WorldWideScience

Sample records for beam analysis iba

  1. A tailored 200 parameter VME based data acquisition system for IBA at the Lund Ion Beam Analysis Facility - Hardware and software

    Science.gov (United States)

    Elfman, Mikael; Ros, Linus; Kristiansson, Per; Nilsson, E. J. Charlotta; Pallon, Jan

    2016-03-01

    With the recent advances towards modern Ion Beam Analysis (IBA), going from one- or few-parameter detector systems to multi-parameter systems, it has been necessary to expand and replace the more than twenty years old CAMAC based system. A new VME multi-parameter (presently up to 200 channels) data acquisition and control system has been developed and implemented at the Lund Ion Beam Analysis Facility (LIBAF). The system is based on the VX-511 Single Board Computer (SBC), acting as master with arbiter functionality and consists of standard VME modules like Analog to Digital Converters (ADC's), Charge to Digital Converters (QDC's), Time to Digital Converters (TDC's), scaler's, IO-cards, high voltage and waveform units. The modules have been specially selected to support all of the present detector systems in the laboratory, with the option of future expansion. Typically, the detector systems consist of silicon strip detectors, silicon drift detectors and scintillator detectors, for detection of charged particles, X-rays and γ-rays. The data flow of the raw data buffers out from the VME bus to the final storage place on a 16 terabyte network attached storage disc (NAS-disc) is described. The acquisition process, remotely controlled over one of the SBCs ethernet channels, is also discussed. The user interface is written in the Kmax software package, and is used to control the acquisition process as well as for advanced online and offline data analysis through a user-friendly graphical user interface (GUI). In this work the system implementation, layout and performance are presented. The user interface and possibilities for advanced offline analysis are also discussed and illustrated.

  2. Comparison between XRF and IBA techniques in analysis of fine aerosols collected in Rijeka, Croatia

    Science.gov (United States)

    Ivošević, Tatjana; Mandić, Luka; Orlić, Ivica; Stelcer, Eduard; Cohen, David D.

    2014-10-01

    The new system for energy dispersive X-ray fluorescence (EDXRF) analysis has been installed at the Laboratory for Elemental Micro-Analysis (LEMA) at the University of Rijeka. Currently the key application of this new XRF system is in the field of environmental science, i.e. in the analysis of fine airborne particles. In this work, results of initial multi-elemental analysis of PM2.5 fraction is reported for the first time in the region of Rijeka, Croatia. Sampling was performed at the Rijeka City center, during a continuous 9-day period in February/March 2012. All samples were collected on stretched Teflon filters in 12 h periods. To check the reliability of the new XRF system, results of XRF analysis are compared with the results obtained by the well-established Ion Beam Analysis (IBA) laboratory at Australian Nuclear Science and Technology Organisation (ANSTO). The concentrations of H, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br and Pb were determined. In addition, black carbon was determined by Laser Integrating Plate Method (LIPM). Very good agreement between XRF and IBA techniques is obtained for all elements detected by both techniques. Elemental concentrations were correlated with the traffic volume and wind speed and direction. The summary of our findings is presented and discussed in this paper.

  3. Comparison between XRF and IBA techniques in analysis of fine aerosols collected in Rijeka, Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Ivošević, Tatjana [Faculty of Engineering, University of Rijeka, Vukovarska 58, HR-51000 Rijeka (Croatia); Mandić, Luka, E-mail: lukam@phy.uniri.hr [Department of Physics, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka (Croatia); Orlić, Ivica [Department of Physics, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka (Croatia); Stelcer, Eduard; Cohen, David D. [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232 (Australia)

    2014-10-15

    The new system for energy dispersive X-ray fluorescence (EDXRF) analysis has been installed at the Laboratory for Elemental Micro-Analysis (LEMA) at the University of Rijeka. Currently the key application of this new XRF system is in the field of environmental science, i.e. in the analysis of fine airborne particles. In this work, results of initial multi-elemental analysis of PM{sub 2.5} fraction is reported for the first time in the region of Rijeka, Croatia. Sampling was performed at the Rijeka City center, during a continuous 9-day period in February/March 2012. All samples were collected on stretched Teflon filters in 12 h periods. To check the reliability of the new XRF system, results of XRF analysis are compared with the results obtained by the well-established Ion Beam Analysis (IBA) laboratory at Australian Nuclear Science and Technology Organisation (ANSTO). The concentrations of H, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br and Pb were determined. In addition, black carbon was determined by Laser Integrating Plate Method (LIPM). Very good agreement between XRF and IBA techniques is obtained for all elements detected by both techniques. Elemental concentrations were correlated with the traffic volume and wind speed and direction. The summary of our findings is presented and discussed in this paper.

  4. Characterization and performances of a monitoring ionization chamber dedicated to IBA-universal irradiation head for Pencil Beam Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, C. [LPC (IN2P3-ENSICAEN-UNICAEN), 6 Boulevard Maréchal Juin, 14050 Caen (France); Boissonnat, G., E-mail: boissonnat@lpccaen.in2p3.fr [LPC (IN2P3-ENSICAEN-UNICAEN), 6 Boulevard Maréchal Juin, 14050 Caen (France); Brusasco, C. [IBA, 3 Chemin du Cyclotron, 31348 Louvain-la-Neuve (Belgium); Colin, J.; Cussol, D.; Fontbonne, J.M. [LPC (IN2P3-ENSICAEN-UNICAEN), 6 Boulevard Maréchal Juin, 14050 Caen (France); Marchand, B.; Mertens, T.; Neuter, S. de [IBA, 3 Chemin du Cyclotron, 31348 Louvain-la-Neuve (Belgium); Peronnel, J. [LPC (IN2P3-ENSICAEN-UNICAEN), 6 Boulevard Maréchal Juin, 14050 Caen (France)

    2014-02-01

    Every radiotherapy center has to be equipped with real-time beam monitoring devices. In 2008, we developed an ionization chamber in collaboration with the IBA (Ion Beam Applications) company. This monitoring device called IC2/3 was developed to be used in IBA universal irradiation head for Pencil Beam Scanning (PBS). Here we present the characterization of the IC2/3 monitor in the energy and flux ranges used in protontherapy. The equipment has been tested with an IBA cyclotron able to deliver proton beams from 70 to 230 MeV. This beam monitoring device has been validated and is now installed at the Westdeutsches Protonentherapiezentrum Essen protontherapy center (WPE, Germany). The results obtained in both terms of spatial resolution and dose measurements are at least equal to the initial specifications needed for PBS purposes. The detector measures the dose with a relative uncertainty lower than 1% in the range from 0.5 Gy/min to 8 Gy/min while the spatial resolution is better than 250μm. The technology has been patented and five IC2/3 chambers were delivered to IBA. Nowadays, IBA produces the IC2/3 beam monitoring device as a part of its Proteus 235 product.

  5. 4He2+ and H2+ ion beam separation on ''Sokol'' IBA facility

    International Nuclear Information System (INIS)

    Two separation methods of 4He2+ and H2+ ion beams have been tested on ''Sokol'' IBA facility of NSC KIPT: use of existing beam-bending magnet and electrostatic analyzer, dissociation of H2+ ions when the beam passes through the carbon film. It is shown that these methods allow to decrease essentially the H2+ ion content in the 4He2+ beam.

  6. Characterization and performances of a monitoring ionization chamber dedicated to IBA-universal irradiation head for Pencil Beam Scanning

    CERN Document Server

    Courtois, C; Brusasco, C; Colin, J; Cussol, D; Fontbonne, J M; Marchand, B; Mertens, T; De Neuter, S; Peronnel, J

    2013-01-01

    Every radiotherapy center has to be equipped with real-time beam monitoring devices. In 2008, the medical application group from the Laboratory of Corpuscular Physics (LPC Caen) developed an Ionization Chamber in collaboration with the company IBA (Ion Beam Applications). This monitoring device called IC2/3 was developed to be used in IBAs universal irradiation head for Pencil Beam Scanning (PBS). The objectives presented in this article are to characterize the IC2/3 monitor in the energy and ux ranges used in protontherapy. The equipment has been tested with an IBAs cyclotronable to deliver proton beams from 70 to 230 MeV. This beam monitoring device has been validated and is now installed at the Westdeutsches Protonentherapiezentrum Essen protontherapy center (WPE, Germany). The results obtained in both terms of spatial resolution and dose measurements are at least equal to the initials speci cations needed for PBS purposes. The detector measures the dose with a relative precision better than 1% in the rang...

  7. PIXE and ion beam analysis in forensics

    International Nuclear Information System (INIS)

    Full text: University of Surrey has, for the past four years, collaborated with police institutions from across Europe and the rest of the world lo scope potential applications of ion beam analysis (IBA) in forensic science. In doing this we have consulted practitioners across a range of forensic disciplines, and critically compared IBA with conventional characterisation techniques to investigate the areas in which IBA can add evidential value. In this talk, the results of this feasibility study will be presented, showing the types of sample for which IBA shows considerable promise. We will show how a combination of PIXE with other IBA techniques (EBS, PIGE, MeV-SIMS) can be used to give unprecedented characterisation of forensic samples and comment on the significance of these results for forensic casework. We will also show cases where IBA not appear to add any significant improvement over conventional techniques. (author)

  8. The IBA Rhodotron: an industrial high-voltage high-powered electron beam accelerator for polymers radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Lancker, Marc van E-mail: vanlancker@iba.be; Herer, Arnold; Cleland, Marshall R.; Jongen, Yves; Abs, Michel

    1999-05-02

    The Rhodotron is a high-voltage, high-power electron beam accelerator based on a design concept first proposed in 1989 by J. Pottier of the French Atomic Agency, Commissariat a l'Energie Atomique (CEA). In December 1991, the Belgian particle accelerator manufacturer, Ion Beam Applications s.a. (IBA) entered into an exclusive agreement with the CEA to develop and industrialize the Rhodotron. Electron beams have long been used as the preferential method to cross-link a variety of polymers, either in their bulk state or in their final form. Used extensively in the wire and cable industry to toughen insulating jackets, electron beam-treated plastics can demonstrate improved tensile and impact strength, greater abrasion resistance, increased temperature resistance and dramatically improved fire retardation. Electron beams are used to selectively cross-link or degrade a wide range of polymers in resin pellets form. Electron beams are also used for rapid curing of advanced composites, for cross-linking of floor-heating and sanitary pipes and for cross-linking of formed plastic parts. Other applications include: in-house and contract medical device sterilization, food irradiation in both electron and X-ray modes, pulp processing, electron beam doping of semi-conductors, gemstone coloration and general irradiation research. IBA currently markets three models of the Rhodotron, all capable of 10 MeV and alternate beam energies from 3 MeV upwards. The Rhodotron models TT100, TT200 and TT300 are typically specified with guaranteed beam powers of 35, 80 and 150 kW, respectively. Founded in 1986, IBA, a spin-off of the Cyclotron Research Center at the University of Louvain (UCL) in Belgium, is a pioneer in accelerator design for industrial-scale production.

  9. The IBA Rhodotron: an industrial high-voltage high-powered electron beam accelerator for polymers radiation processing

    International Nuclear Information System (INIS)

    The Rhodotron is a high-voltage, high-power electron beam accelerator based on a design concept first proposed in 1989 by J. Pottier of the French Atomic Agency, Commissariat a l'Energie Atomique (CEA). In December 1991, the Belgian particle accelerator manufacturer, Ion Beam Applications s.a. (IBA) entered into an exclusive agreement with the CEA to develop and industrialize the Rhodotron. Electron beams have long been used as the preferential method to cross-link a variety of polymers, either in their bulk state or in their final form. Used extensively in the wire and cable industry to toughen insulating jackets, electron beam-treated plastics can demonstrate improved tensile and impact strength, greater abrasion resistance, increased temperature resistance and dramatically improved fire retardation. Electron beams are used to selectively cross-link or degrade a wide range of polymers in resin pellets form. Electron beams are also used for rapid curing of advanced composites, for cross-linking of floor-heating and sanitary pipes and for cross-linking of formed plastic parts. Other applications include: in-house and contract medical device sterilization, food irradiation in both electron and X-ray modes, pulp processing, electron beam doping of semi-conductors, gemstone coloration and general irradiation research. IBA currently markets three models of the Rhodotron, all capable of 10 MeV and alternate beam energies from 3 MeV upwards. The Rhodotron models TT100, TT200 and TT300 are typically specified with guaranteed beam powers of 35, 80 and 150 kW, respectively. Founded in 1986, IBA, a spin-off of the Cyclotron Research Center at the University of Louvain (UCL) in Belgium, is a pioneer in accelerator design for industrial-scale production

  10. On the Applications of IBA Techniques to Biological Samples Analysis: PIXE and RBS

    International Nuclear Information System (INIS)

    The analytical techniques based on ion beams or IBA techniques give quantitative information on elemental concentration in samples of a wide variety of nature. In this work, we focus on PIXE technique, analyzing thick target biological specimens (TTPIXE), using 3 MeV protons produced by an electrostatic accelerator. A nuclear microprobe was used performing PIXE and RBS simultaneously, in order to solve the uncertainties produced in the absolute PIXE quantifying. The advantages of using both techniques and a nuclear microprobe are discussed. Quantitative results are shown to illustrate the multielemental resolution of the PIXE technique; for this, a blood standard was used

  11. Ion beam analysis with external beams: Recent set-up improvements

    International Nuclear Information System (INIS)

    Accelerator-based analytical techniques using external beams are ideally fitted to the study of works of art because of their fully non-destructive character. However, accurate quantitative analysis is not straightforward, due in particular to difficult beam monitoring. Significant improvements have been progressively made on the external beam line of the IBA facility of the Louvre museum in order to increase the accuracy and to conduct combined analyses with different IBA techniques

  12. Ion beam analysis fundamentals and applications

    CERN Document Server

    Nastasi, Michael; Wang, Yongqiang

    2015-01-01

    Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization.The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nucle

  13. Recent trends in IBA for cultural heritage studies

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Lucile, E-mail: lucile.beck@cea.fr

    2014-08-01

    Ion beam analysis (IBA) techniques play an important role in the field of cultural heritage. IBA was one of the first physical methods applied to archaeology in the 70s. 40 years later, more than 25 accelerator laboratories were or are involved in cultural heritage applications. The advantages of the IBA techniques match very well the requirements for the analysis of archaeological or museum objects: non destructiveness, major, minor and trace element analysis, information in depth, elemental mapping… Thanks to this collected information, IBA techniques can answer archaeological and conservation questions: provenance determination, ancient technologies (fabrication, transformation, recipes…) and conservation issues. In spite of the competition with portable devices and large facilities (such as synchrotron or neutron reactors), the IBA methods keep their interest due to the possibility of associating two or three of them according to the archaeological or art issue. In this article, some examples chosen for their original approach are presented: PIXE for X-radiography, provenance of prehistoric pigments and painting characterisation. They illustrate the useful versatility of IBA for cultural heritage studies. Perspectives for further improvements are also proposed.

  14. Recent trends in IBA for cultural heritage studies

    International Nuclear Information System (INIS)

    Ion beam analysis (IBA) techniques play an important role in the field of cultural heritage. IBA was one of the first physical methods applied to archaeology in the 70s. 40 years later, more than 25 accelerator laboratories were or are involved in cultural heritage applications. The advantages of the IBA techniques match very well the requirements for the analysis of archaeological or museum objects: non destructiveness, major, minor and trace element analysis, information in depth, elemental mapping… Thanks to this collected information, IBA techniques can answer archaeological and conservation questions: provenance determination, ancient technologies (fabrication, transformation, recipes…) and conservation issues. In spite of the competition with portable devices and large facilities (such as synchrotron or neutron reactors), the IBA methods keep their interest due to the possibility of associating two or three of them according to the archaeological or art issue. In this article, some examples chosen for their original approach are presented: PIXE for X-radiography, provenance of prehistoric pigments and painting characterisation. They illustrate the useful versatility of IBA for cultural heritage studies. Perspectives for further improvements are also proposed

  15. Micro-IBA analysis of Au/Si eutectic “crop-circles”

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Giampiero [The Quantum Research Lab, INRiM, Strada delle Cacce 91, 10135 Torino (Italy); Battiato, Alfio [Physics Department, NIS Research Centre and CNISM, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Croin, Luca [The Quantum Research Lab, INRiM, Strada delle Cacce 91, 10135 Torino (Italy); Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Jaksic, Milko; Siketic, Zdravko [Department for Experimental Physics, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb (Croatia); Vignolo, Umberto [Physics Department, NIS Research Centre and CNISM, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Vittone, Ettore, E-mail: ettore.vittone@unito.it [Physics Department, NIS Research Centre and CNISM, University of Torino, via P. Giuria 1, 10125 Torino (Italy)

    2015-04-01

    Highlights: •Gold “crop circles” after annealing Au thin films deposited onto native silicon oxide. •Morphological and IBA analysis confirms the model proposed by Matthews et al. [1]. •The shape of the Au central polygon is determined by the Si orientation. -- Abstract: When a thin gold layer is deposited onto the native oxide of a silicon wafer and is annealed at temperatures greater than 600 °C, peculiar circular features, few micrometers in diameter, with a regular polygon at the centre of each circle, reminiscent of so called “alien” crop circles, can be observed. A model has been recently proposed in Matthews et al. [1], where the formation of such circular structures is attributed to the interdiffusion of gold and silicon through holes in the native oxide induced by the weakening of the amorphous silica matrix occurring during the annealing process. The rupture of the liquid Au/Si eutectic disc surrounding the pinhole in the oxide causes the debris to be pulled to the edges of the disk, forming Au droplets around it and leaving an empty zone of bare silicon oxide. In this paper, we present a morphological study and a RBS/PIXE analyses of these circular structures, carried out by scanning electron microscopy and by 4 MeV C microbeam, respectively. The results confirm the depletion of gold in the denuded circular zones, and the presence of gold droplets in the centers, which can be attributed to the Au segregation occurring during the cooling stage.

  16. Development of a versatile user-friendly IBA experimental chamber

    Science.gov (United States)

    Kakuee, Omidreza; Fathollahi, Vahid; Lamehi-Rachti, Mohammad

    2016-03-01

    Reliable performance of the Ion Beam Analysis (IBA) techniques is based on the accurate geometry of the experimental setup, employment of the reliable nuclear data and implementation of dedicated analysis software for each of the IBA techniques. It has already been shown that geometrical imperfections lead to significant uncertainties in quantifications of IBA measurements. To minimize these uncertainties, a user-friendly experimental chamber with a heuristic sample positioning system for IBA analysis was recently developed in the Van de Graaff laboratory in Tehran. This system enhances IBA capabilities and in particular Nuclear Reaction Analysis (NRA) and Elastic Recoil Detection Analysis (ERDA) techniques. The newly developed sample manipulator provides the possibility of both controlling the tilt angle of the sample and analyzing samples with different thicknesses. Moreover, a reasonable number of samples can be loaded in the sample wheel. A comparison of the measured cross section data of the 16O(d,p1)17O reaction with the data reported in the literature confirms the performance and capability of the newly developed experimental chamber.

  17. Ion beam analysis: New trends and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Zucchiatti, Alessandro, E-mail: alessandro.zucchiatti@uam.es [Centro de Micro Análisis de Materiales, Universidad Autónoma de Madrid, Calle de Faraday 3, 28049 Madrid (Spain); Redondo-Cubero, Andrés [Instituto Superior Técnico, Universidade Técnica de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10 s/n, Bobadela LRS (Portugal)

    2014-07-15

    The development and diffusion of IBA analysis are shortly reviewed paying attention to most competitive and recent advances produced within the IBA community. The paper remarks the potential that IBA maintains in terms of analytical capabilities and points out some future perspectives of the field in terms of innovation and competitiveness.

  18. Uncertainty budget for Ion Beam Analysis

    International Nuclear Information System (INIS)

    In the 'Guide to the expression of uncertainty in measurement' (GUM), guidelines for the evaluation of the total uncertainty of an experiment are outlined in a manner to be adopted in all types of measurements. So far, this has not very strictly been implemented in the Ion Beam Analysis (IBA) community. In this paper, the situation for a, to some extent, typical IBA measurement is reviewed, and factors contributing to the total uncertainty are analysed and discussed. Also the propagation of uncertainties is discussed. How the result of a measurement should be presented, with an appropriate coverage factor resulting in a suitable interval for the uncertainty is also discussed. An example of an uncertainty budget for an analysis of quaternary bronzes is given as illustration

  19. IBA apartment block

    Czech Academy of Sciences Publication Activity Database

    Hnídková, Vendula

    [Řevnice]: Arbor vitae, 2012 - (Švácha, R.), s. 182-185 ISBN 978-80-87164-87-7 Institutional support: RVO:68378033 Keywords : Czech architecture * SIAL * IBA Berlin Subject RIV: AL - Art, Architecture, Cultural Heritage

  20. 25 years of IBA teaching experience at the National Institute for Nuclear Science and Technology, France

    International Nuclear Information System (INIS)

    The National Institute for Nuclear Science and Technology (INSTN) is an advanced education institution created within the Commissariat a l'Energie Atomique (CEA) in 1956 and placed under the joint supervision of the Ministry of National Education and the Ministry of Industry. The INSTN provides students with specialised training in all nuclear energy-related disciplines. Since 1978, courses have been developed focusing on ion beam analysis (IBA). We present here the various experiments carried out for university laboratory work [practicals]. Over the past few years, the laboratory has provided IBA users with training courses offering a combined theoretical and experimental approach

  1. Ion beam analysis facility at the Institute of Geological and Nuclear Sciences

    International Nuclear Information System (INIS)

    Includes: Introduction to ion beam analysis; IBA techniques, including PIXE (particle induced x-ray emission), PIGE (particle induced gamma-ray emission), RBS (Rutherford backscattering spectrometry), ERD (elastic recoil detection) and NRA (nuclear reaction analysis); experimental details; and a case study on geothermal processes and fluid inclusions. Refs., 11 figs

  2. CUTBA (Cleaning Up the Tower of Babel of Acronyms) in IBA

    Science.gov (United States)

    Amsel, G.

    1996-09-01

    The various techniques used in ion beam analysis (IBA) are referred to by names that are often abbreviated into acronyms. While some contractions like RBS, NRA or PIXE are well established, one observes in recent literature an increasing trend to introduce new ad hoc acronyms for specific applications or techniques, although names already exist that may be adapted to correspond rather accurately to the concept. In the present situation even people well informed of this field have more and more difficulties to understand what is meant by, for example, ESS, PES, HIRBS, CERDA, CCM or CSTIM. This is especially true when the acronyms are used in titles or abstracts, without definition. To deal with this situation a list of acronyms encountered in recent literature was submitted by electronic mail consultation to a large panel of physicists active in the IBA field. The outcome of this electronic forum was discussed at a workshop held at the IBA-12 conference. Useful recommendations have been worked out to facilitate understanding of IBA-related acronyms, a consensus having been reached to lay down some not overly rigid guidelines.

  3. An open source package for the IBA data format IDF

    International Nuclear Information System (INIS)

    Highlights: •The IBA interchange data format is implemented as open source code. •A DLL is provided to read and write IDF files. •Routines available to the user are described. •The IDF definition and routines is given in (http://idf.schemas.itn.pt/). -- Abstract: Ion Beam Analysis (IBA) codes and laboratories implement various formats to store the spectral data and to describe the experimental conditions and simulation or fit parameters. These various data formats are isolated applications and generally incompatible – they are unable to “talk” to each other. The need for a universal IBA data format (IDF) has been recognised for many years to allow easy transfer of data and simulation parameters between codes, as well as between experimentalists and data analysts. A new standard data format, IDF, which is transparent, universal, and includes the most common features desired by both experimentalists who collect and archive data and by users who analyse the data was previously presented. However, its actual implementation has been left to each individual software developer, and the sheer size of the full IDF definition has prevented widespread implementation, with only a few codes using the IDF. Open source software was now developed to implement the IDF, and made available to the community in (http://idf.schemas.itn.pt/) both as source code and as a DLL that every code and lab can use to, finally, make data of different origins “talk” to each other. We report the main features of the open source IDF package developed

  4. Nuclear reaction data for IBA applications to cultural heritage diagnostics

    International Nuclear Information System (INIS)

    Main aspects are discussed concerning nuclear reaction cross-sections for PIXE and PIGE (Particle Induced Gamma-ray Emission) analyses, especially referring to cultural heritage diagnostics, within the framework of ion beam analysis (IBA) methods, also reviewing recent results from international Conferences on Nuclear Data for Science and Technology and from NEANSC meetings and IAEA initiatives on the matter.To sum up this work, it is then worth remarking the following items: IBA techniques are powerful tools to derive unique information as for corrosion, degradation and, generally, conservation conditions of materials. Careful analyses of specific systems require accurate evaluations and establishment of complete databases, in particular for stopping powers and relevant cross sections. The physical parameters to be accurately determined are, therefore, nuclear reaction cross sections of importance for NRA analysis of light elements and stopping powers and ranges of light and heavy ions in various matrices. Light elements (H, Li, B, C, N, O, etc.) play an important role as constituents of many important organic as well inorganic materials in historical and artistic objects. To a large extent these materials occur in the near-surface area of a material with altered or degraded composition

  5. Ion beam analysis techniques applied to large scale pollution studies

    International Nuclear Information System (INIS)

    Ion Beam Analysis (IBA) techniques are ideally suited to analyse the thousands of filter papers a year that may originate from a large scale aerosol sampling network. They are fast multi-elemental and, for the most part, non-destructive so other analytical methods such as neutron activation and ion chromatography can be performed afterwards. ANSTO in collaboration with the NSW EPA, Pacific Power and the Universities of NSW and Macquarie has established a large area fine aerosol sampling network covering nearly 80,000 square kilometres of NSW with 25 fine particle samplers. This network known as ASP was funded by the Energy Research and Development Corporation (ERDC) and commenced sampling on 1 July 1991. The cyclone sampler at each site has a 2.5 μm particle diameter cut off and runs for 24 hours every Sunday and Wednesday using one Gillman 25mm diameter stretched Teflon filter for each day. These filters are ideal targets for ion beam analysis work. Currently ANSTO receives 300 filters per month from this network for analysis using its accelerator based ion beam techniques on the 3 MV Van de Graaff accelerator. One week a month of accelerator time is dedicated to this analysis. Four simultaneous accelerator based IBA techniques are used at ANSTO, to analyse for the following 24 elements: H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Co, Zn, Br and Pb. The IBA techniques were proved invaluable in identifying sources of fine particles and their spatial and seasonal variations accross the large area sampled by the ASP network. 3 figs

  6. Ion beam analysis techniques applied to large scale pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D.; Bailey, G.; Martin, J.; Garton, D.; Noorman, H.; Stelcer, E.; Johnson, P. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1993-12-31

    Ion Beam Analysis (IBA) techniques are ideally suited to analyse the thousands of filter papers a year that may originate from a large scale aerosol sampling network. They are fast multi-elemental and, for the most part, non-destructive so other analytical methods such as neutron activation and ion chromatography can be performed afterwards. ANSTO in collaboration with the NSW EPA, Pacific Power and the Universities of NSW and Macquarie has established a large area fine aerosol sampling network covering nearly 80,000 square kilometres of NSW with 25 fine particle samplers. This network known as ASP was funded by the Energy Research and Development Corporation (ERDC) and commenced sampling on 1 July 1991. The cyclone sampler at each site has a 2.5 {mu}m particle diameter cut off and runs for 24 hours every Sunday and Wednesday using one Gillman 25mm diameter stretched Teflon filter for each day. These filters are ideal targets for ion beam analysis work. Currently ANSTO receives 300 filters per month from this network for analysis using its accelerator based ion beam techniques on the 3 MV Van de Graaff accelerator. One week a month of accelerator time is dedicated to this analysis. Four simultaneous accelerator based IBA techniques are used at ANSTO, to analyse for the following 24 elements: H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Co, Zn, Br and Pb. The IBA techniques were proved invaluable in identifying sources of fine particles and their spatial and seasonal variations accross the large area sampled by the ASP network. 3 figs.

  7. 22nd International Conference on Ion Beam Analysis

    Science.gov (United States)

    Radović, Iva Bogdanović; Jakšić, Milko; Fazinić, Stjepko

    2016-03-01

    This special issue of Nuclear Instruments and Methods in Physics Research B contains the proceedings of the 22nd International Conference on Ion Beam Analysis (IBA 2015). The conference was held in Grand Hotel 4 Opatijska Cvijeta in Opatija, Croatia, between 14th and 19th June 2015. Opatija, one of the Croatia's most famous touristic destinations, often called the pearl of the Adriatic, is celebrating this year 170 years of tourism. During the past, kings and emperors, writers, philosophers, poets and composers, but also scientists, used to stay in the town mainly built at the turn of the 20th century.

  8. Instrumental developments at the IBA-AMS dating facility at the University of Lecce

    International Nuclear Information System (INIS)

    The accelerator mass spectrometry (AMS) radiocarbon dating facility at the University of Lecce, Italy is now fully operational and in the first year of operation more than 500 samples both organic and inorganic have been measured for applications in archaeology, history of art, geology and environmental sciences. The experimental capabilities of the facility have been recently significantly improved by the installation of an in vacuum and in air ion beam analysis (IBA) beam line. Investigations are routinely carried out in material science and cultural heritage diagnostics

  9. IBA's state of art Proton Therapy System

    International Nuclear Information System (INIS)

    Full text: In recent years, IBA has developed a state-of-the-art Proton Therapy System that is currently being implemented at the Northeast Proton Therapy Center in Boston. First patient treatment is predicted for the fourth quarter of 2001. The IBA Proton Therapy System consists of a 230 MeV accelerator (a fixed energy isochronous cyclotron), an Energy Selection System that can decrease the energy down to 70 MeV and up to five treatment rooms. There are two types of treatment rooms. A gantry treatment room in which a patient can be treated from virtually any angle or a fixed horizontal beam line aimed at treatments of the of the head and neck. The system is equipped with a Therapy Control System and a Global Safety Management System. The Integrated Therapy Control System is an integrated system ensuring the control of the treatment sessions through independent but networked therapy control units and, therefore, the control of each equipment subsystem. The integrated safety management system, independent of the Therapy Control System, includes a set of hard-wired safety devices, ensuring the safety of the patient and personnel. The system will be capable of delivering proton treatments in four-treatment modes: Double Scattering, Single Scattering, Wobbling and Pencil Beam Scanning. The presentation will show the most important subsystems and treatment modes capabilities as well as the most recent advances in the technology. (author)

  10. IBA analysis of a laser cleaned archaeological metal object: The San Esteban de Gormaz cross (Soria-Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Zucchiatti, A., E-mail: alessandro.zucchiatti@uam.es [CMAM, Universidad Autonoma de Madrid, c/Farady 3, E-28049 Madrid (Spain); Gutierrez Neira, P.C., E-mail: carolina.gutierrez@uam.es [CMAM, Universidad Autonoma de Madrid, c/Farady 3, E-28049 Madrid (Spain); Climent-Font, A., E-mail: acf@uam.es [CMAM, Universidad Autonoma de Madrid, c/Farady 3, E-28049 Madrid (Spain); Escudero, C., E-mail: escremcr@jcyl.es [Centro de Conservacion y Restauracion de Bienes Culturales (CCRBC) de la Junta de Castilla y Leon, C/Carretera No. 2, 47130 Valladolid (Spain); Barrera, M., E-mail: barbarmr@jcyl.es [Centro de Conservacion y Restauracion de Bienes Culturales (CCRBC) de la Junta de Castilla y Leon, C/Carretera No. 2, 47130 Valladolid (Spain)

    2011-12-15

    The object under study, a 12th century gilded copper cross with a wooden core, now almost disappeared, shows the typical features produced by a long burial time: the entire surface of the copper alloys is covered by several layers of degradation products, which hinder the 'legibility' of the cross in terms of the original materials and manufacturing techniques employed. In its cleaning several techniques have been applied and compared (dry and wet laser ablation, mechanical ablation, ultrasound brush). In the intermediate cleaning phase the cross has been extensively analysed with the external proton micro-beam of the Centro de Micro-Analisis de Materiales (CMAM) of the Universidad Autonoma de Madrid. PIXE and RBS techniques have been used in parallel, to asses both the chemical composition and the layered structure of cleaned and original parts with the aim of verifying that none of the object structural features are being modified by the cleaning process leaving intact the possibility of artistic interpretation of the object (e.g. small series production of the cross elements). The recovery of this exceptional ornamental object is made possible by the coordinated work of several professionals coming from various disciplines and aimed at establishing the importance of this cross in terms of its physical appearance and in terms of the manufacturing techniques.

  11. IBA analysis of a laser cleaned archaeological metal object: The San Esteban de Gormaz cross (Soria-Spain)

    Science.gov (United States)

    Zucchiatti, A.; Gutiérrez Neira, P. C.; Climent-Font, A.; Escudero, C.; Barrera, M.

    2011-12-01

    The object under study, a 12th century gilded copper cross with a wooden core, now almost disappeared, shows the typical features produced by a long burial time: the entire surface of the copper alloys is covered by several layers of degradation products, which hinder the "legibility" of the cross in terms of the original materials and manufacturing techniques employed. In its cleaning several techniques have been applied and compared (dry and wet laser ablation, mechanical ablation, ultrasound brush). In the intermediate cleaning phase the cross has been extensively analysed with the external proton micro-beam of the Centro de Micro-Análisis de Materiales (CMAM) of the Universidad Autónoma de Madrid. PIXE and RBS techniques have been used in parallel, to asses both the chemical composition and the layered structure of cleaned and original parts with the aim of verifying that none of the object structural features are being modified by the cleaning process leaving intact the possibility of artistic interpretation of the object (e.g. small series production of the cross elements). The recovery of this exceptional ornamental object is made possible by the coordinated work of several professionals coming from various disciplines and aimed at establishing the importance of this cross in terms of its physical appearance and in terms of the manufacturing techniques.

  12. IBA analysis of a laser cleaned archaeological metal object: The San Esteban de Gormaz cross (Soria-Spain)

    International Nuclear Information System (INIS)

    The object under study, a 12th century gilded copper cross with a wooden core, now almost disappeared, shows the typical features produced by a long burial time: the entire surface of the copper alloys is covered by several layers of degradation products, which hinder the “legibility” of the cross in terms of the original materials and manufacturing techniques employed. In its cleaning several techniques have been applied and compared (dry and wet laser ablation, mechanical ablation, ultrasound brush). In the intermediate cleaning phase the cross has been extensively analysed with the external proton micro-beam of the Centro de Micro-Análisis de Materiales (CMAM) of the Universidad Autónoma de Madrid. PIXE and RBS techniques have been used in parallel, to asses both the chemical composition and the layered structure of cleaned and original parts with the aim of verifying that none of the object structural features are being modified by the cleaning process leaving intact the possibility of artistic interpretation of the object (e.g. small series production of the cross elements). The recovery of this exceptional ornamental object is made possible by the coordinated work of several professionals coming from various disciplines and aimed at establishing the importance of this cross in terms of its physical appearance and in terms of the manufacturing techniques.

  13. Nuclear reaction data for IBA applications to cultural heritage diagnostics

    International Nuclear Information System (INIS)

    Main aspects are discussed concerning nuclear reaction cross-sections for PIGE analyses, especially referring to cultural heritage diagnostics, within the framework of ion beam analysis (IBA) methods, also reviewing main results from recent international Conferences on Nuclear Data for Science and Technology and from NEA-NSC meetings and IAEA initiatives on the matter. In particular, within the frame of an overall summary on nuclear data requirements for IBA applications, main needs are pointed out specifically referred to the PIGE diagnostics purposes of present interest. Particularly, nuclear data relevant to light element analysis in archaeo-metry are specifically considered and their impact on the knowledge and conservation of the cultural heritage is pointed out, especially discussing most significant examples concerning the beneficial use from the evaluated nuclear data on the results obtained by the application of this nuclear analytical technique. Consistently, relevant topics are discussed concerning the evaluation of the requested nuclear reaction data, on the basis of the existing experimental values and nuclear model calculations, according to the appropriate parameterization and the consequent effects on the calculation results. Moreover, theoretical models on the nuclear structure and for estimation of the nuclear level densities are discussed, such as the modern algebraic models and the microscopic superfluid models, with emphasis on their influence on the calculations of photon production data, especially referring to the effects on the semi-empirical level density formula normally adopted in cross-section calculations, mainly to the parity-breaking effects and to the dependence of the most crucial level density parameter on the nuclear excitation energy. Accordingly, recent results are presented as obtained for (p,x) reaction data, by comparing critically selected experimental data and the relevant model calculations, with regard to significant

  14. A new mini gas ionization chamber for IBA applications

    International Nuclear Information System (INIS)

    Novel prototypes of high resolution gas ionization chambers (GIC) were designed with increased compactness and simplicity of the setup. They have no Frisch-grid and a simple anode wire. Under certain operating conditions these mini detectors have an energy resolution comparable with that of state-of-the-art GICs of much higher complexity. They can be operated both under vacuum and atmospheric pressure. First measurements were made with protons in the energy range of 0.3–1.0 MeV. For protons at 0.3 MeV an energy resolution of about 12 keV was achieved. With a 72 MeV 129Xe beam a relative resolution of 1.4% was obtained. Due to their versatility and reduced size the detectors can easily be applied in the field of ion beam analysis (IBA) and accelerator mass spectrometry (AMS). Since they are almost completely insensitive to radiation damage they are especially suited for use in high fluence applications such as scanning transmission ion microscopy (STIM). A comparison of the radiation hardness of the mini GIC with a Si PIN diode was therefore performed. The GIC showed no peak shift or change in energy resolution at all after collecting 1015 protons per cm2 while the performance of the Si detector clearly started to degrade at 1012 particles per cm2.

  15. A new mini gas ionization chamber for IBA applications

    Science.gov (United States)

    Müller, A. M.; Cassimi, A.; Döbeli, M.; Mallepell, M.; Monnet, I.; Simon, M. J.; Suter, M.; Synal, H.-A.

    2011-12-01

    Novel prototypes of high resolution gas ionization chambers ( GIC) were designed with increased compactness and simplicity of the setup. They have no Frisch-grid and a simple anode wire. Under certain operating conditions these mini detectors have an energy resolution comparable with that of state-of-the-art GICs of much higher complexity. They can be operated both under vacuum and atmospheric pressure. First measurements were made with protons in the energy range of 0.3-1.0 MeV. For protons at 0.3 MeV an energy resolution of about 12 keV was achieved. With a 72 MeV 129Xe beam a relative resolution of 1.4% was obtained. Due to their versatility and reduced size the detectors can easily be applied in the field of ion beam analysis ( IBA) and accelerator mass spectrometry ( AMS) . Since they are almost completely insensitive to radiation damage they are especially suited for use in high fluence applications such as scanning transmission ion microscopy ( STIM). A comparison of the radiation hardness of the mini GIC with a Si PIN diode was therefore performed. The GIC showed no peak shift or change in energy resolution at all after collecting 10 15 protons per cm 2 while the performance of the Si detector clearly started to degrade at 10 12 particles per cm 2.

  16. Light and heavy ion beam analysis of thin biological sections

    International Nuclear Information System (INIS)

    The application of ion beam analysis (IBA) techniques to thin biological sections (ThBS) presents unique challenges in sample preparation, data acquisition and analysis. These samples are often the end product of expensive, time-consuming experiments, which involve many steps that require careful attention. Analysis via several techniques can maximise the information that is collected from these samples. Particle-induced X-ray emission (PIXE) and Rutherford backscattering (RBS) spectroscopy are two generally non-destructive IBA techniques that use the same MeV ions and can be performed simultaneously. The use of heavy ion PIXE applied to thick samples has, in the past, resulted in X-ray spectra of a poorer quality when compared to those obtained with proton beams. One of the reasons for this is the shorter probing depth of the heavy ions, which does not affect thin sample analysis. Therefore, we have investigated and compared 3-MeV proton and 36-MeV carbon ion beams on 7-μm thick mouse brain sections at the ANSTO Heavy ion microprobe (HIMP). The application of a 36-MeV C4+ ion beam for PIXE mapping of ThBS on thin Si3N4 substrate windows produced spectra of high quality that displayed close to a nine-times gain in signal yield (Z2/q) when compared to those obtained for 3-MeV protons for P, S, Cl and K but not for Fe, Cu and Zn. Image quality was overall similar; however, some elements showed better contrast and features with protons whilst others showed improved contrast with a carbon ion beam. RBS spectra with high enough counting statistics were easily obtained with 3-MeV proton beams resulting in high resolution carbon maps, however, the count rate for nitrogen and oxygen was too low. The results demonstrate that on thin samples, 36-MeV C4+ will produce good quality PIXE spectra in less time; therefore, carbon ions may be advantageous depending on which element is being studied. However, these advantages may be outweighed by the inherent disadvantages including

  17. Le tecniche AMS e IBA del CEDAD per lo studio dei Beni Culturali, Ambientali e per la Scienza dei Materiali

    Directory of Open Access Journals (Sweden)

    Lucio Calcagnile

    2011-09-01

    Full Text Available ItGli acceleratori di particelle sono diventati un potente strumento per la diagnostica dei materiali in molti campi di ricerca. Questo articolo descrive la facility AMS-IBA installata presso il CEDAD – Centro di Datazione e Diagnostica dell’Università del Salento e riporta alcune applicazioni in Archeologia, Scienze ambientali e Scienza dei materiali.EnParticle accelerators have become a powerful tool for the diagnostics of materials in many research fields. This paper describes the AMS-IBA (Accelerator Mass Spectrometry – Ion Beam Analysis facility installed at CEDAD-Center for Dating and Diagnostics of the University of Salento, Italy and some applications in Archaeology, Environmental Sciences and Materials Science.

  18. The IBA state-of-the-art proton therapy system, performances and recent results

    International Nuclear Information System (INIS)

    In recent years IBA has continued its development of state-of-the-art systems for Proton Therapy. While the machine performance at the NPTC is such that all clinical specifications are met, IBA has continued to improve the proposed equipment to set even higher standards. Improvements in the ion source control, gantries, and patient alignment systems will be addressed in the oral presentation and the first results obtained with the Pencil Beam Scanning algorithm will be presented

  19. Consultation and IBA negotiations in wind projects

    Energy Technology Data Exchange (ETDEWEB)

    Merle, Alexander [Bull Housser and Tupper LLP (Canada)

    2011-07-01

    This presentation aimed at providing more information on consultation and IBA negotiations in wind energy projects, it was given by a law firm Bull, Housser and Tupper LLP. The subjects tackled by this paper are: the duty to consult, what First Nations are expecting from IBAs, if IBAs will differ from one wind project to another, if templates assist in achieving equity, who should be responsible for financing IBAs, and whether benefits or payments of money can achieve equity. The presentation emphasised that it is important to cooperate and share information in determining what the role of the Crown should be. In addition, the authors believe that an innovative resolution table should be established and that legal certainty should be obtained. This presentation provided First Nations with useful information on consultation and IBA negotiations in wind energy projects.

  20. Recent developments in the air particulate research capability at the New Zealand ion beam analysis facility

    International Nuclear Information System (INIS)

    The New Zealand capability in Ion Beam Analysis of air particulate samples has been upgraded in recent years. The main equipment change has been the introduction of the ability to analyse samples taken using the Streaker (PIXE International Corporation) sampling system. This is an automated sampler which allows for great flexibility in monitoring programmes by collecting particulates for up to about 70 sampling periods which can range in collection times from seconds to many hours. The IBA analysis for hydrogen on standard filters and for PIXE multi-elemental analysis of the Streaker filters has also been studied with a view to optimising analytical methods. (author)

  1. Integration of XRF spectrometer for simultaneous and/or complementary use with PIXE at the external ion beam analysis setup

    International Nuclear Information System (INIS)

    Full text: The Rudjer Boskovic Institute Tandem Accelerator Facility is equipped with a number of end-stations dedicated to ion beam analysis (IBA), modification of materials and nuclear physics experiments. IBA is performed at the: (1) nuclear microbeam, (2) broad-beam in-vacuum and (3) external beam end-stations. Several lBA techniques can be used simultaneously, Particle Induced X-ray Emission (PIXE) and Particle Induced Gamma-ray Emission (PIGE) at the external beam end-station, and additionally Rutherford Backscattering Spectroscopy (RBS) at the in-vacuum end-station. X-ray fluorescence (XRF) analysis is a technique complementary to PIXE. Both techniques offer high analytical potential for multi-elemental investigations and material characterization. Due to different excitation mechanisms, PIXE generally exhibits higher sensitivity for lighter elements and XRF for heavier, whereas they also have different in-sample depth sensitivities. Although they use different excitation sources, both techniques can use the same data acquisition modules. With the development of miniature, low power and lightweight X-ray tubes it is possible to incorporate an X-ray source within the IBA setup and combine the two techniques for simultaneous use. In this work, the unification of the PIXE and XRF techniques at the RBI external ion beam analysis setup has been investigated and the results are discussed. This has been done by installing a transmission miniature X-ray tube at the end-station. The tube has been properly positioned in order to irradiate the same spot on the sample as the ion beam used for PIXE/PIGE measurements. Our home made data acquisition system SPECTOR, used regularly for the IBA measurements, has been also used to acquire the XRF spectra. At first, the X-ray tube has been installed at the in-vacuum IBA station, and then to the external beam end-station. Test measurements have been carried out on various standard reference materials using both systems and the

  2. Integration of XRF spectrometer for simultaneous and/or complementary use with PIXE at the external ion beam analysis setup

    Energy Technology Data Exchange (ETDEWEB)

    Fazinic, S.; Cosic, D.; Jaksic, M. [Laboratory for lon Beam Interactions, Division of Experimental Physics, Rudjer Boskovic Institute, Zagreb (Croatia); Migliori, A.; Karydas, A.G. [Nuclear Spectrometry and Applications Laboratory, International Atomic Energy Agency (IAEA), Vienna (Austria); Desnica, V. [Laboratory for Science and Technology in Art, Academy of Fine Arts in Zagreb, Zagreb (Croatia); Mudronja, D. [Natural Science Laboratory, Croatian Conservation Institute, Zagreb (Croatia)

    2013-07-01

    Full text: The Rudjer Boskovic Institute Tandem Accelerator Facility is equipped with a number of end-stations dedicated to ion beam analysis (IBA), modification of materials and nuclear physics experiments. IBA is performed at the: (1) nuclear microbeam, (2) broad-beam in-vacuum and (3) external beam end-stations. Several lBA techniques can be used simultaneously, Particle Induced X-ray Emission (PIXE) and Particle Induced Gamma-ray Emission (PIGE) at the external beam end-station, and additionally Rutherford Backscattering Spectroscopy (RBS) at the in-vacuum end-station. X-ray fluorescence (XRF) analysis is a technique complementary to PIXE. Both techniques offer high analytical potential for multi-elemental investigations and material characterization. Due to different excitation mechanisms, PIXE generally exhibits higher sensitivity for lighter elements and XRF for heavier, whereas they also have different in-sample depth sensitivities. Although they use different excitation sources, both techniques can use the same data acquisition modules. With the development of miniature, low power and lightweight X-ray tubes it is possible to incorporate an X-ray source within the IBA setup and combine the two techniques for simultaneous use. In this work, the unification of the PIXE and XRF techniques at the RBI external ion beam analysis setup has been investigated and the results are discussed. This has been done by installing a transmission miniature X-ray tube at the end-station. The tube has been properly positioned in order to irradiate the same spot on the sample as the ion beam used for PIXE/PIGE measurements. Our home made data acquisition system SPECTOR, used regularly for the IBA measurements, has been also used to acquire the XRF spectra. At first, the X-ray tube has been installed at the in-vacuum IBA station, and then to the external beam end-station. Test measurements have been carried out on various standard reference materials using both systems and the

  3. Aerosol characterisation in Italian towns by IBA techniques

    International Nuclear Information System (INIS)

    The composition of particulate matter in the atmosphere of four major Italian towns (Florence, Genoa, Milan and Naples) has been studied with the extensive application of IBA techniques. The aerosol has been collected simultaneously in the four towns during the first weeks of year 2001, by two-stage continuous streaker samplers, which provide the separation of the particulate matter in two fractions. The concentrations in air of about 20 elements, and the total particulate mass, have been extracted in the PM2.5 and PM10 fractions with hourly resolution by PIXE, PIGE and optical analyses of about 2700 samples. IBA analyses have been performed at the 3 MeV external proton beam of the INFN accelerator facility at the University of Florence

  4. Ion beam surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kim, Nak Bae; Woo, Hyung Joo; Kim, Joon Kon; Kim, Gi Dong; Choi, Han Woo; Yoon, Yoon Yeol; Shim, Sang Kwun [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Light elements in semiconductors, superconductors, magnetic or optical storage devices and surface hardened metals may have serious effects on the electrical, chemical and physical properties. Nevertheless, it is extremely difficult to quantitatively analyze their contents with conventional surface analysis tools like SIMS, AES, ESCA. The ERD-TOF (Elastic Recoil Detection - by Time Of Flight) method has recently been developed in a few prominent accelerator laboratories and proved to be very useful for such quantitative depth profiling of light elements. This project aims to construct an ERD-TOF system which can provide routine service of light elements analysis of thin films. The TOF spectrometer used in the system can be also utilized in HIRBS (Heavy Ion Rutherford Backscattering Spectrometry) for the better resolution and sensitivity than the conventional He RBS in certain cases. The works performed this year are: 1) Optimization of the ERD-TOF system for the practical use. 2) Construction of a separate HIRBS line. 3) Development of the analysis computer program and improvement of the data acquisition system. 4) Construction of the new vacuum chamber with an automatic target controller. The optimization has been done by considering such parameters as mass resolution, depth resolution, accessible depth, detection sensitivity. All these parameters have strong correlations with the sort, energy and dose of the beams to be used, the detection angle, target angle and flight length. In a practical analysis system, one cannot change the system parameter every time although there exists only one optimum condition for one measurement. Therefore, a condition is deduced which is applicable to majority of general semiconductor samples. For the practical analysis service a separate HIRBS line has been constructed. The line use the same TOF spectrometer as ERD line but the shape of the chambers are slightly modified. A computer program DoERD is written for the rapid analysis

  5. The IBAS image analyser and its use in particle size measurement

    International Nuclear Information System (INIS)

    The Kontron image analyser (IBAS) is used at Winfrith primarily for size analysis of aerosol particles. The system incorporates two computers, IBAS 1 for system communication and control, and IBAS 2 containing the main image memories. The first is accessed via a keyboard or digitiser tablet, and output can be displayed on a monitor or in printed form. The contents of the image memories are displayed on a colour monitor. Automatic image analysis is described, with typical applications, including the measurement of monodisperse particles, sodium fire aerosols, reactor crud particles and cadmium-silver aerosol particles. (U.K.)

  6. Advantages of scanning-mode ion beam analysis for the study of Cultural Heritage

    Science.gov (United States)

    Grassi, N.; Giuntini, L.; Mandò, P. A.; Massi, M.

    2007-03-01

    In this paper, we discuss the convenience of performing external PIXE and PIGE measurements by scanning relatively large areas (some mm2) with a beam size of the order of hundred microns, rather than performing "spot" compositional analysis. Examples of test runs on samples of archaeometric interest are presented: scanning-mode measurements of ancient inks, Roman glass and metal point drawings clearly demonstrate that using this procedure to perform IBA may become fundamental to avoid deceptive information and to obtain more reliable quantitative results.

  7. Ion beam analysis and spectrometry techniques for Cultural Heritage studies

    International Nuclear Information System (INIS)

    The implementation of experimental techniques for the characterisation of Cultural heritage materials has to take into account some requirements. The complexity of these past materials requires the development of new techniques of examination and analysis, or the transfer of technologies developed for the study of advanced materials. In addition, due to precious aspect of artwork it is also necessary to use the non-destructive methods, respecting the integrity of objects. It is for this reason that the methods using radiations and/or particles play a important role in the scientific study of art history and archaeology since their discovery. X-ray and γ-ray spectrometry as well as ion beam analysis (IBA) are analytical tools at the service of Cultural heritage. This report mainly presents experimental developments for IBA: PIXE, RBS/EBS and NRA. These developments were applied to the study of archaeological composite materials: layered materials or mixtures composed of organic and non-organic phases. Three examples are shown: evolution of silvering techniques for the production of counterfeit coinage during the Roman Empire and in the 16. century, the characterization of composites or mixed mineral/organic compounds such as bone and paint. In these last two cases, the combination of techniques gave original results on the proportion of both phases: apatite/collagen in bone, pigment/binder in paintings. Another part of this report is then dedicated to the non-invasive/non-destructive characterization of prehistoric pigments, in situ, for rock art studies in caves and in the laboratory. Finally, the perspectives of this work are presented. (author)

  8. Elemental thin film depth profiles by ion beam analysis using simulated annealing - a new tool

    International Nuclear Information System (INIS)

    Rutherford backscattering spectrometry (RBS) and related techniques have long been used to determine the elemental depth profiles in films a few nanometres to a few microns thick. However, although obtaining spectra is very easy, solving the inverse problem of extracting the depth profiles from the spectra is not possible analytically except for special cases. It is because these special cases include important classes of samples, and because skilled analysts are adept at extracting useful qualitative information from the data, that ion beam analysis is still an important technique. We have recently solved this inverse problem using the simulated annealing algorithm. We have implemented the solution in the 'IBA DataFurnace' code, which has been developed into a very versatile and general new software tool that analysts can now use to rapidly extract quantitative accurate depth profiles from real samples on an industrial scale. We review the features, applicability and validation of this new code together with other approaches to handling IBA (ion beam analysis) data, with particular attention being given to determining both the absolute accuracy of the depth profiles and statistically accurate error estimates. We include examples of analyses using RBS, non-Rutherford elastic scattering, elastic recoil detection and non-resonant nuclear reactions. High depth resolution and the use of multiple techniques simultaneously are both discussed. There is usually systematic ambiguity in IBA data and Butler's example of ambiguity (1990 Nucl. Instrum. Methods B 45 160-5) is reanalysed. Analyses are shown: of evaporated, sputtered, oxidized, ion implanted, ion beam mixed and annealed materials; of semiconductors, optical and magnetic multilayers, superconductors, tribological films and metals; and of oxides on Si, mixed metal silicides, boron nitride, GaN, SiC, mixed metal oxides, YBCO and polymers. (topical review)

  9. Combined ion micro probe and SEM analysis of strongly non uniform deposits in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, I.; Bergsåker, H.; Petersson, P. [Division of Fusion Plasma Physics, Association EURATOM-VR, Royal Institute of Technology KTH (Sweden); Likonen, J. [Association EURATOM-TEKES, VTT, PO Box 1000, 02044 VTT, Espoo (Finland); Possnert, G. [Tandem Laboratory, Association EURATOM-VR, Uppsala Universitet, Box 256, Uppsala 75105 (Sweden); Widdowson, A. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-01-01

    Conventional ion beam analysis (IBA) of deposited layers from fusion devices may have insufficient accuracy due to strongly uneven appearance of the layers. Surface roughness and spatial variation of the matrix composition make interpretation of broad beam spectra complex and non obvious. We discuss complications of applied IBA arising for fusion-relevant surfaces and demonstrate how quantification can be improved by employing micro IBA methods. The analysis is bound to pre-defined regions on the sample surface and can be extended by employing beams of several types, scanning electron microscopy (SEM) and stereo SEM techniques.

  10. Spectrum analysis in beam diagnostics

    International Nuclear Information System (INIS)

    In this article, we discuss fundamentals of the spectrum analysis in beam diagnostics, where several important particle motions in a circular accelerator are considered. The properties of the Fourier transform are presented. Then the coasting and the bunched beam motion in both longitudinal and transverse are studied. The discussions are separated for the signal particle, multiple particle, and the Schottky noise cases. To demonstrate the interesting properties of the beam motion spectrum, time domain functions are generated, and then the associated spectra are calculated and plotted. In order to show the whole picture in a single plot, some data have been scaled, therefore they may not be realistic in an accelerator

  11. Characteristics of ancient Egyptian glazed ceramic objects from Fatimid and Mamluk periods as revealed by ion beam analysis

    Science.gov (United States)

    Sadek, Hamada; M, Abd El Hady M.

    2012-07-01

    Ion beam analysis (PIXE, μPIXE) has been successfully applied in analysis of archaeological materials, it has many advantages. In this work Ion Beam Analysis (IBA) used in analysis of ancient Egyptian glazed ceramic from 10th to the 16th centuries (Fatimid and Mamluk periods). Glazed ceramic samples from Al-Fustat Excavation store have been chosen to represent different colours (green, blue, brown, black ...etc), the colours of glaze depend on many factors such as oxides present in the glaze layer, fluxes and the conditions in which objects had been manufactured in the past. Ion Beam allows the identification of elemental composition of the glaze layer i.e., the information about colorants used in glaze, which is of great importance for compositional data play a key role in solving questions concerning dating, provenance, technology, use and the relationship between ancient cultures with the environment.

  12. Characteristics of ancient Egyptian glazed ceramic objects from Fatimid and Mamluk periods as revealed by ion beam analysis

    International Nuclear Information System (INIS)

    Ion beam analysis (PIXE, μPIXE) has been successfully applied in analysis of archaeological materials, it has many advantages. In this work Ion Beam Analysis (IBA) used in analysis of ancient Egyptian glazed ceramic from 10th to the 16th centuries (Fatimid and Mamluk periods). Glazed ceramic samples from Al-Fustat Excavation store have been chosen to represent different colours (green, blue, brown, black ...etc), the colours of glaze depend on many factors such as oxides present in the glaze layer, fluxes and the conditions in which objects had been manufactured in the past. Ion Beam allows the identification of elemental composition of the glaze layer i.e., the information about colorants used in glaze, which is of great importance for compositional data play a key role in solving questions concerning dating, provenance, technology, use and the relationship between ancient cultures with the environment.

  13. A correspondence between IBA-1 and IBA-2 models and electromagnetic transitions in the decay of some erbium isotopes

    Indian Academy of Sciences (India)

    Harun Reşit Yazar; İhsan Uluer

    2005-09-01

    The interacting boson approximation IBA-1 model space, in which neutron and proton degrees of freedom are not distinguished, can be considered as a subspace of the IBA-2 model space. Using the microscopic background of the IBA-2 model, a correspondence can be established between IBA-1 and IBA-2 model space. Since the space of the IBA-1 model can be regarded as a subspace of the IBA-2 model there is a unique way to `Project' the operators of the IBA-2 model onto those of IBA-1. This projection can be carried out using the -spin formalism. In the IBA-2 model, the lowest states are indeed fully symmetric, and using the calculations with the help of this projection, we explore the energy levels and the electric quadrupole transition probabilities (2; → ) and -ray 2/1 mixing ratios for selected transitions of 162,164,166,168,170Er. Owing to admixtures of non-fully-symmetric states in IBA-2, we renormalized the parameters () and (). This is the first time we show that this projection can be applied to some heavier isotopes and the results obtained for 162,164,166,168,170Er isotopes are reasonably in good agreement with the previous experimental values.

  14. IBA calculations of multipole mixing ratios

    International Nuclear Information System (INIS)

    Multipole mixing ratios of gamma rays serve as a sensitive probe of nuclear structure. Directional measurements, mostly by γγ angular correlation and nuclear orientation, yield the mixing ratios delta with sign. Unfortunately the results are often double valued. Furthermore, comparison between experimental and theoretical conversion coefficients can give |delta|. The E2/M1 mixing ratio delta(E2/M1) is of special importance in studying collective phenomena and models for their description. Present study is carried out mostly in terms of IBA-1, which makes no distinction between proton and neutron bosons

  15. Microlocalization during ion beam analysis

    International Nuclear Information System (INIS)

    Three techniques were investigated for identifying microregions of the sample examined by an ion beam during analysis. First, the feasibility of obtaining topographic information by detecting bursts of secondary electrons as individual ions strike the sample was studied. The efficiency of detection was sensitive to sample/detector geometry and to detector operation parameters. Second, the author wanted to determine the location where each ion passed through the sample by detecting the ions with a phosphor coupled with a position sensitive detector. Initially, he used a photomultiplier tube (PMT) to detect light from the phosphor. The PMT was sufficiently sensitive both to detect the light emitted upon bombardment of the phosphor by a single ion and to provide a start signal for particle-induced desorption time-of-flight mass spectroscopy. Third, two track recording materials for locating where the ions passed through the sample were evaluated. The polycarbonate track detector recorded the integrated beam spot image, which was revealed with post-analysis etching and SEM observation. The fluorophlogopite track detector recorded tracks which could be observed by TEM without etching

  16. Accelerator Mass Spectrometry and Ion Beam Analysis as complementary tools in Cultural Heritage diagnostics at CEDAD

    International Nuclear Information System (INIS)

    Among the analytical methods based on the use of ion beams with energies in the MeV range, those with a higher potential in cultural heritage diagnostics are surely IBA (Ion Beam Analysis) techniques and radiocarbon dating by AMS (Accelerator Mass Spectrometry). Taking advantages of the presence at the accelerator facility of the University of Salento (CEDAD) of experimental lines for 14C AMS dating and PIXEPIGE non-destructive analyses in external beam mode, different studies have been carried out by combining these methods for the study of the same archaeometric problem. After a review of the experimental beam lines available at CEDAD and a description of the ongoing projects, different case studies will be presented and discussed such as the 14C dating and compositional analyses of the inner cores of the Riace Bronzes, the determination of the provenance of obsidians tools from 14C dated Neolithic sites in the Mediterranean and the study of the diagenetic state of cremated bones submitted to 14C dating. (author)

  17. Handbook on simultaneous x-ray and γ-ray ion beam methods for fine particle analysis

    International Nuclear Information System (INIS)

    Sampling, measurement, characterisation and source appointment of fine atmospheric particles has become increasingly important in recent times. This is due in part to the realisation that the fine particle pollution caused by anthropogenic activities plays a key role in certain aspects of human health, pollution transport and global climate change. This publication discusses accelerator based ion beam analysis (IBA) methods of particle induced X-ray emission (PIXE) and particle induced γ-ray emission (PIGE) as applied to aerosol analysis. These techniques are sensitive, multielemental, mainly non-destructive, require no sample preparation, have short analysis times and can be used to analyse hundreds of filter samples a day in batch processing with minimum operator interaction. The aspects discussed in the publication include: the basics of the techniques; spectrum analysis; system calibration and blank subtraction; quantification; sensitivity; measurement errors

  18. Sheet Beam Klystron Instability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bane, K.L.F.; Jensen, A.; Li, Z.; Stupakov, G.; Adolphsen, C.; /SLAC

    2009-05-08

    Using the principle of energy balance we develop a 2D theory for calculating growth rates of instability in a two-cavity model of a sheet beam klystron. An important ingredient is a TE-like mode in the gap that also gives a longitudinal kick to the beam. When compared with a self-consistent particle-in-cell calculation, with sheet beam klystron-type parameters, agreement is quite good up to half the design current, 65 A; at full current, however, other, current-dependent effects come in and the results deviate significantly.

