WorldWideScience

Sample records for bead based immunoassay

  1. Magnetic Bead Based Immunoassay for Autonomous Detection of Toxins

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Y; Hara, C A; Knize, M G; Hwang, M H; Venkatesteswaran, K S; Wheeler, E K; Bell, P M; Renzi, R F; Fruetel, J A; Bailey, C G

    2008-05-01

    As a step towards toward the development of a rapid, reliable analyzer for bioagents in the environment, we are developing an automated system for the simultaneous detection of a group of select agents and toxins. To detect toxins, we modified and automated an antibody-based approach previously developed for manual medical diagnostics that uses fluorescent eTag{trademark} reporter molecules and is suitable for highly multiplexed assays. Detection is based on two antibodies binding simultaneously to a single antigen, one of which is labeled with biotin while the other is conjugated to a fluorescent eTag{trademark} through a cleavable linkage. Aqueous samples are incubated with the mixture of antibodies along with streptavidin-coated magnetic beads coupled to a photo-activatable porphyrin complex. In the presence of antigen, a molecular complex is formed where the cleavable linkage is held in proximity to the photoactivable group. Upon excitation at 680 nm, free radicals are generated, which diffuse and cleave the linkage, releasing the eTags{trademark}. Released eTags{trademark} are analyzed using capillary gel electrophoresis with laser-induced fluorescence detection. Limits of detection for ovalbumin and botulinum toxoid individually were 4 ng/mL (or 80 pg) and 16 ng/mL (or 320 pg), respectively, using the manual assay. In addition, we demonstrated the use of pairs of antibodies from different sources in a single assay to decrease the rate of false positives. Automation of the assay was demonstrated on a flow-through format with higher LODs of 125 ng/mL (or 2.5 ng) each of a mixture of ovalbumin and botulinum toxoid. This versatile assay can be easily modified with the appropriate antibodies to detect a wide range of toxins and other proteins.

  2. Rapid bead-based immunoassay for measurement of mannose-binding lectin

    DEFF Research Database (Denmark)

    Bay, J T; Garred, P

    2009-01-01

    coefficient were found be 7.88% and 5.70%, respectively. A close correlation between the new assay and a reference MBL measurement ELISA was found (rho 0.9381, P based assay was less sensitive to interfering anti-murine antibodies in the blood samples than when the antibodies employed were...... used in the reference polystyrene-based ELISA. The new assay could be performed in 3 h with less than 25 microl serum required of each sample. These results show that MBL can be measured readily using a bead-based platform, which may form an efficient basis for a multiplex approach to measure different...... have been developed more automated platforms for MBL analysis is urgently needed. To pursue this, we set out to develop a flexible bead-based MBL immunoassay. Serum was obtained from 98 healthy individuals and 50 patients investigated for possible immunodeficiencies. We used the Luminex xMAP bead array...

  3. Bead-based microfluidic immunoassay for diagnosis of Johne's disease

    Energy Technology Data Exchange (ETDEWEB)

    Wadhwa, Ashutosh [University of Tennessee, Center for Wildlife Health, Department of Forestry; Foote, Robert [ORNL; Shaw, Robert W [ORNL; Eda, Shigetoshi [ORNL

    2012-01-01

    Microfluidics technology offers a platform for development of point-of-care diagnostic devices for various infectious diseases. In this study, we examined whether serodiagnosis of Johne s disease (JD) can be conducted in a bead-based microfluidic assay system. Magnetic micro-beads were coated with antigens of the causative agent of JD, Mycobacterium avium subsp. paratuberculosis. The antigen-coated beads were incubated with serum samples of JD-positive or negative serum samples and then with a fluorescently-labeled secondary antibody (SAB). To confirm binding of serum antibodies to the antigen, the beads were subjected to flow cytometric analysis. Different conditions (dilutions of serum and SAB, types of SAB, and types of magnetic beads) were optimized for a great degree of differentiation between the JD-negative and JD-positive samples. Using the optimized conditions, we tested a well-classified set of 155 serum samples from JD negative and JD-positive cattle by using the bead-based flow cytometric assay. Of 105 JD-positive samples, 63 samples (60%) showed higher antibody binding levels than a cut-off value determined by using antibody binding levels of JD-negative samples. In contrast, only 43-49 JD-positive samples showed higher antibody binding levels than the cut-off value when the samples were tested by commercially-available immunoassays. Microfluidic assays were performed by magnetically immobilizing a number of beads within a microchannel of a glass microchip and detecting antibody on the collected beads by laser-induced fluorescence. Antigen-coated magnetic beads treated with bovine serum sample and fluorescently-labeled SAB were loaded into a microchannel to measure the fluorescence (reflecting level of antibody binding) on the beads in the microfluidic system. When the results of five bovine serum samples obtained with the system were compared to those obtained with the flow cytometer, a high level of correlation (linear regression, r2 = 0.994) was

  4. Magnetic bead-based reverse colorimetric immunoassay strategy for sensing biomolecules.

    Science.gov (United States)

    Gao, Zhuangqiang; Xu, Mingdi; Hou, Li; Chen, Guonan; Tang, Dianping

    2013-07-16

    A novel reverse colorimetric immunoassay (RCIA) strategy was for the first time designed and utilized for sensitive detection of low-abundance protein (prostate-specific antigen, PSA, used in this case) in biological fluids by coupling highly catalytic efficient catalase with magnetic bead-based peroxidase mimics. To construct such a RCIA system, two nanostructures including magnetic beads and gold nanoparticles were first synthesized and functionalized with anti-PSA capture antibody and catalase/anti-PSA detection antibody, respectively. Thereafter, a specific sandwich-type immunoassay format was employed for determination of PSA by using functional gold nanoparticles as enzymatic bioreactors and anti-PSA-conjugated magnetic beads as a colorimetric developer. The carried catalase, followed by the sandwiched immunocomplex, partially consumed the added hydrogen peroxide in the detection solution, which slowed down the catalytic efficiency of magnetic bead-based peroxidase mimics toward TMB/H2O2, thereby weakening the visible color and decreasing the colorimetric density. Different from conventional colorimetric immunoassay, the RCIA method determined the residual hydrogen peroxide in the substrate after consumption. Under the optimal conditions, the developed RCIA exhibited a wide dynamic range of 0.05-20 ng mL(-1) toward PSA with a detection limit of 0.03 ng mL(-1) at the 3Sblank level. Intra- and interassay coefficients of variation were below 6.1% and 9.3%, respectively. Additionally, the methodology was further validated for the analysis of 12 PSA clinical serum specimens, giving results in good accordance with those obtained by the commercially available enzyme-linked immunosorbent assay (ELISA) method.

  5. Single-bead arrays for fluorescence-based immunoassays on capillary-driven microfluidic chips

    Science.gov (United States)

    Temiz, Yuksel; Lim, Michel; Delamarche, Emmanuel

    2016-03-01

    We report a concept for the simple fabrication of easy-to-use chips for immunoassays in the context of point-of-care diagnostics. The chip concept comprises mainly three features: (1) the efficient integration of reagents using beads functionalized with receptors, (2) the generation of capillary-driven liquid flows without using external pumps, and (3) a high-sensitivity detection of analytes using fluorescence microscopy. We fabricated prototype chips using dry etching of Si wafers. 4.5-μm-diameter beads were integrated into hexagonal arrays by sedimentation and removing the excess using a stream of water. We studied the effect of different parameters and showed that array occupancies from 30% to 50% can be achieved by pipetting a 250 nL droplet of 1% bead solution and allowing the beads sediment for 3 min. Chips with integrated beads were sealed using a 50-μm-thick dry-film resist laminated at 45 °C. Liquids pipetted to loading pads were autonomously pulled by capillary pumps at a rate of 0.35 nL s-1 for about 30 min. We studied ligand-receptor interactions and binding kinetics using time-lapse fluorescence microscopy and demonstrated a 5 pM limit of detection (LOD) for an anti-biotin immunoassay. As a clinically-relevant example, we implemented an immunoassay to detect prostate specific antigen (PSA) and showed an LOD of 108 fM (i.e. 3.6 pg mL-1). While a specific implementation is provided here for the detection of PSA, we believe that combining capillary-driven microfluidics with arrays of single beads and fluorescence readout to be very flexible and sufficiently sensitive for the detection of other clinically-relevant analytes.

  6. Development of a novel bead-based 96-well filtration plate competitive immunoassay for the detection of Gentamycin.

    Science.gov (United States)

    Ho, Tien Yu Jessica; Chan, Chia-Chung; Chan, KinGho; Wang, Yu Chieh; Lin, Jing-Tang; Chang, Cheng-Ming; Chen, Chien-Sheng

    2013-11-15

    We developed a sensitive, simple, inexpensive and rapid bead-based immunoassay platform, composed of liposomal nanovesicle amplification system, Gentamycin sulfate beads and 96-well filtration plates. In the beginning of the assay, Gentamycin sulfate beads, Gentamycin sulfate and Gentamycin specific antibody were incubated in a bottom-sealed 96-well filtration plate. After incubation, washing was done by running washing buffer through the unsealed filtration plate with only gravity and the antibody-Gentamycin bead complexes were retained in the plate. Fluorescent dye-loaded protein G-liposomal nanovesicles were then added to specifically bind to antibodies on the retained beads. After washing unbound nanovesicles, millions of fluorescent dye molecules were released by adding a detergent solution to lyse liposomal nanovesicles. The limit of detection (LOD) of this novel detection platform in TBS and in skim milk were 52.65 ng/mL and 14.16 ng/mL, which are both sufficient for detecting the 200 ng/mL Codex maximum residual level (MRL). The dynamic ranges were both from each of their LODs to 100 μg/mL. The 50% inhibition concentrations (IC50) in TBS and skim milk were 199.66 ng/mL and 360.81 ng/mL, respectively. We also demonstrated the good specificity of this platform by comparing detection results between pure Gentamycin solution and a mixture solution of 6 different antibiotics including Gentamycin in skim milk. The entire assay with 60 samples was conducted within 2h. In sum, this novel biosensing platform not only fulfilled most benefits of magnetic bead-based assays, but also was inexpensive and convenient by replacing the magnetic separation with filtration plate separation.

  7. Flow injection chemiluminescence immunoassay based on resin beads, enzymatic amplification and a novel monoclonal antibody for determination of Hg(2+).

    Science.gov (United States)

    Xu, Mingxia; Chen, Mengting; Dong, Tiantian; Zhao, Kang; Deng, Anping; Li, Jianguo

    2015-09-21

    In the present work, a simple and sensitive flow injection chemiluminescent competitive immunoassay was developed for the determination of mercury(II) ion (Hg(2+)) based on carboxylic resin beads, a novel specific monoclonal antibody (McAb) and HRP enzyme-amplification. Resin beads with carboxyl groups were creatively employed as supports for immobilizing more coating antigen through acylamide bonds. With a competitive-type assay mode, the Hg(2+) in solution competed with the immobilized coating antigen for the limited McAb. Then, the second antibody labeled with HRP was introduced, and an effectively increased CL was obtained, which was ascribed to the catalytic activity of HRP for the luminol-PIP-H2O2 reaction. With increasing concentration of Hg(2+), the CL of this system decreases because less HRP is present in the CL reaction. At optimal conditions, the CL signal displayed a good linear relation toward Hg(2+) in the range of 0.05-200 ng mL(-1) with a detection limit (3σ) of 0.015 ng mL(-1). The immunosensor possessed high specificity, acceptable accuracy and reproducibility, and was examined in real samples with favorable results. This immunoassay will have intriguing application prospects for the determination of other heavy metal ions and environmental contaminants.

  8. Magnetic bead and gold nanoparticle probes based immunoassay for β-casein detection in bovine milk samples.

    Science.gov (United States)

    Li, Y S; Meng, X Y; Zhou, Y; Zhang, Y Y; Meng, X M; Yang, L; Hu, P; Lu, S Y; Ren, H L; Liu, Z S; Wang, X R

    2015-04-15

    In this work, a double-probe based immunoassay was developed for rapid and sensitive determination of β-casein in bovine milk samples. In the method, magnetic beads (MBs), employed as supports for the immobilization of anti-β-casein polyclonal antibody (PAb), were used as the capture probe. Colloidal gold nanoparticles (AuNPs), employed as a bridge for loading anti-β-casein monoclonal antibody (McAb) and horseradish peroxidase (HRP), were used as the amplification probe. The presence of β-casein causes the sandwich structures of MBs-PAb-β-casein-McAb-AuNPs through the interaction between β-casein and the anti-β-casein antibodies. The HRP, used as an enzymatic-amplified tracer, can catalytically oxidize the substrate 3,3',5,5'-tetramethylbenzidine (TMB), generating optical signals that are proportional to the quantity of β-casein. The linear range of the immunoassay was from 6.5 to 1520ngmL(-1). The limit of detection (LOD) was 4.8ngmL(-1) which was 700 times lower than that of MBs-antibody-HRP based immunoassay and 6-7 times lower than that from the microplate-antibody-HRP based assay. The recoveries of β-casein from bovine milk samples were from 95.0% to 104.3% that had a good correlation coefficient (R(2)=0.9956) with those obtained by an official standard Kjeldahl method. For higher sensitivity, simple sample pretreatment and shorter time requirement of the antigen-antibody reaction, the developed immunoassay demonstrated the viability for detection of β-casein in bovine milk samples.

  9. Bead-based competitive fluorescence immunoassay for sensitive and rapid diagnosis of cyanotoxin risk in drinking water.

    Science.gov (United States)

    Yu, Hye-Weon; Jang, Am; Kim, Lan Hee; Kim, Sung-Jo; Kim, In S

    2011-09-15

    Due to the increased occurrence of cyanobacterial blooms and their toxins in drinking water sources, effective management based on a sensitive and rapid analytical method is in high demand for security of safe water sources and environmental human health. Here, a competitive fluorescence immunoassay of microcystin-LR (MCYST-LR) is developed in an attempt to improve the sensitivity, analysis time, and ease-of-manipulation of analysis. To serve this aim, a bead-based suspension assay was introduced based on two major sensing elements: an antibody-conjugated quantum dot (QD) detection probe and an antigen-immobilized magnetic bead (MB) competitor. The assay was composed of three steps: the competitive immunological reaction of QD detection probes against analytes and MB competitors, magnetic separation and washing, and the optical signal generation of QDs. The fluorescence intensity was found to be inversely proportional to the MCYST-LR concentration. Under optimized conditions, the proposed assay performed well for the identification and quantitative analysis of MCYST-LR (within 30 min in the range of 0.42-25 μg/L, with a limit of detection of 0.03 μg/L). It is thus expected that this enhanced assay can contribute both to the sensitive and rapid diagnosis of cyanotoxin risk in drinking water and effective management procedures.

  10. Aptamer-barcode based immunoassay for the instantaneous derivatization chemiluminescence detection of IgE coupled to magnetic beads.

    Science.gov (United States)

    Peng, Qianwen; Cao, Zhijuan; Lau, Choiwan; Kai, Masaaki; Lu, Jianzhong

    2011-01-07

    We report on a highly sensitive aptameric assay system for the determination of IgE, where a special chemiluminescence (CL) reagent, 3,4,5-trimethoxylphenylglyoxal (TMPG), acts as the signaling molecule and polystyrene beads as the amplification platform. Briefly, a "sandwich-type" detection strategy is employed in our design, where magnetic beads functionalized with a capture antibody were reacted with the target protein IgE, and then sandwiched with the aptamer-barcodes which were prepared by assembling polystyrene beads with IgE aptamer. The target immunoreaction event could be sensitively detected via an instantaneous derivatization reaction between TMPG and the guanine (G) nucleotides within the aptamer-barcodes to form an unstable CL intermediate for the generation of light. Further signal amplification is achieved by extending the G nucleotide-rich domain on the aptamer backbone for second amplification. Such simple amplified CL transduction allows the detection of IgE down to the 4.6 pM level, which is better than most previous aptameric methods for IgE detection. This new protocol also provides a good capability in discriminating IgE from nontarget proteins such as IgG, IgA, IgM, interferon and thrombin. The practical application of the proposed aptamer-barcode based immunoassay was successfully carried out for the determination of IgE in 20 human serum samples. It is straightforward to adapt this strategy to detect a spectrum of other proteins by using different aptamers, thus this method may offer a new direction in designing high-performance CL aptasensors for early diagnoses of diseases.

  11. Droplet-based magnetic bead immunoassay using microchannel-connected multiwell plates (μCHAMPs) for the detection of amyloid beta oligomers.

    Science.gov (United States)

    Park, Min Cheol; Kim, Moojong; Lim, Gun Taek; Kang, Sung Min; An, Seong Soo A; Kim, Tae Song; Kang, Ji Yoon

    2016-06-21

    Multiwell plates are regularly used in analytical research and clinical diagnosis but often require laborious washing steps and large sample or reagent volumes (typically, 100 μL per well). To overcome such drawbacks in the conventional multiwell plate, we present a novel microchannel-connected multiwell plate (μCHAMP) that can be used for automated disease biomarker detection in a small sample volume by performing droplet-based magnetic bead immunoassay inside the plate. In this μCHAMP-based immunoassay platform, small volumes (30-50 μL) of aqueous-phase working droplets are stably confined within each well by the simple microchannel structure (200-300 μm in height and 0.5-1 mm in width), and magnetic beads are exclusively transported into an adjacent droplet through the oil-filled microchannels assisted by a magnet array aligned beneath and controlled by a XY-motorized stage. Using this μCHAMP-based platform, we were able to perform parallel detection of synthetic amyloid beta (Aβ) oligomers as a model analyte for the early diagnosis of Alzheimer's disease (AD). This platform easily simplified the laborious and consumptive immunoassay procedure by achieving automated parallel immunoassay (32 assays per operation in 3-well connected 96-well plate) within 1 hour and at low sample consumption (less than 10 μL per assay) with no cumbersome manual washing step. Moreover, it could detect synthetic Aβ oligomers even below 10 pg mL(-1) concentration with a calculated detection limit of ∼3 pg mL(-1). Therefore, the μCHAMP and droplet-based magnetic bead immunoassay, with the combination of XY-motorized magnet array, would be a useful platform in the diagnosis of human disease, including AD, which requires low consumption of the patient's body fluid sample and automation of the entire immunoassay procedure for high processing capacity.

  12. Bead-based immunoassays using a micro-chip flow cytometer.

    Science.gov (United States)

    Holmes, David; She, Joseph K; Roach, Peter L; Morgan, Hywel

    2007-08-01

    A microfabricated flow cytometer has been developed for the analysis of micron-sized polymer beads onto which fluorescently labelled proteins have been immobilised. Fluorescence measurements were made on the beads as they flowed through the chip. Binding of antibodies to surface-immobilised antigens was quantitatively assayed using the device. Particles were focused through a detection zone in the centre of the flow channel using negative dielectrophoresis. Impedance measurements of the particles (at 703 kHz) were used to determine particle size and to trigger capture of the fluorescence signal. Antibody binding was measured by fluorescence at single and dual excitation wavelengths (532 nm and 633 nm). Fluorescence compensation techniques were implemented to correct for spectral overspill between optical detection channels. The data from the microfabricated flow cytometer was shown to be comparable to that of a commercial flow cytometer (BD-FACSAria).

  13. Streptavidin Capture and Detection Using Individual Agarose Bead-based Microfluidic Immunoassay Devices

    Institute of Scientific and Technical Information of China (English)

    Xiaoguang Du

    2009-01-01

    @@ A single microwell on polycarbonate substratc was fabricated using hot embossing by silicon master.The silicon master (85 μm in top,100 μm in bottom,53 μm in height) and 0.25 mm-thick polycarbonate substrate were sandwiched between two glass plates in hot embossing system.The system was heated to 155-160℃ and pressed with a force of 300 psi for 10-30 s.The single microwell was stampted on polycarbonate substrate.Apply a~0.2 μL aliquot of agarose beads to the single microwell.

  14. A bead-based multiplex sandwich immunoassay to assess the abundance and posttranslational modification state of β-catenin.

    Science.gov (United States)

    Groll, Nicola; Sommersdorf, Cornelia; Joos, Thomas O; Poetz, Oliver

    2015-01-01

    A system-wide analysis of cell signaling involves detecting and quantifying a range of proteins and their posttranslational modification states in the same cellular sample. We propose a protocol for a miniaturized, bead-based array and describe its efficiency in characterizing the different forms and functions of β-catenin. The protocol provides detailed instructions for cell culture and bead array assays that enable insights into complex networks at the systems level.

  15. Semiconductor sensor embedded microfluidic chip for protein biomarker detection using a bead-based immunoassay combined with deoxyribonucleic acid strand labeling.

    Science.gov (United States)

    Lin, Yen-Heng; Peng, Po-Yu

    2015-04-15

    Two major issues need to be addressed in applying semiconductor biosensors to detecting proteins in immunoassays. First, the length of the antibody on the sensor surface surpasses the Debye lengths (approximately 1 nm, in normal ionic strength solution), preventing certain specifically bound proteins from being tightly attached to the sensor surface. Therefore, these proteins do not contribute to the sensor's surface potential change. Second, these proteins carry a small charge and can be easily affected by the pH of the surrounding solution. This study proposes a magnetic bead-based immunoassay using a secondary antibody to label negatively charged DNA fragments for signal amplification. An externally imposed magnetic force attaches the analyte tightly to the sensor surface, thereby effectively solving the problem of the analyte protein's distance to the sensor surface surpassing the Debye lengths. In addition, a normal ion intensity buffer can be used without dilution for the proposed method. Experiments revealed that the sensitivity can be improved by using a longer DNA fragment for labeling and smaller magnetic beads as solid support for the antibody. By using a 90 base pair DNA label, the signal was 15 times greater than that without labeling. In addition, by using a 120 nm magnetic bead, a minimum detection limit of 12.5 ng mL(-1) apolipoprotein A1 can be measured. Furthermore, this study integrates a semiconductor sensor with a microfluidic chip. With the help of microvalves and micromixers in the chip, the length of the mixing step for each immunoassay has been reduced from 1h to 20 min, and the sample volume has been reduced from 80 μL to 10 μL. In practice, a protein biomarker in a urinary bladder cancer patient's urine was successfully measured using this technique. This study provides a convenient and effective method to measure protein using a semiconductor sensor.

  16. Facile fabrication of magnetic gold electrode for magnetic beads-based electrochemical immunoassay: application to the diagnosis of Japanese encephalitis virus.

    Science.gov (United States)

    Li, Fang; Mei, Li; Li, Yaoming; Zhao, Kaihong; Chen, Huanchun; Wu, Peng; Hu, Yonggang; Cao, Shengbo

    2011-06-15

    A novel magnetic beads-based electrochemical immunoassay strategy has been developed for the detection of Japanese encephalitis virus (JEV). The magnetic gold electrode was fabricated to manipulate magnetic beads for the direct sensing applications. Gold-coated magnetic beads were employed as the platforms for the immobilization and immunoreaction process, and horseradish peroxidase was chosen as an enzymatic tracer. The proteins (e.g., antibodies or immunocomplexes) attached on the surface of magnetic beads were found to induce a significant decline in their electric conductivity. Multiwalled carbon nanotubes were introduced to improve sensitivity of the assay. The envelope (E) protein, a major immunogenic protein of JEV, was utilized to optimize the assay parameters. Under the optimal conditions, the linear response range of E protein was 0.84 to 11,200 ng/mL with a detection limit of 0.56 ng/mL. When applied for detection of JEV, the proposed method generated a linear response range between 2×10(3) and 5×10(5) PFU/mL. The detection limit for JEV was 2.0×10(3) PFU/mL, which was 2 orders of magnitude lower than that of immunochromatographic strip and similar to that obtained from RT-PCR. This method was also successfully applied to detect JEV in clinical specimens.

  17. Bead-based immunoassay allows sub-picogram detection of histidine-rich protein 2 from Plasmodium falciparum and estimates reliability of malaria rapid diagnostic tests

    Science.gov (United States)

    Rogier, Eric; Plucinski, Mateusz; Lucchi, Naomi; Mace, Kimberly; Chang, Michelle; Lemoine, Jean Frantz; Candrinho, Baltazar; Colborn, James; Dimbu, Rafael; Fortes, Filomeno; Udhayakumar, Venkatachalam; Barnwell, John

    2017-01-01

    Detection of histidine-rich protein 2 (HRP2) from the malaria parasite Plasmodium falciparum provides evidence for active or recent infection, and is utilized for both diagnostic and surveillance purposes, but current laboratory immunoassays for HRP2 are hindered by low sensitivities and high costs. Here we present a new HRP2 immunoassay based on antigen capture through a bead-based system capable of detecting HRP2 at sub-picogram levels. The assay is highly specific and cost-effective, allowing fast processing and screening of large numbers of samples. We utilized the assay to assess results of HRP2-based rapid diagnostic tests (RDTs) in different P. falciparum transmission settings, generating estimates for true performance in the field. Through this method of external validation, HRP2 RDTs were found to perform well in the high-endemic areas of Mozambique and Angola with 86.4% and 73.9% of persons with HRP2 in their blood testing positive by RDTs, respectively, and false-positive rates of 4.3% and 0.5%. However, in the low-endemic setting of Haiti, only 14.5% of persons found to be HRP2 positive by the bead assay were RDT positive. Additionally, 62.5% of Haitians showing a positive RDT test had no detectable HRP2 by the bead assay, likely indicating that these were false positive tests. In addition to RDT validation, HRP2 biomass was assessed for the populations in these different settings, and may provide an additional metric by which to estimate P. falciparum transmission intensity and measure the impact of interventions. PMID:28192523

  18. Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods.

    Science.gov (United States)

    Hervás, Mirian; López, Miguel A; Escarpa, Alberto

    2011-05-21

    Microfluidic technology has now become a novel sensing platform where different analytical steps, biological recognition materials and suitable transducers can be cleverly integrated yielding a new sensor generation. A novel "lab-on-a-chip" strategy integrating an electrokinetic magnetic bead-based electrochemical immunoassay on a microfluidic chip for reliable control of permitted levels of zearalenone in infant foods is proposed. The strategy implies the creative use of the simple channel layout of the double-T microchip to perform sequentially the immunointeraction and enzymatic reaction by applying a program of electric fields suitably connected to the reservoirs for driving the fluidics at different chambers in order to perform the different reactions. Both zones are used with the aid of a magnetic field to avoid in a very simple and elegant way the non-specific adsorption. Immunological reaction is performed under a competitive enzyme-linked immunosorbent assay (ELISA) where the mycotoxin ZEA and an enzyme-labelled derivative compete for the binding sites of the specific monoclonal antibody immobilised onto protein G modified magnetic beads. Horseradish peroxidase (HRP), in the presence of hydrogen peroxide, catalyses the oxidation of hydroquinone (HQ) to benzoquinone (BQN), whose back electrochemical reduction was detected at +0.1 V. Controlled-electrokinetic fluidic handling optimized conditions are addressed for all analytical steps cited above, and allows performing the complete immunoassay for the target ZEA analyte in less than 15 minutes with unique analytical merits: competitive immunoassay currents showed a very well-defined concentration dependence with a good precision as well as a suitable limit of detection of 0.4 µg L(-1), well below the legislative requirements, and an extremely low systematic error of 2% from the analysis of a maize certified reference material revealing additionally an excellent accuracy. Also, the reliability of the

  19. Magnetic bead-based enzyme-chromogenic substrate system for ultrasensitive colorimetric immunoassay accompanying cascade reaction for enzymatic formation of squaric acid-iron(III) chelate.

    Science.gov (United States)

    Lai, Wenqiang; Tang, Dianping; Zhuang, Junyang; Chen, Guonan; Yang, Huanghao

    2014-05-20

    This work reports on a simple and feasible colorimetric immunoassay with signal amplification for sensitive determination of prostate-specific antigen (PSA, used as a model) at an ultralow concentration by using a new enzyme-chromogenic substrate system. We discovered that glucose oxidase (GOx), the enzyme broadly used in enzyme-linked immunosorbent assay (ELISA), has the ability to stimulate in situ formation of squaric acid (SQA)-iron(III) chelate. GOx-catalyzed oxidization of glucose leads to the formation of gluconic acid and hydrogen peroxide (H2O2). The latter can catalytically oxidize iron(II) to iron(III), which can rapidly (immunoassay protocol with GOx-labeled anti-PSA detection antibody can be designed for the detection of target PSA on capture antibody-functionalized magnetic immunosensing probe, monitored by recording the color or absorbance (λ = 468 nm) of the generated SQA-iron(III) chelate. The absorbance intensity shows to be dependent on the concentration of target PSA. A linear dependence between the absorbance and target PSA concentration is obtained under optimal conditions in the range from 1.0 pg mL(-1) to 30 ng mL(-1) with a detection limit (LOD) of 0.5 pg mL(-1) (0.5 ppt) estimated at the 3Sblank level. The sensitivity displays to be 3-5 orders of magnitude better than those of most commercialized human PSA ELISA kits. In addition, the developed colorimetric immunoassay was validated by assaying 12 human serum samples, receiving in good accordance with those obtained by the commercialized PSA ELISA kit. Importantly, the SQA-based immunosensing system can be further extended for the detection of other low-abundance proteins or biomarkers by controlling the target antibody.

  20. Electrochemical immunoassay using magnetic beads for the determination of zearalenone in baby food: An anticipated analytical tool for food safety

    Energy Technology Data Exchange (ETDEWEB)

    Hervas, Miriam; Lopez, Miguel Angel [Departamento Quimica Analitica, Universidad de Alcala, Ctra. Madrid-Barcelona, Km. 33600, E-28871 Alcala de Henares, Madrid (Spain); Escarpa, Alberto, E-mail: alberto.escarpa@uah.es [Departamento Quimica Analitica, Universidad de Alcala, Ctra. Madrid-Barcelona, Km. 33600, E-28871 Alcala de Henares, Madrid (Spain)

    2009-10-27

    In this work, electrochemical immunoassay involving magnetic beads to determine zearalenone in selected food samples has been developed. The immunoassay scheme has been based on a direct competitive immunoassay method in which antibody-coated magnetic beads were employed as the immobilisation support and horseradish peroxidase (HRP) was used as enzymatic label. Amperometric detection has been achieved through the addition of hydrogen peroxide substrate and hydroquinone as mediator. Analytical performance of the electrochemical immunoassay has been evaluated by analysis of maize certified reference material (CRM) and selected baby food samples. A detection limit (LOD) of 0.011 {mu}g L{sup -1} and EC{sub 50} 0.079 {mu}g L{sup -1} were obtained allowing the assessment of the detection of zearalenone mycotoxin. In addition, an excellent accuracy with a high recovery yield ranging between 95 and 108% has been obtained. The analytical features have shown the proposed electrochemical immunoassay to be a very powerful and timely screening tool for the food safety scene.

  1. Hydrogel nanoparticle based immunoassay

    Science.gov (United States)

    Liotta, Lance A; Luchini, Alessandra; Petricoin, Emanuel F; Espina, Virginia

    2015-04-21

    An immunoassay device incorporating porous polymeric capture nanoparticles within either the sample collection vessel or pre-impregnated into a porous substratum within fluid flow path of the analytical device is presented. This incorporation of capture particles within the immunoassay device improves sensitivity while removing the requirement for pre-processing of samples prior to loading the immunoassay device. A preferred embodiment is coreshell bait containing capture nanoparticles which perform three functions in one step, in solution: a) molecular size sieving, b) target analyte sequestration and concentration, and c) protection from degradation. The polymeric matrix of the capture particles may be made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. This device is useful for point of care diagnostic assays for biomedical applications and as field deployable assays for environmental, pathogen and chemical or biological threat identification.

  2. Downregulation of pro-inflammatory cytokines by lupeol measured using cytometric bead array immunoassay.

    Science.gov (United States)

    Ahmad, Sheikh Fayaz; Pandey, Anjali; Kour, Kiranjeet; Bani, Sarang

    2010-01-01

    The objective of the study was to investigate the activity of Lupeol (LUP) on proinflammatory and anti-inflammatory cytokines in the pleural exudate from male swiss albino mice. We applied Cytometric bead array technology for simultaneously measurement of these cytokines in pleurisy induced mice treated with lupeol in graded oral doses. Cytometric bead array uses the sensitivity of amplified fluorescence detection by flowcytometer to measure soluble analytes in a particle based immune assay. This assay can accurately quantitate 5 cytokines in a 50 microlitre sample volume. Oral administration of LUP at doses of 25, 50, 100 and 200 mg/kg p.o. produced dose related inhibition of IL-2, IFN-gamma and TNF-alpha in the pleural exudate with the most significant effect at 100 mg/kg oral dose. LUP had a non significant inhibitory effect on the levels of IL-4 and IL-5.

  3. Microfluidic Platform for Enzyme-Linked and Magnetic Particle-Based Immunoassay

    Directory of Open Access Journals (Sweden)

    Dorota G. Pijanowska

    2013-06-01

    Full Text Available This article presents design and testing of a microfluidic platform for immunoassay. The method is based on sandwiched ELISA, whereby the primary antibody is immobilized on nitrocelluose and, subsequently, magnetic beads are used as a label to detect the analyte. The chip takes approximately 2 h and 15 min to complete the assay. A Hall Effect sensor using 0.35-μm BioMEMS TSMC technology (Taiwan Semiconductor Manufacturing Company Bio-Micro-Electro-Mechanical Systems was fabricated to sense the magnetic field from the beads. Furthermore, florescence detection and absorbance measurements from the chip demonstrate successful immunoassay on the chip. In addition, investigation also covers the Hall Effect simulations, mechanical modeling of the bead–protein complex, testing of the microfluidic platform with magnetic beads averaging 10 nm, and measurements with an inductor-based system.

  4. Immunoassays

    Science.gov (United States)

    Hsieh, Y.-H. Peggy

    Immunochemistry is a relatively new science that has developed rapidly in the last few decades. One of the most useful analytical developments associated with this new science is immunoassay. Originally immunoassays were developed in medical settings to facilitate the study of immunology, particularly the antibody-antigen interaction. Immunoassays now are finding widespread applications outside the clinical field because they are appropriate for a wide range of analytes ranging from proteins to small organic molecules. In the food analysis area, immunoassays are widely used for chemical residue analysis, identification of bacteria and viruses, and detection of proteins in food and agricultural products. Protein detection is important for determination of allergens and meat species content, seafood species identification, and detection of genetically modified plant tissues. While immunoassays of all formats are too numerous to cover completely in this chapter, there are several procedures that have become standard for food analysis because of their specificity, sensitivity, and simplicity.

  5. Immunoassays

    NARCIS (Netherlands)

    Pas, Hendrikus; Jonkman, Marcel

    2016-01-01

    Immunoassays are helpful serological techniques for the laboratory diagnosis of autoimmune blistering diseases (AIBD) and for monitoring disease activity of individual patients. The three main immunoassaysare immunoblotting, immunoprecipitation, and ELISA. All three make use of the ability of the au

  6. Viral RNA testing and automation on the bead-based CBNE detection microsystem.

    Energy Technology Data Exchange (ETDEWEB)

    Galambos, Paul C.; Bourdon, Christopher Jay; Farrell, Cara M.; Rossito, Paul (University of California at Davis); McClain, Jaime L.; Derzon, Mark Steven; Cullor, James Sterling (University of California at Davis); Rahimian, Kamayar

    2008-09-01

    We developed prototype chemistry for nucleic acid hybridization on our bead-based diagnostics platform and we established an automatable bead handling protocol capable of 50 part-per-billion (ppb) sensitivity. We are working towards a platform capable of parallel, rapid (10 minute), raw sample testing for orthogonal (in this case nucleic acid and immunoassays) identification of biological (and other) threats in a single sensor microsystem. In this LDRD we developed the nucleic acid chemistry required for nucleic acid hybridization. Our goal is to place a non-cell associated RNA virus (Bovine Viral Diarrhea, BVD) on the beads for raw sample testing. This key pre-requisite to showing orthogonality (nucleic acid measurements can be performed in parallel with immunoassay measurements). Orthogonal detection dramatically reduces false positives. We chose BVD because our collaborators (UC-Davis) can supply samples from persistently infected animals; and because proof-of-concept field testing can be performed with modification of the current technology platform at the UC Davis research station. Since BVD is a cattle-prone disease this research dovetails with earlier immunoassay work on Botulinum toxin simulant testing in raw milk samples. Demonstration of BVD RNA detection expands the repertoire of biological macromolecules that can be adapted to our bead-based detection. The resources of this late start LDRD were adequate to partially demonstrate the conjugation of the beads to the nucleic acids. It was never expected to be adequate for a full live virus test but to motivate that additional investment. In addition, we were able to reduce the LOD (Limit of Detection) for the botulinum toxin stimulant to 50 ppb from the earlier LOD of 1 ppm. A low LOD combined with orthogonal detection provides both low false negatives and low false positives. The logical follow-on steps to this LDRD research are to perform live virus identification as well as concurrent nucleic acid and

  7. Development of a flow cytometric bead immunoassay and its assessment as a possible aid to potency evaluation of enterotoxaemia vaccines

    Directory of Open Access Journals (Sweden)

    Angela Buys

    2014-02-01

    Full Text Available Enterotoxaemia, an economically important disease of sheep, goats and calves, is caused by systemic effects of the epsilon toxin produced by the anaerobic bacterium Clostridium perfringens type D. The only practical means of controlling the occurrence of enterotoxaemia is to immunise animals by vaccination. The vaccine is prepared by deriving a toxoid from the bacterial culture filtrate and the potency of the vaccine is tested with the in vivo mouse neutralisation test (MNT. Due to ethical, economic and technical reasons, alternative in vitro assays are needed. In this study an indirect cytometric bead immunoassay (I-CBA was developed for use in vaccine potency testing and the results were compared with those obtained using an indirect enzyme-linked immunosorbent assay (I-ELISA and the MNT. Sera were collected from guinea pigs immunised with three different production batches of enterotoxaemia vaccine and the levels of anti-epsilon toxin antibodies were determined. Although the intra- and inter-assay variability was satisfactory, epsilon antitoxin levels determined by both the I-ELISA and indirect cytometric bead immunoassay (I-CBA tests were higher than those of the MNT assay. In contrast to the MNT, all of the serum samples were identified as having antitoxin levels above the required minimum (not less than 5 U/mL. These results indicate that the respective in vitro tests in their current formats are not yet suitable alternatives to the in vivo MNT. The growing demand for a more humane, cost-effective and efficient method for testing the potency of enterotoxaemia vaccines, however, provides a strong impetus for further optimisation and standardisation of the I-CBA assay but further analytical research is required.

  8. Human alpha-fetal protein immunoassay using fluorescence suppression with fluorescent-bead/antibody conjugate and enzymatic reaction.

    Science.gov (United States)

    Ahn, Junhyoung; Shin, Yong-Beom; Lee, JaeJong; Kim, Min-Gon

    2015-09-15

    The aim of the study was to develop a simple and rapid immunoassay using fluorescent microbeads and enzyme-substrate reactions to measure alpha-fetal protein (AFP) concentrations. We demonstrated the functionality of the fluorescent immunosensor using antibody-conjugated fluorescent latex beads (AB-FLBs) and horseradish peroxidase (HRP) to catalyze a reaction, where the products would precipitate and suppress the fluorescence of AB-FLBs. First, the AB-FLBs were incubated with antigen, biotinylated antibodies (bABs), and streptavidin-HRP (SAv-HRP) to form a sandwich-type immunoreaction. The mixture was then filtered through a membrane to concentrate the beads on a small area. After washing to remove unbound bABs and SAv-HRP, a chromogenic HRP substrate and H2O2 were added to form precipitates on the FLB surface. The suppression of the fluorescence was measured with a fluorescent image analyzer system. Under optimized conditions, AFP could be measured at concentrations as low as 1 pg mL(-1) with a dynamic range up to 100 ng mL(-1).

  9. Enzymatic hydrolysate-induced displacement reaction with multifunctional silica beads doped with horseradish peroxidase-thionine conjugate for ultrasensitive electrochemical immunoassay.

    Science.gov (United States)

    Lin, Youxiu; Zhou, Qian; Lin, Yuping; Tang, Dianping; Niessner, Reinhard; Knopp, Dietmar

    2015-08-18

    A novel (invertase) enzymatic hydrolysate-triggered displacement reaction strategy with multifunctional silica beads, doped with horseradish peroxidase-thionine (HRP-Thi) conjugate, was developed for competitive-type electrochemical immunoassay of small molecular aflatoxin B1 (AFB1). The competitive-type displacement reaction was carried out on the basis of the affinity difference between enzymatic hydrolysate (glucose) and its analogue (dextran) for concanavalin A (Con A) binding sites. Initially, thionine-HRP conjugates were doped into nanometer-sized silica beads using the reverse micelle method. Then monoclonal anti-AFB1 antibody and Con A were covalently conjugated to the silica beads. The immunosensor was prepared by means of immobilizing the multifunctional silica beads on a dextran-modified sensing interface via the dextran-Con A binding reaction. Gold nanoparticles functionalized with AFB1-bovine serum albumin conjugate (AFB1-BSA) and invertase were utilized as the trace tag. Upon target AFB1 introduction, a competitive-type immunoreaction was implemented between the analyte and the labeled AFB1-BSA on the nanogold particles for the immobilized anti-AFB1 antibody on the electrode. The invertase followed by gold nanoparticles hydrolyzed sucrose into glucose and fructose. The produced glucose displaced the multifunctional silica beads from the electrode based on the classical dextran-Con A-glucose system, thus decreasing the catalytic efficiency of the immobilized HRP on the electrode relative to that of the H2O2-thionine system. Under optimal conditions, the detectable electrochemical signal increased with the increasing target AFB1 in a dynamic working range from 3.0 pg mL(-1) to 20 ng mL(-1) with a detection limit of 2.7 pg mL(-1). The strong bioconjugation with two nanostructures also resulted in a good repeatability and interassay precision down to 9.3%. Finally, the methodology was further validated for analysis of naturally contaminated or spiked AFB1

  10. In vivo behavior of hydrogel beads based on amidated pectins.

    Science.gov (United States)

    Munjeri, O; Collett, J H; Fell, J T; Sharma, H L; Smith, A M

    1998-01-01

    Radio-labeled hydrogel beads, based on amidated pectin, have been produced by adding droplets of an amidated pectin solution to calcium chloride. Incorporation of model drugs into the beads and measurement of the dissolution rate showed that the properties of the beads were unaffected by the incorporation of the radiolabel. The labeled beads were used to carry out an in vivo study of their behavior in the gastrointestinal tract using human volunteers. The volunteers were given the beads after an overnight fast and images were obtained at frequent intervals during transit through the upper gastrointestinal tract and the colon. The beads exhibited rapid gastric emptying and proceeded to pass through the small intestine individually before regrouping at the ileo-caecal junction. Once in the colon, the beads again proceeded as individuals and evidence of the degradation of the beads was observed.

  11. Lab-on-a-Chip Magneto-Immunoassays: How to Ensure Contact between Superparamagnetic Beads and the Sensor Surface

    Directory of Open Access Journals (Sweden)

    Andreas Hütten

    2013-09-01

    Full Text Available Lab-on-a-chip immuno assays utilizing superparamagnetic beads as labels suffer from the fact that the majority of beads pass the sensing area without contacting the sensor surface. Different solutions, employing magnetic forces, ultrasonic standing waves, or hydrodynamic effects have been found over the past decades. The first category uses magnetic forces, created by on-chip conducting lines to attract beads towards the sensor surface. Modifications of the magnetic landscape allow for additional transport and separation of different bead species. The hydrodynamic approach uses changes in the channel geometry to enhance the capture volume. In acoustofluidics, ultrasonic standing waves force µm-sized particles onto a surface through radiation forces. As these approaches have their disadvantages, a new sensor concept that circumvents these problems is suggested. This concept is based on the granular giant magnetoresistance (GMR effect that can be found in gels containing magnetic nanoparticles. The proposed design could be realized in the shape of paper-based test strips printed with gel-based GMR sensors.

  12. Lab-on-a-Chip Magneto-Immunoassays: How to Ensure Contact between Superparamagnetic Beads and the Sensor Surface.

    Science.gov (United States)

    Eickenberg, Bernhard; Meyer, Judith; Helmich, Lars; Kappe, Daniel; Auge, Alexander; Weddemann, Alexander; Wittbracht, Frank; Hütten, Andreas

    2013-09-17

    Lab-on-a-chip immuno assays utilizing superparamagnetic beads as labels suffer from the fact that the majority of beads pass the sensing area without contacting the sensor surface. Different solutions, employing magnetic forces, ultrasonic standing waves, or hydrodynamic effects have been found over the past decades. The first category uses magnetic forces, created by on-chip conducting lines to attract beads towards the sensor surface. Modifications of the magnetic landscape allow for additional transport and separation of different bead species. The hydrodynamic approach uses changes in the channel geometry to enhance the capture volume. In acoustofluidics, ultrasonic standing waves force µm-sized particles onto a surface through radiation forces. As these approaches have their disadvantages, a new sensor concept that circumvents these problems is suggested. This concept is based on the granular giant magnetoresistance (GMR) effect that can be found in gels containing magnetic nanoparticles. The proposed design could be realized in the shape of paper-based test strips printed with gel-based GMR sensors.

  13. Detection of Avian Influenza Virus by Fluorescent DNA Barcode-based Immunoassay with Sensitivity Comparable to PCR

    DEFF Research Database (Denmark)

    Cao, Cuong; Dhumpa, Raghuram; Bang, Dang Duong

    2010-01-01

    in amplification of the signal. Using an inactivated H16N3 AIV as a model, a linear response over five orders of magnitude was obtained, and the sensitivity of the detection was comparable to conventional RT-PCR. Moreover, the entire detection required less than 2 hr. The results indicate that the method has great......In this paper, a coupling of fluorophore-DNA barcode and bead-based immunoassay for detecting avian influenza virus (AIV) with PCR-like sensitivity is reported. The assay is based on the use of sandwich immunoassay and fluorophore-tagged oligonucleotides as representative barcodes. The detection...

  14. Bead Collage: An Arts-Based Research Method

    Science.gov (United States)

    Kay, Lisa

    2013-01-01

    In this paper, "bead collage," an arts-based research method that invites participants to reflect, communicate and construct their experience through the manipulation of beads and found objects is explained. Emphasizing the significance of one's personal biography and experiences as a researcher, I discuss how my background as an…

  15. A nonenzymatic optical immunoassay strategy for detection of Salmonella infection based on blue silica nanoparticles.

    Science.gov (United States)

    Sun, Qian; Zhao, Guangying; Dou, Wenchao

    2015-10-22

    A novel nonenzymatic optical immunoassay strategy was for the first time designed and utilized for sensitive detection of antibody to Salmonella pullorum and Salmonella gallinarum (S. pullorum and S. gallinarum) in serum. The optical immunoassay strategy was based on blue silica nanoparticles (Blue-SiNps) and magnetic beads (MB). To construct such an optical immunoassay system, the Blue-SiNPs were first synthesized by inverse microemulsion method, characterized by SEM, Zeta potential and FTIR. Two nanostructures including Blue-SiNPs and MB were both functionalized with antibody against S. pullorum and S. gallinarum (anti-PG) without using enzyme labeled antibody. Anti-PG functionalized blue silica nanoparticles (IgG-Blue-SiNps) were used as signal transduction labels, while anti-PG functionalized magnetic beads (IgG-MB) were selected to separate and enrich the final sandwich immune complexes. In the process of detecting negative serum, a sandwich immunocomplex is formed between the IgG-MB and IgG-Blue-SiNPs. With the separation of the immunocomplex using an external magnetic field, the final plaque displayed bright blue color. While in the detection of infected serum, IgG-MB and anti-PG formed sandwich immunocomplexes, IgG-Blue-SiNPs were unable to bind to the limited sites of the antigen, and a light brown plaque was displayed in the bottom of microplate well. Stable results were obtained with an incubation time of 60 min at room temperature, and different colors corresponding to different results can be directly detected with naked eye. The reaction of IgG-Blue-SiNPs with S. pullorum was inhibited by 1:100 dilution of positive chicken serum. Such a simple immunoassay holds great potential as sensitive, selective and point-of-care (POC) tool for diagnosis of other biological molecules.

  16. Polystyrene Based SPR Biosensor Chip for Use in Immunoassay

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Biosensors are widely used in immunoassay.The biosensor chip carries a receptor which is used in immunoassay and the chip properties have an important influence on the detecting sensitivity of the biosensor.This paper describes a polystyrene-based biosensor chip developed and used as part of a surface plasmon resonance (SPR) biosensor.The SPR biosensor has a much higher detecting sensitivity than enzyme-linked immunoserbent assay (ELISA).

  17. Non-constrictive bead immobilization leading to decreased and uniform shear stress in microfluidic bead-based ELISA

    CERN Document Server

    Mitra, Kinshuk; Chidambaram, Preethi; Maharry, Aaron P; Xu, Ronald X; Tweedle, Michael F

    2014-01-01

    Microfluidic biosensors have been utilized for sensing a wide range of antigens using numerous configurations. Bead based microfluidic sensors have been a popular modality due to the plug and play nature of analyte choice and the favorable geometry of spherical sensor scaffolds. While constriction of beads against fluid flow remains a popular method to immobilize the sensor, it results in poor fluidic regimes and shear conditions around sensor beads that can affect sensor performance. We present an alternative means of sensor bead immobilization using poly-carbonate membrane. This system results in several orders of magnitude lower variance of flow radially around the sensor bead. Shear stress experienced by our non-constrictive immobilized bead was three orders of magnitude lower. We demonstrate ability to quantitatively sense EpCAM protein, a marker for cancer stem cells and operation under both far-red and green wavelengths with no auto-fluorescence.

  18. Sensitivity Enhancement of Bead-based Electrochemical Impedance Spectroscopy (BEIS) biosensor by electric field-focusing in microwells.

    Science.gov (United States)

    Shin, Kyeong-Sik; Ji, Jae Hoon; Hwang, Kyo Seon; Jun, Seong Chan; Kang, Ji Yoon

    2016-11-15

    This paper reports a novel electrochemical impedance spectroscopy (EIS) biosensors that uses magnetic beads trapped in a microwell array to improve the sensitivity of conventional bead-based EIS (BEIS) biosensors. Unloading the previously measured beads by removing the magnetic bar enables the BEIS sensor to be used repeatedly by reloading it with new beads. Despite its recyclability, the sensitivity of conventional BEIS biosensors is so low that it has not attracted much attentions from the biosensor industry. We significantly improved the sensitivity of the BEIS system by introducing of a microwell array that contains two electrodes (a working electrode and a counter electrode) to concentrate the electric field on the surfaces of the beads. We confirmed that the performance of the BEIS sensor in a microwell array using an immunoassay of prostate specific antigen (PSA) in PBS buffer and human plasma. The experimental results showed that a low concentration of PSA (a few tens or hundreds of fg/mL) were detectable as a ratio of the changes in the impedance of the PBS buffer or in human plasma. Therefore, our BEIS sensor with a microwell array could be a promising platform for low cost, high-performance biosensors for applications that require high sensitivity and recyclability.

  19. Flow injection chemiluminescence immunoassay of microcystin-LR by using PEI-modified magnetic beads as capturer and HRP-functionalized silica nanoparticles as signal amplifier.

    Science.gov (United States)

    Lu, Jusheng; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin

    2013-03-07

    A rapid sandwiched immunoassay of microcystin-LR (MC-LR) in water is proposed with flow injection chemiluminescence detection. The magnetic beads (MBs) were first modified with polyethyleneimine (PEI) by acylamide bond between the carboxyl group on the surface of MBs and the primary amine group in PEI, followed by immobilizing of anti-MC-LR (Ab1) onto PEI with glutaraldehyde as linkage. The resulting Ab1 modified MBs captured the target MC-LR in water, reacted with the horseradish peroxidase and anti-MC-LR co-immobilized silica nanoparticles, and were detected with flow injection chemiluminescence. When using PEI/MBs as the carrier of anti-MC-LR, the CL signal was greatly enhanced up to 9-fold compared to that using MBs without PEI modification. The CL signal was further amplified 13-fold when Si/Ab2 was used as the signal probe. Under the optimal conditions, the present immunoassay exhibited a wide quantitative range from 0.02 to 200 μg L(-1) with a detection limit of 0.006 μg L(-1), which was much lower than the WHO provisional guideline limit of 1.0 μg L(-1) for MC-LR in drinking water. The relative standard deviation was 4.8% and the recoveries for the spiked samples ranged from 84% to 115%, which indicated acceptable precision and accuracy for MC-LR. The present method is easier to perform and less time-consuming (the entire analysis process lasted about 40 minutes) and has been applied to the detection of MC-LR in different water samples successfully.

  20. Bead-Based Microfluidic Sediment Analogues: Fabrication and Colloid Transport.

    Science.gov (United States)

    Guo, Yang; Huang, Jingwei; Xiao, Feng; Yin, Xiaolong; Chun, Jaehun; Um, Wooyong; Neeves, Keith B; Wu, Ning

    2016-09-13

    Mobile colloids can act as carriers for low-solubility contaminants in the environment. However, the dominant mechanism for this colloid-facilitated transport of chemicals is unclear. Therefore, we developed a bead-based microfluidic platform of sediment analogues and measured both single and population transport of model colloids. The porous medium is assembled through a bead-by-bead injection method. This approach has the versatility to build both electrostatically homogeneous and heterogeneous media at the pore scale. A T-junction at the exit also allowed for encapsulation and enumeration of colloids effluent at single particle resolution to give population dynamics. Tortuosity calculated from pore-scale trajectory analysis and its comparison with lattice Boltzmann simulations revealed that transport of colloids was influenced by the size exclusion effect. The porous media packed by positively and negatively charged beads into two layers showed distinctive colloidal particle retention and significant remobilization and re-adsorption of particles during water flushing. We demonstrated the potential of our method to fabricate porous media with surface heterogeneities at the pore scale. With both single and population dynamics measurement, our platform has the potential to connect pore-scale and macroscale colloid transport on a lab scale and to quantify the impact of grain surface heterogeneities that are natural in the subsurface environment.

  1. An ultrasensitive electrogenerated chemiluminescence-based immunoassay for specific detection of Zika virus

    Science.gov (United States)

    Acharya, Dhiraj; Bastola, Pradip; Le, Linda; Paul, Amber M.; Fernandez, Estefania; Diamond, Michael S.; Miao, Wujian; Bai, Fengwei

    2016-01-01

    Zika virus (ZIKV) is a globally emerging mosquito-transmitted flavivirus that can cause severe fetal abnormalities, including microcephaly. As such, highly sensitive, specific, and cost-effective diagnostic methods are urgently needed. Here, we report a novel electrogenerated chemiluminescence (ECL)-based immunoassay for ultrasensitive and specific detection of ZIKV in human biological fluids. We loaded polystyrene beads (PSB) with a large number of ECL labels and conjugated them with anti-ZIKV monoclonal antibodies to generate anti-ZIKV-PSBs. These anti-ZIKV-PSBs efficiently captured ZIKV in solution forming ZIKV-anti-ZIKV-PSB complexes, which were subjected to measurement of ECL intensity after further magnetic beads separation. Our results show that the anti-ZIKV-PSBs can capture as little as 1 PFU of ZIKV in 100 μl of saline, human plasma, or human urine. This platform has the potential for development as a cost-effective, rapid and ultrasensitive assay for the detection of ZIKV and possibly other viruses in clinical diagnosis, epidemiologic and vector surveillance, and laboratory research. PMID:27554037

  2. Highly sensitive SERS-based immunoassay of aflatoxin B1 using silica-encapsulated hollow gold nanoparticles.

    Science.gov (United States)

    Ko, Juhui; Lee, Chankil; Choo, Jaebum

    2015-03-21

    Aflatoxin B1 (AFB1) is a well-known carcinogenic contaminant in foods. It is classified as an extremely hazardous compound because of its potential toxicity to the human nervous system. AFB1 has also been extensively used as a biochemical marker to evaluate the degree of food spoilage. In this study, a novel surface-enhanced Raman scattering (SERS)-based immunoassay platform using silica-encapsulated hollow gold nanoparticles (SEHGNs) and magnetic beads was developed for highly sensitive detection of AFB1. SEHGNs were used as highly stable SERS-encoding nano tags, and magnetic beads were used as supporting substrates for the high-density loading of immunocomplexes. Quantitative analysis of AFB1 was performed by monitoring the intensity change of the characteristic peaks of Raman reporter molecules. The limit of detection (LOD) of AFB1, determined by this SERS-based immunoassay, was determined to be 0.1 ng/mL. This method has some advantages over other analytical methods with respect to rapid analysis (less than 30 min), good selectivity, and reproducibility. The proposed method is expected to be a new analytical tool for the trace analysis of various mycotoxins.

  3. Micromotor-based lab-on-chip immunoassays

    Science.gov (United States)

    García, Miguel; Orozco, Jahir; Guix, Maria; Gao, Wei; Sattayasamitsathit, Sirilak; Escarpa, Alberto; Merkoçi, Arben; Wang, Joseph

    2013-01-01

    Here we describe the first example of using self-propelled antibody-functionalized synthetic catalytic microengines for capturing and transporting target proteins between the different reservoirs of a lab-on-a-chip (LOC) device. A new catalytic polymer/Ni/Pt microtube engine, containing carboxy moieties on its mixed poly(3,4-ethylenedioxythiophene) (PEDOT)/COOH-PEDOT polymeric outermost layer, is further functionalized with the antibody receptor to selectively recognize and capture the target protein. The new motor-based microchip immunoassay operations are carried out without any bulk fluid flow, replacing the common washing steps in antibody-based protein bioassays with the active transport of the captured protein throughout the different reservoirs, where each step of the immunoassay takes place. A first microchip format involving an `on-the-fly' double-antibody sandwich assay (DASA) is used for demonstrating the selective capture of the target protein, in the presence of excess of non-target proteins. A secondary antibody tagged with a polymeric-sphere tracer allows the direct visualization of the binding events. In a second approach the immuno-nanomotor captures and transports the microsphere-tagged antigen through a microchannel network. An anti-protein-A modified microengine is finally used to demonstrate the selective capture, transport and convenient label-free optical detection of a Staphylococcus aureus target bacteria (containing proteinA in its cell wall) in the presence of a large excess of non-target (Saccharomyces cerevisiae) cells. The resulting nanomotor-based microchip immunoassay offers considerable potential for diverse applications in clinical diagnostics, environmental and security monitoring fields.Here we describe the first example of using self-propelled antibody-functionalized synthetic catalytic microengines for capturing and transporting target proteins between the different reservoirs of a lab-on-a-chip (LOC) device. A new catalytic

  4. Colour-encoded paramagnetic microbead-based direct inhibition triplex flow cytometric immunoassay for ochratoxin A, fumonisins and zearalenone in cereals and cereal-based feed

    NARCIS (Netherlands)

    Peters, J.; Thomas, D.; Boers, E.A.M.; Rijk, de T.C.; Berthiller, F.; Haasnoot, W.; Nielen, M.W.F.

    2013-01-01

    A combined (triplex) immunoassay for the simultaneous detection of three mycotoxins in grains was developed with superparamagnetic colour-encoded microbeads, in combination with two bead-dedicated flow cytometers. Monoclonal antibodies were coupled to the beads, and the amounts of bound mycotoxins w

  5. Nanoparticle-based immunosensors and immunoassays for aflatoxins.

    Science.gov (United States)

    Wang, Xu; Niessner, Reinhard; Tang, Dianping; Knopp, Dietmar

    2016-03-17

    Aflatoxins are naturally existing mycotoxins produced mainly by Aspergillus flavus and Aspergillus parasiticus, present in a wide range of food and feed products. Because of their extremely high toxicity and carcinogenicity, strict control of maximum residue levels of aflatoxins in foodstuff is set by many countries. In daily routine, different chromatographic methods are used almost exclusively. As supplement, in several companies enzyme immunoassay-based sample testing as primary screening is performed. Recently, nanomaterials such as noble metal nanoparticles, magnetic particles, carbon nanomaterials, quantum dots, and silica nanomaterials are increasingly utilized for aflatoxin determination to improve the sensitivity and simplify the detection. They are employed either as supports for the immobilization of biomolecules or as electroactive or optical labels for signal transduction and amplification. Several nanoparticle-based electrochemical, piezoelectric, optical, and immunodipstick assays for aflatoxins have been developed. In this review, we summarize these recent advances and illustrate novel concepts and promising applications in the field of food safety.

  6. Label-free bead-based metallothionein electrochemical immunosensor.

    Science.gov (United States)

    Nejdl, Lukas; Nguyen, Hoai Viet; Richtera, Lukas; Krizkova, Sona; Guran, Roman; Masarik, Michal; Hynek, David; Heger, Zbynek; Lundberg, Karin; Erikson, Kristofer; Adam, Vojtech; Kizek, Rene

    2015-08-01

    A novel microfluidic label-free bead-based metallothionein immunosensors was designed. To the surface of superparamagnetic agarose beads coated with protein A, polyclonal chicken IgY specifically recognizing metallothionein (MT) were immobilized via rabbit IgG. The Brdicka reaction was used for metallothionein detection in a microfluidic printed 3D chip. The assembled chip consisted of a single copper wire coated with a thin layer of amalgam as working electrode. Optimization of MT detection using designed microfluidic chip was performed in stationary system as well as in the flow arrangement at various flow rates (0-1800 μL/min). In stationary arrangement it is possible to detect MT concentrations up to 30 ng/mL level, flow arrangement allows reliable detection of even lower concentration (12.5 ng/mL). The assembled miniature flow chip was subsequently tested for the detection of MT elevated levels (at approx. level 100 μg/mL) in samples of patients with cancer. The stability of constructed device for metallothionein detection in flow arrangement was found to be several days without any maintenance needed.

  7. First application of a microsphere-based immunoassay to the detection of genetically modified organisms (GMOs): quantification of Cry1Ab protein in genetically modified maize.

    Science.gov (United States)

    Fantozzi, Anna; Ermolli, Monica; Marini, Massimiliano; Scotti, Domenico; Balla, Branko; Querci, Maddalena; Langrell, Stephen R H; Van den Eede, Guy

    2007-02-21

    An innovative covalent microsphere immunoassay, based on the usage of fluorescent beads coupled to a specific antibody, was developed for the quantification of the endotoxin Cry1Ab present in MON810 and Bt11 genetically modified (GM) maize lines. In particular, a specific protocol was developed to assess the presence of Cry1Ab in a very broad range of GM maize concentrations, from 0.1 to 100% [weight of genetically modified organism (GMO)/weight]. Test linearity was achieved in the range of values from 0.1 to 3%, whereas fluorescence signal increased following a nonlinear model, reaching a plateau at 25%. The limits of detection and quantification were equal to 0.018 and 0.054%, respectively. The present study describes the first application of quantitative high-throughput immunoassays in GMO analysis.

  8. A Compact Immunoassay Platform Based on a Multicapillary Glass Plate

    OpenAIRE

    Shuhua Xue; Hulie Zeng; Jianmin Yang; Hizuru Nakajima; Katsumi Uchiyama

    2014-01-01

    A highly sensitive, rapid immunoassay performed in the multi-channels of a micro-well array consisting of a multicapillary glass plate (MCP) and a polydimethylsiloxane (PDMS) slide is described. The micro-dimensions and large surface area of the MCP permitted the diffusion distance to be decreased and the reaction efficiency to be increased. To confirm the concept of the method, human immunoglobulin A (h-IgA) was measured using both the proposed immunoassay system and the traditional 96-well ...

  9. Nanoparticle-based immunosensors and immunoassays for aflatoxins

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu; Niessner, Reinhard [Institute of Hydrochemistry and Chair of Analytical Chemistry, Technische Universität München, Marchioninistrasse 17, D-81377 München (Germany); Tang, Dianping [Key Laboratory of Analysis and Detection for Food Safety, MOE & Fujian Province, Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); Knopp, Dietmar, E-mail: dietmar.knopp@ch.tum.de [Institute of Hydrochemistry and Chair of Analytical Chemistry, Technische Universität München, Marchioninistrasse 17, D-81377 München (Germany)

    2016-03-17

    Aflatoxins are naturally existing mycotoxins produced mainly by Aspergillus flavus and Aspergillus parasiticus, present in a wide range of food and feed products. Because of their extremely high toxicity and carcinogenicity, strict control of maximum residue levels of aflatoxins in foodstuff is set by many countries. In daily routine, different chromatographic methods are used almost exclusively. As supplement, in several companies enzyme immunoassay-based sample testing as primary screening is performed. Recently, nanomaterials such as noble metal nanoparticles, magnetic particles, carbon nanomaterials, quantum dots, and silica nanomaterials are increasingly utilized for aflatoxin determination to improve the sensitivity and simplify the detection. They are employed either as supports for the immobilization of biomolecules or as electroactive or optical labels for signal transduction and amplification. Several nanoparticle-based electrochemical, piezoelectric, optical, and immunodipstick assays for aflatoxins have been developed. In this review, we summarize these recent advances and illustrate novel concepts and promising applications in the field of food safety. - Highlights: • Novel concepts and promising applications of nanoparticle-based immunological methods for the determination of aflatoxins. • Inclusion of most important nanomaterials and hybrid nanostructures. • Inclusion of electrochemical, optical and mass-sensitive biosensors as well as optical and immunochromatographic assays.

  10. Multiplex competitive microbead-based flow cytometric immunoassay using quantum dot fluorescent labels

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hye-Weon; Kim, In S. [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju (Korea, Republic of); Niessner, Reinhard [Chair for Analytical Chemistry, Institute of Hydrochemistry, Technische Universitaet Muenchen, Marchioninistrasse 17, 81377 Muenchen (Germany); Knopp, Dietmar, E-mail: dietmar.knopp@ch.tum.de [Chair for Analytical Chemistry, Institute of Hydrochemistry, Technische Universitaet Muenchen, Marchioninistrasse 17, 81377 Muenchen (Germany)

    2012-10-31

    Highlights: Black-Right-Pointing-Pointer First time, duplex competitive bead-based flow cytometric immunoassay was developed using ODs. Black-Right-Pointing-Pointer Antibody-coated QD detection probes and antigen-immobilized microspheres were synthesized. Black-Right-Pointing-Pointer The two model target analytes were low molecular weight compounds of microbial and chemical origin. Black-Right-Pointing-Pointer The determination of different water types was possible after simple filtration of samples. - Abstract: In answer to the ever-increasing need to perform the simultaneous analysis of environmental hazards, microcarrier-based multiplex technologies show great promise. Further integration with biofunctionalized quantum dots (QDs) creates new opportunities to extend the capabilities of multicolor flow cytometry with their unique fluorescence properties. Here, we have developed a competitive microbead-based flow cytometric immunoassay using QDs fluorescent labels for simultaneous detection of two analytes, bringing the benefits of sensitive, rapid and easy-of-manipulation analytical tool for environmental contaminants. As model target compounds, the cyanobacterial toxin microcystin-LR and the polycyclic aromatic hydrocarbon compound benzo[a]pyrene were selected. The assay was carried out in two steps: the competitive immunological reaction of multiple targets using their exclusive sensing elements of QD/antibody detection probes and antigen-coated microsphere, and the subsequent flow cytometric analysis. The fluorescence of the QD-encoded microsphere was thus found to be inversely proportional to target analyte concentration. Under optimized conditions, the proposed assay performed well within 30 min for the identification and quantitative analysis of the two environmental contaminants. For microcystin-LR and benzo[a]pyrene, dose-response curves with IC{sub 50} values of 5 {mu}g L{sup -1} and 1.1 {mu}g L{sup -1} and dynamic ranges of 0.52-30 {mu}g L{sup -1} and 0

  11. Immobilization of aptamer-based molecular beacons onto optically-encoded micro-sized beads.

    Science.gov (United States)

    Jun, Bong-Hyun; Kim, Ji-Eun; Rho, Chul; Byun, Jang-Woong; Kim, Yo Han; Kang, Homan; Kim, Jong-Ho; Kang, Taegyu; Cho, Myung-Haing; Lee, Yoon-Sik

    2011-07-01

    This paper presents a method for the novel immobilization of aptamer-based molecular beacons (apta-beacons) onto optically-encoded micro-sized beads (apta-beacon beads). To immobilize apta-beacons onto flourescently-encoded micro-sized beads, core-shell type beads containing a fluorescent dye-encoded core and apta beacon-coupled shell were prepared. The fluorescent dye-encoded beads were prepared from TentaGel resins by coupling RITC to the amino groups of the core region, after partial protection of amino groups with Fmoc-OSu in a diffusion-controlled manner. After deprotection of the Fmoc-amino groups, FITC-coupled molecular beacons (MBs) were immobilized to the beads together with a quencher by covelent bonding. Briefly, aspartic acid (Asp) was coupled to the shell part of the beads. Then, the quencher was coupled to the N-terminal amino group of Asp and the MBs were coupled to the side chain carboxyl group. In a model study, thrombin was directly detected using this apta-beacon bead method. The thrombin-bound apta-beacon beads were easily recognized by the appearance of fluorescence without any further labeling step.

  12. A bead-based suspension array for the serological detection of Trichinella in pigs

    NARCIS (Netherlands)

    Wal, van der F.J.; Achterberg, R.P.; Kant, A.; Maassen, C.B.M.

    2013-01-01

    The feasibility of using bead-based suspension arrays to detect serological evidence of Trichinella in pigs was assessed. Trichinella spiralis excretory–secretory antigen was covalently coupled to paramagnetic beads and used to bind serum antibodies, which were subsequently detected using anti-swine

  13. On-chip native gel electrophoresis-based immunoassays for tetanus antibody and toxin.

    Science.gov (United States)

    Herr, Amy E; Throckmorton, Daniel J; Davenport, Andrew A; Singh, Anup K

    2005-01-15

    By integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device, we have developed a microanalytical platform for performing electrophoresis-based immunoassays. The microfluidic immunoassays are performed by gel electrophoretic separation and quantitation of bound and unbound antibody or antigen. To retain biological activity of proteins and maintain intact immune complexes, nondenaturing polyacrylamide gel electrophoresis conditions were investigated. Both direct (noncompetitive) and competitive immunoassay formats are demonstrated in microchips. A direct immunoassay was developed for detection of tetanus antibodies in buffer as well as diluted serum samples. After an off-chip incubation step, the immunoassay was completed in less than 3 min and the sigmoidal dose-response curve spanned an antibody concentration range from 0.17 to 260 nM. The minimum detectable antibody concentration was 0.68 nM. A competitive immunoassay was also developed for tetanus toxin C-fragment by allowing unlabeled and fluorescently labeled tetanus toxin C-fragment compete to bind to a limited fixed concentration of tetanus antibody. The immunoassay technique described in this work shows promise as a component of an integrated microfluidic device amenable to automation and relevant to development of clinical diagnostic devices.

  14. Simultaneous Determination of the Main Peanut Allergens in Foods Using Disposable Amperometric Magnetic Beads-Based Immunosensing Platforms

    Directory of Open Access Journals (Sweden)

    Víctor Ruiz-Valdepeñas Montiel

    2016-06-01

    Full Text Available In this work, a novel magnetic beads (MBs-based immunosensing approach for the rapid and simultaneous determination of the main peanut allergenic proteins (Ara h 1 and Ara h 2 is reported. It involves the use of sandwich-type immunoassays using selective capture and detector antibodies and carboxylic acid-modified magnetic beads (HOOC-MBs. Amperometric detection at −0.20 V was performed using dual screen-printed carbon electrodes (SPdCEs and the H2O2/hydroquinone (HQ system. This methodology exhibits high sensitivity and selectivity for the target proteins providing detection limits of 18.0 and 0.07 ng/mL for Ara h 1 and Ara h 2, respectively, with an assay time of only 2 h. The usefulness of the approach was evaluated by detecting the endogenous content of both allergenic proteins in different food extracts as well as trace amounts of peanut allergen (0.0001% or 1.0 mg/kg in wheat flour spiked samples. The developed platform provides better Low detection limits (LODs in shorter assay times than those claimed for the allergen specific commercial ELISA kits using the same immunoreagents and quantitative information on individual food allergen levels. Moreover, the flexibility of the methodology makes it readily translate to the detection of other food-allergens.

  15. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers

    Science.gov (United States)

    Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2016-04-01

    There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips.

  16. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers.

    Science.gov (United States)

    Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2016-04-21

    There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips.

  17. A Compact Immunoassay Platform Based on a Multicapillary Glass Plate

    Directory of Open Access Journals (Sweden)

    Shuhua Xue

    2014-05-01

    Full Text Available A highly sensitive, rapid immunoassay performed in the multi-channels of a micro-well array consisting of a multicapillary glass plate (MCP and a polydimethylsiloxane (PDMS slide is described. The micro-dimensions and large surface area of the MCP permitted the diffusion distance to be decreased and the reaction efficiency to be increased. To confirm the concept of the method, human immunoglobulin A (h-IgA was measured using both the proposed immunoassay system and the traditional 96-well plate method. The proposed method resulted in a 1/5-fold decrease of immunoassay time, and a 1/56-fold cut in reagent consumption with a 0.05 ng/mL of limit of detection (LOD for IgA. The method was also applied to saliva samples obtained from healthy volunteers. The results correlated well to those obtained by the 96-well plate method. The method has the potential for use in disease diagnostic or on-site immunoassays.

  18. A compact immunoassay platform based on a multicapillary glass plate.

    Science.gov (United States)

    Xue, Shuhua; Zeng, Hulie; Yang, Jianmin; Nakajima, Hizuru; Uchiyama, Katsumi

    2014-05-23

    A highly sensitive, rapid immunoassay performed in the multi-channels of a micro-well array consisting of a multicapillary glass plate (MCP) and a polydimethylsiloxane (PDMS) slide is described. The micro-dimensions and large surface area of the MCP permitted the diffusion distance to be decreased and the reaction efficiency to be increased. To confirm the concept of the method, human immunoglobulin A (h-IgA) was measured using both the proposed immunoassay system and the traditional 96-well plate method. The proposed method resulted in a 1/5-fold decrease of immunoassay time, and a 1/56-fold cut in reagent consumption with a 0.05 ng/mL of limit of detection (LOD) for IgA. The method was also applied to saliva samples obtained from healthy volunteers. The results correlated well to those obtained by the 96-well plate method. The method has the potential for use in disease diagnostic or on-site immunoassays.

  19. A disposable immunomagnetic electrochemical sensor based on functionalised magnetic beads and carbon-based screen-printed electrodes (SPCEs) for the detection of polychlorinated biphenyls (PCBs)

    Energy Technology Data Exchange (ETDEWEB)

    Centi, S. [Universita degli Studi di Firenze, Dipartimento di Chimica, Polo Scientifico, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence (Italy)]. E-mail: marco.mascini@unifi.it; Laschi, S. [Universita degli Studi di Firenze, Dipartimento di Chimica, Polo Scientifico, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence (Italy); Franek, M. [Veterinary Research Institute, Hudcova 70, 62132 Brno (Czech Republic); Mascini, M. [Universita degli Studi di Firenze, Dipartimento di Chimica, Polo Scientifico, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence (Italy)

    2005-05-04

    A disposable immunomagnetic electrochemical sensor involving magnetic particles and carbon-based screen-printed electrodes (SPCEs) was developed and applied for the detection of polychlorinated biphenyls (PCBs). The sensor was based on a direct competitive immunoassay scheme in which antibody-coated magnetic beads were used as solid phase; then SPCEs were employed as transducers for the evaluation of the extent of the immunochemical reaction using an alkaline phosphatase (AP) labelled tracer. The {alpha}-naphthyl phosphate was used as enzymatic substrate and the {alpha}-naphthol produced during the enzymatic reaction was detected using differential pulse voltammetry (DPV). A detection limit of 0.4 ng/mL for Aroclor 1248 PCB mixture was obtained. The performance of the sensor was successfully evaluated on marine sediment extracts and soil samples spiked with different Aroclor mixtures indicating that this new and sensitive technique offers great promise for decentralized environmental applications.

  20. REVIEW: CHITOSAN BASED HYDROGEL POLYMERIC BEADS – AS DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Manjusha Rani

    2010-11-01

    Full Text Available Chitosan obtained by alkaline deacetylation of chitin is a non-toxic, biocompatible, and biodegradable natural polymer. Chitosan-based hydrogel polymeric beads have been extensively studied as micro- or nano-particulate carriers in the pharmaceutical and medical fields, where they have shown promise for drug delivery as a result of their controlled and sustained release properties, as well as biocompatibility with tissue and cells. To introduce desired properties and enlarge the scope of the potential applications of chitosan, graft copolymerization with natural or synthetic polymers on it has been carried out, and also, various chitosan derivatives have been utilized to form beads. The desired kinetics, duration, and rate of drug release up to therapeutical level from polymeric beads are limited by specific conditions such as beads material and their composition, bead preparation method, amount of drug loading, drug solubility, and drug polymer interaction. The present review summarizes most of the available reports about compositional and structural effects of chitosan-based hydrogel polymeric beads on swelling, drug loading, and releasing properties. From the studies reviewed it is concluded that chitosan-based hydrogel polymeric beads are promising drug delivery systems.

