WorldWideScience

Sample records for bdnf genotype modulates

  1. BDNF genotype influence the efficacy of rTMS in stroke patients.

    Science.gov (United States)

    Uhm, Kyeong Eun; Kim, Yun-Hee; Yoon, Kyung Jae; Hwang, Jung Min; Chang, Won Hyuk

    2015-05-06

    Brain-derived neurotrophic factor (BDNF) genotype can influence neural response to repetitive transcranial magnetic stimulation (rTMS) in normal individuals. In this study we established personalized stimulus intensity of facilitatory rTMS according to BDNF genotype in stroke patients. Twenty-two chronic stroke patients were enrolled. All patients underwent three different sessions of rTMS over the ipsilesional M1 in randomized order with a washout period exceeding 24h: first condition, high-frequency rTMS with sub-threshold intensity; second condition, high-frequency rTMS with supra-threshold intensity; third condition, sham rTMS. Cortical excitability in the affected hemisphere was assessed with motor evoked potentials (MEPs) before and after stimulation. Data were analyzed according to BDNF genotype. Six [27.3%] and 16 [72.7%] participants were classified in the Val/Val group and Met allele group, respectively. In each group, significant increases were observed in the amplitude of MEPs after the stimulation in the first and second conditions (prTMS is used for the modulation of cortical excitability in patients with chronic stroke.

  2. BDNF serum levels, but not BDNF Val66Met genotype, are correlated with personality traits in healthy subjects.

    Science.gov (United States)

    Minelli, Alessandra; Zanardini, Roberta; Bonvicini, Cristian; Sartori, Riccardo; Pedrini, Laura; Gennarelli, Massimo; Bocchio-Chiavetto, Luisella

    2011-08-01

    Consisting evidence in animal models has suggested that alterations in brain-derived neurotrophic factor (BDNF) brain expression and release are involved in the pathogenesis of mental illnesses, such as, mood, anxiety, and eating disorders. This hypothesis is supported by data emerging from biochemical studies on serum BDNF levels and genetic studies on the functional polymorphism Val66Met in the BDNF gene in patients and control subjects. Anxiety-related personality traits are associated with several mental disorders. However, they are also measurable in non-affected subjects and, so, may represent a useful "endophenotype" to study the biological correlation of the vulnerability factors in the general population. In this study, we analyzed putative correlations in subjects unaffected by mental disorders between personality traits, serum BDNF levels (N = 107), and the BDNF Val66Met genotype (N = 217). Furthermore, we tested the possible interactions between these variables. A significant correlation has been observed between high scores of harm avoidance (HA) measured by the temperament and character inventory (TCI), and low BDNF serum concentration (r = -0.253, P = 0.009). In addition, an association has been evidenced between low BDNF levels in serum and the BDNF Val/Val genotype (P = 0.021). By analyzing putative concomitant effects of different variables on HA scores in a regression model, we observed a significant correlation only with BDNF serum concentrations (P = 0.022). The study results suggest that a decrease in serum BDNF concentrations may represent a biochemical marker associated with anxiety personality traits also retrievable in the general population.

  3. BDNF genotype interacts with motor-function to influence rehabilitation responsiveness post-stroke

    Directory of Open Access Journals (Sweden)

    Christine T Shiner

    2016-05-01

    Full Text Available Background. Persistent motor impairment is common but highly heterogeneous post-stroke. Genetic polymorphisms, including those identified on the brain derived neurotrophic factor (BDNF and apolipoprotein E (APOE genes, may contribute to this variability by limiting the capacity for use-dependent neuroplasticity, and hence rehabilitation responsiveness.Objective. To determine whether BDNF and APOE genotypes influence motor improvement facilitated by post-stroke upper-limb rehabilitation. Methods. BDNF Val66Met and APOE isoform genotypes were determined using leukocyte DNA for 55 community-dwelling patients 2-123 months post-stroke. All patients completed a dose-matched upper-limb rehabilitation program of either Wii-based Movement Therapy or Constraint-induced Movement Therapy. Upper-limb motor-function was assessed pre- and post-therapy using a suite of functional measures. Results. Motor-function improved for all patients post-therapy, with no difference between therapy groups. In the pooled data, there was no significant effect of BDNF or APOE genotype on motor-function at baseline, or following the intervention. However, a significant interaction between the level of residual motor-function and BDNF genotype was identified (p=0.029, whereby post-therapy improvement was significantly less for Met allele carriers with moderate and high, but not low motor-function. There was no significant association between APOE genotype and therapy outcomes. Conclusions. This study identified a novel interaction between the BDNF Val66Met polymorphism, motor-function status and the magnitude of improvement with rehabilitation in chronic stroke. This polymorphism does not preclude, but may reduce, the magnitude of motor improvement with therapy, particularly for patients with higher but not lower residual motor-function. BDNF genotype should be considered in the design and interpretation of clinical trials.

  4. Mineralocorticoid receptor genotype moderates the association between physical neglect and serum BDNF.

    Science.gov (United States)

    Bortoluzzi, Andressa; Salum, Giovanni Abrahão; Blaya, Carolina; Silveira, Patrícia Pelufo; Grassi-Oliveira, Rodrigo; da Rosa, Eduarda Dias; de Aguiar, Bianca Wollenhaupt; Stertz, Laura; Bosa, Vera Lúcia; Schuch, Ilaine; Goldani, Marcelo; Kapczinski, Flavio; Leistner-Segal, Sandra; Manfro, Gisele Gus

    2014-12-01

    The objective of this study is to investigate if a polymorphism in the NR3C2 gene moderates the association between childhood trauma on serum levels of brain derived neurothrophic factor (sBDNF). sBDNF was used here as a general marker of alteration in brain function. This is a community cross sectional study comprising 90 adolescents (54 with anxiety disorders). DNA was extracted from saliva in order to genotype the MR-2G/C (rs2070951) polymorphism using real time PCR. Blood was collected for sBDNF Elisa immunoassay. The Childhood Trauma Questionnaire (CTQ) was used to evaluate childhood abuse and neglect. Main effects and gene environment interactions were tested using linear regression models. Anxiety disorders were not associated with the MR-2G/C polymorphism or with sBDNF levels, but the number of C alleles of the MR-2G/C polymorphism was significantly associated with higher sBDNF levels (b = 8.008; p-value = 0.001). Subjects with intermediate and high exposure to physical neglect showed higher sBDNF levels if compared to subjects non-exposed (b = 11.955; p = 0.004 and b = 16.186; p = 0.009, respectively). In addition, we detected a significant physical neglect by MR-2G/C C allele interaction on sBDNF levels (p = 0.005), meaning that intermediate and high exposure to childhood neglect were only associated with increased sBDNF levels in subjects with the CC genotype, but not in subjects with other genotypes. Our findings suggest that genetic variants in NR3C2 gene may partially explain plastic brain vulnerability to traumatic events. Further studies are needed to investigate the moderating effects of NR3C2 gene in more specific markers of alteration in brain function.

  5. Time-dependent biphasic modulation of human BDNF by antidepressants in neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    Musazzi Laura

    2008-07-01

    Full Text Available Abstract Background Recent rodent studies reported that antidepressant treatments affect the expression of brain-derived neurotrophic factor (BDNF mRNA in a way that is dependent on treatment duration, by selective modulation of different BDNF transcripts. However, no data are available for the human BDNF gene. We studied the effect of different antidepressants on BDNF mRNA expression in human neuroblastoma SH-SY5Y cells. Results Cultured cells were treated with the antidepressants fluoxetine, reboxetine and desipramine for different time lengths (6, 24, 48 hours. Expression of total BDNF mRNA was analyzed by reverse transcription PCR and levels of different BDNF transcripts were detected by hemi-nested PCR with specific primers. Short-term treatment (6 hours with reboxetine or desipramine reduced total BDNF, whereas long-term treatment (48 hours significantly increased total BDNF mRNA levels. These changes were accounted for by differential regulation of BDNF IV and VIa/b transcripts. Fluoxetine showed no significant effects. Conclusion This is the first study showing biphasic changes in the expression of total and specific BDNF transcripts in human cells following antidepressant treatments. These findings suggest that biphasic induction of BDNF by antidepressants could be a feature common to rodents and humans and encourage the use of SH-SY5Y cells as a tool for investigation of drug effects on human genes.

  6. Associations of BDNF genotype and promoter methylation with acute and long-term stroke outcomes in an East Asian cohort.

    Directory of Open Access Journals (Sweden)

    Jae-Min Kim

    Full Text Available BACKGROUND: Brain derived neurotrophic factor (BDNF has been shown to play an important role in poststroke recovery. BDNF secretion is influenced by genetic and epigenetic profiles. This study aimed to investigate whether BDNF val66met polymorphism and promoter methylation status were associated with outcomes at two weeks and one year after stroke. METHODS AND FINDINGS: A total of 286 patients were evaluated at the time of admission and two weeks after stroke, and 222 (78% were followed one year later in order to evaluate consequences of stroke at both acute and chronic stages. Stroke outcomes were dichotomised into good and poor by the modified Rankin Scale. Stroke severity (National Institutes of Health Stroke Scale, physical disability (Barthel Index, and cognitive function (Mini-Mental State Examination were measured. Associations of BDNF genotype and methylation status on stroke outcomes and assessment scale scores were investigated using logistic regression, repeated measures ANOVA and partial correlation tests. BDNF val66met polymorphism was independently associated with poor outcome at 2 weeks and at 1 year, and with worsening physical disability and cognitive function over that period. Higher BDNF promoter methylation status was independently associated with worse outcomes at 1 year, and with the worsening of physical disability and cognitive function. No significant genotype-methylation interactions were found. CONCLUSIONS: A role for BDNF in poststroke recovery was supported, and clinical utility of BDNF genetic and epigenetic profile as prognostic biomarkers and a target for drug development was suggested.

  7. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort

    Directory of Open Access Journals (Sweden)

    Nesli Avgan

    2017-03-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265 and long-term visual memory (p-value = 0.003 in a small cohort (n = 181 comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale—Fourth Edition subtests Visual Reproduction I and II (VR I and II. VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006 that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance.

  8. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort

    Science.gov (United States)

    Avgan, Nesli; Sutherland, Heidi G.; Spriggens, Lauren K.; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M.; Shum, David H. K.; Griffiths, Lyn R.

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory (p-value = 0.003) in a small cohort (n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale—Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance. PMID:28304362

  9. Glucocorticoids modulate BDNF mRNA expression in the rat hippocampus after traumatic brain injury.

    Science.gov (United States)

    Grundy, P L; Patel, N; Harbuz, M S; Lightman, S L; Sharples, P M

    2000-10-20

    Brain-derived neurotrophic factor (BDNF) expression in rat hippocampus is increased after experimental traumatic brain injury (TBI) and may be neuroprotective. Glucocorticoids are important regulators of brain neurotrophin levels and are often prescribed following TBI. The effect of adrenalectomy (ADX) on the expression of BDNF mRNA in the hippocampus after TBI has not been investigated to date. We used fluid percussion injury (FPI) and in situ hybridization to evaluate the expression of BDNF mRNA in the hippocampus 4 h after TBI in adrenal-intact or adrenalectomized rats (with or without corticosterone replacement). FPI and ADX independently increased expression of BDNF mRNA. In animals undergoing FPI, prior ADX caused further elevation of BDNF mRNA and this upregulation was prevented by corticosterone replacement in ADX rats. These findings suggest that glucocorticoids are involved in the modulation of the BDNF mRNA response to TBI.

  10. In vivo BDNF modulation of hippocampal mossy fiber plasticity induced by high frequency stimulation.

    Science.gov (United States)

    Schjetnan, Andrea Gómez-Palacio; Escobar, Martha L

    2012-01-01

    Changes in synaptic efficacy and morphology have been proposed as mechanisms underlying learning and memory processes. In our previous studies, high frequency stimulation (HFS) sufficient to induce LTP at the hippocampal mossy fiber (MF) pathway, leads to MF synaptogenesis, in a prominent contralateral form, at the stratum oriens of hippocampal CA3 area. Recently we reported that acute intrahippocampal microinfusion of BDNF induces a lasting potentiation of synaptic efficacy at the MF projection accompanied by a structural reorganization at the CA3 area within the stratum oriens region in a prominent ipsilateral form. It is considered that the capacity of synapses to express plastic changes is itself subject to variation dependent on previous experience. Here we used intrahippocampal microinfusion of BDNF to analyze its effects on functional and structural synaptic plasticity induced by subsequent mossy fiber HFS sufficient to induce LTP in adult rats, in vivo. Our results show that BDNF modifies the ability of the MF pathway to present LTP by HFS. Moreover BDNF modified the structural reorganization pattern produced by HFS, presenting a balanced bilateral appearance. Microinfusion of K252a blocks the functional and morphological effects produced by BDNF, revealing that the BDNF modulation is dependent on its TrkB receptor activation. These findings support the idea that BDNF actions modify subsequent synaptic plasticity; a homeostatic mechanism thought to be essential for synaptic integration among prolonged temporal domains in the adult mammalian brain.

  11. An AMPA receptor potentiator modulates hippocampal expression of BDNF: an in vivo study.

    Science.gov (United States)

    Mackowiak, Marzena; O'Neill, Michael J; Hicks, Caroline A; Bleakman, David; Skolnick, Phil

    2002-07-01

    AMPA receptor activation has been demonstrated to increase the neuronal expression of brain derived neurotrophic factor (BDNF). In the present study, we investigated the effect of a novel AMPA receptor potentiator (LY404187) and its active isomer (LY451646) on the expression of BDNF protein and mRNA, as well as TrkB mRNA in rat hippocampus. LY404187 administered for 7 days (1 mg/kg) significantly increased the number of BDNF immunopositive cells in the dentate gyrus, but not other hippocampal subfields. Chronic treatment (7 days) with LY451646 (0.5 mg/kg, comparable to 1 mg/kg of LY404187) increased the level of both BDNF and TrkB mRNA expression in the dentate gyrus, CA3 and CA4 of the hippocampus. However, chronic treatment with lower doses of LY451646 (0.125 and 0.25 mg/kg) decreased the level of BDNF and TrkB mRNA in hippocampus, whilst the highest used dose of LY451646 (1 mg/kg) had no effect on BDNF and TrkB mRNA in hippocampus. In contrast, acute treatment with LY451646 produced an increase in BDNF mRNA levels at doses of 0.125 and 0.25 mg/kg in the hippocampus (CA4, CA3 and dentate gyrus, but not in CA1). LY451646 at 0.5 mg/kg had no effect, but at 1.0 mg/kg decreased the level of BDNF mRNA in hippocampus. Acute treatment with LY451646 did not affect the TrkB receptor mRNA levels in hippocampus. Our results demonstrate that biarylpropylsulfonamide AMPA receptor potentiators are capable of modulating the expression of BDNF and TrkB mRNA in a dose- and time-dependent manner. The increase in both BDNF protein and mRNA expression in the dentate gyrus but not in CA1 indicates a specific role of AMPA receptors in the regulation of BDNF expression in this hippocampal subfield. The regulation of BDNF expression by biarylpropylsulfonamids such as LY451646 may have important therapeutical implications for this class of molecule in the treatment of depression and other CNS disorders.

  12. The Met-genotype of the BDNF Val66Met polymorphism is associated with reduced Stroop interference in elderly.

    Science.gov (United States)

    Gajewski, Patrick D; Hengstler, Jan G; Golka, Klaus; Falkenstein, Michael; Beste, Christian

    2012-12-01

    Aging is accompanied by impairments of executive functions that rely on the functional integrity of fronto-striatal networks. This integrity is modulated by the release of neurotrophins like the brain-derived-neurotrophic factor (BDNF). Here, we investigate effects of the functional BDNF Val66Met polymorphism on interference processing in 131 healthy elderly subjects using event-related potentials (ERPs). In a Stroop task, participants had to indicate the name or the colour of colour-words while colour was either compatible or incompatible with the name. We show that susceptibility to Stroop-interference is affected by the BDNF Val66Met polymorphism: the Met-allele carriers showed better performance and enhanced N450 in interference trials. Other processes necessary to prepare and allocate cognitive resources to a particular task were not affected by BDNF Val66Met polymorphism, underlining the specificity of the observed effects. The observed performance and ERP difference is possibly due to dopamine related effects of BDNF in fronto-striatal networks, where it putatively mediates a shift in the balance of the direct and indirect pathway involved in inhibitory functions.

  13. Genetic modulation of training and transfer in older adults:BDNF Val66Met polymorphism is associated with wider useful field of view

    Directory of Open Access Journals (Sweden)

    Lorenza S Colzato

    2011-09-01

    Full Text Available Western society has an increasing proportion of older adults. Increasing age is associated with a general decrease in the control over task-relevant mental processes. In the present study we investigated the possibility that successful transfer of game-based cognitive improvements to untrained tasks in elderly people is modulated by preexisting neuro-developmental factors as genetic variability related to levels of the brain-derived neurotrophic factor (BDNF, an important neuromodulator underlying cognitive processes. We trained participants, genotyped for the BDNF Val66Met polymorphism, on cognitive tasks developed to improve dynamic attention. Pre-training (baseline and post-training measures of attentional processes (divided and selective attention were acquired by means of the Useful Field of View (UFOV task. As expected, Val/Val homozygous individuals showed larger beneficial transfer effects than Met/-carriers. Our findings support the idea that genetic predisposition modulates transfer effects.

  14. BDNF Val 66 Met and 5-HTTLPR genotype moderate the impact of early psychosocial adversity on plasma brain-derived neurotrophic factor and depressive symptoms: a prospective study.

    Science.gov (United States)

    Buchmann, Arlette F; Hellweg, Rainer; Rietschel, Marcella; Treutlein, Jens; Witt, Stephanie H; Zimmermann, Ulrich S; Schmidt, Martin H; Esser, Günter; Banaschewski, Tobias; Laucht, Manfred; Deuschle, Michael

    2013-08-01

    Recent studies have emphasized an important role for neurotrophins, such as brain-derived neurotrophic factor (BDNF), in regulating the plasticity of neural circuits involved in the pathophysiology of stress-related diseases. The aim of the present study was to examine the interplay of the BDNF Val⁶⁶Met and the serotonin transporter promoter (5-HTTLPR) polymorphisms in moderating the impact of early-life adversity on BDNF plasma concentration and depressive symptoms. Participants were taken from an epidemiological cohort study following the long-term outcome of early risk factors from birth into young adulthood. In 259 individuals (119 males, 140 females), genotyped for the BDNF Val⁶⁶Met and the 5-HTTLPR polymorphisms, plasma BDNF was assessed at the age of 19 years. In addition, participants completed the Beck Depression Inventory (BDI). Early adversity was determined according to a family adversity index assessed at 3 months of age. Results indicated that individuals homozygous for both the BDNF Val and the 5-HTTLPR L allele showed significantly reduced BDNF levels following exposure to high adversity. In contrast, BDNF levels appeared to be unaffected by early psychosocial adversity in carriers of the BDNF Met or the 5-HTTLPR S allele. While the former group appeared to be most susceptible to depressive symptoms, the impact of early adversity was less pronounced in the latter group. This is the first preliminary evidence indicating that early-life adverse experiences may have lasting sequelae for plasma BDNF levels in humans, highlighting that the susceptibility to this effect is moderated by BDNF Val⁶⁶Met and 5-HTTLPR genotype.

  15. BDNF Val66Met genotype and neuroticism predict life stress: A longitudinal study from childhood to adulthood.

    Science.gov (United States)

    Lehto, Kelli; Mäestu, Jarek; Kiive, Evelyn; Veidebaum, Toomas; Harro, Jaanus

    2016-03-01

    The brain-derived neurotrophic factor gene (BDNF) Val66Met polymorphism and life stress have been associated with negative emotionality (e.g., neuroticism), but relevant evidence is far from unequivocal. Possible confounding factors include the type and timing of stressful events measured, such as childhood adversity vs. recent stressful events, and variable gene × environment interactions. The aim of this study was to longitudinally assess the BDNF Val66Met polymorphism and environment interaction effect on neuroticism in a population representative sample, depending upon the type of stress, gender and family relations. In the original older cohort of the Estonian Children Personality Behavior and Health Study (ECPBHS, n=593), neuroticism was measured at age 15 (parental assessment), 18 and 25 (self-assessments). Childhood stress was reported at age 15, quality of family relations was measured at age 18, and recent stressful life events at age 25. The BDNF Val66Met polymorphism interacted with recent stressful life events, but not with childhood adversities, to impact neuroticism. Interestingly, in female participants, neuroticism at age 18 predicted future stressful life events dependent upon genotype: individuals with Val/Val genotype and high neuroticism experienced higher, but Met-allele carriers with high neuroticism lower stress exposure at age 25. Similar tendencies were observed using parental assessments at age 15. The protective effect of Met-allele in the high stress exposure group could result from better early family environment. In conclusion, we herewith provide further evidence for a role of BDNF gene variance contributing to plasticity in response to environmental demands.

  16. Association between BDNF-rs6265 and obesity in the Boston Puerto Rican Health Study

    Science.gov (United States)

    The objective of this study is to examine a functional variant (rs6265) in the BDNF gene interacting with dietary intake modulate obesity traits in the Boston Puerto Rican Health Study population. BDNF rs6265 was genotyped in 1147 Puerto Ricans (aged 45-75 years), and examined for association with o...

  17. Estradiol-induced modulation of estrogen receptor-beta and GABA within the adult neocortex: a potential transsynaptic mechanism for estrogen modulation of BDNF.

    Science.gov (United States)

    Blurton-Jones, Mathew; Tuszynski, Mark H

    2006-12-01

    Estrogen influences brain-derived neurotrophic factor (BDNF) expression in the neocortex. However, BDNF-producing cortical neurons do not express detectable levels of nuclear estrogen receptors; instead, the most abundant cortical nuclear estrogen receptor, ER-beta, is present in GABAergic neurons, prompting us to test the hypothesis that estrogen effects on BDNF are mediated via cortical inhibitory interneurons. Adult female ovariectomized rats were provided acute estrogen replacement and the number of cortical GABA, ER-beta, and ER-beta/GABA double-labeled neurons was examined. Within 48 hours of injection of 17-beta-estradiol, the number of perirhinal neurons double-labeled for ER-beta/GABA was reduced by 28% (PBDNF-expressing cells, brain sections were double- or triple-labeled for ER-beta, GABAergic, and BDNF immunomarkers. The findings indicated that ER-beta-bearing inhibitory neurons project onto other GABAergic neurons that lack nuclear estrogen receptors; these inhibitory neurons in turn innervate BDNF-expressing excitatory cells. High estrogen states reduce cortical GABA levels, presumably releasing inhibition on BDNF-expressing neurons. This identifies a putative two-step transsynaptic mechanism whereby estrogen availability modulates expression of inhibitory transmitters, resulting in increased BDNF expression.

  18. BDNF prevents NMDA-induced toxicity in models of Huntington's disease: the effects are genotype specific and adenosine A2A receptor is involved.

    Science.gov (United States)

    Martire, Alberto; Pepponi, Rita; Domenici, Maria Rosaria; Ferrante, Antonella; Chiodi, Valentina; Popoli, Patrizia

    2013-04-01

    NMDA receptor-mediated excitotoxicity is thought to play a pivotal role in the pathogenesis of Huntington's disease (HD). The neurotrophin brain-derived neurotrophic factor (BDNF), which is also highly involved in HD and whose effects are modulated by adenosine A2 ARs, influences the activity and expression of striatal NMDA receptors. In electrophysiology experiments, we investigated the role of BDNF toward NMDA-induced effects in HD models, and the possible involvement of A2ARs. In corticostriatal slices from wild-type mice and age-matched symptomatic R6/2 mice (a model of HD), NMDA application (75 μM) induced a transient or a permanent (i.e., toxic) reduction of field potential amplitude, respectively. BDNF (10 ng/mL) potentiated NMDA effects in wild-type, while it protected from NMDA toxicity in R6/2 mice. Both effects of BDNF were prevented by A2 AR blockade. The protective effect of BDNF against NMDA-induced toxicity was reproduced in a cellular model of HD. These findings may have very important implications for the neuroprotective potential of BDNF and A2 AR ligands in HD.

  19. Modulation of BDNF and TrkB expression in rat hippocampus in response to acute neurotoxicity by diethyldithiocarbamate.

    Science.gov (United States)

    Micheli, M R; Bova, R; Laurenzi, M A; Bazzucchi, M; Grassi Zucconi, G

    2006-12-13

    In this study, we examined the expression profile of brain-derived neurotrophic factor (BDNF) and its receptor TrkB in adult rat hippocampus following acute administration of diethyldithiocarbamate (DDTC), a neurotoxic compound which was previously shown to induce microglia activation and cell death. Semiquantitative RT-PCR analysis detected significant variations of BDNF mRNA levels in whole hippocampus homogenates, with a peak at 24h after DDTC injection. Increased BDNF protein expression was demonstrated by immunohistochemistry in various hippocampal subfields. The most relevant increase was observed in the hilus of the dentate gyrus where BDNF levels at 120h were found to be almost four times those of basal levels. Full-length TrkB (TrkB.FL) encoding mRNA was also shown to undergo an earlier increase in the hippocampus of DDTC-treated rats. TrkB immunostaining with an antibody binding both full-length and truncated (TrkB.T) isoforms was found to increase at 120h in the hippocampal CA2 and CA3 regions. These results demonstrate that DDTC modulates the expression of BDNF and its receptor in the adult rat hippocampus and suggest a possible involvement of this neurotrophin in the protective response to DDTC-induced neuronal damage.

  20. Preliminary study of anxiety symptoms, family dysfunction, and the brain-derived neurotrophic factor (BDNF) Val66Met genotype in offspring of parents with bipolar disorder.

    Science.gov (United States)

    Park, Min-Hyeon; Chang, Kiki D; Hallmayer, Joachim; Howe, Meghan E; Kim, Eunjoo; Hong, Seung Chul; Singh, Manpreet K

    2015-02-01

    Several genetic and environmental factors place youth offspring of parents with bipolar disorder (BD) at high risk for developing mood and anxiety disorders. Recent studies suggest that anxiety symptoms, even at subclinical levels, have been associated with an increased risk for developing BD. The brain-derived neurotrophic factor (BDNF) gene has been implicated in the pathophysiology of both BD and anxiety disorders. We aimed to explore whether anxiety in BD offspring was associated with the BDNF Val66Met polymorphism. 64 BD offspring (mean age: 13.73 (S.D. 3.45) M = 30, F = 34) and 51 HC (mean age: 13.68 (S.D. 2.68) M = 23, F = 28) were compared on presence of the met allele and on scores from the Multidimensional Anxiety Scale for Children (MASC). To assess family function, we used the Family Adaptability and Cohesion Evaluation Scales (FACES-IV). The Baron & Kenny method was the statistical approach used to examine the moderating effects between variables. BD offspring showed higher levels of overall anxiety than did the HC group. BD offspring with the val/val genotype showed higher levels of anxiety than BD offspring with other genotypes. No significant levels of anxiety or its association with BDNF genotype were found in the HC group. BD offspring group showed significantly more family dysfunction when compared with the HC group and the family dysfunction moderated the association between the BDNF genotype and anxiety symptoms. This study demonstrated the potential interplay of three factors: BD offspring, anxiety symptoms and family dysfunction.

  1. BDNF-mediated modulation of glycine transmission on rat spinal motoneurons.

    Science.gov (United States)

    Ding, Jian-Dong; Tang, Xian-Ye; Shi, Jian-Gang; Jia, Lian-Shun

    2014-08-22

    BDNF has a widespread distribution in the central and peripheral nervous systems, suggesting that BDNF may play a role in the regulation of motor control. However, the direct actions of BDNF on the motoneurons and their underlying mechanisms are still largely unknown to date. Therefore, by using whole-cell patch clamp recordings, quantitative RT-PCR and immunocytochemistry, the present study was designed to investigate the effects of BDNF on electrical activity and glycinergic transmission on the motoneurons and the underlying receptor mechanism. The results reveal: (i) BDNF did not produce a direct excitatory or inhibitory effect on the motoneurons; (ii) BDNF dose-dependently increased the glycinergic transmission on the motoneurons; (iii) glycinergic transmission on motoneurons was a direct postsynaptic effect; (iv) BDNF-induced enhancement of the glycinergic transmission was mediated by the activation of TrkB receptors; and (v) BDNF and its receptors TrkB had an extensive expression in the motoneurons. These results suggest that BDNF is directly involved in the regulation of glycinergic transmission on the motoneurons through postsynaptic TrkB receptors. Considering that the glycinergic synaptic transmission of motoneurons mainly comes from Renshaw cells, the important inhibitory interneurons of spinal cord, we speculate that BDNF may play an important role in the information integration in the spinal cord and participate in the sensitivity of motoneurons.

  2. H2S protects PC12 cells against toxicity of corticosterone by modulation of BDNF-TrkB pathway.

    Science.gov (United States)

    Gao, Shenglan; Li, Wenting; Zou, Wei; Zhang, Ping; Tian, Ying; Xiao, Fan; Gu, Hongfeng; Tang, Xiaoqing

    2015-11-01

    Corticosterone, one of the glucocorticoids, is toxic to neurons and plays an important role in depressive-like behavior and depression. We previously showed that hydrogen sulfide (H2S), a novel physiological mediator, plays an inhibitory role in depression. However, the mechanism underlying H2S-triggered antidepressant-like role is not clearly known. Brain-derived neurotrophic factor (BDNF), a neurotrophic factor, plays a neuroprotective role that is mediated by its high-affinity tropomysin-related kinase B (TrkB) receptor. In this study, to investigate the underlying mechanism of H2S-induced antidepressant-like role, we explored whether H2S could protect neurons against corticosterone-mediated cyctotoxicity and whether this protective role of H2S was involved in the regulation of BDNF-TrkB pathway. Our data demonstrated that sodium hydrosulfide (NaHS), the donor of H2S, could prevent corticosterone-induced cytotoxicity, apoptosis, accumulation of intracellular reactive oxygen species (ROS) and loss of mitochondrial membrane potential (MMP) in PC12 cells. NaHS not only induced the up-regulation of BDNF but also prevented the down-regulation of BDNF by corticosterone. It was also found that blocking BDNF-TrkB pathway by K252a, an inhibitor of TrkB, abolished the protection of H2S against corticosterone-induced cytotoxicity, apoptosis, accumulation of ROS, and loss of MMP. These results suggest that H2S protects against the neurotoxicity of corticosterone by modulation of the BDNF-TrkB pathway.

  3. In vivo BDNF modulation of adult functional and morphological synaptic plasticity at hippocampal mossy fibers.

    Science.gov (United States)

    Gómez-Palacio-Schjetnan, Andrea; Escobar, Martha L

    2008-11-07

    Brain-derived neurotrophic factor (BDNF) has been proposed as a key regulator and mediator of long-term synaptic modifications related to learning and memory maintenance. Our previous studies show that application of high-frequency stimulation (HFS) sufficient to elicit LTP at the dentate gyrus (DG)-CA3 pathway produces mossy fiber structural modifications 7 days after tetanic stimulation. In the present study, we show that acute intrahippocampal microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the DG-CA3 projection of anesthetized adult rats. Furthermore, we show that BDNF functional modifications in synaptic efficacy are accompanied by a presynaptic structural long-lasting reorganization at the hippocampal mossy fiber pathway. These findings support the idea that BDNF plays an important role as synaptic messenger of activity-dependent synaptic plasticity in the adult mammalian brain, in vivo.

  4. NPY modulates miR-30a-5p and BDNF in opposite direction in an in vitro model of Alzheimer disease: a possible role in neuroprotection?

    Science.gov (United States)

    Croce, Nicoletta; Gelfo, Francesca; Ciotti, Maria Teresa; Federici, Giorgio; Caltagirone, Carlo; Bernardini, Sergio; Angelucci, Francesco

    2013-04-01

    Using in vitro models of Alzheimer's disease (AD), we found that the toxic effects of amyloid beta 25-35 (Aβ(25-35)) on the neurotrophin brain-derived neurotrophic factor (BDNF) were counteracted by pre-incubation with neuropeptide Y (NPY), a neuropeptide expressed within the central nervous system. Nonetheless, the mechanism of action of NPY on BDNF neuronal production in the presence of Aβ is not known. BDNF expression might be directly regulated by microRNA (miRs), small non-coding DNA fragments that regulate the expression of target genes. Thus, there is the possibility that miRs alterations are present in AD-affected neurons and that NPY influences miR expression. To test this hypothesis, we exposed NPY-pretreated primary rat cortical neurons to Aβ(25-35) and measured miR-30a-5p (a member of the miR-30a family involved in BDNF tuning expression) and BDNF mRNA and protein expression after 24 and 48 h. Our results demonstrated that pre-treatment with NPY decreased miR-30a-5p expression and increased BDNF mRNA and protein expression at 24 and 48 h of incubation with Aβ. Therefore, this study demonstrates that NPY modulates BDNF and its regulating microRNA miR-30a-5p in opposite direction with a mechanism that possibly contributes to the neuroprotective effect of NPY in rat cortical neurons exposed to Aβ.

  5. Role of Adenosine A2A Receptors in Modulating Synaptic Functions and Brain Levels of BDNF: a Possible Key Mechanism in the Pathophysiology of Huntington's Disease

    Directory of Open Access Journals (Sweden)

    Maria Teresa Tebano

    2010-01-01

    Full Text Available In the last few years, accumulating evidence has shown the existence of an important cross-talk between adenosine A2A receptors (A2ARs and brain-derived neurotrophic factor (BDNF. Not only are A2ARs involved in the mechanism of transactivation of BDNF receptor TrkB, they also modulate the effect of BDNF on synaptic transmission, playing a facilitatory and permissive role. The cAMP-PKA pathway, the main transduction system operated by A2ARs, is involved in such effects. Furthermore, a basal tonus of A2ARs is required to allow the regulation of BDNF physiological levels in the brain, as demonstrated by the reduced protein levels measured in A2ARs KO mice. The crucial role of adenosine A2ARs in the maintenance of synaptic functions and BDNF levels will be reviewed here and discussed in the light of possible implications for Huntington's disease therapy, in which a joint impairment of BDNF and A2ARs seems to play a pathogenetic role.

  6. BDNF-modulated spatial organization of Cajal-Retzius and GABAergic neurons in the marginal zone plays a role in the development of cortical organization.

    Science.gov (United States)

    Alcántara, Soledad; Pozas, Esther; Ibañez, Carlos F; Soriano, Eduardo

    2006-04-01

    The present study utilizes nestin-BDNF transgenic mice, which offer a model for early increased brain-derived neurotrophic factor (BDNF) signalling, to examine the role of BDNF in the development of cortical architecture. Our results demonstrate that the premature and homogeneous expression of BDNF, while preserving tangential migration from the ganglionic eminence to the cortex, impairs the final radial migration of GABAergic neurons, as well as their integration in the appropriate cortical layers. Moreover, Cajal-Retzius (CR) cells and GABAergic neurons segregate in the cortical marginal zone (MZ) in response to BDNF signalling, leading to an alternating pattern and a columnar cortical organization, within which the migration of different neuronal populations is specifically affected. These results suggest that both CR and GABAergic neurons play a role in directing the radial migration of late-generated cortical neurons, and that the spatial distribution of these cells in the MZ is critical for the development of correct cortical organization. In addition, reelin secreted by CR cells in the MZ is not sufficient to direct the migration of late-born neurons to the upper cortical layers, which most likely requires the presence of reelin-secreting interneurons in layers V-VI. We propose that in addition to modulating reelin expression, BDNF regulates the patched distribution of CR and GABAergic neurons in the MZ, and that this spatial distribution is involved in the formation of anatomical and/or functional columns and convoluted structures.

  7. Brain-derived neurotrophic factor (BDNF) enhances GABA transport by modulating the trafficking of GABA transporter-1 (GAT-1) from the plasma membrane of rat cortical astrocytes.

    Science.gov (United States)

    Vaz, Sandra H; Jørgensen, Trine N; Cristóvão-Ferreira, Sofia; Duflot, Sylvie; Ribeiro, Joaquim A; Gether, Ulrik; Sebastião, Ana M

    2011-11-25

    The γ-aminobutyric acid (GABA) transporters (GATs) are located in the plasma membrane of neurons and astrocytes and are responsible for termination of GABAergic transmission. It has previously been shown that brain derived neurotrophic factor (BDNF) modulates GAT-1-mediated GABA transport in nerve terminals and neuronal cultures. We now report that BDNF enhances GAT-1-mediated GABA transport in cultured astrocytes, an effect mostly due to an increase in the V(max) kinetic constant. This action involves the truncated form of the TrkB receptor (TrkB-t) coupled to a non-classic PLC-γ/PKC-δ and ERK/MAPK pathway and requires active adenosine A(2A) receptors. Transport through GAT-3 is not affected by BDNF. To elucidate if BDNF affects trafficking of GAT-1 in astrocytes, we generated and infected astrocytes with a functional mutant of the rat GAT-1 (rGAT-1) in which the hemagglutinin (HA) epitope was incorporated into the second extracellular loop. An increase in plasma membrane of HA-rGAT-1 as well as of rGAT-1 was observed when both HA-GAT-1-transduced astrocytes and rGAT-1-overexpressing astrocytes were treated with BDNF. The effect of BDNF results from inhibition of dynamin/clathrin-dependent constitutive internalization of GAT-1 rather than from facilitation of the monensin-sensitive recycling of GAT-1 molecules back to the plasma membrane. We therefore conclude that BDNF enhances the time span of GAT-1 molecules at the plasma membrane of astrocytes. BDNF may thus play an active role in the clearance of GABA from synaptic and extrasynaptic sites and in this way influence neuronal excitability.

  8. Development of a cost-efficient novel method for rapid, concurrent genotyping of five common single nucleotide polymorphisms of the brain derived neurotrophic factor (BDNF) gene by tetra-primer amplification refractory mutation system.

    Science.gov (United States)

    Wang, Cathy K; Xu, Michael S; Ross, Colin J; Lo, Ryan; Procyshyn, Ric M; Vila-Rodriguez, Fidel; White, Randall F; Honer, William G; Barr, Alasdair M

    2015-09-01

    Brain derived neurotrophic factor (BDNF) is a molecular trophic factor that plays a key role in neuronal survival and plasticity. Single nucleotide polymorphisms (SNPs) of the BDNF gene have been associated with specific phenotypic traits in a large number of neuropsychiatric disorders and the response to psychotherapeutic medications in patient populations. Nevertheless, due to study differences and occasionally contrasting findings, substantial further research is required to understand in better detail the association between specific BDNF SNPs and these psychiatric disorders. While considerable progress has been made recently in developing advanced genotyping platforms of SNPs, many high-throughput probe- or array-based detection methods currently available are limited by high costs, slow processing times or access to advanced instrumentation. The polymerase chain reaction (PCR)-based, tetra-primer amplification refractory mutation system (T-ARMS) method is a potential alternative technique for detecting SNP genotypes efficiently, quickly, easily, and cheaply. As a tool in psychopathology research, T-ARMS was shown to be capable of detecting five common SNPs in the BDNF gene (rs6265, rs988748, rs11030104, 11757G/C and rs7103411), which are all SNPs with previously demonstrated clinical relevance to schizophrenia and depression. The present technique therefore represents a suitable protocol for many research laboratories to study the genetic correlates of BDNF in psychiatric disorders. Copyright Copyright © 2015 John Wiley & Sons, Ltd.

  9. Genotype and ancestry modulate brain's DAT availability in healthy humans.

    Directory of Open Access Journals (Sweden)

    Elena Shumay

    Full Text Available The dopamine transporter (DAT is a principal regulator of dopaminergic neurotransmission and its gene (the SLC6A3 is a strong biological candidate gene for various behavioral- and neurological disorders. Intense investigation of the link between the SLC6A3 polymorphisms and behavioral phenotypes yielded inconsistent and even contradictory results. Reliance on objective brain phenotype measures, for example, those afforded by brain imaging, might critically improve detection of DAT genotype-phenotype association. Here, we tested the relationship between the DAT brain availability and the SLC6A3 genotypes using an aggregate sample of 95 healthy participants of several imaging studies. These studies employed positron emission tomography (PET with [¹¹C]cocaine wherein the DAT availability was estimated as Bmax/Kd; while the genotype values were obtained on two repeat polymorphisms--3-UTR- and intron 8--VNTRs. The main findings are the following: 1 both polymorphisms analyzed as single genetic markers and in combination (haplotype modulate DAT density in midbrain; 2 ethnic background and age influence the strength of these associations; and 3 age-related changes in DAT availability differ in the 3-UTR and intron 8--genotype groups.

  10. Garcinol Upregulates GABAA and GAD65 Expression, Modulates BDNF-TrkB Pathway to Reduce Seizures in Pentylenetetrazole (PTZ)-Induced Epilepsy

    Science.gov (United States)

    Hao, Fang; Jia, Li-Hua; Li, Xiao-Wan; Zhang, Ying-Rui; Liu, Xue-Wu

    2016-01-01

    Background Epilepsy is the most predominant neurological disorder characterized by recurrent seizures. Despite treatment with antiepileptic drugs, epilepsy still is a challenge to treat, due to the associated adverse effects of the drugs. Previous investigations have shown critical roles of BDNF-TrkB signalling and expression of glutamic acid decarboxylase 65 (GAD65) and GABAA in the brain during epilepsy. Thus, drugs that could modulate BDNF-TrkB signal and expression of GAD65 and GABAA could aid in therapy. Recent experimental data have focussed on plant-derived compounds in treatments. Garcinol (camboginol), is a polyisoprenylated benzophenone derived from the fruit of Garcinia indica. We investigated the effects of garcinol in pentylenetetrazole (PTZ)-induced epileptic models. Material/Methods Seizure scores were measured in epilepsy kindled mice. Neuronal degeneration and apoptosis were assessed by Nissl staining, TUNEL assay, and Fluoro-Jade B staining. Immunohistochemistry was performed to evaluate cleaved caspase-3 expressions. Expression of BDNF, TrkB, GABAA, GAD65, Bad, Bcl-2, Bcl-xL, and Bax were determined by western blots. Results Significantly reduced seizure scores and mortality rates were observed with pretreatment with garcinol. Elevated expression of apoptotic proteins and caspase-3 in kindled mice were effectively downregulated by garcinol. Epileptogenic mice presented increased BDNF and TrkB with considerably decreased GABAA and GAD65 expression. Garcinol significantly enhanced GABAA and GAD65 while it suppressed BDNF and TrkB. Garcinol enhanced the performance of mice in Morris water maze tests. Conclusions Garcinol exerts neuroprotective effects via supressing apoptosis and modulating BDNF-TrkB signalling and GAD65/GABAA expressions and also enhanced cognition and memory of the mice. PMID:27855137

  11. Tissue-type plasminogen activator-plasmin-BDNF modulate glutamate-induced phase-shifts of the mouse suprachiasmatic circadian clock in vitro.

    Science.gov (United States)

    Mou, Xiang; Peterson, Cynthia B; Prosser, Rebecca A

    2009-10-01

    The mammalian circadian clock in the suprachiasmatic nucleus (SCN) maintains environmental synchrony through light signals transmitted by glutamate released from retinal ganglion terminals. Brain-derived neurotrophic factor (BDNF) is required for light/glutamate to reset the clock. In the hippocampus, BDNF is activated by the extracellular protease, plasmin, which is produced from plasminogen by tissue-type plasminogen activator (tPA). We provide data showing expression of proteins from the plasminogen activation cascade in the SCN and their involvement in circadian clock phase-resetting. Early night glutamate application to SCN-containing brain slices resets the circadian clock. Plasminogen activator inhibitor-1 (PAI-1) blocked these shifts in slices from wild-type mice but not mice lacking its stabilizing protein, vitronectin (VN). Plasmin, but not plasminogen, prevented inhibition by PAI-1. Both plasmin and active BDNF reversed alpha(2)-antiplasmin inhibition of glutamate-induced shifts. alpha(2)-Antiplasmin decreased the conversion of inactive to active BDNF in the SCN. Finally, both tPA and BDNF allowed daytime glutamate-induced phase-resetting. Together, these data are the first to demonstrate expression of these proteases in the SCN, their involvement in modulating photic phase-shifts, and their activation of BDNF in the SCN, a potential 'gating' mechanism for photic phase-resetting. These data also demonstrate a functional interaction between PAI-1 and VN in adult brain. Given the usual association of these proteins with the extracellular matrix, these data suggest new lines of investigation into the locations and processes modulating mammalian circadian clock phase-resetting.

  12. Electroacupuncture Alleviates Depressive-Like Symptoms and Modulates BDNF Signaling in 6-Hydroxydopamine Rats

    Science.gov (United States)

    Sun, Min; Wang, Ke; Yu, Yan; Su, Wen-Ting; Jiang, Xin-Xin

    2016-01-01

    Previous studies have identified the beneficial effects of electroacupuncture (EA) on motor behaviors in Parkinson's disease (PD). However, the role and potential mechanisms of EA in PD-associated depression remain unclear. In the present study, a rat model of PD with unilateral 6-hydroxydopamine (6-OHDA) lesions in the medial forebrain bundle was treated using EA for 4 weeks. We found that 100 Hz EA improved several motor phenotypes. In addition, tyrosine hydroxylase (TH) immunohistochemical analysis showed that EA had a minimal impact on the TH-positive profiles of the ipsilateral ventral tegmental area. Compared with the 6-OHDA group, long-term EA stimulation significantly increased sucrose solution consumption and decreased immobility time in the forced swim test. EA treatment did not alter dopamine, norepinephrine, and serotonin levels in the striatum and hippocampus. Noticeably, EA treatment reversed the 6-OHDA-induced abnormal expression of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) in the midbrain and hippocampus. These results demonstrate that EA at 100-Hz possesses the ability to improve depressive-like symptoms in PD rats, which is, at least in part, due to the distinct effect of EA on the mesostriatal and mesocorticolimbic dopaminergic pathways. Moreover, BDNF seems to participate in the effect of EA in PD. PMID:27525025

  13. BDNF-TrkB axis regulates migration of the lateral line primordium and modulates the maintenance of mechanoreceptor progenitors.

    Directory of Open Access Journals (Sweden)

    Eugene V Gasanov

    Full Text Available BDNF and its specialized receptor TrkB are expressed in the developing lateral line system of zebrafish, but their role in this organ is unknown. To tackle this problem in vivo, we used transgenic animals expressing fluorescent markers in different cell types of the lateral line and combined a BDNF gain-of-function approach by BDNF mRNA overexpression and by soaking embryos in a solution of BDNF, with a loss-of-function approach by injecting the antisence ntrk2b-morpholino and treating embryos with the specific Trk inhibitor K252a. Subsequent analysis demonstrated that the BDNF-TrkB axis regulates migration of the lateral line primordium. In particular, BDNF-TrkB influences the expression level of components of chemokine signaling including Cxcr4b, and the generation of progenitors of mechanoreceptors, at the level of expression of Atoh1a-Atp2b1a.

  14. Neurokinin-1 (NK-1 receptor and brain-derived neurotrophic factor (BDNF gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain

    Directory of Open Access Journals (Sweden)

    McCarson Kenneth E

    2007-10-01

    Full Text Available Abstract Persistent pain produces complex alterations in sensory pathways of the central nervous system (CNS through activation of various nociceptive mechanisms. However, the effects of pain on higher brain centers, particularly the influence of the stressful component of pain on the limbic system, are poorly understood. Neurokinin-1 (NK-1 receptors and brain-derived neurotrophic factor (BDNF, known neuromediators of hyperalgesia and spinal central sensitization, have also been implicated in the plasticity and neurodegeneration occurring in the hippocampal formation during exposures to various stressors. Results of this study showed that injections of complete Freund's adjuvant (CFA into the hind paw increased NK-1 receptor and BDNF mRNA levels in the ipsilateral dorsal horn, supporting an important role for these nociceptive mediators in the amplification of ascending pain signaling. An opposite effect was observed in the hippocampus, where CFA down-regulated NK-1 receptor and BDNF gene expression, phenomena previously observed in immobilization models of stress and depression. Western blot analyses demonstrated that in the spinal cord, CFA also increased levels of phosphorylated cAMP response element-binding protein (CREB, while in the hippocampus the activation of this transcription factor was significantly reduced, further suggesting that tissue specific transcription of either NK-1 or BDNF genes may be partially regulated by common intracellular transduction mechanisms mediated through activation of CREB. These findings suggest that persistent nociception induces differential regional regulation of NK-1 receptor and BDNF gene expression and CREB activation in the CNS, potentially reflecting varied roles of these neuromodulators in the spinal cord during persistent sensory activation vs. modulation of the higher brain structures such as the hippocampus.

  15. Neurokinin-1 (NK-1) receptor and brain-derived neurotrophic factor (BDNF) gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain.

    Science.gov (United States)

    Duric, Vanja; McCarson, Kenneth E

    2007-10-31

    Persistent pain produces complex alterations in sensory pathways of the central nervous system (CNS) through activation of various nociceptive mechanisms. However, the effects of pain on higher brain centers, particularly the influence of the stressful component of pain on the limbic system, are poorly understood. Neurokinin-1 (NK-1) receptors and brain-derived neurotrophic factor (BDNF), known neuromediators of hyperalgesia and spinal central sensitization, have also been implicated in the plasticity and neurodegeneration occurring in the hippocampal formation during exposures to various stressors. Results of this study showed that injections of complete Freund's adjuvant (CFA) into the hind paw increased NK-1 receptor and BDNF mRNA levels in the ipsilateral dorsal horn, supporting an important role for these nociceptive mediators in the amplification of ascending pain signaling. An opposite effect was observed in the hippocampus, where CFA down-regulated NK-1 receptor and BDNF gene expression, phenomena previously observed in immobilization models of stress and depression. Western blot analyses demonstrated that in the spinal cord, CFA also increased levels of phosphorylated cAMP response element-binding protein (CREB), while in the hippocampus the activation of this transcription factor was significantly reduced, further suggesting that tissue specific transcription of either NK-1 or BDNF genes may be partially regulated by common intracellular transduction mechanisms mediated through activation of CREB. These findings suggest that persistent nociception induces differential regional regulation of NK-1 receptor and BDNF gene expression and CREB activation in the CNS, potentially reflecting varied roles of these neuromodulators in the spinal cord during persistent sensory activation vs. modulation of the higher brain structures such as the hippocampus.

  16. Interaction of motor training and intermittent theta burst stimulation in modulating motor cortical plasticity: influence of BDNF Val66Met polymorphism.

    Directory of Open Access Journals (Sweden)

    Mina Lee

    Full Text Available Cortical physiology in human motor cortex is influenced by behavioral motor training (MT as well as repetitive transcranial magnetic stimulation protocol such as intermittent theta burst stimulation (iTBS. This study aimed to test whether MT and iTBS can interact with each other to produce additive changes in motor cortical physiology. We hypothesized that potential interaction between MT and iTBS would be dependent on BDNF Val66Met polymorphism, which is known to affect neuroplasticity in the human motor cortex. Eighty two healthy volunteers were genotyped for BDNF polymorphism. Thirty subjects were assigned for MT alone, 23 for iTBS alone, and 29 for MT + iTBS paradigms. TMS indices for cortical excitability and motor map areas were measured prior to and after each paradigm. MT alone significantly increased the motor cortical excitability and expanded the motor map areas. The iTBS alone paradigm also enhanced excitability and increased the motor map areas to a slightly greater extent than MT alone. A combination of MT and iTBS resulted in the largest increases in the cortical excitability, and the representational motor map expansion of MT + iTBS was significantly greater than MT or iTBS alone only in Val/Val genotype. As a result, the additive interaction between MT and iTBS was highly dependent on BDNF Val66Met polymorphism. Our results may have clinical relevance in designing rehabilitative strategies that combine therapeutic cortical stimulation and physical exercise for patients with motor disabilities.

  17. TrkB/BDNF-dependent striatal plasticity and behavior in a genetic model of epilepsy: modulation by valproic acid.

    Science.gov (United States)

    Ghiglieri, Veronica; Sgobio, Carmelo; Patassini, Stefano; Bagetta, Vincenza; Fejtova, Anna; Giampà, Carmela; Marinucci, Silvia; Heyden, Alexandra; Gundelfinger, Eckart D; Fusco, Francesca R; Calabresi, Paolo; Picconi, Barbara

    2010-06-01

    In mice lacking the central domain of the presynaptic scaffold Bassoon the occurrence of repeated cortical seizures induces cell-type-specific plasticity changes resulting in a general enhancement of the feedforward inhibition within the striatal microcircuit. Early antiepileptic treatment with valproic acid (VPA) reduces epileptic attacks, inhibits the emergence of pathological form of plasticity in fast-spiking (FS) interneurons and restores physiological striatal synaptic plasticity in medium spiny (MS) neurons. Brain-derived neurotrophic factor (BDNF) is a key factor for the induction and maintenance of synaptic plasticity and it is also implicated in the mechanisms underlying epilepsy-induced adaptive changes. In this study, we explore the possibility that the TrkB/BDNF system is involved in the striatal modifications associated with the Bassoon gene (Bsn) mutation. In epileptic mice abnormal striatum-dependent learning was paralleled by higher TrkB levels and an altered distribution of BDNF. Accordingly, subchronic intrastriatal administration of k252a, an inhibitor of TrkB receptor tyrosine kinase activity, reversed behavioral alterations in Bsn mutant mice. In addition, in vitro manipulations of the TrkB/BDNF complex by k252a, prevented the emergence of pathological plasticity in FS interneurons. Chronic treatment with VPA, by reducing seizures, was able to rebalance TrkB to control levels favoring a physiological redistribution of BDNF between MS neurons and FS interneurons with a concomitant recovery of striatal plasticity. Our results provide the first indication that BDNF is involved in determining the striatal alterations occurring in the early-onset epileptic syndrome associated with the absence of presynaptic protein Bassoon.

  18. NRSF and BDNF polymorphisms as biomarkers of cognitive dysfunction in adults with newly diagnosed epilepsy.

    Science.gov (United States)

    Warburton, Alix; Miyajima, Fabio; Shazadi, Kanvel; Crossley, Joanne; Johnson, Michael R; Marson, Anthony G; Baker, Gus A; Quinn, John P; Sills, Graeme J

    2016-01-01

    Cognitive dysfunction is a common comorbidity in people with epilepsy, but its causes remain unclear. It may be related to the etiology of the disorder, the consequences of seizures, or the effects of antiepileptic drug treatment. Genetics may also play a contributory role. We investigated the influence of variants in the genes encoding neuron-restrictive silencer factor (NRSF) and brain-derived neurotrophic factor (BDNF), proteins previously associated with cognition and epilepsy, on cognitive function in people with newly diagnosed epilepsy. A total of 82 patients who had previously undergone detailed neuropsychological assessment were genotyped for single nucleotide polymorphisms (SNPs) across the NRSF and BDNF genes. Putatively functional SNPs were included in a genetic association analysis with specific cognitive domains, including memory, psychomotor speed, and information processing. Cross-sectional and longitudinal designs were used to explore genetic influences on baseline cognition at diagnosis and change from baseline over the first year since diagnosis, respectively. We found a statistically significant association between genotypic variation and memory function at both baseline (NRSF: rs1105434, rs2227902 and BDNF: rs1491850, rs2030324, rs11030094) and in our longitudinal analysis (NRSF: rs2227902 and BDNF: rs12273363). Psychomotor speed was also associated with genotype (NRSF rs3796529) in the longitudinal assessment. In line with our previous work on general cognitive function in the healthy aging population, we observed an additive interaction between risk alleles for the NRSF rs2227902 (G) and BDNF rs6265 (A) polymorphisms which was again consistent with a significantly greater decline in delayed recall over the first year since diagnosis. These findings support a role for the NRSF-BDNF pathway in the modulation of cognitive function in patients with newly diagnosed epilepsy.

  19. Maternal prenatal anxiety and child brain-derived neurotrophic factor (BDNF) genotype: effects on internalizing symptoms from 4 to 15 years of age.

    Science.gov (United States)

    O'Donnell, Kieran J; Glover, Vivette; Holbrook, Joanna D; O'Connor, Thomas G

    2014-11-01

    Multiple behavioral and health outcomes, including internalizing symptoms, may be predicted from prenatal maternal anxiety, depression, or stress. However, not all children are affected, and those that are can be affected in different ways. Here we test the hypothesis that the effects of prenatal anxiety are moderated by genetic variation in the child's brain-derived neurotrophic factor (BDNF) gene, using the Avon Longitudinal Study of Parents and Children population cohort. Internalizing symptoms were assessed from 4 to 13 years of age using the Strengths and Difficulties Questionnaire (n = 8,584); a clinical interview with the adolescents was conducted at age 15 years (n = 4,704). Obstetric and psychosocial risk and postnatal maternal symptoms were included as covariates. Results show that prenatal maternal anxiety predicted internalizing symptoms, including with the diagnostic assessment at 15 years. There was a main effect of two BDNF polymorphisms (rs6265 [val66met] and rs11030104) on internalizing symptoms up to age 13. There was also genetic moderation of the prenatal anxiety effect by different BDNF polymorphisms (rs11030121 and rs7124442), although significant effects were limited to preadolescence. The findings suggest a role for BDNF gene-environment interactions in individual vulnerability to the effects of prenatal anxiety on child internalizing symptoms.

  20. Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia.

    Science.gov (United States)

    Hisaoka-Nakashima, Kazue; Kajitani, Naoto; Kaneko, Masahiro; Shigetou, Takahiro; Kasai, Miho; Matsumoto, Chie; Yokoe, Toshiki; Azuma, Honami; Takebayashi, Minoru; Morioka, Norimitsu; Nakata, Yoshihiro

    2016-03-01

    A significant role of brain-derived neurotrophic factor (BDNF) has been previously implicated in the therapeutic effect of antidepressants. To ascertain the contribution of specific cell types in the brain that produce BDNF following antidepressant treatment, the effects of the tricyclic antidepressant amitriptyline on rat primary neuronal, astrocytic and microglial cortical cultures were examined. Amitriptyline increased the expression of BDNF mRNA in astrocytic and microglial cultures but not neuronal cultures. Antidepressants with distinct mechanisms of action, such as clomipramine, duloxetine and fluvoxamine, also increased BDNF mRNA expression in astrocytic and microglial cultures. There are multiple BDNF mRNA variants (exon I, IIA, IV and VI) expressed in astrocytes and microglia and the variant induced by antidepressants has yet to be elaborated. Treatment with antidepressants increased the expression of exon I, IV and VI in astrocyte and microglia. Clomipramine alone significantly upregulated expression of exon IIA. The amitriptyline-induced expression of both total and individual BDNF mRNA variants (exon I, IV and VI) were blocked by MEK inhibitor U0126, indicating MEK/ERK signaling is required in the expression of BDNF. These findings indicate that non-neural cells are a significant target of antidepressants and further support the contention that glial production of BDNF is crucial role in the therapeutic effect of antidepressants. The current data suggest that targeting of glial function could lead to the development of antidepressants with a truly novel mechanism of action.

  1. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism affects sympathetic tone in a gender-specific way.

    Science.gov (United States)

    Chang, Chuan-Chia; Chang, Hsin-An; Chen, Tien-Yu; Fang, Wen-Hui; Huang, San-Yuan

    2014-09-01

    The Val/Val genotype of the brain-derived neurotrophic factor (BDNF) polymorphism (Val66Met) has been reported to affect human anxiety-related phenotypes. Substantial research has demonstrated that anxiety is associated with sympathetic activation, while sex steroid hormones have been shown to exert differential actions in regulating BDNF expression. Thus, we examined whether the BDNF variant modulates autonomic function in a gender-dependent manner. From 708 adults initially screened for medical and psychiatric illnesses, a final cohort of 583 drug-free healthy Han Chinese (355 males, 228 females; age 34.43±8.42 years) was recruited for BDNF genotyping (Val/Val: 136, 23.3%, Val/Met: 294, 50.4%, and Met/Met: 153, 26.2%). Time- and frequency-domain analyses of heart rate variability (HRV) were used to assess autonomic outflow to the heart. Significant genotype-by-gender interaction effects were found on HRV indices. Even after adjusting for possible confounders, male participants bearing the Val/Val genotype had significant increases in low frequency (LF), LF% and LF/high frequency (HF) ratio, indicating altered sympathovagal balance with increased sympathetic modulation, compared to male Met/Met homozygotes. Females, however, showed an opposite but non-significant pattern. These results suggest that the studied BDNF polymorphism is associated with sympathetic control in a gender-specific way. The findings here support the view that male subjects with the Val/Val genotype have increased risk of anxiety by association with sympathetic activation.

  2. Effects of the BDNF Val66Met Polymorphism and Met Allele Load on Declarative Memory Related Neural Networks

    DEFF Research Database (Denmark)

    Dodds, Chris M; Henson, Richard N; Suckling, John;

    2013-01-01

    It has been suggested that the BDNF Val66Met polymorphism modulates episodic memory performance via effects on hippocampal neural circuitry. However, fMRI studies have yielded inconsistent results in this respect. Moreover, very few studies have examined the effect of met allele load on activation...... of memory circuitry. In the present study, we carried out a comprehensive analysis of the effects of the BDNF polymorphism on brain responses during episodic memory encoding and retrieval, including an investigation of the effect of met allele load on memory related activation in the medial temporal lobe....... In contrast to previous studies, we found no evidence for an effect of BDNF genotype or met load during episodic memory encoding. Met allele carriers showed increased activation during successful retrieval in right hippocampus but this was contrast-specific and unaffected by met allele load. These results...

  3. BDNF and NT-4 differentiate two pathways in the modulation of neuropeptide protein levels in postnatal hippocampal interneurons.

    Science.gov (United States)

    Marty, S; Onténiente, B

    1999-05-01

    Neuropeptide protein levels in hippocampal interneurons exhibit a considerable maturation in postnatal animals. This study characterizes the role of neuronal activity in determining neuropeptide protein levels in postnatal hippocampal interneurons, and the involvement of neurotrophins. In hippocampal slices from 7-day-old rats cultured for 2 weeks, treatment with the gamma-aminobutyric acidA (GABAA) receptor antagonist bicuculline increased the staining intensity and the number of neurons immunoreactive for neuropeptide Y (NPY). An opposite effect was observed when non-N-methyl-d-aspartate (non-NMDA) excitatory transmission was blocked. The effects of either treatment were reversed after return to control medium. These findings were similar to those previously obtained on the effects of activity on somatostatin immunostaining. Blockade of endogenous tyrosine kinase neurotrophin receptors using K252a prevented the effects of bicuculline on NPY- and somatostatin-immunoreactive neurons. Application of exogenous neurotrophin-3 (NT-3) increased NPY and somatostatin protein levels in long-term but not short-term cultures, while nerve growth factor (NGF) had no effect. In contrast, brain-derived neurotrophic factor (BDNF) or neurotrophin-4 (NT-4) did not affect equally NPY and somatostatin immunoreactivity: they mimicked the effects of bicuculline treatment on NPY-immunoreactive neurons, but exerted no conspicuous effect on somatostatin immunostaining. These results indicate that although neuronal activity plays a major role in determining neuropeptide protein levels in postnatal hippocampal interneurons, its effects on different neuropeptides might be exerted through different mechanisms, with or without the mediation of BDNF or NT-4.

  4. ADORA2A genotype modulates interoceptive and exteroceptive processing in a fronto-insular network.

    Science.gov (United States)

    Geiger, Maximilian J; Domschke, Katharina; Homola, György A; Schulz, Stefan M; Nowak, Johannes; Akhrif, Atae; Pauli, Paul; Deckert, Jürgen; Neufang, Susanne

    2016-08-01

    Facilitated processing of interoceptive and exteroceptive information in the salience network is suggested to promote the development of anxiety and anxiety disorders. Here, it was investigated whether the adenosine 2 A receptor gene (ADORA2A) 1976T/C (rs5751876) variant - previously associated with anxiety disorders and anxiety-related phenotypes as well as general attentional efficiency -was involved in the regulation of this network. In detail, fMRI recordings of 65 healthy participants (female=35) were analyzed regarding ADORA2A genotype effects on brain connectivity related to (1) interoceptive processing in terms of functional connectivity resting-state fMRI, and (2) exteroceptive processing using dynamic causal modeling in task-based fMRI. In a subsample, cardiac interoceptive accuracy was furthermore measured via the Mental Tracking Task. ADORA2A genotype was found to modulate a fronto-insular network at rest (interoceptive processing) and while performing an executive control task (exteroceptive processing). Across both modalities, the ADORA2A TT risk genotype was associated with increased connectivity between the insula and the prefrontal cortex. The strength in connectivity correlated with interoceptive accuracy. It is concluded that alterations in fronto-insular connectivity are modulated by both the adenosinergic system and interoceptive accuracy. Thus, fronto-insular connectivity in synopsis with ADORA2A genotypic information could serve as combined biomarkers for personalized treatment approaches in anxiety disorders targeting exteroceptive and interoceptive dysfunction.

  5. Brain-derived neurotrophic factor (BDNF) enhances GABA transport by modulating the trafficking of GABA transporter-1 (GAT-1) from the plasma membrane of rat cortical astrocytes

    DEFF Research Database (Denmark)

    Vaz, Sandra H; Jørgensen, Trine Nygaard; Cristóvão-Ferreira, Sofia

    2011-01-01

    /MAPK pathway and requires active adenosine A(2A) receptors. Transport through GAT-3 is not affected by BDNF. To elucidate if BDNF affects trafficking of GAT-1 in astrocytes, we generated and infected astrocytes with a functional mutant of the rat GAT-1 (rGAT-1) in which the hemagglutinin (HA) epitope...

  6. Genotype and ancestry modulate brain's DAT availability in healthy humans

    Energy Technology Data Exchange (ETDEWEB)

    Shumay, E.; Shumay, E.; Chen, J.; Fowler, J.S.; Volkow, N.D.

    2011-08-01

    The dopamine transporter (DAT) is a principal regulator of dopaminergic neurotransmission and its gene (the SLC6A3) is a strong biological candidate gene for various behavioral- and neurological disorders. Intense investigation of the link between the SLC6A3 polymorphisms and behavioral phenotypes yielded inconsistent and even contradictory results. Reliance on objective brain phenotype measures, for example, those afforded by brain imaging, might critically improve detection of DAT genotype-phenotype association. Here, we tested the relationship between the DAT brain availability and the SLC6A3 genotypes using an aggregate sample of 95 healthy participants of several imaging studies. These studies employed positron emission tomography (PET) with [{sup 11}C] cocaine wherein the DAT availability was estimated as Bmax/Kd; while the genotype values were obtained on two repeat polymorphisms - 3-UTR- and intron 8- VNTRs. The main findings are the following: (1) both polymorphisms analyzed as single genetic markers and in combination (haplotype) modulate DAT density in midbrain; (2) ethnic background and age influence the strength of these associations; and (3) age-related changes in DAT availability differ in the 3-UTR and intron8 - genotype groups.

  7. Sex and ovarian steroids modulate brain-derived neurotrophic factor (BDNF) protein levels in rat hippocampus under stressful and non-stressful conditions.

    Science.gov (United States)

    Franklin, Tamara B; Perrot-Sinal, Tara S

    2006-01-01

    Abnormal levels of brain-derived neurotrophic factor (BDNF) are associated with major depression, a disorder with a higher incidence in women than men. Stress affects BDNF levels in various brain regions and thus, a heightened stress response in females could contribute to the development of depression. As well, ovarian hormones directly affect brain levels of BDNF mRNA and protein. Two experiments were performed to investigate the effects of stress and sex and gonadal hormones on BDNF protein levels in CA1, CA3, and dentate gyrus (DG) subregions of the hippocampus. In the first experiment, male and female Sprague-Dawley rats were subjected to one hour of restraint stress or control handling prior to sacrifice. In the second experiment, fifty-one female rats were ovariectomized and separated into stress and control conditions, as described for the first experiment. Stressed and handled groups received a single injection of estrogen (E; 53h prior to stress), estrogen and progesterone (EP; E given at 53h and P given 5h prior to stress), or vehicle (OVX). In both experiments BDNF protein was quantified using an enzyme-linked immunosorbent enzyme assay (ELISA) in micropunches of hippocampus. Gonadally intact females had significantly higher levels of BDNF in CA3, but significantly lower levels in DG, relative to males. In CA3, stress significantly decreased BDNF in both males and females. In DG of ovariectomized female rats, the effects of stress were significantly different following EP vs. vehicle treatment. Thus, stress increased BDNF levels in EP-treated rats but decreased BDNF levels in vehicle-treated rats. Reduced trophic support in DG in the presence of estrogen and progesterone could jeopardize neurogenesis and under certain conditions could be a contributing factor to the hippocampal atrophy associated with stress-induced affective disorders. These results emphasize the need to consider sex, gonadal steroids, and hippocampal subregion when examining the

  8. Role of Brain-derived Neurotrophic Factor in the Modulation of Post-inflammatory Visceral Hypersensitivity in Mice%脑源性神经营养因子在结肠炎后内脏高敏感小鼠中的调节作用

    Institute of Scientific and Technical Information of China (English)

    杨静; 于岩波; 于卉; 左秀丽; 陈哲宇; 李延青

    2012-01-01

    脑源性神经营养因子(BDNF)可调控突触可塑性和维持神经内环境的稳定,近年研究证实BDNF参与痛觉的调控.目的:研究BDNF在结肠炎后内脏高敏感小鼠中的调节作用.方法:以结肠内灌注三硝基苯磺酸(TNBS)诱导建立结肠炎后内脏高敏感模型.将小鼠分为BDNW+/+对照组、BDNF+/+TNBS炎症组、BDNF+/-对照组和BDNF+/-TNBS炎症组.行结肠和膀胱组织学检查,以ELISA法测定背根神经节内BDNF蛋白表达,记录各组对结直肠扩张的反应和膀胱敏感性.结果:TNBS对两种基因型小鼠均可诱导明显的结肠炎症.同一基因型小鼠TNBS炎症组背根神经节BDNF表达显著高于相应对照组(P<0.05),同时伴有结肠和膀胱敏感性上调(P<0.05).BDNF+/- TNBS炎症组和对照组BDNF表达分别显著低于相应BDNF+/+小鼠(P<0.05),BDNF+/- TNBS炎症小鼠的结肠和膀胱敏感性显著低于BDNF+/+TNBS炎症小鼠(P<0.05).除结直肠扩张压力≥60 mm Hg外,BDNF+/-对照小鼠的结肠和膀胱敏感性与BDNF+/+对照小鼠无明显差异.结论:BDNF对结肠炎后结肠高敏感和牵涉性膀胱高敏感具有调节作用.%Brain-derived neurotrophic factor (BDNF) can modulate the plasticity of synapses and maintain the environment of nervous system. Recent studies show that BDNF is also involved in pain modulation. Aims: To investigate the role of BDNF in the modulation of post-inflammatory visceral hypersensitivity in mice. Methods: Colitis model was induced in mice by enema with 2,4,6-trinitrobenzene sulfonic acid (TNBS). BDNF+/+4 and BDNF+/- mice were divided into BDNF+/+ control group, BDNF+/+ TNBS-colitis group, BDNF+/- control group and BDNF+/- TNBS-colitis group. Histology examination of colon and bladder was performed. Expression of BDNF in dorsal root ganglia was determined by ELISA. Visceral response to colorectal distension and bladder sensitivity were recorded. Results: Colitis was successfully induced by TNBS in both genotypes mice

  9. DLEC1 Expression Is Modulated by Epigenetic Modifications in Hepatocelluar Carcinoma Cells: Role of HBx Genotypes

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Dandan; Feng, Huixing; Chen, Wei Ning, E-mail: WNChen@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University (Singapore)

    2010-09-16

    Deleted in Lung and Esophageal Cancer 1 (DLEC1) is a functional tumor suppressor gene (TSG). It has been found to be silenced in a variety of human cancers including hepatocellular carcinoma (HCC). The silencing of DLEC1 can be modulated by epigenetic modifications, such as DNA hypermethylation and histone hypoacetylation. In the case of HCC, hepatitis B virus X protein (HBx) has been implicated in methylation of target promoters resulting in the down-regulation of tumor suppressor genes, which in turn contributes to the development of HCC. In the present study, we first established a cell system in which epigenetic modifications can be modulated using inhibitors of either DNA methylation or histone deacetylation. The cell system was used to reveal that the expression of DLEC1 was upregulated by HBx in a genotype-dependent manner. In particular, HBx genotype A was found to decrease DNA methylation of the DLEC1 promoter. Our results have provided new insights on the impact of HBx in HCC development by epigenetic modifications.

  10. Brain derived neurotrophic factor (BDNF contributes to the pain hypersensitivity following surgical incision in the rats

    Directory of Open Access Journals (Sweden)

    Zhang Jian-Yi

    2008-07-01

    Full Text Available Abstract Background The pathogenic role of brain derived neurotrophic factor (BDNF in the incisional pain is poorly understood. The present study explores the role of the BDNF in the incision-induced pain hypersensitivity. Methods A longitudinal incision was made in one plantar hind paw of isoflurane-anesthetized rats. Dorsal root ganglias (DRG and spinal cords were removed at various postoperative times (1–72 h. Expression pattern of BDNF was determined by immunohistochemistry and double-labeling immunofluorescence. Lidocaine-induced blockade of sciatic nerve function was used to determine the importance of afferent nerve activity on BDNF expression in the DRG and spinal cord after incision. BDNF antibody was administered intrathecally (IT or intraperitoneal (IP to modulate the spinal BDNF or peripheral BDNF after incision. Results After hind-paw incision, the BDNF was upregulated in the ipsilateral lumbar DRG and spinal cord whereas thoracic BDNF remained unchanged in response to incision. The upregulated BDNF was mainly expressed in the large-sized neurons in DRG and the neurons and the primary nerve terminals in the spinal cord. Sciatic nerve blockade prevented the increase of BDNF in the DRG and spinal cord. IT injection of BDNF antibody greatly inhibited the mechanical allodynia induced by incision whereas IP administration had only marginal effect. Conclusion The present study showed that incision induced the segmental upregulation of BDNF in the DRG and spinal cord through somatic afferent nerve transmission, and the upregulated BDNF contributed to the pain hypersensitivity induced by surgical incision.

  11. Striatal modulation of BDNF expression using microRNA124a-expressing lentiviral vectors impairs ethanol-induced conditioned-place preference and voluntary alcohol consumption.

    Science.gov (United States)

    Bahi, Amine; Dreyer, Jean-Luc

    2013-07-01

    Alcohol abuse is a major health, economic and social concern in modern societies, but the exact molecular mechanisms underlying ethanol addiction remain elusive. Recent findings show that small non-coding microRNA (miRNA) signaling contributes to complex behavioral disorders including drug addiction. However, the role of miRNAs in ethanol-induced conditioned-place preference (CPP) and voluntary alcohol consumption has not yet been directly addressed. Here, we assessed the expression profile of miR124a in the dorsal striatum of rats upon ethanol intake. The results show that miR124a was downregulated in the dorso-lateral striatum (DLS) following alcohol drinking. Then, we identified brain-derived neurotrophic factor (BDNF) as a direct target of miR124a. In fact, BDNF mRNA was upregulated following ethanol drinking. We used lentiviral vector (LV) gene transfer technology to further address the role of miR124a and its direct target BDNF in ethanol-induced CPP and alcohol consumption. Results reveal that stereotaxic injection of LV-miR124a in the DLS enhances ethanol-induced CPP as well as voluntary alcohol consumption in a two-bottle choice drinking paradigm. Moreover, miR124a-silencer (LV-siR124a) as well as LV-BDNF infusion in the DLS attenuates ethanol-induced CPP as well as voluntary alcohol consumption. Importantly, LV-miR124a, LV-siR124a and LV-BDNF have no effect on saccharin and quinine intake. Our findings indicate that striatal miR124a and BDNF signaling have crucial roles in alcohol consumption and ethanol conditioned reward.