  19. Ion beam analysis of rubies and their simulants

    Energy Technology Data Exchange (ETDEWEB)

    Juncomma, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50202 (Thailand); Intarasiri, S., E-mail: saweat@gmail.com [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50202 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Bootkul, D. [Department of General Science (Gems and Jewelry), Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Tippawan, U., E-mail: beary1001@gmail.com [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50202 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-07-15

    Ion beam analysis (IBA) is a set of well known powerful analytical techniques which use energetic particle beam as a probe. Among them, two techniques are suitable for gemological analysis, i.e., Particle Induced X-rays Emission (PIXE) and Ionoluminescence (IL). We combine these two techniques for the investigations of rubies and their simulants. The main objective is to find a reference fingerprint of these gemstones. The data are collected from several natural rubies, synthetic rubies, red spinels, almandine garnets and rubellite which very much resemble and are difficult to distinguish with the gemologist loupe. From our measurements, due to their different crystal structures and compositions, can be clearly distinguished by the IL and PIXE techniques. The results show that the PIXE spectra consist of a few dominant lines of the host matrix elements of each gemstone and some weaker lines due to trace elements of transition metals. PIXE can easily differentiate rubies from other stones by evaluating their chemical compositions. It is noticed that synthetic rubies generally contain fewer impurities, lower iron and higher chromium than the natural ones. Moreover, the IL spectrum of ruby is unique and different from those of others stones. The typical spectrum of ruby is centered at 694 nm, with small sidebands that can be ascribed to a Cr{sup 3+} emission spectrum which is dominated by an R-line at the extreme red end of the visible part of the electromagnetic spectrum. Although the spectrum of synthetic ruby is centered at the same wavelength, the peak is stronger due to higher concentration of Cr and lower concentration of Fe than for natural rubies. For spinel, the IL spectrum shows strong deformation where the R-line is split due to the presence of MgO. For rubellite, the peak center is shifted to 692 nm which might be caused by the replacement of Mn{sup 3+} at the Al{sup 3+} site of the host structure. It is noticed that almandine garnet is not luminescent due

  20. Ion beam analysis of rubies and their simulants

    Science.gov (United States)

    Juncomma, U.; Intarasiri, S.; Bootkul, D.; Tippawan, U.

    2014-07-01

    Ion beam analysis (IBA) is a set of well known powerful analytical techniques which use energetic particle beam as a probe. Among them, two techniques are suitable for gemological analysis, i.e., Particle Induced X-rays Emission (PIXE) and Ionoluminescence (IL). We combine these two techniques for the investigations of rubies and their simulants. The main objective is to find a reference fingerprint of these gemstones. The data are collected from several natural rubies, synthetic rubies, red spinels, almandine garnets and rubellite which very much resemble and are difficult to distinguish with the gemologist loupe. From our measurements, due to their different crystal structures and compositions, can be clearly distinguished by the IL and PIXE techniques. The results show that the PIXE spectra consist of a few dominant lines of the host matrix elements of each gemstone and some weaker lines due to trace elements of transition metals. PIXE can easily differentiate rubies from other stones by evaluating their chemical compositions. It is noticed that synthetic rubies generally contain fewer impurities, lower iron and higher chromium than the natural ones. Moreover, the IL spectrum of ruby is unique and different from those of others stones. The typical spectrum of ruby is centered at 694 nm, with small sidebands that can be ascribed to a Cr3+ emission spectrum which is dominated by an R-line at the extreme red end of the visible part of the electromagnetic spectrum. Although the spectrum of synthetic ruby is centered at the same wavelength, the peak is stronger due to higher concentration of Cr and lower concentration of Fe than for natural rubies. For spinel, the IL spectrum shows strong deformation where the R-line is split due to the presence of MgO. For rubellite, the peak center is shifted to 692 nm which might be caused by the replacement of Mn3+ at the Al3+ site of the host structure. It is noticed that almandine garnet is not luminescent due to the

  1. Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA)

    International Nuclear Information System (INIS)

    The material to be studied is a piece of human skull discovered (1999) in Pleistocene sediments from the Orsang river (Gujarat state, India). From anatomical view point, this skull is highly composite: modern Homo sapiens characters are associated to undoubtedly more ancient features. Absolute dating by 14C is critical to understand this discovery. Prior to dating measurements, non-destructive studies have been carried out. Micro-CT reconstruction (X-ray microtomography) and Ion Beam Analysis (IBA) have been undertaken to check the structural preservation of the fossil and the collagen preservation. PIXE elemental map was used to select well-preserved bone area. RBS/EBS and NRA were used for light element quantification, in particular C, N and O contents. We also demonstrate that the PIXE-RBS/EBS combination is a effective tool for the whole characterization of archaeological and recent bones by analysing in one experiment both mineral and organic fractions. We have shown that the archaeological bone, a fragment of the potentially oldest modern Indian, is enough preserved for radiocarbon dating. We propose that Elastic Backscattering Spectrometry (EBS) using 3 MeV protons could be a good non destructive alternative to conventional CHN method using Carbon–Hydrogen–Nitrogen analyzer for measuring C and N before 14C dating.

  2. Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA)

    Energy Technology Data Exchange (ETDEWEB)

    Beck, L., E-mail: lucile.beck@cea.fr [C2RMF - UMR171 CNRS, Centre de Recherche et de Restauration des Musees de France, Palais du Louvre, Porte des Lions, 14 quai Francois Mitterrand, 75001 Paris (France); CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, 91191 Gif-sur-Yvette (France); Cuif, J.-P. [UMR IDES 8148, Universite Paris XI-Orsay, 91405 Orsay cedex (France); Pichon, L. [C2RMF - UMR171 CNRS, Centre de Recherche et de Restauration des Musees de France, Palais du Louvre, Porte des Lions, 14 quai Francois Mitterrand, 75001 Paris (France); Vaubaillon, S. [CEA, INSTN, Laboratoire JANNUS, 91191 Gif-sur-Yvette (France); Dambricourt Malasse, A. [Departement de Prehistoire, Museum national d' Histoire naturelle, UMR 7194 - CNRS, Institut de Paleontologie Humaine, 1, rue Rene Panhard, 75013 Paris (France); Abel, R.L. [The Natural History Museum, London (United Kingdom)

    2012-02-15

    The material to be studied is a piece of human skull discovered (1999) in Pleistocene sediments from the Orsang river (Gujarat state, India). From anatomical view point, this skull is highly composite: modern Homo sapiens characters are associated to undoubtedly more ancient features. Absolute dating by {sup 14}C is critical to understand this discovery. Prior to dating measurements, non-destructive studies have been carried out. Micro-CT reconstruction (X-ray microtomography) and Ion Beam Analysis (IBA) have been undertaken to check the structural preservation of the fossil and the collagen preservation. PIXE elemental map was used to select well-preserved bone area. RBS/EBS and NRA were used for light element quantification, in particular C, N and O contents. We also demonstrate that the PIXE-RBS/EBS combination is a effective tool for the whole characterization of archaeological and recent bones by analysing in one experiment both mineral and organic fractions. We have shown that the archaeological bone, a fragment of the potentially oldest modern Indian, is enough preserved for radiocarbon dating. We propose that Elastic Backscattering Spectrometry (EBS) using 3 MeV protons could be a good non destructive alternative to conventional CHN method using Carbon-Hydrogen-Nitrogen analyzer for measuring C and N before {sup 14}C dating.

  3. Combined elemental analysis of ancient glass beads by means of ion beam, portable XRF, and EPMA techniques.

    Science.gov (United States)

    Sokaras, D; Karydas, A G; Oikonomou, A; Zacharias, N; Beltsios, K; Kantarelou, V

    2009-12-01

    Ion beam analysis (IBA)- and X-ray fluorescence (XRF)-based techniques have been well adopted in cultural-heritage-related analytical studies covering a wide range of diagnostic role, i.e., from screening purposes up to full quantitative characterization. In this work, a systematic research was carried out towards the identification and evaluation of the advantages and the limitations of laboratory-based (IBA, electron probe microanalyzer) and portable (milli-XRF and micro-XRF) techniques. The study focused on the analysis of an Archaic glass bead collection recently excavated from the city of Thebes (mainland, Greece), in order to suggest an optimized and synergistic analytical methodology for similar studies and to assess the reliability of the quantification procedure of analyses conducted in particular by portable XRF spectrometers. All the employed analytical techniques and methodologies proved efficient to provide in a consistent way characterization of the glass bead composition, with analytical range and sensitivity depending on the particular technique. The obtained compositional data suggest a solid basis for the understanding of the main technological features related to the raw major and minor materials utilized for the manufacture of the Thebian ancient glass bead collection. PMID:19821114

  4. Report of the consultant's meeting on applications of accelerator based analysis

    International Nuclear Information System (INIS)

    At the present meeting, applications of accelerator based analytical methods, often referred as ion beam analysis (IBA) methods, to the following areas have been discussed: materials (including thin films), Earth sciences (including environmental studies), biology and medicine, art and archaeology (cultural heritage), and other applications (including forensic applications). This report gives brief overview of IBA applications in these areas, with short background about accelerators needed and corresponding analytical techniques

  5. Micrometeoroid Impacts on the Hubble Sace Telescope Wide Field and Planetary Camera 2: Ion Beam Analysis of Subtle Impactor Traces

    Science.gov (United States)

    Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V. V.; Colaux, J. L.; Kearsley, A. T.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; Griffin, T.; Gerlach, L.; Wozniakiewicz, P. J.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2014-01-01

    Recognition of origin for particles responsible for impact damage on spacecraft such as the Hubble Space Telescope (HST) relies upon postflight analysis of returned materials. A unique opportunity arose in 2009 with collection of the Wide Field and Planetary Camera 2 (WFPC2) from HST by shuttle mission STS-125. A preliminary optical survey confirmed that there were hundreds of impact features on the radiator surface. Following extensive discussion between NASA, ESA, NHM and IBC, a collaborative research program was initiated, employing scanning electron microscopy (SEM) and ion beam analysis (IBA) to determine the nature of the impacting grains. Even though some WFPC2 impact features are large, and easily seen without the use of a microscope, impactor remnants may be hard to find.

  6. A study of small molecule ingress into planar and cylindrical materials using ion beam analysis

    CERN Document Server

    Smith, R W

    2001-01-01

    mechanisms that take place, and where relevant diffusion coefficients have been obtained using either a semi-infinite medium Fickian planar diffusion model or a cylindrical Fickian diffusion model. Ion beam analysis techniques have been developed to allow profiling of small molecules diffused into materials at depths ranging from 10 sup - sup 7 to 10 sup - sup 1 m. A model DPS/PS/DPS triple-layer film and D( sup 3 He,p) sup 4 He nuclear reaction analysis was used to test the applicability of a novel data processing program - the IBA DataFurnace - to nuclear reaction data. The same reaction and program were used to depth profile the diffusion of heavy water into cellophane. A scanning sup 3 He micro-beam technique was developed to profile the diffusion of small molecules into both planar and cylindrical materials. The materials were exposed to liquids containing deuterium labelled molecules. A cross-section was exposed by cutting the material perpendicular to the surface and this was bombarded by a scanning su...

  7. ZZ IBANDL, Ion Beam Analysis Nuclear Data Library in R33 format

    International Nuclear Information System (INIS)

    Description or function: Format: R-33 (IBA Community); Nuclides: H1, H2, H3, He3, He4, Li6, Li7, Be9, B10, B11, C12, C13, N14, N15, O16, O18, F19, Ne20, Na23, Mg24, Mg25, Mg26, Mgnat, Al27, Si28, Sinat, P31, S32, Cl35, Cl37, Clnat, Ar40, K39, Ca40, Canat, Ti48, Tinat, Crnat, Fenat, Znnat, Senat, Brnat, Ag109. Origin: NRABASE and SigmaBase. This is the Ion Beam Analysis Nuclear Data Library produced according to the recommendations of the IAEA Technical Meeting held at the IAEA Headquarters in Vienna (29 to 30 October 2003). This data collection is a result of merging SigmaBase and NRABASE: - NRABASE, a nuclear reaction database program, Alexander F. Gubrich, Institute of Physics and Power Engineering, Obninsk, Russian Federation. (http://www.mfa.kfki.hu/sigmabase/programs/nrabase2.html) - SigmaBase, provided by Physics Department of the Idaho State University, maintained/hosted by MTA-MFA, Budapest, Hungary. (http://www.mfa.kfki.hu/sigmabase/). It contains most of the available experimental nuclear cross-sections relevant to Ion Beam Analysis. Excitation functions are presented both as graphs and data files. The numerical data are in the R33 format. All the entries are supplied with a reference to the data source. The data published only in a graphical form were digitized using a precise technique

  8. Summary report of second research coordination meeting on development of a reference database for ion beam analysis

    International Nuclear Information System (INIS)

    Highlights of the 2nd Research Coordination Meeting (RCM) are given with respect to the progress achieved in the first 1 1/2 years of the Co-ordinated Research Project (CRP) on Development of a Reference Database for Ion Beam Analysis. Participants presented the results of their work to date, and identified and assigned key tasks required to ensure that the final output of the CRP is achieved. In addition, a number of lively and productive discussions took place concerning technical issues such as accelerator energy calibration, error reporting, accuracy of the existing IBANDL and EXFOR datasets for IBA, and procedures for producing recommended cross-section data. The main conclusions as well as lists of actions and tasks are presented in this report. (author)

  9. Ion beam analysis techniques for the elemental fingerprinting of fine particle smoke from vegetation burning in NSW

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Accelerator based ion beam analysis (IBA) techniques, including PIXE, PIGME, RBS and PESA, have been used to analyse elemental compositions of airborne particles covering a 60,000 square kilometres area of Wollongong, Sydney and Newcastle. These IBA techniques provide elemental concentrations for over 20 different elements from hydrogen to lead, they include H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Zn, Br and Pb. The four ion beam techniques are performed simultaneously on the 3MV Van de Graaff accelerator at ANSTO and have been described in detail elsewhere. They are sufficiently sensitive to analyse for many of these elements to levels around 10 ng/m{sup 3} or less in about five minutes of accelerator running time per filter. This is more than adequate for aerosol analyses as most filters contain around 150 {mu}g/cm{sup 2} of material which corresponds to about 10{mu}g/m{sup 3} of fine particles in the atmosphere. For this work fine particles are those with diameters less than 2.5{mu}m. Fine particle data has been collected twice a week and analysed for each of the above elements by ANSTO since 1991 at more than 25 different sites throughout NSW. This large dataset set allows us to not only determine the composition of fine particles and to look for signature elements for particular sources but also to use multivariate statistics to define elemental source fingerprints and then to determine the percentage contributions of these fingerprints to the total fine particle mass in the atmosphere. This paper describes the application of these techniques to the study of domestic wood fires and vegetation burning in NSW over a two year period from 1992-93. It also presents, for the first time, fine particle data related to the January 1994 bushfires in NSW. 6 refs., 1 tab., 5 figs.

  10. Ion beam analysis techniques for the elemental fingerprinting of fine particle smoke from vegetation burning in NSW

    International Nuclear Information System (INIS)

    Accelerator based ion beam analysis (IBA) techniques, including PIXE, PIGME, RBS and PESA, have been used to analyse elemental compositions of airborne particles covering a 60,000 square kilometres area of Wollongong, Sydney and Newcastle. These IBA techniques provide elemental concentrations for over 20 different elements from hydrogen to lead, they include H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Zn, Br and Pb. The four ion beam techniques are performed simultaneously on the 3MV Van de Graaff accelerator at ANSTO and have been described in detail elsewhere. They are sufficiently sensitive to analyse for many of these elements to levels around 10 ng/m3 or less in about five minutes of accelerator running time per filter. This is more than adequate for aerosol analyses as most filters contain around 150 μg/cm2 of material which corresponds to about 10μg/m3 of fine particles in the atmosphere. For this work fine particles are those with diameters less than 2.5μm. Fine particle data has been collected twice a week and analysed for each of the above elements by ANSTO since 1991 at more than 25 different sites throughout NSW. This large dataset set allows us to not only determine the composition of fine particles and to look for signature elements for particular sources but also to use multivariate statistics to define elemental source fingerprints and then to determine the percentage contributions of these fingerprints to the total fine particle mass in the atmosphere. This paper describes the application of these techniques to the study of domestic wood fires and vegetation burning in NSW over a two year period from 1992-93. It also presents, for the first time, fine particle data related to the January 1994 bushfires in NSW. 6 refs., 1 tab., 5 figs

  11. Analysis of Asymmetric Piezoelectric Composite Beam

    CERN Document Server

    Chen, J -S; Wu, K -C

    2008-01-01

    This paper deals with the vibration analysis of an asymmetric composite beam composed of glass a piezoelectric material. The Bernoulli's beam theory is adopted for mechanical deformations, and the electric potential field of the piezoelectric material is assumed such that the divergence-free requirement of the electrical displacements is satisfied. The accuracy of the analytic model is assessed by comparing the resonance frequencies obtained by the analytic model with those obtained by the finite element method. The model developed can be used as a tool for designing piezoelectric actuators such as micro-pumps.

  12. Simulation based analysis of laser beam brazing

    Science.gov (United States)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  13. Bending analysis of laminated composite box beams

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, A.K.; Patel, H.J.; Pang, S.S. (Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Mechanical Engineering)

    1994-01-01

    Box beams are widely used in weight reduction structures such as aircraft wings. The use of composite box beams further reduces the weight factor for such structures with the same deflection and stress as that of isotropic box beams. The difference in the behavior of composite box beam with different fiber orientation, number of plies, and number of stringers also provides a wide range of designing parameters to achieve the required performance for a given problem. A bending analysis has been carried out for the study of deflections and stresses for box beams of different material (isotropic and laminated composites), size, and number of stringers subjected to different kinds of loading conditions. A finite element model has been developed based on the strain energy principle, and the results are compared with an available commercial code COSMOS/M.'' Experiments using aluminum and scotchply composite laminates were conducted to verify the results. An optimal design for size and number of stiffeners for a given loading condition has been achieved. Investigations have also been carried out to find the effect of transverse shear on the span-wise normal stress.

  14. An undergraduate ion beam analysis laboratory

    International Nuclear Information System (INIS)

    Hope College (in Holland, Michigan) purchased a 1.7 MV tandem pelletron with nuclear micro-probe capability with funding from the US National Science Foundation in 2004. The purpose of this facility is to perform publishable research in a variety of applied fields, and to provide educational opportunities and sophisticated technical training for undergraduates that will enter the workforce in science, technology, engineering and mathematics. Hope College has two senior investigators with experience in nuclear science and expertise with accelerators, and an institution with approximately 3200 undergraduates. The college also has a rich history of involving undergraduates in research and producing future Ph.D. scientists. The facility was installed and commissioned in October, 2004 and since that time hundreds of separate ion beam analysis experiments have been performed in fields as diverse as solid state physics, biochemistry, forensic science, electrochemistry, environmental science, mineralogy and palaeontology. Over 90% of the work has involved on-campus collaborations between different faculty members, and there are already over 50 different undergraduate research students that have been involved in ion beam analysis research. There are six manuscripts published or in press from this facility, with more than two dozen undergraduate co-authors. During the first four years, the facility has been operated entirely with undergraduates and a single technician who was trained to help maintain the facility. We have recently added a post-doctoral fellow to our research group to help with the large number of students that are interested in the research projects that have become possible with the new ion beam analysis facility. A brief tour of our facility and an overview of some of the successful research projects will be presented, plus some insights into best operating practices we have learned for maintaining a productive an ion beam analysis facility at an

  15. Determination of the angular dependence of the detector matrix Matrix X-evolution of IBA

    International Nuclear Information System (INIS)

    The objective of this work consists in determining the correction for the angular dependence of the detector-Evolution Matrix x matrix (IBA, Germany), when used in the multi cube dummy (IBA, Germany), verification of treatment VMAT IMRT, using the software OP'IMRT (IBA, Germany).

  16. Chemical durability of alkali-borosilicate glasses studied by analytical SEM, IBA, isotopic-tracing and SIMS

    International Nuclear Information System (INIS)

    Simple and complex alkali-borosilicate glasses were submitted to aqueous corrosion at room temperature, 60 and 90 deg. C in solutions with pH ranging between 0 and 12. Analytical scanning electron microscopy (SEM), ion beam analysis (IBA) techniques, isotopic tracing and secondary ion mass-depth profiling (SIMS) have been used to investigate the variations of the surface composition of glass. In acidic medium, the glass surface is generally covered by a thick hydrated silica layer, mobile elements like Li, Na and B and transition elements (Fe, Zr, Mo, etc.) are strongly depleted. Near pH 7, relative enrichments of aluminium, iron and rare earths are shown together with strong Li, Na and B depletions. In basic medium, the glass surface exhibits relative enrichments of the major part of transition metals (from Cr to U) whereas mobile elements seem to be kept close to their nominal concentration level at the glass surface and Si is severely impoverished. Hydrogen incorporated at the glass surface after leaching is much more immobile in neutral and basic media than in acid medium

  17. Stability Analysis of Nonuniform Rectangular Beams Using Homotopy Perturbation Method

    OpenAIRE

    Seval Pinarbasi

    2012-01-01

    The design of slender beams, that is, beams with large laterally unsupported lengths, is commonly controlled by stability limit states. Beam buckling, also called “lateral torsional buckling,” is different from column buckling in that a beam not only displaces laterally but also twists about its axis during buckling. The coupling between twist and lateral displacement makes stability analysis of beams more complex than that of columns. For this reason, most of the analytical studies in the li...

  18. A twelve month study of PM2.5 and PM10 fine particle aerosol composition in the Sydney region using ion beam analysis techniques. Appendix 2

    International Nuclear Information System (INIS)

    The accelerator based ion beam (IBA) analysis techniques of PIXE, PIGME, PESA, and RBS have been used to characterise fine particles at selected sites in the Sydney region. The four techniques operating simultaneously provide elemental concentrations on 24 chemical species, including H, Q N, 0, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Ni, Zn, Br and Pb. The total mass and the elemental carbon by laser integrated plate techniques were also measured. A stacked filter system, built by the University of Gent, Belgium and supplied by the IAEA was used to provide fine particle data on PM2.5 and PM10 particles. While a cyclone sampler, built at ANSTO, Lucas Heights, was used to provide data on PM2.5 particles only. The two different types of units were operated along side each other for the whole of 1994 and the results compared. The use of the multi-elemental IBA techniques also allowed for some fine particle source fingerprinting to be performed. (author)

  19. Arabidopsis iba response5 Suppressors Separate Responses to Various Hormones

    OpenAIRE

    Strader, Lucia C.; Monroe-Augustus, Melanie; Rogers, Kristen C.; Lin, Grace L.; Bartel, Bonnie

    2008-01-01

    Auxin controls numerous plant growth processes by directing cell division and expansion. Auxin-response mutants, including iba response5 (ibr5), exhibit a long root and decreased lateral root production in response to exogenous auxins. ibr5 also displays resistance to the phytohormone abscisic acid (ABA). We found that the sar3 suppressor of auxin resistant1 (axr1) mutant does not suppress ibr5 auxin-response defects, suggesting that screening for ibr5 suppressors might reveal new components ...

  20. Stability Analysis of Nonuniform Rectangular Beams Using Homotopy Perturbation Method

    Directory of Open Access Journals (Sweden)

    Seval Pinarbasi

    2012-01-01

    Full Text Available The design of slender beams, that is, beams with large laterally unsupported lengths, is commonly controlled by stability limit states. Beam buckling, also called “lateral torsional buckling,” is different from column buckling in that a beam not only displaces laterally but also twists about its axis during buckling. The coupling between twist and lateral displacement makes stability analysis of beams more complex than that of columns. For this reason, most of the analytical studies in the literature on beam stability are concentrated on simple cases: uniform beams with ideal boundary conditions and simple loadings. This paper shows that complex beam stability problems, such as lateral torsional buckling of rectangular beams with variable cross-sections, can successfully be solved using homotopy perturbation method (HPM.

  1. Micro-patterns fabrication using focused proton beam lithography

    Czech Academy of Sciences Publication Activity Database

    Cutroneo, Mariapompea; Havránek, Vladimír; Macková, Anna; Semián, Vladimír; Torrisi, L.; Calcagno, L.

    2016-01-01

    Roč. 371, MAR (2016), s. 344-349. ISSN 0168-583X. [22nd International conference on Ion Beam Analysis (IBA). Opatija, 14.06.2015-19.06.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : ion-micro-beam * STIM analysis * pattern in PMMA Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  2. Beam pulse length determination by spectral analysis

    International Nuclear Information System (INIS)

    The report discusses the feasibility of identifying the beam pulse length for heavy ion beams down to 10 enA by observing the amplitude of the Fourier components of the beam pulse train on commercially available UHF spectrum analyzers. Two cases are investigated: 1) where the beam is intercepted by a coaxial Faraday Cup. The resulting electrical signal represents the beam current in the time domain Max signal-to-noise ratio results from entire collection of the beam and 2) where the beam induces a signal in a loosely-coupled capacitive pick-up. The induced pulse train waveform is correspondingly altered and signal-to-noise ratio deteriates. Both cases are shown to be beyond the limits of practical spectrum analyzers for 10 enA beams when 60 pulse widths are considered

  3. External beam PIXE analysis of painting

    Energy Technology Data Exchange (ETDEWEB)

    Pascholati, Paulo R.; Rizzutto, Marcia A.; Barbosa, Marcel D.L.; Albuquerque, Cindy [Sao Paulo Univ., SP (Brazil). Inst. de Fisica]. E-mail: pascholati@if.usp.br; rizzutto@if.usp.br; mbarbosa@if.usp.br; cindy@if.usp.br; Neves, Graziela [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: graziela@if.usp.br

    2005-07-01

    The preservation and conservation of mankind cultural heritage has become an important issue worldwide. Non-destructive analytical techniques are suitable, for example, to analyze precious and unique objects of art and archaeology. Among those techniques Particle Induced X-Ray Emission (PIXE) has good advantage to identify elemental composition present in these kinds of objects. The Laboratorio de Analise de Materiais por Feixes Ionicos-LAMFI of the Institute of Physics of the University of Sao Paulo has been installed an external beam facility for PIXE analysis. This new setup is being used for the analysis of archaeological pottery artifacts, paintings and biological tissues (teeth and bones), which are not compatible with the high vacuum of the regular PIXE target chamber. In addition most art and archaeological objects are too large for the evacuated analysis chamber. Applications of this facility will be presented in the analysis of one painting of the beginning of the last century. The chemical elements identified in the painting were Ca, Ti, Cr, Cu, Fe, Zn, Pb and Ba. The PIXE measurements were done non-destructively and no visible damage was observed on the irradiated object. (author)

  4. Analysis of transmission efficiency of SSRF electron beam transfer lines

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this article, the main factors which influence transmission efficiency of the SSRF electron beam transfer lines are described, including physical requirements for magnet system, vacuum system, beam diagnostic system,trajectory correction system, etc. The dynamic simulation calculation and transmission efficiency analysis of the SSRF electron beam transfer lines are presented, and the studies show that the design purpose of efficient beam transmission and injection will be achieved.

  5. Applications of ion beam analysis workshop. Workshop handbook

    International Nuclear Information System (INIS)

    A workshop on applications of ion beam analysis was held at ANSTO, immediate prior to the IBMM-95 Conference in Canberra. It aims was to review developments and current status on use of ion beams for analysis, emphasizing the following aspects: fundamental ion beam research and secondary effects of ion beams; material sciences, geological, life sciences, environmental and industrial applications; computing codes for use in accelerator research; high energy heavy ion scattering and recoil; recent technological development using ion beams. The handbook contains the workshop's program, 29 abstracts and a list of participants

  6. Applications of the BEam Cross section Analysis Software (BECAS)

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral; Bitsche, Robert; Fedorov, Vladimir;

    2013-01-01

    A newly developed framework is presented for structural design and analysis of long slender beam-like structures, e.g., wind turbine blades. The framework is based on the BEam Cross section Analysis Software – BECAS – a finite element based cross section analysis tool. BECAS is used for the...

  7. Some applications of ion beam techniques in earth science research

    International Nuclear Information System (INIS)

    Ion beam analysis (IBA) techniques at GNS are used to (1) analyse for elemental compositions of rock powders and minerals including coal, (2) determine fine-scale elemental distributions in glass, individual minerals and whole rocks using imaging, line-scanning or point analyses and (3) probe compositions of buried structures in polished rock sections such as fluid and melt inclusions including daughter minerals in fluid inclusions. Apart from these, IBA techniques are also used (1) for standard-independent hydrogen detection and profiling at ppm levels (e.g. elastic recoil detection analysis or ERDA) and elemental depth profiling (Rutherford backscattering or RBS), (2) to probe lattice residence of major and minor trace elements and (3) to map zonation of certain ions, such as REE, in minerals using ionoluminescence (IL) or a combination of cathodoluminescence and PIXE. (author). 82 refs., 9 figs

  8. Some applications of ion beam techniques in earth science research

    International Nuclear Information System (INIS)

    Ion beam analysis (IBA) techniques at GNS are used to (1) analyse for elemental compositions of rock powders and minerals including coal, (2) determine fine-scale elemental distributions in glass, individual minerals and whole rocks using imaging, line-scanning or point analyses and (3) probe compositions of buried structures in polished rock sections such as fluid and melt inclusions including daughter minerals in fluid inclusions. Apart from these, IBA techniques are also used (1) for standard-independent hydrogen detection and profiling at ppm levels (e.g. elastic recoil detection analysis or ERDA) and elemental depth profiling (Rutherford backscattering or RBS), (2) to probe lattice residence of major and minor trace elements and (3) to map zonation of certain ions, such as REE, in minerals using ionoluminescence (IL) or a combination of cathodoluminescence and PIXE. (author). 84 refs., 9 figs

  9. Theoretical analysis of some problems in the measurement of beam divergence angle for EAST neutral beam injector

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Beam angular divergence is one of the indicators to evaluate the beam quality. Operating parameters of the beam extraction system could be adjusted to gain better beam quality following the measurement results, which will be helpful not only to study the transmission characteristics of the beam and the power distribution on the heat load components, but also to understand the real-time working condition of the ion source and beam extraction system. This study includes: (1) the theoretical analysis of beam extraction pulse duration for measurement of beam angular divergence; (2) the theoretical analysis of beam intensity distribution during beam transmission for Experimental Advanced Superconducting Tokomak (EAST) neutral beam injector. Those theoretical analyses could point the way to the measurement of beam divergence angle for EAST neutral beam injector.

  10. ANALYSIS OF BEAMS WITH PIEZOELECTRIC ACTUATORS

    Institute of Scientific and Technical Information of China (English)

    林启荣; 刘正兴; 王宗利

    2001-01-01

    Based on the two-dimensional constitutive relationships of the piezoelectric material, an analytical solution for an intelligent beam excited by a pair of piezoelectric actuators is derived. With the solution the force and moment generated by two piezoelectric actuators and a pair of piezoelectric actuator/sensor are obtained. Examples of a cantilever piezoelectric laminated beam or a simply supported piezoelectric laminated beam, applied with voltages, are given.

  11. Ion beam analysis of golden threads from Romanian medieval textiles

    International Nuclear Information System (INIS)

    In this study, metal threads from Romanian religious embroideries and precious velvet brocades dated from 15th to 18th century were analyzed by using IBA methods (PIXE and RBS) which, in comparison to the traditional analytical techniques (XRF, EDS), allowed the detection of their structures and accurate identification of the trace elements (detection limits of few tens of ppm). PIXE results confirmed that both types of the metal threads studied – wires and strips – have layered structures being made of fine silver, refined by cupellation, and gilded most probably with pure gold, and not of Au–Ag alloy, or gilded Ag–Cu alloy or Au–Ag–Cu alloy, as resulted from the previously performed SEM-EDS analysis. Trace elements of historical interest like lead, mercury and bismuth have been also possible to be detected by PIXE. The resulting elemental maps allowed us to identify the areas from which the metal thread structure and quantitative composition could be accurately determined. RBS measurements revealed that the gilding layer is separated from the silver bulk by an interface layer resulting through atomic diffusion of silver into the gold, which lead to the conclusion that the methods used for gilding were probably either the diffusion bonding or the fire gilding. The gilding layers thicknesses were estimated by PIXE with the GUPIX software and also determined from RBS measurements

  12. Ion beam analysis of golden threads from Romanian medieval textiles

    Energy Technology Data Exchange (ETDEWEB)

    Balta, Z.I., E-mail: balta_z_i@yahoo.com [National History Museum of Romania, Calea Victoriei 12, Sector 3, Bucharest (Romania); Csedreki, L.; Furu, E. [Institute for Nuclear Research, Hungarian Academy of Sciences, H-4001 Debrecen, P.O. Box 51 (Hungary); Cretu, I. [National Art Museum of Romania, Calea Victoriei 49-53, Sector 1, Bucharest (Romania); Huszánk, R. [Institute for Nuclear Research, Hungarian Academy of Sciences, H-4001 Debrecen, P.O. Box 51 (Hungary); Lupu, M. [National Art Museum of Romania, Calea Victoriei 49-53, Sector 1, Bucharest (Romania); Török, Z.; Kertész, Z.; Szikszai, Z. [Institute for Nuclear Research, Hungarian Academy of Sciences, H-4001 Debrecen, P.O. Box 51 (Hungary)

    2015-04-01

    In this study, metal threads from Romanian religious embroideries and precious velvet brocades dated from 15th to 18th century were analyzed by using IBA methods (PIXE and RBS) which, in comparison to the traditional analytical techniques (XRF, EDS), allowed the detection of their structures and accurate identification of the trace elements (detection limits of few tens of ppm). PIXE results confirmed that both types of the metal threads studied – wires and strips – have layered structures being made of fine silver, refined by cupellation, and gilded most probably with pure gold, and not of Au–Ag alloy, or gilded Ag–Cu alloy or Au–Ag–Cu alloy, as resulted from the previously performed SEM-EDS analysis. Trace elements of historical interest like lead, mercury and bismuth have been also possible to be detected by PIXE. The resulting elemental maps allowed us to identify the areas from which the metal thread structure and quantitative composition could be accurately determined. RBS measurements revealed that the gilding layer is separated from the silver bulk by an interface layer resulting through atomic diffusion of silver into the gold, which lead to the conclusion that the methods used for gilding were probably either the diffusion bonding or the fire gilding. The gilding layers thicknesses were estimated by PIXE with the GUPIX software and also determined from RBS measurements.

  13. Diffraction analysis of beams for barcode scanning

    Science.gov (United States)

    Eastman, Jay M.; Quinn, Anna M.

    1991-02-01

    Laser based bar code scanners utilize large f/# beams to attain a large depth of focus. The intensity cross-section of the laser beam is generally not uniform but is frequently approximated by a Gaussian intensity profile. In the case of laser diodes the beam cross-section is a two dimensional distribution. It is well known that the focusing properties of large f/# Gaussian beams differ from the predictions of ray tracing techniques. Consequently analytic modeling of laser based bar code scanning systems requires techniques based on diffraction rather than on ray tracing in order to obtain agreement between theory and practice. The line spread function of the focused laser beam is generally the parameter of interest due to the one-dimensional nature of the bar code symbol. Some bar code scanners utilize an anamorphic optical system to produce a beam that that maintains an elliptical cross-section over an extended depth of focus. This elliptical beam shape is used to average over voids and other printing defects that occur in real world symbols. Since the scanner must operate over the maximum possible depth of field the beam emergent from the scanner must be analyzed in both its near field and far field regions in order to properly model the performance of the scanner.

  14. Analysis of parameters affecting beam gauge performance

    CERN Document Server

    Yadav, S; Ozelis, J P

    2000-01-01

    Beam gauges have been used in the last decade or so for measuring the internal azimuthal compressive coil stresses in superconducting magnets. In early model Large Hadron Collider Interaction Region (LHC IR) quadrupoles tested at Fermilab, the beam gauges indicated excessively high amounts of inner and outer coil prestress during the collaring process, inconsistent with the coil size and modulus data. In response to these measurements, a simple mechanics based quantitative understanding of different factors affecting beam gauges has been developed. A finite element model with contact elements and non-linear material behavior, confirmed with experimental results, was developed. The results indicate that a small plastic deformation of either the beam or the backing plate can cause significant errors in the measured stress values. The effect of variations in coil modulus and support boundary conditions on beam gauge performance are also discussed. (3 refs).

  15. Characterisation of solar cells by ion beam analysis techniques

    International Nuclear Information System (INIS)

    Several ion beam analysis techniques were applied for the characterisation of amorphous (a- Si) and polycrystalline silicon solar cells. Thickness and composition of thin layers in thin film a-Si cells were analysed by RBS (Rutherford backscattering) using 5 MeV Li beam and ERDA (Elastic recoil detection analysis) using 12 MeV C beam. Nuclear microprobe technique IBIC (Ion beam induced charge) was used for imaging a charge collection efficiency of EFG (edge-defined film-fed grown) silicon in attempt to correlate charge loss with a spatial distribution of structural defects in the material. (author)

  16. Beam line error analysis, position correction, and graphic processing

    International Nuclear Information System (INIS)

    A beam transport line error analysis and beam position correction code called ''EAC'' has been developed in association with a graphics and data post-processing package for TRANSPORT. Based on the linear optics design using TRANSPORT or other general optics codes, EAC independently analyzes effects of magnet misalignments, and systematic and statistical errors of magnetic fields, as well as the effects of the initial beam positions on the central trajectory and on the transverse beam emittance dilution. EAC also provides an efficient way to develop beam line trajectory correcting schemes. The post-processing package generates various types of graphics including beam line geometrical layout, plots of the Twiss parameters, and beam envelopes. It also generates an EAC input file, thus connecting EAC with general optics codes. EAC and the post-processing package are small codes that are easy to access and use. They have become useful tools for the design of transport lines at the Superconducting Super Collider Laboratory

  17. Beam control and Dosimetry in Proton Therapy

    International Nuclear Information System (INIS)

    This thesis deals with beam control devices for scanned proton beams. The IBA society (Ion Beam Applications) has developed a new dynamic beam delivery system called Pencil Beam Scanning. IBA needed a monitor unit to equip its proton beam lines dedicated to the PBS system and called upon the medical applications group of the Laboratoire de Physique Corpusculaire de Caen. In 2008, this group realized, in collaboration with IBA, an ionization chamber monitor IC2/3 for the IBA dedicated PBS nozzle. This device verifies the agreement between planned and delivered particular fluence. The first part of this thesis focused on the characterization of this monitor unit. Proton beams of different clinical energies, positions and dose rates were used to check the specifications requested by IBA. After the introduction about the Proton Therapy, the validation step of IC2/3 is exposed. Information provided by IC2/3 makes it possible beam control in terms of fluence but does not ensure quality control in terms of spatial dose distribution. The second part of the work was devoted to the conception of a beam control device for scanned proton beams. Called Compass PT, it will allow a reconstruction of the spatial dose distribution delivered to the patient. The specifications definition and the conception studies are presented in this thesis. All this work has led to recommendations for the realization of this device and new research prospects. (author)

  18. Nonlinear analysis of RC beams using a hybrid shear-flexural fibre beam model

    OpenAIRE

    Santos Ferreira, Denise Carina; Bairán García, Jesús Miguel; Marí Bernat, Antonio Ricardo; Faria, Rui

    2014-01-01

    Purpose: A nonlinear finite element (FE) beam-column model for the analysis of reinforced concrete (RC) frames with due account of shear is presented in this paper. The model is an expansion of the traditional flexural fibre beam formulations to cases where multiaxial behaviour exists, being an alternative to plane and solid FE models for the nonlinear analysis of entire frame structures. The paper aims to discuss these issues. Design/methodology/approach: Shear is taken into account at di...

  19. A new approach for the analysis of functionally graded beams

    Directory of Open Access Journals (Sweden)

    M. Mirzababaee

    2006-04-01

    Full Text Available Purpose: It is the intention of the present study to develope a new beam theory for the analysis of functionallygraded compopsite beams to overcome the shortcomings present in the existing beam theories.Design/methodology/approach: Within the displacement field of a first-order shear deformation theory and byusing the Hamilton principle the governing equations of motion are obtained for both the new and the existingbeam theories. The beams are assumed to have isotropic, two-constituent material distribution through thethickness.Findings: It is found that the procedure used is simple and straightforward and similar to the one used in thedevelopment of shear deformation plate and shell theories. It is analytically showed that the new approach yieldsidentical results as those obtained by using the existing first-order shear deformation theory.Research limitations/implications: The new approach can be adopted in developing higher-order sheardeformation and layerwise theories. It is believed that the new approach has advantage with respect to theexisting beam theories especially for developing beam layerwise theories.Practical implications: The new shear deformation beam theory can be used to develop a new beam elementfor analysis of practical composite beam structures.Originality/value: The paper introduces an approach to develop a new theory for modeling composite beams.The resulting equations of motion may be solved analytically or by using finite element method.

  20. The new IBA self-shielded dynamitron accelerator for industrial applications

    Science.gov (United States)

    Galloway, R. A.; DeNeuter, S.; Lisanti, T. F.; Cleland, M. R.

    2004-09-01

    Radiation Dynamics Inc. (RDI), currently a member of the IBA Group (Ion Beam Applications based Louvain-la-Neuve, Belgium), has been supplying accelerators since its founding in 1958. These systems supplied for both industrial processing and research application for electrons and ions have proven to be reliable and robust. Today's demands in the industrial sector have driven the design and development of a new version of our Dynamitron ®. This new system, envisioned to operate at electron energies up to 1.5 MeV, in many cases can be supplied with integral shielding providing a small footprint requirement for placement in a facility. In the majority of these lower energy applications this allows the appropriate material handling system to be installed inside the steel radiation enclosure. Designed to deliver beam power outputs as high as 100 kW, this new system is capable of servicing the high throughput demands of today's manufacturing lines. Still retaining the positive aspects of the industrially proven Dynamitron system, this compact system can be tailored to meet a variety of in-line or off-line processing applications.

  1. Unusual Application Of Ion Beam Analysis For The Study Of Surface Layers On Materials Relevant To Cultural Heritage

    International Nuclear Information System (INIS)

    Recently a new thematic of research -- intentional patinas on antic copper-base objects -- lead the AGLAE (Accelerateur Grand Louvre pour l'Analyse Elementaire) team of the C2RMF (Centre de Recherche et de Restauration des Musees de France) to improve its methods of analyzing thin surface layers both in their elemental composition and in-depth elemental distribution. A new beam extraction set-up containing a particle detector has been developed in order to use a 6 MeV alpha beam both in PIXE and RBS mode and to monitor precisely the ion dose received by the sample. Both RBS and ionization cross sections were assessed in order to make sure that the analysis can be quantitative. This set up allows great progresses in the understanding of both nature and structure of this very particular oxide layer obtained in the antiquity by chemical treatment on copper alloys, containing gold and/or silver and presenting very interesting properties of color and stability.Besides the non destructive properties of the IBA in external beam mode, this method of analyzing allows the study of samples in interaction with its environment. This was used to study the high temperature oxidation of Cu-Sn alloys using a furnace developed in order to heat a sample and analyze it in RBS mode at the same time. This new way of studying the growth of oxide layers permits to understand the oxidation mechanism of this system and to propose an experimental model for the identification of oxide layers due to an exposition to a high temperature, model needed for a long time by curators in charge of the study and the conservation of archaeological bronzes

  2. Unusual Application Of Ion Beam Analysis For The Study Of Surface Layers On Materials Relevant To Cultural Heritage

    Science.gov (United States)

    Mathis, F.; Salomon, J.; Trocellier, P.; Aucouturier, M.

    2006-12-01

    Recently a new thematic of research — intentional patinas on antic copper-base objects — lead the AGLAE (Accélérateur Grand Louvre pour l'Analyse Elémentaire) team of the C2RMF (Centre de Recherche et de Restauration des Musées de France) to improve its methods of analyzing thin surface layers both in their elemental composition and in-depth elemental distribution. A new beam extraction set-up containing a particle detector has been developed in order to use a 6 MeV alpha beam both in PIXE and RBS mode and to monitor precisely the ion dose received by the sample. Both RBS and ionization cross sections were assessed in order to make sure that the analysis can be quantitative. This set up allows great progresses in the understanding of both nature and structure of this very particular oxide layer obtained in the antiquity by chemical treatment on copper alloys, containing gold and/or silver and presenting very interesting properties of color and stability. Besides the non destructive properties of the IBA in external beam mode, this method of analyzing allows the study of samples in interaction with its environment. This was used to study the high temperature oxidation of Cu-Sn alloys using a furnace developed in order to heat a sample and analyze it in RBS mode at the same time. This new way of studying the growth of oxide layers permits to understand the oxidation mechanism of this system and to propose an experimental model for the identification of oxide layers due to an exposition to a high temperature, model needed for a long time by curators in charge of the study and the conservation of archaeological bronzes.

  3. Ion beam analysis, corrosion resistance and nanomechanical properties of TiAlCN/CNx multilayer grown by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    A novel TiAlCN/CNx multilayer coating, consisting of nine TiAlCN/CNx periods with a top layer 0.5 μm of CNx, was designed to enhance the corrosion resistance of CoCrMo biomedical alloy. The multilayers were deposited by dc and RF reactive magnetron sputtering from Ti0.5Al0.5 and C targets respectively in a N2/Ar plasma. The corrosion resistance and mechanical properties of the multilayer coatings were analyzed and compared to CoCrMo bulk alloy. Ion beam analysis (IBA) and X-ray diffraction tests were used to measure the element composition profiles and crystalline structure of the films. Corrosion resistance was evaluated by means of potentiodynamic polarization measurements using simulated body fluid (SBF) at typical body temperature and the nanomechanical properties of the multilayer evaluated by nanoindentation tests were analyzed and compared to CoCrMo bulk alloy. It was found that the multilayer hardness and the elastic recovery are higher than the substrate of CoCrMo. Furthermore the coated substrate shows a better general corrosion resistance than that of the CoCrMo alloy alone with no observation of pitting corrosion

  4. Ion Beam Analysis for the provenance attribution of lapis lazuli used in glyptic art: The case of the "Collezione Medicea"

    Science.gov (United States)

    Re, Alessandro; Angelici, Debora; Lo Giudice, Alessandro; Corsi, Jacopo; Allegretti, Silvia; Biondi, Alessia Fabiola; Gariani, Gianluca; Calusi, Silvia; Gelli, Nicla; Giuntini, Lorenzo; Massi, Mirko; Taccetti, Francesco; La Torre, Leonardo; Rigato, Valentino; Pratesi, Giovanni

    2015-04-01

    The first part of this study reports on the wide campaign for the extension of the database of both trace and minor elements concentration in diopside by means of μ-PIXE measurements and of luminescence spectra in diopside and wollastonite by means of μ-IL measurements. Diopside and wollastonite are actually two of the most common lapis lazuli-forming minerals. For this former part of the study, we analysed rocks of known provenance at the microbeam line of the LNL laboratories in Legnaro (PD) of the Istituto Nazionale di Fisica Nucleare (INFN). The latter part of the paper is dedicated to the non-invasive Ion Beam Analyses (IBA) characterisation of six pieces of the "Collezione Medicea". The collection is exhibited at the Museum of Natural History (University of Firenze) and belonged to the Medici family. It includes artworks made of lapis lazuli manufactured in the 16th and 17th centuries but there is not precise information about the provenance of the used raw material. Results on the artworks show, as expected, that the Chilean provenance of the material used for the analysed artworks has to be excluded. Lapis lazuli used for five of the analysed artworks can be ascribed to the Afghan quarry district, while one object cannot be attributed only on the base of diopside and wollastonite analysis.

  5. PYROLE: a program for ion beam analysis

    International Nuclear Information System (INIS)

    When performing Ion Beam Analysis, some calculations are currently carried out, such as particle energy loss inside a filter, energy-depth relationship, energy of a particle emitted by a specific nuclear reaction, scattering energy, etc ... Physicists are often led to write a specific computer code, solving their own problem. The context is quite different with teaching activities. Students, indeed, are concerned with solving themselves classical calculations with regard to interactions between matter and particles. Nevertheless, considering a number of different examples would take too much time. For this reason, a software has been carried out in our laboratory. PYROLE is a user friendly software, concerning hydrogen and helium energetic ions in the MeV range, designed to be used as a too-box ; a number of different options is proposed, according to each question to be answered separately, such as: - Range and stopping power table printing, -kinematic factor, - Rutherford cross section, - Thin film thickness by RBS, -Thickness computing from energy loss, - Energy loss in thin film, -Straggling, - Nuclear reaction (Q value, particle before and after a Mylar foil ...). PYROLE is currently used by the students during the training sessions. It also appears that PYROLE is currently used by the students during the training sessions. It also appears that PYROLE is often used bu the Scientists themselves, before and during their experiments. Some examples will be given, concerning analyses carried out in our laboratory. In this paper, the description of the different calculation processes and some application examples are given. (authors). 13 refs., 50 figs

  6. Developing the IBA equipment to increase the versatility of the CNA

    International Nuclear Information System (INIS)

    The Centro Nacional de Aceleradores (CNA) in Sevilla-Spain currently contains three accelerators: two tandems and a compact 18/9 cyclotron. Next year, a 60Co irradiation system will also be installed. This equipment will expand the range of irradiation experiments in the Centre using both charged particles as well as gamma-ray photons. Originally, based on the 3 MV tandem accelerator, the CNA was considered as a multidisciplinary research Centre devoted basically to the materials characterization by IBA techniques. Nowadays, the validity of our low-energy accelerators has been verified not only to perform analysis but also for irradiation testing, a very promising field of work since radiation effects are aggravated with the technology decreasing scales. In this work, the last innovations and modifications of our laboratory will be briefly described, emphasizing with respect to high energy PIXE experiments and its versatility to carry out irradiation tests.

  7. Developing the IBA equipment to increase the versatility of the CNA

    Energy Technology Data Exchange (ETDEWEB)

    Morilla, Y., E-mail: ymorilla@us.es [Centro Nacional de Aceleradores, Universidad de Sevilla, Thomas Alva Edison 7, E-41092 Sevilla (Spain); Jimenez-Ramos, M.C., E-mail: mcyjr@us.es [Centro Nacional de Aceleradores, Universidad de Sevilla, Thomas Alva Edison 7, E-41092 Sevilla (Spain); Garcia Lopez, J., E-mail: fjgl@us.es [Centro Nacional de Aceleradores, Universidad de Sevilla, Thomas Alva Edison 7, E-41092 Sevilla (Spain); Labrador, J.A., E-mail: labrador@us.es [Centro Nacional de Aceleradores, Universidad de Sevilla, Thomas Alva Edison 7, E-41092 Sevilla (Spain); Palomo, F.R., E-mail: rogelio@gte.esi.us.es [Departamento de Ingenieria Electronica, Escuela Superior de Ingenieros, Universidad de Sevilla, Descubrimientos s/n, E-41092 Sevilla (Spain); Ortega-Feliu, I., E-mail: iofeliu@us.es [Centro Nacional de Aceleradores, Universidad de Sevilla, Thomas Alva Edison 7, E-41092 Sevilla (Spain)

    2012-02-15

    The Centro Nacional de Aceleradores (CNA) in Sevilla-Spain currently contains three accelerators: two tandems and a compact 18/9 cyclotron. Next year, a {sup 60}Co irradiation system will also be installed. This equipment will expand the range of irradiation experiments in the Centre using both charged particles as well as gamma-ray photons. Originally, based on the 3 MV tandem accelerator, the CNA was considered as a multidisciplinary research Centre devoted basically to the materials characterization by IBA techniques. Nowadays, the validity of our low-energy accelerators has been verified not only to perform analysis but also for irradiation testing, a very promising field of work since radiation effects are aggravated with the technology decreasing scales. In this work, the last innovations and modifications of our laboratory will be briefly described, emphasizing with respect to high energy PIXE experiments and its versatility to carry out irradiation tests.

  8. IBA characterisation of glasses from the archaeological site of 'La Alcazaba', Almeria (Spain)

    International Nuclear Information System (INIS)

    'La Alcazaba de Almeria' is one of the most impressive mediaeval remains in Al-Andalus. It was the sea port of the Cordoba Caliphate and, afterwards, the capital of a 'Taifa' kingdom. In the course of recent excavations in this monumental area, several glass remains were found in the access to its palace and were dated back to the XIII-XV centuries, during the so-called 'Nazari' period. We have made PIGE and PIXE analysis of different fragments of these glasses in order to identify their composition versus the different colours and shapes. These analyses have been complemented with other techniques, like SEM in order to learn about the corrosion process suffered by these glasses during their long burial period. Also a comparison with ICP-OES has been made to check the validity of the IBA results in this case where we are dealing with corroded samples

  9. Analysis of lateral stability of I-section aluminum beams

    Institute of Scientific and Technical Information of China (English)

    CHENG; Ming; SHI; Yongjiu

    2006-01-01

    This paper focuses on the lateral buckling of laterally-unrestrained aluminum beams subjected to a concentrated, uniformly loading and pure-bending action. The design methods of lateral stability of aluminum beams in the current codes are discussed. The influence of material property on the lateral buckling of aluminum beams is investigated with finite element analysis (FEA) methods. Some numerical examples are given, and the results from current codes are compared with the FEA solutions. The design method on lateral stability of steel beams specified in the Chinese standard GB 50017-2003 is modified to calibrate the stability factors of aluminum beams according to the European code, British code, and American code, and the modified method is verified by FEA results. Through comparison with the available test results, the modified design method for overall stability of aluminum bending members is proposed in this paper and proved applicable in the design of lateral stability of aluminum beams.

  10. IBA for novice experimentalists. I. Introduction to IBA: mostly symmetries. II. Tests in even-even nuclei: mostly transitional systems. III. Supersymmetries: theory and experiment

    International Nuclear Information System (INIS)

    The report contains the notes from a series of lectures on the Interacting Boson Approximation (IBA) model. The lectures were presented at Lawrence Livermore National Laboratory on July 28, 30 and August 1, 1982 by Jolie A. Cizewski from Yale University. The IBA was developed by F. Iachello and A. Arima starting about seven years ago to understand collective quadrupole excitations in medium and heavy mass nuclei away from closed shells. Since then the formalism has been extended to odd-mass nuclei and considerable work has gone into understanding the microscopic construction of the bosons in this model. The IBA has been applied to nuclei as light as Zn and Ge and as heavy as U and Pu; to nuclei near closed shells, such as Mo and Hg; to stable nuclei and nuclei far from stability. The present lectures were designed to give the experimentalist an introduction to the IBA and to give specific examples of how it could be applied to understand the structure of heavy even and odd mass nuclei. Much of the emphasis was on the symmetries (and supersymmetries) of the model and how the use of symmetries enabled the relatively straightforward understanding of empirical systems as deviations from these symmetries. The richness of possible applications of the IBA to understanding collective phenomena in nuclei was not fully explored, but rather a few illustrative examples were selected and described in detail. The references, accumulated at the end of this report, provide a more comprehensive, although not complete, list of tests of the IBA in even mass nuclei and the new symmetries in odd mass nuclei. The references also list the main theoretical papers which provide the details of the IBA formalism

  11. Cracking and Strain Analysis of Beams Reinforced with Composite Bars

    Directory of Open Access Journals (Sweden)

    Edgaras Timinskas

    2012-11-01

    Full Text Available The paper discusses the results of experimental and numerical modelling using two beams reinforced with GFRP bars. One beam was made of plain concrete while the other contained short steel fibres. The influence of steel fibres on deflection and cracking behaviour was studied. A comparative analysis of experimental results has shown that steel fibres significantly reduce deflections and average crack width of the beam. Moreover, an addition of steel fibres to the concrete mix led to a more ductile failure mode of the beam. Numerical analysis employing nonlinear finite element software ATENA has revealed that a good agreement between calculated and experimental results regarding an ordinary concrete GFRP reinforced beam can be obtained.

  12. Bending analysis of laminated composite and sandwich beams according to refined trigonometric beam theory

    OpenAIRE

    Sayyad A. S.; Ghugal Y. M.; Naik N. S.

    2015-01-01

    A trigonometric beam theory (TBT) is developed for the bending analysis of laminated composite and sandwich beams considering the effect of transverse shear deformation. The axial displacement field uses trigonometric function in terms of thickness coordinate to include the effect of transverse shear deformation. The transverse displacement is considered as a sum of two partial displacements, the displacement due to bending and the displacement due to transverse sheari...

  13. Development and Commissioning of an External Beam Facility in the Union College Ion Beam Analysis Laboratory

    Science.gov (United States)

    Yoskowitz, Joshua; Clark, Morgan; Labrake, Scott; Vineyard, Michael

    2015-10-01

    We have developed an external beam facility for the 1.1-MV tandem Pelletron accelerator in the Union College Ion Beam Analysis Laboratory. The beam is extracted from an aluminum pipe through a 1 / 4 ' ' diameter window with a 7.5- μm thick Kapton foil. This external beam facility allows us to perform ion beam analysis on samples that cannot be put under vacuum, including wet samples and samples too large to fit into the scattering chamber. We have commissioned the new facility by performing proton induced X-ray emission (PIXE) analysis of several samples of environmental interest. These include samples of artificial turf, running tracks, and a human tooth with an amalgam filling. A 1.7-MeV external proton beam was incident on the samples positioned 2 cm from the window. The resulting X-rays were measured using a silicon drift detector and were analyzed using GUPIX software to determine the concentrations of elements in the samples. The results on the human tooth indicate that while significant concentrations of Hg, Ag, and Sn are present in the amalgam filling, only trace amounts of Hg appear to have leached into the tooth. The artificial turf and running tracks show rather large concentrations of a broad range of elements and trace amounts of Pb in the turf infill.

  14. Systems analysis on laser beamed power

    Science.gov (United States)

    Zeiders, Glenn W., Jr.

    1993-01-01

    The NASA SELENE power beaming program is intended to supply cost-effective power to space assets via Earth-based lasers and active optics systems. Key elements of the program are analyzed, the overall effort is reviewed, and recommendations are presented.

  15. Large areas elemental mapping by ion beam analysis techniques

    Science.gov (United States)

    Silva, T. F.; Rodrigues, C. L.; Curado, J. F.; Allegro, P.; Moro, M. V.; Campos, P. H. O. V.; Santos, S. B.; Kajiya, E. A. M.; Rizzutto, M. A.; Added, N.; Tabacniks, M. H.

    2015-07-01

    The external beam line of the Laboratory for Material Analysis with Ion Beams (LAMFI) is a versatile setup for multi-technique analysis. X-ray detectors for Particle Induced X-rays Emission (PIXE) measurements, a Gamma-ray detector for Particle Induced Gamma- ray Emission (PIGE), and a particle detector for scattering analysis, such as Rutherford Backscattering Spectrometry (RBS), were already installed. In this work, we present some results, using a large (60-cm range) XYZ computer controlled sample positioning system, completely developed and build in our laboratory. The XYZ stage was installed at the external beam line and its high spacial resolution (better than 5 μm over the full range) enables positioning the sample with high accuracy and high reproducibility. The combination of a sub-millimeter beam with the large range XYZ robotic stage is being used to produce elemental maps of large areas in samples like paintings, ceramics, stones, fossils, and all sort of samples. Due to its particular characteristics, this is a unique device in the sense of multi-technique analysis of large areas. With the continuous development of the external beam line at LAMFI, coupled to the robotic XYZ stage, it is becoming a robust and reliable option for regular analysis of trace elements (Z > 5) competing with the traditional in-vacuum ion-beam-analysis with the advantage of automatic rastering.

  16. LHC Beam Dump System: Analysis of beam commissioning, performance and the consequences of abnormal operation

    CERN Document Server

    Kramer, Thomas

    2011-01-01

    The LHC accelerates proton beams to a momentum of up to 7 TeV/c. At this energy level and with nominal beam intensity the stored energy of 360 MJ per beam is sufficient to melt 500 kg of copper. In addition up to 10 GJ are stored within the LHC magnet system at top energy. It is obvious that such a machine needs well designed safety and protection systems. The LHC Beam Dump System (LBDS) is such a system and one of the most critical once concerning machine protection and safe operation. It is used to dispose of high intensity beams between 450 GeV and 7 TeV and is thus designed to fast extract beam in a loss free way and to transfer it to an external absorber. For each ring systems of 15 horizontal fast kicker magnets (MKD), 15 vertically deflecting magnetic septa (MSD) and 10 diluter kicker magnets (MKB) are installed. This thesis is concerned with the analysis of the LBDS performance under normal operating parameters as well as under abnormal conditions like in the event of asynchronous beam abort or missin...