  1. A bacteria-based bead for possible self-healing marine concrete applications

    Science.gov (United States)

    Palin, D.; Wiktor, V.; Jonkers, H. M.

    2016-08-01

    This work presents a bacteria-based bead for potential self-healing concrete applications in low-temperature marine environments. The bead consisting of calcium alginate encapsulated bacterial spores and mineral precursor compounds was assessed for: oxygen consumption, swelling, and its ability to form a biocomposite in a simulative marine concrete crack solution (SMCCS) at 8 °C. After six days immersion in the SMCCS the bacteria-based beads formed a calcite crust on their surface and calcite inclusions in their network, resulting in a calcite-alginate biocomposite. Beads swelled by 300% to a maximum diameter of 3 mm, while theoretical calculations estimate that 0.112 g of the beads were able to produce ˜1 mm3 of calcite after 14 days immersion; providing the bead with considerable crack healing potential. The bacteria-based bead shows great potential for the development of self-healing concrete in low-temperature marine environments, while the formation of a biocomposite healing material represents an exciting avenue for self-healing concrete research.

  2. Magnetic bead-based phage anti-immunocomplex assay (PHAIA) for the detection of the urinary biomarker 3-phenoxybenzoic acid to assess human exposure to pyrethroid insecticides.

    Science.gov (United States)

    Kim, Hee-Joo; Ahn, Ki Chang; González-Techera, Andrés; González-Sapienza, Gualberto G; Gee, Shirley J; Hammock, Bruce D

    2009-03-01

    Noncompetitive immunoassays are advantageous over competitive assays for the detection of small molecular weight compounds. We recently demonstrated that phage peptide libraries can be an excellent source of immunoreagents that facilitate the development of sandwich-type noncompetitive immunoassays for the detection of small analytes, avoiding the technical challenges of producing anti-immunocomplex antibody. In this work we explore a new format that may help to optimize the performance of the phage anti-immunocomplex assay (PHAIA) technology. As a model system we used a polyclonal antibody to 3-phenoxybenzoic acid (3-PBA) and an anti-immunocomplex phage clone bearing the cyclic peptide CFNGKDWLYC. The assay setup with the biotinylated antibody immobilized onto streptavidin-coated magnetic beads significantly reduced the amount of coating antibody giving identical sensitivity (50% saturation of the signal (SC(50))=0.2-0.4ng/ml) to the best result obtained with direct coating of the antibody on ELISA plates. The bead-based assay tolerated up to 10 and 5% of methanol and urine matrix, respectively. This assay system accurately determined the level of spiked 3-PBA in different urine samples prepared by direct dilution or clean-up with solid-phase extraction after acidic hydrolysis with overall recovery of 80-120%.

  3. Design and Fabrication of a PDMS Microchip Based Immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guocheng; Wang, Wanjun; Wang, Jun; Lin, Yuehe

    2010-07-01

    In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close a 200µm wide micro channel with flow rate up to 20µl/min.

  4. Graphene-based immunoassay for human lipocalin-2.

    Science.gov (United States)

    Vashist, Sandeep Kumar

    2014-02-01

    We have developed a highly sensitive immunoassay using graphene nano platelets (GNPs) for the rapid detection of human lipocalin-2 (LCN2) in plasma, serum, and whole blood. It has the dynamic range, linear range, limit of detection, and analytical sensitivity of 0.6 to 5120, 80 to 2560, 0.7, and 1pg/ml, respectively. It is the most sensitive assay for the detection of LCN2, which has 80-fold higher analytical sensitivity and 3-fold lesser immunoassay duration than the commercially available sandwich enzyme-linked immunosorbent assay (ELISA) kit. The functionalization of microtiter plate (MTP) with GNPs, dispersed in 3-aminopropyltriethoxysilane (APTES), provided the increased surface area that leads to higher immobilization density of capture antibodies. Moreover, the generation of free amino groups on MTP and GNPs by APTES enables the leach-proof covalent crosslinking of anti-human LCN2 capture antibody by its carboxyl groups using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) as the heterobifunctional crosslinker. The anti-LCN2 antibody-bound MTPs were highly stable given that they did not show any significant decrease in their functional activity when stored at 4°C in 0.1M phosphate-buffered saline (PBS) for 8weeks. The developed immunoassay correlated well with the conventional ELISA, thereby demonstrating its high precision and potential utility for highly sensitive analyte detection in industrial and clinical settings.

  5. A polymer lab-on-a-chip for magnetic immunoassay with on-chip sampling and detection capabilities.

    Science.gov (United States)

    Do, Jaephil; Ahn, Chong H

    2008-04-01

    This paper presents a new polymer lab-on-a-chip for magnetic bead-based immunoassay with fully on-chip sampling and detection capabilities, which provides a smart platform of magnetic immunoassay-based lab-on-a-chip for point-of-care testing (POCT) toward biochemical hazardous agent detection, food inspection or clinical diagnostics. In this new approach, the polymer lab-on-a-chip for magnetic bead-based immunoassay consists of a magnetic bead-based separator, an interdigitated array (IDA) micro electrode, and a microfluidic system, which are fully incorporated into a lab-on-a-chip on cyclic olefin copolymer (COC). Since the polymer lab-on-a-chip was realized using low cost, high throughput polymer microfabrication techniques such as micro injection molding and hot embossing method, a disposable polymer lab-on-a-chip for the magnetic bead-based immunoassay can be successfully realized in a disposable platform. With this newly developed polymer lab-on-a-chip, an enzyme-labelled electrochemical immunoassay (ECIA) was performed using magnetic beads as the mobile solid support, and the final enzyme product produced from the ECIA was measured using chronoamperometry. A sampling and detection of as low as 16.4 ng mL(-1) of mouse IgG has been successfully performed in 35 min for the entire procedure.

  6. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Henriksen, Anders Dahl

    2014-01-01

    of the differential sensor geometry. The sensor surfaces are functionalized with wild type (WT) and mutant type (MT) capture probes, differing by a single base insertion (a single nucleotide polymorphism, SNP). Complementary biotinylated targets in suspension couple streptavidin magnetic beads to the sensor surface......We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches....... The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover...

  7. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    Science.gov (United States)

    Rizzi, Giovanni; Østerberg, Frederik W.; Henriksen, Anders D.; Dufva, Martin; Hansen, Mikkel F.

    2015-04-01

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches of the differential sensor geometry. The sensor surfaces are functionalized with wild type (WT) and mutant type (MT) capture probes, differing by a single base insertion (a single nucleotide polymorphism, SNP). Complementary biotinylated targets in suspension couple streptavidin magnetic beads to the sensor surface. The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover, we demonstrate that a single sensor bridge can be used to genotype a SNP.

  8. Clinical validation of surface-enhanced Raman scattering-based immunoassays in the early diagnosis of rheumatoid arthritis.

    Science.gov (United States)

    Chon, Hyangah; Wang, Rui; Lee, Sangyeop; Bang, So-Young; Lee, Hye-Soon; Bae, Sang-Cheol; Hong, Sung Hyun; Yoon, Young Ho; Lim, Dong Woo; deMello, Andrew J; Choo, Jaebum

    2015-11-01

    We assessed the clinical feasibility of conducting immunoassays based on surface-enhanced Raman scattering (SERS) in the early diagnosis of rheumatoid arthritis (RA). An autoantibody against citrullinated peptide (anti-CCP) was used as a biomarker, magnetic beads conjugated with CCP were used as substrates, and the SERS nanotags were comprised of anti-human IgG-conjugated hollow gold nanospheres (HGNs). We were able to determine the anti-CCP serum levels successfully by observing the distinctive Raman intensities corresponding to the SERS nanotags. At high concentrations of anti-CCP (>25 U/mL), the results obtained from the SERS assay confirmed those obtained via an ELISA-based assay. Nevertheless, quantitation via our SERS-based assay is significantly more accurate at low concentrations (25 U/mL) revealed a good correlation between the ELISA and SERS-based assays. However, in the anti-CCP-negative group (n = 43, <25 U/mL), the SERS-based assay was shown to be more reproducible. Accordingly, we suggest that SERS-based assays are novel and potentially useful tools in the early diagnosis of RA.

  9. Fluorescence polarization immunoassay for salinomycin based on monoclonal antibodies

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A fluorescence polarization immunoassay(FPIA) for the determination of salinomycin(SAL) was developed by using anti-SAL monoclonal antibodies(mAb).Fluorescein labeled SAL(tracer) was synthesized by the N-hydroxysuccinimide active ester method and purified using thin layer chromatography(TLC).The developed FPIA for SAL had a dynamic range from 0.60 to 2193 ng/mL with an IC50 value of 33.2 ng/mL and a detection limit(LOD) of 0.08 ng/mL.No significant cross-reactivities were observed with other drugs but 67.6% with narasin.

  10. Enhancement of Fluorescence-Based Sandwich Immunoassay Using Multilayered Microplates Modified with Plasma-Polymerized Films

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Yano

    2016-12-01

    Full Text Available A functional modification of the surface of a 96-well microplate coupled with a thin layer deposition technique is demonstrated for enhanced fluorescence-based sandwich immunoassays. The plasma polymerization technique enabling the deposition of organic thin films was employed for the modification of the well surface of a microplate. A silver layer and a plasma-polymerized film were consecutively deposited on the microplate as a metal mirror and the optical interference layer, respectively. When Cy3-labeled antibody was applied to the wells of the resulting multilayered microplate without any immobilization step, greatly enhanced fluorescence was observed compared with that obtained with the unmodified one. The same effect could be also exhibited for an immunoassay targeting antigen directly adsorbed on the multilayered microplate. Furthermore, a sandwich immunoassay for the detection of interleukin 2 (IL-2 was performed with the multilayered microplates, resulting in specific and 88-fold–enhanced fluorescence detection.

  11. Triboelectric generator based on a moving charged bead

    Science.gov (United States)

    Kim, Jihoon; Chae, Soo Sang; Han, Sun Woong; Lee, Keun Ho; Ki, Tae Hoon; Oh, Jin Young; Lee, Ji Hoon; Kim, Won Shik; Jang, Woo Soon; Baik, Hong Koo

    2016-11-01

    An energy harvesting system using a triboelectric generator (TEG), which converts a small amount of mechanical energy to available electrical energy, has recently been developed by combining a simple one-directional mechanical force (contact and separation or sliding back and forth) with a 2D device materials. However, with regard to using the TEG in real world applications, there is no TEG design suitable for utilizing a variety of mechanical forces and for generating triboelectric charge in various environmental conditions, especially under high relative humidity. In this work, we introduce a design for a humidity-independent triboelectric generator (HITEG) that can generate triboelectric charges with a granular system by simple rotating or shaking under high relative humidity conditions. The HITEG can generate an open-circuit voltage of 81.63 V and a short-circuit current of 213.9 nA using 80 polytetrafluoroethylene beads. Electronic supplementary information (ESI) available: More detailed information for analytic calculation via COMSOL about available charge distance between the PTFE bead and Cu electrode, illustration of the speed-dependence contact area, and time dependent long-term stability.

  12. Rapid polyelectrolyte-based membrane immunoassay for the herbicide butachlor.

    Science.gov (United States)

    Dzantiev, B B; Byzova, N A; Zherdev, A V; Hennion, M C

    2005-01-01

    Oppositely charged water-soluble polyelectrolytes were used in the developed membrane immunoenzyme assay for the herbicide butachlor. High-affinity and rapid binding between polyanion polymethacrylate and polycation poly(N-ethyl-4-vinylpyridinium) was applied to separate reacted and free immunoreactants. Competitive immunoassay format with peroxidase-labeled antigen was realized. The insoluble colored product of the peroxidase reaction was formed by bound labeled immune complexes and was reflectometrically detected. The assay combines short duration (15 min), high sensitivity (0.03 g/mL) and availability for out-of-laboratory testing. Different image processing algorithms were used to determine the herbicide content. Low variation coefficients of the measurements in the proposed quantitative assay, namely 4.8-9.0% for the range of antigen concentrations from 0.1 to 3.0 ng/mL, are evidence of the assay effectiveness. Possibility to control the butachlor content in mineral, artesian, and drinking water was demonstrated.

  13. Microfluidic immunosensor with micromagnetic beads coupled to carbon-based screen-printed electrodes (SPCEs) for determination of Botrytis cinerea in tissue of fruits.

    Science.gov (United States)

    Fernández-Baldo, Martín A; Messina, Germán A; Sanz, Maria I; Raba, Julio

    2010-11-10

    A wide range of plant species, including economically important crops such as vegetables, ornamentals, bulbs, and fundamentally fruits, can be affected by gray mold caused by the fungal pathogen Botrytis cinerea . This paper describes the development of a microfluidic immunosensor with micromagnetic beads (MMBs) coupled to carbon-based screen-printed electrodes (SPCEs) for the rapid and sensitive quantification of B. cinerea in apple (Red Delicious), table grape (pink Moscatel), and pear (William's) tissues. The detection of B. cinerea was carried out using a competitive immunoassay method based on the use of purified B. cinerea antigens immobilized on 3-aminopropyl-modified MMBs. The total assay time was 40 min, and the calculated detection limit was 0.008 μg mL(-1). Moreover, the intra- and interassay coefficients of variation were below 7%. The developed method allowed detects B. cinerea even in asymptomatic fruits and promises to be particularly useful for application in the agricultural industry.

  14. Identification of serum biomarkers for lung cancer using magnetic bead-based SELDI-TOF-MS

    OpenAIRE

    SONG, QI-BIN; Hu, Wei-Guo; Wang, Peng; Yao, Yi; Zeng, Hua-zong

    2011-01-01

    Aim: To identify novel serum biomarkers for lung cancer diagnosis using magnetic bead-based surface-enhanced laser desorption/ionization time-of-flight mass spectrum (SELDI-TOF-MS). Methods: The protein fractions of 121 serum specimens from 30 lung cancer patients, 30 pulmonary tuberculosis patients and 33 healthy controls were enriched using WCX magnetic beads and subjected to SELDI-TOF-MS. The spectra were analyzed using Bio-marker Wizard version 3.1.0 and Biomarker Patterns Software versio...

  15. A Novel Magnetic Bead-based Biosensor Using Flip Chip Bonding Techniques

    Institute of Scientific and Technical Information of China (English)

    Bin Wang; Xiang Chen; Qinghui Jin; Jianlong Zhao; Yuansen Xu

    2006-01-01

    Based on flip-chip packaging, a novel approach towards integrated magnetic bio-separator was designed. The magnetic field and the force on the bead were simulated and analyzed, leading to the optimization of the fabrication parameters of the micro-magnetic unit. The planar coil as an electromagnet was fabricated through electroplating on a single seed layer.The PDMS microfluidic channel was bonded on the inverse side after Si etching. The results presented in this paper provide a novel design and fabrication to approach a microfluidic bio-separation system with magnetic beads.

  16. Automated Solid-Phase Subcloning Based on Beads Brought into Proximity by Magnetic Force

    DEFF Research Database (Denmark)

    Hudson, Elton P.; Nikoshkov, Andrej; Uhlén, Mathias;

    2012-01-01

    and the gene are immobilized to separate paramagnetic beads and brought into proximity by magnetic force. Ligation events were directly evaluated using fluorescent-based microscopy and flow cytometry. The highest ligation efficiencies were obtained when gene- and vector-coated beads were brought into close...... contact by application of a magnet during the ligation step. An automated procedure was developed using a laboratory workstation to transfer genes into various expression vectors and more than 95% correct clones were obtained in a number of various applications. The method presented here is suitable...

  17. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rizzi, Giovanni, E-mail: giori@nanotech.dtu.dk; Østerberg, Frederik W.; Henriksen, Anders D.; Dufva, Martin; Hansen, Mikkel F., E-mail: mikkel.hansen@nanotech.dtu.dk

    2015-04-15

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches of the differential sensor geometry. The sensor surfaces are functionalized with wild type (WT) and mutant type (MT) capture probes, differing by a single base insertion (a single nucleotide polymorphism, SNP). Complementary biotinylated targets in suspension couple streptavidin magnetic beads to the sensor surface. The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover, we demonstrate that a single sensor bridge can be used to genotype a SNP. - Highlights: • We apply magnetoresistive sensors to study solid-surface hybridization kinetics of DNA. • We measure DNA melting profiles for perfectly matching DNA duplexes and for a single base mismatch. • We present a procedure to correct for temperature dependencies of the sensor output. • We reliably extract melting temperatures for the DNA hybrids. • We demonstrate direct measurement of differential binding signal for two probes on a single sensor.

  18. Sugar additives improve signal fidelity for implementing two-phase resorufin-based enzyme immunoassays.

    Science.gov (United States)

    Sandoz, Patrick A; Chung, Aram J; Weaver, Westbrook M; Di Carlo, Dino

    2014-06-17

    Enzymatic signal amplification based on fluorogenic substrates is commonly used for immunoassays; however, when transitioning these assays to a digital format in water-in-mineral oil emulsions, such amplification methods have been limited by the leakage of small reporting fluorescent probes. In the present study, we used a microfluidic system to study leakage from aqueous droplets in a controlled manner and confirmed that the leakage of fluorescent resorufin derivatives is mostly due to the presence of the lipophilic surfactant Span80, which is commonly used to preserve emulsion stability. This leakage can be overcome by the addition of specific sugars that most strongly interfered with the surfactants ability to form micelles in water. The application of the microfluidic system to the quantitative analysis of droplets and the implementation of the described sugar additives would allow for alternatives to fluorinated surfactant-based platforms and improve the signal fidelity in enzyme immunoassays implemented through multiphase microfluidics.

  19. Preparation and Characterization of Alginate-Hyaluronic Acid-chitosan based Composite Gel Beads

    Institute of Scientific and Technical Information of China (English)

    HU Yan; ZHENG Mengzhu; DONG Xiaoying; ZHAO Dan; CHENG Han; XIAO Xincai

    2015-01-01

    The aim of this study was to fabricate composite gel beads based on natural polysaccharides. Hyaluronic acid (HA) and Chitosan (CS) were successfully admixed with Ca2+/alginate (SA) gel system to produce SA/HA/CS gel beads by dual crosslinking:the ionic gelation and the polyelectrolyte complexation. The preparation procedure was that the weight ratio of SA (2%, m/v) to HA (2%, m/v) was kept at 2:1, then the mixture was dripped into the Ca2+solution for ion-crosslinking, and finally polyelectrolyte crosslinked with 2%low molecular weight CS (LMW-CS) for 1.5 hours. The optimal formulation was achieved by adjusting the concentration and the weight ratio of SA, HA and LMW-CS. Due to the incorporation of HA and LMW-CS, the swelling ratio of the beads at pH 7.4 was increased up to 120, and the time for the maximum swelling degree was prolonged to 7.5 h. The swelling behavior was obviously improved compared to the pure SA/Ca2+system. The preliminary results clearly suggest that the SA/HA/CS gel beads may be a potential candidate for biomedical delivery vehicles.

  20. Floating capsules containing alginate-based beads of salbutamol sulfate: In vitro-in vivo evaluations.

    Science.gov (United States)

    Malakar, Jadupati; Datta, Prabir Kumar; Purakayastha, Saikat Das; Dey, Sanjay; Nayak, Amit Kumar

    2014-03-01

    The present study deals with the development and evaluations of stomach-specific floating capsules containing salbutamol sulfate-loaded oil-entrapped alginate-based beads. Salbutamol sulfate-loaded oil-entrapped beads were prepared and capsulated within hard gelatin capsules (size 1). The effects of HPMC K4M and potato starch weight masses on drug encapsulation efficiency (DEE) of beads and cumulative drug release at 10h (R10 h) from capsules was analyzed by 3(2) factorial design. The optimization results indicate increasing of DEE in the oil-entrapped beads and decreasing R10 h from capsules with increment of HPMC K4M and potato starch weight masses. The optimized formulation showed DEE of 70.02 ± 3.16% and R10 h of 56.96 ± 2.92%. These capsules showed floatation over 6h and sustained drug release over 10h in gastric pH (1.2). In vivo X-ray imaging study of optimized floating capsules in rabbits showed stomach-specific gastroretention over a prolonged period.

  1. A quantum dot-based immunoassay for screening of tetracyclines in bovine muscle.

    Science.gov (United States)

    García-Fernández, Jenifer; Trapiella-Alfonso, Laura; Costa-Fernández, José M; Pereiro, Rosario; Sanz-Medel, Alfredo

    2014-02-19

    A reliable and robust direct screening methodology based on a quantum dot (QD) fluorescent immunoassay has been developed to detect trace levels of different antibiotic species from the family of the tetracyclines (e.g., oxytetracycline, tetracycline, chlortetracycline, and doxycycline) in contaminated bovine muscle tissues. First, the synthesis and characterization of a new immunoprobe (oxytetracycline-bovine serum albumin-QD) has been carried out for its further application in the development of a competitive fluorescent QD-immunoassay. The developed fluoroimmunoassay provides sensitive and binary "yes/no" responses being appropriate for the screening of this family of antibiotics above or below a preset concentration threshold. The detection limit achieved with this strategy, 1 μg/L in aqueous media and 10 μg/kg in bovine muscle samples, is 10-fold lower than the maximum level concentration allowed by International Legislation in muscle tissue, enabling suitable and efficient screening of the antibiotics.

  2. Hybridization chain reaction-based fluorescence immunoassay using DNA intercalating dye for signal readout.

    Science.gov (United States)

    Deng, Yan; Nie, Ji; Zhang, Xiao-hui; Zhao, Ming-Zhe; Zhou, Ying-Lin; Zhang, Xin-Xiang

    2014-07-07

    A novel format of fluorescence immunosorbent assay based on the hybridization chain reaction (HCR) using a DNA intercalating dye for signal readout was constructed for the sensitive detection of targets, both in competitive and sandwich modes. In this platform, the capture and recognition processes are based on immunoreactions and the signal amplification depends on the enzyme-free, isothermal HCR-induced labelling event. After a competitive or a sandwich immunoreaction, a biotinylated capture DNA was bound to a biotinylated signal antibody through avidin, and triggered the HCR by two specific hairpins into a nicked double helix. Gene Finder (GF), a fluorescent probe for double-strand DNA, was intercalated in situ into the amplified chain to produce the fluorescence signal. The limit of detection (LOD) for rabbit IgG in competitive mode by HCR/GF immunoassay was improved at least 100-fold compared with the traditional fluorescence immunoassay using the fluorescein isothiocyanate-labelled-streptavidin or fluorescein isothiocyanate-labelled second antibody as the signal readout. The proposed fluorescence immunoassay was also demonstrated by using α-fetoprotein as the model target in sandwich mode, and showed a wide linear range from 28 ng mL(-1) to 20 μg mL(-1) with a LOD of 6.0 ng mL(-1). This method also showed satisfactory analysis in spiked human serum, which suggested that it might have great potential for versatile applications in life science and point-of-care diagnostics.

  3. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay.

    Science.gov (United States)

    Speranskaya, Elena S; Beloglazova, Natalia V; Lenain, Pieterjan; De Saeger, Sarah; Wang, Zhanhui; Zhang, Suxia; Hens, Zeger; Knopp, Dietmar; Niessner, Reinhard; Potapkin, Dmitry V; Goryacheva, Irina Yu

    2014-03-15

    The paper describes all stages of synthesis and characterization of biocompatible CdSe-based core/shell quantum dots (QDs) and their application as fluorescent label for immunoassay. Special attention was focused on development of maleic anhydride-based amphiphilic polymers for QDs solubilization in aqueous media. In this work two PEG-amines were tried for polymer modification: monoamine Jeffamine M 1000 used previously in some researches and diamine Jeffamine ED-2003 applied for the first time for QDs solubilization. The use of different Jeffamines allows us to obtain QDs with carboxyl or amine functional groups available for conjugation. The influence of polymer composition on optical properties of the nanocrystals and their stability in aqueous solutions as well as on their conjugation with biomolecules was studied. QDs with different coatings were used as biolabels in quantitative fluorescence microtiter plate immunoassay and qualitative on-site column test. It was found that quantum dots covered with amphiphilic polymer prepared from poly(maleic anhydride-alt-1-octadecene) and Jeffamine ED-2003 retained up to 90% of their initial brightness, easily conjugated with protein and showed low non-specific adsorption. In optimized conditions the obtained QDs were successfully used for determination of mycotoxin deoxynivalenol in wheat and maize samples by fluorescence microtiter plate immunoassay with an IC50 of 220 μg kg(-1) and by on-site column test with cut-off of 500 μg kg(-1).

  4. Matrix Effects on the Microcystin-LR Fluorescent Immunoassay Based on Optical Biosensor

    Directory of Open Access Journals (Sweden)

    Han-Chang Shi

    2009-04-01

    Full Text Available Matrix effects on the microcystin-LR fluorescent immunoassay based on the evanescent wave all-fiber immunosensor (EWAI and their elimination methods were studied. The results indicated that PBS and humic acid did not affect the monitoring of samples under the investigated conditions. When the pH was less than 6 or higher than 8, the fluorescence signals detected by immunosensor systems were obviously reduced with the decrease or increase of pH. When the pH ranged from 6 to 8, IC50 and the linear working range of MC-LR calculated from the detection curves were 1.01~1.04 μg/L and 0.12~10.5 μg/L, respectively, which was favourable for an MC-LR immunoassay. Low concentrations of Cu2+ rarely affected the detection performance of MC-LR. When the concentration of CuSO4 was higher than 5 mg/L, the fluorescence signal detected by EWAI clearly decreased, and when the concentration of CuSO4 was 10 mg/L, the fluorescence signal detected was reduced by 70%. The influence of Cu2+ on the immunoassay could effectively be compromised when chelating reagent EDTA was added to the pre-reaction mixture.

  5. Blu-ray optomagnetic measurement based competitive immunoassay for Salmonella detection.

    Science.gov (United States)

    Tian, Bo; Bejhed, Rebecca S; Svedlindh, Peter; Strömberg, Mattias

    2016-03-15

    A turn-on competitive immunoassay using a low-cost Blu-ray optomagnetic setup and two differently sized magnetic particles (micron-sized particles acting as capture particles and nano-sized particles acting as detection particles) is here presented. For Salmonella detection, a limit of detection of 8×10(4)CFU/mL is achieved within a total assay time of 3h. The combination of a competitive strategy and an optomagnetic setup not only enables a turn-on read-out format, but also results in a sensitivity limit about a factor of 20 times lower than of volumetric magnetic stray field detection device based immunoassays. The improvement of sensitivity is enabled by the formation of immuno-magnetic aggregates providing steric hindrance protecting the interior binding sites from interaction with the magnetic nanoparticle labels. The formation of immuno-magnetic aggregates is confirmed by fluorescence microscopy. The system exhibits no visible cross-reaction with other common pathogenic bacteria, even at concentrations as high as 10(7)CFU/mL. Furthermore, we present results when using the setup for a qualitative and homogeneous biplex immunoassay of Escherichia coli and Salmonella typhimurium.

  6. Double-antibody based immunoassay for the detection of β-casein in bovine milk samples.

    Science.gov (United States)

    Zhou, Y; Song, F; Li, Y S; Liu, J Q; Lu, S Y; Ren, H L; Liu, Z S; Zhang, Y Y; Yang, L; Li, Z H; Zhang, J H; Wang, X R

    2013-11-01

    The concentration of casein (CN) is one of the most important parameters for measuring the quality of bovine milk. Traditional approach to CN concentration determination is Kjeldahl, which is an indirect method for determination of total nitrogen content. Here, we described a double-antibody based direct immunoassay for the detection of β-CN in bovine milk samples. Monoclonal antibody (McAb) was used as capture antibody and polyclonal antibody (PcAb) labelled with horseradish peroxidase (HRP) as detection antibody. With the direct immunoassay format, the linear range of the detection was 0.1-10.0 μg mL(-1). The detection limit was 0.04 μg mL(-1). In addition, the concentration of β-CN in real bovine milk samples has been detected by the developed immunoassay. There was a good correlation between the results obtained by the developed technique and Kjeldahl method from commercial samples. Compared to the traditional approach, the advantage of the assay is no need of time-consuming sample pretreatment.

  7. Development of a new passive sampler based on diffusive milligel beads for copper analysis in water

    Energy Technology Data Exchange (ETDEWEB)

    Perez, M.; Reynaud, S.; Lespes, G.; Potin-Gautier, M. [Université de Pau et des Pays de l’Adour/CNRS UMR IPREM 5254, Hélioparc, 2 av. du Président Angot, 64053 Pau (France); Mignard, E. [CNRS-Solvay-Université Bordeaux, UMR5258, Laboratoire du Futur, 178 Avenue du Dr. A. Schweitzer, 33608 Pessac Cedex (France); Chéry, P. [Bordeaux Science Agro, 1 cours du Général De Gaulle, Gradignan, 33175 (France); Schaumlöffel, D. [Université de Pau et des Pays de l’Adour/CNRS UMR IPREM 5254, Hélioparc, 2 av. du Président Angot, 64053 Pau (France); Grassl, B., E-mail: bruno.grassl@univ-pau.fr [Université de Pau et des Pays de l’Adour/CNRS UMR IPREM 5254, Hélioparc, 2 av. du Président Angot, 64053 Pau (France)

    2015-08-26

    A new passive sampler was designed and characterized for the determination of free copper ion (Cu{sup 2+}) concentration in aqueous solution. Each sampling device was composed of a set of about 30 diffusive milligel (DMG) beads. Milligel beads with incorporated cation exchange resin (Chelex) particles were synthetized using an adapted droplet-based millifluidic process. Beads were assumed to be prolate spheroids, with a diameter of 1.6 mm and an anisotropic factor of 1.4. The milligel was controlled in chemical composition of hydrogel (monomer, cross-linker, initiator and Chelex concentration) and characterized in pore size. Two types of sampling devices were developed containing 7.5% and 15% of Chelex, respectively, and 6 nm pore size. The kinetic curves obtained demonstrated the accumulation of copper in the DMG according to the process described in the literature as absorption (and/or adsorption) and release following the Fick's first law of diffusion. For their use in water monitoring, the typical physico-chemical characteristics of the samplers, i.e. the mass-transfer coefficient (k{sub 0}) and the sampler-water partition coefficient (K{sub sw}), were determined based on a static exposure design. In order to determine the copper concentration in the samplers after their exposure, a method using DMG bead digestion combined to Inductively Coupled Plasma – Atomic Emission Spectrometry (ICP-AES) analysis was developed and optimized. The DMG devices proved to be capable to absorb free copper ions from an aqueous solution, which could be accurately quantified with a mean recovery of 99% and a repeatability of 7% (mean relative uncertainty). - Highlights: • Controlled geometry of new passive sampler with ellipsoidal shape. • Original manufacturing process based on droplet-based millifluidic device. • Pore size characterization of the sampler. • Mass-transfer and sampler-water partitioning coefficients by static exposure experiments.

  8. Optimizing a waveguide-based sandwich immunoassay for tumor biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Harshini [Los Alamos National Laboratory; Swanson, Basil I [Los Alamos National Laboratory; Xie, Hongzhi [Los Alamos National Laboratory; Anderson, Aaron S [Los Alamos National Laboratory; Grace, W Kevin [Los Alamos National Laboratory; Shively, John E [NON LANL

    2008-01-01

    The sensor team at the Los Alamos National Laboratory has developed a waveguide-based optical biosensor for the detection of biomarkers associated with the disease. We have previously demonstrated the application of this technology to the sensitive detection of carcinoembryonic antigen in serum and nipple aspirate fluid from breast cancer patients. In this publication, we report improvements to this technology that will facilitate transition to a point-of-care diagnostic system and/or robust research tool.

  9. A 3D porous polymer monolith-based platform integrated in poly(dimethylsiloxane) microchips for immunoassay.

    Science.gov (United States)

    Kang, Qin-Shu; Shen, Xiao-Fan; Hu, Na-Na; Hu, Meng-Jia; Liao, Hui; Wang, Han-Zhong; He, Zhi-Ke; Huang, Wei-Hua

    2013-05-01

    In this work, we demonstrate the immunocapture and on-line fluorescence immunoassay of protein and virus based on porous polymer monoliths (PPM) in microfluidic devices. Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [poly(GMA-co-EGDMA)] monoliths were successfully synthesized in the polydimethylsiloxane (PDMS) microfluidic channels by in situ UV-initiated free radical polymerization. After surface modification, PPM provides a high-surface area and specific affinity 3D substrate for immunoassays. Combining with well controlled microfluidic devices, the direct immunoassay of IgG and sandwich immunoassay of inactivated H1N1 influenza virus using 5 μL sample has been accomplished, with detection limits of 4 ng mL(-1) and less than 10 pg mL(-1), respectively. The enhanced detection sensitivity is due to both high surface area of PPM and flow-through design. The detection time was obviously decreased mainly due to the shortened diffusion distance and improved convective mass transfer inside the monolith, which accelerates the reaction kinetics between antigen and antibody. This work provides a novel microfluidic immunoassay platform with high efficiency thereby enabling fast and sensitive immunoassay.

  10. Porous Bead-Based Diagnostic Platforms: Bridging the Gaps in Healthcare

    Directory of Open Access Journals (Sweden)

    John McDevitt

    2012-11-01

    Full Text Available Advances in lab-on-a-chip systems have strong potential for multiplexed detection of a wide range of analytes with reduced sample and reagent volume; lower costs and shorter analysis times. The completion of high-fidelity multiplexed and multiclass assays remains a challenge for the medical microdevice field; as it struggles to achieve and expand upon at the point-of-care the quality of results that are achieved now routinely in remote laboratory settings. This review article serves to explore for the first time the key intersection of multiplexed bead-based detection systems with integrated microfluidic structures alongside porous capture elements together with biomarker validation studies. These strategically important elements are evaluated here in the context of platform generation as suitable for near-patient testing. Essential issues related to the scalability of these modular sensor ensembles are explored as are attempts to move such multiplexed and multiclass platforms into large-scale clinical trials. Recent efforts in these bead sensors have shown advantages over planar microarrays in terms of their capacity to generate multiplexed test results with shorter analysis times. Through high surface-to-volume ratios and encoding capabilities; porous bead-based ensembles; when combined with microfluidic elements; allow for high-throughput testing for enzymatic assays; general chemistries; protein; antibody and oligonucleotide applications.

  11. Experimental study of porous media flow using hydro-gel beads and LED based PIV

    Science.gov (United States)

    Harshani, H. M. D.; Galindo-Torres, S. A.; Scheuermann, A.; Muhlhaus, H. B.

    2017-01-01

    A novel experimental approach for measuring porous flow characteristics using spherical hydro-gel beads and particle image velocimetry (PIV) technique is presented. A transparent porous medium consisting of hydro-gel beads that are made of a super-absorbent polymer, allows using water as the fluid phase while simultaneously having the same refractive index. As a result, a more adaptable and cost effective refractive index matched (RIM) medium is created. The transparent nature of the porous medium allows optical systems to visualize the flow field by using poly-amide seeding particles (PSP). Low risk light emitting diode (LED) based light was used to illuminate the plane in order to track the seeding particles’ path for the characterization of the flow inside the porous medium. The system was calibrated using a manually measured flow by a flow meter. Velocity profiles were obtained and analysed qualitatively and quantitatively in order to characterise the flow. Results show that this adaptable, low risk experimental set-up can be used for flow measurements in porous medium under low Reynolds numbers. The limitations of using hydro-gel beads are also discussed.

  12. Alginate and Algal-Based Beads for the Sorption of Metal Cations: Cu(II) and Pb(II)

    Science.gov (United States)

    Wang, Shengye; Vincent, Thierry; Faur, Catherine; Guibal, Eric

    2016-01-01

    Alginate and algal-biomass (Laminaria digitata) beads were prepared by homogeneous Ca ionotropic gelation. In addition, glutaraldehyde-crosslinked poly (ethyleneimine) (PEI) was incorporated into algal beads. The three sorbents were characterized by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX): the sorption occurs in the whole mass of the sorbents. Sorption experiments were conducted to evaluate the impact of pH, sorption isotherms, and uptake kinetics. A special attention was paid to the effect of drying (air-drying vs. freeze-drying) on the mass transfer properties. For alginate, freeze drying is required for maintaining the porosity of the hydrogel, while for algal-based sorbents the swelling of the material minimizes the impact of the drying procedure. The maximum sorption capacities observed from experiments were 415, 296 and 218 mg Pb g−1 and 112, 77 and 67 mg Cu g−1 for alginate, algal and algal/PEI beads respectively. Though the sorption capacities of algal-beads decreased slightly (compared to alginate beads), the greener and cheaper one-pot synthesis of algal beads makes this sorbent more competitive for environmental applications. PEI in algal beads decreases the sorption properties in the case of the sorption of metal cations under selected experimental conditions. PMID:27598128

  13. Paper-based microreactor integrating cell culture and subsequent immunoassay for the investigation of cellular phosphorylation.

    Science.gov (United States)

    Lei, Kin Fong; Huang, Chia-Hao

    2014-12-24

    Investigation of cellular phosphorylation and signaling pathway has recently gained much attention for the study of pathogenesis of cancer. Related conventional bioanalytical operations for this study including cell culture and Western blotting are time-consuming and labor-intensive. In this work, a paper-based microreactor has been developed to integrate cell culture and subsequent immunoassay on a single paper. The paper-based microreactor was a filter paper with an array of circular zones for running multiple cell cultures and subsequent immunoassays. Cancer cells were directly seeded in the circular zones without hydrogel encapsulation and cultured for 1 day. Subsequently, protein expressions including structural, functional, and phosphorylated proteins of the cells could be detected by their specific antibodies, respectively. Study of the activation level of phosphorylated Stat3 of liver cancer cells stimulated by IL-6 cytokine was demonstrated by the paper-based microreactor. This technique can highly reduce tedious bioanalytical operation and sample and reagent consumption. Also, the time required by the entire process can be shortened. This work provides a simple and rapid screening tool for the investigation of cellular phosphorylation and signaling pathway for understanding the pathogenesis of cancer. In addition, the operation of the paper-based microreactor is compatible to the molecular biological training, and therefore, it has the potential to be developed for routine protocol for various research areas in conventional bioanalytical laboratories.

  14. Highly Sensitive Homogeneous Immunoassays Based on Construction of Silver Triangular Nanoplates-Quantum Dots FRET System

    Science.gov (United States)

    Zeng, Qinghui; Li, Qin; Ji, Wenyu; Bin, Xue; Song, Jie

    2016-05-01

    With growing concerns about health issues worldwide, elegant sensors with high sensitivity and specificity for virus/antigens (Ag) detection are urgent to be developed. Homogeneous immunoassays (HIA) are an important technique with the advantages of small sample volumes requirement and pretreatment-free process. HIA are becoming more favorable for the medical diagnosis and disease surveillance than heterogeneous immunoassays. An important subset of HIA relies on the effect of fluorescence resonance energy transfer (FRET) via a donor-acceptor (D-A) platform, e.g., quantum dots (QDs) donor based FRET system. Being an excellent plasmonic material, silver triangular nanoplates (STNPs) have unique advantages in displaying surface plasmon resonance in the visible to near infrared spectral region, which make them a better acceptor for pairing with QDs in a FRET-based sensing system. However, the reported STNPs generally exhibited broad size distributions, which would greatly restrict their application as HIA acceptor for high detection sensitivity and specificity purpose. In this work, uniform STNPs and red-emitting QDs are firstly applied to construct FRET nanoplatform in the advanced HIA and further be exploited for analyzing virus Ag. The uniform STNPs/QDs nanoplatform based medical sensor provides a straightforward and highly sensitive method for Ag analysis in homogeneous form.

  15. Assessment of colorimetric amplification methods in a paper-based immunoassay for diagnosis of malaria.

    Science.gov (United States)

    Lathwal, Shefali; Sikes, Hadley D

    2016-04-21

    Colorimetric detection methods that produce results readable by eye are important for diagnostic tests in resource-limited settings. In this work, we have compared three main types of colorimetric methods - enzymatic reactions, silver deposition catalyzed by gold nanoparticles, and polymerization-based amplification - in a paper-based immunoassay for detection of Plasmodium falciparum histidine-rich protein 2, a biomarker of malarial infection. We kept the binding events in the immunoassay constant in order to isolate the effect of the detection method on the outcome of the test. We have highlighted that the optimal readout time in a test can vary significantly - ranging from immediately after addition of a visualization agent to 25 minutes after addition of a visualization agent - depending on the colorimetric method being used, and accurate time keeping is essential to prevent false positives in methods where substantial color develops over time in negative tests. We have also shown that the choice of a colorimetric method impacts the calculated limit-of-detection, the ease of visual perception of the readout, and the total cost of the assay, and therefore directly impacts the feasibility and the ease-of-use of a test in field settings.

  16. Gold Magnetic Nanoparticles-based Chemiluminescent Immunoassay for Detection of Chloramphenicol in Milk

    Directory of Open Access Journals (Sweden)

    Wang Linyu

    2017-01-01

    Full Text Available chemiluminescent immunoassays (CLIA based on gold magnetic nanoparticles (Au-MNPs were developed for rapid analysis of chloramphen icol (CAP in milk sample. Anti-CAP antibodies were immobilized on the surfaces of Au-MNPs, luminol (Method I and 2′,6′-DiMethylcarbonylphenyl-10-sulfopropylacridinium-9-carboxylate 4′-NHS Ester, (NSP-DMAE-NHS, Method II were exploited in competitive CLIA for CAP detection in milk using a homemade luminescent measurement system. The sensitivities and limits of detection (LODs of the two methods were obtained according to the inhibition curves. It indicated that NSP-DMAE-NHS as luminescence reagent (reaction II was more sensitive and effective than luminol (reaction I. The LOD of reaction II reached 0.008 ng/ml while it was 4 ng/ml in reaction I. Moreover, the linear range of the inhibition curve of the former was wider than that of the latter. Such results indicated that the proposed CLIA stratery employing NSP-DMAE-NHS was more sensitive than other immunoassay method for CAP detection.

  17. Aggregation-induced emissive nanoparticles for fluorescence signaling in a low cost paper-based immunoassay.

    Science.gov (United States)

    Engels, Jan F; Roose, Jesse; Zhai, Demi Shuang; Yip, Ka Man; Lee, Mei Suet; Tang, Ben Zhong; Renneberg, Reinhard

    2016-07-01

    Low cost paper based immunoassays are receiving interest due to their fast performance and small amounts of biomolecules needed for developing an immunoassay complex. In this work aggregation-induced emissive (AIE) nanoparticles, obtained from a diastereoisomeric mixture of 1,2-di-(4-hydroxyphenyl)-1,2-diphenylethene (TPEDH) in a one-step top-down method, are characterized through Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Zeta potential. By measuring the Zeta potential before and after labeling the nanoparticles with antibodies we demonstrate that the colloidal system is stable in a wide pH-range. The AIE-active nanoparticles are deposited on chitosan and glutaraldehyde modified paper pads overcoming the common aggregation-caused quenching (ACQ) effect. Analyte concentrations from 1000ng and below are applied in a model immunocomplex using Goat anti-Rabbit IgG and Rabbit IgG. In the range of 7.81ng-250ng, linear trends with a high R(2) are observed, which leads to a strong increase of the blue fluorescence from the TPEDH nanoparticles.

  18. Highly sensitive immunoassay of protein molecules based on single nanoparticle fluorescence detection in a nanowell

    Science.gov (United States)

    Han, Jin-Hee; Kim, Hee-Joo; Lakshmana, Sudheendra; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.

    2011-03-01

    A nanoarray based-single molecule detection system was developed for detecting proteins with extremely high sensitivity. The nanoarray was able to effectively trap nanoparticles conjugated with biological sample into nanowells by integrating with an electrophoretic particle entrapment system (EPES). The nanoarray/EPES is superior to other biosensor using immunoassays in terms of saving the amounts of biological solution and enhancing kinetics of antibody binding due to reduced steric hindrance from the neighboring biological molecules. The nanoarray patterned onto a layer of PMMA and LOL on conductive and transparent indium tin oxide (ITO)-glass slide by using e-beam lithography. The suspension of 500 nm-fluorescent (green emission)-carboxylated polystyrene (PS) particles coated with protein-A followed by BDE 47 polyclonal antibody was added to the chip that was connected to the positive voltage. The droplet was covered by another ITO-coated-glass slide and connected to a ground terminal. After trapping the particles into the nanowells, the solution of different concentrations of anti-rabbit- IgG labeled with Alexa 532 was added for an immunoassay. A single molecule detection system could quantify the anti-rabbit IgG down to atto-mole level by counting photons emitted from the fluorescent dye bound to a single nanoparticle in a nanowell.

  19. Development of a Microsphere-based Immunoassay for Serological Detection of African Horse Sickness Virus and Comparison with Other Diagnostic Techniques.

    Science.gov (United States)

    Sánchez-Matamoros, A; Beck, C; Kukielka, D; Lecollinet, S; Blaise-Boisseau, S; Garnier, A; Rueda, P; Zientara, S; Sánchez-Vizcaíno, J M

    2016-12-01

    African horse sickness (AHS) is a viral disease that causes high morbidity and mortality rates in susceptible Equidae and therefore significant economic losses. More rapid, sensitive and specific assays are required by diagnostic laboratories to support effective surveillance programmes. A novel microsphere-based immunoassay (Luminex assay) in which beads are coated with recombinant AHS virus (AHSV) structural protein 7 (VP7) has been developed for serological detection of antibodies against VP7 of any AHSV serotype. The performance of this assay was compared with that of a commercial enzyme-linked immunosorbent assay (ELISA) and commercial lateral flow assay (LFA) on a large panel of serum samples from uninfected horses (n = 92), from a reference library of all AHSV serotypes (n = 9), on samples from horses experimentally infected with AHSV (n = 114), and on samples from West African horses suspected of having AHS (n = 85). The Luminex assay gave the same negative results as ELISA when used to test the samples from uninfected horses. Both assays detected antibodies to all nine AHSV serotypes. In contrast, the Luminex assay detected a higher rate of anti-VP7 positivity in the West African field samples than did ELISA or LFA. The Luminex assay detected anti-VP7 positivity in experimentally infected horses at 7 days post-infection, compared to 13 days for ELISA. This novel immunoassay provides a platform for developing multiplex assays, in which the presence of antibodies against multiple ASHV antigens can be detected simultaneously. This would be useful for serotyping or for differentiating infected from vaccinated animals.

  20. On-bead fluorescent DNA nanoprobes to analyze base excision repair activities

    Energy Technology Data Exchange (ETDEWEB)

    Gines, Guillaume; Saint-Pierre, Christine; Gasparutto, Didier, E-mail: didier.gasparutto@cea.fr

    2014-02-17

    Graphical abstract: -- Highlights: •On magnetic beads fluorescent enzymatic assays. •Simple, easy, non-radioactive and electrophoresis-free functional assay. •Lesion-containing hairpin DNA probes are selective for repair enzymes. •The biosensing platform allows the measurement of DNA repair activities from purified enzymes or within cell free extracts. -- Abstract: DNA integrity is constantly threatened by endogenous and exogenous agents that can modify its physical and chemical structure. Changes in DNA sequence can cause mutations sparked by some genetic diseases or cancers. Organisms have developed efficient defense mechanisms able to specifically repair each kind of lesion (alkylation, oxidation, single or double strand break, mismatch, etc). Here we report the adjustment of an original assay to detect enzymes’ activity of base excision repair (BER), that supports a set of lesions including abasic sites, alkylation, oxidation or deamination products of bases. The biosensor is characterized by a set of fluorescent hairpin-shaped nucleic acid probes supported on magnetic beads, each containing a selective lesion targeting a specific BER enzyme. We have studied the DNA glycosylase alkyl-adenine glycosylase (AAG) and the human AP-endonuclease (APE1) by incorporating within the DNA probe a hypoxanthine lesion or an abasic site analog (tetrahydrofuran), respectively. Enzymatic repair activity induces the formation of a nick in the damaged strand, leading to probe's break, that is detected in the supernatant by fluorescence. The functional assay allows the measurement of DNA repair activities from purified enzymes or in cell-free extracts in a fast, specific, quantitative and sensitive way, using only 1 pmol of probe for a test. We recorded a detection limit of 1 μg mL{sup −1} and 50 μg mL{sup −1} of HeLa nuclear extracts for APE1 and AAG enzymes, respectively. Finally, the on-bead assay should be useful to screen inhibitors of DNA repair

  1. Ultrasensitive detection of E. coli O157:H7 with biofunctional magnetic bead concentration via nanoporous membrane based electrochemical immunosensor.

    Science.gov (United States)

    Chan, Ka Yiu; Ye, Wei Wei; Zhang, Yu; Xiao, Li Dan; Leung, Polly H M; Li, Yi; Yang, Mo

    2013-03-15

    In this paper, biofunctional magnetic beads were investigated for bacterial cells concentration in a nanoporous alumina membrane based immunosensor for ultra-sensitive detection of E. coli O157:H7. The specific antibody modified magnetic beads were used for concentration of E coli O157:H7 from samples in a small region to enhance sensitivity. The magnetic bead conjugated E. coli O157:H7 cells were then captured on the nanoporous alumina membrane with immobilized antibody via assembled PEG-silane linker. Scanning electron microscopy and fluorescent microscopy were used to demonstrate the magnetic bead-bacteria cell conjugation and bacteria cells magnetic concentration, respectively. Impedance spectroscopy was used to monitor the pure E coli O157:H7 cells and magnetic bead conjugated E coli O157:H7 cells binding on antibody immobilized nanoporous membrane with or without magnetic field. Compared with direct detection of pure bacteria cells, this method via magnetic bead conjugation and concentration demonstrated the ultrasensitivity of 10 CFU/mL for E coli O157:H7 detection.

  2. Peptidomic analysis of Chinese shrimp (Fenneropenaeus chinensis) hemolymph by magnetic bead-based MALDITOF MS

    Institute of Scientific and Technical Information of China (English)

    WANG Baojie; LIU Mei; JIANG Keyong; ZHANG Guofan; WANG Lei

    2013-01-01

    Peptides in shrimp hemolymph play an important role in the innate immune response.Analysis of hemolymph will help to detect and identify potential novel biomarkers of microbial infection.We used magnetic bead-based purification (ClinProt system) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) to characterize shrimp hemolymph peptides.Shrimp serum and plasma were used as the source of samples for comparative analysis,and it was found that serum was more suitable for shrimp hemolymph peptidomic analysis.To screen potential specific biomarkers in serum of immune-challenged shrimps,we applied magnetic bead-based MALDI-TOF MS to serum samples from 10 immune-challenged and 10 healthy shrimps.The spectra were analyzed using FlexAnalysis 3.0and ClinProTools 2.1 software.Thirteen peptide peaks significantly different between the two groups were selected as candidate biomarkers of lipopolysaccharide (LPS)-infection.The diagnostic model established by genetic algorithm using five of these peaks was able to discriminate LPS-challenged shrimps from healthy control shrimps with a sensitivity of 90% and a specificity of 100%.Our approach in MALDITOF MS-based peptidomics is a powerful tool for screening bioactive peptides or biomarkers derived from hemolymph,and will help to enable a better understanding of the innate immune response of shrimps.

  3. A magnetic bead-based method for concentrating DNA from human urine for downstream detection.

    Science.gov (United States)

    Bordelon, Hali; Russ, Patricia K; Wright, David W; Haselton, Frederick R

    2013-01-01

    Due to the presence of PCR inhibitors, PCR cannot be used directly on most clinical samples, including human urine, without pre-treatment. A magnetic bead-based strategy is one potential method to collect biomarkers from urine samples and separate the biomarkers from PCR inhibitors. In this report, a 1 mL urine sample was mixed within the bulb of a transfer pipette containing lyophilized nucleic acid-silica adsorption buffer and silica-coated magnetic beads. After mixing, the sample was transferred from the pipette bulb to a small diameter tube, and captured biomarkers were concentrated using magnetic entrainment of beads through pre-arrayed wash solutions separated by small air gaps. Feasibility was tested using synthetic segments of the 140 bp tuberculosis IS6110 DNA sequence spiked into pooled human urine samples. DNA recovery was evaluated by qPCR. Despite the presence of spiked DNA, no DNA was detectable in unextracted urine samples, presumably due to the presence of PCR inhibitors. However, following extraction with the magnetic bead-based method, we found that ∼50% of spiked TB DNA was recovered from human urine containing roughly 5×10(3) to 5×10(8) copies of IS6110 DNA. In addition, the DNA was concentrated approximately ten-fold into water. The final concentration of DNA in the eluate was 5×10(6), 14×10(6), and 8×10(6) copies/µL for 1, 3, and 5 mL urine samples, respectively. Lyophilized and freshly prepared reagents within the transfer pipette produced similar results, suggesting that long-term storage without refrigeration is possible. DNA recovery increased with the length of the spiked DNA segments from 10±0.9% for a 75 bp DNA sequence to 42±4% for a 100 bp segment and 58±9% for a 140 bp segment. The estimated LOD was 77 copies of DNA/µL of urine. The strategy presented here provides a simple means to achieve high nucleic acid recovery from easily obtained urine samples, which does not contain inhibitors of PCR.

  4. A magnetic bead-based method for concentrating DNA from human urine for downstream detection.

    Directory of Open Access Journals (Sweden)

    Hali Bordelon

    Full Text Available Due to the presence of PCR inhibitors, PCR cannot be used directly on most clinical samples, including human urine, without pre-treatment. A magnetic bead-based strategy is one potential method to collect biomarkers from urine samples and separate the biomarkers from PCR inhibitors. In this report, a 1 mL urine sample was mixed within the bulb of a transfer pipette containing lyophilized nucleic acid-silica adsorption buffer and silica-coated magnetic beads. After mixing, the sample was transferred from the pipette bulb to a small diameter tube, and captured biomarkers were concentrated using magnetic entrainment of beads through pre-arrayed wash solutions separated by small air gaps. Feasibility was tested using synthetic segments of the 140 bp tuberculosis IS6110 DNA sequence spiked into pooled human urine samples. DNA recovery was evaluated by qPCR. Despite the presence of spiked DNA, no DNA was detectable in unextracted urine samples, presumably due to the presence of PCR inhibitors. However, following extraction with the magnetic bead-based method, we found that ∼50% of spiked TB DNA was recovered from human urine containing roughly 5×10(3 to 5×10(8 copies of IS6110 DNA. In addition, the DNA was concentrated approximately ten-fold into water. The final concentration of DNA in the eluate was 5×10(6, 14×10(6, and 8×10(6 copies/µL for 1, 3, and 5 mL urine samples, respectively. Lyophilized and freshly prepared reagents within the transfer pipette produced similar results, suggesting that long-term storage without refrigeration is possible. DNA recovery increased with the length of the spiked DNA segments from 10±0.9% for a 75 bp DNA sequence to 42±4% for a 100 bp segment and 58±9% for a 140 bp segment. The estimated LOD was 77 copies of DNA/µL of urine. The strategy presented here provides a simple means to achieve high nucleic acid recovery from easily obtained urine samples, which does not contain inhibitors of PCR.

  5. Electrochemical magnetic beads-based immunosensing platform for the determination of α-lactalbumin in milk.

    Science.gov (United States)

    Ruiz-Valdepeñas Montiel, Víctor; Campuzano, Susana; Torrente-Rodríguez, Rebeca M; Reviejo, A Julio; Pingarrón, José M

    2016-12-15

    Alpha-lactalbumin (α-LA) is one of the whey proteins in cows' milk that has been identified as allergenic. In this work, we present, for the first time, a very sensitive magnetic beads (MBs)-based immunosensor for the determination of α-LA. A sandwich configuration involving selective capture and horseradish peroxidase-labeled detector antibodies was implemented on carboxylic acid-modified magnetic beads, captured magnetically under the surface of a disposable screen-printed carbon electrode for amperometric detection using the hydroquinone (HQ)/H2O2 system. The α-LA immunosensor exhibited a wide linear range (37.0-5000pg/ml), a low limit of detection (LOD, 11.0pg/ml) and noteworthy selectivity against other non-target proteins. The MBs-based immunosensing platform was applied successfully for the determination of α-LA in several varieties of milk (raw and UHT cows' milk as well as human milk) and infant formulations. The results were corroborated with those obtained using a commercial ELISA method, thereby substantiating the analytical merits of this unique method.

  6. A Magnetic Bead-Based Sensor for the Quantification of Multiple Prostate Cancer Biomarkers.

    Directory of Open Access Journals (Sweden)

    Jesse V Jokerst

    Full Text Available Novel biomarker assays and upgraded analytical tools are urgently needed to accurately discriminate benign prostatic hypertrophy (BPH from prostate cancer (CaP. To address this unmet clinical need, we report a piezeoelectric/magnetic bead-based assay to quantitate prostate specific antigen (PSA; free and total, prostatic acid phosphatase, carbonic anhydrase 1 (CA1, osteonectin, IL-6 soluble receptor (IL-6sr, and spondin-2. We used the sensor to measure these seven proteins in serum samples from 120 benign prostate hypertrophy patients and 100 Gleason score 6 and 7 CaP using serum samples previously collected and banked. The results were analyzed with receiver operator characteristic curve analysis. There were significant differences between BPH and CaP patients in the PSA, CA1, and spondin-2 assays. The highest AUC discrimination was achieved with a spondin-2 OR free/total PSA operation--the area under the curve was 0.84 with a p value below 10(-6. Some of these data seem to contradict previous reports and highlight the importance of sample selection and proper assay building in the development of biomarker measurement schemes. This bead-based system offers important advantages in assay building including low cost, high throughput, and rapid identification of an optimal matched antibody pair.

  7. Dose-response curve of a microfluidic magnetic bead-based surface coverage sandwich assay.

    Science.gov (United States)

    Cornaglia, Matteo; Trouillon, Raphaël; Tekin, H Cumhur; Lehnert, Thomas; Gijs, Martin A M

    2015-09-25

    Magnetic micro- and nanoparticles ('magnetic beads') have been used to advantage in many microfluidic devices for sensitive antigen (Ag) detection. Today, assays that use as read-out of the signal the number count of immobilized beads on a surface for quantification of a sample's analyte concentration have been among the most sensitive and have allowed protein detection lower than the fgmL(-1) concentration range. Recently, we have proposed in this category a magnetic bead surface coverage assay (Tekin et al., 2013 [1]), in which 'large' (2.8μm) antibody (Ab)-functionalized magnetic beads captured their Ag from a serum and these Ag-carrying beads were subsequently exposed to a surface pattern of fixed 'small' (1.0μm) Ab-coated magnetic beads. When the system was exposed to a magnetic induction field, the magnet dipole attractive interactions between the two bead types were used as a handle to approach both bead surfaces and assist with Ag-Ab immunocomplex formation, while unspecific binding (in absence of an Ag) of a large bead was reduced by exploiting viscous drag flow. The dose-response curve of this type of assay had two remarkable features: (i) its ability to detect an output signal (i.e. bead number count) for very low Ag concentrations, and (ii) an output signal of the assay that was non-linear with respect to Ag concentration. We explain here the observed dose-response curves and show that the type of interactions and the concept of our assay are in favour of detecting the lowest analyte concentrations (where typically either zero or one Ag is carried per large bead), while higher concentrations are less efficiently detected. We propose a random walk process for the Ag-carrying bead over the magnetic landscape of small beads and this model description explains the enhanced overall capture probability of this assay and its particular non-linear dose response curves.

  8. Development of a Nanobody-Based Lateral Flow Immunoassay for Detection of Human Norovirus

    Science.gov (United States)

    Doerflinger, Sylvie Y.; Tabatabai, Julia; Schnitzler, Paul; Farah, Carlo; Rameil, Steffen; Sander, Peter; Koromyslova, Anna

    2016-01-01

    ABSTRACT Human noroviruses are the dominant cause of outbreaks of acute gastroenteritis. These viruses are usually detected by molecular methods, including reverse transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Human noroviruses are genetically and antigenically diverse, with two main genogroups that are further subdivided into over 40 different genotypes. During the past decade, genogroup 2 genotype 4 (GII.4) has dominated in most countries, but recently, viruses belonging to GII.17 have increased in prevalence in a number of countries. A number of commercially available ELISAs and lateral flow immunoassays were found to have lower sensitivities to the GII.17 viruses, indicating that the antibodies used in these methods may not have a high level of cross-reactivity. In this study, we developed a rapid Nanobody-based lateral flow immunoassay (Nano-immunochromatography [Nano-IC]) for the detection of human norovirus in clinical specimens. The Nano-IC assay detected virions from two GII.4 norovirus clusters, which included the current dominant strain and a novel variant strain. The Nano-IC method had a sensitivity of 80% and specificity of 86% for outbreak specimens. Norovirus virus-like particles (VLPs) representing four genotypes (GII.4, GII.10, GII.12, and GII.17) could be detected by this method, demonstrating the potential in clinical screening. However, further modifications to the Nano-IC method are needed in order to improve this sensitivity, which may be achieved by the addition of other broadly reactive Nanobodies to the system. IMPORTANCE We previously identified a Nanobody (termed Nano-85) that bound to a highly conserved region on the norovirus capsid. In this study, the Nanobody was biotinylated and gold conjugated for a lateral flow immunoassay (termed Nano-IC). We showed that the Nano-IC assay was capable of detecting at least four antigenically distinct GII genotypes, including the newly emerging GII.17. In the clinical

  9. Design, fabrication and test of a pneumatically controlled, renewable, microfluidic bead trapping device for sequential injection analysis applications

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guocheng; Lu, Donglai; Fu, Zhifeng; Du, Dan; Ozanich, Richard M.; Wang, Wanjun; Lin, Yuehe

    2016-01-01

    This paper describes the design, fabrication, and testing of a pneumatically controlled,renewable, microfluidic device for conducting bead-based assays in an automated sequential injection analysis system. The device used a “brick wall”-like pillar array (pillar size: 20 μm length X 50 μm width X 45 μm height) with 5 μm gaps between the pillars serving as the micro filter. The flow channel where bead trapping occurred is 500 μm wide X 75 μm deep. An elastomeric membrane and an air chamber were located underneath the flow channel. By applying pressure to the air chamber, the membrane is deformed and pushed upward against the filter structure. This effectively traps beads larger than 5 μm and creates a “bed” or micro column of beads that can be perfused and washed with liquid samples and reagents. Upon completion of the assay process, the pressure is released and the beads are flushed out from underneath the filter structure to renew the device. Mouse IgG was used as a model analyte to test the feasibility of using the proposed device for immunoassay applications. Resulting microbeads from an on-chip fluorescent immunoassay were individually examined using flow cytometry. The results show that the fluorescence signal intensity distribution is fairly narrow indicating high chemical reaction uniformity among the beads population. Electrochemical onchip assay was also conducted. A detection limit of 0.1 ng/mL1 ppb was achieved and good device reliability and repeatability were demonstrated. The novel microfluidic-based beadstrapping device thus opens up a new pathway to design micro-bead based biosensor immunoassays for clinical and othervarious applications.

  10. Luminex-Based Triplex Immunoassay for the Simultaneous Detection of Soy, Pea and Soluble Wheat proteins in Milk Powder

    NARCIS (Netherlands)

    Haasnoot, W.; Pre, du J.G.

    2007-01-01

    An automated fluorescent microsphere-based flow cytometric triplex immunoassay, using the Luminex 100 flow analyzer with MultiAnalyte Profiling (xMAP) technology, was developed for the simultaneous detection of proteins from three vegetable sources as potential fraudulent adulterants in milk powder.

  11. Updates in immunoassays: parasitology.

    Science.gov (United States)

    Josko, Deborah

    2012-01-01

    Although most clinical laboratories use microscopy and routine O&P procedures when identifying parasitic infections, there are several parasites that are better detected through serological means. Toxoplasma, Giardia, and Cryptosporidium were discussed along with immunoassays used for their detection. Immunoassays provide quick results and are less labor intensive than specimen concentration and slide preparation for microscopic examination. These assays are easy to use and provide sensitive and specific results. Some clinical laboratories no longer perform O&Ps in house and refer specimens to reference laboratories for evaluation. By using immunoassays, some of the more common parasites can be identified in a timely manner reducing turn-around times. Some controversy exists over the use of IIF and EIA tests used for ANA testing along with measuring CRPs and PCT as predictors of bacterial sepsis and septic shock. Regardless of the methodology discussed in this series of articles, there are pros and cons to the various immunoassays available. Determining the most appropriate assay based on patient population and volume is governed by the institution and its patients' needs. In conclusion, immunoassays, whether manual or automated, are easy to use, cost effective and allow the medical laboratory professional to provide quick and accurate results to the clinician so the most appropriate treatment can be administered to the patient. The ultimate goal of healthcare professionals is to provide the highest quality of medical care in a timely manner. The use of immunoassays in the clinical laboratory allows the healthcare team to successfully achieve this goal.

  12. Opportunities for bead-based multiplex assays in veterinary diagnostic laboratories.

    Science.gov (United States)

    Christopher-Hennings, Jane; Araujo, Karla P C; Souza, Carlos J H; Fang, Ying; Lawson, Steven; Nelson, Eric A; Clement, Travis; Dunn, Michael; Lunney, Joan K

    2013-11-01

    Bead-based multiplex assays (BBMAs) are applicable for high throughput, simultaneous detection of multiple analytes in solution (from several to 50-500 analytes within a single, small sample volume). Currently, few assays are commercially available for veterinary applications, but they are available to identify and measure various cytokines, growth factors and their receptors, inflammatory proteins, kinases and inhibitors, neurobiology proteins, and pathogens and antibodies in human beings, nonhuman primates, and rodent species. In veterinary medicine, various nucleic acid and protein-coupled beads can be used in, or for the development of, antigen and antibody BBMAs, with the advantage that more data can be collected using approximately the same amount of labor as used for other antigen and antibody assays. Veterinary-related BBMAs could be used for detection of pathogens, genotyping, measurement of hormone levels, and in disease surveillance and vaccine assessment. It will be important to evaluate whether BBMAs are "fit for purpose," how costs and efficiencies compare between assays, which assays are published or commercially available for specific veterinary applications, and what procedures are involved in the development of the assays. It is expected that many veterinary-related BBMAs will be published and/or become commercially available in the next few years. The current review summarizes the BBMA technology and some of the currently available BBMAs developed for veterinary settings. Some of the human diagnostic BBMAs are also described, providing an example of possible templates for future development of new veterinary-related BBMAs.

  13. Programmable and automated bead-based microfluidics for versatile DNA microarrays under isothermal conditions.

    Science.gov (United States)

    Penchovsky, Robert

    2013-06-21

    Advances in modern genomic research depend heavily on applications of various devices for automated high- or ultra-throughput arrays. Micro- and nanofluidics offer possibilities for miniaturization and integration of many different arrays onto a single device. Therefore, such devices are becoming a platform of choice for developing analytical instruments for modern biotechnology. This paper presents an implementation of a bead-based microfluidic platform for fully automated and programmable DNA microarrays. The devices are designed to work under isothermal conditions as DNA immobilization and hybridization transfer are performed under steady temperature using reversible pH alterations of reaction solutions. This offers the possibility for integration of more selection modules onto a single chip compared to maintaining a temperature gradient. This novel technology allows integration of many modules on a single reusable chip reducing the application cost. The method takes advantage of demonstrated high-speed DNA hybridization kinetics and denaturation on beads under flow conditions, high-fidelity of DNA hybridization, and small sample volumes are needed. The microfluidic devices are applied for a single nucleotide polymorphism analysis and DNA sequencing by synthesis without the need for fluorescent removal step. Apart from that, the microfluidic platform presented is applicable to many areas of modern biotechnology, including biosensor devices, DNA hybridization microarrays, molecular computation, on-chip nucleic acid selection, high-throughput screening of chemical libraries for drug discovery.

  14. Magnetic bead-based salivary peptidome profiling for periodontal-orthodontic treatment

    Directory of Open Access Journals (Sweden)

    Zhang Jieni

    2012-11-01

    Full Text Available Abstract Background Patients with periodontitis seek periodontal-orthodontic treatment to address certain functional and aesthetic problems. However, little is known of the effect of periodontitis on orthodontic treatment. Thus, we compared the differences in peptide mass fingerprints of orthodontic patients with and without periodontitis by MALDI-TOF MS using a magnetic bead-based peptidome analysis of saliva samples. In this way, we aimed to identify and explore a panel of differentially-expressed specific peptides. Results Saliva samples from 24 patients (eight orthodontic patients without periodontitis, eight with periodontitis and another eight with periodontitis but no orthodontic treatment were analyzed, and peptide mass fingerprints were created by scanning MS signals using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS combined with magnetic beads. Nine mass peaks showed significant differences. Orthodontic patients in the group without periodontal disease showed higher mass peaks for seven peptides of the nine, whereas the mass peaks for the other two peptides were higher in the periodontal-orthodontic patients. Besides, these differentially-expressed peptides were sequenced. Conclusions The elucidated candidate biomarkers indicated interactions between periodontal condition and orthodontic treatment and their contributions to the changes of saliva protein profiles. Our results provide novel insight into the altered salivary protein profile during periodontal-orthodontic treatment, and may lead to the development of a therapeutic monitoring strategy for periodontics and orthodontics.

  15. Specific T-cell epitopes for immunoassay-based diagnosis of Mycobacterium tuberculosis infection

    DEFF Research Database (Denmark)

    Brock, I; Weldingh, K; Leyten, EM;

    2004-01-01

    Specific T-cell epitopes for immunoassay-based diagnosis of Mycobacterium tuberculosis infection.Brock I, Weldingh K, Leyten EM, Arend SM, Ravn P, Andersen P. Department of Infectious Disease Immunology, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen S, Denmark. The currently used...... method for immunological detection of tuberculosis infection, the tuberculin skin test, has low specificity. Antigens specific for Mycobacterium tuberculosis to replace purified protein derivative are therefore urgently needed. We have performed a rigorous assessment of the diagnostic potential of four...... recently identified antigens (Rv2653, Rv2654, Rv3873, and Rv3878) from genomic regions that are lacking from the Mycobacterium bovis bacillus Calmette-Guerin (BCG) vaccine strains as well as from the most common nontuberculous mycobacteria. The fine specificity of potential epitopes in these molecules...

  16. Specific T-cell epitopes for immunoassay-based diagnosis of Mycobacterium tuberculosis infection

    DEFF Research Database (Denmark)

    Brock, I; Weldingh, K; Leyten, EM

    2004-01-01

    Specific T-cell epitopes for immunoassay-based diagnosis of Mycobacterium tuberculosis infection.Brock I, Weldingh K, Leyten EM, Arend SM, Ravn P, Andersen P. Department of Infectious Disease Immunology, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen S, Denmark. The currently used...... method for immunological detection of tuberculosis infection, the tuberculin skin test, has low specificity. Antigens specific for Mycobacterium tuberculosis to replace purified protein derivative are therefore urgently needed. We have performed a rigorous assessment of the diagnostic potential of four...... selected and combined the specific peptide stretches from the four proteins not recognized by M. bovis BCG-vaccinated individuals. These peptide stretches were tested with peripheral blood mononuclear cells obtained from patients with microscopy- or culture-confirmed tuberculosis and from healthy M. bovis...

  17. PRELIMINARY STUDY ON RETRO-REFLECTIVE COATED PAPER BASED ON MICRO-GLASS BEADS

    Institute of Scientific and Technical Information of China (English)

    Yulong Wang; Chuanshan Zhao; Tao Zhang

    2004-01-01

    High-reflectivity micro-glass bead, as a kind of retro-reflective material, is widely used in reflective fabric or film and other reflective coatings. But it is rarely used in coated paper. The retro-reflective theory of micro-bead is described. Also the effect of size of micro-bead, dosage of binder and different color layers on reflective properties of coated paper are discussed in this article. The results show that its retro-reflective efficiency is good, equally to reflective fabric or film when the micro-glass bead is used in coated paper.

  18. PRELIMINARY STUDY ON RETRO-REFLECTIVE COATED PAPER BASED ON MICRO-GLASS BEADS

    Institute of Scientific and Technical Information of China (English)

    YulongWang; ChuanshanZhao; TaoZhang

    2004-01-01

    High-reflectivity micro-glass bead, as a kind ofretro-reflective material, is widely used in reflectivefabric or film and other reflective coatings. But it israrely used in coated paper. The retro-reflectivetheory of micro-bead is described. Also the effect ofsize of micro-bead, dosage of binder and differentcolor layers on reflective properties of coated paperare discussed in this article. The results show that itsretro-reflective efficiency is good, equally toreflective fabric or film when the micro-glass bead isused in coated paper.

  19. A One-Bead-One-Catalyst Approach to Aspartic Acid-Based Oxidation Catalyst Discovery

    Science.gov (United States)

    Lichtor, Phillip A.; Miller, Scott J.

    2011-01-01

    We report an approach to the high-throughput screening of asymmetric oxidation catalysts. The strategy is based on application of the one-bead-one-compound library approach, wherein each of our catalyst candidates is based on a peptide scaffold. For this purpose we rely on a recently developed catalytic cycle that employs an acid-peracid shuttle. In order to implement our approach, we developed a compatible linker and demonstrated that the library format is amenable to screening and sequencing of catalysts employing partial Edman degradation and MALDI mass spectrometry analysis. The system was applied to the discovery (and re-discovery) of catalysts for the enantioselective oxidation of a cyclohexene derivative. The system is now poised for application to unprecedented substrate classes for asymmetric oxidation reactions. PMID:21417485

  20. A New Microsphere-Based Immunoassay for Measuring the Activity of Transcription Factors

    Directory of Open Access Journals (Sweden)

    Tsai Chueh-Jen

    2010-01-01

    Full Text Available Abstract There are several traditional and well-developed methods for analyzing the activity of transcription factors, such as EMSA, enzyme-linked immunosorbent assay, and reporter gene activity assays. All of these methods have their own distinct disadvantages, but none can analyze the changes in transcription factors in the few cells that are cultured in the wells of 96-well titer plates. Thus, a new microsphere-based immunoassay to measure the activity of transcription factors (MIA-TF was developed. In MIA-TF, NeutrAvidin-labeled microspheres were used as the solid phase to capture biotin-labeled double-strand DNA fragments which contain certain transcription factor binding elements. The activity of transcription factors was detected by immunoassay using a transcription factor-specific antibody to monitor the binding with the DNA probe. Next, analysis was performed by flow cytometry. The targets hypoxia-inducible factor-1α (HIF-1α and nuclear factor-kappa B (NF-κB were applied and detected in this MIA-TF method; the results that we obtained demonstrated that this method could be used to monitor the changes of NF-κB or HIF within 50 or 100 ng of nuclear extract. Furthermore, MIA-TF could detect the changes in NF-κB or HIF in cells that were cultured in wells of a 96-well plate without purification of the nuclear protein, an important consideration for applying this method to high-throughput assays in the future. The development of MIA-TF would support further progress in clinical analysis and drug screening systems. Overall, MIA-TF is a method with high potential to detect the activity of transcription factors.

  1. Optimization of weld bead geometry in the activated GMA welding process via a grey-based Taguchi method

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hsuan Liang [National Kaohsiung Normal University, Kaohsiung (China); Yan, Jia Ching [National Chiao Tung University, Hsinchu (China)

    2014-08-15

    We optimized the weld bead geometry of 6061 aluminum alloy welds pre-coated with activating flux before gas metal arc (GMA) welding. In this activated GMA welding process, there were five single component fluxes used in the initial experiment to evaluate the penetration capability of bead-on-plate GMA welds. Based on the higher penetration of weld bead, two single component fluxes were selected to create mixed component flux in next stage. The grey-based Taguchi method was employed to obtain the optimal welding parameters that were considered with multiple quality characteristics such as penetration, depth-to-width ratio (DWR) and fusion area of GMA welds. The experimental procedure of the proposed approach not only increases penetration of 6061 aluminum alloy welds, but also improves the DWR and fusion area of GMA butt-joint welds simultaneously.

  2. Chip-Based Measurements of Brownian Relaxation of Magnetic Beads Using a Planar Hall Effect Magnetic Field Sensor

    Science.gov (United States)

    Østerberg, Frederik W.; Dalslet, Bjarke T.; Snakenborg, Detlef; Johansson, Christer; Hansen, Mikkel F.