  12. Tissue-specific and neural activity-regulated expression of human BDNF gene in BAC transgenic mice

    Directory of Open Access Journals (Sweden)

    Palm Kaia

    2009-06-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF is a small secreted protein that has important roles in the developing and adult nervous system. Altered expression or changes in the regulation of the BDNF gene have been implicated in a variety of human nervous system disorders. Although regulation of the rodent BDNF gene has been extensively investigated, in vivo studies regarding the human BDNF gene are largely limited to postmortem analysis. Bacterial artificial chromosome (BAC transgenic mice harboring the human BDNF gene and its regulatory flanking sequences constitute a useful tool for studying human BDNF gene regulation and for identification of therapeutic compounds modulating BDNF expression. Results In this study we have generated and analyzed BAC transgenic mice carrying 168 kb of the human BDNF locus modified such that BDNF coding sequence was replaced with the sequence of a fusion protein consisting of N-terminal BDNF and the enhanced green fluorescent protein (EGFP. The human BDNF-BAC construct containing all BDNF 5' exons preceded by different promoters recapitulated the expression of endogenous BDNF mRNA in the brain and several non-neural tissues of transgenic mice. All different 5' exon-specific BDNF-EGFP alternative transcripts were expressed from the transgenic human BDNF-BAC construct, resembling the expression of endogenous BDNF. Furthermore, BDNF-EGFP mRNA was induced upon treatment with kainic acid in a promotor-specific manner, similarly to that of the endogenous mouse BDNF mRNA. Conclusion Genomic region covering 67 kb of human BDNF gene, 84 kb of upstream and 17 kb of downstream sequences is sufficient to drive tissue-specific and kainic acid-induced expression of the reporter gene in transgenic mice. The pattern of expression of the transgene is highly similar to BDNF gene expression in mouse and human. This is the first study to show that human BDNF gene is regulated by neural activity.

  13. Association study of a brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and personality trait and intelligence in healthy young females.

    Science.gov (United States)

    Tsai, Shih-Jen; Hong, Chen-Jee; Yu, Younger W-Y; Chen, Tai-Jui

    2004-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the nerve-growth-factor family, plays an important role in neuronal survival and development, and it can modulate serotonergic activity. Further, BDNF has been implicated in the expression of personality traits and in cognitive function. We tested the associations between functional BDNF Val66Met genetic variants, and personality trait and intelligence in a cohort of 114 healthy young Chinese females. Subjects with the Val/Val genotype had a significantly higher mean performance IQ than Val/Met carriers, especially for the Object Assembly subtest. No significant association was demonstrated for the BDNF polymorphism and any of the Tridimensional Personality Questionnaire personality-factor scores, including harm avoidance. These results suggest that genetic variants of the BDNF gene may play a role in specific cognitive functions, but not in overall intelligence. In contrast to a recent report, however, this polymorphism does not appear to be associated with the neuroticism-related personality trait.

  14. Modulation of c-Fos and BDNF Protein Expression in Pentylenetetrazole-Kindled Mice following the Treatment with Novel Antiepileptic Compound HHL-6

    Directory of Open Access Journals (Sweden)

    Saima Mahmood Malhi

    2014-01-01

    Full Text Available Brain-derived neurotrophic factor (BDNF and c-Fos are shown to promote epileptogenesis and are taken as a marker of neuronal activity. The present study investigated the expression of BDNF and c-Fos in mice brain with pentylenetetrazol- (PTZ- induced generalized seizure and evaluated the effect of novel tryptamine derivative HHL-6 on the expression of these two markers. The subconvulsive dose of PTZ (50 mg/kg was administered on alternate days in the experimental groups until the seizure scores 4-5 developed in the PTZ-control group. At the end of each experiment, animals were sacrificed, brain samples were collected and cryosectioned, and immunohistochemical analysis of BDNF and c-Fos protein was performed. Data obtained from two sections per mouse (n=12 animals/group is presented as means ± S.E.M. The test compound HHL-6 demonstrated a potent anticonvulsant activity in the PTZ-induced seizure in mice. Significant reduction in the BDNF (P<0.003 and c-Fos (P<0.01 protein expression was observed in the HHL-6 treated group. Based on these results we suggest that one of the possible mechanisms of HHL-6 to inhibit epileptogenesis might be due to its controlling effect on the cellular and molecular expression of the factors that contribute to the development of epileptogenic plasticity in the CNS.

  15. Modulation of dendritic spine development and plasticity by BDNF and vesicular trafficking: fundamental roles in neurodevelopmental disorders associated with mental retardation and autism.

    Science.gov (United States)

    Chapleau, Christopher A; Larimore, Jennifer L; Theibert, Anne; Pozzo-Miller, Lucas

    2009-09-01

    The process of axonal and dendritic development establishes the synaptic circuitry of the central nervous system (CNS) and is the result of interactions between intrinsic molecular factors and the external environment. One growth factor that has a compelling function in neuronal development is the neurotrophin brain-derived neurotrophic factor (BDNF). BDNF participates in axonal and dendritic differentiation during embryonic stages of neuronal development, as well as in the formation and maturation of dendritic spines during postnatal development. Recent studies have also implicated vesicular trafficking of BDNF via secretory vesicles, and both secretory and endosomal trafficking of vesicles containing synaptic proteins, such as neurotransmitter and neurotrophin receptors, in the regulation of axonal and dendritic differentiation, and in dendritic spine morphogenesis. Several genes that are either mutated or deregulated in neurodevelopmental disorders associated with mental retardation have now been identified, and several mouse models of these disorders have been generated and characterized. Interestingly, abnormalities in dendritic and synaptic structure are consistently observed in human neurodevelopmental disorders associated with mental retardation, and in mouse models of these disorders as well. Abnormalities in dendritic and synaptic differentiation are thought to underlie altered synaptic function and network connectivity, thus contributing to the clinical outcome. Here, we review the roles of BDNF and vesicular trafficking in axonal and dendritic differentiation in the context of dendritic and axonal morphological impairments commonly observed in neurodevelopmental disorders associated with mental retardation.

  16. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS.

    Science.gov (United States)

    Cheeran, Binith; Talelli, Penelope; Mori, Francesco; Koch, Giacomo; Suppa, Antonio; Edwards, Mark; Houlden, Henry; Bhatia, Kailash; Greenwood, Richard; Rothwell, John C

    2008-12-01

    The brain-derived neurotrophic factor gene (BDNF) is one of many genes thought to influence synaptic plasticity in the adult brain and shows a common single nucleotide polymorphism (BDNF Val66Met) in the normal population that is associated with differences in hippocampal volume and episodic memory. It is also thought to influence possible synaptic changes in motor cortex following a simple motor learning task. Here we extend these studies by using new non-invasive transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) techniques that directly test the excitability and plasticity of neuronal circuits in human motor cortex in subjects at rest. We investigated whether the susceptibility to TMS probes of plasticity is significantly influenced by the BDNF polymorphism. Val66Met carriers were matched with Val66Val individuals and tested on the following protocols: continuous and intermittent theta burst TMS; median nerve paired associative stimulation; and homeostatic plasticity in the TDCS/1 Hz rTMS model. The response of Met allele carriers differed significantly in all protocols compared with the response of Val66Val individuals. We suggest that this is due to the effect of BNDF on the susceptibility of synapses to undergo LTP/LTD. The circuits tested here are implicated in the pathophysiology of movement disorders such as dystonia and are being assessed as potential new targets in the treatment of stroke. Thus the polymorphism may be one factor that influences the natural response of the brain to injury and disease.

  17. The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders

    Science.gov (United States)

    Cattaneo, A; Cattane, N; Begni, V; Pariante, C M; Riva, M A

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. The human BDNF gene consists of 11 exons, and distinct BDNF transcripts are produced through the use of alternative promoters and splicing events. The majority of the BDNF transcripts can be detected not only in the brain but also in the blood cells, although no study has yet investigated the differential expression of BDNF transcripts at the peripheral level. This review provides a description of the human BDNF gene structure as well as a summary of clinical and preclinical evidence supporting the role of BDNF in the pathogenesis of psychiatric disorders. We will discuss several mechanisms as possibly underlying BDNF modulation, including epigenetic mechanisms. We will also discuss the potential use of peripheral BDNF as a biomarker for psychiatric disorders, focusing on the factors that can influence BDNF gene expression and protein levels. Within this context, we have also characterized, for we believe the first time, the expression of BDNF transcripts in the blood, with the aim to provide novel insights into the molecular mechanisms and signaling that may regulate peripheral BDNF gene expression levels. PMID:27874848

  18. Serotonin transporter genotype modulates the association between depressive symptoms and amygdala activity among psychiatrically healthy adults.

    Science.gov (United States)

    Gillihan, Seth J; Rao, Hengyi; Brennan, Lauretta; Wang, Danny J J; Detre, John A; Sankoorikal, Geena Mary V; Brodkin, Edward S; Farah, Martha J

    2011-09-30

    Recent attempts to understand the biological bases of depression vulnerability have revealed that both the short allele of the serotonin transporter-linked polymorphic region (5-HTTLPR) and activity in the amygdala are associated with depression. Other studies have reported amygdala hyperactivity associated with the 5-HTTLPR short allele, linking the genetic and neuroimaging lines of research and suggesting a mechanism whereby the short allele confers depression risk. However, fewer investigations have examined the associations among depression, 5-HTTLPR variability, and amygdala activation in a single study. The current study thus investigated whether 5-HTTLPR genotype modulates the association between depressive symptoms and amygdala activity among psychiatrically healthy adults. Regional cerebral blood flow was measured with perfusion fMRI during a task-free scan. We hypothesized differential associations between depressive symptoms and amygdala activity among individuals homozygous for the short allele and individuals homozygous for the long allele. Both whole brain analyses and region-of-interest analyses confirmed this prediction, revealing a significant negative association among the long allele group and a trend of positive association among the short allele group. These results complement existing reports of short allele related amygdala hyperactivity and suggest an additional neurobiological mechanism whereby the 5-HTTLPR is associated with psychiatric outcomes.

  19. Serotonin transporter function, but not expression, is dependent on brain-derived neurotrophic factor (BDNF): in vivo studies in BDNF-deficient mice.

    Science.gov (United States)

    Daws, L C; Munn, J L; Valdez, M F; Frosto-Burke, T; Hensler, J G

    2007-05-01

    In the present study, we used high-speed chronoamperometry to examine serotonin (5-HT) transporter (5-HTT) function in vivo in 2-, 5-, and 10-month-old brain-derived neurotrophic factor (BDNF)+/- mice. The rate of clearance of exogenously applied 5-HT was measured in CA3 region of hippocampus. In 2-month-old mice, the rate of 5-HT clearance did not differ between BDNF+/+ and BDNF+/- mice. In BDNF+/+ mice, 5-HT clearance rate (Tc) increased markedly with age. In contrast, Tc remained relatively static in BDNF+/- mice across 2-, 5-, and 10-month age groups. At 5 months of age, female BDNF+/+ mice had a lower maximal velocity (Vmax) for 5-HT clearance than male BDNF+/+ mice. There was a similar trend in 5-month-old BDNF+/- mice, but this did not reach statistical significance. There was an age-dependent increase in KT value for 5-HT clearance (i.e., decreased in vivo affinity of 5-HTT), but no significant effect of genotype or gender. 5-HTT density, as measured by [3H]cyanoimipramine binding, was not different between BDNF+/+ and BDNF+/- mice, although there was a significant increase in 5-HTT binding with age. The selective 5-HT reuptake inhibitor fluvoxamine (50 and 100 pmol) significantly decreased 5-HT clearance in BDNF+/+ mice, but not in BDNF+/- mice. Our data suggest that the profoundly reduced ability of 5- and 10-month-old BDNF+/- mice to clear 5-HT is not because of a decrease in the total number of 5-HTTs, but may be due to functional deficits in the 5-HTT, e.g., in the machinery/signaling required for insertion of 5-HTTs into the plasma membrane and/or activation of the 5-HTT once it is positioned to take up 5-HT from extracellular fluid.

  20. Sex-specific association of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and plasma BDNF with attention-deficit/hyperactivity disorder in a drug-naïve Han Chinese sample.

    Science.gov (United States)

    Li, Haimei; Liu, Lu; Tang, Yilang; Ji, Ning; Yang, Li; Qian, Qiujin; Wang, Yufeng

    2014-07-30

    A functional polymorphism of the brain derived neurotrophic factor gene (BDNF) (Val66Met) has been suggested to be involved in the pathogenesis of attention-deficit/hyperactivity disorder (ADHD). It also has an impact on peripheral BDNF levels in psychiatric disorders. This study examined the association of Val66Met with plasma BDNF level of ADHD in Han Chinese children (170 medication - naïve ADHD patients and 155 unaffected controls, aged 6-16 years). The Val allele was showed a higher frequency in females with ADHD (n=84) than controls (P=0.029) from the case-control association study. The analysis of covariance (ANCOVA) indicated that the mean plasma BDNF levels of ADHD patients were significantly higher than that of controls (P=0.001). We performed both total sample and sex stratified analyses to investigate the effect of Val66Met genotype on the plasma BDNF levels, but only a trend of association was found in females with ADHD (n=84), with a tendency of lower plasma BDNF level in Val allele carriers than Met/Met genotype carriers (P=0.071). Our results suggested a sex-specific association between BDNF and ADHD. Furthermore, there was a possible sex-specific relationship between the BDNF Val66Met genotype and plasma BDNF levels. However, further studies are required to elucidate the role of BDNF in ADHD.

  1. The BDNF Val66Met Polymorphism Influences Reading Ability and Patterns of Neural Activation in Children.

    Science.gov (United States)

    Jasińska, Kaja K; Molfese, Peter J; Kornilov, Sergey A; Mencl, W Einar; Frost, Stephen J; Lee, Maria; Pugh, Kenneth R; Grigorenko, Elena L; Landi, Nicole

    2016-01-01

    Understanding how genes impact the brain's functional activation for learning and cognition during development remains limited. We asked whether a common genetic variant in the BDNF gene (the Val66Met polymorphism) modulates neural activation in the young brain during a critical period for the emergence and maturation of the neural circuitry for reading. In animal models, the bdnf variation has been shown to be associated with the structure and function of the developing brain and in humans it has been associated with multiple aspects of cognition, particularly memory, which are relevant for the development of skilled reading. Yet, little is known about the impact of the Val66Met polymorphism on functional brain activation in development, either in animal models or in humans. Here, we examined whether the BDNF Val66Met polymorphism (dbSNP rs6265) is associated with children's (age 6-10) neural activation patterns during a reading task (n = 81) using functional magnetic resonance imaging (fMRI), genotyping, and standardized behavioral assessments of cognitive and reading development. Children homozygous for the Val allele at the SNP rs6265 of the BDNF gene outperformed Met allele carriers on reading comprehension and phonological memory, tasks that have a strong memory component. Consistent with these behavioral findings, Met allele carriers showed greater activation in reading-related brain regions including the fusiform gyrus, the left inferior frontal gyrus and left superior temporal gyrus as well as greater activation in the hippocampus during a word and pseudoword reading task. Increased engagement of memory and spoken language regions for Met allele carriers relative to Val/Val homozygotes during reading suggests that Met carriers have to exert greater effort required to retrieve phonological codes.

  2. An adaptive role for BDNF Val66Met polymorphism in motor recovery in chronic stroke.

    Science.gov (United States)

    Qin, Luye; Jing, Deqiang; Parauda, Sarah; Carmel, Jason; Ratan, Rajiv R; Lee, Francis S; Cho, Sunghee

    2014-02-12

    Little is known about the influence of genetic diversity on stroke recovery. One exception is the polymorphism in brain derived neurotrophic factor (BDNF), a critical neurotrophin for brain repair and plasticity. Humans have a high-frequency single nucleotide polymorphism (SNP) in the prodomain of the BDNF gene. Previous studies show that the BDNF Val66Met variant negatively affects motor learning and severity of acute stroke. To investigate the impact of this common BDNF SNP on stroke recovery, we used a mouse model that contains the human BDNF Val66Met variant in both alleles (BDNF(M/M)). Male BDNF(+/+) and BDNF(M/M) littermates received sham or transient middle cerebral artery occlusion. We assessed motor function regularly for 6 months after stroke and then performed anatomical analyses. Despite reported negative association of the SNP with motor learning and acute deficits, we unexpectedly found that BDNF(M/M) mice displayed significantly enhanced motor/kinematic performance in the chronic phase of motor recovery, especially in ipsilesional hindlimb. The enhanced recovery was associated with significant increases in striatum volume, dendritic arbor, and elevated excitatory synaptic markers in the contralesional striatum. Transient inactivation of the contralateral striatum during recovery transiently abolished the enhanced function. This study showed an unexpected benefit of the BDNFVal66Met carriers for functional recovery, involving structural and molecular plasticity in the nonstroked hemisphere. Clinically, this study suggests a role for BDNF genotype in predicting stroke recovery and identifies a novel systems-level mechanism for enhanced motor recovery.

  3. Depression, 5HTTLPR and BDNF Val66Met polymorphisms, and plasma BDNF levels in hemodialysis patients with chronic renal failure

    Directory of Open Access Journals (Sweden)

    Wang LJ

    2014-07-01

    Full Text Available Liang-Jen Wang,1,* Chih-Ken Chen,2,3,* Heng-Jung Hsu,3,4 I-Wen Wu,3,4 Chiao-Yin Sun,3,4 Chin-Chan Lee3,41Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; 2Department of Psychiatry, Chang Gung Memorial Hospital, Keelung, Taiwan; 3Chang Gung University School of Medicine, Taoyuan, Taiwan; 4Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan *LJW and CKC are joint first authors and contributed equally to this manuscriptObjective: Depression is the most prevalent comorbid psychiatric disease among hemodialysis patients with end-stage renal disease. This cross-sectional study investigated whether depression in hemodialysis patients is associated with the polymorphism of the 5' flanking transcriptional region (5-HTTLPR of the serotonin transporter gene, the valine (Val-to-methionine (Met substitution at codon 66 (Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF gene, or plasma BDNF levels.Methods: A total of 188 participants (mean age: 58.5±14.0 years; 89 men and 99 women receiving hemodialysis at the Chang Gung Memorial Hospital were recruited. The diagnosis of major depressive disorder (MDD was confirmed using the Chinese version of the Mini International Neuropsychiatric Interview. The genotypes of 5-HTTLPR and BDNF Val66Met were conducted using polymerase chain reactions plus restriction fragment length polymorphism analysis. The plasma BDNF levels were measured using an enzyme-linked immunosorbent assay kit.Results: Forty-five (23.9% patients fulfilled the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV-TR criteria for a MDD. There were no significant effects of the 5-HTTLPR or BDNF Val66Met gene polymorphism on MDD among the hemodialysis patients. The plasma BDNF levels correlated significantly with age (P=0.003 and sex (P=0.047 but not with depression, the genotypes of 5

  4. Neurogenic and neurotrophic effects of BDNF peptides in mouse hippocampal primary neuronal cell cultures.

    Directory of Open Access Journals (Sweden)

    Maria del Carmen Cardenas-Aguayo

    Full Text Available The level of brain-derived neurotrophic factor (BDNF, a member of the neurotrophin family, is down regulated in Alzheimer's disease (AD, Parkinson's disease (PD, depression, stress, and anxiety; conversely the level of this neurotrophin is increased in autism spectrum disorders. Thus, modulating the level of BDNF can be a potential therapeutic approach for nervous system pathologies. In the present study, we designed five different tetra peptides (peptides B-1 to B-5 corresponding to different active regions of BDNF. These tetra peptides were found to be non-toxic, and they induced the expression of neuronal markers in mouse embryonic day 18 (E18 primary hippocampal neuronal cultures. Additionally, peptide B-5 induced the expression of BDNF and its receptor, TrkB, suggesting a positive feedback mechanism. The BDNF peptides induced only a moderate activation (phosphorylation at Tyr 706 of the TrkB receptor, which could be blocked by the Trk's inhibitor, K252a. Peptide B-3, when combined with BDNF, potentiated the survival effect of this neurotrophin on H(2O(2-treated E18 hippocampal cells. Peptides B-3 and B-5 were found to work as partial agonists and as partial antagonists competing with BDNF to activate the TrkB receptor in a dose-dependent manner. Taken together, these results suggest that the described BDNF tetra peptides are neurotrophic, can modulate BDNF signaling in a partial agonist/antagonist way, and offer a novel therapeutic approach to neural pathologies where BDNF levels are dysregulated.

  5. HuD interacts with Bdnf mRNA and is essential for activity-induced BDNF synthesis in dendrites.

    Directory of Open Access Journals (Sweden)

    Filip Vanevski

    Full Text Available Highly specific activity-dependent neuronal responses are necessary for modulating synapses to facilitate learning and memory. We present evidence linking a number of important processes involved in regulating synaptic plasticity, suggesting a mechanistic pathway whereby activity-dependent signaling, likely through protein kinase C (PKC-mediated phosphorylation of HuD, can relieve basal repression of Bdnf mRNA translation in dendrites, allowing for increased TrkB signaling and synaptic remodeling. We demonstrate that the neuronal ELAV family of RNA binding proteins associates in vivo with several Bdnf mRNA isoforms present in the adult brain in an activity-dependent manner, and that one member, HuD, interacts directly with sequences in the long Bdnf 3' untranslated region (3'UTR and co-localizes with Bdnf mRNA in dendrites of hippocampal neurons. Activation of PKC leads to increased dendritic translation of mRNAs containing the long Bdnf 3'UTR, a process that is dependent on the presence of HuD and its phosphorylation at threonine residues 149 and/or 165. Thus, we found a direct effect of HuD on regulating translation of dendritic Bdnf mRNAs to mediate local and activity-dependent increases in dendritic BDNF synthesis.

  6. Genipin is active via modulating monoaminergic transmission and levels of brain-derived neurotrophic factor (BDNF) in rat model of depression.

    Science.gov (United States)

    Wang, Q-S; Tian, J-S; Cui, Y-L; Gao, S

    2014-09-05

    Genipin, an important bioactive component from Gardenia jasminoides Eills, was demonstrated to possess antidepressant-like effects in a previous study. However, the molecular mechanism of antidepressant-like effects on genipin was not clear. The present study aimed to investigate the possible mechanism of antidepressant-like effects on genipin with a chronic unpredictable mild stress (CUMS)-induced depression model in rats. In CUMS-induced depressive rats, bodyweight and 1% sucrose consumption decreased significantly compared with the normal control group. Furthermore, these changes could be significantly reversed by genipin application. The levels of 5-hydroxytryptamine (5-HT), norepinephrine (NE) in the hippocampus decreased and the level of 5-hydroxyindole acetic acid (5-HIAA) increased in the CUMS-induced depressive rats. However, pre-treatments with genipin significantly increased the levels of 5-HT, NE and decreased the level of 5-HIAA in the hippocampus. The concentration of cAMP in the hippocampus was increased by genipin compared to the CUMS-exposed model group. The mRNA expressions of 5-hydroxytryptamine 1A receptor (5-HT1AR), cAMP response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in rats were decreased exposed to CUMS, which were reversed by genipin-treated rats exposed to CUMS. Compared to the CUMS-exposed model group, the mRNA expression of 5-hydroxytryptamine 2A receptor (5-HT(2A)R) was decreased significantly by genipin-treated rats. The mRNA and protein expression of CREB, BDNF were increased in genipin-treated rats compared to the CUMS-exposed model group. Moreover, the levels of corticosterone in serum were decreased by genipin-treated compared to the CUMS-exposed model group. These results suggest that the possible mechanism of antidepressant-like effects on genipin, at least in one part, resulted from monoaminergic neurotransmitter system and the potential dysfunctional regulation of the post-receptor signaling

  7. Neuronal release of proBDNF

    OpenAIRE

    Yang, Jianmin; Siao, Chia-Jen; Nagappan, Guhan; Marinic, Tina; Jing, Deqiang; McGrath, Kelly; Chen, Zhe-Yu; Mark, Willie; Tessarollo, Lino; Lee, Francis S.; Lu, Bai; Hempstead, Barbara L.

    2009-01-01

    Pro–brain-derived neurotrophic factor (proBDNF) and mature BDNF utilize distinct receptors to mediate divergent neuronal actions. Using new tools to quantitate endogenous BDNF isoforms, we found that mouse neurons secrete both proBDNF and mature BDNF. The highest levels of proBDNF and p75 were observed perinatally and declined, but were still detectable, in adulthood. Thus, BDNF actions are developmentally regulated by secretion of proBDNF or mature BDNF and by local expression of p75 and Trk...

  8. BDNF Depresses Excitability of Parvalbumin-Positive Interneurons through an M-Like Current in Rat Dentate Gyrus

    OpenAIRE

    Jose Luis Nieto-Gonzalez; Kimmo Jensen

    2013-01-01

    In addition to their classical roles in neuronal growth, survival and differentiation, neurotrophins are also rapid regulators of excitability, synaptic transmission and activity-dependent synaptic plasticity. We have recently shown that mature BDNF (Brain Derived Neurotrophic Factor), but not proBDNF, modulates the excitability of interneurons in dentate gyrus within minutes. Here, we used brain slice patch-clamp recordings to study the mechanisms through which BDNF modulates the firing of i...

  9. The BDNF Val66Met polymorphism: relation to familiar risk of affective disorder, BDNF levels and salivary cortisol

    DEFF Research Database (Denmark)

    Vinberg, Maj; Trajkovska, Viktorija; Bennike, Bente

    2009-01-01

    with a familiar risk of affective disorder and whether these genotypes affect whole blood BDNF level and salivary cortisol. METHOD: In a high-risk study, healthy monozygotic and dizygotic twins with and without a co-twin (high- and low-risk twins, respectively) history of affective disorder were identified...... familiar risk of affective disorder and the met allele was associated with a higher whole blood BDNF (p=0.02) and a higher evening cortisol level (p=0.01), but not with awakening cortisol. CONCLUSION: Individuals at high risk of affective disorders and who are carriers of the met allele of the Val66Met...

  10. Transcript-specific effects of adrenalectomy on seizure-induced BDNF expression in rat hippocampus

    DEFF Research Database (Denmark)

    Lauterborn, J C; Poulsen, F R; Stinis, C T;

    1998-01-01

    Activity-induced brain-derived neurotrophic factor (BDNF) expression is negatively modulated by circulating adrenal steroids. The rat BDNF gene gives rise to four major transcript forms that each contain a unique 5' exon (I-IV) and a common 3' exon (V) that codes for BDNF protein. Exon......-specific in situ hybridization was used to determine if adrenalectomy has differential effects on basal and activity-induced BDNF transcript expression in hippocampus. Adrenalectomy alone had only modest effects on BDNF mRNA levels with slight increases in exon III-containing mRNA with 7-10-day survival...... no effect on exon IV-containing mRNA content. These results demonstrate that the negative effects of adrenal hormones on activity-induced BDNF expression are by far the greatest for transcripts containing exons I and II. Together with evidence for region-specific transcript expression, these results suggest...

  11. [Research progress of BDNF and depression].

    Science.gov (United States)

    Qiao, Hui; An, Shu-Cheng; Xu, Chang

    2011-06-01

    BDNF is widespread existed in CNS and PNS, because of its function in nerve regeneration and restoration, more and more researches focused on the effect of BDNF on neural plasticity in the development of depression and the mechanisms of antidepressant. This article review the basic results and the research trends on BDNF and depression at present, more researches about the interactions of BDNF and proBDNF, BDNF and other transmitters and their receptors should be expected.

  12. BDNF — EDRN Public Portal

    Science.gov (United States)

    BDNF (brain-derived neurotrophic factor) is a member of the nerve growth factor family. It is induced by cortical neurons, and is necessary for survival of striatal neurons in the brain. During development, BDNF promotes the survival and differentiation of selected neuronal populations of the peripheral and central nervous systems. Decreased expression of the BDNF gene is seen in both Alzheimer's and Huntington disease patients. BDNF may play a role in the regulation of stress response and in the biology of mood disorders. Multiple transcript variants encoding distinct isoforms have been described for this gene.

  13. BDNF antagonizes Aβ25 -35 induced neuronal oxidative damage through modulating the SIRT1/PGC-1αpathways%BNDF调控SIRT1/PGC-1α通路拮抗Aβ25~35诱导的神经元细胞氧化损伤

    Institute of Scientific and Technical Information of China (English)

    姚婕; 张红梅; 阎丽萍; 姬文涛; 马巧亚

    2016-01-01

    against oxidative damage induced by Aβ25-35, and modulates the SIRT1/PGC-1αpathways via TrkB.%目的:探讨脑源性神经营养因子(BDNF)对Aβ25~35诱导的神经元细胞氧化损伤的影响及作用机制。方法分离新生SD大鼠皮层神经元细胞,并分为空白对照组、Aβ25~35组、1μg/L BDNF+Aβ25~35组、10μg/L BDNF+Aβ25~35组、100μg/L BDNF+Aβ25~35组、BDNF+siRNA-scramble+Aβ25~35组、BDNF+siRNA-TrkB+Aβ25~35组、BDNF+siRNA-SIRT1+Aβ25~35组。不同浓度BDNF诱导培养细胞48 h,siRNA-scramble、siRNA-TrkB或siRNA-SIRT1采用Lipo-fectamine 2000转染细胞,诱导培养24 h。 MTT法和流式细胞术检测神经元细胞的细胞存活率和凋亡率,利用硫代巴比妥酸法和黄嘌呤氧化酶法检测各组细胞中丙二醛(MDA)含量和超氧化物歧化酶(SOD)活性,qRT-PCR和Western blot检测TrkB、SIRT1、PGC-1α、Bcl-2、Bax的表达。结果与空白对照组比较,Aβ25~35组细胞存活率明显降低,细胞凋亡率增加,MDA含量升高,SOD活性降低(P<0.05)。与Aβ25~35组比较,不同浓度BDNF均能提高细胞存活率,降低凋亡率,升高细胞内SOD活性,降低MDA含量,上调TrkB、SIRT1、PGC-1α、Bcl-2表达,减少Bax表达(P<0.05),并且呈现剂量依赖性。沉默SIRT1表达后抑制BDNF对Aβ25~35诱导细胞凋亡的保护作用;沉默TrkB表达后抑制BDNF对SIRT1/PGC-1α信号通路的激活作用。结论 BDNF能够保护Aβ25~35诱导神经元细胞的氧化损伤,并且通过TrkB受体调控SIRT1/PGC-1α信号通路。

  14. Affect-modulated startle: interactive influence of catechol-O-methyltransferase Val158Met genotype and childhood trauma.

    Directory of Open Access Journals (Sweden)

    Benedikt Klauke

    Full Text Available The etiology of emotion-related disorders such as anxiety or affective disorders is considered to be complex with an interaction of biological and environmental factors. Particular evidence has accumulated for alterations in the dopaminergic and noradrenergic system--partly conferred by catechol-O-methyltransferase (COMT gene variation--for the adenosinergic system as well as for early life trauma to constitute risk factors for those conditions. Applying a multi-level approach, in a sample of 95 healthy adults, we investigated effects of the functional COMT Val158Met polymorphism, caffeine as an adenosine A2A receptor antagonist (300 mg in a placebo-controlled intervention design and childhood maltreatment (CTQ as well as their interaction on the affect-modulated startle response as a neurobiologically founded defensive reflex potentially related to fear- and distress-related disorders. COMT val/val genotype significantly increased startle magnitude in response to unpleasant stimuli, while met/met homozygotes showed a blunted startle response to aversive pictures. Furthermore, significant gene-environment interaction of COMT Val158Met genotype with CTQ was discerned with more maltreatment being associated with higher startle potentiation in val/val subjects but not in met carriers. No main effect of or interaction effects with caffeine were observed. Results indicate a main as well as a GxE effect of the COMT Val158Met variant and childhood maltreatment on the affect-modulated startle reflex, supporting a complex pathogenetic model of the affect-modulated startle reflex as a basic neurobiological defensive reflex potentially related to anxiety and affective disorders.

  15. Affect-modulated startle: interactive influence of catechol-O-methyltransferase Val158Met genotype and childhood trauma.

    Science.gov (United States)

    Klauke, Benedikt; Winter, Bernward; Gajewska, Agnes; Zwanzger, Peter; Reif, Andreas; Herrmann, Martin J; Dlugos, Andrea; Warrings, Bodo; Jacob, Christian; Mühlberger, Andreas; Arolt, Volker; Pauli, Paul; Deckert, Jürgen; Domschke, Katharina

    2012-01-01

    The etiology of emotion-related disorders such as anxiety or affective disorders is considered to be complex with an interaction of biological and environmental factors. Particular evidence has accumulated for alterations in the dopaminergic and noradrenergic system--partly conferred by catechol-O-methyltransferase (COMT) gene variation--for the adenosinergic system as well as for early life trauma to constitute risk factors for those conditions. Applying a multi-level approach, in a sample of 95 healthy adults, we investigated effects of the functional COMT Val158Met polymorphism, caffeine as an adenosine A2A receptor antagonist (300 mg in a placebo-controlled intervention design) and childhood maltreatment (CTQ) as well as their interaction on the affect-modulated startle response as a neurobiologically founded defensive reflex potentially related to fear- and distress-related disorders. COMT val/val genotype significantly increased startle magnitude in response to unpleasant stimuli, while met/met homozygotes showed a blunted startle response to aversive pictures. Furthermore, significant gene-environment interaction of COMT Val158Met genotype with CTQ was discerned with more maltreatment being associated with higher startle potentiation in val/val subjects but not in met carriers. No main effect of or interaction effects with caffeine were observed. Results indicate a main as well as a GxE effect of the COMT Val158Met variant and childhood maltreatment on the affect-modulated startle reflex, supporting a complex pathogenetic model of the affect-modulated startle reflex as a basic neurobiological defensive reflex potentially related to anxiety and affective disorders.

  16. An evaluation of the effects of acute and chronic L-tyrosine administration on BDNF levels and BDNF mRNA expression in the rat brain.

    Science.gov (United States)

    Ferreira, Gabriela K; Scaini, Giselli; Jeremias, Isabela C; Carvalho-Silva, Milena; Gonçalves, Cinara L; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2014-04-01

    Tyrosinemia type II, which is also known as Richner-Hanhart syndrome, is an inborn error of metabolism that is due to a block in the transamination reaction that converts tyrosine to p-hydroxyphenylpyruvate. Because the mechanisms of neurological dysfunction in hypertyrosinemic patients are poorly known and the symptoms of these patients are related to the central nervous system, the present study evaluated brain-derived neurotrophic factor (BDNF) levels and bdnf mRNA expression in young rats and during growth. In our acute protocol, Wistar rats (10 and 30 days old) were killed 1 h after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old), and the rats were killed 12 h after the last injection. The brains were rapidly removed, and we evaluated the BDNF levels and bdnf mRNA expression. The present results showed that the acute administration of L-tyrosine decreased both BDNF and bdnf mRNA levels in the striatum of 10-day-old rats. In the 30-day-old rats, we observed decreased BDNF levels without modifications in bdnf transcript level in the hippocampus and striatum. Chronic administration of L-tyrosine increased the BDNF levels in the striatum of rats during their growth, whereas bdnf mRNA expression was not altered. We hypothesize that oxidative stress can interact with the BDNF system to modulate synaptic plasticity and cognitive function. The present results enhance our knowledge of the pathophysiology of hypertyrosinemia.

  17. BDNF Val66Met polymorphism and protein levels in Amniotic Fluid

    Directory of Open Access Journals (Sweden)

    Calabrese Francesca

    2010-02-01

    Full Text Available Abstract Background Brain-Derived Neurotrophic Factor (BDNF is a neurotrophin which plays survival- and growth-promoting activity in neuronal cells and it is involved in cellular plasticity mechanisms as it controls activity dependent synaptic transmission. A functional polymorphism (Val66Met in the pro-region of BDNF, which affects the intracellular trafficking of proBDNF has been associated with memory and cognitive deficits as well as to an increased susceptibility for several psychiatric disorders especially those with a neurodevelopmental origin. To date, no study has evaluated the influence of the Val66Met polymorphism on BDNF levels in a peripheral system that may reflect fetal neurodevelopment. Therefore we investigated in amniotic fluids (AF obtained from 139 healthy women during 15-17 week of pregnancy, BDNF protein levels in correlation with the Val66Met polymorphism. Results Interestingly we found a significant BDNF protein levels reduction in 55 Met carriers (Val/Met and Met/Met (p = 0.002 as compared to 84 non carriers (Val/Val, and no effect of fetus gender, maternal age or gestation week on BDNF levels has been observed. Conclusion These results, although explorative, indicate that during fetal life the Val66Met genotype might influences BDNF protein levels in AF supporting the involvement of this polymorphism in behavioral and functional brain individual differences in the adulthood.

  18. The Unexpected Effects of Beneficial and Adverse Social Experiences during Adolescence on Anxiety and Aggression and Their Modulation by Genotype

    Science.gov (United States)

    Meyer, Neele; Richter, S. Helene; Schreiber, Rebecca S.; Kloke, Vanessa; Kaiser, Sylvia; Lesch, Klaus-Peter; Sachser, Norbert

    2016-01-01

    Anxiety and aggression are part of the behavioral repertoire of humans and animals. However, in their exaggerated form both can become maladaptive and result in psychiatric disorders. On the one hand, genetic predisposition has been shown to play a crucial modulatory role in anxiety and aggression. On the other hand, social experiences have been implicated in the modulation of these traits. However, so far, mainly experiences in early life phases have been considered crucial for shaping anxiety-like and aggressive behavior, while the phase of adolescence has largely been neglected. Therefore, the aim of the present study was to elucidate how levels of anxiety-like and aggressive behavior are shaped by social experiences during adolescence and serotonin transporter (5-HTT) genotype. For this purpose, male mice of a 5-HTT knockout mouse model including all three genotypes (wildtype, heterozygous and homozygous 5-HTT knockout mice) were either exposed to an adverse social situation or a beneficial social environment during adolescence. This was accomplished in a custom-made cage system where mice experiencing the adverse environment were repeatedly introduced to the territory of a dominant opponent but had the possibility to escape to a refuge cage. Mice encountering beneficial social conditions had free access to a female mating partner. Afterwards, anxiety-like and aggressive behavior was assessed in a battery of tests. Surprisingly, unfavorable conditions during adolescence led to a decrease in anxiety-like behavior and an increase in exploratory locomotion. Additionally, aggressive behavior was augmented in animals that experienced social adversity. Concerning genotype, homozygous 5-HTT knockout mice were more anxious and less aggressive than heterozygous 5-HTT knockout and wildtype mice. In summary, adolescence is clearly an important phase in which anxiety-like and aggressive behavior can be shaped. Furthermore, it seems that having to cope with challenge during

  19. The Met-allele of the BDNF Val66Met polymorphism enhances task switching in elderly.

    Science.gov (United States)

    Gajewski, Patrick D; Hengstler, Jan G; Golka, Klaus; Falkenstein, Michael; Beste, Christian

    2011-12-01

    In this study we examined the relevance of the functional brain-derived neurotrophic factor (BDNF) Val66Met polymorphism as a modulator of task-switching performance in healthy elderly by using behavioral and event-related potential (ERP) measures. Task switching was examined in a cue-based and a memory-based paradigm. Val/Val carriers were generally slower, showed enhanced reaction time variability and higher error rates, particularly during memory-based task switching than the Met-allele individuals. On a neurophysiological level these dissociative effects were reflected by variations in the N2 and P3 ERP components. The task switch-related N2 was increased while the P3 was decreased in Met-allele carriers, while the Val/Val genotype group revealed the opposite pattern of results. In cue-based task-switching no behavioral and ERP differences were seen between the genotypes. These data suggest that superior memory-based task-switching performance in elderly Met-allele carriers may emerge due to more efficient response selection processes. The results implicate that under special circumstances the Met-allele renders cognitive processes more efficient than the Val/Val genotype in healthy elderly, corroborating recent findings in young subjects.

  20. Increased BDNF protein expression after ischemic or PKC epsilon preconditioning promotes electrophysiologic changes that lead to neuroprotection

    OpenAIRE

    Neumann, Jake T.; Thompson, John W.; Raval, Ami P; Cohan, Charles H; Koronowski, Kevin B.; Perez-Pinzon, Miguel A

    2014-01-01

    Ischemic preconditioning (IPC) via protein kinase C epsilon (PKCɛ) activation induces neuroprotection against lethal ischemia. Brain-derived neurotrophic factor (BDNF) is a pro-survival signaling molecule that modulates synaptic plasticity and neurogenesis. Interestingly, BDNF mRNA expression increases after IPC. In this study, we investigated whether IPC or pharmacological preconditioning (PKCɛ activation) promoted BDNF-induced neuroprotection, if neuroprotection by IPC or PKCɛ activation al...

  1. Intracellular Ca2+ Stores and Ca2+ Influx Are Both Required for BDNF to Rapidly Increase Quantal Vesicular Transmitter Release

    OpenAIRE

    Amaral, Michelle D.; Lucas Pozzo-Miller

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is well known as a survival factor during brain development as well as a regulator of adult synaptic plasticity. One potential mechanism to initiate BDNF actions is through its modulation of quantal presynaptic transmitter release. In response to local BDNF application to CA1 pyramidal neurons, the frequency of miniature excitatory postsynaptic currents (mEPSC) increased significantly within 30 seconds; mEPSC amplitude and kinetics were unchanged. This...

  2. Electrophysiological responses of feedback processing are modulated by MAOA genotype in healthy male adolescents.

    Science.gov (United States)

    Ma, Ren; Jia, Huiqiao; Yi, Fei; Ming, Qingsen; Wang, Xiang; Gao, Yidian; Yi, Jinyao; Yao, Shuqiao

    2016-01-01

    A functional polymorphism in the promoter region of the monoamine oxidase A (MAOA) gene is closely related to aggression. Although previous studies suggested that impaired ability of feedback processing might be associated with aggressive behaviour, studies concerning the MAOA gene-related aggression rarely focused on the link between MAOA gene and feedback processing. We therefore sought to investigate the effect of MAOA genotype on electrophysiological responses of feedback processing in 72 healthy male adolescents during a simple monetary gambling task. Feedback processing was investigated by measuring the feedback-related negativity (FRN) and the P300 as electrophysiological markers. We observed a decreased electrophysiological response of the loss-gain difference waves from 250 to 350 ms (dFRN) in individuals with the lower activity alleles (MAOA-L) during the task, an effect that was driven primarily by the considerably altered response to monetary gains. The reduced dFRN in MAOA-L group might indicate poor ability to learn from feedback, which is followed by adjusting future behaviour. And MAOA-L carriers exhibited lower P300 compared with subjects with higher activity alleles (MAOA-H), which suggested fewer attentional resources were allocated to feedback processing. In addition, MAOA-L carriers demonstrated higher aggression and the aggression were inversely correlated with dFRN across two groups; further analyses suggested that dFRN mediated the MAOA genotype-aggression relationship. Consequently, we concluded that it might be the altered feedback processing that makes MAOA-L carriers more vulnerable to aggressive behaviour.

  3. Neurochemical properties of BDNF-containing neurons projecting to rostral ventromedial medulla in the ventrolateral periaqueductal gray

    Directory of Open Access Journals (Sweden)

    Jun-Bin eYin

    2014-11-01

    Full Text Available The periaqueductal gray (PAG modulates nociception via a descending pathway that relays in the rostral ventromedial medulla (RVM and terminates in the spinal cord. Previous behavioral pharmacology and electrophysiological evidence suggests that brain-derived neurotrophic factor (BDNF plays an important role in descending pain modulation, likely through the PAG-RVM pathway. However, there still lacks detailed information on the distribution of BDNF, activation of BDNF-containing neurons projecting to RVM in the condition of pain, and neurochemical properties of these neurons within the PAG. Through fluorescent in situ hybridization (FISH and immunofluorescent staining, the homogenous distributions of BDNF mRNA and protein were observed in the four subregions of PAG. Both neurons and astrocytes expressed BDNF, but not microglias. By combining retrograde tracing methods and formalin pain model, there were more BDNF-containing neurons projecting to RVM being activated in the ventrolateral PAG (vlPAG than other subregions of PAG. The neurochemical properties of BDNF-containing projection neurons in the vlPAG were investigated. BDNF-containing projection neurons expressed auto receptor Tropomyosin-related kinase B (TrkB in addition to serotonin (5-HT, neurotensin (NT, substance P (SP, calcitonin gene related peptide (CGRP, nitric oxide synthase (NOS, and parvalbumin (PV but not tyrosine decarboxylase (TH. It is speculated that BDNF released from projection neurons in the vlPAG might participate in the descending pain modulation through enhancing the presynaptic release of other neuroactive substances (NSs in the RVM.

  4. The Effect of Nicotine on HPA Axis Activity in Females is Modulated by the FKBP5 Genotype.

    Science.gov (United States)

    Koopmann, Anne; Bez, Jennifer; Lemenager, Tagrid; Hermann, Derik; Dinter, Christina; Reinhard, Iris; Schuster, Rilana; Wiedemann, Klaus; Winterer, Georg; Kiefer, Falk

    2016-05-01

    Tobacco smoking modulates activity in the hypothalamic-pituitary-adrenal (HPA) axis and is used to cope with stress, especially by females. The single nucleotide polymorphism (SNP) rs1360780, linked to FK506-binding protein 51 (FKBP5), has been shown to affect HPA axis functioning, and has thus been suggested as a promising candidate for indicating vulnerability to stress-related disorders. The aim of this study was to investigate the interaction between nicotine consumption and rs1360780 on cortisol plasma levels in females. A total of 296 female smokers (assessed by the Fagerström Test for Nicotine Dependence; FTND) were genotyped for the SNP rs1360780. We measured participants' cortisol plasma concentration in blood plasma collected 3 h after standardized tobacco smoking exposure. In the 36 TT-homozygotes, we found a significant negative correlation between the FTND sum score and cortisol plasma concentrations. Using linear regression analysis, we found that the FTND sum score accounted for 12.4% of the variance of cortisol plasma levels. This association was not detected in C-allele carriers. Our results suggest that nicotine is an important confounder in the modulation of HPA axis activity by FKBP5. In light of these findings, future studies on FKBP5 should seek to include data on nicotine consumption as a covariate.

  5. Blood BDNF concentrations reflect brain-tissue BDNF levels across species

    DEFF Research Database (Denmark)

    Klein, Anders B; Williamson, Rebecca; Santini, Martin A

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) is involved in synaptic plasticity, neuronal differentiation and survival of neurons. Observations of decreased serum BDNF levels in patients with neuropsychiatric disorders have highlighted the potential of BDNF as a biomarker, but so far there have been...... positive correlation between frontal cortex and hippocampal BDNF levels in mice (r2=0.81, p=0.0139). Our data support the view that measures of blood and plasma BDNF levels reflect brain-tissue BDNF levels....

  6. Association of COMT (Val158Met) and BDNF (Val66Met) Gene Polymorphisms with Anxiety, ADHD and Tics in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Gadow, Kenneth D.; Roohi, Jasmin; Devincent, Carla J.; Kirsch, Sarah; Hatchwell, Eli

    2009-01-01

    The aim of the study is to examine rs4680 ("COMT") and rs6265 ("BDNF") as genetic markers of anxiety, ADHD, and tics. Parents and teachers completed a DSM-IV-referenced rating scale for a total sample of 67 children with autism spectrum disorder (ASD). Both "COMT" (p = 0.06) and "BDNF" (p = 0.07) genotypes were marginally significant for teacher…

  7. VNTR-DAT1 and COMTVal158Met Genotypes Modulate Mental Flexibility and Adaptive Behavior Skills in Down Syndrome

    Science.gov (United States)

    del Hoyo, Laura; Xicota, Laura; Langohr, Klaus; Sánchez-Benavides, Gonzalo; de Sola, Susana; Cuenca-Royo, Aida; Rodriguez, Joan; Rodríguez-Morató, Jose; Farré, Magí; Dierssen, Mara; de la Torre, Rafael; Cuenca-Royo, Aida

    2016-01-01

    Down syndrome (DS) is an aneuploidy syndrome that is caused by trisomy for human chromosome 21 resulting in a characteristic cognitive and behavioral phenotype, which includes executive functioning and adaptive behavior difficulties possibly due to prefrontal cortex (PFC) deficits. DS also present a high risk for early onset of Alzheimer Disease-like dementia. The dopamine (DA) system plays a neuromodulatory role in the activity of the PFC. Several studies have implicated trait differences in DA signaling on executive functioning based on genetic polymorphisms in the genes encoding for the catechol-O-methyltransferase (COMTVal158Met) and the dopamine transporter (VNTR-DAT1). Since it is known that the phenotypic consequences of genetic variants are modulated by the genetic background in which they occur, we here explore whether these polymorphisms variants interact with the trisomic genetic background to influence gene expression, and how this in turn mediates DS phenotype variability regarding PFC cognition. We genotyped 69 young adults of both genders with DS, and found that VNTR-DAT1 was in Hardy-Weinberg equilibrium but COMTVal158Met had a reduced frequency of Met allele homozygotes. In our population, genotypes conferring higher DA availability, such as Met allele carriers and VNTR-DAT1 10-repeat allele homozygotes, resulted in improved performance in executive function tasks that require mental flexibility. Met allele carriers showed worse adaptive social skills and self-direction, and increased scores in the social subscale of the Dementia Questionnaire for People with Intellectual Disabilities than Val allele homozygotes. The VNTR-DAT1 was not involved in adaptive behavior or early dementia symptoms. Our results suggest that genetic variants of COMTVal158Met and VNTR-DAT1 may contribute to PFC-dependent cognition, while only COMTVal158Met is involved in behavioral phenotypes of DS, similar to euploid population. PMID:27799900

  8. VNTR-DAT1 and COMTVal158Met genotypes modulate mental flexibility and adaptive behavior skills in Down syndrome

    Directory of Open Access Journals (Sweden)

    Laura Del Hoyo

    2016-10-01

    Full Text Available Down syndrome (DS is an aneuploidy syndrome that is caused by trisomy for human chromosome 21 resulting in a characteristic cognitive and behavioral phenotype, which includes executive functioning and adaptive behavior difficulties possibly due to prefrontal cortex (PFC deficits. DS also present a high risk for early onset of Alzheimer Disease (AD-like dementia. The dopamine (DA system plays a neuromodulatory role in the activity of the PFC. Several studies have implicated trait differences in DA signaling on executive functioning based on genetic polymorphisms in the genes encoding for the catechol-O-methyltransferase (COMTVal158Met and the dopamine transporter (VNTR-DAT1. Since it is known that the phenotypic consequences of genetic variants are modulated by the genetic background in which they occur, we here explore whether these polymorphisms variants interact with the trisomic genetic background to influence gene expression, and how this in turn mediates DS phenotype variability regarding PFC cognition. We genotyped 69 young adults of both genders with DS, and found that VNTR-DAT1 was in Hardy-Weinberg equilibrium but COMTVal158Met had a reduced frequency of Met allele homozygotes. In our population, genotypes conferring higher DA availability, such as Met allele carriers and VNTR-DAT1 10-repeat allele homozygotes, resulted in improved performance in executive function tasks that require mental flexibility. Met allele carriers showed worse adaptive social skills and self-direction, and increased scores in the social subscale of the Dementia Questionnaire for People with Intellectual Disabilities than Val allele homozygotes. The VNTR-DAT1 was not involved in adaptive behavior or early dementia symptoms. Our results suggest that genetic variants of COMTVal158Met and VNTR-DAT1 may contribute to PFC-dependent cognition, while only COMTVal158Met is involved in behavioral phenotypes of DS, similar to euploid population.

  9. ERK1/2 Activation Is Necessary for BDNF to Increase Dendritic Spine Density in Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Alonso, Mariana; Medina, Jorge H.; Pozzo-Miller, Lucas

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) is a potent modulator of synaptic transmission and plasticity in the CNS, acting both pre- and postsynaptically. We demonstrated recently that BDNF/TrkB signaling increases dendritic spine density in hippocampal CA1 pyramidal neurons. Here, we tested whether activation of the prominent ERK (MAPK) signaling…

  10. NMDA-Dependent Switch of proBDNF Actions on Developing GABAergic Synapses

    Science.gov (United States)

    Langlois, Anais; Diabira, Diabe; Ferrand, Nadine; Porcher, Christophe

    2013-01-01

    The brain-derived neurotrophic factor (BDNF) has emerged as an important messenger for activity-dependent development of neuronal network. Recent findings have suggested that a significant proportion of BDNF can be secreted as a precursor (proBDNF) and cleaved by extracellular proteases to yield the mature form. While the actions of proBDNF on maturation and plasticity of excitatory synapses have been studied, the effect of the precursor on developing GABAergic synapses remains largely unknown. Here, we show that regulated secretion of proBDNF exerts a bidirectional control of GABAergic synaptic activity with NMDA receptors driving the polarity of the plasticity. When NMDA receptors are activated during ongoing synaptic activity, regulated Ca2+-dependent secretion of proBDNF signals via p75NTR to depress GABAergic synaptic activity, while in the absence of NMDA receptors activation, secreted proBDNF induces a p75NTR-dependent potentiation of GABAergic synaptic activity. These results revealed a new function for proBDNF-p75NTR signaling in synaptic plasticity and a novel mechanism by which synaptic activity can modulate the development of GABAergic synaptic connections. PMID:22510533

  11. BDNF up-regulates alpha7 nicotinic acetylcholine receptor levels on subpopulations of hippocampal interneurons.

    Science.gov (United States)

    Massey, Kerri A; Zago, Wagner M; Berg, Darwin K

    2006-12-01

    In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing alpha7 subunits (alpha7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of alpha7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the effect. Blocking transmission through NMDA receptors with APV blocked the BDNF effect; increasing spontaneous excitatory activity with the GABA(A) receptor antagonist bicuculline replicated the BDNF effect. BDNF antibodies blocked the BDNF-mediated increase but not the bicuculline one, consistent with enhanced glutamatergic activity acting downstream from BDNF. Increased alpha7-nAChR clusters were most prominent on interneuron subtypes known to directly innervate excitatory neurons. The results suggest that BDNF, acting through glutamatergic transmission, can modulate hippocampal output in part by controlling alpha7-nAChR levels.

  12. The interaction of BDNF and NTRK2 gene increases the susceptibility of paranoid schizophrenia.

    Directory of Open Access Journals (Sweden)

    Zheng Lin

    Full Text Available The association between BDNF gene functional Val66Met polymorphism rs6265 and the schizophrenia is far from being consistent. In addition to the heterogeneous in schizophrenia per se leading to the inconsistent results, the interaction among multi-genes is probably playing the main role in the pathogenesis of schizophrenia, but not a single gene. Neurotrophic tyrosine kinase receptor 2 (NTRK2 is the high-affinity receptor of BDNF, and was reported to be associated with mood disorders, though no literature reported the association with schizophrenia. Thus, in the present study, total 402 patients with paranoid schizophrenia (the most common subtype of schizophrenia and matched 406 healthy controls were recruited to investigate the role of rs6265 in BDNF, three polymorphisms in NTRK2 gene (rs1387923, rs2769605 and rs1565445 and their interaction in the susceptibility to paranoid schizophrenia in a Chinese Han population. We did not observe significant differences in allele and genotype frequencies between patients and healthy controls for all four polymorphisms separately. The haplotype analysis also showed no association between haplotype of NTRK2 genes (rs1387923, rs2769605, and rs1565445 and paranoid schizophrenia. However, we found the association between the interaction of BDNF and NTRK2 with paranoid schizophrenia by using the MDR method followed by conventional statistical analysis. The best gene-gene interaction model was a three-locus model (BDNF rs6265, NTRK2 rs1387923 and NTRK2 rs2769605, in which one low-risk and three high-risk four-locus genotype combinations were identified. Our findings implied that single polymorphism of rs6265 rs1387923, rs2769605, and rs1565445 in BDNF and NTRK2 were not associated with the development of paranoid schizophrenia in a Han population, however, the interaction of BDNF and NTRK2 genes polymorphisms (BDNF-rs6265, NTRK2-rs1387923 and NTRK2-rs2769605 may be involved in the susceptibility to paranoid

  13. The interaction of BDNF and NTRK2 gene increases the susceptibility of paranoid schizophrenia.

    Science.gov (United States)

    Lin, Zheng; Su, Yousong; Zhang, Chengfang; Xing, Mengjuan; Ding, Wenhua; Liao, Liwei; Guan, Yangtai; Li, Zezhi; Cui, Donghong

    2013-01-01

    The association between BDNF gene functional Val66Met polymorphism rs6265 and the schizophrenia is far from being consistent. In addition to the heterogeneous in schizophrenia per se leading to the inconsistent results, the interaction among multi-genes is probably playing the main role in the pathogenesis of schizophrenia, but not a single gene. Neurotrophic tyrosine kinase receptor 2 (NTRK2) is the high-affinity receptor of BDNF, and was reported to be associated with mood disorders, though no literature reported the association with schizophrenia. Thus, in the present study, total 402 patients with paranoid schizophrenia (the most common subtype of schizophrenia) and matched 406 healthy controls were recruited to investigate the role of rs6265 in BDNF, three polymorphisms in NTRK2 gene (rs1387923, rs2769605 and rs1565445) and their interaction in the susceptibility to paranoid schizophrenia in a Chinese Han population. We did not observe significant differences in allele and genotype frequencies between patients and healthy controls for all four polymorphisms separately. The haplotype analysis also showed no association between haplotype of NTRK2 genes (rs1387923, rs2769605, and rs1565445) and paranoid schizophrenia. However, we found the association between the interaction of BDNF and NTRK2 with paranoid schizophrenia by using the MDR method followed by conventional statistical analysis. The best gene-gene interaction model was a three-locus model (BDNF rs6265, NTRK2 rs1387923 and NTRK2 rs2769605), in which one low-risk and three high-risk four-locus genotype combinations were identified. Our findings implied that single polymorphism of rs6265 rs1387923, rs2769605, and rs1565445 in BDNF and NTRK2 were not associated with the development of paranoid schizophrenia in a Han population, however, the interaction of BDNF and NTRK2 genes polymorphisms (BDNF-rs6265, NTRK2-rs1387923 and NTRK2-rs2769605) may be involved in the susceptibility to paranoid schizophrenia.

  14. Involvement of the BDNF gene in loneliness in adolescence: a report of opposite gene effects in boys and girls.

    Directory of Open Access Journals (Sweden)

    Maaike Verhagen

    Full Text Available Previous research has shown that loneliness has a heritable component and that genes within the serotonin-, dopamine-, and oxytocin systems are related to loneliness in adolescence. In the present study, the relation between the BDNF Val66Met polymorphism and loneliness in adolescent boys and girls was examined in a longitudinal study spanning five annual waves (N = 305. Latent growth curve modeling (LGCM was used to examine the baseline level and the change in loneliness over time. The main finding was that the BDNF gene was not related to loneliness in the total sample. A BDNF by sex interaction was found, in that Met carrying girls had the highest levels of loneliness at baseline, whereas in boys the ValVal genotype was related to higher levels of loneliness. Our results underline the importance of sex-stratified analyses when examining effects of the BDNF genotype and the necessity of conducting gene studies to intermediate phenotypes of loneliness.

  15. Positive association between the brain-derived neurotrophic factor (BDNF) gene and bipolar disorder in the Han Chinese population.

    Science.gov (United States)

    Xu, Jie; Liu, Yun; Wang, Peng; Li, Sheng; Wang, Yabing; Li, Jun; Zhou, Daizhan; Chen, Zhuo; Zhao, Teng; Wang, Ting; Xu, He; Yang, Yifeng; Feng, Guoyin; He, Lin; Yu, Lan

    2010-01-05

    Brain-derived neurotrophic factor (BDNF) is the most widely distributed neurotrophin in the central nervous system (CNS), and services many biological functions such as neural survival, differentiation, and plasticity. Previous studies have suggested that the Val66Met (also known as rs6265 or G196A) variant of BDNF is associated with bipolar disorder (BPD), but the results have been inconclusive. We therefore genotyped the Val66Met polymorphism in a Han Chinese population sample (498 cases and 501 control subjects). We found that the BDNF genotype is associated with BPD in this population (chi(2) = 9.4666, df = 2, P = 0.00884). Furthermore, our data suggested that the Met allele rather than the Val allele increased the risk for BPD in our Han population (OR = 1.44; 95% CI = 1.070-1.950; P = 0.016). Further studies are necessary to elucidate the involvement of the BDNF gene in the pathophysiology of BPD.

  16. Blood BDNF concentrations reflect brain-tissue BDNF levels across species

    DEFF Research Database (Denmark)

    Klein, Anders B; Williamson, Rebecca; Santini, Martin A;

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) is involved in synaptic plasticity, neuronal differentiation and survival of neurons. Observations of decreased serum BDNF levels in patients with neuropsychiatric disorders have highlighted the potential of BDNF as a biomarker, but so far there have been...... no studies directly comparing blood BDNF levels to brain BDNF levels in different species. We examined blood, serum, plasma and brain-tissue BDNF levels in three different mammalian species: rat, pig, and mouse, using an ELISA method. As a control, we included an analysis of blood and brain tissue from...... conditional BDNF knockout mice and their wild-type littermates. Whereas BDNF could readily be measured in rat blood, plasma and brain tissue, it was undetectable in mouse blood. In pigs, whole-blood levels of BDNF could not be measured with a commercially available ELISA kit, but pig plasma BDNF levels (mean...

  17. Genetic Variation at the BDNF Locus: Evidence for Association with Long-Term Outcome after Ischemic Stroke

    OpenAIRE

    Stanne, Tara M.; Tjärnlund-Wolf, Anna; Olsson, Sandra; Jood, Katarina; Blomstrand, Christian; Jern, Christina

    2014-01-01

    Background and Purpose Rates and extent of recovery after stroke vary considerably between individuals and genetic factors are thought to contribute to post-stroke outcome. Brain-derived neurotrophic factor (BDNF) plays important roles in brain plasticity and repair and has been shown to be involved in stroke severity, recovery, and outcome in animal models. Few clinical studies on BDNF genotypes in relation to ischemic stroke have been performed. The aims of the present study are therefore t...

  18. The BDNF effects on dendritic spines of mature hippocampal neurons depend on neuronal activity

    Directory of Open Access Journals (Sweden)

    Yves eKellner

    2014-03-01

    Full Text Available The fine tuning of neural networks during development and learning relies upon both functional and structural plastic processes. Changes in the number as well as in the size and shape of dendritic spines are associated to long-term activity-dependent synaptic plasticity. However, the molecular mechanisms translating functional into structural changes are still largely unknown. In this context, neurotrophins, like Brain-Derived Neurotrophic Factor (BDNF, are among promising candidates. Specifically BDNF-TrkB receptor signaling is crucial for activity-dependent strengthening of synapses in different brain regions. BDNF application has been shown to positively modulate dendritic and spine architecture in cortical and hippocampal neurons as well as structural plasticity in vitro. However, a global BDNF deprivation throughout the central nervous system (CNS resulted in very mild structural alterations of dendritic spines, questioning the relevance of the endogenous BDNF signaling in modulating the development and the mature structure of neurons in vivo. Here we show that a loss-of-function approach, blocking BDNF results in a significant reduction in dendritic spine density, associated with an increase in spine length and a decrease in head width. These changes are associated with a decrease in F-actin levels within spine heads. On the other hand, a gain-of-function approach, applying exogenous BDNF, could not reproduce the increase in spine density or the changes in spine morphology previously described. Taken together, we show here that the effects exerted by BDNF on the dendritic architecture of hippocampal neurons are dependent on the neuron’s maturation stage. Indeed, in mature hippocampal neurons in vitro as shown in vivo BDNF is specifically required for the activity-dependent maintenance of the mature spine phenotype.

  19. BDNF pro-peptide regulates dendritic spines via caspase-3

    OpenAIRE

    Guo, J.; Ji, Y.; Y. Ding; Jiang, W.; Sun, Y.; B. Lu; Nagappan, G

    2016-01-01

    The precursor of brain-derived neurotrophic factor (BDNF) (proBDNF) is enzymatically cleaved, by either intracellular (furin/PC1) or extracellular proteases (tPA/plasmin/MMP), to generate mature BDNF (mBDNF) and its pro-peptide (BDNF pro-peptide). Little is known about the function of BDNF pro-peptide. We have developed an antibody that specifically detects cleaved BDNF pro-peptide, but not proBDNF or mBDNF. Neuronal depolarization elicited a marked increase in extracellular BDNF pro-peptide,...

  20. Association study between BDNF C-281A polymorphism and paranoid schizophrenia in Polish population.

    Science.gov (United States)

    Suchanek, Renata; Owczarek, Aleksander; Kowalski, Jan

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is one of the candidate genes for schizophrenia. Polymorphism C-281A (rs28383487) in BDNF gene leads to the reduction of promoter activity in the hippocampal neurons in vitro. To our knowledge, this is the first study to examine the influence of alleles and genotypes of BDNF C-281A polymorphism on development, as well as the clinical course (age of onset, suicidal behaviour and psychopathology) of paranoid schizophrenia. The psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS) as subscale scores and also single-item scores. We have also performed the haplotype analysis with val66met BDNF polymorphism, which is known to be involved in the pathogenesis of schizophrenia. We have not found significant differences in the distribution of genotypes and alleles between schizophrenic patients and controls in both the overall analysis, as well as sex stratified. Also, we have not shown statistically significant differences between genotype groups and PANSS scale. However, an association between C-281A polymorphism and time of the first episode of paranoid schizophrenia was revealed. Genotype C/A had been connected with later age of onset of paranoid schizophrenia in men but not in women (p schizophrenia group compared to the controls.

  1. DAT genotype modulates striatal processing and long-term memory for items associated with reward and punishment.

    Science.gov (United States)

    Wittmann, Bianca C; Tan, Geoffrey C; Lisman, John E; Dolan, Raymond J; Düzel, Emrah

    2013-09-01

    Previous studies have shown that appetitive motivation enhances episodic memory formation via a network including the substantia nigra/ventral tegmental area (SN/VTA), striatum and hippocampus. This functional magnetic resonance imaging (fMRI) study now contrasted the impact of aversive and appetitive motivation on episodic long-term memory. Cue pictures predicted monetary reward or punishment in alternating experimental blocks. One day later, episodic memory for the cue pictures was tested. We also investigated how the neural processing of appetitive and aversive motivation and episodic memory were modulated by dopaminergic mechanisms. To that end, participants were selected on the basis of their genotype for a variable number of tandem repeat polymorphism of the dopamine transporter (DAT) gene. The resulting groups were carefully matched for the 5-HTTLPR polymorphism of the serotonin transporter gene. Recognition memory for cues from both motivational categories was enhanced in participants homozygous for the 10-repeat allele of the DAT, the functional effects of which are not known yet, but not in heterozygous subjects. In comparison with heterozygous participants, 10-repeat homozygous participants also showed increased striatal activity for anticipation of motivational outcomes compared to neutral outcomes. In a subsequent memory analysis, encoding activity in striatum and hippocampus was found to be higher for later recognized items in 10-repeat homozygotes compared to 9/10-repeat heterozygotes. These findings suggest that processing of appetitive and aversive motivation in the human striatum involve the dopaminergic system and that dopamine plays a role in memory for both types of motivational information. In accordance with animal studies, these data support the idea that encoding of motivational events depends on dopaminergic processes in the hippocampus.

  2. Reprint of: DAT genotype modulates striatal processing and long-term memory for items associated with reward and punishment.

    Science.gov (United States)

    Wittmann, Bianca C; Tan, Geoffrey C; Lisman, John E; Dolan, Raymond J; Düzel, Emrah

    2013-10-01

    Previous studies have shown that appetitive motivation enhances episodic memory formation via a network including the substantia nigra/ventral tegmental area (SN/VTA), striatum and hippocampus. This functional magnetic resonance imaging (fMRI) study now contrasted the impact of aversive and appetitive motivation on episodic long-term memory. Cue pictures predicted monetary reward or punishment in alternating experimental blocks. One day later, episodic memory for the cue pictures was tested. We also investigated how the neural processing of appetitive and aversive motivation and episodic memory were modulated by dopaminergic mechanisms. To that end, participants were selected on the basis of their genotype for a variable number of tandem repeat polymorphism of the dopamine transporter (DAT) gene. The resulting groups were carefully matched for the 5-HTTLPR polymorphism of the serotonin transporter gene. Recognition memory for cues from both motivational categories was enhanced in participants homozygous for the 10-repeat allele of the DAT, the functional effects of which are not known yet, but not in heterozygous subjects. In comparison with heterozygous participants, 10-repeat homozygous participants also showed increased striatal activity for anticipation of motivational outcomes compared to neutral outcomes. In a subsequent memory analysis, encoding activity in striatum and hippocampus was found to be higher for later recognized items in 10-repeat homozygotes compared to 9/10-repeat heterozygotes. These findings suggest that processing of appetitive and aversive motivation in the human striatum involve the dopaminergic system and that dopamine plays a role in memory for both types of motivational information. In accordance with animal studies, these data support the idea that encoding of motivational events depends on dopaminergic processes in the hippocampus.

  3. Pharmacological profile of brain-derived neurotrophic factor (BDNF) splice variant translation using a novel drug screening assay: a "quantitative code".

    Science.gov (United States)

    Vaghi, Valentina; Polacchini, Alessio; Baj, Gabriele; Pinheiro, Vera L M; Vicario, Annalisa; Tongiorgi, Enrico

    2014-10-03

    The neurotrophin brain-derived neurotrophic factor (BDNF) is a key regulator of neuronal development and plasticity. BDNF is a major pharmaceutical target in neurodevelopmental and psychiatric disorders. However, pharmacological modulation of this neurotrophin is challenging because BDNF is generated by multiple, alternatively spliced transcripts with different 5'- and 3'UTRs. Each BDNF mRNA variant is transcribed independently, but translation regulation is unknown. To evaluate the translatability of BDNF transcripts, we developed an in vitro luciferase assay in human neuroblastoma cells. In unstimulated cells, each BDNF 5'- and 3'UTR determined a different basal translation level of the luciferase reporter gene. However, constructs with either a 5'UTR or a 3'UTR alone showed poor translation modulation by BDNF, KCl, dihydroxyphenylglycine, AMPA, NMDA, dopamine, acetylcholine, norepinephrine, or serotonin. Constructs consisting of the luciferase reporter gene flanked by the 5'UTR of one of the most abundant BDNF transcripts in the brain (exons 1, 2c, 4, and 6) and the long 3'UTR responded selectively to stimulation with the different receptor agonists, and only transcripts 2c and 6 were increased by the antidepressants desipramine and mirtazapine. We propose that BDNF mRNA variants represent "a quantitative code" for regulated expression of the protein. Thus, to discriminate the efficacy of drugs in stimulating BDNF synthesis, it is appropriate to use variant-specific in vitro screening tests.

  4. PACAP enhances axon outgrowth in cultured hippocampal neurons to a comparable extent as BDNF.

    Directory of Open Access Journals (Sweden)

    Katsuya Ogata

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP exerts neurotrophic activities including modulation of synaptic plasticity and memory, hippocampal neurogenesis, and neuroprotection, most of which are shared with brain-derived neurotrophic factor (BDNF. Therefore, the aim of this study was to compare morphological effects of PACAP and BDNF on primary cultured hippocampal neurons. At days in vitro (DIV 3, PACAP increased neurite length and number to similar levels by BDNF, but vasoactive intestinal polypeptide showed much lower effects. In addition, PACAP increased axon, but not dendrite, length, and soma size at DIV 3 similarly to BDNF. The PACAP antagonist PACAP6-38 completely blocked the PACAP-induced increase in axon, but not dendrite, length. Interestingly, the BDNF-induced increase in axon length was also inhibited by PACAP6-38, suggesting a mechanism involving PACAP signaling. K252a, a TrkB receptor inhibitor, inhibited axon outgrowth induced by PACAP and BDNF without affecting dendrite length. These results indicate that in primary cultured hippocampal neurons, PACAP shows morphological actions via its cognate receptor PAC1, stimulating neurite length and number, and soma size to a comparable extent as BDNF, and that the increase in total neurite length is ascribed to axon outgrowth.

  5. Increased BDNF protein expression after ischemic or PKC epsilon preconditioning promotes electrophysiologic changes that lead to neuroprotection.

    Science.gov (United States)

    Neumann, Jake T; Thompson, John W; Raval, Ami P; Cohan, Charles H; Koronowski, Kevin B; Perez-Pinzon, Miguel A

    2015-01-01

    Ischemic preconditioning (IPC) via protein kinase C epsilon (PKCɛ) activation induces neuroprotection against lethal ischemia. Brain-derived neurotrophic factor (BDNF) is a pro-survival signaling molecule that modulates synaptic plasticity and neurogenesis. Interestingly, BDNF mRNA expression increases after IPC. In this study, we investigated whether IPC or pharmacological preconditioning (PKCɛ activation) promoted BDNF-induced neuroprotection, if neuroprotection by IPC or PKCɛ activation altered neuronal excitability, and whether these changes were BDNF-mediated. We used both in vitro (hippocampal organotypic cultures and cortical neuronal-glial cocultures) and in vivo (acute hippocampal slices 48 hours after preconditioning) models of IPC or PKCɛ activation. BDNF protein expression increased 24 to 48 hours after preconditioning, where inhibition of the BDNF Trk receptors abolished neuroprotection against oxygen and glucose deprivation (OGD) in vitro. In addition, there was a significant decrease in neuronal firing frequency and increase in threshold potential 48 hours after preconditioning in vivo, where this threshold modulation was dependent on BDNF activation of Trk receptors in excitatory cortical neurons. In addition, 48 hours after PKCɛ activation in vivo, the onset of anoxic depolarization during OGD was significantly delayed in hippocampal slices. Overall, these results suggest that after IPC or PKCɛ activation, there are BDNF-dependent electrophysiologic modifications that lead to neuroprotection.

  6. Activity-Dependent Release of Endogenous BDNF From Mossy Fibers Evokes a TRPC3 Current and Ca2+ Elevations in CA3 Pyramidal Neurons

    OpenAIRE

    Yong LI; Calfa, Gaston; Inoue, Takafumi; Amaral, Michelle D.; Pozzo-Miller, Lucas

    2010-01-01

    Multiple studies have demonstrated that brain-derived neurotrophic factor (BDNF) is a potent modulator of neuronal structure and function in the hippocampus. However, the majority of studies to date have relied on the application of recombinant BDNF. We herein report that endogenous BDNF, released via theta burst stimulation of mossy fibers (MF), elicits a slowly developing cationic current and intracellular Ca2+ elevations in CA3 pyramidal neurons with the same pharmacological profile of the...

