 75-25% had the best performance for its flexural capacity. Mixture with single PPF was also found not effective in delaying the onset of tension cracks and to increase the tensile strength of the concrete. Experimental result also shows beam with 75%SF +25%PPF had their structural stiffness improved the most as compared with the others. For the compressive strength, beam with 75%SF + 25%PPF also revealed comparable performance with the control for high strength composite concrete.

  2. RC T beams strengthened to shear with carbon fiber composites

    Directory of Open Access Journals (Sweden)

    L. A. Spagnolo JR

    Full Text Available This paper presents the experimental data of the behavior of reinforced concrete beams strengthened to shear with carbon fiber composites. The tests were composed of eight T beams, b w=15 cm, h=40 cm, flange width 40 cm, flange height 8 cm, and length 300 cm, divided into two series with the same longitudinal steel reinforcement and a reference beam without strengthening in each series. The beams had two types of arrangement of internal steel stirrups. The test variables were the internal and external geometric ratio of the transverse reinforcement and the mechanical ratio of carbon fiber composites stirrups. All the beams were loaded at two points. The strengthened beams were submitted to a preloading and the strengthening was applied to the cracked beam. All the beams were designed in order to guarantee shear failure, and the ultimate load of the strengthened beams was 36% to 54% greater than the reference beams. The Cracking Sliding Model applied to the strengthened beams was evaluated and showed good agreement with the experimental results.

  3. Extension of filament propagation in water with Bessel-Gaussian beams

    Directory of Open Access Journals (Sweden)

    G. Kaya

    2016-03-01

    Full Text Available We experimentally studied intense femtosecond pulse filamentation and propagation in water for Bessel-Gaussian beams with different numbers of radial modal lobes. The transverse modes of the incident Bessel-Gaussian beam were created from a Gaussian beam of a Ti:sapphire laser system by using computer generated hologram techniques. We found that filament propagation length increased with increasing number of lobes under the conditions of the same peak intensity, pulse duration, and the size of the central peak of the incident beam, suggesting that the radial modal lobes may serve as an energy reservoir for the filaments formed by the central intensity peak.

  4. Corrosion resistance and development length of steel reinforcement with cementitious coatings

    Science.gov (United States)

    Pei, Xiaofei

    This research program focused on the corrosion resistance and development length of reinforcing steel coated with Cementitious Capillary Crystalline Waterproofing (CCCW) materials. The first part of this research program involved using the half-cell potential method to evaluate the corrosion resistance of CCCW coating materials. One hundred and two steel bars were embedded in concrete cylinders and monitored. In total, 64 steel reinforcing bars were coated with CCCW prior to embedment, 16 mortar cylinders were externally coated with CCCW, and 22 control (uncoated) samples were tested. All the samples were immersed in a 3.5% concentration chloride solution for a period of one year. Three coating types were studied: CCCW-B, CCCW-B+ C and CCCW-C+D. The test results showed that the CCCW coating materials delayed the corrosion activity to varying degrees. In particular, CCCW-C+D applied on the reinforcing steel surface dramatically delayed the corrosion activity when compared to the control samples. After being exposed to the chloride solution for a period of one year, no sign of corrosion was observed for the cylinders where the concrete surface was coated. The second part of this research evaluated the bond strength and development length of reinforcing steel coated with two types of CCCW coating materials (CCCW-B+C and CCCW-C+D) using a modified pull-out test method. A self-reacting inverted T-shaped beam was designed to avoid compression in the concrete surrounding the reinforcing steel. Steel reinforcing bars were embedded along the web portion of the T-beam with various embedded lengths and were staggered side by side. In total, six T-beams were fabricated and each beam contained 8 samples. Both short-term (7 days) and long-term (3 months) effects of water curing were evaluated. The reinforcing steel bars coated with CCCW-B+C demonstrated a higher bond strength than did samples coated with CCCW-C+D. However, the bond strengths of samples with coating materials

  5. Efficient Injection of Electron Beams into Magnetic Guide Fields

    International Nuclear Information System (INIS)

    Chorny, V.; Cooperstein, G.; Dubyna, V.; Frolov, O.; Harper-Slaboszewicz, V.; Hinshelwood, D.; Schneider, R.; Solovyov, V.; Tsepilov, H.; Vitkovitsky, I.; Ware, K.

