WorldWideScience

Sample records for bd1 genome sequence

  1. The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity.

    Directory of Open Access Journals (Sweden)

    Marco Ventura

    2009-12-01

    Full Text Available Bifidobacteria, one of the relatively dominant components of the human intestinal microbiota, are considered one of the key groups of beneficial intestinal bacteria (probiotic bacteria. However, in addition to health-promoting taxa, the genus Bifidobacterium also includes Bifidobacterium dentium, an opportunistic cariogenic pathogen. The genetic basis for the ability of B. dentium to survive in the oral cavity and contribute to caries development is not understood. The genome of B. dentium Bd1, a strain isolated from dental caries, was sequenced to completion to uncover a single circular 2,636,368 base pair chromosome with 2,143 predicted open reading frames. Annotation of the genome sequence revealed multiple ways in which B. dentium has adapted to the oral environment through specialized nutrient acquisition, defences against antimicrobials, and gene products that increase fitness and competitiveness within the oral niche. B. dentium Bd1 was shown to metabolize a wide variety of carbohydrates, consistent with genome-based predictions, while colonization and persistence factors implicated in tissue adhesion, acid tolerance, and the metabolism of human saliva-derived compounds were also identified. Global transcriptome analysis demonstrated that many of the genes encoding these predicted traits are highly expressed under relevant physiological conditions. This is the first report to identify, through various genomic approaches, specific genetic adaptations of a Bifidobacterium taxon, Bifidobacterium dentium Bd1, to a lifestyle as a cariogenic microorganism in the oral cavity. In silico analysis and comparative genomic hybridization experiments clearly reveal a high level of genome conservation among various B. dentium strains. The data indicate that the genome of this opportunistic cariogen has evolved through a very limited number of horizontal gene acquisition events, highlighting the narrow boundaries that separate commensals from

  2. Genome Sequencing

    DEFF Research Database (Denmark)

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based on transcr......The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...

  3. Cloning and sequence analysis of Wadi sheep defensin sBD-1 gene and establishment and application of SYBR green Ⅰ real-time fluorescence quantitative PCR method%洼地绵羊防御素sBD-1基因克隆、序列分析及SYBR Green Ⅰ实时荧光定量检测方法的建立与应用

    Institute of Scientific and Technical Information of China (English)

    王金良; 郭显坡; 沈志强; 李敏; 任艳玲

    2011-01-01

    根据GenBank上登录的绵羊防御素基因序列,经多重比较后,设计1对引物,从洼地绵羊舌上皮组织中扩增到防御素sBD-1基因,克隆到pMD18-T载体中进行测序.结果表明,扩增基因全长215 bp,编码64个氨基酸.基因进化树分析表明,与蒙古绵羊sBD-1基因有较近的亲缘关系,核苷酸同源性为98.5%;而与黄牛的亲缘关系最远,核苷酸同源性84.6%.氨基酸序列分析表明,序列内无信号肽区域,具有3个潜在的抗原表位.以pMD18-T/sBD-1质粒为模板建立了sBD-1基因SYBR Green Ⅰ荧光定量PCR检测方法,核酸电泳、扩增动力学曲线、溶解曲线及重复性试验表明,检测方法具有良好的稳定性和特异性,得到的回归方程(R2=0.998)表明PCR产物量的对数值与起始模板量之间存在良好的线性关系,从舌、盲肠及输卵管等组织中可以进行有效的检测,检测灵敏度为83.9 copies/μL.该方法为进一步研究防御素sBD-1基因在洼地绵羊抗逆性过程中的作用奠定了基础.%According to the published gene sequences of defensin gene of sheep on GenBank,one pair of primers were designed and defensin Sbd-1 gene was amplified by RT-PCR from tongue epithelial tissue of Wadi sheep. PCR product was cloned into the Pmd18-T vector and sequenced. The results showed that gene amplication of full-length was 215 bp, encoding 64 amino acids. Phylogenetic tree analysis showed that Wadi sheep and Menggu sheep had close phylogenetic relationship,nucleotide homology was 98. 5%;kinship with the Bos taurus as far as the nucleotide ho-mology of 84. 6%. Amino acid sequence analysis showed no signal peptide amino acid sequence in the region, with three potential antigenic epitopes. Sbd-1 gene SYBR Green I fluorescence quantitative PCR method was set up u-sing Pmd18-T/Sbd-l plasmid as a template. Nucleic acid electrophoresis,amplification kinetics,dissolution curve and repeatability tests showed that the methods had good stability and

  4. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  5. Sequencing the maize genome.