  7. BDNF regulates the expression and distribution of vesicular glutamate transporters in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Carlos V Melo

    Full Text Available BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery. We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT 1 and 2 expression, which would partly account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels, in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or α-amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7, indicating that the neurotrophin also affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCγ signaling with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during

  8. Stress and trauma: BDNF control of dendritic-spine formation and regression.

    Science.gov (United States)

    Bennett, M R; Lagopoulos, J

    2014-01-01

    Chronic restraint stress leads to increases in brain derived neurotrophic factor (BDNF) mRNA and protein in some regions of the brain, e.g. the basal lateral amygdala (BLA) but decreases in other regions such as the CA3 region of the hippocampus and dendritic spine density increases or decreases in line with these changes in BDNF. Given the powerful influence that BDNF has on dendritic spine growth, these observations suggest that the fundamental reason for the direction and extent of changes in dendritic spine density in a particular region of the brain under stress is due to the changes in BDNF there. The most likely cause of these changes is provided by the stress initiated release of steroids, which readily enter neurons and alter gene expression, for example that of BDNF. Of particular interest is how glucocorticoids and mineralocorticoids tend to have opposite effects on BDNF gene expression offering the possibility that differences in the distribution of their receptors and of their downstream effects might provide a basis for the differential transcription of the BDNF genes. Alternatively, differences in the extent of methylation and acetylation in the epigenetic control of BDNF transcription are possible in different parts of the brain following stress. Although present evidence points to changes in BDNF transcription being the major causal agent for the changes in spine density in different parts of the brain following stress, steroids have significant effects on downstream pathways from the TrkB receptor once it is acted upon by BDNF, including those that modulate the density of dendritic spines. Finally, although glucocorticoids play a canonical role in determining BDNF modulation of dendritic spines, recent studies have shown a role for corticotrophin releasing factor (CRF) in this regard. There is considerable improvement in the extent of changes in spine size and density in rodents with forebrain specific knockout of CRF receptor 1 (CRFR1) even when

  9. BDNF deficiency and young-adult methamphetamine induce sex-specific effects on prepulse inhibition regulation

    Directory of Open Access Journals (Sweden)

    Elizabeth E Manning

    2013-06-01

    Full Text Available Brain-derived neurotrophic factor (BDNF has been implicated in the pathophysiology of schizophrenia, yet its role in the development of specific symptoms is unclear. Methamphetamine (METH users have an increased risk of psychosis and schizophrenia, and METH-treated animals have been used extensively as a model to study the positive symptoms of schizophrenia. We investigated whether METH treatment in BDNF heterozygous mutant mice (HET has cumulative effects on sensorimotor gating, including the disruptive effects of psychotropic drugs. BDNF HETs and WT littermates were treated during young-adulthood with METH and, following a two-week break, prepulse inhibition (PPI was examined. At baseline, BDNF HETs showed reduced PPI compared to WT mice irrespective of METH pre-treatment. An acute challenge with amphetamine (AMPH disrupted PPI but male BDNF HETs were more sensitive to this effect, irrespective of METH pre-treatment. In contrast, female mice treated with METH were less sensitive to the disruptive effects of AMPH, and there were no effects of BDNF genotype. Similar changes were not observed in the response to an acute apomorphine or MK-801 challenge. These results show that genetically-induced reduction of BDNF caused changes in a behavioural endophenotype relevant to the positive symptoms of schizophrenia. However, major sex differences were observed in the effects of a psychotropic drug challenge on this behaviour. These findings suggest sex differences in the effects of BDNF depletion and METH treatment on the monoamine signaling pathways that regulate PPI. Given that these same pathways are thought to contribute to the expression of positive symptoms in schizophrenia, this work suggests that there may be significant sex differences in the pathophysiology underlying these symptoms. Elucidating these sex differences may be important for our understanding of the neurobiology of schizophrenia and developing better treatments strategies for the

  10. Fear extinction and BDNF: translating animal models of PTSD to the clinic.

    Science.gov (United States)

    Andero, R; Ressler, K J

    2012-07-01

    Brain-derived neurotrophic factor (BDNF) is the most studied neurotrophin involved in synaptic plasticity processes that are required for long-term learning and memory. Specifically, BDNF gene expression and activation of its high-affinity tropomyosin-related kinase B (TrkB) receptor are necessary in the amygdala, hippocampus and prefrontal cortex for the formation of emotional memories, including fear memories. Among the psychiatric disorders with altered fear processing, there is post-traumatic stress disorder (PTSD) which is characterized by an inability to extinguish fear memories. Since BDNF appears to enhance extinction of fear, targeting impaired extinction in anxiety disorders such as PTSD via BDNF signalling may be an important and novel way to enhance treatment efficacy. The aim of this review is to provide a translational point of view that stems from findings in the BDNF regulation of synaptic plasticity and fear extinction. In addition, there are different systems that seem to alter fear extinction through BDNF modulation like the endocannabinoid system and the hypothalamic-pituitary adrenal axis. Recent work also finds that the pituitary adenylate cyclase-activating polypeptide and PAC1 receptor, which are upstream of BDNF activation, may be implicated in PTSD. Especially interesting are data that exogenous fear extinction enhancers such as antidepressants, histone deacetylases inhibitors and D-cycloserine, a partial N-methyl d-aspartate agonist, may act through or in concert with the BDNF-TrkB system. Finally, we review studies where recombinant BDNF and a putative TrkB agonist, 7,8-dihydroxyflavone, may enhance extinction of fear. These approaches may lead to novel agents that improve extinction in animal models and eventually humans.

  11. Hippocampal deletion of BDNF gene attenuates gamma oscillations in area CA1 by up-regulating 5-HT3 receptor.

    Directory of Open Access Journals (Sweden)

    Ying Huang

    Full Text Available BACKGROUND: Pyramidal neurons in the hippocampal area CA3 express high levels of BDNF, but how this BDNF contributes to oscillatory properties of hippocampus is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we examined carbachol-induced gamma oscillations in hippocampal slices lacking BDNF gene in the area CA3. The power of oscillations was reduced in the hippocampal area CA1, which coincided with increases in the expression and activity of 5-HT3 receptor. Pharmacological block of this receptor partially restored power of gamma oscillations in slices from KO mice, but had no effect in slices from WT mice. CONCLUSION/SIGNIFICANCE: These data suggest that BDNF facilitates gamma oscillations in the hippocampus by attenuating signaling through 5-HT3 receptor. Thus, BDNF modulates hippocampal oscillations through serotonergic system.

  12. Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (Oryza sativa L.) genotypes.

    Science.gov (United States)

    Dave, Richa; Tripathi, Rudra Deo; Dwivedi, Sanjay; Tripathi, Preeti; Dixit, Garima; Sharma, Yogesh Kumar; Trivedi, Prabodh Kumar; Corpas, Francisco J; Barroso, Juan B; Chakrabarty, Debasis

    2013-11-15

    Carcinogenic arsenic (As) concentrations are found in rice due to irrigation with contaminated groundwater in South-East Asia. The present study evaluates comparative antioxidant property and specific amino acid accumulation in contrasting rice genotypes corresponding to differential As accumulation during arsenate (As(V)) and arsenite (As(III)) exposures. The study was conducted on two contrasting As accumulating rice genotypes selected from 303 genotype accessions, in hydroponic conditions. Maximum As accumulation was up to 1181 μg g(-1) dw in the roots of high As accumulating genotype (HARG), and 89 μg g(-1) dw in low As accumulating genotype (LARG) under As(III) exposures. The inorganic As was correlated more significantly upon exposures to As(III) than As(V). In the presence of As(V) various antioxidant enzymes guiacol peroxidase (GPX), ascorbate peroxidase (APX) and superoxide dismutase (SOD) were highly stimulated in HARG. The stress responsive amino acids proline, cysteine, glycine, glutamic acid and methionine showed higher accumulation in HARG than LARG. A clear correlation was found between stress responsive amino acids, As accumulation and antioxidative response. The comparisons between the contrasting genotypes helped to determine the significance of antioxidants and specific amino acid response to As stress.

  13. BDNF in sleep, insomnia, and sleep deprivation.

    Science.gov (United States)

    Schmitt, Karen; Holsboer-Trachsler, Edith; Eckert, Anne

    2016-01-01

    The protein brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors involved in plasticity of neurons in several brain regions. There are numerous evidence that BDNF expression is decreased by experiencing psychological stress and that, accordingly, a lack of neurotrophic support causes major depression. Furthermore, disruption in sleep homeostatic processes results in higher stress vulnerability and is often associated with stress-related mental disorders. Recently, we reported, for the first time, a relationship between BDNF and insomnia and sleep deprivation (SD). Using a biphasic stress model as explanation approach, we discuss here the hypothesis that chronic stress might induce a deregulation of the hypothalamic-pituitary-adrenal system. In the long-term it leads to sleep disturbance and depression as well as decreased BDNF levels, whereas acute stress like SD can be used as therapeutic intervention in some insomniac or depressed patients as compensatory process to normalize BDNF levels. Indeed, partial SD (PSD) induced a fast increase in BDNF serum levels within hours after PSD which is similar to effects seen after ketamine infusion, another fast-acting antidepressant intervention, while traditional antidepressants are characterized by a major delay until treatment response as well as delayed BDNF level increase. Key messages Brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology of stress-related mood disorders. The interplay of stress and sleep impacts on BDNF level. Partial sleep deprivation (PSD) shows a fast action on BDNF level increase.

  14. Gender differences in the enhanced vulnerability of BDNF+/- mice to mild stress.

    Science.gov (United States)

    Advani, Tushar; Koek, Wouter; Hensler, Julie G

    2009-06-01

    Two mild stress paradigms were used in the present study: acute (i.e. three injections of saline over 24 h) and subchronic (i.e. single daily injection of saline for 7 d). These mild stress procedures did not alter the behaviour of wild-type mice in the forced swim test. However, male BDNF+/- mice exhibited increased immobility in the forced swim test after mild stress. This genotypic difference in stress responsivity was also evident in plasma corticosterone levels after a single injection of saline. The behaviour of female mice of either genotype was not altered by mild stress, and there was no genotypic difference in the corticosterone response of female mice to a single saline injection. Male BDNF+/- mice should be a useful model in which to examine behavioural and neurochemical consequences of interactions among genetic and environmental factors implicated in stress-related affective disorders, such as major depression.

  15. BDNF Val66Met polymorphism and goal-directed behavior in healthy elderly - evidence from auditory distraction.

    Science.gov (United States)

    Getzmann, Stephan; Gajewski, Patrick D; Hengstler, Jan G; Falkenstein, Michael; Beste, Christian

    2013-01-01

    Aging affects the ability to focus attention on a given task and to ignore distractors. These functions subserve response control processes for which fronto-striatal networks have been shown to play an important role. Within these networks, the brain-derived-neurotrophic-factor (BDNF), which is known to underlie aging effects, plays a pivotal role. We investigated how cognitive subprocesses constituting a cycle of distraction, orientation and refocusing of attention are affected by the functional BDNF Val66Met polymorphism using event-related potentials (ERPs) in 122 healthy elderly. Using an auditory distraction paradigm we found that the Val/Val genotype confers a disadvantage to its carriers. This disadvantage was partly compensated by intensified attentional shifting mechanisms. It could be based on response selection processes being more vulnerable against interference from distractors in this genotype group. Processes reflecting transient sensory memory processes, or the re-orientation of attention were not affected by the BDNF Val66Met polymorphism, suggesting a higher importance of BDNF for mechanisms related to response control, than stimulus processing. The results add on recent literature showing that the Met allele confers some benefit to its carriers. We suggest an account for unifying different results of BDNF Val66Met association studies in executive functions, based on the role of BDNF in fronto-striatal circuits.

  16. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism influences the association of the methylome with maternal anxiety and neonatal brain volumes.

    Science.gov (United States)

    Chen, Li; Pan, Hong; Tuan, Ta Anh; Teh, Ai Ling; MacIsaac, Julia L; Mah, Sarah M; McEwen, Lisa M; Li, Yue; Chen, Helen; Broekman, Birit F P; Buschdorf, Jan Paul; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang Mei; Gluckman, Peter D; Fortier, Marielle V; Rifkin-Graboi, Anne; Kobor, Michael S; Qiu, Anqi; Meaney, Michael J; Holbrook, Joanna D

    2015-02-01

    Early life environments interact with genotype to determine stable phenotypic outcomes. Here we examined the influence of a variant in the brain-derived neurotropic factor (BDNF) gene (Val66Met), which underlies synaptic plasticity throughout the central nervous system, on the degree to which antenatal maternal anxiety associated with neonatal DNA methylation. We also examined the association between neonatal DNA methylation and brain substructure volume, as a function of BDNF genotype. Infant, but not maternal, BDNF genotype dramatically influences the association of antenatal anxiety on the epigenome at birth as well as that between the epigenome and neonatal brain structure. There was a greater impact of antenatal maternal anxiety on the DNA methylation of infants with the methionine (Met)/Met compared to both Met/valine (Val) and Val/Val genotypes. There were significantly more cytosine-phosphate-guanine sites where methylation levels covaried with right amygdala volume among Met/Met compared with both Met/Val and Val/Val carriers. In contrast, more cytosine-phosphate-guanine sites covaried with left hippocampus volume in Val/Val infants compared with infants of the Met/Val or Met/Met genotype. Thus, antenatal Maternal Anxiety × BDNF Val66Met Polymorphism interactions at the level of the epigenome are reflected differently in the structure of the amygdala and the hippocampus. These findings suggest that BDNF genotype regulates the sensitivity of the methylome to early environment and that differential susceptibility to specific environmental conditions may be both tissue and function specific.

  17. A selective histone deacetylase-6 inhibitor improves BDNF trafficking in hippocampal neurons from Mecp2 knockout mice:implications for Rett syndrome

    Directory of Open Access Journals (Sweden)

    Xin eXu

    2014-03-01

    Full Text Available Rett syndrome (RTT is a neurodevelopmental disorder caused by loss-of-function mutations in the transcriptional modulator methyl-CpG-binding protein 2 (MECP2. One of the most prominent gene targets of MeCP2 is brain-derived neurotrophic factor (Bdnf, a potent modulator of activity-dependent synaptic development, function and plasticity. Dysfunctional BDNF signaling has been demonstrated in several pathophysiological mechanisms of RTT disease progression. To evaluate whether the dynamics of BDNF trafficking is affected by Mecp2 deletion, we analyzed movements of BDNF tagged with yellow fluorescent protein (YFP in cultured hippocampal neurons by time-lapse fluorescence imaging. We found that both anterograde and retrograde vesicular trafficking of BDNF-YFP are significantly impaired in Mecp2 knockout hippocampal neurons. Selective inhibitors of histone deacetylase 6 (HDAC6 show neuroprotective effects in neurodegenerative diseases and stimulate microtubule-dependent vesicular trafficking of BDNF-containing dense core vesicles. Here, we show that the selective HDAC6 inhibitor Tubastatin-A increased the velocity of BDNF-YFP vesicles in Mecp2 knockout neurons in both directions by increasing αtubulin acetylation. Tubastatin-A also restored activity-dependent BDNF release from Mecp2 knockout neurons to levels comparable to those shown by wildtype neurons. These findings demonstrate that a selective HDAC6 inhibitor is a potential pharmacological strategy to reverse cellular and synaptic impairments in RTT resulting from impaired BDNF signaling.

  18. Activity-dependent release of endogenous BDNF from mossy fibers evokes a TRPC3 current and Ca2+ elevations in CA3 pyramidal neurons.

    Science.gov (United States)

    Li, Yong; Calfa, Gaston; Inoue, Takafumi; Amaral, Michelle D; Pozzo-Miller, Lucas

    2010-05-01

    Multiple studies have demonstrated that brain-derived neurotrophic factor (BDNF) is a potent modulator of neuronal structure and function in the hippocampus. However, the majority of studies to date have relied on the application of recombinant BDNF. We herein report that endogenous BDNF, released via theta burst stimulation of mossy fibers (MF), elicits a slowly developing cationic current and intracellular Ca(2+) elevations in CA3 pyramidal neurons with the same pharmacological profile of the transient receptor potential canonical 3 (TRPC3)-mediated I(BDNF) activated in CA1 neurons by brief localized applications of recombinant BDNF. Indeed, sensitivity to both the extracellular BDNF scavenger tropomyosin-related kinase B (TrkB)-IgG and small hairpin interference RNA-mediated TRPC3 channel knockdown confirms the identity of this conductance as such, henceforth-denoted MF-I(BDNF). Consistent with such activity-dependent release of BDNF, these MF-I(BDNF) responses were insensitive to manipulations of extracellular Zn(2+) concentration. Brief theta burst stimulation of MFs induced a long-lasting depression in the amplitude of excitatory postsynaptic currents (EPSCs) mediated by both AMPA and N-methyl-d-aspartate (NMDA) receptors without changes in the NMDA receptor/AMPA receptor ratio, suggesting a reduction in neurotransmitter release. This depression of NMDAR-mediated EPSCs required activity-dependent release of endogenous BDNF from MFs and activation of Trk receptors, as it was sensitive to the extracellular BDNF scavenger TrkB-IgG and the tyrosine kinase inhibitor k-252b. These results uncovered the most immediate response to endogenously released--native--BDNF in hippocampal neurons and lend further credence to the relevance of BDNF signaling for synaptic function in the hippocampus.

  19. Association Between Smoking, Nicotine Dependence, and BDNF Val(66)Met Polymorphism with BDNF Concentrations in Serum

    NARCIS (Netherlands)

    Jamal, Mumtaz; Van der Does, Willem; Elzinga, Bernet M.; Molendijk, Marc L.; Penninx, Brenda W. J. H.

    2015-01-01

    Introduction: Nicotine use is associated with the upregulation of brain-derived neurotrophic factor (BDNF) in serum. An association between smoking and the BDNF Val(66)Met polymorphism has also been found. The aim of this study is to examine the levels of serum BDNF in never-smokers, former smokers,

  20. Increased serum levels of sortilin are associated with depression and correlated with BDNF and VEGF

    DEFF Research Database (Denmark)

    Buttenschøn, Henriette Nørmølle; Demontis, Ditte; Ollendorff, Mathias Kaas;

    2015-01-01

    measured by immunoassay, and potential determinants of the serum sortilin level were assessed by generalized linear models. Serum levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) were measured in previous studies. We identified a significant increase of serum...... sortilin levels in depressed individuals compared with controls (P = 0.0002) and significant positive correlation between serum sortilin levels and the corresponding levels of BDNF and VEGF. None of the genotyped SNPs were associated with depression. Additional analyses showed that the serum sortilin level...... was influenced by several other factors. Alcohol intake and body mass index, as well as depression, serum BDNF and serum VEGF were identified as predictors of serum sortilin levels in our final multivariate model. In conclusion, the results suggest a role of circulating sortilin in depression which may relate...

  1. Functional and structural specific roles of activity-driven BDNF within circuits formed by single spiny stellate neurons of the barrel cortex

    Directory of Open Access Journals (Sweden)

    Qian-Quan eSun

    2014-11-01

    Full Text Available Brain derived neurotrophic factor (BDNF plays key roles in several neurodevelopmental disorders and actions of pharmacological treatments. However it is uncealr how specific BDNF’s effects are on diffeerent circuit components. Current studies have largely focused on the role of BDNF in modification of synaptic development. The precise roles of BDNF in the refinement of a functional circuit in vivo remain unclear. Val66Met polymorphism of BDNF may be associated with increased risk for cognitive impairments and is mediated at least in part by activity-dependent trafficking and/or secretion of BDNF. Using mutant mice that lacked activity-driven BDNF expression (bdnf-KIV, we previously reported that experience regulation of the cortical GABAergic network is mediated by activity-driven BDNF expression. Here, we demonstrate that activity-driven BDNF’s effects on circuits formed by the layer IV spiny stellate cells are highly specific. Structurally, dendritic but not axonal morphology was altered in the mutant. Physiologically, GABAergic but not glutamatergic synapses were severely affected. The effects on GABA transmission occurs via presynaptic alteration of calcium-dependent release probability. These results suggest that neuronal activity through activity-driven BDNF expression, can selectively regulate specific features of layer IV circuits in vivo. We postulate that the role of activity-dependent BDNF is to modulate the computational ability of circuits that relate to the gain control (i.e. feed-forward inhibition; whereas the basic wiring of circuits relevant to the sensory pathway is spared. Gain control modulation within cortical circuits has broad impact on cognitive processing and brain state-transitions. Cognitive behavior and mode is determined by brain states, thus the studying of circuit alteration by endogenous BDNF provides insights into the cellular and molecular mechanisms of diseases mediated by BDNF.

  2. THE GENE EXPRESSION OF BDNF IN NORMAL RABBIT RETINA

    Institute of Scientific and Technical Information of China (English)

    王建明; 胡海涛; 马东亮; 孙乃学; 赵世平; 冯海晓

    2004-01-01

    Objective To investigate the distribution of brain-derived neurotrophic factor(BDNF) protein in the rabbit retina. Methods Immune response material in the retina was observed using BDNF antibody by the method of immunohistochemistry. Results BDNF gene expression was mainly found in the RGCs, also in innernuclei cells and outernuclei cells in rabbit retina. Conclusion RGC is not only the target cell of BDNF, but also express the BDNF protein. BDNF from multi-sources participates in the regulation of RGCs.

  3. Changes in spatial memory and BDNF expression to concurrent dietary restriction and voluntary exercise.

    Science.gov (United States)

    Khabour, Omar F; Alzoubi, Karem H; Alomari, Mahmoud A; Alzubi, Mohammad A

    2010-05-01

    Substantial data suggest that cognitive function can be influenced by many lifestyle activities associated with changes in energy metabolism such as exercise and diet. In the current study, we investigated the combined effects of voluntary exercise (access to running wheels) and dietary restriction (every other day fasting, EODF) on spatial memory formation and on the levels of brain-derived neurotrophic factor (BDNF) in the hippocampus of Wistar male rats. Spatial learning and memory formation was assessed using the radial arm water maze (RAWM) paradigm, while BDNF protein was measured using ELISA test. Voluntary exercise and/or EODF were instituted for 6 weeks. Voluntary exercise alone significantly enhanced short-term, intermediate-term, and long-term memory formation, and increased BDNF protein levels in the hippocampus. EODF enhanced mean running wheel activity by approximately twofold. However, EODF did not modulate the effects of exercise on memory formation and expression of BDNF. In addition, EODF alone had no effect on memory and BDNF protein in the hippocampus. In conclusion, results of this study indicate that exercise enhanced while EODF had neutral effect on both spatial memory formation and hippocampus BDNF levels.

  4. ProBDNF inhibits collective migration and chemotaxis of rat Schwann cells.

    Science.gov (United States)

    Ding, You-Quan; Li, Xuan-Yang; Xia, Guan-Nan; Ren, Hong-Yi; Zhou, Xin-Fu; Su, Bing-Yin; Qi, Jian-Guo

    2016-10-01

    Schwann cell migration, including collective migration and chemotaxis, is essential for the formation of coordinate interactions between Schwann cells and axons during peripheral nerve development and regeneration. Moreover, limited migration of Schwann cells imposed a serious obstacle on Schwann cell-astrocytes intermingling and spinal cord repair after Schwann cell transplantation into injured spinal cords. Recent studies have shown that mature brain-derived neurotrophic factor, a member of the neurotrophin family, inhibits Schwann cell migration. The precursor form of brain-derived neurotrophic factor, proBDNF, was expressed in the developing or degenerating peripheral nerves and the injured spinal cords. Since "the yin and yang of neurotrophin action" has been established as a common sense, proBDNF would be expected to promote Schwann cell migration. However, we found, in the present study, that exogenous proBDNF also inhibited in vitro collective migration and chemotaxis of RSC 96 cells, a spontaneously immortalized rat Schwann cell line. Moreover, proBDNF suppressed adhesion and spreading of those cells. At molecular level, proBDNF inhibits F-actin polymerization and focal adhesion dynamics in cultured RSC 96 cells. Therefore, our results suggested a special case against the classical opinion of "the yin and yang of neurotrophin action" and implied that proBDNF might modulate peripheral nerve development or regeneration and spinal cord repair through perturbing native or transplanted Schwann cell migration.

  5. The glutathione-S-transferase Mu 1 null genotype modulates ozone-induced airway inflammation in humans*

    Science.gov (United States)

    Background: The Glutathione-S-Transferase Mu 1 null genotype has been reported to be a risk factor for acute respiratory disease associated with increases in ambient air ozone. Ozone is known to cause an immediate decrease in lung function and increased airway inflammation. Howev...

  6. Polyamines as biomarkers for plant regeneration capacity: improvement of regeneration by modulation of polyamine metabolism in different genotypes of indica rice.

    Science.gov (United States)

    Shoeb, F; Yadav, J S.; Bajaj, S; Rajam, M V.

    2001-05-01

    The importance of cellular polyamine (PA) levels and the ratio of putrescine (Put) to spermidine (Spd) for plant regeneration ability via somatic embryogenesis in several commercially grown indica rice varieties is reported here. The genotypes namely NDR-624, IR-20, IR-36, BJ-1 (having Put:Spd ratio approximately 2.3) showed superior plant regeneration while KL, PB-1 and TN-1 (having Put:Spd ratio approximately 3.8) showed moderate plant regeneration ability. The genotypes namely HS, Bindli, DV-85, ACB-72, IR-64 and IR-72 (having Put:Spd ratio approximately 5.0) showed poor plant regeneration ability. In contrast KH-7 (Put:Spd ratio approximately 10.0) showed no response at all. Favorable modification of cellular PA titers and their Put:Spd ratio by the addition of exogenous PAs (Put, Spd) or their biosynthesis inhibitor, difluoromethylarginine (DFMA) led to the induction/promotion of plant regeneration in poorly responding genotypes. These results showed a close relationship between cellular PA levels and their Put:Spd ratio with in vitro morphogenetic capacity in indica rice and suggest that the cellular PAs and Put:Spd ratios are important determinants (biomarkers) of plant regeneration ability in indica rice, and the improvement/induction of plant regeneration in morphogenetically poor and recalcitrant species could be achieved by modulating PA metabolism.

  7. Regional differences in the expression of brain-derived neurotrophic factor (BDNF) pro-peptide, proBDNF and preproBDNF in the brain confer stress resilience.

    Science.gov (United States)

    Yang, Bangkun; Yang, Chun; Ren, Qian; Zhang, Ji-Chun; Chen, Qian-Xue; Shirayama, Yukihiko; Hashimoto, Kenji

    2016-12-01

    Using learned helplessness (LH) model of depression, we measured protein expression of brain-derived neurotrophic factor (BDNF) pro-peptide, BDNF precursors (proBDNF and preproBDNF) in the brain regions of LH (susceptible) and non-LH rats (resilience). Expression of preproBDNF, proBDNF and BDNF pro-peptide in the medial prefrontal cortex of LH rats, but not non-LH rats, was significantly higher than control rats, although expression of these proteins in the nucleus accumbens of LH rats was significantly lower than control rats. This study suggests that regional differences in conversion of BDNF precursors into BDNF and BDNF pro-peptide by proteolytic cleavage may contribute to stress resilience.

  8. BDNF Val66Met Polymorphism Is Associated with Self-Reported Empathy.

    Directory of Open Access Journals (Sweden)

    Vincent Taschereau-Dumouchel

    Full Text Available Empathy is an important driver of human social behaviors and presents genetic roots that have been studied in neuroimaging using the intermediate phenotype approach. Notably, the Val66Met polymorphism of the Brain-derived neurotrophic factor (BDNF gene has been identified as a potential target in neuroimaging studies based on its influence on emotion perception and social cognition, but its impact on self-reported empathy has never been documented. Using a neurogenetic approach, we investigated the association between the BDNF Val66Met polymorphism and self-reported empathy (Davis' Interpersonal Reactivity Index; IRI in a sample of 110 young adults. Our results indicate that the BDNF genotype is significantly associated with the linear combination of the four facets of the IRI, one of the most widely used self-reported empathy questionnaire. Crucially, the effect of BDNF Val66Met goes beyond the variance explained by two polymorphisms of the oxytocin transporter gene previously associated with empathy and its neural underpinnings (OXTR rs53576 and rs2254298. These results represent the first evidence suggesting a link between the BDNF gene and self-reported empathy and warrant further studies of this polymorphism due to its potential clinical significance.

  9. BDNF Val66Met Polymorphism Is Associated with Self-Reported Empathy.

    Science.gov (United States)

    Taschereau-Dumouchel, Vincent; Hétu, Sébastien; Bagramian, Anaït; Labrecque, Alexandre; Racine, Marion; Chagnon, Yvon C; Jackson, Philip L

    2016-01-01

    Empathy is an important driver of human social behaviors and presents genetic roots that have been studied in neuroimaging using the intermediate phenotype approach. Notably, the Val66Met polymorphism of the Brain-derived neurotrophic factor (BDNF) gene has been identified as a potential target in neuroimaging studies based on its influence on emotion perception and social cognition, but its impact on self-reported empathy has never been documented. Using a neurogenetic approach, we investigated the association between the BDNF Val66Met polymorphism and self-reported empathy (Davis' Interpersonal Reactivity Index; IRI) in a sample of 110 young adults. Our results indicate that the BDNF genotype is significantly associated with the linear combination of the four facets of the IRI, one of the most widely used self-reported empathy questionnaire. Crucially, the effect of BDNF Val66Met goes beyond the variance explained by two polymorphisms of the oxytocin transporter gene previously associated with empathy and its neural underpinnings (OXTR rs53576 and rs2254298). These results represent the first evidence suggesting a link between the BDNF gene and self-reported empathy and warrant further studies of this polymorphism due to its potential clinical significance.

  10. Milk fatty acid profile is modulated by DGAT1 and SCD1 genotypes in dairy cattle on pasture and strategic supplementation.

    Science.gov (United States)

    Carvajal, A M; Huircan, P; Dezamour, J M; Subiabre, I; Kerr, B; Morales, R; Ungerfeld, E M

    2016-01-01

    Milk fat composition is important to consumer health. During the last decade, some fatty acids (FA) have received attention because of their functional and beneficial effects on human health. The milk FA profile is affected by both diet and genetics. Differences in milk fat composition are based on biochemical pathways, and candidate genes have been proposed to explain FA profile variation. Here, the association between DGAT1 K232A, SCD1 A293V, and LEPR T945M markers with milk fat composition in southern Chile was evaluated. We selected five herds of Holstein-Friesian, Jersey, Frisón Negro, Montbeliarde, and Overo Colorado cows (pasture-grazed) that received strategic supplementation with concentrates and conserved forages. We genotyped the SNPs and calculated allele frequencies and Hardy-Weinberg equilibrium. Milk fat composition was determined for individual milk samples over a year, and associations between genotypes and milk composition were studied. The most frequent variants for DGAT1, SCD1, and LEPR polymorphisms were GC/GC, C, and C, respectively. The DGAT1 GC/GC allele was associated with lower milk fat and protein content, lower saturated fatty acid levels, and higher polyunsaturated FA (PUFA), n-3 and n-6 FA, and a linolenic acid to cholesterolemic FA ratios, which implied a healthier FA profile. The SCD1 CC genotype was associated with a low cholesterolemic FA content, a high ratio of linolenic acid to cholesterolemic FA, and lower conjugated-linolenic acid and PUFA content. These results suggest the possible modulation of milk fat profiles, using specific genotypes, to improve the nutritional quality of dairy products.

  11. The Val66Met polymorphism of the BDNF gene in anorexia nervosa : New data and a meta-analysis

    NARCIS (Netherlands)

    Brandys, Marek K.; Kas, Martien J. H.; van Elburg, Annemarie A.; Ophoff, Roel; Slof-Op't Landt, Margarita C. T.; Middeldorp, Christel M.; Boomsma, Dorret I.; van Furth, Eric F.; Slagboom, P. Eline; Adan, Roger A. H.

    2013-01-01

    Objectives. The Val66Met polymorphism (rs6265) of the BDNF gene is a non-synonymous polymorphism, previously associated with anorexia nervosa (AN). Methods. We genotyped rs6265 in 235 patients with AN and 643 controls. Furthermore, we performed a systematic review of all case-control and family-base

  12. BDNF signaling and survival of striatal neurons

    Directory of Open Access Journals (Sweden)

    Maryna eBaydyuk

    2014-08-01

    Full Text Available The striatum, a major component of the basal ganglia, performs multiple functions including control of movement, reward, and addiction. Dysfunction and death of striatal neurons are the main causes for the motor disorders associated with Huntington’s disease (HD. Brain-derived neurotrophic factor (BDNF, a member of the neurotrophin family, is among factors that promote survival and proper function of this neuronal population. Here, we review recent studies showing that BDNF determines the size of the striatum by supporting survival of the immature striatal neurons at their origin, promotes maturation of striatal neurons, and facilitates establishment of striatal connections during brain development. We also examine the role of BDNF in maintaining proper function of the striatum during adulthood, summarize the mechanisms that lead to a deficiency in BDNF signaling and subsequently striatal degeneration in HD, and highlight a potential role of BDNF as a therapeutic target for HD treatment.

  13. Differential Expression and Regulation of Brain-Derived Neurotrophic Factor (BDNF) mRNA Isoforms in Brain Cells from Mecp2(308/y) Mouse Model.

    Science.gov (United States)

    Rousseaud, Audrey; Delépine, Chloé; Nectoux, Juliette; Billuart, Pierre; Bienvenu, Thierry

    2015-08-01

    Rett syndrome (RTT) is a severe neurodevelopmental disease caused by mutations in methyl-CpG-binding protein 2 (MECP2), which encodes a transcriptional modulator of many genes including BDNF. BDNF comprises nine distinct promoter regions, each triggering the expression of a specific transcript. The role of this diversity of transcripts remains unknown. MeCP2 being highly expressed in neurons, RTT was initially considered as a neuronal disease. However, recent studies have shown that MeCP2 was also expressed in astrocytes. Though several studies explored Bdnf IV expression in Mecp2-deficient mice, the differential expression of Bdnf isoforms in Mecp2-deficient neurons and astrocytes was never studied. By using TaqMan technology and a mouse model expressing a truncated Mecp2 (Mecp2(308/y)), we firstly showed in neurons that Bdnf transcripts containing exon I, IIb, IIc, IV, and VI are prominently expressed, whereas in astrocytes, Bdnf transcript containing exon VI is preferentially expressed, suggesting a specific regulation of Bdnf expression at the cellular level. Secondly, we confirmed the repressive role of Mecp2 only on the expression of Bdnf VI in neurons. Our data suggested that the truncated Mecp2 protein maintains its function on Bdnf expression regulation in neurons and in astrocytes. Interestingly, we observed that Bdnf transcripts (I and IXA), regulated by neural activity induced by bicuculline in Mecp2(308/y) neurons, were not affected by histone deacetylase inhibition. In contrast, Bdnf transcripts (IIb, IIc, and VI), regulated by histone deacetylation, were not affected by bicuculline treatment in wild-type and Mecp2(308/y) neurons. All these results reflect the complexity of regulation of Bdnf gene.

  14. The Gut-Brain Axis, BDNF, NMDA and CNS Disorders.

    Science.gov (United States)

    Maqsood, Raeesah; Stone, Trevor W

    2016-11-01

    Gastro-intestinal (GI) microbiota and the 'gut-brain axis' are proving to be increasingly relevant to early brain development and the emergence of psychiatric disorders. This review focuses on the influence of the GI tract on Brain-Derived Neurotrophic Factor (BDNF) and its relationship with receptors for N-methyl-D-aspartate (NMDAR), as these are believed to be involved in synaptic plasticity and cognitive function. NMDAR may be associated with the development of schizophrenia and a range of other psychopathologies including neurodegenerative disorders, depression and dementias. An analysis of the routes and mechanisms by which the GI microbiota contribute to the pathophysiology of BDNF-induced NMDAR dysfunction could yield new insights relevant to developing novel therapeutics for schizophrenia and related disorders. In the absence of GI microbes, central BDNF levels are reduced and this inhibits the maintenance of NMDAR production. A reduction of NMDAR input onto GABA inhibitory interneurons causes disinhibition of glutamatergic output which disrupts the central signal-to-noise ratio and leads to aberrant synaptic behaviour and cognitive deficits. Gut microbiota can modulate BDNF function in the CNS, via changes in neurotransmitter function by affecting modulatory mechanisms such as the kynurenine pathway, or by changes in the availability and actions of short chain fatty acids (SCFAs) in the brain. Interrupting these cycles by inducing changes in the gut microbiota using probiotics, prebiotics or antimicrobial drugs has been found promising as a preventative or therapeutic measure to counteract behavioural deficits and these may be useful to supplement the actions of drugs in the treatment of CNS disorders.

  15. Chronic caffeine prevents changes in inhibitory avoidance memory and hippocampal BDNF immunocontent in middle-aged rats.

    Science.gov (United States)

    Sallaberry, Cássia; Nunes, Fernanda; Costa, Marcelo S; Fioreze, Gabriela T; Ardais, Ana Paula; Botton, Paulo Henrique S; Klaudat, Bruno; Forte, Thomás; Souza, Diogo O; Elisabetsky, Elaine; Porciúncula, Lisiane O

    2013-01-01

    Beneficial effects of caffeine on memory processes have been observed in animal models relevant to neurodegenerative diseases and aging, although the underlying mechanisms remain unknown. Because brain-derived neurotrophic factor (BDNF) is associated with memory formation and BDNF's actions are modulated by adenosine receptors, the molecular targets for the psychostimulant actions of caffeine, we here compare the effects of chronic caffeine (1 mg/mL drinking solution for 30 days) on short- and long term memory and on levels of hippocampal proBDNF, mature BDNF, TrkB and CREB in young (3 month old) and middle-aged (12 month old) rats. Caffeine treatment substantially reduced i) age-related impairments in the two types of memory in an inhibitory avoidance paradigm, and ii) parallel increases in hippocampal BDNF levels. In addition, chronic caffeine increased proBDNF and CREB concentrations, and decreased TrkB levels, in hippocampus regardless of age. These data provide new evidence in favor of the hypothesis that modifications in BDNF and related proteins in the hippocampus contribute to the pro-cognitive effects of caffeine on age-associated losses in memory encoding. This article is part of a Special Issue entitled 'Cognitive Enhancers'.

  16. Intracellular Ca2+ stores and Ca2+ influx are both required for BDNF to rapidly increase quantal vesicular transmitter release.

    Science.gov (United States)

    Amaral, Michelle D; Pozzo-Miller, Lucas

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is well known as a survival factor during brain development as well as a regulator of adult synaptic plasticity. One potential mechanism to initiate BDNF actions is through its modulation of quantal presynaptic transmitter release. In response to local BDNF application to CA1 pyramidal neurons, the frequency of miniature excitatory postsynaptic currents (mEPSC) increased significantly within 30 seconds; mEPSC amplitude and kinetics were unchanged. This effect was mediated via TrkB receptor activation and required both full intracellular Ca(2+) stores as well as extracellular Ca(2+). Consistent with a role of Ca(2+)-permeable plasma membrane channels of the TRPC family, the inhibitor SKF96365 prevented the BDNF-induced increase in mEPSC frequency. Furthermore, labeling presynaptic terminals with amphipathic styryl dyes and then monitoring their post-BDNF destaining in slice cultures by multiphoton excitation microscopy revealed that the increase in frequency of mEPSCs reflects vesicular fusion events. Indeed, BDNF application to CA3-CA1 synapses in TTX rapidly enhanced FM1-43 or FM2-10 destaining with a time course that paralleled the phase of increased mEPSC frequency. We conclude that BDNF increases mEPSC frequency by boosting vesicular fusion through a presynaptic, Ca(2+)-dependent mechanism involving TrkB receptors, Ca(2+) stores, and TRPC channels.

  17. Intracellular Ca2+ Stores and Ca2+ Influx Are Both Required for BDNF to Rapidly Increase Quantal Vesicular Transmitter Release

    Directory of Open Access Journals (Sweden)

    Michelle D. Amaral

    2012-01-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is well known as a survival factor during brain development as well as a regulator of adult synaptic plasticity. One potential mechanism to initiate BDNF actions is through its modulation of quantal presynaptic transmitter release. In response to local BDNF application to CA1 pyramidal neurons, the frequency of miniature excitatory postsynaptic currents (mEPSC increased significantly within 30 seconds; mEPSC amplitude and kinetics were unchanged. This effect was mediated via TrkB receptor activation and required both full intracellular Ca2+ stores as well as extracellular Ca2+. Consistent with a role of Ca2+-permeable plasma membrane channels of the TRPC family, the inhibitor SKF96365 prevented the BDNF-induced increase in mEPSC frequency. Furthermore, labeling presynaptic terminals with amphipathic styryl dyes and then monitoring their post-BDNF destaining in slice cultures by multiphoton excitation microscopy revealed that the increase in frequency of mEPSCs reflects vesicular fusion events. Indeed, BDNF application to CA3-CA1 synapses in TTX rapidly enhanced FM1-43 or FM2-10 destaining with a time course that paralleled the phase of increased mEPSC frequency. We conclude that BDNF increases mEPSC frequency by boosting vesicular fusion through a presynaptic, Ca2+-dependent mechanism involving TrkB receptors, Ca2+ stores, and TRPC channels.

  18. Extracellular and intracellular cleavages of proBDNF required at two distinct stages of late-phase LTP

    Science.gov (United States)

    Pang, Petti T.; Nagappan, Guhan; Guo, Wei; Lu, Bai

    2016-05-01

    Although late-phase long-term potentiation (L-LTP) is implicated in long-term memory, its molecular mechanisms are largely unknown. Here we provide evidence that L-LTP can be divided into two stages: an induction stage (I) and a maintenance stage (II). Both stages require mature brain-derived neurotrophic factor (mBDNF), but involve distinct underlying mechanisms. Stage I requires secretion of existing proBDNF followed by extracellular cleavage by tPA/plasmin. Stage II depends on newly synthesized BDNF. Surprisingly, mBDNF at stage II is derived from intracellular cleavage of proBDNF by furin/PC1. Moreover, stage I involves BDNF-TrkB signaling mainly through MAP kinase, whereas all three signaling pathways (phospholipase C-γ, PI3 kinase, and MAP kinase) are required for the maintenance of L-LTP at stage II. These results reveal the molecular basis for two temporally distinct stages in L-LTP, and provide insights on how BDNF modulates this long-lasting synaptic alternation at two critical time windows.

  19. BDNF Depresses Excitability of Parvalbumin-Positive Interneurons through an M-Like Current in Rat Dentate Gyrus.

    Directory of Open Access Journals (Sweden)

    Jose Luis Nieto-Gonzalez

    Full Text Available In addition to their classical roles in neuronal growth, survival and differentiation, neurotrophins are also rapid regulators of excitability, synaptic transmission and activity-dependent synaptic plasticity. We have recently shown that mature BDNF (Brain Derived Neurotrophic Factor, but not proBDNF, modulates the excitability of interneurons in dentate gyrus within minutes. Here, we used brain slice patch-clamp recordings to study the mechanisms through which BDNF modulates the firing of interneurons in rat dentate gyrus by binding to TrkB receptors. Bath application of BDNF (15 ng/ml under current-clamp decreased the firing frequency (by 80% and input resistance, blocking the delayed firing observed at near-threshold voltage ranges, with no changes in resting membrane potential or action potential waveform. Using TEA (tetraethylammonium, or XE991(a Kv7/KCNQ channel antagonist, the effect of BDNF was abolished, whereas application of retigabine (a Kv7/KCNQ channel opener mimicked the effect of BDNF, suggesting that the M-current could be implicated in the modulation of the firing. In voltage-clamp experiments, BDNF increased the M-like current amplitude with no change in holding current. This effect was again blocked by XE991 and mimicked by retigabine, the latter accompanied with a change in holding current. In agreement with the electrophysiology, parvalbumin-positive interneurons co-expressed TrkB receptors and Kv7.2/KCNQ2 channels. In conclusion, BDNF depresses the excitability of interneurons by activating an M-like current and possibly blocking Kv1 channels, thereby controlling interneuron resting membrane potential and excitability.

  20. BDNF Depresses Excitability of Parvalbumin-Positive Interneurons through an M-Like Current in Rat Dentate Gyrus.

    Science.gov (United States)

    Nieto-Gonzalez, Jose Luis; Jensen, Kimmo

    2013-01-01

    In addition to their classical roles in neuronal growth, survival and differentiation, neurotrophins are also rapid regulators of excitability, synaptic transmission and activity-dependent synaptic plasticity. We have recently shown that mature BDNF (Brain Derived Neurotrophic Factor), but not proBDNF, modulates the excitability of interneurons in dentate gyrus within minutes. Here, we used brain slice patch-clamp recordings to study the mechanisms through which BDNF modulates the firing of interneurons in rat dentate gyrus by binding to TrkB receptors. Bath application of BDNF (15 ng/ml) under current-clamp decreased the firing frequency (by 80%) and input resistance, blocking the delayed firing observed at near-threshold voltage ranges, with no changes in resting membrane potential or action potential waveform. Using TEA (tetraethylammonium), or XE991(a Kv7/KCNQ channel antagonist), the effect of BDNF was abolished, whereas application of retigabine (a Kv7/KCNQ channel opener) mimicked the effect of BDNF, suggesting that the M-current could be implicated in the modulation of the firing. In voltage-clamp experiments, BDNF increased the M-like current amplitude with no change in holding current. This effect was again blocked by XE991 and mimicked by retigabine, the latter accompanied with a change in holding current. In agreement with the electrophysiology, parvalbumin-positive interneurons co-expressed TrkB receptors and Kv7.2/KCNQ2 channels. In conclusion, BDNF depresses the excitability of interneurons by activating an M-like current and possibly blocking Kv1 channels, thereby controlling interneuron resting membrane potential and excitability.

  1. The association between dietary vitamin K intake and serum undercarboxylated osteocalcin is modulated by vitamin K epoxide reductase genotype.

    Science.gov (United States)

    Nimptsch, Katharina; Nieters, Alexandra; Hailer, Susanne; Wolfram, Günther; Linseisen, Jakob

    2009-06-01

    Vitamin K acts as a cofactor during the gamma-carboxylation of vitamin K-dependent proteins. Undercarboxylated osteocalcin (ucOC) is a suggested biomarker of vitamin K status. The +2255 polymorphism of the vitamin K epoxide reductase gene (VKORC1) was shown to be associated with the recycling rate of the active form of vitamin K. We investigated the association between dietary vitamin K intake and serum ucOC and hypothesized that this association might vary by VKORC1 genotype. ucOC and total intact osteocalcin (iOC) concentrations were quantified using specific ELISA tests in serum samples of 548 male and female participants (aged 18-81 years) of the Bavarian Food Consumption Survey II. ucOC was expressed relative to iOC (ucOC/iOC ratio). Dietary intake of vitamin K (phylloquinone and menaquinones) was estimated from three 24 h dietary recalls using previously published food composition data. The association between dietary vitamin K intake and ucOC/iOC ratio was analysed using linear and non-linear regression models. Median intakes of phylloquinone/menaquinones were 83.4/37.6 microg/d in men and 79.6/29.8 microg/d in women, respectively. As expected, vitamin K intake was significantly inversely associated with the ucOC/iOC ratio. The ucOC/iOC ratio differed significantly across variants of the +2255 polymorphism in the VKORC1 gene. Stratification by VKORC1+2255 genotype revealed that only in carriers of the GG genotype (39 % of all participants) did the ucOC/iOC ratio significantly decrease with increasing intake of vitamin K. Thus, the results show that the inverse association between dietary vitamin K intake and serum ucOC depends on a functionally relevant allelic variant of the VKORC1 gene.

  2. Regulation of TrkB receptor translocation to lipid rafts by adenosine A2A receptors and its functional implications for BDNF-induced regulation of synaptic plasticity

    OpenAIRE

    Assaife-Lopes, Natália; Sousa, Vasco C.; Pereira, Daniela B.; Ribeiro, Joaquim A.; Sebastião, Ana M.

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) signalling is critical for neuronal development and transmission. Recruitment of TrkB receptors to lipid rafts has been shown to be necessary for the activation of specific signalling pathways and modulation of neurotransmitter release by BDNF. Since TrkB receptors are known to be modulated by adenosine A2A receptor activation, we hypothesized that activation of A2A receptors could influence TrkB receptor localization among different membrane microdoma...

  3. Brain-derived neurotrophic factor (BDNF) and neurocognitive deficits in people with schizophrenia: a meta-analysis.

    Science.gov (United States)

    Ahmed, Anthony O; Mantini, Andrew M; Fridberg, Daniel J; Buckley, Peter F

    2015-03-30

    Studies suggest that the BDNF Val66Met (rs6265) polymorphism is associated with the incidence of schizophrenia and neurocognitive functioning. These associations appear to be however somewhat mixed. We conducted two separate meta-analyses to investigate (1) the association between the Val66Met polymorphism and neurocognition in people with schizophrenia and (2) the association between peripheral expression of BDNF and neurocognitive phenotypes. For the first aim, we identified 12 studies and 67 comparisons of Met allele carriers and Val homozygotes. These comparisons included 1890 people with schizophrenia (men=1465, women=553), of whom 972 were Met allele carriers and 918 were Val homozygotes. For the second aim, we identified five studies and 25 correlations of peripheral BDNF and neurocognitive scores. The meta-analysis for the second aim included 414 people with schizophrenia (men=292, women=170). First, we found non-significant difference between the genotype groups on most neurocognitive domains. Second, correlations between peripheral BDNF and neurocognitive phenotypes were minimal but we obtained significant effects for the reasoning and problem-solving domains; thus, higher levels of BDNF expression corresponded to better performance on reasoning/problem-solving tasks. The meta-analyses did not robustly establish an association between BDNF Val66Met polymorphism and neurocognition in schizophrenia.

  4. Altered balance of glutamatergic/GABAergic synaptic input and associated changes in dendrite morphology after BDNF expression in BDNF-deficient hippocampal neurons

    OpenAIRE

    Singh, B; Henneberger, C.; Betances, D.; Arevalo, M. A.; Rodriguez-Tebar, A.; Meier, J C; Grantyn, R.

    2006-01-01

    Cultured neurons from bdnf-/- mice display reduced densities of synaptic terminals, although in vivo these deficits are small or absent. Here we aimed at clarifying the local responses to postsynaptic brain-derived neurotrophic factor (BDNF). To this end, solitary enhanced green fluorescent protein (EGFP)-labeled hippocampal neurons from bdnf-/- mice were compared with bdnf-/- neurons after transfection with BDNF, bdnf-/- neurons after transient exposure to exogenous BDNF, and bdnf+/+ neurons...

  5. The Non-Linear Child: Ontogeny, Isoniazid Concentration, and NAT2 Genotype Modulate Enzyme Reaction Kinetics and Metabolism

    Directory of Open Access Journals (Sweden)

    Zoe Rogers

    2016-09-01

    Full Text Available N-acetyltransferase 2 (NAT2 catalyzes the acetylation of isoniazid to N-acetylisoniazid. NAT2 polymorphism explains 88% of isoniazid clearance variability in adults. We examined the effects of clinical and genetic factors on Michaelis-Menten reaction kinetic constants of maximum velocity (Vmax and affinity (Km in children 0–10 years old. We measured the rates of isoniazid elimination and N-acetylisoniazid production in the blood of 30 children. Since maturation effects could be non-linear, we utilized a pharmacometric approach and the artificial intelligence method, multivariate adaptive regression splines (MARS, to identify factors predicting NAT2 Vmax and Km by examining clinical, genetic, and laboratory factors in toto. Isoniazid concentration predicted both Vmax and Km and superseded the contribution of NAT2 genotype. Age non-linearly modified the NAT2 genotype contribution until maturation at ≥5.3 years. Thus, enzyme efficiency was constrained by substrate concentration, genes, and age. Since MARS output is in the form of basis functions and equations, it allows multiscale systems modeling from the level of cellular chemical reactions to whole body physiological parameters, by automatic selection of significant predictors by the algorithm.

  6. Proteolytic Cleavage of ProBDNF into Mature BDNF in the Basolateral Amygdala Is Necessary for Defeat-Induced Social Avoidance

    Science.gov (United States)

    Dulka, Brooke N.; Ford, Ellen C.; Lee, Melissa A.; Donnell, Nathaniel J.; Goode, Travis D.; Prosser, Rebecca; Cooper, Matthew A.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is essential for memory processes. The present study tested whether proteolytic cleavage of proBDNF into mature BDNF (mBDNF) within the basolateral amygdala (BLA) regulates the consolidation of defeat-related memories. We found that acute social defeat increases the expression of mBDNF, but not proBDNF, in…

  7. Analyzing the influence of BDNF heterozygosity on spatial memory response to 17β-estradiol.

    Science.gov (United States)

    Wu, Y W C; Du, X; van den Buuse, M; Hill, R A

    2015-01-20

    The recent use of estrogen-based therapies as adjunctive treatments for the cognitive impairments of schizophrenia has produced promising results; however the mechanism behind estrogen-based cognitive enhancement is relatively unknown. Brain-derived neurotrophic factor (BDNF) regulates learning and memory and its expression is highly responsive to estradiol. We recently found that estradiol modulates the expression of hippocampal parvalbumin-positive GABAergic interneurons, known to regulate neuronal synchrony and cognitive function. What is unknown is whether disruptions to the aforementioned estradiol-parvalbumin pathway alter learning and memory, and whether BDNF may mediate these events. Wild-type (WT) and BDNF heterozygous (+/-) mice were ovariectomized (OVX) at 5 weeks of age and simultaneously received empty, estradiol- or progesterone-filled implants for 7 weeks. At young adulthood, mice were tested for spatial and recognition memory in the Y-maze and novel-object recognition test, respectively. Hippocampal protein expression of BDNF and GABAergic interneuron markers, including parvalbumin, were assessed. WT OVX mice show impaired performance on Y-maze and novel-object recognition test. Estradiol replacement in OVX mice prevented the Y-maze impairment, a Behavioral abnormality of dorsal hippocampal origin. BDNF and parvalbumin protein expression in the dorsal hippocampus and parvalbumin-positive cell number in the dorsal CA1 were significantly reduced by OVX in WT mice, while E2 replacement prevented these deficits. In contrast, BDNF(+/-) mice showed either no response or an opposite response to hormone manipulation in both behavioral and molecular indices. Our data suggest that BDNF status is an important biomarker for predicting responsiveness to estrogenic compounds which have emerged as promising adjunctive therapeutics for schizophrenia patients.

  8. Study of the serotonin transporter (SLC6A4 and BDNF genes in French patients with non syndromic mental deficiency

    Directory of Open Access Journals (Sweden)

    Mignon Laurence

    2010-02-01

    Full Text Available Abstract Background Mental deficiency has been linked to abnormalities in cortical neuronal network connectivity and plasticity. These mechanisms are in part under the control of two interacting signalling pathways, the serotonergic and the brain-derived neurotrophic (BDNF pathways. The aim of the current paper is to determine whether particular alleles or genotypes of two crucial genes of these systems, the serotonin transporter gene (SLC6A4 and the brain-derived neurotrophic factor gene (BDNF, are associated with mental deficiency (MD. Methods We analyzed four functional polymorphisms (rs25531, 5-HTTLPR, VNTR, rs3813034 of the SLC6A4 gene and one functional polymorphism (Val66 Met of the BDNF gene in 98 patients with non-syndromic mental deficiency (NS-MD and in an ethnically matched control population of 251 individuals. Results We found no significant differences in allele and genotype frequencies in the five polymorphisms studied in the SLC6A4 and BDNF genes of NS-MD patients versus control patients. While the comparison of the patterns of linkage disequilibrium (D' in the control and NS-MD populations revealed a degree of variability it did not, however, reach significance. No significant differences in frequencies of haplotypes and genotypes for VNTR/rs3813034 and rs25531/5-HTTLPR were observed. Conclusion Altogether, results from the present study do not support a role for any of the five functional polymorphisms of SLC6A4 and BDNF genes in the aetiology of NS-RM. Moreover, they suggest no epistatic interaction in NS-MD between polymorphisms in BDNF and SLC6A4. However, we suggest that further studies on these two pathways in NS-MD remain necessary.

  9. No association of the BDNF val66met polymorphism with implicit associative vocabulary and motor learning.

    Directory of Open Access Journals (Sweden)

    Nils Freundlieb

    Full Text Available Brain-derived neurotrophic factor (BDNF has been suggested to play a major role in plasticity, neurogenesis and learning in the adult brain. The BDNF gene contains a common val66met polymorphism associated with decreased activity-dependent excretion of BDNF and a potential influence on behaviour, more specifically, on motor learning. The objective of this study was to determine the influence of the BDNF val66met polymorphism on short-term implicit associative learning and whether its influence is cognitive domain-specific (motor vs. language. A sample of 38 young healthy participants was genotyped, screened for background and neuropsychological differences, and tested with two associative implicit learning paradigms in two different cognitive domains, i.e., motor and vocabulary learning. Subjects performed the serial reaction time task (SRTT to determine implicit motor learning and a recently established associative vocabulary learning task (AVL for implicit learning of action and object words. To determine the influence of the BDNF polymorphism on domain-specific implicit learning, behavioural improvements in the two tasks were compared between val/val (n = 22 and met carriers (val/met: n = 15 and met/met: n = 1. There was no evidence for an impact of the BDNF val66met polymorphism on the behavioural outcome in implicit short-term learning paradigms in young healthy subjects. Whether this polymorphism plays a relevant role in long-term training paradigms or in subjects with impaired neuronal plasticity or reduced learning capacity, such as aged individuals, demented patients or patients with brain lesions, has to be determined in future studies.

  10. Targeting MicroRNAs Involved in the BDNF Signaling Impairment in Neurodegenerative Diseases.

    Science.gov (United States)

    You, Hwa Jeong; Park, Jae Hyon; Pareja-Galeano, Helios; Lucia, Alejandro; Shin, Jae Il

    2016-12-01

    Neurodegenerative diseases are becoming an ever-increasing problem in aging populations. Low levels of brain-derived neurotrophic factor (BDNF) have previously been associated with the pathogenesis of numerous neurodegenerative diseases. Recently, microRNAs (miRNAs) have been proposed as potential novel therapeutic targets for treating various diseases of the central nervous system (CNS), and interestingly, few studies have reported several miRNAs that downregulate the expression levels of BDNF. However, substantial challenges exist when attempting to translate these findings into practical anti-miRNA therapeutics, especially when the targets remain inside the CNS. Thus, in this review, we summarize the specific molecular mechanisms by which several miRNAs negatively modulate the expressions of BDNF, address the potential clinical difficulties that can be faced during the development of anti-miRNA-based therapeutics and propose strategies to overcome these challenges.

  11. Sonic Hedgehog Promotes Neurite Outgrowth of Primary Cortical Neurons Through Up-Regulating BDNF Expression.

    Science.gov (United States)

    He, Weiliang; Cui, Lili; Zhang, Cong; Zhang, Xiangjian; He, Junna; Xie, Yanzhao

    2016-04-01

    Sonic hedgehog (Shh), a secreted glycoprotein factor, can activate the Shh pathway, which has been implicated in neuronal polarization involving neurite outgrowth. However, little evidence is available about the effect of Shh on neurite outgrowth in primary cortical neurons and its potential mechanism. Here, we revealed that Shh increased neurite outgrowth in primary cortical neurons, while the Shh pathway inhibitor (cyclopamine, CPM) partially suppressed Shh-induced neurite outgrowth. Similar results were found for the expressions of Shh and Patched genes in Shh-induced primary cortical neurons. Moreover, Shh increased the levels of brain-derived neurotrophic factor (BDNF) not only in lysates and in culture medium but also in the longest neurites of primary cortical neurons, which was partially blocked by CPM. In addition, blocking of BDNF action suppressed Shh-mediated neurite elongation in primary cortical neurons. In conclusion, these findings suggest that Shh promotes neurite outgrowth in primary cortical neurons at least partially through modulating BDNF expression.

  12. Increased serum brain-derived neurotrophic factor (BDNF) levels in patients with narcolepsy

    DEFF Research Database (Denmark)

    Klein, Anders B; Jennum, Poul; Knudsen, Stine

    2013-01-01

    in hypocretin neurons in hypothalamus in post-mortem tissue. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are important for activity-dependent neuronal function and synaptic modulation and it is considered that these mechanisms are important in sleep regulation. We hypothesised......Narcolepsy is a lifelong sleep disorder characterized by excessive daytime sleepiness, sudden loss of muscle tone (cataplexy), fragmentation of nocturnal sleep and sleep paralysis. The symptoms of the disease strongly correlate with a reduction in hypocretin levels in CSF and a reduction...... that serum levels of these factors are altered in patients with narcolepsy compared to healthy controls without sleep disturbances. Polysomnography data was obtained and serum BDNF and NGF levels measured using ELISA, while hypocretin was measured using RIA. Serum BDNF levels were significantly higher...

  13. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo.

    Science.gov (United States)

    McDole, B; Isgor, C; Pare, C; Guthrie, K

    2015-09-24

    Olfactory bulb granule cells (GCs) are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on GC spines. These contacts are established in the distal apical dendritic compartment, while GC basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong GC neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb GC spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF in transgenic mice produces a marked increase in GC spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on GCs, suggesting a role for this factor in modulating GC functional connectivity within adult olfactory circuitry.

  14. Involvement of brain-derived neurotrophic factor (BDNF) in the functional elimination of synaptic contacts at polyinnervated neuromuscular synapses during development.

    Science.gov (United States)

    Garcia, N; Santafe, M M; Tomàs, M; Lanuza, M A; Besalduch, N; Tomàs, J

    2010-05-15

    We use immunohistochemistry to describe the localization of brain-derived neurotrophic factor (BDNF) and its receptors trkB and p75(NTR) in the neuromuscular synapses of postnatal rats (P6-P7) during the synapse elimination period. The receptor protein p75(NTR) is present in the nerve terminal, muscle cell and glial Schwann cell whereas BDNF and trkB proteins can be detected mainly in the pre- and postsynaptic elements. Exogenously applied BDNF (10 nM for 3 hr or 50 nM for 1 hr) increases ACh release from singly and dually innervated synapses. This effect may be specific for BDNF because the neurotrophin NT-4 (2-8 nM) does not modulate release at P6-P7. Blocking the receptors trkB and p75(NTR) (with K-252a and anti-p75-192-IgG, respectively) completely abolishes the potentiating effect of exogenous BDNF. In addition, exogenous BDNF transiently recruits functionally depressed silent terminals, and this effect seems to be mediated by trkB. Calcium ions, the L-type voltage-dependent calcium channels and protein kinase C are involved in BDNF-mediated nerve ending recruitment. Blocking experiments suggest that endogenous BDNF could operate through p75(NTR) receptors coupled to potentiate ACh release in all nerve terminals because the anti-p75-192-IgG reduces release. However, blocking the trkB receptor (K-252a) or neutralizing endogenous BDNF with the trkB-IgG fusion protein reveals a trkB-mediated release inhibition on almost mature strong endings in dual junctions. Taken together these results suggest that a BDNF-induced p75(NTR)-mediated ACh release potentiating mechanism and a BDNF-induced trkB-mediated release inhibitory mechanism may contribute to developmental synapse disconnection.

  15. Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression.

    Science.gov (United States)

    Ilchibaeva, Tatiana V; Kondaurova, Elena M; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2015-09-01

    The brain-derived neurotrophic factor (BDNF), its precursor (proBDNF) and BDNF mRNA levels were studied in the brain of wild rats selectively bred for more than 70 generations for either high level or for the lack of affective aggressiveness towards man. Significant increase of BDNF mRNA level in the frontal cortex and increase of BDNF level in the hippocampus of aggressive rats was revealed. In the midbrain and hippocampus of aggressive rats proBDNF level was increased, whereas BDNF/proBDNF ratio was reduced suggesting the prevalence and increased influence of proBDNF in highly aggressive rats. In the frontal cortex, proBDNF level in aggressive rats was decreased. Thus, considerable structure-specific differences in BDNF and proBDNF levels as well as in BDNF gene expression between highly aggressive and nonaggressive rats were shown. The data suggested the implication of BDNF and its precursor proBDNF in the mechanism of aggressiveness and in the creation of either aggressive or nonaggressive phenotype.

  16. BDNF val66met polymorphism is associated with age at onset and intensity of symptoms of paranoid schizophrenia in a Polish population.

    Science.gov (United States)

    Suchanek, Renata; Owczarek, Aleksander; Paul-Samojedny, Monika; Kowalczyk, Małgorzata; Kucia, Krzysztof; Kowalski, Jan

    2013-01-01

    The brain-derived neurotrophic factor (BDNF) is one of the candidate genes for schizophrenia. There is evidence that val66met polymorphism may be involved in the pathophysiology of schizophrenia. The authors genotyped val66met (rs6265) polymorphism of the BDNF gene in 208 inpatients with paranoid schizophrenia and 254 control subjects in a Polish population. There was no association between val66met polymorphism and development of paranoid schizophrenia in either men or women. However, an association was found between this polymorphism and age at onset and psychopathology of paranoid schizophrenia. Men with the val/met genotype had an earlier age at onset, and the val/val genotype predisposed to more severe symptoms, particularly on the General Psychopathology Scale of the Positive and Negative Symptoms Scale (PANSS-G). The analysis of PANSS single items has shown that patients with the val/met genotype had higher scores on a hallucinatory behavior item than those with other genotypes.

  17. BDNF pro-peptide regulates dendritic spines via caspase-3.

    Science.gov (United States)

    Guo, J; Ji, Y; Ding, Y; Jiang, W; Sun, Y; Lu, B; Nagappan, G

    2016-06-16

    The precursor of brain-derived neurotrophic factor (BDNF) (proBDNF) is enzymatically cleaved, by either intracellular (furin/PC1) or extracellular proteases (tPA/plasmin/MMP), to generate mature BDNF (mBDNF) and its pro-peptide (BDNF pro-peptide). Little is known about the function of BDNF pro-peptide. We have developed an antibody that specifically detects cleaved BDNF pro-peptide, but not proBDNF or mBDNF. Neuronal depolarization elicited a marked increase in extracellular BDNF pro-peptide, suggesting activity-dependent regulation of its extracellular levels. Exposure of BDNF pro-peptide to mature hippocampal neurons in culture dramatically reduced dendritic spine density. This effect was mediated by caspase-3, as revealed by studies with pharmacological inhibitors and genetic knockdown. BDNF pro-peptide also increased the number of 'elongated' mitochondria and cytosolic cytochrome c, suggesting the involvement of mitochondrial-caspase-3 pathway. These results, along with BDNF pro-peptide effects recently reported on growth cones and long-term depression (LTD), suggest that BDNF pro-peptide is a negative regulator of neuronal structure and function.

  18. Reduced axonal localization of a Caps2 splice variant impairs axonal release of BDNF and causes autistic-like behavior in mice.

    Science.gov (United States)

    Sadakata, Tetsushi; Shinoda, Yo; Oka, Megumi; Sekine, Yukiko; Sato, Yumi; Saruta, Chihiro; Miwa, Hideki; Tanaka, Mika; Itohara, Shigeyoshi; Furuichi, Teiichi

    2012-12-18

    Ca(2)(+)-dependent activator protein for secretion 2 (CAPS2 or CADPS2) potently promotes the release of brain-derived neurotrophic factor (BDNF). A rare splicing form of CAPS2 with deletion of exon3 (dex3) was identified to be overrepresented in some patients with autism. Here, we generated Caps2-dex3 mice and verified a severe impairment in axonal Caps2-dex3 localization, contributing to a reduction in BDNF release from axons. In addition, circuit connectivity, measured by spine and interneuron density, was diminished globally. The collective effect of reduced axonal BDNF release during development was a striking and selective repertoire of deficits in social- and anxiety-related behaviors. Together, these findings represent a unique mouse model of a molecular mechanism linking BDNF-mediated coordination of brain development to autism-related behaviors and patient genotype.

  19. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and its implication in executive functions in adult offspring of alcohol-dependent probands.

    Science.gov (United States)

    Benzerouk, Farid; Gierski, Fabien; Gorwood, Philip; Ramoz, Nicolas; Stefaniak, Nicolas; Hübsch, Bérengère; Kaladjian, Arthur; Limosin, Frédéric

    2013-06-01

    Impairment of executive functions (EFs) mediated by the prefrontal lobe is regarded as a cognitive endophenotype of alcohol dependence, being observed both in probands and in healthy offspring. Given its impact on the anatomy of the prefrontal cortex, the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism may well be involved in this specific endophenotype. Forty-six healthy adult children of alcoholics (HACA) and 82 healthy controls (HC) took part in the study. All the participants were assessed with the Diagnostic Interview for Genetic Studies, and their family histories of alcohol and substance use were assessed with the Family Informant Schedule and Criteria. The Trail Making Test, Arithmetic Switching Task, Stroop Color-Word Test and Wisconsin Card Sorting Test were administered to assess EFs. An overall executive factor score was calculated using factorial analyses. Genotyping of the BDNF Val66Met polymorphism was performed using the TaqMan® allelic discrimination assay. HACA had significantly lower EFs performance than HC. Genetic analysis showed that BDNF genotype distributions were in Hardy-Weinberg equilibrium in the HACA and HC. Genotype and allele distributions did not differ significantly between the two groups. Participants with the Met allele performed significantly more poorly than participants with the Val allele, and a group by allele interaction was observed, the BDNF Met allele being associated with a poorer executive factor score in the HACA group. These results suggest that the BDNF Val66Met polymorphism may contribute to alcohol dependence vulnerability via lower EFs performance.

  20. Agonistic effect of polyunsaturated fatty acids (PUFAs and its metabolites on brain-derived neurotrophic factor (BDNF through molecular docking simulation

    Directory of Open Access Journals (Sweden)

    Vetrivel Umashankar

    2012-09-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF is a potent neurotrophic factor that is implicated in the regulation of food intake and body weight. Polyunsaturated fatty acids (PUFAs localised in cell membranes have been shown to alter the levels of BDNF in the brain, suggesting that PUFAs and BDNF could have physical interaction with each other. To decipher the molecular mechanism through which PUFAs modulates BDNF’s activity, molecular docking was performed for BDNF with PUFAs and its metabolites, with 4-Methyl Catechol as a control. Results Inferring from molecular docking studies, lipoxin A4 (LXA4, and a known anti-inflammatory bioactive metabolite derived from PUFAs, with a binding energy of −3.98 Kcal/mol and dissociation constant of 1.2mM showed highest binding affinity for BDNF in comparison to other PUFAs and metabolites considered in the study. Further, the residues Lys 18, Thr 20, Ala 21, Val 22, Phe 46, Glu 48, Lys 50, Lys 58, Thr 75, Gln 77, Arg 97 and Ile 98 form hot point motif, which on interaction enhances BDNF’s function. Conclusion These results suggest that PUFAs and their metabolites especially, LXA4, modulate insulin resistance by establishing a physical interaction with BDNF. Similar interaction(s was noted between BDNF and resolvins and protectins but were of lesser intensity compared to LXA4.

  1. Innate BDNF expression is associated with ethanol intake in alcohol-preferring AA and alcohol-avoiding ANA rats.

    Science.gov (United States)

    Raivio, Noora; Miettinen, Pekka; Kiianmaa, Kalervo

    2014-09-04

    We have shown recently that acute administration of ethanol modulates the expression of brain-derived neurotrophic factor (BDNF) in several rat brain areas known to be involved in the development of addiction to ethanol and other drugs of abuse, suggesting that BDNF may be a factor contributing to the neuroadaptive changes set in motion by ethanol exposure. The purpose of the present study was to further clarify the role of BDNF in reinforcement from ethanol and in the development of addiction to ethanol by specifying the effect of acute administration of ethanol (1.5 or 3.0 g/kg i.p.) on the expression profile of BDNF mRNA in the ventral tegmental area and in the terminal areas of the mesolimbic dopamine pathway in the brain of alcohol-preferring AA and alcohol-avoiding ANA rats, selected for high and low voluntary ethanol intake, respectively. The level of BDNF mRNA expression was higher in the amygdala and ventral tegmental area of AA than in those of ANA rats, and there was a trend for a higher level in the nucleus accumbens. In the amygdala and hippocampus, a biphasic change in the BDNF mRNA levels was detected: the levels were decreased at 3 and 6h but increased above the basal levels at 24h. Furthermore, there was a difference between the AA and ANA lines in the effect of ethanol, the ANA rats showing an increase in BDNF mRNA levels while such a change was not seen in AA rats. These findings suggest that the innate levels of BDNF expression may play a role in the mediation of the reinforcing effects of ethanol and in the control of ethanol intake.

  2. RACK1 affects morphine reward via BDNF.

    Science.gov (United States)

    Wan, Lihong; Xie, Yizhou; Su, Lan; Liu, Yanyou; Wang, Yuhui; Wang, Zhengrong

    2011-10-06

    Chronic morphine addiction may trigger functional changes in the mesolimbic dopamine system, which is believed to be the neurobiological substrate of opiate addiction. Brain derived neurotrophic factor (BDNF) has been implicated in addiction-related pathology in animal studies. Our previous studies have shown that RACK1 is involved in morphine reward in mice. The recent research indicates nuclear RACK1 by localizing at the promoter IV region of the BDNF gene and the subsequent chromatin modifications leads to the activation of the promoter and transcription of BDNF. The present study was designed to investigate if shRACK1 (a short hairpin RNA of RACK1) could reverse the mice's behavioral responses to morphine and BDNF expression in hippocampus and prefrontal cortex. No significant changes were observed in vehicle-infused mice which received no morphine treatment (CONC) and shRACK1-infused mice which received no morphine treatment (CONR), whereas vehicle-infused mice preceded the morphine injection (MIC) showed increased BDNF expression in hippocampus and prefrontal cortex, as compared to vehicle-infused mice which received no morphine treatment (CONC). Intracerebroventricular shRACK1 treatment reversed these, and in fact, ShRACK1-infused mice preceded the morphine injection (MIR) showed reduced BDNF expression in hippocampus and prefrontal cortex, as compared to MIC. In the conditioned place preference (CPP) test, inactivating RACK1 markedly reduces morphine-induced conditioned place preference. Non-specific changes in CPP could not account for these effects since general CPP of shRACK1- and vehicle-infused animals was not different. Combined behavioral and molecular approaches have support the possibility that the RACK1-BDNF system plays an important role in the response to morphine-induced reward.

  3. Mature BDNF, but not proBDNF, reduces excitability of fast-spiking interneurons in mouse dentate gyrus.

    Science.gov (United States)

    Holm, Mai Marie; Nieto-Gonzalez, Jose Luis; Vardya, Irina; Vaegter, Christian Bjerggaard; Nykjaer, Anders; Jensen, Kimmo

    2009-10-07

    Mature BDNF and its precursor proBDNF may both be secreted to exert opposite effects on synaptic plasticity in the hippocampus. However, it is unknown how proBDNF and mature BDNF affect the excitability of GABAergic interneurons and thereby regulate GABAergic inhibition. We made recordings of GABAergic spontaneous IPSCs (sIPSCs) in mouse dentate gyrus granule cells and found that chronic or acute BDNF reductions led to large increases in the sIPSC frequencies, which were TTX (tetrodotoxin) sensitive and therefore action-potential driven. Conversely, addition of mature BDNF, but not proBDNF, within minutes led to a decrease in the sIPSC frequency to 44%. Direct recordings from fast-spiking GABAergic interneurons revealed that mature BDNF reduced their excitability and depressed their action potential firing, whereas proBDNF had no effect. Using the TrkB inhibitor K-252a, or mice deficient for the common neurotrophin receptor p75(NTR), the regulation of GABAergic activity was shown specifically to be mediated by BDNF binding to the neurotrophin receptor TrkB. In agreement, immunohistochemistry demonstrated that TrkB, but not p75(NTR), was expressed in parvalbumin-positive interneurons. Our results suggest that mature BDNF decreases the excitability of GABAergic interneurons via activation of TrkB, while proBDNF does not impact on GABAergic activity. Thus, by affecting the firing of GABAergic interneurons, mature BDNF may play an important role in regulating network oscillations in the hippocampus.

  4. Intrazelluläre Lokalisation und synaptische Ausschüttung der Neurotrophine in hippokampalen Neuronen und die Bedeutung von BDNF bei hippokampaler synaptischer Plastizität

    OpenAIRE

    Brigadski, Tanja

    2007-01-01

    Die Mitglieder der Neurotrophin-Familie (NGF, BDNF, NT-3 und NT-4) sind sekretierte Neuropeptide, die eine bedeutende Rolle bei der Entwicklung von Nervenzellen und bei der Modulation der synaptischen Transmission spielen. Wenngleich eine aktivitätsabhängige Sekretion von BDNF bereits gezeigt werden konnte, wurden die subzelluläre Expression und die Ausschüttung der anderen Neurotrophine bislang nur unzureichend charakterisiert. Um die Expression und die Ausschüttung aller Neurotrophine un...