    2010-12-01

    We present a simple `click-on' fluidic system with integrated electrical contacts, which is suited for electrical measurements on chips in microfluidic systems. We show that microscopic magnetic field sensors based on the planar Hall effect can be used for detecting the complex magnetic response using only the self-field arising from the bias current applied to the sensors as excitation field. We present measurements on a suspension of magnetic beads with a nominal diameter of 250 nm vs. temperature and find that the observations are consistent with the Cole-Cole model for Brownian relaxation with a constant hydrodynamic bead diameter when the temperature dependence of the viscosity of water is taken into account. These measurements demonstrate the feasibility of performing measurements of the Brownian relaxation response in a lab-on-a-chip system and constitute the first step towards an integrated biosensor based on the detection of the dynamic response of magnetic beads.

  3. Magnetic hydrogel beads based on PVA/sodium alginate/laponite RD and studying their BSA adsorption.

    Science.gov (United States)

    Mahdavinia, Gholam Reza; Mousanezhad, Sedigheh; Hosseinzadeh, Hamed; Darvishi, Farshad; Sabzi, Mohammad

    2016-08-20

    In this study double physically crosslinked magnetic hydrogel beads were developed by a simple method including solution mixing of sodium alginate and poly(vinyl alcohol) (PVA) containing magnetic laponite RD (Rapid Dispersion). Sodium alginate and PVA were physically crosslinked by Ca(2+) and freezing-thawing cycles, respectively. Magnetic laponite RD nanoparticles were incorporated into the system to create magnetic response and strengthen the hydrogels. All hybrids double physically crosslinked hydrogel beads were stable under different pH values without any disintegration. Furthermore, adsorption of bovine serum albumin (BSA) on the hydrogel beads was investigated on the subject of pH, ion strength, initial BSA concentration, and temperature. Nanocomposite beads exhibited maximum adsorption capacity for BSA at pH=4.5. The experimental adsorption isotherm data were well followed Langmuir model and based on this model the maximum adsorption capacity was obtained 127.3mgg(-1) at 308K. Thermodynamic parameters revealed spontaneous and monolayer adsorption of BSA on magnetic nanocomposites beads.

  4. Poly(dimethylsiloxane) microchip-based immunoassay with multiple reaction zones: Toward on-chip multiplex detection platform

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guocheng; Wang, Jun; Li, Zhaohui; Saraf, Laxmikant V.; Wang, Wanjun; Lin, Yuehe

    2011-09-20

    In this work, a poly(dimethylsiloxane) (PDMS) microchip-based immuno-sensing platform with integrated pneumatic micro valves is described. The microchip was fabricated with multiple layer soft lithography technology. By controlling the activation status of corresponding valves, reagent flows in the microchannel network can be well manipulated so that immuno-reactions only take place at designated reaction zones (DRZs). Four DRZs are included in the prototype microchip. Since these DRZs are all isolated from each other by micro valves, cross contamination is prevented. Using the inner surface of the all-PDMS microchannel as immunoassay substrate, on-chip sandwich format solid phase immunoassay was performed to demonstrate the feasibility of this immuno-sensing platform. Mouse IgG and fluorescein isothiocyanate (FITC) were used as the model analyte and the signal reporter respectively. Only 10 ul sample is needed for the assay and low detection limit of 5 ng/ml (≈33 pM) was achieved though low-cost polyclonal antibodies were used in our experiment for feasibility study only. The encouraging results from mouse IgG immunoassay proved the feasibility of our microchip design. With slight modification of the assay protocol, the same chip design can be used for multi-target detection and can provide a simple, cost-effective and integrated microchip solution for multiplex immunoassay applications.

  5. Anti-HCV immunoassays based on a multiepitope antigen and fluorescent lanthanide chelate reporters.

    Science.gov (United States)

    Salminen, Teppo; Juntunen, Etvi; Khanna, Navin; Pettersson, Kim; Talha, Sheikh M

    2016-02-01

    There is a need for simple to produce immunoassays for hepatitis C virus (HCV) antibody capable of detecting all genotypes worldwide. Current commonly used third generation immunoassays use three to six separate recombinant proteins or synthetic peptides. We have developed and expressed in Escherichia coli a single recombinant antigen incorporating epitopes from different HCV proteins. This multiepitope protein (MEP) was used to develop two types of HCV antibody immunoassays: a traditional antibody immunoassay using a labeled secondary antibody (indirect assay) and a double-antigen assay with the same MEP used as capture binder and labeled binder. The secondary antibody assay was evaluated with 171 serum/plasma samples and double-antigen assay with 148 samples. These samples included an in-house patient sample panel, two panels of samples with different HCV genotypes and a seroconversion panel. The secondary antibody immunoassay showed 95.6% sensitivity and 100% specificity while the double-antigen assay showed 91.4% sensitivity and 100% specificity. Both assays detected samples from all six HCV genotypes. The results showed that combining a low-cost recombinant MEP binder antigen with a high sensitivity fluorescent lanthanide reporter can provide a sensitive and specific immunoassay for HCV serology. The results also showed that the sensitivity of HCV double-antigen assays may suffer from the low avidity immune response of acute infections.

  6. Color encoded microbeads-based flow cytometric immunoassay for polycyclic aromatic hydrocarbons in food

    Energy Technology Data Exchange (ETDEWEB)

    Meimaridou, Anastasia, E-mail: anastasia.meimaridou@wur.nl [RIKILT-Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen (Netherlands); Haasnoot, Willem; Noteboom, Linda; Mintzas, Dimitrios [RIKILT-Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen (Netherlands); Pulkrabova, Jana; Hajslova, Jana [Department of Food Chemistry and Analysis, Institute of Chemical Technology Prague, Technicka 3, 166 28 Prague 6 (Czech Republic); Nielen, Michel W.F. [RIKILT-Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen (Netherlands); Wageningen University, Laboratory of Organic Chemistry, Dreijenplein 8, 6703 HB Wageningen (Netherlands)

    2010-07-05

    Food contamination caused by chemical hazards such as persistent organic pollutants (POPs) is a worldwide public health concern and requires continuous monitoring. The chromatography-based analysis methods for POPs are accurate and quite sensitive but they are time-consuming, laborious and expensive. Thus, there is a need for validated simplified screening tools, which are inexpensive, rapid, have automation potential and can detect multiple POPs simultaneously. In this study we developed a flow cytometry-based immunoassay (FCIA) using a color-encoded microbeads technology to detect benzo[a]pyrene (BaP) and other polycyclic aromatic hydrocarbons (PAHs) in buffer and food extracts as a starting point for the future development of rapid multiplex assays including other POPs in food, such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). A highly sensitive assay for BaP was obtained with an IC{sub 50} of 0.3 {mu}g L{sup -1} using a monoclonal antibody (Mab22F12) against BaP, similar to the IC{sub 50} of a previously described enzyme-linked immunosorbent assay (ELISA) using the same Mab. Moreover, the FCIA was 8 times more sensitive for BaP compared to a surface plasmon resonance (SPR)-based biosensor immunoassay (BIA) using the same reagents. The selectivity of the FCIAs was tested, with two Mabs against BaP for 25 other PAHs, including two hydroxyl PAH metabolites. Apart from BaP, the FCIAs can detect PAHs such as indenol[1,2,3-cd]pyrene (IP), benz[a]anthracene (BaA), and chrysene (CHR) which are also appointed by the European Food Safety Authority (EFSA) as suitable indicators of PAH contamination in food. The FCIAs results were in agreement with those obtained with gas chromatography-mass spectrometry (GC-MS) for the detection of PAHs in real food samples of smoked carp and wheat flour and has great potential for the future routine application of this assay in a simplex or multiplex format in combination with simplified extraction

  7. Bead-based suspension array for simultaneous detection of antibodies against the Rift Valley fever virus nucleocapsid and Gn glycoprotein

    NARCIS (Netherlands)

    Wal, van der F.J.; Achterberg, R.P.; Boer, de S.M.; Boshra, H.; Brun, A.; Maassen, C.B.M.; Kortekaas, J.A.

    2012-01-01

    A multiplex bead-based suspension array was developed that can be used for the simultaneous detection of antibodies against the surface glycoprotein Gn and the nucleocapsid protein N of Rift Valley fever virus (RVFV) in various animal species. The N protein and the purified ectodomain of the Gn prot

  8. Efficient sorption of Cu(2+) by composite chelating sorbents based on potato starch-graft-polyamidoxime embedded in chitosan beads.

    Science.gov (United States)

    Dragan, Ecaterina Stela; Apopei Loghin, Diana Felicia; Cocarta, Ana Irina

    2014-10-08

    Ionic composites based on cross-linked chitosan (CS) as matrix and poly(amidoxime) grafted on potato starch (AOX) as entrapped chelating resin were prepared as beads, for the first time in this work, by two strategies: (1) thorough mixing of previously prepared AOX in the CS solution followed by the bead formation and (2) thorough mixing of the potato starch-g-poly(acrylonitrile) (PS-g-PAN) copolymer in the initial CS solution, followed by bead formation, the amidoximation of the nitrile groups taking place inside the beads. Ionotropic gelation in tripolyphosphate was used to obtain the composite beads, and in situ covalent cross-linking by epichlorohydrin was carried out to stabilize the beads in the acidic pH range. Fourier transform infrared spectroscopy and the swelling ratio values in the acidic pH range confirmed the influence of the synthesis strategy on the structure of the CS/AOX composites. Scanning electron microscopy was employed to reveal the morphology of the novel composites, both before and after their loading with Cu(2+). The binding capacity of Cu(2+) ions as a function of sorbent composition, synthesis strategy, pH, sorbent dose, contact time, initial concentration of Cu(2+), and temperature was examined in batch mode. The main difference between the composites prepared with the two strategies consisted of the higher sorption capacity and the much faster settlement of the equilibrium sorption for the composite prepared by the in situ amidoximation of PS-g-PAN. The Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, and Sips isotherms were applied to fit the sorption equilibrium data. The maximum equilibrium sorption capacity, qm, evaluated by the Langmuir model at 25 °C was 133.15 mg Cu(2+)/g for the CS/AOX composite beads prepared with the first strategy and 238.14 mg Cu(2+)/g for the CS/AOX composite beads prepared with the second strategy, at the same AOX content. The pseudo-second order kinetic model well fitted the sorption kinetics data

  9. Unconventional application of conventional enzymatic substrate: first fluorogenic immunoassay based on enzymatic formation of quantum dots.

    Science.gov (United States)

    Malashikhina, Natalia; Garai-Ibabe, Gaizka; Pavlov, Valeri

    2013-07-16

    In this study, a simple fluorogenic immunoassay based on in situ formation of semiconductor quantum dots (QDs) is described. We discovered that alkaline phosphatase (ALP), the enzyme broadly used in enzyme-linked immuno-sorbent assay (ELISA), is able to trigger formation of fluorescent CdS QDs. ALP-catalyzed hydrolysis of p-nitrophenyl phosphate (pNPP) leads to the formation of p-nitrophenol and inorganic phosphate. The latter stabilizes CdS QDs produced in situ through interaction of Cd(2+) with S(2-) ions. So, the specific interaction of analyte (antibody) with ALP-labeled antibody can be detected through formation of CdS QDs, monitored by recording emission spectra at λex = 290 nm. The fluorescence intensity showed to be dependent on the concentration of target antibody. This method allowed us to detect as low as 0.4 ng mL(-1) of analyte antibody with a linear range up to 10 ng mL(-1). The sensitivity of this novel assay showed to be 1 order of magnitude better than that of the standard method based on colorimetric p-nitrophenyl phosphate assay.

  10. Toward development of a surface-enhanced Raman scattering (SERS)-based cancer diagnostic immunoassay panel.

    Science.gov (United States)

    Granger, Jennifer H; Granger, Michael C; Firpo, Matthew A; Mulvihill, Sean J; Porter, Marc D

    2013-01-21

    Proteomic analyses of readily obtained human fluids (e.g., serum, urine, and saliva) indicate that the diagnosis of complex diseases will be enhanced by the simultaneous measurement of multiple biomarkers from such samples. This paper describes the development of a nanoparticle-based multiplexed platform that has the potential for simultaneous read-out of large numbers of biomolecules. For this purpose, we have chosen pancreatic adenocarcinoma (PA) as a test bed for diagnosis and prognosis. PA is a devastating form of cancer in which an estimated 86% of diagnoses resulted in death in the United States in 2010. The high mortality rate is due, in part, to the asymptomatic development of the disease and the dearth of sensitive diagnostics available for early detection. One promising route lies in the development of a serum biomarker panel that can generate a signature unique to early stage PA. We describe the design and development of a proof-of-concept PA biomarker immunoassay array coupled with surface-enhanced Raman scattering (SERS) as a sensitive readout method.

  11. Monoclonal antibody based immunoassays to screen for alpha-thalassemia in adults

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, N.; Than, K.A. Culp, K.M. [Isolab, Inc., Akron, OH (United States)] [and others

    1994-09-01

    Alpha-thalassemia (alpha-thal) is characterized by the absence or reduction in synthesis of the alpha-globin chain due to either deletions or other abnormalities involving the alpha-globin genes located on the short arm of chromosome 16. The diploid cells have four alpha chain genes. The deletion of one, two, three or all four of these genes could result in mild to a complete alpha chain deficiency known as the Hydrops fetalis syndrome or alpha-thal-1, which causes fetal death. It is important to develop a sensitive test to detect carriers of alpha-thal-1 trait for genetic counseling. It has recently been observed that the presence of minute amounts of zeta-globin chains (0.01-1%) could serve as a biological marker of alpha-thal carriers. Because high sensitivity is required, we constructed a monoclonal antibody-based immunoassay which can be analyzed either by colorimetric or fluorimetric methods. By testing blood samples from individuals of Southeast Asian ancestry, we were able to show that various forms and combinations of deletions or inactivations of two or three alpha-globin genes results in alpha-thalassemia conditions that have elevated levels of the zeta-chain. Sensitivity achieved in these tests was < 0.1% zeta chain, or as low as 5 ng zeta-chain. Data correlate with results from reversed phase HPLC.

  12. Plastic-Chip-Based Magnetophoretic Immunoassay for Point-of-Care Diagnosis of Tuberculosis.

    Science.gov (United States)

    Kim, Jeonghyo; Jang, Minji; Lee, Kyoung G; Lee, Kil-Soo; Lee, Seok Jae; Ro, Kyung-Won; Kang, In Sung; Jeong, Byung Do; Park, Tae Jung; Kim, Hwa-Jung; Lee, Jaebeom

    2016-09-14

    Tuberculosis (TB) remains a relevant infectious disease in the 21st century, and its extermination is still far from being attained. Due to the extreme infectivity of incipient TB patients, a rapid sensing system for proficient point-of-care (POC) diagnostics is required. In our study, a plastic-chip-based magnetophoretic immunoassay (pcMPI) is introduced using magnetic and gold nanoparticles (NPs) modified with Mycobacterium tuberculosis (MTB) antibodies. This pcMPI offers an ultrasensitive limit of detection (LOD) of 1.8 pg·ml(-1) for the detection of CFP-10, an MTB-secreted antigen, as a potential TB biomarker with high specificity. In addition, by combining the plastic chip with an automated spectrophotometer setup, advantages include ease of operation, rapid time to results (1 h), and cost-effectiveness. Furthermore, the pcMPI results using clinical sputum culture filtrate samples are competitively compared with and integrated with clinical data collected from conventional tools such as the acid-fast bacilli (AFB) test, mycobacteria growth indicator tube (MGIT), polymerase chain reaction (PCR), and physiological results. CFP-10 concentrations were consistently higher in patients diagnosed with MTB infection than those seen in patients infected with nontuberculosis mycobacteria (NTM) (P < 0.05), and this novel test can distinguish MTB and NTM while MGIT cannot. All these results indicate that this pcMPI has the potential to become a new commercial TB diagnostic POC platform in view of its sensitivity, portability, and affordability.

  13. Processing and Characterization of MMC Beads Based on Zirconia and TRIP Steel

    Science.gov (United States)

    Oppelt, Marie; Wenzel, Claudia; Aneziris, Christos G.; Berek, Harry

    2014-12-01

    A novel process for metal-matrix composite fabrication with the special focus on single beads and sintered bead structures is explored. The used gel-casting process by sodium alginate gelation is introduced, and various analyses with significant results are presented. The suspensions contained 16-7-3 steel and zirconia particles as well as sodium alginate and were subsequently added dropwise into water which contained solidifying agent for forming rubbery, substantially round beads. Sintered beads with adequate strength (~400 MPa) and perfect surface, homogeneous microstructure, and high energy absorption capability have been produced by this casting process. At lower strains (up to 15 pct), all zirconia reinforced steel beads obtain higher specific energy absorption (SEA) in comparison to pure steel beads. Especially the composition of 90 vol pct TRIP steel and 10 vol pct zirconia shows a significant improved energy absorption capability with 27.7 MJ/m3 at a strain of 15 pct. Pure steel only exhibits a SEA of 13.1 MJ/m3.

  14. A New Surface Plasmon Resonance-Based Immunoassay for Rapid, Reproducible and Sensitive Quantification of Pentraxin-3 in Human Plasma

    Directory of Open Access Journals (Sweden)

    Mara Canovi

    2014-06-01

    Full Text Available A new immunoassay based on surface plasmon resonance (SPR for the rapid, reproducible and sensitive determination of pentraxin-3 (PTX3 levels in human plasma has been developed and characterized. The method involves a 3-min flow of plasma over a sensor chip pre-coated with a monoclonal anti-PTX3 antibody (MNB4, followed by a 3-min flow of a polyclonal anti-PTX3 antibody (pAb, required for specific recognition of captured PTX3. The SPR signal generated with this secondary antibody linearly correlates with the plasma PTX3 concentration, in the range of 5–1500 ng/mL, with a lowest limit of detection of 5 ng/mL. The PTX3 concentrations determined with the SPR-based immunoassay in the plasma of 21 patients with sepsis, ranging 15–1600 ng/mL, were superimposable to those found in a classic ELISA immunoassay. Since the PTX3 concentration in the plasma of healthy subjects is <2 ng/mL, but markedly rises in certain medical conditions, the method is useful to quantify pathological levels of this important biomarker, with important diagnostic applications. In comparison with the classic ELISA, the SPR-based approach is much faster (30 min versus 4–5 h and could be exploited for the development of new cost-effective SPR devices for point-of-care diagnosis.

  15. PMMA-based composite materials with reactive ceramic fillers: IV. Radiopacifying particles embedded in PMMA beads for acrylic bone cements.

    Science.gov (United States)

    Abboud, M; Casaubieilh, L; Morvan, F; Fontanille, M; Duguet, E

    2000-01-01

    New acrylic bone cements were prepared from alumina particles previously treated by 3-(trimethoxysilyl)propylmethacrylate (gamma-MPS) and embedded in poly(methylmethacrylate-co-ethylacrylate) beads with about 7 mol% of ethyl acrylate repeating units. The encapsulation was performed through a conventional suspension polymerization process. The influence of (i) the concentration of the dispersion stabilizer and (ii) the alumina content upon the shape, size, and size distribution of the acrylic beads was studied. Cements were prepared from each batch by hand-mixing alumina-filled acrylic beads with a liquid monomer mixture containing methyl methacrylate, n-butyl methacrylate, and N,N-dimethyl-p-toluidine. Benzoyl peroxide was previously added to the solid part. The powder-to-liquid ratio was equal to 2 for each formulation. Compressive strength of cured cement decreases with alumina content, whereas compressive modulus remains roughly constant. These results are in contradiction to those obtained for cements based on a mixture of gamma-MPS-treated alumina and unfilled acrylic beads. Nevertheless, they are interpreted in terms of alumina arrangement in the cement. In the first case, alumina particles contribute to the reinforcement of the dispersed acrylic phase, with poor benefits for the whole materials. In the second case, they allow the reinforcement of the continuous acrylic phase and, therefore, the cement's one.

  16. Novel potentiometry immunoassay with amplified sensitivity for diphtheria antigen based on Nafion, colloidal Ag and polyvinyl butyral as matrixes.

    Science.gov (United States)

    Tang, Dianping; Yuan, Ruo; Chai, Yaqin; Zhang, Linyan; Zhong, Xia; Dai, Jianyuan; Liu, Yan

    2004-11-30

    A novel potentiometry immunoassay with amplified sensitivity has been developed for the detection of diphtheria antigen (Diph) via immobilizing diphtheria antibody (anti-Diph) on a platinum electrode based on Nafion, colloidal Ag (Ag), and polyvinyl butyral (PVB) as matrixes in this study. The modified procedure was further characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The influence and factors influencing the performance of resulting immunosensor were studied in detail. The resulting immunosensor exhibited sigmoid curve with log Diph concentrations, high sensitivity (51.4 mV/decade), wide linear range from 8 to 800 ng ml(-1) with a detection limit of 1.5 ng ml(-1), rapid potentiometric response (6 months). Analytical results of clinical samples show that the developed immunoassay is comparable with the enzyme-linked immunosorbent assays (ELISAs) method, implying a promising alternative approach for detecting diphtheria antigen in the clinical diagnosis.

  17. Investigation of voltammetric enzyme-linked immunoassay based on new system of ODA-H2O2-HRP

    Institute of Scientific and Technical Information of China (English)

    焦奎; 张书圣; 韦璐

    1996-01-01

    A voltammetric enzyme-linked immunoassay based on a new system of ODA-H2O2-HRP has first been developed and used in the detection of HRP and labelled HRP. By this method, the enzyme-catalyzing reaction of H2O2 oxidizing odianisidine (ODA) couples the electrode-reduction reaction of the oxidizing product of odianisidine, which produces a sensitive polarographic wave at potential of -0.56V (SCE) in Britton-Robinson buffer solution. In using this polarographic wave, a detection limit to HRP is 3.7×10-12g/mL and a linear range 1.0×10-11-2.0×10-9g/mL. And the mechanisms of the coupling reaction and the process of electro-reduction in the ODA-H2O2-HRP voltammetric enzyme-linked immunoassay system have also been carefully studied.

  18. On-chip immune cell activation and subsequent time-resolved magnetic bead-based cytokine detection.

    Science.gov (United States)

    Kongsuphol, Patthara; Liu, Yunxiao; Ramadan, Qasem

    2016-10-01

    Cytokine profiling and immunophenotyping offer great potential for understanding many disease mechanisms, personalized diagnosis, and immunotherapy. Here, we demonstrate a time-resolved detection of cytokine from a single cell cluster using an in situ magnetic immune assay. An array of triple-layered microfluidic chambers was fabricated to enable simultaneous cell culture under perfusion flow and detection of the induced cytokines at multiple time-points. Each culture chamber comprises three fluidic compartments which are dedicated to, cell culture, perfusion and immunoassay. The three compartments are separated by porous membranes, which allow the diffusion of fresh nutrient from the perfusion compartment into the cell culture compartment and cytokines secretion from the cell culture compartment into the immune assay compartment. This structure hence enables capturing the released cytokines without disturbing the cell culture and without minimizing benefit gain from perfusion. Functionalized magnetic beads were used as a solid phase carrier for cytokine capturing and quantification. The cytokines released from differential stimuli were quantified in situ in non-differentiated U937 monocytes and differentiated macrophages.

  19. Vaccine potential of plasma bead-based dual antigen delivery system against experimental murine candidiasis.

    Science.gov (United States)

    Ahmad, Ejaj; Zia, Qamar; Fatima, Munazza Tamkeen; Owais, Mohammad; Saleemuddin, Mohammed

    2015-11-01

    The development of prophylactic anti-candidal vaccine comprising the Candida albicans cytosolic proteins (Cp) as antigen and plasma beads (PB) prepared from plasma as sustained delivery system, is described. The immune-prophylactic potential of various PBs-based dual antigen delivery systems, co-entrapping Cp pre-entrapped in PLGA microspheres were tested in the murine model. Induction of cell mediated immunity was measured by assaying DTH and NO production as well as in vitro proliferation of lymphocytes derived from the immunized animals. Expression of surface markers on APCs (CD80, CD86) and T-cells (CD4+, CD8+) was also evaluated. Humoral immune response was studied by measuring circulating anti-Cp antibodies and their subclasses. When the prophylactic efficacy of the vaccines was tested in mice challenged with virulent C. albicans, the PB-based formulation (PB-PLGA-Cp vaccine) was found to be most effective in the generation of desirable immune response, in terms of suppression of fungal load and facilitating the survival of the immunized animals.

  20. A bead-based suspension array for the multiplexed detection of begomoviruses and their whitefly vectors.

    Science.gov (United States)

    van Brunschot, S L; Bergervoet, J H W; Pagendam, D E; de Weerdt, M; Geering, A D W; Drenth, A; van der Vlugt, R A A

    2014-03-01

    Bead-based suspension array systems enable simultaneous fluorescence-based identification of multiple nucleic acid targets in a single reaction. This study describes the development of a novel approach to plant virus and vector diagnostics, a multiplexed 7-plex array that comprises a hierarchical set of assays for the simultaneous detection of begomoviruses and Bemisia tabaci, from both plant and whitefly samples. The multiplexed array incorporates genus, species and strain-specific assays, offering a unique approach for identifying both known and unknown viruses and B. tabaci species. When tested against a large panel of sequence-characterized begomovirus and whitefly samples, the array was shown to be 100% specific to the homologous target. Additionally, the multiplexed array was highly sensitive, efficiently and concurrently determining both virus and whitefly identity from single viruliferous whitefly samples. The detection limit for one assay within the multiplexed array that specifically detects Tomato yellow leaf curl virus-Israel (TYLCV-IL) was quantified as 200fg of TYLCV-IL DNA, directly equivalent to that of TYLCV-specific qPCR. Highly reproducible results were obtained over multiple tests. The flexible multiplexed array described in this study has great potential for use in plant quarantine, biosecurity and disease management programs worldwide.

  1. Fabrication and characterization of tosyl-activated magnetic and nonmagnetic monodisperse microspheres for use in microfluic-based ferritin immunoassay.

    Science.gov (United States)

    Reymond, Frédéric; Vollet, Christine; Plichta, Zdeněk; Horák, Daniel

    2013-01-01

    This article describes the preparation of tosyl-activated nonmagnetic poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) [P(HEMA-GMA)] microspheres by dispersion polymerization and tosyl-activated magnetic poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) [P(HEMA-EDMA)] microspheres by multistep swelling polymerization method and precipitation of iron oxide inside the pores. These new approaches show that monodisperse microspheres, 2.3 µm, respectively 4.1 µm, in diameter can be produced in high yields avoiding aggregation and with the advantage of being free of aromatic moieties. To demonstrate their potential for diagnostic applications, both types of microparticles have been coated with capture and detection antibodies (DAs), respectively. Immunoassay protocols have then been developed for the dosage of ferritin using an automated affinity platform combining microchannel chips and electrochemical detection. The assay performance using the above magnetic microspheres has been compared with that obtained with commercial tosyl-activated beads. Finally, the possibility to combine functionalized magnetic and nonmagnetic microspheres has been evaluated in view of amplifying the number of enzymatic labels in the immuno-complex. At a ferritin concentration of 119.6 ng/mL, a signal-to-noise ratio of 150.5 is obtained using 0.2 mg/mL of anti-ferritin-coated P(HEMA-GMA)-DA microspheres against a value of 158.8 using free DA in solution.

  2. Comparison of three magnetic-bead-based RNA extraction methods for detection of cucumber green mottle mosaic virus by real-time RT-PCR.

    Science.gov (United States)

    Zhao, Xiaoli; Zhou, Qi; Zhang, Lijie; Yan, Wenlong; Sun, Ning; Liang, Xinmiao; Deng, Congliang

    2015-07-01

    To determine the efficiency of RNA extraction methods based on magnetic beads, three different bead-based methods (one using silica-coated magnetic beads [SMNP], one using immunomagnetic beads conjugated to a specific antibody [IMB], and one using magnetic beads to nonspecifically adsorb virions [MNP]) were compared with the TRIzol method for the extraction of cucumber green mottle mosaic virus (CGMMV) RNA from cucumber leaves by real-time RT-PCR. The results indicated that the extraction efficiency of the SMNP method was 10 times higher than those of the IMB and MNP methods and 100 times higher than that of the TRIzol method. Therefore, the SMNP method could be considered for use in quarantine measures for the prevention and control of the disease caused by CGMMV.

  3. Immunoassay for tumor markers in human serum based on Si nanoparticles and SiC@Ag SERS-active substrate.

    Science.gov (United States)

    Zhou, Lu; Zhou, Jun; Feng, Zhao; Wang, Fuyan; Xie, Shushen; Bu, Shizhong

    2016-04-21

    Based on a sandwich structure consisting of nano-Si immune probes and a SiC@Ag SERS-active immune substrate, a kind of ultra-sensitive immunoassay protocol is presented to detect tumor markers in human serum. The nano-Si immune probes were prepared by immobilizing the detecting antibodies onto the surfaces of SiO2-coated Si nanoparticles (NPs) which were modified with 3-(aminopropyl)trimethoxysilane, and the SiC@Ag SERS-active immune substrates were prepared by immobilizing the captured antibodies on Ag film sputtered on SiC sandpaper. To the best of our knowledge, it is the first time that Si NPs are directly used as Raman tags in an immunoassay strategy. And, the SiC@Ag SERS-active substrates exhibit excellent surface enhanced Raman scattering (SERS) performances with an enhancement factor of ∼10(5), owing to the plasmonic effect of the Ag film on the rough surface of the SiC sandpaper. In our experiments, the sandwich immunoassay structure has been successfully applied to detect prostate specific antigen (PSA), α-fetoprotein (AFP) and carbohydrate antigen 19-9 (CA19-9) in a human serum sample and the limit of detections are as low as 1.79 fg mL(-1), 0.46 fg mL(-1) and 1.3 × 10(-3) U mL(-1), respectively. It reveals that the proposed immunoassay protocol has demonstrated a high sensitivity for tumor markers in human serum and a potential practicability in biosensing and clinical diagnostics.

  4. Layer-by-layer multienzyme assembly for highly sensitive electrochemical immunoassay based on tyramine signal amplification strategy.

    Science.gov (United States)

    Zhou, Jun; Tang, Juan; Chen, Guonan; Tang, Dianping

    2014-04-15

    A new sandwich-type electrochemical immunosensor based on nanosilver-doped bovine serum albumin microspheres (Ag@BSA) with a high ratio of horseradish peroxidase (HRP) and detection antibody was developed for quantitative monitoring of biomarkers (carcinoembryonic antigen, CEA, used in this case) by coupling enzymatic biocatalytic precipitation with tyramine signal amplification strategy on capture antibody-modified glassy carbon electrode. Two immunosensing protocols (with and without tyramine signal amplification) were also investigated for the detection of CEA and improved analytical features were acquired with tyramine signal amplification strategy. With the labeling method, the performance and factors influencing the electrochemical immunoassay were studied and evaluated in detail. Under the optimal conditions, the electrochemical immunosensor exhibited a wide dynamic range of 0.005-80 ng mL(-1) toward CEA standards with a low detection limit of 5.0 pg mL(-1). Intra- and inter-assay coefficients of variation were below 11%. No significant differences at the 0.05 significance level were encountered in the analysis of 6 clinical serum specimens and 6 spiked new-born cattle serum samples between the electrochemical immunoassay and the commercialized electrochemiluminescent immunoassay method for the detection of CEA.

  5. On-chip enzyme quantification of single Escherichia coli bacteria by immunoassay-based analysis.

    Science.gov (United States)

    Stratz, Simone; Eyer, Klaus; Kurth, Felix; Dittrich, Petra S

    2014-12-16

    Individual bacteria of an isogenic population can differ significantly in their phenotypic characteristics. This cellular heterogeneity is thought to increase the adaptivity to environmental changes on a population level. Analytical methods for single-bacteria analyses are essential to reveal the different factors that may contribute to this cellular heterogeneity, among them the stochastic gene expression, cell cycle stages and cell aging. Although promising concepts for the analysis of single mammalian cells based on microsystems technology were recently developed, platforms suitable for proteomic analyses of microbial cells are by far more challenging. Here, we present a microfluidic device optimized for the analysis of single Escherichia coli bacteria. Individual bacteria are captured in a trap and isolated in a volume of only 155 pL. In combination with an immunoassay-based analysis of the cell lysate, the platform allowed the selective and sensitive analysis of intracellular enzymes. The limit of detection of the developed protocol was found to be 200 enzymes. Using this platform, we could investigate the levels of β-galactosidase in cells grown under different nutrient conditions. We successfully determined the enzyme copy numbers in cells cultured in defined medium (3517 ± 1578) and in complex medium (4710 ± 2643), and verified the down-regulation of expression in medium that contained only glucose as carbon source. The strong variations we found for individual bacteria confirm the phenotype heterogeneity. The capability to quantify proteins and other molecules in single bacterial lysates is encouraging to use the new analysis platform in future proteomics studies of isogenic bacteria populations.

  6. Magnetic-particle-based, ultrasensitive chemiluminescence enzyme immunoassay for free prostate-specific antigen.

    Science.gov (United States)

    Liu, Ruping; Wang, Cheng; Jiang, Quan; Zhang, Wei; Yue, Zhao; Liu, Guohua

    2013-11-01

    We report a magnetic-particle (MMP)-based chemiluminescence enzyme immunoassay (CLEIA) for free prostate-specific antigen (f-PSA) in human serum. In this method, the f-PSA is sandwiched between the anti-PSA antibody coated MMPs and alkaline phosphatase (ALP)-labeled anti-f-PSA antibody. The signal produced by the emitted photons from the chemiluminescent substrate (4-methoxy-4-(3-phosphatephenyl)-spiro-(1,2-dioxetane-3,2'-adamantane)) is directly proportional to the amount of f-PSA in a sample. The present MMP-based assay can detect f-PSA in the range of 0.1-30 ng mL(-1) with the detection limit of 0.1 ng mL(-1). The linear detection range could match the concentration range within the "diagnostic gray zone" of serum f-PSA levels (4-10 ng mL(-1)). The detection limit was sufficient for measuring clinically relevant f-PSA levels (>4 ng mL(-1)). Furthermore, the method was highly selective; it was unaffected by cross-reaction with human glandular kallikrein-2, a kallikrein-like serine protease that is 80% similar to f-PSA. The proposed method was finally applied to determine f-PSA in 40 samples of human sera. Results obtained using the method showed high correlation with those obtained using a commercially available microplate CLEIA kit (correlation coefficient, 0.9821). This strategy shows great potential application in the fabrication of diagnostic kits for determining f-PSA in serum.

  7. A novel magnetic bead bioassay platform using a microchip-based sensor for infectious disease diagnosis.

    Science.gov (United States)

    Aytur, Turgut; Foley, Jonathan; Anwar, Mekhail; Boser, Bernhard; Harris, Eva; Beatty, P Robert

    2006-07-31

    New technologies are greatly needed to improve laboratory tests that can be used in point-of-care clinical settings. Here, a biosensor was used to detect micron-scale paramagnetic beads in order to replace the conventional enzymatic label used in ELISAs. This novel biosensor was fabricated through standard complementary metal oxide semiconductor (CMOS) manufacturing and was used to quantify magnetic beads bound to the sensor surface by immunological recognition, analogous to ELISA. CMOS technology can integrate multiple laboratory functions into the sensor chip, potentially enabling inexpensive, compact and sophisticated diagnostic systems for a number of diseases. We present results for two immunological assays: antigen capture of purified mouse IgG and detection of human anti-dengue virus IgG in clinical serum samples. The sensitivity of detecting purified protein with magnetic beads was comparable to ELISA. We found a high correlation between the ELISA optical density and the biosensor output in the clinical assay. We also demonstrate the use of a controlled magnetic field to remove non-specifically bound magnetic beads from the sensor surface, effectively washing the sensor surface. This novel sensor can be mass-produced at low cost and can detect magnetic beads bound to the surface through specific antibody-antigen interactions, making it a potential platform for new simplified and rapid point-of-care diagnostic tests.

  8. Application of a SERS-based lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B

    Science.gov (United States)

    Hwang, Joonki; Lee, Sangyeop; Choo, Jaebum

    2016-06-01

    A novel surface-enhanced Raman scattering (SERS)-based lateral flow immunoassay (LFA) biosensor was developed to resolve problems associated with conventional LFA strips (e.g., limits in quantitative analysis and low sensitivity). In our SERS-based biosensor, Raman reporter-labeled hollow gold nanospheres (HGNs) were used as SERS detection probes instead of gold nanoparticles. With the proposed SERS-based LFA strip, the presence of a target antigen can be identified through a colour change in the test zone. Furthermore, highly sensitive quantitative evaluation is possible by measuring SERS signals from the test zone. To verify the feasibility of the SERS-based LFA strip platform, an immunoassay of staphylococcal enterotoxin B (SEB) was performed as a model reaction. The limit of detection (LOD) for SEB, as determined with the SERS-based LFA strip, was estimated to be 0.001 ng mL-1. This value is approximately three orders of magnitude more sensitive than that achieved with the corresponding ELISA-based method. The proposed SERS-based LFA strip sensor shows significant potential for the rapid and sensitive detection of target markers in a simplified manner.A novel surface-enhanced Raman scattering (SERS)-based lateral flow immunoassay (LFA) biosensor was developed to resolve problems associated with conventional LFA strips (e.g., limits in quantitative analysis and low sensitivity). In our SERS-based biosensor, Raman reporter-labeled hollow gold nanospheres (HGNs) were used as SERS detection probes instead of gold nanoparticles. With the proposed SERS-based LFA strip, the presence of a target antigen can be identified through a colour change in the test zone. Furthermore, highly sensitive quantitative evaluation is possible by measuring SERS signals from the test zone. To verify the feasibility of the SERS-based LFA strip platform, an immunoassay of staphylococcal enterotoxin B (SEB) was performed as a model reaction. The limit of detection (LOD) for SEB, as

  9. Validation Procedure for Multiplex Antibiotic Immunoassays Using Flow-Based Chemiluminescence Microarrays.

    Science.gov (United States)

    Meyer, Verena Katharina; Meloni, Daniela; Olivo, Fabio; Märtlbauer, Erwin; Dietrich, Richard; Niessner, Reinhard; Seidel, Michael

    2017-01-01

    Small molecules like antibiotics or other pharmaceuticals can be detected and quantified, among others, with indirect competitive immunoassays. With regard to multiplex quantification, these tests can be performed as chemiluminescence microarray immunoassays, in which, in principle, the analyte in the sample and the same substance immobilized on the chip surface compete for a limited number of specific antibody binding sites. The amount of the specific primary antibody that has been bound to the surface is visualized by means of a chemiluminescence reaction.Validated quantitative confirmatory methods for the detection of contaminants, for example drug residues, in food samples usually comprise chromatographic analysis and spectrometric detection, e.g., HPLC-MS, GC-MS, or GC with electron capture detection. Here, we describe a validation procedure (according to the Commission Decision of the European Communities 2002/657/EC) for multiplex immunoassays performed as flow-through chemiluminescence microarrays, using the example of a small molecule microarray for the simultaneous detection of 13 antibiotics in milk. By this means, we suggest to accept multianalyte immunoassays as confirmatory methods as well, to benefit from the advantages of a fast automated method that does not need any pretreatment of the sample. The presented microarray chip is regenerable, so an internal calibration is implemented. Therefore, the analytical results are highly precise, combined with low costs (the aim for commercialization is less than 1 € per analyte per sample, this is significantly less than HPLC-MS).

  10. Good performance of an immunoassay based method for nevirapine measurements in human breast milk

    DEFF Research Database (Denmark)

    Salado-Rasmussen, Kirsten; Persson Theilgaard, Zahra; Chiduo, Mercy;

    2011-01-01

    Understanding the distribution of antiretro-virals in breastfeeding HIV-positive mothers is essential, both for prevention of mother-to-child HIV transmission and for research on the development of drug resistance. The ARK nevirapine (NVP)-test is an immunoassay method for nevirapine measurements...

  11. Good performance of an immunoassay based method for nevirapine measurements in human breast milk

    DEFF Research Database (Denmark)

    Salado-Rasmussen, Kirsten; Theilgaard, Zahra Persson; Chiduo, Mercy;

    2011-01-01

    Abstract Background: Understanding the distribution of antiretro-virals in breastfeeding HIV-positive mothers is essential, both for prevention of mother-to-child HIV transmission and for research on the development of drug resistance. The ARK nevirapine (NVP)-test is an immunoassay method...

  12. Effect of unlabeled helper probes on detection of an RNA target by bead-based sandwich hybridization

    DEFF Research Database (Denmark)

    Barken, K.B.; Cabig-Ciminska, M.; Holmgren, A.;

    2004-01-01

    Unlabeled helper oligonucleotides assisting a bead-based sandwich hybridization assay were tested for the optimal placement of the capture and detection probes. The target used was a full-length in vitro synthesized mRNA molecule. Helper probes complementary to regions adjacent to the binding sit....... Using an electrical chip linked to the detection probe for the detection of p-ominophenol, which is produced by alkaline phosphatase, a detection limit of 2 x 10(-13) M mRNA molecules was reached without the use of a nucleic acid amplification step.......Unlabeled helper oligonucleotides assisting a bead-based sandwich hybridization assay were tested for the optimal placement of the capture and detection probes. The target used was a full-length in vitro synthesized mRNA molecule. Helper probes complementary to regions adjacent to the binding site...

  13. An ultrasensitive and universal photoelectrochemical immunoassay based on enzyme mimetics enhanced signal amplification.

    Science.gov (United States)

    Wang, Guang-Li; Shu, Jun-Xian; Dong, Yu-Ming; Wu, Xiu-Ming; Li, Zai-Jun

    2015-04-15

    An ultrasensitive photoelectrochemical (PEC) immunoassay based on signal amplification by enzyme mimetics was fabricated for the detection of mouse IgG (as a model protein). The PEC immunosensor was constructed by a layer-by-layer assembly of poly (diallyldimethylammonium chloride) (PDDA), CdS quantum dots (QDs), primary antibody (Ab1, polyclonal goat antimouse IgG), and the antigen (Ag, mouse IgG) on an indium-tin oxide (ITO) electrode. Then, the secondary antibody (Ab2, polyclonal goat antimouse IgG) combined to a bio-bar-coded Pt nanoparticle(NP)-G-quadruplex/hemin probe was used for signal amplification. The bio-bar-coded Pt NP-G-quadruplex/hemin probe could catalyze the oxidation of hydroquinone (HQ) using H2O2 as an oxidant, demonstrating its intrinsic enzyme-like activity. High sensitivity for the target Ag was achieved by using the bio-bar-coded probe as signal amplifier due to its high catalytic activity, a competitive nonproductive absorption of hemin and the steric hindrance caused by the polymeric oxidation products of HQ. For most important, the oxidation product of HQ acted as an efficient electron acceptor of the illuminated CdS QDs. The target Ag could be detected from 0.01pg/mL to 1.0ng/mL with a low detection limit of 6.0fg/mL. The as-obtained immunosensor exhibited high sensitivity, good stability and acceptable reproducibility. This method might be attractive for clinical and biomedical applications.

  14. Ultrasensitive electrochemiluminescence immunoassay for tumor marker based on quantum dots coated carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Li, Long; Zhang, Yan; Li, Shuai; Wang, Xiu; Li, Chen [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Ge, Shenguang [Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022 (China); Yu, Jinghua, E-mail: ujn.yujh@gmail.com [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Yan, Mei [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Song, Xianrang [Cancer Research Center, Shandong Tumor Hospital, Jinan 250012 (China)

    2013-12-15

    In this work, a novel electrochemiluminescence (ECL) immunosensor based on CdTe quantum dots (QDs) coated carbon nanosphere (CN/QDs) for the detection of carcinoembryonic antigen (CEA) was developed. The carbon nanospheres (CNs) with good monodispersity and uniform structure were synthetized by a hydrothermal method using glucose as raw material. Then QDs functionized CNs were prepared and employed for signal amplification to improve the sensitivity and the detection limit of immunosensor. For this proposed immunosensor, chitosan was firstly deposited on the pretreated indium tin oxide (ITO) electrode surface, which promoted the electron transfer. Subsequently, gold nanoparticles (AuNPs) were assembled onto chitosan film modified electrode to improve the absorption capacity of antibodies. Then, primary antibodies were immobilized onto the electrode through the reaction between AuNPs and amino. At last bovine serum albumin (BSA) was employed to block the nonspecific binding sites. As a result, a novel ECL immunosensor was obtained on the prepared CN/QDs. The CEA was determined in the range of 0.005–200 ng mL{sup −1}, with a low detection limit of 1.2 pg mL{sup −1} (S/N=3). The proposed ECL immunosensor provides a rapid, simple, and sensitive immunoassay protocol for protein detection, which could be applied in more bioanalytical systems. -- Highlights: • A sandwich-type electrochemluminence immunosensor was fabricated. • CdTe quantum dots coated carbon nanospheres were used to amplify signals. • Au–chitosan biocompatible membrane modified on ITO electrode to capture antibodies.

  15. Taguchi design-based optimization of sandwich immunoassay microarrays for detecting breast cancer biomarkers.

    Science.gov (United States)

    Luo, Wen; Pla-Roca, Mateu; Juncker, David

    2011-07-15

    Taguchi design, a statistics-based design of experiment method, is widely used for optimization of products and complex production processes in many different industries. However, its use for antibody microarray optimization has remained underappreciated. Here, we provide a brief explanation of Taguchi design and present its use for the optimization of antibody sandwich immunoassay microarray with five breast cancer biomarkers: CA15-3, CEA, HER2, MMP9, and uPA. Two successive optimization rounds with each 16 experimental trials were performed. We tested three factors (capture antibody, detection antibody, and analyte) at four different levels (concentrations) in the first round and seven factors (including buffer solution, streptavidin-Cy5 dye conjugate concentration, and incubation times for five assay steps) with two levels each in the second round; five two-factor interactions between selected pairs of factors were also tested. The optimal levels for each factor as measured by net assay signal increase were determined graphically, and the significance of each factor was analyzed statistically. The concentration of capture antibody, streptavidin-Cy5, and buffer composition were identified as the most significant factors for all assays; analyte incubation time and detection antibody concentration were significant only for MMP9 and CA15-3, respectively. Interactions between pairs of factors were identified, but were less influential compared with single factor effects. After Taguchi optimization, the assay sensitivity was improved between 7 and 68 times, depending on the analyte, reaching 640 fg/mL for uPA, and the maximal signal intensity increased between 1.8 and 3 times. These results suggest that Taguchi design is an efficient and useful approach for the rapid optimization of antibody microarrays.

  16. A novel bead-based assay to detect specific antibody responses against Toxoplasma gondii and Trichinella spiralis simultaneously in sera of experimentally infected swine

    Directory of Open Access Journals (Sweden)

    Bokken Gertie CAM

    2012-03-01

    Full Text Available Abstract Background A novel, bead-based flow cytometric assay was developed for simultaneous determination of antibody responses against Toxoplasma gondii and Trichinella spiralis in pig serum. This high throughput screening assay could be an alternative for well known indirect tests like ELISA. One of the advantages of a bead-based assay over ELISA is the possibility to determine multiple specific antibody responses per single sample run facilitated by a series of antigens coupled to identifiable bead-levels. Furthermore, inclusion of a non-coupled bead-level in the same run facilitates the determination of, and correction for non-specific binding. The performance of this bead-based assay was compared to one T. spiralis and three T. gondii ELISAs. For this purpose, sera from T. gondii and T. spiralis experimentally infected pigs were used. With the experimental infection status as gold standard, the area under the curve, Youden Index, sensitivity and specificity were determined through receiver operator curve analysis. Marginal homogeneity and inter-rater agreement between bead-based assay and ELISAs were evaluated using McNemar's Test and Cohen's kappa, respectively. Results Results indicated that the areas under the curve of the bead-based assay were 0.911 and 0.885 for T. gondii and T. spiralis, respectively, while that of the T. gondii ELISAs ranged between 0.837 and 0.930 and the T. spiralis ELISA was 0.879. Bead-based T. gondii assay had a sensitivity of 86% and specificity of 96%, while the ELISAs ranged between 64-84% and 93-99%, respectively. The bead-based T. spiralis assay had a sensitivity of 68% and specificity of 100% while the ELISA scored 72% and 95%, respectively. Marginal homogeneity was found between the T. gondii bead-based test and one of the T. gondii ELISAs. Moreover, in this test combination and between T. spiralis bead-based assay and respective ELISA, an excellent inter-rater agreement was found. When results of

  17. Chip-Based Measurements of Brownian Relaxation of Magnetic Beads Using a Planar Hall Effect Magnetic Field Sensor

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Dalslet, Bjarke Thomas; Snakenborg, Detlef

    2010-01-01

    We present a simple 'click-on' fluidic system with integrated electrical contacts, which is suited for electrical measurements on chips in microfluidic systems. We show that microscopic magnetic field sensors based on the planar Hall effect can be used for detecting the complex magnetic response...... with a constant hydrodynamic bead diameter when the temperature dependence of the viscosity of water is taken into account. These measurements demonstrate the feasibility of performing measurements of the Brownian relaxation response in a lab-on-a-chip system and constitute the first step towards an integrated...... using only the self-field arising from the bias current applied to the sensors as excitation field. We present measurements on a suspension of magnetic beads with a nominal diameter of 250 nm vs. temperature and find that the observations are consistent with the Cole-Cole model for Brownian relaxation...

  18. A Novel Fluorescence Immunoassay System Based on pH-Sensitive Phase Separating Technique

    Institute of Scientific and Technical Information of China (English)

    林鹏; 郑洪; 杨黄浩; 李东辉; 许金钩

    2005-01-01

    In this paper, it was discovered that a novel pH-sensitive copolymer of N-isopropylacrylamide (NIP) and N-(3-dimethylaminopropyl)methacrylamide (DMAPM) could be gotten by polymerization. The phase transition pH (pHtr) of P(NIP-DMAPM) polymer was found to be 7.4 at 37℃. The polymer was precipitated out of water above a critical pH=7.4 and re-dissolved below pH----7.4. The characteristic of this polymer made it possible to carry out the immunochemical steps of an immunoassay in a true solution and then to quickly separate the resulting product from the reaction mixture. In a competitive fluorescence immunoassay, the standard rabbit IgG and rabbit IgG immobilized on P(NIP-DMAPM) first competitively reacted with the fluorescein isothiocyanate (FITC) labeled antibody, then the pH of solution was adjusted above the pHtr of polymer to precipitate the polymer-immune complex,and the polymer-immune complex precipitate was separated and re-dissolved by the adjustment of pH, finally the FITC-labeled antibody in the immune complex was quantified by fluorescence measurement. The calibration graph for rabbit IgG was linear over the range of 100-1000 ng/mL with a detection limit of 11 ng/mL. The method is rapid, sensitive and simple. Owing to neutral pHtr of P(NIP-DMAPM), the damage to antigen-antibody immune complex was greatly decreased in the course of separation. In addition, a sandwich enzyme-linked fluorescence immunoassay method for the determination of human IgG was also developed, showing that the pH-sensitive phase separating immunoassay could be performed in the competitive method as well as the sandwich method.

  19. Immobilized magnetic beads-based multi-target affinity selection coupled with HPLC-MS for screening active compounds from traditional Chinese medicine and natural products.

    Science.gov (United States)

    Chen, Yaqi; Chen, Zhui; Wang, Yi

    2015-01-01

    Screening and identifying active compounds from traditional Chinese medicine (TCM) and other natural products plays an important role in drug discovery. Here, we describe a magnetic beads-based multi-target affinity selection-mass spectrometry approach for screening bioactive compounds from natural products. Key steps and parameters including activation of magnetic beads, enzyme/protein immobilization, characterization of functional magnetic beads, screening and identifying active compounds from a complex mixture by LC/MS, are illustrated. The proposed approach is rapid and efficient in screening and identification of bioactive compounds from complex natural products.

  20. Universal quantum dot-based sandwich-like immunoassay strategy for rapid and ultrasensitive detection of small molecules using portable and reusable optofluidic nano-biosensing platform.

    Science.gov (United States)

    Zhou, Liping; Zhu, Anna; Lou, Xuening; Song, Dan; Yang, Rong; Shi, Hanchang; Long, Feng

    2016-01-28

    A universal sandwich-like immunoassay strategy based on quantum-dots immunoprobe (QD-labeled anti-mouse IgG antibody) was developed for rapid and ultrasensitive detection of small molecules. A portable and reusable optofluidic nano-biosensing platform was applied to investigate the sandwich-like immunoassay mechanism and format of small molecules, as well as the binding kinetics between QD immunoprobe and anti-small molecule antibody. A two-step immunoassay method that involves pre-incubation mixture of different concentration of small molecule and anti-small molecule antibody, and subsequent introduction of QD immunoprobe into the optofluidic cell was conducted for small molecule determination. Compared with the one-step immunoassay method, the two-step immunoassay method can obtain higher fluorescence signal and higher sensitivity index, thus improving the nano-biosensing performance. Based on the proposed strategy, two mode targets, namely, microcystin-LR (MC-LR) and Bisphenol A (BPA) were tested with high sensitivity, rapidity, and ease of use. A higher concentration of small molecules in the sample led to less anti-small molecule antibody bound with antigen-carrier protein conjugate immobilized onto the sensor surface, and less QD immunoprobes bound with anti-small molecule antibody. This phenomenon lowered the fluorescence signal detected by nano-biosensing platform. Under optimal operating conditions, MC-LR and BPA exhibited a limit of detection of 0.003 and 0.04 μg/L, respectively. The LODs were better than those of the indirect competitive immunoassay method for small molecules via Cy5.5-labeled anti-small molecule antibody. The proposed QD-based sandwich-like immunoassay strategy was evaluated in spiked water samples, and showed good recovery, precision and accuracy without complicated sample pretreatments. All these results demonstrate that the new detection strategy could be readily applied to the other trace small molecules in real water samples.

  1. Tyramine-based enzymatic conjugate repeats for ultrasensitive immunoassay accompanying tyramine signal amplification with enzymatic biocatalytic precipitation.

    Science.gov (United States)

    Hou, Li; Tang, Yun; Xu, Mingdi; Gao, Zhuangqiang; Tang, Dianping

    2014-08-19

    A new impedimetric immunoassay protocol based on enzyme-triggered formation of tyramine-enzyme repeats on gold nanoparticle (AuNP) was designed for highly sensitive detection of carcinoembryonic antigen (CEA, as a model) by virtue of utilizing enzymatic biocatalytic precipitation toward 4-chloro-1-naphthol (4-CN) on anti-CEA antibody (Ab1)-modified immunosensor. Initially, AuNP was functionalized with horseradish peroxidase and detection antibody (HRP-AuNP-Ab2), and then HRP-tyramine conjugate was utilized for the formation of tyramine-HRP repeats through the triggering of the immobilized HRP on the AuNP with the aid of H2O2. In the presence of target CEA, the carried HRP-tyramine repeats accompanying the sandwiched immunocomplex catalyzed the 4-CN oxidation to produce an insoluble precipitation on the immunosensor, thus causing a local alteration of the conductivity. Three signal-transduction tags including HRP-Ab2, HRP-AuNP-Ab2, and HRP-AuNP-Ab2 with HRP-tyramine repeats were employed for target CEA evaluation, and improved analytical properties were achieved by HRP-AuNP-Ab2 with HRP-tyramine repeats. Using the unique signal-transduction tag, the analytical performance of the impedimetric immunoassay was studied in detail. Under the optimal conditions, the impedimetric immunosensor displayed a wide dynamic working range of between 0.5 pg mL(-1) and 40 ng mL(-1) with a detection limit (LOD) of 0.38 pg mL(-1) relative to target CEA. The coefficients of variation (CVs) were ≤9.3% and 13.3% for the intra-assay and interassay, respectively. The levels of CEA in eight clinical serum specimens were measured by using the developed impedimetric immunosensor. The obtained results correlated well with those from the electrochemiluminescent (ECL)-based immunoassay with a correlation coefficient of 0.998.

  2. Hydrogel-based protein and oligonucleotide microchips on metal-coated surfaces: enhancement of fluorescence and optimization of immunoassay.

    Science.gov (United States)

    Zubtsova, Zh I; Zubtsov, D A; Savvateeva, E N; Stomakhin, A A; Chechetkin, V R; Zasedatelev, A S; Rubina, A Yu

    2009-10-26

    Manufacturing of hydrogel-based microchips on metal-coated substrates significantly enhances fluorescent signals upon binding of labeled target molecules. This observation holds true for both oligonucleotide and protein microchips. When Cy5 is used as fluorophore, this enhancement is 8-10-fold in hemispherical gel elements and 4-5-fold in flattened gel pads, as compared with similar microchips manufactured on uncoated glass slides. The effect also depends on the hydrophobicity of metal-coated substrate and on the presence of a layer of liquid over the gel pads. The extent of enhancement is insensitive to the nature of formed complexes and immobilized probes and remains linear within a wide range of fluorescence intensities. Manufacturing of gel-based protein microarrays on metal-coated substrates improves their sensitivity using the same incubation time for immunoassay. Sandwich immunoassay using these microchips allows shortening the incubation time without loss of sensitivity. Unlike microchips with probes immobilized directly on a surface, for which the plasmon mechanism is considered responsible for metal-enhanced fluorescence, the enhancement effect observed using hydrogel-based microchips on metal-coated substrates might be explained within the framework of geometric optics.

  3. Chemiluminescence enzyme immunoassay based on magnetic nanoparticles for detection of hepatoceUular carcinoma marker glypican-3

    Institute of Scientific and Technical Information of China (English)

    Qian-Yun Zhang; Hui Chen; Zhen Lin; Jin-Ming Lin

    2011-01-01

    Glypican-3 (GPC3) is reported as a great promising tumor marker for hepatocellular carcinoma (HCC) diagnosis. Highly sensitive and accurate analysis of serum GPC3 (sGPC3), in combination with or instead of traditional HCC marker alpha-fetoprotein (AFP), is essential for early diagnosis of I-ICC. Biomaterial-functionalized magnetic particles have been utilized as solid supports with good biological compatibility for sensitive immunoassay. Here, the magnetic nanoparticles (MnPs) and magnetic microparticles (MmPs) with carboxyl groups were further modified with streptavidin, and applied for the development of chemiluminescence enzyme immunoassay (CLEIA). After comparing between MnPs- and MmPs-based CLEIA, MnPs-based CLEIA was proved to be a better method with less assay time, greater sensitivity, better linearity and longer chemiluminescence platform. MnPs-based CLEIA was applied for detection of sGPC3 in normal liver, hepatocirrhosis, secondary liver cancer and HCC serum samples. The results indicated that sGPC3 was effective in diagnosis of HCC with high performance.

  4. Universal quantum dot-based sandwich-like immunoassay strategy for rapid and ultrasensitive detection of small molecules using portable and reusable optofluidic nano-biosensing platform

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liping; Zhu, Anna; Lou, Xuening; Song, Dan; Yang, Rong [School of Environment and Natural Resources, Renmin University of China, Beijing (China); Shi, Hanchang [School of Environment, Tsinghua University, Beijing (China); Long, Feng, E-mail: longf04@ruc.edu.cn [School of Environment and Natural Resources, Renmin University of China, Beijing (China)

    2016-01-28

    A universal sandwich-like immunoassay strategy based on quantum-dots immunoprobe (QD-labeled anti-mouse IgG antibody) was developed for rapid and ultrasensitive detection of small molecules. A portable and reusable optofluidic nano-biosensing platform was applied to investigate the sandwich-like immunoassay mechanism and format of small molecules, as well as the binding kinetics between QD immunoprobe and anti-small molecule antibody. A two-step immunoassay method that involves pre-incubation mixture of different concentration of small molecule and anti-small molecule antibody, and subsequent introduction of QD immunoprobe into the optofluidic cell was conducted for small molecule determination. Compared with the one-step immunoassay method, the two-step immunoassay method can obtain higher fluorescence signal and higher sensitivity index, thus improving the nano-biosensing performance. Based on the proposed strategy, two mode targets, namely, microcystin-LR (MC-LR) and Bisphenol A (BPA) were tested with high sensitivity, rapidity, and ease of use. A higher concentration of small molecules in the sample led to less anti-small molecule antibody bound with antigen-carrier protein conjugate immobilized onto the sensor surface, and less QD immunoprobes bound with anti-small molecule antibody. This phenomenon lowered the fluorescence signal detected by nano-biosensing platform. Under optimal operating conditions, MC-LR and BPA exhibited a limit of detection of 0.003 and 0.04 μg/L, respectively. The LODs were better than those of the indirect competitive immunoassay method for small molecules via Cy5.5-labeled anti-small molecule antibody. The proposed QD-based sandwich-like immunoassay strategy was evaluated in spiked water samples, and showed good recovery, precision and accuracy without complicated sample pretreatments. All these results demonstrate that the new detection strategy could be readily applied to the other trace small molecules in real water samples

  5. Measuring Immunoglobulin G Antibodies to Tetanus Toxin, Diphtheria Toxin, and Pertussis Toxin with Single-Antigen Enzyme-Linked Immunosorbent Assays and a Bead-Based Multiplex Assay▿

    OpenAIRE

    Reder, Sabine; Riffelmann, Marion; Becker, Christian; Wirsing von König, Carl Heinz

    2008-01-01

    Bead-based assay systems offer the possibility of measuring several specific antibodies in one sample simultaneously. This study evaluated a vaccine panel of a multianalyte system that measures antibodies to tetanus toxin, diphtheria toxin, and pertussis toxin (PT) from Bordetella pertussis. The antibody concentrations of human immunoglobulin G (IgG) to PT, tetanus toxin, and diphtheria toxin were measured in 123 serum pairs (total of 246 sera) from a vaccine study. The multianalyte bead assa...

  6. A new method for immunoassays using field-flow fractionation with on-line, continuous chemiluminescence detection.

    Science.gov (United States)

    Melucci, D; Guardigli, M; Roda, B; Zattoni, A; Reschiglian, P; Roda, A

    2003-06-13

    Chemiluminescence detection has already been combined with different separation techniques such as HPLC and capillary electrophoresis. In this work, it was applied to gravitational field-flow fractionation, a low-cost, flow-assisted separation technique for micronsized particles suited to further on-line detection of the separated analytes. Horseradish peroxidase was used as model sample, either free in solution or immobilized onto micronsized, polystyrene beads. The chemiluminescent substrates were added directly into the mobile phase, and the continuous, steady-state chemiluminescence generated during elution was detected on-line by either a flow-through luminometer or a CCD camera. Ultra-low detection limits, two orders of magnitude lower than those achievable with spectrophotometric detection, were found. The possibility to fully separate and quantitate free and bead-immobilized enzymes is reported, as a step towards the development of multianalyte, ultra-sensitive, micronsized beads-based flow-assisted immunoassays.

  7. Laminated paper-based analytical devices (LPAD) with origami-enabled chemiluminescence immunoassay for cotinine detection in mouse serum.

    Science.gov (United States)

    Liu, Wei; Cassano, Christopher L; Xu, Xin; Fan, Z Hugh

    2013-11-01

    Laminated paper-based analytical devices (LPAD) with origami-enabled chemiluminescence immunoassay have been developed for the detection of cotinine, a secondhand smoke (SHS) biomarker. The devices were fabricated by a craft-cutter to define flow channels, followed by lamination. This approach of cutting/lamination to fabricate LPAD is very similar to making an identification card, offering advantages in simplicity and rugged backing when compared to the common method of patterning paper using SU-8 or wax. We also developed a protocol of localized incision and paper-folding to isolate the detection zone from flow channels; the simple origami step eliminated possible reagent diffusion and flow during antibody immobilization steps and numerous washings. By incorporating luminol-based chemiluminescence for detecting horseradish peroxidase-conjugated cotinine, we employed origami-enabled LPAD to detect cotinine in mouse serum using competitive immunoassay. The detection limit was determined to be 5 ng/mL, a clinically relevant concentration. We believe that LPAD with chemiluminescence detection provides a new platform of low cost and sensitive assays for cotinine detection.

  8. Critical appraisal of four IL-6 immunoassays.

    Directory of Open Access Journals (Sweden)

    Dana K Thompson

    Full Text Available BACKGROUND: Interleukin-6 (IL-6 contributes to numerous inflammatory, metabolic, and physiologic pathways of disease. We evaluated four IL-6 immunoassays in order to identify a reliable assay for studies of metabolic and physical function. Serial plasma samples from intravenous glucose tolerance tests (IVGTTs, with expected rises in IL-6 concentrations, were used to test the face validity of the various assays. METHODS AND FINDINGS: IVGTTs, administered to 14 subjects, were performed with a single infusion of glucose (0.3 g/kg body mass at time zero, a single infusion of insulin (0.025 U/kg body mass at 20 minutes, and frequent blood collection from time zero to 180 minutes for subsequent Il-6 measurement. The performance metrics of four IL-6 detection methods were compared: Meso Scale Discovery immunoassay (MSD, an Invitrogen Luminex bead-based multiplex panel (LX, an Invitrogen Ultrasensitive Luminex bead-based singleplex assay (ULX, and R&D High Sensitivity ELISA (R&D. IL-6 concentrations measured with MSD, R&D and ULX correlated with each other (Pearson Correlation Coefficients r = 0.47-0.94, p<0.0001 but only ULX correlated (r = 0.31, p = 0.0027 with Invitrogen Luminex. MSD, R&D, and ULX, but not LX, detected increases in IL-6 in response to glucose. All plasma samples were measurable by MSD, while 35%, 1%, and 4.3% of samples were out of range when measured by LX, ULX, and R&D, respectively. Based on representative data from the MSD assay, baseline plasma IL-6 (0.90 ± 0.48 pg/mL increased significantly as expected by 90 minutes (1.29 ± 0.59 pg/mL, p = 0.049, and continued rising through 3 hours (4.25 ± 3.67 pg/mL, p = 0.0048. CONCLUSION: This study established the face validity of IL-6 measurement by MSD, R&D, and ULX but not LX, and the superiority of MSD with respect to dynamic range. Plasma IL-6 concentrations increase in response to glucose and insulin, consistent with both an early glucose-dependent response (detectable at 1

  9. Upconversion Nanoparticles and Monodispersed Magnetic Polystyrene Microsphere Based Fluorescence Immunoassay for the Detection of Sulfaquinoxaline in Animal-Derived Foods.

    Science.gov (United States)

    Hu, Gaoshuang; Sheng, Wei; Zhang, Yan; Wang, Junping; Wu, Xuening; Wang, Shuo

    2016-05-18

    A novel fluorescence immunoassay for detecting sulfaquinoxaline (SQX) in animal-derived foods was developed using NaYF4:Yb/Tm upconversion nanoparticles (UCNPs) conjugated with antibodies as fluorescence signal probes, and monodisperse magnetic polystyrene microspheres (MMPMs) modified with coating antigen as immune-sensing capture probes for trapping and separating the signal probes. Based on a competitive immunoassay format, the detection limit of the proposed method for detecting SQX was 0.1 μg L(-1) in buffer and 0.5 μg kg(-1) in food samples. The recoveries of SQX in spiked samples ranged from 69.80 to 133.00%, with coefficients of variation of 0.24-25.06%. The extraction procedure was fast, simple, and environmentally friendly, requiring no organic solvents. In particular, milk samples can be analyzed directly after simple dilution. This method has appealing properties, such as sensitive fluorescence response, a simple and fast extraction procedure, and environmental friendliness, and could be applied to detecting SQX in animal-derived foods.

  10. Microfluidics-Based Biosensors: A Microfluidic Paper-Based Origami Nanobiosensor for Label-Free, Ultrasensitive Immunoassays (Adv. Healthcare Mater. 11/2016).

    Science.gov (United States)

    Li, Xiao; Liu, Xinyu

    2016-06-01

    The first microfluidic paper-based origami nano-biosensor featuring zinc oxide nanowires and an electrochemical impedance spectroscopy biosensing mechanism, for label-free, ultrasensitive immunoassays is reported by X. Li and X. Liu on page 1326. The sensor consists of cellulose paper, a carbon ink electrode, and zinc oxide nanowires directly grown on the top. Possible parallelization of assays and high storage stability render the sensor promising for clinical diagnostics applications.

  11. Encapsulation of lactase (β-galactosidase) into κ-carrageenan-based hydrogel beads: Impact of environmental conditions on enzyme activity.

    Science.gov (United States)

    Zhang, Zipei; Zhang, Ruojie; Chen, Long; McClements, David Julian

    2016-06-01

    Encapsulation of enzymes in hydrogel beads may improve their utilization and activity in foods. In this study, the potential of carrageenan hydrogel beads for encapsulating β-galactosidase was investigated. Hydrogel beads were fabricated by injecting an aqueous solution, containing β-galactosidase (26 U) and carrageenan (1 wt%), into a hardening solution (5% potassium chloride). Around 63% of the β-galactosidase was initially encapsulated in the hydrogel beads. Encapsulated β-galactosidase had a higher activity than that of the free enzyme over a range of pH and thermal conditions, which was attributed to the stabilization of the enzyme structure by K(+) ions within the carrageenan beads. Release of the enzyme from the beads was observed during storage in aqueous solutions, which was attributed to the relatively large pore size of the hydrogel matrix. Our results suggest that carrageenan hydrogel beads may be useful encapsulation systems, but further work is needed to inhibit enzyme leakage.

  12. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kistrup, Kasper, E-mail: kkis@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Skotte Sørensen, Karen, E-mail: karen@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Center for Integrated Point of Care Technologies (CiPoC), DELTA, Venlighedsvej 4, DK-2870 Hørsholm (Denmark); Wolff, Anders, E-mail: anders.wolff@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Fougt Hansen, Mikkel, E-mail: mikkel.hansen@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark)

    2015-04-15

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis-binding buffer, respectively. - Highlights: • We present an all-polymer mass producible passive filled microfluidic chip system. • Rapid system fabrication is obtained by injection moulding and ultrasonic welding. • The system is made for single-use nucleic acid extraction using magnetic beads. • We systematically map compatibility of the chip system with various surfactants. • We quantify the volume carry-over of magnetic beads in water and 0.1% triton-X solution.

  13. A high-throughput liquid bead array-based screening technology for Bt presence in GMO manipulation.

    Science.gov (United States)

    Fu, Wei; Wang, Huiyu; Wang, Chenguang; Mei, Lin; Lin, Xiangmei; Han, Xueqing; Zhu, Shuifang

    2016-03-15

    The number of species and planting areas of genetically modified organisms (GMOs) has been rapidly developed during the past ten years. For the purpose of GMO inspection, quarantine and manipulation, we have now devised a high-throughput Bt-based GMOs screening method based on the liquid bead array. This novel method is based on the direct competitive recognition between biotinylated antibodies and beads-coupled antigens, searching for Bt presence in samples if it contains Bt Cry1 Aa, Bt Cry1 Ab, Bt Cry1 Ac, Bt Cry1 Ah, Bt Cry1 B, Bt Cry1 C, Bt Cry1 F, Bt Cry2 A, Bt Cry3 or Bt Cry9 C. Our method has a wide GMO species coverage so that more than 90% of the whole commercialized GMO species can be identified throughout the world. Under our optimization, specificity, sensitivity, repeatability and availability validation, the method shows a high specificity and 10-50 ng/mL sensitivity of quantification. We then assessed more than 1800 samples in the field and food market to prove capacity of our method in performing a high throughput screening work for GMO manipulation. Our method offers an applicant platform for further inspection and research on GMO plants.

  14. Sensing characteristics of plasmonic structure based on transferring process of polystyrene nano-beads

    Science.gov (United States)

    Kim, Doo Gun; Hwang, Jeongwoo; Kim, Seon Hoon; Ki, Hyun Chul; Kim, Tae Un; Shin, Jae Cheol; Jeong, Dae-Cheol; Jeon, Seungwon; Kim, Hong-Seung; Choi, Young-Wan

    2016-04-01

    We analyzed and demonstrated the double layered metallic nano-structures using polystyrene lift-off process on the conventional surface plasmon resonance (SPR) sensor to enhance the sensitivity of an SPR surface. The double layered plasmonic structures are optimized using the three-dimensional finite-difference time-domain method for the width, thickness, and period of the polystyrene beads. The thickness of the metal film and the metallic nano-hole is 20 and 20 nm in the 305 nm wide nano-hole size, respectively. The double layered metallic nano-structures are fabricated with monolayer polystyrene beads of chloromethyl latex 4% w/v 0.4 μm. The sensitivities of the conventional SPR sensor and the double layered plasmonic sensor are obtained to 42.2 and 60 degree/RIU, respectively. The SPR devices are also applied to the lead ion sensor. The resonance shifts of SPR sensors with and without a poly(vinyl chloride) membrane are 1328 RU and 788 RU from 10-5 M to 10-2 M concentration, respectively.

  15. New approach for development of sensitive and environmentally friendly immunoassay for mycotoxin fumonisin B(1) based on using peptide-MBP fusion protein as substitute for coating antigen.

    Science.gov (United States)

    Xu, Yang; Chen, Bo; He, Qing-hua; Qiu, Yu-Lou; Liu, Xing; He, Zhen-yun; Xiong, Zheng-ping

    2014-08-19

    Here, on the basis of mimotope of small analytes, we demonstrated a new approach for development of sensitive and environmentally friendly immunoassay for toxic small analytes based on the peptide-MBP fusion protein. In this work, using mycotoxin fumonisin B1 (FB1) as a model hapten, phage displayed peptide (mimotope) that binds to the anti-FB1 antibody were selected by biopanning from a 12-mer peptide library. The DNA coding for the sequence of peptide was cloned into Escherichia coli ER2738 as a fusion protein with a maltose binding protein (MBP). The prepared peptide-MBP fusion protein are "clonable" homogeneous and FB1-free products and can be used as a coating antigen in the immunoassay. The half inhibition concentration of the quantitative immunoassay setup with fusion protein (F1-MBP and F15-MBP) was 2.15 ± 0.13 ng/mL and 1.26 ± 0.08 ng/mL, respectively. The fusion protein (F1-MBP) was also used to develop a qualitative Elispot assay with a cutoff level of 2.5 ng/mL, which was 10-fold more sensitive than that measured for chemically synthesized FB1-BSA conjugates based Elispot immunoassay. The peptide-MBP fusion protein not only can be prepared reproducibly as homogeneous and FB1-free products in a large-scale but also can contribute to the development of a highly sensitive immunoassay for analyzing FB1. Furthermore, the novel concept might provide potential applications to a general method for the immunoassay of various toxic small molecules.

  16. Ultrasensitive Detection of Angiogenin Using Surface-Enhanced Raman Scattering Immunoassay Platform

    Energy Technology Data Exchange (ETDEWEB)

    Chon, Hyangah; Lim, Dong Woo; Choo, Jaebum [Hanyang Univ., Ansan (Korea, Republic of); Chang, Sooik [Chungbuk National Univ., Cheongju (Korea, Republic of)

    2013-11-15

    Our proposed SERS-based immunoassay technique, using HGNs and magnetic beads, shows a strong potential for the early diagnosis of angiogenic disease because the ultrasensitive detection to attomolar concentration level is possible. Angiogenesis, the process of new blood-vessel growth, plays an important role in normal physiological process. To date, angiogenin (ANG) is known to be a key factor in induction of angiogenesis by activation of endothelial and smooth muscle cells as well as by triggering a number of biological processes. It is also well known that the expression of ANG is up-regulated in various types of human cancers.

  17. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry.

    Science.gov (United States)

    Bandura, Dmitry R; Baranov, Vladimir I; Ornatsky, Olga I; Antonov, Alexei; Kinach, Robert; Lou, Xudong; Pavlov, Serguei; Vorobiev, Sergey; Dick, John E; Tanner, Scott D

    2009-08-15

    A novel instrument for real time analysis of individual biological cells or other microparticles is described. The instrument is based on inductively coupled plasma time-of-flight mass spectrometry and comprises a three-aperture plasma-vacuum interface, a dc quadrupole turning optics for decoupling ions from neutral components, an rf quadrupole ion guide discriminating against low-mass dominant plasma ions, a point-to-parallel focusing dc quadrupole doublet, an orthogonal acceleration reflectron analyzer, a discrete dynode fast ion detector, and an 8-bit 1 GHz digitizer. A high spectrum generation frequency of 76.8 kHz provides capability for collecting multiple spectra from each particle-induced transient ion cloud, typically of 200-300 micros duration. It is shown that the transients can be resolved and characterized individually at a peak frequency of 1100 particles per second. Design considerations and optimization data are presented. The figures of merit of the instrument are measured under standard inductively coupled plasma (ICP) operating conditions ( 900 for m/z = 159, the sensitivity with a standard sample introduction system of >1.4 x 10(8) ion counts per second per mg L(-1) of Tb and an abundance sensitivity of (6 x 10(-4))-(1.4 x 10(-3)) (trailing and leading masses, respectively) are shown. The mass range (m/z = 125-215) and abundance sensitivity are sufficient for elemental immunoassay with up to 60 distinct available elemental tags. When 500) can be used, which provides >2.4 x 10(8) cps per mg L(-1) of Tb, at (1.5 x 10(-3))-(5.0 x 10(-3)) abundance sensitivity. The real-time simultaneous detection of multiple isotopes from individual 1.8 microm polystyrene beads labeled with lanthanides is shown. A real time single cell 20 antigen expression assay of model cell lines and leukemia patient samples immuno-labeled with lanthanide-tagged antibodies is presented.