    Science.gov (United States)

    Martienssen, Robert A; Rabinowicz, Pablo D; O'Shaughnessy, Andrew; McCombie, W Richard

    2004-04-01

    Sequencing of complex genomes can be accomplished by enriching shotgun libraries for genes. In maize, gene-enrichment by copy-number normalization (high C(0)t) and methylation filtration (MF) have been used to generate up to two-fold coverage of the gene-space with less than 1 million sequencing reads. Simulations using sequenced bacterial artificial chromosome (BAC) clones predict that 5x coverage of gene-rich regions, accompanied by less than 1x coverage of subclones from BAC contigs, will generate high-quality mapped sequence that meets the needs of geneticists while accommodating unusually high levels of structural polymorphism. By sequencing several inbred strains, we propose a strategy for capturing this polymorphism to investigate hybrid vigor or heterosis.

  6. Classifying Genomic Sequences by Sequence Feature Analysis

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hua Liu; Dian Jiao; Xiao Sun

    2005-01-01

    Traditional sequence analysis depends on sequence alignment. In this study, we analyzed various functional regions of the human genome based on sequence features, including word frequency, dinucleotide relative abundance, and base-base correlation. We analyzed the human chromosome 22 and classified the upstream,exon, intron, downstream, and intergenic regions by principal component analysis and discriminant analysis of these features. The results show that we could classify the functional regions of genome based on sequence feature and discriminant analysis.

  7. Genome Sequence Databases (Overview): Sequencing and Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla L.

    2009-01-01

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

  8. Malaria Genome Sequencing Project

    Science.gov (United States)

    2004-01-01

    facts have stimulated efforts to develop an international, coordinated strategy for malaria research and control . Development of new drugs and...Interpolated Markov models for facilitate the development of new drugs and vaccines, the genome eukaryotic gene finding. Genomics 59, 24-31 (1999). of...Gardner, M. I. & Tettelin, H. Interpolated Markov models for facilitate the development of new drugs and vaccines, the genome eukaryotic gene finding

  9. Whole-exome/genome sequencing and genomics.

    Science.gov (United States)

    Grody, Wayne W; Thompson, Barry H; Hudgins, Louanne

    2013-12-01

    As medical genetics has progressed from a descriptive entity to one focused on the functional relationship between genes and clinical disorders, emphasis has been placed on genomics. Genomics, a subelement of genetics, is the study of the genome, the sum total of all the genes of an organism. The human genome, which is contained in the 23 pairs of nuclear chromosomes and in the mitochondrial DNA of each cell, comprises >6 billion nucleotides of genetic code. There are some 23,000 protein-coding genes, a surprisingly small fraction of the total genetic material, with the remainder composed of noncoding DNA, regulatory sequences, and introns. The Human Genome Project, launched in 1990, produced a draft of the genome in 2001 and then a finished sequence in 2003, on the 50th anniversary of the initial publication of Watson and Crick's paper on the double-helical structure of DNA. Since then, this mass of genetic information has been translated at an ever-increasing pace into useable knowledge applicable to clinical medicine. The recent advent of massively parallel DNA sequencing (also known as shotgun, high-throughput, and next-generation sequencing) has brought whole-genome analysis into the clinic for the first time, and most of the current applications are directed at children with congenital conditions that are undiagnosable by using standard genetic tests for single-gene disorders. Thus, pediatricians must become familiar with this technology, what it can and cannot offer, and its technical and ethical challenges. Here, we address the concepts of human genomic analysis and its clinical applicability for primary care providers.

  10. Pig genome sequence - analysis and publication strategy

    NARCIS (Netherlands)

    Archibald, A.L.; Bolund, L.; Churcher, C.; Fredholm, M.; Groenen, M.A.M.; Harlizius, B.

    2010-01-01

    Background - The pig genome is being sequenced and characterised under the auspices of the Swine Genome Sequencing Consortium. The sequencing strategy followed a hybrid approach combining hierarchical shotgun sequencing of BAC clones and whole genome shotgun sequencing. Results - Assemblies of the B

  11. Genome Sequence of Canine Herpesvirus.

    Directory of Open Access Journals (Sweden)

    Konstantinos V Papageorgiou

    Full Text Available Canine herpesvirus is a widespread alphaherpesvirus that causes a fatal haemorrhagic disease of neonatal puppies. We have used high-throughput methods to determine the genome sequences of three viral strains (0194, V777 and V1154 isolated in the United Kingdom between 1985 and 2000. The sequences are very closely related to each other. The canine herpesvirus genome is estimated to be 125 kbp in size and consists of a unique long sequence (97.5 kbp and a unique short sequence (7.7 kbp that are each flanked by terminal and internal inverted repeats (38 bp and 10.0 kbp, respectively. The overall nucleotide composition is 31.6% G+C, which is the lowest among the completely sequenced alphaherpesviruses. The genome contains 76 open reading frames predicted to encode functional proteins, all of which have counterparts in other alphaherpesviruses. The availability of the sequences will facilitate future research on the diagnosis and treatment of canine herpesvirus-associated disease.