  5. Modulation of glycogen and breast meat processing ability by nutrition in chickens: effect of crude protein level in 2 chicken genotypes.

    Science.gov (United States)

    Jlali, M; Gigaud, V; Métayer-Coustard, S; Sellier, N; Tesseraud, S; Le Bihan-Duval, E; Berri, C

    2012-02-01

    The aim of the study was to evaluate the impact of 2 isoenergetic growing diets with different CP (17 vs. 23%) on the performance and breast meat quality of 2 lines of chicken divergently selected for abdominal fatness [i.e., fat and lean (LL) lines]. Growth performance, breast and abdominal fat yields, breast meat quality parameters (pH, color, drip loss), and muscle glycogen storage at death were measured. Increased dietary CP resulted in increased BW, increased breast meat yield, and reduced abdominal fatness at slaughter regardless of genotype (P muscle glycogen (P muscle glycogen content observed in LL receiving the low-CP diet compared with the high-CP diet occurred concomitantly with greater phosphorylation amount for the α-catalytic subunit of adenosine monophosphate-activated protein kinase and glycogen synthase. This was consistent with the reduced muscle glycogen content observed in LL fed the low-CP diet because adenosine monophosphate-activated protein kinase inhibits glycogen synthesis through its action on glycogen synthase. Our results demonstrated that nutrition is an effective means of modulating breast meat properties in the chicken. The results also highlighted the need to take into account interaction with the genetic background of the animal to select nutritional strategies to improve meat quality traits in poultry.

  6. The BDNF Val66Met polymorphism and smoking

    NARCIS (Netherlands)

    Montag, C.; Basten, U.; Stelzel, C.; Fiebach, C.J.; Reuter, M.

    2008-01-01

    Although the brain derived neurotrophic factor (BDNF) has been mainly investigated in the context of depression and anxiety disorders, several studies also suggest an association between BDNF and smoking. BDNF represents a protein which crucially influences several processes in the cell ranging from

  7. Juvenile methylphenidate reduces prefrontal cortex plasticity via D3 receptor and BDNF in adulthood

    Directory of Open Access Journals (Sweden)

    Susan L Andersen

    2014-01-01

    Full Text Available Background: Early drug intervention in childhood disorders aims to maximize individual potential in the short- and long-term. Consistently, juvenile exposure to psychostimulants, such as methylphenidate (MPH, reduces risk for substance use in animals and sub-populations of individuals with attention deficit hyperactivity disorder (ADHD. We investigated the effects of MPH on brain plasticity via dopamine receptor D3 (D3R and brain-derived neurotrophic factor (BDNF expression in developing rats. Methods: Between postnatal days 20-35, rat pups were administered saline vehicle (Veh or MPH (2 mg/kg, the D3R-preferring agonist ± 7-OHDPAT, or the antagonist nafadotride (0.05 mg/kg alone, or in combination with MPH twice a day. In adulthood, subjects were challenged to Veh or cocaine (10 mg/kg for two days. The prefrontal cortex was analyzed for protein and mRNA levels of total BDNF, its splice variants I, IIc, III/IV, and IV/VI, and D3 receptors. A separate group of subjects was assessed for splice variants at 20, 35, 40 and 60 days. Results: Across age strong correlations were evident between Drd3 and Bdnf mRNA levels (r=0.65 and a negative relationship between Drd3 and exon IIc after MPH exposure (r=-0.73. BDNF protein levels did not differ between Veh- and MPH subjects at baseline, but were significantly lower in MPH-treated and cocaine challenged subjects (30.3 ± 9.7%. Bdnf mRNA was significantly higher in MPH subjects, and reversed upon exposure to cocaine. This effect was blocked by nafadotride. Furthermore, Bdnftotal and Bdnf splice variants I, IIc, III/IV, and IV/VI changed across the transitions between juvenility and late adolescence. Conclusions: These data suggest a sensitive window of vulnerability to modulations of BDNF expression around adolescence, and that compared to normal animals, juvenile exposure to MPH permanently reduces prefrontal BDNF transcription and translation upon cocaine exposure in adulthood by a D3R

  8. Impact of variation in the BDNF gene on social stress sensitivity and the buffering impact of positive emotions : Replication and extension of a gene-environment interaction

    NARCIS (Netherlands)

    van Winkel, Mark; Peeters, Frenk; van Winkel, Ruud; Kenis, Gunter; Collip, Dina; Geschwind, Nicole; Jacobs, Nele; Derom, Catherine; Thiery, Evert; van Os, Jim; Myin-Germeys, Inez; Wichers, Marieke

    2014-01-01

    A previous study reported that social stress sensitivity is moderated by the brain-derived-neurotrophic-factor(Va166Met) (BDNF rs6265) genotype. Additionally, positive emotions partially neutralize this moderating effect. The current study aimed to: (i) replicate in a new independent sample of subje

  9. BDNF control of adult SVZ neurogenesis.

    Science.gov (United States)

    Bath, Kevin G; Akins, Michael R; Lee, Francis S

    2012-09-01

    The sensory processing of odorants is a dynamic process that requires plasticity at multiple levels. In the olfactory bulb (OB), inhibitory interneurons undergo lifelong replacement through a process known as adult neurogenesis. These newly born cells are incorporated in a learning-dependent fashion, a process which has led some to suggest this as a primary mechanism through which the OB retains a high degree of plasticity throughout life. A continued focus of researchers in this field has been to understand the molecular mechanisms controlling adult subventricular zone (SVZ) neurogenesis and the innate functional role of these cells. Brain-derived neurotrophic factor (BDNF) has been identified as a strong candidate molecule regulating adult OB neurogenesis. We review what is known regarding the functional role of newly born cells, highlight the role of BDNF in this process, and describe preliminary findings from our lab implicating BDNF in the process of selecting of newly born cells for survival.

  10. Acute stress alters transcript expression pattern and reduces processing of proBDNF to mature BDNF in Dicentrarchus labrax

    Directory of Open Access Journals (Sweden)

    Saroglia Marco

    2010-01-01

    Full Text Available Abstract Background Stress involves alterations of brain functioning that may precipitate to mood disorders. The neurotrophin Brain Derived Neurotrophic Factor (BDNF has recently been involved in stress-induced adaptation. BDNF is a key regulator of neuronal plasticity and adaptive processes. Regulation of BDNF is complex and may reflect not only stress-specific mechanisms but also hormonal and emotional responses. For this reason we used, as an animal model of stress, a fish whose brain organization is very similar to that of higher vertebrates, but is generally considered free of emotional reactions. Results We provide a comprehensive characterization of BDNF gene in the Dicentrarchus labrax and its transcriptional, translational and post-translational regulation following acute stress. While total BDNF mRNA levels are unchanged, BDNF transcripts 1c and 1d resulted down regulated after acute stress. Acute stress induces also a significant increase in proBDNF levels and reduction in mature BDNF suggesting altered regulation of proBDNF proteolytic processing. Notably, we provide here the first evidence that fishes possess a simplified proteolytic regulation of BDNF since the pro28Kda form, generated by the SKI-1 protease in mammals, is absent in fishes because the cleavage site has first emerged in reptilians. Finally, we show that the proBDNF/totBDNF ratio is a highly predictive novel quantitative biomarker to detect stress in fishes with sensitivity = 100%, specificity = 87%, and Negative Predictive Value = 100%. Conclusion The high predictivity of proBDNF/totBDNF ratio for stress in lower vertebrates indicates that processing of BDNF is a central mechanism in adaptation to stress and predicts that a similar regulation of pro/mature BDNF has likely been conserved throughout evolution of vertebrates from fish to man.

  11. Changes in spatial memory and BDNF expression to simultaneous dietary restriction and forced exercise.

    Science.gov (United States)

    Khabour, Omar F; Alzoubi, Karem H; Alomari, Mahmoud A; Alzubi, Mohammad A

    2013-01-01

    Previous literature suggests that learning and memory formation can be influenced by diet and exercise. In the current study, we investigated the combined effects of forced swimming exercise (FSE) and every other day fasting (EODF) on spatial memory formation and on the levels of brain-derived neurotrophic factor (BDNF) in the hippocampus of Wistar male rats. The radial arm water maze (RAWM) paradigm was used to assess changes in learning and memory formation, whereas ELISA assay was used to measure BDNF protein levels. The FSE and/or EODF were simultaneously instituted for 6 weeks. Results show that FSE improved learning, short-term as well as long-term memory formation, and significantly increased BDNF protein in the hippocampus (peffect on either spatial learning and memory formation or the levels of hippocamapal BDNF protein (p>0.05). In addition, EODF did not modulate beneficial effect of swimming exercise on cognitive function (p>0.05). Thus exercise enhanced, while EODF did not affect spatial learning and memory formation.

  12. High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling.

    Directory of Open Access Journals (Sweden)

    Yang Yang

    Full Text Available Zinc ions highly concentrate in hippocampus and play a key role in modulating spatial learning and memory. At a time when dietary fortification and supplementation of zinc have increased the zinc consuming level especially in the youth, the toxicity of zinc overdose on brain function was underestimated. In the present study, weaning ICR mice were given water supplemented with 15 ppm Zn (low dose, 60 ppm Zn (high dose or normal lab water for 3 months, the behavior and brain zinc homeostasis were tested. Mice fed high dose of zinc showed hippocampus-dependent memory impairment. Unexpectedly, zinc deficiency, but not zinc overload was observed in hippocampus, especially in the mossy fiber-CA3 pyramid synapse. The expression levels of learning and memory related receptors and synaptic proteins such as NMDA-NR2A, NR2B, AMPA-GluR1, PSD-93 and PSD-95 were significantly decreased in hippocampus, with significant loss of dendritic spines. In keeping with these findings, high dose intake of zinc resulted in decreased hippocampal BDNF level and TrkB neurotrophic signaling. At last, increasing the brain zinc level directly by brain zinc injection induced BDNF expression, which was reversed by zinc chelating in vivo. These results indicate that zinc plays an important role in hippocampus-dependent learning and memory and BDNF expression, high dose supplementation of zinc induces specific zinc deficiency in hippocampus, which further impair learning and memory due to decreased availability of synaptic zinc and BDNF deficit.

  13. High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling.

    Science.gov (United States)

    Yang, Yang; Jing, Xiao-Peng; Zhang, Shou-Peng; Gu, Run-Xia; Tang, Fang-Xu; Wang, Xiu-Lian; Xiong, Yan; Qiu, Mei; Sun, Xu-Ying; Ke, Dan; Wang, Jian-Zhi; Liu, Rong

    2013-01-01

    Zinc ions highly concentrate in hippocampus and play a key role in modulating spatial learning and memory. At a time when dietary fortification and supplementation of zinc have increased the zinc consuming level especially in the youth, the toxicity of zinc overdose on brain function was underestimated. In the present study, weaning ICR mice were given water supplemented with 15 ppm Zn (low dose), 60 ppm Zn (high dose) or normal lab water for 3 months, the behavior and brain zinc homeostasis were tested. Mice fed high dose of zinc showed hippocampus-dependent memory impairment. Unexpectedly, zinc deficiency, but not zinc overload was observed in hippocampus, especially in the mossy fiber-CA3 pyramid synapse. The expression levels of learning and memory related receptors and synaptic proteins such as NMDA-NR2A, NR2B, AMPA-GluR1, PSD-93 and PSD-95 were significantly decreased in hippocampus, with significant loss of dendritic spines. In keeping with these findings, high dose intake of zinc resulted in decreased hippocampal BDNF level and TrkB neurotrophic signaling. At last, increasing the brain zinc level directly by brain zinc injection induced BDNF expression, which was reversed by zinc chelating in vivo. These results indicate that zinc plays an important role in hippocampus-dependent learning and memory and BDNF expression, high dose supplementation of zinc induces specific zinc deficiency in hippocampus, which further impair learning and memory due to decreased availability of synaptic zinc and BDNF deficit.

  14. CREB-Dependent Regulation of GAD65 Transcription by BDNF/TrkB in Cortical Interneurons.

    Science.gov (United States)

    Sánchez-Huertas, Carlos; Rico, Beatriz

    2011-04-01

    In the cerebral cortex, the functional output of projection neurons is fine-tuned by inhibitory neurons present in the network, which use γ-aminobutyric acid (GABA) as their main neurotransmitter. Previous studies have suggested that the expression levels of the rate-limiting GABA synthetic enzyme, GAD65, depend on brain derived neurotrophic factor (BDNF)/TrkB activation. However, the molecular mechanisms by which this neurotrophic factor and its receptor controls GABA synthesis are still unknown. Here, we show a direct regulation of the GAD65 gene by BDNF-TrkB signaling via CREB in cortical interneurons. Conditional ablation of TrkB in cortical interneurons causes a cell-autonomous decrease in the synaptically enriched GAD65 protein and its transcripts levels, suggesting that transcriptional regulation of the GAD65 gene is altered. Dissection of the intracellular pathway that underlies this process revealed that BDNF/TrkB signaling controls the transcription of GAD65 in a Ras-ERK-CREB-dependent manner. Our study reveals a novel molecular mechanism through which BDNF/TrkB signaling may modulate the maturation and function of cortical inhibitory circuits.

  15. Analyzing the influence of BDNF heterozygosity on spatial memory response to 17β-estradiol

    OpenAIRE

    Wu, Y W C; Du, X; van den Buuse, M; Hill, R. A.

    2015-01-01

    The recent use of estrogen-based therapies as adjunctive treatments for the cognitive impairments of schizophrenia has produced promising results; however the mechanism behind estrogen-based cognitive enhancement is relatively unknown. Brain-derived neurotrophic factor (BDNF) regulates learning and memory and its expression is highly responsive to estradiol. We recently found that estradiol modulates the expression of hippocampal parvalbumin-positive GABAergic interneurons, known to regulate ...

  16. Association Study between BDNF Gene Polymorphisms and Autism by Three-Dimensional Gel-Based Microarray

    Directory of Open Access Journals (Sweden)

    Zuhong Lu

    2009-06-01

    Full Text Available Single nucleotide polymorphisms (SNPs are important markers which can be used in association studies searching for susceptible genes of complex diseases. High-throughput methods are needed for SNP genotyping in a large number of samples. In this study, we applied polyacrylamide gel-based microarray combined with dual-color hybridization for association study of four BDNF polymorphisms with autism. All the SNPs in both patients and controls could be analyzed quickly and correctly. Among four SNPs, only C270T polymorphism showed significant differences in the frequency of the allele (χ2 = 7.809, p = 0.005 and genotype (χ2 = 7.800, p = 0.020. In the haplotype association analysis, there was significant difference in global haplotype distribution between the groups (χ2 = 28.19,p = 3.44e-005. We suggest that BDNF has a possible role in the pathogenesis of autism. The study also show that the polyacrylamide gel-based microarray combined with dual-color hybridization is a rapid, simple and high-throughput method for SNPs genotyping, and can be used for association study of susceptible gene with disorders in large samples.

  17. Genetic susceptibility to family environment: BDNF Val66met and 5-HTTLPR influence depressive symptoms.

    Science.gov (United States)

    Dalton, Elizabeth D; Hammen, Constance L; Najman, Jake M; Brennan, Patricia A

    2014-12-01

    Functional genetic polymorphisms associated with Brain-Derived Neurotrophic Factor (BDNF) and serotonin (5-HTTLPR) have demonstrated associations with depression in interaction with environmental stressors. In light of evidence for biological connections between BDNF and serotonin, it is prudent to consider genetic epistasis between variants in these genes in the development of depressive symptoms. The current study examined the effects of val66met, 5-HTTLPR, and family environment quality on youth depressive symptoms in adolescence and young adulthood in a longitudinal sample oversampled for maternal depression history. A differential susceptibility model was tested, comparing the effects of family environment on depression scores across different levels of a cumulative plasticity genotype, defined as presence of both, either, or neither plasticity alleles (defined here as val66met Met and 5-HTTLPR 'S'). Cumulative plasticity genotype interacted with family environment quality to predict depression among males and females at age 15. After age 15, however, the interaction of cumulative plasticity genotype and early family environment quality was only predictive of depression among females. Results supported a differential susceptibility model at age 15, such that plasticity allele presence was associated with more or less depressive symptoms depending on valence of the family environment, and a diathesis-stress model of gene-environment interaction after age 15. These findings, although preliminary because of the small sample size, support prior results indicating interactive effects of 5-HTTLPR, val66met, and environmental stress, and suggest that family environment may have a stronger influence on genetically susceptible women than men.

  18. Physiology of BDNF: focus on hypothalamic function.

    Science.gov (United States)

    Tapia-Arancibia, Lucia; Rage, Florence; Givalois, Laurent; Arancibia, Sandor

    2004-07-01

    Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family which interacts with high-affinity protein kinase receptors (Trk) and the unselective p75(NGFR) receptor. The BDNF gene has a complex structure with multiple regulatory elements and four promoters that are differentially expressed in central or peripheral tissue. BDNF expression is regulated by neuronal activity or peripheral hormones. Neurotrophins regulate the survival and differentiation of neurons during development but growing evidence indicates that they are also involved in several functions in adulthood, including plasticity processes. BDNF expression in the central nervous system (CNS) is modified by various kinds of brain insult (stress, ischemia, seizure activity, hypoglycemia, etc.) and alterations in its expression may contribute to some pathologies such as depression, epilepsy, Alzheimer's, and Parkinson's disease. Apart from very traumatic situations, the brain functioning is resilient to stress and capable of adaptive plasticity. Neurotrophins might act as plasticity mediators enhancing this trait which seems to be crucial in adaptive processes. In addition to documenting all of the topics mentioned above in the CNS, we review the state of the art concerning neurotrophins and their receptors, including our personal contribution which is essentially focused on the stress response.

  19. Genetic variation at the BDNF locus: evidence for association with long-term outcome after ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Tara M Stanne

    Full Text Available Rates and extent of recovery after stroke vary considerably between individuals and genetic factors are thought to contribute to post-stroke outcome. Brain-derived neurotrophic factor (BDNF plays important roles in brain plasticity and repair and has been shown to be involved in stroke severity, recovery, and outcome in animal models. Few clinical studies on BDNF genotypes in relation to ischemic stroke have been performed. The aims of the present study are therefore to investigate whether genetic variation at the BDNF locus is associated with initial stroke severity, recovery and/or short-term and long-term functional outcome after ischemic stroke.Four BDNF tagSNPs were analyzed in the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS; 600 patients and 600 controls, all aged 18-70 years. Stroke severity was assessed using the NIH Stroke Scale (NIHSS. Stroke recovery was defined as the change in NIHSS over a 3-month period. Short- and long-term functional outcome post-stroke was assessed using the modified Rankin Scale at 3 months and at 2 and 7 years after stroke, respectively.No SNP was associated with stroke severity or recovery at 3 months and no SNP had an impact on short-term outcome. However, rs11030119 was independently associated with poor functional outcome 7-years after stroke (OR 0.66, 95% CI 0.46-0.92; P =  0.006.BDNF gene variants were not major contributors to ischemic stroke severity, recovery, or short-term functional outcome. However, this study suggests that variants in the BDNF gene may contribute to poor long-term functional outcome after ischemic stroke.

  20. Predicting Response Trajectories during Cognitive-Behavioural Therapy for Panic Disorder: No Association with the BDNF Gene or Childhood Maltreatment

    Science.gov (United States)

    Santacana, Martí; Arias, Bárbara; Mitjans, Marina; Bonillo, Albert; Montoro, María; Rosado, Sílvia; Guillamat, Roser; Vallès, Vicenç; Pérez, Víctor; Forero, Carlos G.; Fullana, Miquel A.

    2016-01-01

    Background Anxiety disorders are highly prevalent and result in low quality of life and a high social and economic cost. The efficacy of cognitive-behavioural therapy (CBT) for anxiety disorders is well established, but a substantial proportion of patients do not respond to this treatment. Understanding which genetic and environmental factors are responsible for this differential response to treatment is a key step towards “personalized medicine”. Based on previous research, our objective was to test whether the BDNF Val66Met polymorphism and/or childhood maltreatment are associated with response trajectories during exposure-based CBT for panic disorder (PD). Method We used Growth Mixture Modeling to identify latent classes of change (response trajectories) in patients with PD (N = 97) who underwent group manualized exposure-based CBT. We conducted logistic regression to investigate the effect on these trajectories of the BDNF Val66Met polymorphism and two different types of childhood maltreatment, abuse and neglect. Results We identified two response trajectories (“high response” and “low response”), and found that they were not significantly associated with either the genetic (BDNF Val66Met polymorphism) or childhood trauma-related variables of interest, nor with an interaction between these variables. Conclusions We found no evidence to support an effect of the BDNF gene or childhood trauma-related variables on CBT outcome in PD. Future studies in this field may benefit from looking at other genotypes or using different (e.g. whole-genome) approaches. PMID:27355213

  1. Predicting Response Trajectories during Cognitive-Behavioural Therapy for Panic Disorder: No Association with the BDNF Gene or Childhood Maltreatment.

    Directory of Open Access Journals (Sweden)

    Martí Santacana

    Full Text Available Anxiety disorders are highly prevalent and result in low quality of life and a high social and economic cost. The efficacy of cognitive-behavioural therapy (CBT for anxiety disorders is well established, but a substantial proportion of patients do not respond to this treatment. Understanding which genetic and environmental factors are responsible for this differential response to treatment is a key step towards "personalized medicine". Based on previous research, our objective was to test whether the BDNF Val66Met polymorphism and/or childhood maltreatment are associated with response trajectories during exposure-based CBT for panic disorder (PD.We used Growth Mixture Modeling to identify latent classes of change (response trajectories in patients with PD (N = 97 who underwent group manualized exposure-based CBT. We conducted logistic regression to investigate the effect on these trajectories of the BDNF Val66Met polymorphism and two different types of childhood maltreatment, abuse and neglect.We identified two response trajectories ("high response" and "low response", and found that they were not significantly associated with either the genetic (BDNF Val66Met polymorphism or childhood trauma-related variables of interest, nor with an interaction between these variables.We found no evidence to support an effect of the BDNF gene or childhood trauma-related variables on CBT outcome in PD. Future studies in this field may benefit from looking at other genotypes or using different (e.g. whole-genome approaches.

  2. Effect of BDNF Val66Met on memory decline and hippocampal atrophy in prodromal Alzheimer's disease: a preliminary study.

    Directory of Open Access Journals (Sweden)

    Yen Ying Lim

    Full Text Available OBJECTIVE: Cross-sectional genetic association studies have reported equivocal results on the relationship between the brain-derived neurotrophic factor (BDNF Val66Met and risk of Alzheimer's disease (AD. As AD is a neurodegenerative disease, genetic influences may become clearer from prospective study. We aimed to determine whether BDNF Val66Met polymorphism influences changes in memory performance, hippocampal volume, and Aβ accumulation in adults with amnestic mild cognitive impairment (aMCI and high Aβ. METHODS: Thirty-four adults with aMCI were recruited from the Australian, Imaging, Biomarkers and Lifestyle (AIBL Study. Participants underwent PiB-PET and structural MRI neuroimaging, neuropsychological assessments and BDNF genotyping at baseline, 18 month, and 36 month assessments. RESULTS: In individuals with aMCI and high Aβ, Met carriers showed significant and large decline in episodic memory (d = 0.90, p = .020 and hippocampal volume (d = 0.98, p = .035. BDNF Val66Met was unrelated to the rate of Aβ accumulation (d = -0.35, p = .401. CONCLUSIONS: Although preliminary due to the small sample size, results of this study suggest that high Aβ levels and Met carriage may be useful prognostic markers of accelerated decline in episodic memory, and reductions in hippocampal volume in individuals in the prodromal or MCI stage of AD.

  3. A simple role for BDNF in learning and memory?

    Science.gov (United States)

    Cunha, Carla; Brambilla, Riccardo; Thomas, Kerrie L

    2010-01-01

    Since its discovery almost three decades ago, the secreted neurotrophin brain-derived neurotrophic factor (BDNF) has been firmly implicated in the differentiation and survival of neurons of the CNS. More recently, BDNF has also emerged as an important regulator of synaptogenesis and synaptic plasticity mechanisms underlying learning and memory in the adult CNS. In this review we will discuss our knowledge about the multiple intracellular signalling pathways activated by BDNF, and the role of this neurotrophin in long-term synaptic plasticity and memory formation as well as in synaptogenesis. We will show that maturation of BDNF, its cellular localization and its ability to regulate both excitatory and inhibitory synapses in the CNS may result in conflicting alterations in synaptic plasticity and memory formation. Lack of a precise knowledge about the mechanisms by which BDNF influences higher cognitive functions and complex behaviours may constitute a severe limitation in the possibility to devise BDNF-based therapeutics for human disorders of the CNS.

  4. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes

    DEFF Research Database (Denmark)

    Krabbe, K. S.; Nielsen, A. R.; Krogh-Madsen, R.;

    2006-01-01

    Aims/hypothesis  Decreased levels of brain-derived neurotrophic factor (BDNF) have been implicated in the pathogenesis of Alzheimer's disease and depression. These disorders are associated with type 2 diabetes, and animal models suggest that BDNF plays a role in insulin resistance. We therefore...... explored whether BDNF plays a role in human glucose metabolism. Subjects and methods  We included (Study 1) 233 humans divided into four groups depending on presence or absence of type 2 diabetes and presence or absence of obesity; and (Study 2) seven healthy volunteers who underwent both a hyperglycaemic...... and a hyperinsulinaemic-euglycaemic clamp. Results  Plasma levels of BDNF in Study 1 were decreased in humans with type 2 diabetes independently of obesity. Plasma BDNF was inversely associated with fasting plasma glucose, but not with insulin. No association was found between the BDNF G196A (Val66Met) polymorphism...

  5. Impaired eye-blink conditioning in waggler, a mutant mouse with cerebellar BDNF deficiency.

    Science.gov (United States)

    Bao, S; Chen, L; Qiao, X; Knusel, B; Thompson, R F

    1998-01-01

    In addition to their trophic functions, neurotrophins are also implicated in synaptic modulation and learning and memory. Although gene knockout techniques have been used widely in studying the roles of neurotrophins at molecular and cellular levels, behavioral studies using neurotrophin knockouts are limited by the early-onset lethality and various sensory deficits associated with the gene knockout mice. In the present study, we found that in a spontaneous mutant mouse, waggler, the expression of brain-derived neurotrophic factor (BDNF) was selectively absent in the cerebellar granule cells. The cytoarchitecture of the waggler cerebellum appeared to be normal at the light microscope level. The mutant mice exhibited no sensory deficits to auditory stimuli or heat-induced pain. However, they were massively impaired in classic eye-blink conditioning. These results suggest that BDNF may have a role in normal cerebellar neuronal function, which, in turn, is essential for classic eye-blink conditioning.

  6. Spontaneous sleep-wake cycle and sleep deprivation differently induce Bdnf1, Bdnf4 and Bdnf9a DNA methylation and transcripts levels in the basal forebrain and frontal cortex in rats.

    Science.gov (United States)

    Ventskovska, Olena; Porkka-Heiskanen, Tarja; Karpova, Nina N

    2015-04-01

    Brain-derived neurotrophic factor (Bdnf) regulates neuronal plasticity, slow wave activity and sleep homeostasis. Environmental stimuli control Bdnf expression through epigenetic mechanisms, but there are no data on epigenetic regulation of Bdnf by sleep or sleep deprivation. Here we investigated whether 5-methylcytosine (5mC) DNA modification at Bdnf promoters p1, p4 and p9 influences Bdnf1, Bdnf4 and Bdnf9a expression during the normal inactive phase or after sleep deprivation (SD) (3, 6 and 12 h, end-times being ZT3, ZT6 and ZT12) in rats in two brain areas involved in sleep regulation, the basal forebrain and cortex. We found a daytime variation in cortical Bdnf expression: Bdnf1 expression was highest at ZT6 and Bdnf4 lowest at ZT12. Such variation was not observed in the basal forebrain. Also Bdnf p1 and p9 methylation levels differed only in the cortex, while Bdnf p4 methylation did not vary in either area. Factorial analysis revealed that sleep deprivation significantly induced Bdnf1 and Bdnf4 with the similar pattern for Bdnf9a in both basal forebrain and cortex; 12 h of sleep deprivation decreased 5mC levels at the cortical Bdnf p4 and p9. Regression analysis between the 5mC promoter levels and the corresponding Bdnf transcript expression revealed significant negative correlations for the basal forebrain Bdnf1 and cortical Bdnf9a transcripts in only non-deprived rats, while these correlations were lost after sleep deprivation. Our results suggest that Bdnf transcription during the light phase of undisturbed sleep-wake cycle but not after SD is regulated at least partially by brain site-specific DNA methylation.

  7. A novel role for BDNF-TrkB in the regulation of chemotherapy resistance in head and neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Junegoo Lee

    Full Text Available Mechanisms of resistance for HNSCC to cisplatin (CDDP, the foundational chemotherapeutic agent in the treatment of this disease, remain poorly understood. We previously demonstrated that cisplatin resistance (CR can be overcome by targeting Trk receptor. In the current study, we explored the potential mechanistic role of the BDNF-TrkB signaling system in the development of CDDP resistance in HNSCC. Utilizing an in vitro system of acquired CR, we confirmed a substantial up-regulation of both BDNF and TrkB at the protein and mRNA levels in CR cells, suggesting an autocrine pathway dysregulation in this system. Exogenous BDNF stimulation led to an enhanced expression of the drug-resistance and anti-apoptotic proteins MDR1 and XiAP, respectively, in a dose-dependently manner, demonstrating a key role for BDNF-TrkB signaling in modulating the response to cytotoxic agents. In addition, modulation of TrkB expression induced an enhanced sensitivity of cells to CDDP in HNSCC. Moreover, genetic suppression of TrkB resulted in changes in expression of Bim, XiAP, and MDR1 contributing to HNSCC survival. To elucidate intracellular signaling pathways responsible for mechanisms underlying BDNF/TrkB induced CDDP-resistance, we analyzed expression levels of these molecules following inhibition of Akt. Inhibition of Akt eliminated BDNF effect on MDR1 and Bim expression in OSC-19P cells as well as modulated expressions of MDR1, Bim, and XiAP in OSC-19CR cells. These results suggest BDNF/TrkB system plays critical roles in CDDP-resistance development by utilizing Akt-dependent signaling pathways.

  8. ENDOGENOUS BDNF IN THE DORSOLATERAL STRIATUM GATES ALCOHOL DRINKING

    OpenAIRE

    Jeanblanc, Jerome; He, Dao-Yao; Carnicella, Sebastien; Kharazia, Viktor; Janak, Patricia H; Ron, Dorit

    2009-01-01

    We previously found that brain-derived neurotrophic factor (BDNF) haplodeficient mice exhibit greater ethanol-induced place preference and psychomotor sensitization, and greater ethanol consumption after deprivation. We further observed that, in mice, voluntary ethanol intake increases BDNF expression in the dorsal striatum (DS). Here, we determined whether BDNF within the DS regulates ethanol self-administration in Long Evans rats trained to self-administer a 10% ethanol solution. We observe...

  9. The interplay of stress and sleep impacts BDNF level.

    Directory of Open Access Journals (Sweden)

    Maria Giese

    Full Text Available BACKGROUND: Sleep plays a pivotal role in normal biological functions. Sleep loss results in higher stress vulnerability and is often found in mental disorders. There is evidence that brain-derived neurotrophic factor (BDNF could be a central player in this relationship. Recently, we could demonstrate that subjects suffering from current symptoms of insomnia exhibited significantly decreased serum BDNF levels compared with sleep-healthy controls. In accordance with the paradigm indicating a link between sleep and BDNF, we aimed to investigate if the stress system influences the association between sleep and BDNF. METHODOLOGY/PRINCIPAL FINDINGS: Participants with current symptoms of insomnia plus a former diagnosis of Restless Legs Syndrome (RLS and/or Periodic Limb Movement (PLM and sleep healthy controls were included in the study. They completed questionnaires on sleep (ISI, Insomnia Severity Index and stress (PSS, Perceived Stress Scale and provided a blood sample for determination of serum BDNF. We found a significant interaction between stress and insomnia with an impact on serum BDNF levels. Moreover, insomnia severity groups and score on the PSS each revealed a significant main effect on serum BDNF levels. Insomnia severity was associated with increased stress experience affecting serum BDNF levels. Of note, the association between stress and BDNF was only observed in subjects without insomnia. Using a mediation model, sleep was revealed as a mediator of the association between stress experience and serum BDNF levels. CONCLUSIONS: This is the first study to show that the interplay between stress and sleep impacts BDNF levels, suggesting an important role of this relationship in the pathogenesis of stress-associated mental disorders. Hence, we suggest sleep as a key mediator at the connection between stress and BDNF. Whether sleep is maintained or disturbed might explain why some individuals are able to handle a certain stress load while

  10. Modulation of exogenous glutathione in phytochelatins and photosynthetic performance against cd stress in the two rice genotypes differing in Cd tolerance.

    Science.gov (United States)

    Cai, Yue; Cao, Fangbin; Cheng, Wangda; Zhang, Guoping; Wu, Feibo

    2011-11-01

    Greenhouse hydroponic experiments were conducted using Cd-sensitive (Xiushui63) and tolerant (Bing97252) rice genotypes to evaluate genotypic differences in response of photosynthesis and phytochelatins to Cd toxicity in the presence of exogenous glutathione (GSH). Plant height, chlorophyll content, net photosynthetic rate (Pn), and biomass decreased in 5 and 50 μM Cd treatments, and Cd-sensitive genotype showed more severe reduction than the tolerant one. Cadmium stress caused decrease in maximal photochemical efficiency of PSII (Fv/Fm) and effective PSII quantum yield [Y(II)] and increase in quantum yield of regulated energy dissipation [Y(NPQ)], with changes in Cd-sensitive genotype being more evident. Cadmium-induced phytochelatins (PCs), GSH, and cysteine accumulation was observed in roots of both genotypes, with markedly higher level in PCs and GSH on day 5 in Bing97252 compared with that measured in Xiushui63. Exogenous GSH significantly alleviated growth inhibition in Xiushui63 under 5 μM Cd and in both genotypes in 50 μM Cd. External GSH significantly increased chlorophyll content, Pn, Fv/Fm, and Y(II) of plants exposed to Cd, but decreased Y(NPQ) and the coefficient of non-photochemical quenching (qN). GSH addition significantly increased root GSH content in plants under Cd exposure (except day 5 of 50 μM Cd) and induced up-regulation in PCs of 5 μM-Cd-treated Bing97252 throughout the 15-day and Xiushui63 of 5-day exposure. The results suggest that genotypic difference in the tolerance to Cd stress was positively linked to the capacity in elevation of GSH and PCs, and that alleviation of Cd toxicity by GSH is related to significant improvement in chlorophyll content, photosynthetic performance, and root GSH levels.

  11. Time-dependent contribution of non neuronal cells to BDNF production after ischemic stroke in rats.

    OpenAIRE

    Béjot, Yannick; Tessier, Anne; Cachia, Claire; Giroud, Maurice; Mossiat, Claude; Bertrand, Nathalie; Garnier, Philippe; Marie, Christine

    2011-01-01

    International audience; Although brain-derived neurotrophic factor (BDNF) plays a central role in recovery after cerebral ischemia, little is known about cells involved in BDNF production after stroke. The present study testes the hypothesis that neurons are not the unique source of neosynthesized BDNF after stroke and that non neuronal-BDNF producing cells differ according to the delay after stroke induction. For this purpose, cellular localization of BDNF and BDNF content of each hemisphere...

  12. New insights in the biology of BDNF synthesis and release: implications in CNS function

    OpenAIRE

    Greenberg, Michael E.; Xu, Baoji; Lu, Bai; Hempstead, Barbara L.

    2009-01-01

    BDNF has pleiotrophic effects on neuronal development and synaptic plasticity that underlie circuit formation and cognitive function. Recent breakthroughs reveal that neuronal activity regulates BDNF cell biology, including Bdnf transcription, dendritic targeting and trafficking of BDNF mRNA and protein, and secretion and extracellular conversion of proBDNF to mature BDNF. Defects in these mechanisms contribute differentially to cognitive dysfunction and anxiety–like behaviors. Here we review...

  13. Control of extracellular cleavage of ProBDNF by high frequency neuronal activity

    OpenAIRE

    Nagappan, Guhan; Zaitsev, Eugene; Senatorov, Vladimir V.; Yang, Jianmin; Hempstead, Barbara L.; Lu, Bai

    2009-01-01

    Pro- and mature neurotrophins often elicit opposing biological effects. For example, mature brain-derived neurotrophic factor (mBDNF) is critical for long-term potentiation induced by high-frequency stimulation, whereas proBDNF facilitate long-term depression induced by low-frequency stimulation. Because mBDNF is derived from proBDNF by endoproteolytic cleavage, mechanisms regulating the cleavage of proBDNF may control the direction of BDNF regulation. Using methods that selectively detect pr...

  14. Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses.

    Science.gov (United States)

    Je, H Shawn; Yang, Feng; Ji, Yuanyuan; Nagappan, Guhan; Hempstead, Barbara L; Lu, Bai

    2012-09-25

    Formation of specific neuronal connections often involves competition between adjacent axons, leading to stabilization of the active terminal, while retraction of the less active ones. The underlying molecular mechanisms remain unknown. We show that activity-dependent conversion of pro-brain-derived neurotrophic factor (proBDNF) to mature (m)BDNF mediates synaptic competition. Stimulation of motoneurons triggers proteolytic conversion of proBDNF to mBDNF at nerve terminals. In Xenopus nerve-muscle cocultures, in which two motoneurons innervate one myocyte, proBDNF-p75(NTR) signaling promotes retraction of the less active terminal, whereas mBDNF-tyrosine-related kinase B (TrkB) p75NTR (p75 neurotrophin receptor) facilitates stabilization of the active one. Thus, proBDNF and mBDNF may serve as potential "punishment" and "reward" signals for inactive and active terminals, respectively, and activity-dependent conversion of proBDNF to mBDNF may regulate synapse elimination.

  15. Early enriched environment induces an increased conversion of proBDNF to BDNF in the adult rat's hippocampus.

    Science.gov (United States)

    Cao, Wenyu; Duan, Juan; Wang, Xueqin; Zhong, Xiaolin; Hu, Zhaolan; Huang, Fulian; Wang, Hongtao; Zhang, Juan; Li, Fang; Zhang, Jianyi; Luo, Xuegang; Li, Chang-Qi

    2014-05-15

    An enriched environment has been shown to influence brain plasticity and function by involving the action of brain-derived neurotrophic factor (BDNF). BDNF, which is synthesized as a precursor molecule (proBDNF) that undergoes proteolytic cleavage, plays an important role in synaptic plasticity and contributes to several brain functions such as memory, learning, and behavior. The neurotrophins and proneurotrophins often play opposite roles in the brain, suggesting that proteolytic cleavage of proneurotrophins controls the action of neurotrophins. However, few studies have focused on the expression and cleavage of proBDNF after exposure to an enriched environment. Our study aimed to explore the effects of an early-enriched environment on the conversion of proBDNF to BDNF in the adult rats' hippocampus. We found that there was no difference in the expression of proBDNF in the hippocampus between the SE (standard environment) and EE (enriched environment) rats, but a significantly increased BDNF protein level was found in the EE rats. Thus, a remarkably enhanced ratio of BDNF to proBDNF (BDNF/proBDNF) was observed in the EE rats. In addition, the EE resulted in a remarkably up-regulated matrix metalloproteinase-9 (MMP-9) in the hippocampus, which played a key role in converting proBDNF to BDNF in the extracellular space. Furthermore, the expression of synapse-related proteins (NR1 and NR2A) was analyzed, and the results indicated that EE could significantly increase the expression of NR1 and NR2A in the hippocampus. In addition, the behavioral results showed that EE reduced anxiety-like behavior in the elevated-plus maze test and reduced immobility time in the forced swimming test. Moreover, the EE resulted in an increased preference for sucrose compared to the SE. These results suggested that the EE up-regulated MMP-9 levels within the hippocampus, which might facilitate the conversion of proBDNF to BDNF, thereby contributing to the long lasting alterations of

  16. Lack of neural compensatory mechanisms of BDNF val66met met carriers and APOE E4 carriers in healthy aging, mild cognitive impairment, and Alzheimer's disease.

    Science.gov (United States)

    Gomar, Jesus J; Conejero-Goldberg, Concepcion; Huey, Edward D; Davies, Peter; Goldberg, Terry E

    2016-03-01

    Compromises in compensatory neurobiologic mechanisms due to aging and/or genetic factors (i.e., APOE gene) may influence brain-derived neurotrophic factor (BDNF) val66met polymorphism effects on temporal lobe morphometry and memory performance. We studied 2 cohorts from Alzheimer's Disease Neuroimaging Initiative: 175 healthy subjects and 222 with prodromal and established Alzheimer's disease. Yearly structural magnetic resonance imaging and cognitive performance assessments were carried out over 3 years of follow-up. Both cohorts had similar BDNF Val/Val and Met allele carriers' (including both Val/Met and Met/Met individuals) distribution. In healthy subjects, a significant trend for thinner posterior cingulate and precuneus cortices was detected in Met carriers compared to Val homozygotes in APOE E4 carriers, with large and medium effect sizes, respectively. The mild cognitive impairment/Alzheimer's disease cohort showed a longitudinal decline in entorhinal thickness in BDNF Met carriers compared to Val/Val in APOE E4 carriers, with effect sizes ranging from medium to large. In addition, an effect of BDNF genotype was found in APOE E4 carriers for episodic memory (logical memory and ADAS-Cog) and semantic fluency measures, with Met carriers performing worse in all cases. These findings suggest a lack of compensatory mechanisms in BDNF Met carriers and APOE E4 carriers in healthy and pathological aging.

  17. Brain-Derived Neurotrophic Factor (BDNF) Val66Met Polymorphism Differentially Predicts Hippocampal Function in Medication-Free Patients with Schizophrenia

    Science.gov (United States)

    Eisenberg, Daniel Paul; Ianni, Angela M.; Wei, Shau-Ming; Kohn, Philip D.; Kolachana, Bhaskar; Apud, José; Weinberger, Daniel R.; Berman, Karen F.

    2012-01-01

    A Val66Met single nucleotide polymorphism (SNP) in the brain-derived neurotrophic factor (BDNF) gene impairs activity-dependent BDNF release in cultured hippocampal neurons and predicts impaired memory and exaggerated basal hippocampal activity in healthy humans. Several clinical genetic association studies, along with multi-modal evidence for hippocampal dysfunction in schizophrenia indirectly suggest a relationship between schizophrenia and genetically-determined BDNF function in the hippocampus. To directly test this hypothesized relationship, we studied 47 medication-free patients with schizophrenia or schizoaffective disorder and 74 healthy comparison individuals with genotyping for the Val66Met SNP and [15O]H2O positron emission tomography (PET) to measure resting and working memory-related hippocampal regional cerebral blood flow (rCBF). In patients, harboring a Met allele was associated with significantly less hippocampal rCBF. This finding was opposite to the genotype effect seen in healthy participants, resulting in a significant diagnosis-by-genotype interaction. Exploratory analyses of interregional resting rCBF covariation revealed a specific and significant diagnosis-by-genotype interaction effect on hippocampal-prefrontal coupling. A diagnosis-by-genotype interaction was also found for working-memory related hippocampal rCBF change, which was uniquely attenuated in Met allele-carrying patients. Thus, both task-independent and task-dependent hippocampal neurophysiology accommodates a Met allelic background differently in patients with schizophrenia than in control subjects. Potentially consistent with the hypothesis that cellular sequelae of the BDNF Val66Met SNP interface with aspects of schizophrenic hippocampal and frontotemporal dysfunction, these results warrant future investigation to understand the contributions of unique patient trait or state variables to these robust interactions. PMID:23319002

  18. Desmanthus GENOTYPES

    Directory of Open Access Journals (Sweden)

    JOSÉ HENRIQUE DE ALBUQUERQUE RANGEL

    2015-01-01

    Full Text Available Desmanthus is a genus of forage legumes with potential to improve pastures and livestock produc-tion on clay soils of dry tropical and subtropical regions such as the existing in Brazil and Australia. Despite this patterns of natural or enforced after-ripening of Desmanthus seeds have not been well established. Four year old seed banks of nine Desmanthus genotypes at James Cook University were accessed for their patterns of seed softe-ning in response to a range of temperatures. Persistent seed banks were found to exist under all of the studied ge-notypes. The largest seeds banks were found in the genotypes CPI 78373 and CPI 78382 and the smallest in the genotypes CPI’s 37143, 67643, and 83563. An increase in the percentage of softened seeds was correlated with higher temperatures, in two patterns of response: in some accessions seeds were not significantly affected by tempe-ratures below 80º C; and in others, seeds become soft when temperature rose to as little as 60 ºC. At 80 °C the heat started to depress germination. High seed production of Desmanthus associated with dependence of seeds on eleva-ted temperatures to softening can be a very important strategy for plants to survive in dry tropical regions.

  19. Behavioral phenotype and BDNF differences related to apoE isoforms and sex in young transgenic mice

    DEFF Research Database (Denmark)

    Reverte, Ingrid; Klein, Anders Bue; Ratner, Cecilia;

    2012-01-01

    , very little information is available on apoE2 genotype. In the present study, we have characterized behavioral and learning phenotypes in young transgenic mice apoE2, apoE3 and apoE4 of both sexes. We have also determined the levels of brain-derived neurotrophic factor (BDNF) and its receptor Trk...... in the exploration of an open-field, which is compatible with a hyperactive behavior, was found in apoE2 females, while a decreased activity was observed in apoE4 mice. Increased BDNF levels in the frontal cortex were observed in apoE2 mice compared to apoE3. These results underscore behavioral differences between...

  20. Imipramine reverses alterations in cytokines and BDNF levels induced by maternal deprivation in adult rats.

    Science.gov (United States)

    Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Ribeiro, Karine F; Petronilho, Fabrícia; Vuolo, Francieli; Colpo, Gabriela D; Pfaffenseller, Bianca; Kapczinski, Flávio; Dal-Pizzol, Felipe; Quevedo, João

    2013-04-01

    A growing body of evidence is pointing toward an association between immune molecules, as well brain-derived neurotrophic factor (BDNF) and the depression. The present study was aimed to evaluate the behavioral and molecular effects of the antidepressant imipramine in maternally deprived adult rats. To this aim, maternally deprived and non-deprived (control group) male rats were treated with imipramine (30mg/kg) once a day for 14 days during their adult phase. Their behavior was then assessed using the forced swimming test. In addition to this, IL-10, TNF-α and IL-1β cytokines were assessed in the serum and cerebrospinal fluid (CSF). In addition, BDNF protein levels were assessed in the prefrontal cortex, hippocampus and amygdala. In deprived rats treated with saline was observed an increase on immobility time, compared with non-deprived rats treated with imipramine (pimipramine treatment reversed the effects of maternal deprivation on BDNF and cytokines levels (pimipramine, it is suggested that classic antidepressants could exert their effects by modulating the immune system.

  1. Ethanol-BDNF interactions: still more questions than answers.

    Science.gov (United States)

    Davis, Margaret I

    2008-04-01

    Brain-derived neurotrophic factor (BDNF) has emerged as a regulator of development, plasticity and, recently, addiction. Decreased neurotrophic activity may be involved in ethanol-induced neurodegeneration in the adult brain and in the etiology of alcohol-related neurodevelopmental disorders. This can occur through decreased expression of BDNF or through inability of the receptor to transduce signals in the presence of ethanol. In contrast, recent studies implicate region-specific up-regulation of BDNF and associated signaling pathways in anxiety, addiction and homeostasis after ethanol exposure. Anxiety and depression are precipitating factors for substance abuse and these disorders also involve region-specific changes in BDNF in both pathogenesis and response to pharmacotherapy. Polymorphisms in the genes coding for BDNF and its receptor TrkB are linked to affective, substance abuse and appetitive disorders and therefore may play a role in the development of alcoholism. This review summarizes historical and pre-clinical data on BDNF and TrkB as it relates to ethanol toxicity and addiction. Many unresolved questions about region-specific changes in BDNF expression and the precise role of BDNF in neuropsychiatric disorders and addiction remain to be elucidated. Resolution of these questions will require significant integration of the literature on addiction and comorbid psychiatric disorders that contribute to the development of alcoholism.

  2. THE ROLE OF BDNF IN THE DEVELOPMENT OF FEAR LEARNING

    Science.gov (United States)

    Dincheva, Iva; Lynch, Niccola B.; Lee, Francis S.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a growth factor that is dynamically expressed in the brain across postnatal development, regulating neuronal differentiation and synaptic plasticity. The neurotrophic hypothesis of psychiatric mood disorders postulates that in the adult brain, decreased BDNF levels leads to altered neural plasticity, contributing to disease. Although BDNF has been established as a key factor regulating the critical period plasticity in the developing visual system, it has recently been shown to also play a role in fear circuitry maturation, which has implications for the emergence of fear-related mood disorders. This review provides a detailed overview of developmental changes in expression of BDNF isoforms, as well as their receptors across postnatal life. In addition, recent developmental studies utilizing a genetic BDNF single nucleotide polymorphism (Val66Met) knock-in mouse highlight the impact of BDNF on fear learning during a sensitive period spanning the transition into adolescent time frame. We hypothesize that BDNF in the developing brain regulates fear circuit plasticity during a sensitive period in early adolescence, and alterations in BDNF expression (genetic or environmental) have a persistent impact on fear behavior and fear-related disorders. PMID:27699937

  3. Glioactive ATP controls BDNF recycling in cortical astrocytes

    Science.gov (United States)

    Vignoli, Beatrice; Canossa, Marco

    2017-01-01

    ABSTRACT We have recently reported that long-term memory retention requires synaptic glia for proBDNF uptake and recycling. Through the recycling course, glial cells release endocytic BDNF, a mechanism that is activated in response to glutamate via AMPA and mGluRI/II receptors. Cortical astrocytes express receptors for many different transmitters suggesting for a complex signaling controlling endocytic BDNF secretion. Here, we demonstrated that the extracellular nucleotide ATP, activating P2X and P2Y receptors, regulates endocytic BDNF secretion in cultured astrocytes. Our data indicate that distinct glioactive molecules can participate in BDNF glial recycling and suggest that cortical astrocytes contributing to neuronal plasticity can be influenced by neurotransmitters in tune with synaptic needs.

  4. Endurance training enhances BDNF release from the human brain

    DEFF Research Database (Denmark)

    Seifert, Thomas; Brassard, Patrice; Wissenberg, Mads

    2010-01-01

    The circulating level of brain-derived neurotrophic factor (BDNF) is reduced in patients with major depression and type-2 diabetes. Because acute exercise increases BDNF production in the hippocampus and cerebral cortex, we hypothesized that endurance training would enhance the release of BDNF from...... the human brain as detected from arterial and internal jugular venous blood samples. In a randomized controlled study, 12 healthy sedentary males carried out 3 mo of endurance training (n = 7) or served as controls (n = 5). Before and after the intervention, blood samples were obtained at rest and during...... exercise. At baseline, the training group (58 + or - 106 ng x 100 g(-1) x min(-1), means + or - SD) and the control group (12 + or - 17 ng x 100 g(-1) x min(-1)) had a similar release of BDNF from the brain at rest. Three months of endurance training enhanced the resting release of BDNF to 206 + or - 108...

  5. T3SS-dependent differential modulations of the jasmonic acid pathway in susceptible and resistant genotypes of Malus spp. challenged with Erwinia amylovora.

    Science.gov (United States)

    Dugé De Bernonville, Thomas; Gaucher, Matthieu; Flors, Victor; Gaillard, Sylvain; Paulin, Jean-Pierre; Dat, James F; Brisset, Marie-Noëlle

    2012-06-01

    Fire blight is a bacterial disease of Maloideae caused by Erwinia amylovora (Ea). This necrogenic enterobacterium uses a type III secretion system (T3SS) to inject type III effectors into the plant cells to cause disease on its susceptible hosts, including economically important crops like apple and pear. The expressions of marker genes of the salicylic acid (SA) and jasmonic acid (JA) defense regulation pathways were monitored by RT-qPCR in leaves of two apple genotypes, one susceptible and one resistant, challenged with a wild type strain, a T3SS-deficient strain or water. The transcriptional data taken together with hormone level measurements indicated that the SA pathway was similarly induced in both apple genotypes during infection by Ea. On the contrary, the data clearly showed a strong T3SS-dependent down-regulation of the JA pathway in leaves of the susceptible genotype but not in those of the resistant one. Accordingly, methyl-jasmonate treated susceptible plants displayed an increased resistance to Ea. Bacterial mutant analysis indicated that JA manipulation by Ea mainly relies on the type III effector DspA/E. Taken together, our data suggest that the T3SS-dependent down-regulation of the JA pathway is a critical step in the infection process of Malus spp. by Ea.

  6. Temperature rise after peginterferon alfa-2a injection in patients with chronic hepatitis C is associated with virological response and is modulated by IL28B genotype

    Science.gov (United States)

    Han, Hwalih; Noureddin, Mazen; Witthaus, Michael; Park, Yoon J.; Hoofnagle, Jay H.; Liang, T. Jake; Rotman, Yaron

    2013-01-01

    Background & Aims Interferon treatment for chronic hepatitis C is associated with non-specific symptoms including fever. We aimed to determine the association of temperature changes with interferon antiviral activity. Methods 60 treatment-naïve patients with chronic hepatitis C (67% genotype 1/4/6, 33% genotype 2/3) were admitted to start peginterferon alfa-2a and ribavirin in a clinical trial. Temperature was measured at baseline and 3 times daily for the first 24 h and the maximal increase from baseline during that time (Δ Tmax) was determined. Serum HCV-RNA, interferon-gamma-inducible protein-10 (IP-10) and expression of interferon-stimulated genes (ISGs – CD274, ISG15, RSAD2, IRF7, CXCL10) in peripheral blood mononuclear cells (PBMCs) were measured at very early time points, and response kinetics calculated. The IL28B single nucleotide polymorphism, rs12979860, was genotyped. Results Temperatures rose by 1.2 ± 0.8 °C, peaking after 12.5 h. ΔTmax was strongly associated with 1st phase virological decline (r = 0.59, p Elsevier B.V. on behalf of the European Association for the Study of the Liver. PMID:23850879

  7. Working Memory Deficits, Increased Anxiety-Like Traits, and Seizure Susceptibility in BDNF Overexpressing Mice

    Science.gov (United States)

    Papaleo, Francesco; Silverman, Jill L.; Aney, Jordan; Tian, Qingjun; Barkan, Charlotte L.; Chadman, Kathryn K.; Crawley, Jacqueline N.

    2011-01-01

    BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher…

  8. New insights in the biology of BDNF synthesis and release: implications in CNS function.

    Science.gov (United States)

    Greenberg, Michael E; Xu, Baoji; Lu, Bai; Hempstead, Barbara L

    2009-10-14

    BDNF has pleiotropic effects on neuronal development and synaptic plasticity that underlie circuit formation and cognitive function. Recent breakthroughs reveal that neuronal activity regulates BDNF cell biology, including Bdnf transcription, dendritic targeting and trafficking of BDNF mRNA and protein, and secretion and extracellular conversion of proBDNF to mature BDNF. Defects in these mechanisms contribute differentially to cognitive dysfunction and anxiety-like behaviors. Here we review recent studies, presented at a symposium at Neuroscience 2009, that describe regulatory mechanisms that permit rapid and dynamic refinement of BDNF actions in neurons.

  9. BDNF, produced by a TPO-stimulated megakaryocytic cell line, regulates autocrine proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Shogo [Graduate School of Health Sciences, Hokkaido University, Sapporo (Japan); Research Fellow of the Japan Society for the Promotion of Science, Tokyo (Japan); Nagasawa, Ayumi; Masuda, Yuya; Tsunematsu, Tetsuya [Graduate School of Health Sciences, Hokkaido University, Sapporo (Japan); Hayasaka, Koji; Matsuno, Kazuhiko; Shimizu, Chikara [Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo (Japan); Ozaki, Yukio [Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi (Japan); Moriyama, Takanori, E-mail: moriyama@hs.hokuda.ac.jp [Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo (Japan)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer It has been thought that BDNF is not produced in the megakaryocytic lineage. Black-Right-Pointing-Pointer MEG-01 produces BDNF upon TPO stimulation and regulates its proliferation. Black-Right-Pointing-Pointer BDNF accelerates proliferation of MEG-01 in an autocrine manner. Black-Right-Pointing-Pointer BDNF may be an autocrine MEG-CSF, which regulates megakaryopoiesis. -- Abstract: While human platelets release endogenous brain-derived neurotrophic factor (BDNF) upon activation, a previous report on MEG-01, a megakaryocytic cell line, found no trace of BDNF production, and the pathophysiological function of platelet BDNF has remained elusive. In the present study, we demonstrate that MEG-01 produces BDNF in the presence of TPO and that this serves to potentiate cell proliferation. Our in vitro findings suggest that BDNF regulates MEG-01 proliferation in an autocrine manner, and we suggest that BDNF may be a physiological autocrine regulator of megakaryocyte progenitors.

  10. BDNF downregulates 5-HT(2A) receptor protein levels in hippocampal cultures

    DEFF Research Database (Denmark)

    Trajkovska, V; Santini, M A; Marcussen, Anders Bue;

    2009-01-01

    Both brain-derived neurotrophic factor (BDNF) and the serotonin receptor 2A (5-HT(2A)) have been related to depression pathology. Specific 5-HT(2A) receptor changes seen in BDNF conditional mutant mice suggest that BDNF regulates the 5-HT(2A) receptor level. Here we show a direct effect of BDNF...... on 5-HT(2A) receptor protein levels in primary hippocampal neuronal and mature hippocampal organotypic cultures exposed to different BDNF concentrations for either 1, 3, 5 or 7 days. In vivo effects of BDNF on hippocampal 5-HT(2A) receptor levels were further corroborated in (BDNF +/-) mice...... with reduced BDNF levels. In primary neuronal cultures, 7 days exposure to 25 and 50ng/mL BDNF resulted in downregulation of 5-HT(2A), but not of 5-HT(1A), receptor protein levels. The BDNF-associated downregulation of 5-HT(2A) receptor levels was also observed in mature hippocampal organotypic cultures...

  11. Increased BDNF levels in long-term bipolar disorder patients

    Directory of Open Access Journals (Sweden)

    Izabela Guimarães Barbosa

    2013-03-01

    Full Text Available INTRODUCTION: Bipolar disorder (BD is a prevalent, chronic and progressive illness. There is a growing body of evidence indicating that brain-derived neurotrophic factor (BDNF plays an important role in the pathophysiology of BD. OBJECTIVE: The aim of this study was to evaluate BDNF plasma levels in BD patients with long term illness in comparison with controls. METHODS: 87 BD type I patients and 58 controls matched by age, gender and education level were enrolled in this study. All subjects were assessed by the Mini-International Neuropsychiatric Interview and the patients by the Young Mania Rating Scale and the Hamilton Depression Rating Scale. The plasma levels of BDNF were measured by ELISA. RESULTS: On average, patients had suffered from BD for 23.4 years. In comparison with controls, BD patients with mania presented a 1.90-fold increase in BDNF plasma levels (p = .001, while BD patients in remission presented a 1.64-fold increase in BDNF plasma levels (p = .03. BDNF plasma levels were not influenced by age, length of illness or current medications. CONCLUSIONS: The present study suggests that long-term BD patients exhibit increased circulating levels of BDNF.

  12. A Case-Control Study and Meta-Analysis Reveal BDNF Val66Met Is a Possible Risk Factor for PTSD

    Directory of Open Access Journals (Sweden)

    Dagmar Bruenig

    2016-01-01

    Full Text Available Posttraumatic stress disorder (PTSD is a debilitating condition that develops in some people after exposure to a traumatic event. Brain-derived neurotrophic factor (BDNF is highly expressed in the mammalian brain and is thought to be involved in learning and memory processes. A nonsynonymous polymorphism in the BDNF gene, rs6265 (Val66Met, has been hypothesised to be associated with PTSD. Association studies examining the Val66Met polymorphism and PTSD have been inconclusive, likely due to the variability in type of trauma exposure analysed. Vietnam veterans (n=257 screened for PTSD and controlled for trauma exposure were genotyped for BDNF Val66Met. The association was not significant so we incorporated our data into a meta-analysis to obtain greater statistical power. A comprehensive search of more than 1237 articles revealed eight additional studies suitable for meta-analysis (n=3625. A random-effects meta-analysis observed a potential protective factor of the Val/Val genotype. After removing two studies with violation of Hardy-Weinberg equilibrium, findings for the Val/Val genotype reached significance. Subgroup analyses confirmed a trend for this finding. Limitations of some studies that inform this meta-analysis include poorly screened controls and a lack of examination of population stratification. Effectively designed studies should inform this line of research in the future.

  13. Inhibition of BDNF-AS Provides Neuroprotection for Retinal Ganglion Cells against Ischemic Injury

    OpenAIRE

    Xu, Lifang; Zhang, Ziyin; Xie, Tianhua; Zhang, Xiaoyang; Dai, Tu

    2016-01-01

    Background: Brain-derived neurotrophic factor (BDNF) protects retinal ganglion cells against ischemia in ocular degenerative diseases. We aimed to determine the effect of BDNF-AS on the ischemic injury of retinal ganglion cells. Methods: The levels of BDNF and BDNF-AS were measured in retinal ganglion cells subjected to oxygen and glucose deprivation. The lentiviral vectors were constructed to either overexpress or knock out BDNF-AS. The luciferase reporter gene assay was used to determine wh...

  14. Elevation of Ser9 phosphorylation of GSK3β is required for HERV-W env-mediated BDNF signaling in human U251 cells.

    Science.gov (United States)

    Qin, Chengchen; Li, Shan; Yan, Qiujin; Wang, Xiuling; Chen, Yatang; Zhou, Ping; Lu, Mengxin; Zhu, Fan

    2016-08-03

    Human endogenous retrovirus W family (HERV-W) envelope (env) is known to be associated with neurological and psychiatric disorders, such as multiple sclerosis and schizophrenia. Previous studies showed that overexpression of HERV-W env could induce brain-derived neurotrophic factor (BDNF) gene expression. In human and rat cells, BDNF-mediated signal transduction might be modulated by glycogen synthase kinase 3β (GSK3β). Both BDNF and GSK3β are schizophrenia-related genes. In this paper, we investigated whether GSK3β was involved in the HERV-W env-induced expression of BDNF. We found that HERV-W env increased phosphorylation of GSK3β at Ser9 (p-GSK3β (Ser9)) and the ratio of p-GSK3β (Ser9) to total GSK3β (pW env led to a 36.2% reduction in GSK3β activity compared to control (pW env might activate the GSK3β signaling pathway in U251 cells. Further, knockdown of GSK3β reduced the expression of total GSK3β, p-GSK3β (Ser9), and the ratio of p-GSK3β (Ser9) to total GSK3β by 28.6%, 50.4%, and 30.2%, respectively (pW env-induced BDNF expression, and will hopefully improve our understanding of the role of HERV-W env in neurological and psychiatric diseases (schizophrenia, etc).

  15. Alterations in grooming activity and syntax in heterozygous SERT and BDNF knockout mice: the utility of behavior-recognition tools to characterize mutant mouse phenotypes.

    Science.gov (United States)

    Kyzar, Evan J; Pham, Mimi; Roth, Andrew; Cachat, Jonathan; Green, Jeremy; Gaikwad, Siddharth; Kalueff, Allan V

    2012-12-01

    Serotonin transporter (SERT) and brain-derived neurotrophic factor (BDNF) are key modulators of molecular signaling, cognition and behavior. Although SERT and BDNF mutant mouse phenotypes have been extensively characterized, little is known about their self-grooming behavior. Grooming represents an important behavioral domain sensitive to environmental stimuli and is increasingly used as a model for repetitive behavioral syndromes, such as autism and attention deficit/hyperactivity disorder. The present study used heterozygous ((+/-)) SERT and BDNF male mutant mice on a C57BL/6J background and assessed their spontaneous self-grooming behavior applying both manual and automated techniques. Overall, SERT(+/-) mice displayed a general increase in grooming behavior, as indicated by more grooming bouts and more transitions between specific grooming stages. SERT(+/-) mice also aborted more grooming bouts, but showed generally unaltered activity levels in the observation chamber. In contrast, BDNF(+/-) mice displayed a global reduction in grooming activity, with fewer bouts and transitions between specific grooming stages, altered grooming syntax, as well as hypolocomotion and increased turning behavior. Finally, grooming data collected by manual and automated methods (HomeCageScan) significantly correlated in our experiments, confirming the utility of automated high-throughput quantification of grooming behaviors in various genetic mouse models with increased or decreased grooming phenotypes. Taken together, these findings indicate that mouse self-grooming behavior is a reliable behavioral biomarker of genetic deficits in SERT and BDNF pathways, and can be reliably measured using automated behavior-recognition technology.

  16. Physical Exercise and Antidepressants Enhance BDNF Targeting in Hippocampal CA3 Dendrites: Further Evidence of a Spatial Code for BDNF Splice Variants

    OpenAIRE

    Baj, Gabriele; D'Alessandro, Valentina; Musazzi, Laura; Mallei, Alessandra; Sartori, Cesar R; Sciancalepore, Marina; Tardito, Daniela; Langone, Francesco; Popoli, Maurizio; Tongiorgi, Enrico

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is encoded by multiple BDNF transcripts, whose function is unclear. We recently showed that a subset of BDNF transcripts can traffic into distal dendrites in response to electrical activity, while others are segregated into the somatoproximal domains. Physical exercise and antidepressant treatments exert their beneficial effects through upregulation of BDNF, which is required to support survival and differentiation of newborn dentate gyrus (DG) neurons...

  17. Expression and Dendritic Trafficking of BDNF-6 Splice Variant are Impaired in Knock-In Mice Carrying Human BDNF Val66Met Polymorphism

    OpenAIRE

    Mallei, A.; Baj, G.; Ieraci, A.; Corna, S.; Musazzi, L.; Lee, F S; Tongiorgi, E.; Popoli, M.

    2015-01-01

    Background: The human Val66Met polymorphism in brain-derived neurotrophic factor (BDNF), a key factor in neuroplasticity, synaptic function, and cognition, has been implicated in the pathophysiology of neuropsychiatric and neurodegenerative disorders. BDNF is encoded by multiple transcripts with distinct regulation and localization, but the impact of the Val66Met polymorphism on BDNF regulation remains unclear. Methods: In BDNF Val66Met knock-in mice, which recapitulate the phenotypic hallmar...

  18. Functional interactions between steroid hormones and neurotrophin BDNF

    Institute of Scientific and Technical Information of China (English)

    Tadahiro; Numakawa; Daisaku; Yokomaku; Misty; Richards; Hiroaki; Hori; Naoki; Adachi; Hiroshi; Kunugi

    2010-01-01

    Brain-derived neurotrophic factor(BDNF),a critical neurotrophin,regulates many neuronal aspects including cell differentiation,cell survival,neurotransmission,and synaptic plasticity in the central nervous system(CNS) .Though BDNF has two types of receptors,high affinity tropomyosin-related kinase(Trk) B and low affinity p75 receptors,BDNF positively exerts its biological effects on neurons via activation of TrkB and of resultant intracellular signaling cascades including mitogenactivated protein kinase/extracellular signal-regulated protein kinase,phospholipase Cγ,and phosphoinositide 3-kinase pathways.Notably,it is possible that alteration in the expression and/or function of BDNF in the CNS is involved in the pathophysiology of various brain diseases such as stroke,Parkinson’s disease,Alzheimer’s disease,and mental disorders.On the other hand,glucocorticoids,stress-induced steroid hormones,also putatively contribute to the pathophysiology of depression.Interestingly,in addition to the reduction in BDNF levels due to increased glucocorticoid exposure,current reports demonstrate possible interactions between glucocorticoids and BDNF-mediated neuronal functions. Other steroid hormones,such as estrogen,are involved in not only sexual differentiation in the brain,but also numerous neuronal events including cell survival and synaptic plasticity.Furthermore,it is well known that estrogen plays a role in the pathophysiology of Parkinson’s disease,Alzheimer’s disease,and mental illness,while serving to regulate BDNF expression and/or function.Here,we present a broad overview of the current knowledge concerning the association between BDNF expression/function and steroid hormones(glucocorticoids and estrogen).

  19. Ethanol-BDNF interactions: Still More Questions than Answers

    OpenAIRE

    Davis, Margaret I.

    2008-01-01

    Brain Derived Neurotrophic Factor (BDNF) has emerged as a regulator of development, plasticity and, recently, addiction. Decreased neurotrophic activity may be involved in ethanol-induced neurodegeneration in the adult brain and in the etiology of alcohol-related neurodevelopmental disorders. This can occur through decreased expression of BDNF or through inability of the receptor to transduce signals in the presence of ethanol. In contrast, recent studies implicate region-specific up-regulati...

  20. BDNF Val66Met moderates memory impairment, hippocampal function and tau in preclinical autosomal dominant Alzheimer's disease.

    Science.gov (United States)

    Lim, Yen Ying; Hassenstab, Jason; Cruchaga, Carlos; Goate, Alison; Fagan, Anne M; Benzinger, Tammie L S; Maruff, Paul; Snyder, Peter J; Masters, Colin L; Allegri, Ricardo; Chhatwal, Jasmeer; Farlow, Martin R; Graff-Radford, Neill R; Laske, Christoph; Levin, Johannes; McDade, Eric; Ringman, John M; Rossor, Martin; Salloway, Stephen; Schofield, Peter R; Holtzman, David M; Morris, John C; Bateman, Randall J

    2016-10-01

    SEE ROGAEVA AND SCHMITT-ULMS DOI101093/AWW201 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is implicated in synaptic excitation and neuronal integrity, and has previously been shown to moderate amyloid-β-related memory decline and hippocampal atrophy in preclinical sporadic Alzheimer's disease. However, the effect of BDNF in autosomal dominant Alzheimer's disease is unknown. We aimed to determine the effect of BDNF Val66Met on cognitive function, hippocampal function, tau and amyloid-β in preclinical autosomal dominant Alzheimer's disease. We explored effects of apolipoprotein E (APOE) ε4 on these relationships. The Dominantly Inherited Alzheimer Network conducted clinical, neuropsychological, genetic, biomarker and neuroimaging measures at baseline in 131 mutation non-carriers and 143 preclinical autosomal dominant Alzheimer's disease mutation carriers on average 12 years before clinical symptom onset. BDNF genotype data were obtained for mutation carriers (95 Val66 homozygotes, 48 Met66 carriers). Among preclinical mutation carriers, Met66 carriers had worse memory performance, lower hippocampal glucose metabolism and increased levels of cerebrospinal fluid tau and phosphorylated tau (p-tau) than Val66 homozygotes. Cortical amyloid-β and cerebrospinal fluid amyloid-β42 levels were significantly different from non-carriers but did not differ between preclinical mutation carrier Val66 homozygotes and Met66 carriers. There was an effect of APOE on amyloid-β levels, but not cognitive function, glucose metabolism or tau. As in sporadic Alzheimer's disease, the deleterious effects of amyloid-β on memory, hippocampal function, and tau in preclinical autosomal dominant Alzheimer's disease mutation carriers are greater in Met66 carriers. To date, this is the only genetic factor found to moderate downstream effects of amyloid-β in autosomal dominant Alzheimer's disease.

  1. A simple role for BDNF in learning and memory?

    Directory of Open Access Journals (Sweden)

    Carla Cunha

    2010-02-01

    Full Text Available Since its discovery almost three decades ago, the secreted neurotrophin brain-derived neurotrophic factor (BDNF has been firmly implicated in the differentiation and survival of neurons of the CNS. More recently, BDNF has also emerged as an important regulator of synaptogenesis and synaptic plasticity mechanisms underlying learning and memory in the adult CNS. In this review we will discuss our knowledge about the multiple intracellular signalling pathways activated by BDNF, and the role of this neurotrophin in long-term synaptic plasticity and memory formation as well as in synaptogenesis. We will show that maturation of BDNF, its cellular localisation and its ability to regulate both excitatory and inhibitory synapses in the CNS may result in conflicting alterations in synaptic plasticity and memory formation. Lack of a precise knowledge about the mechanisms by which BDNF influences higher cognitive functions and complex behaviours may constitute a severe limitation in the possibility to devise BDNF-based therapeutics for human disorders of the CNS.

  2. Requirement for BDNF in the reconsolidation of fear extinction.

    Science.gov (United States)

    Radiske, Andressa; Rossato, Janine I; Köhler, Cristiano A; Gonzalez, Maria Carolina; Medina, Jorge H; Cammarota, Martín

    2015-04-22

    Therapies based on the impairment of reconsolidation or the enhancement of extinction offer the possibility of decreasing the persistent recollection of distressing memories. However, the direct interplay between reconsolidation and extinction has rarely been considered. Previously, we reported that reactivation induces reconsolidation of fear extinction memory. Here, using a step-down inhibitory avoidance learning paradigm in rats, we show that intrahippocampus infusion of function-blocking anti-BDNF antibody immediately or 6 h after extinction memory reactivation impairs the reconsolidation of extinction. Extinction memory reactivation increases proBDNF, BDNF, and tropomyosin receptor kinase B (TrkB) phosphorylation levels in dorsal CA1, while blocking BDNF maturation in the hippocampus with plasminogen activator inhibitor 1 hinders the persistence of extinction and induces the recurrence of fear. Moreover, coinfusion of recombinant BDNF (0.25 μg/side) after extinction memory reactivation impedes the recovery of the avoidance response induced by inhibiting gene expression and protein synthesis in the dorsal hippocampus. Our findings unravel a new role for BDNF, suggesting that this neurotrophin is necessary and sufficient to maintain the reactivated fear extinction engram.

  3. Analysis of the Expression and Polymorphism of APOE, HSP, BDNF, and GRIN2B Genes Associated with the Neurodegeneration Process in the Pathogenesis of Primary Open Angle Glaucoma

    Directory of Open Access Journals (Sweden)

    Alicja Nowak

    2015-01-01

    Full Text Available Glaucoma is characterized by optic neuropathy of the RGC or retinal nerve fiber. The aim of this study was to evaluate a relationship between the neurodegenerative genes’ polymorphisms of the APOE (rs449647, BDNF (rs2030324, GRIN2B (rs3764028, and HSP70-1 (rs1043618 and the occurrence risk of POAG and to investigate its effect on allele-specific gene expression. Genomic DNA was extracted from peripheral blood. Analysis of the genes’ polymorphisms was performed using PCR-RFLP. The level of mRNA expression was determined by QRT-PCR. We showed a statistically significant association of BDNF and APOE genes’ polymorphisms with a risk of POAG occurrence. There was a statistically significant association of the rs2030324 polymorphism with progression of POAG based on cup disc ratio value and rs1043618 polymorphism based on nerve fiber index and rim area. Furthermore, we found that mean HSP70-1 mRNA expression was significantly lower in the case of individuals with the G/G genotype than in the case of minor allele carriers, that is, G/C and C/C. We also found that BDNF and HSP70-1 expression level are associated with the progression of POAG based on rim area value. In conclusion, our results suggest that BDNF, APOE, and HSP70-1 genes might be associated with a risk of POAG occurrence in the Polish population.

  4. Analysis of the expression and polymorphism of APOE, HSP, BDNF, and GRIN2B genes associated with the neurodegeneration process in the pathogenesis of primary open angle glaucoma.