  18. Direct friction measurement in draw bead testing

    DEFF Research Database (Denmark)

    Olsson, David Dam; Bay, Niels; Andreasen, Jan Lasson

    2005-01-01

    The application of draw beads in sheet metal stamping ensures controlled drawing-in of flange parts. Lubrication conditions in draw beads are severe due to sliding under simultaneous bending. Based on the original draw bead test design by Nine [1] comprehensive studies of friction in draw beads...... have been reported in literature. A major drawback in all these studies is that friction is not directly measured, but requires repeated measurements of the drawing force with and without relative sliding between the draw beads and the sheet material. This implies two tests with a fixed draw bead tool...... and a freely rotating tool respectively, an approach, which inevitably implies large uncertainties due to scatter in the experimental conditions. In order to avoid this problem a new draw bead test is proposed by the authors measuring the friction force acting on the tool radius directly by a build...

  19. A giant magnetoresistance ring-sensor based microsystem for magnetic bead manipulation and detection

    KAUST Repository

    Gooneratne, Chinthaka P.

    2011-03-28

    In this paper a novel spin valvegiant magnetoresistance(GMR) ring-sensor integrated with a microstructure is proposed for concentrating, trapping, and detecting superparamagnetic beads (SPBs). Taking advantage of the fact that SPBs can be manipulated by an external magnetic field, a unique arrangement of conducting microrings is utilized to manipulate the SPBs toward the GMR sensing area in order to increase the reliability of detection. The microrings are arranged and activated in such a manner so as to enable the detection of minute concentrations of SPBs in a sample. Precise manipulation is achieved by applying current sequentially to the microrings. The fabricated ring-shaped GMR element is located underneath the innermost ring and has a magnetoresistance of approximately 5.9%. By the performed experiments it was shown that SPBs could be successfully manipulated toward the GMR sensing zone.

  20. MicroRNA Sensor Based on Magnetic Beads and Enzymatic Probes

    Science.gov (United States)

    Zhang, Yue; Zhou, Dejian; He, Junhui

    2014-12-01

    MicroRNAs are associated with multiple cellular processes and diseases. Here, we designed a highly sensitive, magnetically retrievable biosensor using magnetic beads (MBs) as a model RNA sensor. The assay utilized two biotinylated probes, which were hybridized to the complementary target miRNA in a sandwich assay format. One of the biotinylated ends of the hybridization complex was immobilized onto the surface of a NeutrAvidin (NAV) coated MB and the other biotinylated end was conjugated to HRP via NAV-biotin interaction. The results were presented by colorimetric absorbance of the resorufin product from amplex red oxidation. We show that by combining the use of MBs as well as bio-specific immobilization, the sensitivity of miRNA detection is down to 100 pM. This model HRP-MBs system can be used for simple, rapid colorimetric quantification of low level DNA/RNA or other small molecules.

  1. Rapid Detection of Ricin in Serum Based on Cu-Chelated Magnetic Beads Using Mass Spectrometry

    Science.gov (United States)

    Zhao, Yong-Qiang; Song, Jian; Wang, Hong-Li; Xu, Bin; Liu, Feng; He, Kun; Wang, Na

    2016-04-01

    The protein toxin ricin obtained from castor bean plant (Ricinus communis) seeds is a potent biological warfare agent due to its ease of availability and acute toxicity. In this study, we demonstrated a rapid and simple method to detect ricin in serum in vitro. The ricin was mixed with serum and digested by trypsin, then all the peptides were efficiently extracted using Cu-chelated magnetic beads and were detected with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The specific ricin peptides were identified by Nanoscale Ultra Performance liquid chromatography coupled to tandem mass spectrometry according to their sequences. The assay required 2.5 hours, and a characteristic peptide could be detected down to 4 ng/μl and used as a biomarker to detect ricin in serum. The high sensitivity and simplicity of the procedure makes it valuable in clinical practice.

  2. Weld pool boundary and weld bead shape reconstruction based on passive vision in P-GMAW

    Institute of Scientific and Technical Information of China (English)

    Yan Zhihong; Zhang Guangjun; Gao Hongming; Wu Lin

    2006-01-01

    A passive visual sensing system is established in this research, and clear weld pool images in pulsed gas metal arc welding ( P-GMA W) can be captured with this system. The three-dimensional weld pool geometry, especially the weld height,is not only a crucial factor in determining workpiece mechanical properties, but also an important parameter for reflecting the penetration. A new three-dimensional (3D) model is established to describe the weld pool geometry in P-GMAW. Then, a series of algorithms are developed to extract the model geometrical parameters from the weld pool images. Furthermore, the method to reconstruct the 3D shape of weld pool boundary and weld bead from the two-dimensional images is investigated.

  3. Switch on or switch off: an optical DNA sensor based on poly(p-phenylenevinylene) grafted magnetic beads.

    Science.gov (United States)

    Srinivas, Anupama R Gulur; Peng, Hui; Barker, David; Travas-Sejdic, Jadranka

    2012-05-15

    There has been an enormous demand for commercial label-free DNA sensors in a diverse range of fields including pre-emptive medicine, diagnostics, environmental monitoring, and food industry. Addressing the need for sensitive, selective and facile DNA sensors, we demonstrate a novel switch on/off sensor design that utilizes sandwich hybridization between photoluminescent anionic conjugated polyelectrolyte (CPE) bound captureprobe coated onto magnetic beads, target and the signaling probe. The hybridization-readout in our sensor was monitored by either fluorescence resonance energy transfer (FRET, switch-on) or superquenching (switch-off) depending on the type of signaling probe used. Moreover recent designs that utilize beads for sensing DNA have been limited towards using electrostatic interactions or intercalation of dyes to observe FRET. To our knowledge this is the first report of a switch on/off sensor utilizing either FRET or superquenching thus providing flexibility for future development of such rapid, facile and sensitive DNA sensors. The FRET-based sensor was investigated by optimizing the reaction parameters and selectivity. A low detection limit of 240 fmol in 2 mL of SSC buffer was achieved.

  4. Validation of Flow Cytometry and Magnetic Bead-Based Methods to Enrich CNS Single Cell Suspensions for Quiescent Microglia.

    Science.gov (United States)

    Volden, T A; Reyelts, C D; Hoke, T A; Arikkath, J; Bonasera, S J

    2015-12-01

    Microglia are resident mononuclear phagocytes within the CNS parenchyma that intimately interact with neurons and astrocytes to remodel synapses and extracellular matrix. We briefly review studies elucidating the molecular pathways that underlie microglial surveillance, activation, chemotaxis, and phagocytosis; we additionally place these studies in a clinical context. We describe and validate an inexpensive and simple approach to obtain enriched single cell suspensions of quiescent parenchymal and perivascular microglia from the mouse cerebellum and hypothalamus. Following preparation of regional CNS single cell suspensions, we remove myelin debris, and then perform two serial enrichment steps for cells expressing surface CD11b. Myelin depletion and CD11b enrichment are both accomplished using antigen-specific magnetic beads in an automated cell separation system. Flow cytometry of the resultant suspensions shows a significant enrichment for CD11b(+)/CD45(+) cells (perivascular microglia) and CD11b(+)/CD45(-) cells (parenchymal microglia) compared to starting suspensions. Of note, cells from these enriched suspensions minimally express Aif1 (aka Iba1), suggesting that the enrichment process does not evoke significant microglial activation. However, these cells readily respond to a functional challenge (LPS) with significant changes in the expression of molecules specifically associated with microglia. We conclude that methods employing a combination of magnetic-bead based sorting and flow cytometry produce suspensions highly enriched for microglia that are appropriate for a variety of molecular and cellular assays.

  5. Chemiluminescence immunoassay based on dual signal amplification strategy of Au/mesoporous silica and multienzyme functionalized mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Lin Jiehua, E-mail: linjiehua@qust.edu.cn [Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhao Yue; Wei Zhijing; Wang Wei [Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2011-11-15

    Highlights: > The increased amount of monoclonal antibody in Au/SiO{sub 2} led to a wider linear range. > Due to the increased HRP tags in HRP-Ab{sub 2}/SiO{sub 2}, signal amplification achieved. > A simple dual amplification immunoassay achieved with flow injection analysis. - Abstract: A chemiluminescent dual signal amplification strategy for the determination of {alpha}-fetoprotein (AFP) was proposed based on a sandwich immunoassay format. Monoclonal antibody of AFP immobilized on the gold nanoparticles doped mesoporous SiO{sub 2} (Au/SiO{sub 2}) were prepared and used as a primary antibody. Horseradish peroxidase (HRP) and HRP-labeled secondary antibody (Ab{sub 2}) co-immobilized into the mesoporous SiO{sub 2} nanoparticles (HRP-Ab{sub 2}/SiO{sub 2}) were used as the labeled immunological probe. Due to the high ratio surface areas and pore volumes of the mesoporous SiO{sub 2}, not only the amount of AFP monoclonal antibody but also the amount of the modified HRP and Ab{sub 2} in HRP-Ab{sub 2}/SiO{sub 2} were largely increased. Thus the chemiluminescent signal was amplified by using the system of luminol and H{sub 2}O{sub 2} under the catalysis of HRP. Under the optimal conditions, two linear ranges for AFP were obtained from 0.01 to 0.5 ng mL{sup -1} and 0.5 to 100 ng mL{sup -1} with a detection limit of 0.005 ng mL{sup -1} (3{sigma}). The fabricated signal amplification strategy showed an excellent promise for sensitive detection of AFP and other tumor markers.

  6. Development of a Multiplexed, Bead-Based Assessment Tool for Rapid Identification and Quantitation of Microorganisms in Field Samples. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, M.; Halden, R.

    2002-10-09

    This was the final report for DOE NABIR grant DE-FG02-01ER63264 (PI Mary Lowe). The grant was entitled ''Development of a Multiplexed Bead-Based Assessment Tool for Rapid Identification and Quantitation of Microorganisms in Field Samples.'' The grant duration was one year. The purpose was to develop a bead-based assay for measuring analyte DNAs in environmental PCR products and to apply the method to a field experiment. The primary experiment was located at the UMTRA Old Rifle site.

  7. Artificial antigen synthesis and the development of polyclonal antibody-based immunoassay for citreoviridin determination.

    Science.gov (United States)

    Zhuang, Zhen Hong; Que, Shan Jin; Gao, Yue Ming; Yuan, Jun; Ye, Zhou; Du, Min; Lin, Guang Mei; Liu, Li Cai; Wang, Shi Hua

    2014-01-01

    Citreoviridin, a mycotoxin produced by Penicillium citreonigrum is a common contaminant of wide range of agri-products and detrimental to human and animal health. Therefore it is important to develop a rapid, sensitive, and specific immunoassay for citreoviridin detection. In this study, polyclonal antibody against citreoviridin was developed. For the preparation of citreoviridin-bovine serum albumin conjugate (CIT-BSA), hydroxyl groups on adjacent carbon atoms were oxidized by sodium periodate, so the product with reactive aldehyde residues was suitable for coupling with amine. Anti-citreoviridin polyclonal antibody was prepared by immunizing mice with CIT-BSA conjugate. The specificity and sensitivity of the polyclonal antibody was determined by indirect competitive ELISA. Results showed that the IC50 value of the polyclonal antibody was 0.56 μg/mL and no cross-reactivity was found between antiserum and other mycotoxins used in the experiment. The citreoviridin recovery rates by this polyclonal antibody were calculated through rice powder spiked by artificial citreoviridin. The recovery rates ranged were found from 70.5 ± 0.08 % to 94.7 ± 0.09% for inter-assay, and from 77.5 ± 0.04% to 95.4 ± 0.18% for intra-assay, which indicated that this polyclonal antibody could detect trace amount of CIT from the tested samples. Consequently, this study provided a specific and sensitive anti-citreoviridin polyclonal antibody, which made the determination of citreoviridin easier, quicker, and more accurate.

  8. Sensitive immunoassay of human chorionic gonadotrophin based on multi-walled carbon nanotube-chitosan matrix.

    Science.gov (United States)

    Li, Na; Yuan, Ruo; Chai, Yaqin; Chen, Shihong; An, Haizhen

    2008-10-01

    A novel amperometric immunosensor for human chorionic gonadotropin (HCG) assay has been fabricated through incorporating toluidine blue (TB) and hemoglobin (Hb) on the multiwall carbon nanotube (MWNT)-chitosan (CS) modified glassy carbon electrode, followed by electrostatic adsorption of a conducting gold nanoparticles (nanogold) film as sensing interface. The MWNT-CS matrix provided a congenial microenvironment for the immobilization of biomolecules and promoted the electron transfer to enhance the sensitivity of the immunosensor. Due to the strong electrocatalytic properties of Hb and MWNT toward H(2)O(2), the Hb and MWNT significantly amplified the current signal of the antigen-antibody reaction. The immobilized toluidine blue as an electron transfer mediator exhibited excellent electrochemical redox property. After the immunosensor was incubated with HCG solution, the access of activity center of the Hb to toluidine blue was partly inhibited, which leaded to a linear decrease in the catalytic efficiency of the Hb to the oxidation of immobilized toluidine blue by H(2)O(2) over HCG concentration ranges from 0.8 to 500 mIU/mL. Under optimal condition, the detection limit for the HCG immunoassay was 0.3 mIU/mL estimated at a signal-to-noise ratio of 3. Moreover, the proposed immunosensor displayed a satisfactory stability and reproducibility.

  9. Enzyme-catalyzed reaction of voltammetric enzyme-linked immunoassay system based on OAP as substrate

    Institute of Scientific and Technical Information of China (English)

    张书圣; 陈洪渊; 焦奎

    1999-01-01

    The o-aminophenol (OAP)-H2O2-horseradish peroxidase (HRP) voltammetric enzyme-linked immunoassay new system has extremely high sensitivity. HRP can be measured with a detection limit of 6.0×10-(10) g/L and a linear range of 1.0×10-9—4.0×10-6 g/L. The pure product of H2O2 oxidizing OAP catalyzed by HRP was prepared with chemical method. The enzyme-catalyzed reaction has been investigated with electroanalytical chemistry, UV/Vis spectrum, IR spectrum, 13C NMR, 1H NMR, mass spectrum, elemental analysis, etc. Under the selected enzyme-catalyzed reaction conditions, the oxidation product of OAP with H2O2 catalyzed by HRP is 2-aminophe-noxazine-3-one. The processes of the enzyme-catalyzed reaction and the electroreduction of the product of the enzymecatalyzed reaction have been described.

  10. A bead-based multiplex assay for the detection of DNA viruses infecting laboratory rodents.

    Science.gov (United States)

    Höfler, Daniela; Nicklas, Werner; Mauter, Petra; Pawlita, Michael; Schmitt, Markus

    2014-01-01

    The Federation of European Laboratory Animal Science Association (FELASA) recommends screening of laboratory rodents and biological materials for a broad variety of bacterial agents, viruses, and parasites. Methods commonly used to date for pathogen detection are neither cost-effective nor time- and animal-efficient or uniform. However, an infection even if silent alters experimental results through changing the animals' physiology and increases inter-individual variability. As a consequence higher numbers of animals and experiments are needed for valid and significant results. We developed a novel high-throughput multiplex assay, called rodent DNA virus finder (rDVF) for the simultaneous identification of 24 DNA viruses infecting mice and rats. We detected all 24 DNA viruses with high specificity and reproducibility. Detection limits for the different DNA viruses varied between 10 and 1000 copies per PCR. The validation of rDVF was done with DNA isolated from homogenised organs amplified by pathogen specific primers in one multiplex PCR. The biotinylated amplicons were detected via hybridisation to specific oligonucleotide probes coupled to spectrally distinct sets of fluorescent Luminex beads. In conclusion, rDVF may have the potential to replace conventional testing and may simplify and improve routine detection of DNA viruses infecting rodents.

  11. A bead-based multiplex assay for the detection of DNA viruses infecting laboratory rodents.

    Directory of Open Access Journals (Sweden)

    Daniela Höfler

    Full Text Available The Federation of European Laboratory Animal Science Association (FELASA recommends screening of laboratory rodents and biological materials for a broad variety of bacterial agents, viruses, and parasites. Methods commonly used to date for pathogen detection are neither cost-effective nor time- and animal-efficient or uniform. However, an infection even if silent alters experimental results through changing the animals' physiology and increases inter-individual variability. As a consequence higher numbers of animals and experiments are needed for valid and significant results. We developed a novel high-throughput multiplex assay, called rodent DNA virus finder (rDVF for the simultaneous identification of 24 DNA viruses infecting mice and rats. We detected all 24 DNA viruses with high specificity and reproducibility. Detection limits for the different DNA viruses varied between 10 and 1000 copies per PCR. The validation of rDVF was done with DNA isolated from homogenised organs amplified by pathogen specific primers in one multiplex PCR. The biotinylated amplicons were detected via hybridisation to specific oligonucleotide probes coupled to spectrally distinct sets of fluorescent Luminex beads. In conclusion, rDVF may have the potential to replace conventional testing and may simplify and improve routine detection of DNA viruses infecting rodents.

  12. Proteomic profiling of renal allograft rejection in serum using magnetic bead-based sample fractionation and MALDI-TOF MS.

    Science.gov (United States)

    Sui, Weiguo; Huang, Liling; Dai, Yong; Chen, Jiejing; Yan, Qiang; Huang, He

    2010-12-01

    Proteomics is one of the emerging techniques for biomarker discovery. Biomarkers can be used for early noninvasive diagnosis and prognosis of diseases and treatment efficacy evaluation. In the present study, the well-established research systems of ClinProt Micro solution incorporated unique magnetic bead sample preparation technology, which, based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), have become very successful in bioinformatics due to its outstanding performance and reproducibility for discovery disease-related biomarker. We collected fasting blood samples from patients with biopsy-confirmed acute renal allograft rejection (n = 12), chronic rejection (n = 12), stable graft function (n = 12) and also from healthy volunteers (n = 13) to study serum peptidome patterns. Specimens were purified with magnetic bead-based weak cation exchange chromatography and analyzed with a MALDI-TOF mass spectrometer. The results indicated that 18 differential peptide peaks were selected as potential biomarkers of acute renal allograft rejection, and 6 differential peptide peaks were selected as potential biomarkers of chronic rejection. A Quick Classifier Algorithm was used to set up the classification models for acute and chronic renal allograft rejection. The algorithm models recognize 82.64% of acute rejection and 98.96% of chronic rejection episodes, respectively. We were able to identify serum protein fingerprints in small sample sizes of recipients with renal allograft rejection and establish the models for diagnosis of renal allograft rejection. This preliminary study demonstrated that proteomics is an emerging tool for early diagnosis of renal allograft rejection and helps us to better understand the pathogenesis of disease process.

  13. 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device.

    Science.gov (United States)

    Ge, Lei; Wang, Shoumei; Song, Xianrang; Ge, Shenguang; Yu, Jinghua

    2012-09-07

    A novel 3D microfluidic paper-based immunodevice, integrated with blood plasma separation from whole blood samples, automation of rinse steps, and multiplexed CL detections, was developed for the first time based on the principle of origami (denoted as origami-based device). This 3D origami-based device, comprised of one test pad surrounded by four folding tabs, could be patterned and fabricated by wax-printing on paper in bulk. In this work, a sandwich-type chemiluminescence (CL) immunoassay was introduced into this 3D origami-based immunodevice, which could separate the operational procedures into several steps including (i) folding pads above/below and (ii) addition of reagent/buffer under a specific sequence. The CL behavior, blood plasma separation, washing protocol, and incubation time were investigated in this work. The developed 3D origami-based CL immunodevice, combined with a typical luminuol-H(2)O(2) CL system and catalyzed by Ag nanoparticles, showed excellent analytical performance for the simultaneous detection of four tumor markers. The whole blood samples were assayed and the results obtained were in agreement with the reference values from the parallel single-analyte test. This paper-based microfluidic origami CL detection system provides a new strategy for a low-cost, sensitive, simultaneous multiplex immunoassay and point-of-care diagnostics.

  14. Diagnostic performance of line-immunoassay based algorithms for incident HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Schüpbach Jörg

    2012-04-01

    Full Text Available Abstract Background Serologic testing algorithms for recent HIV seroconversion (STARHS provide important information for HIV surveillance. We have previously demonstrated that a patient's antibody reaction pattern in a confirmatory line immunoassay (INNO-LIA™ HIV I/II Score provides information on the duration of infection, which is unaffected by clinical, immunological and viral variables. In this report we have set out to determine the diagnostic performance of Inno-Lia algorithms for identifying incident infections in patients with known duration of infection and evaluated the algorithms in annual cohorts of HIV notifications. Methods Diagnostic sensitivity was determined in 527 treatment-naive patients infected for up to 12 months. Specificity was determined in 740 patients infected for longer than 12 months. Plasma was tested by Inno-Lia and classified as either incident ( Results The 10 best algorithms had a mean raw sensitivity of 59.4% and a mean specificity of 95.1%. Adjustment for overrepresentation of patients in the first quarter year of infection further reduced the sensitivity. In the preferred model, the mean adjusted sensitivity was 37.4%. Application of the 10 best algorithms to four annual cohorts of HIV-1 notifications totalling 2'595 patients yielded a mean IIR of 0.35 in 2005/6 (baseline and of 0.45, 0.42 and 0.35 in 2008, 2009 and 2010, respectively. The increase between baseline and 2008 and the ensuing decreases were highly significant. Other adjustment models yielded different absolute IIR, although the relative changes between the cohorts were identical for all models. Conclusions The method can be used for comparing IIR in annual cohorts of HIV notifications. The use of several different algorithms in combination, each with its own sensitivity and specificity to detect incident infection, is advisable as this reduces the impact of individual imperfections stemming primarily from relatively low sensitivities and

  15. Renewable Surface Fluorescence Sandwich Immunoassay Biosensor for Rapid Sensitive Botulinum Toxin Detection in an Automated Fluidic Format

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Warner, Marvin G.; Ozanich, Richard M.; Miller, Keith D.; Colburn, Heather A.; Dockendorff, Brian P.; Antolick, Kathryn C.; Anheier, Norman C.; Lind, Michael A.; Lou, Jianlong; Marks, James D.; Bruckner-Lea, Cindy J.

    2009-03-05

    A renewable surface biosensor for rapid detection of botulinum toxin is described based on fluidic automation of a fluorescence sandwich immunoassay, using a recombinant fragment of the toxin heavy chain as a structurally valid simulant. Monoclonal antibodies AR4 and RAZ1 bind to separate epitopes of both this fragment and the holotoxin. The AR4 antibody was covalently bound to Sepharose beads and used as the capture antibody. A rotating rod flow cell was used to capture these beads delivered as a suspension by the sequential injection flow system, creating a 3.6 microliter column. After perfusing the bead column with sample and washing away the matrix, the column was perfused with Alexa 647 dye-labeled RAZ1 antibody as the reporter. Optical fibers coupled to the rotating rod flow cell at a 90 degree angle to one another delivered excitation light from a HeNe laser and collected fluorescent emission light for detection. After each measurement, the used sepharose beads are released and replaced with fresh beads. In a rapid screening approach to sample analysis, the toxin simulant was detected to concentrations of 10 pM in less than 20 minutes.

  16. Microfluidic Bead Suspension Hopper

    OpenAIRE

    Price, Alexander K.; MacConnell, Andrew B.; Paegel, Brian M.

    2014-01-01

    Many high-throughput analytical platforms, from next-generation DNA sequencing to drug discovery, rely on beads as carriers of molecular diversity. Microfluidic systems are ideally suited to handle and analyze such bead libraries with high precision and at minute volume scales; however, the challenge of introducing bead suspensions into devices before they sediment usually confounds microfluidic handling and analysis. We developed a bead suspension hopper that exploits sedimentation to load b...

  17. Target-induced nano-enzyme reactor mediated hole-trapping for high-throughput immunoassay based on a split-type photoelectrochemical detection strategy.

    Science.gov (United States)

    Zhuang, Junyang; Tang, Dianyong; Lai, Wenqiang; Xu, Mingdi; Tang, Dianping

    2015-09-15

    Photoelectrochemical (PEC) detection is an emerging and promising analytical tool. However, its actual application still faces some challenges like potential damage of biomolecules (caused by itself system) and intrinsic low-throughput detection. To solve the problems, herein we design a novel split-type photoelectrochemical immunoassay (STPIA) for ultrasensitive detection of prostate specific antigen (PSA). Initially, the immunoreaction was performed on a microplate using a secondary antibody/primer-circular DNA-labeled gold nanoparticle as the detection tag. Then, numerously repeated oligonucleotide sequences with many biotin moieties were in situ synthesized on the nanogold tag via RCA reaction. The formed biotin concatamers acted as a powerful scaffold to bind with avidin-alkaline phosphatase (ALP) conjugates and construct a nanoenzyme reactor. By this means, enzymatic hydrolysate (ascorbic acid) was generated to capture the photogenerated holes in the CdS quantum dot-sensitized TiO2 nanotube arrays, resulting in amplification of the photocurrent signal. To elaborate, the microplate-based immunoassay and the high-throughput detection system, a semiautomatic detection cell (installed with a three-electrode system), was employed. Under optimal conditions, the photocurrent increased with the increasing PSA concentration in a dynamic working range from 0.001 to 3 ng mL(-1), with a low detection limit (LOD) of 0.32 pg mL(-1). Meanwhile, the developed split-type photoelectrochemical immunoassay exhibited high specificity and acceptable accuracy for analysis of human serum specimens in comparison with referenced electrochemiluminescence immunoassay method. Importantly, the system was not only suitable for the sandwich-type immunoassay mode, but also utilized for the detection of small molecules (e.g., aflatoxin B1) with a competitive-type assay format.

  18. Establishing a novel automated magnetic bead-based method for the extraction of DNA from a variety of forensic samples.

    Science.gov (United States)

    Witt, Sebastian; Neumann, Jan; Zierdt, Holger; Gébel, Gabriella; Röscheisen, Christiane

    2012-09-01

    Automated systems have been increasingly utilized for DNA extraction by many forensic laboratories to handle growing numbers of forensic casework samples while minimizing the risk of human errors and assuring high reproducibility. The step towards automation however is not easy: The automated extraction method has to be very versatile to reliably prepare high yields of pure genomic DNA from a broad variety of sample types on different carrier materials. To prevent possible cross-contamination of samples or the loss of DNA, the components of the kit have to be designed in a way that allows for the automated handling of the samples with no manual intervention necessary. DNA extraction using paramagnetic particles coated with a DNA-binding surface is predestined for an automated approach. For this study, we tested different DNA extraction kits using DNA-binding paramagnetic particles with regard to DNA yield and handling by a Freedom EVO(®)150 extraction robot (Tecan) equipped with a Te-MagS magnetic separator. Among others, the extraction kits tested were the ChargeSwitch(®)Forensic DNA Purification Kit (Invitrogen), the PrepFiler™Automated Forensic DNA Extraction Kit (Applied Biosystems) and NucleoMag™96 Trace (Macherey-Nagel). After an extensive test phase, we established a novel magnetic bead extraction method based upon the NucleoMag™ extraction kit (Macherey-Nagel). The new method is readily automatable and produces high yields of DNA from different sample types (blood, saliva, sperm, contact stains) on various substrates (filter paper, swabs, cigarette butts) with no evidence of a loss of magnetic beads or sample cross-contamination.

  19. A new approach for the spatially resolved qualitative analysis of the protein distribution in hydrogel beads based on confocal laser scanning microscopy

    NARCIS (Netherlands)

    Heinemann, Matthias; Wagner, Thomas; Doumèche, Bastien; Ansorge-Schumacher, Marion; Büchs, Jochen

    2002-01-01

    To investigate the spatial distribution of white egg albumin (WEA) in alginate beads, a new method based on confocal laser scanning microscopy (CLSM) was developed. In contrast to the existing CLSM methods, misleading conclusions are prevented with the application of the new method which does not al

  20. A sensitive three monoclonal antibodies based automatic latex particle-enhanced turbidimetric immunoassay for Golgi protein 73 detection

    Science.gov (United States)

    Xia, Yanyan; Shen, Han; Zhu, Yefei; Xu, Hongpan; Li, Zhiyang; Si, Jin

    2017-01-01

    Golgi protein 73 (GP73) is a novel and potential marker for diagnosing hepatocellular carcinoma (HCC) that has been found to be abnormally elevated in liver disease. A latex particle-enhanced turbidimetric immunoassay (LTIA) was recently introduced and licensed for application in a variety of automated clinical chemistry analyzers. However, no studies have reported sufficient data on analytical performance of this method when using 3 monoclonal antibodies for GP73 measurement. The experimental conditions were firstly optimized and range of linearity, diagnostic potential, clinical relevance were compared with the LTIA based on polyclonal antibodies and ELISA. Dilution tests for the LTIA using 3 monoclonal antibodies produced a calibration curve from 10 to 350 ng/mL while the polyclonal antibodies produced the curve from 20 to 320 ng/mL. The detection limit was achieved at 1.82 ng/mL concentration. Within-run CV was obtained in the range of 1.5–2.9% and ROC curves indicated sensitivity and specificity of the LTIA based on 3 monoclonal antibodies were 96.7% and 93.3%, respectively, higher than for the polyclonal antibodies (94.6% and 72.4%) and ELISA (70.0% and 83.3%). Therefore, the LTIA assay based on 3 monoclonal antibodies is thus applicable in quantification of GP73 concentration in automated biochemistry analyzers. PMID:28054632

  1. Heat generation ability in AC magnetic field of nano MgFe2O4-based ferrite powder prepared by bead milling

    Science.gov (United States)

    Hirazawa, Hideyuki; Aono, Hiromichi; Naohara, Takashi; Maehara, Tsunehiro; Sato, Mitsunori; Watanabe, Yuji

    2011-03-01

    Nanosized MgFe2O4-based ferrite powder having heat generation ability in an AC magnetic field was prepared by bead milling and studied for thermal coagulation therapy applications. The crystal size and the particle size significantly decreased by bead milling. The heat generation ability in an AC magnetic field improved with the milling time, i.e. a decrease in crystal size. However, the heat generation ability decreased for excessively milled samples with crystal sizes of less than 5.5 nm. The highest heat ability (ΔT=34 °C) in the AC magnetic field (370 kHz, 1.77 kA/m) was obtained for fine MgFe2O4 powder having a ca. 6 nm crystal size (the samples were milled for 6-8 h using 0.1 mm ϕ beads). The heat generation of the samples was closely related to hysteresis loss, a B-H magnetic property. The reason for the high heat generation properties of the samples milled for 6-8 h using 0.1 mm ϕ beads was ascribed to the increase in hysteresis loss by the formation of a single domain. Moreover, the improvement in heating ability was obtained by calcination of the bead-milled sample at low temperature. In this case, the maximum heat generation (ΔT=41 °C) ability was obtained for a ca. 11 nm crystal size sample was prepared by crystal growth during the sample calcination. On the other hand, the ΔT value for Mg0.5Ca0.5Fe2O4 was synthesized using a reverse precipitation method decreased by bead milling.

  2. IgG/anti-IgG immunoassay based on a turn-around point long period grating

    Science.gov (United States)

    Chiavaioli, F.; Biswas, P.; Trono, C.; Giannetti, A.; Tombelli, S.; Bandyopadhyay, S.; Basumallick, N.; Dasgupta, K.; Baldini, F.

    2014-02-01

    Long period fiber gratings (LPFGs) have been proposed as label-free optical biosensor for a few years. Refractive index changes, which modify the fiber transmission spectrum, are still used for evaluating a biochemical interaction that occurs along the grating region. A turn-around point (TAP) LPFG was manufactured for enhancing the refractive index sensitivity of these devices. Considering the simplicity and the fast process with respect to the silanization procedure, the functionalization of the fiber was carried out by Eudragit L100 copolymer. An IgG/anti-IgG immunoassay was implemented for studying the antigen/antibody interaction. A limit of detection lower than 100 μg L-1 was achieved. Based on the same model assay, we compared the resonance wavelength shifts during the injection of 10 mg L-1 anti-IgG antigen between the TAP LPFG and a standard non-TAP one, in which the coupling occurs with a lower order cladding mode, as performance improvement of the LPFG-based biosensors.

  3. Graphene oxide-labeled sandwich-type impedimetric immunoassay with sensitive enhancement based on enzymatic 4-chloro-1-naphthol oxidation.

    Science.gov (United States)

    Hou, Li; Cui, Yuling; Xu, Mingdi; Gao, Zhuangqiang; Huang, Jianxin; Tang, Dianping

    2013-09-15

    A new sandwich-type impedimetric immunosensor based on functionalized graphene oxide nanosheets with a high ratio of horseradish peroxidase (HRP) and detection antibody was developed for the detection of carcinoembryonic antigen (CEA) by coupling with enzymatic biocatalytic precipitation of 4-chloro-1-naphthol (4-CN) on the captured antibody-modified glassy carbon electrode. Two molecular tags (with and without the graphene oxide nanosheets) were investigated for the detection of CEA and improved analytical features were acquired with the graphene-based labeling. With the labeling method, the performance and factors influencing the properties of the impedimetric immunosensors were also studied and evaluated. Under the optimal conditions, the dynamic concentration range of the impedimetric immunosensors spanned from 1.0pgmL(-1) to 80ngmL(-1) CEA with a detection limit (LOD) of 0.64pgmL(-1). Intra- and inter-assay coefficients of variation were less than 7.5% and 11%, respectively. Additionally, the methodology was evaluated for CEA analysis of 10 clinical serum samples and 5 diluted serum samples, receiving in a good accordance with the results obtained by the impedimetric immunoassay and the commercialized electrochemiluminescent method.

  4. Rapid and sensitive lateral flow immunoassay method for determining alpha fetoprotein in serum using europium (III) chelate microparticles-based lateral flow test strips.

    Science.gov (United States)

    Liang, Rong-Liang; Xu, Xu-Ping; Liu, Tian-Cai; Zhou, Jian-Wei; Wang, Xian-Guo; Ren, Zhi-Qi; Hao, Fen; Wu, Ying-Song

    2015-09-01

    Alpha-fetoprotein (AFP), a primary marker for many diseases including various cancers, is important in clinical tumor diagnosis and antenatal screening. Most immunoassays provide high sensitivity and accuracy for determining AFP, but they are expensive, often complex, time-consuming procedures. A simple and rapid point-of-care system that integrates Eu (III) chelate microparticles with lateral flow immunoassay (LFIA) has been developed to determine AFP in serum with an assay time of 15 min. The approach is based on a sandwich immunoassay performed on lateral flow test strips. A fluorescence strip reader was used to measure the fluorescence peak heights of the test line (HT) and the control line (HC); the HT/HC ratio was used for quantitation. The Eu (III) chelate microparticles-based LFIA assay exhibited a wide linear range (1.0-1000 IU mL(-1)) for AFP with a low limit of detection (0.1 IU mL(-1)) based on 5ul of serum. Satisfactory specificity and accuracy were demonstrated and the intra- and inter-assay coefficients of variation (CV) for AFP were both chelate microparticles-based LFIA system provided a rapid, sensitive and reliable method for determining AFP in serum, indicating that it would be suitable for development in point-of-care testing.

  5. Improving the sensitivity of immunoassay based on MBA-embedded Au@SiO2 nanoparticles and surface enhanced Raman spectroscopy

    Science.gov (United States)

    Wei, Chao; Xu, Min-Min; Fang, Cong-Wei; Jin, Qi; Yuan, Ya-Xian; Yao, Jian-Lin

    2017-03-01

    Traditional "sandwich" structure immunoassay is mainly based on the self-assembly of "antibody on solid substrate-antigen-antibody with nanotags" architectures, and the sensitivity of this strategy is critically depended on the surface enhanced Raman scattering (SERS) activities and stability of nanotags. Therefore, the rational design and fabrication on the SERS nanotags attracts the common interests to the bio-related detecting and imaging. Herein, silica encapsulated Au with mercaptobenzoic acid (MBA) core-shell nanoparticles (Au-MBA@SiO2) are fabricated instead of the traditional naked Au or Ag nanoparticles for the SERS-based immunoassay on human and mouse IgG antigens. The MBA molecules facilitate the formation of continuous pinhole-free silica shell and are also used as SERS labels. The silica shell is employed to protect MBA labels and to isolate Au core from the ambient solution for blocking the aggregation. This shell also played the similar role to BSA in inhibiting the nonspecific bindings, which allowed the procedures for constructing "sandwich" structures to be simplified. All of these merits of the Au-MBA@SiO2 brought the high performance in the related immunoassay. Benefiting from the introduction of silica shell to encapsulate MBA labels, the detection sensitivity was improved by about 1- 2 orders of magnitude by comparing with the traditional approach based on naked Au-MBA nanoparticles. This kind of label-embedded core-shell nanoparticles could be developed as the versatile nanotags for the bioanalysis and bioimaging.

  6. Insights on novel particulate self-assembled drug delivery beads based on partial inclusion complexes between triglycerides and cyclodextrins.

    Science.gov (United States)

    Aburahma, Mona Hassan

    2016-09-01

    Most of the newly designed drug molecules are lipophilic in nature and often encounter erratic absorption and low bioavailability after oral administration. Finding ways to enhance the absorption and bioavailability of these lipophilic drugs is one of the major challenges that face pharmaceutical industry nowadays. In view of that, the purpose of this review is to shed some light on a novel particulate self-assembling system named "beads" than can act as a safe carrier for delivering lipophilic drugs. The beads are prepared simply by mixing oils with cyclodextrin (CD) aqueous solution in mild conditions. A unique interaction between oil components and CD molecules occurs to form in situ surface-active complexes which are prerequisites for beads formation. This review mainly focuses on the fundamentals of beads preparation through reviewing present, yet scarce, literature. The key methods used for beads characterization are discussed in details. Also, the potential mechanisms by which beads increase the bioavailability of lipophilic drugs are illustrated. Finally, the related research areas that needs to be addressed in future for optimizing this promising delivery system are briefly outlined.

  7. Online magnetic bead based dynamic protein affinity selection coupled to LC-MS for the screening of acetylcholine binding protein ligands.

    Science.gov (United States)

    Pochet, Lionel; Heus, Ferry; Jonker, Niels; Lingeman, Henk; Smit, August B; Niessen, Wilfried M A; Kool, Jeroen

    2011-06-15

    A magnetic beads based affinity-selection methodology towards the screening of acetylcholine binding protein (AChBP) binders in mixtures and pure compound libraries was developed. The methodology works as follows: after in solution incubation of His-tagged AChBP with potential ligands, and subsequent addition of cobalt (II)-coated paramagnetic beads, the formed bead-AChBP-ligand complexes are fetched out of solution by injection and trapping in LC tubing with an external adjustable magnet. Non binders are then washed to the waste followed by elution of ligands to a SPE cartridge by flushing with denaturing solution. Finally, SPE-LC-MS analysis is performed to identify the ligands. The advantage of the current methodology is the in solution incubation followed by immobilized AChBP ligand trapping and the capability of using the magnetic beads system as mobile/online transportable affinity SPE material. The system was optimized and then successfully demonstrated for the identification of AChBP ligands injected as pure compounds and for the fishing of ligands in mixtures. The results obtained with AChBP as target protein demonstrated reliable discrimination between binders with pK(i) values ranging from at least 6.26 to 8.46 and non-binders.

  8. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Sørensen, Karen Skotte; Wolff, Anders;

    2014-01-01

    -binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis......We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible...... phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis...

  9. Magnetic beads-based enzymatic spectrofluorometric assay for rapid and sensitive detection of antibody against ApxIVA of Actinobacillus pleuropneumoniae.

    Science.gov (United States)

    Wei, Bo; Li, Fang; Yang, Huicui; Yu, Lei; Zhao, Kaihong; Zhou, Rui; Hu, Yonggang

    2012-05-15

    In this paper, a simple, easily-operated and enzyme-amplified fluorescence immunoassay method using magnetic particles for the detection of antibody against Actinobacillus pleuropneumoniae (APP) has been presented. The A protein of APP Repeats-in-Toxin IV (ApxIVA) with high specificity to the APP species was immobilized onto the magnetic bead surfaces. Horseradish peroxidase (HRP), which can catalyze the substrate 4-hydroxyphenylacetic acid (p-HPA), generating fluorescent bi-p, p'-hydroxyphenylacetic acid (DBDA), was selected as an enzymatic-amplified tracer. The ApxIVA antibody was detected for the presence of APP infection by measuring the fluorescence intensity of DBDA. Under optimal conditions, the calibration plot obtained for standard positive serum was approximately linear within the dilution range 1:160-1:5120. The limit of detection (LOD) for the assay was 1:10240, considerably lower than that of ApxIVA-ELISA (1:320) (S/N=3). A series of repeatability measurements of using 1:320-fold diluted standard positive serum gave reproducible results with a relative standard deviation (RSD) of 4.8% (n=11). The ability of the immunosensor to analyze clinical samples was tested on porcine sera. The immunosensor yielded an efficiency of 89.7%, sensitivity of 90.9% and specificity of 89.3% compared with ApxIVA-ELISA.

  10. Heat generation ability in AC magnetic field of nano MgFe{sub 2}O{sub 4}-based ferrite powder prepared by bead milling

    Energy Technology Data Exchange (ETDEWEB)

    Hirazawa, Hideyuki, E-mail: hirazawa@mat.niihama-nct.ac.j [Department of Environmental Materials Engineering, Niihama National College of Technology, Niihama 792-8580 (Japan); Aono, Hiromichi; Naohara, Takashi; Maehara, Tsunehiro [Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Sato, Mitsunori [AdMeTech Co. Ltd., 2821-4, Minami-yoshida-cyo, Matsuyama 791-8042 (Japan); Watanabe, Yuji [Department of Surgery, Graduate School of Medicine, Ehime University, Toon 791-0295 (Japan)

    2011-03-15

    Nanosized MgFe{sub 2}O{sub 4}-based ferrite powder having heat generation ability in an AC magnetic field was prepared by bead milling and studied for thermal coagulation therapy applications. The crystal size and the particle size significantly decreased by bead milling. The heat generation ability in an AC magnetic field improved with the milling time, i.e. a decrease in crystal size. However, the heat generation ability decreased for excessively milled samples with crystal sizes of less than 5.5 nm. The highest heat ability ({Delta}T=34 {sup o}C) in the AC magnetic field (370 kHz, 1.77 kA/m) was obtained for fine MgFe{sub 2}O{sub 4} powder having a ca. 6 nm crystal size (the samples were milled for 6-8 h using 0.1 mm {phi} beads). The heat generation of the samples was closely related to hysteresis loss, a B-H magnetic property. The reason for the high heat generation properties of the samples milled for 6-8 h using 0.1 mm {phi} beads was ascribed to the increase in hysteresis loss by the formation of a single domain. Moreover, the improvement in heating ability was obtained by calcination of the bead-milled sample at low temperature. In this case, the maximum heat generation ({Delta}T=41 {sup o}C) ability was obtained for a ca. 11 nm crystal size sample was prepared by crystal growth during the sample calcination. On the other hand, the {Delta}T value for Mg{sub 0.5}Ca{sub 0.5}Fe{sub 2}O{sub 4} was synthesized using a reverse precipitation method decreased by bead milling. - Research highlights: > The crystal and particle size for MgFe{sub 2}O{sub 4} based ferrite were decreased by bead milling. > The highest heat ability was obtained for MgFe{sub 2}O{sub 4} having a ca. 6 nm crystal size. > This high heat generation ability was ascribed to the increase in hysteresis loss. > Hysteresis loss was increased by the formation of a single domain.

  11. Immunoassays in Biotechnology

    Science.gov (United States)

    Immunoassays have broad applications for a wide variety of important biological compounds and environmental contaminants. Immunoassays can detect the presence of an antigen in the human body, a pollutant in the environment, or a critical antibody in a patient’s serum to develop a...

  12. A fluorescence enhancement-based label-free homogeneous immunoassay of benzo[a]pyrene (BaP) in aqueous solutions.

    Science.gov (United States)

    Li, Taihua; Choi, Yo Han; Shin, Yong-Beom; Kim, Hwa-Jung; Kim, Min-Gon

    2016-05-01

    A fluorescence enhancement-based immunoassay has been developed for the detection of the polycyclic aromatic hydrocarbons (PAH), benzo[a]pyrene (BaP), in aqueous solutions. The results of this study show that BaP, which inefficiently fluoresces in aqueous solution, displays enhanced fluorescence when bound to the anti-BaP antibody (anti-BaP), as part of a label-free immunoassay system. Binding to anti-BaP results in a 3.12-fold increase in the fluorescence intensity of BaP, which emits at 435 nm when excited at 280 nm, due to the hydrophobic interaction and fluorescence resonance energy transfer (FRET) between antibody and antigen. As result of this phenomenon, the antibody-based fluorescence immunoassay system can be used to detect BaP specifically with a limit of detection (LOD) of 0.06 ng mL(-1). Finally, extraction recoveries of BaP from spiked wheat and barley samples were found to be in the range of 80.5-87.0% and 92.9-92.1%, respectively.

  13. A micro-cantilever sensor chip based on contact angle analysis for a label-free troponin I immunoassay.

    Science.gov (United States)

    Yin, Tsung-I; Zhao, Yunpeng; Horak, Josef; Bakirci, Huseyin; Liao, Hsin-Hao; Tsai, Hann-Huei; Juang, Ying-Zong; Urban, Gerald

    2013-03-07

    Cantilever sensors have been extensively explored as a promising technique for real-time and label-free analyses in biological systems. A major sensing principle utilized by state-of-the-art cantilever sensors is based on analyte-induced surface stress changes, which result in static bending of a cantilever. The sensor performance, however, suffers from the intrinsically small change in surface stress induced by analytes, especially for molecular recognition such as antigen-antibody binding. Through the contact angle change on a tailored solid surface, it is possible to convert a tiny surface stress into a capillary force-a much larger physical quantity needed for a practical sensor application. In this work, a micro-cantilever sensor based on contact angle analysis (CAMCS) was proposed to effectively enhance the sensitivity of a sensor in proportion to the square of the length to thickness ratio of the cantilever structure. CAMCS chips were fabricated using a standard complementary-metal-oxide-semiconductor (CMOS) process to demonstrate a 1250-fold enhancement in the sensitivity of surface stress to bioanalyte adsorption using a piezoresistive sensing method. A real-time and label-free troponin I (cTnI) immunoassay, which is now widely used in clinics and considered a gold standard for the early diagnosis and prognosis of cardiovascular disease, was performed to demonstrate cTnI detection levels as low as 1 pg mL(-1). The short detection time of this assay was within several minutes, which matches the detection time of commercially available instruments that are based on fluorescence-labeling techniques.

  14. Electrochemical biotin detection based on magnetic beads and a new magnetic flow cell for screen printed electrode.

    Science.gov (United States)

    Biscay, Julien; González García, María Begoña; Costa García, Agustín

    2015-01-01

    The use of the first flow-cell for magnetic assays with an integrated magnet is reported here. The flow injection analysis system (FIA) is used for biotin determination. The reaction scheme is based on a one step competitive assay between free biotin and biotin labeled with horseradish peroxidase (B-HRP). The mixture of magnetic beads modified with streptavidin (Strep-MB), biotin and B-HRP is left 15 min under stirring and then a washing step is performed. After that, 100 μL of the mixture is injected and after 30s 100 μL of 3,3',5,5'-Tetramethylbenzidine (TMB) is injected and the FIAgram is recorded applying a potential of -0.2V. The linear range obtained is from 0.01 to 1 nM of biotin and the sensitivity is 758 nA/nM. The modification and cleaning of the electrode are performed in an easy way due to the internal magnet of the flow cell.

  15. A high-throughput homogeneous immunoassay based on Förster resonance energy transfer between quantum dots and gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Jing [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); School of Chemistry and Chemical Engineering, Jiangsu University, Zhengjiang 212013 (China); Wang, Chengquan [Changzhou College of Information Technology, Changzhou 213164 (China); Pan, Xiaohu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Liu, Songqin, E-mail: liusq@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China)

    2013-02-06

    Graphical abstract: A Förster resonance energy transfer system by using polyclonal goat anti-CEA antibody labeled luminescent CdTe quantum dots (QDs) as donor and monoclonal goat anti-CEA antibody labeled gold nanoparticles (AuNPs) as acceptor for sensitive detection of tumor marker was proposed. Highlights: ► A homogeneous immunosensing strategy based on FRET for detection of tumor marker was proposed. ► Close of QDs and AuNPs allow the occurrence of quenching the photoluminescence of nano-bio-probes. ► Signal quenching was monitored by a self-developed image analyzer. ► The fluorometric assay format is attractive for widespread carcinoma screening and even field use. -- Abstract: A novel homogeneous immunoassay based on Förster resonance energy transfer for sensitive detection of tumor, e.g., marker with carcinoembryonic antigen (CEA), was proposed. The assay was consisted of polyclonal goat anti-CEA antibody labeled luminescent CdTe quantum dots (QDs) as donor and monoclonal goat anti-CEA antibody labeled gold nanoparticles (AuNPs) as acceptor. In presence of CEA, the bio-affinity between antigen and antibody made the QDs and AuNPs close enough, thus the photoluminescence (PL) quenching of CdTe QDs occurred. The PL properties could be transformed into the fluorometric variation, corresponding to the target antigen concentration, and could be easily monitored and analyzed with the home-made image analysis software. The fluorometric results indicated a linear detection range of 1–110 ng mL{sup −1} for CEA, with a detection limit of 0.3 ng mL{sup −1}. The proposed assay configuration was attractive for carcinoma screening or single sample in point-of-care testing, and even field use. In spite of the limit of available model analyte, this approach could be easily extended to detection of a wide range of biomarkers.

  16. An anti-phospholipase A2 receptor quantitative immunoassay and epitope analysis in membranous nephropathy reveals different antigenic domains of the receptor.

    Science.gov (United States)

    Behnert, Astrid; Fritzler, Marvin J; Teng, Beina; Zhang, Meifeng; Bollig, Frank; Haller, Hermann; Skoberne, Andrej; Mahler, Michael; Schiffer, Mario

    2013-01-01

    The phospholipase A2 receptor (PLA2R) was recently discovered as a target autoantigen in patients with idiopathic membranous nephropathy (IMN). Published evidence suggests that the autoantibodies directed towards a conformation dependent epitope are currently effectively detected by a cell based assay (CBA) utilizing indirect immunofluorescence (IIF) on tissue culture cells transfected with the PLA2R cDNA. Limitations of such IIF-CBA assays include observer dependent subjective evaluation of semi-quantitative test results and the protocols are not amenable to high throughput diagnostic testing. We developed a quantitative, observer independent, high throughput capture immunoassay for detecting PLA2R autoantibodies on an addressable laser bead immunoassay (ALBIA) platform. Since reactive domains of PLA2R (i.e. epitopes) could be used to improve diagnostic tests by using small peptides in various high throughput diagnostic platforms, we identified PLA2R epitopes that bound autoantibodies of IMN patients. These studies confirmed that inter-molecular epitope spreading occurs in IMN but use of the cognate synthetic peptides in immunoassays was unable to conclusively distinguish between IMN patients and normal controls. However, combinations of these peptides were able to effectively absorb anti-PLA2R reactivity in IIF-CBA and an immunoassay that employed a lysate derived from HEK cells tranfected with and overexpressing PLA2R. While we provide evidence of intermolecular epitope spreading, our data indicates that in addition to conformational epitopes, human anti-PLA2R reactivity in a commercially available CBA and an addressable laser bead immunoassay is significantly absorbed by peptides representing epitopes of PLA2R.

  17. An anti-phospholipase A2 receptor quantitative immunoassay and epitope analysis in membranous nephropathy reveals different antigenic domains of the receptor.

    Directory of Open Access Journals (Sweden)

    Astrid Behnert

    Full Text Available The phospholipase A2 receptor (PLA2R was recently discovered as a target autoantigen in patients with idiopathic membranous nephropathy (IMN. Published evidence suggests that the autoantibodies directed towards a conformation dependent epitope are currently effectively detected by a cell based assay (CBA utilizing indirect immunofluorescence (IIF on tissue culture cells transfected with the PLA2R cDNA. Limitations of such IIF-CBA assays include observer dependent subjective evaluation of semi-quantitative test results and the protocols are not amenable to high throughput diagnostic testing. We developed a quantitative, observer independent, high throughput capture immunoassay for detecting PLA2R autoantibodies on an addressable laser bead immunoassay (ALBIA platform. Since reactive domains of PLA2R (i.e. epitopes could be used to improve diagnostic tests by using small peptides in various high throughput diagnostic platforms, we identified PLA2R epitopes that bound autoantibodies of IMN patients. These studies confirmed that inter-molecular epitope spreading occurs in IMN but use of the cognate synthetic peptides in immunoassays was unable to conclusively distinguish between IMN patients and normal controls. However, combinations of these peptides were able to effectively absorb anti-PLA2R reactivity in IIF-CBA and an immunoassay that employed a lysate derived from HEK cells tranfected with and overexpressing PLA2R. While we provide evidence of intermolecular epitope spreading, our data indicates that in addition to conformational epitopes, human anti-PLA2R reactivity in a commercially available CBA and an addressable laser bead immunoassay is significantly absorbed by peptides representing epitopes of PLA2R.

  18. Detection of hidden hazelnut protein in food by IgY-based indirect competitive enzyme-immunoassay

    NARCIS (Netherlands)

    Baumgartner, S.; Bremer, M.G.E.G.; Kemmers - Voncken, A.E.M.; Smits, N.G.E.; Haasnoot, W.; Banks, J.; Reece, P.; Danks, C.; Tomkies, V.; Immer, U.; Schmitt, K.; Krska, R.

    2004-01-01

    The development of an indirect competitive enzyme-immunoassay for the detection of hidden hazelnut protein in complex food matrices is described. A sensitive and selective polyclonal antibody was raised by immunisation of laying hens with protein extracts from roasted hazelnuts. In contrast to tradi

  19. Strip-based immunoassay for the simultaneous detection of the neonicotinoid insecticides imidacloprid and thiamethoxam in agricultural products

    Science.gov (United States)

    A semiquantitative strip immunoassay was developed for the rapid detection of imidacloprid and thiamethoxam in agricultural products using specific nanocolloidal gold-labeled monoclonal antibodies. The conjugates of imidacloprid-BSA and thiamethoxam-BSA and goat anti-mouse IgG were coated on the ni...

  20. Development and validation of a monoclonal based immunoassay for the measurement of fungal alpha-amylase: focus on peak exposures.

    Science.gov (United States)

    Elms, J; Denniss, S; Smith, M; Evans, P G; Wiley, K; Griffin, P; Curran, A D

    2001-03-01

    The inhalation of flour dust has been implicated in the induction of sensitisation and elicitation of respiratory symptoms, such as asthma in bakers. In addition to the cereal allergens present in wheat flour, enzymes in flour improvers, in particular fungal alpha-amylase, are now known to be a significant cause of respiratory allergy in the baking industry.A monoclonal antibody based enzyme-linked immunoassay (ELISA) was developed using two monoclonal antibodies that recognised two distinct epitopes of the fungal alpha-amylase enzyme. The ELISA had an inter-assay variation of 12.0% at 1360 pg/ml and 12.8% at 564 pg/ml and intra-assay variation of 4.9% at 1340 pg/ml and 6.1% at 504 pg/ml. The assay had a sensitivity of 200 pg/ml. Competitive inhibition assays confirmed that the monoclonal antibodies had no cross reactivity with other enzymes used in the baking industry and could distinguish added fungal alpha-amylase from cereal amylase. We assessed the levels of exposure to dust, total protein and fungal alpha-amylase in four UK bakeries ranging in size and technical capabilities. Within the bakeries we surveyed, workers were exposed to variable levels of inhalable dust (0.8-39.8 mg/m3), total protein (0-5.7 mg/m3) and fungal alpha-amylase (0-29.8 ng/m3). Consecutive 15 min personal samples taken over a 1 h period demonstrated that the ELISA could measure fungal alpha-amylase exposure in such a 15 min period. Short term peak exposures to fungal alpha-amylase could be identified which may contribute to the sensitisation in individuals who appear to have low exposure levels if measured over a full shift period.

  1. Lateral-flow colloidal gold-based immunoassay for the rapid detection of deoxynivalenol with two indicator ranges

    Energy Technology Data Exchange (ETDEWEB)

    Kolosova, Anna Yu. [Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium)], E-mail: anna_kolosova@hotmail.com; Sibanda, Liberty [TOXI-TEST NV, Industrielaan 9a, 9990 Maldegem (Belgium); Dumoulin, Frederic [Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium); Lewis, Janet; Duveiller, Etienne [International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico, D.F. (Mexico); Van Peteghem, Carlos; Saeger, Sarah de [Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium)

    2008-06-02

    A lateral-flow immunoassay using a colloidal gold-labelled monoclonal antibody was developed for the rapid detection of deoxynivalenol (DON). Different parameters, such as the amount of immunoreagents, type of the materials, composition of the blocking solution and of the detector reagent mixture, were investigated to provide the optimum assay performance. The experimental results demonstrated that such a visual test had an indicator range rather than a cut-off value. Thus, tests for DON determination with two different indicator ranges of 250-500 and 1000-2000 {mu}g kg{sup -1} were designed. The method allowed detection of DON at low and high concentration levels, which could be useful for research and practical purposes. The assay applied to spiked wheat and pig feed samples demonstrated accurate and reproducible results. The applicability of the developed lateral-flow test was also confirmed under real field conditions. The test strips prepared in Belgium were sent to Mexico, where they were used for the screening of DON contamination in different bread wheat entries from Fusarium Head Blight inoculated plots. The results were compared with those obtained by ELISA and LC-MS/MS. A poor correlation between ELISA and LC-MS/MS was observed. Visual results of the dipstick tests were in a good agreement with the results of the LC-MS/MS method. Coupled with a simple and fast sample preparation, this qualitative one-step test based on the visual evaluation of results did not require any equipment. Results could be obtained within 10 min. The described assay format can be used as a simple, rapid, cost-effective and robust on-site screening tool for mycotoxin contamination in different agricultural commodities.

  2. Development of an in situ magnetic beads based RT-PCR method for electrochemiluminescent detection of rotavirus

    Science.gov (United States)

    Zhan, Fangfang; Zhou, Xiaoming

    2012-12-01

    Rotaviruses are double-stranded RNA viruses belonging to the family of enteric pathogens. It is a major cause of diarrhoeal disease in infants and young children worldwide. Consequently, rapid and accurate detection of rotaviruses is of great importance in controlling and preventing food- and waterborne diseases and outbreaks. Reverse transcription-polymerase chain reaction (RT-PCR) is a reliable method that possesses high specificity and sensitivity. It has been widely used to detection of viruses. Electrochemiluminescence (ECL) can be considered as an important and powerful tool in analytical and clinical application with high sensitivity, excellent specificity, and low cost. Here we have developed a method for the detection of rotavirus by combining in situ magnetic beads (MBs) based RT-PCR with ECL. RT of rotavirus RNA was carried out in a traditional way and the resulting cDNA was directly amplified on MBs. Forward primers were covalently bounded to MBs and reverse primers were labeled with tris-(2, 2'-bipyridyl) ruthenium (TBR). During the PCR cycling, the TBR labeled products were directly loaded and enriched on the surface of MBs. Then the MBs-TBR complexes could be analyzed by a magnetic ECL platform without any post-modification or post-incubation which avoid some laborious manual operations and achieve rapid yet sensitive detection. In this study, rotavirus from fecal specimens was successfully detected within 2 h, and the limit of detection was estimated to be 104copies/μL. This novel in situ MBs based RT-PCR with ECL detection method can be used for pathogen detection in food safety field and clinical diagnosis.

  3. A gel-based visual immunoassay for non-instrumental detection of chloramphenicol in food samples.

    Science.gov (United States)

    Yuan, Meng; Sheng, Wei; Zhang, Yan; Wang, Junping; Yang, Yijin; Zhang, Shuguang; Goryacheva, Irina Yu; Wang, Shuo

    2012-11-01

    A gel-based non-instrumental immuno-affinity assay was developed for the rapid screening of chloramphenicol (CAP) in food samples with the limit of detection (LOD) of 1 μg L(-1). The immuno-affinity test column (IATC) consisted of a test layer containing anti-CAP antibody coupled gel, and a control layer with anti-HRP antibody coupled gel. Based on the direct competitive immuno-reaction and the horseradish peroxidase enzymatic reaction, the test results could be evaluated visually. Basically, blue color development represented the negative results, while the absence of color development represented the positive results. In this study, CAP spiked samples of raw milk, pasteurized milk, UHT milk, skimmed milk powder, acacia honey, date honey, fish and shrimp were tested. Little or none sample pretreatment was required for this assay. The whole procedure was completed within 10min. In conclusion, the gel-based immuno-affinity test is a simple, rapid, and promising on-site screening method for CAP residues in food samples, with no instrumental requirement.

  4. Theoretical analysis of a new, efficient microfluidic magnetic bead separator based on magnetic structures on multiple length scales

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Bu, Minqiang; Wolff, Anders;

    2008-01-01

    channel. The concept is studied analytically for simple representative geometries and by numerical simulation of an experimentally realistic system geometry. The array of permanent magnets provides long-range magnetic forces that attract the beads to the channel bottom, while the soft magnetic elements...

  5. Clinical relevance of anti-HLA antibodies detected by flow-cytometry bead-based assays--single-center experience.

    Science.gov (United States)

    Mihaylova, Anastassia; Baltadjieva, Daniela; Boneva, Petia; Ivanova, Milena; Penkova, Kalina; Marinova, Daniela; Mihailova, Snejina; Paskalev, Emil; Simeonov, Petar; Naumova, Elissaveta

    2006-10-01

    The purpose of this study was to define the incidence, dynamics, and profiles of anti-human leukocyte antigen antibodies (HLA-Abs) produced after kidney transplantation and their impact on graft outcome. A total of 72 first cadaver donor kidney recipients were prospectively monitored for the development of HLA-Abs using bead-based flow-cytometry assays (One Lambda FlowPRA tests). Sixteen recipients (22.2%) developed HLA-Abs after transplantation (class I, n = 7; class I+II, n = 6; class II, n = 3), in most cases (81.25%) within the first 2 weeks posttransplantation. A strong association between alloantibody presence and delayed graft function (Chi-square = 7.659, p < 0.01), acute rejection (Chi-square = 14.504, p < 0.001), chronic rejection (Chi-square = 12.84, p < 0.001), and graft loss (Chi-square = 20.283, p < 0.001) was found. Patients with higher alloantibody titers experienced acute rejections and even early graft loss, compared with those with lower titers for whom chronic rejections were more common. Immunologic complications occurred in recipients with both donor-specific and cross-reacting groups or non-donor-specific antibodies alone. A positive correlation (Pearson correlation, 0.245; p < 0.05) between HLA class I amino acid triplet incompatibility and alloantibody production was observed, mainly resulting from immunogenic triplotypes. Given the results obtained in this study, an alloantibody testing algorithm has been designed and implemented for routine monitoring and to define optimally the alloantibody reactivity in kidney transplant recipients.

  6. Chaperone probes and bead-based enhancement to improve the direct detection of mRNA using silicon photonic sensor arrays.

    Science.gov (United States)

    Kindt, Jared T; Bailey, Ryan C

    2012-09-18

    Herein, we describe the utility of chaperone probes and a bead-based signal enhancement strategy for the analysis of full length mRNA transcripts using arrays of silicon photonic microring resonators. Changes in the local refractive index near microring sensors associated with biomolecular binding events are transduced as a shift in the resonant wavelength supported by the cavity, enabling the sensitive analysis of numerous analytes of interest. We employ the sensing platform for both the direct and bead-enhanced detection of three different mRNA transcripts, achieving a dynamic range spanning over 4 orders of magnitude and demonstrating expression profiling capabilities in total RNA extracts from the HL-60 cell line. Small, dual-use DNA chaperone molecules were developed and found to both enhance the binding kinetics of mRNA transcripts by disrupting complex secondary structure and serve as sequence-specific linkers for subsequent bead amplification. Importantly, this approach does not require amplification of the mRNA transcript, thereby allowing for simplified analyses that do not require expensive enzymatic reagents or temperature ramping capabilities associated with RT-PCR-based methods.

  7. Nanowell-based immunoassays for measuring single-cell secretion: characterization of transport and surface binding.

    Science.gov (United States)

    Torres, Alexis J; Hill, Abby S; Love, J Christopher

    2014-12-01

    Arrays of subnanoliter wells (nanowells) provide a useful system to isolate single cells and analyze their secreted proteins. Two general approaches have emerged: one that uses open arrays and local capture of secreted proteins, and a second (called microengraving) that relies on closed arrays to capture secreted proteins on a solid substrate, which is subsequently removed from the array. However, the design and operating parameters for efficient capture from these two approaches to analyze single-cell secretion have not been extensively considered. Using numerical simulations, we analyzed the operational envelope for both open and closed formats, as a function of the spatial distribution of capture ligands, their affinities for the protein, and the rates of single-cell secretion. Based on these analyses, we present a modified approach to capture secreted proteins in-well for highly active secreting cells. This simple method for in-well detection should facilitate rapid identification of cell lines with high specific productivities.

  8. A quantum dot-based immunoassay for screening of tylosin and tilmicosin in edible animal tissues.

    Science.gov (United States)

    Le, Tao; Zhu, Liqian; Yang, Xian

    2015-01-01

    A rapid, indirect competitive fluorescence-linked immunosorbent assay (ic-FLISA) based on quantum dots (QDs) as the fluorescent marker was developed for the detection of tylosin and tilmicosin in edible animal tissues. The end point fluorescent detection system was carried out using QDs conjugated with goat anti-mouse secondary antibody. The limits of detection (LODs) for the determination of tylosin and tilmicosin were 0.02 and 0.04 μg kg(-1), respectively. This detection method was used to analyse spiked samples and the recoveries ranged from 83.5% to 98.7% for tylosin and from 81.8% to 98.2% for tilmicosin. In real porcine tissue sample analysis, the results of ic-FLISA were similar to those obtained from an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) to an HPLC method indicating its potential for tylosin and tilmicosin screening in edible animal tissues.

  9. Development of Immunoassay Based on Monoclonal Antibody Reacted with the Neonicotinoid Insecticides Clothianidin and Dinotefuran

    Directory of Open Access Journals (Sweden)

    Seiji Iwasa

    2012-11-01

    Full Text Available Enzyme-linked immunosorbent assay (ELISA based on a monoclonal antibody (MoAb was developed for the neonicotinoid insecticide clothianidin. A new clothianidin hapten (3-[5-(3-methyl-2-nitroguanidinomethyl-1,3-thiazol-2-ylthio] propionic acid was synthesized and conjugated to keyhole limpet hemocyanin, and was used for monoclonal antibody preparation. The resulting MoAb CTN-16A3-13 was characterized by a direct competitive ELISA (dc-ELISA. The 50% of inhibition concentration value with clothianidin was 4.4 ng/mL, and the working range was 1.5–15 ng/mL. The antibody showed high cross-reactivity (64% to dinotefuran among the structurally related neonicotinoid insecticides. The recovery examinations of clothianidin for cucumber, tomato and apple showed highly agreement with the spiked concentrations; the recovery rate was between 104% and 124% and the coefficient of variation value was between 1.8% and 15%. Although the recovery rate of the dc-ELISA was slightly higher than that of HPLC analysis, the difference was small enough to accept the dc-ELISA as a useful method for residue analysis of clothianidin in garden crops.

  10. Electrochemical immunoassay of cotinine in serum based on nanoparticle probe and immunochromatographic strip

    Energy Technology Data Exchange (ETDEWEB)

    Nian Hungchi [Pacific Norwest National Laboratory, Richland, WA 99352 (United States); Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan (China); Wang Jun; Wu Hong [Pacific Norwest National Laboratory, Richland, WA 99352 (United States); Lo, Jiunn-Guang [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan (China); Chiu, Kong-Hwa [Department of Applied Science, National DongHwa University, Hualien, 970, 30013, Taiwan (China); Pounds, Joel G. [Pacific Norwest National Laboratory, Richland, WA 99352 (United States); Lin Yuehe, E-mail: yuehe.lin@pnnl.gov [Pacific Norwest National Laboratory, Richland, WA 99352 (United States)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Using nanoparticle probe in immunochromatographic strip. Black-Right-Pointing-Pointer Enhanced sensitivity by using nanoparticle label. Black-Right-Pointing-Pointer Rapid and sensitive detection of cotinine in serum. - Abstract: A disposable sensor for the determination of cotinine in human serum was developed based on immunochromatographic test strip and quantum dot label. In this assay, cotinine linked with quantum dot competes with cotinine in sample to bind to anti-cotinine antibody in the test strip and the quantum dots serve as signal vehicles for electrochemical readout. Some parameters governing the performance of the sensor were optimized. The sensor shows a wide linear range from 1 ng mL{sup -1} to 100 ng mL{sup -1} cotinine with a detection limit of 1.0 ng mL{sup -1}. The sensor was validated with spiked human serum samples and it was found that this method was reliable in measuring cotinine in human serum. The results demonstrate that this sensor is rapid, accurate, and less expensive and has the potential for point of care (POC) detection of cotinine and fast screening of tobacco smoke exposure.

  11. Electrochemical Immunoassay of Cotinine in Serum Based on Nanoparticle Probe and Immunochromatographic Strip

    Energy Technology Data Exchange (ETDEWEB)

    Nian, Hung-Chi; Wang, Jun; Wu, Hong J.; Lo, Jiunn-Guang; Chiu, Kong-Hwa; Pounds, Joel G.; Lin, Yuehe

    2012-02-03

    A disposable sensor for the determination of cotinine in human serum was developed based on immunochromatographic test strip and quantum dot label. In this assay, cotinine modified on quantum dot competes with cotinine in sample to bind to anti-cotinine antibody in the test strip and the quantum dots serve as signal vehicles for electrochemical readout. Some parameters governing the performance of the sensor were optimized. The sensor shows a wide linear range from 1 ng mL-1 to 100 ng mL-1 cotinine with a detection limit of 1.0 ng mL-1. The relative standard deviation (R.S.D.) of the sensor was less than 2% for cotinine. The sensor was validated with spiked human serum samples and it was found that this method was reliable in measuring cotinine in human serum with average recovery of 100.99%. The results demonstrate that this sensor is a rapid, clinically accurate, and less expensive and has the potential for point of care (POC) detection of cotinine and fast screening of tobacco smoke exposure.

  12. Antibody-based magnetic nanoparticle immunoassay for quantification of Alzheimer's disease pathogenic factor

    Science.gov (United States)

    Kim, Chang-Beom; Choi, Yu Yong; Song, Woo Keun; Song, Ki-Bong

    2014-05-01

    Alzheimer's disease (AD) is a neurodegenerative disorder that leads to a decline in cognitive and intellectual abilities and an irreversible mental deterioration. Based on multidisciplinary AD research, the most universally accepted hypotheses on AD pathogenesis are the intracerebral aggregate formation of beta-amyloid (Aβ) peptides. According to medical paradigmatic transition from medical treatment to early diagnostic prevention, scientists have considered physiological body fluid as a biomarker medium, in which the promising AD biomarkers could be verified. Recently, use of saliva has been considered as one of the diagnostic fluids over the past decade with meaningful diagnostic potential. We utilized saliva as a biomarker medium to correlate the salivary Aβ levels to AD pathological aspects, especially to the mild cognitive impairment group among AD patients, and to verify our detecting system to be sensitive enough for an early diagnostic tool. The identification of the salivary AD biomarkers using a facile microarraying method would motivate this study with the assistance of magnetically assembled antibody-conjugated nanoparticles and a photomultiplier tube as an optical detector. This simple magnetoimmunoassay system measures the photointensity generated by fluorescence, enables the quantification of the Aβ peptides from AD salivary samples, and consequently classifies the salivary Aβ levels into AD pathological aspects. This method demonstrates a facile approach enabling it to simply detect salivary Aβ peptides at a concentration as low as ˜20 pg/ml. It is expected that our simple magnetoimmunoassay system may have a potential as a detector for low-level Aβ peptides with weak-fluorescence emission.

  13. Small, porous polyacrylate beads

    Science.gov (United States)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)

    1976-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  14. Crosslinked, porous, polyacrylate beads

    Science.gov (United States)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1977-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree. C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  15. Bead mediated separation of microparticles in droplets

    Science.gov (United States)

    Sung, Ki-Joo; Lin, Xiaoxia Nina; Burns, Mark A.

    2017-01-01

    Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead’s solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 μm, beads above 10 μm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield. PMID:28282412

  16. Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk.

    Science.gov (United States)

    Chen, Yiqiang; Chen, Qian; Han, Miaomiao; Liu, Jiangyang; Zhao, Peng; He, Lidong; Zhang, Yuan; Niu, Yiming; Yang, Wenjun; Zhang, Liying

    2016-05-15

    In this study, we developed a novel near-infrared fluorescence based multiplex lateral flow immunoassay by conjugating a near-infrared label to broad-specificity monoclonal antibody/receptor as detection complexes. Different antigens were dispensed onto separate test zones of nitrocellulose membrane to serve as capture reagents. This assay format allowed the simultaneous detection of four families of antibiotics (β-lactams, tetracyclines, quinolones and sulfonamides) in milk within 20 min. Qualitative and quantitative analysis of target antibiotics were realized by imaging the fluorescence intensity of the near-infrared label captured on respective test lines. For qualitative analysis, the cut-off values of β-lactams, tetracyclines, quinolones and sulfonamides were determined to be 8 ng/mL, 2 ng/mL, 4 ng/mL and 8 ng/mL respectively, which were much lower than the conventional gold nanoparticle based lateral flow immunoassay. For quantitative analysis, the detection ranges were 0.26-3.56 ng/mL for β-lactams, 0.04-0.98 ng/mL for tetracyclines, 0.08-2.0 ng/mL for quinolones, and 0.1-3.98 ng/mL for sulfonamides, with linear correlation coefficients higher than 0.97. The mean spiked recoveries ranged from 93.7% to 108.2% with coefficient of variations less than 16.3%. These results demonstrated that this novel immunoassay is a promising approach for rapidly screening the four families of antibiotic residues in milk.

  17. Metal-Containing Polystyrene Beads as Standards for Mass Cytometry.

    Science.gov (United States)

    Abdelrahman, Ahmed I; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Kinach, Robert; Dai, Sheng; Thickett, Stuart C; Tanner, Scott; Winnik, Mitchell A

    2010-01-01

    We examine the suitability of metal-containing polystyrene beads for the calibration of a mass cytometer instrument, a single particle analyser based on an inductively coupled plasma ion source and a time of flight mass spectrometer. These metal-containing beads are also verified for their use as internal standards for this instrument. These beads were synthesized by multiple-stage dispersion polymerization with acrylic acid as a comonomer. Acrylic acid acts as a ligand to anchor the metal ions within the interior of the beads. Mass cytometry enabled the bead-by-bead measurement of the metal-content and determination of the metal-content distribution. Beads synthesized by dispersion polymerization that involved three stages were shown to have narrower bead-to-bead variation in their lanthanide content than beads synthesized by 2-stage dispersion polymerization. The beads exhibited insignificant release of their lanthanide content to aqueous solutions of different pHs over a period of six months. When mixed with KG1a or U937 cell lines, metal-containing polymer beads were shown not to affect the mass cytometry response to the metal content of element-tagged antibodies specifically attached to these cells.

  18. Enhanced sensitivity of self-assembled-monolayer-based SPR immunosensor for detection of benzaldehyde using a single-step multi-sandwich immunoassay.