  17. A new ion beam facility based on a 3 MV Tandetron™ at IFIN-HH, Romania

    Energy Technology Data Exchange (ETDEWEB)

    Burducea, I.; Straticiuc, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering, IFIN-HH, Măgurele 077125 (Romania); Ghiță, D.G., E-mail: dan.ghita@nipne.ro [Horia Hulubei National Institute of Physics and Nuclear Engineering, IFIN-HH, Măgurele 077125 (Romania); Moșu, D.V.; Călinescu, C.I. [Horia Hulubei National Institute of Physics and Nuclear Engineering, IFIN-HH, Măgurele 077125 (Romania); Podaru, N.C.; Mous, D.J.W. [High Voltage Engineering Europa B.V., P.O. Box 99, 3800AB Amersfoort (Netherlands); Ursu, I.; Zamfir, N.V. [Horia Hulubei National Institute of Physics and Nuclear Engineering, IFIN-HH, Măgurele 077125 (Romania)

    2015-09-15

    A 3 MV Tandetron™ accelerator system has been installed and commissioned at the “Horia Hulubei” National Institute for Physics and Nuclear Engineering – IFIN-HH, Măgurele, Romania. The main purpose of this machine is to strengthen applied nuclear physics research ongoing in our institute for more than four decades. The accelerator system was developed by High Voltage Engineering Europa B.V. (HVE) and comprises three high energy beam lines. The first beam line is dedicated to ion beam analysis (IBA) techniques: Rutherford Backscattering Spectrometry – RBS, Nuclear Reaction Analysis – NRA, Particle Induced X-ray and γ-ray Emission – PIXE and PIGE and micro-beam experiments – μ-PIXE. The second beam line is dedicated to high energy ion implantation experiments and the third beam line was designed mainly for nuclear cross-sections measurements used in nuclear astrophysics. A unique feature, the first time in operation at an accelerator facility is the Na charge exchange canal (CEC), which is used to obtain high intensity beams of He{sup −} of at least 3 μA. The results of the acceptance tests demonstrate the huge potential of this new facility in various fields, from IBA to radiation hardness studies and from medical or environmental applications to astrophysics. The main features of the accelerator are presented in this paper.

  18. A new ion beam facility based on a 3 MV Tandetron™ at IFIN-HH, Romania

    International Nuclear Information System (INIS)

    A 3 MV Tandetron™ accelerator system has been installed and commissioned at the “Horia Hulubei” National Institute for Physics and Nuclear Engineering – IFIN-HH, Măgurele, Romania. The main purpose of this machine is to strengthen applied nuclear physics research ongoing in our institute for more than four decades. The accelerator system was developed by High Voltage Engineering Europa B.V. (HVE) and comprises three high energy beam lines. The first beam line is dedicated to ion beam analysis (IBA) techniques: Rutherford Backscattering Spectrometry – RBS, Nuclear Reaction Analysis – NRA, Particle Induced X-ray and γ-ray Emission – PIXE and PIGE and micro-beam experiments – μ-PIXE. The second beam line is dedicated to high energy ion implantation experiments and the third beam line was designed mainly for nuclear cross-sections measurements used in nuclear astrophysics. A unique feature, the first time in operation at an accelerator facility is the Na charge exchange canal (CEC), which is used to obtain high intensity beams of He− of at least 3 μA. The results of the acceptance tests demonstrate the huge potential of this new facility in various fields, from IBA to radiation hardness studies and from medical or environmental applications to astrophysics. The main features of the accelerator are presented in this paper

  19. A new ion beam facility based on a 3 MV Tandetron™ at IFIN-HH, Romania

    Science.gov (United States)

    Burducea, I.; Straticiuc, M.; Ghiță, D. G.; Moșu, D. V.; Călinescu, C. I.; Podaru, N. C.; Mous, D. J. W.; Ursu, I.; Zamfir, N. V.

    2015-09-01

    A 3 MV Tandetron™ accelerator system has been installed and commissioned at the "Horia Hulubei" National Institute for Physics and Nuclear Engineering - IFIN-HH, Măgurele, Romania. The main purpose of this machine is to strengthen applied nuclear physics research ongoing in our institute for more than four decades. The accelerator system was developed by High Voltage Engineering Europa B.V. (HVE) and comprises three high energy beam lines. The first beam line is dedicated to ion beam analysis (IBA) techniques: Rutherford Backscattering Spectrometry - RBS, Nuclear Reaction Analysis - NRA, Particle Induced X-ray and γ-ray Emission - PIXE and PIGE and micro-beam experiments - μ-PIXE. The second beam line is dedicated to high energy ion implantation experiments and the third beam line was designed mainly for nuclear cross-sections measurements used in nuclear astrophysics. A unique feature, the first time in operation at an accelerator facility is the Na charge exchange canal (CEC), which is used to obtain high intensity beams of He- of at least 3 μA. The results of the acceptance tests demonstrate the huge potential of this new facility in various fields, from IBA to radiation hardness studies and from medical or environmental applications to astrophysics. The main features of the accelerator are presented in this paper.

  20. M1 transitions in even-even deformed nuclei and the IBA

    International Nuclear Information System (INIS)

    It is shown that the Interacting Boson Approximation can produce essentially identical results for M1 transitions in deformed even-even nuclei as can be obtained from the geometrical approach, and many comparisons with experiment are already available for the latter in the literature. Since no physical constants are involved in the IBA-1 formalism, it would be useful to use the similarity of the two approaches to obtain a physical description of the IBA constants. Use of the IBA-2 approach might also prove illuminating, since it should identify the contributions of the neutron and proton degrees of freedom, analogous to the method of Greiner

  1. Finite Element Vibration Analysis of Beams, Plates and Shells

    OpenAIRE

    Jaroslav Mackerle

    1999-01-01

    This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element vibration analysis of beams, plates and shells that were published in 1994–1998. It contains 361 citations. Also included, as separated subsections, are vibration analysis of composite materials and vibration analysis of structural elements with cracks/contacts.

  2. A simple Bragg detector design for AMS and IBA applications

    Science.gov (United States)

    Müller, Arnold Milenko; Döbeli, Max; Seiler, Martin; Synal, Hans-Arno

    2015-08-01

    A new compact Bragg type gas ionization chamber (GIC) has been built for use as particle counter in AMS and IBA applications. The detector stands out due to its simple concept, which does not include a Frisch grid. Test experiments have been performed with ions in the mass range from He to Th and energies ranging from 30 keV to 2.5 MeV, in order to find optimal measurement conditions and to characterize the detector performance. For projectiles heavier than Al at energies below 2.5 MeV the obtained energy resolution is comparable with that of a state-of-the-art GIC with Frisch grid and clearly outperforms solid state detectors. Additionally the operation of this simplified Bragg GIC in the electron multiplication mode was investigated for the first time, which allows the detection of radiocarbon ions at energies below 50 keV with an energy resolution of the order of 10 keV.

  3. A simple Bragg detector design for AMS and IBA applications

    International Nuclear Information System (INIS)

    A new compact Bragg type gas ionization chamber (GIC) has been built for use as particle counter in AMS and IBA applications. The detector stands out due to its simple concept, which does not include a Frisch grid. Test experiments have been performed with ions in the mass range from He to Th and energies ranging from 30 keV to 2.5 MeV, in order to find optimal measurement conditions and to characterize the detector performance. For projectiles heavier than Al at energies below 2.5 MeV the obtained energy resolution is comparable with that of a state-of-the-art GIC with Frisch grid and clearly outperforms solid state detectors. Additionally the operation of this simplified Bragg GIC in the electron multiplication mode was investigated for the first time, which allows the detection of radiocarbon ions at energies below 50 keV with an energy resolution of the order of 10 keV

  4. Nonlinear instability and reliability analysis of composite laminated beams

    Science.gov (United States)

    Fereidooni, Alireza

    the beam subjected to substantial excitation loading parameters increases in a typical nonlinear manner and leads to the beats phenomena. The principal regions of dynamic instability are determined for various loading and boundary conditions using the Floquet's theory. The beam response in the regions of instability is investigated. Axially loaded beam may be unstable not just in load equal to critical load and/or loading frequency equal to beam natural frequency. In fact there are infinite points in region of instability in plane load vs. frequency that the beam can be unstable. The region of instability of the shear deformable beams is wider compare to the non-shear deformable beams. The lower bound of the instability region of the shear deformable beams changes faster than upper bound. Probabilistic stability analysis of the uncertain laminated beams subject to both conservative and nonconservative loads is studied. The effects of material and geometry uncertainties on dynamics instability of the beam, is investigated through a probabilistic finite element analysis and Monte Carlo Simulation methods. For non-conservative systems variations of uncertain material properties has a smaller influence than variations of geometric properties over the instability of the beam.

  5. Ritz analysis of discontinuous beams using local trigonometric functions

    Science.gov (United States)

    Dang, Thi D.; Kapania, Rakesh K.; Patil, Mayuresh J.

    2011-03-01

    The objective of the current paper is to present a Ritz-type analytical model for predicting the behavior of discontinuous beams such as thin-walled beams with cracks and multiply-stepped beams. The beam is discretized in the cracked as well as the un-cracked domains for a cracked thin-walled beam and in uniform beams for a multiple-stepped beam. A set of local trigonometric trial functions is used to define the twist angle for the cracked domain and the un-cracked domains, as well as to define the displacement field for uniform domains. A global equation system of unknown Ritz coefficients is derived by minimizing the Lagrangian functional or the total potential energy. In the present Ritz model, the interface continuity conditions between sub-domains are investigated and enforced into the global equation system using the condensation procedure or the Lagrange multipliers. Examples are presented to illustrate the effectiveness of the current model for free vibration and torsional analysis. Results obtained from the current model are found to agree well with those obtained using a detailed finite element method or with existing results in literature. The proposed model offers an efficient approach to reduce the modeling efforts and computational time required to analyze complex beams with cracks or multiple steps.

  6. Analysis of orbital angular momentum of a misaligned optical beam

    Energy Technology Data Exchange (ETDEWEB)

    Vasnetsov, M V [Optics Group, Department of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Pas' ko, V A [Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46, Kiev 03028 (Ukraine); Soskin, M S [Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46, Kiev 03028 (Ukraine)

    2005-02-01

    We report an analysis of the orbital angular momentum of an optical beam misaligned with respect to a reference axis. Both laterally displaced and angularly deflected Laguerre-Gaussian beams are represented in terms of the superposition of azimuthal harmonics with well-defined orbital angular momentum. Simultaneous parallel displacement and angular tilt cause the coupling between azimuthal harmonics and therefore change the projection of the orbital angular momentum on the reference axis. Rotation of beams around the reference axis was simulated by attributing corresponding rotational frequency shifts to the components.

  7. Characterization of natural and modified zeolites using ion beam analysis techniques

    International Nuclear Information System (INIS)

    Zeolites are very important materials in catalytic and industrial processes. Natural, modified and synthetic zeolites have a wide range of uses because of their good adsorption, ion exchange capacity and catalytic properties. Mexico is an import source of natural zeolites, however their utilization in the natural form is limited due to the presence of trace metallic impurities. For example, metals such as vanadium and chromium inhibit the elimination of sulfur in hydrocarbons. Therefore, it is important to know the precise composition of the zeolite material. In this work, we report the elemental characterization of zeolites using various IBA techniques. 3He+ and 2H+ beams were used to measure the major element concentrations (Si, Al, O, C) by RBS and NRA. PIXE and SEM-EDS were used to measure the total trace element content (V, Cr, Fe, Ni, Cu, Zn, Rb, Sr, Zr, Pb, etc). Additionally, XRD was used to study the zeolite crystal structure

  8. Application of INAA and PIXE for analysis of archaeological pottery samples

    International Nuclear Information System (INIS)

    Analysis of archaeological artifacts like potteries, bricks and tiles by nuclear analytical techniques (NATs) like instrumental neutron activation analysis (INAA) and ion beam analysis (IBA) is very useful for obtaining simultaneous multielement profiles at major to trace concentration levels. Archaeological studies are often focused on provenance studies to establish whether they are from same or different origin. The preliminary information is obtained by the physical appearance and the confirmation of provenance is mainly done by chemical composition analysis

  9. IBA-Europhysics Prize in Applied Nuclear Science and Nuclear Methods in Medicine

    Science.gov (United States)

    MacGregor, I. J. Douglas

    2014-03-01

    The Nuclear Physics Board of the European Physical Society is pleased to announce that the 2013 IBA-Europhysics Prize in Applied Nuclear Science and Nuclear Methods in Medicine is awarded to Prof. Marco Durante, Director of the Biophysics Department at GSI Helmholtz Center (Darmstadt, Germany); Professor at the Technical University of Darmstadt (Germany) and Adjunct Professor at the Temple University, Philadelphia, USA. The prize was presented in the closing Session of the INPC 2013 conference by Mr. Thomas Servais, R&D Manager for Accelerator Development at the IBA group, who sponsor the IBA Europhysics Prize. The Prize Diploma was presented by Dr. I J Douglas MacGregor, Chair-elect of the EPS Nuclear Physics Division and Chair of the IBA Prize committee.

  10. ANALYSIS OF REINFORCED CONCRETE BEAMS BY THE EQUIVALENT SECTION METHOD

    OpenAIRE

    Schulz, Mauro; Santisi D'Avila, Maria Paola

    2011-01-01

    This research investigates the analysis of reinforced concrete beams subjected to combined axial load, bending moment and shear force. Cross-sections of general shape are divided, along the height, into plane elements. The biaxial behavior is represented according to the smeared rotating crack approach. Using traditionally accepted hypotheses for beams, the shear flow is determined by applying the Jouravski formula to an "equivalent section", which takes into account the nonlinear material be...

  11. Ion beam analysis of diffusion in heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Clough, A.S.; Jenneson, P.M. [Surrey Univ., Guildford (United Kingdom). Dept. of Physics

    1998-04-01

    Ion-beam analysis has been applied to a variety of problems involving diffusion in heterogeneous materials. An energy loss technique has been used to study both the diffusion of water and the surface segregation of fluoropolymers in polymeric matrices. A scanning micro-beam technique has been developed to allow water concentrations in hydrophilic polymers and cements to be measured together with associated solute elements. It has also been applied to the diffusion of shampoo into hair. (orig.) 13 refs.

  12. Ion beam analysis of diffusion in heterogeneous materials

    International Nuclear Information System (INIS)

    Ion-beam analysis has been applied to a variety of problems involving diffusion in heterogeneous materials. An energy loss technique has been used to study both the diffusion of water and the surface segregation of fluoropolymers in polymeric matrices. A scanning micro-beam technique has been developed to allow water concentrations in hydrophilic polymers and cements to be measured together with associated solute elements. It has also been applied to the diffusion of shampoo into hair. (orig.)

  13. Targeting Ion Beam Analysis techniques for gold artefacts

    OpenAIRE

    Demortier, Guy

    2012-01-01

    The present study discusses the best experimental conditions for the quantitative analysis of gold jewellery artefacts by ion beam techniques (PIXE, RBS, PIGE and NRA). Special attention is given to the detection of enhancement or depletion below the surface, down to 10 microns, without any sampling or destruction. PIXE is certainly the most interesting technique for this purpose and the optimal geometrical arrangement of the experiment is described: orientation of the incident beam relative ...

  14. Analysis of composite ENF specimen using higher order beam theories

    OpenAIRE

    Prasad, Raghu BK; Kumar, Pavan DVTG

    2008-01-01

    Mathematical modelling, for the stress analysis of symmetric composite end notch flexure (ENF) specimen, has been presented using classical beam theory, first, second, and third order shear deformation beam theories to determine the strain energy release rate (SERR) for symmetric composites under mode II interlaminar fracture. In the present formulation, appropriate matching conditions have been applied at the crack tip and these matching conditions at the crack tip have been derived by enfor...

  15. Finite Element Analysis of a Natural Fiber (Maize) Composite Beam

    OpenAIRE

    D. Saravana Bavan; G. C. MOHAN KUMAR

    2013-01-01

    Natural fiber composites are termed as biocomposites or green composites. These fibers are green, biodegradable, and recyclable and have good properties such as low density and low cost when compared to synthetic fibers. The present work is investigated on the finite element analysis of the natural fiber (maize) composite beam, processed by means of hand lay-up method. Composite beam material is composed of stalk-based fiber of maize and unsaturated polyester resin polymer as matrix with meth...

  16. Effects of IBA and Putrescine on Root Formation of Olive Cuttings

    OpenAIRE

    Elham Aslmoshtaghi; Ali Reza Shahsavar; Mohammad Reza Taslimpour

    2014-01-01

    Semi-hardwood cuttings of olive cv. ‘Tokhmkabki’ (low rooting ability) and cv. ‘Roghani’ (high rooting ability) were obtained from 1-year-old shoots. Cuttings were dipped in 2000, 4000, and 6000 mg L-1 IBA, 150 or 300 mg L-1 putrescine and their combination before rooting in greenhouse equipped with an automatic mist system. Rooting ability was evaluated four months after planting for each treatment. Satisfactory rooting occurred when IBA was applied with putrescine,...

  17. Small field dosimetry and analysis of flattening filter free beams in true beam system

    Directory of Open Access Journals (Sweden)

    K R Muralidhar

    2015-01-01

    Full Text Available Aim of Study: The purpose of this study was to report the dosimetric characteristics of the small fields in flattening filter free (FFF beams (output measurements, profile analysis, surface dose and consistency generated by medical linear accelerator and its variation with respect to flattened beams (FB. Materials and Methods: Surface doses were obtained for field sizes 1 × 1-40 × 40 cm 2 . Field width and penumbra were analyzed for field sizes 1 × 1-40 × 40 cm 2 . To take output factors for small fields, diode and micro chamber were used and data was taken at a source-to-surface distance (SSD and extended SSD. Consistency checked for the dosimetric data for 1 year. Results: Surface doses were higher in FFF compared with FB up to 20 × 20 cm 2 field size. Measured field sizes were slightly lesser in FFF and penumbra values were increased with respect to field size in both FB and FFF. For small fields, diode values have shown more promising results than micro chamber. Small field output measurements at nominal SSD and extended SSD were well in agreement with each other. FFF beams showed good data consistency in 1 year duration. Conclusion: Small field dosimetry, surface dose, profile analysis and consistency of FFF beams in FFF photon beams were derived and data shown good consistency during 1 year duration.

  18. Atomic Beam Laser Spectrometer for In-field Isotopic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Alonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Actinide Analytical Chemistry Group

    2016-06-22

    This is a powerpoint presentation for the DTRA quarterly program review that goes into detail about the atomic beam laser spectrometer for in-field isotopic analysis. The project goals are the following: analysis of post-detonation debris, determination of U and Pu isotopic composition, and fieldable prototype: < 2ft3, < 1000W.

  19. Quality of skin as a barrier to ultra-fine particles. Contribution of the IBA group to the NANODERM EU-5 project in 2003-2004

    International Nuclear Information System (INIS)

    Complete text of publication follows. Micronised titanium-, zinc- or silicon-oxide is a widely used physical photoprotective agent as a component of various cosmetic products. Due to the small particle size (down to 15 nm) it is supposed, that the particles may pass through the uppermost horny skin layer, and penetrate into deeper vital skin layers. However, only a few experiments have been carried out on its penetration through the human epidermal barrier and its possible biological effects in vivo and in vitro, using the tape stripping method which has no lateral and limited depth resolution. A consortium consisting of 12 European universities and scientific institutes has been established under the leadership of the Fakultat fuer Physik und Geowissenchaft Universitat Leipzig, whose goal is to get quantitative information on the penetration of ultrafine particles in all strata of skin, on their penetration pathways as well as on their impact on human health [1]. The IBA group of the Atomki takes part in this project as a subcontractor of the Department of Dermatology, University of Debrecen, Hungary. Ion microscopy, electron microscopy and autoradiography are used to trace the penetration of the nanoparticles into the skin layers, molecular and cell-biological methods are applied to assess the skin response and activation of dermal cells. The IBA group of the Atomki takes part in WP3: Ion Microscopy Work Package together with five other nuclear microprobe laboratories. The participants provide quantitative elemental composition in all strata of skin with detection limits of about 1 μg/g and lateral resolution of 1-2 μm by applying various ion beam analytical techniques. Samples investigated by ion microscopy are 14-16 μm thick cryo-fixed freeze-dried sections of porcine and human skin. Since the sample preparation requires completely different treatment for ion microscopy than for conventional microscopy, the members of the IBA group, who already have

  20. Optimization of Circular Side Door Beam for Crashworthiness Analysis

    Directory of Open Access Journals (Sweden)

    Raja Sharmi Raja Husin

    2012-01-01

    Full Text Available Structural optimization related to crashworthiness and energy absorption capability is particularly importance to the automotive industry. The optimization involves highly nonlinear computational analysis and design with many material and structure parameters. This paper presents a crashworthiness design of the circular side door beam which attach to the side door structures. The response surface method (RSM is utilized to formulate the complex crashworthiness design problem in the case of optimization. In this study, side door beam will be optimized. The beams in circular shape were studied and compared. The focus is on finding an optimum cross-section shape of the beam in order to improve the energy absorption character.  An optimization problem is formulated to find the maximum energy absorbed with the maximum peak load as a constraint, the shape of the beam cross section and the thickness as variable. The structure optimum design and simulation analysis of automobile side-door beam was carried out by using Finite Element (FE method.

  1. Analysis of FGM beams by means of a unified formulation

    International Nuclear Information System (INIS)

    This paper proposes several axiomatic refined theories for the linear static analysis of beams made of functionally graded materials. A bi-directional variation upon the cross-section is accounted for. Via a unified formulation, a generic N-order approximation is assumed for the displacement unknown variables over the beam cross-section. The governing differential equations and the boundary conditions are derived in terms of a fundamental nucleo that does not depend upon the approximation order. A Navier type, closed form solution is adopted. Beams undergo bending and torsional loadings. Deep beams are investigated. Comparisons with three-dimensional finite element models are given. The numerical investigation shows that the proposed unified formulation yields the complete three-dimensional displacement and stress fields as long as the appropriate approximation order is considered.

  2. Numerical Analysis of Deflections of Multi-Layered Beams

    Directory of Open Access Journals (Sweden)

    Biliński Tadeusz

    2015-03-01

    Full Text Available The paper concerns the rheological bending problem of wooden beams reinforced with embedded composite bars. A theoretical model of the behaviour of a multi-layered beam is presented. The component materials of this beam are described with equations for the linear viscoelastic five-parameter rheological model. Two numerical analysis methods for the long-term response of wood structures are presented. The first method has been developed with SCILAB software. The second one has been developed with the finite element calculation software ABAQUS and user subroutine UMAT. Laboratory investigations were conducted on sample beams of natural dimensions in order to validate the proposed theoretical model and verify numerical simulations. Good agreement between experimental measurements and numerical results is observed.

  3. Ion beams and material science facilities using high current low energy 3.0 MV particle accelerator at NCAR, Bilaspur

    International Nuclear Information System (INIS)

    The national facility for interdisciplinary research using ion beams based on 3.0 MV Pelletron accelerator (9SDH, NEC) with high current TORVIS (for H, He ions) and SNICS (for heavy ions) sources, and two beam lines for ion beam analysis (IBA) and ion implantation/irradiation have been successfully commissioned at NCAR, Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur. The accelerator conditioning was done over a period of time to achieve desired level of terminal voltage and vacuum in the accelerator tank, 3.0 MV terminal voltage was achieved with chain currents 120 A and an applied charging voltage of 13 kV. The vacuum without beam acceleration was lower 10-8 torr on both sides of the Pelletron tank. Finally, the first beam demonstration was achieved when a proton beam accelerated with terminal potential of 0.965 MV was seen at the Au target in Ion Beam analysis (IBA) chamber, the energy at the Faraday cup (FC) just before the chamber was 0.5 eA. Details of the facilities tested and the results obtained so far will be discussed in the paper

  4. Residual Displacements‘ Progresive Analysis of the Multisupported Beam

    Directory of Open Access Journals (Sweden)

    Liudas Liepa

    2014-12-01

    Full Text Available This paper focuses on a shakedown behaviour of the ideally elasto-plastic beams system under variable repeated load. The mathematical models of the analysis problems are created using numerical methods, extremum energy principles and mathematic programming. It is shown that during the shakedown process the residual displacements vary non-monotonically. By solving analysis problem, where the load locus is being progressively expanded, it is possible to determine the upper and lower bounds of residual displacements. Suggested methods are ilustrated by solving multisupported beam example problem. The results are obtained considering principle of the small displacements.

  5. Beam profile analysis using the CCD camera with cameralink in the SPring-8 booster ring and beam transport line

    International Nuclear Information System (INIS)

    We had measured a beam position and beam size by the analog video camera system with the fluorescence plate in the SPring-8 booster ring and beam transport line. It was difficult to estimate the seasonal change of the beam position and size quantitatively. We started building up the digital beam profile acquisition system which used a digital CCD camera with the external trigger synchronous capturing function in 2007. In the accelerator parameter tuning between operation cycles, it is necessary to understand the change of a beam orbit and shape from latest cycle quickly in limited tuning time. Thus, we need both information of real-time picture images for visual confirmation and computing real-time analysis results of beam position and size. In this case, the LED light for reading the scale on the fluorescence plate becomes a background noise for a calculation of the beam profile analysis. We improved the analysis program of beam position and size in order to separates the LED light and beam light from a captured image. By this improvement, the reproducibility and adjustment accuracy of orbital steering have been improved. We will report the program flow and the details from an image capture to a beam profile analysis. (author)

  6. Ecotoxicity studies of antifungal metabolites of Bacillus sp. IBA 33.

    Directory of Open Access Journals (Sweden)

    MA Gordillo

    2015-01-01

    Full Text Available El incremento de enfermedade s de plantas causado por la proliferación de patógenos resis tentes a fungicidas intensificó la investigación de nuevos metabo litos activos contra ellos. El es tudio de métodos biológicos como una a lternativa al control químico h a alcanzado relevancia en años r ecientes. Se ha sugerido que el u so de metabolitos de Bacillus , es una alternativa o un método suplementario a la protección química de las plantas, siempre y cuando ellos no sean tóxicos para los consumidores y sean amiga bles para el medio ambiente. Se ha ev aluado la toxicidad de diferent es concentraciones de metabolito s antifúngicos producidos por Bacillus sp. IBA33. Se investigó su capacidad para inducir efectos citotóxicos mediante diferentes tests como hemólisis e inmovilización de Artemia salina y Allium cepa L. Con 2.56 mg/ml de metabolitos antifúngicos la hemólisis alcanzó 24.07%, para 1 .28 mg/ml fue 14%. La HC 50 fue 10.41 mg/ml. Nauplios de Artemia salina expuestos a 3.2; 1.6 y 0.8 mg/ml de metabolitos antifúngicos mostraron 80; 20 y 10% de morta lidad respectivamente después d e 24 h de tratamiento; la LD 50 fue 2.24 mg/ml. En el test de Allium cepa L después de 72 h de tratamien to, la longitud de las raíces fueron 8.75; 10.35 y 23.75 mm con 3.2; 1.6 y 0.8 mg/ml de metabolitos antifúngicos respectivamente, con una EC 50 de 0.078 mg/ml. Después de 144 h la EC 50 fue 4.11 mg/ml. Solamente con 3.2 mg/ml de metabolitos fue ron observadas aberraciones cromosómicas, vacualización y descentralización de los núcleos en las células de Allium cepa L. No se observaron micronúcleos. Bajo las condiciones experimentales, las concentraciones de metaboli tos antifúngicos ensayadas son consideradas no tóxicas.

  7. Discriminant Analysis and Secondary-Beam Charge Recognition

    CERN Document Server

    Lukasik, J; Aumann, T; Bacri, C O; Barczyk, T; Bassini, R; Bianchin, S; Boiano, C; Botvina, A S; Boudard, A; Brzychczyk, J; Chbihi, A; Cibor, J; Czech, B; Ducret, J -E; Emling, H; Frankland, J; Hellström, M; Henzlova, D; Imme, G; Iori, I; Johansson, H; Kezzar, K; Lafriakh, A; Le Fèvre, A; Gentil, E Le; Leifels, Y; Lühning, J; Lynch, W G; Lynen, U; Majka, Z; Mocko, M; Müller, W F J; Mykulyak, A; De Napoli, M; Orth, H; Otte, A N; Palit, R; Pawlowski, P; Pullia, A; Raciti, G; Rapisarda, E; Sann, H; Schwarz, C; Sfienti, C; Simon, H; Sümmerer, K; Trautmann, W; Tsang, M B; Verde, G; Volant, C; Wallace, M; Weick, H; Wiechula, J; Wieloch, A; Zwieglinski, B

    2007-01-01

    The discriminant-analysis method has been applied to optimize the exotic-beam charge recognition in a projectile fragmentation experiment. The experiment was carried out at the GSI using the fragment separator (FRS) to produce and select the relativistic secondary beams, and the ALADIN setup to measure their fragmentation products following collisions with Sn target nuclei. The beams of neutron poor isotopes around 124La and 107Sn were selected to study the isospin dependence of the limiting temperature of heavy nuclei by comparing with results for stable 124Sn projectiles. A detector to measure the projectile charge upstream of the reaction target was not used, and alternative methods had to be developed. The presented method, based on the multivariate discriminant analysis, allowed to increase the efficacy of charge recognition up to about 90%, which was about 20% more than achieved with the simple scalar methods.

  8. NASTRAN nonlinear vibration analysis of beam and frame structures

    Science.gov (United States)

    Mei, C.; Rogers, J. L., Jr.

    1975-01-01

    A capability for the nonlinear vibration analysis of beam and frame structures suitable for use with NASTRAN level 15.5 is described. The nonlinearity considered is due to the presence of axial loads induced by longitudinal end restraints and lateral displacements that are large compared to the beam height. A brief discussion is included of the mathematical analysis and the geometrical stiffness matrix for a prismatic beam (BAR) element. Also included are a brief discussion of the equivalent linearization iterative process used to determine the nonlinear frequency, the required modifications to subroutines DBAR and XMPLBD of the NASTRAN code, and the appropriate vibration capability, four example problems are presented. Comparisons with existing experimental and analytical results show that excellent accuracy is achieved with NASTRAN in all cases.

  9. In-beam activation analysis facility at MLZ, Garching

    Energy Technology Data Exchange (ETDEWEB)

    Révay, Zs., E-mail: zsolt.revay@frm2.tum.de [Heinz Maier-Leibniz Zentrum (MLZ), Technische Universität München, 85748 Garching (Germany); Kudějová, P.; Kleszcz, K.; Söllradl, S. [Heinz Maier-Leibniz Zentrum (MLZ), Technische Universität München, 85748 Garching (Germany); Genreith, Christoph [Heinz Maier-Leibniz Zentrum (MLZ), Technische Universität München, 85748 Garching (Germany); Institute of Energy and Climate Research, IEK-6: Nuclear Waste and Reactor Safety Fuel Cycle, Forschungszentrum Jülich GmbH in der Helmholtz-Gemeinschaft, 52428 Jülich (Germany)

    2015-11-01

    The reconstruction of the prompt gamma activation analysis facility and the construction of the new low-background counting chamber at MLZ, Garching is presented. The improvement of the shielding and its effect on the radiation background is shown. The setting up and the fine-tuning of the electronics and their characterization are also discussed. The upgraded facility has been demonstrated to be applicable for both PGAA and neutron activation analysis using in-beam activation and decay counting in the low-background counting chamber. - Highlights: • Radiation background at the PGAA facility was efficiently reduced. • In-beam irradiation facility in the strongest neutron beam. • The best signal-to-background ratio at a PGAA facility was achieved.

  10. Rapid Process to Generate Beam Envelopes for Optical System Analysis

    Science.gov (United States)

    Howard, Joseph; Seals, Lenward

    2012-01-01

    The task of evaluating obstructions in the optical throughput of an optical system requires the use of two disciplines, and hence, two models: optical models for the details of optical propagation, and mechanical models for determining the actual structure that exists in the optical system. Previous analysis methods for creating beam envelopes (or cones of light) for use in this obstruction analysis were found to be cumbersome to calculate and take significant time and resources to complete. A new process was developed that takes less time to complete beam envelope analysis, is more accurate and less dependent upon manual node tracking to create the beam envelopes, and eases the burden on the mechanical CAD (computer-aided design) designers to form the beam solids. This algorithm allows rapid generation of beam envelopes for optical system obstruction analysis. Ray trace information is taken from optical design software and used to generate CAD objects that represent the boundary of the beam envelopes for detailed analysis in mechanical CAD software. Matlab is used to call ray trace data from the optical model for all fields and entrance pupil points of interest. These are chosen to be the edge of each space, so that these rays produce the bounding volume for the beam. The x and y global coordinate data is collected on the surface planes of interest, typically an image of the field and entrance pupil internal of the optical system. This x and y coordinate data is then evaluated using a convex hull algorithm, which removes any internal points, which are unnecessary to produce the bounding volume of interest. At this point, tolerances can be applied to expand the size of either the field or aperture, depending on the allocations. Once this minimum set of coordinates on the pupil and field is obtained, a new set of rays is generated between the field plane and aperture plane (or vice-versa). These rays are then evaluated at planes between the aperture and field, at a

  11. Use of Iba Techniques to Characterize High Velocity Thermal Spray Coatings

    Science.gov (United States)

    Trompetter, W.; Markwitz, A.; Hyland, M.

    Spray coatings are being used in an increasingly wide range of industries to improve the abrasive, erosive and sliding wear of machine components. Over the past decade industries have moved to the application of supersonic high velocity thermal spray techniques. These coating techniques produce superior coating quality in comparison to other traditional techniques such as plasma spraying. To date the knowledge of the bonding processes and the structure of the particles within thermal spray coatings is very subjective. The aim of this research is to improve our understanding of these materials through the use of IBA techniques in conjunction with other materials analysis techniques. Samples were prepared by spraying a widely used commercial NiCr powder onto substrates using a HVAF (high velocity air fuel) thermal spraying technique. Detailed analysis of the composition and structure of the power particles revealed two distinct types of particles. The majority was NiCr particles with a significant minority of particles composing of SiO2/CrO3. When the particles were investigated both as raw powder and in the sprayed coating, it was surprising to find that the composition of the coating meterial remained unchanged during the coating process despite the high velocity application.

  12. Boron-10 prompt gamma analysis using a diffracted neutron beam

    International Nuclear Information System (INIS)

    A prompt gamma neutron activation analysis (PGNAA) facility has been built at the 5 MW MITR-II Research Reactor to support the ongoing boron neutron capture therapy (NCT) program. This facility is used to determine the concentration of B-10 in NCT relevant samples such as blood and urine. The B-10 concentration is needed to determine the radiation doses that tumor and healthy brain receive during neutron irradiation of a patient. Assaying for B-10 by PGNAA has several advantages over conventional chemical methods. It is rapid, accurate, nondestructive (allowing for re-analysis), inexpensive, sensitive (ppm level), generally independent of the chemical or physical matrix of the B-10, and does not require chemical manipulations of the sample. The authors goal was to build an inexpensive facility with a suitably high thermal neutron flux for PGNAA and a low level of photon and fast neutron contamination. Their design is unique in that it uses a diffracted beam. Most prompt gamma facilities use direct beams; these beams have a high thermal flux (> 107 n/cm2-sec), but are heavily contaminated with protons and fast neutrons. Other prompt gamma facilities use totally reflecting guide tubes; these beams have little contamination, but are expensive. The high thermal flux of direct beam facilities might not be an advantage since the detector usually must be moved further away from the sample to avoid high dead times in the multichannel analyzer

  13. Evaluation and calculation of charged particle nuclear data for ion beam materials analysis

    International Nuclear Information System (INIS)

    The needs of the IBA community in charged particle nuclear data are briefly reviewed. The recent results obtained in the evaluation of the cross sections for IBA are presented and the problems which should be resolved in order to establish a reliable basis for the IBA analytical work are discussed. It is shown that evaluating cross sections by combining a large number of different data sets in the framework of the theoretical model enables excitation functions for analytical purposes to be calculated for any scattering angle, with reliability exceeding that of any individual measurement. The ways to provide the IBA community with a reliable source of the nuclear data are outlined. (author)

  14. Fracture analysis of HFIR beam tube caused by radiation embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.J. [Oak Ridge National Lab., TN (United States). Research Reactors Div.

    1994-12-31

    With an attempt to estimate the neutron beam tube embrittlement condition for the Oak Ridge High Flux Isotope Reactor (HFIR), fracture mechanics calculations are carried out in this paper. The analysis provides some numerical result on how the tube has been structurally weakened. In this calculation, a lateral impact force is assumed. Numerical result is obtained on how much the critical crack size should be reduced if the beam tube has been subjected to an extended period of irradiation. It is also calculated that buckling strength of the tube is increased, not decreased, with irradiation.

  15. Inhomogeneous distribution of Iba-1 characterizes microglial pathology in Alzheimer's disease.

    Science.gov (United States)

    Tischer, Jasmin; Krueger, Martin; Mueller, Wolf; Staszewski, Ori; Prinz, Marco; Streit, Wolfgang J; Bechmann, Ingo

    2016-09-01

    Microglial dystrophy has recently been described as a morphological phenotype of microglia that differs from resting and activated states by spheroid formation and cytorrhexis. In thick sections immunolabeled for HLA-DR or Iba-1 dystrophic microglial processes lose their typical, homogeneous staining pattern and appear to be fragmented or clustered. In this study, we performed double immunofluorescence and electron microscopy to determine if this labeling pattern indeed reflects complete separation of microglial processes from the soma. Using Iba-1/CD68 and Iba-1/MHC class II, as microglial markers, we observed that isolated Iba-1 fragments were still connected to each other by segments of the microglial process immune positive for CD68 or MHC class II. Ultrathin serial sections of two Iba-1 fragments which appeared to be disconnected from each other at the light microscopical level revealed a still existing "bridge" with a diameter of around 0.182 µm. Therefore, microglial dystrophy may reflect alterations of the cytoskeleton ultimately leading to slow cytorrhexis. GLIA 2016;64:1562-1572. PMID:27404378

  16. Finite Element Analysis of a Natural Fiber (Maize Composite Beam

    Directory of Open Access Journals (Sweden)

    D. Saravana Bavan

    2013-01-01

    Full Text Available Natural fiber composites are termed as biocomposites or green composites. These fibers are green, biodegradable, and recyclable and have good properties such as low density and low cost when compared to synthetic fibers. The present work is investigated on the finite element analysis of the natural fiber (maize composite beam, processed by means of hand lay-up method. Composite beam material is composed of stalk-based fiber of maize and unsaturated polyester resin polymer as matrix with methyl ethyl ketone peroxide (MEKP as a catalyst and Cobalt Octoate as a promoter. The material was modeled and resembled as a structural beam using suitable assumption and analyzed by means of finite element method using ANSYS software for determining the deflection and stress properties. Morphological analysis and X-ray diffraction (XRD analysis for the fiber were examined by means of scanning electron microscope (SEM and X-ray diffractometer. From the results, it has been found that the finite element values are acceptable with proper assumptions, and the prepared natural fiber composite beam material can be used for structural engineering applications.

  17. Shallow gas cloud illumination analysis by the focal beam method

    Science.gov (United States)

    Latiff, Abdul Halim Abdul

    2016-02-01

    This research will address the illumination issue of seismic data below a shallow gas cloud, also known as shallow gas accumulation. In general, poor and distorted seismic data underneath gas zones depend on four major factors; namely the velocity of the gas zones, the depth of the target reflector, the location of the source and the receiver during seismic acquisition, and the frequency of the seismic signals. These factors will be scrutinized in detail by using the focal beam method. The focal beam method incorporates the double focusing concept in order to obtain two important attributes for illumination analysis: (i) Resolution function beam, (ii) amplitude versus ray parameter (AVP) imprint, which is obtained by transforming the modelled data into the radon domain. Both illumination attributes are then applied to a gas-affected field in the Malaysia Basin. The results show well-defined illumination beneath the shallow anomalies and provide a better representation of the subsurface.

  18. A mass sensitivity analysis of lunar orbiting beam power systems

    Science.gov (United States)

    Stavnes, Mark W.; Cull, Ronald C.

    1991-01-01

    At NASA Lewis Research Center, the feasibility of beaming power from orbiting satellites to the surface of the moon was studied. Reference microwave and laser beam power concepts were found to be 1/3 to 1/6 the mass of surface solar systems. Further analysis was performed to determine the sensitivity of the reference concepts to technology performance levels and mission architecture scenarios, such as beaming to multiple surface sites and lunar rovers. Previous studies concluded that frequencies above 35 GHz for the microwave systems were not critical for reducing the main base mass; however, when multiple sites and rovers are considered, this may become necessary. In addition, for the laser system, the pointing accuracy of the satellites becomes a critical factor for rover applications. These issues and other important results of the parametric studies, are discussed.

  19. Nonlinear finite element analysis of steel-concrete composite beams

    Institute of Scientific and Technical Information of China (English)

    QIU Wen-liang; JIANG Meng

    2005-01-01

    Proposes a simplified finite element model for steel-concrete composite beams. The effects of slip can be taken into account by creating a special matrix of shear connector stiffness and using the iteration method.Meanwhile, the effect of material non-linearity of steel and concrete on rigidity and strength of composite beams is considered. With the age-adjusted effective modulus method, the analysis for the whole process of shrinkage and creep under long-term load can be performed. The ultimate load, deflection, stress and slip of continuous composite beams under short-term and long-term load are computed using the proposed finite element model.The numerical results are compared with the experimental results and existing values based on other numerical methods, and are found to be in good agreement.

  20. lon beam analysis of Brazilian coffee

    International Nuclear Information System (INIS)

    Full text: Coffee is one of the most popular and consumed beverages worldwide. Consumers can make the beverage from different types of coffee such as ground coffee, instant coffee or grinding roasted coffee beans. Each type of coffee leads to different characteristics in flavor and scent. The aim of this work is to perform an elemental analysis of ground coffee and roasted coffee beans. To that end, eight popular Brazilian ground coffee brands have been chosen to make a comparative study among brands. One of these brands was selected for a complete study of the beverage preparation process. This same brand offers packages of roasted coffee beans, which allowed the elemental comparison between ground coffee and roasted coffee beans. Roasted coffee beans were ground with a pestle and mortar. The beverage was prepared using a typical coffee pot. The spent and liquid coffees were submitted to a heat treatment and subsequently homogenized and pressed into pellets. The filters used in the coffee pot were analyzed as well. For micro-PIXE studies, coffee beans were cut in different parts for analysis. Samples of ground coffee and roasted coffee beans (grind) were analyzed by PIXE, while light elements like C, O and N were analyzed by RBS (Rutherford Backscattering Spectrometry). The roasted coffee beans were analyzed by micro-PIXE to check the elemental distribution in the beans. The elements found in powder coffee were Mg, AI, Si, P, S, CI, K, Ca, Ti, Mn, Fe, Cu, Zn and Rb. Potassium is the element with higher concentration, while Ti and Zn are trace elements. AI, Si and Ti showed the same concentration for all brands. Potassium and chlorine have high solubility, and about 80% of their concentration is transferred from the powder to the beverage during the infusion. Mg, P, CI, K, Mn, Fe, Zn and Rb showed significant variation between ground coffee and roasted coffee beans. The elemental maps show that potassium and phosphorus are correlated, and iron appears in particular

  1. Ion beam analysis of gold jewelry

    Science.gov (United States)

    Demortier, Guy

    1992-02-01

    PIXE milliprobe in a nonvacuum assembly has been proven to be a very rapid and accurate method for the elemental analysis of gold jewelry artefacts. Using protons whose energy is lower than 3 MeV, it is possible to obtain, in a few minutes, the actual composition (copper, iron, gold, silver, etc.) of narrow parts of artefacts, without any sampling, even at microscopic level. Most of the studies of our group in this field concern solders on these jewelry items. Narrow regions of gold artefacts have also been studied with a PIXE microprobe. They were then irradiated in vacuum. Nuclear reaction analyses induced by 2 MeV deuterons are also performed to identify the presence of light elements and, particularly O, N and S. Traces of these elements are of primary importance to characterize the origin of the ores used in various workmanships. Interferences of X-ray lines of Au with those of traces of Cu and Zn are solved using a method of selective excitation of X-rays of these elements. Analytical results have been interpreted in order to understand the workmanship of goldsmiths from the Antiquity. Fakes and repairs (or ornaments added to original artefacts) may also be identified. The ancient recipes are improved to give new soldering procedures at low temperature.

  2. Numerical analysis of the beam quality and spectrum of wavelength-beam-combined laser diode arrays

    Science.gov (United States)

    Tang, Xuan; Wang, Xiao-Jun; Ke, Wei-Wei

    2015-02-01

    In this paper, a numerical model is presented to simulation the performance of the wavelength-beam-combined laser diode arrays (LDA) system. The eigen mode expansion method is used to describe the two-dimensional optical amplification and the strength of field feedback of external cavity. To describe the mode competition in laser diodes, the gain saturation effect is considered. The two-dimension distributions of the carrier concentration, recombination rates, and optical gain are calculated for solving the laser dynamic equation. The Fresnel integration, grating equation and mode overlap integration are used to obtain the feedback coefficient of extent cavity diffraction. Quantum noise is considered to evaluate the spectral linewidth of semiconductor laser. Based on the numerical model, the impact of the mutual optical feedback on the beam quality and spectrum of the LDA is present and analysis.

  3. Vibrational Energy Flow Analysis of Corrected Flexural Waves in Timoshenko Beam – Part II: Application to Coupled Timoshenko Beams

    Directory of Open Access Journals (Sweden)

    Young-Ho Park

    2006-01-01

    Full Text Available This paper presents the methodology for the energy flow analysis of coupled Timoshenko beam structures and various numerical applications to verify the developed methodology. To extend the application of the energy flow model for corrected flexural waves in the Timoshenko beam, which is developed in the other companion paper, to coupled structures, the wave transmission analyses of general coupled Timoshenko beam systems are performed. First, power transmission and reflection coefficients for all kinds of propagating waves in the general, coupled Timoshenko beam structures are derived by the wave transmission approach. In numerical applications, the energy flow solutions using the derived coefficients agree well with the classical solutions for various exciting frequencies, damping loss factors, and coupled Timoshenko beam structures. Additionally, the numerical results for the Timoshenko beam are compared with those for the Euler-Bernoulli beam.

  4. Radiation Shielding Analysis of Electron Beam Accelerator Facility

    International Nuclear Information System (INIS)

    The objective of this technical report are to establish the radiation shielding technology of a high-energy electron accelerator to the facilities which utilize with electron beam. The technologies of electron beam irradiation(300 KeV -10 MeV) demand on the diverse areas of material processing, surface treatment, treatments on foods or food processing, improvement of metal properties, semiconductors, and ceramics, sterilization of medical goods and equipment, treatment and control of contamination and pollution, and so on. In order to acquire safety design for the protection of personnel from the radiations produced by electron beam accelerators, it is important to develop the radiation shielding analysis technology. The shielding analysis are carried out by which define source term, calculation modelling and computer calculations for 2 MeV and 10 MeV accelerators. And the shielding analysis for irradiation dump shield with 10 MeV accelerators are also performed by solving the complex 3-D geometry and long computer run time problem. The technology development of shielding analysis will be contributed to extend the further high energy accelerator development

  5. Free Vibration Analysis for Cracked FGM Beams by Means of a Continuous Beam Model

    OpenAIRE

    E Chuan Yang; Xiang Zhao; Ying Hui Li

    2015-01-01

    Based on Euler-Bernoulli beam theory and a continuous stiffness beam model, the free vibration of rectangular-section beams made of functionally graded materials (FGMs) containing open edge cracks is studied. Assuming the material gradients follow exponential distribution along beam thickness direction, the conversion relation between the vibration governing equations of a FGM beam and that of an isotropic homogenous beam is deduced. A continuous function is used to characterize the bending s...

  6. Ion Beam Analysis for the provenance attribution of lapis lazuli used in glyptic art: The case of the “Collezione Medicea”

    International Nuclear Information System (INIS)

    The first part of this study reports on the wide campaign for the extension of the database of both trace and minor elements concentration in diopside by means of μ-PIXE measurements and of luminescence spectra in diopside and wollastonite by means of μ-IL measurements. Diopside and wollastonite are actually two of the most common lapis lazuli-forming minerals. For this former part of the study, we analysed rocks of known provenance at the microbeam line of the LNL laboratories in Legnaro (PD) of the Istituto Nazionale di Fisica Nucleare (INFN). The latter part of the paper is dedicated to the non-invasive Ion Beam Analyses (IBA) characterisation of six pieces of the “Collezione Medicea”. The collection is exhibited at the Museum of Natural History (University of Firenze) and belonged to the Medici family. It includes artworks made of lapis lazuli manufactured in the 16th and 17th centuries but there is not precise information about the provenance of the used raw material. Results on the artworks show, as expected, that the Chilean provenance of the material used for the analysed artworks has to be excluded. Lapis lazuli used for five of the analysed artworks can be ascribed to the Afghan quarry district, while one object cannot be attributed only on the base of diopside and wollastonite analysis

  7. Ion Beam Analysis for the provenance attribution of lapis lazuli used in glyptic art: The case of the “Collezione Medicea”

    Energy Technology Data Exchange (ETDEWEB)

    Re, Alessandro, E-mail: alessandro.re@unito.it [Dipartimento di Fisica, Università di Torino & INFN Sezione di Torino, Via Giuria 1, 10125 Torino (Italy); Angelici, Debora [Dipartimento di Fisica, Università di Torino & INFN Sezione di Torino, Via Giuria 1, 10125 Torino (Italy); Dipartimento di Scienze della Terra, Università di Torino, Via Valperga Caluso 35, 10125 Torino (Italy); Lo Giudice, Alessandro; Corsi, Jacopo; Allegretti, Silvia; Biondi, Alessia Fabiola; Gariani, Gianluca [Dipartimento di Fisica, Università di Torino & INFN Sezione di Torino, Via Giuria 1, 10125 Torino (Italy); Calusi, Silvia [Dipartimento di Fisica, Università di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Firenze (Italy); INFN Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Firenze (Italy); Gelli, Nicla [INFN Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Firenze (Italy); Giuntini, Lorenzo [Dipartimento di Fisica, Università di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Firenze (Italy); INFN Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Firenze (Italy); Massi, Mirko; Taccetti, Francesco [INFN Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Firenze (Italy); La Torre, Leonardo; Rigato, Valentino [INFN Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Pratesi, Giovanni [Museo di Storia Naturale, Università di Firenze, Via G. La Pira 4, 50121 Firenze (Italy)

    2015-04-01

    The first part of this study reports on the wide campaign for the extension of the database of both trace and minor elements concentration in diopside by means of μ-PIXE measurements and of luminescence spectra in diopside and wollastonite by means of μ-IL measurements. Diopside and wollastonite are actually two of the most common lapis lazuli-forming minerals. For this former part of the study, we analysed rocks of known provenance at the microbeam line of the LNL laboratories in Legnaro (PD) of the Istituto Nazionale di Fisica Nucleare (INFN). The latter part of the paper is dedicated to the non-invasive Ion Beam Analyses (IBA) characterisation of six pieces of the “Collezione Medicea”. The collection is exhibited at the Museum of Natural History (University of Firenze) and belonged to the Medici family. It includes artworks made of lapis lazuli manufactured in the 16{sup th} and 17{sup th} centuries but there is not precise information about the provenance of the used raw material. Results on the artworks show, as expected, that the Chilean provenance of the material used for the analysed artworks has to be excluded. Lapis lazuli used for five of the analysed artworks can be ascribed to the Afghan quarry district, while one object cannot be attributed only on the base of diopside and wollastonite analysis.

  8. Analysis of electron current instability in E-beam writer

    Czech Academy of Sciences Publication Activity Database

    Bok, Jan; Horáček, Miroslav; Král, Stanislav; Kolařík, Vladimír; Matějka, František

    Ostrava : TANGER Ltd, 2012, s. 295-299. ISBN 978-80-87294-32-1. [NANOCON 2012. International Conference /4./. Brno (CZ), 23.10.2012-25.10.2012] R&D Projects: GA MŠk ED0017/01/01; GA TA ČR TE01020118; GA MPO FR-TI1/576 Institutional support: RVO:68081731 Keywords : electron beam * current measurement * current drift and noise * fourier analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  9. Analysis of dose distribution in depth for orthovoltage beams

    International Nuclear Information System (INIS)

    This paper presents measures of dose depth distribution for orthovoltage potential (80, 120, 180, 200 and 250 kV) to be one more tool to help the team choose the potential to be used in therapy. The values of half value layer (HVL) and effective energy of the beam for each potential used are presented, also the values found in the last two years, to make a better analysis about the curves obtained for percentage depth dose (PDD). (author)

  10. Finite element analysis of FRP-strengthened RC beams

    Directory of Open Access Journals (Sweden)

    Teeraphot Supaviriyakit

    2004-05-01

    Full Text Available This paper presents a non-linear finite element analysis of reinforced concrete beam strengthened with externally bonded FRP plates. The finite element modeling of FRP-strengthened beams is demonstrated. Concrete and reinforcing bars are modeled together as 8-node isoparametric 2D RC element. The FRP plate is modeled as 8-node isoparametric 2D elastic element. The glue is modeled as perfect compatibility by directly connecting the nodes of FRP with those of concrete since there is no failure at the glue layer. The key to the analysis is the correct material models of concrete, steel and FRP. Cracks and steel bars are modeled as smeared over the entire element. Stress-strain properties of cracked concrete consist of tensile stress model normal to crack, compressive stress model parallel to crack and shear stress model tangential to crack. Stressstrain property of reinforcement is assumed to be elastic-hardening to account for the bond between concrete and steel bars. FRP is modeled as elastic-brittle material. From the analysis, it is found that FEM can predict the load-displacement relation, ultimate load and failure mode of the beam correctly. It can also capture the cracking process for both shear-flexural peeling and end peeling modes similar to the experiment.

  11. A molecular beam/quadrupole mass spectrometer system with synchronized beam modulation and digital waveform analysis

    Science.gov (United States)

    Pellett, G. L.; Adams, B. R.

    1983-01-01

    A performance evaluation is conducted for a molecular beam/mass spectrometer (MB/MS) system, as applied to a 1-30 torr microwave-discharge flow reactor (MWFR) used in the formation of the methylperoxy radical and a study of its subsequent destruction in the presence or absence of NO(x). The modulated MB/MS system is four-staged and differentially pumped. The results obtained by the MWFR study is illustrative of overall system performance, including digital waveform analysis; significant improvements over previous designs are noted in attainable S/N ratio, detection limit, and accuracy.

  12. External-PIXE analysis for the study of pigments from a painting from the Museum of Contemporary Art

    Energy Technology Data Exchange (ETDEWEB)

    Rizzutto, M.A., E-mail: rizzutto@if.usp.br [Institute of Physics, University of São Paulo, SP 05508-090 (Brazil); Moro, M.V.; Silva, T.F.; Trindade, G.F.; Added, N.; Tabacniks, M.H.; Kajiya, E.M.; Campos, P.H.V. [Institute of Physics, University of São Paulo, SP 05508-090 (Brazil); Magalhães, A.G.; Barbosa, M. [Museum of Contemporary Art, University of São Paulo, SP 05508-090 (Brazil)

    2014-08-01

    External Ion Beam Analysis is a useful tool for the characterization of cultural heritage objects. During the last decade, several significant collaborations have been established between Ion Beam Analysis (IBA) scientists and art or archeology professionals, demanding in-air IBA for a variety of different cultural heritage objects. In-air Particle Induced X-ray Emission (PIXE) analyses of an oil painting by the Italian painter, Mario Sironi, from the Museum of Contemporary Art of the University of São Paulo (MAC-USP), were examined. This painting is particularly interesting due to paintings on both sides (oil on canvas on the front and oil on wood on the back side). PIXE analysis helped the identification of the pigment similarities on both sides of the painting, suggesting the same authorship.

  13. External-PIXE analysis for the study of pigments from a painting from the Museum of Contemporary Art

    International Nuclear Information System (INIS)

    External Ion Beam Analysis is a useful tool for the characterization of cultural heritage objects. During the last decade, several significant collaborations have been established between Ion Beam Analysis (IBA) scientists and art or archeology professionals, demanding in-air IBA for a variety of different cultural heritage objects. In-air Particle Induced X-ray Emission (PIXE) analyses of an oil painting by the Italian painter, Mario Sironi, from the Museum of Contemporary Art of the University of São Paulo (MAC-USP), were examined. This painting is particularly interesting due to paintings on both sides (oil on canvas on the front and oil on wood on the back side). PIXE analysis helped the identification of the pigment similarities on both sides of the painting, suggesting the same authorship

  14. Nonlinear Finite Element Analysis of FRP Strengthened Reinforced Concrete Beams

    Science.gov (United States)

    Sasmal, S.; Kalidoss, S.; Srinivas, V.

    2012-12-01

    This paper focuses on nonlinear analysis of parent and fiber reinforced polymer (FRP) strengthened reinforced concrete (RC) beam using general purpose finite element software, ANSYS. Further, it is aimed to investigate the suitability of different elements available in ANSYS library to represent FRP, epoxy and interface. 3-D structural RC solid element has been used to model concrete and truss element is employed for modeling the reinforcements. FRP has been modelled using 3-D membrane element and layered element with number of layers, epoxy is modelled using eight node brick element, and eight node layered solid shell is used to mathematically represent the concrete-FRP interface behavior. Initially, the validation of the numerical model for the efficacy of different elements (SOLID65 for concrete and LINK8 for reinforcement) and material models is carried out on the experimental beam reported in literature. The validated model, elements and material properties is used to evaluate the load-displacement and load-strain response behavior and crack patterns of the FRP strengthened RC beams. The numerical results indicated that significant improvement in the displacement in the strengthened RC beams with the advancement of cracks. The study shows that FRP with shell elements is recommended when single layer of FRP is used. When multi layered FRP is used, solid layered element can be a reasonably good choice whereas the epoxy matrix with linear solid element does not need further complicated model. Interfacial element makes the analysis minimally improved at the cost of complicated modeling issues and considerable computation time. Hence, for nonlinear analysis of usual strengthened structures, unless it is specifically required for, interface element may not be required and a full contact can be assumed at interface.

  15. Automated analysis for detecting beams in laser wakefield simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela M.; Rubel, Oliver; Prabhat, Mr.; Weber, Gunther H.; Bethel, E. Wes; Aragon, Cecilia R.; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Hamann, Bernd; Messmer, Peter; Hagen, Hans

    2008-07-03

    Laser wakefield particle accelerators have shown the potential to generate electric fields thousands of times higher than those of conventional accelerators. The resulting extremely short particle acceleration distance could yield a potential new compact source of energetic electrons and radiation, with wide applications from medicine to physics. Physicists investigate laser-plasma internal dynamics by running particle-in-cell simulations; however, this generates a large dataset that requires time-consuming, manual inspection by experts in order to detect key features such as beam formation. This paper describes a framework to automate the data analysis and classification of simulation data. First, we propose a new method to identify locations with high density of particles in the space-time domain, based on maximum extremum point detection on the particle distribution. We analyze high density electron regions using a lifetime diagram by organizing and pruning the maximum extrema as nodes in a minimum spanning tree. Second, we partition the multivariate data using fuzzy clustering to detect time steps in a experiment that may contain a high quality electron beam. Finally, we combine results from fuzzy clustering and bunch lifetime analysis to estimate spatially confined beams. We demonstrate our algorithms successfully on four different simulation datasets.

  16. Automated analysis for detecting beams in laser wakefield simulations

    International Nuclear Information System (INIS)

    Laser wakefield particle accelerators have shown the potential to generate electric fields thousands of times higher than those of conventional accelerators. The resulting extremely short particle acceleration distance could yield a potential new compact source of energetic electrons and radiation, with wide applications from medicine to physics. Physicists investigate laser-plasma internal dynamics by running particle-in-cell simulations; however, this generates a large dataset that requires time-consuming, manual inspection by experts in order to detect key features such as beam formation. This paper describes a framework to automate the data analysis and classification of simulation data. First, we propose a new method to identify locations with high density of particles in the space-time domain, based on maximum extremum point detection on the particle distribution. We analyze high density electron regions using a lifetime diagram by organizing and pruning the maximum extrema as nodes in a minimum spanning tree. Second, we partition the multivariate data using fuzzy clustering to detect time steps in a experiment that may contain a high quality electron beam. Finally, we combine results from fuzzy clustering and bunch lifetime analysis to estimate spatially confined beams. We demonstrate our algorithms successfully on four different simulation datasets

  17. Effects of IBA and Putrescine on Root Formation of Olive Cuttings

    Directory of Open Access Journals (Sweden)

    Elham Aslmoshtaghi

    2014-11-01

    Full Text Available 800x600 Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Normal 0 21 false false false HR X-NONE X-NONE MicrosoftInternetExplorer4 Semi-hardwood cuttings of olive cv. ‘Tokhmkabki’ (low rooting ability and cv. ‘Roghani’ (high rooting ability were obtained from 1-year-old shoots. Cuttings were dipped in 2000, 4000, and 6000 mg L-1 IBA, 150 or 300 mg L-1 putrescine and their combination before rooting in greenhouse equipped with an automatic mist system. Rooting ability was evaluated four months after planting for each treatment. Satisfactory rooting occurred when IBA was applied with putrescine, whereas cuttings treated with IBA or putrescine alone showed a limited capacity of rooting in both cultivars. The greatest rooting percentage for cv. ‘Roghani’ was detected when IBA at 4000 mg∙L-1 + putrescine 300 at mg∙L-1, IBA at 4000 mg∙L-1 + putrescine at 150 mg∙L-1 were applied. For cv. ‘Tokhmkabki’ the most successful treatments were IBA at 6000 mg∙L-1 + putrescine at 150 mg∙L-1 and IBA at 6000 mg∙L-1 + putrescine at 300 mg L-1. The current findings confirm that putrescine can be a useful substance for increasing rooting percentage and root quality in cuttings of olive cultivars. Normal 0 21 false false false HR X-NONE X-NONE Analysis of reinforced concrete beams by the equivalent section method

    CERN Document Server

    Schulz, Mauro

    2014-01-01

    This research investigates the analysis of reinforced concrete beams subjected to combined axial load, bending moment and shear force. Cross-sections of general shape are divided, along the height, into plane elements. The biaxial behavior is represented according to the smeared rotating crack approach. Using traditionally accepted hypotheses for beams, the shear flow is determined by applying the Jouravski formula to an "equivalent section", which takes into account the nonlinear material behavior. The "Equivalent Section Method", originally proposed by Diaz (1980) and Diaz and Schulz (1981), is improved and simplified. The formulation is implemented applying the bidimensional constitutive model A, proposed by Vecchio and Collins (1993). The tension-stiffening effect is considered as adopted by Polak and Vecchio (1993). Shear slip at crack surfaces, Poisson's ratio and other secondary effects are not considered. Validation is undertaken by comparison with experimental results obtained by other researchers. T...