    Science.gov (United States)

    Nowak, Alicja; Majsterek, Ireneusz; Przybyłowska-Sygut, Karolina; Pytel, Dariusz; Szymanek, Katarzyna; Szaflik, Jerzy; Szaflik, Jacek P

    2015-01-01

    Glaucoma is characterized by optic neuropathy of the RGC or retinal nerve fiber. The aim of this study was to evaluate a relationship between the neurodegenerative genes' polymorphisms of the APOE (rs449647), BDNF (rs2030324), GRIN2B (rs3764028), and HSP70-1 (rs1043618) and the occurrence risk of POAG and to investigate its effect on allele-specific gene expression. Genomic DNA was extracted from peripheral blood. Analysis of the genes' polymorphisms was performed using PCR-RFLP. The level of mRNA expression was determined by QRT-PCR. We showed a statistically significant association of BDNF and APOE genes' polymorphisms with a risk of POAG occurrence. There was a statistically significant association of the rs2030324 polymorphism with progression of POAG based on cup disc ratio value and rs1043618 polymorphism based on nerve fiber index and rim area. Furthermore, we found that mean HSP70-1 mRNA expression was significantly lower in the case of individuals with the G/G genotype than in the case of minor allele carriers, that is, G/C and C/C. We also found that BDNF and HSP70-1 expression level are associated with the progression of POAG based on rim area value. In conclusion, our results suggest that BDNF, APOE, and HSP70-1 genes might be associated with a risk of POAG occurrence in the Polish population.

  5. Expression of BDNF and TrkB Phosphorylation in the Rat Frontal Cortex During Morphine Withdrawal are NO Dependent.

    Science.gov (United States)

    Peregud, Danil I; Yakovlev, Alexander A; Stepanichev, Mikhail Yu; Onufriev, Mikhail V; Panchenko, Leonid F; Gulyaeva, Natalia V

    2016-08-01

    Nitric oxide (NO) mediates pharmacological effects of opiates including dependence and abstinence. Modulation of NO synthesis during the induction phase of morphine dependence affects manifestations of morphine withdrawal syndrome, though little is known about mechanisms underlying this phenomenon. Neurotrophic and growth factors are involved in neuronal adaptation during opiate dependence. NO-dependent modulation of morphine dependence may be mediated by changes in expression and activity of neurotrophic and/or growth factors in the brain. Here, we studied the effects of NO synthesis inhibition during the induction phase of morphine dependence on the expression of brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and insulin-like growth factor 1 (IGF1) as well as their receptors in rat brain regions after spontaneous morphine withdrawal in dependent animals. Morphine dependence in rats was induced within 6 days by 12 injections of morphine in increasing doses (10-100 mg/kg), and NO synthase inhibitor L-N(G)-nitroarginine methyl ester (L-NAME) (10 mg/kg) was given 1 h before each morphine injection. The expression of the BDNF, GDNF, NGF, IGF1, and their receptors in the frontal cortex, striatum, hippocampus, and midbrain was assessed 40 h after morphine withdrawal. L-NAME treatment during morphine intoxication resulted in an aggravation of the spontaneous morphine withdrawal severity. Morphine withdrawal was accompanied by upregulation of BDNF, IGF1, and their receptors TrkB and IGF1R, respectively, on the mRNA level in the frontal cortex, and only BDNF in hippocampus and midbrain. L-NAME administration during morphine intoxication decreased abstinence-induced upregulation of these mRNAs in the frontal cortex, hippocampus and midbrain. L-NAME prevented from abstinence-induced elevation of mature but not pro-form of BDNF polypeptide in the frontal cortex. While morphine abstinence did not affect Trk

  6. Intracerebroventricular 4-methylcatechol (4-MC) ameliorates chronic pain associated with depression-like behavior via induction of brain-derived neurotrophic factor (BDNF).

    Science.gov (United States)

    Fukuhara, Kayoko; Ishikawa, Kozo; Yasuda, Seiko; Kishishita, Yusuke; Kim, Hae-Kyu; Kakeda, Takahiro; Yamamoto, Misa; Norii, Takafumi; Ishikawa, Toshizo

    2012-08-01

    Neuropathic pain concurrent with mood disorder from peripheral nerve injury is a serious clinical problem that significantly affects quality of life. Recent studies have suggested that a lack of brain-derived neurotrophic factor (BDNF) in the limbic system may cause this pain-emotion. BDNF is induced in cultured neurons by 4-methylcatechol (4-MC), but the role of 4-MC-induced BDNF in pain-emotion is poorly understood. Thus, we assessed the possible involvement of BDNF in brain in depression-like behavior during chronic pain following peripheral nerve injury. In addition, we examined whether intracerebroventricular (i.c.v.) 4-MC prevents chronic pain in rats and produces an antidepressant effect. Sprague-Dawley rats implanted intracerebroventricularly with a PE-10 tube were subjected to chronic constriction injury (CCI). Pain was assessed by a reduction in paw withdrawal latency (PWL) to heat stimuli after CCI. We also used a forced swimming testing (FST; time of immobility, in seconds) from day 14 to day 21 after CCI. Modulation of pain and emotional behavior was performed by injection of PD0325901 (a MEK1/2 inhibitor). 4-MC (100 nM) was continuously administered i.c.v. for 3 days during the period from day 14 to day 21 after CCI. To block analgesic and antidepressant effects, anti-BDNF antibody or K252a (a TrkB receptor inhibitor) was injected in combination with 4-MC. Naloxone was also coadministered to confirm the analgesic effect of 4-MC. During the chronic stage after CCI, the rats showed a sustained decrease in PWL (thermal hyperalgesia) associated with extension of the time of immobility (depression-like behavior). PD0325901 significantly reduced the decrease in PWL and the increased time of immobility after CCI. The decreased PWL and increased time of immobility were also reduced by 4-MC and by treatment with an ERK1/2 inhibitor. These effects of 4-MC i.c.v. were reversed by anti-BDNF and K252a. The analgesic effect of 4-MC i.c.v. was also antagonized by

  7. Motor cortex excitability and BDNF levels in chronic musculoskeletal pain according to structural pathology

    Directory of Open Access Journals (Sweden)

    Alícia Deitos

    2016-07-01

    Full Text Available The central sensitization syndrome (CSS encompasses disorders with overlapping symptoms in a structural pathology spectrum ranging from persistent nociception [e.g., osteoarthritis (OA] to an absence of tissue injuries such as the one presented in fibromyalgia (FM and myofascial pain syndrome (MPS. First, we hypothesized that these syndromes present differences in their cortical excitability parameters assessed by TMS, namely motor evoked potential (MEP, cortical silent period (CSP, short intracortical inhibition (SICI and short intracortical facilitation (SICF. Second, considering that the presence of tissue injury could be detected by serum neurotrophins, we hypothesized that the spectrum of structural pathology (i.e., from persistent nociception like in OA, to the absence of tissue injury like in FM and MPS, could be detected by differential efficiency of their descending pain inhibitory system, as assessed by the conditioned pain modulation (CPM paradigm. Third, we explored whether BDNF had an influence on the relationship between motor cortex excitability and structural pathology. This cross-sectional study pooled baseline data from three randomized clinical trials. We included females (n=114, aged 19 to 65 years old with disability by chronic pain syndromes: FM (n= 19, MPS (n=54, OA (n=27 and healthy subjects (n=14. We assessed the serum BDNF, the motor cortex excitability by parameters the TMS measures and the change on Numerical Pain Scale [NPS (0-10] during CPM-task. The adjusted mean (SD on the SICI observed in the absence of tissue injury was 56.36% lower than with persistent nociceptive input [0.31(0.18 vs. 0.55 (0.32], respectively. The BDNF was inversely correlated with the SICI and with the change on NPS (0-10 during CPM-task. These findings suggest greater disinhibition in the motor cortex and the descending pain inhibitory system in FM and MPS than in OA and healthy subjects. Likewise, the inter-hemispheric disinhibition as well

  8. Motor Cortex Excitability and BDNF Levels in Chronic Musculoskeletal Pain According to Structural Pathology.

    Science.gov (United States)

    Caumo, Wolnei; Deitos, Alícia; Carvalho, Sandra; Leite, Jorge; Carvalho, Fabiana; Dussán-Sarria, Jairo Alberto; Lopes Tarragó, Maria da Graça; Souza, Andressa; Torres, Iraci Lucena da Silva; Fregni, Felipe

    2016-01-01

    The central sensitization syndrome (CSS) encompasses disorders with overlapping symptoms in a structural pathology spectrum ranging from persistent nociception [e.g., osteoarthritis (OA)] to an absence of tissue injuries such as the one presented in fibromyalgia (FM) and myofascial pain syndrome (MPS). First, we hypothesized that these syndromes present differences in their cortical excitability parameters assessed by transcranial magnetic stimulation (TMS), namely motor evoked potential (MEP), cortical silent period (CSP), short intracortical inhibition (SICI) and short intracortical facilitation (SICF). Second, considering that the presence of tissue injury could be detected by serum neurotrophins, we hypothesized that the spectrum of structural pathology (i.e., from persistent nociception like in OA, to the absence of tissue injury like in FM and MPS), could be detected by differential efficiency of their descending pain inhibitory system, as assessed by the conditioned pain modulation (CPM) paradigm. Third, we explored whether brain-derived neurotrophic factor (BDNF) had an influence on the relationship between motor cortex excitability and structural pathology. This cross-sectional study pooled baseline data from three randomized clinical trials. We included females (n = 114), aged 19-65 years old with disability by chronic pain syndromes (CPS): FM (n = 19), MPS (n = 54), OA (n = 27) and healthy subjects (n = 14). We assessed the serum BDNF, the motor cortex excitability by parameters the TMS measures and the change on numerical pain scale [NPS (0-10)] during CPM-task. The adjusted mean (SD) on the SICI observed in the absence of tissue injury was 56.36% lower than with persistent nociceptive input [0.31(0.18) vs. 0.55 (0.32)], respectively. The BDNF was inversely correlated with the SICI and with the change on NPS (0-10)during CPM-task. These findings suggest greater disinhibition in the motor cortex and the descending pain inhibitory system in FM and MPS

  9. Motor Cortex Excitability and BDNF Levels in Chronic Musculoskeletal Pain According to Structural Pathology

    Science.gov (United States)

    Caumo, Wolnei; Deitos, Alícia; Carvalho, Sandra; Leite, Jorge; Carvalho, Fabiana; Dussán-Sarria, Jairo Alberto; Lopes Tarragó, Maria da Graça; Souza, Andressa; Torres, Iraci Lucena da Silva; Fregni, Felipe

    2016-01-01

    The central sensitization syndrome (CSS) encompasses disorders with overlapping symptoms in a structural pathology spectrum ranging from persistent nociception [e.g., osteoarthritis (OA)] to an absence of tissue injuries such as the one presented in fibromyalgia (FM) and myofascial pain syndrome (MPS). First, we hypothesized that these syndromes present differences in their cortical excitability parameters assessed by transcranial magnetic stimulation (TMS), namely motor evoked potential (MEP), cortical silent period (CSP), short intracortical inhibition (SICI) and short intracortical facilitation (SICF). Second, considering that the presence of tissue injury could be detected by serum neurotrophins, we hypothesized that the spectrum of structural pathology (i.e., from persistent nociception like in OA, to the absence of tissue injury like in FM and MPS), could be detected by differential efficiency of their descending pain inhibitory system, as assessed by the conditioned pain modulation (CPM) paradigm. Third, we explored whether brain-derived neurotrophic factor (BDNF) had an influence on the relationship between motor cortex excitability and structural pathology. This cross-sectional study pooled baseline data from three randomized clinical trials. We included females (n = 114), aged 19–65 years old with disability by chronic pain syndromes (CPS): FM (n = 19), MPS (n = 54), OA (n = 27) and healthy subjects (n = 14). We assessed the serum BDNF, the motor cortex excitability by parameters the TMS measures and the change on numerical pain scale [NPS (0–10)] during CPM-task. The adjusted mean (SD) on the SICI observed in the absence of tissue injury was 56.36% lower than with persistent nociceptive input [0.31(0.18) vs. 0.55 (0.32)], respectively. The BDNF was inversely correlated with the SICI and with the change on NPS (0–10)during CPM-task. These findings suggest greater disinhibition in the motor cortex and the descending pain inhibitory system in FM and

  10. Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury

    Science.gov (United States)

    Wurzelmann, Mary; Romeika, Jennifer; Sun, Dong

    2017-01-01

    Traumatic brain injury (TBI) is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF) has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF), a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.

  11. Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury.

    Science.gov (United States)

    Wurzelmann, Mary; Romeika, Jennifer; Sun, Dong

    2017-01-01

    Traumatic brain injury (TBI) is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF) has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF), a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.

  12. Cholinergic modulation of auditory P3 event-related potentials as indexed by CHRNA4 and CHRNA7 genotype variation in healthy volunteers.

    Science.gov (United States)

    Hyde, Molly; Choueiry, Joëlle; Smith, Dylan; de la Salle, Sara; Nelson, Renee; Impey, Danielle; Baddeley, Ashley; Aidelbaum, Robert; Millar, Anne; Knott, Verner

    2016-06-03

    Schizophrenia (SZ) is a psychiatric disorder characterized by cognitive dysfunction within the realm of attentional processing. Reduced P3a and P3b event-related potentials (ERPs), indexing involuntary and voluntary attentional processing respectively, have been consistently observed in SZ patients who also express prominent cholinergic deficiencies. The involvement of the brain's cholinergic system in attention has been examined for several decades; however, further inquiry is required to further comprehend how abnormalities in this system affect neighbouring neurotransmitter systems and contribute to neurocognitive deficits. The objective of this pilot study was to examine the moderating role of the CHRNA4 (rs1044396), CHRNA7 (rs3087454), and SLC5A7 (rs1013940) genes on ERP indices of attentional processing in healthy volunteers (N=99; Caucasians and non-Caucasians) stratified by genotype and assessed using the auditory P300 "oddball" paradigm. Results indicated significantly greater P3a and P3b-indexed attentional processing for CT (vs. CC) CHRNA4 carriers and greater P3b for AA (vs. CC) CHRNA7 carriers. SLC5A7 allelic variants did not show significant differences in P3a and P3b processing. These findings expand our knowledge on the moderating effect of cholinergic genes on attention and could help inform targeted drug developments aimed at restoring attention deficits in SZ patients.

  13. Critical role of promoter IV-driven BDNF transcription in GABAergic transmission and synaptic plasticity in the prefrontal cortex

    OpenAIRE

    Sakata, Kazuko; Woo, Newton H.; Martinowich, Keri; Greene, Joshua S.; Schloesser, Robert J.; Shen, Liya; Lu, Bai

    2009-01-01

    Transcription of Bdnf is controlled by multiple promoters, which drive expression of multiple transcripts encoding for the same protein. Promoter IV contributes significantly to activity-dependent brain-derived neurotrophic factor (BDNF) transcription. We have generated promoter IV mutant mice (BDNF-KIV) by inserting a GFP-STOP cassette within the Bdnf exon IV locus. This genetic manipulation results in disruption of promoter IV-mediated Bdnf expression. BDNF-KIV animals exhibited significant...

  14. HuD promotes BDNF expression in brain neurons via selective stabilization of the BDNF long 3'UTR mRNA.

    Directory of Open Access Journals (Sweden)

    Megan Allen

    Full Text Available Complex regulation of brain-derived neurotrophic factor (BDNF governs its intricate functions in brain development and neuronal plasticity. Besides tight transcriptional control from multiple distinct promoters, alternative 3'end processing of the BDNF transcripts generates either a long or a short 3'untranslated region (3'UTR. Previous reports indicate that distinct RNA sequence in the BDNF 3'UTRs differentially regulates BDNF production in the brain to accommodate neuronal activity changes, conceivably through differential interactions with undefined trans-acting factors that regulate stability and translation of these BDNF mRNA isoforms. In this study, we report that the neuronal RNA-binding protein (RBP HuD interacts with a highly conserved AU-rich element (ARE specifically located in the BDNF long 3'UTR. Such interaction is necessary and sufficient for selective stabilization of mRNAs that contain the BDNF long 3'UTR in vitro and in vivo. Moreover, in a HuD transgenic mouse model, the BDNF long 3'UTR mRNA is increased in the hippocampal dentate granule cells (DGCs, leading to elevated expression of BDNF protein that is transported and stored in the mossy fiber (MF terminals. Our results identify HuD as the first trans-acting factor that enhances BDNF expression specifically through the long 3'UTR and a novel mechanism that regulates BDNF protein production in selected neuronal populations by HuD abundance.

  15. Are variations in whole blood BDNF level associated with the BDNF Val66Met polymorphism in patients with first episode depression?

    DEFF Research Database (Denmark)

    Vinberg, Maj; Bukh, Jens Otto Drachmann; Bennike, Bente;

    2013-01-01

    Brain derived neurotrophic factor (BDNF) seems to play an important role in the pathophysiology of affective disorders. The current study investigated whether blood level BDNF is correlated with the severity of depressive symptoms and recent (six months prior to onset of depression) experience......). Symptomatology was rated using Hamilton Rating Scale for Depression (HAMD-17) and Becks Depression Inventory (BDI 21). No differences in whole blood BDNF was seen in relation to the BDNF Val66Met polymorphism and no significant correlations between whole blood BDNF and HAMD-17 or BDI 21 scores were found....... No significant associations between the experiences of SLE before onset of depression and BDNF level were observed. Finally, peripheral BDNF differentiated between patients and healthy control persons. In the current sample of first episode depressed patients, the Val66Met polymorphism was not associated...

  16. Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons.

    Science.gov (United States)

    Chen, Zhe-Yu; Patel, Paresh D; Sant, Gayatree; Meng, Chui-Xiang; Teng, Kenneth K; Hempstead, Barbara L; Lee, Francis S

    2004-05-05

    Brain-derived neurotrophic factor (BDNF) plays a critical role in nervous system and cardiovascular development and function. Recently, a common single nucleotide polymorphism in the bdnf gene, resulting in a valine to methionine substitution in the prodomain (BDNF(Met)), has been shown to lead to memory impairment and susceptibility to neuropsychiatric disorders in humans heterozygous for the variant BDNF. When expressed by itself in hippocampal neurons, less BDNF(Met) is secreted in an activity-dependent manner. The nature of the cellular defect when both BDNF(Met) and wild-type BDNF (BDNF(Val)) are present in the same cell is not known. Given that this is the predominant expression profile in humans, we examined the effect of coexpressed BDNF(Met) on BDNF(Val) intracellular trafficking and processing. Our data indicate that abnormal trafficking of BDNF(Met) occurred only in neuronal and neurosecretory cells and that BDNF(Met) could alter the intracellular distribution and activity-dependent secretion of BDNF(Val). We determined that, when coexpressed in the same cell, approximately 70% of the variant BDNF forms BDNF(Val).BDNF(Met) heterodimers, which are inefficiently sorted into secretory granules resulting in a quantitative decreased secretion. Finally, we determined the form of BDNF secreted in an activity-dependent manner and observed no differences in the forms of BDNF(Met) or the BDNF(Val).BDNF(Met) heterodimer compared with BDNF(Val). Together, these findings indicate that components of the regulated secretory machinery interacts specifically with a signal in the BDNF prodomain and that perturbations in BDNF trafficking may lead to selective impairment in CNS function.

  17. BDNF gene polymorphism, cognition and symptom severity in a Brazilian population-based sample of first-episode psychosis subjects Polimorfismo do gene do BDNF, cognição e gravidade dos sintomas em uma amostra de base populacional brasileira de indivíduos apresentando o primeiro episódio psicótico

    Directory of Open Access Journals (Sweden)

    Eduardo Martinho Jr

    2012-10-01

    Full Text Available OBJECTIVE: To investigate the influence of brain-derived neurotrophic factor (BDNF gene variations on cognitive performance and clinical symptomatology in first-episode psychosis (FEP. METHODS: We performed BDNF val66met variant genotyping, cognitive testing (verbal fluency and digit spans and assessments of symptom severity (as assessed with the PANSS in a population-based sample of FEP patients (77 with schizophreniform psychosis and 53 with affective psychoses and 191 neighboring healthy controls. RESULTS: There was no difference in the proportion of Met allele carriers between FEP patients and controls, and no significant influence of BDNF genotype on cognitive test scores in either of the psychosis groups. A decreased severity of negative symptoms was found in FEP subjects that carried a Met allele, and this finding reached significance for the subgroup with affective psychoses (p OBJETIVO: Investigar a influência da variação do gene do fator neurotrófico derivado do cérebro (BDNF no desempenho cognitivo e na sintomatologia clínica durante o primeiro episódio psicótico (PEP. MÉTODOS: Foram realizados a genotipificação das variantes Val66met do BDNF, o teste cognitivo (fluência verbal e repetição de dígitos e as avaliações da gravidade dos sintomas (conforme avaliado pela Positive and Negative Syndrome Scale [PANSS] em uma amostra de pacientes com PEP de base populacional (77 com psicose esquizofreniforme e 53 com psicose afetiva e 191 vizinhos controle saudáveis. RESULTADOS: Não houve diferença na proporção de portadores do alelo Met entre pacientes com PEP e o grupo controle. Não houve influência significativa do genótipo do BDNF sobre a pontuação de cada um dos grupos psicóticos. Foi encontrada uma diminuição da gravidade dos sintomas negativos em sujeitos com PEP portadores do alelo Met, e essa descoberta mostrou-se significativa para o subgrupo com psicose afetiva (p < 0,01, ANOVA. CONCLUSÕES: Os

  18. Amyloid-Beta Induced Changes in Vesicular Transport of BDNF in Hippocampal Neurons

    OpenAIRE

    Bianca Seifert; Robert Eckenstaler; Raik Rönicke; Julia Leschik; Beat Lutz; Klaus Reymann; Volkmar Lessmann; Tanja Brigadski

    2016-01-01

    The neurotrophin brain derived neurotrophic factor (BDNF) is an important growth factor in the CNS. Deficits in transport of this secretory protein could underlie neurodegenerative diseases. Investigation of disease-related changes in BDNF transport might provide insights into the cellular mechanism underlying, for example, Alzheimer’s disease (AD). To analyze the role of BDNF transport in AD, live cell imaging of fluorescently labeled BDNF was performed in hippocampal neurons of different AD...

  19. Nature vs. nurture: can enrichment rescue the behavioural phenotype of BDNF heterozygous mice?

    Science.gov (United States)

    Chourbaji, Sabine; Brandwein, Christiane; Vogt, Miriam A; Dormann, Christof; Hellweg, Rainer; Gass, Peter

    2008-10-10

    In earlier experiments we have demonstrated that group-housing in a rather impoverished "standard" environment can be a crucial stress factor in male C57Bl/6 mice. The present study aimed at investigating the effect of combining a probable genetic vulnerability--postulated by the "Neurotrophin Hypothesis of Depression"--with the potentially modulating influence of a stressful environment such as "impoverished" standard housing conditions. For that purpose mice with a partial deletion of brain-derived neurotrophic factor (BDNF) were group-housed under standard and enriched housing conditions and analysed in a well-established test battery for emotional behaviours. Standard group-housing affected emotional behaviour in male and female BDNF heterozygous mice, causing an increase in anxiety, changes in exploration as well as nociception. Providing the animals' cages with supplementary enrichment, however, led to a rescue of emotional alterations, which emphasises the significance of external factors and their relevance for a valid investigation of genetic aspects in these mutants as well as others, which may be examined in terms of stress-responsiveness or emotionality.

  20. Effects of castration on the immunoreactivity to NGF, BDNF and their receptors in the pelvic ganglia of the male rat

    Directory of Open Access Journals (Sweden)

    C Squillacioti

    2009-08-01

    Full Text Available Nerve growth factor (NGF and brain derived neurotrophic factor (BDNF and are members of the neurotrophin family, a family of neurotrophic factors that also includes neurotrophin (NT 3 and NT4/5. Neurotrophins have essential roles in the survival, development and differentiation of neurons in the central and peripheral nervous systems. Neurotrophins exert their effects by binding to corresponding receptors which are formed by the tyrosine protein kinases TrkA, TrkB and TrkC, and the low affinity neurotrophic receptor (p75NTR. In the present study, using immunohistochemistry and quantitative analysis, we have investigated immunoreactivity to BDNF, NGF, TrkB, p75NTR and TrkA in the pelvic ganglia of normal and castrated rats. Neurons of the pelvic ganglia expressed both these neurotrophins and their receptors. After castration the immunoreactivity persisted. However, the number of BDNF- and p75NTR–IR cells statistically significant decreased after castration. These results suggest that castration modulates the expression of neurotrophins and their receptors in pelvic autonomic neurons.

  1. Spinal Plasticity and Behavior: BDNF-Induced Neuromodulation in Uninjured and Injured Spinal Cord

    Directory of Open Access Journals (Sweden)

    Sandra M. Garraway

    2016-01-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is a member of the neurotrophic factor family of signaling molecules. Since its discovery over three decades ago, BDNF has been identified as an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity and has been shown to function in the formation and maintenance of certain forms of memory. Neural plasticity that underlies learning and memory in the hippocampus shares distinct characteristics with spinal cord nociceptive plasticity. Research examining the role BDNF plays in spinal nociception and pain overwhelmingly suggests that BDNF promotes pronociceptive effects. BDNF induces synaptic facilitation and engages central sensitization-like mechanisms. Also, peripheral injury-induced neuropathic pain is often accompanied with increased spinal expression of BDNF. Research has extended to examine how spinal cord injury (SCI influences BDNF plasticity and the effects BDNF has on sensory and motor functions after SCI. Functional recovery and adaptive plasticity after SCI are typically associated with upregulation of BDNF. Although neuropathic pain is a common consequence of SCI, the relation between BDNF and pain after SCI remains elusive. This article reviews recent literature and discusses the diverse actions of BDNF. We also highlight similarities and differences in BDNF-induced nociceptive plasticity in naïve and SCI conditions.

  2. BDNF Val66Met polymorphism interacts with sex to influence bimanual motor control in healthy humans

    NARCIS (Netherlands)

    Smolders, R.; Rijpkema, M.J.P.; Franke, B.; Fernandez, G.S.E.

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) plays a critical role in brain development. A common single nucleotide polymorphism in the gene encoding BDNF (rs6265, Val66Met) affects BDNF release and has been associated with altered learning and memory performance, and with structural changes in brain mo

  3. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and post-stroke dementia: a hospital-based study from northern Iran.

    Science.gov (United States)

    Rezaei, Sajjad; Asgari Mobarake, Karim; Saberi, Alia; Keshavarz, Parvaneh; Leili, Ehsan Kazemnejad

    2016-06-01

    Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with functional and cognitive outcomes of stroke and plays a key role in preventing neuronal death. This study aimed to answer the following question: does BDNF Val66Met polymorphism prognosticate survival status and risk of post-stroke dementia (PSD)? In a retrospective cohort study, 206 patients with ischemic stroke (IS) entered the study. They were consecutively being admitted to the neurology clinic in Poursina Hospital (northern Iran) from 2012 to 2014. The diagnosis of PSD was based on DSM-5 criteria. The current and the premorbid cognitive statuses of the patients were respectively assessed through the third edition of Addenbrooke's Cognitive Examination and the Informant Questionnaire on Cognitive Decline in the Elderly. BDNF Val66Met gene polymorphism was determined by PCR-RFLP. On average, 48 patients (23.3 %) developed PSD 6 months after IS. Log-rank test showed that the survival rate of at least one Val-allele carriers was significantly lower than that of Met/Met homozygotes (P = 0.0005), and the former developed PSD sooner than the latter (375, 492 days, respectively). Cox model showed that heterozygous carriers of Val/Met were at greater risk of PSD over time (HR 2.280, 95 % CI 1.566-4.106, P = 0.006). However, the risk ratio of patients with PSD among different BDNF genotypes decreased after adjusting demographic, clinical, and vascular risk factors, and was no longer statistically significant (AHR 2.434, 95 % CI 0.597-9.926, P = 0.215). Val-allele carriers or Val/Met genotypes were more quickly diagnosed as having dementia after IS. However, this genetic vulnerability became more destructive when it was added to demographic, clinical, and vascular risk factors.

  4. BDNF in schizophrenia, depression and corresponding animal models.

    Science.gov (United States)

    Angelucci, F; Brenè, S; Mathé, A A

    2005-04-01

    Understanding the etiology and pathogenesis schizophrenia and depression is a major challenge facing psychiatry. One hypothesis is that these disorders are secondary to a malfunction of neurotrophic factors. Inappropriate neurotrophic support during brain development could lead to structural disorganisation in which neuronal networks are established in a nonoptimal manner. Inadequate neurotrophic support in adult individuals could ultimately be an underlying mechanism leading to decreased capacity of brain to adaptive changes and increased vulnerability to neurotoxic damage. Brain-derived neurotrophic factor (BDNF) is a mediator involved in neuronal survival and plasticity of dopaminergic, cholinergic, and serotonergic neurons in the central nervous system (CNS). In this review, we summarize findings regarding altered BDNF in schizophrenia and depression and animal models, as well as the effects of antipsychotic and antidepressive treatments on the expression of BDNF.

  5. Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity.

    Science.gov (United States)

    Garg, Neera; Bhandari, Purnima

    2016-09-01

    Salinity is the major environmental constraint that affects legume productivity by inducing oxidative stress. Individually, both silicon (Si) nutrition and mycorrhization have been reported to alleviate salt stress. However, the mechanisms adopted by both in mediating stress responses are poorly understood. Thus, pot trials were undertaken to evaluate comparative as well as interactive effects of Si and/or arbuscular mycorrhiza (AM) in alleviating NaCl toxicity in modulating oxidative stress and antioxidant defence mechanisms in two Cicer arietinum L. (chickpea) genotypes-HC 3 (salt-tolerant) and CSG 9505 (salt-sensitive). Plants subjected to different NaCl concentrations (0-100 mM) recorded a substantial increase in the rate of superoxide radical (O2 (·-)), H2O2, lipoxygenase (LOX) activity and malondialdehyde (MDA) content, which induced leakage of ions and disturbed Ca(2+)/Na(+) ratio in roots and leaves. Individually, Si and AM reduced oxidative burst by strengthening antioxidant enzymatic activities (superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (GPOX)). Si was relatively more efficient in reducing accumulation of stress metabolites, while mycorrhization significantly up-regulated antioxidant machinery and modulated ascorbate-glutathione (ASA-GSH) cycle. Combined applications of Si and AM complemented each other in reducing reactive oxygen species (ROS) build-up by further enhancing the antioxidant defence responses. Magnitude of ROS-mediated oxidative burden was lower in HC 3 which correlated strongly with more effective AM symbiosis, better capacity to accumulate Si and stronger defence response when compared with CSG 9505. Study indicated that Si and/or AM fungal amendments upgraded salt tolerance through a dynamic shift from oxidative destruction towards favourable antioxidant defence system in stressed chickpea plants.

  6. A novel BDNF gene promoter directs expression to skeletal muscle

    Directory of Open Access Journals (Sweden)

    Heinrich Gerhard

    2003-06-01

    Full Text Available Abstract Background Cell-specific expression of the gene that encodes brain-derived neurotrophic factor (BDNF is required for the normal development of peripheral sensory neurons and efficient synaptic transmission in the mature central and peripheral nervous system. The control of BDNF gene expression involves multiple tissue and cell-specific promoters that are differentially regulated. The molecular mechanisms that are responsible for tissue and cell-specific expression of these promoters are still incompletely understood. Results The cloning and analysis of three additional zebrafish (Danio rerio BDNF gene exons and two associated promoters, is reported. Among them are two exons that generate a novel tripartite mature transcript. The exons were located on the transcription unit, whose overall organization was determined by cloning, Southern blot hybridization and sequence analysis, and compared with the pufferfish (Fugu rubripes and mammalian BDNF loci, revealing a conserved but more compact organization. Structural and functional analysis of the exons, their adjacent promoters and 5' flanks, showed that they are expressed cell-specifically. The promoter associated with the 5' exon of the tripartite transcript is GC-rich, TATA-less and the 5' flank adjacent to it contains multiple Sp1, Mef2, and AP1 elements. A fusion gene containing the promoter and 1.5 KB of 5' flank is directed exclusively to skeletal muscle of transiently transfected embryos. The second promoter, whose associated 5' exon contains a 25-nucleotide segment of identity with a mammalian BDNF gene exon, was transiently expressed in yolk of the early embryo. RT-PCR analysis of total RNA from whole juvenile fish and adult female skeletal muscle revealed tissue-specific expression of the 5' exons but the novel exon could not be detected even after two rounds of nested PCR. Conclusion The zebrafish BDNF gene is as complex as the mammalian gene yet much more compact. Its exons are

  7. High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Thomas eAndreska

    2014-04-01

    Full Text Available In the mammalian brain, the neurotrophin brain-derived neurotrophic factor (BDNF has emerged as a key factor for synaptic refinement, plasticity and learning. Although BDNF-induced signaling cascades are well known, the spatial aspects of the synaptic BDNF localization remained unclear. Recent data provide strong evidence for an exclusive presynaptic location and anterograde secretion of endogenous BDNF at synapses of the hippocampal circuit. In contrast, various studies using BDNF overexpression in cultured hippocampal neurons support the idea that postsynaptic synapses and other dendritic structures are the preferential sites of BDNF localization and release. In this study we used rigorously tested anti-BDNF antibodies and achieved a dense labeling of endogenous BDNF close to synapses. Confocal microscopy showed natural BDNF close to many, but not all glutamatergic synapses, while neither GABAergic synapses nor postsynaptic structures carried a typical synaptic BDNF label. To visualize the BDNF distribution within the fine structure of synapses, we implemented super resolution fluorescence imaging by direct stochastic optical reconstruction microscopy (dSTORM. Two-color dSTORM images of neurites were acquired with a spatial resolution of ~20 nm. At this resolution, the synaptic scaffold proteins Bassoon and Homer exhibit hallmarks of mature synapses and form juxtaposed bars, separated by a synaptic cleft. BDNF imaging signals form granule-like clusters with a mean size of ~60 nm and are preferentially found within the fine structure of the glutamatergic presynapse. Individual glutamatergic presynapses carried up to 90% of the synaptic BDNF immunoreactivity, and only a minor fraction of BDNF molecules was found close to the postsynaptic bars. Our data proof that hippocampal neurons are able to enrich and store high amounts of BDNF in small granules within the mature glutamatergic presynapse, at a principle site of synaptic plasticity.

  8. Cerebral 5-HT2A receptor and serotonin transporter binding in humans are not affected by the val66met BDNF polymorphism status or blood BDNF levels

    DEFF Research Database (Denmark)

    Klein, Anders Bue; Trajkovska, Viktorija; Erritzoe, David;

    2010-01-01

    Recent studies have proposed an interrelation between the brain-derived neurotrophic factor (BDNF) val66met polymorphism and the serotonin system. In this study, we investigated whether the BDNF val66met polymorphism or blood BDNF levels are associated with cerebral 5-hydroxytryptamine 2A (5-HT(2A......)) receptor or serotonin transporter (SERT) binding in healthy subjects. No statistically significant differences in 5-HT(2A) receptor or SERT binding were found between the val/val and met carriers, nor were blood BDNF values associated with SERT binding or 5-HT(2A) receptor binding. In conclusion, val66met...... BDNF polymorphism status is not associated with changes in the serotonergic system. Moreover, BDNF levels in blood do not correlate with either 5-HT(2A) or SERT binding....

  9. Effects of chronic ethanol administration on expression of BDNF and trkB mRNAs in rat hippocampus after experimental brain injury.

    Science.gov (United States)

    Zhang, L; Dhillon, H S; Barron, S; Hicks1, R R; Prasad, R M; Seroogy, K B

    2000-06-23

    Previous evidence indicates that both chronic alcohol treatment and traumatic brain injury modulate expression of certain neurotrophins and neurotrophin receptors in cortical tissue. However, the combined effects of chronic alcohol and brain trauma on expression of neurotrophins and their receptors have not been investigated. In the present study, we examined the effects of 6 weeks of chronic ethanol administration on lateral fluid percussion (FP) brain injury-induced alterations in expression of mRNAs for the neurotrophin brain-derived neurotrophic factor (BDNF) and its high affinity receptor, trkB, in rat hippocampus. In both the control- (pair-fed isocaloric sucrose) diet and the chronic ethanol-diet groups, unilateral FP brain injury induced a bilateral increase in levels of both BDNF and trkB mRNAs in the dentate gyrus granule cell layer, and of BDNF mRNA in hippocampal region CA3. However, no significant differences in expression were found between the control-diet and ethanol-diet groups, in either the sham-injured or FP-injured animals. These findings suggest that 6 weeks of chronic ethanol administration does not alter the plasticity of hippocampal BDNF/trkB expression in response to experimental brain injury.

  10. Evidence of association between Val66Met polymorphism at BDNF gene and anxiety disorders in a community sample of children and adolescents.

    Science.gov (United States)

    Tocchetto, Andréa; Salum, Giovanni A; Blaya, Carolina; Teche, Stefania; Isolan, Luciano; Bortoluzzi, Andressa; Rebelo E Silva, Rafael; Becker, Juliana A; Bianchin, Marino M; Rohde, Luis Augusto; Leistner-Segal, Sandra; Manfro, Gisele G

    2011-09-20

    Different lines of evidence support BDNF as a candidate gene in mood and anxiety modulation. More recently, the Met allele of the BDNF Val66Met polymorphism has been implicated in anxiety in animal models and anxiety-traits in humans. The aim of this study is to evaluate the a priori hypothesis that the association between anxiety disorders and Val66Met polymorphism at the BDNF gene would be replicated in a community sample of children and adolescents. 240 subjects from a total sample of 2457 children and adolescents aged 10-17 years from the public schools in the catchment area of the primary care unit of a university hospital participated in this case-control study and were assessed for psychopathology using the K-SADS-PL. A sample of saliva was collected for DNA analysis of Val66Met polymorphism. BDNF was the single gene evaluated in this sample. We found a significant association between carrying one copy of the Met allele and higher chance of anxiety disorders in children and adolescents. The association remained positive even after the adjustment for potential confounders (228 subjects; OR=3.53 (CI95% 1.77-7.06; p<0.001)). Our results support the a priori hypothesis of an association between anxiety and the polymorphism Val66Met. To our knowledge, this is the first study documenting a potential role of this polymorphism in a community sample of anxious children and adolescents.

  11. Local Administration of AAV-BDNF to Subventricular Zone Induces Functional Recovery in Stroke Rats

    OpenAIRE

    Seong-Jin Yu; Kuan-Yin Tseng; Hui Shen; Harvey, Brandon K.; Mikko Airavaara; Yun Wang

    2013-01-01

    Migration of new neuroprogenitor cells (NPCs) from the subventricular zone (SVZ) plays an important role in neurorepair after injury. Previous studies have shown that brain derived neurotrophic factor (BDNF) enhances the migration of NPCs from SVZ explants in neonatal mice in vitro. The purpose of this study was to identify the role of BDNF in SVZ cells using AAV-BDNF in an animal model of stroke. BDNF protein production after AAV-BDNF infection was verified in primary neuronal culture. AAV-B...

  12. Physical exercise and antidepressants enhance BDNF targeting in hippocampal CA3 dendrites: further evidence of a spatial code for BDNF splice variants.

    Science.gov (United States)

    Baj, Gabriele; D'Alessandro, Valentina; Musazzi, Laura; Mallei, Alessandra; Sartori, Cesar R; Sciancalepore, Marina; Tardito, Daniela; Langone, Francesco; Popoli, Maurizio; Tongiorgi, Enrico

    2012-06-01

    Brain-derived neurotrophic factor (BDNF) is encoded by multiple BDNF transcripts, whose function is unclear. We recently showed that a subset of BDNF transcripts can traffic into distal dendrites in response to electrical activity, while others are segregated into the somatoproximal domains. Physical exercise and antidepressant treatments exert their beneficial effects through upregulation of BDNF, which is required to support survival and differentiation of newborn dentate gyrus (DG) neurons. While these DG processes are required for the antidepressant effect, a role for CA1 in antidepressant action has been excluded, and the effect on CA3 neurons remains unclear. Here, we show for the first time that physical exercise and antidepressants induce local increase of BDNF in CA3. Voluntary physical exercise for 28 consecutive days, or 2-week treatment with 10 mg/kg per day fluoxetine or reboxetine, produced a global increase of BDNF mRNA and protein in the neuronal somata of the whole hippocampus and a specific increase of BDNF in dendrites of CA3 neurons. This increase was accounted for by BDNF exon 6 variant. In cultured hippocampal neurons, application of serotonin or norepinephrine (10-50 μM) induced increase in synaptic transmission and targeting of BDNF mRNA in dendrites. The increased expression of BDNF in CA3 dendrites following antidepressants or exercise further supports the neurotrophin hypothesis of antidepressants action and confirms that the differential subcellular localization of BDNF mRNA splice variants provides a spatial code for a selective expression of BDNF in specific subcellular districts. This selective expression may be exploited to design more specific antidepressants.

  13. Reduced brain-derived neurotrophic factor (BDNF) mRNA expression and presence of BDNF-immunoreactive granules in the spinocerebellar ataxia type 6 (SCA6) cerebellum.

    Science.gov (United States)

    Takahashi, Makoto; Ishikawa, Kinya; Sato, Nozomu; Obayashi, Masato; Niimi, Yusuke; Ishiguro, Taro; Yamada, Mitsunori; Toyoshima, Yasuko; Takahashi, Hitoshi; Kato, Takeo; Takao, Masaki; Murayama, Shigeo; Mori, Osamu; Eishi, Yoshinobu; Mizusawa, Hidehiro

    2012-12-01

    Spinocerebellar ataxia type 6 (SCA6) is an autosomal-dominant neurodegenerative disorder caused by a small expansion of tri-nucleotide (CAG) repeat encoding polyglutamine (polyQ) in the gene for α(1A) voltage-dependent calcium channel (Ca(v) 2.1). Thus, this disease is one of the nine neurodegenerative disorders called polyQ diseases. The Purkinje cell predominant neuronal loss is the characteristic neuropathology of SCA6, and a 75-kDa carboxy-terminal fragment (CTF) of Ca(v) 2.1 containing polyQ, which remains soluble in normal brains, becomes insoluble in the cytoplasm of SCA6 Purkinje cells. Because the suppression of the brain-derived neurotrophic factor (BDNF) expression is a potentially momentous phenomenon in many other polyQ diseases, we implemented BDNF expression analysis in SCA6 human cerebellum using quantitative RT-PCR for the BDNF mRNA, and by immunohistochemistry for the BDNF protein. We observed significantly reduced BDNF mRNA levels in SCA6 cerebellum (n = 3) compared to controls (n = 6) (Mann-Whitney U-test, P = 0.0201). On immunohistochemistry, BDNF protein was only weakly stained in control cerebellum. On the other hand, we found numerous BDNF-immunoreactive granules in dendrites of SCA6 Purkinje cells. We did not observe similar BDNF-immunoreactive granules in other polyQ diseases, such as Huntington's disease or SCA2. As we often observed that the 1C2-positive Ca(v) 2.1 aggregates existed more proximally than the BDNF-positive granules in the dendrites, we speculated that the BDNF protein trafficking in dendrites may be disturbed by Ca(v) 2.1 aggregates in SCA6 Purkinje cells. We conclude that the SCA6 pathogenic mechanism associates with the BDNF mRNA expression reduction and abnormal localization of BDNF protein.

  14. Local administration of AAV-BDNF to subventricular zone induces functional recovery in stroke rats.

    Directory of Open Access Journals (Sweden)

    Seong-Jin Yu

    Full Text Available Migration of new neuroprogenitor cells (NPCs from the subventricular zone (SVZ plays an important role in neurorepair after injury. Previous studies have shown that brain derived neurotrophic factor (BDNF enhances the migration of NPCs from SVZ explants in neonatal mice in vitro. The purpose of this study was to identify the role of BDNF in SVZ cells using AAV-BDNF in an animal model of stroke. BDNF protein production after AAV-BDNF infection was verified in primary neuronal culture. AAV-BDNF or AAV-RFP was injected into the left SVZ region of adult rats at 14 days prior to right middle cerebral artery occlusion (MCAo. SVZ tissues were collected from the brain and placed in Metrigel cultures 1 day after MCAo. Treatment with AAV-BDNF significantly increased the migration of SVZ cells in the stroke brain in vitro. In another set of animals, AAV-GFP was co-injected with AAV-BDNF or AAV-RFP to label cells in left SVZ prior to right MCAo. Local administration of AAV-BDNF significantly enhanced recovery of locomotor function and migration of GFP-positive cells from the SVZ toward the lesioned hemisphere in stroke rats. Our data suggest that focal administration of AAV-BDNF to the SVZ increases behavioral recovery post stroke, possibly through the enhancement of migration of cells from SVZ in stroke animals. Regional manipulation of BDNF expression through AAV may be a novel approach for neurorepair in stroke brains.

  15. Local administration of AAV-BDNF to subventricular zone induces functional recovery in stroke rats.

    Science.gov (United States)

    Yu, Seong-Jin; Tseng, Kuan-Yin; Shen, Hui; Harvey, Brandon K; Airavaara, Mikko; Wang, Yun

    2013-01-01

    Migration of new neuroprogenitor cells (NPCs) from the subventricular zone (SVZ) plays an important role in neurorepair after injury. Previous studies have shown that brain derived neurotrophic factor (BDNF) enhances the migration of NPCs from SVZ explants in neonatal mice in vitro. The purpose of this study was to identify the role of BDNF in SVZ cells using AAV-BDNF in an animal model of stroke. BDNF protein production after AAV-BDNF infection was verified in primary neuronal culture. AAV-BDNF or AAV-RFP was injected into the left SVZ region of adult rats at 14 days prior to right middle cerebral artery occlusion (MCAo). SVZ tissues were collected from the brain and placed in Metrigel cultures 1 day after MCAo. Treatment with AAV-BDNF significantly increased the migration of SVZ cells in the stroke brain in vitro. In another set of animals, AAV-GFP was co-injected with AAV-BDNF or AAV-RFP to label cells in left SVZ prior to right MCAo. Local administration of AAV-BDNF significantly enhanced recovery of locomotor function and migration of GFP-positive cells from the SVZ toward the lesioned hemisphere in stroke rats. Our data suggest that focal administration of AAV-BDNF to the SVZ increases behavioral recovery post stroke, possibly through the enhancement of migration of cells from SVZ in stroke animals. Regional manipulation of BDNF expression through AAV may be a novel approach for neurorepair in stroke brains.

  16. Circulating brain derived neurotrophic factor (BDNF) and frequency of BDNF positive T cells in peripheral blood in human ischemic stroke: Effect on outcome.

    Science.gov (United States)

    Chan, Adeline; Yan, Jun; Csurhes, Peter; Greer, Judith; McCombe, Pamela

    2015-09-15

    The aim of this study was to measure the levels of circulating BDNF and the frequency of BDNF-producing T cells after acute ischaemic stroke. Serum BDNF levels were measured by ELISA. Flow cytometry was used to enumerate peripheral blood leukocytes that were labelled with antibodies against markers of T cells, T regulatory cells (Tregs), and intracellular BDNF. There was a slight increase in serum BDNF levels after stroke. There was no overall difference between stroke patients and controls in the frequency of CD4(+) and CD8(+) BDNF(+) cells, although a subgroup of stroke patients showed high frequencies of these cells. However, there was an increase in the percentage of BDNF(+) Treg cells in the CD4(+) population in stroke patients compared to controls. Patients with high percentages of CD4(+) BDNF(+) Treg cells had a better outcome at 6months than those with lower levels. These groups did not differ in age, gender or initial stroke severity. Enhancement of BDNF production after stroke could be a useful means of improving neuroprotection and recovery after stroke.

  17. Die Rolle des neurotrophen Faktors BDNF für läsionsinduzierte Plastizität im visuellen Kortex der BDNF (+/-) Maus

    OpenAIRE

    Breiter, Sarah

    2011-01-01

    Der neurotrophe Faktor BDNF steht im Verdacht, läsionsinduzierte Plastizität zu beeinflussen. Durch elektrophysiologische Versuche konnte in Wt Kontrolltieren eine 20%ige LTP beobachtet werden, während BDNF(+/-) Mäuse keine LTP ausbildeten. Nach Läsionen zeigten Wt Tiere eine erhöhte LTP von ca. 40%. Bei BDNF(+/-) Mäusen post-Läsion wurde ebenfalls eine stabile LTP von etwas mehr als 20% gemessen. Zudem zeigten BDNF(+/-) Tieren wie auch in Wt Tieren 24h nach Läsion eine signifikan...

  18. Epibranchial placode-derived neurons produce BDNF required for early sensory neuron development.

    Science.gov (United States)

    Harlow, Danielle E; Yang, Hui; Williams, Trevor; Barlow, Linda A

    2011-02-01

    In mice, BDNF provided by the developing taste epithelium is required for gustatory neuron survival following target innervation. However, we find that expression of BDNF, as detected by BDNF-driven β-galactosidase, begins in the cranial ganglia before its expression in the central (hindbrain) or peripheral (taste papillae) targets of these sensory neurons, and before gustatory ganglion cells innervate either target. To test early BDNF function, we examined the ganglia of bdnf null mice before target innervation, and found that while initial neuron survival is unaltered, early neuron development is disrupted. In addition, fate mapping analysis in mice demonstrates that murine cranial ganglia arise from two embryonic populations, i.e., epibranchial placodes and neural crest, as has been described for these ganglia in non-mammalian vertebrates. Only placodal neurons produce BDNF, however, which indicates that prior to innervation, early ganglionic BDNF produced by placode-derived cells promotes gustatory neuron development.

  19. Differential regulation of BDNF, synaptic plasticity and sprouting in the hippocampal mossy fiber pathway of male and female rats

    OpenAIRE

    SCHARFMAN, HELEN E.; MacLusky, Neil J.

    2013-01-01

    Many studies have described potent effects of BDNF, 17β-estradiol or androgen on hippocampal synapses and their plasticity. Far less information is available about the interactions between 17β-estradiol and BDNF in hippocampus, or interactions between androgen and BDNF in hippocampus. Here we review the regulation of BDNF in the mossy fiber pathway, a critical part of hippocampal circuitry. We discuss the emerging view that 17β-estradiol upregulates mossy fiber BDNF synthesis in the adult fem...

  20. Comparative effect of treadmill exercise on mature BDNF production in control versus stroke rats.

    Directory of Open Access Journals (Sweden)

    Aurore Quirié

    Full Text Available Physical exercise constitutes an innovative strategy to treat deficits associated with stroke through the promotion of BDNF-dependent neuroplasticity. However, there is no consensus on the optimal intensity/duration of exercise. In addition, whether previous stroke changes the effect of exercise on the brain is not known. Therefore, the present study compared the effects of a clinically-relevant form of exercise on cerebral BDNF levels and localization in control versus stroke rats. For this purpose, treadmill exercise (0.3 m/s, 30 min/day, for 7 consecutive days was started in rats with a cortical ischemic stroke after complete maturation of the lesion or in control rats. Sedentary rats were run in parallel. Mature and proBDNF levels were measured on the day following the last boot of exercise using Western blotting analysis. Total BDNF levels were simultaneously measured using ELISA tests. As compared to the striatum and the hippocampus, the cortex was the most responsive region to exercise. In this region, exercise resulted in a comparable increase in the production of mature BDNF in intact and stroke rats but increased proBDNF levels only in intact rats. Importantly, levels of mature BDNF and synaptophysin were strongly correlated. These changes in BDNF metabolism coincided with the appearance of intense BDNF labeling in the endothelium of cortical vessels. Notably, ELISA tests failed to detect changes in BDNF forms. Our results suggest that control beings can be used to find conditions of exercise that will result in increased mBDNF levels in stroke beings. They also suggest cerebral endothelium as a potential source of BDNF after exercise and highlight the importance to specifically measure the mature form of BDNF to assess BDNF-dependent plasticity in relation with exercise.

  1. DNA methylation and single nucleotide variants in the brain-derived neurotrophic factor (BDNF and oxytocin receptor (OXTR genes are associated with anxiety/depression in older women

    Directory of Open Access Journals (Sweden)

    Yvon eChagnon

    2015-06-01

    Full Text Available Background: Environmental effects and personal experiences could be expressed in individuals through epigenetic non-structural changes such as DNA methylation. This methylation could up- regulate or down-regulate corresponding gene expressions and modify related phenotypes. DNA methylation increases with ageing and could be related to the late expression of some forms of mental disease. The objective of this study was to evaluate the association between anxiety disorders and/or depression in older women and DNA methylation for four genes related to anxiety or depression. Methods: Women aged 65 and older with (n =19 or without (n =24 anxiety disorders and/or major depressive episode (DSM-IV, were recruited. DNA methylation and single nucleotide variant (SNV were evaluated from saliva, respectively by pyrosequencing and by PCR, for the following genes: brain-derived neurotrophic factor (BDNF; rs6265, oxytocin receptor (OXTR; rs53576, serotonin transporter (SLC6A4; rs25531 and apolipoprotein E (APOE; rs429358 and rs7412. Results: A greater BDNF DNA methylation was observed in subjects with anxiety/depression compared to control group subjects(Mean: 2.92 SD: 0.74 vs. 2.34 SD: 0.42; p=0.0026.This difference was more pronounced in subjects carrying the BDNF rs6265 CT genotype (2.99 SD: 0.41 vs.2.27 SD: 0.26; p=0.0006 than those carrying the CC genotype (p=0.0332; no subjects with the TT genotype were observed. For OXTR, a greater DNA methylation was observed in subjects with anxiety/depression, but only for those carrying the AA genotype of the OXTR rs53576SNV, more particularly at one out of the seven CpGs studied (7.01 SD: 0.94 vs. 4.44 SD: 1.11; p=0.0063. No significant differences were observed for APOE and SLC6A4.Conclusion: These results suggest that DNA methylation in interaction with SNV variations in BDNF and OXTR, are associated with the occurrence of anxiety/depression in older women.

  2. The brain-derived neurotrophic factor (BDNF) val66met polymorphism differentially affects performance on subscales of the Wechsler Memory Scale - Third Edition (WMS-III).

    Science.gov (United States)

    Lamb, Yvette N; Thompson, Christopher S; McKay, Nicole S; Waldie, Karen E; Kirk, Ian J

    2015-01-01

    Single nucleotide polymorphisms in the brain-derived neurotrophic factor (BDNF) gene and the catechol-O-methyltransferase (COMT) gene influence brain structure and function, as well as cognitive abilities. They are most influential in the hippocampus and prefrontal cortex (PFC), respectively. Recall and recognition are forms of memory proposed to have different neural substrates, with recall having a greater dependence on the PFC and hippocampus. This study aimed to determine whether the BDNF val(66)met or COMT val(158)met polymorphisms differentially affect recall and recognition, and whether these polymorphisms interact. A sample of 100 healthy adults was assessed on recall and familiarity-based recognition using the Faces and Family Pictures subscales of the Wechsler Memory Scale - Third Edition (WMS-III). COMT genotype did not affect performance on either task. The BDNF polymorphism (i.e., met carriers relative to val homozygotes) was associated with poorer recall ability, while not influencing recognition. Combining subscale scores in memory tests such as the WMS might obscure gene effects. Our results demonstrate the importance of distinguishing between recall and familiarity-based recognition in neurogenetics research.

  3. The brain-derived neurotrophic factor (BDNF val66met polymorphism differentially affects performance on subscales of the Wechsler memory scale – third edition (WMS-III

    Directory of Open Access Journals (Sweden)

    Yvette Nicole Lamb

    2015-08-01

    Full Text Available Single nucleotide polymorphisms in the brain-derived neurotrophic factor (BDNF gene and the catechol-O-methyltransferase (COMT gene influence brain structure and function, as well as cognitive abilities. They are most influential in the hippocampus and prefrontal cortex (PFC, respectively. Recall and recognition are forms of memory proposed to have different neural substrates, with recall having a greater dependence on the PFC and hippocampus. This study aimed to determine whether the BDNF val66met or COMT val158met polymorphisms differentially affect recall and recognition, and whether these polymorphisms interact. A sample of 100 healthy adults was assessed on recall and familiarity-based recognition using the Faces and Family Pictures subscales of the Wechsler Memory Scale – Third Edition (WMS-III. COMT genotype did not affect performance on either task. The BDNF polymorphism (i.e. met carriers relative to val homozygotes was associated with poorer recall ability, while not influencing recognition. Combining subscale scores in memory tests such as the WMS might obscure gene effects. Our results demonstrate the importance of distinguishing between recall and familiarity-based recognition in neurogenetics research.

  4. No influence of brain-derived neurotrophic factor (BDNF) polymorphisms on treatment response in a naturalistic sample of patients with major depression.

    Science.gov (United States)

    Musil, Richard; Zill, Peter; Seemüller, Florian; Bondy, Brigitta; Obermeier, Michael; Spellmann, Ilja; Bender, Wolfram; Adli, Mazda; Heuser, Isabella; Zeiler, Joachim; Gaebel, Wolfgang; Maier, Wolfgang; Rietschel, Marcella; Rujescu, Dan; Schennach, Rebecca; Möller, Hans-Jürgen; Riedel, Michael

    2013-08-01

    The role of the brain-derived neurotrophic factor (BDNF) in the pathophysiology of major depressive disorder (MDD) remains to be elucidated. Recent post hoc analyses indicated a potential association of three polymorphisms in the BDNF gene with worse treatment outcome in patients with the subtype of melancholic depression. We aimed at replicating these findings in a German naturalistic multicenter follow-up. Three polymorphisms in the BDNF gene (rs7103411, rs6265 (Val66Met) and rs7124442) were genotyped in 324 patients with MDD and 470 healthy controls. We applied univariate tests and logistic regression models stratifying for depression subtype and gender. The three polymorphisms were not associated with MDD as diagnosis. Further, no associations were found in univariate tests. With logistic regression, we only found a tendency towards an association of the rs6265 (Val66Met) polymorphism with overall response to treatment (response rates: GG (val/val) < GA (val/met) < AA (met/met); p = 0.0129) and some gender differences for the rs6265 (Val66Met) and rs7103411 polymorphisms. Treatment outcome stratified for subtypes of depression did not differ significantly between the investigated polymorphisms or using haplotype analyses. However, results showed a tendency towards significance. At this stage, we cannot support an influence of these three polymorphisms. Further studies in larger patient samples to increase sample sizes of subgroups are warranted.

  5. Multiple functions of precursor BDNF to CNS neurons: negative regulation of neurite growth, spine formation and cell survival

    Directory of Open Access Journals (Sweden)

    Koshimizu Hisatsugu

    2009-08-01

    Full Text Available Abstract Background Proneurotrophins and mature neurotrophins elicit opposite effects via the p75 neurotrophin receptor (p75NTR and Trk tyrosine kinase receptors, respectively; however the molecular roles of proneurotrophins in the CNS are not fully understood. Results Based on two rare single nucleotide polymorphisms (SNPs of the human brain-derived neurotrophic factor (BDNF gene, we generated R125M-, R127L- and R125M/R127L-BDNF, which have amino acid substitution(s near the cleavage site between the pro- and mature-domain of BDNF. Western blot analyses demonstrated that these BDNF variants are poorly cleaved and result in the predominant secretion of proBDNF. Using these cleavage-resistant proBDNF (CR-proBDNF variants, the molecular and cellular roles of proBDNF on the CNS neurons were examined. First, CR-proBDNF showed normal intracellular distribution and secretion in cultured hippocampal neurons, suggesting that inhibition of proBDNF cleavage does not affect intracellular transportation and secretion of BDNF. Second, we purified recombinant CR-proBDNF and tested its biological effects using cultured CNS neurons. Treatment with CR-proBDNF elicited apoptosis of cultured cerebellar granule neurons (CGNs, while treatment with mature BDNF (matBDNF promoted cell survival. Third, we examined the effects of CR-proBDNF on neuronal morphology using more than 2-week cultures of basal forebrain cholinergic neurons (BFCNs and hippocampal neurons. Interestingly, in marked contrast to the action of matBDNF, which increased the number of cholinergic fibers and hippocampal dendritic spines, CR-proBDNF dramatically reduced the number of cholinergic fibers and hippocampal dendritic spines, without affecting the survival of these neurons. Conclusion These results suggest that proBDNF has distinct functions in different populations of CNS neurons and might be responsible for specific physiological cellular processes in the brain.

  6. A BDNF loop-domain mimetic acutely reverses spontaneous apneas and respiratory abnormalities during behavioral arousal in a mouse model of Rett syndrome

    Directory of Open Access Journals (Sweden)

    Miriam Kron

    2014-09-01

    Full Text Available Reduced levels of brain-derived neurotrophic factor (BDNF are thought to contribute to the pathophysiology of Rett syndrome (RTT, a severe neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2. In Mecp2 mutant mice, BDNF deficits have been associated with breathing abnormalities, a core feature of RTT, as well as with synaptic hyperexcitability within the brainstem respiratory network. Application of BDNF can reverse hyperexcitability in acute brainstem slices from Mecp2-null mice, suggesting that therapies targeting BDNF or its receptor, TrkB, could be effective at acute reversal of respiratory abnormalities in RTT. Therefore, we examined the ability of LM22A-4, a small-molecule BDNF loop-domain mimetic and TrkB partial agonist, to modulate synaptic excitability within respiratory cell groups in the brainstem nucleus tractus solitarius (nTS and to acutely reverse abnormalities in breathing at rest and during behavioral arousal in Mecp2 mutants. Patch-clamp recordings in Mecp2-null brainstem slices demonstrated that LM22A-4 decreases excitability at primary afferent synapses in the nTS by reducing the amplitude of evoked excitatory postsynaptic currents and the frequency of spontaneous and miniature excitatory postsynaptic currents. In vivo, acute treatment of Mecp2-null and -heterozygous mutants with LM22A-4 completely eliminated spontaneous apneas in resting animals, without sedation. Moreover, we demonstrate that respiratory dysregulation during behavioral arousal, a feature of human RTT, is also reversed in Mecp2 mutants by acute treatment with LM22A-4. Together, these data support the hypothesis that reduced BDNF signaling and respiratory dysfunction in RTT are linked, and establish the proof-of-concept that treatment with a small-molecule structural mimetic of a BDNF loop domain and a TrkB partial agonist can acutely reverse abnormal breathing at rest and in response to

  7. Antidepressive and BDNF effects of enriched environment treatment across ages in mice lacking BDNF expression through promoter IV

    Science.gov (United States)

    Jha, S; Dong, B E; Xue, Y; Delotterie, D F; Vail, M G; Sakata, K

    2016-01-01

    Reduced promoter IV-driven expression of brain-derived neurotrophic factor (BDNF) is implicated in stress and major depression. We previously reported that defective promoter IV (KIV) caused depression-like behavior in young adult mice, which was reversed more effectively by enriched environment treatment (EET) than antidepressants. The effects of promoter IV-BDNF deficiency and EET over the life stages remain unknown. Since early-life development (ED) involves dynamic epigenetic processes, we hypothesized that EET during ED would provide maximum antidepressive effects that would persist later in life due to enhanced, long-lasting BDNF induction. We tested this hypothesis by determining EET effects across three life stages: ED (0–2 months), young adult (2–4 months), and old adult (12–14 months). KIV mice at all life stages showed depression-like behavior in the open-field and tail-suspension tests compared with wild-type mice. Two months of EET reduced depression-like behavior in ED and young adult, but not old adult mice, with the largest effect in ED KIV mice. This effect lasted for 1 month after discontinuance of EET only in ED mice. BDNF protein induction by EET in the hippocampus and frontal cortex was also the largest in ED mice and persisted only in the hippocampus of ED KIV mice after discontinuance of EET. No gender-specific effects were observed. The results suggest that defective promoter IV causes depression-like behavior, regardless of age and gender, and that EET during ED is particularly beneficial to individuals with promoter IV-BDNF deficiency, while additional treatment may be needed for older adults. PMID:27648918

  8. BDNF promotes differentiation and maturation of adult-born neurons through GABAergic transmission.

    Science.gov (United States)

    Waterhouse, Emily G; An, Juan Ji; Orefice, Lauren L; Baydyuk, Maryna; Liao, Guey-Ying; Zheng, Kang; Lu, Bai; Xu, Baoji

    2012-10-10

    Brain-derived neurotrophic factor (BDNF) has been implicated in regulating adult neurogenesis in the subgranular zone (SGZ) of the dentate gyrus; however, the mechanism underlying this regulation remains unclear. In this study, we found that Bdnf mRNA localized to distal dendrites of dentate gyrus granule cells isolated from wild-type (WT) mice, but not from Bdnf(klox/klox) mice where the long 3' untranslated region (UTR) of Bdnf mRNA is truncated. KCl-induced membrane depolarization stimulated release of dendritic BDNF translated from long 3' UTR Bdnf mRNA in cultured hippocampal neurons, but not from short 3' UTR Bdnf mRNA. Bdnf(klox/klox) mice exhibited reduced expression of glutamic acid decarboxylase 65 (a GABA synthase), increased proliferation of progenitor cells, and impaired differentiation and maturation of newborn neurons in the SGZ. These deficits in adult neurogenesis were rescued with administration of phenobarbital, an enhancer of GABA(A) receptor activity. Furthermore, we observed similar neurogenesis deficits in mice where the receptor for BDNF, TrkB, was selectively abolished in parvalbumin (PV)-expressing GABAergic interneurons. Thus, our data suggest that locally synthesized BDNF in dendrites of granule cells promotes differentiation and maturation of progenitor cells in the SGZ by enhancing GABA release, at least in part, from PV-expressing GABAergic interneurons.

  9. Amyloid-Beta Induced Changes in Vesicular Transport of BDNF in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Bianca Seifert

    2016-01-01

    Full Text Available The neurotrophin brain derived neurotrophic factor (BDNF is an important growth factor in the CNS. Deficits in transport of this secretory protein could underlie neurodegenerative diseases. Investigation of disease-related changes in BDNF transport might provide insights into the cellular mechanism underlying, for example, Alzheimer’s disease (AD. To analyze the role of BDNF transport in AD, live cell imaging of fluorescently labeled BDNF was performed in hippocampal neurons of different AD model systems. BDNF and APP colocalized with low incidence in vesicular structures. Anterograde as well as retrograde transport of BDNF vesicles was reduced and these effects were mediated by factors released from hippocampal neurons into the extracellular medium. Transport of BDNF was altered at a very early time point after onset of human APP expression or after acute amyloid-beta(1-42 treatment, while the activity-dependent release of BDNF remained unaffected. Taken together, extracellular cleavage products of APP induced rapid changes in anterograde and retrograde transport of BDNF-containing vesicles while release of BDNF was unaffected by transgenic expression of mutated APP. These early transport deficits might lead to permanently impaired brain functions in the adult brain.

  10. Combined cisplatin and aurora inhibitor treatment increase neuroblastoma cell death but surviving cells overproduce BDNF.

    Science.gov (United States)

    Polacchini, Alessio; Albani, Clara; Baj, Gabriele; Colliva, Andrea; Carpinelli, Patrizia; Tongiorgi, Enrico

    2016-07-15

    Drug-resistance to chemotherapics in aggressive neuroblastoma (NB) is characterized by enhanced cell survival mediated by TrkB and its ligand, brain-derived neurotrophic factor (BDNF); thus reduction in BDNF levels represent a promising strategy to overcome drug-resistance, but how chemotherapics regulate BDNF is unknown. Here, cisplatin treatment in SK-N-BE neuroblastoma upregulated multiple BDNF transcripts, except exons 5 and 8 variants. Cisplatin increased BDNF mRNA and protein, and enhanced translation of a firefly reporter gene flanked by BDNF 5'UTR exons 1, 2c, 4 or 6 and 3'UTR-long. To block BDNF translation we focused on aurora kinases inhibitors which are proposed as new chemotherapeutics. NB cell survival after 24 h treatment was 43% with cisplatin, and 22% by cisplatin+aurora kinase inhibitor PHA-680632, while the aurora kinases inhibitor alone was less effective; however the combined treatment induced a paradoxical increase of BDNF in surviving cells with strong translational activation of exon6-3'UTR-long transcript, while translation of BDNF transcripts 1, 2C and 4 was suppressed. In conclusion, combined cisplatin and aurora kinase inhibitor treatment increases cell death, but induces BDNF overproduction in surviving cells through an aurora kinase-independent mechanism.

  11. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission.

    Science.gov (United States)

    Su, Bo; Ji, Yun-Song; Sun, Xu-lu; Liu, Xiang-Hua; Chen, Zhe-Yu

    2014-01-17

    Appropriate mitochondrial transport and distribution are essential for neurons because of the high energy and Ca(2+) buffering requirements at synapses. Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating synaptic transmission and plasticity. However, whether and how BDNF can regulate mitochondrial transport and distribution are still unclear. Here, we find that in cultured hippocampal neurons, application of BDNF for 15 min decreased the percentage of moving mitochondria in axons, a process dependent on the activation of the TrkB receptor and its downstream PI3K and phospholipase-Cγ signaling pathways. Moreover, the BDNF-induced mitochondrial stopping requires the activation of transient receptor potential canonical 3 and 6 (TRPC3 and TRPC6) channels and elevated intracellular Ca(2+) levels. The Ca(2+) sensor Miro1 plays an important role in this process. Finally, the BDNF-induced mitochondrial stopping leads to the accumulation of more mitochondria at presynaptic sites. Mutant Miro1 lacking the ability to bind Ca(2+) prevents BDNF-induced mitochondrial presynaptic accumulation and synaptic transmission, suggesting that Miro1-mediated mitochondrial motility is involved in BDNF-induced mitochondrial presynaptic docking and neurotransmission. Together, these data suggest that mitochondrial transport and distribution play essential roles in BDNF-mediated synaptic transmission.

  12. BDNF Val66Met polymorphism, energy intake and BMI: a follow-up study in schoolchildren at risk of eating disorders

    Directory of Open Access Journals (Sweden)

    Aranda Nuria

    2010-06-01

    Full Text Available Abstract Background Eating disorders (ED have a multifactorial aetiology in which genetics play an important role. Several studies have found an association between the Val66Met (G196A polymorphism of the Brain-Derived Neurotrophic Factor (BDNF and Eating disorders. The aim of this study was to determine the association of the Val66Met (G196A polymorphism of the BDNF gene and its effect on eating disorders (ED, energy intake and BMI in schoolchildren. Methods Two-year cohort study (preadolescence to adolescence. From an initial sample of 1336 Caucasian children (mean age = 11.37 years, a group at risk of ED (n = 141 and a control group (n = 117 were selected using the Children's Eating Attitudes Test. Two years later, they were re-classified into an at-risk group (n = 41 and a control group (n = 159 using the Eating Attitudes Test. The diagnosis of the individuals at risk of ED was confirmed by means of the Diagnostic Interview for Children and Adolescents. BMI, energy intake and the Val66Met (G196A polymorphism of the BDNF gene were analysed in the at-risk and control groups. Results The frequency of genotypes of the Val66Met (G196A polymorphism of the BDNF gene is 28.6% (95% CI: 22.4-34.9 in the heterozygous form (Val/Met and 5% (95% CI: 2.4-9 in the homozygous form (Met/Met. We detected no association between Val66Met genotypes and the severity of ED. Over time, the carriers of the Met66 allele with a persistent risk of ED significantly restricted energy intake (507 Kcal/day; p = 0.033. Conclusion We have not found an association between Val66Met (G196A polymorphism of the BDNF and ED in schoolchildren from general population. The relationship found between this polymorphism and energy intake restriction in adolescents with a persistent risk of ED should be replicated in a larger sample.

  13. Neonatal morphine administration leads to changes in hippocampal BDNF levels and antioxidant enzyme activity in the adult life of rats.

    Science.gov (United States)

    Rozisky, J R; Laste, G; de Macedo, I C; Santos, V S; Krolow, R; Noschang, C; Vanzella, C; Bertoldi, K; Lovatel, G A; de Souza, I C C; Siqueira, I R; Dalmaz, C; Caumo, W; Torres, I L S

    2013-03-01

    It is know that repeated exposure to opiates impairs spatial learning and memory and that the hippocampus has important neuromodulatory effects after drug exposure and withdrawal symptoms. Thus, the aim of this investigation was to assess hippocampal levels of BDNF, oxidative stress markers associated with cell viability, and TNF-α in the short, medium and long term after repeated morphine treatment in early life. Newborn male Wistar rats received subcutaneous injections of morphine (morphine group) or saline (control group), 5 μg in the mid-scapular area, starting on postnatal day 8 (P8), once daily for 7 days, and neurochemical parameters were assessed in the hippocampus on postnatal days 16 (P16), 30 (P30), and 60 (P60). For the first time, we observed that morphine treatment in early life modulates BDNF levels in the medium and long term and also modulates superoxide dismutase activity in the long term. In addition, it was observed effect of treatment and age in TNF-α levels, and no effects in lactate dehydrogenase levels, or cell viability. These findings show that repeated morphine treatment in the neonatal period can lead to long-lasting neurochemical changes in the hippocampus of male rats, and indicate the importance of cellular and intracellular adaptations in the hippocampus after early-life opioid exposure to tolerance, withdrawal and addiction.

  14. Postnatal Administration of Allopregnanolone Modifies Glutamate Release but Not BDNF Content in Striatum Samples of Rats Prenatally Exposed to Ethanol

    Directory of Open Access Journals (Sweden)

    Roberto Yunes

    2015-01-01

    Full Text Available Ethanol consumption during pregnancy may induce profound changes in fetal CNS development. We postulate that some of the effects of ethanol on striatal glutamatergic transmission and neurotrophin expression could be modulated by allopregnanolone, a neurosteroid modulator of GABAA receptor activity. We describe the acute pharmacological effect of allopregnanolone (65 μg/kg, s.c. administered to juvenile male rats (day 21 of age on the corticostriatal glutamatergic pathway, in both control and prenatally ethanol-exposed rats (two ip injections of 2.9 g/kg in 24% v/v saline solution on gestational day 8. Prenatal ethanol administration decreased the K+-induced release of glutamate regarding the control group. Interestingly, this effect was reverted by allopregnanolone. Regarding BDNF, allopregnanolone decreases the content of this neurotrophic factor in the striatum of control groups. However, both ethanol alone and ethanol plus allopregnanolone treated animals did not show any change regarding control values. We suggest that prenatal ethanol exposure may produce an alteration of GABAA receptors which blocks the GABA agonist-like effect of allopregnanolone on rapid glutamate release, thus disturbing normal neural transmission. Furthermore, the reciprocal interactions found between GABAergic neurosteroids and BDNF could underlie mechanisms operating during the neuronal plasticity of fetal development.

  15. Robust changes in expression of brain-derived neurotrophic factor (BDNF) mRNA and protein across the brain do not translate to detectable changes in BDNF levels in CSF or plasma.

    Science.gov (United States)

    Lanz, Thomas A; Bove, Susan E; Pilsmaker, Catherine D; Mariga, Abigail; Drummond, Elena M; Cadelina, Gregory W; Adamowicz, Wendy O; Swetter, Brentt J; Carmel, Sharon; Dumin, Jo Ann; Kleiman, Robin J

    2012-09-01

    Adult rats were treated acutely with peripheral kainic acid (KA), and changes in brain-derived neurotrophic factor (BDNF) mRNA and protein were tracked over time across multiple brain regions. Despite robust elevation in both mRNA and protein in multiple brain regions, plasma BDNF was unchanged and cerebrospinal fluid (CSF) BDNF levels remained undetectable. Primary neurons were then treated with KA. BDNF was similarly elevated within neurons, but was undetectable in neuronal media. Thus, while deficits in BDNF signaling have been implicated in a number of diseases, these data suggest that extracellular concentrations of BDNF may not be a facile biomarker for changes in neurons.