    Science.gov (United States)

    Gobi, K Vengatajalabathy; Matsumoto, Kiyoshi; Toko, Kiyoshi; Ikezaki, Hidekazu; Miura, Norio

    2007-04-01

    This paper describes the fabrication and sensing characteristics of a self-assembled monolayer (SAM)-based surface plasmon resonance (SPR) immunosensor for detection of benzaldehyde (BZ). The functional sensing surface was fabricated by the immobilization of a benzaldehyde-ovalbumin conjugate (BZ-OVA) on Au-thiolate SAMs containing carboxyl end groups. Covalent binding of BZ-OVA on SAM was found to be dependent on the composition of the base SAM, and it is improved very much with the use of a mixed monolayer strategy. Based on SPR angle measurements, the functional sensor surface is established as a compact monolayer of BZ-OVA bound on the mixed SAM. The BZ-OVA-bound sensor surface undergoes immunoaffinity binding with anti-benzaldehyde antibody (BZ-Ab) selectively. An indirect inhibition immunoassay principle has been applied, in which analyte benzaldehyde solution was incubated with an optimal concentration of BZ-Ab for 5 min and injected over the sensor chip. Analyte benzaldehyde undergoes immunoreaction with BZ-Ab and makes it inactive for binding to BZ-OVA on the sensor chip. As a result, the SPR angle response decreases with an increase in the concentration of benzaldehyde. The fabricated immunosensor demonstrates a low detection limit (LDL) of 50 ppt (pg mL(-1)) with a response time of 5 min. Antibodies bound to the sensor chip during an immunoassay could be detached by a brief exposure to acidic pepsin. With this surface regeneration, reusability of the same sensor chip for as many as 30 determination cycles has been established. Sensitivity has been enhanced further with the application of an additional single-step multi-sandwich immunoassay step, in which the BZ-Ab bound to the sensor chip was treated with a mixture of biotin-labeled secondary antibody, streptavidin and biotin-bovine serum albumin (Bio-BSA) conjugate. With this approach, the SPR sensor signal increased by ca. 12 times and the low detection limit improved to 5 ppt with a total response

  19. Magnetic immunoassay coupled with inductively coupled plasma mass spectrometry for simultaneous quantification of alpha-fetoprotein and carcinoembryonic antigen in human serum

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xing; Chen, Beibei; He, Man; Zhang, Yiwen; Xiao, Guangyang; Hu, Bin, E-mail: binhu@whu.edu.cn

    2015-04-01

    The absolute quantification of glycoproteins in complex biological samples is a challenge and of great significance. Herein, 4-mercaptophenylboronic acid functionalized magnetic beads were prepared to selectively capture glycoproteins, while antibody conjugated gold and silver nanoparticles were synthesized as element tags to label two different glycoproteins. Based on that, a new approach of magnetic immunoassay-inductively coupled plasma mass spectrometry (ICP-MS) was established for simultaneous quantitative analysis of glycoproteins. Taking biomarkers of alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA) as two model glycoproteins, experimental parameters involved in the immunoassay procedure were carefully optimized and analytical performance of the proposed method was evaluated. The limits of detection (LODs) for AFP and CEA were 0.086 μg L{sup −1} and 0.054 μg L{sup −1} with the relative standard deviations (RSDs, n = 7, c = 5 μg L{sup −1}) of 6.5% and 6.2% for AFP and CEA, respectively. Linear range for both AFP and CEA was 0.2–50 μg L{sup −1}. To validate the applicability of the proposed method, human serum samples were analyzed, and the obtained results were in good agreement with that obtained by the clinical chemiluminescence immunoassay. The developed method exhibited good selectivity and sensitivity for the simultaneous determination of AFP and CEA, and extended the applicability of metal nanoparticle tags based on ICP-MS methodology in multiple glycoprotein quantifications. - Highlights: • 4-Mercaptophenylboronic acid functionalized magnetic beads were prepared and characterized. • ICP-MS based magnetic immunoassay approach was developed for quantification of glycoproteins. • AFP and CEA were quantified simultaneously with Au and Ag NPs as element tags. • The developed method exhibited good selectivity and sensitivity for target glycoproteins.

  20. Graphene-based rapid and highly-sensitive immunoassay for C-reactive protein using a smartphone-based colorimetric reader.

    Science.gov (United States)

    Vashist, Sandeep Kumar; Marion Schneider, E; Zengerle, Roland; von Stetten, Felix; Luong, John H T

    2015-04-15

    A novel immunoassay (IA) has been developed for human C-reactive protein (CRP), an important biomarker and tissue preserving factor for infection and inflammation. Graphene nanoplatelets (GNP) and 3-aminopropyltriethoxysilane (APTES) were admixed and covalently attached to a polystyrene based-microtiter plate (MTP), pretreated with KOH. The resulting surface served as a stable layer for the covalent attachment of the anti-human CRP antibody. The IA procedure was based on the one-step kinetics-based sandwich IA employing a minimum number of process steps, whereas the enzymatic reaction solution was monitored by a smartphone-based colorimetric reader. With a limit of detection and a limit of quantification of 0.07ngmL(-1) and 0.9ngmL(-1), it precisely detected CRP spiked in diluted human whole blood and plasma as well as the CRP levels in clinical plasma samples. The results obtained for "real-world" patient samples agreed well with those of the conventional immunosorbent assay and the clinically-accredited analyzer-based IA. The antibody-bound GNP-functionalized MTPs retained its original activity after 6 weeks of storage in 0.1M PBS, pH 7.4 at 4°C.

  1. Evaluation of an Immunoassay-Based Algorithm for Screening and Identification of Giardia and Cryptosporidium Antigens in Human Faecal Specimens from Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Yousry Hawash

    2014-01-01

    Full Text Available An immunoassay-based algorithm, involving three commercial kits, was introduced and evaluated for screening and identification of Giardia/Cryptosporidium antigens in human stool specimens. Initially, Giardia/Cryptosporidium Chek kit (TechLab, an enzyme-linked immunosorbent assay (ELISA, was adopted for screening. The ELISA-positive reactions were subsequently characterised by RIDA Quick Giardia and RIDA Quick Cryptosporidium immunochromatographic kits (R-Biopharm. A gold standard test comprising PCR and microscopy was used for preparing control samples. Performance of individual kits was tested against these samples which included 50 Giardia-positive, 40 Cryptosporidium-positive, and 70 Cryptosporidium/Giardia-negative. For Cryptosporidium, specificities of the ELISA and RIDA Quick Cryptosporidium kits were 95.71% and 100%, respectively. Both kits demonstrated sensitivity of 95%. For Giardia, the ELISA and RIDA Quick Giardia kits showed sensitivities of 100% and 97.5%, respectively. Specificities obtained by the ELISA and RIDA Quick Giardia were 95.7% and 100%, respectively. Based on the results of two reference PCRs, on 250 random samples, the algorithm exhibited sensitivity, specificity, positive predictive value, and negative predictive value of 97.06%, 100.00%, 100.00%, and 98.91%, respectively. In conclusion, this immunoassay-based algorithm can be used as routine test in diagnostic laboratories for screening and identification of a large number of samples.

  2. Ultrasensitive electrochemical immunoassay for carcinoembryonic antigen based on three-dimensional macroporous gold nanoparticles/graphene composite platform and multienzyme functionalized nanoporous silver label

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Guoqiang; Lu, Juanjuan [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Ge, Shenguang [Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Song, Xianrang [Cancer Research Center, Shandong Tumor Hospital, Jinan 250012 (China); Yu, Jinghua, E-mail: ujn.yujh@gmail.com [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Yan, Mei; Huang, Jiadong [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2013-05-02

    Graphical abstract: Three-dimensional macroporous AuNPs/graphene complex (3D-AuNPs/GN) and functionalized NPS were prepared to immobilize Ab{sub 1} and Ab{sub 2} respectively and combined to fabricate a sandwich-type ultrasensitive electro-chemical immunosensor for detecting CEA. -- Highlights: •Ultrasensitive electrochemical immunoassay for detecting CEA was developed. •3D-AuNPs/GN was employed as the carrier of primary antibodies. •Multienzyme functionalized nanoporous silver was used as signal enhancer. -- Abstract: Three-dimensional macroporous gold nanoparticles/graphene composites (3D-AuNPs/GN) were synthesized through a simple two-step process, and were used to modify working electrode sensing platform, based on which a facile electrochemical immunoassay for sensitive detection of carcinoembryonic antigen (CEA) in human serum was developed. In the proposed 3D-AuNPs/GN, AuNPs were distributed not just on the surface, but also on the inside of graphene. And this distribution property increased the area of sensing surface, resulting in capturing more primary antibodies as well as improving the electronic transmission rate. In the presence of CEA, a sandwich-type immune composite was formed on the sensing platform, and the horseradish peroxidase-labeled anti-CEA antibody (HRP-Ab{sub 2})/thionine/nanoporous silver (HRP-Ab{sub 2}/TH/NPS) signal label was captured. Under optimal conditions, the electrochemical immunosensor exhibited excellent analytical performance: the detection range of CEA is from 0.001 to 10 ng mL{sup −1} with low detection limit of 0.35 pg mL{sup −1} and low limit of quantitation (LOQ) of 0.85 pg mL{sup −1}. The electrochemical immunosensor showed good precision, acceptable stability and reproducibility, and could be used for the detection of CEA in real samples. The proposed method provides a promising platform of clinical immunoassay for other biomolecules.

  3. Use of colloidal silica-beads for the isolation of cell-surface proteins for mass spectrometry-based proteomics.

    Science.gov (United States)

    Kim, Yunee; Elschenbroich, Sarah; Sharma, Parveen; Sepiashvili, Lusia; Gramolini, Anthony O; Kislinger, Thomas

    2011-01-01

    Chaney and Jacobson first introduced the colloidal silica-bead protocol for the coating of cellular plasma membranes in the early 1980s. Since then, this method has been successfully incorporated into a wide range of in vitro and in vivo applications for the isolation of cell-surface proteins. The principle is simple - cationic colloidal silica microbeads are introduced to a suspension or monolayer of cells in culture. Electrostatic interactions between the beads and the negatively charged plasma membrane, followed by cross-linking to the membrane with an anionic polymer, ensure attachment and maintain the native protein conformation. Cells are subsequently ruptured, and segregation of the resulting plasma membrane sheets from the remaining- cell constituents is achieved by ultracentrifugation through density gradients. The resulting membrane-bead pellet is treated with various detergents or chaotropic agents (i.e., urea) to elute bound proteins. If proteomic profiling by mass spectrometry is desired, proteins are denatured, carbamidomethylated, and digested into peptides prior to chromatography.

  4. Microfluidic bead-based multienzyme-nanoparticle amplification for detection of circulating tumor cells in the blood using quantum dots labels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, He, E-mail: mzhang_he@126.com; Fu, Xin; Hu, Jiayi; Zhu, Zhenjun

    2013-05-24

    Graphical abstract: A microfluidic beads-based nucleic acid sensor for sensitive detection of circulating tumor cells (CTCs) in the blood using multienzyme-nanoparticle amplification and quantum dots labels was developed. The chip-based CTCs analysis could detect reverse transcription-polymerase chain reaction (RT-PCR) products of tumor cell as low as 1 tumor cell (e.g. CEA expressing cell) in 1 mL blood sample. This microfluidic beads-based nucleic acid sensor is a promising platform for disease-related nucleic acid molecules at the lowest level at their earliest incidence. -- Highlights: •Combination of microfluidic bead-based platform and enzyme–probe–AuNPs is proposed. •The developed nucleic acid sensor could respond to 5 fM of tumor associated DNA. •Microfluidic platform and multienzyme-labeled AuNPs greatly enhanced sensitivity. •The developed nucleic acid sensor could respond to RT-PCR products of tumor cell as low as 1 tumor cell in 1 mL blood sample. •We report a sensitive nucleic acid sensor for detection of circulating tumor cells. -- Abstract: This study reports the development of a microfluidic bead-based nucleic acid sensor for sensitive detection of circulating tumor cells in blood samples using multienzyme-nanoparticle amplification and quantum dot labels. In this method, the microbeads functionalized with the capture probes and modified electron rich proteins were arrayed within a microfluidic channel as sensing elements, and the gold nanoparticles (AuNPs) functionalized with the horseradish peroxidases (HRP) and DNA probes were used as labels. Hence, two signal amplification approaches are integrated for enhancing the detection sensitivity of circulating tumor cells. First, the large surface area of Au nanoparticle carrier allows several binding events of HRP on each nanosphere. Second, enhanced mass transport capability inherent from microfluidics leads to higher capture efficiency of targets because continuous flow within micro

  5. Application of linear discriminant analysis in performance evaluation of extractable nuclear antigen immunoassay systems in the screening and diagnosis of systemic autoimmune rheumatic diseases.

    Science.gov (United States)

    Pi, David; de Badyn, Monika Hudoba; Nimmo, Mike; White, Rick; Pal, Jason; Wong, Patrick; Phoon, Carmen; O'Connor, Deidre; Pi, Steven; Shojania, Kam

    2012-10-01

    This study applied a linear discriminant analysis model to evaluate the performance of 2 types of commercially available extractable nuclear antigen (ENA) immunoassays for the screening and diagnosis of systemic autoimmune rheumatic diseases (SARDs) in a large tertiary hospital reference laboratory: (1) an enzyme-linked immunosorbent assay (ELISA) and (2) a multiplex bead-based immunoassay (MPBI). The results of the study showed both ENA immunoassays had comparable sensitivity for the detection of SARDs compared with the antinuclear antigen immunofluorescence (ANA-IF) method (ANA-IF: 85.6%, ENA-ELISA: 91.5%, ENA-MPBI: 83.1%, pairwise comparisons with ANA-IF: P > .05). However, both ENA immunoassays offered improved specificity compared with the ANA-IF (ANA-IF: 24.2%; ENA-ELISA: 39.8%; ENA-MPBI: 53.1%; pairwise comparison with ANA-IF: P diseases. Diagnostic performance of the ENA/dsDNA components by the MPBI and ELISA methods did not differ significantly (area under the curve [AUC], 81.0% vs 83.0%, respectively, P > .05), but the key ENA/dsDNA variables contributing to the discriminating power of the assays for the diagnosis of specific SARDs were reagent/method dependent.

  6. Specific Recognition of Biologically Active Amyloid-β Oligomers by a New Surface Plasmon Resonance-based Immunoassay and an in Vivo Assay in Caenorhabditis elegans*

    Science.gov (United States)

    Stravalaci, Matteo; Bastone, Antonio; Beeg, Marten; Cagnotto, Alfredo; Colombo, Laura; Di Fede, Giuseppe; Tagliavini, Fabrizio; Cantù, Laura; Del Favero, Elena; Mazzanti, Michele; Chiesa, Roberto; Salmona, Mario; Diomede, Luisa; Gobbi, Marco

    2012-01-01

    Soluble oligomers of the amyloid-β (Aβ) peptide play a key role in the pathogenesis of Alzheimer's disease, but their elusive nature makes their detection challenging. Here we describe a novel immunoassay based on surface plasmon resonance (SPR) that specifically recognizes biologically active Aβ oligomers. As a capturing agent, we immobilized on the sensor chip the monoclonal antibody 4G8, which targets a central hydrophobic region of Aβ. This SPR assay allows specific recognition of oligomeric intermediates that rapidly appear and disappear during the incubation of synthetic Aβ1–42, discriminating them from monomers and higher order aggregates. The species recognized by SPR generate ionic currents in artificial lipid bilayers and inhibit the physiological pharyngeal contractions in Caenorhabditis elegans, a new method for testing the toxic potential of Aβ oligomers. With these assays we found that the formation of biologically relevant Aβ oligomers is inhibited by epigallocatechin gallate and increased by the A2V mutation, previously reported to induce early onset dementia. The SPR-based immunoassay provides new opportunities for detection of toxic Aβ oligomers in biological samples and could be adapted to study misfolding proteins in other neurodegenerative disorders. PMID:22736768

  7. Europium(III) chelate-dyed nanoparticles as donors in a homogeneous proximity-based immunoassay for estradiol

    Energy Technology Data Exchange (ETDEWEB)

    Kokko, Leena; Sandberg, Kaisa; Loevgren, Timo; Soukka, Tero

    2004-02-09

    Nanoparticles containing thousands of fluorescent europium(III) chelates have a very high specific activity compared to traditional lanthanide chelate labels. It can be assumed that if these particles are used in a homogeneous assay as donors, multiple chelates can excite a single acceptor in turns and the energy transfer to the acceptor is increased. The principle was employed in an immunoassay using luminescent resonance energy transfer from a long lifetime europium(III) chelate-dyed nanoparticle to a short lifetime, near-infrared fluorescent molecule. Due to energy transfer fluorescence lifetime of the sensitised emission was prolonged and fluorescence could be measured using a time-resolved detection. A competitive homogeneous immunoassay for estradiol was created using 92 nm europium(III) chelate-dyed nanoparticle coated with 17{beta}-estradiol specific recombinant antibody Fab fragments as a donor and estradiol conjugated with near-infrared dye AlexaFluor 680 as an acceptor. The density of Fab fragments on the surface of the particle influenced the sensitivity of the immunoassay. The optimal Fab density was reached when the entire surface of the particle participated in the energy transfer, but the areas where the energy was transferred to a single acceptor, did not overlap. We were able to detect estradiol concentrations down to 70 pmol l{sup -1} (3xSD of a standard containing 0 nmol l{sup -1} of E2) using a 96-well platform. In this study we demonstrated that nanoparticles containing lanthanide chelates could be used as efficient donors in homogeneous assays.

  8. Development of a sensitive enzyme immunoassay for human epidermal growth factor (urogastrone).

    Science.gov (United States)

    Kurobe, M; Tokida, N; Furukawa, S; Ishikawa, E; Hayashi, K

    1986-04-15

    A sensitive two-site enzyme immunoassay (EIA) for human epidermal growth factor (hEGF) was developed, based on the sandwiching of an antigen between anti-hEGF IgG-coated polystyrene beads and anti-hEGF Fab'-linked peroxidase complex (horseradish peroxidase, EC. 1.11.1.7). This method has four advantages: the anti-hEGF Fab'-linked peroxidase complex is more stable than 125I-labelled antibody; the procedure is simple and rapid compared to bioassay; its discriminatory sensitivity is as low as 0.1 pg/assay tube; and serial dilution curves of unextracted human serum and urine samples all paralleled that of standard hEGF. The validity of the measurement of hEGF-like immunoreactivity in human serum and plasma is discussed.

  9. Magnetic Particle-Based Immunoassay of Phosphorylated p53 Using Protein-Cage Templated Lead Phosphate and Carbon Nanospheres for Signal Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aiqiong; Bao, Yuanwu; Ge, Xiaoxiao; Shin, Yongsoon; Du, Dan; Lin, Yuehe

    2012-11-20

    Phosphorylated p53 at serin 15 (phospho-p53-15) is a potential biomarker of Gamma-radiation exposure. In this paper, we described a new magnetic particles (MPs)-based electrochemical immunoassay of human phospho-p53-15 using carbon nanospheres (CNS) and protein-cage templated lead phosphate nanoparticles for signal amplification. Greatly enhanced sensitivity was achieved by three aspects: 1) The protein-cage nanoparticle (PCN) and p53-15 signal antibody (p53-15 Ab2) are linked to CNS (PCNof each apoferritin; 3) MPs capture a large amount of primary antibodies. Using apoferritin templated metallic phosphate instead of enzyme as label has the advantage of eliminating the addition of mediator or immunoreagents and thus makes the immunoassay system simpler. The subsequent stripping voltammetric analysis of the released lead ions were detected on a disposable screen printed electrode. The response current was proportional to the phospho-p53-15 concentration in the range of 0.02 to 20 ng mL-1 with detection limit of 0.01 ng mL-1. This method shows a good stability, reproducibility and recovery.

  10. Fast and single-step immunoassay based on fluorescence quenching within a square glass capillary immobilizing graphene oxide-antibody conjugate and fluorescently labelled antibody.

    Science.gov (United States)

    Shirai, Akihiro; Henares, Terence G; Sueyoshi, Kenji; Endo, Tatsuro; Hisamoto, Hideaki

    2016-05-23

    A single-step, easy-to-use, and fast capillary-type immunoassay device composed of a polyethylene glycol (PEG) coating containing two kinds of antibody-reagents, including an antibody-graphene oxide conjugate and fluorescently labelled antibody, was developed in this study. The working principle involved the spontaneous dissolution of the PEG coating, diffusion of reagents, and subsequent immunoreaction, triggered by the capillary action-mediated introduction of a sample solution. In a sample solution containing the target antigen, two types of antibody reagents form a sandwich-type antigen-antibody complex and fluorescence quenching takes place via fluorescence resonance energy transfer between the labelled fluorescent molecules and graphene oxide. Antigen concentration can be measured based on the decrease in fluorescence intensity. An antigen concentration-dependent response was obtained for the model target protein sample (human IgG, 0.2-10 μg mL(-1)). The present method can shorten the reaction time to within 1 min (approximately 40 s), while conventional methods using the same reagents require reaction times of approximately 20 min because of the large reaction scale. The proposed method is one of the fastest immunoassays ever reported. Finally, the present device was used to measure human IgG in diluted serum samples to demonstrate that this method can be used for fast medical diagnosis.

  11. Detection of c-reactive protein based on a magnetic immunoassay by using functional magnetic and fluorescent nanoparticles in microplates.

    Science.gov (United States)

    Yang, S F; Gao, B Z; Tsai, H Y; Fuh, C Bor

    2014-11-07

    We report the preparation and application of biofunctional nanoparticles to detect C-reactive protein (CRP) in magnetic microplates. A CRP model biomarker was used to test the proposed detection method. Biofunctional magnetic nanoparticles, CRP, and biofunctional fluorescent nanoparticles were used in a sandwich nanoparticle immunoassay. The CRP concentrations in the samples were deduced from the reference plot, using the fluorescence intensity of the sandwich nanoparticle immunoassay. When biofunctional nanoparticles were used to detect CRP, the detection limit was 1.0 ng ml(-1) and the linear range was between 1.18 ng ml(-1) and 11.8 μg ml(-1). The results revealed that the method involving biofunctional nanoparticles exhibited a lower detection limit and a wider linear range than those of the enzyme-linked immunosorbent assay (ELISA) and most other methods. For CRP measurements of serum samples, the differences between this method and ELISA in CRP measurements of serum samples were less than 13%. The proposed method can reduce the analysis time to one-third that of ELISA. This method demonstrates the potential to replace ELISA for rapidly detecting biomarkers with a low detection limit and a wide dynamic range.

  12. Multiplexed Electrochemical Immunoassay of Phosphorylated Proteins Based on Enzyme-Functionalized Gold Nanorod Labels and Electric Field-Driven Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Du, Dan; Wang, Jun; Lu, Donglai; Dohnalkova, Alice; Lin, Yuehe

    2011-09-09

    A multiplexed electrochemical immunoassay integrating enzyme amplification and electric field-driven strategy was developed for fast and sensitive quantification of phosphorylated p53 at Ser392 (phospho-p53 392), Ser15 (phospho-p53 15), Ser46 (phospho-p53 46) and total p53 simultaneously. The disposable sensor array has four spatially separated working electrodes and each of them is modified with different capture antibody, which enables simultaneous immunoassay to be conducted without cross-talk between adjacent electrodes. The enhanced sensitivity was achieved by multi-enzymes amplification strategy using gold nanorods (AuNRs) as nanocarrier for co-immobilization of horseradish peroxidase (HRP) and detection antibody (Ab2) at high ratio of HRP/Ab2, which produced an amplified electrocatalytic response by the reduction of HRP oxidized thionine in the presence of hydrogen peroxide. The immunoreaction processes were accelerated by applying +0.4 V for 3 min and then -0.2 V for 1.5 min, thus the whole sandwich immunoreactions could be completed in less than 5 min. The disposable immunosensor array shows excellent promise for clinical screening of phosphorylated proteins and convenient point-of-care diagnostics.

  13. Rapid and sensitive lateral flow immunoassay method for determining alpha fetoprotein in serum using europium (III) chelate microparticles-based lateral flow test strips

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Rong-Liang; Xu, Xu-Ping; Liu, Tian-Cai; Zhou, Jian-Wei; Wang, Xian-Guo; Ren, Zhi-Qi [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong (China); Hao, Fen [DaAn Gene Co. Ltd. of Sun Yat-sen University, 19 Xiangshan Road, Guangzhou 510515 (China); Wu, Ying-Song, E-mail: wg@smu.edu.cn [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong (China)

    2015-09-03

    Alpha-fetoprotein (AFP), a primary marker for many diseases including various cancers, is important in clinical tumor diagnosis and antenatal screening. Most immunoassays provide high sensitivity and accuracy for determining AFP, but they are expensive, often complex, time-consuming procedures. A simple and rapid point-of-care system that integrates Eu (III) chelate microparticles with lateral flow immunoassay (LFIA) has been developed to determine AFP in serum with an assay time of 15 min. The approach is based on a sandwich immunoassay performed on lateral flow test strips. A fluorescence strip reader was used to measure the fluorescence peak heights of the test line (H{sub T}) and the control line (H{sub C}); the H{sub T}/H{sub C} ratio was used for quantitation. The Eu (III) chelate microparticles-based LFIA assay exhibited a wide linear range (1.0–1000 IU mL{sup −1}) for AFP with a low limit of detection (0.1 IU mL{sup −1}) based on 5ul of serum. Satisfactory specificity and accuracy were demonstrated and the intra- and inter-assay coefficients of variation (CV) for AFP were both <10%. Furthermore, in the analysis of human serum samples, excellent correlation (n = 284, r = 0.9860, p < 0.0001) was obtained between the proposed method and a commercially available CLIA kit. Results indicated that the Eu (III) chelate microparticles-based LFIA system provided a rapid, sensitive and reliable method for determining AFP in serum, indicating that it would be suitable for development in point-of-care testing. - Highlights: • Europium (III) chelate microparticles was used as a label for LIFA. • Quantitative detection by using H{sub T}/H{sub C} ratio was achieved. • LIFA for simple and rapid AFP detection in human serum. • The sensitivity and linearity was more excellent compared with QD-based ICTS. • This method could be developed for rapid point-of-care screening.

  14. Mass spectrometric immunoassay

    Science.gov (United States)

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2007-12-04

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  15. Tetrodoxtoxin Immunoassays. Phase 2

    Science.gov (United States)

    1991-01-14

    TTX CIEIA warrants comment. Development of such a system was discussed with Dr. John Hewetson during a visit by James Raybould to Fort Detrick in...T.J.G. Raybould , Ph.D. - directed immunoassay development using T20G10 MAb and T20G10-AP conjugates. Gary S. Bignami, M.S. - responsible for hybridoma

  16. Comparison of two extractable nuclear antigen testing algorithms: ALBIA versus ELISA/line immunoassay.

    Science.gov (United States)

    Chandratilleke, Dinusha; Silvestrini, Roger; Culican, Sue; Campbell, David; Byth-Wilson, Karen; Swaminathan, Sanjay; Lin, Ming-Wei

    2016-08-01

    Extractable nuclear antigen (ENA) antibody testing is often requested in patients with suspected connective tissue diseases. Most laboratories in Australia use a two step process involving a high sensitivity screening assay followed by a high specificity confirmation test. Multiplexing technology with Addressable Laser Bead Immunoassay (e.g., FIDIS) offers simultaneous detection of multiple antibody specificities, allowing a single step screening and confirmation. We compared our current diagnostic laboratory testing algorithm [Organtec ELISA screen / Euroimmun line immunoassay (LIA) confirmation] and the FIDIS Connective Profile. A total of 529 samples (443 consecutive+86 known autoantibody positivity) were run through both algorithms, and 479 samples (90.5%) were concordant. The same autoantibody profile was detected in 100 samples (18.9%) and 379 were concordant negative samples (71.6%). The 50 discordant samples (9.5%) were subdivided into 'likely FIDIS or current method correct' or 'unresolved' based on ancillary data. 'Unresolved' samples (n = 25) were subclassified into 'potentially' versus 'potentially not' clinically significant based on the change to clinical interpretation. Only nine samples (1.7%) were deemed to be 'potentially clinically significant'. Overall, we found that the FIDIS Connective Profile ENA kit is non-inferior to the current ELISA screen/LIA characterisation. Reagent and capital costs may be limiting factors in using the FIDIS, but potential benefits include a single step analysis and simultaneous detection of dsDNA antibodies.

  17. Multiplex immunoassay for persistent organic pollutants in tilapia: comparison of imaging- and flow cytometry-based platforms using spectrally encoded paramagnetic microspheres.

    Science.gov (United States)

    Meimaridou, Anastasia; Haasnoot, Willem; Shelver, Weilin L; Franek, Milan; Nielen, Michel W F

    2013-01-01

    Recent developments in spectrally encoded microspheres (SEMs)-based technologies provide high multiplexing possibilities. Most SEMs-based assays require a flow cytometer with sophisticated fluidics and optics. A new imaging super-paramagnetic SEMs-based alternative platform transports SEMs with considerably less fluid volume into a measuring chamber. Once there SEMs are held in a monolayer by a magnet. Light-emitting diodes (LEDs) are focused on the chamber to illuminate the SEMs - instead of lasers and they are imaged by a charge-coupled device (CCD) detector, offering a more compact sized, transportable and affordable system. The feasibility of utilising this system to develop a 3-plex SEMs-based imaging immunoassay (IMIA) for the screening of persistent organic pollutants (POPs) was studied. Moreover the performance characteristics of 3-plex IMIA were critically compared with the conventional 3-plex flow cytometric immunoassay (FCIA). Both SEM technologies have potential for the multiplex analysis of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs) in buffer and fish extract with insignificant differences in assay sensitivities. Furthermore, we developed a faster and simpler, modified QuEChERS-like generic POPs extraction from tilapia fillet using sodium hydrogen carbonate as one of the salt additives and dispersive solid-phase extraction (dSPE) as a clean-up. Finally, a preliminary in-house validation using 40 different blank and spiked tilapia fillet samples was performed in both systems and the results obtained were critically compared. The lower-cost imaging SEMs-based system performed similarly to the original flow cytometer and, in combination with the new quicker QuEChERS-like extraction, it has high potential for future rapid screening of POPs in several other sample matrices such as other fish species, vegetable refined oils and environmental samples.

  18. Fluorometric immunoassay for human serum albumin based on its inhibitory effect on the immunoaggregation of quantum dots with silver nanoparticles

    Science.gov (United States)

    Marukhyan, Seda S.; Gasparyan, Vardan K.

    2017-02-01

    Quantitative determination of HSA was conducted by competitive immunoassay. Inhibition of aggregation of antibody conjugated quantum dots (QD) with albumin conjugated silver nanoparticles (AgNPs) in the presence of HSA was conducted. If antibody-loaded CdSe QDs aggregate with HSA-coated silver nanoparticles the distance between the two kinds of nanoparticles will be reduced enough to cause fluorescence resonance energy transfer (FRET). In this case the yellow fluorescence of the Ab-QDs is quenched. However if HSA (antigen) is added to the Ab-QDs their surface will be blocked and they cannot aggregate any longer with the HSA-AgNPs. Hence, fluorescence will not be quenched. The drop of the intensity of fluorescence (peaking at 570 nm) is inversely correlated with the concentration of HSA in the sample. The method allows to determine HSA in the 30-600 ng·mL-1 concentration range.

  19. Rapid detection of DNMT3A R882 mutations in hematologic malignancies using a novel bead-based suspension assay with BNA(NC probes.

    Directory of Open Access Journals (Sweden)

    Velizar Shivarov

    Full Text Available Mutations in the human DNA methyl transferase 3A (DNMT3A gene are recurrently identified in several hematologic malignancies such as Philadelphia chromosome-negative myeloproliferative neoplasms (MPN, myelodysplastic syndromes (MDS, MPN/MDS overlap syndromes and acute myeloid leukemia (AML. They have been shown to confer worse prognosis in some of these entities. Notably, about 2/3 of these mutations are missense mutations in codon R882 of the gene. We aimed at the development and validation of a novel easily applicable in routine practice method for quantitative detection of the DNMT3A p.R882C/H/R/S mutations bead-based suspension assay. Initial testing on plasmid constructs showed excellent performance of BNA(NC-modified probes with an optimal hybridization temperature of 66°C. The method appeared to be quantitative and showed sensitivity of 2.5% for different mutant alleles, making it significantly superior to direct sequencing. The assay was further validated on plasmid standards at different ratios between wild type and mutant alleles and on clinical samples from 120 patients with known or suspected myeloid malignancies. This is the first report on the quantitative detection of DNMT3A R882 mutations using bead-based suspension assay with BNA(NC-modified probes. Our data showed that it could be successfully implemented in the diagnostic work-up for patients with myeloid malignancies, as it is rapid, easy and reliable in terms of specificity and sensitivity.

  20. A Highly Selective and Sensitive Fluorescence Detection Method of Glyphosate Based on an Immune Reaction Strategy of Carbon Dot Labeled Antibody and Antigen Magnetic Beads.

    Science.gov (United States)

    Wang, Duo; Lin, Bixia; Cao, Yujuan; Guo, Manli; Yu, Ying

    2016-08-03

    A sensitive fluorescence detection method for glyphosate (GLY) was established based on immune reaction. First, carbon dot labeled antibodies (lgG-CDs) which were able to specifically identify glyphosate were prepared with the environmentally friendly carbon dots (CDs) and glyphosate antibody (lgG). lgG-CDs could be used to in situ visualize the distribution of glyphosate in plant tissues. In order to eliminate the effects of excess lgG-CDs on the determination of GLY, antigen magnetic beads Fe3O4-GLY based on magnetic nanoparticles Fe3O4 and glyphosate were constructed and utilized to couple with the excess lgG-CDs. After magnetic separation to remove antigen magnetic beads, there was a linear relationship between the fluorescence intensity of lgG-CDs and the logarithmic concentration of glyphosate in the range of 0.01-80 μg/mL with a detection limit of 8 ng/mL. The method was used for the detection of glyphosate in Pearl River water, tea, and soil samples with satisfactory recovery ratio between 87.4% and 103.7%.

  1. Ca2+-Regulated Photoproteins: Effective Immunoassay Reporters

    Directory of Open Access Journals (Sweden)

    Ludmila A. Frank

    2010-12-01

    Full Text Available Ca2+-regulated photoproteins of luminous marine coelenterates are of interest and a challenge for researchers as a unique bioluminescent system and as a promising analytical instrument for both in vivo and in vitro applications. The proteins are comprehensively studied as to biochemical properties, tertiary structures, bioluminescence mechanism, etc. This knowledge, along with available recombinant proteins serves the basis for development of unique bioluminescent detection systems that are “self-contained”, triggerable, fast, highly sensitive, and non-hazardous. In the paper, we focus on the use of photoproteins as reporters in binding assays based on immunological recognition element—bioluminescent immunoassay and hybridization immunoassay, their advantages and prospects.

  2. Development and validation of a multiplex immunoassay for the simultaneous determination of serum antibodies to Bordetella pertussis, diphtheria and tetanus.

    Science.gov (United States)

    van Gageldonk, Pieter G M; van Schaijk, Frank G; van der Klis, Fiona R; Berbers, Guy A M

    2008-06-01

    To increase testing of vaccine induced humoral immunity in immune surveillance studies and vaccine trials, a rapid and simple microsphere-based multiplex assay (pentaplex) was developed for the quantitation of IgG serum antibodies directed against the Bordetella pertussis antigens: Pertussis Toxin (Ptx), Filamentous hemagglutinin (FHA), Pertactin (Prn) and to Diphtheria toxin and Tetanus toxin. All individual antigens were covalently linked to carboxylated microspheres. The method was validated with different serum panels (n=60-78 samples). With the Multiplex Immunoassay (MIA) no evidence for bead interference between monoplex and pentaplex was found. The specificity of the method was shown by a heterologous inhibition of 92%. The pentaplex MIA appeared sensitive with lower limits of quantitation (LLOQ) well below those for ELISA (enzyme-linked immuno-sorbant assay). Assay reproducibility was high with intra-assay variability less than 10% and inter-assay variability below 14%. The reproducibility of the bead conjugation was good and beads could be stored up to at least 6 months without quality reduction. Importantly, the correlation of the pentaplex MIA with the individual ELISAs was excellent, R>0.98 for the Pertussis antigens and R=0.95 for Diphtheria and R=0.98 for Tetanus. Serum IgG antibodies to B. pertussis, Diphtheria and Tetanus can be measured easily, specific and reproducible using the pentaplex MIA. The pentaplex MIA shares features of the ELISA with the additional advantages of high sample throughput and small sample volumes and antigen required.

  3. Electrochemical Sandwich Immunoassay for the Ultrasensitive Detection of Human MUC1 Cancer Biomarker

    Directory of Open Access Journals (Sweden)

    Zahra Taleat

    2013-01-01

    Full Text Available A new electrochemical sandwich immunoassay for the ultrasensitive detection of human MUC1 cancer biomarker using protein G-functionalized magnetic beads (MBs and graphite-based screen-printed electrodes (SPEs was developed. Magnetic beads were employed as the platforms for the immobilization and immunoreaction process. A pair of primary and secondary antibodies was used to capture the MUC1 protein. After labeling with a third antibody conjugated with horseradish peroxidase (HRP, the resulting conjugate was trapped at the surface of the graphite-based SPEs and MUC1 determination was carried out by differential pulse voltammetry (DPV at 0.4 V upon H2O2 addition using acetaminophen (APAP as the redox mediator. A linear relationship was obtained for the detection of human MUC1 over a range of 0–25 ppb with the lowest detection limit of 1.34 ppb when HRP was applied as a label. Preliminary experiments were performed using disposable electrochemical sensors in order to optimize some parameters (i.e., incubation times, concentrations, and blocking agent.

  4. A compact and integrated immunoassay with on-chip dispensing and magnetic particle handling.

    Science.gov (United States)

    Zirath, Helene; Peham, Johannes R; Schnetz, Guntram; Coll, Albert; Brandhoff, Lukas; Spittler, Andreas; Vellekoop, Michael J; Redl, Heinz

    2016-02-01

    We present a compact diagnostic platform for a rapid and sensitive detection of plasma biomarkers. The platform consists of a disposable microfluidic polymer chip, a processing device including a lens-free and cost efficient sensor system and a setup for dispersion of magnetic particles. The biomarkers of interest are quantified by magnetic bead based immunoassays with chemiluminescent readout technology. With a novel system for dispersion and manipulation of the magnetic particles in combination with chemiluminescence detection, the sensitivity of the immunoassay is improved and enables a rapid assay in a microfluidic format. In the disposable chip, extra chambers for storage and dispensing of biomarker specific reagents are integrated, which reduce the need of external dosing devices and thereby the cost of the platform is decreased. Plasma biomarkers for monitoring of sepsis could be quantified at 10 pg/mL concentrations within a total time of 30 min by the present system. This contribution is a fundamental step towards the development of an automatic and compact Point-of-Care testing device for monitoring of patients at the intensive care unit.

  5. Detection of pregnancy and fertility status in big cats using an enzyme immunoassay based on 5α-pregnan-3α-ol-20-one.

    Science.gov (United States)

    Umapathy, Govindhaswamy; Kumar, Vinod; Wasimuddin; Kabra, Meha; Shivaji, S

    2013-01-01

    Development of non-invasive steroid hormone assays using fecal samples is crucial for detection of pregnancy and monitoring of fertility status in big cats and thus facilitates conservation and management of wild animals. Due to changes in metabolism and excretory pattern, animals excrete different steroid metabolites in feces and urine. The present study is an attempt to develop a common enzyme immunoassay for 5α-pregnan-3α-ol-20-one one of the predominant progestogen metabolites in the feces samples of big cats. The developed ELISA showed a high sensitivity and low cross reactivity to other hormones compared to commercially available RIA kits based on progesterone antibody. It could be used in a wide range of animals for monitoring fertility status and pregnancy detection by measuring fecal steroid metabolites.

  6. New synthesis and characterization of (+)-lysergic acid diethylamide (LSD) derivatives and the development of a microparticle-based immunoassay for the detection of LSD and its metabolites.

    Science.gov (United States)

    Li, Z; Goc-Szkutnicka, K; McNally, A J; Pilcher, I; Polakowski, S; Vitone, S; Wu, R S; Salamone, S J

    1997-01-01

    In this paper are reported the synthesis and characterization of three LSD derivatives. On the basis of several analytical characterization studies, the most stable derivative has been selected and a procedure to covalently link the derivative to polystyrene microparticles through a carrier protein has been developed. In addition, two new LSD immunogens have been synthesized and characterized, and from these immunogens antibodies that recognize not only LSD but also several major LSD metabolites have been generated. Using the selected derivative and antibody, a homogeneous microparticle-based immunoassay has been developed for the detection of LSD in human urine with the required sensitivity and specificity for an effective screening assay. The performance of this LSD OnLine assay has been evaluated using the criteria of precision, cross-reactivity, correlation to the Abuscreen LSD RIA and GC/MS/MS, assay specificity, and limit of detection.

  7. Updates in immunoassays: virology.

    Science.gov (United States)

    Josko, Deborah

    2012-01-01

    Virus identification is a challenge to the clinical microbiologist since growing viruses in traditional cell culture is labor intensive, time consuming, and subject to contamination. The advent of rapid and automated immunoassays has eliminated this problem by generating positive results in minutes to hours. For example, testing for infectious mononucleosis can yield a positive result in 3-8 minutes as seen with the Beckman Coulter, Inc. ICON Mono test or in 5-15 minutes with the MONO Mononucleosis Rapid Test Device marketed by ACON Laboratories, Inc. Fully automated immunoassay analyzers provide fast, accurate, sensitive results that aid in a prompt and accurate diagnosis for the patient. Turnaround times are shortened, allowing for timely medical intervention and treatment. The priority in any hospital or medical facility is to treat the patient as quickly and appropriately as possible. By using immunoassays, clinical laboratory professionals are able to report out correct results in a timely manner, ensuring overall positive patient outcomes and improved quality of healthcare.

  8. A half-ring GMR sensor for detection of magnetic beads immobilized on a circular micro-trap

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2011-11-01

    Utilizing magnetic principles in biological immunoassays is an attractive option given its ability to remotely and non-invasively manipulate and detect cells tagged with micro/nano size superparamagnetic type beads and due to the fact that even the most complex biological immunoassays will have very little magnetic effect. The presence of magnetic beads can be detected by a magnetic sensor which quantifies the amount of target cells present in the immunoassay. In order to increase the detection rate a circular conducting micro-trap is employed to attract, trap and transport the magnetic beads to the sensing area. In this research we propose a half-ring spin valve type giant magnetoresistance (GMR) sensor for the measurement of stray fields produced by 2 μm magnetic beads which are around the circular micro-trap. A couple of half-ring GMR sensors can be used to cover the entire circular border width, in order to detect the majority of the immobilized magnetic beads. Analytical and numerical analysis leading towards the fabrication of the half-ring GMR sensor are presented. DC characterization of the fabricated sensor showed a magnetoresistance of 5.9 %. Experimental results showed that the half-ring GMR sensor detected the presence of 2 μm magnetic beads. Hence, half-ring GMR sensors integrated with a circular micro-trap have great potential to be used as an effective disease diagnostic device. © 2011 IEEE.

  9. Simultaneous detection of forbidden chemical residues in milk using dual-label time-resolved reverse competitive chemiluminescent immunoassay based on amine group functionalized surface.

    Directory of Open Access Journals (Sweden)

    Dongdong Zhang

    Full Text Available In this study, a sensitive dual-label time-resolved reverse competitive chemiluminescent immunoassay was developed for simultaneous detection of chloramphenicol (CAP and clenbuterol (CLE in milk. The strategy was performed based on the distinction of the kinetic characteristics of horseradish peroxidase (HRP and alkaline phosphatase (ALP in chemiluminesecence (CL systems and different orders of magnitude in HRP CL value for CAP and ALP CL value for CLE in the chemiluminescent immunoassay. Capture antibodies were covalently bound to the amine group functionalized chemiluminescent microtiter plate (MTP for efficient binding of detection antibodies for the enzymes labeled CAP (HRP-CAP and CLE (ALP-CLE. The CL signals were recorded at different time points by the automatic luminometers with significant distinction in the dynamic curves. When we considered the ALP CL value (about 10(5 of CLE as background for HRP CL signal value (about 10(7 of CAP, there was no interaction from ALP CL background of CLE and the differentiation of CAP and CLE can be easily achieved. The 50% inhibition concentration (IC50 values of CAP and CLE in milk samples were 0.00501 µg L(-1 and 0.0128 µg L(-1, with the ranges from 0.0003 µg L(-1 to 0.0912 µg L(-1 and from 0.00385 µg L(-1 to 0.125 µg L(-1, respectively. The developed method is more sensitive and of less duration than the commercial ELISA kits, suitable for simultaneous screening of CAP and CLE.

  10. A new strategy for label-free electrochemical immunoassay based on “gate-effect” of β-cyclodextrin modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Huan [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004 (China); Li, Jianping, E-mail: likianping@263.net [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004 (China); Zhang, Yun; Pan, Hongcheng [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004 (China); Xu, Guobao, E-mail: guobaoxu@ciac.ac.cn [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004 (China); State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2016-07-05

    A novel label-free electrochemical immunoassay was developed for prostate-specific antigen (PSA) detection via using β-cyclodextrin (β-CD) assembled layer created gates for the electron transfer of probe. To construct the sensor, a gold electrode was self-assembled with monoclonal anti-PSA antibody labeled 6-mercapto-β-cyclodextrin. Interspaces among β-CD molecules in the layer were automatically formed on gold electrode, which act as the channel of the electron transfer of [Fe(CN){sub 6}]{sup 3−/4−} probe. When PSA bind with anti-PSA, it can block these channels on the electrode surface due to their steric hindrance effect, resulting in the decrease in redox current of the probe. Through such a gate-controlled effect, ultra trace amount of PSA may make the currents change greatly after the immunoreaction, which enhanced the signal-to-noise ratio to achieve the amplification effect. By evaluating the logarithm of PSA concentrations, the immunosensor had a good linear response to the current changes with a detection limit of 0.3 pg/mL (S/N = 3) when PSA concentration ranged from 1.0 pg/mL to 1.0 ng/mL. The label-free immunosensor exhibited satisfactory performances in sensitivity, repeatability as well as specificity. - Highlights: • A label-free PSA immunoassay was developed based on “gate-effect” amplification. • Interspaces among β-CD assembled for [Fe(CN){sub 6}]{sup 3−/4−} electron transfer were controlled by the immunoreaction. • Higher sensitivity was achieved with time and cost saving principle.

  11. Functionalized gold nanorod-based labels for amplified electrochemical immunoassay of E. coli as indicator bacteria relevant to the quality of dairy product.

    Science.gov (United States)

    Zhang, Xinai; Zhang, Fan; Zhang, Hongyin; Shen, Jianzhong; Han, En; Dong, Xiaoya

    2015-01-01

    In this paper, we report an amplified electrochemical immunoassay for Escherichia coli as indicator bacteria relevant to the quality of dairy product using the functionalized gold nanorod-based labels ({dAb-AuNR-FCA}). The {dAb-AuNR-FCA} labels were designed by exploiting silica-functionalized gold nanorods (AuNR@SiO2) as the carriers for immobilization of detection antibody (dAb) and ferrocenecarboxylic acid (FCA), in which dAb was used for recognition of E. coli and FCA tags served as signal-generating molecule. Greatly amplified signal was achieved in the sandwich-type immunoassay when enormous FCA linked to AuNR@SiO2. Compared with the commercially available {dAb-FCA}, the {dAb-AuNR-FCA} labels exhibited a better performance for E. coli assay due to the advantages of AuNR@SiO2 as carriers. Under optimal experimental conditions, it showed a linear relationship between the peak current of FCA and the logarithmic value of E. coli concentration ranging from 1.0×10(2) to 5.0×10(4) cfu mL(-1) with a detection limit of 60 cfu mL(-1) (S/N=3), and the electrochemical detection of E. coli could be achieved in 3h. Moreover, the proposed strategy was used to determine E. coli in dairy product (pure fresh milk, yogurt in shelf-life, and expired yogurt), and the recoveries of standard additions were in the range of 95.1-106%. This proposed strategy exhibited rapid response, high sensitivity and specificity for E. coli assay in dairy product, and could become a promising technique to estimate the quality of dairy product.

  12. Magnetic beads-based DNAzyme recognition and AuNPs-based enzymatic catalysis amplification for visual detection of trace uranyl ion in aqueous environment.

    Science.gov (United States)

    Zhang, Hongyan; Lin, Ling; Zeng, Xiaoxue; Ruan, Yajuan; Wu, Yongning; Lin, Minggui; He, Ye; Fu, FengFu

    2016-04-15

    We herein developed a novel biosensor for the visual detection of trace uranyl ion (UO2(2+)) in aqueous environment with high sensitivity and specificity by using DNAzyme-functionalized magnetic beads (MBs) for UO2(2+) recognition and gold nano-particles (AuNPs)-based enzymatic catalysis oxidation of TMB (3,3',5,5'-tetramethylbenzidine sulfate) for signal generation. The utilization of MBs facilitates the magnetic separation and collection of sensing system from complex sample solution, which leads to more convenient experimental operation and more strong resistibility of the biosensor to the matrix of sample, and the utilization of AuNPs-based enzymatic catalysis amplification greatly improved the sensitivity of the biosensor. Compared with the previous DNAzyme-based UO2(2+) sensors, the proposed biosensor has outstanding advantages such as relative high sensitivity and specificity, operation convenience, low cost and more strong resistibility to the matrix of sample. It can be used to detect as low as 0.02 ppb (74 pM) of UO2(2+) in aqueous environment by only naked-eye observation and 1.89 ppt (7.0 pM) of UO2(2+) by UV-visible spectrophotometer with a recovery of 93-99% and a RSD ≤ 5.0% (n=6) within 3h. Especially, the visual detection limit of 0.02 ppb (74 pM) is much lower than the maximum allowable level of UO2(2+) (130 nM) in the drinking water defined by the U.S. Environmental Protection Agency (EPA), indicating that our method meets the requirement of rapid and on-site detection of UO2(2+) in the aqueous environment by only naked-eye observation.

  13. Preformed beading and boxing appliance.

    Science.gov (United States)

    Reddy, J Sashi Deepth; Padmanabhan, T V; Veerareddy, Chandrika; Chandrasekhar, M; Narendra, R

    2013-03-01

    Conventional beading and boxing procedure is time consuming and involves application of heat that might distort green stick compound used for border molding. Earlier studies regarding beading and boxing methods have shown usage of various materials that were disposable and that cannot be recycled. To reduce the time consumed for beading and boxing procedure and to make this procedure cost-effective by using recyclable beading material, "Preformed boxing appliance" with moldable clay meant for beading the secondary impression was used. Secondary impression was supported by 3 studs provided on the floor of the boxing appliance. The cast was poured. The duration for the entire procedure was much less than the conventional procedure.

  14. Sampling Error: Impact on the Quantitative Analysis of Nanoparticle-Based Surface-Enhanced Raman Scattering Immunoassays.

    Science.gov (United States)

    Crawford, Alexis C; Skuratovsky, Aleksander; Porter, Marc D

    2016-06-21

    This paper examines the impact of the sampling error caused by the small size of the focused laser spot when using surface-enhanced Raman scattering (SERS) as a quantitative readout tool to analyze a sandwich immunoassay. The assay consists of a thin-film gold substrate that is modified with a layer of capture monoclonal antibodies (mAbs) and extrinsic Raman labels (ERLs) that consist of gold nanoparticle cores (60 nm diameter) coated with a monolayer of a Raman reporter molecule and a layer of human IgG mAbs to tag the captured antigen. The contribution of sampling error to the measurement is delineated first by constructing and analyzing an antigenic random accumulation model; this is followed by an experimental study of the analysis of an assay substrate using two different laser spot sizes. Both sets of findings indicate that the analysis with a small laser spot can lead to a sampling error (i.e., undersampling) much like that found when the size of a measured soil sample fails to accurately match that of a larger, more representative sample. That is, the smaller the laser spot size, the larger probable deviation in the accuracy of the measurement and the greater the imprecision of the measurement. Possible implications of these results with respect to the general application of SERS for quantitative measurements are also briefly discussed.

  15. Strip-based immunoassay for the simultaneous detection of the neonicotinoid insecticides imidacloprid and thiamethoxam in agricultural products.

    Science.gov (United States)

    Xu, Ting; Xu, Qi Gong; Li, Hao; Wang, Jia; Li, Qing X; Shelver, Weilin L; Li, Ji

    2012-11-15

    A semiquantitative strip immunoassay was developed for the rapid detection of imidacloprid and thiamethoxam in agricultural products using specific nanocolloidal gold-labeled monoclonal antibodies. The conjugates of imidacloprid-BSA, thiamethoxam-BSA and goat anti-mouse IgG were coated on the nitro-cellulose membrane of the strip, serving as test lines and control line, respectively. The flow of the complexes of gold labeled antibodies and insecticides along the strip resulted in intensive color formed on the test lines inversely proportional to the concentrations of imidacloprid and thiamethoxam. The visual detection limits of imidacloprid and thiamethoxam in assay buffer were 0.5 and 2 ng mL(-1), respectively. Matrix interference of cucumber, tomato, lettuce, apple, and orange on the strip assay could be eliminated by diluting sample extracts with assay buffer. The strip analysis of imidacloprid and thiamethoxam in these samples was compared to liquid chromatography-mass spectrometry and the results were in good agreement. The strip was stable for storage more than 5 months at 4 °C. The strip assay is a rapid and simple method for the simultaneous screening of imidacloprid and thiamethoxam in agricultural products.

  16. A High-Performance Fluorescence Immunoassay Based on the Relaxation of Quenching, Exemplified by Detection of Cardiac Troponin I

    Directory of Open Access Journals (Sweden)

    Seung-Wan Kim

    2016-05-01

    Full Text Available The intramolecular fluorescence self-quenching phenomenon is a major drawback in developing high-performance fluorometric biosensors which use common fluorophores as signal generators. We propose two strategies involving liberation of the fluorescent molecules by means of enzymatic fragmentation of protein or dehybridization of double-stranded DNA. In the former, bovine serum albumin (BSA was coupled with the fluorescent BODIPY dye (Red BSA, and then immobilized on a solid surface. When the insolubilized Red BSA was treated with proteinase K (10 units/mL for 30 min, the fluorescent signal was significantly increased (3.5-fold compared to the untreated control. In the second case, fluorophore-tagged DNA probes were linked to gold nanoparticles by hybridization with capture DNA strands densely immobilized on the surface. The quenched fluorescence signal was recovered (3.7-fold by thermal dehybridization, which was induced with light of a specific wavelength (e.g., 530 nm for less than 1 min. We next applied the Red BSA self-quenching relaxation technique employing enzymatic fragmentation to a high-performance immunoassay of cardiac troponin I (cTnI in a microtiter plate format. The detection limit was 0.19 ng/mL cTnI, and the fluorescent signal was enhanced approximately 4.1-fold compared with the conventional method of direct measurement of the fluorescent signal from a non-fragmented fluorophore-labeled antibody.

  17. Direct electrochemical immunoassay based on a silica nanoparticles/sol-gel composite architecture for encapsulation of immunoconjugate.

    Science.gov (United States)

    Wang, Fu-Chang; Yuan, Ruo; Chai, Ya-Qin

    2006-10-01

    A highly hydrophobic and non-toxic colloidal silica nanoparticle/polyvinyl butyral sol-gel composite membrane was prepared on a platinum wire electrode. With diphtheria-toxoid (D-Ag) as a model antigen and encapsulation of diphtheria antibody (D-Ab) in the composite architecture, this membrane could be used for reagentless electrochemical immunoassay. It displayed a porous and homogeneous composite architecture without the aggregation of the immobilized protein molecules. The formation of immunoconjugate by a simple one-step immunoreaction between D-Ag in sample solution and the immobilized D-Ab introduced the change in the potential. Under optimal conditions, the D-Ag analyte could be determined in the linear ranges from 10 to 800 ng ml(-1) with a relatively low detection limit of 2.3 ng ml(-1) at 3delta. The D-Ag immunosensor exhibited good precision, high sensitivity, acceptable stability, accuracy, and reproducibility. This composite membrane could be used efficiently for the entrapment of different biomarkers and clinical applications.

  18. A High-Performance Fluorescence Immunoassay Based on the Relaxation of Quenching, Exemplified by Detection of Cardiac Troponin I.

    Science.gov (United States)

    Kim, Seung-Wan; Cho, Il-Hoon; Park, Ji-Na; Seo, Sung-Min; Paek, Se-Hwan

    2016-01-01

    The intramolecular fluorescence self-quenching phenomenon is a major drawback in developing high-performance fluorometric biosensors which use common fluorophores as signal generators. We propose two strategies involving liberation of the fluorescent molecules by means of enzymatic fragmentation of protein or dehybridization of double-stranded DNA. In the former, bovine serum albumin (BSA) was coupled with the fluorescent BODIPY dye (Red BSA), and then immobilized on a solid surface. When the insolubilized Red BSA was treated with proteinase K (10 units/mL) for 30 min, the fluorescent signal was significantly increased (3.5-fold) compared to the untreated control. In the second case, fluorophore-tagged DNA probes were linked to gold nanoparticles by hybridization with capture DNA strands densely immobilized on the surface. The quenched fluorescence signal was recovered (3.7-fold) by thermal dehybridization, which was induced with light of a specific wavelength (e.g., 530 nm) for less than 1 min. We next applied the Red BSA self-quenching relaxation technique employing enzymatic fragmentation to a high-performance immunoassay of cardiac troponin I (cTnI) in a microtiter plate format. The detection limit was 0.19 ng/mL cTnI, and the fluorescent signal was enhanced approximately 4.1-fold compared with the conventional method of direct measurement of the fluorescent signal from a non-fragmented fluorophore-labeled antibody.

  19. Preparation of Immobilized Metal Affinity Chromatographic Packings Based on Monodisperse Hydrophilic Non-porous Beads and Their Application

    Institute of Scientific and Technical Information of China (English)

    BO Chun-Miao; GONG Bo-Lin; HU Wen-Zhi

    2008-01-01

    Three hydrophilic immobilized metal affinity chromatographic packings for HPLC have been synthesized by chemical modification of 3.0 μm monodisperse non-porous poly(glycidyl methacrylate-co-ethylenedimethacrylate)(PGMMEDMA)beads.The retention behavior of proteins on the metal ion chelated columns loaded with copper(Ⅱ),nickel(Ⅱ)and zin(Ⅱ)ion was studied.The effect of pH on the protein retention Was investigated on both the naked and metal ion chelated columns in the range from 4.0 to 9.0.Four proteins were quickly separated in 3.0 min with linear gradient elution at a flow rate of 3.0 mL/min by using the synthesized Ni2+ -IDA(iminodiacetic acid)packings.The separation time was shorter than other immobilized metal affinity chromatography reported in the literature.Purification of lysozyme from egg white and trypsin on the commercially available trypsin was performed on the naked-IDA and Cu2+ -IDA columns,respectively.The purities of the purified trypsin and lysozyme were more than 92%and 95%,respectively.

  20. Novel immunoassay formats for integrated microfluidic circuits: diffusion immunoassays (DIA)

    Science.gov (United States)

    Weigl, Bernhard H.; Hatch, Anson; Kamholz, Andrew E.; Yager, Paul

    2000-03-01

    Novel designs of integrated fluidic microchips allow separations, chemical reactions, and calibration-free analytical measurements to be performed directly in very small quantities of complex samples such as whole blood and contaminated environmental samples. This technology lends itself to applications such as clinical diagnostics, including tumor marker screening, and environmental sensing in remote locations. Lab-on-a-Chip based systems offer many *advantages over traditional analytical devices: They consume extremely low volumes of both samples and reagents. Each chip is inexpensive and small. The sampling-to-result time is extremely short. They perform all analytical functions, including sampling, sample pretreatment, separation, dilution, and mixing steps, chemical reactions, and detection in an integrated microfluidic circuit. Lab-on-a-Chip systems enable the design of small, portable, rugged, low-cost, easy to use, yet extremely versatile and capable diagnostic instruments. In addition, fluids flowing in microchannels exhibit unique characteristics ('microfluidics'), which allow the design of analytical devices and assay formats that would not function on a macroscale. Existing Lab-on-a-chip technologies work very well for highly predictable and homogeneous samples common in genetic testing and drug discovery processes. One of the biggest challenges for current Labs-on-a-chip, however, is to perform analysis in the presence of the complexity and heterogeneity of actual samples such as whole blood or contaminated environmental samples. Micronics has developed a variety of Lab-on-a-Chip assays that can overcome those shortcomings. We will now present various types of novel Lab- on-a-Chip-based immunoassays, including the so-called Diffusion Immunoassays (DIA) that are based on the competitive laminar diffusion of analyte molecules and tracer molecules into a region of the chip containing antibodies that target the analyte molecules. Advantages of this

  1. Synthesis of phenolic precursor-based porous carbon beads in situ dispersed with copper-silver bimetal nanoparticles for antibacterial applications.

    Science.gov (United States)

    Khare, Prateek; Sharma, Ashutosh; Verma, Nishith

    2014-03-15

    Copper (Cu) and silver (Ag) bimetal-dispersed polymeric beads (~0.7 mm) were synthesized by suspension polymerization using phenol and formaldehyde monomers. The Cu:Ag bimetal nanoparticles (Nps) were incorporated into the polymeric matrix at the incipience of gel formation during polymerization using an anionic surfactant. The prepared bimetal-doped polymeric beads were carbonized, activated using steam, and reduced in a hydrogen atmosphere to produce metal Nps-doped porous carbon beads. The prepared bimetal (Cu and Ag) Nps-doped beads exhibited significantly larger anti-bacterial activities than single-(Cu or Ag) metal-doped beads for both gram-positive Staphylococcus aureus and gram-negative Escherichia coli bacteria. The prepared materials contained the total optimized amounts of Cu and Ag. These amounts were smaller (approximately half) than the amount of single metal (Cu or Ag) required for preparing single-metal-doped beads. Although Cu Nps exhibit lesser antibacterial activity than Ag Nps, it enhanced the porosity of the beads. The prepared bimetal beads remained effective for 120 h, completely inhibiting the bacterial growth, and therefore, they are potential antibacterial agents for water purification.

  2. A low cost and high throughput magnetic bead-based immuno-agglutination assay in confined droplets.

    Science.gov (United States)

    Teste, Bruno; Ali-Cherif, Anaïs; Viovy, Jean Louis; Malaquin, Laurent

    2013-06-21

    Although passive immuno-agglutination assays consist of one step and simple procedures, they are usually not adapted for high throughput analyses and they require expensive and bulky equipment for quantitation steps. Here we demonstrate a low cost, multimodal and high throughput immuno-agglutination assay that relies on a combination of magnetic beads (MBs), droplets microfluidics and magnetic tweezers. Antibody coated MBs were used as a capture support in the homogeneous phase. Following the immune interaction, water in oil droplets containing MBs and analytes were generated and transported in Teflon tubing. When passing in between magnetic tweezers, the MBs contained in the droplets were magnetically confined in order to enhance the agglutination rate and kinetics. When releasing the magnetic field, the internal recirculation flows in the droplet induce shear forces that favor MBs redispersion. In the presence of the analyte, the system preserves specific interactions and MBs stay in the aggregated state while in the case of a non-specific analyte, redispersion of particles occurs. The analyte quantitation procedure relies on the MBs redispersion rate within the droplet. The influence of different parameters such as magnetic field intensity, flow rate and MBs concentration on the agglutination performances have been investigated and optimized. Although the immuno-agglutination assay described in this work may not compete with enzyme linked immunosorbent assay (ELISA) in terms of sensitivity, it offers major advantages regarding the reagents consumption (analysis is performed in sub microliter droplet) and the platform cost that yields to very cheap analyses. Moreover the fully automated analysis procedure provides reproducible analyses with throughput well above those of existing technologies. We demonstrated the detection of biotinylated phosphatase alkaline in 100 nL sample volumes with an analysis rate of 300 assays per hour and a limit of detection of 100 pM.

  3. Measuring immunoglobulin g antibodies to tetanus toxin, diphtheria toxin, and pertussis toxin with single-antigen enzyme-linked immunosorbent assays and a bead-based multiplex assay.

    Science.gov (United States)

    Reder, Sabine; Riffelmann, Marion; Becker, Christian; Wirsing von König, Carl Heinz

    2008-05-01

    Bead-based assay systems offer the possibility of measuring several specific antibodies in one sample simultaneously. This study evaluated a vaccine panel of a multianalyte system that measures antibodies to tetanus toxin, diphtheria toxin, and pertussis toxin (PT) from Bordetella pertussis. The antibody concentrations of human immunoglobulin G (IgG) to PT, tetanus toxin, and diphtheria toxin were measured in 123 serum pairs (total of 246 sera) from a vaccine study. The multianalyte bead assay was compared to a standardized in-house IgG- anti-PT enzyme-linked immunosorbent assay (ELISA) of the German reference laboratory for bordetellae, as well as to various commercially available ELISAs for anti-PT IgG, anti-tetanus IgG, and anti-diphtheria IgG. The results of the multiplex assay regarding the antibodies against diphtheria toxin compared favorably with a regression coefficient of 0.938 for values obtained with an ELISA from the same manufacturer used as a reference. Similarly, antibodies to tetanus toxin showed a correlation of 0.910 between the reference ELISA and the multianalyte assay. A correlation coefficient of 0.905 was found when an "in-house" IgG anti-PT and the multiplex assay were compared. Compared to single ELISA systems from two other manufacturers, the multiplex assay performed similarly well or better. The multianalyte assay system was a robust system with fast and accurate results, analyzing three parameters simultaneously in one sample. The system was well suited to quantitatively determine relevant vaccine induced antibodies compared to in-house and commercially available single-antigen ELISA systems.

  4. Multiplex biosensor immunoassays for antibiotics in the food chain

    OpenAIRE

    2009-01-01

    The use of antibiotics in food-producing animals may result in unwanted residues in food products. The main objective of the present research was to study the development and application of fast and automated multiplex surface plasmon resonance (SPR)-based biosensor immunoassays (BIAs), based on multi-component antibodies and/or combined immunoassays in serially connected flow channels, for the detection of selected antibiotics in the food chain. The scientific challenges to deal with were: t...

  5. Superparamagnetic bead interactions with functionalized surfaces characterized by an immunomicroarray

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Hansen, Mikkel Fougt; Moresco, Jacob Lange

    2010-01-01

    Magneto-resistive sensors capable of detecting superparamagnetic micro-/nano-sized beads are promising alternatives to standard diagnostic assays based on absorbance or fluorescence and streptavidin-functionalized beads are widely used as an integral part of these sensors. Here we have developed...

  6. Self-encoding resin beads of combinatorial library screening

    Science.gov (United States)

    Lei, Du; Zhao, Yuandi; Cheng, Tongsheng; Zeng, Shaoqun; Luo, Qingming

    2003-07-01

    The latest self-encoding resin bead is a novel technology for solid phase synthesis combinatorial library screening. A new encode-positional deconvolution strategy which was based on that technology been illustrated compared with positional scanning and iterative strategies. The self-encoding resin beads technology provides an efficient method for improving the high-throughput screening of combinatorial library.

  7. Development of a novel multiplex electrochemiluminescent-based immunoassay for quantification of human serum IgG against 10 Staphylococcus aureus toxins.

    Science.gov (United States)

    Adhikari, Rajan P; Haudenschild, Christian; Sterba, Patricia M; Sahandi, Sara; Enterlein, Sven; Holtsberg, Frederick W; Aman, M Javad

    2016-03-01

    An electrochemiluminescent (ECL)-based multiplex immunoassay using Meso-Scale Discovery (MSD) technology was developed for detecting antibody response toward 10 Staphylococcus aureus (S. aureus) exotoxins. These 10 antigens included three different groups of toxins: 1) single component pore-forming toxins such as alpha- and delta-hemolysins, 2) the bicomponent pore-forming toxin Panton-Valentine leukocidin (PVL), comprised of LukS-PV and LukF-PV subunits, and 3) enterotoxin/superantigens - Staphylococcal enterotoxins A (SEA), B (SEB), C1 (SEC1), D (SED), K (SEK) and Toxic shock syndrome toxin-1 (TSST-1). Assay development included optimization steps with a conventional SEB ELISA-based serological assay and then optimized parameters were transferred and re-optimized in a singleplex ECL format. Finally, two pentaplex solid-phase ECL formats were developed. As proof of concept, one set of pentaplex ECL data was compared with conventional ELISA results. During the assay development controls were screened and developed for both the singleplex and multiplex assays. ECL-based multiplex assays were more sensitive with a wide dynamic range and proved more time-efficient than conventional ELISAs. Using the newly developed ECL method we showed, for the first time, that delta-hemolysin toxin can induce an immune response as antibody titers could be detected.

  8. An immunoassay for dibutyl phthalate based on direct hapten linkage to the polystyrene surface of microtiter plates.

    Directory of Open Access Journals (Sweden)

    Chenxi Wei

    Full Text Available BACKGROUND: Dibutyl phthalate (DBP is predominantly used as a plasticizer inplastics to make them flexible. Extensive use of phthalates in both industrial processes and other consumer products has resulted in the ubiquitous presence of phthalates in the environment. In order to better determine the level of pollution in the environment and evaluate the potential adverse effects of exposure to DBP, immunoassay for DBP was developed. METHODOLOGY/PRINCIPAL FINDINGS: A monoclonal antibody specific to DBP was produced from a stable hybridoma cell line generated by lymphocyte hybridoma technique. An indirect competitive enzyme-linked immunosorbent assay (icELISA employing direct coating of hapten on polystyrene microtiter plates was established for the detection of DBP. Polystyrene surface was first oxidized by permanganate in dilute sulfuric acid to generate carboxyl groups. Then dibutyl 4-aminophthalate, which is an analogue of DBP, was covalently linked to the carboxyl groups of polystyrene surface with 1-ethyl-3-(3-dimethylaminopropyl carbodiimide hydrochloride (EDC. Compared with conjugate coated format (IC(50=106 ng/mL, the direct hapten coated format (IC(50=14.6 ng/mL improved assay sensitivity after careful optimization of assay conditions. The average recovery of DBP from spiked water sample was 104.4% and the average coefficient of variation was 9.95%. Good agreement of the results obtained by the hapten coated icELISA and gas chromatography-mass spectrometry further confirmed the reliability and accuracy of the icELISA for the detection of DBP in certain plastic and cosmetic samples. CONCLUSIONS/SIGNIFICANCE: The stable and efficient hybridoma cell line obtained is an unlimited source of sensitive and specific antibody to DBP. The hapten coated format is proposed as generally applicable because the carboxyl groups on modified microtiter plate surface enables stable immobilization of aminated or hydroxylated hapten with EDC. The developed

  9. Polyelectrolyte-based electrochemiluminescence enhancement for Ru(bpy){sub 3}{sup 2+} loaded by SiO{sub 2} nanoparticle carrier and its high sensitive immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Zhi-Li; Song, Tian-Mei; Chen, Zhe [College of Pharmaceutical Science, Soochow University, Suzhou 215123 (China); Guo, Wu-Run [College of Pharmaceutical Science, Soochow University, Suzhou 215123 (China); College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002 (China); Xie, Hong-Ping, E-mail: hpxie@suda.edu.cn [College of Pharmaceutical Science, Soochow University, Suzhou 215123 (China); Xie, Lian, E-mail: xielian@suda.edu.cn [College of Pharmaceutical Science, Soochow University, Suzhou 215123 (China)

    2015-03-03

    Highlights: • Preparation of strong ECL nanoparticles PAA–Ru@SiO{sub 2}/[PAA⋯Ru&Nafion⋯Ru]. • Ion-pair macromolecule PAA–Ru formed to greatly increase the doping amount. • PAA&Nafion membrane increased the amount of ion-exchanged Ru(bpy){sub 3}{sup 2+}. • PAA&Nafion membrane enhanced the ability of electron transfer. • Realized antibody labeling and established a high-sensitive immunoassay. - Abstract: In this paper the strong electrochemiluminescence (ECL) nanoparticles have been prepared based on the anionic polyelectrolyte sodium polyacrylate (PAA)-ECL enhancement for Ru(bpy){sub 3}{sup 2+}, which were loaded by the carrier of SiO{sub 2} nanoparticle. There were two kinds of Ru(bpy){sub 3}{sup 2+} for the as-prepared nanoparticles, the doped one and the exchanged one. The former was loaded inside the ECL nanoparticles by doping, in a form of ion-pair macromolecules PAA–Ru(bpy){sub 3}{sup 2+}. The corresponding ECL was enhanced about 2 times owing to the doping increase of Ru(bpy){sub 3}{sup 2+}. The latter was loaded on the PAA-doped Nafion membrane by ion exchange. The corresponding ECL was enhanced about 3 times owing to the ion-exchanging increase of Ru(bpy){sub 3}{sup 2+}. At the same time, ECL intensity of the doped-inside Ru(bpy){sub 3}{sup 2+} was further enhanced 13 times because polyelectrolyte PAA in the doped membrane could obviously enhance electron transfer between the doped Ru(bpy){sub 3}{sup 2+} and the working electrode. Furthermore, based on hydrophobic regions of the doped membrane antibody labeling could be easily realized by the as-prepared nanoparticles and then a high sensitive ECL immunoassay for HBsAg was developed. The linear range was between 1.0 and 100 pg mL{sup −1} (R{sup 2} = 0.9912). The detection limit could be as low as 0.11 pg mL{sup −1} (signal-to-noise ratio = 3)

  10. Evaluation of recombinant outer membrane protein C based indirect enzyme-linked immunoassay for the detection of Salmonella antibodies in poultry

    Directory of Open Access Journals (Sweden)

    Jinu Manoj

    2015-08-01

    Full Text Available Aim: To evaluate the efficacy of recombinant outer membrane proteinC (rOmpC based enzyme-linked immunoassay (ELISA for the diagnosis of salmonellosis in poultry. Materials and Methods: Three antigens were prepared, and the indirect ELISA was standardized using the antigens and the antiserum raised in chicken against Omp and rOmpC. Sera were collected from a total of 255 apparently healthy field chickens and screened for the presence of Salmonella antibodies by this ELISA. Results: The sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of Omp revealed major polypeptides at 36, 42 and 52 kDa, and the rOmpC was evident by a single protein band of 43 kDa. The Omp and rOmpC antigen revealed an optimum concentration of 78 and 156 ng, respectively, in the assay, while the whole cell antigen gave an optimum reaction at a concentration of 106 organisms/ml. The test was found to be specific as it did not react with any of the antisera of seven other organisms. The developed ELISA detected Salmonella antibodies from 22 (8.62% samples with rOmpC antigen, while 24 (9.41% samples gave a positive reaction with both Omp and whole cell antigens. Conclusion: We suggest rOmpC based indirect ELISA as a suitable screening tool for serological monitoring of poultry flocks.

  11. Silver Nanoparticle-Based Fluorescence-Quenching Lateral Flow Immunoassay for Sensitive Detection of Ochratoxin A in Grape Juice and Wine

    Directory of Open Access Journals (Sweden)

    Hu Jiang

    2017-02-01

    Full Text Available A silver nanoparticle (AgNP-based fluorescence-quenching lateral flow immunoassay with competitive format (cLFIA was developed for sensitive detection of ochratoxin A (OTA in grape juice and wine samples in the present study. The Ru(phen 3 2 + -doped silica nanoparticles (RuNPs were sprayed on the test and control line zones as background fluorescence signals. The AgNPs were designed as the fluorescence quenchers of RuNPs because they can block the exciting light transferring to the RuNP molecules. The proposed method exhibited high sensitivity for OTA detection, with a detection limit of 0.06 µg/L under optimized conditions. The method also exhibited a good linear range for OTA quantitative analysis from 0.08 µg/L to 5.0 µg/L. The reliability of the fluorescence-quenching cLFIA method was evaluated through analysis of the OTA-spiked red grape wine and juice samples. The average recoveries ranged from 88.0% to 110.0% in red grape wine and from 92.0% to 110.0% in grape juice. Meanwhile, less than a 10% coefficient variation indicated an acceptable precision of the cLFIA method. In summary, the new AgNP-based fluorescence-quenching cLFIA is a simple, rapid, sensitive, and accurate method for quantitative detection of OTA in grape juice and wine or other foodstuffs.

  12. AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) TESTING OF THREE IMMUNOASSAY TEST KITS FOR ANTHRAX, BOTULINUM TOXIN AND RICIN

    Science.gov (United States)

    Immunoassay test kits are based on immunoassay methods, where specific antibodies are used to detect and measure the contaminants of interest. Immunoassay test kits rely on the reaction of a contaminant or antigen with a selective antibody to give a product that can be measures....

  13. Development of a rapid and high-performance chemiluminescence immunoassay based on magnetic particles for protein S100B in human serum.