  18. Surface analysis by laser beam scanning and stereophotogrammetry

    Science.gov (United States)

    Aliverti, Andrea; Ferrigno, Giancarlo; Pedotti, Antonio

    1993-10-01

    The possibility to describe mathematically the body surfaces could improve diagnosis and objective evaluation of deformities, the follow up of progressive diseases and could represent a useful tool for other medical sectors as prosthetic and plastic surgery as well as for industrial applications where a real shape needs to be digitized and analyzed or modified mathematically. The approach here presented is based on the acquisition of a surface scanned by a laser beam. The 3D coordinates of the spot generated on the surface by the beam are obtained by an automatic image analyzer (ELITE system), originally developed for human motion analysis. The 3D coordinates are obtained by stereo-photogrammetry starting from at least two different view of the subject. A software package for graphic representation of the obtained surfaces has been developed and some preliminary results about some body shapes will be presented.

  19. Analysis of an ancient bronze statue by external beam pixe

    International Nuclear Information System (INIS)

    A quantitative analysis of an ancient Buddha statue was performed by external beam Proton Induced X-ray Emission for the purpose of identifying its originality. It is shown how the PIXE method can be applied for archeological study. The elemental composition of the statue is compared with that of several samples with definite ages. The experiment was performed by extracting 2.4 MeV proton beam through a 2 mm diameter collimator and 7.6 μm kapton foil to the He atmosphere. X-rays were measured by a Si(Li) detector. The analysed elements were Fe, Cu, Ag, Au and Hg for gold coating and Fe, Ni, Cu, Zn, As, Ag, Sn, Au, Pb and Bi for bronze body. (author) 11 refs.; 4 figs.; 2 tabs

  1. Model reduction and analysis of a vibrating beam microgyroscope

    KAUST Repository

    Ghommem, Mehdi

    2012-05-08

    The present work is concerned with the nonlinear dynamic analysis of a vibrating beam microgyroscope composed of a rotating cantilever beam with a tip mass at its end. The rigid mass is coupled to two orthogonal electrodes in the drive and sense directions, which are attached to the rotating base. The microbeam is driven by an AC voltage in the drive direction, which induces vibrations in the orthogonal sense direction due to rotation about the microbeam axis. The electrode placed in the sense direction is used to measure the induced motions and extract the underlying angular speed. A reduced-order model of the gyroscope is developed using the method of multiple scales and used to examine its dynamic behavior. © The Author(s) 2012 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Error analysis in post linac to driver linac transport beam line of RAON

    Science.gov (United States)

    Kim, Chanmi; Kim, Eun-San

    2016-07-01

    We investigated the effects of magnet errors in the beam transport line connecting the post linac to the driver linac (P2DT) in the Rare Isotope Accelerator in Korea (RAON). The P2DT beam line is bent by 180-degree to send the radioactive Isotope Separation On-line (ISOL) beams accelerated in Linac-3 to Linac-2. This beam line transports beams with multi-charge state 132Sn45,46,47. The P2DT beam line includes 42 quadrupole, 4 dipole and 10 sextupole magnets. We evaluate the effects of errors on the trajectory of the beam by using the TRACK code, which includes the translational and the rotational errors of the quadrupole, dipole and sextupole magnets in the beam line. The purpose of this error analysis is to reduce the rate of beam loss in the P2DT beam line. The distorted beam trajectories can be corrected by using six correctors and seven monitors.

  3. Adventitious rhizogenesis in Bambusa nutans and Bambusa tulda: Influence of seasonal variation, IBA and cutting type

    Institute of Scientific and Technical Information of China (English)

    S. Singh; S. Yadav; P. K. Patel; S.A.Ansari

    2011-01-01

    The influence of seasonal variation,indole-3-butyric acid (IBA) and type of cuttings wasexamined on induction and growth of adventitious roots in Bambusa nutans Wall.and Bambusa tulda Roxb.Singlenode culm and culm-branch cuttings from the mature culms were provided with immersion treatment for 24 h of either water (control) or 2 mM IBA in four different seasons,i.e.,spring (mid February),summer (mid May),rainy (mid July),and winter (mid November) and maintained for two months in the mist chamber at the relative humidity of (70±5)%and the temperature of (30±2)℃.In B.nutans,adventitious rooting occuffed in both types of cuttings in all the seasons with the best rooting in the summer season i.e.,May (88% in culm cuttings) and the least in winter.On the contrary,adventitious rooting was recorded only in culm cuttings in spring and summer season in B.tulda.IBA treatment significantly enhanced rooting,root number and root length; registering 14 to 17 times improvement over control in the best rooting season.Three factor- interactions (season × cutting type × IBA treatment) were significant for rooting in B.nutans and all characteristics,except sprouting in B.tulda.Thus,single-node culm and culm-branch cuttings in B.nutans and culm cuttings in B.tulda treated with 2 mM IBA during spring (February)to summer (May) season are recommended for their clonal multiplication.

  4. Ion-beam analysis of a medieval glass bottle excavated in Gyoer

    International Nuclear Information System (INIS)

    Complete text of publication follows. To the east of the historical downtown of Gyoer on the place of the former Wagon Factory an archaeological excavation lead by P. Tomka and E. Szoenyi was carried out in the years 2004-2005. At the site remnants from the Roman Period (1st-2nd c.), and from various periods of the Middle Ages (10th-15th c.) came to light. From a storage pit (feature Nr. 259.) pieces of a glass bottle were saved. The bottle was completely restored. It is 18 cm tall, transparent: the well preserved material has a greenish tint (see fig. 1.). Intact or complete pieces of medieval glass bottles are almost unknown in Hungary. Similar bottlenecks were unearthed in Buda not only on the territory of the former Royal Castle but also in the town. A depot-found, which could be a ware stock of a merchant perished in a fire, was saved in Fortuna Street, Buda. The sloping shoulder and biconical body of these bottles are different from the bottle from Gyoer. The 'goiter necked' glass bottles were spread in large areas of Southern and Central Europe. The closest parallels to the piece from Gyoer can be found in Austria (Vienna) in Moravia (Brno) and a piece with unknown provenience (Milano). Further analogies can be cited from the Balkan Peninsula (Panik in Bosnia, Korinthos in Greece), from Italy (Cividale), from Germany (Landshut and Baunschweig) and from Switzerland (Basel). The find spots suggest that producing centres lay in Central Europe, but one has to keep in mind that luxury goods were transported pretty far in medieval times. According to the latest theories the predominance of early Byzantine glasses can be questioned and Italian production seems to be more important. The find from Gyoer can be dated with great probability to the 2nd half or to the end of the 13th century. Analytical characterization of the glass bottle was performed in ATOMKI. For the determination of the elemental concentrations two non-destructive ion beam analytical (IBA

  5. Beam propagation analysis of a multi-laser diode FSO system through free space

    International Nuclear Information System (INIS)

    In this paper beam propagation analysis of a multi-beam multi-collimator optical communication system through free space is studied. For this purpose, the propagation properties of Gaussian multi-beams through a multi-optical path including collimators in transmitters are studied and an analytical formula for intensity distribution is derived. The effects of beam divergence and beam separation distances on the propagation properties of Gaussian multi-beams are studied in detail by calculating the beam width and power in bucket (PIB). The analyses are illustrated by numerical examples

  6. PERFORMANCE ANALYSIS OF AZIMUTH ELECTRONIC BEAM STEERING MODE SPACEBORNE SAR

    Institute of Scientific and Technical Information of China (English)

    Han Xiaodong; Xu Wei; Han Xiaolei

    2013-01-01

    Pointing angle and pattern of the antenna can be changed swiftly to actualize the azimuth beam scanning by using electronic beam steering,which makes the Synthetic Aperture Radar (SAR)system more flexible and achieve a high resolution or cover a long strip within short time span.When the pointing angle is steered away from boresight,some aberrations may appear on the antenna pattern,e.g.,the grating lobe appears,the main lobe gain decrease,and antenna pattern broadens,e.g.,the aberrations result in the worsening of system performance,and complicate the corresponding performance analysis method.Conventional computation methods of performance parameters do not account for the rapid change of the antenna pattern.It introduces remarkable errors when the scanning angle is large.In this paper,a method of calculating performance parameters is proposed for the beam steering mode,which achieves the parameters by the energy accumulation in time domain.Actually,the proposed method simulates the working process of SAR and obtains accurate performance parameters.Furthermore,we analyze the effects of the grating lobe on the Azimuth Ambiguity to Signal Ratio (AASR),and present the generic Pulse Repetition Frequency (PRF) choosing principle which can also prevent the ambiguous area from weighting by the grating lobe.Finally,the effect of the antenna configuration on the performance parameters is analyzed by a system example.

  7. Ion Beam Analysis applied to laser-generated plasmas

    International Nuclear Information System (INIS)

    This paper presents the research activity on Ion Beam Analysis methods performed at Tandetron Laboratory (LT) of the Institute of Nuclear Physics AS CR, Rez, Czech Republic. Recently, many groups are paying attention to implantation by laser generated plasma. This process allows to insert a controllable amount of energetic ions into the surface layers of different materials modifying the physical and chemical properties of the surface material. Different substrates are implanted by accelerated ions from plasma through terawatt iodine laser, at nominal intensity of 1015 W/cm2, at the PALS Research Infrastructure AS CR, in the Czech Republic. This regime of the laser matter interaction generates, multi-MeV proton beams, and multi-charged ions that are tightly confined in time (hundreds ps) and space (source radius of a few microns). These ion beams have a much lower transverse temperature, a much shorter duration and a much higher current than those obtainable from conventional accelerators. The implementation of protons and ions acceleration driven by ultra-short high intensity lasers is exhibited by adopting suitable irradiation conditions as well as tailored targets. An overview of implanted targets and their morphological and structural characterizations is presented and discussed

  8. Ion Beam Analysis applied to laser-generated plasmas

    Science.gov (United States)

    Cutroneo, M.; Macková, A.; Havranek, V.; Malinsky, P.; Torrisi, L.; Kormunda, M.; Barchuk, M.; Ullschmied, J.; Dudzak, R.

    2016-04-01

    This paper presents the research activity on Ion Beam Analysis methods performed at Tandetron Laboratory (LT) of the Institute of Nuclear Physics AS CR, Rez, Czech Republic. Recently, many groups are paying attention to implantation by laser generated plasma. This process allows to insert a controllable amount of energetic ions into the surface layers of different materials modifying the physical and chemical properties of the surface material. Different substrates are implanted by accelerated ions from plasma through terawatt iodine laser, at nominal intensity of 1015 W/cm2, at the PALS Research Infrastructure AS CR, in the Czech Republic. This regime of the laser matter interaction generates, multi-MeV proton beams, and multi-charged ions that are tightly confined in time (hundreds ps) and space (source radius of a few microns). These ion beams have a much lower transverse temperature, a much shorter duration and a much higher current than those obtainable from conventional accelerators. The implementation of protons and ions acceleration driven by ultra-short high intensity lasers is exhibited by adopting suitable irradiation conditions as well as tailored targets. An overview of implanted targets and their morphological and structural characterizations is presented and discussed.

  9. Nonlinear Dynamical analysis of an AFM tapping mode microcantilever beam

    Directory of Open Access Journals (Sweden)

    Choura S.

    2012-07-01

    Full Text Available We focus in this paper on the modeling and dynamical analysis of a tapping mode atomic force microscopy (AFM microcantilever beam. This latter is subjected to a harmonic excitation of its base displacement and to Van der Waals and DMT contact forces at its free end. For AFM design purposes, we derive a mathematical model for accurate description of the AFM microbeam dynamics. We solve the resulting equations of motions and associated boundary conditions using the Galerkin method. We find that using one-mode approximation in tapping mode operating in the neighborhood of the contact region one-mode approximation may lead to erroneous results.

  10. Computer simulation of ion beam analysis of laterally inhomogeneous materials

    Science.gov (United States)

    Mayer, M.

    2016-03-01

    The program STRUCTNRA for the simulation of ion beam analysis charged particle spectra from arbitrary two-dimensional distributions of materials is described. The code is validated by comparison to experimental backscattering data from a silicon grating on tantalum at different orientations and incident angles. Simulated spectra for several types of rough thin layers and a chessboard-like arrangement of materials as example for a multi-phase agglomerate material are presented. Ambiguities between back-scattering spectra from two-dimensional and one-dimensional sample structures are discussed.

  11. Limit Analysis of 3D Reinforced Concrete Beam Elements

    DEFF Research Database (Denmark)

    Larsen, Kasper P.; Nielsen, Leif Otto; Poulsen, Peter Noe

    2012-01-01

    A new finite-element framework for lower-bound limit analysis of reinforced concrete beams, subjected to loading in three dimensions, is presented. The method circumvents the need for a direct formulation of a complex section-force-based yield criterion by creating a discrete representation of the...... Coulomb criterion is applied to the concrete stresses. The modified Coulomb criterion is approximated using second-order cone programming for improved performance over implementations using semidefinite programming. The element is verified by comparing the numerical results with analytical solutions....

  12. Beam lifetime measurement and analysis in Indus-2 electron storage ring

    Indian Academy of Sciences (India)

    Pradeep Kumar; A D Ghodke; Gurnam Singh

    2013-05-01

    In this paper, the beam lifetime measurement and its theoretical analysis are presented using measured vacuum pressure and applied radio frequency (RF) cavity voltage in Indus-2 electron storage ring at 2 GeV beam energy. Experimental studies of the effect of RF cavity voltage and bunched beam filling pattern on beam lifetime are also presented. An equation of stable beam current decay is evolved and this equation closely follows the observed beam current decay pattern. It shows that the beam is stable and the beam current decay is due to the beam–residual gas interaction (vacuum lifetime) and electron–electron interaction within a bunch (Touschek lifetime). The estimated vacuum, Touschek and total beam lifetimes from analytical formulations are also compared with the measured beam lifetime.

  13. Beam dynamics analysis in pulse compression using electron beam compact simulator for Heavy Ion Fusion

    Directory of Open Access Journals (Sweden)

    Kikuchi Takashi

    2013-11-01

    Full Text Available In a final stage of an accelerator system for heavy ion inertial fusion (HIF, pulse shaping and beam current increase by bunch compression are required for effective pellet implosion. A compact simulator with an electron beam was constructed to understand the beam dynamics. In this study, we investigate theoretically and numerically the beam dynamics for the extreme bunch compression in the final stage of HIF accelerator complex. The theoretical and numerical results implied that the compact experimental device simulates the beam dynamics around the stagnation point for initial low temperature condition.

  14. An ASEAN Ion Beam Analysis Center at Chiang Mai University, Thailand

    International Nuclear Information System (INIS)

    To contribute to the development of nuclear science and technology in Thailand, a comprehensive ion beam analysis center unique in the ASEAN region has recently been established at Chiang Mai University, Thailand. The center is equipped with a 1.7-MV Tandetron tandem accelerator with an ion beam analysis beam line. The beam line is currently capable of performing ion beam analysis techniques such as Rutherford Backscattering Spectrometry (RBS), RBS/channeling, Elastic BackScattering (EBS), Particle Induced X-ray Emission (PIXE) and Ionoluminescence (IL) with assistance of commercial and in-house-developed softwares. Micro ion beam for MeV-ion mapping using programmable aperture or capillary focusing techniques is being developed. Ion beam analysis experiments and applications have been vigorously developed, especially for novel materials analysis focused on archeological, gemological and biological materials besides other conventional materials.

  15. Ion beam induced luminescence analysis of painting pigments

    Energy Technology Data Exchange (ETDEWEB)

    Quaranta, A. [Universita di Trento, Dipartimento di Ingegneria dei Materiali e, delle Tecnologie Inustriali (DIMTI), via Mesiano 77, I-38050 Povo, Trento (Italy); Laboratori Nazionali di Legnaro - INFN, Via Universita 2, I-35020, Legnaro, Padova (Italy); E-mail: quaranta@ing.unitn.it; Salomon, J. [Centre de Recherche et de Restauration des Musees de France, CNRS UMR 171, rue des Pyramides, 75041 Paris Cedex 01 (France); Dran, J.C. [Centre de Recherche et de Restauration des Musees de France, CNRS UMR 171, rue des Pyramides, 75041 Paris Cedex 01 (France); Tonezzer, M. [Universita di Trento, Dipartimento di Ingegneria dei Materiali e, delle Tecnologie Inustriali (DIMTI), via Mesiano 77, I-38050 Povo, Trento (Italy); Laboratori Nazionali di Legnaro - INFN, Via Universita 2, I-35020, Legnaro, Padova (Italy); Della Mea, G. [Universita di Trento, Dipartimento di Ingegneria dei Materiali e, delle Tecnologie Inustriali (DIMTI), via Mesiano 77, I-38050 Povo, Trento (Italy); Laboratori Nazionali di Legnaro - INFN, Via Universita 2, I-35020, Legnaro, Padova (Italy)

    2007-01-15

    Ion beam induced luminescence (IBIL) has been exploited for the first time in the analysis of inorganic painting pigments. The elemental constituents of the different compounds have been determined by particle induced X-ray emission (PIXE). The acquisition time of each spectrum ranges from 100 ms to a few seconds, depending on the luminescence intensity. The luminescence features are fingerprints of the different compounds, thus identifying the provenience of pigments of the same nominal composition. Organic varnish layers do not affect the IBIL features, allowing the identification of pigments, like lapis-lazuli, whose identification with PIXE is hindered by the varnish. IBIL proved to be a technique complementary to PIXE in the archeometry and cultural heritage analysis fields.

  16. Ion beam induced luminescence analysis of painting pigments

    International Nuclear Information System (INIS)

    Ion beam induced luminescence (IBIL) has been exploited for the first time in the analysis of inorganic painting pigments. The elemental constituents of the different compounds have been determined by particle induced X-ray emission (PIXE). The acquisition time of each spectrum ranges from 100 ms to a few seconds, depending on the luminescence intensity. The luminescence features are fingerprints of the different compounds, thus identifying the provenience of pigments of the same nominal composition. Organic varnish layers do not affect the IBIL features, allowing the identification of pigments, like lapis-lazuli, whose identification with PIXE is hindered by the varnish. IBIL proved to be a technique complementary to PIXE in the archeometry and cultural heritage analysis fields

  17. Ion beam induced luminescence analysis of painting pigments

    Science.gov (United States)

    Quaranta, A.; Salomon, J.; Dran, J. C.; Tonezzer, M.; Della Mea, G.

    2007-01-01

    Ion beam induced luminescence (IBIL) has been exploited for the first time in the analysis of inorganic painting pigments. The elemental constituents of the different compounds have been determined by particle induced X-ray emission (PIXE). The acquisition time of each spectrum ranges from 100 ms to a few seconds, depending on the luminescence intensity. The luminescence features are fingerprints of the different compounds, thus identifying the provenience of pigments of the same nominal composition. Organic varnish layers do not affect the IBIL features, allowing the identification of pigments, like lapis-lazuli, whose identification with PIXE is hindered by the varnish. IBIL proved to be a technique complementary to PIXE in the archeometry and cultural heritage analysis fields.

  18. The beam delivery modeling and error sources analysis of beam stabilization system for lithography

    Science.gov (United States)

    Wang, Jun; Huang, Lihua; Hou, Liying; He, Guojun; Ren, Bingqiang; Zeng, Aijun; Huang, Huijie

    2013-12-01

    Beam stabilization system is one of the most important units for lithography, which can accomplish displacement and pointing detection and control and includes beam measurement unit(BMU) and beam steering unit(BSU). Our group has set up a beam stabilization system and verified preliminarily beam stabilization algorithm of precise control beam position and angle. In the article, we establish beam delivery mathematic model and analyze the system inherent error. This shows that the reason why image rotation effect arises at the output plane of beam stabilization is the fast steering mirror (FSM) rotation of BSU in the process of beam stabilization. Two FSMs rotation around 45o axis of FSM make the most contribution to image rotation which rotates 1.414 mrad as two FSMs rotation angle difference changes 1 mrad. It is found that error sources include three key points: FSM accuracy; measurement noise and beam translation by passing through of beam splitters changing as the ambient temperature changing. FSM accuracy leads to the maximum 13.2μm displacement error and 24.49μrad angle error. Measurement inaccuracy as a result of 5μm measurement noise results in the maximum 0.126mm displacement error and 57.2μrad angle error. Beam translation errors can be negligible if temperature is unchanged. We have achieved beam stability of about 15.5μrad for angle and 28μm for displacement (both 1σ) after correcting 2mm initial displacement deviation and 5mrad initial angle deviation with regard to the system rebuilt due to practical requirements.

  19. Present and future role of ion beam analysis in the study of cultural heritage materials: The example of the AGLAE facility

    International Nuclear Information System (INIS)

    The application of IBA to cultural heritage mostly relies on the use of PIXE because of its high sensitivity and its ease of implementation at atmospheric pressure. The need for depth information not easily available with this technique has conducted to associate RBS also in external beam mode. We have progressively developed a set-up that permits such a combination of techniques either simultaneously or sequentially. The set-up is currently further improved to permit NRA measurement (depth profiles of light elements) in addition to PIXE and RBS. The coupling of all these techniques provides a wealth of information on cultural heritage objects, not easily attainable with any other single method

  20. Selection of the best consultant for SAP ERP project using combined AHP-IBA approach

    OpenAIRE

    Martinović Nataša; Delibašić Boris

    2014-01-01

    In this paper we propose a combined AHP-IBA model for selecting the best SAP consultant for an SAP ERP project. The goal of the SAP Project Manager is to choose the best consultant, the one who is able to implement standard SAP functionalities with quality and on time. When making a decision on the basis of multiple criteria, the traditional Analytic Hierarchy Process (AHP) method does not take into account the fact that attributes may correlate, assuming t...

  1. IBA methods for characterisation of fine particulate atmospheric pollution: a local, regional and global research problem

    International Nuclear Information System (INIS)

    The IBA techniques of PIXE, PIGE, RBS and PESA have been used simultaneously to analyse fine particle pollution collected on Teflon filters. This provided a suite of 23 elements from hydrogen to lead which can be used to characterisation and fingerprint pollution sources and estimate their contributions to the total mass loading. These methods have been demonstrated to be applicable for aerosol pollution studies on a local, regional and even globe scale on time frames from a few days to decades

  2. Noncoplanar Beam Angle Class Solutions to Replace Time-Consuming Patient-Specific Beam Angle Optimization in Robotic Prostate Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Purpose: To investigate development of a recipe for the creation of a beam angle class solution (CS) for noncoplanar prostate stereotactic body radiation therapy to replace time-consuming individualized beam angle selection (iBAS) without significant loss in plan quality, using the in-house “Erasmus-iCycle” optimizer for fully automated beam profile optimization and iBAS. Methods and Materials: For 30 patients, Erasmus-iCycle was first used to generate 15-, 20-, and 25-beam iBAS plans for a CyberKnife equipped with a multileaf collimator. With these plans, 6 recipes for creation of beam angle CSs were investigated. Plans of 10 patients were used to create CSs based on the recipes, and the other 20 to independently test them. For these tests, Erasmus-iCycle was also used to generate intensity modulated radiation therapy plans for the fixed CS beam setups. Results: Of the tested recipes for CS creation, only 1 resulted in 15-, 20-, and 25-beam noncoplanar CSs without plan deterioration compared with iBAS. For the patient group, mean differences in rectum D1cc, V60GyEq, V40GyEq, and Dmean between 25-beam CS plans and 25-beam plans generated with iBAS were 0.2 ± 0.4 Gy, 0.1% ± 0.2%, 0.2% ± 0.3%, and 0.1 ± 0.2 Gy, respectively. Differences between 15- and 20-beam CS and iBAS plans were also negligible. Plan quality for CS plans relative to iBAS plans was also preserved when narrower planning target volume margins were arranged and when planning target volume dose inhomogeneity was decreased. Using a CS instead of iBAS reduced the computation time by a factor of 14 to 25, mainly depending on beam number, without loss in plan quality. Conclusions: A recipe for creation of robust beam angle CSs for robotic prostate stereotactic body radiation therapy has been developed. Compared with iBAS, computation times decreased by a factor 14 to 25. The use of a CS may avoid long planning times without losses in plan quality

  3. Noncoplanar Beam Angle Class Solutions to Replace Time-Consuming Patient-Specific Beam Angle Optimization in Robotic Prostate Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Linda, E-mail: l.rossi@erasmusmc.nl; Breedveld, Sebastiaan; Aluwini, Shafak; Heijmen, Ben

    2015-07-15

    Purpose: To investigate development of a recipe for the creation of a beam angle class solution (CS) for noncoplanar prostate stereotactic body radiation therapy to replace time-consuming individualized beam angle selection (iBAS) without significant loss in plan quality, using the in-house “Erasmus-iCycle” optimizer for fully automated beam profile optimization and iBAS. Methods and Materials: For 30 patients, Erasmus-iCycle was first used to generate 15-, 20-, and 25-beam iBAS plans for a CyberKnife equipped with a multileaf collimator. With these plans, 6 recipes for creation of beam angle CSs were investigated. Plans of 10 patients were used to create CSs based on the recipes, and the other 20 to independently test them. For these tests, Erasmus-iCycle was also used to generate intensity modulated radiation therapy plans for the fixed CS beam setups. Results: Of the tested recipes for CS creation, only 1 resulted in 15-, 20-, and 25-beam noncoplanar CSs without plan deterioration compared with iBAS. For the patient group, mean differences in rectum D{sub 1cc}, V{sub 60GyEq}, V{sub 40GyEq}, and D{sub mean} between 25-beam CS plans and 25-beam plans generated with iBAS were 0.2 ± 0.4 Gy, 0.1% ± 0.2%, 0.2% ± 0.3%, and 0.1 ± 0.2 Gy, respectively. Differences between 15- and 20-beam CS and iBAS plans were also negligible. Plan quality for CS plans relative to iBAS plans was also preserved when narrower planning target volume margins were arranged and when planning target volume dose inhomogeneity was decreased. Using a CS instead of iBAS reduced the computation time by a factor of 14 to 25, mainly depending on beam number, without loss in plan quality. Conclusions: A recipe for creation of robust beam angle CSs for robotic prostate stereotactic body radiation therapy has been developed. Compared with iBAS, computation times decreased by a factor 14 to 25. The use of a CS may avoid long planning times without losses in plan quality.

  4. Test Beam Data Analysis for a Timepix3 Readout Chip

    CERN Document Server

    Williams, Morag

    2016-01-01

    The vertex and tracker detector R&D for a future linear collider (CLICdp) aims at developing new silicon sensor technologies. The EP-LCD group has been helping develop a novel pixel detector chip called the Timepix3 with a very thick active silicon layer (675 μm). This thick detector can be used to reconstruct the track incidence angle using the charge drift-time information. To evaluate the principle, test beam data was taken in October 2015 and June 2016 with the Timepix3 at various angles to the beam. The data was analysed to evaluate the sensors performance in calculating the track incidence angle. The device angle was determined using three methods: the first using the cluster size information, secondly using the timing information, and finally using a multivariate analysis technique. The timing method proved the principle of the Timepix3 track angle measurements but the MVA method was found to give much better results, especially for smaller angles, than the other two methods and requires fewer cal...

  5. Reliability Analysis of the new Link between the Beam Interlock System and the LHC Beam Dumping System Zuverlässigkeitsanalyse der neuen Verbindung zwischen dem Beam Interlock System und dem LHC Beam Dumping System

    CERN Document Server

    Vatansever, Volkan

    The nominal stored energy in each LHC beam is 360 MJ, surpassing the beam energy of other accelerators by orders of magnitude. This energy threatens to damage accelerator components in case of uncontrolled beam losses To avoid damage of accelerator equipment due to impacting beam, the controlled removal of the LHC beams from the collider rings towards the dump block must be guaranteed at all times. Therefore, the LHC Beam Dumping System was built according to high reliability standards. To further reduce the risk of incapability to dump the beams in case of correlated failures in the redundant system, a new direct link from the LHC Beam Interlock System to the Re-triggering Lines of the LHC Beam Dumping System will be implemented for the startup with beam in 2015. This link represents a diverse redundancy to the current implementation, which should neither significantly increase the risk for so-called Asynchronous Beam Dumps nor compromise machine availability. Therefore, a reliability analysis down to the co...

  6. ACCOUNT FOR PERFORMANCE OF CORRUGATED WEB BEAMS IN THE ANALYSIS OF CONSTRAINED TORSION

    OpenAIRE

    Solovev Aleksey Vitalevich; Lukin Aleksey Olegovich; Alpatov Vadim Yurevich; Savostyanov Vadim Nikolaevich

    2012-01-01

    The authors cover the problems of the numerical analysis of corrugated web beams exposed to constrained torsion. The calculation is performed using the finite element method. Virtual solid models and software package "Lira" are employed to perform the structural analysis. The results of the comparative analysis of performance of beams that have flat and corrugated webs and that are exposed to constrained torsion are presented in the article. Corrugated web beams that have diffe...

  7. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Wu, Kesheng; Prabhat,; Weber, Gunther H.; Ushizima, Daniela M.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2009-10-19

    Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps, then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.

  8. Stability Analysis of Nonlinear Feedback Control Methods for Beam Halo-chaos

    Institute of Scientific and Technical Information of China (English)

    WANGZhong-sheng; FANGJin-qing; CHENGuan-rong

    2003-01-01

    Control of beam halo-chaos has been a more challenge subject in recent years, in which nonlinear feedback method for beam halo-chaos has been developed for control of beam halo-chaos in high-current proton linear accelerators. However, stability analysis of nonlinear feedback control methods for beam halo-chaos has still been an open and important topic in this field. In this letter.

  9. Determination of the polarization states of an arbitrary polarized terahertz beam: Vectorial vortex analysis

    OpenAIRE

    Toshitaka Wakayama; Takeshi Higashiguchi; Hiroki Oikawa; Kazuyuki Sakaue; Masakazu Washio; Motoki Yonemura; Toru Yoshizawa; J. Scott Tyo; Yukitoshi Otani

    2015-01-01

    Vectorial vortex analysis is used to determine the polarization states of an arbitrarily polarized terahertz (0.1–1.6 THz) beam using THz achromatic axially symmetric wave (TAS) plates, which have a phase retardance of Δ = 163° and are made of polytetrafluorethylene. Polarized THz beams are converted into THz vectorial vortex beams with no spatial or wavelength dispersion, and the unknown polarization states of the incident THz beams are reconstructed. The polarization determination is also d...

  10. Le tecniche AMS e IBA del CEDAD per lo studio dei Beni Culturali, Ambientali e per la Scienza dei Materiali

    OpenAIRE

    Lucio Calcagnile

    2011-01-01

    ItGli acceleratori di particelle sono diventati un potente strumento per la diagnostica dei materiali in molti campi di ricerca. Questo articolo descrive la facility AMS-IBA installata presso il CEDAD – Centro di Datazione e Diagnostica dell’Università del Salento e riporta alcune applicazioni in Archeologia, Scienze ambientali e Scienza dei materiali.EnParticle accelerators have become a powerful tool for the diagnostics of materials in many research fields. This paper describes the AMS-IBA...

  11. A Simplified Analysis of the Brazier Effect in Composite Beams

    DEFF Research Database (Denmark)

    Damkilde, Lars; Lund, B.

    2009-01-01

    In the design of windturbine blades composite beams are often used as the load bearing element. The beam is primarily subjected to bending moments, and the deformations are relatively large. The large displacements result in a kind of ovalization of the beam section, the so-called Brazier effect...

  12. Radially polarized Bessel-Gauss beams: decentered Gaussian beam analysis and experimental verification.

    Science.gov (United States)

    Schimpf, Damian N; Putnam, William P; Grogan, Michael D W; Ramachandran, Siddharth; Kärtner, Franz X

    2013-07-29

    We derive solutions for radially polarized Bessel-Gauss beams in free-space by superimposing decentered Gaussian beams with differing polarization states. We numerically show that the analytical result is applicable even for large semi-aperture angles, and we experimentally confirm the analytical expression by employing a fiber-based mode-converter. PMID:23938719

  13. Non-destructive ion beam analysis of surfaces

    International Nuclear Information System (INIS)

    Radiation technologies (ion implantation, ion beam mixing, plating, etc.) are powerful techniques in the modification of surface and near-surface properties of solids. Although they hold great promise for the future, the successful application of these processes demands knowledge of the effects of radiation in thin (nm-fm) surface layers of metals and materials. The authors review the fundamental features of rapid nuclear analysis methods (Rutherford backscattering and channelling, in conjunction with changes of ion energy, ion-induced x-ray emission, nuclear microanalysis) and presents experimental results. Among the aspects studied were the mechanisms of damage and structural transformations in multicomponent and multilayer structures and in ion-irradiated GaAs and Ni single crystals, and the processes of defect interaction in collision cascades

  14. Ion beam analysis of ground coffee and roasted coffee beans

    International Nuclear Information System (INIS)

    The way that coffee is prepared (using roasted ground coffee or roasted coffee beans) may influence the quality of beverage. Therefore, the aim of this work is to use ion beam techniques to perform a full elemental analysis of packed roasted ground coffee and packed roasted coffee beans, as well as green coffee beans. The samples were analyzed by PIXE (particle-induced X-ray emission). Light elements were measured through RBS (Rutherford backscattering spectrometry) experiments. Micro-PIXE experiments were carried out in order to check the elemental distribution in the roasted and green coffee beans. In general, the elements found in ground coffee were Mg, P, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Rb and Sr. A comparison between ground coffee and grinded roasted beans shows significant differences for several elements. Elemental maps reveal that P and K are correlated and practically homogeneously distributed over the beans

  15. Prompt gamma activation analysis using mobile reactor neutron beam

    International Nuclear Information System (INIS)

    Among the nuclear analytical methods that have proved very useful in biological and medical analyses is the in vivo prompt gamma neutron activation analysis (IVPGAA). In this work, an IVPGAA facility was assembled on a zero-power mobile nuclear reactor and has demonstrated its versatility for in vivo medical diagnosis. Absolute measurements of some environmental contaminants such as Cd, Hg, and Si in organs can be determined rapidly by partial body scan of IVPGAA, while assessment of vital constituents such as Ca, Cl, N, and P in either whole body or body part can be scanned by IVPGAA technique effectively. The in vivo clinical application using mobile reactor neutron beam are reviewed in detail. The IVPGAA scan provides unique insight into elemental concentration purpose. The IVPGAA scan can be performed on a regular basis without discomfort and radiation risk for patients. (author)

  16. Ion beam analysis of ground coffee and roasted coffee beans

    Energy Technology Data Exchange (ETDEWEB)

    Debastiani, R., E-mail: rafa_debas@yahoo.com.br; Santos, C.E.I. dos; Yoneama, M.L.; Amaral, L.; Dias, J.F.

    2014-01-01

    The way that coffee is prepared (using roasted ground coffee or roasted coffee beans) may influence the quality of beverage. Therefore, the aim of this work is to use ion beam techniques to perform a full elemental analysis of packed roasted ground coffee and packed roasted coffee beans, as well as green coffee beans. The samples were analyzed by PIXE (particle-induced X-ray emission). Light elements were measured through RBS (Rutherford backscattering spectrometry) experiments. Micro-PIXE experiments were carried out in order to check the elemental distribution in the roasted and green coffee beans. In general, the elements found in ground coffee were Mg, P, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Rb and Sr. A comparison between ground coffee and grinded roasted beans shows significant differences for several elements. Elemental maps reveal that P and K are correlated and practically homogeneously distributed over the beans.

  17. Anisotropic beam model for analysis and design of passive controlled wind turbine blades

    DEFF Research Database (Denmark)

    Branner, Kim; Blasques, José Pedro Albergaria Amaral; Kim, Taeseong;

    The main objective of the project was, through theoretical and experimental research, to develop and validate a fully coupled, general beam element that can be used for advanced and rapid analysis of wind turbine blades. This is fully achieved in the project and the beam element has even been...... couplings can be put into production. A cross section analysis tool BECAS (BEam Cross section Analysis Software) has been developed and validated in the project. BECAS is able to predict all geometrical and material induced couplings. This tool has obtained great interest from both industry and academia....... The developed fully coupled beam element and cross section analysis tool has been validated against both numerical calculations and experimental measurements. Numerical validation has been performed against beam type calculations including Variational Asymptotical Beam Section Analysis (VABS) and...

  18. Nonlocal analysis of finite-beam-driven instabilities

    Science.gov (United States)

    Serizawa, Y.; Dum, C. T.

    1992-01-01

    The fully kinetic integral eigenmode equation in wave-number space is used to describe the nonlocal behavior of electrostatic waves in an electron-beam plasma, which are studied in the low-temperature-beam regime and the warm-beam regime. The case of strongly magnetized electrons and unmagnetized ions, which corresponds to the waves in a frequency range from the lower-hybrid to the electron plasma frequency, is examined. Three wave modes are found. The first group consists of modes that have dispersive properties similar to the uniform, infinite beam-plasma system. Depending on the beam width, the growth rates are strongly reduced. The second group, surface modes, are localized at the periphery of the beam region and are less unstable than the unstable modes of the first group. The third group represents natural oscillations of the background plasma. These modes are virtually unaffected by the beam.

  19. Analysis of ultrasonic beam propagation in multilayered media using a Gaussian beam model

    International Nuclear Information System (INIS)

    A modular multi-Gaussian beam model is used to simulate some nondestructive testing configurations where multiple interfaces or anisotropic material properties are involved. We consider two NDE problems in this paper: (1) angle beam, contact shear wave testing, and (2) wave propagation through water-anisotropic solid interface. The ultrasonic transducer fields are modeled by superposing 10 single Gaussian beams. The resulting expressions given in a modular matrix form is implemented in a personal computer using MATLAB program. Simulation results are presented for these problems with available experimental results.

  20. The ever expanding field of ion beam analysis

    International Nuclear Information System (INIS)

    Full text: The field of Ion Beam Analysis has steadily developed over the past forty yields to provide more detailed information for the analyst from a wider range of materials analysis tools. The first technique to be well developed was Rutherford Backscattering Spectrometry (RBS) which relied on the elastic and inelastic scattering of H and He projectiles to provide composition and structural information in the near surface region. From this grew Ion Channeling which provided a valuable structural tool for the crystallographic location of impurities in solids. The field expanded to include Proton Induced X-ray Emission (PIXE) and Nuclear Reaction Analysis (NRA) which pushed the detection limits beyond the range of RBS for most elements. Apart from different techniques the energy range was extended to develop Medium Energy Ion Scattering (MEIS, 100-500 keV) which has been shown to probe the first 3-10 atomic layers with almost layer by layer resolution and Low Energy Ion Scattering (LEIS) which is exceedingly sensitive to the outermost one or two atomic layers. By pushing the limits of techniques we can push the detection limits. This will be shown for MEIS and for recoils. The use of recoils over a wide range of energies will be discussed to show the range of applications and the versatility of the techniques. At the low energy end this technique has the flexibility to not only detect 10-4 of a mono-layer of O on a clean surface and locate it crystallographically at the low energy end, while at the high energy end it also allows multi-element depth profile analysis with a uniform detection sensitivity over half the periodic table. The power and capacity of these scattering and recoil methods as well as future developments will provide an insight to the future expansion of techniques and applications

  1. Sensorial analysis of peanuts processed by e-beam

    International Nuclear Information System (INIS)

    The development of the sensorial analysis was influenced by frequent changes in the technology of production and distribution of foods. Currently the sensorial analysis has represented a decisive part in some sectors of the nourishing industry with the purpose to improve the quality of its products. The food irradiation has as purpose to improve the product quality, in order to eliminate the diverse microorganisms that can spoil the food. The process of irradiation in the recommended doses causes very few chemical alterations in some foods, the nutritional losses are considered insignificant and some of the alterations known found in irradiated foods is not harmful or dangerous. The present study evaluated the sensorial characteristics of peanuts processed by electron beam machine and was made a test of acceptance using a hedonic scale. Samples of peanut had been processed in the doses of 0, 5 and 7 kGy. Thirty volunteer panelists had participated of that acceptance study. The evaluating parameters were: appearance, odor and flavor. The result showed that the consumers had approved the peanut in the dose of 5 and 7 kGy, not having significant difference between the samples controlled and irradiated. (author)

  2. X-ray trace element analysis with positive ion beams

    International Nuclear Information System (INIS)

    A new trace element analysis having the advantage that many elements may be detected in a single measurement, based on positive charged particle induced X-ray florescence and on the production of X-rays by heavy ions, is described. Because of the large cross-sections for the production of discrete X-ray and the low yield of continuum radiation, positive charged particle X-ray florescence is a competitive, fast, analytic tool. In the experiment a beam of positive charged particles from an accelerator was directed toward a target. X-rays induced by the bombardment were detected by a Si(Li) detector the ouput from which was amplified and sorted in a multichannel analyzer. For rapid data handling and analysis, the multichannel analyzer or ADC unit was connected to an on-line computer. A large variety of targets prepared in collaboration with the oceanographers have been studied and spectra obtained for different particles having the same velocity are presented to show that the yield of discrete X-rays increases at least as rapidly as Z2. While protons of several MeV appear to be already competitive further advantage may be gained by heavy ions at lower energies since the continuum is reduced while the peak ''signals'' retain strength due to the Z2 dependence. (S.B.)

  3. A 3 MV tandem accelerator at Seville. The first IBA facility in Spain

    International Nuclear Information System (INIS)

    The first Spanish tandem accelerator, of the Pelletron type, has recently been installed at the University of Seville. The laboratory has been created with the aim to fulfill the increasing demand for ion beam analysis existing in Spain. The facility mainly consists of a 3 MV accelerator with two ion sources and a capacity of seven beam lines, which will be used for interdisciplinary studies such as material research and modification, arts, archaeology, biology, medicine, environmental sciences and so on. The laboratory and the first tests of the accelerator performance are described. (author)

  4. Beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.

    1994-12-01

    The term beam-beam effects is usually used to designate different phenomena associated with interactions of counter-rotating beams in storage rings. Typically, the authors speak about beam-beam effects when such interactions lead to an increase of the beam core size or to a reduction of the beam lifetime or to a growth of particle`s population in the beam halo and a correspondent increase of the background. Although observations of beam-beam effects are very similar in most storage rings, it is very likely that every particular case is largely unique and machine-dependent. This constitutes one of the problems in studying the beam-beam effects, because the experimental results are often obtained without characterizing a machine at the time of the experiment. Such machine parameters as a dynamic aperture, tune dependencies on amplitude of particle oscillations and energy, betatron phase advance between the interaction points and some others are not well known, thus making later analysis uncertain. The authors begin their discussion with demonstrations that beam-beam effects are closely related to non linear resonances. Then, they will show that a non linearity of the space charge field is responsible for the excitation of these resonances. After that, they will consider how beam-beam effects could be intensified by machine imperfections. Then, they will discuss a leading mechanism for the formation of the beam halo and will describe a new technique for beam tails and lifetime simulations. They will finish with a brief discussion of the coherent beam-beam effects.

  5. Low temperature, IBA concentrations and optimal time for adventitious rooting of Eucalyptus benthamii mini-cuttings

    Institute of Scientific and Technical Information of China (English)

    Gilvano Ebling Brondani; Francisco José Benedini Baccarin; Heron Wilhelmus de Wit Ondas; José Luiz Stape; Antonio Natal Gon(c)alves; Marcilio de Almeida

    2012-01-01

    Eucalyptus benthamii is a forest species of economic interest that has difficulty with seed production and also is considered to have difficulty with adventitious rooting using propagation techniques,such as cutting or mini-cutting.We aimed to assess the adventitious rooting percentage under different storage times in low temperatures and at various IBA (indole-3-butyric acid) concentrations to determine the optimal time of permanence for rooting Eucalyptus benthamii minicuttings in a greenhouse.Shoots collected from mini-stumps cultivated in a semi-hydroponic system were used to obtain the mini-cuttings.For the first experiment,the mini-cuttings were stored at 4℃ for 0 (immediate planting),24,48,72,96 and 120 h.The second experiment evaluated the rooting dynamic to determine the optimal time of permanence for minicuttings in a greenhouse.The basal region of the mini-cutting was treated with various 1BA solutions:0 (free of IBA),1,000,2,000,3,000 and 4,000 mg·L-1.Every seven days (0 (immediate planting),7,14,21 and 28days),destructive sampling of the mini-cuttings was performed to evaluate the histology of the adventitious rooting.Eucalyptus benthamii minicuttings should be rooted immediately after the collection of the shoots.The 2,000 mg·L-1 IBA concentration induced a greater speed and percentage of adventitious rooting,and an interval of 35 to 42 days was indicated for permanence of the mini-cuttings in the greenhouse.Exposure to low temperature induced adventitious root formation with diffuse vascular connections.

  6. Currents trends in the application of IBA techniques to air pollution source fingerprinting and source apportionment

    International Nuclear Information System (INIS)

    Full text: IBA techniques have been used for many years to characterise fine particle air pollution. This is not new the techniques are well established. Typically 2-3 MeV protons are used to bombard thin filter papers and up to four simultaneous techniques like PIXE, PIGE, RBS and ERDA will be applied to obtain (μg/g) concentrations for elements from hydrogen to lead. Generally low volume samplers are used to sample between 20-30 m3 of air over a 24 hour period, this together with IBA's sensitivity means that concentrations down to 1 ng/m3 of air sampled can be readily achieved with only a few minutes of proton irradiation. With these short irradiation times and low sensitivities for a broad range of elements in the periodic table, large numbers of samples can be obtained and analysed very quickly and easily. At ANSTO we have used IBA methods to acquire a database of over 50,000 filters from 85 different sites through Australia and Asia, each filter has been analysed for more than 21 different chemical species. Large databases extending over many years means that modern statistical techniques like positive matrix factorisation (PMF) can be used to define well characterised source fingerprints and source contributions for a range of different fine particle air pollutants. In this paper we will discuss these PMF techniques and show how they identify both natural sources like sea spray and windblown soils as well as anthropogenic sources like automobiles, biomass burning, coal-fired power stations and industrial emissions. These data are particularly useful for Governments, EPA's and managers of pollution to better understanding pollution sources and their relative contributions and hence to better manage air pollution. Current trends are to take these IBA and PMF techniques a step further and to combine them with wind speed and back trajectory data to better pin point and identify emission sources. We show how this is now being applied on both a local

  7. DEVELOPMENT OF ACCELERATOR DATA REPORTING SYSTEM AND ITS APPLICATION TO TREND ANALYSIS OF BEAM CURRENT DATA

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, M.J.; Blokland, W.

    2009-01-01

    Detailed ongoing information about the ion beam quality is crucial to the successful operation of the Spallation Neutron Source at Oak Ridge National Laboratory. In order to provide the highest possible neutron production time, ion beam quality is monitored to isolate possible problems or performance-related issues throughout the accelerator and accumulator ring. For example, beam current monitor (BCM) data is used to determine the quality of the beam transport through the accelerator. In this study, a reporting system infrastructure was implemented and used to generate a trend analysis report of the BCM data. The BCM data was analyzed to facilitate the identifi cation of monitor calibration issues, beam trends, beam abnormalities, beam deviations and overall beam quality. A comparison between transformed BCM report data and accelerator log entries shows promising results which represent correlations between the data and changes made within the accelerator. The BCM analysis report is one of many reports within a system that assist in providing overall beam quality information to facilitate successful beam operation. In future reports, additional data manipulation functions and analysis can be implemented and applied. Built-in and user-defi ned analytic functions are available throughout the reporting system and can be reused with new data.

  8. Nonlinear beam-beam resonances

    International Nuclear Information System (INIS)

    Head-on collisions of bunched beams are considered, assuming the two colliding beams have opposite charges. A few experimental observations are described. The single resonance analysis is developed that is applicable to the strong-weak case of the beam-beam interaction. In this case, the strong beam is unperturbed by the beam-beam interaction; motions of the weak beam particles are then analyzed in the presence of the nonlinear electromagnetic force produced by the strong beam at the collision points. The coherent motions of the two coupled strong beams are shown to exhibit distinct nonlinear resonance behavior. 16 refs., 22 figs

  9. Study of ion beam mixing in Pt/Co bilayer by ion beam analysis

    International Nuclear Information System (INIS)

    Ion beam mixing of the Pt/Co bilayers (400 A/700 A) were carried out using 600 keV Pt+ ions with fluences ranging from 1 x 1015 ions/cm2 to 1.2 x 1016 ions/cm2 at room temperature. The sputtering of top Pt layer and the diffusion of platinum and cobalt caused by the ion beam at the interface were revealed by RBS. The interface broadening variance for each fluence was extracted from the RBS spectra after subtracting the contribution to broadening variance due to surface roughness as measured by AFM. The linear dependence of interface broadening variance with fluence shows that ion beam mixing is diffusion controlled in Pt/Co bilayers

  10. The upgrade of data acquisition system and the offline data analysis of test beam on BEPC

    International Nuclear Information System (INIS)

    Test beam on BEPC-LINAC makes full use of online detectors and offline data analysis software to select the single particle events for different beam tests. This paper introduces the upgrade of data acquisition system and the method of offline data analysis. The offline data analysis system is inclusive of the analysis of TOF, the identification of single particle events, the calculation of hit coordinates and so on. (authors)

  11. Investigation of fish otoliths by combined ion beam analysis

    International Nuclear Information System (INIS)

    Complete text of publication follows. This work was implemented within the framework of the Hungarian Ion beam Physics Platform (http://hipp.atomki.hu/). Otoliths are small structures, 'the ear stones' of a fish, and are used to detect acceleration and orientation. They are composed of a combination of protein matrix and calcium carbonate (CaCO3) forming aragonite micro crystals. They have an annually deposited layered conformation with a microstructure corresponding to the seasonal and daily increments. Trace elements, such as Sr, Zn, Fe etc., are also incorporated into the otolith from the environment and the nutrition. The elemental distribution of the otolith of fresh water fish burbot (Lota lota L.) collected in Hungary was measured with Elastic Recoil Detection Analysis (ERDA), Rutherford backscattering spectrometry (RBS) and Particle Induced X-ray Emission (PIXE) at the Nuclear Microprobe Facility of HAS ATOMKI. The spatial 3D structure of the otolith could be observed with a sub-micrometer resolution. It is confirmed that the aragonite micro-crystals are covered by an organic layer and there are some protein rich regions in the otolith, too. By applying the RBSMAST code developed for RBS on macroscopic structure, it was proven that the orientation of the needle shaped aragonite crystals is considerably different at adjacent locations in the otolith. The organic and inorganic component of the otolith could be set apart in the depth selective hydrogen and calcium maps derived by micro- ERDA and micro-RBS. Similar structural analysis could be done near the surface by combining the C, O and Ca elemental maps determined by micro-PIXE measurements. It was observed that the trace metal Zn is bound to the protein component. Acknowledgements This work was partially supported by the Hungarian OTKA Grant No. T046238 and the EU cofunded Economic Competitiveness Operative Programme (GVOP-3.2.1.-2004-04-0402/3.0)

  12. Beam Based HOM Analysis of Acceleating Structures at the TESLA Test Facility LINAC

    CERN Document Server

    Wendt, M; Gössel, A

    2003-01-01

    The beam emittance in future linear accelerators for high energy physics and SASE-FEL applications depends highly on the field performance in the accelerating structures, i.e. the damping of higher order modes (HOM). Besides theoretical and laboratory analysis (network analyzer), a beam based analysis technique was established [S. Fartoukh, et.al., Proceedings of the PAC99 Conference] at the TESLA Test Facility (TTF) linac. It uses a charge modulated beam of variable modulation frequency to excite dipole modes. This causes a modulation of the transverse beam displacement, which is observed at a downstream BPM and associated with a direct analysis of the modes at the HOM couplers. Emphasis of this presentation is put on beam instrumentation and signal analysis aspects. A brief introduction of eigenmodes in resonant structures, as well as some interesting measurement results are further presented.

  13. Effect of Humic Acid on As Redox Transformation and Kinetic Adsorption onto Iron Oxide Based Adsorbent (IBA

    Directory of Open Access Journals (Sweden)

    Hoda Fakour

    2014-10-01

    Full Text Available Due to the importance of adsorption kinetics and redox transformation of arsenic (As during the adsorption process, the present study elucidated natural organic matter (NOM effects on As adsorption-desorption kinetics and speciation transformation. The experimental procedures were conducted by examining interactions of arsenate and arsenite with different concentrations of humic acid (HA as a model representative of NOM, in the presence of iron oxide based adsorbent (IBA, as a model solid surface in three environmentally relevant conditions, including the simultaneous adsorption of both As and HA onto IBA, HA adsorption onto As-presorbed IBA, and As adsorption onto HA-presorbed IBA. Experimental adsorption-desorption data were all fitted by original and modified Lagergren pseudo-first and -second order adsorption kinetic models, respectively. Weber’s intraparticle diffusion was also used to gain insight into the mechanisms and rate controlling steps, which the results suggested that intraparticle diffusion of As species onto IBA is the main rate-controlling step. Different concentrations of HA mediated the redox transformation of As species, with a higher oxidation ability than reduction. The overall results indicated the significant effect of organic matter on the adsorption kinetics and redox transformation of As species, and consequently, the fate, transport and mobility of As in different environmentally relevant conditions.

  14. Beam dynamics design and electromagnetic analysis of 3 MeV RFQ for TAC Proton Linac

    Institute of Scientific and Technical Information of China (English)

    A Caliskan; HF Kisoglu; M Yilmaz

    2015-01-01

    A beam dynamics design of 352.2 MHz radio-frequency quadrupole (RFQ) of Turkish Accelerator Cen-ter (TAC) project which accelerates continuous wave (CW) proton beam with 30 mA current from 50 keV to 3 MeV kinetic energy has been performed in this study. Also, it includes error analysis of the RFQ, in which some fluctuations have been introduced to input beam parameters to see how the output beam parameters are affected, two-dimensional (2-D) and three-dimensional (3-D) electromagnetic structural design of the RFQ to obtain optimum cavity paramaters that agree with the ones of the beam dynamics. The beam dynamics and error analysis of the RFQ have been done by using LIDOS.RFQ. Electromagnetic design parameters have been obtained by using SUPERFISH for 2-D cavity geometry and CST Microwave Studio for 3-D cavity geometry.

  15. Analysis on plastic properties of reactive powder concrete continuous beams reinforced with GFRP bars

    Institute of Scientific and Technical Information of China (English)

    LU Shan-shan; ZHENG Wen-zhong

    2010-01-01

    To study the plastic properties of reactive powder concrete continuous beams reinforced with GFRP bars,the calculation programs for moment redistribution coefficients are prepared by using nonlinear analysis methods such as moment-curvature,conjugate beam method and so on.By comparing the test results of existed FRP bars reinforced concrete continuous beams with simulation results,the accuracy of the calculation program is verified.Then 18 simulated GFRP bars reinforced reactive powder concrete continuous beams are selected whose change parameters are reinforcement ratio of mid-span and middle support.Through the nonlinear analysis of simulated beams,moment redistribution coefficients under mid-span concentrated loads,one-third point loads and uniformly distributed loads are obtained respectively.Thus the formula of moment redistribution coefficients is obtained by fitting moment redistribution coefficients and factors.The results show that the reactive powder concrete continuous beams reinforced with GFRP bars have good plastic properties.

  16. Damage Analysis of Rectangular Section Composite Beam under Pure Bending

    Science.gov (United States)

    Liu, Yiping; Xiao, Fan; Liu, Zejia; Tang, Liqun; Fang, Daining

    2013-02-01

    Laminated composite beams are commonly used in engineering applications involving macro to nano structures. Based on the assumption that plain sections remain plain after deformation, this paper analyzes stress distributions in cross-ply laminated composite beams with rectangular cross-sections, and formulates the basic damage equations through Kachanov's damage definition and Janson's failure criterion. The location of the neutral axis and the ultimate bending moment are obtained for pure bending cases. The effect of the elastic modulus of the two layers on the damage evolution is analyzed; a reasonable damage composite beam model is proposed to predict the ultimate bending moment.

  17. Elemental Analysis of Lapis Lazuli sample, using complementary techniques of IBIL and MicroPIXE

    OpenAIRE

    T Nikbakht; Kakuee, O. R.; M Lamehi Rachti; M Sedaghati Boorkhani

    2015-01-01

    Ion Beam Induced Luminescence (IBIL) is a useful IBA technique which could be utilized to obtain information about the nature of chemical bonds in materials. Regarding the probed area, this non-destructive and fast technique is a suitable complementary one for MicroPIXE. Since most minerals are luminescent, IBIL is an applicable analytical technique in mineralogy. In this research work, to characterize a Lapis lazuli sample, a 2.7 MeV proton beam is utilized. After data collection and analysi...

  18. Free Vibration Analysis of Laminated Composite Beams Using Differential Quadrature Method

    Institute of Scientific and Technical Information of China (English)

    冯丽娟; 钟宏志; 郝照平; 吴德隆

    2002-01-01

    A higher-order theory for laminated composite beams is used to study the free vibration of laminated composite beams, and the differential quadrature method is employed to obtain the numerical solution of the governing differential equations. Free vibration analysis of beams with rectangular cross-section for various combinations of end conditions is studied. The results show that the differential quadrature method is reliable and accurate compared with other available results.

  19. Beam positioning stability analysis on large laser facilities

    Institute of Scientific and Technical Information of China (English)

    Fang; Liu; Zhigang; Liu; Liunian; Zheng; Hongbiao; Huang; Jianqiang; Zhu

    2013-01-01

    Beam positioning stability in a laser-driven inertial confinement fusion(ICF) facility is a vital problem that needs to be fixed. Each laser beam in the facility is transmitted in lots of optics for hundreds of meters, and then targeted in a micro-sized pellet to realize controllable fusion. Any turbulence in the environment in such long-distance propagation would affect the displacement of optics and further result in beam focusing and positioning errors. This study concluded that the errors on each of the optics contributed to the target, and it presents an efficient method of enhancing the beam stability by eliminating errors on error-sensitive optics. Optimizations of the optical system and mechanical supporting structures are also presented.

  20. Ion beam analysis based on cellular nonlinear networks

    OpenAIRE

    Senger, V.; R. Tetzlaff; H. Reichau; Ratzinger, U.

    2011-01-01

    The development of a non- destructive measurement method for ion beam parameters has been treated in various projects. Although results are promising, the high complexity of beam dynamics has made it impossible to implement a real time process control up to now. In this paper we will propose analysing methods based on the dynamics of Cellular Nonlinear Networks (CNN) that can be implemented on pixel parallel CNN based architectures and yield satisfying results even at low re...

  1. Numerical analysis of reinforced concrete continuous deep beams

    OpenAIRE

    Asin, M.; Walraven, J.

    1995-01-01

    The structural behaviour of deep beams is still not completely understood, since, for example, plane sections do not remain plane and no uniform shear flow can develop because of the small ratio between depth and shear span. If in addition, the supporting system is also statically indeterminate, the number of difficulties increases. In order to investigate the behaviour of statically indeterminate deep beams, a series of fourteen tests has been carried out. Variables were the slenderness, the...

  2. Thermal analysis of the beam missteering in APS storage ring

    International Nuclear Information System (INIS)

    Several bending magnet beam missteering cases have been investigated for the 7-GeV storage ring of the Advanced Photon Source (APS). One of the critical missteering events is presented in this paper. Finite element analyses are performed to solve for both temperature and stress fields. Thermally induced deflections are determined by using beam bending theory. A safe current limit is established for the storage ring chambers

  3. Ion beam analysis based on cellular nonlinear networks

    Science.gov (United States)

    Senger, V.; Tetzlaff, R.; Reichau, H.; Ratzinger, U.

    2011-07-01

    The development of a non- destructive measurement method for ion beam parameters has been treated in various projects. Although results are promising, the high complexity of beam dynamics has made it impossible to implement a real time process control up to now. In this paper we will propose analysing methods based on the dynamics of Cellular Nonlinear Networks (CNN) that can be implemented on pixel parallel CNN based architectures and yield satisfying results even at low resolutions.