  12. Value of a newly sequenced bacterial genome

    DEFF Research Database (Denmark)

    Barbosa, Eudes; Aburjaile, Flavia F; Ramos, Rommel Tj;

    2014-01-01

    Next-generation sequencing (NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also...... in an exponential increase in draft (partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome...

  13. Pig genome sequence - analysis and publication strategy

    DEFF Research Database (Denmark)

    Archibald, Alan L.; Bolund, Lars; Churcher, Carol;

    2010-01-01

    BACKGROUND: The pig genome is being sequenced and characterised under the auspices of the Swine Genome Sequencing Consortium. The sequencing strategy followed a hybrid approach combining hierarchical shotgun sequencing of BAC clones and whole genome shotgun sequencing. RESULTS: Assemblies......) is under construction and will incorporate whole genome shotgun sequence (WGS) data providing > 30x genome coverage. The WGS sequence, most of which comprise short Illumina/Solexa reads, were generated from DNA from the same single Duroc sow as the source of the BAC library from which clones were...

  14. Genome Sequences of Eight Morphologically Diverse Alphaproteobacteria▿

    OpenAIRE

    Brown, Pamela J.B.; Kysela, David T.; Buechlein, Aaron; Hemmerich, Chris; Brun, Yves V

    2011-01-01

    The Alphaproteobacteriacomprise morphologically diverse bacteria, including many species of stalked bacteria. Here we announce the genome sequences of eight alphaproteobacteria, including the first genome sequences of species belonging to the genera Asticcacaulis, Hirschia, Hyphomicrobium, and Rhodomicrobium.

  15. Genome sequences of eight morphologically diverse Alphaproteobacteria.

    Science.gov (United States)

    Brown, Pamela J B; Kysela, David T; Buechlein, Aaron; Hemmerich, Chris; Brun, Yves V

    2011-09-01

    The Alphaproteobacteria comprise morphologically diverse bacteria, including many species of stalked bacteria. Here we announce the genome sequences of eight alphaproteobacteria, including the first genome sequences of species belonging to the genera Asticcacaulis, Hirschia, Hyphomicrobium, and Rhodomicrobium.

  16. Genome Sequences of Eight Morphologically Diverse Alphaproteobacteria▿

    Science.gov (United States)

    Brown, Pamela J. B.; Kysela, David T.; Buechlein, Aaron; Hemmerich, Chris; Brun, Yves V.

    2011-01-01

    The Alphaproteobacteriacomprise morphologically diverse bacteria, including many species of stalked bacteria. Here we announce the genome sequences of eight alphaproteobacteria, including the first genome sequences of species belonging to the genera Asticcacaulis, Hirschia, Hyphomicrobium, and Rhodomicrobium. PMID:21705585

  17. Genome Sequence of Mycobacteriophage Momo.

    Science.gov (United States)

    Pope, Welkin H; Bina, Elizabeth A; Brahme, Indraneel S; Hill, Amy B; Himmelstein, Philip H; Hunsicker, Sara M; Ish, Amanda R; Le, Tinh S; Martin, Mary M; Moscinski, Catherine N; Shetty, Sameer A; Swierzewski, Tomasz; Iyengar, Varun B; Kim, Hannah; Schafer, Claire E; Grubb, Sarah R; Warner, Marcie H; Bowman, Charles A; Russell, Daniel A; Hatfull, Graham F

    2015-06-18

    Momo is a newly discovered phage of Mycobacterium smegmatis mc(2)155. Momo has a double-stranded DNA genome 154,553 bp in length, with 233 predicted protein-encoding genes, 34 tRNA genes, and one transfer-messenger RNA (tmRNA) gene. Momo has a myoviral morphology and shares extensive nucleotide sequence similarity with subcluster C1 mycobacteriophages.

  18. Translational genomics for plant breeding with the genome sequence explosion.

    Science.gov (United States)

    Kang, Yang Jae; Lee, Taeyoung; Lee, Jayern; Shim, Sangrea; Jeong, Haneul; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2016-04-01

    The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies.