    Science.gov (United States)

    Zhang, Huisheng; Qi, Suwen; Rao, Jie; Li, Qiaoliang; Yin, Li; Lu, Yuejun

    2013-01-01

    Protein S100B is a clinically useful non-invasive biomarker for brain cell damage. A rapid chemiluminescence immunoassay (CLIA) for S100B in human serum has been developed. Fluorescein isothiocyanate (FITC) and N-(aminobutyl)-N-(ethylisoluminol) (ABEI) are used to label two different monoclonal antibodies of anti-S100B. Protein S100B in serum combines with labeled antibodies and can form a sandwiched immunoreaction. A simplified separation procedure based on the use of magnetic particles (MPs) that were coated with anti-FITC antibody is performed to remove the unwanted materials. After adding the substrate solution, the relative light unit (RLU) of ABEI is measured and is found to be directly proportional to the concentration of S100B in serum. The relevant variables involved in the CLIA signals are optimized and the parameters of the proposed method are evaluated. The results demonstrate that the method is linear to 25 ng/mL S100B with a detection limit of 0.02 ng/mL. The coefficient of variation (CV) is < 5% and < 6% for intra- and interassay precision, respectively. The average recoveries are between 97 and 107%. The linearity-dilution effect produces a linear correlation coefficient of 0.9988. Compared with the commercial kit, the proposed method shows a correlation of 0.9897. The proposed method displays acceptable performance for quantification of S100B and is appropriate for use in clinical diagnosis.

  14. A capillary flow immunoassay microchip utilizing inkjet printing-based antibody immobilization onto island surfaces—toward sensitive and reproducible determination of carboxyterminal propeptide of type I procollagen

    Science.gov (United States)

    Fuchiwaki, Yusuke; Tanaka, Masato; Takaoka, Hiroki; Goya, Kenji

    2016-04-01

    A capillary-flow-driven microchip system requires no external power and has no moving off-chip components, in contrast with most microfluidic-based immunoassay systems which are complicated to operate and require external components. To accelerate the sensitive and reproducible determination of analytes required for practical point-of-care applications, we formed island microchannel surfaces on a microcapillary channel to allow stable antibody immobilization. The island surface was surrounded by a circular groove 10 μm deep and 150 μm wide and allowed uniform inkjet printing of antibody spots, complete bio-reagent replacement, and sensitive detection of luminescence intensity. Quantitative analysis of carboxyterminal propeptide of type I procollagen (PICP) concentrations using this microchannel was demonstrated between 0-600 ng·ml-1, which is adequate for the clinical estimation of PICP concentrations in the blood. This microchip system holds promise as a model diagnostic platform that is readily adaptable to hands-free operation.

  15. One-step kinetics-based immunoassay for the highly sensitive detection of C-reactive protein in less than 30 min.

    Science.gov (United States)

    Vashist, Sandeep Kumar; Czilwik, Gregor; van Oordt, Thomas; von Stetten, Felix; Zengerle, Roland; Marion Schneider, E; Luong, John H T

    2014-07-01

    This article reveals a rapid sandwich enzyme-linked immunosorbent assay (ELISA) for the highly sensitive detection of human C-reactive protein (CRP) in less than 30 min. It employs a one-step kinetics-based highly simplified and cost-effective sandwich ELISA procedure with minimal process steps. The procedure involves the formation of a sandwich immune complex on capture anti-human CRP antibody-bound Dynabeads in 15 min, followed by two magnet-assisted washings and one enzymatic reaction. The developed sandwich ELISA detects CRP in the dynamic range of 0.3 to 81 ng ml(-1) with a limit of detection of 0.4 ng ml(-1) and an analytical sensitivity of 0.7 ng ml(-1). It detects CRP spiked in diluted human whole blood and serum with high analytical precision, as confirmed by conventional sandwich ELISA. Moreover, the results of the developed ELISA for the determination of CRP in the ethylenediaminetetraacetic acid plasma samples of patients are in good agreement with those obtained by the conventional ELISA. The developed immunoassay has immense potential for the development of rapid and cost-effective in vitro diagnostic kits.

  16. RNA extraction from ten year old formalin-fixed paraffin-embedded breast cancer samples: a comparison of column purification and magnetic bead-based technologies

    Directory of Open Access Journals (Sweden)

    Zhang Haiyu

    2007-12-01

    Full Text Available Abstract Background The development of protocols for RNA extraction from paraffin-embedded samples facilitates gene expression studies on archival samples with known clinical outcome. Older samples are particularly valuable because they are associated with longer clinical follow up. RNA extracted from formalin-fixed paraffin-embedded (FFPE tissue is problematic due to chemical modifications and continued degradation over time. We compared quantity and quality of RNA extracted by four different protocols from 14 ten year old and 14 recently archived (three to ten months old FFPE breast cancer tissues. Using three spin column purification-based protocols and one magnetic bead-based protocol, total RNA was extracted in triplicate, generating 336 RNA extraction experiments. RNA fragment size was assayed by reverse transcription-polymerase chain reaction (RT-PCR for the housekeeping gene glucose-6-phosphate dehydrogenase (G6PD, testing primer sets designed to target RNA fragment sizes of 67 bp, 151 bp, and 242 bp. Results Biologically useful RNA (minimum RNA integrity number, RIN, 1.4 was extracted in at least one of three attempts of each protocol in 86–100% of older and 100% of recently archived ("months old" samples. Short RNA fragments up to 151 bp were assayable by RT-PCR for G6PD in all ten year old and months old tissues tested, but none of the ten year old and only 43% of months old samples showed amplification if the targeted fragment was 242 bp. Conclusion All protocols extracted RNA from ten year old FFPE samples with a minimum RIN of 1.4. Gene expression of G6PD could be measured in all samples, old and recent, using RT-PCR primers designed for RNA fragments up to 151 bp. RNA quality from ten year old FFPE samples was similar to that extracted from months old samples, but quantity and success rate were generally higher for the months old group. We preferred the magnetic bead-based protocol because of its speed and higher quantity of

  17. Integration of Multiplex Bead Assays for Parasitic Diseases into a National, Population-Based Serosurvey of Women 15-39 Years of Age in Cambodia

    Science.gov (United States)

    Priest, Jeffrey W.; Jenks, M. Harley; Moss, Delynn M.; Mao, Bunsoth; Buth, Sokhal; Wannemuehler, Kathleen; Soeung, Sann Chan; Lucchi, Naomi W.; Udhayakumar, Venkatachalam; Gregory, Christopher J.; Huy, Rekol; Muth, Sinuon; Lammie, Patrick J.

    2016-01-01

    Collection of surveillance data is essential for monitoring and evaluation of public health programs. Integrated collection of household-based health data, now routinely carried out in many countries through demographic health surveys and multiple indicator surveys, provides critical measures of progress in health delivery. In contrast, biomarker surveys typically focus on single or related measures of malaria infection, HIV status, vaccination coverage, or immunity status for vaccine-preventable diseases (VPD). Here we describe an integrated biomarker survey based on use of a multiplex bead assay (MBA) to simultaneously measure antibody responses to multiple parasitic diseases of public health importance as part of a VPD serological survey in Cambodia. A nationally-representative cluster-based survey was used to collect serum samples from women of child-bearing age. Samples were tested by MBA for immunoglobulin G antibodies recognizing recombinant antigens from Plasmodium falciparum and P. vivax, Wuchereria bancrofti, Toxoplasma gondii, Taenia solium, and Strongyloides stercoralis. Serologic IgG antibody results were useful both for generating national prevalence estimates for the parasitic diseases of interest and for confirming the highly focal distributions of some of these infections. Integrated surveys offer an opportunity to systematically assess the status of multiple public health programs and measure progress toward Millennium Development Goals. PMID:27136913

  18. A NOVEL APPROACH TO SYNTHESIZE CHITOSAN BEADS CROSSLINKED BY EPICHLOROHYDRIN

    Institute of Scientific and Technical Information of China (English)

    WANG Yongjian; BAI Shu; SUN Yan

    2001-01-01

    The present investigation describes a novel method for preparing spherical chitosan particles based on crosslinking with epichlorohydrin. Certain amount of pre-crosslinking agent was added to form chitosan gels by traditional inverse phase suspension polymerization. Then the gels were crosslinked by epichlorohydrin at basic condition to obtain chitosan beads. The effects of reaction conditions, such as crosslinking time, the amount of crosslinking agent and the NaOtt concentration,on the physical properties of the chitosan beads were investigated. The beads were found to have more amino groups in the polymer chains than the beads crosslinked by glutaraldehyde. The capacity for copper ions is as high as 40mg/g. The beads have good mechanical strength and can be reused.

  19. A NOVEL APPROACH TO SYNTHESIZE CHITOSAN BEADS CROSSLINKED BY EPICHLOROHYDRIN

    Institute of Scientific and Technical Information of China (English)

    WANGYongjina; BAIShu; 等

    2001-01-01

    The present investigation describes a novel method for preparing spherical chitosan particles based on crosslinking with epichlorohydrin.Certain amount of pre-crosslinking agent was added to form chitosan gels by traditional inverse phase suspension polymerization.Then the gels were crosslinked by epichlorohydrin at basic condition to obtain chitosan beads.The effects of reaction conditions,such as crosslinking time,the amount of crosslinking agent and the NaOH concentration,on the physical properties of the chitosan beads were investigated.The beads were found to have more amino groups in the polymer chains than the beads crosslinked by glutaraldehyde.The capacity for copper ions in as high as 40mg/g,The beads have good mechanical strength and can be reused.

  20. Nanofibrous polymeric beads from aramid fibers for efficient bilirubin removal.

    Science.gov (United States)

    Peng, Zihang; Yang, Ye; Luo, Jiyue; Nie, Chuanxiong; Ma, Lang; Cheng, Chong; Zhao, Changsheng

    2016-08-16

    Polymer based hemoperfusion has been developed as an effective therapy to remove the extra bilirubin from patients. However, the currently applied materials suffer from either low removal efficiency or poor blood compatibility. In this study, we report the development of a new class of nanofibrous absorbent that exhibited high bilirubin removal efficiency and good blood compatibility. The Kevlar nanofiber was prepared by dissolving micron-sized Kevlar fiber in proper solvent, and the beads were prepared by dropping Kevlar nanofiber solutions into ethanol. Owing to the nanofiborous structure of the Kevlar nanofiber, the beads displayed porous structures and large specific areas, which would facilitate the adsorption of toxins. In the adsorption test, it was noticed that the beads possessed an adsorption capacity higher than 40 mg g(-1) towards bilirubin. In plasma mimetic solutions, the beads still showed high bilirubin removal efficiency. Furthermore, after incorporating with carbon nanotubes, the beads were found to have increased adsorption capacity for human degradation waste. Moreover, the beads showed excellent blood compatibility in terms of a low hemolysis ratio, prolonged clotting times, suppressed coagulant activation, limited platelet activation, and inhibited blood related inflammatory activation. Additionally, the beads showed good compatibility with endothelial cells. In general, the Kevlar nanofiber beads, which integrated with high adsorption capacity, good blood compatibility and low cytotoxicity, may have great potential for hemoperfusion and some other applications in biomedical fields.

  1. Rheological Modeling with Hookean Bead-Spring Cubes (SC, BBC and FCC)

    NARCIS (Netherlands)

    Denneman, A.I.M.; Jongschaap, R.J.J.; Mellema, J.

    1998-01-01

    In this study a general bead-spring model is used for predicting some rheological properties of a cubic bead-spring structure of arbitrary size immersed in a Newtonian solvent. The topology of this bead-spring structure is based upon the well-known cubic crystals (SC, BCC or FCC) and it consists of

  2. Selective collection and detection of MCF-7 breast cancer cells using aptamer-functionalized magnetic beads and quantum dots based nano-bio-probes.

    Science.gov (United States)

    Hua, Xin; Zhou, Zhenxian; Yuan, Liang; Liu, Songqin

    2013-07-25

    A novel strategy for selective collection and detection of breast cancer cells (MCF-7) based on aptamer-cell interaction was developed. Mucin 1 protein (MUC1) aptamer (Apt1) was covalently conjugated to magnetic beads to capture MCF-7 cell through affinity interaction between Apt1 and MUC1 protein that overexpressed on the surface of MCF-7 cells. Meanwhile, a nano-bio-probe was constructed by coupling of nucleolin aptamer AS1411 (Apt2) to CdTe quantum dots (QDs) which were homogeneously coated on the surfaces of monodispersed silica nanoparticles (SiO2 NPs). The nano-bio-probe displayed similar optical and electrochemical performances to free CdTe QDs, and remained high affinity to nucleolin overexpressed cells through the interaction between AS1411 and nucleolin protein. Photoluminescence (PL) and square-wave voltammetric (SWV) assays were used to quantitatively detect MCF-7 cells. Improved selectivity was obtained by using these two aptamers together as recognition elements simultaneously, compared to using any single aptamer. Based on the signal amplification of QDs coated silica nanoparticles (QDs/SiO2), the detection sensitivity was enhanced and a detection limit of 201 and 85 cells mL(-1) by PL and SWV method were achieved, respectively. The proposed strategy could be extended to detect other cells, and showed potential applications in cell imaging and drug delivery.

  3. Proteomic profiling of hepatitis B virus-related hepatocellular carcinoma with magnetic bead-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Taotao Liu; Ruyi Xue; Xiaowu Huang; Danying Zhang; Ling Dong; Hao Wu; Xizhong Shen

    2011-01-01

    Proteomic techniques are promising strategies in the surveillance of hepatocellular carcinoma (HCC). This study aimed to investigate the serum profiling with magnetic bead (MB) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and to further identify the biomarkers for HCC. Serum samples from 80 chronic hepatitis B (CHB) patients, 94 HCC concomitant with HBV patients and 24 healthy subjects were examined by MALDI-TOF MS after peptide enrichment on MBs. Based on the genetic algorithm,diagnostic models for HCC were established between 30HCC patients and 24 healthy subjects/30 CHB patients.Validations were done with the remaining cases. Markers in the models were identified through liquid chromatography (LC)/MS-MS. The three groups were well separated from each other and two discrimination models were established for HCC. The overall recognition capability of these two models was 96.25% and 93.33%, respectively.Validations showed the misdiagnosis ratio for HCC was 1.6% and 23.4%, respectively. The identified biomarkers for HCC included prothrombin precursor (fragment),calcium-dependent secretion activator 1, Baculoviral inhibitor of apoptosis repeat-containing protein 6, etc.MB-based MALDI-TOF MS is applicable in identifying the serum biomarkers and can be used in the surveillance of HCC among HBV-infected patients.

  4. Development and Validation of a Fluorescent Multiplexed Immunoassay for Measurement of Transgenic Proteins in Cotton (Gossypium hirsutum).

    Science.gov (United States)

    Yeaman, Grant R; Paul, Sudakshina; Nahirna, Iryna; Wang, Yongcheng; Deffenbaugh, Andrew E; Liu, Zi Lucy; Glenn, Kevin C

    2016-06-22

    In order to provide farmers with better and more customized alternatives to improve yields, combining multiple genetically modified (GM) traits into a single product (called stacked trait crops) is becoming prevalent. Trait protein expression levels are used to characterize new GM products and establish exposure limits, two important components of safety assessment. Developing a multiplexed immunoassay capable of measuring all trait proteins in the same sample allows for higher sample throughput and savings in both time and expense. Fluorescent (bead-based) multiplexed immunoassays (FMI) have gained wide acceptance in mammalian research and in clinical applications. In order to facilitate the measurement of stacked GM traits, we have developed and validated an FMI assay that can measure five different proteins (β-glucuronidase, neomycin phosphotransferase II, Cry1Ac, Cry2Ab2, and CP4 5-enolpyruvyl-shikimate-3-phosphate synthase) present in cotton leaf from a stacked trait product. Expression levels of the five proteins determined by FMI in cotton leaf tissues have been evaluated relative to expression levels determined by enzyme-linked immunosorbent assays (ELISAs) of the individual proteins and shown to be comparable. The FMI met characterization requirements similar to those used for ELISA. Therefore, it is reasonable to conclude that FMI results are equivalent to those determined by conventional individual ELISAs to measure GM protein expression levels in stacked trait products but with significantly higher throughput, reduced time, and more efficient use of resources.

  5. Use of aptamers in immunoassays.

    Science.gov (United States)

    Nezlin, Roald

    2016-02-01

    Aptamers, short single-chain DNA or RNA oligonucleotides, react specifically with small molecules, as well as with proteins. Unlike antibodies, they may be obtained relatively easily. Aptamers are now widely employed in immunological studies and could replace antibodies in immunoassays. In this short review, methods for immobilizing aptamers on various insoluble materials (so-called apta-sorbents) are described. Recent findings on their use in the detection and isolation of immunoglobulins and their application in various immunoassays are also discussed.

  6. Facile fabrication of an electrochemical aptasensor based on magnetic electrode by using streptavidin modified magnetic beads for sensitive and specific detection of Hg(2.).

    Science.gov (United States)

    Wu, Dan; Wang, Yaoguang; Zhang, Yong; Ma, Hongmin; Pang, Xuehui; Hu, Lihua; Du, Bin; Wei, Qin

    2016-08-15

    In this work, a novel electrochemical aptasensor was developed for sensitive and specific detection of Hg(2+) based on thymine-Hg(2+)-thymine (T-Hg(2+)-T) structure via application of thionine (Th) as indicator signal. For the fabrication of the aptasensor, streptavidin modified magnetic beads (Fe3O4-SA) was firmly immobilized onto the magnetic glassy carbon electrode (MGCE) benefited from its magnetic character. Then biotin labeled T-riched single stranded DNA (Bio-ssDNA) connected with Fe3O4-SA specifically and steadily because of the specific binding capacity between streptavidin and biotin. The stable structure of T-Hg(2+)-T formed in the present of Hg(2+) provided convenience for the intercalation of Th. The detection of Hg(2+) was achieved by recording the differential pulse voltammetry (DPV) signal of Th. Under optimal experimental conditions, the linear range of the fabricated electrochemical aptasensor was 1-200nmol/L, with a detection limit of 0.33nmol/L. Furthermore, the proposed aptasensor may find a potential application for the detection of Hg(2+) in real water sample analysis.

  7. Development of a Luminex Bead Based Assay for Diagnosis of Toxocariasis Using Recombinant Antigens Tc-CTL-1 and Tc-TES-26.

    Science.gov (United States)

    Anderson, John P; Rascoe, Lisa N; Levert, Keith; Chastain, Holly M; Reed, Matthew S; Rivera, Hilda N; McAuliffe, Isabel; Zhan, Bin; Wiegand, Ryan E; Hotez, Peter J; Wilkins, Patricia P; Pohl, Jan; Handali, Sukwan

    2015-01-01

    The clinical spectrum of human disease caused by the roundworms Toxocara canis and Toxocara cati ranges from visceral and ocular larva migrans to covert toxocariasis. The parasite is not typically recovered in affected tissues, so detection of parasite-specific antibodies is usually necessary for establishing a diagnosis. The most reliable immunodiagnostic methods use the Toxocara excretory-secretory antigens (TES-Ag) in ELISA formats to detect Toxocara-specific antibodies. To eliminate the need for native parasite materials, we identified and purified immunodiagnostic antigens using 2D gel electrophoresis followed by electrospray ionization mass spectrometry. Three predominant immunoreactive proteins were found in the TES; all three had been previously described in the literature: Tc-CTL-1, Tc-TES-26, and Tc-MUC-3. We generated Escherichia coli expressed recombinant proteins for evaluation in Luminex based immunoassays. We were unable to produce a functional assay with the Tc-MUC-3 recombinant protein. Tc-CTL-1 and Tc-TES-26 were successfully coupled and tested using defined serum batteries. The use of both proteins together generated better results than if the proteins were used individually. The sensitivity and specificity of the assay for detecting visceral larval migrans using Tc-CTL-1 plus Tc-TES-26 was 99% and 94%, respectively; the sensitivity for detecting ocular larval migrans was 64%. The combined performance of the new assay was superior to the currently available EIA and could potentially be employed to replace current assays that rely on native TES-Ag.

  8. A versatile SERS-based immunoassay for immunoglobulin detection using antigen-coated gold nanoparticles and malachite green-conjugated protein A/G

    Science.gov (United States)

    A surface enhanced Raman scattering (SERS) immunoassay for antibody detection in serum is described in the present work. The developed assay is conducted in solution and utilizes Au nanoparticles coated with the envelope (E) protein of West Nile Virus (WNV) as the SERS-active substrate and malachite...

  9. Fabrication of inorganic-organic hybrid based on polyoxometalate SiW10Fe2 and folate as peroxidases for colorimetric immunoassay of cancer cells

    Institute of Scientific and Technical Information of China (English)

    Zhong Sun; Hai-Zhou Bie; Mei-Jie Wei; Jing-Jing wang; Xu-Guang Mi; Xiao-Hong Wang; Yin Wu

    2013-01-01

    Fabrication of folate and iron-substituted polyoxometalate [(FeOH2)2SiW10O36] to form nanoparticles(FA-SiWFe2) has been achieved.This inorganic-organic hybrid possesses intrinsic peroxidase-like activity,which could be used in detection of cancer cells in colorimetric multiplexed immunoassay.

  10. Lateral flow test strip based on colloidal selenium immunoassay for rapid detection of melamine in milk, milk powder, and animal feed

    Directory of Open Access Journals (Sweden)

    Wang ZZ

    2014-04-01

    Full Text Available Zhizeng Wang,1 Dejuan Zhi,2 Yang Zhao,1 Hailong Zhang,2 Xin Wang,2 Yi Ru,1 Hongyu Li1,2 1MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China; 2Institute of Microbiology and Biochemical Pharmacy, School of Pharmaceutics, Lanzhou University, Lanzhou, People's Republic of China Abstract: Although high melamine (MEL intake has been proven to cause serious health problems, MEL is sometimes illegally added to milk products and animal feed, arousing serious food safety concerns. A satisfactory method of detecting MEL in onsite or in-home testing is in urgent need of development. This work aimed to explore a rapid, convenient, and cost-effective method of identifying MEL in milk products or other food by colloidal selenium-based lateral flow immunoassay. Colloidal selenium was synthesized by L-ascorbic acid to reduce seleninic acid at room temperature. After conjugation with a monoclonal antibody anti-MEL, a test strip was successfully prepared. The detection limit of the test strip reached 150 µg/kg, 1,000 µg/kg, and 800 µg/kg in liquid milk, milk powder, and animal feed, respectively. No cross-reactions with homologues cyanuric acid, cyanurodiamide, or ammelide were found. Moreover, the MEL test strip can remain stable after storage for 1 year at room temperature. Our results demonstrate that the colloidal selenium MEL test strip can detect MEL in adulterated milk products or animal feed conveniently, rapidly, and sensitively. In contrast with a colloidal gold MEL test strip, the colloidal selenium MEL test strip was easy to prepare and more cost-efficient. Keywords: melamine, selenium nanoparticles, test strip, milk, animal feed, dairy food

  11. A polyclonal antibody based immunoassay detects seven subtypes of Shiga toxin 2 produced by Escherichia coli in human and environmental samples.

    Directory of Open Access Journals (Sweden)

    Xiaohua He

    Full Text Available BACKGROUND: Shiga toxin-producing Escherichia coli (STEC are frequent causes of severe human diseases ranging from diarrhea to hemolytic uremic syndrome. The existing strategy for detection of STEC relies on the unique sorbitol-negative fermentation property of the O157 strains, the most commonly identified serotype has been E. coli O157. It is becoming increasingly evident, however, that numerous non-O157 STEC serotypes also cause outbreaks and severe illnesses. It is necessary to have new methods that are capable of detecting all STEC strains. METHODS AND FINDINGS: Here we describe the development of a sandwich ELISA assay for detecting both O157 and non-O157 STECs by incorporating a novel polyclonal antibody (pAb against Stx2. The newly established immunoassay was capable of detecting Stx2a spiked in environmental samples with a limit of detection between 10 and 100 pg/mL in soil and between 100 and 500 pg/mL in feces. When applied to 36 bacterial strains isolated from human and environmental samples, this assay detected Stx2 in all strains that were confirmed to be stx2-positive by real-time PCR, demonstrating a 100% sensitivity and specificity. CONCLUSIONS: The sandwich ELISA developed in this study will enable any competent laboratory to identify and characterize Stx2-producing O157 and non-O157 strains in human and environmental samples, resulting in rapid diagnosis and patient care. The results of epitope mapping from this study will be useful for further development of a peptide-based antibody and vaccine.

  12. Application of Magnetic Bead-Based Nucleic Acid Automatic Extraction System in Molecular Biology%磁珠法核酸自动提取仪在分子生物学领域的应用

    Institute of Scientific and Technical Information of China (English)

    罗英

    2013-01-01

    The magnetic bead-based nucleic acid automatic extraction system can simply ,rapidly , efficiently ,economically and automatically extract nucleic acid from all kinds of samples . This paper summarizes the principle and classification of automatic nucleic acid extraction systems ,and the principle ,classification and characteristics of magnetic bead -based nucleic acid automatic extraction systems and their application in the field of molecular biology .%磁珠法核酸自动提取仪可以简单、快速、高效和经济地实现各种标本核酸的自动提取。本文概述了核酸自动提取仪的原理及分类,磁珠法核酸自动提取仪原理、分类、特点及其在分子生物学领域的应用。

  13. Francisella tularensis detection using magnetic labels and a magnetic biosensor based on frequency mixing

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Martin H.F. [Institute for Pharmaceutical Chemistry, Philipps-Universitaet Marburg (Germany); Krause, Hans-Joachim [Institute of Bio-and Nanosystems (IBN-2), Research Center Juelich (Germany); Hartmann, Markus [Institute for Pharmaceutical Chemistry, Philipps-Universitaet Marburg (Germany); Miethe, Peter [SENOVA GmbH, Jena (Germany); Oster, Juergen [chemagen GmbH, Baesweiler (Germany); Keusgen, Michael [Institute for Pharmaceutical Chemistry, Philipps-Universitaet Marburg (Germany)]. E-mail: Keusgen@staff.uni-marburg.de

    2007-04-15

    A biosensor that uses resonant coils with a special frequency-mixing technique and magnetic beads as detectable labels has been established for the detection of Francisella tularensis, the causative agent for tularemia. The detection principle is based on a sandwich immunoassay using an anti-Ft antibody for immunofiltration immobilized to ABICAP[reg] polyethylene filters, and biotinylated with streptavidin-coated magnetic beads as labels. The linear detection range of this biosensor was found to be 10{sup 4}-10{sup 6} cfu F. tularensis lipopolysaccharide (LPS) per ml. Tested sample matrices were physiological PBS buffer and rabbit serum.

  14. Suspension column for recovery and separation of substances using ultrasound-assisted retention of bead sorbents.

    Science.gov (United States)

    Spivakov, Boris Ya; Shkinev, Valeriy M; Danilova, Tatiana V; Knyazkov, Nikolai N; Kurochkin, Vladimir E; Karandashev, Vasiliy K

    2012-12-15

    A novel approach to sorption recovery and separation of different substances is proposed which is based on the use of suspended bead sorbents instead of conventional packed beds of such sorbents. This makes it possible to employ small-sized beads which are trapped in a low-pressure column due to ultrasound-assisted retention, without any frits to hold the sorption material. A flow system including a separation mini-column, named herein a suspension column, has been developed and tested by the studies of solid phase extraction (SPE) of trace metals from bi-distilled water and sea water using a 150-μL column with a silica-based sorbent containing iminodiacetic groups (DIAPAK IDA) and having a grain size of 6 μm. The adsorption properties of DIAPAK IDA suspension (9.5mg) were evaluated through adsorption/desorption experiments, where the effect of solution pH and eluent on the SPE of trace metals were examined by ICP-MS or ICP-AES measurements. When sample solution was adjusted to pH 8.0 and 1 mol L(-1) nitric acid was used as eluent, very good recoveries of more than 90% were obtained for a number of elements in a single-step extraction. To demonstrate the versatility of the approach proposed and to show another advantage of ultrasonic field (acceleration of sorbate/sorbent interaction), a similar system was used for heterogeneous immunoassays of some antigens in ultrasonic field using agarose sorbents modified by corresponding antibodies. It has been shown that immunoglobulins, chlamidia, and brucellos bacteria can be quantitatively adsorbed on 15-μm sorbent (15 particles in 50 μL) and directly determined in a 50-μL mini-chamber using fluorescence detection.

  15. A High-Throughput SU-8Microfluidic Magnetic Bead Separator

    DEFF Research Database (Denmark)

    Bu, Minqiang; Christensen, T. B.; Smistrup, Kristian

    2007-01-01

    We present a novel microfluidic magnetic bead separator based on SU-8 fabrication technique for high through-put applications. The experimental results show that magnetic beads can be captured at an efficiency of 91 % and 54 % at flow rates of 1 mL/min and 4 mL/min, respectively. Integration...... of soft magnetic elements in the chip leads to a slightly higher capturing efficiency and a more uniform distribution of captured beads over the separation chamber than the system without soft magnetic elements....

  16. Luminol/antibody labeled gold nanoparticles for chemiluminescence immunoassay of carcinoembryonic antigen

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaoyan, E-mail: yangxiaoyan_zh@126.com [Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Guo Yingshu; Wang Aiguo [Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2010-05-07

    A facile strategy by loading luminol and secondary antibody on gold nanoparticles (Au NPs) was described in the present work. The as-prepared luminol/antibody labeled Au NPs conjugates (LAAu NPs) were used as the chemiluminescent probe for the detection of carcinoembryonic antigen (CEA) in serum. The LAAu NPs were characterized by transmission electron microscopy (TEM), UV-vis spectrophotometry (UV-vis), and chemiluminescent method. Stable and efficient chemiluminescence (CL) was obtained when luminol molecules and secondary antibodies were coimmobilized on the Au NPs by using hydrogen peroxide (H{sub 2}O{sub 2}) as an oxidant, horseradish peroxidase (HRP) as a catalyst, and 4-(4'-iodo)phenylphenol (IPP) as an enhancer. The LAAu NPs were further evaluated via a sandwich-type CL immunoassay of CEA in serum. In this protocol, the CEA analyte was captured by the primary antibody immobilized on the surface of magnetic beads, and then was sandwiched by the secondary antibody loaded on luminol-labeled Au NPs. The chemiluminescent intensity was proportional to the concentration of CEA over the range of 5.0 x 10{sup -10} to 5.0 x 10{sup -8} g mL{sup -1} and 5.0 x 10{sup -9} to 2.0 x 10{sup -8} g mL{sup -1} by using HRP and Co{sup 2+} as catalysts, respectively. The present chemiluminescent immunoassay based on the luminol/antibody labeled Au NPs conjugates has offered great promise for simple, highly biocompatible, and cost-effective analysis of biological samples.

  17. Selective collection and detection of MCF-7 breast cancer cells using aptamer-functionalized magnetic beads and quantum dots based nano-bio-probes

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xin [State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Zhou, Zhenxian [Nanjing Second Hospital, Nanjing 210083 (China); Yuan, Liang [State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Liu, Songqin, E-mail: liusq@seu.edu.cn [State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China)

    2013-07-25

    Graphical abstract: -- Highlights: •Aptamer–cell affinity interaction was employed for selective collection and detection of MCF-7. •CdTe QDs and aptamer were coated on SiO{sub 2} NPs for bio-labeling. •Good sensitivity was achieved due to the signal amplification of SiO{sub 2} NPs. -- Abstract: A novel strategy for selective collection and detection of breast cancer cells (MCF-7) based on aptamer–cell interaction was developed. Mucin 1 protein (MUC1) aptamer (Apt1) was covalently conjugated to magnetic beads to capture MCF-7 cell through affinity interaction between Apt1 and MUC1 protein that overexpressed on the surface of MCF-7 cells. Meanwhile, a nano-bio-probe was constructed by coupling of nucleolin aptamer AS1411 (Apt2) to CdTe quantum dots (QDs) which were homogeneously coated on the surfaces of monodispersed silica nanoparticles (SiO{sub 2} NPs). The nano-bio-probe displayed similar optical and electrochemical performances to free CdTe QDs, and remained high affinity to nucleolin overexpressed cells through the interaction between AS1411 and nucleolin protein. Photoluminescence (PL) and square-wave voltammetric (SWV) assays were used to quantitatively detect MCF-7 cells. Improved selectivity was obtained by using these two aptamers together as recognition elements simultaneously, compared to using any single aptamer. Based on the signal amplification of QDs coated silica nanoparticles (QDs/SiO{sub 2}), the detection sensitivity was enhanced and a detection limit of 201 and 85 cells mL{sup −1} by PL and SWV method were achieved, respectively. The proposed strategy could be extended to detect other cells, and showed potential applications in cell imaging and drug delivery.

  18. Quality control, analysis and secure sharing of Luminex® immunoassay data using the open source LabKey Server platform

    Science.gov (United States)

    2013-01-01

    Background Immunoassays that employ multiplexed bead arrays produce high information content per sample. Such assays are now frequently used to evaluate humoral responses in clinical trials. Integrated software is needed for the analysis, quality control, and secure sharing of the high volume of data produced by such multiplexed assays. Software that facilitates data exchange and provides flexibility to perform customized analyses (including multiple curve fits and visualizations of assay performance over time) could increase scientists’ capacity to use these immunoassays to evaluate human clinical trials. Results The HIV Vaccine Trials Network and the Statistical Center for HIV/AIDS Research and Prevention collaborated with LabKey Software to enhance the open source LabKey Server platform to facilitate workflows for multiplexed bead assays. This system now supports the management, analysis, quality control, and secure sharing of data from multiplexed immunoassays that leverage Luminex xMAP® technology. These assays may be custom or kit-based. Newly added features enable labs to: (i) import run data from spreadsheets output by Bio-Plex Manager™ software; (ii) customize data processing, curve fits, and algorithms through scripts written in common languages, such as R; (iii) select script-defined calculation options through a graphical user interface; (iv) collect custom metadata for each titration, analyte, run and batch of runs; (v) calculate dose–response curves for titrations; (vi) interpolate unknown concentrations from curves for titrated standards; (vii) flag run data for exclusion from analysis; (viii) track quality control metrics across runs using Levey-Jennings plots; and (ix) automatically flag outliers based on expected values. Existing system features allow researchers to analyze, integrate, visualize, export and securely share their data, as well as to construct custom user interfaces and workflows. Conclusions Unlike other tools tailored for

  19. Monoclonal antibody-based time-resolved fluorescence immunoassays for daidzein, genistein and equol in blood and urine

    DEFF Research Database (Denmark)

    Talbot, Duncan C.S.; Ogborne, Richard M.; Dadd, Tony

    2007-01-01

    of urine was conducted on nonextracted samples. Blood analysis was performed on nonextracted samples for daidzein, whereas genestein and equol erquired diethyl-ether extraction. Results: Comparison of monoclonal TR-FIA, commercial polyclonal antibody-based TR-FIA and gas chromatography-mass spectrometry...

  20. Cellphone-based detection platform for rbST biomerker analysis in milk extracts using a microsphere fluorescence immunoassay

    NARCIS (Netherlands)

    Ludwig, S.K.J.; Zhu, H.; Phillips, S.; Shiledar, A.; Feng, S.; Tseng, D.; Ginkel, van L.A.; Nielen, M.W.F.; Ozcan, A.

    2014-01-01

    Current contaminant and residue monitoring throughout the food chain is based on sampling, transport, administration, and analysis in specialized control laboratories. This is a highly inefficient and costly process since typically more than 99 % of the samples are found to be compliant. On-site sim

  1. Microstructure-based calculations and experimental results for sound absorbing porous layers of randomly packed rigid spherical beads

    Science.gov (United States)

    Zieliński, Tomasz G.

    2014-07-01

    Acoustics of stiff porous media with open porosity can be very effectively modelled using the so-called Johnson-Champoux-Allard-Pride-Lafarge model for sound absorbing porous media with rigid frame. It is an advanced semi-phenomenological model with eight parameters, namely, the total porosity, the viscous permeability and its thermal analogue, the tortuosity, two characteristic lengths (one specific for viscous forces, the other for thermal effects), and finally, viscous and thermal tortuosities at the frequency limit of 0 Hz. Most of these parameters can be measured directly, however, to this end specific equipment is required different for various parameters. Moreover, some parameters are difficult to determine. This is one of several reasons for the so-called multiscale approach, where the parameters are computed from specific finite-element analyses based on some realistic geometric representations of the actual microstructure of porous material. Such approach is presented and validated for layers made up of loosely packed small identical rigid spheres. The sound absorption of such layers was measured experimentally in the impedance tube using the so-called two-microphone transfer function method. The layers are characterised by open porosity and semi-regular microstructure: the identical spheres are loosely packed by random pouring and mixing under the gravity force inside the impedance tubes of various size. Therefore, the regular sphere packings were used to generate Representative Volume Elements suitable for calculations at the micro-scale level. These packings involve only one, two, or four spheres so that the three-dimensional finite-element calculations specific for viscous, thermal, and tortuous effects are feasible. In the proposed geometric packings, the spheres were slightly shifted in order to achieve the correct value of total porosity which was precisely estimated for the layers tested experimentally. Finally, in this paper some results based on

  2. Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium.

    Science.gov (United States)

    Belščak-Cvitanović, Ana; Komes, Draženka; Karlović, Sven; Djaković, Senka; Spoljarić, Igor; Mršić, Gordan; Ježek, Damir

    2015-01-15

    Alginate-based blends consisting of carrageenan, pectin, chitosan or psyllium husk powder were prepared for assessment of the best formulation aimed at encapsulation of caffeine. Alginate-pectin blend exhibited the lowest viscosity and provided the smallest beads. Alginate-psyllium husk blend was characterised with higher viscosity, yielding the largest bead size and the highest caffeine encapsulation efficiency (83.6%). The release kinetics of caffeine indicated that the porosity of alginate hydrogel was not reduced sufficiently to retard the diffusion of caffeine from the beads. Chitosan coated alginate beads provided the most retarded release of caffeine in water. Morphological characteristics of beads encapsulating caffeine were adversely affected by freeze drying. Bitterness intensity of caffeine-containing beads in water was the lowest for alginate-psyllium beads and chitosan coated alginate beads. Higher sodium alginate concentration (3%) for production of hydrogel beads in combination with psyllium or chitosan coating would present the most favourable carrier systems for immobilization of caffeine.

  3. Development and validation of a genotype 3 recombinant protein-based immunoassay for hepatitis E virus serology in swine

    Directory of Open Access Journals (Sweden)

    W.H.M. van der Poel

    2014-04-01

    Full Text Available Hepatitis E virus (HEV is classified within the family Hepeviridae, genus Hepevirus. HEV genotype 3 (Gt3 infections are endemic in pigs in Western Europe and in North and South America and cause zoonotic infections in humans. Several serological assays to detect HEV antibodies in pigs have been developed, at first mainly based on HEV genotype 1 (Gt1 antigens. To develop a sensitive HEV Gt3 ELISA, a recombinant baculovirus expression product of HEV Gt3 open reading frame-2 was produced and coated onto polystyrene ELISA plates. After incubation of porcine sera, bound HEV antibodies were detected with anti-porcine anti-IgG and anti-IgM conjugates. For primary estimation of sensitivity and specificity of the assay, sets of sera were used from pigs experimentally infected with HEV Gt3. For further validation of the assay and to set the cutoff value, a batch of 1100 pig sera was used. All pig sera were tested using the developed HEV Gt3 assay and two other serologic assays based on HEV Gt1 antigens. Since there is no gold standard available for HEV antibody testing, further validation and a definite setting of the cutoff of the developed HEV Gt3 assay were performed using a statistical approach based on Bayes' theorem. The developed and validated HEV antibody assay showed effective detection of HEV-specific antibodies. This assay can contribute to an improved detection of HEV antibodies and enable more reliable estimates of the prevalence of HEV Gt3 in swine in different regions.

  4. Using permalloy based planar hall effect sensors to capture and detect superparamagnetic beads for lab on a chip applications

    Energy Technology Data Exchange (ETDEWEB)

    Volmer, Marius, E-mail: volmerm@unitbv.ro [Transilvania University of Brasov, Electrical Engineering and Applied Physics Department. Eroilor 29, Brasov 500036 (Romania); Avram, Marioara [National Institute for Research and Development in Microtechnologies, Str. Erou Iancu Nicolae 32B, 72996 Bucharest (Romania)

    2015-05-01

    Experimental studies have been carried out on planar Hall effect (PHE) sensors used to detect magnetic nanoparticles employed as labels for biodetection applications. Disk shaped sensors, 1 mm diameter, were structured on Permalloy film, 20 nm thick. To control the sensor magnetisation state and thus the field sensitivity and linearity, a DC biasing field has been applied parallel to the driving current. Maghemite nanoparticles (10 nm) functionalised with Polyethylene glycol (PEG) 6000 were immobilised over the sensor surface using particular magnetisation state and applied magnetic fields. In order to obtain a higher response from the magnetic nanoparticles, it was used a detection setup which allows the application of magnetic fields larger than 100 Oe but avoiding saturation of the PHE signal. Based on this setup, two field scanning methods are presented in this paper. During our experiments, low magnetic moments, of about 1.87×10{sup −5} emu, have been easily detected. This value corresponds to a mass of 9.35 µg of maghemite nanoparticles functionalised with PEG 6000. The results suggest that this type of structure is feasible for building low cost micrometer sized PHE sensors to be used for high-resolution bio sensing applications. - Highlights: • Disk-shaped Permalloy planar Hall effect sensors have been obtained and tested. • Two field scanning methods have been proposed. • The magnetic nanoparticles can be trapped on the sensor surface. • High detection sensitivity has been obtained.

  5. Uptake of mercury by thiol-grafted chitosan gel beads.

    Science.gov (United States)

    Merrifield, John D; Davids, William G; MacRae, Jean D; Amirbahman, Aria

    2004-07-01

    This study describes the synthesis and characterization of thiol-grafted chitosan beads for use as mercury (Hg) adsorbents. Chitosan flakes were dissolved and formed into spherical beads using a phase inversion technique, then crosslinked to improve their porosity and chemical stability. Cysteine was grafted onto the beads in order to improve the adsorption affinity of Hg to the beads. The beads possessed an average diameter of 3.2 mm, porosity of 0.9, specific surface area of approximately 100 m2/g, average pore size of approximately 120 angstroms, and specific gravity of 2.0. Equilibrium and kinetic uptake experiments were conducted to study the uptake of Hg by the beads. The adsorption capacity was approximately 8.0 mmol-Hg/g-dry beads at pH 7, and decreased with decreasing pH. Hg adsorption kinetics was modeled as radial pore diffusion into a spherical bead with nonlinear adsorption. Use of the nonlinear Freundlich isotherm in the diffusion equation allowed modeling of the uptake kinetics with a single tortuosity factor of 1.5 +/- 0.3 as the fitting parameter for all initial Hg concentrations, chitosan loadings, and agitation rates. At agitation rates of 50 and 75 rpm, where uptake rate was reduced significantly due to the boundary layer effect, the mass transfer coefficient at the outside boundary was also used as a fitting parameter to model the kinetic data. At agitation rates higher than 150 rpm, pore diffusion was the rate-limiting step. The beads exhibited a high initial uptake rate followed by a slower uptake rate suggesting pore diffusion as the rate-determining step especially at high agitation rates. Higher uptake rates observed in this study compared to those in a previous study of chitosan-based crab shells indicate that dissolution and gel formation increase the porosity and pore accessibility of chitosan.

  6. Detection of Bacillus anthracis spores by super-paramagnetic lateral-flow immunoassays based on "Road Closure".

    Science.gov (United States)

    Wang, Dian-Bing; Tian, Bo; Zhang, Zhi-Ping; Wang, Xu-Ying; Fleming, Joy; Bi, Li-Jun; Yang, Rui-Fu; Zhang, Xian-En

    2015-05-15

    Detection of Bacillus anthracis in the field, whether as a natural infection or as a biothreat remains challenging. Here we have developed a new lateral-flow immunochromatographic assay (LFIA) for B. anthracis spore detection based on the fact that conjugates of B. anthracis spores and super-paramagnetic particles labeled with antibodies will block the pores of chromatographic strips and form retention lines on the strips, instead of the conventionally reported test lines and control lines in classic LFIA. As a result, this new LFIA can simultaneously realize optical, magnetic and naked-eye detection by analyzing signals from the retention lines. As few as 500-700 pure B. anthracis spores can be recognized with CV values less than 8.31% within 5 min of chromatography and a total time of 20 min. For powdery sample tests, this LFIA can endure interference from 25% (w/v) milk, 10% (w/v) baking soda and 10% (w/v) starch without any sample pre-treatment, and has a corresponding detection limit of 6×10(4) spores/g milk powder, 2×10(5) spores/g starch and 5×10(5) spores/g baking soda. Compared with existing methods, this new approach is very competitive in terms of sensitivity, specificity, cost and ease of operation. This proof-of-concept study can also be extended for detection of many other large-sized analytes.

  7. Dual-signal amplified electrochemiluminescence immunoassay for salbutamol based on quantum dots and gold nanoparticle-labeled horseradish peroxidase.

    Science.gov (United States)

    Cai, Fudong; Wang, Nan; Dong, Tiantian; Deng, Anping; Li, Jianguo

    2015-09-01

    This study describes a novel electrochemical immunosensor to amplify the electrochemiluminescence (ECL) signal for the ultrasensitive detection of salbutamol (SAL) using quantum dots (QDs) and gold nanoparticle (AuNP) conjugated horseradish peroxidase (HRP). The electrochemical detection was based on the HRP catalyzed consumption of self-produced H2O2, which has been extensively used as a co-reactant of QDs, by o-phenylenediamine (OPD). The enzymatic reaction rate is proportional to the amount of HRP bound to the electrode. In the presence of a SAL standard solution, the immobilized SAL coating antigens competed with the SAL solution for the Ab-AuNPs-HRP complexes. With an increase in the SAL concentration, the amount of immobilized HRP decreases, which leads to an increase in the ECL intensity. Under optimized conditions, the ECL intensity changes linearly with the logarithm of the SAL concentration in the range of 0.05-500 ng mL(-1) with a detection limit of 0.017 ng mL(-1) (S/N = 3). The ECL immunosensor possesses high sensitivity, satisfactory reproducibility and selectivity, and may provide a feasible route for practical application.

  8. A multiplexed immunoassay for detection of antibodies to Actinobacillus pleuropneumoniae (App) in pigs

    DEFF Research Database (Denmark)

    Berger, Sanne Schou; Boas, Ulrik; Andresen, Lars Ole

    2014-01-01

    our diagnostic tools, we are currently developing a novel indirect fluorescent microsphere immunoassay that can facilitate simultaneous detection of antibodies towards multiple App serovars within a single serum sample volume. The multiplex immunoassay is based on Luminex technology (8) and has...

  9. Evaluation of an immunoassay for determination of plasma efavirenz concentrations in resource-limited settings

    DEFF Research Database (Denmark)

    Abdissa, Alemseged; Wiesner, Lubbe; McIlleron, Helen

    2014-01-01

    to be implemented in resource-limited settings. This study evaluated a commercially available immunoassay for measurement of plasma efavirenz. Methods: The immunoassay-based method was applied to measure efavirenz using a readily available Humastar 80 chemistry analyzer. We compared plasma efavirenz concentrations...

  10. An Ultrasensitive Electrochemiluminescent Immunoassay for Aflatoxin M1 in Milk, Based on Extraction by Magnetic Graphene and Detection by Antibody-Labeled CdTe Quantumn Dots-Carbon Nanotubes Nanocomposite

    Directory of Open Access Journals (Sweden)

    Ning Gan

    2013-04-01

    Full Text Available An ultrasensitive electrochemiluminescent immunoassay (ECLIA for aflatoxins M1 (ATM1 in milk using magnetic Fe3O4-graphene oxides (Fe-GO as the absorbent and antibody-labeled cadmium telluride quantum dots (CdTe QDs as the signal tag is presented. Firstly, Fe3O4 nanoparticles were immobilized on GO to fabricate the magnetic nanocomposites, which were used as absorbent to ATM1. Secondly, aflatoxin M1 antibody (primary antibody, ATM1 Ab1, was attached to the surface of the CdTe QDs-carbon nanotubes nanocomposite to form the signal tag (ATM1 Ab1/CdTe-CNT. The above materials were characterized. The optimal experimental conditions were obtained. Thirdly, Fe-GO was employed for extraction of ATM1 in milk. Results indicated that it can adsorb ATM1 efficiently and selectively within a large extent of pH from 3.0 to 8.0. Adsorption processes reached 95% of the equilibrium within 10 min. Lastly, the ATM1 with a serial of concentrations absorbed on Fe-GO was conjugated with ATM1 Ab1/CdTe-CNT signal tag based on sandwich immunoassay. The immunocomplex can emit a strong ECL signal whose intensity depended linearly on the logarithm of ATM1 concentration from 1.0 to 1.0 × 105 pg/mL, with the detection limit (LOD of 0.3 pg/mL (S/N = 3. The method was more sensitive for ATM1 detection compared to the ELISA method. Finally, ten samples of milk were tested based on the immunoassay. The method is fast and requires very little sample preparation, which was suitable for high-throughput screening of mycotoxins in food.

  11. Archaeological study of ostrich eggshell beads collected from SDG site

    Institute of Scientific and Technical Information of China (English)

    WANG ChunXue; ZHANG Yue; GAO Xing; ZHANG XiaoLing; WANG HuiMin

    2009-01-01

    Ostrich eggshell beads and fragments collected from SDG site reflect primordial art and a kind of symbolic behavior of modern humans.Based on stratigraphic data and OSL dating,these ostrich eggshell beads are probably in Early Holocene (<10 ka BP).Two different prehistoric manufacturing pathways are usually used in the manufacture of ostrich eggshell beads in Upper Paleolithic.According to statistic analysis of the characteristics of ostrich eggshell beads,Pathway 1 is identified from these collections.In pathway 1,blanks are drilled prior to being trimmed to rough discs.They exhibit great potential for the study of the origin of primordial art and the development of ancient cultures and provide important data for studying behavioral options adopted by hominids in SDG area.In addition,they bear important implications for the origin of modern humans in East Asia.

  12. A Novel Inherently Radiopaque Bead for Transarterial Embolization to Treat Liver Cancer - A Pre-clinical Study

    Science.gov (United States)

    Duran, Rafael; Sharma, Karun; Dreher, Matthew R.; Ashrafi, Koorosh; Mirpour, Sahar; Lin, MingDe; Schernthaner, Ruediger E.; Schlachter, Todd R.; Tacher, Vania; Lewis, Andrew L.; Willis, Sean; den Hartog, Mark; Radaelli, Alessandro; Negussie, Ayele H.; Wood, Bradford J.; Geschwind, Jean-François H.

    2016-01-01

    Purpose: Embolotherapy using microshperes is currently performed with soluble contrast to aid in visualization. However, administered payload visibility dimishes soon after delivery due to soluble contrast washout, leaving the radiolucent bead's location unknown. The objective of our study was to characterize inherently radiopaque beads (RO Beads) in terms of physicomechanical properties, deliverability and imaging visibility in a rabbit VX2 liver tumor model. Materials and Methods: RO Beads, which are based on LC Bead® platform, were compared to LC Bead. Bead size (light microscopy), equilibrium water content (EWC), density, X-ray attenuation and iodine distribution (micro-CT), suspension (settling times), deliverability and in vitro penetration were investigated. Fifteen rabbits were embolized with either LC Bead or RO Beads + soluble contrast (iodixanol-320), or RO Beads+dextrose. Appearance was evaluated with fluoroscopy, X-ray single shot, cone-beam CT (CBCT). Results: Both bead types had a similar size distribution. RO Beads had lower EWC (60-72%) and higher density (1.21-1.36 g/cc) with a homogeneous iodine distribution within the bead's interior. RO Beads suspension time was shorter than LC Bead, with durable suspension (>5 min) in 100% iodixanol. RO Beads ≤300 µm were deliverable through a 2.3-Fr microcatheter. Both bead types showed similar penetration. Soluble contrast could identify target and non-target embolization on fluoroscopy during administration. However, the imaging appearance vanished quickly for LC Bead as contrast washed-out. RO Beads+contrast significantly increased visibility on X-ray single shot compared to LC Bead+contrast in target and non-target arteries (P=0.0043). Similarly, RO beads demonstrated better visibility on CBCT in target arteries (P=0.0238) with a trend in non-target arteries (P=0.0519). RO Beads+dextrose were not sufficiently visible to monitor embolization using fluoroscopy. Conclusion: RO Beads provide better

  13. On-chip measurements of Brownian relaxation of magnetic beads with diameters from 10 nm to 250 nm

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2013-01-01

    We demonstrate the use of planar Hall effect magnetoresistive sensors for AC susceptibility measurements of magnetic beads with frequencies ranging from DC to 1 MHz. This wide frequency range allows for measuring Brownian relaxation of magnetic beads with diameters ranging from 10 nm to 250 nm...... to sedimentation, magnetic trapping, and signal per bead. Among the investigated beads, we conclude that the beads with a nominal diameter of 80 nm are best suited for future on-chip volume-based biosensing experiments using planar Hall effect sensors........ Brownian relaxation is measured for six different magnetic bead types and their hydrodynamic diameters are determined. The hydrodynamic diameters are found to be within 40% of the nominal bead diameters. We discuss the applicability of the different bead types for volume-based biosensing with respect...

  14. Multiplex biosensor immunoassays for antibiotics in the food chain

    NARCIS (Netherlands)

    Haasnoot, W.

    2009-01-01

    The use of antibiotics in food-producing animals may result in unwanted residues in food products. The main objective of the present research was to study the development and application of fast and automated multiplex surface plasmon resonance (SPR)-based biosensor immunoassays (BIAs), based on mul

  15. Glass-bead peen plating

    Science.gov (United States)

    Graves, J. R.

    1974-01-01

    Peen plating of aluminum, copper, and nickel powders was investigated. Only aluminum was plated successfully within the range of peen plating conditions studied. Optimum plating conditions for aluminum were found to be: (1) bead/powder mixture containing 25 to 35% powder by weight, (2) peening intensity of 0.007A as measured by Almen strip, and (3) glass impact bead diameter of at least 297 microns (0.0117 inches) for depositing-100 mesh aluminum powder. No extensive cleaning or substrate preparation is required beyond removing loose dirt or heavy oil.

  16. A Microfluidic Microbeads Fluorescence Assay with Quantum Dots-Bead-DNA Probe.

    Science.gov (United States)

    Ankireddy, S R; Kim, Jongsung

    2016-03-01

    A microfluidic bead-based nucleic acid sensor for the detection of tumor causing N-Ras genes using quantum dots has been developed. Presently, quantum dots-bead-DNA probe based hybridization detection methods are often called as 'bead based assays' and their success is substantially influenced by the dispensing and manipulation capability of the microfluidic technology. This study reports the detection of N-Ras cancer gene by fluorescence quenching of quantum dots immobilized on the surface of polystyrene beads. A microfluidic chip was constructed in which the quantum dots-bead-DNA probes were packed in the channel. The target DNA flowed across the beads and hybridized with immobilized probe sequences. The target DNA can be detected by the fluorescence quenching of the quantum dots due to their transfer of emission energy to intercalation dye after DNA hybridization. The mutated gene also induces fluorescence quenching but with less degree than the perfectly complementary target DNA.

  17. Glass bead cultivation of fungi

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, H.

    2013-01-01

    Production of bioactive compounds and enzymes from filamentous fungi is highly dependent on cultivation conditions. Here we present an easy way to cultivate filamentous fungi on glass beads that allow complete control of nutrient supply. Secondary metabolite production in Fusarium graminearum and...

  18. Calibration beads containing luminescent lanthanide ion complexes

    Science.gov (United States)

    The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, will be enhanced by the availability of narrow-band emitting lanthanide calibration beads. These beads can also be used to characterize spectrographic instruments, including mi...

  19. Determination of hepatitis B surface antigen using magnetic immunoassays in a thin channel.

    Science.gov (United States)

    Tsai, H Y; Chan, J R; Li, Y C; Cheng, F C; Fuh, C Bor

    2010-08-15

    We report novel methods for detection of hepatitis B surface antigen (HBsAg) based on competitive and sandwiched magnetic immunoassays using functional magnetic nanoparticles in a thin channel. Magnetic nanoparticles labeled with hepatitis B antibody are flowed through a thin channel to form a predeposition layer for capturing HBsAg. Competitive and sandwiched magnetic immunoassays were studied and detection limit, linear range, and sample selectivity were compared. The detection limits of competitive and sandwiched magnetic immunoassays were found to be 0.26 and 0.25 pg/ml, respectively. The linear range of HBsAg concentration was 0.26 pg/ml-2.6 ng/ml for competitive magnetic immunoassay and was 0.89 pg/ml-8.9 ng/ml for sandwiched magnetic immunoassay. The advantages of these methods over ELISA and other methods for HBsAg detection are lower detection limits and wider linear ranges. The running time was less than 30 min. Competitive magnetic immunoassay was faster than sandwiched magnetic immunoassay for detection of HBsAg. The measurements of HBsAg in serum samples from these methods differed by about 10% from those of ELISA. These methods can provide simple, fast, and sensitive detections of biomarkers and other immunoassay-related samples.

  20. Species Specific Bacterial Spore Detection Using Lateral-Flow Immunoassay with DPA-Triggered Tb Luminescence

    Science.gov (United States)

    Ponce, Adrian

    2003-01-01

    A method of detecting bacterial spores incorporates (1) A method of lateral-flow immunoassay in combination with (2) A method based on the luminescence of Tb3+ ions to which molecules of dipicolinic acid (DPA) released from the spores have become bound. The present combination of lateral-flow immunoassay and DPA-triggered Tb luminescence was developed as a superior alternative to a prior lateral-flow immunoassay method in which detection involves the visual observation and/or measurement of red light scattered from colloidal gold nanoparticles. The advantage of the present combination method is that it affords both (1) High selectivity for spores of the species of bacteria that one seeks to detect (a characteristic of lateral-flow immunoassay in general) and (2) Detection sensitivity much greater (by virtue of the use of DPA-triggered Tb luminescence instead of gold nanoparticles) than that of the prior lateral-flow immunoassay method

  1. Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Haroldo C.B., E-mail: hpaula@ufc.br [Department of Analytical and Physical Chemistry, Federal University of Ceara, UFC, Fortaleza-CE (Brazil); Sombra, Fernanda Matoso; Cavalcante, Rafaela de Freitas; Abreu, Flavia O.M.S. [Department of Analytical and Physical Chemistry, Federal University of Ceara, UFC, Fortaleza-CE (Brazil); Paula, Regina C.M. de [Department of Organic and Inorganic Chemistry, Federal University of Ceara, UFC, Fortaleza-CE (Brazil)

    2011-03-12

    Beads based on chitosan (CH) and cashew gum (CG), were prepared and loaded with an essential oil with larvicide activity (Lippia sidoides - Ls). CH and CH-CG beads were characterized by scanning electron microscopy (SEM), infrared and UV-VIS spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), as well as, regarding their larvicide loading, swelling, in vitro and in vivo release kinetics. The oil encapsulation was evidenced by FTIR analysis and LS loading ranges from 2.4% to 4.4%. CH beads duly showed swelling degree (Q) values from 4.0 to 6.7, reaching equilibrium after 30 min, whereas crosslinked CH-CG beads showed lower swelling values, from 0.4 to 3.8, exhibiting a longer equilibrium time. Liquid transport parameters have revealed diffusion coefficient for CH-CG beads, as low as 2 x 10{sup -15} m{sup 2}/s. TGA and DSC revealed that CH:CG crosslinked beads are more thermally stable than CH beads. In vitro release follows a non-Fickian diffusion profile for both bead types, however, and a prolonged release being achieved only after beads crosslinking. In vivo release showed that both CH and CH-CG presented a prolonged larvicide effect. These aforesaid results, indicate that CH-CG beads loaded with LS are efficient for A. aegypti larval control.

  2. A novel multiplexed fluorescence polarisation immunoassay based on a recombinant bi-specific single-chain diabody for simultaneous detection of fluoroquinolones and sulfonamides in milk.

    Science.gov (United States)

    Chen, Min; Wen, Kai; Tao, Xiaoqi; Ding, Shuangyang; Xie, Jie; Yu, Xuezhi; Li, Jiancheng; Xia, Xi; Wang, Yang; Xie, Sanlei; Jiang, Haiyang

    2014-01-01

    Major research efforts are focusing on the development of simultaneous multiplexed immunoassays. In this study, a novel dual-binding fluorescence polarisation immunoassay (DB-FPIA) using a broad-specificity bi-specific single-chain diabody (scDb) and two fluorescent-labelled tracers (sulfamethoxypyridazine-fluorescein isothiocyanate (SMP-FITC) and sarafloxacin-Texas Red (SAR-TR)) with different excitation and emission wavelengths was developed for simultaneous and high-throughput detection of 19 fluoroquinolones (FQs) and 13 sulfonamides (SAs) at the maximum residue limits in milk samples. Recoveries for spiked milk samples were from 76.4% to 128.4%, with a relative standard deviation lower than 13.9%. The developed DB-FPIA was then applied to field samples, followed by confirmation by LC-MS/MS. All three instances in which FQs and SAs were present at concentrations near or above the assay limit of detection were identified as positive by the developed DB-FPIA, demonstrating that the method is suitable for rapid screening of FQs and SAs contamination. The novel methodology combines the advantage of the FPIA and the broad sensitivity of scDb and shows great promise for fast multi-analyte screening of low-molecular weight chemical residues in food samples.

  3. Detection of cyclopiazonic acid (CPA) in maize by immunoassay

    Science.gov (United States)

    Cyclopiazonic acid (a-CPA) is a tremorgenic mycotoxin that is commonly produced by certain of the Aspergilli, in particular A. flavus, which is more widely known for production of the aflatoxins. Despite the fact that a-CPA may co-occur with aflatoxins, immunoassay-based methods for monitoring for C...

  4. Confined Flocculation of Ionic Pollutants by Poly(L-dopa)-Based Polyelectrolyte Complexes in Hydrogel Beads for Three-Dimensional, Quantitative, Efficient Water Decontamination.

    Science.gov (United States)

    Yu, Li; Liu, Xiaokong; Yuan, Weichang; Brown, Lauren Joan; Wang, Dayang

    2015-06-16

    The development of simple and recyclable adsorbents with high adsorption capacity is a technical imperative for water treatment. In this work, we have successfully developed new adsorbents for the removal of ionic pollutants from water via encapsulation of polyelectrolyte complexes (PECs) made from positively charged poly(allylamine hydrochloride) (PAH) and negatively charged poly(l-3,4-dihydroxyphenylalanine) (PDopa), obtained via the self-polymerization of l-3,4-dihydroxyphenylalanine (l-Dopa). Given the outstanding mass transport through the hydrogel host matrixes, the PDopa-PAH PEC guests loaded inside can effectively and efficiently remove various ionic pollutants, including heavy metal ions and ionic organic dyes, from water. The adsorption efficiency of the PDopa-PAH PECs can be quantitatively correlated to and tailored by the PDopa-to-PAH molar ratio. Because PDopa embodies one catechol group, one carboxyl group, and one amino group in each repeating unit, the resulting PDopa-PAH PECs exhibit the largest capacity of adsorption of heavy metal ions compared to available adsorbents. Because both PDopa and PAH are pH-sensitive, the PDopa-PAH PEC-loaded agarose hydrogel beads can be easily and completely recovered after the adsorption of ionic pollutants by adjusting the pH of the surrounding media. The present strategy is similar to the conventional process of using PECs to flocculate ionic pollutants from water, while in our system flocculation is confined to the agarose hydrogel beads, thus allowing easy separation of the resulting adsorbents from water.

  5. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    Directory of Open Access Journals (Sweden)

    Chinthaka P. Gooneratne

    2016-08-01

    Full Text Available The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA for the manipulation of superparamagnetic beads (SPBs, and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device.

  6. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization.

    Science.gov (United States)

    Gooneratne, Chinthaka P; Kodzius, Rimantas; Li, Fuquan; Foulds, Ian G; Kosel, Jürgen

    2016-08-26

    The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads(®) demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead(®) SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads(®) travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device.

  7. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    KAUST Repository

    Gooneratne, Chinthaka P.

    2016-08-26

    The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device

  8. On-chip measurement of the Brownian relaxation frequency of magnetic beads using magnetic tunneling junctions

    DEFF Research Database (Denmark)

    Donolato, M.; Sogne, E.; Dalslet, Bjarke Thomas

    2011-01-01

    We demonstrate the detection of the Brownian relaxation frequency of 250 nm diameter magnetic beads using a lab-on-chip platform based on current lines for exciting the beads with alternating magnetic fields and highly sensitive magnetic tunnel junction (MTJ) sensors with a superparamagnetic free...... layer. The first harmonic out-of-phase component of the MTJ response gives the imaginary part of the magnetic bead susceptibility, which peaks at the Brownian relaxation frequency. This work paves the way to on-chip implementation of Brownian magnetorelaxometry in innovative "lab-on-a-bead" assays...

  9. "On-chip magnetic bead microarray using hydrodynamic focusing in a passive magnetic separator"

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Kjeldsen, B.; Reimers, R.L.;

    2005-01-01

    separator with arrays of soft magnetic elements. The soft magnetic elements placed on both sides of the channel are magnetized by a relatively weak applied external magnetic field ( 21 mT) and provide magnetic field gradients attracting magnetic beads. Flows with two differently functionalized magnetic......-chip hybridization experiments show that the microfluidic systems can be functionalized with two sets of beads carrying different probes that selectively recognize a single base pair mismatch in target DNA. By switching the places of the two types of beads it is shown that the microsystem can be cleaned...... and functionalized repeatedly with different beads with no cross-talk between experiments....

  10. Modeling the Erosion Process in Beaded Streams in a Semi-arid Bajada, Southern New Mexico

    Science.gov (United States)

    Gao, P.

    2003-12-01

    A channel network in Southern New Mexico falls in one of the three categories: splay, bead, and braid. A splay simply refers to diverging channels. A bead refers to channel reaches in which flow first diverges to form an area of multiple flow paths and then converges to form a single channel. A braid is intermediate between a splay and a bead. Recent studies have demonstrated that beads, which widely exist in the semi-arid environment of Southern New Mexico, serve as sinks to attract more water, nutrients, and sediment than other areas. Thus beads provide a physical base for ecological remediation means to reverse the desertification process. However, the mechanisms for the formation of a bead and geomorphologic factors controlling the properties of a bead are still poorly understood. Given the difficulties of physically tracking and quantitatively estimating the development of a bead in the field, a computer simulation is adopted to model the erosion process that leads to the beaded streams. The modeling is based on a FORTRAN algorithm in which the bajada surface is represented by a matrix of square cells. On each cell, both sediment transport and continuity equations, which are sufficient to describe the erosion process, are applied to determine whether the cell is degraded (erosion), aggraded (deposition), or graded (equilibrium). With a rule of determining the distribution of flow rate from a cell to its downstream neighbors, channels are automatically formed by the erosion processes. The simulation indicates (1) that a bead is formed with the combination of three factors: uneven distribution of flow rate, infiltration, and the degree of distribution, (2) that a bead, once formed, is stable, (3) that the size and shape of a bead are controlled by the discharge-infiltration ratio.

  11. Fluorescent detection of C-reactive protein using polyamide beads

    Science.gov (United States)

    Jagadeesh, Shreesha; Chen, Lu; Aitchison, Stewart

    2016-03-01

    Bacterial infection causes Sepsis which is one of the leading cause of mortality in hospitals. This infection can be quantified from blood plasma using C - reactive protein (CRP). A quick diagnosis at the patient's location through Point-of- Care (POC) testing could give doctors the confidence to prescribe antibiotics. In this paper, the development and testing of a bead-based procedure for CRP quantification is described. The size of the beads enable them to be trapped in wells without the need for magnetic methods of immobilization. Large (1.5 mm diameter) Polyamide nylon beads were used as the substrate for capturing CRP from pure analyte samples. The beads captured CRP either directly through adsorption or indirectly by having specific capture antibodies on their surface. Both methods used fluorescent imaging techniques to quantify the protein. The amount of CRP needed to give a sufficient fluorescent signal through direct capture method was found suitable for identifying bacterial causes of infection. Similarly, viral infections could be quantified by the more sensitive indirect capture method. This bead-based assay can be potentially integrated as a disposable cartridge in a POC device due to its passive nature and the small quantities needed.

  12. Developement of Spherical Polyurethane Beads

    Institute of Scientific and Technical Information of China (English)

    K. Maeda; H. Ohmori; H. Gyotoku

    2005-01-01

    @@ 1Results and Discussion We established a new method to produce the spherical polyurethane beads which have narrower distribution of particle size. This narrower distribution was achieved by the polyurethane prepolymer which contains ketimine as a blocked chain-extending agent. Firstly, the prepolymer is dispersed into the aqueous solution containing surfactant. Secondaly, water comes into the inside of prepolymer as oil phase. Thirdly, ketimine is hydrolyzed to amine, and amine reacts with prepolymer immediately to be polyurethane.Our spherical polyurethane beads are very suitable for automotive interior parts especially for instrument panel cover sheet producing under the slush molding method, because of good process ability, excellent durability to the sunlight and mechanical properties at low temperature. See Fig. 1 ,Fig. 2 and Fig. 3 (Page 820).

  13. What Can a Urine Drug Screening Immunoassay Really Tell Us?

    Science.gov (United States)

    Nelson, Zachary J; Stellpflug, Samuel J; Engebretsen, Kristin M

    2016-10-01

    Urine drug screening has become standard of care in many medical practice settings to assess compliance, detect misuse, and/or to provide basis for medical or legal action. The antibody-based enzymatic immunoassays used for qualitative analysis of urine have significant drawbacks that clinicians are often not aware of. Recent literature suggests that there is a lack of understanding of the shortcomings of these assays by clinicians who are ordering and/or interpreting them. This article addresses the state of each of the individual immunoassays that are most commonly used today in order to help the reader become proficient in the interpretation and application of the results. Some literature already exists regarding sources of "false positives" and "false negatives," but none seem to present the material with the practicing clinician in mind. This review aims to avoid overwhelming the reader with structures and analytical chemistry. The reader will be presented relevant clinical knowledge that will facilitate appropriate interpretation of immunoassays regardless of practice settings. Using this review as a learning tool and a reference, clinicians will be able to interpret the results of commonly used immunoassays in an evidence-based, informed manner and minimize the negative impact that misinterpretation has on patient care.

  14. A sensitive magnetic nanoparticle-based immunoassay of phosphorylated acetylcholinesterase using protein cage templated lead phosphate for signal amplification with graphite furnace atomic absorption spectrometry detection.

    Science.gov (United States)

    Liang, Pei; Kang, Caiyan; Yang, Enjian; Ge, Xiaoxiao; Du, Dan; Lin, Yuehe

    2016-04-01

    We developed a new magnetic nanoparticle sandwich-like immunoassay using protein cage nanoparticles (PCN) for signal amplification together with graphite furnace atomic absorption spectrometry (GFAAS) for the quantification of an organophosphorylated acetylcholinesterase adduct (OP-AChE), the biomarker of exposure to organophosphate pesticides (OPs) and nerve agents. OP-AChE adducts were firstly captured by titanium dioxide coated magnetic nanoparticles (TiO2-MNPs) from the sample matrixes through metal chelation with phospho-moieties, and then selectively recognized by anti-AChE antibody labeled on PCN which was packed with lead phosphate in its cavity (PCN-anti-AChE). The sandwich-like immunoreaction was performed among TiO2-MNPs, OP-AChE and PCN-anti-AChE to form a TiO2-MNP/OP-AChE/PCN-anti-AChE immunocomplex. The complex could be easily isolated from the sample solution with the help of magnet, and the released lead ions from PCN were detected by GFAAS for the quantification of OP-AChE. Greatly enhanced sensitivity was achieved because PCN increased the amount of metal ions in the cavity of each apoferritin. The proposed immunoassay yielded a linear response over a broad range of OP-AChE concentrations from 0.01 nM to 2 nM, with a detection limit of 2 pM, which has enough sensitivity for monitoring of low-dose exposure to OPs. This new method showed an acceptable stability and reproducibility and was validated with OP-AChE spiked human plasma.

  15. Sensitive magnetic nanoparticle-based immunoassay of phosphorylated acetylcholinesterase using protein cage templated lead phosphate for signal amplification with graphite furnace atomic absorption spectrometry detection

    Science.gov (United States)

    Liang, Pei; Kang, Caiyan; Yang, Enjian; Ge, Xiaoxiao; Du, Dan; Lin, Yuehe

    2016-01-01

    We developed a new magnetic nanoparticles sandwich-like immunoassay using protein cage nanoparticles (PCN) for signal amplification together with graphite furnace atomic absorption spectrometry (GFAAS) for quantification of organophosphorylated acetylcholinesterase adduct (OP-AChE), the biomarker of exposure to organophosphate pesticides (OPs) and nerve agents. OP-AChE adducts were firstly captured by titanium dioxide coated magnetic nanoparticles (TiO2-MNPs) from the sample matrixes through metal chelation with phospho-moieties, and then selectively recognized by anti-AChE antibody labeled on PCN which was packed with lead phosphate in its cavity (PCN-anti-AChE). The sandwich-like immunoreaction was performed among TiO2-MNPs, OP-AChE and PCN-anti-AChE to form TiO2-MNPs/OP-AChE/PCN-anti-AChE immunocomplex. The complex could be easily isolated from the sample solution with the help of magnet, and the released lead ions from PCN were detected by GFAAS for the quantification of OP-AChE. Greatly enhanced sensitivity was achieved because PCN increased the amount of metal ions in the cavity of each apoferritin. The proposed immunoassay yielded a linear response over a broad OP-AChE concentrations from 0.01 nM to 2 nM, with a detection limit of 2 pM, which has enough sensitivity for monitoring of low-dose exposure to OPs. This new method showed an acceptable stability and reproducibility and was validated with OP-AChE spiked human plasma. PMID:26953358

  16. Detection of total and A1c-glycosylated hemoglobin in human whole blood using sandwich immunoassays on polydimethylsiloxane-based antibody microarrays.

    Science.gov (United States)

    Chen, Huang-Han; Wu, Chih-Hsing; Tsai, Mei-Ling; Huang, Yi-Jing; Chen, Shu-Hui

    2012-10-16

    The percentage of glycosylated hemoglobin A1c (%GHbA1c) in human whole blood indicates the average plasma glucose concentration over a prolonged period of time and is used to diagnose diabetes. However, detecting GHbA1c in the whole blood using immunoassays has limited detection sensitivity due to its low percentage in total hemoglobin (tHb) and interference from various glycan moieties in the sample. We have developed a sandwich immunoassay using an antibody microarray on a polydimethylsiloxane (PDMS) substrate modified with fluorinated compounds to detect tHb and glycosylated hemoglobin A1c (GHbA1c) in human whole blood without sample pretreatment. A polyclonal antibody against hemoglobin (Hb) immobilized on PDMS is used as a common capture probe to enrich all forms of Hb followed by detection via monoclonal anti-Hb and specific monoclonal anti-GHbA1c antibodies for tHb and GHbA1c detection, respectively. This method prevents the use of glycan binding molecules and dramatically reduces the background interference, yielding a detection limit of 3.58 ng/mL for tHb and 0.20 ng/mL for GHbA1c. The fluorinated modification on PDMS is superior to the glass substrate and eliminates the need for the blocking step which is required in commercial enzyme linked immunosorbent assay (ELISA) kits. Moreover, the detection sensitivity for GHbA1c is 4-5 orders of magnitude higher, but the required sample amount is 25 times less than the commercial method. On the basis of patient sample data, a good linear correlation between %GHbA1c values determined by our method and the certified high performance liquid chromatography (HPLC) standard method is shown with R(2) > 0.98, indicating the great promise of the developed method for clinical applications.

  17. Fabricating a UV-Vis and Raman Spectroscopy Immunoassay Platform.

    Science.gov (United States)

    Hanson, Cynthia; Israelsen, Nathan D; Sieverts, Michael; Vargis, Elizabeth

    2016-11-10

    Immunoassays are used to detect proteins based on the presence of associated antibodies. Because of their extensive use in research and clinical settings, a large infrastructure of immunoassay instruments and materials can be found. For example, 96- and 384-well polystyrene plates are available commercially and have a standard design to accommodate ultraviolet-visible (UV-Vis) spectroscopy machines from various manufacturers. In addition, a wide variety of immunoglobulins, detection tags, and blocking agents for customized immunoassay designs such as enzyme-linked immunosorbent assays (ELISA) are available. Despite the existing infrastructure, standard ELISA kits do not meet all research needs, requiring individualized immunoassay development, which can be expensive and time-consuming. For example, ELISA kits have low multiplexing (detection of more than one analyte at a time) capabilities as they usually depend on fluorescence or colorimetric methods for detection. Colorimetric and fluorescent-based analyses have limited multiplexing capabilities due to broad spectral peaks. In contrast, Raman spectroscopy-based methods have a much greater capability for multiplexing due to narrow emission peaks. Another advantage of Raman spectroscopy is that Raman reporters experience significantly less photobleaching than fluorescent tags(1). Despite the advantages that Raman reporters have over fluorescent and colorimetric tags, protocols to fabricate Raman-based immunoassays are limited. The purpose of this paper is to provide a protocol to prepare functionalized probes to use in conjunction with polystyrene plates for direct detection of analytes by UV-Vis analysis and Raman spectroscopy. This protocol will allow researchers to take a do-it-yourself approach for future multi-analyte detection while capitalizing on pre-established infrastructure.