  4. Stiffness Analysis of Corrugated Flexure Beam Used in Compliant Mechanisms

    Institute of Scientific and Technical Information of China (English)

    WANG Nianfeng; LIANG Xiaohe; ZHANG Xianmin

    2015-01-01

    Conventional flexible joints generally have limited range of motion and high stress concentration. To overcome these shortcomings, corrugated flexure beam(CF beam) is designed because of its large flexibility obtained from longer overall length on the same span. The successful design of compliant mechanisms using CF beam requires manipulation of the stiffnesses as the design variables. Empirical equations of the CF beam stiffness components, except of the torsional stiffness, are obtained by curve-fitting method. The application ranges of all the parameters in each empirical equation are also discussed. The ratio of off-axis to axial stiffness is considered as a key characteristic of an effective compliant joint. And parameter study shows that the radius of semi-circular segment and the length of straight segment contribute most to the ratio. At last, CF beam is used to design translational and rotational flexible joints, which also verifies the validity of the empirical equations. CF beam with large flexibility is presented, and empirical equations of its stiffness are proposed to facilitate the design of flexible joint with large range of motion.

  5. Analysis of material coating for damping in beam structures

    International Nuclear Information System (INIS)

    Vibratory stresses are the main cause of material failure in aerospace/mechanical structures and machine components. Failure also occurs due to these vibratory stresses in gas turbine engines and rotating machinery components while operating at resonant frequency. A magnetomechanical coating material is used as a very effective method for damping of these stresses. Vibratory stress damping in components like turbine blades through magnetomechanical coating material is well known in literature. However, the geometric correlations for the varying coated beam are not well established. We have utilized a cantilever beam as the basic geometry for this investigation to establish a correlation for varying coating. Beam theory is applied as a mathematical model for obtaining the mode shapes for the beam. A finite element procedure is performed to acquire the data and this data is then correlated with beam theory model for initial verification. This data is further evaluated to form the required model for calculating thickness of coating for a beam. The resulting parametric correlation is verified through comparison with the already published experimental data available in literature. This correlation can be used as a design tool for suppression of vibratory stresses in industrial applications. (author)

  6. Enhanced interface stress analysis of piezoelectric smart beams

    International Nuclear Information System (INIS)

    Piezoelectric patches are usually externally bonded to host structures as sensors or actuators. The performance and integrity of this type of smart structure are determined by the interface stresses within the adhesive layer. To accurately evaluate these interface stresses, a novel analytical model is developed in this study. This new model treats the adhesive layer as two normal spring layers interconnected by a shear spring layer. The peel stresses along the top and bottom surfaces of the adhesive layer are assumed to be different. An interface deformable beam theory is used to describe the deformation of the piezoelectric patch and the host beam. Unlike existing elementary beam theories, this new beam theory captures the deformation of adherends induced by interface stresses by using two interface compliances. Closed-form solutions of interface stresses with enhanced accuracy have been successfully obtained by the new model. The new solutions not only satisfy both the equilibrium condition of the adhesive layer and zero-shear stress boundary condition at the free edge, but also correctly give two different peel stress distributions along the interface between the piezoelectric patch and adhesive layer and the interface between the adhesive layer and the host beam. A numerical example of the sensing charge output suggests that the present model is applicable to the cases of a thick adhesive layer or thick host beams, while the existing model is not

  7. Ion Beam Analysis, structure and corrosion studies of nc-TiN/a-Si{sub 3}N{sub 4} nanocomposite coatings deposited by sputtering on AISI 316L

    Energy Technology Data Exchange (ETDEWEB)

    García, J. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jal. 45101 (Mexico); Canto, C.E. [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, México, D.F. 04510 (Mexico); Flores, M. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jal. 45101 (Mexico); Andrade, E., E-mail: andrade@fisica.unam.mx [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, México, D.F. 04510 (Mexico); Rodríguez, E.; Jiménez, O. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jal. 45101 (Mexico); Solis, C.; Lucio, O.G. de [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, México, D.F. 04510 (Mexico); Rocha, M.F. [ESIME-Z, Instituto Politécnico Nacional, ALM Zacatenco, México, D.F. 07738 (Mexico)

    2014-07-15

    In this work, nanocomposite coatings of nc-TiN/a-Si{sub 3}N{sub 4}, were deposited on AISI 316L stainless steel substrate by a DC and RF reactive magnetron co-sputtering technique using an Ar–N{sub 2} plasma. The structure of the coatings was characterized by means of XRD (X-ray Diffraction). The substrate and coating corrosion resistance were evaluated by potentiodynamic polarization using a Ringer solution as electrolyte. Corrosion tests were conducted with the purpose to evaluate the potential of this coating to be used on biomedical alloys. IBA (Ion Beam Analysis) techniques were applied to measure the elemental composition profiles of the films and, XPS (X-ray Photoelectron Spectroscopy) were used as a complementary technique to obtain information about the compounds present in the films. The nanocomposite coatings of nc-TiN/a-Si{sub 3}N{sub 4} show crystalline (TiN) and amorphous (Si{sub 3}N{sub 4}) phases which confer a better protection against the corrosion effects compared with that of the AISI 316L.

  8. Analysis of biological material using ion beams of a few MeV energy

    International Nuclear Information System (INIS)

    A review is given of the applications of ion beam analysis of biological materials by means of elastic scattering, nuclear reactions and x-ray production. The techniques which are specially relevant to biological materials, rather than the general principles which are already well covered in the literature, are discussed. The three techniques and their use for biological analysis are discussed in turn, with treatment of relevant practical matters such as specimen preparation. Finally some recent developments of ion beam analysis are described

  9. IBA e carboidratos no enraizamento de brotações procedentes de estacas radiciais de Rubus Spp.

    OpenAIRE

    João Paulo Tadeu Dias; Elizabeth Orika Ono; João Domingos Rodrigues

    2011-01-01

    Este trabalho objetivou verificar o efeito do ácido indol-3-butírico (IBA) e o teor de carboidratos na promoção do enraizamento em estacas de brotações de amoreira-preta. O experimento foi conduzido de junho a agosto de 2010, na UNESP de Botucatu - SP, sendo o delineamento em blocos casualizados, com seis concentrações de IBA e seis repetições, com a parcela constituída por 12 brotações. Os tratamentos constaram de seis concentrações de IBA, na forma de solução: T1= 0 mg L-1; T2= 250 mg L-1; ...

  10. Experimental and numerical analysis of the steady-state behaviour of a beam system with impact

    NARCIS (Netherlands)

    Vorst, E.L.B. van de; Heertjes, M.F.; Campen, D.H. van; Kraker, A. de; Fey, R.H.B.

    1998-01-01

    In this paper the steady state behaviour of a beam system with a periodically moving support and an elastic stop is analysed both numerically and experimentally. In the numerical analysis a continuous model for the elastic stop is used based on the contact force law of Hertz. The beam is modelled us

  11. Capacity Assessment of the Dutch Beam-trawler Fleet using Data Envelopment Analysis

    NARCIS (Netherlands)

    Hoof, van L.J.W.; Wilde, de J.W.

    2005-01-01

    In the framework of a study for the European Commission on 'Measuring Capacity in Fishing Industries using the Data Envelopment Analysis (DEA) Approach,' the methodology was applied to a substantial sample of the Dutch beam trawler fleet. Beam trawling for flatfish is the main occupation of the Dutc

  12. Applications of laser produced ion beams to nuclear analysis of materials

    International Nuclear Information System (INIS)

    Laser produced ion beams have unique characteristics which are ultra-short pulse, very low emittance, and variety of nuclear species. These characteristics could be used for analyzing various materials like low Z ion doped heavy metals or ceramics. Energies of laser produced ion beam extend from 0.1MeV to 100MeV. Therefore, various nuclear processes can be induced in the interactions of ion beams with samples. The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. To explore the applicability of laser ion beam to the analysis of the Li ion battery, a proton beam with the diameter of ∼ 1.0 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used. For the analysis, the PIGE (Particle-Induced Gamma Ray Emission) is used. The proton beam scans over Li battery electrode samples to diagnose Li density in the LiNi0.85Co0.15O2 anode. As the results, PIGE images for Li area density distributions are obtained with the spatial resolution of better than 1.5μm FWHM. By the Li PIGE images, the depth dependence of de-intercalation levels of Li in the anode is obtained. By the POP experiments at TIARA, it is clarified that laser produced ion beam is appropriate for the Li ion battery analysis. 41.85.Lc, 41.75.Jv, 42.62.cf.

  13. INDEPENDENT COMPONENT ANALYSIS (ICA) APPLIED TO LONG BUNCH BEAMS IN THE LOS ALAMOS PROTON STORAGE RING

    Energy Technology Data Exchange (ETDEWEB)

    Kolski, Jeffrey S. [Los Alamos National Laboratory; Macek, Robert J. [Los Alamos National Laboratory; McCrady, Rodney C. [Los Alamos National Laboratory; Pang, Xiaoying [Los Alamos National Laboratory

    2012-05-14

    Independent component analysis (ICA) is a powerful blind source separation (BSS) method. Compared to the typical BSS method, principal component analysis (PCA), which is the BSS foundation of the well known model independent analysis (MIA), ICA is more robust to noise, coupling, and nonlinearity. ICA of turn-by-turn beam position data has been used to measure the transverse betatron phase and amplitude functions, dispersion function, linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices along the bunch and discuss the source signals identified as betatron motion and longitudinal beam structure.

  14. Analysis of Static and Dynamic Behavior of T-shape Beam Reinforced by External Prestressing Tendon

    Directory of Open Access Journals (Sweden)

    Dinghai Li

    2013-01-01

    Full Text Available External prestressing has become a primary method for strengthening existing concrete beam and has been increasingly used in the construction of newly erected ones, particularly railroad bridges in recent years. In order to evaluate the effect of this method, the static and dynamic behavior of a T-frame beam reinforced by external prestressed strengthened concrete beam was analyzed by 3D finite element method, and the field test study was also made. The study was carried out to further investigate the simply supported reinforced prestressed concrete beam strengthened by external prestressing through theory analysis and experiment.

  15. Neutron beam characteristics of the prompt gamma neutron activation analysis system at HANARO

    International Nuclear Information System (INIS)

    Neutron beam characteristics of the Prompt Gamma Neutron Activation Analysis facility at HANARO were measured. The neutron beam of this facility is polychromatic thermal neutrons diffracted vertically by a set of pyrolytic graphite crystals at the Bragg angle of 45 .deg. from a horizontal beam line. Three conditions of thermal neutron extraction were applied by varying graphite crystal thickness and focusing geometry of diffracted beam. Thermal neutron profile, thermal neutron flux and Cd-ratio were measured at the sample position for each extraction condition. Thermal neutron flux of 6.1x107 n/cm2s and Cd-ratio of 364 are achieved finally

  16. Unified nonlinear analysis for nonhomogeneous anisotropic beams with closed cross sections

    Science.gov (United States)

    Atilgan, Ali R.; Hodges, Dewey H.

    1991-01-01

    A unified methodology for geometrically nonlinear analysis of nonhomogeneous, anisotropic beams is presented. A 2D cross-sectional analysis and a nonlinear 1D global deformation analysis are derived from the common framework of a 3D, geometrically nonlinear theory of elasticity. The only restrictions are that the strain and local rotation are small compared to unity and that warping displacements are small relative to the cross-sectional dimensions. It is concluded that the warping solutions can be affected by large deformation and that this could alter the incremental stiffnes of the section. It is shown that sectional constants derived from the published, linear analysis can be used in the present nonlinear, 1D analysis governing the global deformation of the beam, which is based on intrinsic equations for nonlinear beam behavior. Excellent correlation is obtained with published experimental results for both isotropic and anisotropic beams undergoing large deflections.

  17. Finite Element Formulation for Stability and Free Vibration Analysis of Timoshenko Beam

    Directory of Open Access Journals (Sweden)

    Abbas Moallemi-Oreh

    2013-01-01

    Full Text Available A two-node element is suggested for analyzing the stability and free vibration of Timoshenko beam. Cubic displacement polynomial and quadratic rotational fields are selected for this element. Moreover, it is assumed that shear strain of the element has the constant value. Interpolation functions for displacement field and beam rotation are exactly calculated by employing total beam energy and its stationing to shear strain. By exploiting these interpolation functions, beam elements' stiffness matrix is also examined. Furthermore, geometric stiffness matrix and mass matrix of the proposed element are calculated by writing governing equation on stability and beam free vibration. At last, accuracy and efficiency of proposed element are evaluated through numerical tests. These tests show high accuracy of the element in analyzing beam stability and finding its critical load and free vibration analysis.

  18. Beams made of twisted atoms: A theoretical analysis

    International Nuclear Information System (INIS)

    We have analyzed Bessel beams of two-level atoms that are driven by a linearly polarized laser light. Based on the Schroedinger equation for two-level systems, we first determine the states of two-level atoms in a plane-wave field by taking into account propagation directions both of the atom and the field. For such laser-driven two-level atoms, we construct Bessel beams by going beyond the typical paraxial approximation. In particular, we show that the probability density of these atomic beams exhibits a non-trivial, Bessel-squared-type behavior. The profile of such twisted atoms is affected by atom and laser parameters, such as the nuclear charge, atom velocity, laser frequency, and propagation geometry of the atom and laser beams. Moreover, we spatially and temporally characterize the beam of hydrogen and selected (neutral) alkali-metal atoms that carry non-zero orbital angular momentum (OAM). The proposed spatiotemporal Bessel states (i) are able to describe twisted states of any two-level system which is driven by the radiation field and (ii) have potential applications in atomic and nuclear processes as well as in quantum communication.

  19. Analysis of the power system from an electron beam accelerator and the correlation with the theoretical dosimetry for radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir Luiz; Somessari, Elizabeth S. Ribeiro; Silveira, Carlos Gaia da; Calvo, Wilson Aparecido Parejo, E-mail: somessar@ipen.br, E-mail: esomessa@ipen.br, E-mail: cgsilvei@ipen.br, E-mail: wapcalvo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Dynamitron DC1500/25/04 type electron beam accelerator (EBA), model JOB 188, was manufactured by IBA Industrial (Radiation Dynamics, Inc.) and installed at IPEN/CNEN-SP in 1978. The technical specifications of the EBA are: energy 0.5 to 1.5 MeV; beam current: 0.3 to 25.0 mA; beam scanning: 60 to 120 cm; beam width: 25.4 mm and frequency: 100 Hz. Nowadays, this accelerator has been used for innumerable applications, such as: for sterilization of medical, pharmaceutical and biological products; treatment of industrial and domestic effluents and sludge; preservation and disinfestation of foods and agricultural products; lignocellulosic material irradiation as a pre-treatment to produce ethanol bio-fuel; decontamination of pesticide packing; solid residues remediation; organic compounds removal from wastewater; treatment of effluent from petroleum production units; crosslinking of foams, wires and electric cables; composite and nanocomposite materials and carbon fibers irradiation; irradiated grafting ion-exchange membranes for fuel cells application; natural polymers and multilayer packages irradiation, and biodegradable blends production. The energy of the electron beam is calculated as a function of the current in the accelerator high-voltage divisor, taking into account the thickness and density of the material to be irradiated. This energy is calculated considering the electron through the entire material and the distance from the titanium foil window, so that the absorbed doses at the point of entrance and exit are equivalent on the material. The dose is directly proportional to the beam current and the exposure time of the material under the electron beam and inversely proportional to the scan width. The aim of this paper is to analyze the power system parameters of the EBA Dynamitron DC1500/25/04 accelerator, such as, voltage and root-mean-square (RMS) current in the oscillator system, high voltage generator and waveform, using software developed in the

  20. Analysis of the power system from an electron beam accelerator and the correlation with the theoretical dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Dynamitron DC1500/25/04 type electron beam accelerator (EBA), model JOB 188, was manufactured by IBA Industrial (Radiation Dynamics, Inc.) and installed at IPEN/CNEN-SP in 1978. The technical specifications of the EBA are: energy 0.5 to 1.5 MeV; beam current: 0.3 to 25.0 mA; beam scanning: 60 to 120 cm; beam width: 25.4 mm and frequency: 100 Hz. Nowadays, this accelerator has been used for innumerable applications, such as: for sterilization of medical, pharmaceutical and biological products; treatment of industrial and domestic effluents and sludge; preservation and disinfestation of foods and agricultural products; lignocellulosic material irradiation as a pre-treatment to produce ethanol bio-fuel; decontamination of pesticide packing; solid residues remediation; organic compounds removal from wastewater; treatment of effluent from petroleum production units; crosslinking of foams, wires and electric cables; composite and nanocomposite materials and carbon fibers irradiation; irradiated grafting ion-exchange membranes for fuel cells application; natural polymers and multilayer packages irradiation, and biodegradable blends production. The energy of the electron beam is calculated as a function of the current in the accelerator high-voltage divisor, taking into account the thickness and density of the material to be irradiated. This energy is calculated considering the electron through the entire material and the distance from the titanium foil window, so that the absorbed doses at the point of entrance and exit are equivalent on the material. The dose is directly proportional to the beam current and the exposure time of the material under the electron beam and inversely proportional to the scan width. The aim of this paper is to analyze the power system parameters of the EBA Dynamitron DC1500/25/04 accelerator, such as, voltage and root-mean-square (RMS) current in the oscillator system, high voltage generator and waveform, using software developed in the

  1. Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry

    International Nuclear Information System (INIS)

    Fractional number density measurements for a rf plasma 'needle' operating at atmospheric pressure have been obtained using a molecular beam mass spectrometer (MBMS) system designed for diagnostics of atmospheric plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes an automated beam-to-background measurement facility in the form of a software-controlled chopper mechanism. The automation of the beam modulation allows the neutral components in the plasma to be rapidly and accurately measured using the mass spectrometer by threshold ionization techniques. Data are reported for plasma generated by a needle plasma source operated using a helium/air mixture. In particular, data for the conversion of atmospheric oxygen and nitrogen into nitric oxide are discussed with reference to its significance for medical applications such as disinfecting wounds and dental cavities and for microsurgery

  2. Tile HCAL Test Beam Analysis: Positron and Hadron Studies

    CERN Document Server

    Fabbri, Riccardo

    2009-01-01

    The CALICE collaboration has constructed a hadronic sandwich calorimeter prototype with 7608 scintillating plates, individually read out by multi-pixel silicon photomultipliers (SiPMs). For the first time ever the read out is performed using SiPMs on a large scale. Results of test beam operations with muon, positron and hadron beams at CERN are presented here, validating the feasibility of the novel SiPM technology. Results of the application of the particle flow approach in shower energy reconstruction are presented for the first time ever using real data.

  3. Finite element analysis and structural design of pretensioned inverted T-beams with web openings

    Institute of Scientific and Technical Information of China (English)

    Hock Tian CHENG; Bashar S. MOHAMMED; Kamal Nasharuddin MUSTAPHA

    2009-01-01

    This paper presents the results of a research project aimed at providing standard circular web openings to the popular precast pretensioned inverted T-beam.Opening size and placement and required materials strengths were investigated. In this paper the nonlinear analysis and design of simply supported pretensioned inverted T-beam with circular web openings are presented.Two design parameters are varied: opening location and number of openings. The results from nonlinear finite element analysis were substantiated by test results from five pretensioned inverted T-beams with web opening and one solid beam. Good agreement is shown between the theoretical and the experimental results. The test results obtained from this investigation show that the performance of the specimens with web openings is almost identical to that of the specimen without web openings. A simple design method for pretensioned inverted T-beam with

  4. Ultimate load analysis of pretensioned inverted T-beams with circular web openings

    Institute of Scientific and Technical Information of China (English)

    Hock Tian CHENG; Bashar S. MOHAMMED; Kamal Nasharuddin MUSTAPHA

    2009-01-01

    The provision of transverse openings in floor beams to facilitate the passage of utility pipes and service ducts not only results in a more systematic layout of pipes and ducts, it also translates into substantial economic savings in the construction of a multi-storey building. In this paper, ultimate load analysis of statically loaded simply supported pretensioned inverted T-beams with circular web openings is presented. Major findings relevant to ultimate load analysis of pretensioned beams with circular web openings are summarized. An attempt has been made to answer the frequently asked questions related to ultimate load analysis on multiple circular web open-ings. It has been shown that the analysis method for pretensioned beams with multiple large circular web openings can be further simplified without sacrificing rationality.

  5. Some peculiarity of element analysis using charged particle beams

    International Nuclear Information System (INIS)

    Multilayer structures, SiC -layers at Si substrate, have been analyzed by RBS, NR, ERD and PIXE methods using the charged particle beams from EG-5 Van de Graaff accelerator of JINR. The depth profiles of the based deposited layers were obtained for the multilayer structures

  6. BEAMS: separating the wheat from the chaff in supernova analysis

    CERN Document Server

    Kunz, Martin; Bassett, Bruce A; Smith, Mathew; Newling, James; Varughese, Melvin

    2012-01-01

    We introduce Bayesian Estimation Applied to Multiple Species (BEAMS), an algorithm designed to deal with parameter estimation when using contaminated data. We present the algorithm and demonstrate how it works with the help of a Gaussian simulation. We then apply it to supernova data from the Sloan Digital Sky Survey (SDSS), showing how the resulting confidence contours of the cosmological parameters shrink significantly.

  7. Numerical analysis of reinforced concrete continuous deep beams

    NARCIS (Netherlands)

    Asin, M.; Walraven, J.

    1995-01-01

    The structural behaviour of deep beams is still not completely understood, since, for example, plane sections do not remain plane and no uniform shear flow can develop because of the small ratio between depth and shear span. If in addition, the supporting system is also statically indeterminate, the

  8. Equilibrium problems and limit analysis of masonry beams

    Czech Academy of Sciences Publication Activity Database

    Lucchesi, M.; Šilhavý, Miroslav; Zani, N.

    2012-01-01

    Roč. 106, č. 2 (2012), s. 165-188. ISSN 0374-3535 Institutional research plan: CEZ:AV0Z10190503 Keywords : beams * arches * collapse Subject RIV: BA - General Math ematics Impact factor: 1.038, year: 2012 http://rd.springer.com/article/10.1007/s10659-011-9318-5

  9. Stability Analysis of Some Nonlinear Feedback Control Methods for Beam Halo-Chaos Suppression

    Institute of Scientific and Technical Information of China (English)

    FANG Jin-Qing; WANG Zhong-Sheng; CHEN Guan-Rong

    2004-01-01

    Control of beam halo-chaos has been a very challenging subject for research in recent years, in which some nonlinear feedback methods have been developed for suppression of beam halo-chaos in high-current proton linear accelerators. However, stability analysis of such successful nonlinear feedback control methods has not yet been rigorously carried out, which remains an important open topic in the field. In this letter, we present a rigorous mathematical analysis of several nonlinear feedback control methods that are applied to control beam halo-chaos with great success on simulations.

  10. Stability Analysis of Some Nonlinear Feedback Control Methods for Beam Halo-ChaosSuppression

    Institute of Scientific and Technical Information of China (English)

    FANGJin-Qing; WANGZhong-Sheng; CHENGuan-Rong

    2004-01-01

    Control of beam halo-chaos has been a very challenging subject for research in recent years, in which some nonlinear feedback methods have been developed for suppression of beam halo-chaos in high-current proton linear accelerators. However, stability analysis of such successful nonlinear feedback control methods has not yet been rigorously carried out, which remains an important open topic in the field. In this letter, we present a rigorous mathematical analysis of several nonlinear feedback control methods that are applied to control beam halo-chaos with great success on simulations.

  11. GRB 021219: the first Gamma-Ray Burst localized in real time with IBAS

    CERN Document Server

    Mereghetti, S; Beckmann, V; Von Kienlin, A; Ubertini, P; Bazzano, A; Foschini, L; Malaguti, G

    2003-01-01

    On December 19, 2002, during the Performance and Verification Phase of INTEGRAL, a Gamma-Ray Burst (GRB) has been detected and localized in real time with the INTEGRAL Burst Alert System (IBAS). Here we present the results obtained with the IBIS and SPI instruments. The burst had a time profile with a single peak lasting about 6 s. The peak spectrum can be described by a single power law with photon index $\\Gamma$=1.6$\\pm$0.1 and flux $\\sim$3.7 photons cm$^{-2}$ s$^{-1}$ (20 - 200 keV). The fluence in the same energy range is 9$\\times10^{-7}$ erg cm$^{-2}$. Time resolved spectroscopy performed with IBIS/ISGRI shows a clear hard to soft evolution of the spectrum.

  12. Post-buckling analysis of composite beams: A simple intuitive formulation

    Indian Academy of Sciences (India)

    Jagadish Babu Gunda; G Venkateswara Rao

    2013-06-01

    Post-buckling analysis of composite beams with axially immovable ends is investigated using an Intuitive formulation. Intuitive formulation uses two parameters namely critical buckling load and axial stretching force developed in the post-buckled domain of composite beam. Geometric nonlinearity of von-Karman type is taken into consideration which accounts for membrane stretching action of the beam. Axial stretching force developed in post-buckled domain of composite beam is evaluated by using an axial governing equation and is expressed either in terms of lateral displacement function as an integrated value, or as a function of both axial and lateral displacement functions at any discrete location of the beam. The available expressions of critical buckling load and derived expressions of axial stretching force developed in the beam are used for obtaining an approximate closed-form expressions for the post-buckling loads of various beam boundary conditions. Numerical accuracy of the proposed analytical closed-form expressions obtained from the intuitive formulation are compared to the available finite element solutions for symmetric and asymmetric lay-up schemes of laminated composite beam. Effect of central amplitude ratio and lay-up orientation on post-buckling load variation is briefly discussed for various beam boundary conditions considered in this study.

  13. Integration and testing of the GRAVITY infrared camera for multiple telescope optical beam analysis

    Science.gov (United States)

    Gordo, Paulo; Amorim, Antonio; Abreu, Jorge; Eisenhauer, Frank; Anugu, Narsireddy; Garcia, Paulo; Pfuhl, Oliver; Haug, Marcus; Sturm, Eckhard; Wieprecht, Ekkehard; Perrin, Guy; Brandner, Wolfgang; Straubmeier, Christian; Perraut, Karine; Naia, M. Duarte; Guimarães, M.

    2014-07-01

    The GRAVITY Acquisition Camera was designed to monitor and evaluate the optical beam properties of the four ESO/VLT telescopes simultaneously. The data is used as part of the GRAVITY beam stabilization strategy. Internally the Acquisition Camera has four channels each with: several relay mirrors, imaging lens, H-band filter, a single custom made silica bulk optics (i.e. Beam Analyzer) and an IR detector (HAWAII2-RG). The camera operates in vacuum with operational temperature of: 240k for the folding optics and enclosure, 100K for the Beam Analyzer optics and 80K for the detector. The beam analysis is carried out by the Beam Analyzer, which is a compact assembly of fused silica prisms and lenses that are glued together into a single optical block. The beam analyzer handles the four telescope beams and splits the light from the field mode into the pupil imager, the aberration sensor and the pupil tracker modes. The complex optical alignment and focusing was carried out first at room temperature with visible light, using an optical theodolite/alignment telescope, cross hairs, beam splitter mirrors and optical path compensator. The alignment was validated at cryogenic temperatures. High Strehl ratios were achieved at the first cooldown. In the paper we present the Acquisition Camera as manufactured, focusing key sub-systems and key technical challenges, the room temperature (with visible light) alignment and first IR images acquired in cryogenic operation.

  14. Geometrically Nonlinear Static Analysis of Edge Cracked Timoshenko Beams Composed of Functionally Graded Material

    Directory of Open Access Journals (Sweden)

    Şeref Doğuşcan Akbaş

    2013-01-01

    Full Text Available Geometrically nonlinear static analysis of edge cracked cantilever Timoshenko beams composed of functionally graded material (FGM subjected to a nonfollower transversal point load at the free end of the beam is studied with large displacements and large rotations. Material properties of the beam change in the height direction according to exponential distributions. The cracked beam is modeled as an assembly of two subbeams connected through a massless elastic rotational spring. In the study, the finite element of the beam is constructed by using the total Lagrangian Timoshenko beam element approximation. The nonlinear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The convergence study is performed for various numbers of finite elements. In the study, the effects of the location of crack, the depth of the crack, and various material distributions on the nonlinear static response of the FGM beam are investigated in detail. Also, the difference between the geometrically linear and nonlinear analysis of edge cracked FGM beam is investigated in detail.

  15. Determination of the polarization states of an arbitrary polarized terahertz beam: vectorial vortex analysis.

    Science.gov (United States)

    Wakayama, Toshitaka; Higashiguchi, Takeshi; Oikawa, Hiroki; Sakaue, Kazuyuki; Washio, Masakazu; Yonemura, Motoki; Yoshizawa, Toru; Tyo, J Scott; Otani, Yukitoshi

    2015-01-01

    Vectorial vortex analysis is used to determine the polarization states of an arbitrarily polarized terahertz (0.1-1.6 THz) beam using THz achromatic axially symmetric wave (TAS) plates, which have a phase retardance of Δ = 163° and are made of polytetrafluorethylene. Polarized THz beams are converted into THz vectorial vortex beams with no spatial or wavelength dispersion, and the unknown polarization states of the incident THz beams are reconstructed. The polarization determination is also demonstrated at frequencies of 0.16 and 0.36 THz. The results obtained by solving the inverse source problem agree with the values used in the experiments. This vectorial vortex analysis enables a determination of the polarization states of the incident THz beam from the THz image. The polarization states of the beams are estimated after they pass through the TAS plates. The results validate this new approach to polarization detection for intense THz sources. It could find application in such cutting edge areas of physics as nonlinear THz photonics and plasmon excitation, because TAS plates not only instantaneously elucidate the polarization of an enclosed THz beam but can also passively control THz vectorial vortex beams. PMID:25799965

  16. Preliminary Study and Improve the Production of Metabolites with Antifungal Activity by A Bacillus Sp Strain IBA 33

    Directory of Open Access Journals (Sweden)

    María Antonieta Gordillo

    2009-04-01

    Full Text Available Bacillus sp strain IBA 33 metabolites, isolated from decaying lemon fruits, were evaluated for the control of pathogenic and non-pathogenic fungi (Penicillium digitatum, Geotrichum candidum, Penicillium expansum, Aspergillus clavatus, Aspergillus flavus, Aspergillus niger, and Fusarium moniliforme. These metabolites were recovered from Landy medium (LM without aminoacids. In order to optimize metabolites production the LM was modified by adding different concentrations and sources of amino acids and carbohydrates at different culture conditions. Bacillus sp strain IBA 33 metabolites efficacy to control fungi were evaluated with in vitro and in vivo assays. A. flavus growth inhibition was 52% with the metabolites of Bacillus sp strain IBA 33 recovered from LM (MBLM in vitro assays. MBLM supplemented with 0.5% glutamic acid, inhibited the growth of P. digitatum, G. candidum, A. clavatus, A. niger and F. moniliforme by 65%, 88.44%, 84%, 34% and 92% respectively. The highest inhibition of P. expansum was 45% with MBLM supplemented with 0.5% aspartic acid. Similar results were obtained in vivo assays. These results showed that Bacillus sp strain IBA 33 metabolites specificity against fungi depended on the composition of the LM.

  17. Preliminary Study and Improve the Production of Metabolites with Antifungal Activity by A Bacillus Sp Strain IBA 33

    Directory of Open Access Journals (Sweden)

    María Antonieta Gordillo

    2009-01-01

    Full Text Available Bacillus sp strain IBA 33 metabolites, isolated from decaying lemon fruits, were evaluated for the control of pathogenic and non-pathogenic fungi (Penicillium digitatum, Geotrichum candidum, Penicillium expansum, Aspergillus clavatus, Aspergillus flavus, Aspergillus niger, and Fusarium moniliforme. These metabolites were recovered from Landy medium (LM without aminoacids. In order to optimize metabolites production the LM was modified by adding different concentrations and sources of amino acids and carbohydrates at different culture conditions.Bacillus sp strain IBA 33 metabolites efficacy to control fungi were evaluated with in vitro and in vivo assays. A. flavus growth inhibition was 52% with the metabolites of Bacillus sp strain IBA 33 recovered from LM (MBLM in vitro assays. MBLM supplemented with 0.5% glutamic acid, inhibited the growth of P. digitatum, G. candidum, A. clavatus, A. niger and F. moniliforme by 65%, 88.44%, 84%, 34% and 92% respectively. The highest inhibition of P. expansum was 45% with MBLM supplemented with 0.5% aspartic acid. Similar results were obtained in vivo assays. These results showed that Bacillus sp strain IBA 33 metabolites specificity against fungi depended on the composition of the LM.

  18. NONLINEAR ANALYSIS OF CFRP- PRESTRESSED CONCRETE BEAMS SUBJECTED TO INCREMENTAL STATIC LOADING BY FINITE ELEMENTS

    Directory of Open Access Journals (Sweden)

    Husain M. Husain

    2013-05-01

    Full Text Available In this work a program is developed to carry out the nonlinear analysis (material nonlinearity of prestressed concrete beams using tendons of carbon fiber reinforced polymer (CFRP instead of steel. The properties of this material include high strength, light weight, and insusceptibility to corrosion and magnetism. This material is still under investigation, therefore it needs continuous work to make it beneficial in concrete design. Four beams which are tested experimentally by Yan et al. are examined by the developed computer program to reach a certain analytical approach of the design and analysis of such beams because there is no available restrictions or recommendations covering this material in the codes. The program uses the finite element analysis by dividing the beams into isoparametric 20-noded brick elements. The results obtained are good in comparison with experimental results.

  19. Thermal analysis and optimization of proton beam window for the CSNS

    International Nuclear Information System (INIS)

    The proton beam window (PBW) is one of the key devices of China Spallation Neutron Source (CSNS). It is the boundary between transport line and target. This paper will present a new PBW structure and detailed thermal-stress analysis. The energy deposition and scattering effect need to be low when the beam passes through the PBW, so proper selection of material and structure is important. According to the study of energy deposition, A5083-O is selected as the PBW material. A single-double layer structure is first proposed based on the study of cooling structures. Thermal analysis and structural optimization are discussed, and transient analysis is done to show the effect of the beam pulse. Besides, safety is confirmed for cases of cooling tunnel blockage, beam profile shrinkage, or centroid orbit offset. All these analyses show the newly designed PBW structure can meet the requirements of the CSNS well. (authors)

  20. Elasto-plastic impact response analysis of shear-failure-type RC beams with shear rebars

    International Nuclear Information System (INIS)

    In this paper, to establish a simple elasto-plastic impact analysis method for shear-failure-type reinforced concrete (RC) beams, falling-weight impact tests and three-dimensional finite element (FE) analyses were conducted. Here, twelve simply supported rectangular RC beams were used, each with dimensions of (width x depth x length) 200 x 400 x 2,400 mm. Shear rebar ratio and impact velocity were taken as variables. Impact load was applied at the mid-span of RC beam by dropping a 400 kg steel weight from pre-determined position. LS-DYNA nonlinear transient finite element analysis code was used for this research. From this study, it is seen that the time histories of impact force, reaction force and mid-span displacement, and crack patterns on the side-surface of RC beam can be predicted accurately by using the proposed FE analysis method

  1. Ion beam analysis of a-C:H films on alloy steel substrate

    International Nuclear Information System (INIS)

    An a-C:H thin film deposited by plasma immersion ion implantation and deposition on alloy steel (16MnCr5) was analyzed using a self-consistent ion beam analysis technique. In the self-consistent analysis, the results of each individual technique are combined in a unique model, increasing confidence and reducing simulation errors. Self-consistent analysis, then, is able to improve the regular ion beam analysis since several analyses commonly used to process ion beam data still rely on handling each spectrum independently. The sample was analyzed by particle-induced x-ray emission (for trace elements), elastic backscattering spectrometry (for carbon), forward recoil spectrometry (for hydrogen) and Rutherford backscattering spectrometry (for film morphology). The self-consistent analysis provided reliable chemical information about the film, despite its “heavy” substrate. As a result, we could determine precisely the H/C ratio, contaminant concentration and some morphological characteristics of the film, such as roughness and discontinuities. - Highlights: • Self-consistent approach of ion beam analysis was used to characterize an a-C:H film. • The self-consistent analysis provided a unequivocal and reliable model of the sample. • Morphological aspects of the film were assessed with the ion beam analysis

  2. Anisotropic beam model for analysis and design of passive controlled wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Branner, K.; Blasques, J.P.; Kim, T.; Fedorov, V.A.; Berring, P.; Bitsche, R.D.; Berggreen, C.

    2012-02-15

    The main objective of the project was, through theoretical and experimental research, to develop and validate a fully coupled, general beam element that can be used for advanced and rapid analysis of wind turbine blades. This is fully achieved in the project and the beam element has even been implemented in the aeroelastic code HAWC2. It has also been demonstrated through a parametric study in the project that a promising possibility with the tool is to reduce fatigue loads through structural couplings. More work is needed before these possibilities are fully explored and blades with structural couplings can be put into production. A cross section analysis tool BECAS (BEam Cross section Analysis Software) has been developed and validated in the project. BECAS is able to predict all geometrical and material induced couplings. This tool has obtained great interest from both industry and academia. The developed fully coupled beam element and cross section analysis tool has been validated against both numerical calculations and experimental measurements. Numerical validation has been performed against beam type calculations including Variational Asymptotical Beam Section Analysis (VABS) and detailed shell and solid finite element analyses. Experimental validation included specially designed beams with built-in couplings, a full-scale blade section originally without couplings, which subsequently was modified with extra composite layers in order to obtain measurable couplings. Both static testing and dynamic modal analysis tests have been performed. The results from the project now make it possible to use structural couplings in an intelligent manner for the design of future wind turbine blades. The developed beam element is especially developed for wind turbine blades and can be used for modeling blades with initial curvature (pre-bending), initial twist and taper. Finally, it have been studied what size of structural couplings can be obtained in current and future

  3. Heavy Neutral Beam Probe for Edge Plasma Analysis in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Castracane, J.

    2001-01-04

    The Heavy Neutral Beam Probe (HNBP) developed initially with DOE funding under the Small Business Innovation Research (SBIR) program was installed on the Tokamak de Varennes (TdeV) at the CCFM. This diagnostic was designed to perform fundamental measurements of edge plasma properties. The hardware was capable of measuring electron density and potential profiles with high spatial and temporal resolution. Fluctuation spectra for these parameters were obtained with HNBP for transport studies.

  4. Analysis of E-Beam Microlithography and SEM Imaging Distortions

    OpenAIRE

    Guery, Adrien; Latourte, Félix; Hild, François; Roux, Stéphane

    2014-01-01

    Surface patterning by e-beam lithography and SEM imaging distortions are studied via digital image correlation. The surface of a stainless steel specimen is marked with a numerically-generated random pattern by microlithography. The global distortions from the reference pattern are first quantified by digital image correlation between the virtual reference pattern and the actual SEM image both in secondary and backscattered electron imaging modes. A second order polynomial basis reveals suffi...

  5. Analysis of Electron Beam Degraded poly[methyl(phenyl)silylene

    Czech Academy of Sciences Publication Activity Database

    Horák, Petr; Schauer, Petr

    Prague: Czechoslovak Microscopy Society, 2007 - (Nebesářová, J.; Hozák, P.), s. 157-258 ISBN 978-80-239-9397-4. [Multinational Congress on Microscopy /8./. Prague (CZ), 17.06.2007-21.06.2007] R&D Projects: GA AV ČR IAA100100622 Institutional research plan: CEZ:AV0Z20650511 Keywords : poly[methyl(phenyl)silylene] * polysilanes * PSi * cathodoluminescence * electron beam degradation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  6. Heavy Neutral Beam Probe for Edge Plasma Analysis in Tokamaks

    International Nuclear Information System (INIS)

    The Heavy Neutral Beam Probe (HNBP) developed initially with DOE funding under the Small Business Innovation Research (SBIR) program was installed on the Tokamak de Varennes (TdeV) at the CCFM. This diagnostic was designed to perform fundamental measurements of edge plasma properties. The hardware was capable of measuring electron density and potential profiles with high spatial and temporal resolution. Fluctuation spectra for these parameters were obtained with HNBP for transport studies

  7. Heavy Neutral Beam Probe for edge plasma analysis in Tokamaks

    International Nuclear Information System (INIS)

    The contents of this report present the progress achieved to date on the Heavy Neutral Beam Probe project. This effort is an international collaboration in magnetic confinement fusion energy research sponsored by the US Department of Energy, Office of Energy Research (Confinement Systems Division) and the Centre Canadien de Fusion Magnetique (CCFM). The overall objective of the effort is to develop and apply a neutral particle beam to the study of edge plasma dynamics in discharges on the Tokamak de Varennes (TdeV) facility in Montreal, Canada. To achieve this goal, a research and development project was established to produce the necessary hardware to make such measurements and meet the scheduling requirements of the program. At present the project is in the middle of its second budget period with the instrumentation on-site at TdeV. The first half of this budget period was used to complete total system tests at InterScience, Inc., dismantle and ship the hardware to TdeV, re-assemble and install the HNBP on the tokamak. Integration of the diagnostic into the TdeV facility has progressed to the point of first beam production and measurement on the plasma. At this time, the HNBP system is undergoing final de-bugging prior to re-start of machine operation in early Fall of this year

  8. Free Vibration Analysis of a Cross-Ply Laminated Composite Beam on Pasternak Foundation

    Directory of Open Access Journals (Sweden)

    R. A. Jafari-Talookolaei

    2007-01-01

    Full Text Available In this study, free vibration analysis of a cross-ply laminated composite beam (LCB on Pasternak foundation was investigated. Natural frequencies of beam on Pasternak foundation are computed using finite element method (FEM on the basis of Timoshenko beam theory. Effect of both shear deformation and rotary inertia are implemented in the modeling of stiffness and mass matrices. The model was designed in such a way that it can be used for single-stepped cross-section, stepped foundation and multi-span beams. Results of few examples are compared with finding in literature and good agreements were achieved. Natural frequencies of LCBs with different layers arrangements (symmetric and non-symmetric are compared. For multi-span beam, variation of frequency with respect to number of spans was also studied.

  9. Experimental Motion Analysis of Radially Rotating Beams Using High-Speed Camera and Motion Analyzer

    Directory of Open Access Journals (Sweden)

    K.H. Low

    1996-01-01

    Full Text Available Although strain gauges can be attached to a system for vibration analysis, wires connected to the strain gauges may disturb the system and affect the accuracy of the strain measurement. As an alternative, this work presents the use of a high-speed camera combined with a motion analyzer to study the motion of rotating flexible beams. One end of the beam is rigidly connected to a motor, while the other end is free. White stickers placed on selected points on a given beam are the reference points in a digitization process. The modes of the vibrating beams can be filmed and analyzed. The vibration parameters, such as deflection and frequency, can be obtained by using a film motion analyzer. The results show that the beam does not behave in a clamped-free or a pinned-free fashion, but instead occurs at an intermediate boundary between these two classical conditions.

  10. Analysis of fusion neutron production in EAST with neutral beam injection

    International Nuclear Information System (INIS)

    Background: The neutron emission rate increases rapidly with high-power deuterium beam injected into deuterium plasmas. It is necessary to calculate the neutron production in Experimental Advanced Superconducting Tokamak (EAST) for the radiation safety. Purpose: We aim to provide reference for developing new detection systems of fusion neutron and neutron radiation shielding design. Methods: Neutron emission rate was calculated using the typical particle model and analysis method. The relationships were analyzed among the fusion neutron production and the ion density, ion temperature, neutral beam energy and neutral beam power respectively. Results: The results demonstrated that the total fusion neutron production was 1016 n·s-1 with 80-keV, 4-MW neutral beam injection. Conclusion: Neutron intensity in EAST will increase by a factor of ten when appropriate neutral beam injection is applied. It can be referred for further performance improvement and radiation protection of EAST. (authors)

  11. Vibration analysis of tapered rotating composite beams using the hierarchical finite element

    Directory of Open Access Journals (Sweden)

    Ghayour R.

    2010-12-01

    Full Text Available A hierarchical finite element model is presented for the flapwise bending vibration analysis of a tapered rotating multi-layered composite beam. The shear and rotary inertia effects are considered based on the higher shear deformation theory to derive the stiffness and mass matrices of a tapered- wisted rotating and composite beam element. Certain non-composite beams for which comparative results are available in the literature are used to illustrate the application of the proposed technique. Dimensionless parameters are identified from the equations of motion and the combined effects of the dimensionless parameters on the modal characteristics of the rotating composite beams are investigated through numerical studies. The results indicate that, comparedwith the conventional finite element method, the hierarchical finite element has the advantage of using fewer elements to obtain a better accuracy in the calculation of the vibration characteristics of rotating beams such as natural frequencies and mode shapes.

  12. Design of a prompt gamma neutron activation analysis system and neutron beam characteristics at HANARO

    International Nuclear Information System (INIS)

    The design features and neutron beam characteristics are described for a prompt gamma neutron activation analysis(PGNAA) system at HANARO in Korea Atomic Energy Research Institute(KAERI). As a method to obtain clean beam of thermal neutrons, Bragg diffraction technique of using PG crystal is applied. The Bragg angle is set at 45 .deg. and the diffracted beam is a polychromatic one composed of neutrons from all diffraction orders n(≤n≤6). The fast neutron and gamma backgrounds will be low enough due to the use of diffracted beam and a tapered collimator. A neutron flux of 1.0x108 n/cm2sec is calculated at sample position by considering the reflectivity of PG crystal. The γ-ray detection system is comprised of a 30% n-type HPGe detector, signal electronics and a fast ADC. Construction of the beam line and setting up of the detection system is proceeding

  13. The role and application of ion beam analysis for studies of plasma-facing components in controlled fusion devices

    Science.gov (United States)

    Rubel, Marek; Petersson, Per; Alves, Eduardo; Brezinsek, Sebastijan; Coad, Joseph Paul; Heinola, Kalle; Mayer, Matej; Widdowson, Anna

    2016-03-01

    First wall materials in controlled fusion devices undergo serious modification by several physical and chemical processes arising from plasma-wall interactions. Detailed information is required for the assessment of material lifetime and accumulation of hydrogen isotopes in wall materials. The intention of this work is to give a concise overview of key issues in the characterization of plasma-facing materials and components in tokamaks, especially in JET with an ITER-Like Wall. IBA techniques play a particularly prominent role here because of their isotope selectivity in the low-Z range (1-10), high sensitivity and combination of several methods in a single run. The role of 3He-based NRA, RBS (standard and micro-size beam) and HIERDA in fuel retention and material migration studies is presented. The use of tracer techniques with rare isotopes (e.g. 15N) or marker layers on wall diagnostic components is described. Special instrumentation, development of equipment to enhance research capabilities and issues in handling of contaminated materials are addressed.

  14. lon-beam analysis of plasma of HIV-Aids positive individual patients and comparison to CD4 counts

    International Nuclear Information System (INIS)

    Full text: HIV-Aids related diseases have claimed the lives of many individuals, especially those that are economically active. This economic burden has crippled many economies since many of the lives claimed are those of individuals with special skills. However, the pathogenesis of human immuno-deficiency virus (HIV) infection is until present not fully understood. Elements such as Ca, Mg, Fe, Cu, Zn and Se are incorporated into the structure of many enzymes and are therefore essential to the enzyme function. The focus of this study is the correlation of trace element concentrations, determined by IBA, and the CD4 count. Blood obtained from 100 HIV sero-positive males and females attending clinics at the National Health Training College in Maseru metropolis, Lesotho. The CD4 cells of the samples were determined by flow cytometry (Cytoflow SL - S using CD4/CD45 monoclonal antibody and SSC/F12 getting strategy). Afterwards the plasma specimens were freeze dried and then pulverized into palettes. The palettes were coated with carbon and then irradiated with a proton beam of 3 MeV energy. X-ray emission and backscattering data were obtained and then quantified with various computational software. (author)

  15. lon-beam analysis of plasma of HIV-Aids positive individual patients and comparison to CD4 counts

    Energy Technology Data Exchange (ETDEWEB)

    Mars, J.A.; Kunsevi-Kilola, C. [Department of Biomedical Sciences, Cape Peninsula University of Technology, PO Box 1906. Bellville, 7535 (South Africa); Maqutu, M.L.; Kunsevi-Kilola, C; Mohammed, A. [HIV-Aids Unit, Cape Peninsula Universily of Technology, PO Box 1906, Bellville, 7535, (South Africa); Tarr, S. [National Health Training College, Private Bag A18, Maseru, Lesotho (South Africa)

    2013-07-01

    Full text: HIV-Aids related diseases have claimed the lives of many individuals, especially those that are economically active. This economic burden has crippled many economies since many of the lives claimed are those of individuals with special skills. However, the pathogenesis of human immuno-deficiency virus (HIV) infection is until present not fully understood. Elements such as Ca, Mg, Fe, Cu, Zn and Se are incorporated into the structure of many enzymes and are therefore essential to the enzyme function. The focus of this study is the correlation of trace element concentrations, determined by IBA, and the CD4 count. Blood obtained from 100 HIV sero-positive males and females attending clinics at the National Health Training College in Maseru metropolis, Lesotho. The CD4 cells of the samples were determined by flow cytometry (Cytoflow SL - S using CD4/CD45 monoclonal antibody and SSC/F12 getting strategy). Afterwards the plasma specimens were freeze dried and then pulverized into palettes. The palettes were coated with carbon and then irradiated with a proton beam of 3 MeV energy. X-ray emission and backscattering data were obtained and then quantified with various computational software. (author)

  16. Results and analysis of the TMX electron-beam injection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, P.; Grubb, D.P.

    1980-08-01

    Electron beams (e-beams) were injected into the Tandem Mirror Experiment (TMX) plasma in order to investigate the effect on the ion cyclotron fluctuations of the plasma. The power level of the e-beams was comparable to that of the injected neutral beams. It was found that injection of the e-beams produced no significant effect on the ion cyclotron fluctuations, the measured plasma parameters, or the particle and power flow of the plasma. The increase in bulk electron temperature and the production of mirror-confined electrons found in previous experiments in which e-beams were injected into a mirror-confined plasma were not observed in this experiment. Analysis of the regions and frequencies of wave creation and absorption within the plasma shows that the plasma density and magnetic field profiles through the plasma strongly affect the resonances encountered by the waves. The steep axial density profiles produced by neutral-beam injection in the TMX experiment are not conducive to efficient coupling of the e-beam energy to the plasma.

  17. Three-beam interferogram analysis method for surface flatness testing of glass plates and wedges

    Science.gov (United States)

    Sunderland, Zofia; Patorski, Krzysztof

    2015-09-01

    When testing transparent plates with high quality flat surfaces and a small angle between them the three-beam interference phenomenon is observed. Since the reference beam and the object beams reflected from both the front and back surface of a sample are detected, the recorded intensity distribution may be regarded as a sum of three fringe patterns. Images of that type cannot be succesfully analyzed with standard interferogram analysis methods. They contain, however, useful information on the tested plate surface flatness and its optical thickness variations. Several methods were elaborated to decode the plate parameters. Our technique represents a competitive solution which allows for retrieval of phase components of the three-beam interferogram. It requires recording two images: a three-beam interferogram and the two-beam one with the reference beam blocked. Mutually subtracting these images leads to the intensity distribution which, under some assumptions, provides access to the two component fringe sets which encode surfaces flatness. At various stages of processing we take advantage of nonlinear operations as well as single-frame interferogram analysis methods. Two-dimensional continuous wavelet transform (2D CWT) is used to separate a particular fringe family from the overall interferogram intensity distribution as well as to estimate the phase distribution from a pattern. We distinguish two processing paths depending on the relative density of fringe sets which is connected with geometry of a sample and optical setup. The proposed method is tested on simulated data.

  18. ANALYSIS OF COMPOSITE LAMINATE BEAMS USING COUPLING CROSS-SECTION FINITE ELEMENT METHOD

    Institute of Scientific and Technical Information of China (English)

    JIANG Wen-guang; John L. Henshall

    2006-01-01

    Beams and plates manufactured from laminates of composite materials have distinct advantages in a significant number of applications. However, the anisotropy arising from these materials adds a significant degree of complexity, and thus time, to the stress and deformation analyses of such components, even using numerical approaches such as finite elements. The analysis of composite laminate beams subjected to uniform extension, bending, and/or twisting loads was performed by a novel implementation of the usual finite element method. Due to the symmetric features of the deformations,only a thin slice of the beam to be analysed needs to be modelled. Conventional threedimensional ,solid finite elements were used for the structural discretization. The accurate deformation relationships were formulated and implemented through the coupling of nodal translational degrees of freedom in the numerical analysis. A sample solution for a rectangular composite laminate beam is presented to show the validity and accuracy of the proposed method.

  19. Irradiation damage and ion mobility in surface analysis by ion or electron beams

    International Nuclear Information System (INIS)

    The electron irradiation of contaminated surface or insulators modifies the surface composition when the current density is on the range of the actual current in micro-Auger analysis. This destructive dose is found to be about 1013 - 1014 electrons/cm2.s for an organic layer analysis or about 1016 - 1017 electrons/cm2.s for oxides, and for sulfur or carbon contaminated surface. The primary electron beam locally rises the surface temperature and ionizes the impurities all along its depth of penetration. Therefore it may induce a thermal diffusion of impurities, a thermal enhancement of the electron stimulated desorption cross section, or an electromigration of negative species as O-, C-. Simultaneous ion etching in ion profiling technique and electron beam irradiation modify the ion etching speed and profiles, and verifies the destructive effect of the electron beam. In AES or in scanning microscopy the secondary electron image contrast is very sensitive to the beam damage

  20. Post-buckling and Large Amplitude Free Vibration Analysis of Composite Beams: Simple Intuitive Formulation

    Science.gov (United States)

    Gunda, Jagadish Babu; Venkateswara Rao, Gundabathula

    2016-04-01

    Post-buckling and large amplitude free vibration analysis of composite beams with axially immovable ends is investigated in the present study using a simple intuitive formulation. Geometric nonlinearity of Von-Karman type is considered in the analysis which accounts for mid-plane stretching action of the beam. Intuitive formulation uses only two parameters: the critical bifurcation point and the axial stretching force developed due to membrane stretching action of the beam. Hinged-hinged, clamped-clamped and clamped-hinged boundary conditions are considered. Numerical accuracy of the proposed analytical closed-form solutions obtained from the intuitive formulation are compared to available finite element solutions for symmetric and asymmetric layup schemes of laminated composite beam which indicates the confidence gained on the present formulation.

  1. Analysis of DESY-Flash LLRF Measurements for the ILC Heavy Beam Loading Test

    Energy Technology Data Exchange (ETDEWEB)

    Cancelo, Gustavo; Chase, Brian; Davidsaver, Michael; /Fermilab; Carwardine, J.; /Argonne; Simrock, Stefan; Ayvazyan, Valeri; Grecki, Mariusz; /DESY; Matsumoto, Toshihiro; Michizono, Shinichiro; /KEK, Tsukuba

    2009-06-01

    In September 2008 the DESY-FLASH accelerator was run with up to 550, 3 nano-coulomb bunches at 5 Hz repetition rate. This test is part of a longer-term study aimed at validating ILC parameters by operation as close as possible to ILC beam currents and RF gradients. The present paper reports on the analysis that has been done in order to understand the RF control system performance during this test. Actual klystron power requirements and beam stability are evaluated with heavy beam loading conditions. Results include suggested improvements for upcoming tests in 2009.

  2. Experimental Motion Analysis of Radially Rotating Beams Using High-Speed Camera and Motion Analyzer

    OpenAIRE

    Low, K. H.; Michael W.S. Lau; Low, K.K.

    1996-01-01

    Although strain gauges can be attached to a system for vibration analysis, wires connected to the strain gauges may disturb the system and affect the accuracy of the strain measurement. As an alternative, this work presents the use of a high-speed camera combined with a motion analyzer to study the motion of rotating flexible beams. One end of the beam is rigidly connected to a motor, while the other end is free. White stickers placed on selected points on a given beam are the reference point...

  3. Fuzzy analysis of serviceability limit state of slender steel beam under bending

    Energy Technology Data Exchange (ETDEWEB)

    Kala, Zdeněk; Valeš, Jan [Brno University of Technology, Faculty of Civil Engineering, Department of Structural Mechanics Vevefi St. 95, ZIP 602 00, Brno (Czech Republic)

    2015-03-10

    In the present paper, deformations of a beam under equal end moments solved with influence of lateral buckling are studied. It has been found by numerical studies that the lateral deflection of slender beam under major axis bending can be relatively high.The acceptability of high values of lateral deflections within the framework of serviceability limit state is discussed. In the next part of the paper, the limit value of maximum deflection was introduced as a fuzzy number. The fuzzy analysis of the maximum moment which causes the maximum deflection was carried out. The slendernesses of beams for which the serviceability limit state is the limiting state for design were identified.

  4. Analysis of DESY-Flash LLRF Measurements for the ILC Heavy Beam Loading Test

    International Nuclear Information System (INIS)

    In September 2008 the DESY-FLASH accelerator was run with up to 550, 3 nano-coulomb bunches at 5 Hz repetition rate. This test is part of a longer-term study aimed at validating ILC parameters by operation as close as possible to ILC beam currents and RF gradients. The present paper reports on the analysis that has been done in order to understand the RF control system performance during this test. Actual klystron power requirements and beam stability are evaluated with heavy beam loading conditions. Results include suggested improvements for upcoming tests in 2009.

  5. Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber

    Directory of Open Access Journals (Sweden)

    Juliano Fiorelli

    2003-06-01

    Full Text Available An experimental analysis of pinewood beams (Pinus caribea var hondurensis reinforced with glass and/or carbon fibers is discussed. The theoretical model employed to calculate the beam's bending strength takes into account the timber's ultimate limit states of tensile strength and failure by compression, considering a model of fragile elastic tension and plastic elastic compression. The validity of the theoretical model is confirmed by a comparison of the theoretical and experimental results, while the efficiency of the fiber reinforcement is corroborated by the increased strength and stiffness of the reinforced timber beams.

  6. Material-point Method Analysis of Bending in Elastic Beams

    DEFF Research Database (Denmark)

    Andersen, Søren Mikkel; Andersen, Lars

    The aim of this paper is to test different types of spatial interpolation for the materialpoint method. The interpolations include quadratic elements and cubic splines. A brief introduction to the material-point method is given. Simple liner-elastic problems are tested, including the classical...... cantilevered beam problem. As shown in the paper, the use of negative shape functions is not consistent with the material-point method in its current form, necessitating other types of interpolation such as cubic splines in order to obtain smoother representations of field quantities. It is shown that the...

  7. Material-Point Method Analysis of Bending in Elastic Beams

    DEFF Research Database (Denmark)

    Andersen, Søren Mikkel; Andersen, Lars

    2007-01-01

    The aim of this paper is to test different types of spatial interpolation for the material-point method. The interpolations include quadratic elements and cubic splines. A brief introduction to the material-point method is given. Simple liner-elastic problems are tested, including the classical...... cantilevered beam problem. As shown in the paper, the use of negative shape functions is not consistent with the material-point method in its current form, necessitating other types of interpolation such as cubic splines in order to obtain smoother representations of field quantities. It is shown that the...

  8. ANALYSIS ON TRANSVERSE IMPACT RESPONSE OF AN UNRESTRAINED TIMOSHENKO BEAM

    Institute of Scientific and Technical Information of China (English)

    陈镕; 郑海涛; 薛松涛; 唐和生; 王远功

    2004-01-01

    A moving rigid-body and an unrestrained Timoshenko beam, which is subjected to the transverse impact of the rigid-body, are treated as a contact-impact system. The generalized Fourier-series method was used to derive the characteristic equation and the characteristic function of the system. The analytical solutions of the impact responses for the system were presented. The responses can be divided into two parts: elastic responses and rigid responses. The momentum sum of elastic responses of the contact-impact system is demonstrated to be zero, which makes the rigid responses of the system easy to evaluate according to the principle of momentum conservation.

  9. Statistical analysis of elastic beam with unilateral frictionless supports

    International Nuclear Information System (INIS)

    A variational formulation of the elastic beam problem with unilateral frictionless supports is presented. It is shown that the solution of this problem can be characterized as the solution of a variational inequality or as the solution of the constrained minimum of the total potential energy of the structure. THe finite dimensional counterpart of this variational formulation is obtained using the finite element method, and the Gauss-Seidel method with projection and overrelaxation can be used to obtain an approximate solution. In order to show the numerical performance of the present approach some numerical examples are also presented. (Author)

  10. True beam commissioning experience at Nordland Hospital Trust, Norway

    Science.gov (United States)

    Daci, Lulzime; Malkaj, Partizan

    2016-03-01

    To evaluate the measured of all photon beam data of first Varian True Beam version 2.0 slim model, recently commissioned at Nordland Hospital Trust, Bodø. To compare and evaluate the possibility of beam matching with the Clinac2300, for the energies of 6MV and 15 MV. Materials/Methods: Measurements of PDD, OAR, and Output factors were realized with the IBA Blue-phantom with different detectors and evaluated between them for all photon energies: 6MV, 15MV, 6MV FFF and 10MV FFF. The ionization chambers used were Pin Point CC01, CC04, Semiflex CC13 and photon diode by Iba dosimetry. The data were processed using Beizer algorithm with a resolution of 1 mm. The measured depth dose curves, diagonals, OAR, and output factors were imported into Eclipse in order to calculate beam data for the anisotropic analytical algorithm (AAA version 10.0.28) for both the dataset measured with CC04 and CC13 and compared. The model head of 23EX was selected as the most near model to True Beam as a restriction of our version of Aria. It was seen that better results were achieved with the CC04 measured data as a result of better resolution. For the biggest field after 10 cm depth a larger difference is seen between measured and calculated for both dataset, but it is within the criteria for acceptance. Results: The Beam analysis criteria of 2 mm at 50% dose is achieved for all the fields accept for 40x40 that is within 3%. Depth difference at maximum dose is within 1 mm for all the fields and dose difference at 100 mm and 200 mm is lower than 1% for or all the fields. The PDD between two machines for all the fields differ after Dmax with less than 1%. For profiles in the field zone and outside field the difference is within 1% for all the fields. In the penumbra region the difference is from 2% up to 12% for big fields. As for diagonals they differ as a result of the head construction at the edge of the field and the penumbra region. The output factors differ for big fields within 5% and

  11. Nonlinear analysis of shear deformable beam-columns partially supported on tensionless three-parameter foundation

    OpenAIRE

    Sapountzakis, E.J.; Kampitsis, A. E.