    1999-01-01

    Preliminary experimental and modeling study of injection and transport of high current electron beams in current-neutralized background gas has been performed. Initial analysis of the results indicates that high current triaxial ring diode operates very reproducibly in the pinch mode. High current density beam can be injected efficiently into the drift region, using azimuthal guide field with reduced intensity near the injection region. This was shown to improve the effectiveness of capturing the beam for the transport. The transport length was insufficient to measure losses, such as would arise from scattering with the background gas

  6. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Alex, E-mail: af@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); The Virtual National Laboratory for Heavy Ion Fusion Science (United States)

    2014-01-01

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, each of which has a unique arrival time and may have a unique kinetic energy. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: that the path lengths of the beams in a group must be equal, and that any delay of “main-pulse” beams relative to “foot-pulse” beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying “differential acceleration” to individual beams or sets of beams at strategic stages of the transport lines. That is, by accelerating some beams “sooner” and others “later,” it is possible to simplify the beam line configuration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use differential acceleration to effect the simultaneous arrival on target of a set of beams (e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model configurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy.

  7. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    International Nuclear Information System (INIS)

    Friedman, Alex

    2014-01-01

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, each of which has a unique arrival time and may have a unique kinetic energy. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: that the path lengths of the beams in a group must be equal, and that any delay of “main-pulse” beams relative to “foot-pulse” beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying “differential acceleration” to individual beams or sets of beams at strategic stages of the transport lines. That is, by accelerating some beams “sooner” and others “later,” it is possible to simplify the beam line configuration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use differential acceleration to effect the simultaneous arrival on target of a set of beams (e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model configurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy

  8. Ferroelectric Plasma Source for Heavy Ion Beam Charge Neutralization

    CERN Document Server

    Efthimion, Philip; Gilson, Erik P; Grisham, Larry; Logan, B G; Waldron, William; Yu, Simon

    2005-01-01

    Plasmas are employed as a medium for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ~ 0.1-1 m would be suitable. To produce 1 meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being considered. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source will utilize the ferroelectric ceramic BaTiO3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic. High voltage (~ 1-5 kV) is applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long produced plasma densities ~ 5x1011 cm-3. The source was integrated into the experiment and successfully charge neutralized the K ion beam. Presently, the 1 meter source ...

  9. The two means method for the attenuation coefficient determination of archaeological ceramics from the North of Parana

    International Nuclear Information System (INIS)

    Silva, Richard Maximiliano Cunha e

    1997-01-01

    This work reports an alternative methodology for the linear attenuation coefficient determination (μ ρ) of irregular form samples, in such a way that is not necessary to consider the sample thickness. With this methodology, indigenous archaeological ceramics fragments from the region of Londrina, north of Parana, were studied. These ceramics fragments belong to the Kaingaing and Tupiguarani traditions. The equation for the μ ρ determination employing the two mean method was obtained and it was used for μ ρ determination by the gamma ray beam attenuation if immersed ceramics, by turns, in two different means with known linear attenuation coefficient. By the other side, μ theoretical value was determined with the XCOM computer code. This code uses as input the ceramics chemistry composition and provides an energy versus mass attenuation coefficient table. In order to validate the two mean method validation, five ceramics samples of thickness 1.15 cm and 1.87 cm were prepared with homogeneous clay. Using these ceramics, μ ρ was determined using the attenuation method, and the two mean method. The result obtained for μ ρ and its respective deviation were compared for these samples, for the two methods. With the obtained results, it was concluded that the two means method is good for the linear attenuation coefficient determination of materials of irregular shape, what is suitable, specially, for archaeometric studies. (author)

  10. Vibration Attenuation by a Combination of a Piezoelectric Stack and a Permanent Magnet

    Directory of Open Access Journals (Sweden)

    A. Nandi

    2012-01-01

    Full Text Available The present work proposes a non-contact vibration attenuator made up of a permanent magnet mounted on a piezoelectric stack. Two such actuators are made to work simultaneously in a 'twin-actuator' configuration. It is conceived that a controlled change in the gap between the actuator and the structure is capable of attenuation of vibration of the structure. This appropriate change in gap is achieved by controlled motion of the piezoelectric stacks. It is shown that the actuator works as an active damper when the extension and contraction of the actuators are made proportional to the velocity of the beam. The resolution of extension of a piezoelectric stack is in the order of nanometers. Thus in the proposed actuator the force of actuation can be applied with great precision. This actuator is also attractive for its simple constructional feature.

  11. Effective atomic numbers in some food materials and medicines for γ -ray attenuation using ^{137}Cs γ -ray

    Science.gov (United States)

    Revathy, J. S.; Anooja, J.; Krishnaveni, R. B.; Gangadathan, M. P.; Varier, K. M.

    2018-06-01

    A light-weight multichannel analyser (MCA)-based γ -ray spectrometer, developed earlier at the Inter University Accelerator Centre, New Delhi, has been used as part of the PG curriculum, to determine the effective atomic numbers for γ attenuation of ^{137}Cs γ -ray in different types of samples. The samples used are mixtures of graphite, aluminum and selenium powders in different proportions, commercial and home-made edible powders, fruit and vegetable juices as well as certain allopathic and ayurvedic medications. A narrow beam good geometry set-up has been used in the experiments. The measured attenuation coefficients have been used to extract effective atomic numbers in the samples. The results are consistent with XCOM values wherever available. The present results suggest that the γ attenuation technique can be used as an effective non-destructive method for finding adulteration of food materials.