  18. Enhanced immunoassay for porcine circovirus type 2 antibody using enzyme-loaded and quantum dots-embedded shell–core silica nanospheres based on enzyme-linked immunosorbent assay

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Long; Li, Xuepu; Shao, Kang; Ye, Shiyi; Liu, Chen; Zhang, Chenjun; Han, Heyou, E-mail: hyhan@mail.hzau.edu.cn

    2015-08-05

    Boosting the detection sensitivity of enzyme-linked immunosorbent assay (ELISA) is significant to the early clinical diagnosis of various diseases. Here, we developed a versatile immunosensor using silica nanospheres as carriers for sensitive detection of porcine circovirus type 2 (PCV2) antibody. With HRP enzyme covalently immobilized on the silica nanospheres and CdSe nanocrystals embedded inside, these signal probes were successfully utilized in the sensitive detection of PCV2 antibody by ELISA, fluorometry and square-wave voltammetry (SWV). To further demonstrate the performance of the immunosensor, Human IgG (HIgG) was used as a model analyte. Since more HRP and CdSe QDs were loaded, 5-, 200- and 400-fold enhancements in amplified ELISA, fluorometry and voltammetry responses for HIgG could be achieved compared to conventional ELISA. The respective detection limits of theses methods for HIgG were 3.9, 0.1 and 0.05 ng mL{sup −1} with a RSD below 5% for amplified ELISA, fluorescence and SWV measurements. Additionally, a 100-fold improvement was obtained in the detection sensitivity for PCV2 antibody immunoassay. The versatile immunosensor exhibits good sensitivity, stability and reproducibility, suggesting its potential applications in clinical diagnostics. - Highlights: • A versatile ELISA-based immunoassay for PCV2 antibody was developed. • Enzyme and CdSe QDs modified SiO{sub 2} particles were used to improve sensitivity. • The simultaneous three ELISA-based techniques enhanced the detection reliability. • The biosensors strategy could provide a new avenue to ELISA-based sensors.

  19. Controlled antiseptic release by alginate polymer films and beads.

    Science.gov (United States)

    Liakos, Ioannis; Rizzello, Loris; Bayer, Ilker S; Pompa, Pier Paolo; Cingolani, Roberto; Athanassiou, Athanassia

    2013-01-30

    Biodegradable polymeric materials based on blending aqueous dispersions of natural polymer sodium alginate (NaAlg) and povidone iodine (PVPI) complex, which allow controlled antiseptic release, are presented. The developed materials are either free standing NaAlg films or Ca(2+)-cross-linked alginate beads, which properly combined with PVPI demonstrate antibacterial and antifungal activity, suitable for therapeutic applications, such as wound dressing. Glycerol was used as the plasticizing agent. Film morphology was studied by optical and atomic force microscopy. It was found that PVPI complex forms well dispersed circular micro-domains within the NaAlg matrix. The beads were fabricated by drop-wise immersion of NaAlg/PVPI/glycerol solutions into aqueous calcium chloride solutions to form calcium alginate beads encapsulating PVPI solution (CaAlg/PVPI). Controlled release of PVPI was possible when the composite films and beads were brought into direct contact with water or with moist media. Bactericidal and fungicidal properties of the materials were tested against Escherichia coli bacteria and Candida albicans fungi. The results indicated very efficient antibacterial and antifungal activity within 48 h. Controlled release of PVPI into open wounds is highly desired in clinical applications to avoid toxic doses of iodine absorption by the wound. A wide variety of applications are envisioned such as external and internal wound dressings with controlled antiseptic release, hygienic and protective packaging films for medical devices, and polymer beads as water disinfectants.

  20. SERS based immuno-microwell arrays for multiplexed detection of foodborne pathogenic bacteria

    Science.gov (United States)

    Sun, Jian; Hankus, Mikella E.; Cullum, Brian M.

    2009-05-01

    A novel surface enhanced Raman scattering (SERS)-based immuno-microwell array has been developed for multiplexed detection of foodborne pathogenic bacteria. The immuno-microwell array was prepared by immobilizing the optical addressable immunomagnetic beads (IMB) into the microwell array on one end of a fiber optic bundle. The IMBs, magnetic beads coated with specific antibody to specific bacteria, were used for immunomagnetic separation (IMS) of corresponding bacteria. The magnetic separation by the homemade magnetic separation system was evaluated in terms of the influences of several important parameters including the beads concentration, the sample volume and the separation time. IMS separation efficiency of the model bacteria E.coli O157:H7 was 63% in 3 minutes. The microwell array was fabricated on hydrofluoric acid etched end of a fiber optic bundle containing 30,000 fiber elements. After being coated with silver, the microwell array was used as a uniform SERS substrate with the relative standard deviation of the SERS enhancement across the microwell array < 2% and the enhancement factor as high as 2.18 x 107. The antibody modified microwell array was prepared for bacteria immobilization into the microwell array, which was characterized by a sandwich immunoassay. To demonstrate the potential of multiplexed SERS detection with the immuno-microwell array, the SERS spectra of different Raman dye labeled magnetic beads as well as mixtures were measured on the mircrowell array. In bead mixture, different beads were identified by the characteristic SERS bands of the corresponding Raman label.

  1. Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets.

    Science.gov (United States)

    Witters, Daan; Knez, Karel; Ceyssens, Frederik; Puers, Robert; Lammertyn, Jeroen

    2013-06-07

    Digital microfluidics is introduced as a novel platform with unique advantages for performing single-molecule detection. We demonstrate how superparamagnetic beads, used for capturing single protein molecules, can be printed with unprecedentedly high loading efficiency and single bead resolution on an electrowetting-on-dielectric-based digital microfluidic chip by micropatterning the Teflon-AF surface of the device. By transporting droplets containing suspended superparamagnetic beads over a hydrophilic-in-hydrophobic micropatterned Teflon-AF surface, single beads are trapped inside the hydrophilic microwells due to their selective wettability and tailored dimensions. Digital microfluidics presents the following advantages for printing and sealing magnetic beads for single-molecule detection: (i) droplets containing suspended beads can be transported back and forth over the array of hydrophilic microwells to obtain high loading efficiencies of microwells with single beads, (ii) the use of hydrophilic-in-hydrophobic patterns permits the use of a magnet to speed up the bead transfer process to the wells, while the receding droplet meniscus removes excess beads off the chip surface and thereby shortens the bead patterning time, and (iii) reagents can be transported over the printed beads multiple times, while capillary forces and a magnet hold the printed beads in place. High loading efficiencies (98% with a CV of 0.9%) of single beads in microwells were obtained by transporting droplets of suspended beads over the array 10 times in less than 1 min, which is much higher than previously reported methods (40-60%), while the total surface area needed for performing single-molecule detection can be decreased. The performance of the device was demonstrated by fluorescent detection of the presence of the biotinylated enzyme β-galactosidase on streptavidin-coated beads with a linear dynamic range of 4 orders of magnitude ranging from 10 aM to 90 fM.

  2. A New Hapten for Immunoassay of Aldicarb

    Institute of Scientific and Technical Information of China (English)

    Yan Feng ZHANG; Zhi Xian GAO; Qing Min ZHANG; Shu Gui DAI

    2006-01-01

    A new hapten, aldicarb oxime succinic ester (AOSE), was synthesized for immunoassay of aldicarb. It was conjugated to proteins by active ester method. Polyclonal antibody was raised against AOSE-BSA (bovine serum albumin) conjugate. Enzyme-linked immunosorbent assays (ELISAs) showed that this antiserum had high affinity to aldicarb and can be used for sensitive and selective immunoassay of aldicarb.

  3. Ex vivo mucoadhesion of different zinc-pectinate hydrogel beads.

    Science.gov (United States)

    Hagesaether, Ellen; Bye, Ragnar; Sande, S Arne

    2008-01-22

    The objective of this study was to investigate the mucoadhesive properties of pre-swelled hydrogel beads made of six types of pectin from three manufacturers. The types of pectin differed mainly in the degree of methoxylation and degree of amidation. Zinc ions were used as cross-linking agent. The mucoadhesive properties were tested on an inverted fresh porcine small intestine attached to a rotating cylinder. Beads made of pectin with a high degree of methoxylation (70%) showed superior mucoadhesive results compared to the other formulations, which could be correlated to the lower amount of zinc in this formulation, subsequently leading to a lower amount of cross-linking and higher mobility of the polymer chains of these beads. This study therefore also indicated the importance of doing mucoadhesive measurements on relevant formulations, and not basing the understanding solely on investigating polymer solutions. Samples from different manufacturers produced the same results.

  4. Method for Quantitative Determination of Spatial Polymer Distribution in Alginate Beads Using Raman Spectroscopy

    NARCIS (Netherlands)

    Heinemann, Matthias; Meinberg, Holger; Büchs, Jochen; Koß, Hans-Jürgen; Ansorge-Schumacher, Marion B.

    2005-01-01

    A new method based on Raman spectroscopy is presented for non-invasive, quantitative determination of the spatial polymer distribution in alginate beads of approximately 4 mm diameter. With the experimental setup, a two-dimensional image is created along a thin measuring line through the bead compri

  5. Effect of physical fitness and endurance exercise on indirect biomarkers of growth hormone and insulin misuse: Immunoassay-based measurement in urine samples.

    Science.gov (United States)

    Pichini, Simona; Ventura, Rosa; Palmi, Ilaria; di Carlo, Simonetta; Bacosi, Antonella; Langohr, Klaus; Abellan, Rosario; Pascual, Jose Antonio; Pacifici, Roberta; Segura, Jordi; Zuccaro, Piergiorgio

    2010-12-01

    Indirect biomarkers of recombinant human growth hormone (rhGH), insulin-like growth factor-I (IGF-I), insulin-like growth factor-II (IGF-II), insulin-like growth factor binding proteins (IGFBP-2 and IGFBP-3) and insulin (C-peptide) were measured together with urinary parameters of renal damage (beta(2)-microglobulin and proteinuria) by immunoassays, in house validated for the purpose, in 61 subjects (36 elite athletes, 18 recreational athletes and 7 sedentary individuals) with different levels of physical fitness and endurance exercise. Validation parameters were good for the evaluated assays, excluding a high inter-assay imprecision and inaccuracy of 24 and 26% obtained for GH assay. The range of concentrations found in urine samples under investigation was generally covered by the calibration curves of the studied immunoassays. However, for the samples below or above the calibration curve, opportune dilution or concentration were performed. Particularly, C-peptide samples had to be diluted 1:5 and beta(2)-microglobulin ones assayed using a triple sample volume, to fall within the calibration range. Urinary C-peptide was the only biomarker statistically higher in samples of elite athletes when compared to recreational athletes and sedentary individuals. Among elite athletes, tae-kwon-do athletes showed the highest IGF-II basal values while weightlifting athletes showed the lower IGF-I and IGFBP-3 basal values. The trend observed in weightlifters' basal samples was confirmed in their training samples: IGF-I, IGF-II, IGFBP-3 and beta(2)-microglobulin were lower in with respect to those from synchronised swimming. Over the training season, within athlete variability was observed for IGFBP-3 for weightlifting athletes. In the studied subjects, no direct associations were found between biomarkers of GH or insulin misuse and urinary parameters of renal damage, eventually due to high-workload endurance training. The variations observed in different biomarkers should be

  6. Photonic crystal enhanced cytokine immunoassay.

    Science.gov (United States)

    Mathias, Patrick C; Ganesh, Nikhil; Cunningham, Brian T

    2009-01-01

    Photonic crystal surfaces are demonstrated as a means for enhancing the detection sensitivity and resolution for assays that use a fluorescent tag to quantify the concentration of an analyte protein molecule in a liquid test sample. Computer modeling of the spatial distribution of resonantly coupled electromagnetic fields on the photonic crystal surface are used to estimate the magnitude of enhancement factor compared to performing the same fluorescent assay on a plain glass surface, and the photonic crystal structure is fabricated and tested to experimentally verify the performance using a sandwich immunoassay for the protein Tumor Necrosis Factor-alpha (TNF-alpha). The demonstrated photonic crystal fabrication method utilizes a nanoreplica molding technique that allows for large-area inexpensive fabrication of the structure in a format that is compatible with confocal microarray laser scanners. The signal-to-noise ratio for fluorescent spots on the photonic crystal is increased by at least five-fold relative to the glass slide, allowing a TNF-alpha concentration of 1.6 pg/ml to be distinguished from noise on a photonic crystal surface. In addition, the minimum quantitative limit of detection on the photonic crystal surface is one-third the limit on the glass slide - a decrease from 18 pg/ml to 6 pg/ml. The increased performance of the immunoassay allows for more accurate quantitation of physiologically relevant concentrations of TNF-alpha in a protein microarray format that can be expanded to multiple cytokines.

  7. Development of a monoclonal antibody-based flow-through immunoassay (FTA) for detection of white spot syndrome virus (WSSV) in black tiger shrimp Penaeus monodon.

    Science.gov (United States)

    Patil, R; Shankar, K M; Kumar, B T N; Kulkarni, A; Patil, P; Moger, N

    2013-09-01

    A flow-through immunoassay (FTA), an improved version of immunodot, was developed using a nitrocellulose membrane baked onto adsorbent pads enclosed in a plastic cassette to detect white spot syndrome virus (WSSV) in shrimp. Sharp purple dots developed with WSSV against the white background of the nitrocellulose membrane. The detection limits of WSSV by the FTA and immunodot were 0.312 and 1.2 μg mL(-1) crude WSSV protein, respectively. The FTA could be completed in 8-10 min compared with 90 min for immunodot. The FTA was 100 times more sensitive than 1-step polymerase chain reaction (PCR) and in between that of the 1- and 2-step PCR protocol recommended by the Office of International Epizootics (OIE). In experimental, orally infected shrimp post-larvae, WSSV was first detected 14, 16 and 18 h post-infection (hpi) by FTA, immunodot and one-step PCR, respectively. The FTA detected WSSV 2 and 4 h earlier than immunodot and one-step PCR, respectively. The FTA was more sensitive (25/27) than one-step PCR (23/27) and immunodot (23/27) for the detection of WSSV from white spot disease outbreak ponds. The reagent components of the FTA were stable giving expected results for 6 m at 4-8 °C. The FTA is available as a rapid test kit called 'RapiDot' for the early detection of WSSV under field conditions.

  8. Magnetic manipulation and sensing of beads for bioapplications

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl

    -field. Multiple studies are made to optimize the bead detection using PHEB sensors. First, two new sensor designs are introduced: A parallel PHEB sensor, nominally only sensitive to self-field contributions and optimized for volume based relaxation measurements; a differential PHEB, which does on-chip reference...

  9. A pilot-scale study on PVA gel beads based integrated fixed film activated sludge (IFAS) plant for municipal wastewater treatment.

    Science.gov (United States)

    Kumar Singh, Nitin; Singh, Jasdeep; Bhatia, Aakansha; Kazmi, A A

    2016-01-01

    In the present study, a pilot-scale reactor incorporating polyvinyl alcohol gel beads as biomass carrier and operating in biological activated sludge mode (a combination of moving bed biofilm reactor (MBBR) and activated sludge) was investigated for the treatment of actual municipal wastewater. The results, during a monitoring period of 4 months, showed effective removal of chemical oxygen demand (COD), biological oxygen demand (BOD) and NH3-N at optimum conditions with 91%, ∼92% and ∼90% removal efficiencies, respectively. Sludge volume index (SVI) values of activated sludge varied in the range of 25-72 mL/g, indicating appreciable settling characteristics. Furthermore, soluble COD and BOD in the effluent of the pilot plant were reduced to levels well below discharge limits of the Punjab Pollution Control Board, India. A culture dependent method was used to enrich and isolate abundant heterotrophic bacteria in activated sludge. In addition to this, 16S rRNA genes analysis was performed to identify diverse dominant bacterial species in suspended and attached biomass. Results revealed that Escherichia coli, Pseudomonas sp. and Nitrosomonas communis played a significant role in biomass carrier, while Acinetobactor sp. were dominant in activated sludge of the pilot plant. Identification of ciliated protozoa populations rendered six species of ciliates in the plant, among which Vorticella was the most dominant.

  10. Highly Sensitive Bacteria Quantification Using Immunomagnetic Separation and Electrochemical Detection of Guanine-Labeled Secondary Beads

    Directory of Open Access Journals (Sweden)

    Harikrishnan Jayamohan

    2015-05-01

    Full Text Available In this paper, we report the ultra-sensitive indirect electrochemical detection of E. coli O157:H7 using antibody functionalized primary (magnetic beads for capture and polyguanine (polyG oligonucleotide functionalized secondary (polystyrene beads as an electrochemical tag. Vacuum filtration in combination with E. coli O157:H7 specific antibody modified magnetic beads were used for extraction of E. coli O157:H7 from 100 mL samples. The magnetic bead conjugated E. coli O157:H7 cells were then attached to polyG functionalized secondary beads to form a sandwich complex (magnetic bead/E. coli secondary bead. While the use of magnetic beads for immuno-based capture is well characterized, the use of oligonucleotide functionalized secondary beads helps combine amplification and potential multiplexing into the system. The antibody functionalized secondary beads can be easily modified with a different antibody to detect other pathogens from the same sample and enable potential multiplexing. The polyGs on the secondary beads enable signal amplification up to 10\\(^{8}\\ guanine tags per secondary bead (\\(7.5\\times10^{6}\\ biotin-FITC per secondary bead, 20 guanines per oligonucleotide bound to the target (E. coli. A single-stranded DNA probe functionalized reduced graphene oxide modified glassy carbon electrode was used to bind the polyGs on the secondary beads. Fluorescent imaging was performed to confirm the hybridization of the complex to the electrode surface. Differential pulse voltammetry (DPV was used to quantify the amount of polyG involved in the hybridization event with tris(2,2'-bipyridineruthenium(II (Ru(bpy\\(_{3}^{2+}\\ as the mediator. The amount of polyG signal can be correlated to the amount of E. coli O157:H7 in the sample. The method was able to detect concentrations of E. coli O157:H7 down to 3 CFU/100 mL, which is 67 times lower than the most sensitive technique reported in literature. The signal to noise ratio for this work was 3

  11. Antiphospholipase A2 Receptor Autoantibodies: A Comparison of Three Different Immunoassays for the Diagnosis of Idiopathic Membranous Nephropathy

    Directory of Open Access Journals (Sweden)

    Astrid Behnert

    2014-01-01

    Full Text Available Background. The recent identification of circulating autoantibodies directed towards the M-type phospholipase A2 receptor (PLA2R has been a major advancement in the serological diagnosis of idiopathic membranous nephropathy (IMN, a common cause of nephrotic syndrome in adults. The goal of this study was to compare the performance characteristics of two commercial assays as well as the first addressable laser bead immunoassay (ALBIA developed for the detection of anti-PLA2R antibodies. Methods. Serum samples of 157 IMN patients and 142 controls were studied. Samples were tested by a cell based immunofluorescence assay (CBA-IFA, Euroimmun, Germany, by ELISA (Euroimmun, and by a novel ALBIA employing an in vivo expressed recombinant human PLA2R. Results. Overall, the three assays showed significant qualitative and quantitative correlation. As revealed by receiver operating characteristic analysis, the ALBIA correlated better with the CBA-IFA than the ELISA (P=0.0003. The clinical sensitivities/specificities for IMN were 60.0% (51.0–68.5%/98.6% (95.0–99.8% and 56.2% (47.2–64.8%/100.0% (97.4–100.0% for ALBIA and CBA-IFA, respectively. Conclusion. The ALBIA represents a promising assay for the detection of anti-PLA2R antibodies showing similar performance to the CBA-IFA and the advantage of ease of use and suitability for high throughput, rapid turnaround times, and multiplexing.

  12. A competitive immunoassay for ultrasensitive detection of Hg(2+) in water, human serum and urine samples using immunochromatographic test based on surface-enhanced Raman scattering.

    Science.gov (United States)

    She, Pei; Chu, Yanxin; Liu, Chunwei; Guo, Xun; Zhao, Kang; Li, Jianguo; Du, Haijing; Zhang, Xiang; Wang, Hong; Deng, Anping

    2016-02-01

    An immunochromatographic test (ICT) strip was developed for ultrasensitive competitive immunoassay of Hg(2+). This strategy was achieved by combining the easy-operation and rapidity of ICT with the high sensitivity of surface-enhanced Raman scattering (SERS). Monoclonal antibody (mAb) against Hg(2+) and Raman active substance 4-mercaptobenzoic acid (MBA) dual labelled gold nanoparticles (GNPs) were prepared as an immunoprobe. The Raman scattering intensity of MBA on the test line of the ICT strip was measured for quantitative determination of Hg(2+). The ICT was able to directly detect Hg(2+) without complexing due to the specific recognition of the mAb with Hg(2+). The IC50 and limit of detection (LOD) of the assay for Hg(2+) detection were 0.12 ng mL(-1) and 0.45 pg mL(-1), respectively. There was no cross-reactivity (CR) of the assay with other nineteen ions and the ICT strips could be kept for 5 weeks without loss of activity. The recoveries of the assay for water, human serum and urine samples spiked with Hg(2+) were in range of 88.3-107.3% with the relative standard deviations (RSD) of 1.5-9.5% (n = 3). The proposed ICT was used for the detection of Hg(2+) in urine samples collected from Occupational Disease Hospital and the results were confirmed by cold-vapor atomic fluorescence spectroscopy (CV-AFS). The assay exhibited high sensitivity, selectivity, stability, precision and accuracy, demonstrating a promising method for the detection of trace amount of Hg(2+) in environmental water samples and biological serum and urine samples.

  13. Characterization of the anti-factor VIII immunoglobulin profile in patients with hemophilia A by use of a fluorescence-based immunoassay

    Science.gov (United States)

    Boylan, Brian; Rice, Anne S.; Dunn, Amy L.; Tarantino, Michael D.; Brettler, Doreen B.; Barrett, John C.; Miller, Connie H.

    2015-01-01

    Summary Background The development of neutralizing antibodies, referred to as inhibitors, against factor VIII (FVIII) is a major complication associated with FVIII infusion therapy for the treatment of hemophilia A (HA). Previous studies have shown that a subset of HA patients and a low percentage of healthy individuals harbor non-neutralizing anti-FVIII antibodies that do not elicit the clinical manifestations associated with inhibitor development. Objective Assess HA patients' anti-FVIII antibody profiles as potential predictors of clinical outcomes. Methods A fluorescence immunoassay (FLI) was used to detect anti-FVIII antibodies in 491 samples from 371 HA patients. Results Assessments of antibody profiles showed that the presence of anti-FVIII IgG1, IgG2, or IgG4 correlated qualitatively and quantitatively with the presence of a FVIII inhibitor as reported by the Nijmegen-Bethesda assay (NBA). Forty-eight patients with a negative inhibitor history contributed serial samples to the study, including seven patients who had negative NBA titers initially and later converted to NBA-positive. The FLI detected anti-FVIII IgG1 in five of those seven patients prior to their conversion to NBA-positive. Five of 15 serial-sample patients who had a negative inhibitor history and a positive anti-FVIII IgG1 later developed an inhibitor, compared to 2 of 33 patients with a negative inhibitor history without anti-FVIII IgG1. Conclusions These data provide a rationale for future studies designed both to monitor the dynamics of anti-FVIII antibody profiles in HA patients as a potential predictor of future inhibitor development and to assess the value of the anti-FVIII FLI as a supplement to traditional inhibitor testing. PMID:25354263

  14. Predicting of bead undercut defects in high-speed gas metal arc welding (GMAW)

    Institute of Scientific and Technical Information of China (English)

    Wen-jing XU; Chuan-song WU; De-gang ZOU

    2008-01-01

    In the gas metal arc welding (GMAW) process, when the welding speed reaches a certain threshold, there will be an onset of weld bead undercut defects which limit the further increase of the welding speed. Establishing a mathematical model for high-speed GMAW to predict the tendency of bead undercuts is of great significance to pre-vent such defects. Under the action of various forces, the transferred metal from filler wire to the weld pool, and the geometry and dimension of the pool itself decide if the bead undercut occurs or not. The previous model simpli-fied the pool shape too much. In this paper, based on the actual weld pool geometry and dimension calculated from a numerical model, a hydrostatic model for liquid metal surface is used to study the onset of bead undercut defects in the high-speed welding process and the effects of dif-ferent welding parameters on the bead undercut tendency.

  15. Efficient, validated method for detection of mycobacterial growth in liquid culture media by use of bead beating, magnetic-particle-based nucleic acid isolation, and quantitative PCR.

    Science.gov (United States)

    Plain, Karren M; Waldron, Anna M; Begg, Douglas J; de Silva, Kumudika; Purdie, Auriol C; Whittington, Richard J

    2015-04-01

    Pathogenic mycobacteria are difficult to culture, requiring specialized media and a long incubation time, and have complex and exceedingly robust cell walls. Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease, a chronic wasting disease of ruminants, is a typical example. Culture of MAP from the feces and intestinal tissues is a commonly used test for confirmation of infection. Liquid medium offers greater sensitivity than solid medium for detection of MAP; however, support for the BD Bactec 460 system commonly used for this purpose has been discontinued. We previously developed a new liquid culture medium, M7H9C, to replace it, with confirmation of growth reliant on PCR. Here, we report an efficient DNA isolation and quantitative PCR methodology for the specific detection and confirmation of MAP growth in liquid culture media containing egg yolk. The analytical sensitivity was at least 10(4)-fold higher than a commonly used method involving ethanol precipitation of DNA and conventional PCR; this may be partly due to the addition of a bead-beating step to manually disrupt the cell wall of the mycobacteria. The limit of detection, determined using pure cultures of two different MAP strains, was 100 to 1,000 MAP organisms/ml. The diagnostic accuracy was confirmed using a panel of cattle fecal (n=54) and sheep fecal and tissue (n=90) culture samples. This technique is directly relevant for diagnostic laboratories that perform MAP cultures but may also be applicable to the detection of other species, including M. avium and M. tuberculosis.

  16. Expanded polylactide bead foaming - A new technology

    Science.gov (United States)

    Nofar, M.; Ameli, A.; Park, C. B.

    2015-05-01

    Bead foaming technology with double crystal melting peak structure has been recognized as a promising method to produce low-density foams with complex geometries. During the molding stage of the bead foams, the double peak structure generates a strong bead-to-bead sintering and maintains the overall foam structure. During recent years, polylactide (PLA) bead foaming has been of the great interest of researchers due to its origin from renewable resources and biodegradability. However, due to the PLA's low melt strength and slow crystallization kinetics, the attempts have been limited to the manufacturing methods used for expanded polystyrene. In this study, for the first time, we developed microcellular PLA bead foams with double crystal melting peak structure. Microcellular PLA bead foams were produced with expansion ratios and average cell sizes ranging from 3 to 30-times and 350 nm to 15 µm, respectively. The generated high melting temperature crystals during the saturation significantly affected the expansion ratio and cell density of the PLA bead foams by enhancing the PLA's poor melt strength and promoting heterogeneous cell nucleation around the crystals.

  17. Multiplex Immunoassay of Plasma Cytokine Levels in Men with Alcoholism and the Relationship to Psychiatric Assessments.

    Science.gov (United States)

    Manzardo, Ann M; Poje, Albert B; Penick, Elizabeth C; Butler, Merlin G

    2016-03-29

    Chronic alcohol use alters adaptive immunity and cytokine activity influencing immunological and hormone responses, inflammation, and wound healing. Brain cytokine disturbances may impact neurological function, mood, cognition and traits related to alcoholism including impulsiveness. We examined the relationship between plasma cytokine levels and self-rated psychiatric symptoms in 40 adult males (mean age 51 ± 6 years; range 33-58 years) with current alcohol dependence and 30 control males (mean age 48 ± 6 years; range 40-58 years) with no history of alcoholism using multiplex sandwich immunoassays with the Luminex magnetic-bead based platform. Log-transformed cytokine levels were analyzed for their relationship with the Symptom Checklist-90R (SCL-90R), Barratt Impulsivity Scales (BIS) and Alcoholism Severity Scale (ASS). Inflammatory cytokines (interferon γ-induced protein-10 (IP-10); monocyte chemoattractant protein-1 (MCP1); regulated on activation, normal T cell expressed and secreted (RANTES)) were significantly elevated in alcoholism compared to controls while bone marrow-derived hematopoietic cytokines and chemokines (granulocyte-colony stimulating factor (GCSF); soluble CD40 ligand (sCD40L); growth-related oncogene (GRO)) were significantly reduced. GRO and RANTES levels were positively correlated with BIS scales; and macrophage-derived chemokine (MDC) levels were positively correlated with SCL-90R scale scores (p alcoholism may influence brain function leading to increased impulsiveness and/or phobia. The novel association between RANTES and GRO and impulsivity phenotype in alcoholism should be further investigated in alcoholism and psychiatric conditions with core impulsivity and anxiety phenotypes lending support for therapeutic intervention.

  18. Ultrasonic Characterization of Glass Beads

    Science.gov (United States)

    Lassila, I.; Siiriä, S.; Gates, F. K.; Hæggström, E.

    2008-02-01

    We report on the progress in developing a method for an in-line granule size measurement using ultrasonic through transmission method. The knowledge of granule size is important in the production of pharmaceutical dosage forms where the current optical and rheological methods have limitations such as fouling of the optical windows. The phase velocity of a wave propagated through interstitial air between glass balls of 1, 2 and 10 mm in diameter was 254±5 m/s, 261±3 m/s and 320±9 m/s, respectively. The power spectral density of the received signals showed that high frequencies were attenuated more in case of smaller beads due to increased scattering.

  19. A competitive immunoassay for ultrasensitive detection of Hg{sup 2+} in water, human serum and urine samples using immunochromatographic test based on surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    She, Pei; Chu, Yanxin [The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Renai Road 199, Suzhou 215123 (China); Liu, Chunwei; Guo, Xun [OptoTrace (Suzhou) Technologies, Inc., STE 316, Building 4, No. 218, Xinghu Street, bioBAY, Suzhou Industrial Park, Suzhou 215123 (China); Zhao, Kang [The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Renai Road 199, Suzhou 215123 (China); Li, Jianguo, E-mail: lijgsd@suda.edu.cn [The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Renai Road 199, Suzhou 215123 (China); Du, Haijing; Zhang, Xiang [The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Renai Road 199, Suzhou 215123 (China); Wang, Hong [OptoTrace (Suzhou) Technologies, Inc., STE 316, Building 4, No. 218, Xinghu Street, bioBAY, Suzhou Industrial Park, Suzhou 215123 (China); Deng, Anping, E-mail: denganping@suda.edu.cn [The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Renai Road 199, Suzhou 215123 (China)

    2016-02-04

    An immunochromatographic test (ICT) strip was developed for ultrasensitive competitive immunoassay of Hg{sup 2+}. This strategy was achieved by combining the easy-operation and rapidity of ICT with the high sensitivity of surface-enhanced Raman scattering (SERS). Monoclonal antibody (mAb) against Hg{sup 2+} and Raman active substance 4-mercaptobenzoic acid (MBA) dual labelled gold nanoparticles (GNPs) were prepared as an immunoprobe. The Raman scattering intensity of MBA on the test line of the ICT strip was measured for quantitative determination of Hg{sup 2+}. The ICT was able to directly detect Hg{sup 2+} without complexing due to the specific recognition of the mAb with Hg{sup 2+}. The IC{sub 50} and limit of detection (LOD) of the assay for Hg{sup 2+} detection were 0.12 ng mL{sup −1} and 0.45 pg mL{sup −1}, respectively. There was no cross-reactivity (CR) of the assay with other nineteen ions and the ICT strips could be kept for 5 weeks without loss of activity. The recoveries of the assay for water, human serum and urine samples spiked with Hg{sup 2+} were in range of 88.3–107.3% with the relative standard deviations (RSD) of 1.5–9.5% (n = 3). The proposed ICT was used for the detection of Hg{sup 2+} in urine samples collected from Occupational Disease Hospital and the results were confirmed by cold-vapor atomic fluorescence spectroscopy (CV-AFS). The assay exhibited high sensitivity, selectivity, stability, precision and accuracy, demonstrating a promising method for the detection of trace amount of Hg{sup 2+} in environmental water samples and biological serum and urine samples. - Highlights: • The proposed ICT was able to directly detect Hg{sup 2+} without formation of Hg{sup 2+}-ligand complex. • The proposed ICT exhibited high sensitivity, specificity, stability, precision and accuracy for Hg{sup 2+} detection. • The proposed ICT was applicable for the detection of trace amount of Hg{sup 2+} in water, human serum and urine samples.

  20. Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release.

    Science.gov (United States)

    Wang, Qin; Xie, Xiaoling; Zhang, Xiaowei; Zhang, Junping; Wang, Aiqin

    2010-04-01

    A series of pH-sensitive composite hydrogel beads, chitosan-g-poly (acrylic acid)/vermiculite/sodium alginate (CTS-g-PAA/VMT/SA), was prepared using CTS-g-PAA/VMT composite and SA by Ca(2+) as the crosslinking agent. The structure and morphologies of the developed composite hydrogel beads were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The swelling properties and pH-sensitivity of the beads were investigated. In addition, the drug loading and controlled release behaviors of the beads were also evaluated using diclofenac sodium (DS) as the model drug in stimulated gastric fluids (pH 2.1) and intestinal fluids (pH 6.8). The results indicate that the composite hydrogel beads showed good pH-sensitivity. The release rate of the drug from the composite hydrogel beads is remarkably slowed down, which indicated that incorporating VMT into the composite hydrogel beads can improve the burst release effect of the drug.

  1. Single Step Nanoplasmonic Immunoassay for the Measurement of Protein Biomarkers

    Directory of Open Access Journals (Sweden)

    Shradha Prabhulkar

    2013-02-01

    Full Text Available A nanoplasmonic biosensor for highly-sensitive, single-step detection of protein biomarkers is presented. The principle is based on the utilization of the optical scattering properties of gold nanorods (GNRs conjugated to bio-recognition molecules. The nanoplasmonic properties of the GNRs were utilized to detect proteins using near-infrared light interferometry. We show that the antibody-conjugated GNRs can specifically bind to our model analyte, Glucose Transporter-1 (Glut-1. The signal intensity of back-scattered light from the GNRs bound after incubation, correlated well to the Glut-1 concentration as per the calibration curve. The detection range using this nanoplasmonic immunoassay ranges from 10 ng/mL to 1 ug/mL for Glut-1. The minimal detectable concentration based on the lowest discernable concentration from zero is 10 ng/mL. This nanoplasmonic immunoassay can act as a simple, selective, sensitive strategy for effective disease diagnosis. It offers advantages such as wide detection range, increased speed of analysis (due to fewer incubation/washing steps, and no label development as compared to traditional immunoassay techniques. Our future goal is to incorporate this detection strategy onto a microfluidic platform to be used as a point-of-care diagnostic tool.

  2. A Wide-Field Fluorescence Microscope Extension for Ultrafast Screening of One-Bead One-Compound Libraries Using a Spectral Image Subtraction Approach.

    Science.gov (United States)

    Heusermann, Wolf; Ludin, Beat; Pham, Nhan T; Auer, Manfred; Weidemann, Thomas; Hintersteiner, Martin

    2016-05-09

    The increasing involvement of academic institutions and biotech companies in drug discovery calls for cost-effective methods to identify new bioactive molecules. Affinity-based on-bead screening of combinatorial one-bead one-compound libraries combines a split-mix synthesis design with a simple protein binding assay operating directly at the bead matrix. However, one bottleneck for academic scale on-bead screening is the unavailability of a cheap, automated, and robust screening platform that still provides a quantitative signal related to the amount of target protein binding to individual beads for hit bead ranking. Wide-field fluorescence microscopy has long been considered unsuitable due to significant broad spectrum autofluorescence of the library beads in conjunction with low detection sensitivity. Herein, we demonstrate how such a standard microscope equipped with LED-based excitation and a modern CMOS camera can be successfully used for selecting hit beads. We show that the autofluorescence issue can be overcome by an optical image subtraction approach that yields excellent signal-to-noise ratios for the detection of bead-associated target proteins. A polymer capillary attached to a semiautomated bead-picking device allows the operator to efficiently isolate individual hit beads in less than 20 s. The system can be used for ultrafast screening of >200,000 bead-bound compounds in 1.5 h, thereby making high-throughput screening accessible to a wider group within the scientific community.

  3. Determination of squamous cell carcinoma antigen based on the magnetic particles chemiluminescence immunoassay%基于磁颗粒化学发光免疫分析方法检测鳞状细胞癌抗原∗

    Institute of Scientific and Technical Information of China (English)

    田峰; 齐素文

    2015-01-01

    目的:建立一种快速、灵敏的化学发光免疫分析方法检测人血清中鳞状细胞癌抗原(SCCA)水平。方法使用异鲁米诺(ABEI)和异硫氰酸荧光素(FITC)分别标记 SCCA 的单克隆抗体,与待测 SCCA 抗原通过夹心法免疫反应形成抗原抗体复合物,采用包被有 FITC 的磁颗粒作为固相分离载体,加入底物之后检测发光强度。结果本方法线性范围达到22 ng/mL,灵敏度为0.025 ng/mL,批内变异系数(CV)和批间 CV 分别小于6%和7%。与现有的 SCCA 检测方法进行比对,相关系数为0.9901。结论基于磁颗粒化学发光免疫分析检测 SCCA 的方法性能稳定、可靠,可用于定量检测人血清中 SCCA 浓度。%Objective To establish a rapid and sensitive chemiluminescence immunoassay for detecting squamous cell carcinoma antigen (SCCA)in human serum.Methods Fluorescein isothiocyanate (FITC)and N-(aminobutyl)-N-(ethylisoluminol)(ABEI) were used to label two different monoclonal antibodies of anti-SCCA.SCCA in serum combined with labeled antibodies and formed a sandwiched immunoreaction.After adding the substrate solution,the relative light unit of ABEI was measured.Magnetic particles coated with anti-FITC antibody were used as solid separation carrier.Results The results demonstrated that the method was linear to 22 ng/mL with a detection limit of 0.025 ng/mL.The coefficient of variation (CV)was less than 6% and 7% for intra-assay and inter-assay precision,respectively.Compared with the commercial kit,the proposed method showed a correlation of 0.990 1.Conclu-sion chemiluminescence immunoassay based on magnetic particles displays acceptable performance for quantification of SCCA and is appropriate for use in clinical diagnosis.

  4. Detection Techniques for Biomolecules using Semi-Conductor Nanocrystals and Magnetic Beads as Labels

    Science.gov (United States)

    Chatterjee, Esha

    Continued interest in the development of miniaturized and portable analytical platforms necessitates the exploration of sensitive methods for the detection of trace analytes. Nanomaterials, on account of their unique physical and chemical properties, are not only able to overcome many limitations of traditional detection reagents but also enable the exploration of many new signal transduction technologies. This dissertation presents a series of investigations of alternative detection techniques for biomolecules, involving the use of semi-conductor nanocrystals and magnetic beads as labels. Initial research focused on the development of quantum dot-encapsulating liposomes as a novel fluorescent label for immunoassays. This hybrid nanomaterial was anticipated to overcome the drawbacks presented by traditional fluorophores as well as provide significant signal amplification. Quantum dot-encapsulating liposomes were synthesized by the method of thin film hydration and characterized. The utility of these composite nanostructures for bioanalysis was demonstrated. However, the longterm instability of the liposomes hampered quantitative development. A second approach for assay development exploited the ability of gold nanoparticles to quench the optical signals obtained from quantum dots. The goal of this study was to demonstrate the feasibility of using aptamer-linked nanostructures in FRET-based quenching for the detection of proteins. Thrombin was used as the model analyte in this study. Experimental parameters for the assay were optimized. The assay simply required the mixing of the sample with the reagents and could be completed in less than an hour. The limit of detection for thrombin by this method was 5 nM. This homogeneous assay can be easily adapted for the detection of a wide variety of biochemicals. The novel technique of ferromagnetic resonance generated in magnetic bead labels was explored for signal transduction. This inductive detection technique lends

  5. Design of a Microfluidic Chip for Magnetic-Activated Sorting of One-Bead-One-Compound Libraries.

    Science.gov (United States)

    Cho, Choi-Fong; Lee, Kyungheon; Speranza, Maria-Carmela; Bononi, Fernanda C; Viapiano, Mariano S; Luyt, Leonard G; Weissleder, Ralph; Chiocca, E Antonio; Lee, Hakho; Lawler, Sean E

    2016-06-13

    Molecular targeting using ligands specific to disease markers has shown great promise for early detection and directed therapy. Bead-based combinatorial libraries have served as powerful tools for the discovery of novel targeting agents. Screening platforms employing magnetic capture have been used to achieve rapid and efficient identification of high-affinity ligands from one-bead-one-compound (OBOC) libraries. Traditional manual methodologies to isolate magnetized "hit" beads are tedious and lack accuracy, and existing instruments to expedite bead sorting tend to be costly and complex. Here, we describe the design and construction of a simple and inexpensive microfluidic magnetic sorting device using standard photolithography and soft lithography approaches to facilitate high-throughput isolation of magnetized positive hit beads from combinatorial libraries. We have demonstrated that the device is able to sort magnetized beads with superior accuracy compared to conventional manual sorting approaches. This chip offers a very convenient yet inexpensive alternative for screening OBOC libraries.

  6. Rapid freezing cryo-polymerization and microchannel liquid-flow focusing for cryogel beads: adsorbent preparation and characterization of supermacroporous bead-packed bed.

    Science.gov (United States)

    Yun, Junxian; Dafoe, Julian T; Peterson, Eric; Xu, Linhong; Yao, Shan-Jing; Daugulis, Andrew J

    2013-04-05

    Cryogel beads, fabricated by the microchannel liquid-flow focusing and cryo-polymerization method, have micron-scale supermacropores allowing the passage of crude feedstocks, and could be of interest as chromatographic adsorbents in bioseparation applications. In this work, we provide a rapid freezing and continuous formation method for cryogel beads by cryo-polymerization using dry ice particles as the freezing source and microchannel liquid-flow focusing using peristaltic pumps for the fluid supply. Polyacrylamide (pAAm)-based supermacroporous cryogel beads were prepared and grafted with N,N-dimethylaminoethyl methacrylate (DMAEMA), which provided the anion-exchange cryogel beads with tertiary amine functional groups suitable for binding proteins. Properties of the supermacroporous cryogel-bead packed bed, i.e., permeability, bed voidage, protein breakthrough as well as protein adsorption performance by using bovine γ-globulin as model protein, were experimentally investigated. A capillary-based model was employed to characterize the supermacroporous bed performance, and gave a reasonable description of the microstructure and thus an insight into the flow, dispersion and mass transfer behaviors within the cryogel bead-packed bed. The results also showed that by using dry ice as the freezing source, it is easy to reduce the temperature below -55 to -61°C in the bulk solution, causing the rapid formation of ice crystals within the monomer drops, and finally effective cryo-polymerization to form supermacropores within the cryogel beads. By using peristaltic pumps, continuous preparation was achieved and the obtained cryogel beads had favorable properties similar to those prepared using syringe pumps in the microchannel liquid-flow focusing process. This method is thus expected to be interesting in the liter- or even larger-scale preparation of cryogel adsorbents.

  7. An optimized software framework for real-time, high-throughput tracking of spherical beads.

    Science.gov (United States)

    Cnossen, J P; Dulin, D; Dekker, N H

    2014-10-01

    Numerous biophysical techniques such as magnetic tweezers, flow stretching assays, or tethered particle motion assays rely on the tracking of spherical beads to obtain quantitative information about the individual biomolecules to which these beads are bound. The determination of these beads' coordinates from video-based images typically forms an essential component of these techniques. Recent advances in camera technology permit the simultaneous imaging of many beads, greatly increasing the information that can be captured in a single experiment. However, computational aspects such as frame capture rates or tracking algorithms often limit the rapid determination of such beads' coordinates. Here, we present a scalable and open source software framework to accelerate bead localization calculations based on the CUDA parallel computing framework. Within this framework, we implement the Quadrant Interpolation algorithm in order to accurately and simultaneously track hundreds of beads in real time using consumer hardware. In doing so, we show that the scatter derived from the bead tracking algorithms remains close to the theoretical optimum defined by the Cramer-Rao Lower Bound. We also explore the trade-offs between processing speed, size of the region-of-interests utilized, and tracking bias, highlighting in passing a bias in tracking along the optical axis that has previously gone unreported. To demonstrate the practical application of this software, we demonstrate how its implementation on magnetic tweezers can accurately track (with ∼1 nm standard deviation) 228 DNA-tethered beads at 58 Hz. These advances will facilitate the development and use of high-throughput single-molecule approaches.

  8. Multiplex immunoassay for persistent organic pollutants in tilapia: Comparison of imaging- and flow cytometry-based platforms using spectrally encoded paramagnetic microspheres

    Science.gov (United States)

    Recent developments in spectrally encoded microspheres (SEMs)-based technologies provide high multiplexing possibilities. Most SEMs-based assays required a flow cytometer with sophisticated fluidics and optics. The new imaging superparamagnetic SEMs-based platform transports SEMs with considerably ...

  9. Enrichment of cancer stem cell-like cells by culture in alginate gel beads.

    Science.gov (United States)

    Xu, Xiao-xi; Liu, Chang; Liu, Yang; Yang, Li; Li, Nan; Guo, Xin; Sun, Guang-wei; Ma, Xiao-jun

    2014-05-10

    Cancer stem cells (CSCs) are most likely the reason of cancer reoccurrence and metastasis. For further elucidation of the mechanism underlying the characteristics of CSCs, it is necessary to develop efficient culture systems to culture and expand CSCs. In this study, a three-dimensional (3D) culture system based on alginate gel (ALG) beads was reported to enrich CSCs. Two cell lines derived from different histologic origins were encapsulated in ALG beads respectively and the expansion of CSCs was investigated. Compared with two-dimensional (2D) culture, the proportion of cells with CSC-like phenotypes was significantly increased in ALG beads. Expression levels of CSC-related genes were greater in ALG beads than in 2D culture. The increase of CSC proportion after being cultured within ALG beads was further confirmed by enhanced tumorigenicity in vivo. Moreover, increased metastasis ability and higher anti-cancer drug resistance were also observed in 3D-cultured cells. Furthermore, we found that it was hypoxia, through the upregulation of hypoxia-inducible factors (HIFs) that occurred in ALG beads to induce the increasing of CSC proportion. Therefore, ALG bead was an efficient culture system for CSC enrichment, which might provide a useful platform for CSC research and promote the development of new anti-cancer therapies targeting CSCs.

  10. Acupressure Bead in the Eustachian Tube.

    Science.gov (United States)

    Igarashi, Kazunori; Matsumoto, Yu; Kakigi, Akinobu

    2015-08-01

    In this article, we aim to enlighten practitioners and patients involved with acupressure beads and to contribute to their safer use by reporting a unique case of insidious intrusion of an acupressure bead into the eustachian tube. A metallic object was found in the eustachian tube of a patient while conducting a magnetic resonance imaging (MRI) examination. The object was later confirmed to be an auricular acupressure bead, and was successfully removed by performing a tympanoplasty and a canal wall down mastoidectomy. The bead was assumed to have passed through an existing perforation of the tympanic membrane. According to previously published literature, tympanic membrane perforations exist in ∼1% of the population. Therefore, middle-ear foreign bodies are relatively common occurrences for otolaryngologists. However, metallic objects such as acupressure beads are especially important in the sense that they can cause severe burns during MRI. To avoid potential complications, acupressure-bead practitioners should be aware of the possibility that intrusions through the tympanic membrane could go unnoticed.

  11. An enrichment microsphere immunoassay for the detection of Pectobaterium atrosepticum and Dickeya dianthicola in potato tuber extracts

    NARCIS (Netherlands)

    Peters, J.; Sledz, V.; Bergervoet, J.H.W.; Wolf, van der J.M.

    2007-01-01

    An enrichment microsphere immunoassay (MIA) was developed, based on the Luminex xMAP® technology, for the simultaneous (duplex) detection of Pectobacterium atrosepticum (former name Erwinia carotovora subsp. atroseptica) (Pca) and Dickeya dianthicola (former name Erwinia chrysanthemi) (Dcd) in potat

  12. Electrochemical immunoassay of benzo[a]pyrene based on dual amplification strategy of electron-accelerated Fe{sub 3}O{sub 4}/polyaniline platform and multi-enzyme-functionalized carbon sphere label

    Energy Technology Data Exchange (ETDEWEB)

    Lin Mouhong [Institute of Biomaterials, College of Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province (China); Liu Yingju, E-mail: liuyingju@hotmail.com [Institute of Biomaterials, College of Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province (China); Sun Zihong; Zhang Shenglai; Yang Zhuohong [Institute of Biomaterials, College of Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province (China); Ni Chunlin, E-mail: niclchem@scau.edu.cn [Institute of Biomaterials, College of Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province (China)

    2012-04-13

    Graphical abstract: Schematic representation of Fe{sub 3}O{sub 4}/PANI/Nafion-based immunosensor using multi-HRP-HCS-Ab{sub 2} bioconjugates as labels. Highlights: Black-Right-Pointing-Pointer An electrochemical immunosensor for high sensitive detection of BaP. Black-Right-Pointing-Pointer A dual amplification strategy by Fe{sub 3}O{sub 4}/PANI/Nafion film and multi-HRP-HCS-Ab{sub 2} label. Black-Right-Pointing-Pointer An accelerated electron transfer pathway by the Fe{sub 3}O{sub 4}/PANI/Nafion film. - Abstract: An electrochemical immunosensor, basing on a dual amplification strategy by employing a biocompatible Fe{sub 3}O{sub 4}/polyaniline/Nafion (Fe{sub 3}O{sub 4}/PANI/Nafion) layer as sensor platform and multi-enzyme-antibody functionalized highly-carbonized spheres (multi-HRP-HCS-Ab{sub 2}) as label, was constructed for sensitive detection of benzo[a]pyrene (BaP). The stable film, Fe{sub 3}O{sub 4}/PANI/Nafion, can not only immobilize biomolecules, but also catalyze the reduction of hydrogen peroxide, indicating an accelerated electron transfer pathway of the platform. The experimental conditions, including the concentration of Nafion, concentration of Fe{sub 3}O{sub 4}/polyaniline (Fe{sub 3}O{sub 4}/PANI), pH of the detection solution and concentrations of biomolecules, were studied in detail. Basing on a competitive immunoassay, the current change was proportional to the logarithm of BaP concentration in the range of 8 pM and 2 nM with the detection limit of 4 pM. The proposed immunosensor exhibited acceptable reproducibility and stability. This new type of dual amplification strategy may provide potential applications for the detection of environmental pollutants.

  13. Asynchronous Magnetic Bead Rotation (AMBR Microviscometer for Label-Free DNA Analysis

    Directory of Open Access Journals (Sweden)

    Yunzi Li

    2014-03-01

    Full Text Available We have developed a label-free viscosity-based DNA detection system, using paramagnetic beads as an asynchronous magnetic bead rotation (AMBR microviscometer. We have demonstrated experimentally that the bead rotation period is linearly proportional to the viscosity of a DNA solution surrounding the paramagnetic bead, as expected theoretically. Simple optical measurement of asynchronous microbead motion determines solution viscosity precisely in microscale volumes, thus allowing an estimate of DNA concentration or average fragment length. The response of the AMBR microviscometer yields reproducible measurement of DNA solutions, enzymatic digestion reactions, and PCR systems at template concentrations across a 5000-fold range. The results demonstrate the feasibility of viscosity-based DNA detection using AMBR in microscale aqueous volumes.

  14. Multiplex immunoassay for persistent organic pollutants in tilapia: comparison of imaging- and flow cytometry-based platforms using spectrally encoded paramagnetic microspheres

    NARCIS (Netherlands)

    Meimaridou, A.; Haasnoot, W.; Shelver, W.L.; Franek, M.; Nielen, M.W.F.

    2013-01-01

    Recent developments in spectrally encoded microspheres (SEMs)-based technologies provide high multiplexing possibilities. Most SEMs-based assays require a flow cytometer with sophisticated fluidics and optics. A new imaging super-paramagnetic SEMs-based alternative platform transports SEMs with cons

  15. Development of a MAb-based immunoassay for the simultaneous determination of O,O-diethyl and O,O-dimethyl organophosphorus pesticides in vegetable and fruit samples pretreated with QuEChERS.

    Science.gov (United States)

    Zhao, Fengchun; Hu, Chunyan; Wang, Huimin; Zhao, Longyu; Yang, Zhengyou

    2015-12-01

    To develop a broad-specificity immunoassay for organophosphorus pesticides (OPs), a broad-specificity monoclonal antibody (MAb) for OPs against a generic hapten, O,O-diethyl O-(3-carboxyphenyl) phosphorothioate with the carboxy group in the meta position of the benzene ring, was produced. Eight haptens were prepared and covalently attached to ovalbumin (OVA) for use as coating antigens, and the optimum coating antigen was selected. Then, a sensitive and broadly class selective competitive indirect enzyme-linked immunosorbent assay (ciELISA) based on the MAb and the optimum coating antigen (hapten H-OVA, possessing an O,O-dimethyl generic structure and linked through a linear spacer arm) was developed and optimized. The MAb developed in this study showed quite different cross-reactivity and selectivity compared to previously produced anti-OPs broad-specificity MAbs. Specifically, the MAb showed high and uniform sensitivity to seven O,O-diethyl OPs and six O,O-dimethyl OPs. With the optimum ciELISA, the IC50 values of the 13 OPs were determined as 23.1∼151.2 ng mL(-1). The average IC50 and coefficient of variation (CV) for the IC50 values of the 13 OPs were 74.6 ng mL(-1) and 33.9%, respectively. For the recovery study, a QuEChERS approach based on dispersive solid-phase extraction (d-SPE) was implemented to decrease the matrix effects of vegetable and fruit samples. The recoveries of six representative OPs from the spiked samples ranged from 89.4 to 135.5%; the CV ranged from 3.5 to 15.7%. The ciELISA was also applied to real samples, followed by confirmation with gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis. The results demonstrated that the ciELISA is suitable for monitoring OP contamination in vegetable and fruit samples.

  16. An Abiotic Glass-Bead Collector Exhibiting Active Transport

    Science.gov (United States)

    Goto, Youhei; Kanda, Masato; Yamamoto, Daigo; Shioi, Akihisa

    2015-09-01

    Animals relocate objects as needed by active motion. Active transport is ubiquitous in living organisms but has been difficult to realize in abiotic systems. Here we show that a self-propelled droplet can gather scattered beads toward one place on a floor and sweep it clean. This is a biomimetic active transport with loadings and unloadings, because the transport was performed by a carrier and the motion of the carrier was maintained by the energy of the chemical reaction. The oil droplet produced fluctuation of the local number density of the beads on the floor, followed by its autocatalytic growth. This mechanism may inspire the technologies based on active transport wherein chemical and physical substances migrate as in living organisms.

  17. Experimental and numerical study of restraining force development in inclined draw beads

    Science.gov (United States)

    Raghavan, K. S.; Narainen, R.; Smith, L. M.

    2013-12-01

    Inclined (angled) draw bead geometries are becoming increasingly common as body styling requirements necessitate external panel shapes with considerable curvature. The restraining force that develops as material undergoes bending and frictional contact varies with bead geometry, material strength level and ambient lubrication conditions. In this study, an FEA based parametric approach is used to model the effects of material strength, friction condition, and binder angle on draw bead restraining force (DBRF). A finite element draw bead simulation was calibrated to experimental data for a 250 MPa electro-galvanized bake-hardenable specimen. The experimental data is used to confirm that the DBRF vs. binder angle curve roughly follows a concave shaped second order function with a maximum somewhere in the positive binder angle domain.

  18. Beaded streams of Arctic permafrost landscapes

    Directory of Open Access Journals (Sweden)

    C. D. Arp

    2014-07-01

    Full Text Available Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a Circum-Arctic inventory of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium- to high-ice content permafrost in moderately sloping terrain. In the Fish Creek watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. Comparison of one beaded channel using repeat photography between 1948 and 2013 indicate relatively stable form and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene–Holocene transition. Contemporary processes, such as deep snow accumulation in stream gulches effectively insulates river ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2 °C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features. In the summer, some pools stratify thermally, which reduces permafrost thaw and maintains coldwater habitats. Snowmelt generated peak-flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.1 to 0.01 m s−1, yet channel runs still move water

  19. Analysis of urinary drugs of abuse by a multianalyte capillary electrophoretic immunoassay.

    Science.gov (United States)

    Caslavska, J; Allemann, D; Thormann, W

    1999-04-09

    This paper characterizes a novel multianalyte competitive binding, electrokinetic capillary-based immunoassay for urinary methadone, opiates, benzoylecgonine (cocaine metabolite) and amphetamines. After incubation of 25 microliters urine with the reactants for several minutes in the presence of an internal standard, a small aliquot of the mixture is applied onto a fused-silica capillary and the unbound fluorescein labelled drug tracers are monitored by capillary electrophoresis with on-column laser induced fluorescence detection. The multianalyte assay is shown to be rapid, simple, quantitative, capable of recognizing urinary drug concentrations > or = 30 ng/ml and suitable for screening of patient urines. Data are demonstrated to compare well with those obtained by routine screening methods based on enzyme multiplied immunoassay techniques and fluorescence polarization immunoassays. The electrokinetic capillary assay has been validated via analysis of external quality control urines and confirmation analysis of patient urines using GC-MS.

  20. Bead-Fourier path integral molecular dynamics

    Science.gov (United States)

    Ivanov, Sergei D.; Lyubartsev, Alexander P.; Laaksonen, Aatto

    2003-06-01

    Molecular dynamics formulation of Bead-Fourier path integral method for simulation of quantum systems at finite temperatures is presented. Within this scheme, both the bead coordinates and Fourier coefficients, defining the path representing the quantum particle, are treated as generalized coordinates with corresponding generalized momenta and masses. Introduction of the Fourier harmonics together with the center-of-mass thermostating scheme is shown to remove the ergodicity problem, known to pose serious difficulties in standard path integral molecular dynamics simulations. The method is tested for quantum harmonic oscillator and hydrogen atom (Coulombic potential). The simulation results are compared with the exact analytical solutions available for both these systems. Convergence of the results with respect to the number of beads and Fourier harmonics is analyzed. It was shown that addition of a few Fourier harmonics already improves the simulation results substantially, even for a relatively small number of beads. The proposed Bead-Fourier path integral molecular dynamics is a reliable and efficient alternative to simulations of quantum systems.

  1. Highly specific and rapid immuno-fluorescent visualization and detection of E. coli O104:H4 with protein-A coated magnetic beads based LST-MUG assay.

    Science.gov (United States)

    Barizuddin, Syed; Balakrishnan, Baskar; Stringer, R Cody; Dweik, Majed

    2015-08-01

    A method combining immunomagnetic separation and fluorescent sensing was developed to detect Escherichia coli (E. coli) O104:H4. The antibody specific to E. coli O104:H4 was immobilized on protein A-coated magnetic beads. This protein-A-anti E. coli O104:H4 complex was used to bind Fluorescein IsoThioCyanate (FITC) labeled E. coli O104:H4 antigen (whole cell) on it. The goal was to achieve a fluorescently detectable protein-A-anti E. coli O104:H4-E. coli O104:H4 complex on the magnetic beads. Fluorescent microscopy was used to image the magnetic beads. The resulting fluorescence on the beads was due to the FITC labeled antigen binding on the protein-A-anti E. coli O104:H4 immobilized magnetic beads. This visually proves the antigen-antibody binding. The fluorescent imaging results were obtained in 2 h if the minimum available bacteria in the sample were at least 10(5) CFU/ml. If no fluorescence was observed on the magnetic beads during fluorescent imaging, it indicates the bacterial concentration in the sample to be too low for it to have bound to the magnetic beads and hence no detection was possible. To detect bacterial concentration less than 10(5) CFU/ml in the sample, an additional step was required for detection. The magnetic bead complex was added to the LST-MUG (lauryl sulfate tryptose-4-methylumbelliferyl-β-D-glucuronide), a signaling reporter. The E. coli O104:H4 grows in LST-MUG and releases β-glucuronidase enzyme. This enzyme cleaves the MUG substrate that produces 4-methylumbelliferone, a highly fluorescent species. This fluorescence was detected using a spectrofluorometer. The emission peak in the fluorescent spectrum was found to be at 450 nm. The lower and upper detection range for this LST-MUG assay was found to be 2.05×10(5)-4.09×10(8) CFU/ml. The results for the LST-MUG assay for concentrations below 10(5) CFU/ml were ascertained in 8h. The advantages of this technique include the specific detection of bacteria without an enrichment step and

  2. Preprogrammed, parallel on-chip immunoassay using system-level capillarity control.

    Science.gov (United States)

    Kim, Sung-Jin; Paczesny, Sophie; Takayama, Shuichi; Kurabayashi, Katsuo

    2013-07-16

    Fully manual use of conventional multiwell plates makes enzyme-linked immunosorbent assay (ELISA)-based immunoassays highly time-consuming and labor-intensive. Here, we present a capillarity-driven on-chip immunoassay that greatly saves time and labor with an inexpensive setup. Our immunoassay process starts with pipetting multiple solutions into multiwells constructed on a microfluidic device chip. Subsequently, capillarity spontaneously transports multiple sample solutions and common reagent solutions into assigned detection channels on the chip in a purely passive and preprogrammed manner. Our device implements capillarity-driven immunoassays involving four sample and six reagent solutions within 30 min by orchestrating the functions of on-chip passive components. Notably, our immunoassay technique reduces the total number of pipetting processes by ~5 times, as compared to assays on multiwell plates (48 vs 10). This assay technique allows us to quantify the concentrations of C-reactive protein and suppressor of tumorigenicity 2 with a detection limit of 8 and 90 pM, respectively. This device should be useful for sophisticated, parallel biochemical microfluidic processing in point-of-care settings under limited resources.

  3. Label-free impedimetric immunoassay for trace levels of polychlorinated biphenyls in insulating oil.

    Science.gov (United States)

    Date, Yasumoto; Aota, Arata; Sasaki, Kazuhiro; Namiki, Yukie; Matsumoto, Norio; Watanabe, Yoshitomo; Ohmura, Naoya; Matsue, Tomokazu

    2014-03-18

    A rapid, ultrasensitive, and practical label-free impedimetric immunoassay for measuring trace levels of total polychlorinated biphenyls (PCBs) in insulating oil was developed. First, we developed a novel monoclonal antibody (RU6F9) for PCBs by using a designed immunogen and characterized its binding affinity for a commercial mixtures of PCBs and its main congeners. A micro comblike gold electrode was fabricated, and the antibody was covalently immobilized on the electrode through a self-assembled monolayer formed by dithiobis-N-succinimidyl propionate. The antigen-binding event on the surface of the functionalized electrode was determined as the change in charge transfer resistance by using electrochemical impedance spectroscopy. The resulting impedimetric immunoassay in aqueous solution achieved a wide determination range (0.01-10 μg/L) and a low detection limit (LOD) of 0.001 μg/L, which was 100-fold more sensitive than a conventional flow-based immunoassay for PCBs. By combining the impedimetric immunoassay with a cleanup procedure for insulating oil utilizing a multilayer cleanup column followed by DMSO partitioning, an LOD of 0.052 mg/kg-oil was achieved, which satisfied the Japanese regulation criterion of 0.5 mg/kg-oil. Finally, the immunoassay was employed to determine total PCB levels in actual used insulating oils (n = 33) sampled from a used transformer containing trace levels of PCBs, and the results agreed well with the Japanese official method (HRGC/HRMS).

  4. Buckling of open-section bead-stiffened composite panels

    Science.gov (United States)

    Laananen, D. H.; Renze, S. P.

    Stiffened panels are structures that can be designed to efficiently support inplane compression, bending, and shear loads. Although the stiffeners are usually discrete elements which are fastened or bonded to a flat or continuously curved plate, manufacturing methods such as thermoforming allow integral formation of the stiffeners in a panel. Such a configuration offers potential advantages in terms of a reduced number of parts and manufacturing operations. For thermoplastic composite panels stiffened by integrally formed open-section beads, the effects of bead spacing and bend cross-section geometry on the initiation of buckling under uniaxial compression and uniform shear loading were investigated. Finite elements results for a range of stiffened panel sizes and bead geometries are presented and compared with approximate closed-form solutions based on an effective flat plate size. Experimental verification of analytical predictions for one of the shear panels and one of the compression panels is described. Compensation of the forming tool to reduce the degree of initial curvature of the panels was found to be necessary.

  5. Chitosan and chemically modified chitosan beads for acid dyes sorption

    Institute of Scientific and Technical Information of China (English)

    AZLAN Kamari; WAN SAIME Wan Ngah; LAI KEN Liew

    2009-01-01

    The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25. It was shown that the adsorption capacities of chitosan were comparatively higher than chitosan-EGDE for both acid dyes. This is mainly because cross-linking using EGDE reduces the major adsorption sites -NH3+ on chitosan. Langmuir isotherm model showed best conformity compared to Freundlich and BET. The kinetic experimental data agreed very well to the pseudo second-order kinetic model. The desorption study revealed that after three cycles of adsorption and desorption by NaOH and HCl, both adsorbents retained their promising adsorption abilities. FT-IR analysis proved that the adsorption of acid dyes onto chitosan-based adsorbents was a physical adsorption. Results also showed that chitosan and chitosan-EGDE beads were favourable adsorbers and could be employed as low-cost alternatives for the removal of acid dyes in wastewater treatment.

  6. Evaluation of an enzyme immunoassay for the detection of the mycotoxin tenuazonic acid in sorghum grains and sorghum-based infant food.

    Science.gov (United States)

    Gross, Madeleine; Asam, Stefan; Rychlik, Michael

    2017-02-01

    An enzyme-linked immunosorbent assay (ELISA) for the Alternaria mycotoxin tenuazonic acid (TeA) was evaluated by comparative analysis of naturally contaminated sorghum grains and sorghum-based infant food, using a stable isotope dilution LC-MS assay (SIDA; limit of detection (LOD) 1.0 μg/kg) as the reference method. LODs of the ELISA were 30 μg/kg in sorghum grains and 220 μg/kg in sorghum-based infant cereals. With SIDA, 100% of the samples (n = 28) had been positive for TeA in a concentration range of 6-584 μg/kg (mean 113 μg/kg). The ELISA consistently detected TeA in all naturally contaminated samples at cut-off levels of 30-60 μg/kg (sorghum) and 200-300 μg/kg (infant cereals), as based on corresponding to SIDA values. Although the ELISA was much less sensitive than the SIDA method, it may be useful as a screening method for sorghum and sorghum-based infant foods and can be employed to identify samples containing elevated concentrations of TeA in food, well below the proposed level of concern (500 μg/kg).

  7. ADSORPTION AND RELEASING PROPERTIES OF BEAD CELLULOSE

    Institute of Scientific and Technical Information of China (English)

    A. Morales; E. Bordallo; V. Leon; J. Rieumont

    2004-01-01

    The adsorption of some dyes on samples of bead cellulose obtained in the Unit of Research-Production "Cuba 9"was studied. Methylene blue, alizarin red and congo red fitted the adsorption isotherm of Langmuir. Adsorption kinetics at pH = 6 was linear with the square root of time indicating the diffusion is the controlling step. At pH = 12 a non-Fickian trend was observed and adsorption was higher for the first two dyes. Experiments carried out to release the methylene blue occluded in the cellulose beads gave a kinetic behavior of zero order. The study of cytochrome C adsorption was included to test a proteinic material. Crosslinking of bead cellulose was performed with epichlorohydrin decreasing its adsorption capacity in acidic or alkaline solution.

  8. A rapid one-step kinetics-based immunoassay procedure for the highly-sensitive detection of C-reactive protein

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Sandeep Kumar Vashist, Gregor Czilwik, Thomas van Oordt, Felix von Stetten, Roland Zengerle, E. Marion Schneider & John H.T. Luong ### Abstract A rapid one-step kinetics-based sandwich enzyme-linked immunosorbent (ELISA) procedure has been developed for highly-sensitive detection of C-reactive protein (CRP) in less than 30 min. With minimal process steps, the procedure is highly simplified and cost-effective. The analysis only involves sequentially the formation of a san...

  9. Bead and Process for Removing Dissolved Metal Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Bobby L., Jr.; Bennett, Karen L.; Foster, Scott A.

    2005-01-18

    A bead is provided which comprises or consists essentially of activated carbon immobilized by crosslinked poly (carboxylic acid) binder, sodium silicate binder, or polyamine binder. The bead is effective to remove metal and other ionic contaminants from dilute aqueous solutions. A method of making metal-ion sorbing beads is provided, comprising combining activated carbon, and binder solution (preferably in a pin mixer where it is whipped), forming wet beads, and heating and drying the beads. The binder solution is preferably poly(acrylic acid) and glycerol dissolved in water and the wet beads formed from such binder solution are preferably heated and crosslinked in a convection oven.

  10. Towards the development of a single-step immunosensor based on an electrochemical screen-printed electrode strip coupled with immunomagnetic beads.

    Science.gov (United States)

    Volpe, G; Sozzo, U; Piermarini, S; Delibato, E; Palleschi, G; Moscone, D

    2013-01-01

    This work investigates the behaviour of two alternative systems that model the crucial event involved in any ELISA test, i.e. the molecular recognition between an antigen and its specific antibody on a solid phase, and its measurement. Each approach is devised with the goal of making possible a single-step, separation and wash-free amperometric magneto-immunosensor. Magnetic particles (MBs) are used as support for the immobilization of rabbit IgGs that are recognized by the specific anti-rabbit IgG-HRP. The assay protocol is based on the use of a series of small "reservoirs" containing phosphate buffer, hydroquinone, anti-rabbit IgG-HRP and an appropriate amount of MB-rabbit IgG. After a brief incubation, the content of each "reservoir" is transferred to one of the wells of a 8-well magnetized-screen-printed electrode strip. The resulting MB-IgG-anti-IgG-HRP chain, is then concentrated on the working electrode surface for electrochemical measurement. Two different approaches to monitor this immunological reaction are investigated. The first one is based on the enzyme-channeling principle (ECP) and involves the use of a second enzyme, glucose oxidase (GOD), immobilized on the working electrode previously modified with Prussian Blue. Since the H(2)O(2) produced by GOD is the co-substrate of the HRP enzyme, glucose is added into the well and the current, generated by the residual H(2)O(2), is measured. The second, more direct, approach is performed without exploiting ECP (no GOD enzyme), by adding H(2)O(2) into the well and measuring the current generated by the HRP product on a pristine screen-printed electrode. Both approaches yielded a typical sigmoidal binding curve, illustrating the discrimination between the signal produced by the immuno-bound HRP concentrated on the electrode surface, and the background signal due to HRP in the bulk solution.

  11. Amperometric homogeneous competitive immunoassay in a perfluorocarbon emulsion oxygen therapeutic (PEOT).

    Science.gov (United States)

    Barlag, Rebecca E; Halsall, H Brian; Heineman, William R

    2013-04-01

    The effect of a perfluorocarbon emulsion oxygen therapeutic (PEOT) on the detection of the drugs theophylline and phenytoin was explored using a commercial enzyme multiplied immunoassay technique (EMIT®). The EMIT technique is based on the enzymatic production of NADH, which is typically detected in serum samples spectrophotometrically. Here, amperometry using the rotating disk electrode on a single drop of solution is demonstrated to detect theophylline and phenytoin in the presence of PEOT. In the study, 2,6-dichloroindophenol (DCIP) added to the immunoassay mixture is reduced by the NADH to DCIPH2. Oxidation of DCIPH2 is monitored electrochemically at +200 mV using a glassy carbon rotating disk electrode. Slopes of amperograms are proportional to the concentration of drug in the immunoassay sample. This technique yields excellent quantitative data in the therapeutic range for both drugs in 2-20% PEOT.

  12. High prevalence of human anti-bovine IgG antibodies as the major cause of false positive reactions in two-site immunoassays based on monoclonal antibodies

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Koch, Claus; Jensen, Charlotte H

    2004-01-01

    A sandwich ELISA for quantification of the endometrial protein PP14 revealed false positive reactions in 81% of male sera (n = 54). The PP14 ELISA was based on two monoclonal antibodies (Mabs) with different epitope specificities--a catcher and a biotinylated indicator. The monoclonal antibodies ...... of human anti-mouse IgG antibodies (HAMA), described to create false positive results, may be due to a crossreacting fraction of the polyclonal circulating antibodies against bovine IgG.......A sandwich ELISA for quantification of the endometrial protein PP14 revealed false positive reactions in 81% of male sera (n = 54). The PP14 ELISA was based on two monoclonal antibodies (Mabs) with different epitope specificities--a catcher and a biotinylated indicator. The monoclonal antibodies...... were purified by protein G affinity chromatography from culture supernatant containing 10% (v/v) fetal calf serum (FCS). Human anti-animal IgG (bovine, mouse, horse, and swine) antibodies and human anti-bovine serum albumin antibodies were measured using an ELISA design, with direct bridging...

  13. Porous Ca-based bead sorbents for simultaneous removal of SO₂, fine particulate matters, and heavy metals from pilot plant sewage sludge incineration.

    Science.gov (United States)

    Han, Yosep; Hwang, Gukhwa; Kim, Donghyun; Park, Soyeon; Kim, Hyunjung

    2015-01-01

    In this study, a porous calcium-based sorbent was prepared for simultaneous removal of SO2, particulate matter (PM), and heavy metals generated during incineration of sewage sludge. The prepared sorbent was confirmed to have a 3-dimensional-network pore structure, a high specific surface area of 68.5m(2)/g, and gas permeability of 1.12 × 10(-10)m(2). Laboratory-scale tests indicated that there was an improvement in the performance of SO2 removal as the porosity and the specific surface area of the sorbent increased. Additionally, increasing reaction temperature led to greater SO2 removal. Meanwhile, the SL-4 and LS-3 sorbents prepared in this study were installed for operation during pilot tests treating the sewage sludge combustion gas generated by a fluidized incinerator in order to compare and evaluate their feasibility for use in industrial applications. The results showed that the reactivity between SO2 and the starting material of the sorbent (Ca(OH)2>CaCO3), as well as the high specific surface area of the sorbent, were confirmed to be critical factors that improved the performance of SO2 removal. Notably, the results confirmed that both fine PM (≤ 1 μm) and heavy metals were simultaneously removed with increasing efficiency over the time of operation.

  14. Magnetic bead based immuno-detection of Listeria monocytogenes and Listeria ivanovii from infant formula and leafy green vegetables using the Bio-Plex suspension array system.

    Science.gov (United States)

    Day, J B; Basavanna, U

    2015-04-01

    Listeriosis, a disease contracted via the consumption of foods contaminated with pathogenic Listeria species, can produce severe symptoms and high mortality in susceptible people and animals. The development of molecular methods and immuno-based techniques for detection of pathogenic Listeria in foods has been challenging due to the presence of assay inhibiting food components. In this study, we utilize a macrophage cell culture system for the isolation and enrichment of Listeria monocytogenes and Listeria ivanovii from infant formula and leafy green vegetables for subsequent identification using the Luminex xMAP technique. Macrophage monolayers were exposed to infant formula, lettuce and celery contaminated with L. monocytogenes or L. ivanovii. Magnetic microspheres conjugated to Listeria specific antibody were used to capture Listeria from infected macrophages and then analyzed using the Bio-Plex 200 analyzer. As few as 10 CFU/mL or g of L. monocytogenes was detected in all foods tested. The detection limit for L. ivanovii was 10 CFU/mL in infant formula and 100 CFU/g in leafy greens. Microsphere bound Listeria obtained from infected macrophage lysates could also be isolated on selective media for subsequent confirmatory identification. This method presumptively identifies L. monocytogenes and L. ivanovii from infant formula, lettuce and celery in less than 28 h with confirmatory identifications completed in less than 48 h.

  15. "Nanofiltration" Enabled by Super-Absorbent Polymer Beads for Concentrating Microorganisms in Water Samples.

    Science.gov (United States)

    Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R

    2016-02-15

    Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation.