    2011-01-01

    In this paper, a boundary element method is developed for the nonlinear analysis of shear deformable beam-columns of arbitrary doubly symmetric simply or multiply connected constant cross section, partially supported on tensionless three parameter foundation, undergoing moderate large deflections under general boundary conditions. The beam-column is subjected to the combined action of arbitrarily distributed or concentrated transverse loading and bending moments in both directions as well as ...

  12. Nonlinear Analysis of Shear Deformable Beam-Columns Partially Supported on Tensionless Winkler Foundation

    OpenAIRE

    Sapountzakis, E; Kampitsis, A

    2010-01-01

    In this paper, a boundary element method is developed for the nonlinear analysis of shear deformable beam-columns of arbitrary doubly symmetric simply or multiply connected constant cross section, partially supported on tensionless Winkler foundation, undergoing moderate large deflections under general boundary conditions. The beam-column is subjected to the combined action of arbitrarily distributed or concentrated transverse loading and bending moments in both directions as well as to axial...

  13. NONLINEAR ANALYSIS OF CFRP- PRESTRESSED CONCRETE BEAMS SUBJECTED TO INCREMENTAL STATIC LOADING BY FINITE ELEMENTS

    OpenAIRE

    Husain M. Husain; Nazar K. Oukaili

    2013-01-01

    In this work a program is developed to carry out the nonlinear analysis (material nonlinearity) of prestressed concrete beams using tendons of carbon fiber reinforced polymer (CFRP) instead of steel. The properties of this material include high strength, light weight, and insusceptibility to corrosion and magnetism. This material is still under investigation, therefore it needs continuous work to make it beneficial in concrete design. Four beams which are tested experimentally by Yan et al. a...

  14. Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber

    OpenAIRE

    Juliano Fiorelli; Antonio Alves Dias

    2003-01-01

    An experimental analysis of pinewood beams (Pinus caribea var hondurensis) reinforced with glass and/or carbon fibers is discussed. The theoretical model employed to calculate the beam's bending strength takes into account the timber's ultimate limit states of tensile strength and failure by compression, considering a model of fragile elastic tension and plastic elastic compression. The validity of the theoretical model is confirmed by a comparison of the theoretical and experimental results,...

  15. Analysis of transverse shear strains in pre-twisted thick beams using variational asymptotic method

    Energy Technology Data Exchange (ETDEWEB)

    Ameen, Maqsood M.; Harursampath, Dineshkumar, E-mail: m.ameen@tue.nl, E-mail: dinesh@aero.iisc.ernet.in [Department of Aerospace Engineering, Indian Institute of Science, Bangalore-560012 (India)

    2015-03-10

    The cross-sectional stiffness matrix is derived for a pre-twisted, moderately thick beam made of transversely isotropic materials and having rectangular cross sections. An asymptotically-exact methodology is used to model the anisotropic beam from 3-D elasticity, without any further assumptions. The beam is allowed to have large displacements and rotations, but small strain is assumed. The strain energy is computed making use of the beam constitutive law and kinematical relations derived with the inclusion of geometrical nonlinearities and an initial twist. The energy functional is minimized making use of the Variational Asymptotic Method (VAM), thereby reducing the cross section to a point on the beam reference line with appropriate properties, forming a 1-D constitutive law. VAM is a mathematical technique employed in the current problem to rigorously split the 3-D analysis of beams into two: a 2-D analysis over the beam cross-sectional domain, which provides a compact semi-analytical form of the properties of the cross sections, and a nonlinear 1-D analysis of the beam ref-erence curve. In this method, as applied herein, the cross-sectional analysis is performed asymptotically by taking advantage of a material small parameter and two geometric small parameters. 3-D strain components are derived using kinematics and arranged in orders of the small parameters. Closed-form expressions are derived for the 3-D non-linear warping and stress fields. Warping functions are obtained by the minimization of strain energy subject to certain set of constraints that render the 1-D strain measures well-defined. The zeroth-order 3-D warping field thus yielded is then used to integrate the 3-D strain energy density over the cross section, resulting in the 1-D strain energy density, which in turn helps identify the corresponding cross-sectional stiffness matrix. The model is capable of predicting interlaminar and transverse shear stresses accurately up to first order.

  16. Analysis of transverse shear strains in pre-twisted thick beams using variational asymptotic method

    International Nuclear Information System (INIS)

    The cross-sectional stiffness matrix is derived for a pre-twisted, moderately thick beam made of transversely isotropic materials and having rectangular cross sections. An asymptotically-exact methodology is used to model the anisotropic beam from 3-D elasticity, without any further assumptions. The beam is allowed to have large displacements and rotations, but small strain is assumed. The strain energy is computed making use of the beam constitutive law and kinematical relations derived with the inclusion of geometrical nonlinearities and an initial twist. The energy functional is minimized making use of the Variational Asymptotic Method (VAM), thereby reducing the cross section to a point on the beam reference line with appropriate properties, forming a 1-D constitutive law. VAM is a mathematical technique employed in the current problem to rigorously split the 3-D analysis of beams into two: a 2-D analysis over the beam cross-sectional domain, which provides a compact semi-analytical form of the properties of the cross sections, and a nonlinear 1-D analysis of the beam ref-erence curve. In this method, as applied herein, the cross-sectional analysis is performed asymptotically by taking advantage of a material small parameter and two geometric small parameters. 3-D strain components are derived using kinematics and arranged in orders of the small parameters. Closed-form expressions are derived for the 3-D non-linear warping and stress fields. Warping functions are obtained by the minimization of strain energy subject to certain set of constraints that render the 1-D strain measures well-defined. The zeroth-order 3-D warping field thus yielded is then used to integrate the 3-D strain energy density over the cross section, resulting in the 1-D strain energy density, which in turn helps identify the corresponding cross-sectional stiffness matrix. The model is capable of predicting interlaminar and transverse shear stresses accurately up to first order

  17. Pertinence analysis of intensity-modulated radiation therapy dosimetry error and parameters of beams

    International Nuclear Information System (INIS)

    Objective: To study the relationship between parameter settings in the intensity-modulated radiation therapy (IMRT) planning in order to explore the effect of parameters on absolute dose verification. Methods: Forty-three esophageal carcinoma cases were optimized with Pinnacle 7.6c by experienced physicist using appropriate optimization parameters and dose constraints with a number of iterations to meet the clinical acceptance criteria. The plans were copied to water-phantom, 0.13 cc ion Farmer chamber and DOSE1 dosimeter was used to measure the absolute dose. The statistical data of the parameters of beams for the 43 cases were collected, and the relationships among them were analyzed. The statistical data of the dosimetry error were collected, and comparative analysis was made for the relation between the parameters of beams and ion chamber absolute dose verification results. Results: The parameters of beams were correlated among each other. Obvious affiliation existed between the dose accuracy and parameter settings. When the beam segment number of IMRT plan was more than 80, the dose deviation would be greater than 3%; however, if the beam segment number was less than 80, the dose deviation was smaller than 3%. When the beam segment number was more than 100, part of the dose deviation of this plan was greater than 4%. On the contrary, if the beam segment number was less than 100, the dose deviation was smaller than 4% definitely. Conclusions: In order to decrease the absolute dose verification error, less beam angles and less beam segments are needed and the beam segment number should be controlled within the range of 80. (authors)

  18. 2nd international conference on ion beam surface layer analysis

    International Nuclear Information System (INIS)

    The papers of this conference are concerned with the fundamental aspects and with the application of surface layer analysis. It is reported amongst others about backscattering analysis, Auger electron spectroscopy, channelling and microprobe. (HPOE)

  19. Coupled flexural-longitudinal vibration of delaminated composite beams with local stability analysis

    Science.gov (United States)

    Szekrényes, András

    2014-09-01

    A novel analytical model is developed to solve the problem of free vibration of delaminated composite beams. The beam with a single delamination was modelled by six equivalent single layers by establishing the kinematic continuity in the undelaminated portion of the system. In the delaminated region the layers were captured by the traditional theories. First, Timoshenko beam theory is applied to solve the problem, then by reducing the model, the corresponding Euler-Bernoulli solution is presented. Both the free and constrained models were considered. The most important aspect of the present analysis is that the beams of the delaminated region are subjected to normal forces, as well. That is the essential reason for leading to a coupled flexural-longitudinal vibration problem. It is also concluded that delamination buckling can take place if the normal force is compressive in one of the half-periods of the vibration and reaches a critical value. The problem was also investigated experimentally by modal hammer and sweep excitation tests on beams made of E-glass/polyester in order to measure the natural frequencies and mode shapes. The comparison of the analytical and experimental results indicates the importance of the independent rotations provided by Timoshenko beams over the simple beam theory. The delamination buckling of the beams was captured based on the static stability analysis in the first step. Further results show that the problem is more complex than it was thought before, e.g., some nonlinearity, time-dependent stiffness as well as parametric excitation aspects were discovered during the present analysis.

  20. Ion beam analysis of Cs-implanted zirconia and spinel

    International Nuclear Information System (INIS)

    Fission products (Cs) were introduced into yttria-stabilized zirconia (YSZ) and magnesium aluminate spinel (MAS) single crystals by room temperature ion implantation. The effect of high-temperature annealing on the depth distribution of implanted species and the surface homogeneity of crystals were investigated by the combination of AFM and RBS using a macro- and a micro-ion beam. The diffusion and release of Cs involve mechanisms which depend on the material and Cs concentration. In YSZ Cs desorbs out of the crystal at lower temperature (∼550 deg. C) than in MAS (∼850 deg. C). In YSZ the surface of the sample remains unaltered when Cs desorption occurs, whereas in MAS Cs desorption is accompanied by the exfoliation of the sample surface

  1. Linear Vlasov Analysis for Stability of a Bunched Beam

    International Nuclear Information System (INIS)

    The authors study the linearized Vlasov equation for a bunched beam subject to an arbitrary wake function. Following Oide and Yokoya, the equation is reduced to an integral equation expressed in angle-action coordinates of the distorted potential well. Numerical solution of the equation as a formal eigenvalue problem leads to difficulties, because of singular eigenmodes from the incoherent spectrum. The authors rephrase the equation so that it becomes non-singular in the sense of operatory theory, and has only regular solutions for coherent modes. They report on a code that finds thresholds of instability by detecting zeros of the determinant of the system as they enter the upper-half frequency plane, upon increase of current. Results are compared with a time-domain integration of the nonlinear Vlasov equation with a realistic wake function for the SLC damping rings. There is close agreement between the two calculations

  2. Linear Vlasov Analysis for Stability of a Bunched Beam

    Energy Technology Data Exchange (ETDEWEB)

    Warnock, R

    2004-08-12

    The authors study the linearized Vlasov equation for a bunched beam subject to an arbitrary wake function. Following Oide and Yokoya, the equation is reduced to an integral equation expressed in angle-action coordinates of the distorted potential well. Numerical solution of the equation as a formal eigenvalue problem leads to difficulties, because of singular eigenmodes from the incoherent spectrum. The authors rephrase the equation so that it becomes non-singular in the sense of operatory theory, and has only regular solutions for coherent modes. They report on a code that finds thresholds of instability by detecting zeros of the determinant of the system as they enter the upper-half frequency plane, upon increase of current. Results are compared with a time-domain integration of the nonlinear Vlasov equation with a realistic wake function for the SLC damping rings. There is close agreement between the two calculations.

  3. IBA techniques: Examples of useful combinations for the characterisation of cultural heritage materials

    International Nuclear Information System (INIS)

    For many years, ion beam analysis techniques have successfully been used to the study of cultural heritage objects. The chemical composition of work art is usually determined by PIXE, but in many cases, RBS and/or PIGE can provide useful complementary information. RBS gives information about the depth distribution and concentration in light elements, such as carbon and oxygen. In the past years, the experimental facilities at the AGLAE (Accélérateur Grand Louvre d’Analyse Élémentaire) accelerator has been progressively developed in order to apply simultaneously PIXE, PIGE and RBS under optimal conditions using an external beam. This combination is now routinely used for point analyses or mappings. In this contribution, we present several examples of applications: manufacturing technology of lustre-decorated ceramics and silver plating, control of altered or restored surfaces, and quantification of organic phase in painting and bone. The final conclusion is that the association of PIXE with RBS is very attractive for the investigation of cultural heritage objects, in particular of materials containing both mineral and organic components or possessing a multilayered structure. The first results of the production of monochromatic X-rays for radiography purposes by PIXE are also presented.

  4. IBA techniques: Examples of useful combinations for the characterisation of cultural heritage materials

    Energy Technology Data Exchange (ETDEWEB)

    Beck, L., E-mail: lucile.beck@cea.fr [Centre de Recherche et de Restauration des Musees de France (C2RMF), CNRS-UMR 171, Palais du Louvre, 14 quai Francois Mitterrand, 75001 Paris (France); INSTN, CEA Saclay, 91120 Gif sur Yvette (France); Pichon, L.; Moignard, B.; Guillou, T.; Walter, P. [Centre de Recherche et de Restauration des Musees de France (C2RMF), CNRS-UMR 171, Palais du Louvre, 14 quai Francois Mitterrand, 75001 Paris (France)

    2011-12-15

    For many years, ion beam analysis techniques have successfully been used to the study of cultural heritage objects. The chemical composition of work art is usually determined by PIXE, but in many cases, RBS and/or PIGE can provide useful complementary information. RBS gives information about the depth distribution and concentration in light elements, such as carbon and oxygen. In the past years, the experimental facilities at the AGLAE (Accelerateur Grand Louvre d'Analyse Elementaire) accelerator has been progressively developed in order to apply simultaneously PIXE, PIGE and RBS under optimal conditions using an external beam. This combination is now routinely used for point analyses or mappings. In this contribution, we present several examples of applications: manufacturing technology of lustre-decorated ceramics and silver plating, control of altered or restored surfaces, and quantification of organic phase in painting and bone. The final conclusion is that the association of PIXE with RBS is very attractive for the investigation of cultural heritage objects, in particular of materials containing both mineral and organic components or possessing a multilayered structure. The first results of the production of monochromatic X-rays for radiography purposes by PIXE are also presented.

  5. Pseudo-beam method for compressive buckling characteristics analysis of space inflatable load-carrying structures

    Institute of Scientific and Technical Information of China (English)

    Changguo Wang; Huifeng Tan; Xingwen Du

    2009-01-01

    This paper extends Le van's work to the case of nonlinear problem and the complicated configuration. The wrinkling stress distribution and the pressure effects are also included in our analysis. Pseudo-beam method is presented based on the inflatable beam theory to model the inflatable structures as a set of inflatable beam elements with a pre-stressed state. In this method, the discretized nonlinear equations are given based upon the virtual work principle with a 3-node Timoshenko's beam model. Finite element simulation is performed by using a 3-node BEAM189 element incorporating ANSYS nonlinear program. The pressure effect is equivalent included in our method by modifying beam element cross-section parameters related to pressure. A benchmark example, the bending case of an inflatable cantilever beam, is performed to verify the accuracy of our pro-posed method. The comparisons reveal that the numerical results obtained with our method are close to open published analytical and membrane finite element results. The method is then used to evaluate the whole buckling and the load-carrying characteristics of an inflatable support frame subjected to a compression force. The wrinkling stress and region characteristics are also shown in the end. This method gives better convergence characteristics, and requires much less computation time. It is very effective to deal with the whole load-carrying ability analytical problems for large scale inflatable structures with complex configuration.

  6. Development of a facility for low-energy ion beam TOF-RBS analysis (Phase I of a facility for ion beam materials analysis at CMU)

    International Nuclear Information System (INIS)

    A low-energy accelerator is used to initiate ion beam analysis research program at Chiang Mai University (CMU). In this paper we show the exploitation of a ns-pulsed 140 kV D+ ion accelerator, modified from a 17 year old 150 kV continuous duty neutron generator, in Rutherford backscattering spectrometry (RBS) experiments. This spectrometer, utilizing the pulsed beam time-offlight (TOF) technique , was applied to the analysis of metal thin films of gold and copper deposited on a silicon substrate. The TOF-RBS technique is seen to be capable of an energy resolution corresponding to ΔE = 3.6 keV. The experimental results show reasonable agreement with the SIMNRA simulations. (author)

  7. Three-dimensional verification of prostate cancer patients treated with VMAT by Matrixx detector and COMPASS software IBA; Verificacion tridimensional de pacientes con cancer de prostata tratados con VMAT mediante el detector Matrixx y software COMPASS de IBA

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, J. C.; Luis, F. J.; Cabrera, P.; Carrasco, M.; Sanchez, G.; Herrador, M.

    2011-07-01

    Described in this paper the verification of prostate cancer patients treated with VMAT planned in our hospital, with a prescribed dose of 76 Gy. The ability to simultaneously analyze the patient by any plane COMPASS software (IBA, Germany), together with the detector array Matrixx-Evolution, this system gives a particularly interesting feature. The aim of this paper is to describe the operation of this equipment and validated for patient dosimetry in IMRT and VMAT treatments.

  8. Analysis of Three Dimensional Horizontal Reinforced Concrete Curved Beam Using Ansys

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available Reinforced concrete horizontally curved beams are extensively used in many fields, such as in the construction of modern highway intersections, elevated freeways, the rounded corners of buildings, circular balconies,….etc. In some of these cases, large depths are needed for curved beams in order to resist high loads or to fulfill some aesthetic purposes. The analytical analysis of such members is very complex due to the fact that those members are subjected to combined action of bending, shear and torsion. Furthermore, non homogeneous nature of the materials involved contributes to the complexity of the problem. Therefore, it becomes necessary to employ numerical analysis procedures, such as the finite element method, to satisfy the safety and the economy requirements.A horizontally curved beam, loaded transversely to its plane, is subjected to torsion in addition to bending and shear. Furthermore, in deep beam the plane section does not remain plane after bending because of high stresses and warping occurs. Therefore, special features of analysis and design for horizontally curved deep beams is necessary to include the effect of above mentioned factors. Several methods of collapse analysis (Khalifa 1972, Jordaan et al. 1974, Badawy et al. 1977, Hsu et al.

  9. Application of laser produced ion beams to nuclear analysis of materials

    Directory of Open Access Journals (Sweden)

    Mima Kunioki

    2013-11-01

    Full Text Available The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. A proton micro-beam with the beam diameter of ∼1.5 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA, JAEA was used to analyze the positive electrode of the Li-ion battery with PIGE and PIXE. WThe PIGE and PIXE images of Li and Ni respectively for LixNi0.8Co0.15Al0.05O2(x = 0.75 ∼ 1.0 anodes have been taken. The PIGE images of LixNi0.8Co0.15Al0.05O2 particles and the depth profile of the Li density have been obtained with high spatial resolution (a few μm. The images of the Li density distribution are very useful for the R&D of the Li ion battery. In order to make the in-situ ion beam analysis of the Li battery possible, a compact accelerator for a high quality MeV proton beam is necessary. Form this point of view, the diagnostics of Li ion battery is an appropriate field for the applications of laser produced ion beams.

  10. Simplified vibration analysis method of shells of revolution using beam model

    International Nuclear Information System (INIS)

    A simplified vibration analysis method for the shells of revolution using the beam model is now under consideration. In the beam model, the relations between the shear forces and horizontal deformations are used for the calculations of the shear area and the relations between the overturning moments and rotation angles are for those of the inertia moment. The calculations of the vibration characteristics of the cylindrical shell, spherical shell and the cylindrical shell with the spherical cap were conducted to verify the accuracy of the beam model. The natural frequencies and the vibration modes of the proposed method are in good agreement with that of the FEM analysis using the axisymmetrical shell model. The proposed method is easily applicable to the vibration analysis of actual shell structures. (author)

  11. Modal analysis of beam with piezoelectric sensors a actuators

    Directory of Open Access Journals (Sweden)

    Zemčík R.

    2007-10-01

    Full Text Available One dimensional finite element is developed for the analysis of structures with applied piezoelectric sensors and actuators, i.e. smart structures, mechanical behavior of which can be controlled in real-time. The element is based on Euler-Bernoulli theory and it assumes bilinear distribution of electric field potential. Mathematical model was implemented in MATLAB environment. Sensitivity analysis is carried out for the case of modal analysis with and without piezo patches.

  12. Vibration analysis and transient response of a functionally graded piezoelectric curved beam with general boundary conditions

    Science.gov (United States)

    Su, Zhu; Jin, Guoyong; Ye, Tiangui

    2016-06-01

    The paper presents a unified solution for free and transient vibration analyses of a functionally graded piezoelectric curved beam with general boundary conditions within the framework of Timoshenko beam theory. The formulation is derived by means of the variational principle in conjunction with a modified Fourier series which consists of standard Fourier cosine series and supplemented functions. The mechanical and electrical properties of functionally graded piezoelectric materials (FGPMs) are assumed to vary continuously in the thickness direction and are estimated by Voigt’s rule of mixture. The convergence, accuracy and reliability of the present formulation are demonstrated by comparing the present solutions with those from the literature and finite element analysis. Numerous results for FGPM beams with different boundary conditions, geometrical parameters as well as material distributions are given. Moreover, forced vibration of the FGPM beams subjected to dynamic loads and general boundary conditions are also investigated.

  13. Kakaibang Halimuyak: Iba't Ibang Imahe ng Pangangapital sa Balintawak

    Directory of Open Access Journals (Sweden)

    Mariah Amour C. Miranda

    2015-06-01

    Full Text Available Ginagalugad ng sanaysay na ito ang isang pangunahing lugar na nadaraanan mula Norte patungong Maynila—ang Balintawak. Nagsisilbing manibela ng pagsusuri ang kontemporaneong pananaw sa lunan bilang pugad ng mga anyong may magkakasalungat na kahulugan. Binibigyang-pansin ng sanaysay ang iba't ibang imahe ng pagbebenta na matatagpuan sa Balintawak: ang billboard ng kumpanyang Bench na siyang pinakamalaki, ang mismong palengke, at ang mga lakong paninda sa tabing-kalsada. Sa pamamagitan nito, maipapakita ng sanaysay kung paano madadalumat ang Balintawak bilang isang panlipunang texto na sumasalamin sa mga magkakaibang pangangapital sa naturang lunan. This essay explores the space of Balintawak—a focal point of urban travel from northern Luzon to Manila. Using the contemporary view on space as a site of structures with contradictory meanings, the study seeks to understand how various images of market activities in Balintawak create meaningful representations. These images include the gigantic billboard of Bench, the central market itself, and flea markets in the area. The essay shows how Balintawak as a social text serves as a trading center of different forms of capital.

  14. Potential of the Bucharest 3 MV Tandetron™ for IBA studies of deer antler mineralization

    Science.gov (United States)

    Gomez, S.; Garcia, A.; Landete-Castillejos, T.; Gallego, L.; Pantelica, D.; Pantelica, Ana; Preoteasa, E. A.; Scafes, Adela; Straticiuc, M.

    2016-03-01

    Combined PIXE and PIGE analysis was applied at the new Bucharest Tandetron to investigate biomineralization in two calcified tissues, deer antlers and femur bone. By annual loss and fast re-growth, antlers are a valuable model for bone as a dynamical system. Samples characterized by optical microscopy and histology were analyzed for P, Ca, F, Na, Mg, S, Cl, K, Zn, Sr by 3 MeV proton simultaneous PIXE and PIGE, using a hydroxyapatite standard and other reference materials. Good correlation between methods was found for P, and the concentrations were related to biological data. Antlers showed lower mineralization than femur, with the lowest values in the third antler beam. A power function of mineralization vs. "mineral age" of antlers was found. Thus combined PIXE and PIGE of antlers may bring highly relevant insights in biomineralization research.

  15. Experimental Study On The Flexural And Shear Analysis Of Concrete Beams Rein Forced With Glass Fiber -Reinforced (Gfrp Bars

    Directory of Open Access Journals (Sweden)

    Edgaras Atutis

    2013-12-01

    Full Text Available The paper analyzes experimental studies examining the flexuraland shear analysis of the beams reinforced with GFRP bars. Atesting program consisted of two beams reinforced with longitudinalprestressed GFRP tendons, two beams reinforced withlongitudinal GFRP bars and two beams reinforced with longitudinalsteel reinforcement and shear reinforcement of GFRP bars.The experimental flexural and shear strength of concrete beamswere compared with theoretical strength calculated according toa number of design recommendations, and the significance ofprestressing for deflection and cracking was analyzed.

  16. Experimental Study On The Flexural And Shear Analysis Of Concrete Beams Rein Forced With Glass Fiber -Reinforced (Gfrp) Bars

    OpenAIRE

    Edgaras Atutis; Marius Budvytis; Mantas Atutis

    2013-01-01

    The paper analyzes experimental studies examining the flexuraland shear analysis of the beams reinforced with GFRP bars. Atesting program consisted of two beams reinforced with longitudinalprestressed GFRP tendons, two beams reinforced withlongitudinal GFRP bars and two beams reinforced with longitudinalsteel reinforcement and shear reinforcement of GFRP bars.The experimental flexural and shear strength of concrete beamswere compared with theoretical strength calculated according toa number o...

  17. Trace element analysis of placentas of alcoholics and controls with external beam PIXE

    International Nuclear Information System (INIS)

    External beam PIXE analysis with a proton beam of 2.4 MeV was used to study trace element concentrations in human placentas. The aim was to check the suitability of PIXE analysis regarding soft tissue samples. The elements of interest (Fe, Cu, Zn, Se, Br, Rb, and Sr) were easily detected. A comparison was made with placental samples of alcoholics and controls to determine whether trace element concentrations in the placenta play a role in the pathogenesis of fetal alcohol syndrome. (author)

  18. An analysis of main factors in electron beam flue gas purification

    International Nuclear Information System (INIS)

    Electron beam flue gas purification method is developing very quickly in recent years. Based on the experiment setting for electron beam flue gas purification in Institute of Nuclear Energy and Technology, Tsinghua University, how the technique factors affect the ratio of desulphurization and denitrogenation are described. Radiation dose (D), temperature (T), humidity (H), pour ammonia quantity (α) and initial concentration of SO2 (CSO2) and NOx (CNOx ) are main factors influencing flue gas purification. Using the methods of correlation analysis and regression analysis, the primary effect factors are found out and the regression equations are set to optimize the system process, predigest the system structure and to forecast the experimental results. (authors)

  19. The LOFAR Beam Former: Implementation and Performance Analysis

    CERN Document Server

    Mol, Jan David

    2011-01-01

    Traditional radio telescopes use large, steel dishes to observe radio sources. The LOFAR radio telescope is different, and uses tens of thousands of fixed, non-movable antennas instead, a novel design that promises ground-breaking research in astronomy. The antennas observe omnidirectionally, and sky sources are observed by signal-processing techniques that combine the data from all antennas. Another new feature of LOFAR is the elaborate use of software to do signal processing in real time, where traditional telescopes use custom-built hardware. The use of software leads to an instrument that is inherently more flexible. However, the enormous data rate (198 Gb/s of input data) and processing requirements compel the use of a supercomputer: we use an IBM Blue Gene/P. This paper presents a collection of new processing pipelines, collectively called the beam-forming pipelines, that greatly enhance the functionality of the telescope. Where our first pipeline could only correlate data to create sky images, the new ...

  20. Combined PIXE/PIGE and IBIL with external beam applied to the analysis of Merovingian glass beads

    International Nuclear Information System (INIS)

    New improvements on our archaeometry line at the cyclotron of the Institute of Nuclear and Atomic Physics and of Spectrometry of the University of Liege have allowed the use of PIXE/PIGE and IBIL in-air for the analysis of cultural heritage objects. The extraction is performed through a 100 nm thick Si3N4 window. The detection set-up consists now of two X-ray and one γ-ray detectors, together with a fiber optic UV-visible spectrometer. This set-up has already been tested for the analysis of modern corundum and is now adapted to the analysis of archaeological artefacts. In this work, we have used it to analyse 216 out of the 5000 Merovingian glass beads that come from the necropolis of Bossut-Gottechain (Belgium), one of the most important ever found in Belgium. The IBA analyses confirmed the typological division of different beads groups through chemical composition that gives us new insights on fabrication techniques of glass matrices and colorants.

  1. Combined PIXE/PIGE and IBIL with external beam applied to the analysis of Merovingian glass beads

    Science.gov (United States)

    Mathis, F.; Othmane, G.; Vrielynck, O.; Calvo del Castillo, H.; Chêne, G.; Dupuis, T.; Strivay, D.

    2010-06-01

    New improvements on our archaeometry line at the cyclotron of the Institute of Nuclear and Atomic Physics and of Spectrometry of the University of Liège have allowed the use of PIXE/PIGE and IBIL in-air for the analysis of cultural heritage objects. The extraction is performed through a 100 nm thick Si 3N 4 window. The detection set-up consists now of two X-ray and one γ-ray detectors, together with a fiber optic UV-visible spectrometer. This set-up has already been tested for the analysis of modern corundum [1] and is now adapted to the analysis of archaeological artefacts. In this work, we have used it to analyse 216 out of the 5000 Merovingian glass beads that come from the necropolis of Bossut-Gottechain (Belgium), one of the most important ever found in Belgium. The IBA analyses confirmed the typological division of different beads groups through chemical composition that gives us new insights on fabrication techniques of glass matrices and colorants.

  2. Combined PIXE/PIGE and IBIL with external beam applied to the analysis of Merovingian glass beads

    Energy Technology Data Exchange (ETDEWEB)

    Mathis, F., E-mail: francois.mathis@ulg.ac.b [Centre Europeen d' Archeometrie, Universite de Liege, Sart Tilman B15 4000 Liege (Belgium); Othmane, G. [Centre Europeen d' Archeometrie, Universite de Liege, Sart Tilman B15 4000 Liege (Belgium); Vrielynck, O. [Service Public de Wallonie Direction de l' Archeologie (Belgium); Calvo del Castillo, H. [Centre Europeen d' Archeometrie, Universite de Liege, Sart Tilman B15 4000 Liege (Belgium); Chene, G.; Dupuis, T. [Centre Europeen d' Archeometrie, Universite de Liege, Sart Tilman B15 4000 Liege (Belgium); Institut de Physique Nucleaire, Atomique et de Spectroscopie, Universite de Liege (Belgium); Strivay, D. [Centre Europeen d' Archeometrie, Universite de Liege, Sart Tilman B15 4000 Liege (Belgium); Service Public de Wallonie Direction de l' Archeologie (Belgium)

    2010-06-15

    New improvements on our archaeometry line at the cyclotron of the Institute of Nuclear and Atomic Physics and of Spectrometry of the University of Liege have allowed the use of PIXE/PIGE and IBIL in-air for the analysis of cultural heritage objects. The extraction is performed through a 100 nm thick Si{sub 3}N{sub 4} window. The detection set-up consists now of two X-ray and one {gamma}-ray detectors, together with a fiber optic UV-visible spectrometer. This set-up has already been tested for the analysis of modern corundum and is now adapted to the analysis of archaeological artefacts. In this work, we have used it to analyse 216 out of the 5000 Merovingian glass beads that come from the necropolis of Bossut-Gottechain (Belgium), one of the most important ever found in Belgium. The IBA analyses confirmed the typological division of different beads groups through chemical composition that gives us new insights on fabrication techniques of glass matrices and colorants.

  3. The Simple Lamb Wave Analysis to Characterize Concrete Wide Beams by the Practical MASW Test

    OpenAIRE

    Young Hak Lee; Taekeun Oh

    2016-01-01

    In recent years, the Lamb wave analysis by the multi-channel analysis of surface waves (MASW) for concrete structures has been an effective nondestructive evaluation, such as the condition assessment and dimension identification by the elastic wave velocities and their reflections from boundaries. This study proposes an effective Lamb wave analysis by the practical application of MASW to concrete wide beams in an easy and simple manner in order to identify the dimension and elastic wave veloc...

  4. Free vibration analysis of layered functionally graded beams with experimental validation

    International Nuclear Information System (INIS)

    Highlights: ► An improved third order shear deformation theory. ► Energy approach. ► Vibration analysis of layered functionally graded beam with experimental validation. ► The effect of added mass. ► Sample fabrication, volume fraction analysis, vibration testing. -- Abstract: An improved third order shear deformation theory is employed to formulate a governing equation for predicting free vibration of layered functionally graded beams. The Ritz method is adopted to solve the governing equation for various types of boundary conditions and the frequency results are validated by some available and experimental results. A multi-step sequential infiltration technique is used to fabricate the layered functionally graded beams for vibration testing. For the first time, a simple mathematical model, based on a power law distribution, is introduced to approximate material volume fraction of the layered beams. The details of layered beam fabrication according to the infiltration technique, microstructure and volume fraction analysis as well as vibration experimental set up are included and described in this investigation. Aspects which affect natural frequencies, such as material compositions, thickness ratio, and boundary conditions, are then taken into consideration. The impact on frequency of added mass is presented and discussed.

  5. ENRAIZAMENTO DE MELALEUCA: INFLUÊNCIA DA ALTURA DE COLETA DAS ESTACAS E APLICAÇÃO DE IBA

    Directory of Open Access Journals (Sweden)

    Carlos André Stuepp

    2013-06-01

    Full Text Available Melaleuca alternifolia Cheel is an economically important medicinal plant. Its chemical constitution is well known, being rich in terpinen-4-ol, which is the main responsible for its medicinal properties. However, in this species is difficult to obtain good seedlings from seed germination, what makes the vegetative propagation benefic to its commercialization, maintaining the productive characteristics and quality of extracted oil. This study aimed to evaluate the rooting of tea tree cuttings, collected in the apical, middle and basal portions of the stock plant branches, and treated with different concentrations of indolebutyric acid (IBA. Cuttings with a length of 6 cm, with one third of the apex leaves and a bevel cutting on the base, were treated with hydroalcoholic solutions of IBA (0, 1500 and 3000 mg L-1 immersing the base for 10 seconds. In the sequence cuttings were planted in tubes containing vermiculite and placed in a greenhouse. After 91 days, the rooting percentage, number of roots, average length of roots, callus percentage, survival and mortality were evaluated. Percentage of rooting cuttings was less than 43.8%, and it was not influenced by the branch type or by tested IBA concentrations.

  6. Positioning variation analysis using Cone Beam Computed Tomography volumetric images

    International Nuclear Information System (INIS)

    Radiotherapy is one of the main treatment modalities of malignancies, either associated with other techniques or not. The successful use of radiation depends on several factors, such as the choice of treatment technique, dosimetric accuracy and geometric precision. The movement of internal organs plays a role quite significant in the calculation of setup margins, but during treatment, the most important variation is the patient’s positioning error. This study evaluated the geometric accuracy in positioning patients with anal canal, prostate, and head and neck cancer, who were treated at ICESP. Cone Beam Computed Tomography (CBCT) images of 40 patients were used, totalizing 224 images. For every CBCT image, the displacement was calculated through the fusion between the images acquired before the treatment and CT images obtained in the simulation.The average deviation was 0.24±0.10 cm to the left-right direction, 0.21±0.12 cm in the anterior-posterior and 0.30±0.18 cm in the superior-inferior direction for cases of anal canal; 0.20±0.10 cm in the left-right, 0.20±0.10 cm in the anterior-posterior and 0.23±0.11 cm in superior-inferior direction for prostate treatments; and 0.11±0.07 cm in the left-right, 0.13±0.06 cm in the anterior-posterior and 0.15±0.10 cm in superior-inferior direction for the treatment of head and neck. The results found were within the predicted PTV margins used at the Institution. (author)

  7. Ion Beam Analysis of the Annealing Behavior of Helium in Ti Films

    Institute of Scientific and Technical Information of China (English)

    HE Zhi-Jiang; SHI Li-Qun; LIU Chao-Zhuo; ZHANG Lei; LU Yong-Fang; ZHANG Bin

    2009-01-01

    @@ We present a theoretical calculation finding that a spectrum from ion beam analysis will change at different stopping cross sections. This is more visible at a deeper place in the sample. Helium-contained Ti films annealed at different temperatures are prepared to gain different stopping cross sections whereby the stopping cross section will change with the helium phase states and the pressure of helium bubbles. Then ion beam analysis is used to measure the concentration of helium. It is found that the concentration curve rises greatly after the sample is annealed at 673K which reflects the increasing size of the helium bubble. The results axe consistent with that of positron annihilation radiation spectra which are performed by using a changeable energy positron beam.

  8. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis

    International Nuclear Information System (INIS)

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of 252Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5).

  9. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    Science.gov (United States)

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5). PMID:21129990

  10. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ghassoun, J., E-mail: ghassoun@ucam.ac.ma [EPRA, Department of Physics, Faculty of Sciences, Semlalia, P.O. Box 2390, 40000 Marrakech (Morocco); Mostacci, D., E-mail: domiziano.mostacci@mail.ing.unibo.it [University of Bologna, Montecuccolino Laboratory, via dei Colli 16, I-40136 Bologna (Italy)

    2011-08-15

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of {sup 252}Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5).

  11. Beam characteristics of polychromatic diffracted neutrons used for prompt gamma activation analysis

    International Nuclear Information System (INIS)

    The neutron beam is fully characterized for the prompt gamma activation analysis facility at Hanaro in the Korea Atomic Energy Research Institute(KAERI). The facility uses thermal neutrons which are diffracted vertically from a horizontal beam port by a set of pyrolytic graphite(PG) crystals positioned at the Bragg angle of 45 .deg.. Neutron spectra, neutron flux and Cd-ratio are determined for the three extraction modes of diffracted beam by means of the theoretical and experimental efforts. To obtain theoretical result, the reflectivity of pyrolytic graphite is calculated in the diffraction model for mosaic crystal and the angular divergence after diffraction by mosaic crystal is estimated from Monte Carlo simulation. The time-of-flight spectrometer and gold activation wire are used for measuring the neutron spectra. Both the calculated and measured spectra have proven that the unique feature of polychromatic beam obtained by PG crystals are useful for PGAA. The thermal neutron flux of 7.9 x 107 n/cm2s and the Cd-ratio of 266 for gold have been achieved at the sample position while the reactor operates at 24MW. The uniformity of beam flux is 12% in the central 1 x 1 cm2 area. Finally, the beam is briefly characterized by the effective velocity and temperature which are determined by measuring the prompt γ-ray spectra for thin and thick boron samples

  12. Unified Formulation Applied to Free Vibrations Finite Element Analysis of Beams with Arbitrary Section

    Directory of Open Access Journals (Sweden)

    E. Carrera

    2011-01-01

    Full Text Available This paper presents hierarchical finite elements on the basis of the Carrera Unified Formulation for free vibrations analysis of beam with arbitrary section geometries. The displacement components are expanded in terms of the section coordinates, (x, y, using a set of 1-D generalized displacement variables. N-order Taylor type expansions are employed. N is a free parameter of the formulation, it is supposed to be as high as 4. Linear (2 nodes, quadratic (3 nodes and cubic (4 nodes approximations along the beam axis, (z, are introduced to develop finite element matrices. These are obtained in terms of a few fundamental nuclei whose form is independent of both N and the number of element nodes. Natural frequencies and vibration modes are computed. Convergence and assessment with available results is first made considering different type of beam elements and expansion orders. Additional analyses consider different beam sections (square, annular and airfoil shaped as well as boundary conditions (simply supported and cantilever beams. It has mainly been concluded that the proposed model is capable of detecting 3-D effects on the vibration modes as well as predicting shell-type vibration modes in case of thin walled beam sections.

  13. Analysis of different design options for the beam target of the energy amplifier demonstration facility

    International Nuclear Information System (INIS)

    A thermal fluid dynamic analysis of different design options of a high intensity proton beam target has been performed for the 80 MW Demonstration Facility of the Energy Amplifier proposed by C. Rubbia (EADF), presently under development in Italy by Ansaldo, CRS4, ENEA and INFN. The present machine is driven by a 600 MeV proton accelerator at a current varying from about 2 to 6 mA during the fuel cycle. Two options have been considered: (i) a 'windowless' design, where the free surface of the spallation material (liquid Pb-Bi eutectic) is the interface with the void of the beam transport line, and (ii) a 'window' design, where a physical separation is made by means of a 9Cr 1Mo V Nb martensitic steel hemispherical window. Both designs have advantages and drawbacks. The beam window is a delicate element whose lifetime is at present moment difficult to assess, since it is affected by the combined action of liquid metal corrosion, radiation damage (induced by protons and high energy neutrons interactions) and thermal fatigue (induced by stress cycling due to beam trips and beam interruptions). The windowless option is less sensible to radiation damage, but its design is more complex for the presence of a free surface flow and of Pb-Bi vapours in the beam pipe. (author)

  14. Flexural behavior of reinforced concrete beams: Comparative analysis between high-performance concrete and ordinary concrete

    Directory of Open Access Journals (Sweden)

    Hamrat Mostefa

    2014-04-01

    Full Text Available This paper presents an experimental study on the flexural strength of reinforced concrete beams made with high performance concrete (HPC and ordinary concrete (OC. We are carried an experimental campaign aimed comes in three points: 1- the study of the law of behavior of the two materials (OC and HPC, 2- the influence of the compressive strength of concrete and the rate of longitudinal reinforcement on the loaddeflection behavior and ductility index, 3- comparative analysis (ACI318, Eurocode 2 and BS8110 against the crack opening. Test results showed that the capacity of the beams in HPC is higher (6% to 20 % than the beams in OC. The use of HPC is more efficient than the OC to delay the first cracking. The average value of the ductility index for the beams in HPC is 1.30 times those beams in OC. The formula for calculating the crack opening derived of the Eurocode 2 gives the best prediction the crack width of beams (for both types of concrete.

  15. Coupled PIXE and RBS using a 6MeV 4He2+ external beam: A new experimental device for particle detection and dose monitoring

    International Nuclear Information System (INIS)

    AGLAE (Accelerateur Grand Louvre d'Analyses Elementaire), the IBA facility of the 'Centre de Recherche et de Restauration des Musees de France' (C2RMF) has been equipped for several years with an external micro-beam line, in order to perform ion beam analysis on materials relevant to cultural heritage. This beam line is undergoing constant improvement. Recently, a new extraction nozzle for the external beam of the accelerator has been designed in order to obtain simultaneously from the same spot: - detection of the X-ray emission by two detectors, for low and high energies; - detection of the backscattered particles for a backscattering angle between 170 and 175 deg., thanks to an annular surface barrier detector included in the nozzle; - particle current monitoring by intermittent beam deflection on a reference material included in the system. This technical development has been induced by the study of artificial patinas on archaeological copper-alloy objects and the attempt to characterize them with a 6MeV 4He2+ beam, an unusual beam for this type of investigation. A detailed description of the new device and some results on an application of the use of high-energy alpha beam in PIXE and RBS made on a Roman strigil are presented here

  16. New approaches for investigating paintings by ion beam techniques

    International Nuclear Information System (INIS)

    Up to now, among the IBA techniques, only PIXE has been used for analyzing paintings. However, quantitative PIXE analysis is sometimes difficult to interpret due to the layered structure, the presence of varnish and organic binder and, in some cases, discoloration of the pigments has been observed due to the interaction of the ion beam with the compounds. In order to improve the characterization of paintings, we propose some alternative experimental procedures. First of all, backscattering spectrometry (BS) and PIXE are simultaneously combined in order to collect complementary information such as layer thickness and organic compound quantification. The simultaneous PIXE and BS experiments also have the advantage of being able to analyze the same area in one experiment. This combination, implemented with an external beam, was directly applied on paintings and on painting cross-sections for the study of Italian Renaissance masterpieces. We have obtained valuable results not only on the pigment itself but also, for the first time, on the binder to pigment proportion which is not well documented in the ancient recipes. Moreover, in order to restrain beam damages due to the ion stopping power, we propose to analyze very thin painting cross-sections by a combination of PIXE-RBS and Scanning Transmission Ion Microscopy (STIM).

  17. Ion-beam analysis of meteoritic and lunar samples

    Energy Technology Data Exchange (ETDEWEB)

    Tombrello, T.A.

    1979-01-01

    Charged particle-induced nuclear reactions were used in the following problems: the determination of elemental abundances of boron and fluorine in carbonaceous chondritic meteorities; the identification of products of lunar vulcanism; and the study of solar wind-implanted atoms in lunar materials. The technique was seen as an important supplement to other methods of elemental and isotopic analysis. This was especially true for cases involving light elements at very low concentrations or where high resolution depth distribution information was needed in non-destructive analysis.

  18. Steady state performance test analysis of actively cooled extractor grids for SST-1 neutral beam injector

    International Nuclear Information System (INIS)

    Neutral beam injection (NBI) system is a workhorse to heat magnetically confined tokamak fusion plasma. The heart of any NBI system is an ion extractor system. Steady State Superconducting Tokamak-1 (SST-1) needs 0.5 MW of hydrogen beam power at 30 kV to raise the plasma ion temperature to ∼1 keV and 1.7 MW of hydrogen beam power at 55 kV for future upgradation. To meet this requirement, an ion extractor system consisting of three actively cooled grids has been designed, fabricated, and its performance test has been done at MARION test stand, IPP, Julich, Germany. During long pulse (14 s) operation, hydrogen ion beam of energy 31 MJ has been extracted at 41 kV. In this paper, we have presented detailed analysis of calorimetric data of actively cooled extractor grids and showed that by monitoring outlet water temperature, grid material temperature can be monitored for safe steady state operation of a NBI system. Steady state operation of NBI is the present day interest of fusion research. In the present experimental case, performance test analysis indicates that the actively cooled grids attain steady state heat removal condition and the grid material temperature rise is ∼18 deg. C and saturates after 10 s of beam pulse.

  19. Generalized Timoshenko modelling of composite beam structures: sensitivity analysis and optimal design

    Science.gov (United States)

    Augusta Neto, Maria; Yu, Wenbin; Pereira Leal, Rogerio

    2008-10-01

    This article describes a new approach to design the cross-section layer orientations of composite laminated beam structures. The beams are modelled with realistic cross-sectional geometry and material properties instead of a simplified model. The VABS (the variational asymptotic beam section analysis) methodology is used to compute the cross-sectional model for a generalized Timoshenko model, which was embedded in the finite element solver FEAP. Optimal design is performed with respect to the layers' orientation. The design sensitivity analysis is analytically formulated and implemented. The direct differentiation method is used to evaluate the response sensitivities with respect to the design variables. Thus, the design sensitivities of the Timoshenko stiffness computed by VABS methodology are imbedded into the modified VABS program and linked to the beam finite element solver. The modified method of feasible directions and sequential quadratic programming algorithms are used to seek the optimal continuous solution of a set of numerical examples. The buckling load associated with the twist-bend instability of cantilever composite beams, which may have several cross-section geometries, is improved in the optimization procedure.

  20. Seismic Illumination Analysis in Poor Oil and Gas Field Data by Using Focal Beam Method

    International Nuclear Information System (INIS)

    The area underneath shallow gas cloud is an area where the image of subsurface data is generally poor. This distorted image underneath gas zones usually contains precious information of hydrocarbon accumulation. Previously, we analyse the factors contribute to poor subsurface seismic image underneath the gas cloud model and use focal beam technique to understand subsurface illumination information. Encourage by model-based success, we shift our focus to data-based application by applying the focal beam technique into a real field data. The results from this field were analyse in term of resolution function and amplitude versus ray parameter (AVP) imprint for different reflector depth, followed by acquisition analysis on the surface level. For this purpose, a velocity data of a field located in Malay Basin was built before applying the focal beam calculation. We will demonstrate that by using focal beam analysis for this field, we will able to obtain good imaging particularly for target reflector at 2000ms, 4000ms and 6000ms depth, provided the full 3D acquisition geometry was used during focal beam application

  1. Analysis of Interface Properties of Hybrid Pre-stressed Strengthening RC Beams with Crack

    Science.gov (United States)

    zhihong, Xie; Peiyan, Huang; Yongchang, Guo; Jun, Deng; Genquan, Zhong

    2010-05-01

    A finite element (FE) analysis model of interface layer is established for the pre-stressed CFS-GFS hybrid strengthened beams. An elastic solution for the interfacial stress in the adhesive layer of the retrofitted beams is developed as well. The analytical results were compared with the FE results of interfacial stresses in the beams with different thickness of the adhesive and the fibre sheet. Different heights of Cracks in the interfacial layer of the concrete beam are considered in FE Model. Analysis results show the strengthening pattern is of excellent interface performance and the strength of the fiber sheet can be effectively utilized. The results also indicate the shear and normal stresses in the interfacial layer of the concrete beam release at the locations of the cracks and reach the maximal value before the concrete cracked. The shear and normal stresses in the adhesive layer increase abruptly, and the cracks in the adhesive layer then appear. The axial stresses of hybrid fiber sheet near the cracks decrease locally at the sites of the concrete cracks.

  2. Analysis of Interface Properties of Hybrid Pre-stressed Strengthening RC Beams with Crack

    International Nuclear Information System (INIS)

    A finite element (FE) analysis model of interface layer is established for the pre-stressed CFS-GFS hybrid strengthened beams. An elastic solution for the interfacial stress in the adhesive layer of the retrofitted beams is developed as well. The analytical results were compared with the FE results of interfacial stresses in the beams with different thickness of the adhesive and the fibre sheet. Different heights of Cracks in the interfacial layer of the concrete beam are considered in FE Model. Analysis results show the strengthening pattern is of excellent interface performance and the strength of the fiber sheet can be effectively utilized. The results also indicate the shear and normal stresses in the interfacial layer of the concrete beam release at the locations of the cracks and reach the maximal value before the concrete cracked. The shear and normal stresses in the adhesive layer increase abruptly, and the cracks in the adhesive layer then appear. The axial stresses of hybrid fiber sheet near the cracks decrease locally at the sites of the concrete cracks.

  3. Composite Beam Cross-Section Analysis by a Single High-Order Element Layer

    DEFF Research Database (Denmark)

    Couturier, Philippe; Krenk, Steen

    2015-01-01

    An analysis procedure of general cross-section properties is presented. The formulation is based on the stress-strain states in the classic six equilibrium modes of a beam by considering a finite thickness slice modelled by a single layer of 3D finite elements. The theory is illustrated by applic...

  4. Large deflection analysis of cantilever beam under end point and distributed load

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Tolou, N; Barari, Amin;

    2014-01-01

    distributed loads. Direct nonlinear solution by use of homotopy analysis method was implemented to drive the semi-exact solution of trajectory position of any point along the beam length. For the purpose of comparison, the deflections were calculated and compared to those of finite element method which was...

  5. Conjugate Heat Transfer and Thermal Mechanical Analysis for Liquid Metal Targets for High Power Electron Beams

    International Nuclear Information System (INIS)

    A conjugate heat transfer and thermal structural analysis was completed, with the objective of determining the following: Lead bismuth eutectic (LBE) peak temperature, free convective velocity patterns in the LBE, peak beam window temperature, and thermal stress/deformation in the window.

  6. Conjugate Heat Transfer and Thermal Mechanical Analysis for Liquid Metal Targets for High Power Electron Beams.

    Energy Technology Data Exchange (ETDEWEB)

    Olivas, Eric Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-26

    A conjugate heat transfer and thermal structural analysis was completed, with the objective of determining the following: Lead bismuth eutectic (LBE) peak temperature, free convective velocity patterns in the LBE, peak beam window temperature, and thermal stress/deformation in the window.

  7. Ion beam analysis of pottery from Teotihuacan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ontalba Salamanca, M.A. E-mail: ontalba@cica.es; Ruvalcaba-Sil, J.L.; Bucio, L.; Manzanilla, L.; Miranda, J

    2000-03-01

    This work presents the characterization of sherds and pottery paints from Teotihuacan, Mexico, belonging to the Mesoamerican Epiclassic (700-900 AD) and Postclassic (900-1521 AD) periods. A simultaneous analysis by Particle Induced X-ray Emission (PIXE) and Rutherford Backscattering Spectroscopy (RBS) was carried out to measure the elemental composition of pottery and clays sources of the Teotihuacan region. Also, a semiquantitative X-Ray Diffraction study (XRD) was performed to determine the mineralogical phases. From elemental and mineralogical composition, groups of local and foreign sherds were established. Results showed that the PIXE-RBS method combined with XRD proved to be a very powerful and general procedure for archaeological characterization. Moreover, non-vacuum differential PIXE analysis was carried out on colored regions of some representative vessels to study the layered structure of the paints-clay system.

  8. Ion beam analysis of pottery from Teotihuacan, Mexico

    International Nuclear Information System (INIS)

    This work presents the characterization of sherds and pottery paints from Teotihuacan, Mexico, belonging to the Mesoamerican Epiclassic (700-900 AD) and Postclassic (900-1521 AD) periods. A simultaneous analysis by Particle Induced X-ray Emission (PIXE) and Rutherford Backscattering Spectroscopy (RBS) was carried out to measure the elemental composition of pottery and clays sources of the Teotihuacan region. Also, a semiquantitative X-Ray Diffraction study (XRD) was performed to determine the mineralogical phases. From elemental and mineralogical composition, groups of local and foreign sherds were established. Results showed that the PIXE-RBS method combined with XRD proved to be a very powerful and general procedure for archaeological characterization. Moreover, non-vacuum differential PIXE analysis was carried out on colored regions of some representative vessels to study the layered structure of the paints-clay system

  9. Ion Beam Analysis of Metallic Materials, Coatings and Composites,

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Munnik, F.; Malinský, Petr; Bočan, Jiří

    Praha : Matematicko-fyzikální fakulta, Karlova Univerzita, 2008. s. 82-82. [11th International Symposium on Physics of Materials . 24.08.2008-28.08.2008, Praha] R&D Projects: GA AV ČR(CZ) KJB100480601; GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : Ion Bem Analysis * Ni ion implantation * Zr alloy study Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  10. MultiSIMNRA: A computational tool for self-consistent ion beam analysis using SIMNRA

    Science.gov (United States)

    Silva, T. F.; Rodrigues, C. L.; Mayer, M.; Moro, M. V.; Trindade, G. F.; Aguirre, F. R.; Added, N.; Rizzutto, M. A.; Tabacniks, M. H.

    2016-03-01

    SIMNRA is widely adopted by the scientific community of ion beam analysis for the simulation and interpretation of nuclear scattering techniques for material characterization. Taking advantage of its recognized reliability and quality of the simulations, we developed a computer program that uses multiple parallel sessions of SIMNRA to perform self-consistent analysis of data obtained by different ion beam techniques or in different experimental conditions of a given sample. In this paper, we present a result using MultiSIMNRA for a self-consistent multi-elemental analysis of a thin film produced by magnetron sputtering. The results demonstrate the potentialities of the self-consistent analysis and its feasibility using MultiSIMNRA.

  11. Comparison of composite rotor blade models: A coupled-beam analysis and an MSC/NASTRAN finite-element model

    Science.gov (United States)

    Hodges, Robert V.; Nixon, Mark W.; Rehfield, Lawrence W.

    1987-01-01

    A methodology was developed for the structural analysis of composite rotor blades. This coupled-beam analysis is relatively simple to use compared with alternative analysis techniques. The beam analysis was developed for thin-wall single-cell rotor structures and includes the effects of elastic coupling. This paper demonstrates the effectiveness of the new composite-beam analysis method through comparison of its results with those of an established baseline analysis technique. The baseline analysis is an MSC/NASTRAN finite-element model built up from anisotropic shell elements. Deformations are compared for three linear static load cases of centrifugal force at design rotor speed, applied torque, and lift for an ideal rotor in hover. A D-spar designed to twist under axial loading is the subject of the analysis. Results indicate the coupled-beam analysis is well within engineering accuracy.

  12. Spectrum analysis of hydrogen plasma in spherically convergent beam fusion

    International Nuclear Information System (INIS)

    Spectroscopic analysis of spherical glow discharge fusion device was carried out using hydrogen gas. Effects of the discharge current and cathode voltage on spectrum profiles of hydrogen Balmar lines were measured. The profiles of all hydrogen lines were broadened with the cathode voltage. From the relationship between the maximum broadening width and the cathode voltage, it was indicated that the broadening was caused by the Doppler effect. From the spatial distribution of emission intensity, it was found that plasma core size became larger with discharge current and smaller with cathode voltage. (author)

  13. Spectrum analysis of hydrogen plasma in spherically convergent beam fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, Kazuki; Yamauchi, Kunihito; Watanabe, Masato; Sunaga, Yoshitaka; Hotta, Eiki [Tokyo Institute of Technology, Dept. of Energy Sciences, Yokohama, Kanagawa (Japan); Okino, Akitoshi [Tokyo Institute of Technology, Dept. of Electrical and Electronic Engineering, Tokyo (Japan)

    2001-09-01

    Spectroscopic analysis of spherical glow discharge fusion device was carried out using hydrogen gas. Effects of the discharge current and cathode voltage on spectrum profiles of hydrogen Balmar lines were measured. The profiles of all hydrogen lines were broadened with the cathode voltage. From the relationship between the maximum broadening width and the cathode voltage, it was indicated that the broadening was caused by the Doppler effect. From the spatial distribution of emission intensity, it was found that plasma core size became larger with discharge current and smaller with cathode voltage. (author)

  14. Analysis of Adaptive Fuzzy Technique for Multiple Crack Diagnosis of Faulty Beam Using Vibration Signatures

    Directory of Open Access Journals (Sweden)

    Amiya Kumar Dash

    2013-01-01

    Full Text Available This paper discusses the multicrack detection of structure using fuzzy Gaussian technique. The vibration parameters derived from the numerical methods of the cracked cantilever beam are used to set several fuzzy rules for designing the fuzzy controller used to predict the crack location and depth. Relative crack locations and relative crack depths are the output parameters from the fuzzy inference system. The method proposed in the current analysis is used to evaluate the dynamic response of cracked cantilever beam. The results of the proposed method are in good agreement with the results obtained from the developed experimental setup.

  15. Homotopy perturbation method for free vibration analysis of beams on elastic foundation

    International Nuclear Information System (INIS)

    In this study, the homotopy perturbation method (HPM) is applied for free vibration analysis of beam on elastic foundation. This numerical method is applied on a previously available case study. Analytical solutions and frequency factors are evaluated for different ratios of axial load N acting on the beam to Euler buckling load, Nr. The application of HPM for the particular problem in this study gives results which are in excellent agreement with both analytical solutions and the variational iteration method (VIM) solutions for the case considered in this study and the differential transform method (DTM) results available in the literature.

  16. Using an IIDC/DCAM camera for beam display and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Olsen,R.H.; Gassner, D.; Hoff, L. T.

    2009-10-12

    An IIDC/DCAM camera is used to the RHIC beams as they pass through a hydrogen jet. The data is transferred over a 1394 bus to a computer with a Linux operating system. A software process on that computer collects the individual frames and packages them into parameters within the RHIC control system's framework. This information is packaged to continuously update two primary types of clients: One type is responsible for near-real-time display of the images; useful in comfort displays, etc. The second is responsible for collecting data used in analysis of beam dynamics and properties like luminosity.

  17. Effects of Structural Damage on Dynamic Behavior at Sandwich Composite Beams – Part II- FEM Analysis

    Directory of Open Access Journals (Sweden)

    Marius Tufoi

    2014-07-01

    Full Text Available This paper presents results obtained by modal analysis on composite beam like structures in healthy and damaged state. The aim is to obtain damage “signatures” for all possible damage scenarios and to use these data to assess transversal cracks based on vibration techniques, by involving natural frequency shifts. The analysis was performed in SolidWorks software for a five-layer composite, 20 vibration modes being obtained by numerical simulation.

  18. Advanced ion beam analysis of materials using ion-induced fast electron

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Hiroshi; Tanabe, Atsushi; Ishihara, Toyoyuki [Tsukuba Univ., Ibaraki (Japan)] [and others

    1997-03-01

    Recent progress in the study of high-energy shadowing effect using ion-induced electron spectroscopy is reported with emphasis on a possibility of determination of local electronic structure in solids, which has been a difficult problem to approach with other experimental techniques. We demonstrate real-space determination of covalent-bond electron distribution in Si crystal. The analysis technique may provide a new field of ion beam analysis of solids. (author)

  19. Structure analysis of polymer crystals modernized with quantum beam usage

    International Nuclear Information System (INIS)

    One of the most significant progresses in the X-ray crystal structure analysis technique is the utilization of a synchrotron high-energy X-ray source which can give us a tremendously large number of reflections, making it possible to find out even the hydrogen atomic positions with high accuracy. The wide-angle neutron diffraction method is also important for the extraction of hydrogen atomic positions as demonstrated in the case study of full-deuterated polyethylene. The so-called X-N (X-ray-neutron) method has been also applied, which successfully clarified the bonded electron density distribution along a polydiacetylene skeletal chain. Detailed crystal structure analysis was performed also to observe the mechanical deformation mechanism of a polymer crystal viewed on the atomic level. Time-dependent rapid X-ray diffraction measurement has made it possible to trace the structural change in a photo-induced solid-state polymerization process. An organized combination of X-ray diffraction methods with others such as infrared spectroscopy has shown to be important for the study of structural evolution processes of polymer crystals. (author)

  20. Development of a Reference Database for Ion Beam Analysis. Report of a Coordinated Research Project on Reference Database for Ion Beam Analysis

    International Nuclear Information System (INIS)

    Ion beam analysis techniques are non-destructive analytical techniques used to identify the composition and provide elemental depth profiles in surface layers of materials. The applications of such techniques are diverse and include environmental control, cultural heritage and conservation and fusion technologies. Their reliability and accuracy depends strongly on our knowledge of the nuclear reaction cross sections, and this publication describes the coordinated effort to measure, compile and evaluate cross section data relevant to these techniques and make these data available to the user community through a comprehensive online database. It includes detailed assessments of experimental cross sections as well as attempts to benchmark these data against appropriate integral measurements

  1. Ion beam analysis of aluminium in thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Healy, M.J.F. E-mail: m.j.f.healy@rmcs.cranfield.ac.uk; Pidduck, A.J.; Dollinger, G.; Gorgens, L.; Bergmaier, A

    2002-05-01

    This work quantifies aluminium in thin surface and near surface layers. In one example, the layer overlies a thin gallium nitride layer on an aluminium oxide substrate and in a second example the aluminium exists just below the surface of an indium arsenide substrate. The technique of non-Rutherford elastic backscattering of protons was used for the samples where aluminum in the layer of interest needed to be resolved from aluminium in the sapphire substrate and the results were corroborated at the Technische Universitaet Muenchen using heavy ion elastic recoil detection analysis. In the second example, where it was unnecessary to isolate the signal of aluminium in the layer of interest (as the substrate contained no aluminium), then the {sup 27}Al(d,p{sub 01}){sup 28} Al nuclear reaction was used. The elastic proton scattering cross section of aluminum was found to vary very rapidly over the energy range of interest.