  12. A new approach for beam hardening correction based on the local spectrum distributions

    International Nuclear Information System (INIS)

    Rasoulpour, Naser; Kamali-Asl, Alireza; Hemmati, Hamidreza

    2015-01-01

    Energy dependence of material absorption and polychromatic nature of x-ray beams in the Computed Tomography (CT) causes a phenomenon which called “beam hardening”. The purpose of this study is to provide a novel approach for Beam Hardening (BH) correction. This approach is based on the linear attenuation coefficients of Local Spectrum Distributions (LSDs) in the various depths of a phantom. The proposed method includes two steps. Firstly, the hardened spectra in various depths of the phantom (or LSDs) are estimated based on the Expectation Maximization (EM) algorithm for arbitrary thickness interval of known materials in the phantom. The performance of LSD estimation technique is evaluated by applying random Gaussian noise to transmission data. Then, the linear attenuation coefficients with regarding to the mean energy of LSDs are obtained. Secondly, a correction function based on the calculated attenuation coefficients is derived in order to correct polychromatic raw data. Since a correction function has been used for the conversion of the polychromatic data to the monochromatic data, the effect of BH in proposed reconstruction must be reduced in comparison with polychromatic reconstruction. The proposed approach has been assessed in the phantoms which involve less than two materials, but the correction function has been extended for using in the constructed phantoms with more than two materials. The relative mean energy difference in the LSDs estimations based on the noise-free transmission data was less than 1.5%. Also, it shows an acceptable value when a random Gaussian noise is applied to the transmission data. The amount of cupping artifact in the proposed reconstruction method has been effectively reduced and proposed reconstruction profile is uniform more than polychromatic reconstruction profile. - Highlights: • A novel Beam Hardening (BH) correction approach was described. • A new concept named Local Spectrum Distributions (LSDs) was used to BH

  13. A new approach for beam hardening correction based on the local spectrum distributions

    Energy Technology Data Exchange (ETDEWEB)

    Rasoulpour, Naser; Kamali-Asl, Alireza, E-mail: a_kamali@sbu.ac.ir; Hemmati, Hamidreza

    2015-09-11

    Energy dependence of material absorption and polychromatic nature of x-ray beams in the Computed Tomography (CT) causes a phenomenon which called “beam hardening”. The purpose of this study is to provide a novel approach for Beam Hardening (BH) correction. This approach is based on the linear attenuation coefficients of Local Spectrum Distributions (LSDs) in the various depths of a phantom. The proposed method includes two steps. Firstly, the hardened spectra in various depths of the phantom (or LSDs) are estimated based on the Expectation Maximization (EM) algorithm for arbitrary thickness interval of known materials in the phantom. The performance of LSD estimation technique is evaluated by applying random Gaussian noise to transmission data. Then, the linear attenuation coefficients with regarding to the mean energy of LSDs are obtained. Secondly, a correction function based on the calculated attenuation coefficients is derived in order to correct polychromatic raw data. Since a correction function has been used for the conversion of the polychromatic data to the monochromatic data, the effect of BH in proposed reconstruction must be reduced in comparison with polychromatic reconstruction. The proposed approach has been assessed in the phantoms which involve less than two materials, but the correction function has been extended for using in the constructed phantoms with more than two materials. The relative mean energy difference in the LSDs estimations based on the noise-free transmission data was less than 1.5%. Also, it shows an acceptable value when a random Gaussian noise is applied to the transmission data. The amount of cupping artifact in the proposed reconstruction method has been effectively reduced and proposed reconstruction profile is uniform more than polychromatic reconstruction profile. - Highlights: • A novel Beam Hardening (BH) correction approach was described. • A new concept named Local Spectrum Distributions (LSDs) was used to BH

  14. Shear behaviour of reinforced phyllite concrete beams

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Owusu Afrifa, Russell

    2013-01-01

    Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.