  16. [BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF): NEUROBIOLOGY AND MARKER VALUE IN NEUROPSYCHIATRY].

    Science.gov (United States)

    Levada, O A; Cherednichenko, N V

    2015-01-01

    In this review current publications about neurobiology and marker value of brain derived neurotrophic factor (BDNF) in neuropsychiatry are analyzed. It is shown that BDNF is an important member of the family of neurotrophins which widely represented in various structures of the CNS. In prenatal period BDNF is involved in all stages of neuronal networks formation, and in the postnatal period its main role is maintaining the normal brain architectonics, involvement in the processes of neurogenesis and realization of neuroprotective functions. BDNF plays an important role in learning and memory organization, food and motor behavior. BDNF brain expression decreases with age, as well as in degenerative and vascular dementias, affective, anxiety, and behavioral disorders. The reducing of BDNF serum, level reflects the decreasing of its cerebral expression and could be used as a neurobiological marker of these pathological processes but the rising of its concentration could indicate the therapy effectiveness.

  17. Comparison of serum BDNF levels in deficit and nondeficit chronic schizophrenia and healthy controls.

    Science.gov (United States)

    Valiente-Gómez, Alicia; Amann, Benedikt L; Mármol, Frederic; Oliveira, Cristina; Messeguer, Ana; Lafuente, Amalia; Pomarol-Clotet, Edith; Bernardo Arroyo, Miguel

    2014-12-15

    The aim of this study was to compare serum BDNF levels of chronic schizophrenic patients, with or without deficit syndrome, and healthy controls. A comparative study of serum BDNF levels, determined by ELISA, was performed in 47 chronic patients with schizophrenia matched with 47 healthy controls. A part of the chronic schizophrenic sample was further divided into patients with a deficit (n=14) and a nondeficit syndrome (n=20), according to the Proxy for the Deficit Syndrome Scale. A significant difference was observed in decreased serum BDNF levels between chronic schizophrenia and healthy controls. No statistical significant differences in BDNF levels between deficit and nondeficit chronic schizophrenic patients were found. Our study confirms differences of serum BDNF levels of chronic schizophrenia and healthy controls, which correspond to the clinical progression of the disease. Our results do not support a relation between deficit profile in chronic schizophrenia and lower serum BDNF levels.

  18. Increased brain-derived neurotrophic factor (BDNF) protein concentrations in mice lacking brain serotonin.

    Science.gov (United States)

    Kronenberg, Golo; Mosienko, Valentina; Gertz, Karen; Alenina, Natalia; Hellweg, Rainer; Klempin, Friederike

    2016-04-01

    The interplay between BDNF signaling and the serotonergic system remains incompletely understood. Using a highly sensitive enzyme-linked immunosorbent assay, we studied BDNF concentrations in hippocampus and cortex of two mouse models of altered serotonin signaling: tryptophan hydroxylase (Tph)2-deficient (Tph2 (-/-)) mice lacking brain serotonin and serotonin transporter (SERT)-deficient (SERT(-/-)) mice lacking serotonin re-uptake. Surprisingly, hippocampal BDNF was significantly elevated in Tph2 (-/-) mice, whereas no significant changes were observed in SERT(-/-) mice. Furthermore, BDNF levels were increased in the prefrontal cortex of Tph2 (-/-) but not of SERT(-/-) mice. Our results emphasize the interaction between serotonin signaling and BDNF. Complete lack of brain serotonin induces BDNF expression.

  19. Depression, the Val66Met polymorphism, age, and gender influence the serum BDNF level

    DEFF Research Database (Denmark)

    Elfving, Betina; Buttenschøn, Henriette N; Foldager, Leslie;

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) has been suggested as a candidate gene for depression and numerous studies have investigated the possible association between genetic variants within BDNF and depression. Clinical studies have investigated the serum BDNF levels in individuals with depression....... However, few studies have combined genetic association studies with serum BDNF measurements. The purpose of the present study was therefore to perform an investigation of BDNF using 162 individuals with depression and 289 healthy individuals. All individuals returned a completed questionnaire...... and participated in a semi-structured diagnostic interview. The major contribution of the present study is the integration of clinical assessment of cases and control individuals, simultaneous analyses of several genetic variants, serum BDNF measurements, and information on socio-demographic variables, lifestyle...

  20. Definition of a Bidirectional Activity-Dependent Pathway Involving BDNF and Narp

    Directory of Open Access Journals (Sweden)

    Abigail Mariga

    2015-12-01

    Full Text Available One of the cardinal features of neural development and adult plasticity is the contribution of activity-dependent signaling pathways. However, the interrelationships between different activity-dependent genes are not well understood. The immediate early gene neuronal-activity-regulated pentraxin (NPTX2 or Narp encodes a protein that has been associated with excitatory synaptogenesis, AMPA receptor aggregation, and the onset of critical periods. Here, we show that Narp is a direct transcriptional target of brain-derived neurotrophic factor (BDNF, another highly regulated activity-dependent gene involved in synaptic plasticity. Unexpectedly, Narp is bidirectionally regulated by BDNF. Acute BDNF withdrawal results in downregulation of Narp, whereas transcription of Narp is greatly enhanced by BDNF. Furthermore, our results show that BDNF directly regulates Narp to mediate glutamatergic transmission and mossy fiber plasticity. Hence, Narp serves as a significant epistatic target of BDNF to regulate synaptic plasticity during periods of dynamic activity.

  1. Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses

    OpenAIRE

    Hartmann, Matthias; Heumann, Rolf; Lessmann, Volkmar

    2001-01-01

    The protein brain-derived neurotrophic factor (BDNF) has been postulated to be a retrograde or paracrine synaptic messenger in long-term potentiation and other forms of activity-dependent synaptic plasticity. Although crucial for this concept, direct evidence for the activity-dependent synaptic release of BDNF is lacking. Here we investigate secretion of BDNF labelled with green fluorescent protein (BDNF–GFP) by monitoring the changes in fluorescence intensity of dendritic BDNF–GFP vesicles a...

  2. Whole blood BDNF levels in healthy twins discordant for affective disorder

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Vinberg, Maj; Aznar, Susana

    2008-01-01

    and protected against affective disorder. Whole blood assessed for BDNF concentrations and correlated to risk status, neuroticism, and number of stressful life events. RESULTS: Between the groups, we found no significant difference in whole blood BDNF levels. Women at high-risk for depression who had...... neuroticism scores and two or less recent stressful events were associated with decreased whole blood BDNF levels (n=50, p

  3. Peripherally-derived BDNF promotes regeneration of ascending sensory neurons after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Xing-Yun Song

    Full Text Available BACKGROUND: The blood brain barrier (BBB and truncated trkB receptor on astrocytes prevent the penetration of brain derived neurotrophic factor (BDNF applied into the peripheral (PNS and central nervous system (CNS thus restrict its application in the treatment of nervous diseases. As BDNF is anterogradely transported by axons, we propose that peripherally derived and/or applied BDNF may act on the regeneration of central axons of ascending sensory neurons. METHODOLOGY/PRINCIPAL FINDINGS: The present study aimed to test the hypothesis by using conditioning lesion of the sciatic nerve as a model to increase the expression of endogenous BDNF in sensory neurons and by injecting exogenous BDNF into the peripheral nerve or tissues. Here we showed that most of regenerating sensory neurons expressed BDNF and p-CREB but not p75NTR. Conditioning-lesion induced regeneration of ascending sensory neuron and the increase in the number of p-Erk positive and GAP-43 positive neurons was blocked by the injection of the BDNF antiserum in the periphery. Enhanced neurite outgrowth of dorsal root ganglia (DRG neurons in vitro by conditioning lesion was also inhibited by the neutralization with the BDNF antiserum. The delivery of exogenous BDNF into the sciatic nerve or the footpad significantly increased the number of regenerating DRG neurons and regenerating sensory axons in the injured spinal cord. In a contusion injury model, an injection of BDNF into the footpad promoted recovery of motor functions. CONCLUSIONS/SIGNIFICANCE: Our data suggest that endogenous BDNF in DRG and spinal cord is required for the enhanced regeneration of ascending sensory neurons after conditioning lesion of sciatic nerve and peripherally applied BDNF may have therapeutic effects on the spinal cord injury.

  4. Expression of brain-derived neurotrophic factor (BDNF) is regulated by the Wnt signaling pathway

    OpenAIRE

    Yi, Hyun; Hu, Jianfei; Qian, Jiang; Hackam, Abigail S.

    2012-01-01

    BDNF is a well-characterized neurotrophin that mediates a wide variety of activities in the central nervous system (CNS), including neuronal differentiation, neuroprotection and synaptic plasticity. The canonical Wnt signaling pathway is a critical regulator of embryonic development and homeostasis in adult tissues. Our group and others recently demonstrated that Wnt signaling induces BDNF expression in neurons and glia. However, the precise relationship between BDNF and Wnt signaling pathway...

  5. BDNF regulates the KCC2-dependent switch from depolarizing to hyperpolarizing GABA action

    OpenAIRE

    Akyeli, Jan

    2010-01-01

    The depolarising action of the neurotransmitter GABA enables a route for local Ca2+ entry into immature neurons and therefore plays an important role in neuronal maturation. We have characterised neuronal GABAA receptor activity in slices comprising the superficial gray layer of the late embryonic and early postnatal mouse superior colliculus and compared wild type (bdnf+/+) and BDNF-deficient (bdnf-/-) preparations. Whole-cell or gramicidin-perforated patch recordings and Ca2+ imaging exper...

  6. Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway.

    Science.gov (United States)

    Walsh, Jessica J; Friedman, Allyson K; Sun, Haosheng; Heller, Elizabeth A; Ku, Stacy M; Juarez, Barbara; Burnham, Veronica L; Mazei-Robison, Michelle S; Ferguson, Deveroux; Golden, Sam A; Koo, Ja Wook; Chaudhury, Dipesh; Christoffel, Daniel J; Pomeranz, Lisa; Friedman, Jeffrey M; Russo, Scott J; Nestler, Eric J; Han, Ming-Hu

    2014-01-01

    Mechanisms controlling release of brain-derived neurotrophic factor (BDNF) in the mesolimbic dopamine reward pathway remain unknown. We report that phasic optogenetic activation of this pathway increases BDNF amounts in the nucleus accumbens (NAc) of socially stressed mice but not of stress-naive mice. This stress gating of BDNF signaling is mediated by corticotrophin-releasing factor (CRF) acting in the NAc. These results unravel a stress context-detecting function of the brain's mesolimbic circuit.

  7. The gut-brain axis, BDNF, NMDA and CNS disorders

    OpenAIRE

    Maqsood, Raeesah; Stone, Trevor W.

    2016-01-01

    Gastro-intestinal (GI) microbiota and the ‘gut-brain axis’ are proving to be increasingly relevant to early brain development and the emergence of psychiatric disorders. This review focuses on the influence of the GI tract on Brain-Derived Neurotrophic Factor (BDNF) and its relationship with receptors for N-methyl-d-aspartate (NMDAR), as these are believed to be involved in synaptic plasticity and cognitive function. NMDAR may be associated with the development of schizophrenia and a range of...

  8. Administration of N-acetylserotonin and melatonin alleviate chronic ketamine-induced behavioural phenotype accompanying BDNF-independent and dependent converging cytoprotective mechanisms in the hippocampus.

    Science.gov (United States)

    Choudhury, Arnab; Singh, Seema; Palit, Gautam; Shukla, Shubha; Ganguly, Surajit

    2016-01-15

    Though growing evidence implicates both melatonin (MLT) and its immediate precursor N-acetylserotonin (NAS) in the regulation of hippocampal neurogenesis, their comparative mechanistic relationship with core behavioural correlates of psychiatric disorders is largely unknown. To address this issue, we investigated the ability of these indoleamines to mitigate the behavioral phenotypes associated with NMDA-receptor (NMDAR) hypofunction in mice. We demonstrated that exogenous MLT and NAS treatments attenuated the NMDAR antagonist (ketamine) induced immobility in the forced swim test (FST) but not the classical striatum-related hyperlocomotor activity phenotype. The MLT/NAS-mediated protection of the phenotype in FST could be correlated to the ability of these indoleamines to counteract the deleterious effects of chronic ketamine on pro-survival molecular events by restoring the activities in MEK-ERK and PI3K-AKT pathways in the hippocampus. MLT seems to modulate these pathways by promoting accumulation of the mature form of BDNF above the control (vehicle-treated) levels, perhaps via MLT receptor-dependent mechanisms and in the process overcoming the ketamine-induced down-regulation of BDNF. In contrast, NAS appears to partly restore the ketamine-induced decrease of BDNF to the control levels. In spite of this fundamental difference in modulating BDNF levels in the upstream events, both MLT and NAS seem to overlap in the TrkB-induced downstream pro-survival mechanisms in the hippocampus, providing protection against NMDAR-hypofunction related cellular events. Perhaps, this also signifies the physiological importance of robust MLT synthesizing machinery that converts serotonin to MLT, in ensuring positive impact on hippocampus-related symptoms in psychiatric disorders.

  9. Interplay between thyroxin, BDNF and GABA in injured neurons.

    Science.gov (United States)

    Shulga, A; Rivera, C

    2013-06-03

    Accumulating experimental evidence suggests that groups of neurons in the CNS might react to pathological insults by activating developmental-like programs for survival, regeneration and re-establishment of lost connections. For instance, in cell and animal models it was shown that after trauma mature central neurons become dependent on brain-derived neurotrophic factor (BDNF) trophic support for survival. This event is preceded by a shift of postsynaptic GABAA receptor-mediated responses from hyperpolarization to developmental-like depolarization. These profound functional changes in GABAA receptor-mediated transmission and the requirement of injured neurons for BDNF trophic support are interdependent. Thyroid hormones (THs) play a crucial role in the development of the nervous system, having significant effects on dendritic branching, synaptogenesis and axonal growth to name a few. In the adult nervous system TH thyroxin has been shown to have a neuroprotective effect and to promote regeneration in experimental trauma models. Interestingly, after trauma there is a qualitative change in the regulatory effect of thyroxin on BDNF expression as well as on GABAergic transmission. In this review we provide an overview of the post-traumatic changes in these signaling systems and discuss the potential significance of their interactions for the development of novel therapeutic strategies.

  10. BDNF Val66Met modifies the risk of childhood trauma on obsessive-compulsive disorder.

    Science.gov (United States)

    Hemmings, Sian Megan Joanna; Lochner, Christine; van der Merwe, Lize; Cath, Danielle C; Seedat, Soraya; Stein, Dan J

    2013-12-01

    Childhood trauma has been linked to the development of later psychopathology, including obsessive-compulsive disorder (OCD). Although evidence exists to suggest that genetic and environmental factors are involved in the aetiology of OCD, little attention has been paid to the interactions that exist between genes and environment. The aim of this study was to investigate gene-by-environment interactions between childhood trauma and the BDNF Val66Met variant in patients with OCD. Childhood trauma was assessed in 134 OCD patients and 188 controls using the Childhood Trauma Questionnaire (CTQ). Linear regression models were used for statistical analyses. Gene-environment interactions were estimated by including a combined genotype and CTQ score in the models as interaction terms. All analyses were adjusted for age, gender, CTQ minimisation-denial score and home language by including them in the logistic regression models as covariates. Childhood trauma, specifically emotional abuse and neglect, increased the odds of having OCD significantly (p risk of OCD significantly in a dose-dependent manner (p = 0.024). To our knowledge, this is one of the first studies to investigate gene-environment interactions in OCD, and the findings indicate the importance of collating genetic and environmental variables in future studies.

  11. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise.

    Science.gov (United States)

    Saucedo Marquez, Cinthia Maria; Vanaudenaerde, Bart; Troosters, Thierry; Wenderoth, Nicole

    2015-12-15

    Exercise can have a positive effect on the brain by activating brain-derived neurotrophic factor (BDNF)-related processes. In healthy humans there appears to be a linear relationship between exercise intensity and the positive short-term effect of acute exercise on BDNF levels (i.e., the highest BDNF levels are reported after high-intensity exercise protocols). Here we performed two experiments to test the effectiveness of two high-intensity exercise protocols, both known to improve cardiovascular health, to determine whether they have a similar efficacy in affecting BDNF levels. Participants performed a continuous exercise (CON) protocol at 70% of maximal work rate and a high-intensity interval-training (HIT) protocol at 90% of maximal work rate for periods of 1 min alternating with 1 min of rest (both protocols lasted 20 min). We observed similar BDNF kinetics in both protocols, with maximal BDNF concentrations being reached toward the end of training (experiment 1). We then showed that both exercise protocols significantly increase BDNF levels compared with a rest condition (CON P = 0.04; HIT P exercise are slightly more effective than continuous high-intensity exercise for elevating serum BDNF. Additionally, 73% of the participants preferred the HIT protocol (P = 0.02). Therefore, we suggest that the HIT protocol might represent an effective and preferred intervention for elevating BDNF levels and potentially promoting brain health.

  12. BDNF-secreting capsule exerts neuroprotective effects on epilepsy model of rats.

    Science.gov (United States)

    Kuramoto, Satoshi; Yasuhara, Takao; Agari, Takashi; Kondo, Akihiko; Jing, Meng; Kikuchi, Yoichiro; Shinko, Aiko; Wakamori, Takaaki; Kameda, Masahiro; Wang, Feifei; Kin, Kyohei; Edahiro, Satoru; Miyoshi, Yasuyuki; Date, Isao

    2011-01-12

    Brain-derived neurotrophic factor (BDNF) is a well neurotrophic factor with neuroprotective potentials for various diseases in the central nervous system. However several previous studies demonstrated that BDNF might deteriorate symptoms for epilepsy model of animals by progression of abnormal neurogenesis. We hypothesized that continuous administration of BDNF at low dose might be more effective for epilepsy model of animals because high dose of BDNF was used in many studies. BDNF-secreting cells were genetically made and encapsulated for transplantation. Rats receiving BDNF capsule showed significant amelioration of seizure stage and reduction of the number of abnormal spikes at 7 days after kainic acid administration, compared to those of control group. The number of BrdU and BrdU/doublecortin positive cells in the hippocampus of BDNF group significantly increased, compared to that of control group. NeuN positive cells in the CA1 and CA3 of BDNF group were significantly preserved, compared to control group. In conclusion, low dose administration using encapsulated BDNF-secreting cells exerted neuroprotective effects with enhanced neurogenesis on epilepsy model of rats. These results might suggest the importance of the dose and administrative way of this neurotrophic factor to the epilepsy model of animals.

  13. Chronic BDNF deficiency leads to an age-dependent impairment in spatial learning.

    Science.gov (United States)

    Petzold, Anne; Psotta, Laura; Brigadski, Tanja; Endres, Thomas; Lessmann, Volkmar

    2015-04-01

    Brain-derived neurotrophic factor (BDNF) is a crucial mediator of neural plasticity and, consequently, of memory formation. In hippocampus-dependent learning tasks BDNF also seems to play an essential role. However, there are conflicting results concerning the spatial learning ability of aging BDNF(+/-) mice in the Morris water maze paradigm. To evaluate the effect of chronic BDNF deficiency in the hippocampus on spatial learning throughout life, we conducted a comprehensive study to test differently aged BDNF(+/-) mice and their wild type littermates in the Morris water maze and to subsequently quantify their hippocampal BDNF protein levels as well as expression levels of TrkB receptors. We observed an age-dependent learning deficit in BDNF(+/-) animals, starting at seven months of age, despite stable hippocampal BDNF protein expression and continual decline of TrkB receptor expression throughout aging. Furthermore, we detected a positive correlation between hippocampal BDNF protein levels and learning performance during the probe trial in animals that showed a good learning performance during the long-term memory test.

  14. BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Brunetto de Farias, Caroline [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Children' s Cancer Institute, 90420-140 Porto Alegre, RS (Brazil); Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Heinen, Tiago Elias; Pereira dos Santos, Rafael [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Abujamra, Ana Lucia [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Children' s Cancer Institute, 90420-140 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Schwartsmann, Gilberto [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Department of Internal Medicine, School of Medicine, Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); and others

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. Black-Right-Pointing-Pointer TrkB inhibition potentiated the antitumor effect of cetuximab. Black-Right-Pointing-Pointer BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling can protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.

  15. BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB

    Science.gov (United States)

    Hu, Peter; Kalb, Robert G.; Walton, K. D. (Principal Investigator)

    2003-01-01

    The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.

  16. Persistent inflammation-induced up-regulation of brain-derived neurotrophic factor (BDNF) promotes synaptic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 subunits in descending pain modulatory circuits.

    Science.gov (United States)

    Tao, Wenjuan; Chen, Quan; Zhou, Wenjie; Wang, Yunping; Wang, Lu; Zhang, Zhi

    2014-08-08

    The enhanced AMPA receptor phosphorylation at GluA1 serine 831 sites in the central pain-modulating system plays a pivotal role in descending pain facilitation after inflammation, but the underlying mechanisms remain unclear. We show here that, in the rat brain stem, in the nucleus raphe magnus, which is a critical relay in the descending pain-modulating system of the brain, persistent inflammatory pain induced by complete Freund adjuvant (CFA) can enhance AMPA receptor-mediated excitatory postsynaptic currents and the GluA2-lacking AMPA receptor-mediated rectification index. Western blot analysis showed an increase in GluA1 phosphorylation at Ser-831 but not at Ser-845. This was accompanied by an increase in distribution of the synaptic GluA1 subunit. In parallel, the level of histone H3 acetylation at bdnf gene promoter regions was reduced significantly 3 days after CFA injection, as indicated by ChIP assays. This was correlated with an increase in BDNF mRNA levels and BDNF protein levels. Sequestering endogenous extracellular BDNF with TrkB-IgG in the nucleus raphe magnus decreased AMPA receptor-mediated synaptic transmission and GluA1 phosphorylation at Ser-831 3 days after CFA injection. Under the same conditions, blockade of TrkB receptor functions, phospholipase C, or PKC impaired GluA1 phosphorylation at Ser-831 and decreased excitatory postsynaptic currents mediated by GluA2-lacking AMPA receptors. Taken together, these results suggest that epigenetic up-regulation of BDNF by peripheral inflammation induces GluR1 phosphorylation at Ser-831 sites through activation of the phospholipase C-PKC signaling cascade, leading to the trafficking of GluA1 to pain-modulating neuronal synapses.

  17. Endogenous BDNF protein is increased in adult rat hippocampus after a kainic acid induced excitotoxic insult but exogenous BDNF is not neuroprotective.

    Science.gov (United States)

    Rudge, J S; Mather, P E; Pasnikowski, E M; Cai, N; Corcoran, T; Acheson, A; Anderson, K; Lindsay, R M; Wiegand, S J

    1998-02-01

    Systemic administration of the excitotoxin kainic acid to adult rats results in a well defined pattern of loss of the CA1 and CA3 pyramidal neurons of the hippocampus. Prior to this neuronal loss, brain-derived neurotrophic factor (BDNF) mRNA is substantially increased. We show here that BDNF protein is increased after excitotoxic insult in specific areas of the hippocampus, reaching maximal levels 24 h after the insult. BDNF protein levels in the hippocampus increase in direct relation to the severity of seizure. Up to 7 days after injection of kainic acid, levels of full-length TrkB protein were unchanged, whereas levels of truncated TrkB protein were significantly increased by 12 h. To determine whether elevations in BDNF protein levels are potentially beneficial to hippocampal neurons exposed to an excitotoxic stress, we infused exogenous BDNF prior to and during the period of neuronal death caused by kainic acid. We find that administration of high levels of exogenous BDNF does not affect severity of seizure, but does in fact, exacerbate the injury caused by kainic acid, specifically to CA3 pyramidal neurons. Although there was a trend toward sparing of CA1 pyramidal neurons on the side infused with BDNF, this was not significant. In the same paradigm, infusion of exogenous NT-3 had no effect.

  18. Topiramate protects against glutamate excitotoxicity via activating BDNF/TrkB-dependent ERK pathway in rodent hippocampal neurons.

    Science.gov (United States)

    Mao, Xiao-Yuan; Cao, Yong-Gang; Ji, Zhong; Zhou, Hong-Hao; Liu, Zhao-Qian; Sun, Hong-Li

    2015-07-01

    Topiramate (TPM) was previously found to have neuroprotection against neuronal injury in epileptic and ischemic models. However, whether TPM protects against glutamate-induced excitotoxicity in hippocampal neurons is elusive. Our present work aimed to evaluate the protective effect of TPM against glutamate toxicity in hippocampal neurons and further figure out the potential molecular mechanisms. The in vitro glutamate excitotoxic model was prepared with 125μM glutamate for 20min. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) analysis and Hoechst 33342 staining were conducted to detect neuronal survival. The protein expressions of brain-derived neurotrophic factor (BDNF), TrkB, mitogen-activated protein kinase (MAPK) cascade (including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK), cyclic AMP response element binding protein (CREB), Bcl-2, Bax and β-actin were detected via Western blot assay. Our results demonstrated that TPM protected hippocampal neurons from glutamate toxicity. Meanwhile, the pretreatment of TPM for 10min significantly prevented the down-regulation of BDNF and the phosphorylation of TrkB. Furthermore, the elevation of phosphorylated EKR expression was significantly inhibited after blockade of TrkB by TrkB IgG, while no alterations of phosphorylated JNK and p38 MAPK were found in the cultured hippocampal neurons. Besides, it was also found that the enhanced phosphorylation of CREB was evidently reversed under excitotoxic conditions after treating with U0126 (the selective inhibitor of ERK). The protein level of Bcl-2 was also observed to be remarkably increased after TPM treatment. In conclusion, these findings implicate that TPM exerts neuroprotective effects against glutamate excitotoxicity in hippocampal neurons and its protection may be modulated through BDNF/TrkB-dependent ERK pathway.

  19. The presence of a single-nucleotide polymorphism in the BDNF gene affects the rate of locomotor adaptation after stroke.

    Science.gov (United States)

    Helm, Erin E; Tyrell, Christine M; Pohlig, Ryan T; Brady, Lucas D; Reisman, Darcy S

    2016-02-01

    Induction of neural plasticity through motor learning has been demonstrated in animals and humans. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of growth factors, is thought to play an integral role in modulation of central nervous system plasticity during learning and motor skill recovery. Thirty percent of humans possess a single-nucleotide polymorphism on the BDNF gene (Val66Met), which has been linked to decreased activity-dependent release of BDNF. Presence of the polymorphism has been associated with altered cortical activation, short-term plasticity and altered skill acquisition, and learning in healthy humans. The impact of the Val66Met polymorphism on motor learning post-stroke has not been explored. The purpose of this study was to examine the impact of the Val66Met polymorphism in learning of a novel locomotor task in subjects with chronic stroke. It was hypothesized that subjects with the polymorphism would have an altered rate and magnitude of adaptation to a novel locomotor walking paradigm (the split-belt treadmill), compared to those without the polymorphism. The rate of adaptation was evaluated as the reduction in gait asymmetry during the first 30 (early adaptation) and last 100 (late adaptation) strides. Twenty-seven individuals with chronic stroke participated in a single session of split-belt treadmill walking and tested for the polymorphism. Step length and limb phase were measured to assess adaptation of spatial and temporal parameters of walking. The rate of adaptation of step length asymmetry differed significantly between those with and without the polymorphism, while the amount of total adaptation did not. These results suggest that chronic stroke survivors, regardless of presence or absence of the polymorphism, are able to adapt their walking pattern over a period of trial-and-error practice; however, the presence of the polymorphism influences the rate at which this is achieved.

  20. BDNF and VEGF in the pathogenesis of stress-induced affective diseases: an insight from experimental studies.

    Science.gov (United States)

    Nowacka, Marta; Obuchowicz, Ewa

    2013-01-01

    Stress is known to play an important role in etiology, development and progression of affective diseases. Especially, chronic stress, by initiating changes in the hypothalamic-pituitary-adrenal axis (HPA), neurotransmission and the immune system, acts as a trigger for affective diseases. It has been reported that the rise in the concentration of pro-inflammatory cytokines and persistent up-regulation of glucocorticoid expression in the brain and periphery increases the excitotoxic effect on CA3 pyramidal neurons in the hippocampus resulting in dendritic atrophy, apoptosis of neurons and possibly inhibition of neurogenesis in adult brain. Stress was observed to disrupt neuroplasticity in the brain, and growing evidence demonstrates its role in the pathomechanism of affective disorders. Experimental studies indicate that a well-known brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) which have recently focused increasing attention of neuroscientists, promote cell survival, positively modulate neuroplasticity and hippocampal neurogenesis. In this paper, we review the alterations in BDNF and VEGF pathways induced by chronic and acute stress, and their relationships with HPA axis activity. Moreover, behavioral effects evoked in rodents by both above-mentioned factors and the effects consequent to their deficit are presented. Biochemical as well as behavioral findings suggest that BDNF and VEGF play an important role as components of cascade of changes in the pathomechanism of stress-induced affective diseases. Further studies on the mechanisms regulating their expression in stress conditions are needed to better understand the significance of trophic hypothesis of stress-induced affective diseases.

  1. Treatment of trigeminal ganglion neurons in vitro with NGF, GDNF or BDNF: effects on neuronal survival, neurochemical properties and TRPV1-mediated neuropeptide secretion

    Directory of Open Access Journals (Sweden)

    Patwardhan Amol M

    2005-01-01

    Full Text Available Abstract Background Nerve growth factor (NGF, glial cell line-derived neurotrophic factor (GDNF and brain-derived neurotrophic factor (BDNF all play important roles in the development of the peripheral sensory nervous system. Additionally, these growth factors are proposed to modulate the properties of the sensory system in the adult under pathological conditions brought about by nerve injury or inflammation. We have examined the effects of NGF, GDNF and BDNF on adult rat trigeminal ganglion (TG neurons in culture to gain a better understanding of how these growth factors alter the cytochemical and functional phenotype of these neurons, with special attention to properties associated with nociception. Results Compared with no growth factor controls, GDNF, at 1 and 100 ng/ml, significantly increased by nearly 100% the number of neurons in culture at 5 days post-plating. A significant, positive, linear trend of increasing neuron number as a function of BDNF concentration was observed, also peaking at nearly 100%. NGF treatment was without effect. Chronic treatment with NGF and GDNF significantly and concentration-dependently increased 100 nM capsaicin (CAP-evoked calcitonin gene-related peptide (CGRP release, reaching approximately 300% at the highest concentration tested (100 ng/ml. Also, NGF and GDNF each augmented anandamide (AEA- and arachidonyl-2-chloroethylamide (ACEA-evoked CGRP release, while BDNF was without effect. Utilizing immunohistochemistry to account for the proportions of TRPV1- or CGRP-positive neurons under each growth factor treatment condition and then standardizing evoked CGRP release to these proportions, we observed that NGF was much more effective in enhancing CAP- and 50 mM K+-evoked CGRP release than was GDNF. Furthermore, NGF and GDNF each altered the concentration-response function for CAP- and AEA-evoked CGRP release, increasing the Emax without altering the EC50 for either compound. Conclusions Taken together, our

  2. Alterations of serum levels of BDNF-related miRNAs in patients with depression.

    Directory of Open Access Journals (Sweden)

    You-Jie Li

    Full Text Available Depression is a serious and potentially life-threatening mental disorder with unknown etiology. Emerging evidence shows that brain-derived neurotrophic factor (BDNF and microRNAs (miRNAs play critical roles in the etiology of depression. Here this study was aimed to identify and characterize the roles of BDNF and its putative regulatory miRNAs in depression. First, we identified that miR-182 may be a putative miRNA that regulates BDNF levels by bioinformatic studies, and characterized the effects of miR-182 on the BDNF levels using cell-based studies, side by side with miR-132 (a known miRNA that regulates BDNF expression. We showed that treatment of miR-132 and miR-182 respectively decreased the BDNF protein levels in a human neuronal cell model, supporting the regulatory roles of miR-132 and miR-182 on the BDNF expression. Furthermore, we explored the roles of miR-132 and miR-182 on the BDNF levels in depression using human subjects by assessing their serum levels. Compared with the healthy controls, patients with depression showed lower serum BDNF levels (via the enzyme-linked immunosorbent assays and higher serum miR-132 and miR-182 levels (via the real-time PCR. Finally, the Pearson's (or Spearman's correlation coefficient was calculated to study whether there was a relationship among the Self-Rating Depression Scale score, the serum BDNF levels, and serum BDNF-related miRNA levels. Our results revealed that there was a significant negative correlation between the SDS scores and the serum BDNF levels, and a positive correlation between the SDS scores and miR-132 levels. In addition, we found a reverse relationship between the serum BDNF levels and the miR-132/miR-182 levels in depression. Collectively, we provided evidence supporting that miR-182 is a putative BDNF-regulatory miRNA, and suggested that the serum BDNF and its related miRNAs may be utilized as important biomarkers in the diagnosis or as therapeutic targets of depression.

  3. The requirement of BDNF for hippocampal synaptic plasticity is experience‐dependent

    Science.gov (United States)

    Aarse, Janna; Herlitze, Stefan

    2016-01-01

    ABSTRACT Brain‐derived neurotrophic factor (BDNF) supports neuronal survival, growth, and differentiation and has been implicated in forms of hippocampus‐dependent learning. In vitro, a specific role in hippocampal synaptic plasticity has been described, although not all experience‐dependent forms of synaptic plasticity critically depend on BDNF. Synaptic plasticity is likely to enable long‐term synaptic information storage and memory, and the induction of persistent (>24 h) forms, such as long‐term potentiation (LTP) and long‐term depression (LTD) is tightly associated with learning specific aspects of a spatial representation. Whether BDNF is required for persistent (>24 h) forms of LTP and LTD, and how it contributes to synaptic plasticity in the freely behaving rodent has never been explored. We examined LTP, LTD, and related forms of learning in the CA1 region of freely dependent mice that have a partial knockdown of BDNF (BDNF+/−). We show that whereas early‐LTD (BDNF, short‐term depression (BDNF is required for LTP that is induced by mild, but not strong short afferent stimulation protocols. Object‐place learning triggers LTD in the CA1 region of mice. We observed that object‐place memory was impaired and the object‐place exploration failed to induce LTD in BDNF+/− mice. Furthermore, spatial reference memory, that is believed to be enabled by LTP, was also impaired. Taken together, these data indicate that BDNF is required for specific, but not all, forms of hippocampal‐dependent information storage and memory. Thus, very robust forms of synaptic plasticity may circumvent the need for BDNF, rather it may play a specific role in the optimization of weaker forms of plasticity. The finding that both learning‐facilitated LTD and spatial reference memory are both impaired in BDNF+/− mice, suggests moreover, that it is critically required for the physiological encoding of hippocampus‐dependent memory. © 2015 The Authors

  4. Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats.

    Science.gov (United States)

    Jiang, Y; Wei, N; Lu, T; Zhu, J; Xu, G; Liu, X

    2011-01-13

    Inflammation plays a vital role in the pathogenesis of ischemic stroke. Brain-derived neurotrophic factor (BDNF) may protect brain tissues from ischemic injury. In this study, we investigated whether intranasal BDNF exerted neuroprotection against ischemic insult by modulating the local inflammation in rats with ischemic stroke. Rats were subjected to temporary occlusion of the right middle cerebral artery (120 min) and intranasal BDNF or vehicle was adminstrated 2 h after reperfusion. Infarct volume and neuron injury were measured using triphenyltetrazolium chloride, Nissl staining and TUNEL assay, respectively. Microglia were detected by immunohistofluorescence. Tumor necrosis factor-α, interleukin10 and mRNAs were evaluated by enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction. DNA-binding activity of nuclear factor-kappa B was measured by electrophoretic mobility shift assay. BDNF level in brain tissues was markedly raised following intranasal administration. There were more Nissl positive and less TUNEL positive neurons in BDNF group than in control group while intranasal BDNF did not reduce the infarct volume significantly (n=6, 0.27±0.04 vs. 0.24±0.05, P>0.05). BDNF increased the number of activated microglia (OX-42 positive) and phagocytotic microglia (ED1 positive). BDNF suppressed tumor necrosis factor-α and mRNA expression while increasing the interleukin10 and mRNA expression. BDNF also increased DNA-binding activity of nuclear factor-kappa B (n=6, 49.78±1.23 vs. 52.89±1.64, PBDNF might protect the brain against ischemic insult by modulating local inflammation via regulation of the levels of cellular, cytokine and transcription factor in the experimental stroke.

  5. Plasma levels of mature brain-derived neurotrophic factor (BDNF) and matrix metalloproteinase-9 (MMP-9) in treatment-resistant schizophrenia treated with clozapine.

    Science.gov (United States)

    Yamamori, Hidenaga; Hashimoto, Ryota; Ishima, Tamaki; Kishi, Fukuko; Yasuda, Yuka; Ohi, Kazutaka; Fujimoto, Michiko; Umeda-Yano, Satomi; Ito, Akira; Hashimoto, Kenji; Takeda, Masatoshi

    2013-11-27

    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. Peripheral BDNF levels in patients with schizophrenia have been widely reported in the literature. However, it is still controversial whether peripheral levels of BDNF are altered in patients with schizophrenia. The peripheral BDNF levels previously reported in patients with schizophrenia were total BDNF (proBDNF and mature BDNF) as it was unable to specifically measure mature BDNF due to limited BDNF antibody specificity. In this study, we examined whether peripheral levels of mature BDNF were altered in patients with treatment-resistant schizophrenia. Matrix metalloproteinase-9 (MMP-9) levels were also measured, as MMP-9 plays a role in the conversion of proBDNF to mature BDNF. Twenty-two patients with treatment-resistant schizophrenia treated with clozapine and 22 age- and sex-matched healthy controls were enrolled. The plasma levels of mature BDNF and MMP-9 were measured using ELISA kits. No significant difference was observed for mature BDNF however, MMP-9 was significantly increased in patients with schizophrenia. The significant correlation was observed between mature BDNF and MMP-9 plasma levels. Neither mature BDNF nor MMP-9 plasma levels were associated clinical variables. Our results do not support the view that peripheral BDNF levels are associated with schizophrenia. MMP-9 may play a role in the pathophysiology of schizophrenia and serve as a biomarker for schizophrenia.

  6. A novel form of synaptic plasticity in field CA3 of hippocampus requires GPER1 activation and BDNF release.

    Science.gov (United States)

    Briz, Victor; Liu, Yan; Zhu, Guoqi; Bi, Xiaoning; Baudry, Michel

    2015-09-28

    Estrogen is an important modulator of hippocampal synaptic plasticity and memory consolidation through its rapid action on membrane-associated receptors. Here, we found that both estradiol and the G-protein-coupled estrogen receptor 1 (GPER1) specific agonist G1 rapidly induce brain-derived neurotrophic factor (BDNF) release, leading to transient stimulation of activity-regulated cytoskeleton-associated (Arc) protein translation and GluA1-containing AMPA receptor internalization in field CA3 of hippocampus. We also show that type-I metabotropic glutamate receptor (mGluR) activation does not induce Arc translation nor long-term depression (LTD) at the mossy fiber pathway, as opposed to its effects in CA1, and it only triggers LTD after GPER1 stimulation. Furthermore, this form of mGluR-dependent LTD is associated with ubiquitination and proteasome-mediated degradation of GluA1, and is prevented by proteasome inhibition. Overall, our study identifies a novel mechanism by which estrogen and BDNF regulate hippocampal synaptic plasticity in the adult brain.

  7. Molecular mechanism linking BDNF/TrkB signaling with the NMDA receptor in memory: the role of Girdin in the CNS.

    Science.gov (United States)

    Itoh, Norimichi; Enomoto, Atsushi; Nagai, Taku; Takahashi, Masahide; Yamada, Kiyofumi

    2016-07-01

    It is well known that synaptic plasticity is the cellular mechanism underlying learning and memory. Activity-dependent synaptic changes in electrical properties and morphology, including synaptogenesis, lead to alterations of synaptic strength, which is associated with long-term potentiation (LTP). Brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) signaling is involved in learning and memory formation by regulating synaptic plasticity. The phosphatidylinositol 3-kinase (PI3-K)/Akt pathway is one of the key signaling cascades downstream BDNF/TrkB and is believed to modulate N-methyl-d-aspartate (NMDA) receptor-mediated synaptic plasticity. However, the molecular mechanism underlying the connection between these two key players in synaptic plasticity remains largely unknown. Girders of actin filament (Girdin), an Akt substrate that directly binds to actin filaments, has been shown to play a role in neuronal migration and neuronal development. Recently, we identified Girdin as a key molecule involved in regulating long-term memory. It was demonstrated that phosphorylation of Girdin by Akt contributed to the maintenance of LTP by linking the BDNF/TrkB signaling pathway with NMDA receptor activity. These findings indicate that Girdin plays a pivotal role in a variety of processes in the CNS. Here, we review recent advances in our understanding about the roles of Girdin in the CNS and focus particularly on neuronal migration and memory.

  8. TNF-alpha inhibition prevents cognitive decline and maintains hippocampal BDNF levels in the unpredictable chronic mild stress rat model of depression.

    Science.gov (United States)

    Şahin, Tuğçe Demirtaş; Karson, Ayşe; Balcı, Fuat; Yazır, Yusufhan; Bayramgürler, Dilek; Utkan, Tijen

    2015-10-01

    Previous findings have shown that patients with depression express higher levels of proinflammatory cytokines such as TNF-α and IL-6. We have recently found that Infliximab (a TNF-α inhibitor) decreased anhedonia and despair-like behavior in the rat unpredictable chronic mild stress (UCMS) model of depression suggesting that inflammation might play an important role in depression. An increasing number of studies suggest that inflammation is also associated with cognitive impairments. The current study aimed to investigate the effect of UCMS on the cognitive performance of rats and their hippocampal BDNF levels and the effect of chronic Infliximab (5mg/kg/weekly, i.p.) treatment on these measures. Rats were subjected to different types of stressors daily for a period of 56 days to induce depression-like state. The UCMS resulted in impairments in spatial and emotional memory acquisition and retention with no effect on the level of locomotor activity. These behavioral effects of UCMS were accompanied by reduction in the level of BDNF in the CA1 and CA3 regions of the hippocampus. Chronic Infliximab treatment prevented the UCMS-induced cognitive impairments as well as the reduction in the levels of hippocampal brain-derived neurotrophic factor (BDNF). These results suggest that Infliximab improves the spatial and emotional memory impairments induced by chronic stress in rats likely through its effects on hippocampal function by modulating inflammation.

  9. Cooperation between BDNF and glutamate in the regulation of synaptic transmission and neuronal development.

    Science.gov (United States)

    Martin, Jean-Luc; Finsterwald, Charles

    2011-01-01

    Ample evidence supports a role of brain-derived neurotrophic factor (BDNF) in the survival and differentiation of selective populations of neurons in the peripheral and central nervous systems. In addition to its trophic actions, BDNF exerts acute effects on synaptic transmission and plasticity. In particular, BDNF enhances excitatory synaptic transmission through pre- and postsynaptic mechanisms. In this regard, BDNF enhances glutamate release, the frequency of miniature excitatory postsynaptic currents (mEPSCs), NMDA receptor activity and the phosphorylation of NMDA receptor subunits. Our recent studies revealed a novel cooperative interaction between BDNF and glutamate in the regulation of dendritic development. Indeed, we found that the effects of BDNF on dendritic growth of cortical neurons require both the stimulation of cAMP response element-binding protein (CREB) phosphorylation by BDNF and the activation of the CREB-regulated transcription coactivator 1 (CRTC1) by glutamate. Together, these studies highlight the importance of the cooperation between BDNF and glutamate in the regulation of synaptic transmission and neuronal development.

  10. Investigating the Role of Hippocampal BDNF in Anxiety Vulnerability Using Classical Eyeblink Conditioning.

    Science.gov (United States)

    Janke, Kellie L; Cominski, Tara P; Kuzhikandathil, Eldo V; Servatius, Richard J; Pang, Kevin C H

    2015-01-01

    Dysregulation of brain-derived neurotrophic factor (BDNF), behavioral inhibition temperament (BI), and small hippocampal volume have been linked to anxiety disorders. Individuals with BI show facilitated acquisition of the classically conditioned eyeblink response (CCER) as compared to non-BI individuals, and a similar pattern is seen in an animal model of BI, the Wistar-Kyoto (WKY) rat. The present study examined the role of hippocampal BDNF in the facilitated delay CCER of WKY rats. Consistent with earlier work, acquisition was facilitated in WKY rats compared to the Sprague Dawley (SD) rats. Facilitated acquisition was associated with increased BDNF, TrkB, and Arc mRNA in the dentate gyrus of SD rats, but learning-induced increases in BDNF and Arc mRNA were significantly smaller in WKY rats. To determine whether reduced hippocampal BDNF in WKY rats was a contributing factor for their facilitated CCER, BDNF or saline infusions were given bilaterally into the dentate gyrus region 1 h prior to training. BDNF infusion did not alter the acquisition of SD rats, but significantly dampened the acquisition of CCER in the WKY rats, such that acquisition was similar to SD rats. Together, these results suggest that inherent differences in the BDNF system play a critical role in the facilitated associative learning exhibited by WKY rats, and potentially individuals with BI. Facilitated associative learning may represent a vulnerability factor in the development of anxiety disorders.

  11. BDNF mediates improvements in executive function following a 1-year exercise intervention

    Directory of Open Access Journals (Sweden)

    Regina Lynn Leckie

    2014-12-01

    Full Text Available Executive function declines with age, but engaging in aerobic exercise may attenuate decline. One mechanism by which aerobic exercise may preserve executive function is through the up-regulation of brain-derived neurotropic factor (BDNF, which also declines with age. The present study examined BDNF as a mediator of the effects of a 1-year walking intervention on executive function in 90 older adults (mean age = 66.82. Participants were randomized to a stretching and toning control group or a moderate intensity walking intervention group. BDNF serum levels and performance on a task-switching paradigm were collected at baseline and follow-up. We found that age moderated the effect of intervention group on changes in BDNF levels, with those in the highest age quartile showing the greatest increase in BDNF after 1-year of moderate intensity walking exercise (p = .036. The mediation analyses revealed that BDNF mediated the effect of the intervention on task-switch accuracy, but did so as a function of age, such that exercise-induced changes in BDNF mediated the effect of exercise on task-switch performance only for individuals over the age of 71. These results demonstrate that both age and BDNF serum levels are important factors to consider when investigating the mechanisms by which exercise interventions influence cognitive outcomes, particularly in elderly populations.

  12. Androgen-dependent loss of muscle BDNF mRNA in two mouse models of SBMA.

    Science.gov (United States)

    Halievski, Katherine; Henley, Casey L; Domino, Laurel; Poort, Jessica E; Fu, Martina; Katsuno, Masahisa; Adachi, Hiroaki; Sobue, Gen; Breedlove, S Marc; Jordan, Cynthia L

    2015-07-01

    Transgenic expression of neurotrophic factors in skeletal muscle has been found to protect mice from neuromuscular disease, including spinal bulbar muscular atrophy (SBMA), triggering renewed interest in neurotrophic factors as therapeutic agents for treating neuromuscular disease. Because SBMA is an androgen-dependent disease, and brain-derived neurotrophic factor (BDNF) mediates effects of androgens on neuromuscular systems, we asked whether BDNF expression is impaired in two different transgenic (Tg) mouse models of SBMA, the so called "97Q" and "myogenic" SBMA models. The 97Q model globally overexpresses a full length human AR with 97 glutamine repeats whereas the myogenic model of SBMA overexpresses a wild-type rat androgen receptor (AR) only in skeletal muscle fibers. Using quantitative PCR, we find that muscle BDNF mRNA declines in an androgen-dependent manner in both models, paralleling changes in motor function, with robust deficits (6-8 fold) in both fast and slow twitch muscles of impaired Tg males. Castration rescues or reverses disease-related deficits in muscle BDNF mRNA in both models, paralleling its effect on motor function. Moreover, when disease is acutely induced in Tg females, both motor function and muscle BDNF mRNA expression plummet, with the deficit in muscle BDNF emerging before overt motor dysfunction. That androgen-dependent motor dysfunction is tightly associated with a robust and early down-regulation of muscle BDNF mRNA suggests that BDNF delivered to skeletal muscle may have therapeutic value for SBMA.

  13. The BDNF Val66Met polymorphism impairs NMDA receptor-dependent synaptic plasticity in the hippocampus.

    Science.gov (United States)

    Ninan, Ipe; Bath, Kevin G; Dagar, Karishma; Perez-Castro, Rosalia; Plummer, Mark R; Lee, Francis S; Chao, Moses V

    2010-06-30

    The Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene results in a defect in regulated release of BDNF and affects episodic memory and affective behaviors. However, the precise role of the BDNF Val66Met polymorphism in hippocampal synaptic transmission and plasticity has not yet been studied. Therefore, we examined synaptic properties in the hippocampal CA3-CA1 synapses of BDNF(Met/Met) mice and matched wild-type mice. Although basal glutamatergic neurotransmission was normal, both young and adult mice showed a significant reduction in NMDA receptor-dependent long-term potentiation. We also found that NMDA receptor-dependent long-term depression was decreased in BDNF(Met/Met) mice. However, mGluR-dependent long-term depression was not affected by the BDNF Val66Met polymorphism. Consistent with the NMDA receptor-dependent synaptic plasticity impairment, we observed a significant decrease in NMDA receptor neurotransmission in the CA1 pyramidal neurons of BDNF(Met/Met) mice. Thus, these results show that the BDNF Val66Met polymorphism has a direct effect on NMDA receptor transmission, which may account for changes in synaptic plasticity in the hippocampus.

  14. BDNF serum levels are not related to cognitive functioning in older depressed patients and controls

    NARCIS (Netherlands)

    Dols, A.; Thesing, C.S.; Bouckaert, F.; Oude Voshaar, R.C.; Comijs, H.C.; Stek, M.L.

    2015-01-01

    BACKGROUND: Depression and cognitive decline are highly prevalent in older persons and both are associated with low serum brain derived neurotrophic factor (BDNF). Mutual pathways of depression and cognitive decline in older persons may explain the overlap in symptoms and low serum BDNF. We hypothes

  15. Age-Dependent Deficits in Fear Learning in Heterozygous BDNF Knock-Out Mice

    Science.gov (United States)

    Endres, Thomas; Lessmann, Volkmar

    2012-01-01

    Beyond its trophic function, the neurotrophin BDNF (brain-derived neurotrophic factor) is well known to crucially mediate synaptic plasticity and memory formation. Whereas recent studies suggested that acute BDNF/TrkB signaling regulates amygdala-dependent fear learning, no impairments of cued fear learning were reported in heterozygous BDNF…

  16. Alternative Splicing Variants and DNA Methylation Status of BDNF in Inbred Chicken Lines

    Science.gov (United States)

    Brain derived neurotrophic factor (BDNF) plays essential roles in neuronal survival and differentiation, synaptic plasticity, central regulation of energy homeostasis, and neuronal development of the central and peripheral nerve system. Here, we report two new splicing variants of the chicken BDNF g...

  17. A meta-analysis of circulating BDNF concentrations in anorexia nervosa

    NARCIS (Netherlands)

    Brandys, Marek K; Kas, Martien J H; van Elburg, Annemarie A; Campbell, Iain C; Adan, Roger A H

    2011-01-01

    OBJECTIVES: Brain derived neurotrophic factor (BDNF) is involved in neuroplasticity, and in the homeostatic regulation of food intake and energy expenditure. It also has a role in stress responsivity and reward processing. On the basis of its involvement in these various processes, BDNF can be hypot

  18. BDNF in late-life depression : Effect of SSRI usage and interaction with childhood abuse

    NARCIS (Netherlands)

    van der Meij, Annemarie; Comijs, Hannie C.; Dols, Annemieke; Janzing, Joost G. E.; Oude Voshaar, Richard

    2014-01-01

    Brain-Derived Neurotrophic Factor (BDNF) serum levels are abnormally low in depressed patients as compared to healthy controls and normalize with SSRI treatment. The aim of this study is to examine serum BDNF levels in late-life depression, stratified for SSRI usage, and to explore the relation betw

  19. A meta-analysis of circulating BDNF concentrations in anorexia nervosa

    NARCIS (Netherlands)

    Brandys, Marek K.; Kas, Martien J. H.; van Elburg, Annemarie A.; Campbell, Iain C.; Adan, Roger A. H.

    2011-01-01

    Objectives. Brain derived neurotrophic factor (BDNF) is involved in neuroplasticity, and in the homeostatic regulation of food intake and energy expenditure. It also has a role in stress responsivity and reward processing. On the basis of its involvement in these various processes, BDNF can be hypot

  20. BDNF serum levels are not related to cognitive functioning in older depressed patients and controls

    NARCIS (Netherlands)

    Dols, Annemiek; Thesing, Carisha S.; Bouckaert, Filip; Oude Voshaar, Richard; Comijs, Hannie C.; Stek, M. L.

    2015-01-01

    Background: Depression and cognitive decline are highly prevalent in older persons and both are associated with low serum brain derived neurotrophic factor (BDNF). Mutual pathways of depression and cognitive decline in older persons may explain the overlap in symptoms and low serum BDNF. We hypothes

  1. Investigating the role of hippocampal BDNF in anxiety vulnerability using classical eyeblink conditioning

    Directory of Open Access Journals (Sweden)

    Kellie L Janke

    2015-07-01

    Full Text Available Dysregulation of brain-derived neurotrophic factor (BDNF, behavioral inhibition temperament (BI and small hippocampal volume have been linked to anxiety disorders. Individuals with BI show facilitated acquisition of the classically conditioned eyeblink response (CCER as compared to non-BI individuals, and a similar pattern is seen in an animal model of BI, the Wistar-Kyoto (WKY rat. The present study examined the role of hippocampal BDNF in the facilitated delay CCER of WKY rats. Consistent with earlier work, acquisition was facilitated in WKY rats compared to the SD rats. Facilitated acquisition was associated with increased BDNF, TrkB, and Arc mRNA in the dentate gyrus of SD rats, but learning-induced increases in BDNF and Arc mRNA were significantly smaller in WKY rats. To determine if reduced hippocampal BDNF in WKY rats was a contributing factor for their facilitated CCER, BDNF or saline infusions were given bilaterally into the dentate gyrus region one hour prior to training. BDNF infusion did not alter the acquisition of SD rats, but significantly dampened the acquisition of CCER in the WKY rats, such that acquisition was similar to SD rats. Together, these results suggest that inherent differences in the BDNF system play a critical role in the facilitated associative learning exhibited by WKY rats, and potentially individuals with BI. Facilitated associative learning may represent a vulnerability factor in the development of anxiety disorders.

  2. Proteolysis of proBDNF is a key regulator in the formation of memory.

    Directory of Open Access Journals (Sweden)

    Philip Barnes

    Full Text Available It is essential to understand the molecular processes underlying long-term memory to provide therapeutic targets of aberrant memory that produce pathological behaviour in humans. Under conditions of recall, fully-consolidated memories can undergo reconsolidation or extinction. These retrieval-mediated memory processes may rely on distinct molecular processes. The cellular mechanisms initiating the signature molecular events are not known. Using infusions of protein synthesis inhibitors, antisense oligonucleotide targeting brain-derived neurotrophic factor (BDNF mRNA or tPA-STOP (an inhibitor of the proteolysis of BDNF protein into the hippocampus of the awake rat, we show that acquisition and extinction of contextual fear memory depended on the increased and decreased proteolysis of proBDNF (precursor BDNF in the hippocampus, respectively. Conditions of retrieval that are known to initiate the reconsolidation of contextual fear memory, a BDNF-independent memory process, were not correlated with altered proBDNF cleavage. Thus, the processing of BDNF was associated with the acquisition of new information and the updating of information about a salient stimulus. Furthermore, the differential requirement for the processing of proBDNF by tPA in distinct memory processes suggest that the molecular events actively engaged to support the storage and/or the successful retrieval of memory depends on the integration of ongoing experience with past learning.

  3. BDNF in late-life depression: effect of SSRI usage and interaction with childhood abuse

    NARCIS (Netherlands)

    Meij, A. van der; Comijs, H.C.; Dols, A.; Janzing, J.G.E.; Oude Voshaar, R.C.

    2014-01-01

    Brain-Derived Neurotrophic Factor (BDNF) serum levels are abnormally low in depressed patients as compared to healthy controls and normalize with SSRI treatment. The aim of this study is to examine serum BDNF levels in late-life depression, stratified for SSRI usage, and to explore the relation betw

  4. 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons

    DEFF Research Database (Denmark)

    Marosi, Krisztina; Kim, Sang Woo; Moehl, Keelin

    2016-01-01

    . The mechanism by which 3OHB induces Bdnf gene expression involves generation of reactive oxygen species, activation of the transcription factor NF-κB, and activity of the histone acetyltransferase p300/EP300. Because BDNF plays important roles in synaptic plasticity and neuronal stress resistance, our findings...

  5. Loss of BDNF or Its Receptors in Three Mouse Models Has Unpredictable Consequences for Anxiety and Fear Acquisition

    Science.gov (United States)

    Olsen, Ditte; Kaas, Mathias; Schwartz, Ole; Nykjaer, Anders; Glerup, Simon

    2013-01-01

    BDNF-induced signaling is essential for the development of the central nervous system and critical for plasticity in adults. Mature BDNF signals through TrkB, while its precursor proBDNF employs p75[superscript NTR], resulting in activation of signaling cascades with opposite effects on neuronal survival, growth cone decisions, and synaptic…

  6. Intravenous Prenatal Nicotine Exposure Alters METH-Induced Hyperactivity, Conditioned Hyperactivity, and BDNF in Adult Rat Offspring.

    Science.gov (United States)

    Lacy, Ryan T; Brown, Russell W; Morgan, Amanda J; Mactutus, Charles F; Harrod, Steven B

    2016-01-01

    In the USA, approximately 15% of women smoke tobacco cigarettes during pregnancy. In utero tobacco smoke exposure produces somatic growth deficits like intrauterine growth restriction and low birth weight in offspring, but it can also negatively influence neurodevelopmental outcomes in later stages of life, such as an increased incidence of obesity and drug abuse. Animal models demonstrate that prenatal nicotine (PN) alters the development of the mesocorticolimbic system, which is important for organizing goal-directed behavior. In the present study, we determined whether intravenous (IV) PN altered the initiation and/or expression of methamphetamine (METH)-induced locomotor sensitization as a measure of mesocorticolimbic function in adult rat offspring. We also determined whether PN and/or METH exposure altered protein levels of BDNF (brain-derived neurotrophic factor) in the nucleus accumbens, the dorsal striatum, and the prefrontal cortex of adult offspring. BDNF was of interest because of its role in the development and maintenance of the mesocorticolimbic pathway and its ability to modulate neural processes that contribute to drug abuse, such as sensitization of the dopamine system. Dams were injected with IV nicotine (0.05 mg/kg/injection) or saline, 3×/day on gestational days 8-21. Testing was conducted when offspring reached adulthood (around postnatal day 90). Following 3 once daily habituation sessions the animals received a saline injection and baseline locomotor activity was measured. PN and prenatal saline (PS)-exposed offspring then received 10 once daily injections of METH (0.3 mg/kg) to induce locomotor sensitization. The animals received a METH injection (0.3 mg/kg) to assess the expression of sensitization following a 14-day period of no injections. A day later, all animals were injected with saline and conditioned hyperactivity was assessed. Brain tissue was harvested 24 h later. PN animals habituated more slowly to the activity chambers

  7. Positive Feedback Loop of Autocrine BDNF from Microglia Causes Prolonged Microglia Activation

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-08-01

    Full Text Available Background/Aims: Microglia, which represent the immune cells of the central nervous system (CNS, have long been a subject of study in CNS disease research. Substantial evidence indicates that microglial activation functions as a strong neuro-inflammatory response in neuropathic pain, promoting the release of pro-inflammatory cytokines, such as tumor necrosis factor (TNF-α. In addition, activated microglia release brain-derived neurotrophic factor (BDNF, which acts as a powerful cytokine. In this study, we performed a series of in vitro experiments to examine whether a positive autocrine feedback loop existed between microglia-derived BDNF and subsequent microglial activation as well as the mechanisms underlying this positive feedback loop. Methods: Because ATP is a classic inducer of microglial activation, firstly, we examined ATP-activated microglia in the present study. Secondly, we used TrkB/Fc, the BDNF sequester, to eliminate the effects of endogenous BDNF. ATP-stimulated microglia without BDNF was examined. Finally, we used exogenous BDNF to further determine whether BDNF could directly activate BV2 microglia. In all experiments, to quantify BV2 microglia activation, the protein levels of CD11b, a microglial activation marker, were measured by western blot. A Transwell migration assay was used to examine microglial migration. To assess the synthesis and release of proinflammatory cytokines, western blot was used to measure BDNF synthesis, and ELISA was used to quantify TNF-α release. Results: In our present research, we have observed that ATP dramatically activates microglia, enhancing microglial migration, increasing the synthesis of BDNF and up-regulating the release of TNF-α. Microglial activation is inhibited following the sequestration of endogenous BDNF, resulting in impaired microglial migration and decreased TNF-α release. Furthermore, exogenous BDNF can also activate microglia to subsequently enhance migration and increase TNF

  8. Brain-derived neurotrophic factor (BDNF) overexpression in the forebrain results in learning and memory impairments.

    Science.gov (United States)

    Cunha, Carla; Angelucci, Andrea; D'Antoni, Angela; Dobrossy, Mate D; Dunnett, Stephen B; Berardi, Nicoletta; Brambilla, Riccardo

    2009-03-01

    In this study we analyzed the effect on behavior of a chronic exposure to brain-derived neurotrophic factor (BDNF), by analysing a mouse line overexpressing BDNF under the alphaCaMKII promoter, which drives the transgene expression exclusively to principal neurons of the forebrain. BDNF transgenic mice and their WT littermates were examined with a battery of behavioral tests, in order to evaluate motor coordination, learning, short and long-term memory formation. Our results demonstrate that chronic BDNF overexpression in the central nervous system (CNS) causes learning deficits and short-term memory impairments, both in spatial and instrumental learning tasks. This observation suggests that a widespread increase in BDNF in forebrain networks may result in adverse effects on learning and memory formation.

  9. BDNF regulation in the rat dorsal vagal complex during stress-induced anorexia.

    Science.gov (United States)

    Charrier, Céline; Chigr, Fatiha; Tardivel, Catherine; Mahaut, Stéphanie; Jean, André; Najimi, Mohamed; Moyse, Emmanuel

    2006-08-30

    The dorsal vagal complex (DVC) is the satiety reflex-integrating center of adult mammals. Immobilization stress (IS) is known to elicit anorexia and to up-regulate BDNF expression in adult rat forebrain; intra-DVC delivery of BDNF was shown to elicit anorexia. Therefore, we addressed here whether IS would increase BDNF signaling in rat DVC by using PCR and western-blot on microdissected tissue extracts. Significant variations of BDNF expression in DVC after IS include exon V mRNA increase at 3 h, decreases of both protein and exon III mRNA at 24 h, and exon I mRNA decrease at 72 h. At the receptor level, IS elicited a highly significant induction of both full-length and truncated-1 TrkB mRNAs at 24 h after IS. In vivo recruitment of BDNF signaling in DVC during stress thus differs from hypothalamus, the relevance of which to anorexia is discussed.

  10. Reduced serum concentrations of brain-derived neurotrophic factor (BDNF) in transsexual Brazilian men.

    Science.gov (United States)

    Fontanari, Anna Martha Vaitses; Costa, Angelo Brandelli; Aguiar, Bianca; Tusset, Cíntia; Andreazza, Tahiana; Schneider, Maiko; da Rosa, Eduarda Dias; Soll, Bianca Machado Borba; Schwarz, Karine; da Silva, Dhiordan Cardoso; Borba, André Oliveira; Mueller, Andressa; Massuda, Raffael; Lobato, Maria Inês Rodrigues

    2016-09-06

    Serum BDNF levels are significantly decreased in transsexual Brazilian women when compared to cis-sexual men. Since transsexual men are also exposed to chronic social stress and have a high prevalence of associated psychopathologies, it is plausible to inquire if BDNF serum levels are altered in transsexual men as well. Therefore, our objective was to evaluate differences in BDNF serum level of transsexual men when compared to cis-sexual men and women. Our sample comprises 27 transsexual men, 31 cis-sexual women and 30 cis-sexual men recruited between 2011 and 2015. We observed that BDNF serum concentration is decreased in transsexual men comparing to cis-sexual men and women. Cross-sex hormone treatment, chronic social stress or long-term gender dysphoria (GD) could explain the variation found in BDNF serum levels.

  11. ASPECTS OF CYCLON AND BDNF GENE EXPRESSION IN SCHIZOPHRENIA PATIENTS

    Directory of Open Access Journals (Sweden)

    Rinaldo Shishkov

    2012-08-01

    Full Text Available The pathogenesis of the schizophrenic illness is still not fully elucidated. Many studies have been conducted revealing different aspects but may be the studies of greatest significance are studying the genetic aspects of expression of trophic factors and enzymes associated with nervous system development and plasticity. In this relation we aimed at measuring the Cyclon and BDNF genes expression in blood of patients suffering from schizophrenia and to test for correlation between them. Our result did not reveal correlation in spite of their connection with the disease

  12. BDNF Signaling During Learning Is Regionally Differentiated Within Hippocampus

    OpenAIRE

    Chen, Lulu Y.; Rex, Christopher S.; Pham, Danielle T.; Lynch, Gary; Gall, Christine M.

    2010-01-01

    Learning-induced neurotrophic signaling at synapses is widely held to be critical for neuronal viability in adult brain. A previous study provided evidence that unsupervised learning of a novel environment is accompanied by activation of the TrkB receptor for Brain-Derived Neurotrophic Factor (BDNF) in hippocampal field CA1b of adult rats. Here we report that this effect is regionally differentiated, in accord with ‘engram’ type memory encoding. A 30-min exposure to a novel, complex environme...

  13. Circulating and brain BDNF levels in stroke rats. Relevance to clinical studies.

    Directory of Open Access Journals (Sweden)

    Yannick Béjot

    Full Text Available BACKGROUND: Whereas brain-derived neurotrophic factor (BDNF levels are measured in the brain in animal models of stroke, neurotrophin levels in stroke patients are measured in plasma or serum samples. The present study was designed to investigate the meaning of circulating BDNF levels in stroke patients. METHODS AND RESULTS: Unilateral ischemic stroke was induced in rats by the injection of various numbers of microspheres into the carotid circulation in order to mimic the different degrees of stroke severity observed in stroke patients. Blood was serially collected from the jugular vein before and after (4 h, 24 h and 8 d embolization and the whole brains were collected at 4, 24 h and 8 d post-embolization. Rats were then selected from their degree of embolization, so that the distribution of stroke severity in the rats at the different time points was large but similar. Using ELISA tests, BDNF levels were measured in plasma, serum and brain of selected rats. Whereas plasma and serum BDNF levels were not changed by stroke, stroke induced an increase in brain BDNF levels at 4 h and 24 h post-embolization, which was not correlated with stroke severity. Individual plasma BDNF levels did not correlate with brain levels at any time point after stroke but a positive correlation (r = 0.67 was observed between individual plasma BDNF levels and stroke severity at 4 h post-embolization. CONCLUSION: Circulating BDNF levels do not mirror brain BDNF levels after stroke, and severe stroke is associated with high plasma BDNF in the very acute stage.

  14. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors.

    Science.gov (United States)

    Falcicchia, Chiara; Trempat, Pascal; Binaschi, Anna; Perrier-Biollay, Coline; Roncon, Paolo; Soukupova, Marie; Berthommé, Hervé; Simonato, Michele

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies.

  15. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors.

    Directory of Open Access Journals (Sweden)

    Chiara Falcicchia

    Full Text Available Brain-derived neurotrophic factor (BDNF has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1 derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies.

  16. The relationship between serum brain-derived neurotrophic factor (BDNF) and cardiometabolic indices in schizophrenia.

    Science.gov (United States)

    Nurjono, Milawaty; Tay, Yi Hang; Lee, Jimmy

    2014-08-01

    Brain derived neurotrophic factor (BDNF), which has been implicated in the pathogenesis of schizophrenia, has been recently shown to be involved in the regulation of metabolism and energy homeostasis. This study seeks to examine the relationship between BDNF, metabolic indices and cardiovascular (CVD) risk in patients with schizophrenia. Medical histories, demographic information and anthropometric measurements were collected and analyzed from 61 participants with schizophrenia. Fasting glucose and lipids were measured in a central laboratory, and serum BDNF was analyzed using commercially available enzyme-linked immunosorbent assay (ELISA). The 10-year CVD risk for each participant was computed using the Framingham risk score (FRS). Linear regressions were performed to examine the relationships between serum BDNF with body mass index (BMI), blood pressure (BP), triglycerides (TG), total cholesterol, high-density lipoprotein cholesterol (HDL-C) and glucose. To examine the relationship between serum BDNF and FRS, serum BDNF was categorized into quartiles, and a multiple regression was performed. After adjusting for age, gender and current smoking status, diastolic BP (dBP) (p=0.045) and TG (p=0.015) were found to be significantly associated with serum BDNF. Participants in the highest quartile of serum BDNF had a 3.3 times increase in FRS over those in the lowest quartile. Our findings support the possible regulatory role of BDNF in metabolism and cardiovascular homeostasis among patients with schizophrenia similar to that observed among the non-mentally ill. Serum BDNF not only present itself as a candidate biomarker of schizophrenia but also might be a viable marker of metabolic co-morbidities associated with schizophrenia.

  17. Early raise of BDNF in hippocampus suggests induction of posttranscriptional mechanisms by antidepressants

    Directory of Open Access Journals (Sweden)

    Barlati Sergio

    2009-05-01

    Full Text Available Abstract Background The neurotrophin BDNF has been implicated in the regulation of neuroplasticity, gene expression, and synaptic function in the adult brain, as well as in the pathophysiology of neuropsychiatric disorders and the mechanism of action of antidepressants. Antidepressant treatments have been shown to increase the expression of BDNF mRNA, although the changes measured were found to be different depending on various factors. A few studies only have measured levels of BDNF protein after antidepressant treatments, and poor correlation was found between mRNA and protein changes. We studied the time course of expression of BDNF mRNA and protein during drug treatments, in order to elucidate the temporal profile of regulation of this effector and whether mRNA and protein levels correlate. Rat groups were treated for 1, 2 or 3 weeks with fluoxetine or reboxetine; in additional groups drug treatment was followed by a washout week (3+1. Total BDNF mRNA was measured by Real Time PCR, pro- and mature BDNF proteins were measured by Western blot. Results We found that mature BDNF protein is induced more rapidly than mRNA, by both drugs in hippocampus (weeks 1–2 and by reboxetine in prefrontal/frontal cortex (week 1. The temporal profile of BDNF protein expression was largely inconsistent with that of mRNA, which followed the protein induction and reached a peak at week 3. Conclusion These results suggest that BDNF protein is rapidly elevated by antidepressant treatments by posttranscriptional mechanisms, and that induction of BDNF mRNA is a slower process.

  18. APOE Genotyping, Cardiovascular Disease

    Science.gov (United States)

    ... Home Visit Global Sites Search Help? APOE Genotyping, Cardiovascular Disease Share this page: Was this page helpful? Also ... of choice to decrease the risk of developing cardiovascular disease (CVD) . However, there is a wide variability in ...

  19. Meta-analyses of comparative efficacy of antidepressant medications on peripheral BDNF concentration in patients with depression

    Science.gov (United States)

    Chen, Jianjun; Deng, Xiao; Zhang, Lin; Zhao, Xiang; Qu, Zehui; Lei, Yang; Lei, Ting

    2017-01-01

    Background Brain derived neurotrophic factor (BDNF) is one of the most important regulatory proteins in the pathophysiology of major depressive disorder (MDD). Increasing numbers of studies have reported the relationship between serum/plasma BDNF and antidepressants (ADs). However, the potential effects of several classes of antidepressants on BDNF concentrations are not well known. Hence, our meta-analyses aims to review the effects of differential antidepressant drugs on peripheral BDNF levels in MDD and make some recommendations for future research. Methods Electronic databases including PubMed, EMBASE, the Cochrane Library, Web of Science, and PsycINFO were searched from 1980 to June 2016. The change in BDNF levels were compared between baseline and post-antidepressants treatment by use of the standardized mean difference (SMD) with 95% confidence intervals (CIs). All statistical tests were two-sided. Results We identified 20 eligible trials of antidepressants treatments for BDNF in MDD. The overall effect size for all drug classes showed that BDNF levels were elevated following a course of antidepressants use. For between-study heterogeneity by stratification analyses, we detect that length of treatment and blood samples are significant effect modifiers for BDNF levels during antidepressants treatment. While both SSRIs and SNRIs could increase the BDNF levels after a period of antidepressant medication treatment, sertraline was superior to other three drugs (venlafaxine, paroxetine or escitalopram) in the early increase of BDNF concentrations with SMD 0.53(95% CI = 0.13–0.93; P = 0.009). Conclusions There is some evidence that treatment of antidepressants appears to be effective in the increase of peripheral BDNF levels. More robust evidence indicates that different types of antidepressants appear to induce differential effects on the BDNF levels. Since sertraline makes a particular effect on BDNF concentration within a short amount of time, there is

  20. Involvement of BDNF signaling transmission from basolateral amygdala to infralimbic prefrontal cortex in conditioned taste aversion extinction.

    Science.gov (United States)

    Xin, Jian; Ma, Ling; Zhang, Tian-Yi; Yu, Hui; Wang, Yue; Kong, Liang; Chen, Zhe-Yu

    2014-05-21

    Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB), play a critical role in memory extinction. However, the detailed role of BDNF in memory extinction on the basis of neural circuit has not been fully understood. Here, we aim to investigate the role of BDNF signaling circuit in mediating conditioned taste aversion (CTA) memory extinction of the rats. We found region-specific changes in BDNF gene expression during CTA extinction. CTA extinction led to increased BDNF gene expression in the basolateral amygdala (BLA) and infralimbic prefrontal cortex (IL) but not in the central amygdaloid nucleus (CeA) and hippocampus (HIP). Moreover, blocking BDNF signaling or exogenous microinjection of BDNF into the BLA or IL could disrupt or enhance CTA extinction, which suggested that BDNF signaling in the BLA and IL is necessary and sufficient for CTA extinction. Interestingly, we found that microinjection of BDNF-neutralizing antibody into the BLA could abolish the extinction training-induced BDNF mRNA level increase in the IL, but not vice versa, demonstrating that BDNF signaling is transmitted from the BLA to IL during extinction. Finally, the accelerated extinction learning by infusion of exogenous BDNF in the BLA could also be blocked by IL infusion of BDNF-neutralizing antibody rather than vice versa, indicating that the IL, but not BLA, is the primary action site of BDNF in CTA extinction. Together, these data suggest that BLA-IL circuit regulates CTA memory extinction by identifying BDNF as a key regulator.

  1. Brain-derived neurotrophic factor (BDNF) gene delivery into the CNS using bone marrow cells as vehicles in mice.

    Science.gov (United States)

    Makar, T K; Trisler, D; Eglitis, M A; Mouradian, M M; Dhib-Jalbut, S

    2004-02-19

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is protective in animal models of neurodegenerative diseases. However, BDNF has a short half-life and its efficacy in the CNS when delivered peripherally is limited due to the blood-brain barrier. In the present study, bone marrow cells were used as vehicles to deliver the BDNF gene into the CNS. Marrow cells obtained from 6 to 8 week-old SJL/J mice were transduced with BDNF expressing pro-virus. RT-PCR analysis revealed that BDNF mRNA was expressed in transduced but not in non-transduced marrow cells. Additionally, virus transduced marrow cells expressed the BDNF protein (296+/-1.2 unit/ml). BDNF-transduced marrow cells were then transplanted into irradiated mice through the tail vein. Three months post-transplantation, significant increases in BDNF as well as glutamic acid decarboxylase (GAD(67)) mRNA were detected in the brains of BDNF transplanted mice compared to untransplanted animals, indicating biological activity of the BDNF transgene. Thus, bone marrow cells can be used as vehicles to deliver the BDNF gene into the brain with implications for the treatment of neurological diseases.