  2. Transient Thermal Analysis of Intense Proton Beam Loss on a Kicker Magnet Conductor Plate

    CERN Document Server

    Knaus, P

    2000-01-01

    The Super Proton Synchrotron SPS will be used as injector for the Large Hadron Collider LHC and needs adaptation to meet LHC requirements. The SPS injection kicker magnets MKP will undergo important modifications to comply with the requirements on magnetic field rise-time and ripple. The injection kicker presently installed has a return conductor of beryllium to minimise the risk of metal evaporation from its surface due to heating caused by beam impact. In the context of refurbishing the MKP to satisfy LHC requirements these conductors need replacement, preferably with a less delicate material. This article presents the transient thermal analysis of energy deposition caused by beam loss on the conductor plate. The expected time structure of the beam is taken into account. Simulations comparing different conductor materials have been performed, leading to the result that a significantly cheaper and fully inoffensive titanium alloy can satisfy the needs.

  3. Transverse beam stability measurement and analysis for the SNS accumulator ring

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zaipeng [University of Wisconsin-Madison, Madison, WI 53706-1691 (United States); Deibele, Craig, E-mail: deibele@ornl.gov [Oak Ridge National Laboratory, PO BOX 2008 MS6483, Oak Ridge, TN 37831-6461 (United States); Schulte, Michael J.; Hu, Yu-Hen [University of Wisconsin-Madison, Madison, WI 53706-1691 (United States)

    2015-07-11

    A field-programmable gate array (FPGA)-based transverse feedback damper system was implemented in the Spallation Neutron Source (SNS) accumulator ring with the intention to stabilize the electron–proton (e–p) instability in the frequency range of 1–300 MHz. The transverse feedback damper could also be used as a diagnostic tool by measuring the beam transfer function (BTF). An analysis of the BTF measurements provides the stability diagram for the production beam at SNS. This paper describes the feedback damper system and its setup as the BTF diagnostic tool. Experimental BTF results are presented and beam stability is analyzed by use of the BTF measurements for the SNS accumulator ring.

  4. Micro-beam scanning PIXE analysis system at the National Institute of Radiological Sciences (NIRS)

    International Nuclear Information System (INIS)

    In 2000, micro-beam scanning particle induced X-ray emission (PIXE) analysis system was installed in NIRS. This system provides the ability of multi-elemental mapping on maximum 2.5 mm x 2.5 mm area in a spatial resolution of about 1 μm with quadrupole triplet magnets and a scanning coil. The estimated beam size on good tuning was 0.40 x 0.65 μm2, that is one of the best capacity of micro-beam scanning PIXE system in the world. The performance was tested using small biological samples such as fish scale, pollen and small fish eye. Fine elemental maps were obtained in the samples of about 30 μm to a few mm size in the special resolution of about 1 μm. (author)

  5. Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset.

    Science.gov (United States)

    Chen, Xinlin; Xiao, Guangzong; Luo, Hui; Xiong, Wei; Yang, Kaiyong

    2016-04-01

    A comprehensive dynamics analysis of microsphere has been presented in a dual-beam fiber-optic trap with transverse offset. As the offset distance between two counterpropagating beams increases, the motion type of the microsphere starts with capture, then spiral motion, then orbital rotation, and ends with escape. We analyze the transformation process and mechanism of the four motion types based on ray optics approximation. Dynamic simulations show that the existence of critical offset distances at which different motion types transform. The result is an important step toward explaining physical phenomena in a dual-beam fiber-optic trap with transverse offset, and is generally applicable to achieving controllable motions of microspheres in integrated systems, such as microfluidic systems and lab-on-a-chip systems. PMID:27137046

  6. Experimental study and analysis on fatigue stiffness of RC beams strengthened with CFRP and steel plate

    Institute of Scientific and Technical Information of China (English)

    LU Yi-yan; HU Ling; LI Shan; WANG Kang-hao

    2016-01-01

    The objective of this work is to investigate the fatigue behavior of reinforced concrete (RC) beams strengthened with externally bonded carbon fiber reinforced polymer (CFRP) and steel plate. An experimental investigation and theoretical analysis were made on the law of deflection development and stiffness degradation, as well as the influence of fatigue load ranges. Test results indicate that the law of three-stage change under fatigue loading is followed by both midspan deflection and permanent deflection, which also have positive correlation with fatigue load amplitude. Fatigue stiffness of composite strengthened beams degrades gradually with the increasing of number of cycles. Based on the experimental results, a theoretical model by effective moment of inertia method is developed for calculating the sectional stiffness of such composite strengthened beams under fatigue loading, and the calculated results are in good agreement with the experimental results.

  7. Neutron Beam Analysis on Materials for Nuclear Applications, Being Irradiated in Fission Reactors and Having Radioactivity

    International Nuclear Information System (INIS)

    Extensive supports are given from the public sectors to the neutron beam analysis on advanced materials developed mainly in the framework of fundamental solid state physics, through the Japan Atomic Energy Agency and the Institute for Solid State physics in University of Tokyo. However, the related activities are mainly on non-radioactive materials with some limited exceptions, though the facilities for the neutron beam analysis are installed in the radiation controlled areas. Research activities in the field of nuclear related materials have concentrated their efforts for nano structural analysis into the other techniques of the post irradiation examinations, such as the high resolution transmission microscopy, the three dimensional atom probe tomography, and the positron annihilation techniques, than the neutron beam analysis. In the meantime, more detailed analysis on the radiation induced nanostructures are becoming more and more essential for the further understanding of the radiation effects in the materials which will be used in the advanced nuclear systems, such as the nuclear fusion reactors and the generation-IV nuclear fission reactors. Utilizing of the cutting edge techniques for the nanostructural analysis on materials irradiated by neutrons, all of which cannot be installed in the limited area of available hot laboratories, is urgently demanded, of course, satisfying the related legal restrictions and the safety demands. The present study was focused on as the realization of the neutron beam analysis on the nanostructural evolutions of the superconductive materials, which will be used in the ITER, the international thermonuclear experimental reactor, being under construction in Cadarache, France, and the glassy metals, which have some unique and advantageous features for the nuclear applications. (author)

  8. An optimised oscillation analysis of MINOS beam data

    Energy Technology Data Exchange (ETDEWEB)

    Culling, Andrew John; /Cambridge U.

    2007-09-01

    This thesis presents results of the MINOS long baseline neutrino oscillation experiment. Charged Current interactions of {nu}{sub {mu}} from the NuMI beamline have been recorded in both the Near and Far Detectors between May 2005 and February 2006, corresponding to 1.27 x 10{sup 20} protons being delivered to the NuMI target. Several techniques for improving the sensitivity of an oscillation measurement are discussed and their impact assessed. 378 events are observed in the Far Detector during this period, compared to a prediction of 459 {+-} 31 events are observed in the Far Detector during this period, compared to a prediction of 459 {+-} 31 events when the observed Near Detector spectrum is extrapolated to the Far Detector over the 735 km baseline with no oscillations. In addition to this deficit of observed events, there is also evidence for spectral distortion in the Far Detector. A maximum likelihood analysis is used to determine the best fit point and allowed regions in {Delta}m{sup 2}{sub 23} and sin{sup 2}2{theta}{sub 23} parameter space. The best fit values for {Delta}m{sup 2}{sub 23} and sin{sup 2}2{theta}{sub 23} are found to be 2.55{sup +0.39}{sub -0.24} x 10{sup -3} eV{sup 2} and > 0.87 (68% CL) respectively.

  9. Design and Analysis of Muon Beam Stop Support Structures

    Energy Technology Data Exchange (ETDEWEB)

    Okafor, Udenna [Northern Illinois Univ., DeKalb, IL (United States)

    2015-01-01

    The primary objective of this thesis is to design and analyze support structures to be used in the installation, test and final positioning of the MBS throughout the life of the Mu2e experiment. There several requirements for the MBS imposed by both the scope of the experiment and, other components within the DS bore. The functions of the MBS are: 1. To limit the induced rates in the Tracker, the Calorimeter and the Cosmic Ray Veto due to backsplash-and-secondary interactions, and 2. To reduce radiation levels external to the Detector solenoid. The structures used in supporting the MBS will also adhere to requirements imposed by its functions. These requirements are critical to the support structures and affect design decisions. Other requirements critical to the design are imposed by the weight, positional tolerance and assembly procedure of the MBS, and also, the magnetic field and vacuum dose rate of the DS bore. A detailed breakdown of how each requirement affects the structural design can be found in chapter 2. Chapter 3 describes the design of each support structure and its attachment to the MBS while chapter 4 describes the results from structural analysis of the support structures. Chapter 5 describes evaluation for the design through testing and calculations while the conclusion in chapter 6 reports the current status at the time of this thesis submission with a plan for future work to be completed until final design and installation.

  10. VIBRATION ANALYSIS ON A COMPOSITE BEAM TO IDENTIFY DAMAGE AND DAMAGE SEVERITY USING FINITE ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    E.V.V.Ramanamurthy

    2011-07-01

    Full Text Available The objective of this paper is to develop a damage detection method in a composite cantilever beam with an edge crack has been studied using finite element method. A number of analytical, numerical andexperimental techniques are available for the study of damage identification in beams. Studies were carried out for three different types of analysis on a composite cantilever beam with an edge crack as damage. The material used in this analysis is glass-epoxy composite material. The finite element formulation was carried out in the analysis section of the package, known as ANSYS. The types of vibration analysis studied on a composite beam are Modal, Harmonic andTransient analysis. The crack is modeled such that the cantilever beam is replaced with two intact beams with the crack as additional boundary condition. Damage algorithms are used to identify and locate the damage. Damage index method is also used to find the severity of the damage. The results obtained from modal analysis were compared with the transient analysis results.The vibration-based damage detection methods are based on the fact that changes of physical properties (stiffness, mass and damping due to damage will manifest themselves as changes in the structural modal parameters (natural frequencies, mode shapes and modal damping. The task is then to monitor the selected indicators derived from modal parameters to distinguish between undamaged and damaged states. However, the quantitative changes of global modal parameters are not sufficiently sensitive to a local damage. The proposed approach, on the other hand, interprets the dynamic changes caused by damage in a different way. Although the basis for vibration-based damage detection appears intuitive, the implementation in real structures may encounter many significant challenges. The most fundamental issue is the fact that damage typically is a local phenomenon and may not dramatically influence the global dynamic response of a

  11. Coopération Sud-Sud et lutte contre la pauvreté : le cas du forum IBAS (South-South Cooperation and the Fight against Poverty: The Case of the IBAS Forum

    Directory of Open Access Journals (Sweden)

    Folashadé A. Soulé-Kohndou

    2012-01-01

    Full Text Available Malgré la montée en puissance de l'Inde, du Brésil et de l'Afrique du Sud sur la scène internationale, et de leur catégorisation comme puissances émergentes, la lutte contre la pauvreté reste une priorité nationale dans chacun de ces pays. Dans ce cadre, plusieurs politiques et initiatives sont mises en oeuvre à la fois au niveau national et international : le forum IBSA qui regroupe ces trois émergents en est un exemple. Né en 2003, cette nouvelle coopération Sud-Sud (Inde, Brésil, Afrique du Sud se fait le relais des priorités nationales et des intérêts communs de ses membres pour la résorption de la pauvreté au niveau interne mais aussi international. Leur coopération passe par des échanges trilatéraux et la conduite de projets de développement communs dans d'autres pays en développement via le fonds IBAS pour la lutte contre la faim et la pauvreté. Malgré ses limites, elle participe à l'affirmation et à la quête d'autonomie et à la légitimation de ses membres comme nouvelles puissances.(Despite the increasing power of India, Brazil and South Africa on the international scene and their categorization as emerging powers, the fight against poverty remains a national priority in all three countries. Several policies and initiatives have been put in place at the national and international level simultaneously: the IBAS forum which unites the three is one example. Created in 2003, this new South-South cooperation (India, Brazil, South Africa links national priorities with the common interests of its members to reduce poverty at the national and international level. Cooperation includes trilateral trade and jointly managing development projects in other developing countries via IBAS poverty and hunger reduction funds. Despite its limitations, the IBAS forum contributes to the legitimization of its members as new global powers.

  12. Ion beam microanalysis in geoscience research

    International Nuclear Information System (INIS)

    Geological samples are complex materials, which often involve intricate textures of crystalline and amorphous components. Inclusions may preserve samples of melts and fluids responsible for evolution of the Earth's mantle and crust. Analysis of these samples helps improve our understanding of geological processes and provides a basis for new mineral exploration approaches and improved mineral processing techniques. The penetration of a MeV proton microbeam permits the non-destructive in situ imaging and analysis of buried structures such as mineral, melt and fluid inclusions. IBA techniques permit standardless analysis and non-destructive imaging for virtually arbitrary sample composition. Rutherford backscattering and resonant nuclear reactions can be used for the analysis of diffusion depth profiles, as can elastic recoil methods, particularly for hydrogen analysis. And many of these techniques can be combined with crystal channelling. These techniques available on easily accessible machines gives IBA a firm place amongst the spectrum of complementary analysis tools available to geology

  13. Analysis of Retrofitting Non-Linear Finite Element Of RCC Beam And Column Using Ansys

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-12-01

    Full Text Available Many of the existing reinforced concrete structures throughout the world are in urgent need of strengthening, repair or reconstruction because of deterioration due to various factors like corrosion, lack of detailing, failure of bonding between beam-column joints, increase in service loads, etc., leading to cracking, spalling, loss of strength, deflection, etc., Direct observation of these damaged structures has shown that damage occurs usually at the beam-column joints, with failure in bending or shear, depending on geometry and reinforcement distribution type.A nonlinear finite element analysis that is a simulation technique is used in this work to evaluate the effectiveness of retrofitting technique called “wrapping technique” for using carbon fibres (FRP for strengthening of RC beam-column connections damaged due to various reasons. After carrying out a nonlinear finite element analysis of a reinforced concrete frame (Controlled Specimen and reinforced concrete frame where carbon fibres are attached to the beam column joint portion in different patterns ,the measured response histories of the original and strengthened specimens are then subsequently compared. It is seen that the strengthened specimens exhibit significant increase in strength, stiffness, and stability as compared to controlled specimens. It appears that the proposed simulation technique will have a significant impact in engineering practice in the near future.

  14. Atmosphere influence on in situ ion beam analysis of thin film growth

    International Nuclear Information System (INIS)

    In situ, nondestructive surface characterization of thin-film growth processes in an environment of chemically active gas at pressures of several mTorr is required both for the understanding of growth processes in multicomponent films and layered heterostructures and for the improvement of process reproducibility and device reliability. The authors have developed a differentially pumped pulsed ion beam surface analysis system that includes ion scattering spectroscopy (ISS) and direct recoil spectroscopy (DRS), coupled to an automated ion beam sputter-deposition system (IBSD), to study film growth processes in an environment of chemically active gas, such as required for the growth of oxide, nitride, or diamond thin films. The influence of gas-phase scattering and gas-surface interactions on the ISS and DRS signal intensity and peak shape have been studied. From the intensity variation as a function of ambient gas pressure, the authors have calculated the mean free path and the scattering cross-section for a given combination of primary ion species and ambient gas. Depending on the system geometry and the combination of primary beam and background, it is shown that surface-specific data can be obtained during thin-film growth at pressures ranging from a few mtorr to approximately 1 Torr. Detailed information such as surface composition, structure, and film growth mechanism may be obtained in real-time, making ion beam analysis an ideal nondestructive, in situ probe of thin-film growth processes

  15. Ion beam analysis of tungsten layers in EUROFER model systems and carbon plasma facing components

    Science.gov (United States)

    Ström, Petter; Petersson, Per; Rubel, Marek; Primetzhofer, Daniel; Brezinsek, Sebastijan; Kreter, Arkadi; Unterberg, Bernhard; Sergienko, Gennady; Sugiyama, Kazuyoshi

    2016-03-01

    The tungsten enriched surface layers in two fusion-relevant EUROFER steel model samples, consisting of an iron-tungsten mixture exposed to sputtering by deuterium ions, were studied by Rutherford backscattering spectrometry and medium energy ion scattering. Exposure conditions were the same for the two samples and the total amount of tungsten atoms per unit area in the enriched layers were similar (2 · 1015 and 2.4 · 1015 atoms/cm2 respectively), despite slightly different initial atomic compositions. A depth profile featuring exponential decrease in tungsten content towards higher depths with 10-20 at.% of tungsten at the surface and a decay constant between 0.05 and 0.08 Å-1 was indicated in one sample, whereas only the total areal density of tungsten atoms was measured in the other. In addition, two different beams, iodine and chlorine, were employed for elastic recoil detection analysis of the deposited layer on a polished graphite plate from a test limiter in the TEXTOR tokamak following experiments with tungsten hexafluoride injection. The chlorine beam was preferred for tungsten analysis, mainly because it (as opposed to the iodine beam) does not give rise to problems with overlap of forward scattered beam particles and recoiled tungsten in the spectrum.

  16. Single and multi degree of freedom analysis of steel beams under blast loading

    International Nuclear Information System (INIS)

    Highlights: ► Experimentally tested beams under blast are analyzed using SDOF and MDOF models. ► SDOF model adequately captures the time dependant deformations and internal forces. ► Constant DIF based on a low strain rate leads to conservative estimate of the DIF. ► The responses of the test beams are governed by the first mode of vibration. - Abstract: This paper presents detailed analysis of the results of field tests on 13 full scale wide flange steel beams subjected to blast loads generated by the detonation of up to 250 kg of ANFO explosive. The experimental results are analyzed using an equivalent Single-Degree-of-Freedom (SDOF) model of a beam, which includes material nonlinearity and strain rate effects. To account for strain rate effect on beam stiffness and strength, its full moment-curvature response is determined by dividing its cross-section into a number of layers and a strain rate-dependent stress-strain relationship, based on the Cowper–Symonds strain rate model, is used to capture the nonlinear stress distribution over the section. To determine the effects of higher modes of vibration and the variation of beam mechanical properties along its length on its dynamic response, the test beams are also analyzed using a Multi-Degree-of-Freedom (MDOF) model involving beam finite elements. Each element has two nodes and three degrees of freedom and is again divided into a number of layers to capture the strain rate effect and nonlinear stress distribution over its depth. The predicted displacements and strains by the two models are compared with the corresponding experimental data and the results show that for the given beams, the time-dependant deformations, internal forces, and moments can be adequately predicted by either model because the first mode of vibration is found to dominate their response; however, the use of a constant strain rate through the so-called Dynamic Increase Factor (DIF) can lead to highly conservative estimate of the

  17. 3D DVH-based metric analysis versus per-beam planar analysis in IMRT pretreatment verification

    International Nuclear Information System (INIS)

    Purpose: To evaluate methods of pretreatment IMRT analysis, using real measurements performed with a commercial 2D detector array, for clinical relevance and accuracy by comparing clinical DVH parameters. Methods: We divided the work into two parts. The first part consisted of six in-phantom tests aimed to study the sensitivity of the different analysis methods. Beam fluences, 3D dose distribution, and DVH of an unaltered original plan were compared to those of the delivered plan, in which an error had been intentionally introduced. The second part consisted of comparing gamma analysis with DVH metrics for 17 patient plans from various sites. Beam fluences were measured with the MapCHECK 2 detector, per-beam planar analysis was performed with the MapCHECK software, and 3D gamma analysis and the DVH evaluation were performed using 3DVH software. Results: In a per-beam gamma analysis some of the tests yielded false positives or false negatives. However, the 3DVH software correctly described the DVH of the plan which included the error. The measured DVH from the plan with controlled error agreed with the planned DVH within 2% dose or 2% volume. We also found that a gamma criterion of 3%/3 mm was too lax to detect some of the forced errors. Global analysis masked some problems, while local analysis magnified irrelevant errors at low doses. Small hotspots were missed for all metrics due to the spatial resolution of the detector panel. DVH analysis for patient plans revealed small differences between treatment plan calculations and 3DVH results, with the exception of very small volume structures such as the eyes and the lenses. Target coverage (D98 and D95) of the measured plan was systematically lower than that predicted by the treatment planning system, while other DVH characteristics varied depending on the parameter and organ. Conclusions: We found no correlation between the gamma index and the clinical impact of a discrepancy for any of the gamma index evaluation

  18. Application of the Frequency Map Analysis to the Study of the Beam Dynamics of Light Sources

    International Nuclear Information System (INIS)

    The topic of this thesis is the study of beam dynamics in storage rings with a restriction to single particle transverse dynamics. In a first part, tools (Frequency Map Analysis, Hamiltonian, Integrator) are presented for studying and exploring the dynamics. Numerical simulations of four synchrotron radiation sources (the ALS, the ESRF, SOLEIL and Super-ACO) are performed. We construct a tracking code based on a new class of symplectic integrators (Laskar and Robutel, 2000). These integrators with only positive steps are more precise by an order of magnitude than the standard Forest and Ruth's scheme. Comparisons with the BETA, DESPOT and MAD codes are carried out. Frequency Map Analysis (Laskar, 1990) is our main analysis tool. This is a numerical method for analysing a conservative dynamical system. Based on a refined Fourier technique, it enables us to compute frequency maps which are real footprints of the beam dynamics of an accelerator. We stress the high sensitivity of the dynamics to magnetics errors and sextipolar strengths. The second part of this work is dedicated to the analysis of experimental results from two light sources. Together with the ALS accelerator team (Berkeley), we succeeded in obtaining the first experimental frequency map of an accelerator. The agreement with the machine model is very impressive. At the Super-ACO ring, the study of the tune shift with amplitude enabled us to highlight a strong octupolar-like component related to the quadrupole fringe field. The aftermaths for the beam dynamics are important and give us a better understanding the measured ring performance. All these results are based on turn by turn measurements. Many closely related phenomena are treated such as response matrix analysis or beam decoherence. (author)

  19. Chopper mode analysis of beam distribution based on time in HIRFL

    International Nuclear Information System (INIS)

    Chopper is an important equipment in beam distribution system based on time of heavy ion research facility in Lanzhou (HIRFL). This paper introduces its mode analysis system's architecture and hardware composition, analyzes corresponding software requirements, and designs the mode analysis program using multithreading technology. Firstly the program reads mode pulse data of chopper from data acquisition card by NI-DAQmx function, then uses the data for further analysis, and finally sends corresponding work mode control instruction to chopper controller through TCP/IP protocol. The designed program meets system requirements, realizing the function of chopper mode automatic conversion, and has passed the field test. (authors)

  20. Job and Task Analysis project at Brookhaven National Laboratory's high flux beam reactor

    International Nuclear Information System (INIS)

    The presenter discussed the Job and Task Analysis (JTA) project conducted at Brookhaven National Laboratory's High Flux Beam Reactor (HFBR). The project's goal was to provide JTA guidelines for use by DOE contractors, then, using the guidelines conduct a JTA for the reactor operator and supervisor positions at the HFBR. Details of the job analysis and job description preparation as well as details of the task selection and task analysis were given. Post JTA improvements to the HFBR training programs were covered. The presentation concluded with a listing of the costs and impacts of the project

  1. Mode of action of metabolites from Bacillus sp. strain IBA 33 on Geotrichum citri-aurantii arthroconidia.

    Science.gov (United States)

    Gordillo, María Antonieta; Navarro, Antonio R; Maldonado, María Cristina

    2015-11-01

    Geotrichum citri-aurantii is a postharvest phytopathogenic fungus of lemons. We studied the mode of action of antifungal metabolites from Bacillus sp. strain IBA 33 on arthroconidia of G. citri-aurantii. These metabolites are lipopeptides belonging to the iturin family. Membrane permeabilization of G. citri-aurantii was analyzed and mitochondrial respiratory rate was evaluated. Disturbance of the plasma membrane promotes the leakage of many cellular components into the surrounding media, and mitochondrial membrane disorganization promotes the inhibition of the respiratory rate. Our findings provide insights into the ability of lipopeptides to suppress plant fungal pathogens and their possible agronomical applications. PMID:26394707

  2. Analysis of Cherenkov free-electron laser driven by a flat electron beam

    International Nuclear Information System (INIS)

    A thin dielectric slab at the top of an ideal conductor supports surface electromagnetic waves, which can be amplified by an electron beam co-propagating in the close vicinity of the dielectric surface. Under suitable conditions, powerful coherent tera hertz radiation can be produced using this device, which is called as Cherenkov Free-Electron Laser (CFEL). In this paper, we present an analysis of CFEL driven by a two dimensional flat electron beam travelling close and parallel to the dielectric surface. The existence of the surface mode is explained and derived in terms of the singularity of the reflectivity of this system. A formula for small signal gain is derived by analysing the residue at the singularity. Analysis is also extended to understand the behaviour of the system at saturation. (author)

  3. Microprocessor-based scan control unit for electron and photon beams used in surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Haney, S.J.

    1979-05-01

    A microprocessor-based X-Y scan control unit was developed to interface with existing PHI Scanning Auger Microprobe and exoelectron emission electronics. The unit provides precise and versatile control of the rastered beams used for surface analysis. In addition to manual control there are options for automatic line and area scans with up to 1000 discrete beam analysis points per line (up to 10/sup 6/ for an entire frame area) and scanning rates continuously adjustable from 1 to 2000 points per second. The design of the unit is such that it can be used in a variety of applications requiring accurate X-Y position control. This report gives a complete description of the scanning control unit's operating controls, internal programming, and circuitry.

  4. Cone-beam CT analysis of patients with obstructive sleep apnea compared to normal controls

    OpenAIRE

    Buchanan, Allison; Cohen, Ruben; Looney, Stephen; Kalathingal, Sajitha; De Rossi, Scott

    2016-01-01

    Purpose To evaluate the upper airway dimensions of obstructive sleep apnea (OSA) and control subjects using a cone-beam computed tomography (CBCT) unit commonly applied in clinical practice in order to assess airway dimensions in the same fashion as that routinely employed in a clinical setting. Materials and Methods This was a retrospective analysis utilizing existing CBCT scans to evaluate the dimensions of the upper airway in OSA and control subjects. The CBCT data of sixteen OSA and sixte...

  5. Local buckling analysis of biological nanocomposites based on a beam-spring model

    OpenAIRE

    Zhiling Bai; Baohua Ji

    2015-01-01

    Biological materials such as bone, tooth, and nacre are load-bearing nanocomposites composed of mineral and protein. Since the mineral crystals often have slender geometry, the nanocomposites are susceptible to buckle under the compressive load. In this paper, we analyze the local buckling behaviors of the nanocomposite structure of the biological materials using a beam-spring model by which we can consider plenty of mineral crystals and their interaction in our analysis compared with existin...

  6. Comment on 'Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation'

    International Nuclear Information System (INIS)

    In a recent paper, Ajitsaria et al (2007 Smart Mater. Struct. 16 447–54) presented a mathematical formulation for the modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Their motivation was the recent increasing trend in using the piezoelectric effect to harvest electrical energy from ambient vibrations. This comment addresses the modeling errors and numerous undefined and missing terms in the mentioned work. (comment)

  7. Analysis of reinforced concrete beams without shear reinforcement using non-local microplane model

    OpenAIRE

    Ozbolt, Josko; Eligehausen, Rolf

    1991-01-01

    The shear resistance of reinforced concrete beams without shear reinforcement is studied using the non-local microplane model and plane stress finite elements. The main objective of the present work is the study of the size effect. Calculated failure loads for geometrically similar specimens of four different sizes are compared with test data and the recently proposed size effect law. Results of the analysis as well as test results exhibit significant size effect. Observed failure is of the b...

  8. Ion beams: from plasma physics to applications in analysis and irradiation fields

    International Nuclear Information System (INIS)

    In this HDR (Accreditation to supervise research) report, the author proposes an overview of his research activities. A first part comments a research which aimed at determining the distribution of ion populations in an electron cyclotron resonance (ECR) plasma. Then, after a brief recall of the principles and techniques of analysis based on ion beams, he presents some characteristics of the CEA/Saclay nuclear microprobe. He reports various works related to material science and to biology, and discusses the associated perspectives

  9. Mechanical characterization and structural analysis of recycled fiber-reinforced-polymer resin-transfer-molded beams

    Science.gov (United States)

    Tan, Eugene Wie Loon

    1999-09-01

    The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation

  10. Neutron beam preparation with Am-Be source for analysis of biological samples with PGNAA method

    International Nuclear Information System (INIS)

    Material analysis with prompt gamma neutron activation analysis (PGNAA) requires a proper geometrical arrangement for equipments in laboratory. Application of PGNAA in analysis of biological samples, due to small size of sample, needs attention to the dimension of neutron beam. In our work, neutron source has been made of 241Am-Be type. Activity of 241Am was 20 Ci which lead to neutron source strength of 4.4 x 107 neutrons per second. Water has been considered as the basic shielding material for the neutron source. The effect of various concentration of boric acid in the reduction of intensity of fast and thermal components of the neutron beam and gamma ray has been investigated. Gamma ray is produced by (α, n) reaction in Am-Be source (4.483 MeV), neutron capture by hydrogen (2.224 MeV), and neutron capture by boron (0.483 MeV). Various types of neutron and gamma ray dosimeters have been employed including BF3 and NE-213 detectors to detect fast and thermal neutrons. BGO scintillation detector has been used for gamma ray spectroscopy. It is shown that the gamma and neutron radiation dose due to direct beam is of the same magnitude as the dose due to radiation scattered in the laboratory ambient. It is concluded that 14 kg boric acid dissolved in 1,000 kg water is the optimum solution to surround the neutron source. The experimental results have been compared with Monte Carlo simulation. (author)

  11. A new TriBeam system for three-dimensional multimodal materials analysis

    Science.gov (United States)

    Echlin, McLean P.; Mottura, Alessandro; Torbet, Christopher J.; Pollock, Tresa M.

    2012-02-01

    The unique capabilities of ultrashort pulse femtosecond lasers have been integrated with a focused ion beam (FIB) platform to create a new system for rapid 3D materials analysis. The femtosecond laser allows for in situ layer-by-layer material ablation with high material removal rates. The high pulse frequency (1 kHz) of ultrashort (150 fs) laser pulses can induce material ablation with virtually no thermal damage to the surrounding area, permitting high resolution imaging, as well as crystallographic and elemental analysis, without intermediate surface preparation or removal of the sample from the chamber. The TriBeam system combines the high resolution and broad detector capabilities of the DualBeamTM microscope with the high material removal rates of the femtosecond laser, allowing 3D datasets to be acquired at rates 4-6 orders of magnitude faster than 3D FIB datasets. Design features that permit coupling of laser and electron optics systems and positioning of a stage in the multiple analysis positions are discussed. Initial in situ multilayer data are presented.

  12. A new TriBeam system for three-dimensional multimodal materials analysis

    International Nuclear Information System (INIS)

    The unique capabilities of ultrashort pulse femtosecond lasers have been integrated with a focused ion beam (FIB) platform to create a new system for rapid 3D materials analysis. The femtosecond laser allows for in situ layer-by-layer material ablation with high material removal rates. The high pulse frequency (1 kHz) of ultrashort (150 fs) laser pulses can induce material ablation with virtually no thermal damage to the surrounding area, permitting high resolution imaging, as well as crystallographic and elemental analysis, without intermediate surface preparation or removal of the sample from the chamber. The TriBeam system combines the high resolution and broad detector capabilities of the DualBeamTM microscope with the high material removal rates of the femtosecond laser, allowing 3D datasets to be acquired at rates 4-6 orders of magnitude faster than 3D FIB datasets. Design features that permit coupling of laser and electron optics systems and positioning of a stage in the multiple analysis positions are discussed. Initial in situ multilayer data are presented.

  13. 0.22 THz wideband sheet electron beam traveling wave tube amplifier: Cold test measurements and beam wave interaction analysis

    International Nuclear Information System (INIS)

    In this paper, we describe micro-fabrication, RF measurements, and particle-in-cell (PIC) simulation modeling analysis of the 0.22 THz double-vane half period staggered traveling wave tube amplifier (TWTA) circuit. The TWTA slow wave structure comprised of two sections separated by two sever ports loaded by loss material, with integrated broadband input/output couplers. The micro-metallic structures were fabricated using nano-CNC milling and diffusion bonded in a three layer process. The 3D optical microscopy and SEM analysis showed that the fabrication error was within 2–3 μm and surface roughness was measured within 30–50 nm. The RF measurements were conducted with an Agilent PNA-X network analyzer employing WR5.1 T/R modules with a frequency range of 178-228 GHz. The in-band insertion loss (S21) for both the short section and long section (separated by a sever) was measured as ∼−5 dB while the return loss was generally around ∼−15 dB or better. The measurements matched well with the S-matrix simulation analysis that predicted a 3 dB bandwidth of ∼45 GHz with an operating frequency at 220 GHz. However, the measured S21 was ∼3 dB less than the design values, and is attributed to surface roughness and alignment issues. The confirmation measurements were conducted over the full frequency band up to 270 GHz employing a backward wave oscillator (BWO) scalar network analyzer setup employing a BWO in the frequency range 190 GHz–270 GHz. PIC simulations were conducted for the realistic TWT output power performance analysis with incorporation of corner radius of 127 μm, which is inevitably induced by nano-machining. Furthermore, the S21 value in both sections of the TWT structure was reduced to correspond to the measurements by using a degraded conductivity of 10% International Annealed Copper Standard. At 220 GHz, for an elliptic sheet electron beam of 20 kV and 0.25 A, the average output power of the tube was predicted to be reduced from 90 W (for

  14. 0.22 THz wideband sheet electron beam traveling wave tube amplifier: Cold test measurements and beam wave interaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baig, Anisullah; Gamzina, Diana; Barchfeld, Robert; Domier, Calvin; Barnett, Larry R.; Luhmann, Neville C. Jr. [Department of Electrical and Computer Engineering, University of California, Davis, California 95616 (United States)

    2012-09-15

    In this paper, we describe micro-fabrication, RF measurements, and particle-in-cell (PIC) simulation modeling analysis of the 0.22 THz double-vane half period staggered traveling wave tube amplifier (TWTA) circuit. The TWTA slow wave structure comprised of two sections separated by two sever ports loaded by loss material, with integrated broadband input/output couplers. The micro-metallic structures were fabricated using nano-CNC milling and diffusion bonded in a three layer process. The 3D optical microscopy and SEM analysis showed that the fabrication error was within 2-3 {mu}m and surface roughness was measured within 30-50 nm. The RF measurements were conducted with an Agilent PNA-X network analyzer employing WR5.1 T/R modules with a frequency range of 178-228 GHz. The in-band insertion loss (S{sub 21}) for both the short section and long section (separated by a sever) was measured as {approx}-5 dB while the return loss was generally around {approx}-15 dB or better. The measurements matched well with the S-matrix simulation analysis that predicted a 3 dB bandwidth of {approx}45 GHz with an operating frequency at 220 GHz. However, the measured S{sub 21} was {approx}3 dB less than the design values, and is attributed to surface roughness and alignment issues. The confirmation measurements were conducted over the full frequency band up to 270 GHz employing a backward wave oscillator (BWO) scalar network analyzer setup employing a BWO in the frequency range 190 GHz-270 GHz. PIC simulations were conducted for the realistic TWT output power performance analysis with incorporation of corner radius of 127 {mu}m, which is inevitably induced by nano-machining. Furthermore, the S{sub 21} value in both sections of the TWT structure was reduced to correspond to the measurements by using a degraded conductivity of 10% International Annealed Copper Standard. At 220 GHz, for an elliptic sheet electron beam of 20 kV and 0.25 A, the average output power of the tube was predicted

  15. A systematic analysis of the influence of the surrounding media in the photothermal beam deflection signal

    Energy Technology Data Exchange (ETDEWEB)

    Goeren, A; Prior, P; Macedo, F, E-mail: fmacedo@fisica.uminho.p [Physics Department, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2010-03-01

    The photothermal beam deflection (PDS) technique was tested for low thermal diffusivity materials. The effect of using different liquids as surrounding media was studied in a systematic way. The fundamental experimental parameters, like the pump beam power and the modulation frequency were also studied in order to find out the best combination that still allows us to get good signals. Due to the complexity of the optical alignment required, the usual mirage setup was adapted in order to allow the decoupling of the alignment of the cell containing the liquid and the sample holder. Simple, straightforward methods (like e.g. the phase method) were used for the thermal diffusivity determination of solids once the thermal diffusivity of the liquids used is always much lower than that of solids. The obtained values for the thermal diffusivity of test samples allow us to conclude that besides being possible to use any of the studied liquids as surrounding medium, ethanol is clearly the best choice, avoiding health problems related to CCl{sub 4}, which is the standard choice for PDS and PDS spectroscopy experiments, and technical/physical problems related to water and acetone. Modulation frequencies around 8 Hz combined with a pump beam power below 15 mW were proved to be the ideal conditions for this kind of experiment. The very low pump beam power required is also an important issue when talking about non-destructive analysis.

  16. Analysis on Factors Affecting the Self-Repair Capability of SMA Wire Concrete Beam

    Directory of Open Access Journals (Sweden)

    Li Sun

    2013-01-01

    Full Text Available Crack expansion of concrete is the initial damage stage of structures, which may cause greater damage to structures subject to long-term loads or under extreme conditions. In recent years, the application of intelligent materials to crack self-repair has become a hotspot among researchers. In order to study the influence of factors on the self-repair capability of shape memory alloy (SMA wire concrete beam, both theoretical and experimental methods were employed for analysis. For the convenience of experiment, composite materials (epoxy cement mortar and silicone polymer clay instead of concrete were used. The SMA wires were externally installed on and internally embedded in epoxy resin cement mortar beams and silicone polymer clay beams. Comparison of crack repair situation between two installation methods turns out that both methods possess their own advantages and disadvantages and should be employed according to the actual situation. The influence of unbonded length on the self-repair capability of embedded type SMA wire beams and the necessary minimum unbonded length to achieve self-repair function were studied. The results state clearly that the longer the unbonded length is, the better the crack repair situation is.

  17. Analysis of beam on target interaction in a neutron-source test facility

    International Nuclear Information System (INIS)

    The need is urgent for a high-flux, high-energy neutron test facility to evaluate the performance of fusion reactor materials. An accelerator-based deuterium-lithium source is generally considered the most reasonable approach to a high-flux neutron source in the near future. The idea is to bombard a high-energy (20--40 MeV) deuteron beam into a lithium jet target to produce high-energy neutrons in order to simulate a fusion reactor environment via the Li (d,n) nuclear stripping reaction. Deposition of the high-energy deuteron beam and the subsequent response of the lithium jet are modeled and evaluated in detail. To assess the feasibility of this concept, the analysis is done parametrically for various deuteron beam energies, beam currents, and jet velocities. A main requirement for a successful operation is to keep the free jet surface at a minimum temperature to reduce surface evaporation of lithium into the vacuum system. The effects of neutron-generated heating and irradiation on the jet-supporting back plate are also evaluated. The back plate must maintain a reasonable lifetime during system operation

  18. Prompt gamma ray activation analysis using neutron beam from THOR facility

    International Nuclear Information System (INIS)

    A reactor-based facility for neutron-capture prompt gamma-ray spectrometry for activation analysis has been installed at the one megawatt Tsing Hua Open-pool Reactor. The system consists a neutron beam port with collimators, irradiation stand, external beam tube, neutron beam dump, and counting system. The counting system consists of a 25 % n-type high purity germanium main gamma-ray detector, a 9'' x 10'' NaI(T1) anti-Compton detector shield, and Compton-suppressed electronics coupled to the CANBERRA S-88 Multi-parameter analyzer. Although the neutron beam at the sample irradiation station has an intensity of only 1,300,000 n/cm2s with a cadmium ratio of 26 : 1, the background levels of the on-line measurement in the mixed neutron/gamma field are sufficiently low, resulting a satisfactory detection of many elemental composition in samples. The lower limits of detection of 35 elements in sample matrix of the present system and the current applications are discussed. (author)

  19. An enriched 1D finite element for the buckling analysis of sandwich beam-columns

    Science.gov (United States)

    Sad Saoud, Kahina; Le Grognec, Philippe

    2016-06-01

    Sandwich constructions have been widely used during the last few decades in various practical applications, especially thanks to the attractive compromise between a lightweight and high mechanical properties. Nevertheless, despite the advances achieved to date, buckling still remains a major failure mode for sandwich materials which often fatally leads to collapse. Recently, one of the authors derived closed-form analytical solutions for the buckling analysis of sandwich beam-columns under compression or pure bending. These solutions are based on a specific hybrid formulation where the faces are represented by Euler-Bernoulli beams and the core layer is described as a 2D continuous medium. When considering more complex loadings or non-trivial boundary conditions, closed-form solutions are no more available and one must resort to numerical models. Instead of using a 2D computationally expensive model, the present paper aims at developing an original enriched beam finite element. It is based on the previous analytical formulation, insofar as the skin layers are modeled by Timoshenko beams whereas the displacement fields in the core layer are described by means of hyperbolic functions, in accordance with the modal displacement fields obtained analytically. By using this 1D finite element, linearized buckling analyses are performed for various loading cases, whose results are confronted to either analytical or numerical reference solutions, for validation purposes.

  20. Analysis of beam-on-target interaction in a neutron-source test facility

    International Nuclear Information System (INIS)

    The need is urgent for a high-flux, high-energy neutron test facility to evaluate the performance of fusion reactor materials. An accelerator-based deuterium-lithium source is generally considered the most reasonable approach to a high-flux neutron source in the near future. The idea is to bombard a high-energy (20--40 MeV) deuteron beam into a lithium jet target to produce high-energy neutrons in order to simulate a fusion reactor environment via the Li (d, n) nuclear stripping reaction. Deposition of the high-energy deuteron beam and the subsequent response of the lithium jet are modeled and evaluated in detail. To assess the feasibility of this concept, the analysis is done parametrically for various deuteron beam energies, beam currents, and jet velocities. A main requirement for a successful operation is to keep the free jet surface at a minimum temperature to reduce surface evaporation of lithium into the vacuum system. The effects of neutron-generated heating and irradiation on the jet-supporting back plate are also evaluated. The back plate must maintain a reasonable lifetime during system operation

  1. The Gaussian beam mode analysis of classical phase aberrations in diffraction-limited optical systems

    International Nuclear Information System (INIS)

    Gaussian beam mode analysis (GBMA) offers a more intuitive physical insight into how light beams evolve as they propagate than the conventional Fresnel diffraction integral approach. In this paper we illustrate that GBMA is a computationally efficient, alternative technique for tracing the evolution of a diffracting coherent beam. In previous papers we demonstrated the straightforward application of GBMA to the computation of the classical diffraction patterns associated with a range of standard apertures. In this paper we show how the GBMA technique can be expanded to investigate the effects of aberrations in the presence of diffraction by introducing the appropriate phase error term into the propagating quasi-optical beam. We compare our technique to the standard diffraction integral calculation for coma, astigmatism and spherical aberration, taking - for comparison - examples from the classic text 'Principles of Optics' by Born and Wolf. We show the advantages of GBMA for allowing the defocusing of an aberrated image to be evaluated quickly, which is particularly important and useful for probing the consequences of astigmatism and spherical aberration

  2. Transient Thermo-Mechanical Analysis of the TPSG4 Beam Diluter

    CERN Document Server

    Goddard, B; Herrera-Martínez, A; Kadi, Y; Marque, S

    2002-01-01

    A new extraction channel is being built in the Super Proton Synchrotron (SPS) Long Straight Section 4 (LSS4) to transfer proton beams to the Large Hadron Collider (LHC) and also to the CERN Neutrino to Gran Sasso (CNGS) target. The beam is extracted in a fast mode during a single turn. For this purpose a protection of the MSE copper septum coil, in the form of a beam diluting element placed upstream, will be required to cope with the new failure modes associated with the fast extraction operation. The present analysis focuses on the thermo-mechanical behavior of the proposed TPSG4 diluter element irradiated by a fast extracted beam (up to 4.9 x 10^13 protons per 7.2 mus pulse) from the SPS. The deposited energy densities, estimated from primary and secondary particle simulations using the high-energy particle transport code FLUKA, were converted to internal heat generation rates taken as a thermal load input for the finite-element engineering analyses code ANSYS. According to the time dependence of the extrac...

  3. Time-dependent behavior of RC beams strengthened with externally bonded FRP plates: interfacial stresses analysis

    Science.gov (United States)

    Benyoucef, S.; Tounsi, A.; Benrahou, K. H.; Adda Bedia, E. A.

    2007-12-01

    External bonding of fibre reinforced polymer (FRP) composites has becomes a popular technique for strengthening concrete structures all over the world. An important failure mode of such strengthened members is the debonding of the FRP plate from the concrete due to high interfacial stresses near the plate ends. For correctly installed FRP plate, failure will occur within the concrete. Accurate predictions of the interfacial stresses are prerequisite for designing against debonding failures. In particular, the interfacial stresses between a beam and soffit plate within the linear elastic range have been addressed by numerous analytical investigations. In this study, the time-dependent behavior of RC beams bonded with thin composite plate was investigated theoretically by including the effect of the adherend shear deformations. The time effects considered here are those that arise from shrinkage and creep deformations of the concrete. This paper presents an analytical model for the interfacial stresses between RC beam and a thin FRP plate bonded to its soffit. The influence of creep and shrinkage effect relative to the time of the casting and the time of the loading of the beams is taken into account. Numerical results from the present analysis are presented to illustrate the significance of time-dependent of adhesive stresses.

  4. IMPACT OF CASE STUDY METHOD OF TEACHING ON THE JOB PERFORMANCE OF BUSINESS GRADUATES, IN THE CASE OF BUSINESS ADMINISTRATION DEPARTMENT IBA-UNIVERSITY OF SINDH-JAMSHORO

    Directory of Open Access Journals (Sweden)

    Anwar Ali Shah G.Syed

    2011-09-01

    Full Text Available The study was conducted on business graduates of IBA-University of Sindh-Jamshoro. A complementary survey was conducted from 50 organizations in Sindh province by using simple random technique, and 200 sample size were selected from student data set. The results showed that case analysis method increasing the vision and understanding the subject as well as practical exposure of the different organizations and it also impact on the personal development of the student when they are solving they different cases in different situations for firm or organization. From last couple of years this method is pretty popular among the students, and they applied all the case studies in local environment and teachers are importing the quality of the education by employing different case studies and their practical touches of different cases. It also helps the graduates when they are going for the jobs, and it has the positive relationship with the job performance. Case studies improving the vision of the business students.

  5. Dosimetric Comparing between Protons Beam and Photons Beam 
for Lung Cancer Radiotherapy: A Meta-analysis

    Directory of Open Access Journals (Sweden)

    Guangwei TIAN

    2013-05-01

    Full Text Available Background and objective The clinical evidences are not sufficient on the proton beam therapy of lung cancer for lacking of the RCTs on the comparing the proton with the photon beam in lung cancer radiotherapy. The aim of this study is to evaluate the dosimetry superiority of the proton beam and provide more valuable evidences to the clinical researches. Methods Clinical trails of dosimetric comparing between protons beam and photons beam for lung cancer radiotherapy were obtained from the Cochrane library, Pubmed, EMbase, CBM, CNKI, VIP, and Wan Fang databases. The data included in the study were evaluated and analyzed using the Cochrane Collaboration's RevMan 5.2 software. Results Six trails were included. Compared to photon therapy (three-dimensional conformal photon radiotherapy, 3D-CRT, the proton therapy had a significantly lower total lung Dmean (MD=-4.15, 95%CI: -5.56--2.74, P<0.001 and V20, V10, V5 (MD=-10.92, 95%CI: -13.23--8.62, P<0.001; The V20, V10, V5 significantly decreased in proton therapy group. Compared to photon therapy (intensity-modulated photon radiotherapy, IMRT, V20, V10, V5 were also significantly lowered in proton therapy group (MD=-3.70, 95%CI: -5.31--2.10, P<0.001; MD=-8.86, 95%CI: -10.74--6.98, P<0.001; MD=-20.13, 95%CI: -27.11--13.14, P<0.001; The esophagus Dmean was not lowered, while the heart Dmean decreased in proton therapy group. Conclusion Comparing to photon beam radiotherapy (3D-CRT and IMRT, proton beam therapy is advantageous in dosimetry of the lung cancer radiotherapy and recommended for clinical applying.

  6. Avaliação do enraizamento de estacas de crisântemo (Chrysanthemum morifolium L. cv. white Reagan 606 tratadas com ácido indolbutírico (IBA Rooting evaluation in Chrysanthemum morifolium cv. white Reagan 606 stem cuttings as affected by indolbutyric acid (IBA

    Directory of Open Access Journals (Sweden)

    F.L. Cuquel

    1992-01-01

    Full Text Available Avaliou-se o efeito de doses crescentes do ácido indolbutírico (IBA e de diferentes tempos de imersão no enraizamento de estacas de Chrysanthemum morifolium cv. White Reagan 606. O fator doses foi aplicado em quatro níveis: 0, 500, 1000 e 1500 ppm de IBA e o fator tempo em três níveis: 5s, 1h e 2h. O delineamento utilizado foi o de blocos completos casualizados com parcelas subdivididas, onde as dosagens de IBA foram aplicadas como tratamento principal. O experimento foi instalado em caixas de isopor, em casa de vegetação sob nebulização, tendo vermiculita como substrato. O momento adequado para o transplante foi avaliado através da leitura de uma repetição adicional utilizada como controle. Obteve-se enraizamento em todas as combinações de tratamento, mesma na ausência de IBA. De maneira geral o tratamento rápido tende a ser mais facilmente eficiente quando combinado com as maiores dosagens, enquanto os tratamentos mais demorados com as menores dosagens.The effect of rising concentrations of indolbutyric acid (IBA solutions was evaluated with different exposition times in stem cuttings of Chrysanthemum morifolium cv. White Reagan 606. The applied concentrations were 0,500,1000 and 1500 ppm of IBA during 5s, 1h and 2h, in a randomized complete split-plot block design, with IBA concentrations as main treatment. The experiment was installed in styrofoam trays in a green-house with a mist device and vermiculite as substrate. Transplanting time was determined by an additional block. All treatments induced rooting even in the absence of IBA. In a general sense the fastest treatments tended to be the more efficient when combined with higher concentrations.

  7. Determining Rooting Ability of Ennobled Blueberry Wood Pieces (Vaccinium corymbosum L. with Presence of Growth Regulators IBA and NAA

    Directory of Open Access Journals (Sweden)

    SABRI BRAHA

    2015-12-01

    Full Text Available Ennobled blueberry (V. Corymbosum L. has many specific requirements for optimal growth, therefore, the increase of cultivated areas is limited. It requires acidic soils (pH 4,3-4,8, well drained, with full aeration and a constant moderate amount of moisture. The successful technique of asexual propagation will be necessary for rapid clonal propagation of selected cultivars. The objective of this experiment was to identify an efficient way to improve rooting with the help of growth regulators in the ‘Bluecrop’ cultivar using well-lignified one-year old wood pieces, collected at the end of winter, end of March prior to bud swelling. Treatments with various concentrations (1500, 3000, 4500 mg/l, show that treatment with IBA at 3000 mg/l has the highest rooting percentage in comparison to NAA. Whilst the torf-perlite substrate (at a 2:1 ratio, has produced a higher rooting percentage compared to the torf-only substrate, and the crucial factor for successful rooting is the time of collecting wood pieces. Treatment results have promoted higher rooting of wooden pieces compared to the control (untreated wooden pieces. The most efficient promotor in all concentrations was IBA.

  8. Beam-Beam Effects

    OpenAIRE

    Herr, W; Pieloni, T.

    2016-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  9. Beam-Beam Effects

    CERN Document Server

    Herr, W

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  10. Applications of factor analysis to electron and ion beam surface techniques

    International Nuclear Information System (INIS)

    Factor analysis, a mathematical technique for extracting chemical information from matrices of data, is used to enhance Auger electron spectroscopy (AES), core level electron energy loss spectroscopy (EELS), ion scattering spectroscopy (ISS), and secondary ion mass spectroscopy (SIMS) in studies of interfaces, thin films, and surfaces. Several examples of factor analysis enhancement of chemical bonding variations in thin films and at interfaces studied with AES and SIMS are presented. Factor analysis is also shown to be of great benefit in quantifying electron and ion beam doses required to induce surface damage. Finally, examples are presented of the use of factor analysis to reconstruct elemental profiles when peaks of interest overlap each other during the course of depth profile analysis. (author)

  11. XPS depth profile analysis of ArF immersion resists by using C60 ion beam

    International Nuclear Information System (INIS)

    Argon ion sputtering is one of the most accepted techniques for depth profiling in practical X-ray photoelectron spectroscopy (XPS) analysis, while this technique is known to cause severe degradation especially with organic materials. Sputtering system using buckminsterfullerene (C60) ion beam has recently been introduced to XPS apparatus as a new sputtering tool for depth profiling. It enables the XPS depth analysis of organic materials such as photoresists without chemical damages. In this paper, the XPS analysis using the C60 ion sputtering was applied to examine the depth distributions of a fluoropolymer in ArF immersion resists to clarify the mechanism of the water-repellency change between the co-polymer and blend polymer. In addition, the depth profiling of the resist is compared to those observed with other techniques such as angle resolved XPS analysis and XPS analysis on the gradient shaved surfaces. (author)

  12. Dynamic analysis of piping systems - an approach to the experimental verification of computer programs (beam models)

    International Nuclear Information System (INIS)

    The structural analysis of dynamically excited piping systems as performed with the numerical method of Finite Elements (FE) is usually based on simple beam elements. However, in order to establish their applicability, the computer programs used for the structural analysis must be verified on the basis of large-scale experiments. The behaviour of the extremely endangered elbows is considered with the help of an experimentally and numerically analyzed piping system. The influences of form effects (cross-section ovalization) in the elbows are isolated from the measured total stresses by a new method and their importance for a comparison between experiment and calculation is shown. (orig.)

  13. Dynamic analysis of piping systems - an approach to the experimental verification of computer programs (beam models)

    International Nuclear Information System (INIS)

    The structural analysis of dynamically excited piping systems as performed with the numerical method of Finite Elements (FE) is usually based on simple beam elements. However, in order to establish their applicability, the computer programs used for the structural analysis must be verified on the basis of large-scale experiments. The behaviour of the extremely endangered elbows is considered (blowdown accident in a NPP). The influences of form effects (cross-section ovalization) in the elbows are isolated from the measured total stresses by a new method and their importance for a comparison experiment and calculation is shown. (orig./HP)

  14. Mechanics and analysis of beams, columns and cables. A modern introduction to the classic theories

    DEFF Research Database (Denmark)

    Krenk, Steen

    The book illustrates the use of simple mathematical analysis techniques within the area of basic structural mechanics, in particular the elementary theories of beams, columns and cables. The focus is on: i) Identification of the physical background of the theories and their particular mathematical...... properties. ii) Demonstration of mathematical techniques for analysis of simple problems in structural mechanics, and identification of the relevant parameters and properties of the solution. iii) Derivation of the solutions to a number of basic problems of structural mechanics in a form suitable for later...

  15. Non-destructive analysis of early glass unearthed in south China by external-beam PIXE

    International Nuclear Information System (INIS)

    External-beam PIXE was used for the non-destructive analysis of early glasses unearthed from the tombs of Warring States (475-221 BC) and Han Dynasty (BC 206-AD 220) in south China. It was found that these glasses were basically attributed to PbO-BaO-SiO2 system and K2O-SiO2 system. The results from the cluster analysis showed that some glasses had exactly the same recipe. The source of the K2O flux and the correlation between PbO and BaO are discussed. Some archaeological information is revealed. (author)

  16. Beam test data analysis of the JLC-CDC baby chamber

    International Nuclear Information System (INIS)

    Studying the Higgs boson needs a high resolution tracker. The baby chamber was fabricated with the same cell structure as the current design of the central drift chamber of the Joint Linear Collider. Its performance is studied by looking at the wire efficiency, spatial resolution and two-track separation capability using an analysis software package already incorporated into the Joint Linear Collider Study Framework. Preliminary results of our analysis on beam test data taken with the baby chamber with signal smoothening applied on the flash ADCs are presented here. (author)

  17. Lie algebraic analysis for the nonlinear transport of intense pulsed beams in electrostatics lenses

    Institute of Scientific and Technical Information of China (English)

    Lu Jian-Qin; Li Jin-Hai

    2004-01-01

    The Lie algebraic method is applied to the analysis of the nonlinear transport of an intense pulsed beam in cylindrically symmetrical electrostatic lenses, and particle orbits in a six-dimensional phase space (x, px, y, py, τ, pτ)are obtained in the second order approximation. They can also be acquired in the third or higher order approximation if needed. In the analysis, we divide the electrostatic lenses into several segments. Each segment is considered as a uniform accelerating field, and each dividing point is treated as a thin lens. The particle distribution in a three-dimensional ellipsoid is of Gaussian type.

  18. Development of a prompt gamma activation analysis facility using diffracted polychromatic neutron beam

    CERN Document Server

    Byun, S H; Choi, H D

    2002-01-01

    A prompt gamma activation analysis facility has recently been developed at Hanaro, the 24 MW research reactor in the Korea Atomic Energy Research Institute. Polychromatic thermal neutrons are extracted by setting pyrolytic graphite crystals at a Bragg angle of 45 deg. . The detection system comprises a large single n-type HPGe detector, signal electronics and a fast ADC. Neutron beam characterization was performed both theoretically and experimentally. The neutron flux was measured to be 7.9x10 sup 7 n/cm sup 2 s in a 1x1 cm sup 2 beam area at the sample position with a uniformity of 12%. The corresponding Cd-ratio for gold was found to be 266. The beam quality was compared with other representative thermal neutron prompt gamma activation analysis. The detection efficiency was calibrated up to 11 MeV using a set of radionuclides and the (n,gamma) reactions of N and Cl. Finally, the sensitivities and the detection limits were obtained for several elements.

  19. Development of a prompt gamma activation analysis facility using diffracted polychromatic neutron beam

    International Nuclear Information System (INIS)

    A prompt gamma activation analysis facility has recently been developed at Hanaro, the 24 MW research reactor in the Korea Atomic Energy Research Institute. Polychromatic thermal neutrons are extracted by setting pyrolytic graphite crystals at a Bragg angle of 45 deg. . The detection system comprises a large single n-type HPGe detector, signal electronics and a fast ADC. Neutron beam characterization was performed both theoretically and experimentally. The neutron flux was measured to be 7.9x107 n/cm2 s in a 1x1 cm2 beam area at the sample position with a uniformity of 12%. The corresponding Cd-ratio for gold was found to be 266. The beam quality was compared with other representative thermal neutron prompt gamma activation analysis. The detection efficiency was calibrated up to 11 MeV using a set of radionuclides and the (n,γ) reactions of N and Cl. Finally, the sensitivities and the detection limits were obtained for several elements

  20. Development of a prompt gamma activation analysis facility using diffracted polychromatic neutron beam

    Science.gov (United States)

    Byun, S. H.; Sun, G. M.; Choi, H. D.

    2002-07-01

    A prompt gamma activation analysis facility has recently been developed at Hanaro, the 24 MW research reactor in the Korea Atomic Energy Research Institute. Polychromatic thermal neutrons are extracted by setting pyrolytic graphite crystals at a Bragg angle of 45°. The detection system comprises a large single n-type HPGe detector, signal electronics and a fast ADC. Neutron beam characterization was performed both theoretically and experimentally. The neutron flux was measured to be 7.9×10 7 n/cm 2 s in a 1×1 cm 2 beam area at the sample position with a uniformity of 12%. The corresponding Cd-ratio for gold was found to be 266. The beam quality was compared with other representative thermal neutron prompt gamma activation analysis. The detection efficiency was calibrated up to 11 MeV using a set of radionuclides and the (n,γ) reactions of N and Cl. Finally, the sensitivities and the detection limits were obtained for several elements.

  1. Light interception, utilisation and conversion efficiencies and yield performance of sweet potato, Ipomoea batatas, grown from IBA-treated basal and untreated terminal vine cuttings

    International Nuclear Information System (INIS)

    Sweet potatoes grown from IBA-treated basal vines produced a significantly higher total yield of 28.99 t ha-1 and marketable tubers 23.54 t ha-1, than those grown from untreated terminal vine cuttings which produced 22.43 and 17.46 t ha-1 of total and marketable tubers respectively. Field measurements indicated that IBA-treated basal vine plants were significantly less efficient in light interception, yet this treatment produced a higher proportion (31.20%) of large tubers, compared with untreated terminal vine plants (14.64%). Untreated terminal vine plants intercepted 95% of the incident solar radiation three weeks earlier than IBA-treated basal vine plants. However, the treatment increased the efficiency of converting light energy to chemical energy (Ec%) and of utilising this chemical energy to produce plant dry matter (Eu%) through an increased 'sink' demand. The practical implications of the results and future research are outlined

  2. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Petrenko, A.V.; /Novosibirsk, IYF; Valishev, A.A.; Lebedev, V.A.; /Fermilab

    2011-09-01

    Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  3. Non-Linear Analysis of Mode II Fracture in the end Notched Flexure Beam

    Science.gov (United States)

    Rizov, V.