  15. Attenuative effects of G-CSF in radiation induced intestinal injury

    International Nuclear Information System (INIS)

    Kim, Joong Sun; Gong, Eun Ji; Kim, Sung Dae; Heo, Kyu; Ryoo, Seung Bum; Yang, Kwang Mo

    2011-01-01

    Granulocyte colony stimulating factor (G-CSF) has been reported to protect from radiationinduced myelosuppression. Growing evidence suggests that G-CSF also has many important non-hematopoietic functions in other tissues, including the intestine (Kim et al., 2010; Kim et al., 2011). However, little is known about the influence of G-CSF on intestinal injury. Examination 12 hours after radiation (5 Gy) revealed that the G-CSF treated mice were significantly protected from apoptosis of jejunal crypt, compared with radiation controls. G-CSF treatment attenuated intestinal morphological changes such as decreased survival crypt, the number of villi, villous shortening, crypt depth and length of basal lamina of 10 enterocytes compared with the radiation control 3.5 days after radiation (10 Gy). G-CSF attenuated the change of peripheral blood from radiation-induced myelosuppression and displayed attenuation of mortality in lethally-irradiated (10 Gy) mice. The present results support the suggestion that G-CSF administrated prior to radiation plays an important role in the survival of irradiated mice, possibly due to the protection of hematopoietic cells and intestinal stem cells against radiation. The results indicate that G-CSF protects from radiation-mediated intestinal damage and from hematopoietic injury. G-CSF treatment may be useful clinically in the prevention of injury following radiation.

  16. Lawrence Berkeley laboratory neutral-beam engineering test facility power-supply system

    International Nuclear Information System (INIS)

    Lutz, I.C.; Arthur, C.A.; deVries, G.J.; Owren, H.M.

    1981-10-01

    The Lawrence Berkeley Laboratory is upgrading the neutral beam source test facility (NBSTF) into a neutral beam engineering test facility (NBETF) with increased capabilities for the development of neutral beam systems. The NBETF will have an accel power supply capable of 170 kV, 70 A, 30 sec pulse length, 10% duty cycle; and the auxiliary power supplies required for the sources. This paper describes the major components, their ratings and capabilities, and the flexibility designed to accomodate the needs of source development

  17. Attenuation Coefficient of Single-Mode Periodic Waveguides

    Science.gov (United States)

    Baron, A.; Mazoyer, S.; Smigaj, W.; Lalanne, P.

    2011-10-01

    It is widely accepted that, on ensemble average, the transmission T of guided modes decays exponentially with the waveguide length L due to small imperfections, leading to the important figure of merit defined as the attenuation-rate coefficient α=-⟨ln⁡(T)⟩/L. In this Letter, we evidence that the exponential-damping law is not valid in general for periodic monomode waveguides, especially as the group velocity decreases. This result, that contradicts common beliefs and experimental practices aiming at measuring α, is supported by a theoretical study of light transport in the limit of very small imperfections, and by numerical results obtained for two waveguide geometries that offer contrasted damping behaviors.

  18. Design of the AGS Booster beam position monitor system

    International Nuclear Information System (INIS)

    Beadle, E.; Brennan, J.M.; Ciardullo, D.J.; Savino, J.; Stanziani, V.; Thomas, R.; Van Zwienen, W.; Witkover, R.L.; Schulte, E.

    1989-01-01

    The AGS Booster beam position monitor system must cover a wide range of beam intensity and bunch length for proton and heavy ion acceleration. The detector is designed to maintain 0.1 mm local tolerance following 300 degree C bakeout. The electronics will be located in the tunnel, communicating via fiber optic links to avoid ground loops. The design will be described and test results for prototype units presented. 5 refs., 4 figs

  19. Multi-stage autoacceleration of an intense relativistic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, K; Hasegawa, D; Igarashi, H; Kusunoki, T; Lee, C Y; Koguchi, H; Ando, R; Masuzaki, M [Kanazawa Univ. (Japan). Department of Physics

    1997-12-31

    Two-stage autoacceleration was accomplished by using different length cavities. Two cavities were located with the distance longer than the beam duration. The electron kinetic energy increased from 500 to 700 keV at the first stage and from 700 to 900 keV at the second, while the beam duration decreased 10 to 5 ns at the first stage and 5 to 2.5 ns at the second. (author). 7 figs., 7 refs.

  20. Transverse emittance-preserving arc compressor for high-brightness electron beam-based light sources and colliders

    Science.gov (United States)

    Di Mitri, S.; Cornacchia, M.

    2015-03-01

    Bunch length magnetic compression is used in high-brightness linacs driving free-electron lasers (FELs) and particle colliders to increase the peak current of the injected beam. To date, it is performed in dedicated insertions made of few degrees bending magnets and the compression factor is limited by the degradation of the beam transverse emittance owing to emission of coherent synchrotron radiation (CSR). We reformulate the known concept of CSR-driven optics balance for the general case of varying bunch length and demonstrate, through analytical and numerical results, that a 500 pC charge beam can be time-compressed in a periodic 180 deg arc at 2.4 GeV beam energy and lower, by a factor of up to 45, reaching peak currents of up to 2 kA and with a normalized emittance growth at the 0.1 μ \\text{m} rad level. The proposed solution offers new schemes of beam longitudinal gymnastics; an application to an energy recovery linac driving FEL is discussed.