  2. Over-expression of brain-derived neurotrophic factor in mesenchymal stem cells transfected with recombinant lentivirus BDNF gene.

    Science.gov (United States)

    Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z

    2016-12-30

    This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.

  3. Long Non-coding RNA in Neurons: New Players in Early Response to BDNF Stimulation.

    Science.gov (United States)

    Aliperti, Vincenza; Donizetti, Aldo

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin family member that is highly expressed and widely distributed in the brain. BDNF is critical for neural survival and plasticity both during development and in adulthood, and dysfunction in its signaling may contribute to a number of neurodegenerative disorders. Deep understanding of the BDNF-activated molecular cascade may thus help to find new biomarkers and therapeutic targets. One interesting direction is related to the early phase of BDNF-dependent gene expression regulation, which is responsible for the activation of selective gene programs that lead to stable functional and structural remodeling of neurons. Immediate-early coding genes activated by BDNF are under investigation, but the involvement of the non-coding RNAs is largely unexplored, especially the long non-coding RNAs (lncRNAs). lncRNAs are emerging as key regulators that can orchestrate different aspects of nervous system development, homeostasis, and plasticity, making them attractive candidate markers and therapeutic targets for brain diseases. We used microarray technology to identify differentially expressed lncRNAs in the immediate response phase of BDNF stimulation in a neuronal cell model. Our observations on the putative functional role of lncRNAs provide clues to their involvement as master regulators of gene expression cascade triggered by BDNF.

  4. Exercise does not protect against MPTP-induced neurotoxicity in BDNF haploinsufficient mice.

    Directory of Open Access Journals (Sweden)

    Kim M Gerecke

    Full Text Available Exercise has been demonstrated to potently protect substantia nigra pars compacta (SN dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-induced neurotoxicity. One mechanism proposed to account for this neuroprotection is the upregulation of neurotrophic factors. Several neurotrophic factors, including Brain Derived Neurotrophic Factor (BDNF, have been shown to upregulate in response to exercise. In order to determine if exercise-induced neuroprotection is dependent upon BDNF, we compared the neuroprotective effects of voluntary exercise in mice heterozygous for the BDNF gene (BDNF+/- with strain-matched wild-type (WT mice. Stereological estimates of SNpc DA neurons from WT mice allowed 90 days exercise via unrestricted running demonstrated complete protection against the MPTP-induced neurotoxicity. However, BDNF+/- mice allowed 90 days of unrestricted exercise were not protected from MPTP-induced SNpc DA neuron loss. Proteomic analysis comparing SN and striatum from 90 day exercised WT and BDNF+/- mice showed differential expression of proteins related to energy regulation, intracellular signaling and trafficking. These results suggest that a full genetic complement of BDNF is critical for the exercise-induced neuroprotection of SNpc DA neurons.

  5. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning.

    Science.gov (United States)

    Fritsch, Brita; Reis, Janine; Martinowich, Keri; Schambra, Heidi M; Ji, Yuanyuan; Cohen, Leonardo G; Lu, Bai

    2010-04-29

    Despite its increasing use in experimental and clinical settings, the cellular and molecular mechanisms underlying transcranial direct current stimulation (tDCS) remain unknown. Anodal tDCS applied to the human motor cortex (M1) improves motor skill learning. Here, we demonstrate in mouse M1 slices that DCS induces a long-lasting synaptic potentiation (DCS-LTP), which is polarity specific, NMDA receptor dependent, and requires coupling of DCS with repetitive low-frequency synaptic activation (LFS). Combined DCS and LFS enhance BDNF-secretion and TrkB activation, and DCS-LTP is absent in BDNF and TrkB mutant mice, suggesting that BDNF is a key mediator of this phenomenon. Moreover, the BDNF val66met polymorphism known to partially affect activity-dependent BDNF secretion impairs motor skill acquisition in humans and mice. Motor learning is enhanced by anodal tDCS, as long as activity-dependent BDNF secretion is in place. We propose that tDCS may improve motor skill learning through augmentation of synaptic plasticity that requires BDNF secretion and TrkB activation within M1.

  6. Hippocampal BDNF signaling restored with chronic asiaticoside treatment in depression-like mice.

    Science.gov (United States)

    Luo, Liu; Liu, Xiao-Long; Mu, Rong-Hao; Wu, Yong-Jing; Liu, Bin-Bin; Geng, Di; Liu, Qing; Yi, Li-Tao

    2015-05-01

    Brain-derived neurotrophic factor (BDNF) plays a key role in the regulation of depression in the brain. Recently, increasing studies have focused on the antidepressant-like mechanism of BDNF and its downstream signaling pathway. A previous study has shown that asiaticoside produced an antidepressant-like action in the mouse tail suspension test and forced swimming test. However, the neurotrophic mechanism that is affected by asiaticoside is unclear. Our present study aimed to verify whether asiaticoside produces an antidepressant-like effect through the activation of BDNF signaling in chronic unpredictable mild stress (CUMS). The results showed that mice treated with asiaticoside for four weeks reversed the decreased sucrose preference and increased immobility time that was observed in CUMS mice. In addition, we found that asiaticoside up-regulated BDNF, PSD-95 and synapsin I expression only in the hippocampus but not in the frontal cortex in both non-stressed and CUMS mice. However, K252a, an inhibitor of BDNF receptor tropomyosin-related kinase receptor B (TrkB), completely abolished the antidepressant-like effect of asiaticoside. Moreover, the expression of hippocampal BDNF, PSD-95 and synapsin I that had increased with asiaticoside also declined with K252a pretreatment. In conclusion, our study implies that it is possible that asiaticoside exerts its antidepressant-like action by activating BDNF signaling in the hippocampus.

  7. Chronic antidepressant administration alleviates frontal and hippocampal BDNF deficits in CUMS rat.

    Science.gov (United States)

    Zhang, Yang; Gu, Fenghua; Chen, Jia; Dong, Wenxin

    2010-12-17

    Stress activates the hypothalamo-pituitary-adrenal (HPA) axis, regulates the expression of brain-derived neurotrophic factor (BDNF) in the brain, and mediates mood. Antidepressants alleviate stress and up-regulate BDNF gene expression. In this study, we investigated the effect of chronic unpredictable mild stress (CUMS) and the different kinds of antidepressant treatments on the HPA axis and the BDNF expression in the rat brain. Adult Wistar male rats were exposed to a six-week CUMS procedure and received different antidepressant treatments including venlafaxine, mirtazapine, and fluoxetine. Immunohistochemistry and real-time PCR were used to measure BDNF expression levels in the rat brain, and ELISAs were used to investigate the plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels. CUMS significantly decreased the BDNF protein level in the DG, CA1, and CA3 of the hippocampus and increased plasma CORT level. Chronic antidepressant treatments all significantly increased BDNF protein levels in the hippocampus and the pre-frontal cortex. In addition, venlafaxine and mirtazapine inhibited the increase of plasma CORT level. These results suggested that an increase in the BDNF level in the brain could be a pivotal mechanism of various antidepressants to exert their therapeutic effects.

  8. Repair of spinal cord injury by neural stem cells modified with BDNF gene in rats

    Institute of Scientific and Technical Information of China (English)

    Wei LI; Wen-Qin CAI; Cheng-Ren LI

    2006-01-01

    Objective To explore repair of spinal cord injury by neural stem cells (NSCs) modified with brain derived neurotrophic factor (BDNF) gene (BDNF-NSCs) in rats. Methods Neural stem cells modified with BDNF gene were transplanted into the complete transection site of spinal cord at the lumbar 4 (L4) level in rats. Motor function of rats'hind limbs was observed and HE and X-gal immunocytochemical staining, in situ hybridization, and retrograde HRP tracing were also performed. Results BDNF-NSCs survived and integrated well with host spinal cord. In the transplant group, some X-gal positive, NF-200 positive, GFAP positive, BDNF positive, and BDNF mRNA positive cells, and many NF-200 positive nerve fibers were observed in the injury site. Retrograde HRP tracing through sciatic nerve showed some HRP positive cells and nerve fibers near the rostral side of the injury one month after transplant and with time, they increased in number. Examinations on rats' motor function and behavior demonstrated that motor function of rats' hind limbs improved better in the transplant group than the injury group. Conclusion BDNF-NSCs can survive, differentiate,and partially integrate with host spinal cord, and they significantly ameliorate rats ' motor function of hind limbs, indicating their promising role in repairing spinal cord injury.

  9. Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression.

    Science.gov (United States)

    Haile, C N; Murrough, J W; Iosifescu, D V; Chang, L C; Al Jurdi, R K; Foulkes, A; Iqbal, S; Mahoney, J J; De La Garza, R; Charney, D S; Newton, T F; Mathew, S J

    2014-02-01

    Ketamine produces rapid antidepressant effects in treatment-resistant depression (TRD), but the magnitude of response varies considerably between individual patients. Brain-derived neurotrophic factor (BDNF) has been investigated as a biomarker of treatment response in depression and has been implicated in the mechanism of action of ketamine. We evaluated plasma BDNF and associations with symptoms in 22 patients with TRD enrolled in a randomized controlled trial of ketamine compared to an anaesthetic control (midazolam). Ketamine significantly increased plasma BDNF levels in responders compared to non-responders 240 min post-infusion, and Montgomery-Åsberg Depression Rating Scale (MADRS) scores were negatively correlated with BDNF (r=-0.701, p = 0.008). Plasma BDNF levels at 240 min post-infusion were highly negatively associated with MADRS scores at 240 min (r = -0.897, p=.002), 24 h (r = -0.791, p = 0.038), 48 h (r = -0.944, p = 0.001) and 72 h (r = -0.977, p = 0.010). No associations with BDNF were found for patients receiving midazolam. These data support plasma BDNF as a peripheral biomarker relevant to ketamine antidepressant response.

  10. BDNF promoter-mediated beta-galactosidase expression in the olfactory epithelium and bulb.

    Science.gov (United States)

    Clevenger, Amy C; Salcedo, Ernesto; Jones, Kevin R; Restrepo, Diego

    2008-07-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in the generation and differentiation of new olfactory sensory neurons (OSNs) and in the regulation of branching of OSN axons in their target glomeruli. However, previous reports of BDNF mRNA and protein expression in olfactory epithelium and olfactory bulb (OB) have been inconsistent, raising questions on the proposed roles for BDNF. Here, we report on beta-galactosidase (beta-gal) expression in adult gene-targeted mice where the BDNF promoter drives expression of the Escherichia coli lacZ gene (BDNF(lacZneo) mice). We find that beta-gal is expressed in a small subset of OSNs with axons that reach the olfactory nerve layers throughout the OB. In the OB, we find expression of beta-gal in gamma-aminobutyric acidergic but not dopaminergic periglomerular cells and external tufted cells and in interneurons located in the mitral cell layer. Our results are inconsistent with the regulation of generation and differentiation of new OSNs elicited by the release of BDNF from horizontal basal cells. The results are consistent with a role for BDNF in competitive branching of OSN axons within the glomeruli of the OB.

  11. Serum brain-derived neurotrophic factor (BDNF) levels in attention deficit-hyperactivity disorder (ADHD).

    Science.gov (United States)

    Scassellati, Catia; Zanardini, Roberta; Tiberti, Alessandra; Pezzani, Marco; Valenti, Vera; Effedri, Paola; Filippini, Elena; Conte, Stefano; Ottolini, Alberto; Gennarelli, Massimo; Bocchio-Chiavetto, Luisella

    2014-03-01

    It has been proposed that the neurotrophin brain-derived neurotrophic factor (BDNF) may be involved in attention deficit-hyperactivity disorder (ADHD) etiopathogenesis. Alterations in BDNF serum levels have been observed in childhood/adulthood neurodevelopmental pathologies, but no evidence is available for BDNF serum concentrations in ADHD. The study includes 45 drug-naïve ADHD children and 45 age-sex matched healthy subjects. Concentration of serum BDNF was determined by the ELISA method. BDNF serum levels in patients with ADHD were not different from those of controls (mean ± SD; ADHD: 39.33 ± 10.41 ng/ml; controls: 38.82 ± 8.29 ng/ml, t = -0.26, p = 0.80). Our findings indicate no alteration of serum BDNF levels in untreated patients with ADHD. A further stratification for cognitive, neuropsychological and psychopathological assessment in a larger sample could be useful to clarify the role of BDNF in the endophenotype characterization of ADHD.

  12. Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity.

    Science.gov (United States)

    Edelmann, Elke; Lessmann, Volkmar; Brigadski, Tanja

    2014-01-01

    Overwhelming evidence collected since the early 1990's strongly supports the notion that BDNF is among the key regulators of synaptic plasticity in many areas of the mammalian central nervous system. Still, due to the extremely low expression levels of endogenous BDNF in most brain areas, surprisingly little data i) pinpointing pre- and postsynaptic release sites, ii) unraveling the time course of release, and iii) elucidating the physiological levels of synaptic activity driving this secretion are available. Likewise, our knowledge regarding pre- and postsynaptic effects of endogenous BDNF at the single cell level in mediating long-term potentiation still is sparse. Thus, our review will discuss the data currently available regarding synaptic BDNF secretion in response to physiologically relevant levels of activity, and will discuss how endogenously secreted BDNF affects synaptic plasticity, giving a special focus on spike timing-dependent types of LTP and on mossy fiber LTP. We will attempt to open up perspectives how the remaining challenging questions regarding synaptic BDNF release and action might be addressed by future experiments. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.

  13. Repeated exposure to sublethal doses of the organophosphorus compound VX activates BDNF expression in mouse brain.

    Science.gov (United States)

    Pizarro, Jose M; Chang, Wenling E; Bah, Mariama J; Wright, Linnzi K M; Saviolakis, George A; Alagappan, Arun; Robison, Christopher L; Shah, Jinesh D; Meyerhoff, James L; Cerasoli, Douglas M; Midboe, Eric G; Lumley, Lucille A

    2012-04-01

    The highly toxic organophosphorus compound VX [O-ethyl S-[2-(diisopropylamino)ethyl]methylphosphonate] is an irreversible inhibitor of the enzyme acetylcholinesterase (AChE). Prolonged inhibition of AChE increases endogenous levels of acetylcholine and is toxic at nerve synapses and neuromuscular junctions. We hypothesized that repeated exposure to sublethal doses of VX would affect genes associated with cell survival, neuronal plasticity, and neuronal remodeling, including brain-derived neurotrophic factor (BDNF). We examined the time course of BDNF expression in C57BL/6 mouse brain following repeated exposure (1/day × 5 days/week × 2 weeks) to sublethal doses of VX (0.2 LD(50) and 0.4 LD(50)). BDNF messenger RNA expression was significantly (p VX exposure. BDNF protein expression, however, was only increased in the CA3 region of the hippocampus. Whether increased BDNF in response to sublethal doses of VX exposure is an adaptive response to prevent cellular damage or a precursor to impending brain damage remains to be determined. If elevated BDNF is an adaptive response, exogenous BDNF may be a potential therapeutic target to reduce the toxic effects of nerve agent exposure.

  14. Cleavage of proBDNF to BDNF by a tolloid-like metalloproteinase is required for acquisition of in vitro eyeblink classical conditioning.

    Science.gov (United States)

    Keifer, Joyce; Sabirzhanov, Boris E; Zheng, Zhaoqing; Li, Wei; Clark, Timothy G

    2009-11-25

    The tolloid/bone morphogenetic protein-1 family of metalloproteinases have an important role in the regulation of embryonic pattern formation and tissue morphogenesis. Studies suggest that they participate in mechanisms of synaptic plasticity in adults, but very little is known about their function. Recently, we isolated a reptilian ortholog of the tolloid gene family designated turtle tolloid-like gene (tTll). Here, we examined the role of tTLL in an in vitro model of eyeblink classical conditioning using an isolated brainstem preparation to assess its role in synaptic plasticity during conditioning. Analysis by real-time reverse transcription-PCR shows that an extracellularly secreted form of tTLL, tTLLs, is transiently expressed in the early stages of conditioning during conditioned response acquisition, whereas a cytosolic form, tTLLc, is not. Short interfering RNA (siRNA)-directed gene knockdown and rescue of tTLL expression demonstrate that it is required for conditioning. Significantly, we show that tTLLs cleaves the precursor proBDNF into mature BDNF in cleavage assay studies, and application of recombinant tTLLs protein alone to preparations results in induction of mature BDNF expression. The mature form of BDNF is minimally expressed in preparations treated with anti-tTLL siRNA, and the synaptic incorporation of both GluR1- and GluR4-containing AMPA receptors is significantly reduced, resulting in suppression of conditioning. This is the first study to demonstrate that expression of an extracellularly secreted tolloid-like metalloproteinase is regulated in the early stages of classical conditioning and functions in the conversion of proBDNF to mature BDNF. The mature form of BDNF is required for synaptic delivery of AMPA receptors and acquisition of conditioned responses.

  15. Rescue of retinal function by BDNF in a mouse model of glaucoma.

    Directory of Open Access Journals (Sweden)

    Luciano Domenici

    Full Text Available Vision loss in glaucoma is caused by progressive dysfunction of retinal ganglion cells (RGCs and optic nerve atrophy. Here, we investigated the effectiveness of BDNF treatment to preserve vision in a glaucoma experimental model. As an established experimental model, we used the DBA/2J mouse, which develops chronic intraocular pressure (IOP elevation that mimics primary open-angle glaucoma (POAG. IOP was measured at different ages in DBA/2J mice. Visual function was monitored using the steady-state Pattern Electroretinogram (P-ERG and visual cortical evoked potentials (VEP. RGC alterations were assessed using Brn3 immunolabeling, and confocal microscope analysis. Human recombinant BDNF was dissolved in physiological solution (0.9% NaCl; the effects of repeated intravitreal injections and topical eye BDNF applications were independently evaluated in DBA/2J mice with ocular hypertension. BDNF level was measured in retinal homogenate by ELISA and western blot. We found a progressive decline of P-ERG and VEP responses in DBA/2J mice between 4 and 7 months of age, in relationship with the development of ocular hypertension and the reduction of Brn3 immunopositive RGCs. Conversely, repeated intravitreal injections (BDNF concentration = 2 µg/µl, volume = 1 µl, for each injection; 1 injection every four days, three injections over two weeks and topical eye application of BDNF eye-drops (12 µg/µl, 5 µl eye-drop every 48 h for two weeks were able to rescue visual responses in 7 month DBA/2J mice. In particular, BDNF topical eye treatment recovered P-ERG and VEP impairment increasing the number of Brn3 immunopositive RGCs. We showed that BDNF effects were independent of IOP reduction. Thus, topical eye treatment with BDNF represents a promisingly safe and feasible strategy to preserve visual function and diminish RGC vulnerability to ocular hypertension.

  16. Exogenous t-PA administration increases hippocampal mature BDNF levels. plasmin- or NMDA-dependent mechanism?

    Directory of Open Access Journals (Sweden)

    Marion Rodier

    Full Text Available Brain-derived neurotrophic factor (BDNF through TrkB activation is central for brain functioning. Since the demonstration that plasmin is able to process pro-BDNF to mature BDNF and that these two forms have opposite effects on neuronal survival and plasticity, a particular attention has been paid to the link between tissue plasminogen activator (tPA/plasmin system and BDNF metabolism. However, t-PA via its action on different N-methyl-D-aspartate (NMDA receptor subunits is also considered as a neuromodulator of glutamatergic transmission. In this context, the aim of our study was to investigate the effect of recombinant (rt-PA administration on brain BDNF metabolism in rats. In the hippocampus, we found that rt-PA (10 mg/kg administration induced a progressive increase in mature BDNF levels associated with TrkB activation. In order to delineate the mechanistic involved, plasmin activity was assessed and its inhibition was attempted using tranexamic acid (30 or 300 mg/kg, i.v. while NMDA receptors were antagonized with MK801 (0.3 or 3 mg/kg, i.p. in combination with rt-PA treatment. Our results showed that despite a rise in rt-PA activity, rt-PA administration failed to increase hippocampal plasmin activity suggesting that the plasminogen/plasmin system is not involved whereas MK801 abrogated the augmentation in mature BDNF levels observed after rt-PA administration. All together, our results show that rt-PA administration induces increase in hippocampal mature BDNF expression and suggests that rt-PA contributes to the control of brain BDNF synthesis through a plasmin-independent potentiation of NMDA receptors signaling.

  17. BDNF Methylation and Maternal Brain Activity in a Violence-Related Sample.

    Directory of Open Access Journals (Sweden)

    Dominik A Moser

    Full Text Available It is known that increased circulating glucocorticoids in the wake of excessive, chronic, repetitive stress increases anxiety and impairs Brain-Derived Neurotrophic Factor (BDNF signaling. Recent studies of BDNF gene methylation in relation to maternal care have linked high BDNF methylation levels in the blood of adults to lower quality of received maternal care measured via self-report. Yet the specific mechanisms by which these phenomena occur remain to be established. The present study examines the link between methylation of the BDNF gene promoter region and patterns of neural activity that are associated with maternal response to stressful versus non-stressful child stimuli within a sample that includes mothers with interpersonal violence-related PTSD (IPV-PTSD. 46 mothers underwent fMRI. The contrast of neural activity when watching children-including their own-was then correlated to BDNF methylation. Consistent with the existing literature, the present study found that maternal BDNF methylation was associated with higher levels of maternal anxiety and greater childhood exposure to domestic violence. fMRI results showed a positive correlation of BDNF methylation with maternal brain activity in the anterior cingulate (ACC, and ventromedial prefrontal cortex (vmPFC, regions generally credited with a regulatory function toward brain areas that are generating emotions. Furthermore we found a negative correlation of BDNF methylation with the activity of the right hippocampus. Since our stimuli focus on stressful parenting conditions, these data suggest that the correlation between vmPFC/ACC activity and BDNF methylation may be linked to mothers who are at a disadvantage with respect to emotion regulation when facing stressful parenting situations. Overall, this study provides evidence that epigenetic signatures of stress-related genes can be linked to functional brain regions regulating parenting stress, thus advancing our understanding of

  18. Correlation between Nerve Growth Factor (NGF with Brain Derived Neurotropic Factor (BDNF in Ischemic Stroke Patient

    Directory of Open Access Journals (Sweden)

    Joko Widodo

    2016-05-01

    Full Text Available Background: The neurotrophins nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF is a family of polypeptides that play critical role during neuronal development, appear to mediate protective role on neurorepair in ischemic stroke. Naturally in adult brain neurorepair process consist of: angiogenesis, neurogenesis, and neuronal plasticity, it can also be stimulated by endogenous neurorepair. In this study we observed correlation between NGF and BDNF ischemic stroke patient’s onset: 7-30 and over 30 days. Methods: This is cross sectional study on 46 subjects aged 38 – 74 years old with ischemic stroke from The Indonesian Central Hospital of Army Gatot Subroto Jakarta. Diagnosis of ischemic stroke was made using clinical examination and magnetic resonance imaging (MRI by neurologist. Subjects were divided into 2 groups based on stroke onset: 7 – 30 days (Group A: 19 subjects and > 30 days (Group B: 27 Subjects. Serum NGF levels were measured with ELISA method and BDNF levels were measured using multiplex method with Luminex Magpix. Results: Levels of NGF and BDNF were significantly different between onset group A and B (NGF p= 0.022, and BDNF p=0.008, with mean levels NGF in group A higher than group B, indicating that BDNF levels is lower in group A than group B. There was no significant correlation between NGF and BDNF levels in all groups. Conclusion: The variations in neurotrophic factor levels reflect an endogenous attempt at neuroprotection against biochemical and molecular changes after ischemic stroke. NGF represents an early marker of brain injury while BDNF recovery is most prominent during the first 14 days after onsite but continuous for more than 30 days. There is no significant correlation between NGF and BDNF in each group.  

  19. Calpain-2-mediated PTEN degradation contributes to BDNF-induced stimulation of dendritic protein synthesis.

    Science.gov (United States)

    Briz, Victor; Hsu, Yu-Tien; Li, Yi; Lee, Erin; Bi, Xiaoning; Baudry, Michel

    2013-03-06

    Memory consolidation has been suggested to be protein synthesis dependent. Previous data indicate that BDNF-induced dendritic protein synthesis is a key event in memory formation through activation of the mammalian target of rapamycin (mTOR) pathway. BDNF also activates calpain, a calcium-dependent cysteine protease, which has been shown to play a critical role in learning and memory. This study was therefore directed at testing the hypothesis that calpain activity is required for BDNF-stimulated local protein synthesis, and at identifying the underlying molecular mechanism. In rat hippocampal slices, cortical synaptoneurosomes, and cultured neurons, BDNF-induced mTOR pathway activation and protein translation were blocked by calpain inhibition. BDNF treatment rapidly reduced levels of hamartin and tuberin, negative regulators of mTOR, in a calpain-dependent manner. Treatment of brain homogenates with purified calpain-1 and calpain-2 truncated both proteins. BDNF treatment increased phosphorylation of both Akt and ERK, but only the effect on Akt was blocked by calpain inhibition. Levels of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a phosphatase that inactivates Akt, were decreased following BDNF treatment, and calpain inhibition reversed this effect. Calpain-2, but not calpain-1, treatment of brain homogenates resulted in PTEN degradation. In cultured cortical neurons, knockdown of calpain-2, but not calpain-1, by small interfering RNA completely suppressed the effect of BDNF on mTOR activation. Our results reveal a critical role for calpain-2 in BDNF-induced mTOR signaling and dendritic protein synthesis via PTEN, hamartin, and tuberin degradation. This mechanism therefore provides a link between proteolysis and protein synthesis that might contribute to synaptic plasticity.

  20. Locally Produced BDNF Promotes Sclerotic Change in Alveolar Bone after Nerve Injury

    Science.gov (United States)

    Ida-Yonemochi, Hiroko; Yamada, Yurie; Yoshikawa, Hiroyuki

    2017-01-01

    Brain-derived neurotrophic factor (BDNF), which is released due to nerve injury, is known to promote the natural healing of injured nerves. It is often observed that damage of mandibular canal induces local sclerotic changes in alveolar bone. We reported that peripheral nerve injury promotes the local production of BDNF; therefore, it was possible to hypothesize that peripheral nerve injury affects sclerotic changes in the alveolar bone. This study aimed to evaluate the effect of BDNF on osteogenesis using in vitro osteoblast-lineage cell culture and an in vivo rat osteotomy model. MC3T3-E1 cells were cultured with BDNF and were examined for cell proliferative activity, chemotaxis and mRNA expression levels of osteoblast differentiation markers. For in vivo study, inferior alveolar nerve (IAN) injury experiments and mandibular cortical osteotomy were performed using a rat model. In the osteotomy model, exogenous BDNF was applied to bone surfaces after corticotomy of the mandible, and we morphologically analyzed the new bone formation. As a result, mRNA expression of osteoblast differentiation marker, osteocalcin, was significantly increased by BDNF, although cell proliferation and migration were not affected. In the in vivo study, osteopontin-positive new bone formation was significantly accelerated in the BDNF-grafted groups, and active bone remodeling, involving trkB-positive osteoblasts and osteocytes, continued after 28 days. In conclusion, BDNF stimulated the differentiation of MC3T3-E1 cells and it promoted new bone formation and maturation. These results suggested that local BDNF produced by peripheral nerve injury contributes to accelerating sclerotic changes in the alveolar bone. PMID:28072837

  1. Exogenous t-PA administration increases hippocampal mature BDNF levels. plasmin- or NMDA-dependent mechanism?

    Science.gov (United States)

    Rodier, Marion; Prigent-Tessier, Anne; Béjot, Yannick; Jacquin, Agnès; Mossiat, Claude; Marie, Christine; Garnier, Philippe

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) through TrkB activation is central for brain functioning. Since the demonstration that plasmin is able to process pro-BDNF to mature BDNF and that these two forms have opposite effects on neuronal survival and plasticity, a particular attention has been paid to the link between tissue plasminogen activator (tPA)/plasmin system and BDNF metabolism. However, t-PA via its action on different N-methyl-D-aspartate (NMDA) receptor subunits is also considered as a neuromodulator of glutamatergic transmission. In this context, the aim of our study was to investigate the effect of recombinant (r)t-PA administration on brain BDNF metabolism in rats. In the hippocampus, we found that rt-PA (10 mg/kg) administration induced a progressive increase in mature BDNF levels associated with TrkB activation. In order to delineate the mechanistic involved, plasmin activity was assessed and its inhibition was attempted using tranexamic acid (30 or 300 mg/kg, i.v.) while NMDA receptors were antagonized with MK801 (0.3 or 3 mg/kg, i.p.) in combination with rt-PA treatment. Our results showed that despite a rise in rt-PA activity, rt-PA administration failed to increase hippocampal plasmin activity suggesting that the plasminogen/plasmin system is not involved whereas MK801 abrogated the augmentation in mature BDNF levels observed after rt-PA administration. All together, our results show that rt-PA administration induces increase in hippocampal mature BDNF expression and suggests that rt-PA contributes to the control of brain BDNF synthesis through a plasmin-independent potentiation of NMDA receptors signaling.

  2. Ginsenoside Reduces Cognitive Impairment During Chronic Cerebral Hypoperfusion Through Brain-Derived Neurotrophic Factor Regulated by Epigenetic Modulation.

    Science.gov (United States)

    Wan, Qun; Ma, Xue; Zhang, Zhi-Jun; Sun, Ting; Xia, Feng; Zhao, Gang; Wu, Yu-Mei

    2016-03-28

    Increased expression of brain-derived neurotrophic factor (BDNF) has been associated with memory-enhancing and neuroprotective properties of some drugs under chronic cerebral hypoperfusion (CCH) condition. Ginsenoside Rd (GSRd), one of the main active ingredients in Panax ginseng, is widely used for brain protection. However, it is poorly understood whether epigenetic mechanisms implied in the BDNF modulation after GSRd treatment for CCH remain elusive. Here, we investigated the neuroprotective effects of GSRd and the involved mechanisms. We demonstrated that GSRd administration ameliorated CCH-induced impairment of learning and memory behaviors, evidenced by decreased escape latency and increased number of crossing the platform in Morris water maze test. This improvement was associated with promoted neuron survival and increased BDNF expression in the hippocampus and prefrontal cortex of CCH mice. GSRd improved neuron survival and decreased neuron apoptosis and the level of caspase-3 under oxygen-glucose deprivation/reoxygenation (OGD/R) by upregulation of BDNF as well as in vitro. The levels of acetylated histone H3 (Ac-H3) and histone deacetylase (histone deacetylase 2 (HDAC2)) were altered under OGD/R in a time-dependent manner, and GSRd reestablished the balance between Ac-H3 and HDAC2 which resulted in upregulation of BDNF and increased neuron survival. MS-275, an inhibitor of class I HDACs, abolished the levels of Ac-H3 at the bdnf promoters and enhanced upregulation of BDNF after GSRd administration, suggesting a synergistic effect between GSRd and MS-275. All the data suggested that GSRd provided neuroprotection by epigenetic modulation which accounted for the regulation of BDNF in CCH mice.

  3. Candidate-gene approach in posttraumatic stress disorder after urban violence: association analysis of the genes encoding serotonin transporter, dopamine transporter, and BDNF.

    Science.gov (United States)

    Valente, Nina Leão Marques; Vallada, Homero; Cordeiro, Quirino; Miguita, Karen; Bressan, Rodrigo Affonseca; Andreoli, Sergio Baxter; Mari, Jair Jesus; Mello, Marcelo Feijó

    2011-05-01

    Posttraumatic stress disorder (PTSD) is a prevalent, disabling anxiety disorder marked by behavioral and physiologic alterations which commonly follows a chronic course. Exposure to a traumatic event constitutes a necessary, but not sufficient, factor. There is evidence from twin studies supporting a significant genetic predisposition to PTSD. However, the precise genetic loci still remain unclear. The objective of the present study was to identify, in a case-control study, whether the brain-derived neurotrophic factor (BDNF) val66met polymorphism (rs6265), the dopamine transporter (DAT1) three prime untranslated region (3'UTR) variable number of tandem repeats (VNTR), and the serotonin transporter (5-HTTPRL) short/long variants are associated with the development of PTSD in a group of victims of urban violence. All polymorphisms were genotyped in 65 PTSD patients as well as in 34 victims of violence without PTSD and in a community control group (n = 335). We did not find a statistical significant difference between the BDNF val66met and 5-HTTPRL polymorphism and the traumatic phenotype. However, a statistical association was found between DAT1 3'UTR VNTR nine repeats and PTSD (OR = 1.82; 95% CI, 1.20-2.76). This preliminary result confirms previous reports supporting a susceptibility role for allele 9 and PTSD.

  4. Critical role of promoter IV-driven BDNF transcription in GABAergic transmission and synaptic plasticity in the prefrontal cortex.

    Science.gov (United States)

    Sakata, Kazuko; Woo, Newton H; Martinowich, Keri; Greene, Joshua S; Schloesser, Robert J; Shen, Liya; Lu, Bai

    2009-04-07

    Transcription of Bdnf is controlled by multiple promoters, which drive expression of multiple transcripts encoding for the same protein. Promoter IV contributes significantly to activity-dependent brain-derived neurotrophic factor (BDNF) transcription. We have generated promoter IV mutant mice (BDNF-KIV) by inserting a GFP-STOP cassette within the Bdnf exon IV locus. This genetic manipulation results in disruption of promoter IV-mediated Bdnf expression. BDNF-KIV animals exhibited significant deficits in GABAergic interneurons in the prefrontal cortex (PFC), particularly those expressing parvalbumin, a subtype implicated in executive function and schizophrenia. Moreover, disruption of promoter IV-driven Bdnf transcription impaired inhibitory but not excitatory synaptic transmission recorded from layer V pyramidal neurons in the PFC. The attenuation of GABAergic inputs resulted in an aberrant appearance of spike-timing-dependent synaptic potentiation (STDP) in PFC slices derived from BDNF-KIV, but not wild-type littermates. These results demonstrate the importance of promoter IV-dependent Bdnf transcription in GABAergic function and reveal an unexpected regulation of STDP in the PFC by BDNF.

  5. Recombinant AAV-mediated Expression of Human BDNF Protects Neurons against Cell Apoptosis in Aβ-induced Neuronal Damage Model

    Institute of Scientific and Technical Information of China (English)

    LIU Zhaohui; MA Dongliang; FENG Gaifeng; MA Yanbing; HU Haitao

    2007-01-01

    The human brain-derived neurotrophic factor (hBDNF) gene was cloned by polymerase chain reaction and the recombinant adeno-associated viral vector inserted with hBDNF gene (AAV-hBDNF) was constructed. Cultured rat hippocampal neurons were treated with Aβ25-35 and serued as the experimental Aβ-induced neuronal damage model (AD model), and the AD model was infected with AAV-hBDNF to explore neuroprotective effects of expression of BDNF. Cell viability was assayed by MTT. The expression of bcl-2 anti-apoptosis protein was detected by immunocytochemical staining. The change of intracellular free Ca ion ([Ca2+]i) was measured by laser scanning confocal microscopy. The results showed that BDNF had protective effects against Aβ-induced neuronal damage. The expression of the bcl-2 anti-apoptosis protein was raised significantly and the balance of [Ca2+]i was maintained in the AAV-hBDNF treatment group as compared with AD model group. These data suggested that recombinant AAV mediated a stable expression of hBDNF in cultured hippocampal neurons and resulted in significant neuron protective effects in AD model. The BDNF may reduce neuron apoptosis through increasing the expression of the bcl-2 anti-apoptosis protein and inhibiting intracellular calcium overload. The viral vector-mediated gene expression of BDNF may pave the way of a novel therapeutic strategy for the treatment of neurodegenerative diseases such as Alzheimer's disease.

  6. The role of brain-derived neurotrophic factor (BDNF) in the development of neurogenic detrusor overactivity (NDO).

    Science.gov (United States)

    Frias, Bárbara; Santos, João; Morgado, Marlene; Sousa, Mónica Mendes; Gray, Susannah M Y; McCloskey, Karen D; Allen, Shelley; Cruz, Francisco; Cruz, Célia Duarte

    2015-02-04

    Neurogenic detrusor overactivity (NDO) is a well known consequence of spinal cord injury (SCI), recognizable after spinal shock, during which the bladder is areflexic. NDO emergence and maintenance depend on profound plastic changes of the spinal neuronal pathways regulating bladder function. It is well known that neurotrophins (NTs) are major regulators of such changes. NGF is the best-studied NT in the bladder and its role in NDO has already been established. Another very abundant neurotrophin is BDNF. Despite being shown that, acting at the spinal cord level, BDNF is a key mediator of bladder dysfunction and pain during cystitis, it is presently unclear if it is also important for NDO. This study aimed to clarify this issue. Results obtained pinpoint BDNF as an important regulator of NDO appearance and maintenance. Spinal BDNF expression increased in a time-dependent manner together with NDO emergence. In chronic SCI rats, BDNF sequestration improved bladder function, indicating that, at later stages, BDNF contributes NDO maintenance. During spinal shock, BDNF sequestration resulted in early development of bladder hyperactivity, accompanied by increased axonal growth of calcitonin gene-related peptide-labeled fibers in the dorsal horn. Chronic BDNF administration inhibited the emergence of NDO, together with reduction of axonal growth, suggesting that BDNF may have a crucial role in bladder function after SCI via inhibition of neuronal sprouting. These findings highlight the role of BDNF in NDO and may provide a significant contribution to create more efficient therapies to manage SCI patients.

  7. Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model of Huntington's disease.

    Science.gov (United States)

    Giampà, Carmela; Montagna, Elena; Dato, Clemente; Melone, Mariarosa A B; Bernardi, Giorgio; Fusco, Francesca Romana

    2013-01-01

    Loss of huntingtin-mediated BDNF gene transcription has been shown to occur in HD and thus contribute to the degeneration of the striatum. Several studies have indicated that an increase in BDNF levels is associated with neuroprotection and amelioration of neurological signs in animal models of HD. In a recent study, an increase in BDNF mRNA and protein levels was recorded in mice administered recombinant BDNF peripherally. Chronic, indwelling osmotic mini-pumps containing either recombinant BDNF or saline were surgically placed in R6/2 or wild-type mice from 4 weeks of age until euthanasia. Neurological evaluation (paw clasping, rotarod performance, locomotor activity in an open field) was performed. After transcardial perfusion, histological and immunohistochemical studies were performed. We found that BDNF- treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the vehicle treated ones. Primary outcome measures such as brain volume, striatal atrophy, size and morphology of striatal neurons, neuronal intranuclear inclusions and microglial reaction confirmed a neuroprotective effect of the compound. BDNF was effective in increasing significantly the levels of activated CREB and of BDNF the striatal spiny neurons. Moreover, systemically administered BDNF increased the synthesis of BDNF as demonstrated by RT-PCR, and this might account for the beneficial effects observed in this model.

  8. The BDNF Val66Met polymorphism enhances glutamatergic transmission but diminishes activity-dependent synaptic plasticity in the dorsolateral striatum.

    Science.gov (United States)

    Jing, Deqiang; Lee, Francis S; Ninan, Ipe

    2017-01-01

    The Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene disrupts the activity-dependent release of BDNF, which might underlie its involvement in several neuropsychiatric disorders. Consistent with the potential role of regulated release of BDNF in synaptic functions, earlier studies have demonstrated that the BDNF Val66Met polymorphism impairs NMDA receptor-mediated synaptic transmission and plasticity in the hippocampus, the medial prefrontal cortex and the central amygdala. However, it is unknown whether the BDNF Val66Met polymorphism affects synapses in the dorsal striatum, which depends on cortical afferents for BDNF. Electrophysiological experiments revealed an enhanced glutamatergic transmission in the dorsolateral striatum (DLS) of knock-in mice containing the variant polymorphism (BDNF(Met/Met)) compared to the wild-type (BDNF(Val/Val)) mice. This increase in glutamatergic transmission is mediated by a potentiation in glutamate release and NMDA receptor transmission in the medium spiny neurons without any alterations in non-NMDA receptor-mediated transmission. We also observed an impairment of synaptic plasticity, both long-term potentiation and depression in the DLS neurons, in BDNF(Met/Met) mice. Thus, the BDNF Val66Met polymorphism exerts an increase in glutamatergic transmission but impairs synaptic plasticity in the dorsal striatum, which might play a role in its effect on neuropsychiatric symptoms. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.

  9. Axiom turkey genotyping array

    Science.gov (United States)

    The Axiom®Turkey Genotyping Array interrogates 643,845 probesets on the array, covering 643,845 SNPs. The array development was led by Dr. Julie Long of the USDA-ARS Beltsville Agricultural Research Center under a public-private partnership with Hendrix Genetics, Aviagen, and Affymetrix. The Turk...

  10. The role of BDNF in depression on the basis of its location in the neural circuitry

    Institute of Scientific and Technical Information of China (English)

    Hui YU; Zhe-yu CHEN

    2011-01-01

    Depression is one of the most prevalent and life-threatening forms of mental illnesses and the neural circuitry underlying depression remains incompletely understood. Most attention in the field has focused on hippocampal and frontal cortical regions for their roles in depression and antidepressant action. While these regions no doubt play important roles in the mental illness, there is compelling evi-dence that other brain regions are also involved. Brain-derived neurotrophic factor (BDNF) is broadly expressed in the developing and adult mammalian brain and has been implicated in development, neural regeneration, synaptic transmission, synaptic plasticity and neurogenesis. Recently BDNF has been shown to play an important role in the pathophysiology of depression, however there are con-troversial reports about the effects of BDNF on depression. Here, we present an overview of the current knowledge concerning BDNF actions and associated intracellular signaling in hippocampus, prefrontal cortex, nucleus accumbens (NAc) and amygdala as their rela-tion to depression.

  11. BDNF and its receptors in human myasthenic thymus: implications for cell fate in thymic pathology.

    Science.gov (United States)

    Berzi, Angela; Ayata, C Korcan; Cavalcante, Paola; Falcone, Chiara; Candiago, Elisabetta; Motta, Teresio; Bernasconi, Pia; Hohlfeld, Reinhard; Mantegazza, Renato; Meinl, Edgar; Farina, Cinthia

    2008-07-15

    Here we show that in myasthenic thymus several cell types, including thymic epithelial cells (TEC) and immune cells, were the source and the target of the neurotrophic factor brain-derived growth factor (BDNF). Interestingly, many actively proliferating medullary thymocytes expressed the receptor TrkB in vivo in involuted thymus, while this population was lost in hyperplastic or neoplastic thymuses. Furthermore, in hyperplastic thymuses the robust coordinated expression of BDNF in the germinal centers together with the receptor p75NTR on all proliferating B cells strongly suggests that this factor regulates germinal center reaction. Finally, all TEC dying of apoptosis expressed BDNF receptors, indicating that this neurotrophin is involved in TEC turnover. In thymomas both BDNF production and receptor expression in TEC were strongly hindered. This may represent an attempt of tumour escape from cell death.

  12. BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses.

    Science.gov (United States)

    Rutherford, L C; Nelson, S B; Turrigiano, G G

    1998-09-01

    Recently, we have identified a novel form of synaptic plasticity that acts to stabilize neocortical firing rates by scaling the quantal amplitude of AMPA-mediated synaptic inputs up or down as a function of neuronal activity. Here, we show that the effects of activity blockade on quantal amplitude are mediated through the neurotrophin brain-derived neurotrophic factor (BDNF). Exogenous BDNF prevented, and a TrkB-IgG fusion protein reproduced, the effects of activity blockade on pyramidal quantal amplitude. BDNF had opposite effects on pyramidal neuron and interneuron quantal amplitudes and modified the ratio of pyramidal neuron to interneuron firing rates. These data demonstrate a novel role for BDNF in the homeostatic regulation of excitatory synaptic strengths and in the maintenance of the balance of cortical excitation and inhibition.

  13. Comparative Effect of Treadmill Exercise on Mature BDNF Production in Control versus Stroke Rats

    OpenAIRE

    Quirié, Aurore; Hervieu, Marie; Garnier, Philippe; Demougeot, Céline; Mossiat, Claude; Bertrand, Nathalie; Martin, Alain; Marie, Christine; Prigent-Tessier, Anne

    2012-01-01

    Physical exercise constitutes an innovative strategy to treat deficits associated with stroke through the promotion of BDNF-dependent neuroplasticity. However, there is no consensus on the optimal intensity/duration of exercise. In addition, whether previous stroke changes the effect of exercise on the brain is not known. Therefore, the present study compared the effects of a clinically-relevant form of exercise on cerebral BDNF levels and localization in control versus stroke rats. For this ...

  14. Circulating and Brain BDNF Levels in Stroke Rats. Relevance to Clinical Studies

    OpenAIRE

    Yannick Béjot; Claude Mossiat; Maurice Giroud; Anne Prigent-Tessier; Christine Marie

    2011-01-01

    BACKGROUND: Whereas brain-derived neurotrophic factor (BDNF) levels are measured in the brain in animal models of stroke, neurotrophin levels in stroke patients are measured in plasma or serum samples. The present study was designed to investigate the meaning of circulating BDNF levels in stroke patients. METHODS AND RESULTS: Unilateral ischemic stroke was induced in rats by the injection of various numbers of microspheres into the carotid circulation in order to mimic the different degrees o...

  15. Correlation between Nerve Growth Factor (NGF) with Brain Derived Neurotropic Factor (BDNF) in Ischemic Stroke Patient

    OpenAIRE

    Islam, Andi Asadul

    2016-01-01

    - The neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) is a family of polypeptides that play critical role during neuronal development, appear to mediate protective role on neurorepair in ischemic stroke. Naturally in adult brain neurorepair process consist of: angiogenesis, neurogenesis, and neuronal plasticity, it can also be stimulated by endogenous neurorepair. In this study we observed correlation between NGF and BDNF ischemic stroke patient's onset...

  16. BDNF Evokes Release of Endogenous Cannabinoids at Layer 2/3 Inhibitory Synapses in the Neocortex

    OpenAIRE

    2010-01-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) is a potent regulator of inhibitory synaptic transmission, although the locus of this effect and the underlying mechanisms are controversial. We explored a potential interaction between BDNF and endogenous cannabinoid (endocannabinoid) signaling because activation of type 1 cannabinoid (CB1) receptors potently regulates γ-aminobutyric acid (GABA) release and both trkB tyrosine kinase receptors and CB1 receptors are highly expressed at ...

  17. TrkB/BDNF Signaling Regulates Photoreceptor Progenitor Cell Fate Decisions

    OpenAIRE

    Turner, Brian A.; Sparrow, Janet; Cai, Bolin; Monroe, Julie; Mikawa, Takashi; Hempstead, Barbara L.

    2006-01-01

    Neurotrophins, via activation of Trk receptor tyrosine kinases, serve as mitogens, survival factors and regulators of arborization during retinal development. Brain-derived neurotrophic factor (BDNF) and TrkB regulate neuronal arborization and survival in late retinal development. However, TrkB is expressed during early retinal developmet where its functions are unclear. To assess TrkB/BDNF actions in the early chick retina, replication-incompetent retroviruses were utilized to over-express a...

  18. BDNF Up-Regulates α7 Nicotinic Acetylcholine Receptor Levels on Subpopulations of Hippocampal Interneurons

    OpenAIRE

    Massey, Kerri A; Zago, Wagner M.; Berg, Darwin K.

    2006-01-01

    In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of α7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the ef...

  19. Prelimbic cortex bdnf knock-down reduces instrumental responding in extinction

    OpenAIRE

    Gourley, Shannon L.; Howell, Jessica L.; Rios, Maribel; DiLeone, Ralph J.; Taylor, Jane R

    2009-01-01

    Anatomically selective medial prefrontal cortical projections regulate the extinction of stimulus–reinforcement associations, but the mechanisms underlying extinction of an instrumental response for reward are less well-defined and may involve structures that regulate goal-directed action. We show brain-derived neurotrophic factor (bdnf) knock-down in the prelimbic, but not orbitofrontal, cortex accelerates the initial extinction of instrumental responding for food and reduces striatal BDNF p...

  20. Regulation of BDNF-mediated transcription of immediate early gene Arc by intracellular calcium and calmodulin

    OpenAIRE

    Zheng, Fei; Luo, Yongneng; Wang, Hongbing

    2009-01-01

    The induction of the immediate early gene Arc is strongly implicated in synaptic plasticity. Although the role of ERK was demonstrated, the regulation of Arc expression is largely unknown. In this study, we investigated the major signaling pathways underlying brain-derived neurotrophic factor (BDNF)-mediated Arc transcription in cultured cortical neurons. The BDNF-stimulated Arc transcription was solely regulated by the Ras-Raf-MAPK signaling through ERK, but not by phosphoinositide 3-kinase ...

  1. Alterations of BDNF and GDNF serum levels in alcohol-addicted patients during alcohol withdrawal

    Directory of Open Access Journals (Sweden)

    Mehmet Bülent Sönmez

    Full Text Available Background and Objectives: Brain-derived neurotrophic factor (BDNF and glial cell line-derived neurotrophic factor (GDNF are neurotrophic neuropeptides that play important roles in the synaptic plasticity, neuronal growth, survival and function. A possible neuroprotective role of neurotrophic factors against alcohol-induced cell damage has been suggested, and dysregulations in neurotrophic factors may be involved in the vulnerability to addiction. The aim of this study was to investigate the alterations of BDNF and GDNF serum levels in alcohol-addicted patients during alcohol withdrawal compared to healthy controls. Methods: BDNF and GDNF serum levels of 34 male inpatients diagnosed with alcohol addiction according to DSM-IV-TR were investigated during alcohol withdrawal (day 1, 7 and 14 in comparison to 32 healthy controls using an enzyme-linked immunosorbent assay (ELISA. Severity of alcohol withdrawal was measured by Clinical Institute Withdrawal Assessment for Alcohol (CIWA-Ar, and intensity of alcohol craving was measured by Penn Alcohol Craving Scale (PACS during alcohol withdrawal (day 1, 7 and 14. Results: BDNF serum levels increased significantly during alcohol withdrawal (p = 0.020. They were negatively correlated to the severity of alcohol withdrawal, and the correlation was close to being statistically significant (p = 0.058. BDNF and GDNF serum levels did not differ significantly between the patient and control groups. GDNF serum levels did not change significantly during alcohol withdrawal. Conclusions: Our results may provide support for the previously hypothesized role of BDNF in the neuroadaptation during alcohol withdrawal.

  2. proBDNF Attenuates Hippocampal Neurogenesis and Induces Learning and Memory Deficits in Aged Mice.

    Science.gov (United States)

    Chen, Jia; Li, Cheng-Ren; Yang, Heng; Liu, Juan; Zhang, Tao; Jiao, Shu-Sheng; Wang, Yan-Jiang; Xu, Zhi-Qiang

    2016-01-01

    Mature brain-derived neurotrophic factor has shown promotive effect on neural cells in rodents, including neural proliferation, differentiation, survival, and synaptic formation. Conversely, the precursor of brain-derived neurotrophic factor (proBDNF) has been emerging as a differing protein against its mature form, for its critical role in aging process and neurodegenerative diseases. In the present study, we investigated the role of proBDNF in neurogenesis in the hippocampal dentate gyrus of aged mice and examined the changes in mice learning and memory functions. The results showed that the newborn cells in the hippocampus revealed a significant decline in proBDNF-treated group compared with bovine serum albumin group, but an elevated level in anti-proBDNF group. During the maturation period, no significant change was observed in the proportions of phenotype of the newborn cells among the three groups. In water maze, proBDNF-treated mice had poorer scores in place navigation test and probe test, compared with those from any other group. Thus, we conclude that proBDNF attenuates neurogenesis in the hippocampus and induces the deficits in learning and memory functions of aged mice.

  3. Effect of Mozart Music on Hippocampal Content of BDNF in Postnatal Rats

    Directory of Open Access Journals (Sweden)

    Mohsen Marzban

    2011-04-01

    Full Text Available Introduction: It has shown that listening to Mozart music can potentiate spatial tasks in human; and reduce seizure attacks in epileptic patients. A few studies have reported the effects of prenatal plus postpartum exposure of mice to the Mozart music on brain-drived neurotrophic factor (BDNF in the hippocampus. Here we investigated the effect of postpartum exposure to The Mozart music on BDNF concentration in the hippocampus of rat.Methods: Thirty male one day old newborn Wistar rats divided randomly in two equal experimental and control groups. Experimental group exposed to slow rhythm Mozart music (Mozart Sonata for two pianos KV 448, 6 hour per day; sound pressure levels, between 80 and 100 dB for 60 successive days. The control group was kept in separate room with housing conditions like experimental group except music exposure. After 60 days the rats were euthanized and hippocampuses extracted; then the content of BDNF protein was measured using ELISA sandwich method. Results: Data analysis revealed that rats exposed to Mozart Sonata music had significantly increased BDNF content in the hippocampus as compared to control rats (P±0.01. The concentrations of BDNF were 86.30±2.26 and 94.60 ±6.22 ng/g wet weight in control and music exposure groups respectively.Discussion: Exposure to the Mozart music early in life can increase the BDNF concentration in the hippocampus in rats.

  4. Acupuncture Improved Neurological Recovery after Traumatic Brain Injury by Activating BDNF/TrkB Pathway

    Science.gov (United States)

    Li, Xiaohong; Chen, Chong; Yang, Xiping; Wang, Jingjing; Zhao, Ming-liang; Sun, Hongtao

    2017-01-01

    How to promote neural repair following traumatic brain injury (TBI) has long been an intractable problem. Although acupuncture has been demonstrated to facilitate the neurological recovery, the underlying mechanism is elusive. Brain-derived neurotrophic factor (BDNF) exerts substantial protective effects for neurological disorders. In this study, we found that the level of BDNF and tropomyosin receptor kinase B (TrkB) was elevated spontaneously after TBI and reached up to the peak at 12 h. Nevertheless, this enhancement is quickly declined to the normal at 48 h. After combined stimulation at the acupoints of Baihui, Renzhong, Hegu, and Zusanli, we found that BDNF and TrkB were still significantly elevated at 168 h. We also observed that the downstream molecular p-Akt and p-Erk1/2 were significantly increased, suggesting that acupuncture could persistently activate the BDNF/TrkB pathway. To further verify that acupuncture improved recovery through activating BDNF/TrkB pathway, K252a (specific inhibitor of TrkB) was treated by injection stereotaxically into lateral ventricle. We observed that K252a could significantly prevent the acupuncture-induced amelioration of motor, sensation, cognition, and synaptic plasticity. These data indicated that acupuncture promoted the recovery of neurological impairment after TBI by activating BDNF/TrkB signaling pathway, providing new molecular mechanism for understanding traditional therapy of acupuncture. PMID:28243312

  5. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation

    Directory of Open Access Journals (Sweden)

    Domenico F Galati

    2016-09-01

    Full Text Available Abstract Brain-derived neurotrophic factor (BDNF regulates both action potential (AP generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF’s effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF’s function.

  6. Involvement of brain-derived neurotrophic factor (BDNF) in MP4-induced autoimmune encephalomyelitis.

    Science.gov (United States)

    Javeri, Sita; Rodi, Michael; Tary-Lehmann, Magdalena; Lehmann, Paul V; Addicks, Klaus; Kuerten, Stefanie

    2010-11-01

    The role of brain-derived neurotrophic factor (BDNF) in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) is still unclear. Here we investigate the clinical course, CNS histopathology and peripheral antigen-specific immunity in MP4-induced EAE of BDNF (-/+) mice. We demonstrate that these mice displayed less severe disease compared to BDNF (+/+) mice, reflected by decreased inflammation and demyelination. In correspondence to diminished frequencies of T and B cells in CNS infiltrates, the peripheral MP4-specific T(H)1/T(H)17 response was attenuated in BDNF (-/+), but not in wild-type animals. In contrast, immunization with ovalbumin triggered similar frequencies of IFN-γ- and IL-17-secreting T cells in both groups. The cytokine secretion and proliferative activity upon mitogen stimulation did not reveal any global defect of T cell function in BDNF (-/+) mice. By influencing the antigen-specific immune response in autoimmune encephalomyelitis, BDNF may support and maintain the disease in ways that go beyond its alleged neuroprotective role.

  7. Effects of soft-diet feeding on BDNF expression in hippocampus of mice.

    Science.gov (United States)

    Yamamoto, Tetsu; Hirayama, Akihiko; Hosoe, Nobuo; Furube, Masaru; Hirano, Shusuke

    2008-11-01

    Our previous study showed that mice fed a soft diet after weaning had reduced synaptic connections in the hippocampal formation and impaired spatial learning ability after 3 months of age. We hypothesized that soft-diet feeding during development reduced levels of brain-derived neurotrophic factor (BDNF) protein in the hippocampus, resulting in lower synaptic densities in this region. Male pups of C57BL/6 mice were fed either a solid (hard-diet group) or powdered diet (soft-diet group), starting at weaning. Expression of BDNF protein in the hippocampus and cerebral cortex was evaluated quantitatively with enzyme-linked immunosorbent assay (ELISA) at 1, 3 and 6 months of age. Reduction in BDNF protein levels due to soft diet was detected markedly in the hippocampus of 3- and 6-month-old mice. On the other hand, a soft diet showed no significant effect on BDNF content in the cerebral cortex throughout the ages investigated. Immunohistochemistry of hippocampal formation in 3-month-old mice revealed that intensities of BDNF immunoreactivity in the dentate gyrus granule cell layer and CA1 and CA3 pyramidal cell layers appeared diminished in mice fed the soft diet compared with mice fed the hard diet. These results indicate that insufficient mastication activity during development reduces BDNF protein levels in the hippocampus and influences synaptic plasticity in this region.

  8. A significant association between BDNF promoter methylation and the risk of drug addiction.

    Science.gov (United States)

    Xu, Xuting; Ji, Huihui; Liu, Guili; Wang, Qinwen; Liu, Huifen; Shen, Wenwen; Li, Longhui; Xie, Xiaohu; Zhou, Wenhua; Duan, Shiwei

    2016-06-10

    As a member of the neurotrophic factor family, brain derived neurotrophic factor (BDNF) plays an important role in the survival and differentiation of neurons. The aim of our work was to evaluate the role of BDNF promoter methylation in drug addiction. A total of 60 drug abusers (30 heroin and 30 methylamphetamine addicts) and 52 healthy age- and gender-matched controls were recruited for the current case control study. Bisulfite pyrosequencing technology was used to determine the methylation levels of five CpGs (CpG1-5) on the BDNF promoter. Among the five CpGs, CpG5 methylation was significantly lower in drug abusers than controls. Moreover, significant associations were found between CpG5 methylation and addictive phenotypes including tension-anxiety, anger-hostility, fatigue-inertia, and depression-dejection. In addition, luciferase assay showed that the DNA fragment of BDNF promoter played a key role in the regulation of gene expression. Our results suggest that BDNF promoter methylation is associated with drug addiction, although further studies are needed to understand the mechanisms by which BDNF promoter methylation contributes to the pathophysiology of drug addiction.

  9. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males.

    Science.gov (United States)

    Griffin, Éadaoin W; Mullally, Sinéad; Foley, Carole; Warmington, Stuart A; O'Mara, Shane M; Kelly, Aine M

    2011-10-24

    Physical activity has been reported to improve cognitive function in humans and rodents, possibly via a brain-derived neurotrophic factor (BDNF)-regulated mechanism. In this study of human subjects, we have assessed the effects of acute and chronic exercise on performance of a face-name matching task, which recruits the hippocampus and associated structures of the medial temporal lobe, and the Stroop word-colour task, which does not, and have assessed circulating concentrations of BDNF and IGF-1 in parallel. The results show that a short period of high-intensity cycling results in enhancements in performance of the face-name matching, but not the Stroop, task. These changes in cognitive function were paralleled by increased concentration of BDNF, but not IGF-1, in the serum of exercising subjects. 3 weeks of cycling training had no effect on cardiovascular fitness, as assessed by VO2 scores, cognitive function, or serum BDNF concentration. Increases in fitness, cognitive function and serum BDNF response to acute exercise were observed following 5 weeks of aerobic training. These data indicate that both acute and chronic exercise improve medial temporal lobe function concomitant with increased concentrations of BDNF in the serum, suggesting a possible functional role for this neurotrophic factor in exercise-induced cognitive enhancement in humans.

  10. BDNF-dependent consolidation of fear memories in the perirhinal cortex

    Directory of Open Access Journals (Sweden)

    Brigitte eSchulz-Klaus

    2013-12-01

    Full Text Available In the recent years the perirhinal cortex (PRh has been identified as a crucial brain area in fear learning. Since the neurotrophin BDNF (brain-derived neurotrophic factor is an important mediator of synaptic plasticity and also crucially involved in memory consolidation of several learning paradigms, we analyzed now whether fear conditioning influences the expression of BDNF protein in the PRh. Here we observed a specific increase of BDNF protein 120 minutes after fear conditioning training. In order to test whether this increase of BDNF protein level is also required for the consolidation of the fear memory, we locally applied the Trk receptor inhibitor k252a into the PRh during this time window in a second series of experiments. By interfering with BDNF-TrkB-signaling during this critical time window, the formation of a long-term fear memory was completely blocked, indicated by a complete lack of fear potentiated startle one day later. In conclusion the present study further emphasizes the important role of the PRh in cued fear learning and identified BDNF as an important mediator for fear memory consolidation in the PRh.

  11. Increased expression of BDNF and proliferation of dentate granule cells after bacterial meningitis.

    Science.gov (United States)

    Tauber, Simone C; Stadelmann, Christine; Spreer, Annette; Brück, Wolfgang; Nau, Roland; Gerber, Joachim

    2005-09-01

    Proliferation and differentiation of neural progenitor cells is increased after bacterial meningitis. To identify endogenous factors involved in neurogenesis, expression of brain-derived neurotrophic factor (BDNF), TrkB, nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) was investigated. C57BL/6 mice were infected by intracerebral injection of Streptococcus pneumoniae. Mice were killed 30 hours later or treated with ceftriaxone and killed 4 days after infection. Hippocampal BDNF mRNA levels were increased 2.4-fold 4 days after infection (p = 0.026). Similarly, BDNF protein levels in the hippocampal formation were higher in infected mice than in control animals (p = 0.0003). This was accompanied by an elevated proliferation of dentate granule cells (p = 0.0002). BDNF protein was located predominantly in the hippocampal CA3/4 area and the hilus of the dentate gyrus. The density of dentate granule cells expressing the BDNF receptor TrkB as well as mRNA levels of TrkB in the hippocampal formation were increased 4 days after infection (p = 0.027 and 0.0048, respectively). Conversely, NGF mRNA levels at 30 hours after infection were reduced by approximately 50% (p = 0.004). No significant changes in GDNF expression were observed. In conclusion, increased synthesis of BDNF and TrkB suggests a contribution of this neurotrophic factor to neurogenesis after bacterial meningitis.

  12. Brain-derived neurotrophic factor (BDNF) expression in normal and regenerating olfactory epithelium of Xenopus laevis.

    Science.gov (United States)

    Frontera, Jimena Laura; Cervino, Ailen Soledad; Jungblut, Lucas David; Paz, Dante Agustín

    2015-03-01

    Olfactory epithelium has the capability to continuously regenerate olfactory receptor neurons throughout life. Adult neurogenesis results from proliferation and differentiation of neural stem cells, and consequently, olfactory neuroepithelium offers an excellent opportunity to study neural regeneration and the factors involved in the maintenance and regeneration of all their cell types. We analyzed the expression of BDNF in the olfactory system under normal physiological conditions as well as during a massive regeneration induced by chemical destruction of the olfactory epithelium in Xenopus laevis larvae. We described the expression and presence of BDNF in the olfactory epithelium and bulb. In normal physiological conditions, sustentacular (glial) cells and a few scattered basal (stem) cells express BDNF in the olfactory epithelium as well as the granular cells in the olfactory bulb. Moreover, during massive regeneration, we demonstrated a drastic increase in basal cells expressing BDNF as well as an increase in BDNF in the olfactory bulb and nerve. Together these results suggest an important role of BDNF in the maintenance and regeneration of the olfactory system.

  13. Hepatitis C Virus Genotypes

    Directory of Open Access Journals (Sweden)

    Kayhan Azadmanesh

    2005-09-01

    the ultimate source of the virus's genetic diversity. HCV circulates as a heterogeneous population of genetically different but closely related genomes known as the quasispecies(15.As only 30-35% of nucleotides actually differ, there is obviously considerable heterogeneity in evolutionary rates among nucleotide sites in the genome. This heterogeneity is the result of variable evolutionary constraints. The 5'-UTR contains extensive secondary RNA structure and is correspondingly the slowest evolving genomic region(16. The next slowest region is the C (Core gene, which evolves three times faster than the 5'- UTR. The envelope genes E1 and E2 constitute the most diverse genome region and evolve about nine times faster than the 5'-UTR(16, probably as a result of their presumed role in evading the host immune response. Genomic Heterogeneity and ClassificationSystemsShortly after its discovery in 1989, it became clear that HCV had substantial nucleotide sequence diversity, with only 66 to 80% overall sequencesimilarity among strains belonging to different genotypes or subtypes(17. HCV isolates show four levels of genomic variations: types, subtypes, isolates, andquasispecies. The overall sequence similarities over complete genomic sequences are at least 91% within quasispecies, approximately 79% (range, 77 to 80% between subtypes, and about 68% (range, 66 to 69% between different types. This quasispecies is composed of a group of heterogeneous RNA sequences centered around a dominant nucleotide sequence that changes, throughout the course of the infection, under the selective pressure of the host immune system(18. More than one genotype can be found in the circulations of some HCV-infected patients, particularly in individuals who have received multiple transfusions and intravenous drug users. These are referred to as mixed-genotype infections(19, 20.The lack of a routinely available cell culture system and an easily available animal model has rendered classification of HCV

  14. Impact of prenatal polycyclic aromatic hydrocarbon exposure on behavior, cortical gene expression, and DNA methylation of the Bdnf gene

    Directory of Open Access Journals (Sweden)

    Rachel L. Miller

    2016-03-01

    Full Text Available Prenatal exposure to polycyclic aromatic hydrocarbons (PAH has been associated with sustained effects on the brain and behavior in offspring. However, the mechanisms have yet to be determined. We hypothesized that prenatal exposure to ambient PAH in mice would be associated with impaired neurocognition, increased anxiety, altered cortical expression of Bdnf and Grin2b, and greater DNA methylation of Bdnf. Our results indicated that during open-field testing, prenatal PAH–exposed offspring spent more time immobile and less time exploring. Females produced more fecal boli. Offspring prenatally exposed to PAH displayed modest reductions in overall exploration of objects. Further, prenatal PAH exposure was associated with lower cortical expression of Grin2b and Bdnf in males and greater Bdnf IV promoter methylation. Epigenetic differences within the Bdnf IV promoter correlated with Bdnf gene expression but not with the observed behavioral outcomes, suggesting that additional targets may account for these PAH-associated effects.

  15. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity.

    Science.gov (United States)

    Pang, Petti T; Teng, Henry K; Zaitsev, Eugene; Woo, Newton T; Sakata, Kazuko; Zhen, Shushuang; Teng, Kenneth K; Yung, Wing-Ho; Hempstead, Barbara L; Lu, Bai

    2004-10-15

    Long-term memory is thought to be mediated by protein synthesis-dependent, late-phase long-term potentiation (L-LTP). Two secretory proteins, tissue plasminogen activator (tPA) and brain-derived neurotrophic factor (BDNF), have been implicated in this process, but their relationship is unclear. Here we report that tPA, by activating the extracellular protease plasmin, converts the precursor proBDNF to the mature BDNF (mBDNF), and that such conversion is critical for L-LTP expression in mouse hippocampus. Moreover, application of mBDNF is sufficient to rescue L-LTP when protein synthesis is inhibited, which suggests that mBDNF is a key protein synthesis product for L-LTP expression.

  16. Modulation of human serum glutathione S-transferase A1/2 concentration by cruciferous vegetables in a controlled feeding study is influenced by GSTM1 and GSTT1 genotypes.

    Science.gov (United States)

    Navarro, Sandi L; Chang, Jyh-Lurn; Peterson, Sabrina; Chen, Chu; King, Irena B; Schwarz, Yvonne; Li, Shuying S; Li, Lin; Potter, John D; Lampe, Johanna W

    2009-11-01

    Glutathione S-transferases (GST) detoxify a wide range of carcinogens. Isothiocyanates (ITC), from cruciferous vegetables, are substrates for and inducers of GST. GST variants may alter ITC clearance such that response to crucifers varies by genotype. In a randomized cross-over trial, we tested the hypothesis that changes in serum GSTA1/2 concentration in response to cruciferous vegetable feeding depends on GSTM1/GSTT1 genotype. Thirty-three men and 34 women (age 20-40 years) ate four 14-day controlled diets--basal (vegetable-free), basal supplemented with two different doses of crucifers ("single dose" and "double dose"), and single-dose cruciferous-plus-apiaceous vegetables--fed per kilogram of body weight. Fasting bloods from days 0, 7, 11, and 14 of each diet period were analyzed for serum GSTA1/2 by ELISA. GSTA1/2 increased with single- and double-dose cruciferous compared with basal diet (10% and 13%, respectively; P = 0.02 and 0.004), but cruciferous-plus-apiaceous did not differ from basal (P = 0.59). Overall, GSTA1/2 was higher in GSTM1-null/GSTT1-null than GSTM1+/GSTT1+ individuals (4,198 +/- 338 and 3,372 +/- 183 pg/mL; P = 0.03). The formal interaction of genotype-by-diet was not statistically significant, but the GSTA1/2 increase during the single-dose cruciferous diet was among GSTM1-null/GSTT1-null individuals (by 28%; P = 0.008), largely explained by GSTM1-null/GSTT1-null men (by 41%; P = 0.01). GSTA1/2 increased during the double-dose cruciferous diet in both GSTM1-null/GSTT1-null men (by 35%; P = 0.04) and GSTM1+/GSTT1+ men (by 26%; P = 0.01) but not in women. In summary, cruciferous vegetable supplementation increased GSTA1/2, but the effect was most marked in GSTM1-null/GSTT1-null men.

  17. CEP-1347 reduces mutant huntingtin-associated neurotoxicity and restores BDNF levels in R6/2 mice.

    Science.gov (United States)

    Apostol, Barbara L; Simmons, Danielle A; Zuccato, Chiara; Illes, Katalin; Pallos, Judit; Casale, Malcolm; Conforti, Paola; Ramos, Catarina; Roarke, Margaret; Kathuria, Satish; Cattaneo, Elena; Marsh, J Lawrence; Thompson, Leslie Michels

    2008-09-01

    Huntington's disease (HD) is a devastating neurodegenerative disorder caused by an expanded polyglutamine repeat within the protein Huntingtin (Htt). We previously reported that mutant Htt expression activates the ERK1/2 and JNK pathways [Apostol, B.L., Illes, K., Pallos, J., Bodai, L., Wu, J., Strand, A., Schweitzer, E.S., Olson, J.M., Kazantsev, A., Marsh, J.L., Thompson, L.M., 2006. Mutant huntingtin alters MAPK signaling pathways in PC12 and striatal cells: ERK1/2 protects against mutant huntingtin-associated toxicity. Hum. Mol. Genet. 15, 273-285]. Chemical and genetic modulation of these pathways promotes cell survival and death, respectively. Here we test the ability of two closely related compounds, CEP-11004 and CEP-1347, which inhibit Mixed Lineage Kinases (MLKs) and are neuroprotective, to suppress mutant Htt-mediated pathogenesis in multiple model systems. CEP-11004/CEP-1347 treatment significantly decreased toxicity in mutant Htt-expressing cells that evoke a strong JNK response. However, suppression of cellular dysfunction in cell lines that exhibit only mild Htt-associated toxicity and little JNK activation was associated with activation of ERK1/2. These compounds also reduced neurotoxicity in immortalized striatal neurons from mutant knock-in mice and Drosophila expressing a mutant Htt fragment. Finally, CEP-1347 improved motor performance in R6/2 mice and restored expression of BDNF, a critical neurotrophic factor that is reduced in HD. These studies suggest a novel therapeutic approach for a currently untreatable neurodegenerative disease, HD, via CEP-1347 up-regulation of BDNF.

  18. Whole blood BDNF levels in healthy twins discordant for affective disorder: association to life events and neuroticism

    DEFF Research Database (Denmark)

    Trajkovska, V.; Vinberg, M.; Aznar, S.

    2008-01-01

    and protected against affective disorder. Whole blood assessed for BDNF concentrations and correlated to risk status, neuroticism, and number of stressful life events. RESULTS: Between the groups, we found no significant difference in whole blood BDNF levels. Women at high-risk for depression who had...... neuroticism scores and two or less recent stressful events were associated with decreased whole blood BDNF levels (n=50, p

  19. Central nervous system rather than immune cell-derived BDNF mediates axonal protective effects early in autoimmune demyelination

    OpenAIRE

    Lee, De-Hyung; Geyer, Eva; Flach, Anne-Christine; Jung, Klaus; Gold, Ralf; Flügel, Alexander; Linker, Ralf; Lühder, Fred

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) is involved in neuronal and glial development and survival. While neurons and astrocytes are its main cellular source in the central nervous system (CNS), bioactive BDNF is also expressed in immune cells and in lesions of multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). Previous data revealed that BDNF exerts neuroprotective effects in myelin oligodendrocyte glycoprotein-induced EAE. Using a conditional knock-out...

  20. Hippocampal Deletion of BDNF Gene Attenuates Gamma Oscillations in Area CA1 by Up-Regulating 5-HT3 Receptor

    OpenAIRE

    Ying Huang; Alexei Morozov

    2011-01-01

    BACKGROUND: Pyramidal neurons in the hippocampal area CA3 express high levels of BDNF, but how this BDNF contributes to oscillatory properties of hippocampus is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we examined carbachol-induced gamma oscillations in hippocampal slices lacking BDNF gene in the area CA3. The power of oscillations was reduced in the hippocampal area CA1, which coincided with increases in the expression and activity of 5-HT3 receptor. Pharmacological block of this recept...

  1. Antidepressant Drugs Transactivate TrkB Neurotrophin Receptors in the Adult Rodent Brain Independently of BDNF and Monoamine Transporter Blockade

    OpenAIRE

    Tomi Rantamäki; Liisa Vesa; Hanna Antila; Antonio Di Lieto; Päivi Tammela; Angelika Schmitt; Klaus-Peter Lesch; Maribel Rios; Eero Castrén

    2011-01-01

    BACKGROUND: Antidepressant drugs (ADs) have been shown to activate BDNF (brain-derived neurotrophic factor) receptor TrkB in the rodent brain but the mechanism underlying this phenomenon remains unclear. ADs act as monoamine reuptake inhibitors and after prolonged treatments regulate brain bdnf mRNA levels indicating that monoamine-BDNF signaling regulate AD-induced TrkB activation in vivo. However, recent findings demonstrate that Trk receptors can be transactivated independently of their ne...

  2. Essential Role for Vav GEFs in Brain-derived Neurotrophic Factor (BDNF)-induced Dendritic Spine Growth and Synapse Plasticity

    OpenAIRE

    Hale, Carly F.; Dietz, Karen C.; Varela, Juan A.; Wood, Cody B.; Zirlin, Benjamin C.; Leah S. Leverich; Greene, Robert W.; Cowan, Christopher W.