  16. Artocarpus heterophyllus L. seed starch-blended gellan gum mucoadhesive beads of metformin HCl.

    Science.gov (United States)

    Nayak, Amit Kumar; Pal, Dilipkumar; Santra, Kousik

    2014-04-01

    Jackfruit (Artocarpus heterophyllus Lam., family: Moraceae) seed starch (JFSS)-gellan gum (GG) mucoadhesive beads containing metformin HCl were developed through ionotropic gelation technique. The effect of GG to JFSS ratio and CaCl2 concentration on the drug encapsulation efficiency (DEE, %) and cumulative drug release at 10h (R10h, %) was optimized and analyzed using response surface methodology based on 3(2) factorial design. The optimized JFSS-GG beads containing metformin HCl showed DEE of 92.67±4.46%, R10h of 61.30±2.37%, and mean diameter of 1.67±0.27 mm. The optimized beads showed pH-dependent swelling and mucoadhesivity with the goat intestinal mucosa. The in vitro drug release from all these JFSS-GG beads containing metformin HCl was followed zero-order pattern (R(2)=0.9907-0.9975) with super case-II transport mechanism over a period of 10 h. The beads were also characterized by SEM and FTIR. The optimized JFSS-GG beads containing metformin HCl exhibited significant hypoglycemic effect in alloxan-induced diabetic rats over prolonged period after oral administration.

  17. “Nanofiltration” Enabled by Super-Absorbent Polymer Beads for Concentrating Microorganisms in Water Samples

    Science.gov (United States)

    Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R.

    2016-02-01

    Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation.

  18. New Analysis Techniques for Avalanches in a Conical Bead Pile with Cohesion

    Science.gov (United States)

    Tieman, Catherine; Lehman, Susan

    2015-03-01

    Avalanche statistics and pile geometry for 3 mm steel spheres dropped on a conical bead pile were studied at different drop heights and different cohesion strengths. The pile is initially built on a circular base and is subsequently slowly driven by adding one bead at a time to the apex of the pile. We investigate the dynamic response of the pile by recording avalanches off the pile over the course of tens of thousands of bead drops. The level of cohesion is tuned through use of an applied uniform magnetic field. Changes in the pile mass and geometry were investigated to determine the effect of cohesion and drop height on the angle of repose. The angle of repose increased with cohesion strength, and decreased somewhat for higher drop heights. The packing density of beads is expected to decrease as magnetic cohesion increases, but for our 20 000-bead pile, this effect has not been observed. The proportion of beads removed from the pile by different avalanche sizes was also calculated. Although larger avalanches are much rarer occurrences, they carry away a larger fraction of the total avalanched mass than small avalanches. As the pile cohesion increases, the number of small and medium avalanches decreases so that this mass loss distribution shifts more strongly to large sizes.

  19. Magnetic nano-beads based separation combined with propidium monoazide treatment and multiplex PCR assay for simultaneous detection of viable Salmonella Typhimurium, Escherichia coli O157:H7 and Listeria monocytogenes in food products.

    Science.gov (United States)

    Yang, Youjun; Xu, Feng; Xu, Hengyi; Aguilar, Zoraida P; Niu, Ruijiang; Yuan, Yong; Sun, Jichang; You, Xingyong; Lai, Weihua; Xiong, Yonghua; Wan, Cuixiang; Wei, Hua

    2013-06-01

    We developed a rapid and reliable technique for simultaneous detection of Salmonella Typhimurium, Escherichia coli O157:H7 and Listeria monocytogenes that can be used in food products. Magnetic nano-beads (MNBs) based immunomagnetic separation (IMS) was used to separate the target bacterial cells while multiplex PCR (mPCR) was used to amplify the target genes. To detect only the viable bacteria, propidium monoazide (PMA) was applied to selectively suppress the DNA detection from dead cells. The results showed the detection limit of IMS-PMA-mPCR assay was about 10(2) CFU/ml (1.2 × 10(2) CFU/ml for S. Typhimurium, 4.0 × 10(2) CFU/ml for E. coli O157:H7 and 5.4 × 10(2) CFU/ml for L. monocytogenes) in pure culture and 10(3) CFU/g (5.1 × 10(3) CFU/g for S. Typhimurium, 7.5 × 10(3) CFU/g for E. coli O157:H7 and 8.4 × 10(3) CFU/g for L. monocytogenes) in spiking food products samples (lettuce, tomato and ground beef). This report has demonstrated for the first time, the effective use of rapid and reliable IMS combined with PMA treatment and mPCR assay for simultaneous detection of viable S. Typhimurium, E. coli O157:H7 and L. monocytogenes in spiked food samples. It is anticipated that the present approach will be applicable to simultaneous detection of the three target microorganisms for practical use.

  20. Optimized dendrimer-encapsulated gold nanoparticles and enhanced carbon nanotube nanoprobes for amplified electrochemical immunoassay of E. coli in dairy product based on enzymatically induced deposition of polyaniline.

    Science.gov (United States)

    Zhang, Xinai; Shen, Jianzhong; Ma, Haile; Jiang, Yuxiang; Huang, Chenyong; Han, En; Yao, Boshui; He, Yunyao

    2016-06-15

    A highly sensitive immunosensor was reported for Escherichia coli assay in dairy product based on electrochemical measurement of polyaniline (PAn) that was catalytically deposited by horseradish peroxidase (HRP) labels. Herein, the immunosensor was developed by using poly(amidoamine) dendrimer-encapsulated gold nanoparticles (PAMAM(Au)) as sensing platform. Importantly, the optimal HAuCl4/PAMAM ratio was investigated to design the efficient PAMAM(Au) nanocomposites. The nanocomposites were proven to not only increase the amount of immobilized capture antibody (cAb), but also accelerate the electron transfer process. Moreover, the {dAb-CNT-HRP} nanoprobes were prepared by exploiting the amplification effect of multiwalled carbon nanotubes (CNTs) for loading detection antibody (dAb) and enormous HRP labels. After a sandwich immunoreaction, the quantitatively captured nanoprobes could catalyze oxidation aniline to produce electroactive PAn for electrochemical measurement. On the basis of signal amplification of the PAMAM(Au)-based immunosensor and the {dAb-CNT-HRP} nanoprobes, the proposed strategy exhibited a linear relationship between the peak current of PAn and the logarithmic value of E. coli concentration ranging from 1.0 × 10(2) to 1.0 × 10(6) cfu mL(-1) with a detection limit of 50 cfu mL(-1) (S/N=3), and the electrochemical detection of E. coli could be achieved in 3h. The electrochemical immunosensor was also used to determine E. coli in dairy product (pure fresh milk, infant milk powder, yogurt in shelf-life and expired yogurt), and the recoveries of standard additions were in the range of 96.8-108.7%. Overall, this method gave a useful protocol for E. coli assay with high sensitivity, acceptable accuracy and satisfying stability, and thus provided a powerful tool to estimate the quality of dairy product.

  1. Sequential Injection/Electrochemical Immunoassay for Quantifying the Pesticide Metabolite 3, 5, 6-Trichloro-2-Pyridinol

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong; Riechers, Shawn L.; Timchalk, Chuck; Lin, Yuehe

    2005-12-04

    An automated and sensitive sequential injection electrochemical immunoassay was developed to monitor a potential insecticide biomarker, 3, 5, 6-trichloro-2-pyridinol. The current method involved a sequential injection analysis (SIA) system equipped with a thin-layer electrochemical flow cell and permanent magnet, which was used to fix 3,5,6-trichloro-2-pyridinol (TCP) antibody coated magnetic beads (TCP-Ab-MBs) in the reaction zone. After competitive immunoreactions among TCP-Ab-MBs, TCP analyte, and horseradish peroxidase (HRP) labeled TCP, a 3, 3?, 5, 5?-tetramethylbenzidine dihydrochloride and hydrogen peroxide (TMB-H2O2) substrate solution was injected to produce an electroactive enzymatic product. The activity of HRP tracers was monitored by a square wave voltammetric scanning electroactive enzymatic product in the thin-layer flow cell. The voltammetric characteristics of the substrate and the enzymatic product were investigated under batch conditions, and the parameters of the immunoassay were optimized in the SIA system. Under the optimal conditions, the system was used to measure as low as 6 ng L-1 (ppt) TCP, which is around 50-fold lower than the value indicated by the manufacturer of the TCP RaPID Assay? kit (0.25 ug/L, colorimetric detection). The performance of the developed immunoassay system was successfully evaluated on tap water and river water samples spiked with TCP. This technique could be readily used for detecting other environmental contaminants by developing specific antibodies against contaminants and is expected to open new opportunities for environmental and biological monitoring.

  2. Identifying and reducing potentially wrong immunoassay results even when plausible and "not-unreasonable".

    Science.gov (United States)

    Ismail, Adel A A

    2014-01-01

    The primary role of the clinical laboratory is to report accurate results for diagnosis of disease and management of illnesses. This goal has, to a large extent been achieved for routine biochemical tests, but not for immunoassays which remained susceptible to interference from endogenous immunoglobulin antibodies, causing false, and clinically misleading results. Clinicians regard all abnormal results including false ones as "pathological" necessitating further investigations, or concluding iniquitous diagnosis. Even more seriously, "false-negative" results may wrongly exclude pathology, thus denying patients' necessary treatment. Analytical error rate in immunoassays is relatively high, ranging from 0.4% to 4.0%. Because analytical interference from endogenous antibodies is confined to individuals' sera, it can be inconspicuous, pernicious, sporadic, and insidious because it cannot be detected by internal or external quality assessment procedures. An approach based on Bayesian reasoning can enhance the robustness of clinical validation in highlighting potentially erroneous immunoassay results. When this rational clinical/statistical approach is followed by analytical affirmative follow-up tests, it can help identifying inaccurate and clinically misleading immunoassay data even when they appear plausible and "not-unreasonable." This chapter is largely based on peer reviewed articles associated with and related to this approach. The first section underlines (without mathematical equations) the dominance and misuse of conventional statistics and the underuse of Bayesian paradigm and shows that laboratorians are intuitively (albeit unwittingly) practicing Bayesians. Secondly, because interference from endogenous antibodies is method's dependent (with numerous formats and different reagents), it is almost impossible to accurately assess its incidence in all differently formulated immunoassays and for each analytes/biomarkers. However, reiterating the basic concepts

  3. Sensitive immunoassay-based detection of Vibrio parahaemolyticus using capture and labeling particles in a stationary liquid phase lab-on-a-chip.

    Science.gov (United States)

    Park, Byunghee; Choi, Suk-Jung

    2017-04-15

    In the present study, a method was developed for detection of Vibrio parahaemolyticus based on a stationary liquid phase lab-on-a-chip (SLP LOC). The present SLP LOC comprises a sample chamber, washing chamber, and detection chamber connected by two channels. The method utilizes two types of particles: capture particles (CPs), which are magnetic nanoparticles functionalized with antibody; and labeling particles (LPs), which are silica nanoparticles functionalized with horseradish peroxidase and antibody. Samples were added to the sample chamber with CPs and LPs, forming a CP-bacteria-LP complex, and the complex was transported to the detection chamber containing chromogenic substrate solution. The method allowed the detection of V. parahaemolyticus in the range of 10(1)-10(5)cfu within 45min. Additionally, contamination of oyster samples with V. parahaemolyticus was detected within 2.5h, including 2h of culturing. The present method has the advantage of being highly rapid and facile, and enabling the detection of bacteria with high sensitivity. Moreover, the LOC and LOC processing device used in this method possess simple structures, making the detection process economical and allowing miniaturization. Therefore, the present SLP LOC detection method is potentially useful for in situ determination of food safety.

  4. Biomolecule-based formaldehyde resin microspheres loaded with Au nanoparticles: a novel immunoassay for detection of tumor markers in human serum.

    Science.gov (United States)

    Lu, Wenbo; Qian, Chen; Bi, Liyan; Tao, Lin; Ge, Juan; Dong, Jian; Qian, Weiping

    2014-03-15

    A surfactant-free and template-free method for the high-yield synthesis of biomolecule (serotonin)-based formaldehyde resin (BFR) microspheres is proposed for the first time. The colloidal microspheres loaded with Au nanoparticles (AuNPs) prepared by a convenient in-situ synthesis of AuNPs on BFR (AuNPs/BFR) microsphere surface show good stability. AuNPs/BFR microspheres not only favor the immobilization of antibody but also facilitate the electron transfer. It is found that the resultant AuNPs/BFR microspheres can be designed to act as a sensitive label-free electrochemical immunosensor for carcinoembryonic antigen (CEA) determination. The immunosensor is prepared by immobilizing capture anti-CEA on AuNPs/BFR microspheres assembled on thionine (TH) modified glassy carbon electrode (GCE). TH acts as the redox probe. Under the optimized conditions, the linear range of the proposed immunosensor is estimated to be from 25 pg/mL to 2000 pg/mL (R=0.998) and the detection limit is estimated to be 3.5 pg/mL at a signal-to-noise ratio of 3. The prepared immunosensor for detection of CEA shows high sensitivity, reproducibility and stability. Our study demonstrates that the immunosensor can be used for the CEA detection in humans serum.

  5. Ultrasensitive electrochemical immunoassay for DNA methyltransferase activity and inhibitor screening based on methyl binding domain protein of MeCP2 and enzymatic signal amplification.

    Science.gov (United States)

    Yin, Huanshun; Zhou, Yunlei; Xu, Zhenning; Wang, Mo; Ai, Shiyun

    2013-11-15

    In this work, we fabricated a novel electrochemical immunosensor for detection of DNA methylation, analysis of DNA MTase activity and screening of MTase inhibitor. The immunosensor was on the basis of methyl binding domain protein of MeCP2 as DNA CpG methylation recognization unit, anti-His tag antibody as "immuno-bridge" and horseradish peroxidase labeled immuneglobulin G functionalized gold nanoparticles (AuNPs-IgG-HRP) as signal amplification unit. In the presence of M. SssI MTase, the symmetrical sequence of 5'-CCGG-3' was methylated and then recognized by MeCP2 protein. By the immunoreactions, anti-His tag antibody and AuNPs-IgG-HRP was captured on the electrode surface successively. Under the catalysis effect of HRP towards hydroquinone oxidized by H2O2, the electrochemical reduction signal of benzoquinone was used to analyze M. SssI MTase activity. The electrochemical reduction signal demonstrated a wide linear relationship with M. SssI concentration ranging from 0.05 unit/mL to 90 unit/mL, achieving a detection limit of 0.017 unit/mL (S/N=3). The most important advantages of this method were its high sensitivity and good selectivity, which enabled the detection of even one-base mismatched sequence. In addition, we also verified that the developed method could be applied for screening the inhibitors of DNA MTase and for developing new anticancer drugs.

  6. Guidelines for measuring solar radius with Baily beads analysis

    Institute of Scientific and Technical Information of China (English)

    SIGISMONDI Costantino

    2009-01-01

    By inspection of central eclipses videorecords, data of Baily beads timings are retrievable. Knowing the lunar limb profile at the moment of the eclipse we evaluate the excess or defect of solar limb when the Sun is assumed at its standard radius. Two procedures of data analysis are here presented: one based on limb heights and the other on times. While these methods are based upon Occult 4 software, they can be used with other ephemerides and new lunar profiles. The example of 2006 total eclipse data, with its remarkably negative value of ΔR=-0.41"±0.04", is presented.

  7. Guidelines for measuring solar radius with Baily beads analysis

    Institute of Scientific and Technical Information of China (English)

    SIGISMONDI; Costantino

    2009-01-01

    By inspection of central eclipses videorecords, data of Baily beads timings are retrievable. Knowing the lunar limb profile at the moment of the eclipse we evaluate the excess or defect of solar limb when the Sun is assumed at its standard radius. Two procedures of data analysis are here presented: one based on limb heights and the other on times. While these methods are based upon Occult 4 software, they can be used with other ephemerides and new lunar profiles. The example of 2006 total eclipse data, with its remarkably negative value of ΔR= - 0.41"± 0.04", is presented.

  8. Oriented antibody immobilization to polystyrene macrocarriers for immunoassay modified with hydrazide derivatives of poly(methacrylic acid

    Directory of Open Access Journals (Sweden)

    Vinokurova Ludmila G

    2001-08-01

    Full Text Available Abstract Background Hydrophobic polystyrene is the most common material for solid phase immunoassay. Proteins are immobilized on polystyrene by passive adsorption, which often causes considerable denaturation. Biological macromolecules were found to better retain their functional activity when immobilized on hydrophilic materials. Polyacrylamide is a common material for solid-phase carriers of biological macromolecules, including immunoreagents used in affinity chromatography. New macroformats for immunoassay modified with activated polyacrylamide derivatives seem to be promising. Results New polymeric matrices for immunoassay in the form of 0.63-cm balls which contain hydrazide functional groups on hydrophilic polymer spacer arms at their surface shell are synthesized by modification of aldehyde-containing polystyrene balls with hydrazide derivatives of poly(methacrylic acid. The beads contain up to 0.31 μmol/cm2 active hydrazide groups accessible for covalent reaction with periodate-oxidized antibodies. The matrices obtained allow carrying out the oriented antibody immobilization, which increases the functional activity of immunosorbents. Conclusions An efficient site-directed antibody immobilization on a macrosupport is realized. The polymer hydrophilic spacer arms are the most convenient and effective tools for oriented antibody coupling with molded materials. The suggested scheme can be used for the modification of any other solid supports containing electrophilic groups reacting with hydrazides.

  9. Detection of Tetrodotoxins in Puffer Fish by a Self-Assembled Monolayer-Based Immunoassay and Comparison with Surface Plasmon Resonance, LC-MS/MS, and Mouse Bioassay.

    Science.gov (United States)

    Reverté, Laia; de la Iglesia, Pablo; del Río, Vanessa; Campbell, Katrina; Elliott, Christopher T; Kawatsu, Kentaro; Katikou, Panagiota; Diogène, Jorge; Campàs, Mònica

    2015-11-03

    The increasing occurrence of puffer fish containing tetrodotoxin (TTX) in the Mediterranean could represent a major food safety risk for European consumers and threaten the fishing industry. The work presented herein describes the development of a new enzyme linked immunosorbent assay (mELISA) based on the immobilization of TTX through dithiol monolayers self-assembled on maleimide plates, which provides an ordered and oriented antigen immobilization and favors the antigen-antibody affinity interaction. The mELISA was found to have a limit of detection (LOD) of TTX of 0.23 mg/kg of puffer fish matrix. The mELISA and a surface plasmon resonance (SPR) immunosensor previously developed were employed to establish the cross-reactivity factors (CRFs) of 5,6,11-trideoxy-TTX, 5,11-deoxy-TTX, 11-nor-TTX-6-ol, and 5,6,11-trideoxy-4-anhydro-TTX, as well as to determine TTX equivalent contents in puffer fish samples. Results obtained by both immunochemical tools were correlated (R(2) = 0.977). The puffer fish samples were also analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the corresponding CRFs were applied to the individual TTX contents. Results provided by the immunochemical tools, when compared with those obtained by LC-MS/MS, showed a good degree of correlation (R(2) = 0.991 and 0.979 for mELISA and SPR, respectively). The mouse bioassay (MBA) slightly overestimated the CRF adjusted TTX content of samples when compared with the data obtained from the other techniques. The mELISA has been demonstrated to be fit for the purpose for screening samples in monitoring programs and in research activities.

  10. Magnetic Affinity Immunoassay Based Enzyme-Labeled Phage Displayed Antibody%基于酶标噬菌体抗体的磁分离免疫分析方法

    Institute of Scientific and Technical Information of China (English)

    穆晞惠; 童朝阳; 黄启斌; 刘冰; 刘志伟; 郝兰群; 张金平

    2014-01-01

    A new magnetic affinity immunoassay (MAIA) strategy based on enzyme-labeled phage displayed antibody was developed. The assay consisted of a sandwich format in which immobilized polyclonal antibody (pcAb) on magnetic microparticle was used for capture probe, and enzyme-labeled phage displayed antibody for specific detection probe to increase enzyme amount and enhance detection signal. By the proposed method,β-bungarotoxin (β-BGT) was successfully detected. A linear relationship between absorbance value and the concentration of β-BGT in the range of 0. 016-62. 5 μg / L was obtained. The linear regression equation was Y=0. 641X+1. 355 (R =0. 9925, n = 13, p<0. 0001) with a detection limit of 0. 016 μg / L. In comparison with the traditional ELISA, this method gave a 10-fold better sensitivity in β-BGT detection. This strategy also gave a 4-fold better sensitivity comparing with the MAIA based on enzyme labeled monoclonal antibody (mcAb). Due to low detection limit, acceptable reproducibility and high specificity, this method holds great promise in toxin trace detection.%以磁微粒偶联多抗为磁性捕获探针,酶标噬菌体抗体为特异信号检测探针,采用“磁性捕获探针-待测物-酶标噬菌体抗体探针”的检测模式,成功建立了一种基于酶标噬菌体抗体的磁分离免疫分析方法。本方法检测β-银环蛇毒素线性范围为0.016~62.5μg/ L,回归方程为 Y =0.641X+1.355( R =0.9925,n =13, p<0.0001),检出限为0.016μg/ L。本方法比传统 ELISA 法检测灵敏度提高了10倍,与采用酶标单抗复合物探针的双抗体夹心磁分离免疫分析法相比,检测灵敏度提高4倍。本方法灵敏度高,具有较好重现性与特异性,在毒素的痕量检测方面具有广阔的应用前景。

  11. Noninvasive Diagnosis of Visceral Leishmaniasis: Development and Evaluation of Two Urine-Based Immunoassays for Detection of Leishmania donovani Infection in India

    Science.gov (United States)

    Ejazi, Sarfaraz Ahmad; Bhattacharya, Pradyot; Bakhteyar, Md. Asjad Karim; Mumtaz, Aquil Ahmad; Pandey, Krishna; Das, Vidya Nand Ravi; Das, Pradeep; Rahaman, Mehebubar; Goswami, Rama Prosad; Ali, Nahid

    2016-01-01

    Background Visceral Leishmaniasis (VL), a severe parasitic disease, could be fatal if diagnosis and treatment is delayed. Post kala-azar dermal leishmaniasis (PKDL), a skin related outcome, is a potential reservoir for the spread of VL. Diagnostic tests available for VL such as tissue aspiration are invasive and painful although they are capable of evaluating the treatment response. Serological tests although less invasive than tissue aspiration are incompetent to assess cure. Parasitological examination of slit-skin smear along with the clinical symptoms is routinely used for diagnosis of PKDL. Therefore, a noninvasive test with acceptable sensitivity and competency, additionally, to decide cure would be an asset in disease management and control. Methodology/principal findings We describe here, the development of antibody-capture ELISA and field adaptable dipstick test as noninvasive diagnostic tools for VL and PKDL and as a test of cure in VL treatment. Sensitivity and specificity of urine-ELISA were 97.94% (95/97) and 100% (75/75) respectively, for VL. Importantly, dipstick test demonstrated 100% sensitivity (97/97) and specificity (75/75) in VL diagnosis. Degree of agreement of the two methods with tissue aspiration was 98.83% (κ = 0.97) and 100% (κ = 1), for ELISA and dipstick test, respectively. Both the tests had 100% positivity for PKDL (14/14) cases. ELISA and dipstick test illustrated treatment efficacy in about 90% (16/18) VL cases when eventually turned negative after six months of treatment. Conclusions/significance ELISA and dipstick test found immensely effective for diagnosis of VL and PKDL through urine samples thus, may substitute the existing invasive diagnostics. Utility of these tests as indirect methods of monitoring parasite clearance can define infected versus cured. Urine-based dipstick test is simple, sensitive and above all noninvasive method that may help not only in active VL case detection but also to ascertain treatment response

  12. Evaluation of an immunoassay for determination of plasma efavirenz concentrations in resource-limited settings

    Directory of Open Access Journals (Sweden)

    Alemseged Abdissa

    2014-06-01

    Full Text Available Introduction: Therapeutic drug monitoring (TDM may improve antiretroviral efficacy through adjustment of individual drug administration. This could result in reduced toxicity, prevent drug resistance, and aid management of drug–drug interactions. However, most measurement methods are too costly to be implemented in resource-limited settings. This study evaluated a commercially available immunoassay for measurement of plasma efavirenz. Methods: The immunoassay-based method was applied to measure efavirenz using a readily available Humastar 80 chemistry analyzer. We compared plasma efavirenz concentrations measured by the immunoassay with liquid chromatography tandem mass spectrometry (LC-MS/MS (reference method in 315 plasma samples collected from HIV patients on treatment. Concentrations were categorized as suboptimal4 µg/ml. Agreement between results of the methods was assessed via Bland-Altman plot and κ statistic values. Results: The median Interquartile range (IQR efavirenz concentration was 2.8 (1.9; 4.5 µg/ml measured by the LC–MS/MS method and 2.5 (1.8; 3.9 µg/ml by the immunoassay and the results were well correlated (ρ=0.94. The limits of agreement assessed by Bland–Altman plots were −2.54; 1.70 µg/ml. Although immunoassay underestimated high concentrations, it had good agreement for classification into low, normal or high concentrations (K=0.74. Conclusions: The immunoassay is a feasible alternative to determine efavirenz in areas with limited resources. The assay provides a reasonable approximation of efavirenz concentration in the majority of samples with a tendency to underestimate high concentrations. Agreement between tests evaluated in this study was clinically satisfactory for identification of low, normal and high efavirenz concentrations.

  13. Comparison of a new serum topiramate immunoassay to fluorescence polarization immunoassay.

    Science.gov (United States)

    Snozek, Christine L H; Rollins, Lisa A; Peterson, Paul W; Langman, Loralie J

    2010-02-01

    Topiramate is a newer anticonvulsant used to treat epilepsy, migraines, bipolar disorder, posttraumatic stress, and other conditions. Serum topiramate concentrations are measured to determine optimal levels, address therapeutic failure or drug-drug interactions, and assess compliance. Two high-throughput assays for serum topiramate measurement were compared: the Seradyn fluorescence polarization immunoassay (FPIA) on an Abbott TDx/FLx instrument and a new immunoassay from ARK Diagnostics performed on an Olympus AU680 automated analyzer. Precision, linearity, limit of quantitation, carryover, spike recovery, and endogenous interferences were found to be acceptable for the ARK assay. These studies were complemented by comparison of 120 patient samples analyzed using both methods. The ARK immunoassay performed comparably to FPIA with minimal difference in serum topiramate concentrations within the therapeutic range (2.0-20 microg/mL). A slight systematic discordance was observed at higher concentrations (greater than 30 microg/mL) with ARK immunoassay results being on average 6% higher than FPIA. Thus, the ARK immunoassay appears to provide acceptable analytical performance and comparability to FPIA; furthermore, the assay is compatible with high-throughput autoanalyzers.

  14. A novel chemiluminescent immunoassay for detection of Toxoplasma gondii IgG in human sera.

    Science.gov (United States)

    Holec-Gąsior, Lucyna; Ferra, Bartłomiej; Czechowska, Justyna; Serdiuk, Illia E; Krzymiński, Karol; Kur, Józef

    2016-08-01

    This study describes Toxoplasma gondii IgG chemiluminescent immunoassay (CLIA) based on the use of a novel immunochemical reagents in the form of the conjugates of original acridinium ester (AE) labels attached to antibodies and SAG2-GRA1-ROP1L chimeric antigen and shows that this test is useful for diagnostic purposes.

  15. A Controlled Drug-Delivery Experiment Using Alginate Beads

    Science.gov (United States)

    Farrell, Stephanie; Vernengo, Jennifer

    2012-01-01

    This paper describes a simple, cost-effective experiment which introduces students to drug delivery and modeling using alginate beads. Students produce calcium alginate beads loaded with drug and measure the rate of release from the beads for systems having different stir rates, geometries, extents of cross-linking, and drug molecular weight.…

  16. Superparamagnetic bead interactions with functionalized surfaces characterized by an immunomicroarray

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Hansen, Mikkel Fougt; Moresco, Jacob Lange;

    2010-01-01

    SiO2 performed better than polyethylene glycol-modified surfaces Two beads, Masterbeads and M-280 beads, were found to give superior results compared with other bead types. Antibody/ antigen interactions, Illustrated by C-reactive protein, were best performed with Masterbeads The results provide...

  17. Fast Diagnosis of Gonorrhea Witth Enhanced Luminescence Enzyme Immunoassay

    Institute of Scientific and Technical Information of China (English)

    ZHENG Heyi(郑和义); CAO Jingjiang(曹经江); SHAO Yanglin(邵燕玲)

    2002-01-01

    Objective:To evaluate the value of enhanced luminescence enzyme immunoassay in the diagnosis of Neisseria gonorrhea(NG) infection.Methods: Anti-catalase antibody for Neisseria gonorrheae combined with enhanced luminescence enzyme immunoassay were used to test for N. Gonorrhea.Results: A minimum of 1x104/CFU of GC in genital tract secretions or urine could be detected with the technique of luminescence enzyme immunoassay.Conclusion : The enhanced luninescence enzyme immunoassay has the advantage of high sensitivity and specificity for diagnosing NG from genitourinary tract secretion and urine.

  18. Recovery of uranium from phosphoric acid medium by polymeric composite beads encapsulating organophosphorus extractants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.K.; Yadav, K.K.; Varshney, L.; Singh, H. [Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2013-07-01

    The present study deals with the preparation and evaluation of the poly-ethersulfone (PES) based composite beads encapsulating synergistic mixture of D2EHPA and Cyanex 923 (at 4:1 mole ratio) for the separation of uranium from phosphoric acid medium. SEM was used for the characterization of the composite materials. Addition of 1% PVA (polyvinyl alcohol) improved the internal morphology and porosity of the beads. Additionally, microscopic examination of the composite bead confirmed central coconut type cavity surrounded by porous polymer layer of the beads through which exchange of metal ions take place. Effect of various experimental variables including aqueous acidity, metal ion concentration in aqueous feed, concentration of organic extractant inside the beads, extractant to polymer ratio, liquid to solid (L/S) ratio and temperature on the extraction of uranium was studied. Increase in acidity (1-6 M), L/S ratio (1- 10), metal ion concentration (0.2-3 g/L U{sub 3}O{sub 8}) and polymer to extractant ratio (1:4 -1:10) led to decrease in extraction of uranium. At 5.5 M (comparable to wet process phosphoric acid concentration) the extraction of uranium was about 85% at L/S ratio 5. Increase in extractant concentration inside the bead resulted in enhanced extraction of metal ion. Increase in temperature in the range of 30 to 50 Celsius degrees increased the extraction, whereas further increase to 70 C degrees led to the decrease in extraction of uranium. Amongst various reagents tested, stripping of uranium was quantitative by 12% Na{sub 2}CO{sub 3} solution. Polymeric beads were found to be stable and reusable up-to 10 cycles of extraction/stripping. (authors)

  19. Covalent attachment of the plant natural product naringenin to small glass and ceramic beads

    Directory of Open Access Journals (Sweden)

    Grotewold Erich

    2005-10-01

    Full Text Available Abstract Background Natural products have numerous medicinal applications and play important roles in the biology of the organisms that accumulate them. Few methods are currently available for identifying proteins that bind to small molecules, therefore the discovery of cellular targets for natural products with pharmacological activity continues to pose a significant challenge in drug validation. Similarly, the identification of enzymes that participate in the biosynthesis or modification of natural products remains a formidable bottleneck for metabolic engineering. Flavonoids are one large group of natural products with a diverse number of functions in plants and in human health. The coupling of flavonoids to small ceramic and glass beads provides a first step in the development of high-throughput, solid-support base approaches to screen complex libraries to identify proteins that bind natural products. Results The utilization of small glass and ceramic beads as solid supports for the coupling of small molecules was explored. Initial characterization of the beads indicated uniform and high capacity loading of amino groups. Once the beads were deemed adequate for the linking of small molecules by the coupling of NHS-fluorescein followed by microscopy, chemical hydrolysis and fluorometry, the flavonoid naringenin was modified with 1,4-dibromobutane, followed by the attachment of aminopropyltriethoxysilane. After NMR structural confirmation, the resulting 7-(4-(3-(triethoxysilylpropylaminobutoxy naringenin was attached to the ceramic beads. Conclusion Our results demonstrate that ceramic and glass beads provide convenient solid supports for the efficient and facile coupling of small molecules. We succeeded in generating naringenin-coupled ceramic and glass beads. We also developed a convenient series of steps that can be applied for the solid-support coupling of other related flavonoids. The availability of solid-support coupled naringenin opens

  20. An enzymatic immunoassay microfluidics integrated with membrane valves for microsphere retention and reagent mixing.

    Science.gov (United States)

    Ren, Li; Wang, Jian-Chun; Liu, Wenming; Tu, Qin; Liu, Rui; Wang, Xueqin; Xu, Juan; Wang, Yaolei; Zhang, Yanrong; Li, Li; Wang, Jinyi

    2012-05-15

    The present study presents a new microfluidic device integrated with pneumatic microvalves and a membrane mixer for enzyme-based immunoassay of acute myocardial infarction (AMI) biomarkers, namely, myoglobin, and heart-type fatty acid binding protein (H-FABP). Superparamagnetic microspheres with carboxyl groups on their surfaces were used as antibody solid carriers. A membrane mixer consisting of four ψ-type membrane valves was assembled under the reaction chamber for on-chip performing microsphere trapping and reagent mixing. The entire immunoassay process, including microsphere capture, reagent input, mixing, and subsequent reaction, was accomplished on the device either automatically or manually. The post-reaction substrate resultant was analyzed using a microplate reader. The results show that the average absorbance value is correlated with the concentration of cardiac markers, in agreement with the results obtained using a conventional microsphere-based immunoassay; this indicated that the proposed on-chip immunoassay protocol could be used to detect both myoglobin and H-FABP. The minimum detectable concentration is 5 ng/mL for myoglobin and 1 ng/mL for H-FABP.

  1. Fungal cultivation on glass-beads

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, Henriette;

    Transcription of various bioactive compounds and enzymes are dependent on fungal cultivation method. In this study we cultivate Fusarium graminearum and Fusarium solani on glass-beads with liquid media in petri dishes as an easy and inexpensive cultivation method, that resembles in secondary meta...... metabolite production to agar-cultivation but with an easier and more pure RNA-extraction of total fungal mycelia....

  2. RF Bead Pull Measurements of the DQW

    CERN Document Server

    Jaume, Guillaume

    2015-01-01

    This report was written within the framework of the CERN Summer Student Program. It is focused on the Radio Frequency study of the Double Quarter Wave Crab Cavity [1] considered for the crab-crossing scheme of the LHC Luminosity upgrade [2]. HFSS simulation [3] and Bead-Pull Measurements technique were used for the characterization of the higher-order terms of the main deflecting mode.

  3. Design Considerations for CMOS-Integrated Hall-Effect Magnetic Bead Detectors for Biosensor Applications.

    Science.gov (United States)

    Skucha, K; Gambini, S; Liu, P; Megens, M; Kim, J; Boser, Be

    2013-06-05

    We describe a design methodology for on-chip magnetic bead label detectors based on Hall-effect sensors. Signal errors caused by the label-binding process and other factors that limit the minimum detection area are quantified and adjusted to meet typical assay accuracy standards. The methodology is demonstrated by designing an 8192 element Hall sensor array, implemented in a commercial 0.18 μm CMOS process with single-mask postprocessing. The array can quantify a 1% surface coverage of 2.8 μm beads in 30 seconds with a coefficient of variation of 7.4%. This combination of accuracy and speed makes this technology a suitable detection platform for biological assays based on magnetic bead labels.

  4. Bifunctional polydopamine thin film coated zinc oxide nanorods for label-free photoelectrochemical immunoassay.

    Science.gov (United States)

    Yang, Yan; Hu, Weihua

    2017-05-01

    Photoelectrochemical (PEC) detection is a promising method for label-free immunoassay by reporting the specific biological recognition events with electrical signals. However, it is challenging to rationally incorporate immunosensing components with a photocurrent conversion interface, which generally necessitates multistep fabrication and careful tailoring of various components such as photoactive material and biological probe. For high detection reliability and reproducibility, it is highly desirable to rationally construct an efficient PEC interface with architecture as simple as possible. In this work, a novel yet simple PEC immunosensor based on bio-inspired polydopamine (PDA) thin film-coated zinc oxide (ZnO) nanorods was reported. In this PEC immunosensor, the PDA thin film serves simultaneously as a unique sensitizer for charge separation as well as a functional layer for probe antibody attachment. The photocurrent on this electrode under illumination decreases upon the immunoreaction on the surface, possibly due to the blocking effect of formed immunocomplexes on the access of reducing reagent to the photoelectrode, thus offering a simple and reliable platform for PEC label-free immunoassay. By using an antibody-antigen pair as a model, successful label-free immunoassay was achieved with a detection limit of 10pgmL(-1) and a dynamic range from 100pgmL(-1) to 500ngmL(-1). This work demonstrates intriguing electro-optical property and bioconjugation activity of PDA film and may pave the way toward advanced PEC immunoassays.

  5. Adsorption of Cu2+ from aqueous solution onto modified glass beads with 3-aminopropyltriethoxysilane

    Directory of Open Access Journals (Sweden)

    Z Torkshavand

    2014-08-01

    Full Text Available The discharge of heavy metals into the aquatic ecosystem is a main concern over the last few decades. These pollutants are introduced into aquatic systems as a result of various industrial operations. This study investigates the efficiency of the modified glass beads with APTES ligand for removal of Cu2+ from the aqueous solution. Response surface methodology based on Box-Behnken was used to assess the effect of independent variables, including flow rate, solution pH, initial concentration and glass beads size on the response function and prediction of the best response value. Atomic absorption spectroscopic analysis of eluents of a column of the modified glass beads showed that Cu2+ ion was more than 90% entrapped on a column of glass beads. The isotherm evaluations indicate that the equilibrium data for Cu2+ adsorption could be fitted with the Langmuir model. Experimental data were also evaluated in terms of adsorption kinetics using the pseudo-first-order and pseudo-second-order kinetic models. The results also showed that the adsorption process of the Cu2+ well suited with the pseudo-second-order kinetics model. All the results demonstrated that modified glass beads successfully absorbed heavy metals from aqueous solution.

  6. Successful subretinal delivery and monitoring of MicroBeads in mice.

    Directory of Open Access Journals (Sweden)

    M Dominik Fischer

    Full Text Available BACKGROUND: To monitor viability of implanted genetically engineered and microencapsulated human stem cells (MicroBeads in the mouse eye, and to study the impact of the beads and/or xenogenic cells on retinal integrity. METHODOLOGY/PRINCIPAL FINDINGS: MicroBeads were implanted into the subretinal space of SV126 wild type mice using an ab externo approach. Viability of microencapsulated cells was monitored by noninvasive retinal imaging (Spectralis™ HRA+OCT. Retinal integrity was also assessed with retinal imaging and upon the end of the study by light and electron microscopy. The implanted GFP-marked cells encapsulated in subretinal MicroBeads remained viable over a period of up to 4 months. Retinal integrity and viability appeared unaltered apart from the focal damage due to the surgical implantation, GFAP upregulation, and opsin mistargeting in the immediate surrounding tissue. CONCLUSIONS/SIGNIFICANCE: The accessibility for routine surgery and its immune privileged state make the eye an ideal target for release system implants for therapeutic substances, including neurotrophic and anti-angiogenic compounds or protein based biosimilars. Microencapsulated human stem cells (MicroBeads promise to overcome limitations inherent with single factor release systems, as they are able to produce physiologic combinations of bioactive compounds.

  7. Experimental analysis of nanofluid pool boiling heat transfer in copper bead packed porous layers

    Science.gov (United States)

    Chen, Wei; Wang, Ji

    2017-03-01

    Coupling the nanofluid as working fluid and the copper beads packed porous structure on heating surface were employed to enhance the pool boiling heat transfer by changing the fluid properties with the adjunction of nanoparticles in liquid and altering the heating surface with a bead porous layer. Due to the higher thermal conductivity, the copper beads served as an extended heating surface and the boiling nucleation sites rose, but the flow resistance increased. The CuO-water and SiO2-water nanofluids as well as the pure water were respectively employed as working fluids in the pool boiling experiments. Comparing with the base fluid of water, the higher thermal conductivity and lower surface tension occur in the nanofluids and those favor the boiling heat transfer, but the higher viscosity and density of nanofluids serve as deteriorative factors. So, the concentration region of the nanofluids should be chosen properly. The maximum relative error between the collected experimental data of the pure water on a flat surface and the theoretical prediction of pool boiling using the Rohsenow correlation was less than 12 %. The comparisons of the pool boiling heat transfer characteristics were also conducted between the pure water and the nanofluids respectively on the horizontal flat surface and on the heating surface packed with a copper bead porous layer. Besides, the boiling bubble generation, integration and departure have a great affect on the pool boiling and were recorded with a camera in the bead stacked porous structures at different heat flux.

  8. Effects of Cohesion On the Dynamic Response of A Conical Bead Pile

    Science.gov (United States)

    Palchoudhuri, Paroma; Lehman, Susan; Jacobs, D. T.

    2014-03-01

    We investigate the critical behavior of a 3D conical bead pile built from uniform 3 mm steel spheres. The pile is initially built on a circular base and is subsequently slowly driven through the addition of one bead at a time to the apex of the pile. We investigate the dynamic response of the pile by recording avalanches from the pile over the course of tens of thousands of bead drops, and determining the resulting distribution of avalanche size. In previous work, we have shown that dropping the beads onto the pile from a greater height causes the distribution to deviate from a simple power law due to a stark reduction in number of the largest avalanches. By placing the pile in a uniform magnetic field, we are now observing changes in the avalanche size distribution due to cohesion. When there is cohesion between beads, we find an increase in probability for the largest avalanches and a strong decrease in the probability of medium-sized avalanches. We also observe an increase in the time between avalanches as the cohesion of the system increases. Preliminary results on the effect of simultaneously increasing cohesion, which tends to make large avalanches more probable, and increasing drop height, which tends to make large avalanches less probable, will also be presented.

  9. Sensitive fiber-optic immunoassay

    Science.gov (United States)

    Walczak, Irene M.; Love, Walter F.; Slovacek, Rudolf E.

    1991-07-01

    The principles of evanescent wave theory were applied to an immunological sensor for detecting the cardiac-specific isoenzyme creatine kinase-MB (CK-MB). The detection of the CK-MB isoenzyme is used in conjunction with the total CK measurement in the diagnosis of acute myocardial infarction. The clinical range for CK-MB is from 2-100 ng/ml. Previous work which utilized the fluorophor, Fluorescein isothiocyanate (FITC), was able to discriminate between 0 and 3 ng/ml CK-MB. Use of the fluorophor B-phycoerythrin (BPE) increased the assay sensitivity to 0.1 ng/ml CK-MB. The data was collected for 15 minutes using an optical launch and collection angle of 25 degree(s). This fiber optic based system is homogeneous and requires no subsequent washing, handling, or processing steps after exposure to the sample.

  10. Microfluidic Sample Preparation for Immunoassays

    Energy Technology Data Exchange (ETDEWEB)

    Visuri, S; Benett, W; Bettencourt, K; Chang, J; Fisher, K; Hamilton, J; Krulevitch, P; Park, C; Stockton, C; Tarte, L; Wang, A; Wilson, T

    2001-08-09

    Researchers at Lawrence Livermore National Laboratory are developing means to collect and identify fluid-based biological pathogens in the forms of proteins, viruses, and bacteria. to support detection instruments, they are developing a flexible fluidic sample preparation unit. The overall goal of this Microfluidic Module is to input a fluid sample, containing background particulates and potentially target compounds, and deliver a processed sample for detection. They are developing techniques for sample purification, mixing, and filtration that would be useful to many applications including immunologic and nucleic acid assays. Many of these fluidic functions are accomplished with acoustic radiation pressure or dielectrophoresis. They are integrating these technologies into packaged systems with pumps and valves to control fluid flow through the fluidic circuit.

  11. Surface-Enhanced Raman Scattering (SERS) for Detection in Immunoassays. Applications, fundamentals, and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Driskell, Jeremy Daniel [Iowa State Univ., Ames, IA (United States)

    2006-08-09

    Immunoassays have been utilized for the detection of biological analytes for several decades. Many formats and detection strategies have been explored, each having unique advantages and disadvantages. More recently, surface-enhanced Raman scattering (SERS) has been introduced as a readout method for immunoassays, and has shown great potential to meet many key analytical figures of merit. This technology is in its infancy and this dissertation explores the diversity of this method as well as the mechanism responsible for surface enhancement. Approaches to reduce assay times are also investigated. Implementing the knowledge gained from these studies will lead to a more sensitive immunoassay requiring less time than its predecessors. This dissertation is organized into six sections. The first section includes a literature review of the previous work that led to this dissertation. A general overview of the different approaches to immunoassays is given, outlining the strengths and weaknesses of each. Included is a detailed review of binding kinetics, which is central for decreasing assay times. Next, the theoretical underpinnings of SERS is reviewed at its current level of understanding. Past work has argued that surface plasmon resonance (SPR) of the enhancing substrate influences the SERS signal; therefore, the SPR of the extrinsic Raman labels (ERLs) utilized in our SERS-based immunoassay is discussed. Four original research chapters follow the Introduction, each presented as separate manuscripts. Chapter 2 modifies a SERS-based immunoassay previously developed in our group, extending it to the low-level detection of viral pathogens and demonstrating its versatility in terms of analyte type, Chapter 3 investigates the influence of ERL size, material composition, and separation distance between the ERLs and capture substrate on the SERS signal. This chapter links SPR with SERS enhancement factors and is consistent with many of the results from theoretical treatments

  12. Gliadin Detection in Food by Immunoassay

    Science.gov (United States)

    Grant, Gordon; Sporns, Peter; Hsieh, Y.-H. Peggy

    Immunoassays are very sensitive and efficient tests that are commonly used to identify a specific protein. Examples of applications in the food industry include identification of proteins expressed in genetically modified foods, allergens, or proteins associated with a disease, including celiac disease. This genetic disease is associated with Europeans and affects about one in every 200 people in North America. These individuals react immunologically to wheat proteins, and consequently their own immune systems attack and damage their intestines. This disease can be managed if wheat proteins, specifically "gliadins," are avoided in foods.

  13. [Enzyme immunoassay of usnic acid in lichens].

    Science.gov (United States)

    Burkin, A A; Kononenko, G P; Tolpysheva, T Iu

    2013-01-01

    An enzyme immunoassay for usnic acid in lichens was developed, the sensitivity of which was 0.1 microg/g of air-dried material (0.00001%). Polyclonal rabbit antibodies against bovine serum albumin conjugated to (+)-usnic acid under the conditions of formaldehyde condensation made it possible to determine the analyzed substance in solutions at concentrations from 1 ng/mL when it interacts with an immobilized gelatin conjugate homologous in the binding mode. Usnic acid in 2-26600 microg/g (0.0002-2.6%) amounts was found in all 236 studied samples of lichens belonging to 53 species and 8 families.

  14. Imaging Array SPR Biosensor Immunoassays for Sulfamethoxazole and Sulfamethazine

    Institute of Scientific and Technical Information of China (English)

    Hui LI; Da Fu CUI; Jin Qing LIANG; HaoYuan CAI; Yu Jie WANG

    2006-01-01

    A homemade array surface plasmon resonance (SPR)-based imaging biosensor was used to develop sensitive and fast immunoassays to determine sulfamethoxazole (SMOZ) and sulfamethazine (SMT) in buffer. Two conjugations of sulfonamide-bovine serum albumin (BSA)were separately immobilized on two different rows of the array chip with one row as reference.The immobilization was carried out in the instrument to monitor the quantity of the conjugations immobilized. The antibody mixed with the sulfonamide in the buffer was injected over the surface of the chip to get a relative response which was inversely proportional to the concentration of the sulfonamide in the PBS buffer. Two calibration curves were constructed and the limit of detection for sufamethoxazole in buffer was 3.5 ng/mL and for sulfamethazine 0.6 ng/mL. The stability and specificity of the antibody were also studied. The monoclonal antibody did not bind with BSA.

  15. Simulation of Enzyme Catalysis in Calcium Alginate Beads

    Directory of Open Access Journals (Sweden)

    Ameel M. R. Al-Mayah

    2012-01-01

    Full Text Available A general mathematical model for a fixed bed immobilized enzyme reactor was developed to simulate the process of diffusion and reaction inside the biocatalyst particle. The modeling and simulation of starch hydrolysis using immobilized α-amylase were used as a model for this study. Corn starch hydrolysis was carried out at a constant pH of 5.5 and temperature of . The substrate flow rate was ranging from 0.2 to 5.0 mL/min, substrate initial concentrations 1 to 100 g/L. α-amylase was immobilized on to calcium alginate hydrogel beads of 2 mm average diameter. In this work Michaelis-Menten kinetics have been considered. The effect of substrate flow rate (i.e., residence time and initial concentration on intraparticle diffusion have been taken into consideration. The performance of the system is found to be affected by the substrate flow rate and initial concentrations. The reaction is controlled by the reaction rate. The model equation was a nonlinear second order differential equation simulated based on the experimental data for steady state condition. The simulation was achieved numerically using FINITE ELEMENTS in MATLAB software package. The simulated results give satisfactory results for substrate and product concentration profiles within the biocatalyst bead.

  16. Functionalized gold nanoclusters as fluorescent labels for immunoassays: Application to human serum immunoglobulin E determination.

    Science.gov (United States)

    Alonso, María Cruz; Trapiella-Alfonso, Laura; Fernández, José M Costa; Pereiro, Rosario; Sanz-Medel, Alfredo

    2016-03-15

    A quantitative immunoassay for the determination of immunoglobulin E (IgE) in human serum using gold nanoclusters (AuNCs) as fluorescent label was developed. Water soluble AuNCs were synthesized using lipoic acid and then thoroughly characterized. The obtained AuNCs have a particle size of 2.7 ± 0.1 nm and maximum fluorescence emission at 710 nm. The synthesized AuNCs showed very good stability of the fluorescent signal with light exposure and at neutral and slightly basic media. A covalent bioconjugation of these AuNCs with the desired antibody was carried out by the carbodiimide reaction. After due optimization of such bioconjugation reaction, a molar ratio 1:3 (antibody:AuNCs) was selected. The bioconjugate maintained an intense luminescence emission, slightly red-shifted as compared to the free AuNCs. Two typical immunoassay configurations, competitive and sandwich, were assayed and their performance for IgE determination critically compared. After the different immunoassay steps were accomplished, the fluorescence emission of the bioconjugate was measured. While the sandwich format provided a detection limit (DL) of 10 ng/mL and a linear range between 25 and 565 ng/mL of IgE, the competitive format revealed a DL of 0.2 ng/mL with a linear range between 0.3 and 7.1 ng/mL The applicability of the more sensitive competitive fluorescent immunoassay was assessed by successful analysis of the IgE in human serum and comparison of results with those from a commercial kit. The main advantages of the proposed AuNCs-based fluorimetric method include a low DL and a simple immunoassay protocol involving few reagents.

  17. HPMA and HEMA copolymer bead interactions with eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Cristina D. Vianna-Soares

    2004-09-01

    Full Text Available Two different hydrophilic acrylate beads were prepared via aqueous suspension polymerization. Beads produced of a hydroxypropyl methacrylate (HPMA and ethyleneglycol methacrylate (EDMA copolymer were obtained using a polyvinyl alcohol suspending medium. Copolymers of 2hydroxyethyl methacrylate (HEMA, methyl methacrylate (MMA and ethyleneglycol methacrylate (EDMA beads were obtained using magnesium hydroxide as the suspending agent. Following characterization by scanning electron microscopy (SEM, nitrogen sorption analysis (NSA and mercury intrusion porosimetry (MIP, the beads were cultured with monkey fibroblasts (COS7 to evaluate their ability to support cell growth, attachment and adhesion. Cell growth behavior onto small HPMA/EDMA copolymer beads and large HEMA/MMA/EDMA copolymer beads is evaluated regarding their hidrophilicity/hidrophobicity and surface roughness.

  18. Configurational Statistics of Magnetic Bead Detection with Magnetoresistive Sensors

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Ley, Mikkel Wennemoes Hvitfeld; Flyvbjerg, Henrik

    2015-01-01

    Magnetic biosensors detect magnetic beads that, mediated by a target, have bound to a functionalized area. This area is often larger than the area of the sensor. Both the sign and magnitude of the average magnetic field experienced by the sensor from a magnetic bead depends on the location...... of the bead relative to the sensor. Consequently, the signal from multiple beads also depends on their locations. Thus, a given coverage of the functionalized area with magnetic beads does not result in a given detector response, except on the average, over many realizations of the same coverage. We present...... a systematic theoretical analysis of how this location-dependence affects the sensor response. The analysis is done for beads magnetized by a homogeneous in-plane magnetic field. We determine the expected value and standard deviation of the sensor response for a given coverage, as well as the accuracy...

  19. Microarray of DNA probes on carboxylate functional beads surface

    Institute of Scientific and Technical Information of China (English)

    黄承志; 李原芳; 黄新华; 范美坤

    2000-01-01

    The microarray of DNA probes with 5’ -NH2 and 5’ -Tex/3’ -NH2 modified terminus on 10 um carboxylate functional beads surface in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) is characterized in the preseni paper. it was found that the microarray capacity of DNA probes on the beads surface depends on the pH of the aqueous solution, the concentra-tion of DNA probe and the total surface area of the beads. On optimal conditions, the minimum distance of 20 mer single-stranded DNA probe microarrayed on beads surface is about 14 nm, while that of 20 mer double-stranded DNA probes is about 27 nm. If the probe length increases from 20 mer to 35 mer, its microarray density decreases correspondingly. Mechanism study shows that the binding mode of DNA probes on the beads surface is nearly parallel to the beads surface.

  20. Microarray of DNA probes on carboxylate functional beads surface

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The microarray of DNA probes with 5′-NH2 and 5′-Tex/3′-NH2 modified terminus on 10 m m carboxylate functional beads surface in the presence of 1-ethyl-3-(3-dimethylaminopropyl)- carbodiimide (EDC) is characterized in the present paper. It was found that the microarray capacity of DNA probes on the beads surface depends on the pH of the aqueous solution, the concentration of DNA probe and the total surface area of the beads. On optimal conditions, the minimum distance of 20 mer single-stranded DNA probe microarrayed on beads surface is about 14 nm, while that of 20 mer double-stranded DNA probes is about 27 nm. If the probe length increases from 20 mer to 35 mer, its microarray density decreases correspondingly. Mechanism study shows that the binding mode of DNA probes on the beads surface is nearly parallel to the beads surface.

  1. Silica deactivation of bead VOC catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Libanati, C.; Pereira, C.J. [Research Division, W. R. Grace and Co., Columbia, MD (United States); Ullenius, D.A. [Grace TEC Systems, De Pere, WI (United States)

    1998-01-15

    Catalytic oxidation is a key technology for controlling the emissions of Volatile Organic Compounds (VOCs) from industrial plants. The present paper examines the deactivation by silica of bead VOC catalysts in a flexographic printing application. Post mortem analyses of field-aged catalysts suggest that organosilicon compounds contained in the printing ink diffuse into the catalyst and deposit as silica particles in the micropores. Laboratory activity evaluation of aged catalysts suggests that silica deposition is non-selective and that silica masks the noble metal active site

  2. Metallic gold beads in hyaluronic acid

    DEFF Research Database (Denmark)

    Pedersen, Dan Sonne; Tran, Thao Phuong; Smidt, Kamille;

    2013-01-01

    by exploiting macrophage-induced liberation of gold ions (dissolucytosis) from gold surfaces. Injecting gold beads in hyaluronic acid (HA) as a vehicle into the cavities of the brain can delay clinical signs of disease progression in the MS model, experimental autoimmune encephalitis (EAE). This study....... In conclusion, our findings support that bio-liberation of gold from metallic gold surfaces have anti-inflammatory properties similar to classic gold compounds, warranting further studies into the pharmacological potential of this novel gold-treatment and the possible synergistic effects of hyaluronic acid....

  3. Immobilized OBOC combinatorial bead array to facilitate multiplicative screening

    OpenAIRE

    Xiao, Wenwu; Bononi, Fernanda C.; Townsend, Jared; Li, Yuanpei; Liu, Ruiwu; Lam, Kit S.

    2013-01-01

    One-bead-one-compound (OBOC) combinatorial library screening has been broadly utilized for the last two decades to identify small molecules, peptides or peptidomimetics targeting variable screening probes such as cell surface receptors, bacteria, protein kinases, phosphatases, proteases etc. In previous screening methods, library beads were suspended in solution and screened against one single probe. Only the positive beads were tracked and isolated for additional screens and finally selected...

  4. Controlling the magnetic field distribution on the micrometer scale and generation of magnetic bead patterns for microfluidic applications.

    Science.gov (United States)

    Yu, Xu; Feng, Xuan; Hu, Jun; Zhang, Zhi-Ling; Pang, Dai-Wen

    2011-04-19

    As is well known, controlling the local magnetic field distribution on the micrometer scale in a microfluidic chip is significant and has many applications in bioanalysis based on magnetic beads. However, it is a challenge to tailor the magnetic field introduced by external permanent magnets or electromagnets on the micrometer scale. Here, we demonstrated a simple approach to controlling the local magnetic field distribution on the micrometer scale in a microfluidic chip by nickel patterns encapsulated in a thin poly(dimethylsiloxane) (PDMS) film under the fluid channel. With the precisely controlled magnetic field, magnetic bead patterns were convenient to generate. Moreover, two kinds of fluorescent magnetic beads were patterned in the microfluidic channel, which demonstrated that it was possible to generate different functional magnetic bead patterns in situ, and could be used for the detection of multiple targets. In addition, this method was applied to generate cancer cell patterns.

  5. Fast Drug Release Using Rotational Motion of Magnetic Gel Beads

    Directory of Open Access Journals (Sweden)

    Jun-Ichi Takimoto

    2008-03-01

    Full Text Available Accelerated drug release has been achieved by means of the fast rotation of magnetic gel beads. The magnetic gel bead consists of sodium alginate crosslinked by calcium chlorides, which contains barium ferrite of ferrimagnetic particles, and ketoprofen as a drug. The bead underwent rotational motion in response to rotational magnetic fields. In the case of bead without rotation, the amount of drug release into a phosphate buffer solution obeyed non-Fickian diffusion. The spontaneous drug release reached a saturation value of 0.90 mg at 25 minutes, which corresponds to 92% of the perfect release. The drug release was accelerated with increasing the rotation speed. The shortest time achieving the perfect release was approximately 3 minutes, which corresponds to 1/8 of the case without rotation. Simultaneous with the fast release, the bead collapsed probably due to the strong water flow surrounding the bead. The beads with high elasticity were hard to collapse and the fast release was not observed. Hence, the fast release of ketoprofen is triggered by the collapse of beads. Photographs of the collapse of beads, time profiles of the drug release, and a pulsatile release modulated by magnetic fields were presented.

  6. Ormosil Beads for Insulation of Ground Cryogenic Storage Tanks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Organically modified silica (Ormosil) aerogel beads developed at Aspen Aerogels, Inc. offer several advantages for retrofitting perlite insulation in NASA's ground...

  7. Adsorption of CO2 by alginate immobilized zeolite beads

    Science.gov (United States)

    Suratman, A.; Kunarti, E. S.; Aprilita, N. H.; Pamurtya, I. C.

    2017-03-01

    Immobilized zeolit in alginate beads for adsorption of CO2 was developed. Alginate immobilized zeolit beads was generated by dropping the mixture of Na-alginate and zeolite solution into Ca2+ solution. The adsorption efficacy such as the influence of contact time, mass of zeolite, flowrate of CO2, and mass of adsorbent was evaluated. The adsorption of CO2 onto alginate immobilized zeolit beads was investigated by performing both equilibrium and kinetic batch test. Bead was characterized by FTIR and SEM. Alginate immobilized zeolit beads demonstrated significantly higher sorption efficacy compared to plain alginate beads and zeolite with 0.25 mmol CO2 adsorbed /g adsorbent. Optimum condition was achieved with mass composition of alginate:zeolite (3:1), flowrate 50 mL/min for 20 minutes. The alginate immobilized zeolit beads showed that adsorption of CO2 followed Freundlich isotherm and pseudo second order kinetic model. Adsorption of CO2 onto alginate immobilized zeolite beads is a physisorption with adsorption energy of 6.37 kJ/mol. This results indicates that the alginate immobilized zeolit beads can be used as promising adsorbents for CO2.

  8. Bead magnetorelaxometry with an on-chip magnetoresistive sensor

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Damsgaard, Christian Danvad; Donolato, Marco

    2011-01-01

    Magnetorelaxometry measurements on suspensions of magnetic beads are demonstrated using a planar Hall effect sensor chip embedded in a microfluidic system. The alternating magnetic field used for magnetizing the beads is provided by the sensor bias current and the complex magnetic susceptibility...... spectra are recorded as the 2nd harmonic of the sensor response. The complex magnetic susceptibility signal appears when a magnetic bead suspension is injected, it scales with the bead concentration, and it follows the Cole-Cole expression for Brownian relaxation. The complex magnetic susceptibility...

  9. Creating nanoshell on the surface of titanium hydride bead

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-12-01

    Full Text Available The article presents data on the modification of titanium hydride bead by creating titanium nanoshell on its surface by ion-plasma vacuum magnetron sputtering. To apply titanium nanoshell on the titanium hydride bead vacuum coating plant of multifunctional nanocomposite coatings QVADRA 500 located in the center of high technology was used. Analysis of the micrographs of the original surface of titanium hydride bead showed that the microstructure of the surface is flat, smooth, in addition the analysis of the microstructure of material surface showed the presence of small porosity, roughness, mainly cavities, as well as shallow longitudinal cracks. The presence of oxide film in titanium hydride prevents the free release of hydrogen and fills some micro-cracks on the surface. Differential thermal analysis of both samples was conducted to determine the thermal stability of the initial titanium hydride bead and bead with applied titanium nanoshell. Hydrogen thermal desorption spectra of the samples of the initial titanium hydride bead and bead with applied titanium nanoshell show different thermal stability of compared materials in the temperature range from 550 to 860о C. Titanium nanoshells applied in this way allows increasing the heat resistance of titanium hydride bead – the temperature of starting decomposition is 695о C and temperature when decomposition finishes is more than 1000о C. Modified in this way titanium hydride bead can be used as a filler in the radiation protective materials used in the construction or upgrading biological protection of nuclear power plants.

  10. Magnetic bead micromixer: Influence of magnetic element geometry and field amplitude

    DEFF Research Database (Denmark)

    Lund-Olesen, Torsten; Buus, Bjarke B.; Howalt, Jakob;

    2008-01-01

    A scheme for the silicon microfabrication of lab-on-a-chip systems with mixing based on dynamic plugs of magnetic beads is presented. The systems consist of a microfluidic channel integrated with a number of soft magnetic elements by the sides of the channel. The elements are magnetized by a homo...

  11. Ultrasensitive photoelectrochemical immunoassay for CA19-9 detection based on CdSe@ZnS quantum dots sensitized TiO2NWs/Au hybrid structure amplified by quenching effect of Ab2@V(2+) conjugates.

    Science.gov (United States)

    Zhu, Hua; Fan, Gao-Chao; Abdel-Halim, E S; Zhang, Jian-Rong; Zhu, Jun-Jie

    2016-03-15

    A novel, enhanced photoelectrochemical immunoassay was established for sensitive and specific detection of carbohydrate antigen 19-9 (CA19-9, Ag). In this protocol, TiO2 nanowires (TiO2NWs) were first decorated with Au nanoparticles to form TiO2NWs/Au hybrid structure, and then coated with CdSe@ZnS quantum dots (QDs) via the layer-by-layer method, producing TiO2NWs/Au/CdSe@ZnS sensitized structure, which was employed as the photoelectrochemical matrix to immobilize capture CA19-9 antibodies (Ab1); whereas, bipyridinium (V(2+)) molecules were labeled on signal CA19-9 antibodies (Ab2) to form Ab2@V(2+) conjugates, which were used as signal amplification elements. The TiO2NWs/Au/CdSe@ZnS sensitized structure could adequately absorb light energy and dramatically depress electron-hole recombination, resulting in evidently enhanced photocurrent intensity of the immunosensing electrode. While target Ag were detected, the Ab2@V(2+) conjugates could significantly decrease the photocurrent detection signal because of strong electron-withdrawing property of V(2+) coupled with evident steric hindrance of Ab2. Thanks to synergy effect of TiO2NWs/Au/CdSe@ZnS sensitized structure and quenching effect of Ab2@V(2+) conjugates, the well-established photoelectrochemical immunoassay exhibited a low detection limit of 0.0039 U/mL with a wide linear range from 0.01 U/mL to 200 U/mL for target Ag detection. This proposed photoelectrochemical protocol also showed good reproducibility, specificity and stability, and might be applied to detect other important biomarkers.

  12. Characterization of some tin-contained ancient glass beads found in China by means of SEM-EDS and raman spectroscopy.

    Science.gov (United States)

    Li, Qinghui; Liu, Song; Su, Bomin; Zhao, Hongxia; Fu, Qiang; Dong, Junqing

    2013-02-01

    A total of nine tin-contained ancient glass beads were characterized by a combination of scanning electron microscopy coupled with energy-dispersive X-ray spectrometry and Raman spectroscopy. These glass beads dated from 1st century BC to 10th century AD were excavated from the Xinjiang and Guangxi provinces of China. Two kinds of tin-based opacifiers/colorants included crystalline cassiterite (SnO(2)) and lead-tin yellow types II were first found in these soda lime glass beads. The tentative chronology of the tin-based opacifiers/colorants used in ancient glasses from China and the West was compared. In addition, several transition metal ions colorants were also found in these beads. The detailed study of the glassy matrices, crystalline inclusions, and the microstructural heterogeneities for these glass beads has revealed some valuable information to trace the possible making technology and provenances.

  13. Encapsulated human hepatocellular carcinoma cells by alginate gel beads as an in vitro metastasis model

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiao-xi; Liu, Chang [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049 (China); Liu, Yang [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Li, Nan [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049 (China); Guo, Xin [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Wang, Shu-jun [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian 116024 (China); Sun, Guang-wei, E-mail: sungw@dicp.ac.cn [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Wang, Wei [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Ma, Xiao-jun, E-mail: maxj@dicp.ac.cn [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China)

    2013-08-15

    Hepatocellular carcinoma (HCC) is the most common primary liver cancer and often forms metastases, which are the most important prognostic factors. For further elucidation of the mechanism underlying the progression and metastasis of HCC, a culture system mimicking the in vivo tumor microenvironment is needed. In this study, we investigated the metastatic ability of HCC cells cultured within alginate gel (ALG) beads. In the culture system, HCC cells formed spheroids by proliferation and maintained in nuclear abnormalities. The gene and protein expression of metastasis-related molecules was increased in ALG beads, compared with the traditional adhesion culture. Furthermore, several gene expression levels in ALG bead culture system were even closer to liver cancer tissues. More importantly, in vitro invasion assay showed that the invasion cells derived from ALG beads was 7.8-fold higher than adhesion cells. Our results indicated that the in vitro three-dimensional (3D) model based on ALG beads increased metastatic ability compared with adhesion culture, even partly mimicked the in vivo tumor tissues. Moreover, due to the controllable preparation conditions, steady characteristics and production at large-scale, the 3D ALG bead model would become an important tool used in the high-throughput screening of anti-metastasis drugs and the metastatic mechanism research. -- Highlights: •We established a 3D metastasis model mimicking the metastatic ability in vivo. •The invasion ability of cells derived from our model was increased significantly. •The model is easy to reproduce, convenient to handle, and amenable for large-scale.

  14. A Retrospective Analysis of Urine Drugs of Abuse Immunoassay True Positive Rates at a National Reference Laboratory.

    Science.gov (United States)

    Johnson-Davis, Kamisha L; Sadler, Aaron J; Genzen, Jonathan R

    2016-03-01

    Urine drug screens are commonly performed to identify drug use or monitor adherence to drug therapy. The purpose of this retrospective study was to evaluate the true positive and false positive rates of one of our in-house urine drug screen panels. The urine drugs of abuse panel studied consists of screening by immunoassay then positive immunoassay results were confirmed by mass spectrometry. Reagents from Syva and Microgenics were used for the immunoassay screen. The screen was performed on a Beckman AU5810 random access automated clinical analyzer. The percent of true positives for each immunoassay was determined. Agreement with previously validated GC-MS or LC-MS-MS confirmatory methods was also evaluated. There were 8,825 de-identified screening results for each of the drugs in the panel, except for alcohol (N = 2,296). The percent of samples that screened positive were: 10.0% for amphetamine/methamphetamine/3,4-methylenedioxy-methamphetamine (MDMA), 12.8% for benzodiazepines, 43.7% for opiates (including oxycodone) and 20.3% for tetrahydrocannabinol (THC). The false positive rate for amphetamine/methamphetamine was ∼14%, ∼34% for opiates (excluding oxycodone), 25% for propoxyphene and 100% for phencyclidine and MDMA immunoassays. Based on the results from this retrospective study, the true positive rate for THC drug use among adults were similar to the rate of illicit drug use in young adults from the 2013 National Survey; however, our positivity rate for cocaine was higher than the National Survey.

  15. Quantum dot immunoassays in renewable surface column and 96-well plate formats for the fluorescence detection of Botulinum neurotoxin using high-affinity antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Warner, Marvin G.; Grate, Jay W.; Tyler, Abby J.; Ozanich, Richard M.; Miller, Keith D.; Lou, Jianlong; Marks, James D.; Bruckner-Lea, Cindy J.

    2009-09-01

    A fluorescence sandwich immunoassay using high affinity antibodies and quantum dot (QD) reporters has been developed for detection of botulinum toxin serotype A (BoNT/A). For the development of the assay, a nontoxic recombinant fragment of the holotoxin (BoNT/A-HC-fragment) has been used as a structurally valid simulant for the full toxin molecule. The antibodies used, AR4 and RAZ1, bind to nonoverlapping epitopes present on both the full toxin and on the recombinant fragment. In one format, the immunoassay is carried out in a 96-well plate with detection in a standard plate reader. Detection down to 31 pM of the BoNT/Hc-fragment was demonstrated with a total incubation time of 3 hours, using AR4 as the capture antibody and QD-coupled RAZ1 as the reporter. In a second format, the AR4 capture antibody was coupled to Sepharose beads, and the immunochemical reactions were carried out in microcentrifuge tubes with an incubation time of 1 hour. These beads were subsequently captured and concentrated in a rotating rod “renewable surface” flow cell as part of a sequential injection fluidic system. This flow cell was equipped with a fiber optic system for fluorescence measurements. In PBS buffer solution matrix, the BoNT/A-HC-fragment was detected to concentrations as low as 5 pM using the fluidic measurement approach.

  16. Competitive enzyme immunoassay for urinary vanillylmandelic acid.

    Science.gov (United States)

    Taran, F; Bernard, H; Valleix, A; Créminon, C; Grassi, J; Olichon, D; Deverre, J R; Pradelles, P

    1997-08-29

    An enzyme immunoassay for urinary vanillylmandelic acid (VMA) using polyclonal antiserum and VMA-acetylcholinesterase conjugate as enzymatic tracer is described. Two different strategies for immunogen preparation were developed and enantioselectivity was demonstrated. Selected EIA allowed direct measurement of urinary VMA using D(-)-VMA as standard with good sensitivity (MDC = 0.1 mumol/l) and precision (CV less than 7% in 0.2-2.25 mumol/l range). Cross-reactivity with homovanillic acid (HVA) was 0.8% and less than 0.4% with other structurally related catecholamine metabolites. Intra- and inter-assay repeatability were less than 10% and recovery was 97.3% +/- 3%. Good correlation was obtained for EIA and HPLC analysis with normal and pathologic human urine samples (EIA = 0.895 HPLC-7.085, r2 = 0.98, n = 47).

  17. Immunoassay of chemical contaminants in milk:A review

    Institute of Scientific and Technical Information of China (English)

    XU Fei; REN Kang; YANG Yu-ze; GUO Jiang-peng; MA Guang-peng; LIU Yi-ming; LU Yong-qiang; LI Xiu-bo

    2015-01-01

    The detection of chemical contaminants is critical to ensure dairy safety. These contaminants include veterinary medicines, antibiotics, pesticides, heavy metals, mycotoxins, and persistent organic polutants (POPs). Immunoassays have recently been used to detect contaminants in milk because of their simple operation, high speed, and low cost. This article describes the latest developments in the most important component of immunoassays—antibodies, and then reviews the four major substrates used for immunoassays (i.e., microplates, membranes, gels, and chips) as wel as their use in the detection of milk contaminants. The paper concludes with prospects for further applications of these immunoassays.

  18. Chemiluminescence Resonance Energy Transfer Competitive Immunoassay Employing Hapten-Functionalized Quantum Dots for the Detection of Sulfamethazine.

    Science.gov (United States)

    Ma, Mingfang; Wen, Kai; Beier, Ross C; Eremin, Sergei A; Li, Chenglong; Zhang, Suxia; Shen, Jianzhong; Wang, Zhanhui

    2016-07-20

    We describe a new strategy for using chemiluminescence resonance energy transfer (CRET) by employing hapten-functionalized quantum dots (QDs) in a competitive immunoassay for detection of sulfamethazine (SMZ). Core/multishell QDs were synthesized and modified with phospholipid-PEG. The modified QDs were functionalized with the hapten 4-(4-aminophenyl-sulfonamido)butanoic acid. The CRET-based immunoassay exhibited a limit of detection for SMZ of 9 pg mL(-1), which is >4 orders of magnitude better than a homogeneous fluorescence polarization immunoassay and is 2 orders of magnitude better than a heterogeneous enzyme-linked immunosorbent assay. This strategy represents a simple, reliable, and universal approach for detection of chemical contaminants.

  19. l-Arginine grafted alginate hydrogel beads: A novel pH-sensitive system for specific protein delivery

    Directory of Open Access Journals (Sweden)

    Mohamed S. Mohy Eldin

    2015-05-01

    Full Text Available Novel pH-sensitive hydrogels based on l-arginine grafted alginate (Arg-g-Alg hydrogel beads were synthesized and utilized as a new carrier for protein delivery (BSA in specific pH media. l-arginine was grafted onto the polysaccharide backbone of virgin alginate via amine functions. Evidences of grafting of alginate were extracted from FT-IR and thermal analysis, while the morphological structure of Arg-g-Alg hydrogel beads was investigated by SEM photographs. Factors affecting on the grafting process e.g. l-arginine concentration, reaction time, reaction temperature, reaction pH, and crosslinking conditions, have been studied. Whereas, grafting efficiency of each factor was evaluated. Grafting of alginate has improved both thermal and morphological properties of Arg-g-Alg hydrogel beads. The swelling behavior of Arg-g-Alg beads was determined as a function of pH and compared with virgin calcium alginate beads. The cumulative in vitro release profiles of BSA loaded beads were studied at different pHs for simulating the physiological environments of the gastrointestinal tract. The amount of BSA released from neat alginate beads at pH 2 was almost 15% after 5 h, while the Arg-g-Alg beads at the same conditions were clearly higher than 45%, then it increased to 90% at pH 7.2. Accordingly, grafting of alginate has improved its release profile behavior particularly in acidic media. The preliminary results clearly suggested that the Arg-g-Alg hydrogel may be a potential candidate for polymeric carrier for oral delivery of protein or drugs.

  20. The smaller, the better? The size effect of alginate beads carrying plant growth-promoting bacteria for seed coating.

    Science.gov (United States)

    Berninger, Teresa; Mitter, Birgit; Preininger, Claudia

    2016-01-01

    A range of lab-scale methods for encapsulation of plant growth-promoting bacteria in alginate beads intended for seed coating was evaluated: contact-spotting, extrusion through syringe with/without vibration, ejection by robotic liquid handler, extrusion by centrifugal force and commercial devices (nanodispenser, aerodynamically assisted jetting, encapsulator). Two methods were selected based on throughput (encapsulator: 1.5-5 mL/min; syringe with subsequent pulverisation: 5 mL/min). Four bead sizes (55 ± 39 μm, 104 ± 23 μm, 188 ± 16 μm and 336 ± 20 μm after lyophilisation) were produced. Bacterial viability, release, bead morphology, seed surface coverage and attrition were investigated. Release from the smallest bead size was approximately 10 times higher than from the largest. Seed surface coverage was highest (69 ± 3%) when alginate beads produced with nozzle size 80 μm were applied. Pulverised macro-beads are an alternative option, if high throughput is top priority.

  1. A highly-sensitive multisubstrate-compatible chemiluminescent immunoassay for human fetuin A

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Sandeep Kumar Vashist ### Abstract We report a highly-sensitive chemiluminescent immunoassay (CIA) for the detection of human fetuin A (HFA), which is based on the leach-proof covalent crosslinking of anti-HFA capture antibodies on 3-aminopropyltriethoxysilane (APTES)-functionalized 96-well chemiluminescent microtiter plates (CMTP) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysulfosuccinimide. It has more than 3-fold reduced overall assay du...