    2016-03-01

    Analysis is carried-out of fracture in the End Notched Flex- ure (ENF) beam configuration, taking into account the material nonlin- earity. For this purpose, the J-integral approach is applied. A non-linear model, based on the Classical beam theory is used. The mechanical be- haviour of the ENF configuration is described by the Ramberg-Osgood stress-strain curve. It is assumed that the material possesses the same properties in tension and compression. The influence is evaluated of the material constants in the Ramberg-Osgood stress-strain equation on the fracture behaviour. The effect of the crack length on the J-integral value is investigated, too. The analytical approach, developed in the present paper, is very useful for parametric analyses, since the simple formulae obtained capture the essentials of the non-linear fracture in the ENF con- figuration.

  4. Non-Linear Analysis of Mode II Fracture in the end Notched Flexure Beam

    Directory of Open Access Journals (Sweden)

    Rizov V.

    2016-03-01

    Full Text Available Analysis is carried-out of fracture in the End Notched Flex- ure (ENF beam configuration, taking into account the material nonlin- earity. For this purpose, the J-integral approach is applied. A non-linear model, based on the Classical beam theory is used. The mechanical be- haviour of the ENF configuration is described by the Ramberg-Osgood stress-strain curve. It is assumed that the material possesses the same properties in tension and compression. The influence is evaluated of the material constants in the Ramberg-Osgood stress-strain equation on the fracture behaviour. The effect of the crack length on the J-integral value is investigated, too. The analytical approach, developed in the present paper, is very useful for parametric analyses, since the simple formulae obtained capture the essentials of the non-linear fracture in the ENF con- figuration.

  5. Thermal analysis of film photovoltaic cell subjected to dual laser beam irradiation

    International Nuclear Information System (INIS)

    The concept of dual laser beam irradiation was firstly demonstrated on the photovoltaic cell, of which the temperature dependent efficiency was investigated for wireless power transmission. Then, an analytical model was established to calculate the multiple reflection–absorption of any monochromatic light in multilayer structure, and the heat generation in photovoltaic cell was interpreted. Finally, the finite element analysis was used to simulate the temperature pattern of the photovoltaic cell subjected to laser irradiation. The spatial-temporal characteristic of the temperature field was obtained for improving the system in future. - Highlights: • Dual laser beam irradiation was utilized to investigate the PV cell responses. • Temperature dependency of PV cell output voltage was revealed experimentally. • Iterative algorithm was set up to compute the laser energy deposition in PV cell. • The PV cell temperature evolution under laser irradiation was obtained by FEA. • FEA results agreed well with the experimental results for the test point

  6. On-site analysis of modified surface using dual beam system

    Energy Technology Data Exchange (ETDEWEB)

    Naramoto, Hiroshi; Aoki, Yasushi; Yamamoto, Shunya; Goppelt-Langer, P.; Gan Mingle; Zeng Jianer; Takeshita, Hidefumi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Recent results obtained using a dual ion beam system at JAERI/Takasaki are reported. In this system, both of ion implantation and ion beam analysis can be made alternatively or simultaneously at low temperatures. In sapphire implanted with {sup 51}V{sup +} ions, the amorphization process is analyzed referring to the <0001> aligned spectra taken at different temperatures. The discussion is made on the defect profiles different from the simple accumulation of standard Gaussian form. The depth showing the maximum damage at the initial stage of implantation is quite shallow compared with those reported before. The thermal annealing behaviors of lattice damage and the implanted V atoms are also different between the samples implanted at low and room temperatures. In the former one fine particles of vanadium oxide are formed coherently with the easy recovery in high dose sample but in the latter the mixed oxide alloy is formed. (author)

  7. Analysis of art objects by means of ion beam induced luminescence

    Science.gov (United States)

    Quaranta, A.; Dran, J. C.; Salomon, J.; Pivin, J. C.; Vomiero, A.; Tonezzer, M.; Maggioni, G.; Carturan, S.; Della Mea, G.

    2006-05-01

    The impact of energetic ions on solid samples gives rise to the emission of visible light owing to the electronic excitation of intrinsic defects or extrinsic impurities. The intensity and position of the emission features provide information on the nature of the luminescence centers and on their chemical environments. This makes ion beam induced luminescence (IBIL) a useful complement to other ion beam analyses, like PIXE, in the cultural heritage field in characterizing the composition and the provenience of art objects. In the present paper, IBIL measurements have been performed on inorganic pigments for underlying the complementary role played by IBIL in the analysis of artistic works. Some blue and red pigment has been presented as case study.

  8. Analysis of art objects by means of ion beam induced luminescence

    International Nuclear Information System (INIS)

    The impact of energetic ions on solid samples gives rise to the emission of visible light owing to the electronic excitation of intrinsic defects or extrinsic impurities. The intensity and position of the emission features provide information on the nature of the luminescence centers and on their chemical environments. This makes ion beam induced luminescence (IBIL) a useful complement to other ion beam analyses, like PIXE, in the cultural heritage field in characterizing the composition and the provenience of art objects. In the present paper, IBIL measurements have been performed on inorganic pigments for underlying the complementary role played by IBIL in the analysis of artistic works. Some blue and red pigment has been presented as case study

  9. Annealing Behaviour of Helium Bubbles in Titanium Films by Thermal Desorption Spectroscopy and Positron Beam Analysis

    Institute of Scientific and Technical Information of China (English)

    LIU Chao-Zhuo; ZHOU Zhu-Ying; SHI Li-Qun; WANG Bao-Yi; HAO Xiao-Peng; ZHAO Guo-Qing

    2007-01-01

    @@ Helium-containing Ti films are prepared using magnetron sputtering in the helium-argon atmosphere. Isochronal annealing at different temperatures for an hour is employed to reveal the behaviour of helium bubble growth. Ion beam analysis is used to measure the retained helium content. Helium can release largely when annealing above 970 K. A thermal helium desorption spectroscopy system is constructed for assessment of the evolution of helium bubbles in the annealed samples by linear heating (0.4K/s) from room temperature to 1500K. Also, Doppler broadening measurements of positron annihilation radiation spectrum are performed by using changeable energy positron beam. Bubble coarsening evolves gradually below 680K, migration and coalescence of small bubbles dominates in the range of 680-970K, and the Ostwald ripening mechanism enlarges the bubbles with a massive release above 970K.

  10. Development of Non-Conservative Joints in Beam Networks for Vibration Energy Flow Analysis

    Directory of Open Access Journals (Sweden)

    Jee-Hun Song

    2007-01-01

    Full Text Available Our work aims to find a general solution for the vibrational energy flow through a plane network of beams on the basis of an energy flow analysis. A joint between two semi-infinite beams are modeled by three sets of springs and dashpots. Thus, the results can incorporate the case of complaint and non-conservative in all the three degrees of freedom. In the cases of finite coupled structures connected at a certain angle, the derived non-conservative joints and developed wave energy equation were applied. The joint properties, the frequency, the coupling angle, and the internal loss factor were changed to evaluate the proposed methods for predicting medium-to-high frequency vibrational energy and intensity distributions.

  11. Approximate and numerical analysis of nonlinear forced vibration of axially moving viscoelastic beams

    Institute of Scientific and Technical Information of China (English)

    Hu Ding; Li-Qun Chen

    2011-01-01

    Steady-state periodical response is investigated for an axially moving viscoelastic beam with hybrid supports via approximate analysis with numerical confirmation.It is assumed that the excitation is spatially uniform and temporally harmonic. The transverse motion of axially moving beams is governed by a nonlinear partial-differential equation and a nonlinear integro-partial-differential equation. The material time derivative is used in the viscoelastic constitutive relation. The method of multiple scales is applied to the governing equations to investigate primary resonances under general boundary conditions. It is demonstrated that the mode uninvolved in the resonance has no effect on the steady-state response. Numerical examples are presented to demonstrate the effects of the boundary constraint stiffness on the amplitude and the stability of the steady-state response. The results derived for two governing equations are qualitatively the same, but quantitatively different. The differential quadrature schemes are developed to verify those results via the method of multiple scales.

  12. External-beam PIXE analysis of aerosol samples at GIC4117 Tandem Accelerator Laboratory of Beijing Normal University

    International Nuclear Information System (INIS)

    Full text: The external-beam facility at GIC4117 tandem accelerator laboratory of Beijing Normal University for PIXE analysis has been introduced, the influence of different aerosol sampling membrane filters on the beam current measurement with a homemade Faraday cup was studied by analysis of a Mn(44.0μg/cm2) MicroMatter standards sample with different filters behind it. Average and the lowest of the external-beam PIXE analysis compared with in-vacuum PIXE over about 360 aerosol samples. External-beam PIXE analysis results of PM2.5 aerosol fractions collected on Teflon filters on daily basis over 2010 at south campus of Beijing Normal University also were shown. (author)

  13. Ion beam analysis - development and application of nuclear reaction analysis methods, in particular at a nuclear microprobe

    International Nuclear Information System (INIS)

    This thesis treats the development of Ion Beam Analysis methods, principally for the analysis of light elements at a nuclear microprobe. The light elements in this context are defined as having an atomic number less than approx. 13. The work reported is to a large extent based on multiparameter methods. Several signals are recorded simultaneously, and the data can be effectively analyzed to reveal structures that can not be observed through one-parameter collection. The different techniques are combined in a new set-up at the Lund Nuclear Microprobe. The various detectors for reaction products are arranged in such a way that they can be used for the simultaneous analysis of hydrogen, lithium, boron and fluorine together with traditional PIXE analysis and Scanning Transmission Ion Microscopy as well as photon-tagged Nuclear Reaction Analysis. 48 refs

  14. Ion beam analysis - development and application of nuclear reaction analysis methods, in particular at a nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeland, K.A.

    1996-11-01

    This thesis treats the development of Ion Beam Analysis methods, principally for the analysis of light elements at a nuclear microprobe. The light elements in this context are defined as having an atomic number less than approx. 13. The work reported is to a large extent based on multiparameter methods. Several signals are recorded simultaneously, and the data can be effectively analyzed to reveal structures that can not be observed through one-parameter collection. The different techniques are combined in a new set-up at the Lund Nuclear Microprobe. The various detectors for reaction products are arranged in such a way that they can be used for the simultaneous analysis of hydrogen, lithium, boron and fluorine together with traditional PIXE analysis and Scanning Transmission Ion Microscopy as well as photon-tagged Nuclear Reaction Analysis. 48 refs.

  15. The constrained torsional analysis of thin-walled variable cross-section multi-cell laminated composite beams

    OpenAIRE

    Ahmed, Malik Nazir

    1999-01-01

    A Constrained Torsional Analysis of Thin-Walled Variable Cross-Section Multi-Cell Laminated Composite Beams has been undertaken . The existing Isotopic theory has been modified using the effective engineering elastic constants to cater for the Composite structures under torsional loads. The relevant computer programs for the Composite structure analysis have also been developed. The results are discussed in detail for single-cell and multi-cell prismatic/tapered beams for all [0/45/-45/90], l...

  16. Static Analysis of Steel Fiber Concrete Beam With Heterosis Finite Elements

    Directory of Open Access Journals (Sweden)

    James H. Haido

    2014-08-01

    Full Text Available Steel fiber is considered as the most commonly used constructional fibers in concrete structures. The formulation of new nonlinearities to predict the static performance of steel fiber concrete composite structures is considered essential. Present study is devoted to investigate the efficiency of utilizing heterosis finite elements analysis in static analysis of steel fibrous beams. New and simple material nonlinearities are proposed and used in the formulation of these elements. A computer program coded in FORTRAN was developed to perform current finite element static analysis with considering four cases of elements stiffness matrix determination. The results are compared with the experimental data available in literature in terms of central deflections, strains, and failure form, good agreement was found. Suitable outcomes have been observed in present static analysis with using of tangential stiffness matrix and stiffness matrix in second iteration of the load increment.

  17. Computational fluid dynamics analysis of heat transfer elements for SST-1 neutral beam line

    International Nuclear Information System (INIS)

    A 5 MW Neutral Beam Injector (NBI) is designed and commissioned to deliver a heating power of 1.7 MW to the SST-1 tokomak. To sustain the high heat flux in these injection experiments, heat transfer elements (IPR-HTE) were successfully developed and fabricated. These HTEs are actively cooled elements which rely on internal fins and boiling heat transfer to maximise the heat transfer capability. In this work the performance of HTE is analysed using analytical models and a commercially available Computational Fluid Dynamics (CFD) software. Validation of these CFD models are accomplished by comparing these with the available experimental results obtained on similar neutral beam systems. For an initial assessment on performance of HTE, a 2-D thermal analysis using transient thermal module of ANSYS software was performed in which the heat transfer coefficient (h) was calculated for the single phase flow for establishing the procedure and preliminary study. For improving the accuracy in these results, a 3-D single phase flow CFD analysis using CFX module of ANSYS software was carried out for detailed study flow characteristics. These results were then compared with the published experimental results of hypervapotron of JET neutral beams which has similar geometry of IPR-HTE. The computational results were found to be in good agreement with the experimental result for heat flux values up to 5 MW/m2 beyond which they deviated from experimental results (32% of deviation) indicating the onset of two phase flow. Hence, a two phase flow analysis was further attempted with Eulerian approach and RPI boiling model in CFX module of ANSYS. With the inclusion of the two phase models and user defined functions, the results agreed well with the experimental results (<15 % deviation). This analysis significantly improved the understanding of the flow characteristics such as velocity streamlines, eddies formulation, temperature distribution and their effect on performance of IPR-HTE at

  18. Development of APDL program for analysis of composite material multicell beams

    International Nuclear Information System (INIS)

    Comparison of finite elements and comparison of ANSYS with MSC Patran Nastran, for analysis of composite material multicell beams, is the main idea of this paper. The Finite Element Analysis (FEA) is a valuable tool of modeling and simulation in development, processing, production and application of modern hi-tech materials and structures for reliable design. Multicell beams have important industrial applications in the automotive and aerospace sectors. ANSYS Parametric Design Language (APDL) is an important language in parametric modeling and analysis of structures with simple to complex geometry. Its major advantage is virtual prototyping which can be used to analyze and compare different materials. This work introduces core techniques required for APDL using the case study of composite multicell beams subjected to constrained torsional loading. The published results using MSC NASTRAN have been verified using ANSYS and the corresponding arising issues and notes are the focus of this research study. The details of geometry, material and boundary conditions have been explained in order to construct Finite Element (FE) model. This FE model was simulated several times in ANSYS by the authors using various options of APDL language. A step-wise flowchart was used to detect and reduce problems in iterations of analysis in APDL programming. Results of FEA largely depend on FE model and software used. These issues become prominent while trying to verify results of MSC NASTRAN with ANSYS. The author has introduced three error criteria to select an equivalent finite element of one FEA package (ANSYS) for an equivalent element of other FEA package (MSC NASTRAN). These criteria are the relative error criterion, the absolute error criterion and the combined error criterion. The results from this research provide an insight into finite elements for reliability in design of composite materials. The practical milestones for research to develop FE model and APDL programs related

  19. The nuclear interaction analysis methods for diagnostics of high power ion beam technologies

    International Nuclear Information System (INIS)

    The complex of Nuclear Interaction Analysis Methods including charged particle activation analysis (CPAA and HIAA), spectrometry of ion induced gamma-emission (PIGE and HIIGE) , characteristic X-ray emission (PIXE), and Rutherford Backscattering Spectrometry (RBS), have been used for diagnostics of the High Power Ion Beam (HPIB) assisted technologies. Accelerated ion beams from the EG-2.5 electrostatic generator and U-120 cyclotron were used for implementation of the techniques. The complex allows a lot of problems of elemental and isotopic analysis to be addressed. First, it is the determination of micro- and macrocomponents of modified materials; second, determination of surface density of thin films, multilayers and coatings, total surface gaseous contamination and amounts of the elements implanted in specimens; third, measurement of concentration depth profiles of the elements. Experiments have shown that the preferable application of nuclear analysis methods allows us to avoid the considerable errors arising when the concentration depth profiles of elements are measured by SIMS or AES in studies of mass transfer processes induced by HPIBs. (author). 1 tab., 2 figs., 3 refs

  20. Helium-Related Defect Evolution in Titanium Films by Slow Positron Beam Analysis

    Institute of Scientific and Technical Information of China (English)

    LI Yue; DENG Ai-Hong; ZHOU Yu-Lu; ZHOU Bing; WANG Kang; HOU Qing; SHI Li-Qun; QIN Xiu-Bo; WANG Bao-Yi

    2012-01-01

    Various helium-containing titanium films were deposited on Si substrates by magnetron sputtering under different helium/argon (He/Ar) ambiances.Helium concentrations and corresponding depth profiles in the Ti films are obtained by elastic recoil detection analysis (ERDA).X-ray diffraction (XRD) measurements are carried out to evaluate the crystallization of the titanium films.Vacancy-type defects and their depth profiles were revealed by slow positron beam analysis (SPBA).It is found that the defect-characteristic parameter S rises with the increment of the He/Ar flow ratios.The variation of S indicates the formation and evolution of various Herelated defects,with uniform distribution into the depth around 400nm.%Various helium-containing titanium films were deposited on Si substrates by magnetron sputtering under different helium/argon (He/Ar) ambiances. Helium concentrations and corresponding depth profiles in the Ti films are obtained by elastic recoil detection analysis (ERDA). X-ray diffraction (XRD) measurements are carried out to evaluate the crystallization of the titanium films. Vacancy-type defects and their depth profiles were revealed by slow positron beam analysis (SPBA). It is found that the defect-characteristic parameter S rises with the increment of the He/Ar flow ratios. The variation of S indicates the formation and evolution of various He-related defects, with uniform distribution into the depth around 400nm.

  1. Performance Analysis of Space Diversity Steerable Beam Smart Antenna S-ALOHA with Arrays

    OpenAIRE

    Soni, PM; Chockalingam, A

    2000-01-01

    We analyze the throughput, delay and energy efficiency performance of space diversity slotted ALOHA when multibeam smart antenna arrays capable of steering the beams selectively on smaller sectors, are used at the base station receiver. Analytical expressions to establish the effect of different beamwidths, number of beams, beam steering patterns, and beam service times on the achieved performance of S-ALOHA an derived. We show that under high load conditions steered beams with long beam serv...

  2. The thermal effects on high-frequency vibration of beams using energy flow analysis

    Science.gov (United States)

    Zhang, Wenbo; Chen, Hualing; Zhu, Danhui; Kong, Xiangjie

    2014-04-01

    In this paper, the energy flow analysis (EFA) method is developed to predict the high-frequency response of beams in a thermal environment, which is a topic of concern in aerospace and automotive industries. The temperature load applied on the structures can generate thermal stresses and change material properties. The wavenumber and group velocity associated with the in-plane axial force arising from thermal stresses are included in the derivation of the governing energy equation, and the input power is obtained from the derived effective bending stiffness. In addition, effect of temperature-dependent material properties is considered in the EFA model. To verify the proposed formulation, numerical simulations are performed for a pinned-pinned beam in a uniform thermal environment. The EFA results are compared with the modal solutions for various frequencies and damping loss factors, and good correlations are observed. The results show that the spatial distributions and levels of energy density can be affected by the thermal effects, and the vibration response of beams increases with temperature.

  3. Cost-effectiveness analysis of cochlear dose reduction by proton beam therapy for medulloblastoma in childhood

    International Nuclear Information System (INIS)

    The aim of this study is to evaluate the cost-effectiveness of proton beam therapy with cochlear dose reduction compared with conventional X-ray radiotherapy for medulloblastoma in childhood. We developed a Markov model to describe health states of 6-year-old children with medulloblastoma after treatment with proton or X-ray radiotherapy. The risks of hearing loss were calculated on cochlear dose for each treatment. Three types of health-related quality of life (HRQOL) of EQ-5D, HUI3 and SF-6D were used for estimation of quality-adjusted life years (QALYs). The incremental cost-effectiveness ratio (ICER) for proton beam therapy compared with X-ray radiotherapy was calculated for each HRQOL. Sensitivity analyses were performed to model uncertainty in these parameters. The ICER for EQ-5D, HUI3 and SF-6D were $21 716/QALY, $11 773/QALY, and $20 150/QALY, respectively. One-way sensitivity analyses found that the results were sensitive to discount rate, the risk of hearing loss after proton therapy, and costs of proton irradiation. Cost-effectiveness acceptability curve analysis revealed a 99% probability of proton therapy being cost effective at a societal willingness-to-pay value. Proton beam therapy with cochlear dose reduction improves health outcomes at a cost that is within the acceptable cost-effectiveness range from the payer's standpoint. (author)

  4. A new mapping acquisition and processing system for simultaneous PIXE-RBS analysis with external beam

    International Nuclear Information System (INIS)

    The combination of ion beam analysis techniques is particularly fruitful for the study of cultural heritage objects. For several years, the AGLAE facility of the Louvre laboratory has been implementing these techniques with an external beam. The recent set-up permits to carry out PIXE, PIGE and RBS simultaneously on the same analyzed spot with a particle beam of approximately 20 μm diameter. A new mapping system has been developed in order to provide elemental concentration maps from the PIXE and RBS spectra. This system combines the Genie2000 spectroscopy software with a homemade software that creates maps by handling acquisition with the object position. Each pixel of each PIXE and RBS maps contains the spectrum normalised by the dose. After analysing each pixel of the PIXE maps (low and high energy X-ray spectra) with the Gupixwin peak-fitting software, quantitative elemental concentrations are obtained for the major and trace elements. This paper presents the quantitative elemental maps extracted from the PIXE spectra and the development of RBS data processing for light element distribution and thin layer characterization. Examples on rock painting and lustrous ceramics will be presented.

  5. A new mapping acquisition and processing system for simultaneous PIXE-RBS analysis with external beam

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, L., E-mail: laurent.pichon@culture.gouv.f [Centre de recherche et de restauration des musees de France (C2RMF), Palais du Louvre -14 quai Francois Mitterrand, 75001 Paris (France); Beck, L.; Walter, Ph.; Moignard, B.; Guillou, T. [Centre de recherche et de restauration des musees de France (C2RMF), Palais du Louvre -14 quai Francois Mitterrand, 75001 Paris (France)

    2010-06-15

    The combination of ion beam analysis techniques is particularly fruitful for the study of cultural heritage objects. For several years, the AGLAE facility of the Louvre laboratory has been implementing these techniques with an external beam. The recent set-up permits to carry out PIXE, PIGE and RBS simultaneously on the same analyzed spot with a particle beam of approximately 20 {mu}m diameter. A new mapping system has been developed in order to provide elemental concentration maps from the PIXE and RBS spectra. This system combines the Genie2000 spectroscopy software with a homemade software that creates maps by handling acquisition with the object position. Each pixel of each PIXE and RBS maps contains the spectrum normalised by the dose. After analysing each pixel of the PIXE maps (low and high energy X-ray spectra) with the Gupixwin peak-fitting software, quantitative elemental concentrations are obtained for the major and trace elements. This paper presents the quantitative elemental maps extracted from the PIXE spectra and the development of RBS data processing for light element distribution and thin layer characterization. Examples on rock painting and lustrous ceramics will be presented.

  6. Articularities of Analysis and Behaviour of Concrete Beams Reinforced with Fibrous Polymer Composite Bars

    Directory of Open Access Journals (Sweden)

    N. Ţăranu

    2006-01-01

    Full Text Available Traditional steel based reinforcement systems for concrete elements are facing with serious problems mainly caused by corrosion due to chemically aggressive environments and salts used in deicing procedures, especially in case of bridge steel reinforced concrete girders. Also in some cases special applications require structural members with magnetic transparency. An alternative to this major problem has recently become the use of fiber reinforced polymer (FPR composite bars as internal reinforcement for concrete beams. The particularities of their mechanical properties are making the design process a difficult task for engineers, numerous research centers being involved in correcting this situation. The general aspects concerning the conceiving of FR.P reinforced concrete beams are firstly analyzed, compared to those reinforced with steel bars. Some results of a Finite Element Analysis, as part of a complex program which also implies full scale testing of FRP reinforced beams subjected to bending, are given and discussed in the paper. The low elasticity modulus presented by glass fiber reinforced polymer (GFRP bars does not justify its use from structural point of view when deflection is the limiting condition but for corrosive resistance reasons and special electromagnetic properties this system can be promoted.

  7. Wavelet Analysis of Acceleration Response of Beam Under the Moving Mass for Damage Assessment

    Science.gov (United States)

    Vaidya, Tanuja; Chatterjee, Animesh

    2016-04-01

    In the present study, acceleration response of cracked beam is analyzed by using the wavelet transform to detect the crack presence, its location and also to predict the crack severity. The equation of motion of beam under the moving mass is solved by using the fourth order Runge-Kutta method. A code is written by expanding the equation for first three vibration modes. Acceleration signal of the damaged beam under the moving mass contains the discontinuity at the crack location. This discontinuity contained in the acceleration signal is sufficiently visible but it is very small for some signals. Therefore, the acceleration signals are transformed using the wavelet analysis. A wavelet coefficient peak occurs at the location of discontinuity, so that we can identify the crack presence and its location. From the value of wavelet coefficient peak, we can also predict the crack effect with respect to the change in velocity of moving mass and change in crack depth. The main advantage of this method is that the wavelet coefficient peak is sufficiently higher even for the higher velocities and small size crack.

  8. 3D FE Analysis of RC Beams Externally Strengthened with SRG/SRP Systems

    Directory of Open Access Journals (Sweden)

    Francesco Bencardino

    2016-05-01

    Full Text Available The purpose of this study is to evaluate, through a nonlinear Finite Element (FE analysis, the structural behavior of Reinforced Concrete (RC beams externally strengthened by using Steel Reinforced Grout (SRG and Steel Reinforced Polymer (SRP systems. The parameters taken into account were the external strengthening configuration, with or without U-wrap end anchorages, as well as the strengthening materials. The numerical simulations were carried out by using a three-dimensional (3D FE model. The linear and nonlinear behavior of all materials was modeled by appropriate constitutive laws and the connection between concrete substrate and external reinforcing layer was simulated by means of cohesive surfaces with appropriate bond-slip laws. In order to overcome convergence difficulties, to simulate the quasi-static response of the strengthened RC beams, a dynamic approach was adopted. The numerical results in terms of load-displacement curves, failure modes, and load and strain values at critical stages were validated against some experimental data. As a result, the proposed 3D FE model can be used to predict the structural behavior up to ultimate stage of similar strengthened beams without carrying out experimental tests.

  9. Automated detection and analysis of particle beams in laser-plasma accelerator simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela Mayumi; Geddes, C.G.; Cormier-Michel, E.; Bethel, E. Wes; Jacobsen, J.; Prabhat, ,; R.ubel, O.; Weber, G,; Hamann, B.

    2010-05-21

    Numerical simulations of laser-plasma wakefield (particle) accelerators model the acceleration of electrons trapped in plasma oscillations (wakes) left behind when an intense laser pulse propagates through the plasma. The goal of these simulations is to better understand the process involved in plasma wake generation and how electrons are trapped and accelerated by the wake. Understanding of such accelerators, and their development, offer high accelerating gradients, potentially reducing size and cost of new accelerators. One operating regime of interest is where a trapped subset of electrons loads the wake and forms an isolated group of accelerated particles with low spread in momentum and position, desirable characteristics for many applications. The electrons trapped in the wake may be accelerated to high energies, the plasma gradient in the wake reaching up to a gigaelectronvolt per centimeter. High-energy electron accelerators power intense X-ray radiation to terahertz sources, and are used in many applications including medical radiotherapy and imaging. To extract information from the simulation about the quality of the beam, a typical approach is to examine plots of the entire dataset, visually determining the adequate parameters necessary to select a subset of particles, which is then further analyzed. This procedure requires laborious examination of massive data sets over many time steps using several plots, a routine that is unfeasible for large data collections. Demand for automated analysis is growing along with the volume and size of simulations. Current 2D LWFA simulation datasets are typically between 1GB and 100GB in size, but simulations in 3D are of the order of TBs. The increase in the number of datasets and dataset sizes leads to a need for automatic routines to recognize particle patterns as particle bunches (beam of electrons) for subsequent analysis. Because of the growth in dataset size, the application of machine learning techniques for

  10. Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Hernandez-Garcia, Fay Hannon, Marcy Stutzman, V. Shutthanandan, Z. Zhu, M. Nandasri, S. V. Kuchibhatla, S. Thevuthasan, W. P. Hess

    2012-06-01

    Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Photocathode quantum efficiency (QE) degradation is due to residual gasses in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes, which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector and one unused, were also analyzed using Transmission Electron Microscopy (TEM) and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but shows evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.

  11. Shear Correction Factors in Creep-Damage Analysis of Beams, Plates and Shells

    Science.gov (United States)

    Altenbach, Holm; Naumenko, Konstantin

    Modern design rules for thin-walled structures which operate at elevated temperatures are based on the demand that the creep and may be the damage behaviour should be taken into account. In the last four decades various models including the scalar or tensor valued hardening and damage variables are established. These models reflect the influence of the deformation or the damage induced anisotropy on the creep response. One problem in creep analysis of thin-walled structures is the selection of the structural mechanics model which has to be adequate to the choice of the constitutive equations. Considering complex loading conditions the structural mechanics model has to reflect for instance the different constitutive behaviour in tension and compression. Below the applicability of classical engineering models for beams, plates and shells to the creep-damage analysis is discussed. It will be shown that a first improvement of the classical approach can be given within the assumptions of the first order shear deformation theory. Based on the beam equations we demonstrate that the shear correction factors have to be modified within the time-step analysis.

  12. Recent advances using electron beam analysis to detect cuticular changes induced by air pollution

    International Nuclear Information System (INIS)

    Invisible or ''hidden injury'', terms from the earliest air quality literature, expressed the diagnostician's frustration in identifying abiotic disease symptoms. Direct visualization was not technically possible until the advent of electron beam analysis (EBA) hardware and software. Electron beam analysis, a combination of scanning electron microscopy (SEM) energy dispersive X-ray analysis (EDXA), and computer-controlled image processing (CCIP) is useful for detecting changes in the cuticle and adjacent cells due to common phytotoxicants. Artifacts, caused by improper specimen preparation, inherent in the high vacuum of SEM and use of hydrated plant samples, fill the literature. Unique methodologies are necessary to interpret the minute changes to plant surfaces caused by a variety of environmental stresses such as sulfur dioxide, ozone, acidic deposition, pesticide residues, NACl, etc. EBA was used to show: the progression of surface alterations that occur to stomata of hybrid poplar (Populus spp.) following exposure to SO2 and O3; between SO2-sensitive and SO2-tolerant clones of eastern white pine (Pinus strobus L.). CCIP was especially useful in determining that acidified rain or mist and O3 do not physically erode existing epicuticular wax of red spruce (Picea rubens Sarg.) as previous literature stated. EBA was used to correlate field and laboratory data showing similar injury to epistomatal wax of red spruce. Improved field emission microscopy and EDXA that offer increased resolution with little sample preparation can provide opportunities to observe cuticular modifications not previously available. (orig.)

  13. Techniques based on genetic algorithms for large deflection analysis of beams

    Indian Academy of Sciences (India)

    Rajesh Kumar; L S Ramachandra; D Roy

    2004-12-01

    A couple of non-convex search strategies, based on the genetic algorithm, are suggested and numerically explored in the context of large-deflection analysis of planar, elastic beams. The first of these strategies is based on the stationarity of the energy functional in the equilibrium state and may therefore be considered weak. The second approach, on the other hand, attempts to directly solve the governing differential equation within an optimisation framework and such a solution may be thought of as strong. Several numerical illustrations and verifications with ‘exact’ solutions, if available, are provided.

  14. Application of the Recursive Subtraction Pulse Shape Analysis algorithm to in-beam HPGe signals

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, F.C.L. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Camera, F. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy)], E-mail: camera@mi.infn.it; Bracco, A.; Million, B.; Wieland, O.; Vandone, V. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Recchia, F.; Gadea, A.; Kroell, Th. [Laboratori Nazionali di Legnaro, INFN, Viale dell' Universita 2, 35020 Legnaro, Padova (Italy); Mengoni, D.; Farnea, E.; Ur, C.A.; Bazzacco, D. [Dipartimento di Fisica, Universita di Padova and INFN Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2009-06-11

    The Pulse Shape Analysis algorithm 'Recursive Subtraction' has been applied to data acquired during the in-beam tests of two different highly segmented HPGe detectors. This algorithm processes the net charge signal, determining the number of interactions per segment and their radial coordinates. The RS algorithm performances are evaluated by comparing the results obtained following its application to experimental pulse shapes with those obtained with specific GEANT simulations. Excellent agreement is found between the experimental distribution of the number of interactions per segment and the simulated one. Deviations between experimental radial distribution and the calculated ones are discussed.

  15. General beam cross-section analysis using a 3D finite element slice

    DEFF Research Database (Denmark)

    Couturier, Philippe; Krenk, Steen

    2014-01-01

    analytical solution is available. The paper also shows an application to wind turbine blade cross-sections and discusses the effect of the finite element discretization on the cross-section properties such as stiffness parameters and the location of the elastic and shear centers.......A formulation for analysis of general cross-section properties has been developed. This formulation is based on the stress-strain states in the classic six equilibrium modes of a beam by considering a finite thickness slice modelled by a single layer of 3D finite elements. The displacement...

  16. Analysis of Longitudinal Beam Dynamics Behavior and RF System Operative Limits at High Beam Currents in Storage Rings

    Energy Technology Data Exchange (ETDEWEB)

    Mastorides, T; Rivetta, C.; Fox, J.D.; Winkle, D.Van; /SLAC; Tytelman, D.; /Dimtel, Redwood City

    2008-07-07

    A dynamics simulation model is used to estimate limits of performance of the Positron-Electron Project (PEP-II). The simulation captures the dynamics and technical limitations of the Low Level Radio Frequency (LLRF) system, the high-power RF components and the low-order mode coupled bunch longitudinal beam dynamics. Simulation results showing the effect of non-linearities on the LLRF loops, and studies of the effectiveness of technical component upgrades are reported, as well as a comparison of these results with PEP-II measurements. These studies have led to the estimation of limits and determining factors in the maximum stored current that the Low Energy Ring/High Energy Ring (LER/HER) can achieve, based on system stability for different RF station configurations and upgrades. In particular, the feasibility of the PEP-II plans to achieve the final goal in luminosity, which required an increase of the beam currents to 4A for LER and 2.2A for HER, is studied. These currents are challenging in part because they would push the longitudinal low-order beam mode stability to the limit, and the klystron forward power past a level of satisfactory margin. An acceptable margin is defined in this paper, which in turn determines the corresponding klystron forward power limitation.

  17. Finite Element Modeling and Free Vibration Analysis of Functionally Graded Nanocomposite Beams Reinforced by Randomly Oriented Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Benedict Thomas

    2013-12-01

    Full Text Available This article deals with the finite element modeling and free vibration analysis of functionally graded nanocomposite beams reinforced by randomly oriented straight single-walled carbon nanotubes (SWCNTs. Nanostructural materials can be used to alter mechanical, thermal and electrical properties of polymer-based composite materials, because of their superior properties and perfect atom arrangement. Timoshenko beam theory is used to evaluate dynamic characteristics of the beam. The Eshelby–Mori–Tanaka approach based on an equivalent fiber is used to investigate the material properties of the beam. The equations of motion are derived by using Hamilton’s principle. The finite element method is employed to discretize the model and obtain a numerical approximation of the motion equation. Different SWCNTs distributions in the thickness direction are introduced to improve fundamental natural frequency and dynamic behavior of uniform functionally graded nanocomposite beam. Results are presented in tabular and graphical forms to show the effects of various material distributions, carbon nanotube orientations, shear deformation, slenderness ratios and boundary conditions on the dynamic behavior of the beam. The first five normalized mode shapes for functionally graded carbon nanotube reinforced composite (FG-CNTRC beams with different boundary conditions and different carbon nanotubes (CNTs orientation are presented. The results show that the above mentioned effects play very important role on the dynamic behavior of the beam.

  18. Strengthening of RC Beams with Large Openings in Shear by CFRP Laminates: Experiment and 2D Nonlinear Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    S.C. Chin

    2012-05-01

    Full Text Available This study presents the experimental study and numerical analysis of Reinforced Concrete (RC beams with large square openings placed in the shear region, at a distance 0.5d and d away from the support, strengthened by Carbon Fiber Reinforced Polymer (CFRP laminates. This research aims to investigate the strength losses in RC beam due to the presence of large square openings placed at two different locations in shear region. Also, in order to re-gain the beam structural capacity loss due to the openings, strengthening by CFRP laminates around the openings were studied. A total of six RC beams were tested to failure under four point loading including control beams, un-strengthened and strengthened RC beams with large square openings in shear region at a distance 0.5d and d away from the support. The CFRP strengthening configuration considered in this study was a full wrapping system around the square openings. A nonlinear finite element program, ATENA was used to validate the results of the tested beams. Comparisons between the finite element predictions and experimental results in terms of crack patterns and load deflection relationships are presented. The crack pattern results of the finite element model show good agreement with the experimental data. The load midspan deflection curves of the finite element models exhibited a stiffer result compared to the experimental beams. The possible reason may be due to the perfect bond assumption between the concrete and steel reinforcement.

  19. Vibration Analysis of a Simply Supported Beam Traversed by Uniform Distributed Moving Load

    Institute of Scientific and Technical Information of China (English)

    Yu YANG; Nian-guan TENG; Yian-feng TENG

    2004-01-01

    Considering the engineering background of some transportation system like maglev, vertical vibration of the simply supported beam is investigated. The length of the vehicle is assumed to be longer than the beam span. The model of moving distributed load with constant speed is established .The beam can be taken as Euler-Bernoulli beam model and the right side of the control equation is simplified by using a moving status function. Duhamel integral and mode superposition method is used to solve the dynamic behavior of the beam. In this aspect deflection and acceleration are included. The results of different parameters such as the span of beam, velocity of load and ratio vehicle-Beam masses are compared. All results show that the dynamic response of the beam is tied up with these factors: the frequency of the beam, the moving frequency of the load and the ratio of vehicle-beam mass.

  20. Effects of the time of cuttings collection and IBA concentration on the rooting of softwood cuttings from elite trees of Cornelian cherry (Cornus mas L. in Belgrade area

    Directory of Open Access Journals (Sweden)

    Marković Marija

    2014-01-01

    Full Text Available In this study, the effect of concentration of indole-3-butyric acid (IBA (powder dip, cutting type as well as the time of taking cuttings on the rooting of softwood cuttings of cornelian cherry was examined. Four types of cuttings were used: basal cuttings, terminal cuttings, basal cuttings with 2-year-old wood and terminal cuttings with 2-year-old wood. The obtained results showed that IBA concentration, cutting type and time of collecting have significant effect on rooting. The best results were obtained using 1% IBA and cuttings collected in the second term (in mid-July had a higher rooting percentage. Terminal cuttings treated with 1% IBA (powder dip should be used for optimum results. In that case the rooting percentage was very high (over 90% in both terms of cuttings collection. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Istraživanje klimatskih promena na životnu sredinu: praćenje uticaja, adaptacija i ublažavanje

  1. Analysis of the deviation of the diffracted beams caused by acousto-optic tunable filter in multispectral imaging

    Institute of Scientific and Technical Information of China (English)

    Yu Yang; Xuejun Sha; Zhonghua Zhang

    2011-01-01

    The deviation caused by acousto-optic tunable filter (AOTF) diffraction in multispectral imaging is analyzed through derivation calculus of the deviation angle. The rotatory polarization of acousto-optic crystal is taken into account in this analysis. The relationships between the polar angle of the incident and the diffracted beams are acquired by using the momentum-matching condition. During the diffraction of the incident beams, far more deviations are induced.%@@ The deviation caused by acousto-optic tunable filter(AOTF) diffraction in multispectral imaging is analyzed through derivation calculus of the deviation angle.The rotatory polarization of acousto-optic crystal is taken into account in this analysis.The relationships between the polar angle of the incident and the diffracted beams are acquired by using the momentum-matching condition.During the diffraction of the incident beams,far more deviations are induced.

  2. Time resolved energy measurement of the Tesla test facility beam through the analysis of optical transition radiation angular distribution

    International Nuclear Information System (INIS)

    This study of the energy stability along the macropulse of the Tesla test facility Linac (TTFL) (1) was obtained by the measurement of the angular distribution of the optical transition radiation (OTR). This technique does not require a dispersive section and can be performed at any point of the beam line. Measurements have been performed with different settings of the RF low level control and at different values of the beam current. An energy variation along the macropulse was spread of the whole macrobunch. The analysis of the OTR angular distribution pattern allows also, to some extent, to evaluate the beam angular spread

  3. A method for elemental analysis of bones by recoiling atoms in heavy ion beams

    International Nuclear Information System (INIS)

    This contribution is the first attempt to analyse the elemental composition of bones by the recoil atoms in heavy ion beams. The aim of this study was to observe differences in light elements depth gradients, concentrations and ratios (P/Ca, Mg/Ca, N/Ca, Li/Ca) of different human femoral bone compartment: cortical bone (C sample) and trabecular (T sample) bone. The differences could be linked to the function of these areas. An interesting feature concerning lithium has to be pointed out. Lithium continues to be a substance of interest as a potential therapeutic agent in a number of blood disorders as well as a very effective experimental agent to understand the basic biochemical and pharmacological properties that regulate cellular proliferation and differentiation. The first method of analysing and profiling of light elements by recoil atoms in heavy ion beams by using an ionization ΔE, E ionization chamber, was described in a previous paper. In this paper a 32 S beam accelerated at the Van de Graaff Tandem Accelerator was used. Further developing of this method has been presented. It was shown that the monitoring problem can be solved by using beams of ion substantially heavier than the sample to be analysed. For the analysis of bones an 127 I beam has been used. The ΔE,E ionization chamber has been built according to a recent patent. By introducing a getter in the compartment 7 of the chamber one could work in conditions of high purity of the gas inside the chamber. The entrance window of the chamber was made of mylar 2 μm thick. Very good stability of the chamber has been obtained over long runs, ∼ 5 hours, in conditions of closed circuit of the gas. Results are presented. In conclusion: 1) A large difference between the normal sample N and the osteoporotic samples T and C for the Mg/Ca ratio has been found; 2) A very high concentration of Li was observed in the T sample. (authors)

  4. Stress analysis of the FAIR Super-FRS low energy beam line quadrupole magnet

    International Nuclear Information System (INIS)

    The Super-FRS is a large acceptance superconducting fragment separator with three branches serving different experimental areas. Low Energy Branch of the main separator delivers secondary beams of low energy beams and thus the range of straggling of hot fragments is reduced. The quadrupole magnets of the Low Energy Branch is a super-ferric magnet having a field gradient of 8.0 T/m. It has usable aperture of ±190 mm in horizontal direction and ±120 mm in vertical dimension. It has a pole tip radius of 250 mm. The Lorentz forces on the coil are non-uniform and must be supported to prevent movement and subsequent quench. Moreover the magnets will be assembled at room temperature and will undergo thermal contraction during operation at liquid helium temperature Therefore it is very important to perform detailed stress analysis of the magnet to evaluate thermal as well as electromagnetic stresses and deformation developed in the coil, coil support structures, and iron during cool down and coil excitation. This paper describes the three dimensional stress analysis of the magnet assembly. (author)

  5. Steady-state responses of axially accelerating viscoelastic beams: Approximate analysis and numerical confirmation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Nonlinear parametric vibration of axially accelerating viscoelastic beams is inves-tigated via an approximate analytical method with numerical confirmations. Based on nonlinear models of a finite-small-stretching slender beam moving at a speed with a periodic fluctuation, a solvability condition is established via the method of multiple scales for subharmonic resonance. Therefore, the amplitudes of steady-state periodic responses and their existence conditions are derived. The amplitudes of stable steady-state responses increase with the amplitude of the axial speed fluctuation, and decrease with the viscosity coefficient and the nonlinear coefficient. The minimum of the detuning parameter which causes the existence of a stable steady-state periodic response decreases with the amplitude of the axial speed fluctuation, and increases with the viscosity coefficient. Nu-merical solutions are sought via the finite difference scheme for a nonlinear par-tial-differential equation and a nonlinear integro-partial-differential equation. The calculation results qualitatively confirm the effects of the related parameters pre-dicted by the approximate analysis on the amplitude and the existence condition of the stable steady-state periodic responses. Quantitative comparisons demonstrate that the approximate analysis results have rather high precision.

  6. Helium-Related Defect Evolution in Titanium Films by Slow Positron Beam Analysis

    International Nuclear Information System (INIS)

    Various helium-containing titanium films were deposited on Si substrates by magnetron sputtering under different helium/argon (He/Ar) ambiances. Helium concentrations and corresponding depth profiles in the Ti films are obtained by elastic recoil detection analysis (ERDA). X-ray diffraction (XRD) measurements are carried out to evaluate the crystallization of the titanium films. Vacancy-type defects and their depth profiles were revealed by slow positron beam analysis (SPBA). It is found that the defect-characteristic parameter S rises with the increment of the He/Ar flow ratios. The variation of S indicates the formation and evolution of various He-related defects, with uniform distribution into the depth around 400 nm. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Vibration Analysis of Nano-Beam with Consideration of Surface Effects and Damage Effects

    Science.gov (United States)

    Yin, Fan; Chen, Chang Ping; Chen, De Liang

    2015-03-01

    On the basis of Euler-Bernoulli beam theory, surface elastic theory, the strain equivalent assumption and modiffed couple stress theory, the nonlinear governing equations of the nano-beam are derived. In addition, the Galerkin method and the Harmonic Balance Method are adopted so as to give a solution to the equations. In the example, the effects of nano-beam length, nano-beam thickness, damage factor and surface efect to curves of amplitude-frequency response of the nano-beam are discussed. The results show that damage effects should be taken into consideration and the frequency can be controlled by load and structure size of nano-beam.

  8. Automated detection and analysis of particle beams in laser-plasma accelerator simulations

    International Nuclear Information System (INIS)

    Numerical simulations of laser-plasma wakefield (particle) accelerators model the acceleration of electrons trapped in plasma oscillations (wakes) left behind when an intense laser pulse propagates through the plasma. The goal of these simulations is to better understand the process involved in plasma wake generation and how electrons are trapped and accelerated by the wake. Understanding of such accelerators, and their development, offer high accelerating gradients, potentially reducing size and cost of new accelerators. One operating regime of interest is where a trapped subset of electrons loads the wake and forms an isolated group of accelerated particles with low spread in momentum and position, desirable characteristics for many applications. The electrons trapped in the wake may be accelerated to high energies, the plasma gradient in the wake reaching up to a gigaelectronvolt per centimeter. High-energy electron accelerators power intense X-ray radiation to terahertz sources, and are used in many applications including medical radiotherapy and imaging. To extract information from the simulation about the quality of the beam, a typical approach is to examine plots of the entire dataset, visually determining the adequate parameters necessary to select a subset of particles, which is then further analyzed. This procedure requires laborious examination of massive data sets over many time steps using several plots, a routine that is unfeasible for large data collections. Demand for automated analysis is growing along with the volume and size of simulations. Current 2D LWFA simulation datasets are typically between 1GB and 100GB in size, but simulations in 3D are of the order of TBs. The increase in the number of datasets and dataset sizes leads to a need for automatic routines to recognize particle patterns as particle bunches (beam of electrons) for subsequent analysis. Because of the growth in dataset size, the application of machine learning techniques for

  9. Modal Analysis in Periodic, Time-Varying Systems with emphasis to the Coupling between Flexible Rotating Beams and Non-Rotating Flexible Structures

    DEFF Research Database (Denmark)

    Saracho, C. M.; Santos, Ilmar

    2003-01-01

    The analysis of dynamical response of a system built by a non-rotating structure coupled to flexible rotating beams is the purpose of this work. The effect of rotational speed upon the beam natural frequencies is well-known, so that an increase in the angular speeds leads to an increase in beam...

  10. Sandwich beam model for free vibration analysis of bilayer graphene nanoribbons with interlayer shear effect

    International Nuclear Information System (INIS)

    In this study, sandwich beam model (SM) is proposed for free vibration analysis of bilayer graphene nanoribbons (BLGNRs) with interlayer shear effect. This model also takes into account the intralayer (in-plane) stretch of graphene nanoribbons. The molecular dynamics (MD) simulations using the software LAMMPS and Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential are done to validate the accuracy of the sandwich model results. The MD simulation results include the two first frequencies of cantilever BLGNRs with different lengths and two interlayer shear moduli, i.e., 0.25 and 4.6 GPa. These two interlayer shear moduli, 0.25 and 4.6 GPa, can be obtained by sliding a small flake of graphene on a large graphene substrate when the parameter of E-LJ term in AIREBO potential, epsilon-CC, is set to be 2.84 and 45.44 meV, respectively. The SM results for a wide range of bending rigidity values show that the proposed model, i.e., the SM, predicts much better than the previous beam model in which the intralayer stretch is ignored. In addition, it is observed that the model can properly predict the natural frequencies of BLGNRs for various values of the bending rigidity and the interlayer shear modulus

  11. Sandwich beam model for free vibration analysis of bilayer graphene nanoribbons with interlayer shear effect

    Energy Technology Data Exchange (ETDEWEB)

    Nazemnezhad, Reza, E-mail: rnazemnezhad@iust.ac.ir, E-mail: rnazemnezhad@du.ac.ir [School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Shokrollahi, Hassan [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Hosseini-Hashemi, Shahrokh [School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Center of Excellence in Railway Transportation, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)

    2014-05-07

    In this study, sandwich beam model (SM) is proposed for free vibration analysis of bilayer graphene nanoribbons (BLGNRs) with interlayer shear effect. This model also takes into account the intralayer (in-plane) stretch of graphene nanoribbons. The molecular dynamics (MD) simulations using the software LAMMPS and Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential are done to validate the accuracy of the sandwich model results. The MD simulation results include the two first frequencies of cantilever BLGNRs with different lengths and two interlayer shear moduli, i.e., 0.25 and 4.6 GPa. These two interlayer shear moduli, 0.25 and 4.6 GPa, can be obtained by sliding a small flake of graphene on a large graphene substrate when the parameter of E-LJ term in AIREBO potential, epsilon-CC, is set to be 2.84 and 45.44 meV, respectively. The SM results for a wide range of bending rigidity values show that the proposed model, i.e., the SM, predicts much better than the previous beam model in which the intralayer stretch is ignored. In addition, it is observed that the model can properly predict the natural frequencies of BLGNRs for various values of the bending rigidity and the interlayer shear modulus.

  12. Configuration space analysis of common cost functions in radiotherapy beam-weight optimization algorithms

    International Nuclear Information System (INIS)

    The successful implementation of downhill search engines in radiotherapy optimization algorithms depends on the absence of local minima in the search space. Such techniques are much faster than stochastic optimization methods but may become trapped in local minima if they exist. A technique known as 'configuration space analysis' was applied to examine the search space of cost functions used in radiotherapy beam-weight optimization algorithms. A downhill-simplex beam-weight optimization algorithm was run repeatedly to produce a frequency distribution of final cost values. By plotting the frequency distribution as a function of final cost, the existence of local minima can be determined. Common cost functions such as the quadratic deviation of dose to the planning target volume (PTV), integral dose to organs-at-risk (OARs), dose-threshold and dose-volume constraints for OARs were studied. Combinations of the cost functions were also considered. The simple cost function terms such as the quadratic PTV dose and integral dose to OAR cost function terms are not susceptible to local minima. In contrast, dose-threshold and dose-volume OAR constraint cost function terms are able to produce local minima in the example case studied. (author)

  13. Prompt gamma-ray analysis using cold and thermal guided neutron beams at JAERI.

    Science.gov (United States)

    Yonezawa, C

    1999-01-01

    A highly sensitive neutron-induced prompt gamma-ray analysis (PGA) system, usable at both cold and thermal neutron beam guides of JRR-3M, has been constructed. The system was designed to achieve the lowest gamma-ray background by using lithium fluoride tiles as neutron shielding, by placing the samples in a He atmosphere and by using a Ge-bismuth germanate detector system for Compton suppression. The gamma-ray spectrometer can acquire three modes of spectra simultaneously: single, Compton suppression, and pair modes. Because of the low-energy guided neutron beams and the low-background system, analytical sensitivities and detection limits better than those in usual PGA systems have been achieved. Boron and multielemental determination by a comparative standardization have been investigated, and accuracy, precision, and detection limits for the elements in various materials were evaluated. The system has been applied to the determination of B and multielements in samples of various fields such as medical, environmental, and geological sciences. PMID:10676516

  14. Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams

    International Nuclear Information System (INIS)

    Most existing formulations for structural elements such as beams, plates and shells do not allow for the use of general nonlinear constitutive models in a straightforward manner. Furthermore, such structural element models, due to the nature of the generalized coordinates used, do not capture some Poisson modes such as the ones that couple the deformation of the cross section of the structural element and stretch and bending. In this paper, beam models that employ general nonlinear constitutive equations are presented using finite elements based on the nonlinear absolute nodal coordinate formulation. This formulation relaxes the assumptions of the Euler-Bernoulli and Timoshenko beam theories, and allows for the use of general nonlinear constitutive models. The finite elements based on the absolute nodal coordinate formulation also allow for the rotation as well as the deformation of the cross section, thereby capturing Poisson modes which can not be captured using other beam models. In this investigation, three different nonlinear constitutive models based on the hyper-elasticity theory are considered. These three models are based on the Neo-Hookean constitutive law for compressible materials, the Neo-Hookean constitutive law for incompressible materials, and the Mooney-Rivlin constitutive law in which the material is assumed to be incompressible. These models, which allow capturing Poisson modes, are suitable for many materials and applications, including rubber-like materials and biological tissues which are governed by nonlinear elastic behavior. Numerical examples that demonstrate the implementation of these nonlinear constitutive models in the absolute nodal coordinate formulation are presented. The results obtained using the nonlinear and linear constitutive models are compared in this study. These results show that the use of nonlinear constitutive models can significantly enhance the performance and improve the computational efficiency of the finite element

  15. Application of failure mode and effects analysis to treatment planning in scanned proton beam radiotherapy

    International Nuclear Information System (INIS)

    A multidisciplinary and multi-institutional working group applied the Failure Mode and Effects Analysis (FMEA) approach to the actively scanned proton beam radiotherapy process implemented at CNAO (Centro Nazionale di Adroterapia Oncologica), aiming at preventing accidental exposures to the patient. FMEA was applied to the treatment planning stage and consisted of three steps: i) identification of the involved sub-processes; ii) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system, iii) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. Thirty-four sub-processes were identified, twenty-two of them were judged to be potentially prone to one or more failure modes. A total of forty-four failure modes were recognized, 52% of them characterized by an RPN score equal to 80 or higher. The threshold of 125 for RPN was exceeded in five cases only. The most critical sub-process appeared related to the delineation and correction of artefacts in planning CT data. Failures associated to that sub-process were inaccurate delineation of the artefacts and incorrect proton stopping power assignment to body regions. Other significant failure modes consisted of an outdated representation of the patient anatomy, an improper selection of beam direction and of the physical beam model or dose calculation grid. The main effects of these failures were represented by wrong dose distribution (i.e. deviating from the planned one) delivered to the patient. Additional strategies for risk mitigation, easily and immediately applicable, consisted of a systematic information collection about any known implanted prosthesis directly from each patient and enforcing a short interval time between CT scan and treatment start. Moreover, (i) the investigation of dedicated CT image

  16. The effect of beam interruptions on the integrity of ADSR fuel pin cladding: A thermo-mechanical analysis

    International Nuclear Information System (INIS)

    Highlights: ► We present beam interruption data for four high power proton accelerators. ► We extend the PTS-ADS code capabilities to include a thermal stress Subroutine. ► We study the thermo-mechanical response in an ADSR cladding to unplanned beam interruptions. ► We perform a thermal fatigue analysis. ► The cladding integrity is severely affected if the current accelerator technology is deployed. - Abstract: During its lifetime in the core, the cladding of an Accelerator Driven Subcritical Reactor (ADSR) fuel pin is expected to experience variable stresses due to frequent interruptions in the accelerator proton beam. This paper investigates the thermal fatigue damage in the cladding due to repetitive and unplanned beam interruptions under certain operational conditions. Beam trip data was obtained for four operating high power proton accelerators, among which the Spallation Neutron Source (SNS) superconducting accelerator was selected for further analysis. 9Cr–1Mo–Nb–V (T91) steel was selected as the cladding material because of its proven compatibility with proposed ADSR design concepts. The neutronic, thermal and stress analyses were performed using the PTS-ADS, a code that has been specifically developed for studying the dynamic response to beam-induced transients in accelerator driven subcritical systems. The lifetime of the fuel cladding in the core was estimated for three levels of allowed pin power and specific operating conditions.

  17. Analysis of Beams with Transversal Gradations of the Young's Modulus and Variable Depths by the Meshless Method

    Science.gov (United States)

    Sátor, Ladislav; Sládek, Vladimír; Sládek, Ján

    2014-03-01

    A numerical analysis based on the meshless local Petrov- Galerkin (MLPG) method is proposed for a functionally graded material FGM (FGMfunctionally graded material) beam. The planar bending of the beam is considered with a transversal gradation of Young's modulus and a variable depth of the beam. The collocation formulation is constructed from the equilibrium equations for the mechanical fields. Dirac's delta function is employed as a test function in the derivation of a strong formulation. The Moving Least Squares (MLS) approximation technique is applied for an approximation of the spatial variations of all the physical quantities. An investigation of the accuracy, the convergence of the accuracy, the computational efficiency and the effect of the level of the gradation of Young's modulus on the behaviour of coupled mechanical fields is presented in various boundary value problems for a rectangular beam with a functionally graded Young's modulus.

  18. Particle size analysis by transmission fluctuation spectrometry in the two-Phase flow irradiated by a rectangular narrow beam

    International Nuclear Information System (INIS)

    The theory of transmission fluctuation spectrometry (TFS) has been developed as a new method of particle analysis in the two-phase flow. In our earlier publications, a circular beam is used whose intensity is uniform or of a Gaussian profile. In this work, the TFS theory is studied for the case of a rectangular narrow beam. The signal process of the transmission fluctuations is performed in the time and frequency domains and the corresponding analytical expression expressed in terms of the expectancy of the transmission square (ETS) is obtained. In addition, the correlation of the fluctuating transmission signals is studied, expressed in terms of the expectancy of the transmission product (ETP). Numerical calculation shows that the transition function of the transmission fluctuation spectrum is sensitive to both the ratio of beam size to particle size and the shape of the beam cross section.

  19. Application of Probabilistic Analysis in Finite Element Modeling of Prestressed Inverted T-Beam with Web Openings

    Directory of Open Access Journals (Sweden)

    Tie Ming

    2012-02-01

    Full Text Available Recent trends of structural mechanics applications in finite element analysis demonstrate an increasing demand for efficient analysis tools. This paper presents a probabilistic analysis approach applied in finite element analysis for modeling prestressed inverted T-beams with web openings structure used in building service system (mechanical, electrical, communications, and plumbing. The experimental program reported in this paper tested four prestressed inverted T-beams with circular web openings to failure to evaluate the openings' effect on various beam behaviors. Using ANSYS, finite element models were developed to simulate beam deflection behavior. Comparison of analytical results with the available experimental results for loaddeflection relationships showed good agreement between both results. Probabilistic analysis methodology could predict the response (i.e., deflection, stress, strain etc due to various combination of input variables (i.e., Poisson`s ratio, modulus of elasticity, etc. In reality, uncertainties exist in a system and environment that may make the application of deterministic design unreliable which causes the values of the variables that are acting on the system cannot be predicted with certainty. As such, probabilistic approach was applied to the model after deterministic analysis. In this study, the probabilistic analysis approach was applied to account for the variability in fabrication. Probabilistic methodology applied in finite element modeling provides another alternative ways of structural analysis of preststressed inverted T-beams with web openings to achieve a robust and reliable design in a more efficient way. In this study, Monte Carlo simulation was used to analyze the effect of parameter uncertainty for the prestressed inverted T-beams with web openings. From the analysis results, it was observed that the changes in prestressing force, elastic modulus of prestressing steel, ultimate tensile strength of

  20. A Vibration Reliability Analysis Method for the Uncertain Space Beam Structure

    Directory of Open Access Journals (Sweden)

    Yanyu Mo

    2016-01-01

    Full Text Available Considering that uncertainty is inherent and unavoidable in engineering practice and the available information about the uncertain parameters is always not sufficient, the paper tries to carry out the nonprobabilistic vibration reliability analysis so as to avoid resonance on uncertain structure with bounded parameters. The input uncertain-but-bounded parameters are treated as interval variables, and an interval model is adopted to describe bounded uncertainties. Then a theory of nonprobabilistic reliability is introduced, in which the dimensionless nonprobabilistic reliability index and system reliability index are defined. In order to investigate the resonance failure with reliability method, the resonance failure domains are stated according to the relationships between the natural frequencies and the excitation frequencies. Then the uncertain structure is modeled as a series system and a system reliability index is proposed to evaluate the safety of the structure. The paper also takes a frequency analysis on the uncertain space beam structure to get the resonance failure modes. A frequency analysis method based on the monotonicity discriminant of the frequency sensitivity is presented. Then an optimization algorithm is introduced to verify the validity of the former frequency analysis method. Two examples are provided to illustrate the effectiveness and feasibility of the presented method.