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB, regulate a wide range of cellular processes, including dendritic spine formation and functional synapse plasticity. However, the signaling mechanisms that link BDNF-activated TrkB to F-actin remodeling enzymes and dendritic spine morphological plasticity remain poorly understood. We report here that BDNF/TrkB signaling in neurons activates the Vav family of Rac/RhoA guanine nucleotide exchange factors (GEFs) through a no...

  3. SNP genotyping technologies

    DEFF Research Database (Denmark)

    Studer, Bruno; Kölliker, Roland

    2013-01-01

    In the recent years, single nucleotide polymorphism (SNP) markers have emerged as the marker technology of choice for plant genetics and breeding applications. Besides the efficient technologies available for SNP discovery even in complex genomes, one of the main reasons...... for this is the availability of high-throughput platforms for multiplexed SNP genotyping. Advancements in these technologies have enabled increased flexibility and throughput, allowing for the generation of adequate SNP marker data at very competitive cost per data point....

  4. Ipsilateral versus contralateral spontaneous post-stroke neuroplastic changes: involvement of BDNF?

    Science.gov (United States)

    Madinier, A; Bertrand, N; Rodier, M; Quirié, A; Mossiat, C; Prigent-Tessier, A; Marie, C; Garnier, P

    2013-02-12

    Stroke is a leading cause of death and disability in industrialized countries. Although surviving patients exhibit a certain degree of restoration of function attributable to brain plasticity, the majority of stroke survivors has to struggle with persisting deficits. In order to potentiate post-stroke recovery, several rehabilitation therapies have been undertaken and many experimental studies have reported that brain-derived neurotrophic factor (BDNF) is central to many facets of neuroplastic processes. However, although BDNF role in brain plasticity is well characterized through strategies that manipulate its content, the involvement of this neurotrophin in spontaneous post-stroke recovery remains to be clarified. Besides, while the neuroplastic role of BDNF is restricted to its mature form, most studies investigating the proper effect of ischemia on post-stroke BDNF metabolism focused on mRNA or total protein expressions. In addition, these studies are mainly performed in brain regions collected either at or around the lesion site. Therefore, the objective of the present study was to investigate in both hemispheres, the long-term expression (up to one month) of both pro- and mature BDNF forms in rats subjected to photothrombotic ischemia. These assessments were performed in the cortex and in the hippocampus, two regions known to subserve functional recovery after stroke and were coupled to the study of synaptophysin expression, a marker of synaptogenesis. Our study reports that stroke induces an early and transient increase (4h) in mature BDNF expression in the cortex of both hemispheres that was associated with a delayed rise (30d) in synaptophysin levels ipsilateraly. In both hippocampal territories, the pattern of mature BDNF expression shows a more delayed increase (from 8 to 30d), which coincides with the evolution of synaptophysin expression. Interestingly, in these hippocampal territories, pro-BDNF levels evolve differently suggesting a differential gene

  5. Differential regulation of BDNF, synaptic plasticity and sprouting in the hippocampal mossy fiber pathway of male and female rats.

    Science.gov (United States)

    Scharfman, Helen E; MacLusky, Neil J

    2014-01-01

    Many studies have described potent effects of BDNF, 17β-estradiol or androgen on hippocampal synapses and their plasticity. Far less information is available about the interactions between 17β-estradiol and BDNF in hippocampus, or interactions between androgen and BDNF in hippocampus. Here we review the regulation of BDNF in the mossy fiber pathway, a critical part of hippocampal circuitry. We discuss the emerging view that 17β-estradiol upregulates mossy fiber BDNF synthesis in the adult female rat, while testosterone exerts a tonic suppression of mossy fiber BDNF levels in the adult male rat. The consequences are interesting to consider: in females, increased excitability associated with high levels of BDNF in mossy fibers could improve normal functions of area CA3, such as the ability to perform pattern completion. However, memory retrieval may lead to anxiety if stressful events are recalled. Therefore, the actions of 17β-estradiol on the mossy fiber pathway in females may provide a potential explanation for the greater incidence of anxiety-related disorders and post-traumatic stress syndrome (PTSD) in women relative to men. In males, suppression of BDNF-dependent plasticity in the mossy fibers may be protective, but at the 'price' of reduced synaptic plasticity in CA3. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.

  6. Brain-derived neurotrophic factor (Val66Met and serotonin transporter (5-HTTLPR polymorphisms modulate plasticity in inhibitory control performance over time but independent of inhibitory control training

    Directory of Open Access Journals (Sweden)

    Sören Enge

    2016-07-01

    Full Text Available Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N=122 and a three-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal was employed and genetic variation (Val66Met in the brain-derived neurotrophic factor (BDNF promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HT transporter (5-HTTLPR was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged suggesting

  7. Brain-Derived Neurotrophic Factor (Val66Met) and Serotonin Transporter (5-HTTLPR) Polymorphisms Modulate Plasticity in Inhibitory Control Performance Over Time but Independent of Inhibitory Control Training

    Science.gov (United States)

    Enge, Sören; Fleischhauer, Monika; Gärtner, Anne; Reif, Andreas; Lesch, Klaus-Peter; Kliegel, Matthias; Strobel, Alexander

    2016-01-01

    Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is a large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N = 122) and a 3-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal) was employed and genetic variation (Val66Met) in the brain-derived neurotrophic factor (BDNF) promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT) signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HTT gene-linked polymorphic region (5-HTTLPR) was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive) did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors) were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates) in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged

  8. Superoxide Dismutase and Catalase Genotypes in Pediatric Migraine Patients.

    Science.gov (United States)

    Saygi, Semra; Erol, İlknur; Alehan, Füsun; Yalçın, Yaprak Yılmaz; Kubat, Gözde; Ataç, Fatma Belgin

    2015-10-01

    This study compared superoxide dismutase (SOD) and catalase (CAT) alleles in 97 consecutive children and adolescents with migraine to 96 healthy children and adolescents. Isolated genomic DNA was used as a template for SOD1 (35 A/C), SOD2 16 C/T, and CAT2 [(-262 C/T) and (-21 A/T)] allele genotyping. The SOD2 16 C/T genotype and C allele frequency differed significantly between controls and migraine (P = .047; P = .038). CAT -21 AA genotype and A allele frequency were significantly higher in both migraine with aura patients (P = .013; P = .004) and migraine without aura patients (P = .003; P = .001) compared to controls. To our knowledge, this is the first demonstration of differences in SOD and CAT genotypes between pediatric migraine patients and age-matched controls. Further studies on the functional implications of these genetic variants on neural antioxidant capacity and the use of antioxidant modulators for migraine treatment are warranted.

  9. The BDNF Val66Met polymorphism and plasma brain-derived neurotrophic factor levels in Han Chinese heroin-dependent patients.

    Science.gov (United States)

    Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Wang, Tzu-Yun; Chen, Shih-Heng; Chu, Chun-Hsien; Chen, Po See; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band

    2015-02-02

    BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of long-term heroin use. Thus, we investigated the relationships between brain-derived neurotrophic factor (BDNF) plasma concentrations and the BDNF Val66Met nucleotide polymorphism (SNP) in heroin-dependent patients. The pretreatment expression levels of plasma BDNF and the BDNF Val66Met SNP in 172 heroin-dependent patients and 102 healthy controls were checked. BDNF levels were significantly lower in patients (F = 52.28, p BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not affect plasma BDNF levels in our participants. In heroin-dependent patients, plasma BDNF levels were negatively correlated with the length of heroin dependency. Long-term (>15 years) users had significantly lower plasma BDNF levels than did short-term (BDNF concentration in habitual heroin users are not affected by BDNF Val66Met gene variants, but by the length of the heroin dependency.

  10. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats

    Directory of Open Access Journals (Sweden)

    Shahla Shojaei

    2015-12-01

    Full Text Available We aimed to compare the effects of oral ethanol (Eth alone or combined with the phytoestrogen resveratrol (Rsv on the expression of various brain-derived neurotrophic factor (BDNF transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW/day dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats.

  11. Susceptibility of biallelic haplotype and genotype frequencies to genotyping error.

    Science.gov (United States)

    Moskvina, Valentina; Schmidt, Karl Michael

    2006-12-01

    With the availability of fast genotyping methods and genomic databases, the search for statistical association of single nucleotide polymorphisms with a complex trait has become an important methodology in medical genetics. However, even fairly rare errors occurring during the genotyping process can lead to spurious association results and decrease in statistical power. We develop a systematic approach to study how genotyping errors change the genotype distribution in a sample. The general M-marker case is reduced to that of a single-marker locus by recognizing the underlying tensor-product structure of the error matrix. Both method and general conclusions apply to the general error model; we give detailed results for allele-based errors of size depending both on the marker locus and the allele present. Multiple errors are treated in terms of the associated diffusion process on the space of genotype distributions. We find that certain genotype and haplotype distributions remain unchanged under genotyping errors, and that genotyping errors generally render the distribution more similar to the stable one. In case-control association studies, this will lead to loss of statistical power for nondifferential genotyping errors and increase in type I error for differential genotyping errors. Moreover, we show that allele-based genotyping errors do not disturb Hardy-Weinberg equilibrium in the genotype distribution. In this setting we also identify maximally affected distributions. As they correspond to situations with rare alleles and marker loci in high linkage disequilibrium, careful checking for genotyping errors is advisable when significant association based on such alleles/haplotypes is observed in association studies.

  12. Tackling Glaucoma from within the Brain: An Unfortunate Interplay of BDNF and TrkB.

    Science.gov (United States)

    Dekeyster, Eline; Geeraerts, Emiel; Buyens, Tom; Van den Haute, Chris; Baekelandt, Veerle; De Groef, Lies; Salinas-Navarro, Manuel; Moons, Lieve

    2015-01-01

    According to the neurotrophin deprivation hypothesis, diminished retrograde delivery of neurotrophic support during an early stage of glaucoma pathogenesis is one of the main triggers that induce retinal ganglion cell (RGC) degeneration. Therefore, interfering with neurotrophic signaling seems an attractive strategy to achieve neuroprotection. Indeed, exogenous neurotrophin administration to the eye has been shown to reduce loss of RGCs in animal models of glaucoma; however, the neuroprotective effect was mostly insufficient for sustained RGC survival. We hypothesized that treatment at the level of neurotrophin-releasing brain areas might be beneficial, as signaling pathways activated by target-derived neurotrophins are suggested to differ from pathways that are initiated at the soma membrane. In our study, first, the spatiotemporal course of RGC degeneration was characterized in mice subjected to optic nerve crush (ONC) or laser induced ocular hypertension (OHT). Subsequently, the well-known neurotrophin brain-derived neurotrophic factor (BDNF) was chosen as the lead molecule, and the levels of BDNF and its high-affinity receptor, tropomyosin receptor kinase B (TrkB), were examined in the mouse retina and superior colliculus (SC) upon ONC and OHT. Both models differentially influenced BDNF and TrkB levels. Next, we aimed for RGC protection through viral vector-mediated upregulation of collicular BDNF, thought to boost the retrograde neurotrophin delivery. Although the previously reported temporary neuroprotective effect of intravitreally delivered recombinant BDNF was confirmed, viral vector-induced BDNF overexpression in the SC did not result in protection of the RGCs in the glaucoma models used. These findings most likely relate to decreased neurotrophin responsiveness upon vector-mediated BDNF overexpression. Our results highlight important insights concerning the complexity of neurotrophic factor treatments that should surely be considered in future

  13. Tackling Glaucoma from within the Brain: An Unfortunate Interplay of BDNF and TrkB.

    Directory of Open Access Journals (Sweden)

    Eline Dekeyster

    Full Text Available According to the neurotrophin deprivation hypothesis, diminished retrograde delivery of neurotrophic support during an early stage of glaucoma pathogenesis is one of the main triggers that induce retinal ganglion cell (RGC degeneration. Therefore, interfering with neurotrophic signaling seems an attractive strategy to achieve neuroprotection. Indeed, exogenous neurotrophin administration to the eye has been shown to reduce loss of RGCs in animal models of glaucoma; however, the neuroprotective effect was mostly insufficient for sustained RGC survival. We hypothesized that treatment at the level of neurotrophin-releasing brain areas might be beneficial, as signaling pathways activated by target-derived neurotrophins are suggested to differ from pathways that are initiated at the soma membrane. In our study, first, the spatiotemporal course of RGC degeneration was characterized in mice subjected to optic nerve crush (ONC or laser induced ocular hypertension (OHT. Subsequently, the well-known neurotrophin brain-derived neurotrophic factor (BDNF was chosen as the lead molecule, and the levels of BDNF and its high-affinity receptor, tropomyosin receptor kinase B (TrkB, were examined in the mouse retina and superior colliculus (SC upon ONC and OHT. Both models differentially influenced BDNF and TrkB levels. Next, we aimed for RGC protection through viral vector-mediated upregulation of collicular BDNF, thought to boost the retrograde neurotrophin delivery. Although the previously reported temporary neuroprotective effect of intravitreally delivered recombinant BDNF was confirmed, viral vector-induced BDNF overexpression in the SC did not result in protection of the RGCs in the glaucoma models used. These findings most likely relate to decreased neurotrophin responsiveness upon vector-mediated BDNF overexpression. Our results highlight important insights concerning the complexity of neurotrophic factor treatments that should surely be considered in

  14. Cellular hybridization for BDNF, trkB, and NGF mRNAs and BDNF-immunoreactivity in rat forebrain after pilocarpine-induced status epilepticus.

    Science.gov (United States)

    Schmidt-Kastner, R; Humpel, C; Wetmore, C; Olson, L

    1996-01-01

    The messenger RNAs (mRNAs) for the neurotrophins, brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF), are upregulated during epileptic seizure activity, as visualized by in situ hybridization techniques. Neurotrophins might be protective against excitotoxic cell stress, and the upregulation during seizures might provide such cell protection. In this study, a high dose of pilocarpine (300 mg/kg) was used to induce long-lasting, limbic motor status epilepticus and a selective pattern of brain damage. The regulation of BDNF, trkB, and NGF mRNA was studied by in situ hybridization at 1, 3, 6, and 24 h after induction of limbic motor status epilepticus. BDNF immunoreactivity was examined with an anti-peptide antibody and the neuropathological process studied in parallel. BDNF mRNA increased in hippocampus, neocortex, piriform cortex, striatum, and thalamus with a maximum at 3-6 h. Hybridization levels increased earlier in the resistant granule and CA1 cells as compared to the vulnerable CA3 neurons. BDNF immunoreactivity was elevated in dentate gyrus at 3-6 h. trkB mRNA increased in the entire hippocampus. NGF mRNA in hippocampus appeared in dentate gyrus at 3-6 h and declined in hilar neurons at 6-24 h. Cell damage was found in the CA3 area, entire basal cortex, and layers II/III of neocortex. Endogenous neurotrophins are upregulated during status epilepticus caused by pilocarpine, which is related to the coupling between neuronal excitation and trophic factor expression. This upregulation of neurotrophic factors may serve endogenous protective effects; however, the excessive levels of neuronal hyperexcitation resulting from pilocarpine seizures lead to cell damage which cannot be prevented by endogenous neurotrophins.

  15. Brain-Derived Neurotrophic Factor (BDNF protein levels in anxiety disorders: systematic review and meta-regression analysis

    Directory of Open Access Journals (Sweden)

    Sharain eSuliman

    2013-07-01

    Full Text Available Background: Brain-Derived Neurotrophic Factor (BDNF is a neurotrophin that is involved in the synaptic plasticity and survival of neurons. BDNF is believed to be involved in the pathogenesis of several neuropsychiatric disorders. As findings of BDNF levels in the anxiety disorders have been inconsistent, we undertook to conduct a systematic review and meta-analysis of studies that assessed BDNF protein levels in anxiety disorders. Methods: We conducted the review using electronic databases and searched reference lists of relevant articles for any further studies. Studies that measured BDNF protein levels in any anxiety disorder and compared these to a control group were included. Effect sizes of the differences in BDNF levels between anxiety disorder and control groups were calculated. Results: Eight studies with a total of 1179 participants were included. Initial findings suggested that BDNF levels were lower in individuals with any anxiety disorder compared to those without (Standard Mean Difference [SMD]=-0.94 [-1.75, -0.12], p≤0.05. This, however, differed with regards to source of BDNF protein (plasma: SMD=-1.31 [-1.69, -0.92], p≤0.01; serum: SMD=-1.06 [-2.27, 0.16], p≥0.01 and type of anxiety disorder (PTSD: SMD=-0.05 [-1.66, 1.75], p≥0.01; OCD: SMD=-2.33 [-4.21, -0.45], p≤0.01. Conclusion: Although BDNF levels appear to be reduced in individuals with an anxiety disorder, this is not consistent across the various anxiety disorders and may largely be explained by the significantly lowered BDNF levels found in OCD. Results further appear to be mediated by differences in sampling methods. Findings are, however, limited by the lack of research in this area, and given the potential for BDNF as a biomarker of anxiety disorders it would be useful to clarify the relationship further.

  16. Decreased BDNF levels in amygdala and hippocampus after intracerebroventricular administration of ouabain

    Directory of Open Access Journals (Sweden)

    Luciano K. Jornada

    2012-01-01

    Full Text Available OBJECTIVE: The present study aims to investigate the effects of ouabain intracerebroventricular injection on BDNF levels in the amygdala and hippocampus of Wistar rats. METHODS: Animals received a single intracerebroventricular injection of ouabain (10-3 and 10-2 M or artificial cerebrospinal fluid and immediately, 1h, 24h, or seven days after injection, BDNF levels were measured in the rat's amygdala and hippocampus by sandwich-ELISA (n = 8 animals per group. RESULTS: When evaluated immediately, 3h, or 24h after injection, ouabain in doses of 10-2 and 10-3 M does not alter BDNF levels in the amygdala and hippocampus. However, when evaluated seven days after injection, ouabain in 10-2 and 10-3 M, showed a significant reduction in BDNF levels in both brain regions evaluated. DISCUSSION: In conclusion, we propose that the ouabain decreased BDNF levels in the hippocampus and amygdala when assessed seven days after administration, supporting the Na/K ATPase hypothesis for bipolar illness.

  17. Neuroprotection, Growth Factors and BDNF-TrkB Signalling in Retinal Degeneration

    Science.gov (United States)

    Kimura, Atsuko; Namekata, Kazuhiko; Guo, Xiaoli; Harada, Chikako; Harada, Takayuki

    2016-01-01

    Neurotrophic factors play key roles in the development and survival of neurons. The potent neuroprotective effects of neurotrophic factors, including brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), glial cell-line derived neurotrophic factor (GDNF) and nerve growth factor (NGF), suggest that they are good therapeutic candidates for neurodegenerative diseases. Glaucoma is a neurodegenerative disease of the eye that causes irreversible blindness. It is characterized by damage to the optic nerve, usually due to high intraocular pressure (IOP), and progressive degeneration of retinal neurons called retinal ganglion cells (RGCs). Current therapy for glaucoma focuses on reduction of IOP, but neuroprotection may also be beneficial. BDNF is a powerful neuroprotective agent especially for RGCs. Exogenous application of BDNF to the retina and increased BDNF expression in retinal neurons using viral vector systems are both effective in protecting RGCs from damage. Furthermore, induction of BDNF expression by agents such as valproic acid has also been beneficial in promoting RGC survival. In this review, we discuss the therapeutic potential of neurotrophic factors in retinal diseases and focus on the differential roles of glial and neuronal TrkB in neuroprotection. We also discuss the role of neurotrophic factors in neuroregeneration. PMID:27657046

  18. BDNF mediates neuroprotection against oxygen-glucose deprivation by the cardiac glycoside oleandrin.

    Science.gov (United States)

    Van Kanegan, Michael J; He, Dong Ning; Dunn, Denise E; Yang, Peiying; Newman, Robert A; West, Anne E; Lo, Donald C

    2014-01-15

    We have previously shown that the botanical drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, provides neuroprotection in both in vitro and in vivo brain slice-based models for focal ischemia (Dunn et al., 2011). Intriguingly, plasma levels of the neurotrophin BDNF were increased in patients treated with PBI-05204 in a phase I clinical trial (Bidyasar et al., 2009). We thus tested the hypothesis that neuroprotection provided by PBI-05204 to rat brain slices damaged by oxygen-glucose deprivation (OGD) is mediated by BDNF. We found, in fact, that exogenous BDNF protein itself is sufficient to protect brain slices against OGD, whereas downstream activation of TrkB receptors for BDNF is necessary for neuroprotection provided by PBI-05204, using three independent methods. Finally, we provide evidence that oleandrin, the principal cardiac glycoside component of PBI-05204, can quantitatively account for regulation of BDNF at both the protein and transcriptional levels. Together, these findings support further investigation of cardiac glycosides in providing neuroprotection in the context of ischemic stroke.

  19. BDNF modifies hippocampal KCC2 and NKCC1 expression in a temporal lobe epilepsy model.

    Science.gov (United States)

    Eftekhari, Sanaz; Mehrabi, Soraya; Soleimani, Mansooreh; Hassanzadeh, Gholamreza; Shahrokhi, Amene; Mostafavi, Hossein; Hayat, Parisa; Barati, Mahmood; Mehdizadeh, Hajar; Rahmanzadeh, Reza; Hadjighassem, Mahmoud Reza; Joghataei, Mohammad Taghi

    2014-01-01

    Excitatory GABA actions, induced by altered expression of chloride transporters (KCC2/NKCC1), can contribute to seizure generation in temporal lobe epilepsy. In the present study, we evaluated whether BDNF administration can affect KCC2/NKCC1 expression, ictogenesis and behavioral alterations in this paradigm. Status epilepticus was induced in male rats with pilocarpine, followed by a treatment of either a single high dose or multiple injections of BDNF during the latent phase of temporal lobe epilepsy. Chloride transporters expression, spontaneous recurrent seizures, and hyperexcitability post-seizural behaviors were evaluated after treatment. NKCC1 protein expression was markedly upregulated, whereas that of KCC2 was significantly downregulated in epileptic hippocampi compared to intact controls. Application of BDNF (both single high dose and multiple injections) increased KCC2 expression in epileptic hippocampi, while NKCC1 expression was downregulated exclusively by the single high dose injection of BDNF. Development of spontaneous recurrent seizures was delayed but not prevented by the treatment, and hyperexcitability behaviors were ameliorated for a short period of time. To prevent GABA-A mediated depolarization and design appropriate treatment strategies for temporal lobe epilepsy, chloride transporters can be considered as a target. Future studies are warranted to investigate any possible therapeutic effects of BDNF via altering chloride transporters expression.

  20. Urinary BDNF-to-creatinine ratio is associated with aerobic fitness.

    Science.gov (United States)

    Collins, Larisa R; Koven, Nancy S

    2014-01-24

    Circulating levels of brain-derived neurotrophic factor (BDNF) are known to be affected by aerobic exercise. As the previous research focus in humans has been to examine peripheral BDNF levels through blood, serum, and platelet assay, the present study investigated the association between basal urinary BDNF concentration and indices of aerobic fitness in a sample of young adults (n=52). Aerobic fitness was evaluated with self-report of exercise habits and heart rate (HR) assessment during a sub-maximal Step Test. BDNF concentration was determined by enzyme-linked immunosorbent assay and adjusted for creatinine. Results indicated that the basal BDNFlog/creatinine ratio was positively associated with greater frequency of exercise and, during aerobic challenge, a quicker rise in HR upon exercise, lower peak HR during exercise, and lower HR during the recovery period, each indicative of enhanced fitness. These results highlight the utility of urine capture as a non-invasive technique to assess for exercise-mediated changes in peripheral BDNF.

  1. A possible link between BDNF and mTOR in control of food intake

    Directory of Open Access Journals (Sweden)

    Nobuyuki eTakei

    2014-09-01

    Full Text Available Food intake is intricately regulated by glucose, amino acids, hormones, neuropeptides, and trophic factors through a neural circuit in the hypothalamus. Brain-derived neurotrophic factor (BDNF, the most prominent neurotrophic factor in the brain, regulates differentiation, maturation, and synaptic plasticity throughout life. Among its many roles, BDNF exerts an anorexigenic function in the brain. However, the intracellular signaling induced by BDNF to control food intake is not fully understood. One candidate for the molecule involved in transducing the anorexigenic activity of BDNF is the mammalian target of rapamycin (mTOR. mTOR senses extracellular amino acids, glucose, growth factors, and neurotransmitters, and regulates anabolic reactions response to these signals. Activated mTOR increases protein and lipid synthesis and inhibits protein degradation. In the hypothalamus, mTOR activation is thought to reduce food intake. Here we summarize recent findings regarding BDNF- and mTOR-mediated feeding control, and propose a link between these molecules in eating behavior.

  2. 何首乌对衰老大鼠海马BDNF mRNA表达的影响%Influence of Polygonum Multiflorum on The BDNF mRNA of Hippocampus in The Senile Rat

    Institute of Scientific and Technical Information of China (English)

    李怡秋; 谭红; 李芳芳; 马俊骥

    2008-01-01

    目的 探讨何首乌对衰老大鼠海马BDNF mRNA表达的影响.方法 给大鼠注射大剂量D-半乳糖,通过行为学测试和RT-PCR方法,观测海马BDNF mRNA含量的变化.结果 与对照组比较,D-半乳糖组大鼠海马BDNF mRNA含量降低,何首乌组海马BDNF mRNA含量亦降低.结论 何首乌不影响BDNF mRNA的表达量.

  3. Role of miRNAs and BDNF in the modulation of hippocampal neurons morphology by antidepressants

    OpenAIRE

    Jordão, Marta Costa

    2012-01-01

    Dissertação de mestrado em Biologia Celular e Molecular, apresentada ao Departamento Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra. A depressão é uma desordem psiquiátrica que representa uma das maiores causas de incapacidade em todo o Mundo, sendo que é caracterizada pelo enfraquecimento da plasticidade neuronal, anormal rede neuronal e, somente em alguns casos, perda celular. No entanto, o mecanismo pelo qual surgem estas alterações neuronais ...

  4. Antidepressant-like activity of resveratrol treatment in the forced swim test and tail suspension test in mice: the HPA axis, BDNF expression and phosphorylation of ERK.

    Science.gov (United States)

    Wang, Zhen; Gu, Jianhua; Wang, Xueer; Xie, Kai; Luan, Qinsong; Wan, Nianqing; Zhang, Qun; Jiang, Hong; Liu, Dexiang

    2013-11-01

    Resveratrol is a natural polyphenol enriched in Polygonum cuspidatum and has diverse biological activities. There is only limited information about the antidepressant-like effect of resveratrol. The present study assessed whether resveratrol treatment (20, 40 and 80mg/kg, i.p., 21days) has an antidepressant-like effect on the forced swim test (FST) and tail suspension test (TST) in mice and examined what its molecular targets might be. The results showed that resveratrol administration produced antidepressant-like effects in mice, evidenced by the reduced immobility time in the FST and TST, while it had no effect on the locomotor activity in the open field test. Resveratrol treatment significantly reduced serum corticosterone levels, which had been elevated by the FST and TST. Moreover, resveratrol increased brain-derived neurotrophic factor (BDNF) protein and extracellular signal-regulated kinase (ERK) phosphorylation levels in the prefrontal cortex and hippocampus. All of these antidepressant-like effects of resveratrol were essentially similar to those observed with the clinical antidepressant, fluoxetine. These results suggest that the antidepressant-like effects of resveratrol in the FST and TST are mediated, at least in part, by modulating hypothalamic-pituitary-adrenal axis, BDNF and ERK phosphorylation expression in the brain region of mice.

  5. Effect of FK506 and cyclosporine A on the expression of BDNF, tyrosine kinase B and p75 neurotrophin receptors in astrocytes exposed to simulated ischemia in vitro.

    Science.gov (United States)

    Gabryel, Bozena; Bernacki, Jacek

    2009-07-01

    We investigated whether the immunosuppressive drugs, FK506 and cyclosporine A, increase BDNF protein and/or mRNA expression in ischemic astrocytes and if an increase could be related to changes in the nuclear expression of p-CREB, p-Erk1/2 and p-Akt. The influence of these immunosuppressants on protein and mRNA levels of TrkB and p75(NTR) receptors was also examined. On day 21, cultures of rat astrocytes were subjected to ischemic conditions simulated in vitro (combined oxygen glucose deprivation, OGD) for 8h and exposed to FK506 (10-1000nM) and cyclosporine A (0.25-10microM). FK506 and cyclosporine A (at 1000nM and 0.25microM, respectively) stimulated the expression and release of BDNF in cultured rat cerebral cortical astrocytes exposed to OGD. The immunosuppressants at these doses simultaneously increased p-CREB and p-Erk1/2 expression in the nuclear fraction of astrocytes. The results RT-PCR and Western blot analysis provided further evidence of a modulating influence of the drugs on the expression of trkB and p75(NTR) genes and their protein products in ischemic astrocytes.

  6. BDNF Val66Met polymorphism as a moderator of exercise enhancement of smoking cessation treatment in anxiety vulnerable adults

    NARCIS (Netherlands)

    Smits, J.A.J.; Powers, M.B.; Rosenfield, D.; Zvolensky, M.J.; Jacquart, J.; Davis, M.L.; Beevers, C.G.; Marcus, B.H.; Church, T.S.; Otto, M.W.

    2016-01-01

    Background: Exercise interventions facilitate the odds of quit success among high-anxiety sensitive adults smokers. We examined the dependency of these benefits on the genetic BDNF Val66Met (rs6265) polymorphism; individuals who are Met carriers have lower BDNF responses and reduced associated benef

  7. Plasma BDNF Is Reduced among Middle-Aged and Elderly Women with Impaired Insulin Function: Evidence of a Compensatory Mechanism

    Science.gov (United States)

    Arentoft, Alyssa; Sweat, Victoria; Starr, Vanessa; Oliver, Stephen; Hassenstab, Jason; Bruehl, Hannah; Tirsi, Aziz; Javier, Elizabeth; McHugh, Pauline F.; Convit, Antonio

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) plays a regulatory role in neuronal differentiation and synaptic plasticity and has been linked to glucose regulation and cognition. Associations among plasma BDNF, cognition, and insulin function were explored. Forty-one participants with impaired insulin function (IIF), ranging from insulin resistance to…

  8. Age-related changes in BDNF protein levels in human serum: differences between autism cases and normal controls.

    Science.gov (United States)

    Katoh-Semba, Ritsuko; Wakako, Rie; Komori, Taku; Shigemi, Hiroko; Miyazaki, Noriko; Ito, Hironori; Kumagai, Toshiyuki; Tsuzuki, Masako; Shigemi, Kenji; Yoshida, Futoshi; Nakayama, Atsuo

    2007-10-01

    Accumulating evidence suggests the possible association between the concentrations of serum brain-derived neurotrophic factor (BDNF) and psychiatric disease with impaired brain development. Yet the reasons remain unclear. We therefore investigated the characteristics of serum BDNF as well as its age-related changes in healthy controls in comparison to autism cases. BDNF was gradually released from platelets at 4 degrees C, reached a maximal concentration after around 24 h, and remained stable until 42 h. At room temperature, BDNF was found to be immediately degraded. Circadian changes, but not seasonal changes, were found in serum levels of BDNF existing as the mature form with a molecular mass of 14 kDa. In healthy controls, the serum BDNF concentration increased over the first several years, then slightly decreased after reaching the adult level. There were no sex differences between males and females. In the autism cases, mean levels were significantly lower in children 0-9 years old compared to teenagers or adults, or to age-matched healthy controls, indicating a delayed BDNF increase with development. In a separate study of adult rats, a circadian change in serum BDNF was found to be similar to that in the cortex, indicating a possible association with cortical functions.

  9. A functional brain-derived neurotrophic factor (BDNF) gene variant increases the risk of moderate-to-severe allergic rhinitis

    NARCIS (Netherlands)

    Jin, Peng; Andiappan, Anand Kumar; Quek, Jia Min; Lee, Bernett; Au, Bijin; Sio, Yang Yie; Irwanto, Astrid; Schurmann, Claudia; Grabe, Hans Joergen; Suri, Bani Kaur; Matta, Sri Anusha; Westra, Harm-Jan; Franke, Lude; Esko, Tonu; Sun, Liangdan; Zhang, Xuejun; Liu, Hong; Zhang, Furen; Larbi, Anis; Xu, Xin; Poidinger, Michael; Liu, Jianjun; Chew, Fook Tim; Rotzschke, Olaf; Shi, Li; Wang, De Yun

    2015-01-01

    Background: Brain-derived neurotrophic factor (BDNF) is a secretory protein that has been implicated in the pathogenesis of allergic rhinitis (AR), atopic asthma, and eczema, but it is currently unknown whether BDNF polymorphisms influence susceptibility to moderate-to-severe AR. Objective: We sough

  10. Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder.

    Science.gov (United States)

    Roth, Tania L; Zoladz, Phillip R; Sweatt, J David; Diamond, David M

    2011-07-01

    Epigenetic alterations of the brain-derived neurotrophic factor (Bdnf) gene have been linked with memory, stress, and neuropsychiatric disorders. Here we examined whether there was a link between an established rat model of post-traumatic stress disorder (PTSD) and Bdnf DNA methylation. Adult male Sprague-Dawley rats were given psychosocial stress composed of two acute cat exposures in conjunction with 31 days of daily social instability. These manipulations have been shown previously to produce physiological and behavioral sequelae in rats that are comparable to symptoms observed in traumatized people with PTSD. We then assessed Bdnf DNA methylation patterns (at exon IV) and gene expression. We have found here that the psychosocial stress regimen significantly increased Bdnf DNA methylation in the dorsal hippocampus, with the most robust hypermethylation detected in the dorsal CA1 subregion. Conversely, the psychosocial stress regimen significantly decreased methylation in the ventral hippocampus (CA3). No changes in Bdnf DNA methylation were detected in the medial prefrontal cortex or basolateral amygdala. In addition, there were decreased levels of Bdnf mRNA in both the dorsal and ventral CA1. These results provide evidence that traumatic stress occurring in adulthood can induce CNS gene methylation, and specifically, support the hypothesis that epigenetic marking of the Bdnf gene may underlie hippocampal dysfunction in response to traumatic stress. Furthermore, this work provides support for the speculative notion that altered hippocampal Bdnf DNA methylation is a cellular mechanism underlying the persistent cognitive deficits which are prominent features of the pathophysiology of PTSD.

  11. Low serum BDNF levels in depressed patients cannot be attributed to individual depressive symptoms or symptom cluster

    NARCIS (Netherlands)

    Bus, B. A. A.; Molendijk, M. L.; Penninx, B. W. J. H.; Buitelaar, J. K.; Prickaerts, J.; Elzinga, B. M.; Oude Voshaar, R. C.

    2014-01-01

    OBJECTIVES: Low serum BDNF levels have been found in depressed patients. No study has systematically investigated whether individual symptoms or symptom profiles within a depressed population contribute to low BDNF levels found in depressed subjects. METHODS: All 1070 patients with a past 6-month di

  12. Research Progress of BDNF and Depression%BDNF与抑郁症的研究现状及进展

    Institute of Scientific and Technical Information of China (English)

    乔卉; 安书成; 徐畅

    2011-01-01

    BDNF is widespread existed in CNS and PNS, because of its function in nerve regeneration and restoration, more and more researches focused on the effect of BDNF on neural plasticity in the development of depression and the mechanisms of antidepressant. This article review the basic results and the research trends on BDNF and depression at present, more researches about the interactions of BDNF and proBDNF, BDNF and other transmitters and their receptors should be expected.%脑源性神经营养因子(brain-derived neurothrophic factor,BDNF)在中枢和外周均广泛存在,基于对其神经再生和修复功能的普遍认识,越来越多的研究开始关注BDNF在抑郁发生过程中对神经可塑性的影响以及BDNF在抗抑郁药物治疗中发挥的作用.本文综述了BDNF与抑郁症关系的基础性研究成果,以及近两年的相关研究趋势,更多的关于BDNF与其前体(precursor of brain derived neurothrophic factor,proBDNF)以及BDNF与其它神经递质在神经网络中的相互作用的研究需要被深入开展.

  13. BDNF-induced synaptic delivery of AMPAR subunits is differentially dependent on NMDA receptors and requires ERK.

    Science.gov (United States)

    Li, Wei; Keifer, Joyce

    2009-03-01

    Previous studies using an in vitro model of eyeblink classical conditioning in turtles suggest that increased numbers of synaptic AMPARs supports the acquisition and expression of conditioned responses (CRs). Brain-derived neurotrophic factor (BDNF) and its associated receptor tyrosine kinase, TrkB, is also required for acquisition of CRs. Bath application of BDNF alone induces synaptic delivery of GluR1- and GluR4-containing AMPARs that is blocked by coapplication of the receptor tyrosine kinase inhibitor K252a. The molecular mechanisms involved in BDNF-induced AMPAR trafficking remain largely unknown. The aim of this study was to determine whether BDNF-induced synaptic AMPAR incorporation utilizes similar cellular mechanisms as AMPAR trafficking that occurs during in vitro classical conditioning. Using pharmacological blockade and confocal imaging, the results show that synaptic delivery of GluR1 subunits during conditioning or BDNF application does not require activity of NMDARs but is mediated by extracellular signal-regulated kinase (ERK). In contrast, synaptic delivery of GluR4-containing AMPARs during both conditioning and BDNF application is NMDAR- as well as ERK-dependent. These findings indicate that BDNF application mimics AMPAR trafficking observed during conditioning by activation of some of the same intracellular signaling pathways and suggest that BDNF is a key signal transduction element in postsynaptic events that mediate conditioning.

  14. Olfactory sensory deprivation increases the number of proBDNF-immunoreactive mitral cells in the olfactory bulb of mice.

    Science.gov (United States)

    Biju, K C; Mast, Thomas Gerald; Fadool, Debra Ann

    2008-12-05

    In the olfactory bulb, apoptotic cell-death induced by sensory deprivation is restricted to interneurons in the glomerular and granule cell layers, and to a lesser extent in the external plexiform layer, whereas mitral cells do not typically undergo apoptosis. With the goal to understand whether brain-derived neurotrophic factor (BDNF) mediates mitral cell survival, we performed unilateral naris occlusion on mice at postnatal day one (P1) and examined the subsequent BDNF-immunoreactive (BDNF-ir) profile of the olfactory bulb at P20, P30, and P40. Ipsilateral to the naris occlusion, there was a significant increase in the number of BDNF-ir mitral cells per unit area that was independent of the duration of the sensory deprivation induced by occlusion. The number of BDNF-ir juxtaglomerular cells per unit area, however, was clearly diminished. Western blot analysis revealed the presence of primarily proBDNF in the olfactory bulb. These data provide evidence for a neurotrophic role of proBDNF in the olfactory system of mice and suggest that proBDNF may act to protect mitral cells from the effects of apoptotic changes induced by odor sensory deprivation.

  15. HBpF-proBDNF: A New Tool for the Analysis of Pro-Brain Derived Neurotrophic Factor Receptor Signaling and Cell Biology

    Science.gov (United States)

    Gaub, Perrine; de Léon, Andrès; Gibon, Julien; Soubannier, Vincent; Dorval, Geneviève; Séguéla, Philippe; Barker, Philip A.

    2016-01-01

    Neurotrophins activate intracellular signaling pathways necessary for neuronal survival, growth and apoptosis. The most abundant neurotrophin in the adult brain, brain-derived neurotrophic factor (BDNF), is first synthesized as a proBDNF precursor and recent studies have demonstrated that proBDNF can be secreted and that it functions as a ligand for a receptor complex containing p75NTR and sortilin. Activation of proBDNF receptors mediates growth cone collapse, reduces synaptic activity, and facilitates developmental apoptosis of motoneurons but the precise signaling cascades have been difficult to discern. To address this, we have engineered, expressed and purified HBpF-proBDNF, an expression construct containing a 6X-HIS tag, a biotin acceptor peptide (BAP) sequence, a PreScission™ Protease cleavage site and a FLAG-tag attached to the N-terminal part of murine proBDNF. Intact HBpF-proBDNF has activities indistinguishable from its wild-type counterpart and can be used to purify proBDNF signaling complexes or to monitor proBDNF endocytosis and retrograde transport. HBpF-proBDNF will be useful for characterizing proBDNF signaling complexes and for deciphering the role of proBDNF in neuronal development, synapse function and neurodegenerative disease. PMID:26950209

  16. The impact of childhood abuse and recent stress on serum brain-derived neurotrophic factor and the moderating role of BDNF Val(66)Met

    NARCIS (Netherlands)

    Elzinga, Bernet M.; Molendijk, Marc L.; Voshaar, Richard C. Oude; Bus, Boudewijn A. A.; Prickaerts, Jos; Spinhoven, Philip; Penninx, Brenda J. W. H.

    2011-01-01

    Recent findings show lowered brain-derived neurotrophic factor (BDNF) levels in major depressive disorder (MDD). Exposure to stressful life events may (partly) underlie these BDNF reductions, but little is known about the effects of early or recent life stress on BDNF levels. Moreover, the effects o

  17. The impact of childhood abuse and recent stress on serum brain-derived neurotrophic factor and the moderating role of BDNF Val66Met

    NARCIS (Netherlands)

    Elzinga, B.M.; Molendijk, M.L.; Oude Voshaar, R.C.; Bus, B.A.A.; Prickaerts, J.; Spinhoven, P.; Penninx, B.J.

    2011-01-01

    RATIONALE: Recent findings show lowered brain-derived neurotrophic factor (BDNF) levels in major depressive disorder (MDD). Exposure to stressful life events may (partly) underlie these BDNF reductions, but little is known about the effects of early or recent life stress on BDNF levels. Moreover, th

  18. Co-localization of brain-derived neurotrophic factor (BDNF) and wild-type huntingtin in normal and quinolinic acid-lesioned rat brain.

    Science.gov (United States)

    Fusco, Francesca R; Zuccato, Chiara; Tartari, Marzia; Martorana, Alessandro; De March, Zena; Giampà, Carmela; Cattaneo, Elena; Bernardi, Giorgio

    2003-09-01

    Loss of huntingtin-mediated brain-derived neurotrophic factor (BDNF) gene transcription has been described in Huntington's disease (HD) [Zuccato et al. (2001) Science, 293, 493-498]. It has been shown that BDNF is synthesized in the pyramidal layer of cerebral cortex and released in the striatum [Altar et al. (1997) Nature, 389, 856-860; Conner et al. (1997) J. Neurosci., 17, 2295-2313]. Here we show the cellular localization of BDNF in huntingtin-containing neurons in normal rat brain; our double-label immunofluorescence study shows that huntingtin and BDNF are co-contained in approximately 99% of pyramidal neurons of motor cortex. In the striatum, huntingtin is expressed in 75% of neurons containing BDNF. In normal striatum we also show that BDNF is contained in cholinergic and in NOS-containing interneurons, which are relatively resistant to HD degeneration. Furthermore, we show a reduction in huntingtin and in BDNF immunoreactivity in cortical neurons after striatal excitotoxic lesion. Our data are confirmed by an ELISA study of BDNF and by a Western blot analysis of huntingtin in cortex of quinolic acid (QUIN)-lesioned hemispheres. In the lesioned striatum we describe that the striatal subpopulation of cholinergic neurons, surviving degeneration, contain BDNF. The finding that BDNF is contained in nearly all neurons that contain huntingtin in the normal cortex, along with the reduced expression of BDNF after QUIN injection of the striatum, shows that huntingtin may be required for BDNF production in cortex.

  19. Laboratory Information Management Software for genotyping workflows: applications in high throughput crop genotyping

    Directory of Open Access Journals (Sweden)

    Prasanth VP

    2006-08-01

    Full Text Available Abstract Background With the advances in DNA sequencer-based technologies, it has become possible to automate several steps of the genotyping process leading to increased throughput. To efficiently handle the large amounts of genotypic data generated and help with quality control, there is a strong need for a software system that can help with the tracking of samples and capture and management of data at different steps of the process. Such systems, while serving to manage the workflow precisely, also encourage good laboratory practice by standardizing protocols, recording and annotating data from every step of the workflow. Results A laboratory information management system (LIMS has been designed and implemented at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT that meets the requirements of a moderately high throughput molecular genotyping facility. The application is designed as modules and is simple to learn and use. The application leads the user through each step of the process from starting an experiment to the storing of output data from the genotype detection step with auto-binning of alleles; thus ensuring that every DNA sample is handled in an identical manner and all the necessary data are captured. The application keeps track of DNA samples and generated data. Data entry into the system is through the use of forms for file uploads. The LIMS provides functions to trace back to the electrophoresis gel files or sample source for any genotypic data and for repeating experiments. The LIMS is being presently used for the capture of high throughput SSR (simple-sequence repeat genotyping data from the legume (chickpea, groundnut and pigeonpea and cereal (sorghum and millets crops of importance in the semi-arid tropics. Conclusion A laboratory information management system is available that has been found useful in the management of microsatellite genotype data in a moderately high throughput genotyping

  20. Association between DNA Methylation of the BDNF Promoter Region and Clinical Presentation in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Tomoyuki Nagata

    2015-03-01

    Full Text Available Background/Aims: In the present study, we examined whether DNA methylation of the brain-derived neurotrophic factor (BDNF promoter is associated with the manifestation and clinical presentation of Alzheimer's disease (AD. Methods: Of 20 patients with AD and 20 age-matched normal controls (NCs, the DNA methylation of the BDNF promoter (measured using peripheral blood samples was completely analyzed in 12 patients with AD and 6 NCs. The resulting methylation levels were compared statistically. Next, we investigated the correlation between the DNA methylation levels and the clinical presentation of AD. Results: The total methylation ratio (in % of the 20 CpG sites was significantly higher in the AD patients (5.08 ± 5.52% than in the NCs (2.09 ± 0.81%; p Conclusion: These results suggest that the DNA methylation of the BDNF promoter may significantly influence the manifestation of AD and might be associated with its neurocognitive presentation.

  1. No association of the Val66Met polymorphism of brain-derived neurotrophic factor (BDNF) to multiple sclerosis.

    Science.gov (United States)

    Blanco, Y; Gómez-Choco, M; Arostegui, J L; Casanova, B; Martínez-Rodríguez, J E; Boscá, I; Munteis, E; Yagüe, J; Graus, F; Saiz, A

    2006-04-03

    Brain-derived neurotrophic factor (BDNF), a neurotrophin produced by neurons and immune cells, promotes neuronal survival and repair during development and after CNS injury. The BDNF-Val66Met polymorphism is functional and induces abnormal intracellular trafficking and decreased BDNF release. Therefore, we investigated the impact of the BDNF-Val66Met polymorphism on the susceptibility and clinical course in a case-control study of 224 multiple sclerosis (MS) Spanish patients and 177 healthy controls. We found no evidence for association to susceptibility or severity of the disease in our population. Moreover, we did not observe, in a subgroup of 12 MS patients, that the methionine substitution at position 66 in the prodomain had negative impact in the capacity to produce BDNF by peripheral blood mononuclear cells (PBMC).

  2. Elevation of peripheral BDNF promoter methylation links to the risk of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Lan Chang

    Full Text Available Brain derived neurotrophic factor (BDNF has been known to play an important role in various mental disorders or diseases such as Alzheimer's disease (AD. The aim of our study was to assess whether BDNF promoter methylation in peripheral blood was able to predict the risk of AD. A total of 44 AD patients and 62 age- and gender-matched controls were recruited in the current case-control study. Using the bisulphite pyrosequencing technology, we evaluated four CpG sites in the promoter of the BDNF. Our results showed that BDNF methylation was significantly higher in AD cases than in the controls (CpG1: p = 10.021; CpG2: p = 0.002; CpG3: p = 0.007; CpG4: p = 0.005; average methylation: p = 0.004. In addition, BDNF promoter methylation was shown to be significantly correlated with the levels of alkaline phosphatase (ALP, glucose, Lp(a, ApoE and ApoA in males (ALP: r = -0.308, p = 0.042; glucose: r = -0.383, p = 0.010; Lp(a: r = 0.333, p = 0.027; ApoE: r = -0.345, p = 0.032;, ApoA levels in females (r = 0.362, p = 0.033, and C Reactive Protein (CRP levels in both genders (males: r = -0.373, p = 0.016; females: r = -0.399, p = 0.021. Our work suggested that peripheral BDNF promoter methylation might be a diagnostic marker of AD risk, although its underlying function remains to be elaborated in the future.

  3. Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus.

    Science.gov (United States)

    Tran, Phu V; Kennedy, Bruce C; Lien, Yu-Chin; Simmons, Rebecca A; Georgieff, Michael K

    2015-02-15

    Fetal and subsequent early postnatal iron deficiency causes persistent impairments in cognitive and affective behaviors despite prompt postnatal iron repletion. The long-term cognitive impacts are accompanied by persistent downregulation of brain-derived neurotrophic factor (BDNF), a factor critical for hippocampal plasticity across the life span. This study determined whether early-life iron deficiency epigenetically modifies the Bdnf locus and whether dietary choline supplementation during late gestation reverses these modifications. DNA methylation and histone modifications were assessed at the Bdnf-IV promoter in the hippocampus of rats [at postnatal day (PND) 65] that were iron-deficient (ID) during the fetal-neonatal period. Iron deficiency was induced in rat pups by providing pregnant and nursing dams an ID diet (4 mg/kg Fe) from gestational day (G) 2 through PND7, after which iron deficiency was treated with an iron-sufficient (IS) diet (200 mg/kg Fe). This paradigm resulted in about 60% hippocampal iron loss on PND15 with complete recovery by PND65. For choline supplementation, pregnant rat dams were given dietary choline (5 g/kg) from G11 through G18. DNA methylation was determined by quantitative sequencing of bisulfite-treated DNA, revealing a small alteration at the Bdnf-IV promoter. Chromatin immunoprecipitation analysis showed increased HDAC1 binding accompanied by reduced binding of RNA polymerase II and USF1 at the Bdnf-IV promoter in formerly ID rats. These changes were correlated with altered histone methylations. Prenatal choline supplementation reverses these epigenetic modifications. Collectively, the findings identify epigenetic modifications as a potential mechanism to explicate the long-term repression of Bdnf following fetal and early postnatal iron deficiency.

  4. Late Protein Synthesis-Dependent Phases in CTA Long-Term Memory: BDNF Requirement

    Science.gov (United States)

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F.; Escobar, Martha L.

    2011-01-01

    It has been proposed that long-term memory (LTM) persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF) is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related LTM when protein synthesis was inhibited. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that intracortical delivery of BDNF reverses the deficit in CTA memory caused by the inhibition of IC protein synthesis due to anisomycin administration during early acquisition. In this work, we first analyze whether CTA memory storage is protein synthesis-dependent in different time windows. We observed that CTA memory become sensible to protein synthesis inhibition 5 and 7 h after acquisition. Then, we explore the effect of BDNF delivery (2 μg/2 μl per side) in the IC during those late protein synthesis-dependent phases. Our results show that BDNF reverses the CTA memory deficit produced by protein synthesis inhibition in both phases. These findings support the notion that recurrent rounds of consolidation-like events take place in the neocortex for maintenance of CTA memory trace and that BDNF is an essential component of these processes. PMID:21960964

  5. EPO protects Müller cell under high glucose state through BDNF/TrkB pathway.

    Science.gov (United States)

    Wang, Ping; Xia, Fei

    2015-01-01

    Neurotrophic factor decreased in the early stage of diabetic retinal nerve cells. Neurons damage brain derived neurotrophic factor (BDNF) and receptor TrkB expression reduced. Erythropoietin (EPO) plays an important role in protecting early diabetic retinopathy. The rats were euthanized at 24 h after EPO vitreous injection and the retina was separated. HE staining was applied to observe the pathological tissue morphology. Immunohistochemistry, immunofluorescence, and Western blot were used to detect BDNF, TrkB, extracellular signal-regulated kinase (ERK), and glial fibrillary acidic portein (GFAP) expression. Retinal structure was clear in group C, while the retinal thickness and RGCs number decreased in group B at 24 w. Retinal thickness in group E was greater than in group B but lower than in group C. GFAP and ERK expression increased in both group B and E, whereas the latter was significantly lower than the former. TrkB protein level was in group E > B > C at 4 w, while it was in group C > group E > group B at 24 w. BDNF expression in group B was higher than in group C at 4 w, whereas it was opposite at 24 w. BDNF expression increased in group E at 4 w, and it was similar in group E compared with group C at 24 w. EPO vitreous injection can increase BDNF and TrkB expression, while reduce GFAP and ERK expression in diabetes rat retina. It could protect Müller cells through BDNF/TrkB pathway to play a role of nerve nutrition.

  6. Pgrmc1/BDNF Signaling Plays a Critical Role in Mediating Glia-Neuron Cross Talk.

    Science.gov (United States)

    Sun, Fen; Nguyen, Trinh; Jin, Xin; Huang, Renqi; Chen, Zhenglan; Cunningham, Rebecca L; Singh, Meharvan; Su, Chang

    2016-05-01

    Progesterone (P4) exerts robust cytoprotection in brain slice cultures (containing both neurons and glia), yet such protection is not as evident in neuron-enriched cultures, suggesting that glia may play an indispensable role in P4's neuroprotection. We previously reported that a membrane-associated P4 receptor, P4 receptor membrane component 1, mediates P4-induced brain-derived neurotrophic factor (BDNF) release from glia. Here, we sought to determine whether glia are required for P4's neuroprotection and whether glia's roles are mediated, at least partially, via releasing soluble factors to act on neighboring neurons. Our data demonstrate that P4 increased the level of mature BDNF (neuroprotective) while decreasing pro-BDNF (potentially neurotoxic) in the conditioned media (CMs) of cultured C6 astrocytes. We examined the effects of CMs derived from P4-treated astrocytes (P4-CMs) on 2 neuronal models: 1) all-trans retinoid acid-differentiated SH-SY5Y cells and 2) mouse primary hippocampal neurons. P4-CM increased synaptic marker expression and promoted neuronal survival against H2O2. These effects were attenuated by Y1036 (an inhibitor of neurotrophin receptor [tropomysin-related kinase] signaling), as well as tropomysin-related kinase B-IgG (a more specific inhibitor to block BDNF signaling), which pointed to BDNF as the key protective component within P4-CM. These findings suggest that P4 may exert its maximal protection by triggering a glia-neuron cross talk, in which P4 promotes mature BDNF release from glia to enhance synaptogenesis as well as survival of neurons. This recognition of the importance of glia in mediating P4's neuroprotection may also inform the design of effective therapeutic methods for treating diseases wherein neuronal death and/or synaptic deficits are noted.

  7. BDNF contributes to the genetic variance of milk fat yield in German Holstein cattle

    Directory of Open Access Journals (Sweden)

    Lea G. Zielke

    2011-04-01

    Full Text Available AbstractThe gene encoding the brain derived neurotrophic factor (BDNF has been repeatedly associated with human obesity. As such, it could also contribute to the regulation of energy partitioning and the amount of secreted milk fat during lactation, which plays an important role in milk production in dairy cattle. Therefore, we performed an association study using estimated breeding values of bulls and yield deviations of German Holstein dairy cattle to test the effect of BDNF on milk fat yield. A highly significant effect (corrected p-value =3.362 x10-4 was identified for an SNP 168 kb up-stream of the BDNF transcription start. The association tests provided evidence for an additive allele effect of 5.13 kg of fat per lactation on the estimated breeding value for milk fat yield in bulls and 6.80 kg of fat of the own production performance in cows explaining 1.72% and 0.60% of the phenotypic variance in the analysed populations, respectively. The analyses of bulls and cows consistently showed three haplotype groups that differed significantly from each other, suggesting at least two different mutations in the BDNF-region affecting the milk fat yield. The fat yield increasing alleles also had low but significant positive effects on protein and total milk yield which suggests a general role of the BDNF-region in energy partitioning, rather than a specific regulation of fat synthesis. The results obtained in dairy cattle suggest similar effects of BDNF on milk composition in other species, including man.

  8. STR MARKERS. GENOTYPING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    I. O. Sirbu

    2001-01-01

    Full Text Available STR (short tandem repeats loci consist of short, repetitive sequence elements of 2-8 bp in length. These abundant repeats are well distributed throughout the human genome and are rich source of highly polymorphic markers. There are literally hundreds of STR systems which have been mapped throughout the human genome. Several dozen have been investigated for application to human identity testing. These STR loci are found on almost every chromosome in the genome. They may be amplified using a variety of PCR primers. Tetranucleotide repeats have been most popular among forensic scientists due to their fidelity in PCR amplification although some tri- and pentanucleotide repeats are also in use. In this paper we intend (far from being exhaustive to present a synthesis of the characteristics of these genetic markers and their applications in genotyping, giving as an example the use of the STRs in a paternity testing case.

  9. Brain-derived neurotrophic factor (BDNF as a potential mechanism of the effects of acute exercise on cognitive performance

    Directory of Open Access Journals (Sweden)

    Aaron T. Piepmeier

    2015-03-01

    Full Text Available The literature shows that improvements in cognitive performance may be observed following an acute bout of exercise. However, evidence in support of the biological mechanisms of this effect is still limited. Findings from both rodent and human studies suggest brain-derived neurotrophic factor (BDNF as a potential mechanism of the effect of acute exercise on memory. The molecular properties of BDNF allow this protein to be assessed in the periphery (pBDNF (i.e., blood serum, blood plasma, making measurements of acute exercise-induced changes in BDNF concentration relatively accessible. Studies exploring the acute exercise–pBDNF–cognitive performance relationship have had mixed findings, but this may be more reflective of methodological differences between studies than it is a statement about the role of BDNF. For example, significant associations have been observed between acute exercise-induced changes in pBDNF concentration and cognitive performance in studies assessing memory, and non-significant associations have been found in studies assessing non-memory cognitive domains. Three suggestions are made for future research aimed at understanding the role of BDNF as a biological mechanism of this relationship: 1 Assessments of cognitive performance may benefit from a focus on various types of memory (e.g., relational, spatial, long-term; 2 More fine-grained measurements of pBDNF will allow for the assessment of concentrations of specific isoforms of the BDNF protein (i.e., immature, mature; 3 Statistical techniques designed to test the mediating role of pBDNF in the acute exercise-cognitive performance relationship should be utilized in order to make causal inferences.

  10. Deltamethrin, a type II pyrethroid insecticide, has neurotrophic effects on neurons with continuous activation of the Bdnf promoter.

    Science.gov (United States)

    Ihara, Daisuke; Fukuchi, Mamoru; Honma, Daisuke; Takasaki, Ichiro; Ishikawa, Mitsuru; Tabuchi, Akiko; Tsuda, Masaaki

    2012-02-01

    Pyrethroids, widely used insecticides with low acute toxicity in mammals, affect sodium channels in neurons. In a primary culture of rat cortical neurons, deltamethrin (DM), a type II pyrethroid, markedly enhanced the expression of brain-derived neurotrophic factor (BDNF) exon IV-IX (Bdnf eIV-IX) mRNA. In this study, we found that DM has a neurotrophic effect on cultured neurons and investigated the mechanisms responsible for it. One μM DM increased cell survival, neurite complexity and length. Neurite complexity and length were reduced not only by a blockade of cellular excitation with GABA or Ca(2+) influx via L-type voltage-dependent calcium channels with nicardipine, but also by a blockade of TrkB, a specific receptor for BDNF, with TrkB/Fc. These data indicate DM has neurotrophic actions. DM-induced Bdnf eIV-IX mRNA expression through the calcineurin and ERK/MAPK pathways, the increase of which was reduced by GABA(A) receptor activation. Using a promoter assay, we found that Ca(2+)-responsive elements including a CRE are involved in the DM-induced activation of the Bdnf promoter IV (Bdnf-pIV). The intracellular concentration of Ca(2+) and activation of Bdnf-pIV remained elevated for, at least, 1 and 24 h, respectively. Moreover, GABA(A) receptor activation or a blockade of Ca(2+) influx even after starting the incubation with DM reduced the elevated activity of Bdnf-pIV. These data demonstrated that the prolonged activation of Bdnf-pIV occurred because of this continuous increase in the intracellular Ca(2+) concentration. Thus, DM has neurotrophic effects on neurons, likely due to prolonged activation of Bdnf promoter in neurons. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.

  11. Differential activation of dendritic cells by Mycobacterium tuberculosis Beijing genotype.

    Science.gov (United States)

    Reyes-Martínez, Juana Elizabeth; Nieto-Patlán, Erik; Nieto-Patlán, Alejandro; Gonzaga-Bernachi, Job; Santos-Mendoza, Teresa; Serafín-López, Jeanet; Chávez-Blanco, Alma; Sandoval-Montes, Claudia; Flores-Romo, Leopoldo; Estrada-Parra, Sergio; Estrada-García, Iris; Chacón-Salinas, Rommel

    2014-01-01

    Mycobacterium tuberculosis (Mtb) inhibits dendritric cells (DC) function in order to delay T cell response. Furthermore, there is increasing evidence that genetic diversity of Mtb strains can affect their interaction with the immune system. Beijing genotype has attracted attention because of its high prevalence and multi-drug resistance. Although it is known that this genotype is hypervirulent and differentially activates macrophages when compared to other genotypes, little is known about its interaction with DC. In order to address this issue, murine bone marrow derived DC (BMDC) were stimulated with soluble extracts (SE) from BCG, H37Rv, Canetti and Beijing genotypes. We observed that unlike other mycobacteria strains, SE-Beijing was unable to induce maturation of DC as assessed by cell surface MHC-II expression. DC stimulated with SE-Beijing failed to produce IL-12 and TNF-α, but did secrete IL-10. Interestingly, SE-Beijing induced CCR7 and PDL-1 on BMDC, but did not induce the expression of CD86. When BMDC stimulated with SE-Beijing were used to activate CD4+ cells they were unable to induce a Th1 response when compared with less virulent genotypes. These results indicate that Beijing is able to modulate DC activation and function, which may be related to the pathogenesis induced by this genotype.

  12. [Brain-derived neurotrophic factor gene (BDNF) polymorphism among Moscow citizens].

    Science.gov (United States)

    Kokaeva, Z G; Kochetkova, T O; Afonchikova, E V; Kondratyeva, N S; Klimov, E A

    2013-12-01

    Recent studies showed that brain-derived neurotrophic factor (BDNF) can participate in pathogenesis of various CNS disorders, being connected with proliferation, differentiation, and survival of neurons. In present study, analysis of occurrence rate was performed for three single nucleotide polymorphisms (SNPs) located in BDNF gene (rs6267 (A/G) allele A-0.265; rs2049046 (A/T) allele A-0.407; rs11030107 (A/G) allele A-0.872) in randomized selection of Moscow citizens. Linkage disequilibrium of rs6165 and rs2049046 loci was shown. Differences in allele frequencies in studied selection and populations of other re- gions were discovered.

  13. Striatal dopamine transporter binding correlates with serum BDNF levels in patients with striatal dopaminergic neurodegeneration

    DEFF Research Database (Denmark)

    Ziebell, Morten; Khalid, Usman; Klein, Anders B

    2012-01-01

    Compelling evidence has shown, that neurotrophins responsible for the regulation of neuronal growth, survival, and differentiation are involved in neurodegenerative diseases. Whereas lower serum levels of brain derived neurotrophic factor (BDNF) have been observed in patients with Parkinson......'s disease, no studies have directly related the degree of striatal neurodegeneration of dopaminergic neurons (DA) with serum BDNF levels. In this study we examined the relationship between striatal neurodegeneration as determined with (123)I-PE2I-single photon emission computer tomography (SPECT) and serum...

  14. The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition.

    Science.gov (United States)

    Wu, Aiguo; Ying, Zhe; Gomez-Pinilla, Fernando

    2004-04-01

    A diet high in saturated fat (HF) decreases levels of brain-derived neurotrophic factor (BDNF), to the extent that compromises neuroplasticity and cognitive function, and aggravates the outcome of brain insult. By using the antioxidant power of vitamin E, we performed studies to determine the role of oxidative stress as a mediator for the effects of BDNF on synaptic plasticity and cognition caused by consumption of the HF diet. Male adult rats were maintained on a HF diet for 2 months with or without 500 IU/kg of vitamin E. Supplementation of the HF diet with vitamin E dramatically reduced oxidative damage, normalized levels of BDNF, synapsin I and cyclic AMP-response element-binding protein (CREB), caused by the consumption of the HF diet. In addition, vitamin E supplementation preserved the process of activation of synapsin I and CREB, and reversed the HF-impaired cognitive function. It is known that BDNF facilitates the synapse by modulating synapsin I and CREB, which have been implicated in synaptic plasticity associated to learning and memory. These results show that oxidative stress can interact with the BDNF system to modulate synaptic plasticity and cognitive function. Therefore, studies appear to reveal a mechanism by which events classically related to the maintenance of energy balance of the cell, such as oxidative stress, can interact with molecular events that modulate neuronal and behavioural plasticity.

  15. Acute and chronic interference with BDNF/TrkB-signaling impair LTP selectively at mossy fiber synapses in the CA3 region of mouse hippocampus.

    Science.gov (United States)

    Schildt, Sandra; Endres, Thomas; Lessmann, Volkmar; Edelmann, Elke

    2013-08-01

    Brain-derived neurotrophic factor (BDNF) signaling via TrkB crucially regulates synaptic plasticity in the brain. Although BDNF is abundant at hippocampal mossy fiber (MF) synapses, which critically contribute to hippocampus dependent memory, its role in MF synaptic plasticity (long-term potentiation, LTP) remained largely unclear. Using field potential recordings in CA3 of adult heterozygous BDNF knockout (ko, BDNF+/-) mice we observed impaired (∼50%) NMDAR-independent MF-LTP. In contrast to MF synapses, LTP at neighboring associative/commissural (A/C) fiber synapses remained unaffected. To exclude that impaired MF-LTP in BDNF+/- mice was due to developmental changes in response to chronically reduced BDNF levels, and to prove the importance of acute availability of BDNF in MF-LTP, we also tested effects of acute interference with BDNF/TrkB signaling. Inhibition of TrkB tyrosine kinase signaling with k252a, or with the selective BDNF scavenger TrkB-Fc, both inhibited MF-LTP to the same extent as observed in BDNF+/- mice. Basal synaptic transmission, short-term plasticity, and synaptic fatigue during LTP induction were not significantly altered by treatment with k252a or TrkB-Fc, or by chronic BDNF reduction in BDNF+/- mice. Since the acute interference with BDNF-signaling did not completely block MF-LTP, our results provide evidence that an additional mechanism besides BDNF induced TrkB signaling contributes to this type of LTP. Our results prove for the first time a mechanistic action of acute BDNF/TrkB signaling in presynaptic expression of MF-LTP in adult hippocampus.

  16. BDNF in Lower Brain Parts Modifies Auditory Fiber Activity to Gain Fidelity but Increases the Risk for Generation of Central Noise After Injury.

    Science.gov (United States)

    Chumak, Tetyana; Rüttiger, Lukas; Lee, Sze Chim; Campanelli, Dario; Zuccotti, Annalisa; Singer, Wibke; Popelář, Jiří; Gutsche, Katja; Geisler, Hyun-Soon; Schraven, Sebastian Philipp; Jaumann, Mirko; Panford-Walsh, Rama; Hu, Jing; Schimmang, Thomas; Zimmermann, Ulrike; Syka, Josef; Knipper, Marlies

    2016-10-01

    For all sensory organs, the establishment of spatial and temporal cortical resolution is assumed to be initiated by the first sensory experience and a BDNF-dependent increase in intracortical inhibition. To address the potential of cortical BDNF for sound processing, we used mice with a conditional deletion of BDNF in which Cre expression was under the control of the Pax2 or TrkC promoter. BDNF deletion profiles between these mice differ in the organ of Corti (BDNF (Pax2) -KO) versus the auditory cortex and hippocampus (BDNF (TrkC) -KO). We demonstrate that BDNF (Pax2) -KO but not BDNF (TrkC) -KO mice exhibit reduced sound-evoked suprathreshold ABR waves at the level of the auditory nerve (wave I) and inferior colliculus (IC) (wave IV), indicating that BDNF in lower brain regions but not in the auditory cortex improves sound sensitivity during hearing onset. Extracellular recording of IC neurons of BDNF (Pax2) mutant mice revealed that the reduced sensitivity of auditory fibers in these mice went hand in hand with elevated thresholds, reduced dynamic range, prolonged latency, and increased inhibitory strength in IC neurons. Reduced parvalbumin-positive contacts were found in the ascending auditory circuit, including the auditory cortex and hippocampus of BDNF (Pax2) -KO, but not of BDNF (TrkC) -KO mice. Also, BDNF (Pax2) -WT but not BDNF (Pax2) -KO mice did lose basal inhibitory strength in IC neurons after acoustic trauma. These findings suggest that BDNF in the lower parts of the auditory system drives auditory fidelity along the entire ascending pathway up to the cortex by increasing inhibitory strength in behaviorally relevant frequency regions. Fidelity and inhibitory strength can be lost following auditory nerve injury leading to diminished sensory outcome and increased central noise.

  17. Opposing effects of APP/PS1 and TrkB.T1 genotypes on midbrain dopamine neurons and stimulated dopamine release in vivo.

    Science.gov (United States)

    Kärkkäinen, E; Yavich, L; Miettinen, P O; Tanila, H

    2015-10-01

    Brain derived neurotrophic factor (BDNF) signaling disturbances in Alzheimer׳s disease (AD) have been demonstrated. BDNF levels fall in AD, but the ratio between truncated and full-length BDNF receptors TrkB.T1 and TrkB.TK, respectively, increases in brains of AD patients and APPswe/PS1dE9 (APP/PS1) AD model mice. Dopaminergic (DAergic) system disturbances in AD and detrimental effects of BDNF signaling deficits on DAergic system functions have also been indicated. Against this, we investigated changes in nigrostriatal dopamine (DA) system in mice carrying APP/PS1 and/or TrkB.T1 transgenes, the latter line modeling the TrkB.T1/TK ratio change in AD. Employing in vivo voltammetry, we found normal short-term DA release in caudate-putamen of mice carrying APP/PS1 or TrkB.T1 transgenes but impaired capacity to recruit more DA upon prolonged stimulation. However, mice carrying both transgenes did not differ from wild-type controls. Immunohistochemistry revealed normal density of tyrosine hydroxylase positive axon terminals in caudate-putamen in all genotypes and intact presynaptic machinery for DA release and reuptake, as shown by unchanged levels of SNAP-25, α-synuclein and DA transporter. However, we observed increased DAergic neurons in substantia nigra of TrkB.T1 mice resulting in decreased tyrosine hydroxylase per neuron in TrkB.T1 mice. The finding of unchanged nigral DAergic neurons in APP/PS1 mice largely confirms earlier reports, but the unexpected increase in midbrain DA neurons in TrkB.T1 mice is a novel finding. We suggest that both APP/PS1 and TrkB.T1 genotypes disrupt DAergic signaling, but via separate mechanisms.

  18. HBV genotypic variability in Cuba.

    Science.gov (United States)

    Loureiro, Carmen L; Aguilar, Julio C; Aguiar, Jorge; Muzio, Verena; Pentón, Eduardo; Garcia, Daymir; Guillen, Gerardo; Pujol, Flor H

    2015-01-01

    The genetic diversity of HBV in human population is often a reflection of its genetic admixture. The aim of this study was to explore the genotypic diversity of HBV in Cuba. The S genomic region of Cuban HBV isolates was sequenced and for selected isolates the complete genome or precore-core sequence was analyzed. The most frequent genotype was A (167/250, 67%), mainly A2 (149, 60%) but also A1 and one A4. A total of 77 isolates were classified as genotype D (31%), with co-circulation of several subgenotypes (56 D4, 2 D1, 5 D2, 7 D3/6 and 7 D7). Three isolates belonged to genotype E, two to H and one to B3. Complete genome sequence analysis of selected isolates confirmed the phylogenetic analysis performed with the S region. Mutations or polymorphisms in precore region were more common among genotype D compared to genotype A isolates. The HBV genotypic distribution in this Caribbean island correlates with the Y lineage genetic background of the population, where a European and African origin prevails. HBV genotypes E, B3 and H isolates might represent more recent introductions.

  19. FTY720/Fingolimod Reduces Synucleinopathy and Improves Gut Motility in A53T Mice: CONTRIBUTIONS OF PRO-BRAIN-DERIVED NEUROTROPHIC FACTOR (PRO-BDNF) AND MATURE BDNF.

    Science.gov (United States)

    Vidal-Martínez, Guadalupe; Vargas-Medrano, Javier; Gil-Tommee, Carolina; Medina, David; Garza, Nathan T; Yang, Barbara; Segura-Ulate, Ismael; Dominguez, Samantha J; Perez, Ruth G

    2016-09-23

    Patients with Parkinson's disease (PD) often have aggregated α-synuclein (aSyn) in enteric nervous system (ENS) neurons, which may be associated with the development of constipation. This occurs well before the onset of classic PD motor symptoms. We previously found that aging A53T transgenic (Tg) mice closely model PD-like ENS aSyn pathology, making them appropriate for testing potential PD therapies. Here we show that Tg mice overexpressing mutant human aSyn develop ENS pathology by 4 months. We then evaluated the responses of Tg mice and their WT littermates to the Food and Drug Administration-approved drug FTY720 (fingolimod, Gilenya) or vehicle control solution from 5 months of age. Long term oral FTY720 in Tg mice reduced ENS aSyn aggregation and constipation, enhanced gut motility, and increased levels of brain-derived neurotrophic factor (BDNF) but produced no significant change in WT littermates. A role for BDNF was directly assessed in a cohort of young A53T mice given vehicle, FTY720, the Trk-B receptor inhibitor ANA-12, or FTY720 + ANA-12 from 1 to 4 months of age. ANA-12-treated Tg mice developed more gut aSyn aggregation as well as constipation, whereas FTY720-treated Tg mice had reduced aSyn aggregation and less constipation, occurring in part by increasing both pro-BDNF and mature BDNF levels. The data from young and old Tg mice revealed FTY720-associated neuroprotection and reduced aSyn pathology, suggesting that FTY720 may also benefit PD patients and others with synucleinopathy. Another finding was a loss of tyrosine hydroxylase immunoreactivity in gut neurons with aggregated aSyn, comparable with our prior findings in the CNS.

  20. Decreased expression of brain-derived neurotrophic factor in BDNF(+/-) mice is associated with enhanced recovery of motor performance and increased neuroblast number following experimental stroke.

    Science.gov (United States)

    Nygren, Josefine; Kokaia, Merab; Wieloch, Tadeusz

    2006-08-15

    Brain-derived neurotrophic factor (BDNF) is involved in brain plasticity and neuronal survival. Generally, BDNF enhances synaptic activity and neurite growth, although the effect of BDNF on neuronal survival and brain plasticity following injury is equivocal. Housing rats in an enriched environment after experimental stroke enhances recovery of sensory-motor function, which is associated with a decrease in the BDNF mRNA and protein levels. We used BDNF(+/-) mice and wild-type littermate mice to investigate whether the decrease in the brain levels of BDNF affected motor function or infarct volume following transient occlusion of the middle cerebral artery (tMCAO) for 40 min. We found that the BDNF(+/-) mice had a significantly improved motor function on the rotating pole test 2 weeks after tMCAO compared with wild-type mice. When intermittently exposed to an enriched environment following tMCAO, the wild-type mice improved motor function to the same degree as BDNF(+/-) mice. There was no effect of BDNF reduction on infarct volume. Neurogenesis is induced following experimental stroke, and in the striatum of BDNF(+/-) mice significantly increased numbers of neuroblasts compared with wild-type mice were seen, both in standard and in enriched conditions. We conclude that decreasing brain levels of BDNF enhances the recovery of function following experimental stroke.