  19. Sequencing intractable DNA to close microbial genomes.

    Directory of Open Access Journals (Sweden)

    Richard A Hurt

    Full Text Available Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps and the Desulfovibrio africanus genome (1 intractable gap. The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  20. Sequencing intractable DNA to close microbial genomes.

    Science.gov (United States)

    Hurt, Richard A; Brown, Steven D; Podar, Mircea; Palumbo, Anthony V; Elias, Dwayne A

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  1. Fungal genome sequencing: basic biology to biotechnology.

    Science.gov (United States)

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  2. Draft Genome Sequence of Lactobacillus rhamnosus 2166.

    OpenAIRE

    Karlyshev, Andrey V.; Melnikov, Vyacheslav G.; Kosarev, Igor V.; Abramov, Vyacheslav M.

    2014-01-01

    In this report, we present a draft sequence of the genome of Lactobacillus rhamnosus strain 2166, a potential novel probiotic. Genome annotation and read mapping onto a reference genome of L. rhamnosus strain GG allowed for the identification of the differences and similarities in the genomic contents and gene arrangements of these strains.

  3. Value of a newly sequenced bacterial genome

    Institute of Scientific and Technical Information of China (English)

    Eudes; GV; Barbosa; Flavia; F; Aburjaile; Rommel; TJ; Ramos; Adriana; R; Carneiro; Yves; Le; Loir; Jan; Baumbach; Anderson; Miyoshi; Artur; Silva; Vasco; Azevedo

    2014-01-01

    Next-generation sequencing(NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft(partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information.

  4. Microbial genomics: from sequence to function.

    OpenAIRE

    Schwartz, I

    2000-01-01

    The era of genomics (the study of genes and their function) began a scant dozen years ago with a suggestion by James Watson that the complete DNA sequence of the human genome be determined. Since that time, the human genome project has attracted a great deal of attention in the scientific world and the general media; the scope of the sequencing effort, and the extraordinary value that it will provide, has served to mask the enormous progress in sequencing other genomes. Microbial genome seque...

  5. Maize genome sequencing by methylation filtration.

    Science.gov (United States)

    Palmer, Lance E; Rabinowicz, Pablo D; O'Shaughnessy, Andrew L; Balija, Vivekanand S; Nascimento, Lidia U; Dike, Sujit; de la Bastide, Melissa; Martienssen, Robert A; McCombie, W Richard

    2003-12-19

    Gene enrichment strategies offer an alternative to sequencing large and repetitive genomes such as that of maize. We report the generation and analysis of nearly 100,000 undermethylated (or methylation filtration) maize sequences. Comparison with the rice genome reveals that methylation filtration results in a more comprehensive representation of maize genes than those that result from expressed sequence tags or transposon insertion sites sequences. About 7% of the repetitive DNA is unmethylated and thus selected in our libraries, but potentially active transposons and unmethylated organelle genomes can be identified. Reverse transcription polymerase chain reaction can be used to finish the maize transcriptome.

  6. Genomic sequencing of Pleistocene cave bears

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, James P.; Hofreiter, Michael; Smith, Doug; Priest, JamesR.; Rohland, Nadin; Rabeder, Gernot; Krause, Johannes; Detter, J. Chris; Paabo, Svante; Rubin, Edward M.

    2005-04-01

    Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome, the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.

  7. Strategies for complete plastid genome sequencing.

    Science.gov (United States)

    Twyford, Alex D; Ness, Rob W

    2016-10-28

    Plastid sequencing is an essential tool in the study of plant evolution. This high-copy organelle is one of the most technically accessible regions of the genome, and its sequence conservation makes it a valuable region for comparative genome evolution, phylogenetic analysis and population studies. Here, we discuss recent innovations and approaches for de novo plastid assembly that harness genomic tools. We focus on technical developments including low-cost sequence library preparation approaches for genome skimming, enrichment via hybrid baits and methylation-sensitive capture, sequence platforms with higher read outputs and longer read lengths, and automated tools for assembly. These developments allow for a much more streamlined assembly than via conventional short-range PCR. Although newer methods make complete plastid sequencing possible for any land plant or green alga, there are still challenges for producing finished plastomes particularly from herbarium material or from structurally divergent plastids such as those of parasitic plants.

  8. Plantagora: modeling whole genome sequencing and assembly of plant genomes.

    Directory of Open Access Journals (Sweden)

    Roger Barthelson

    Full Text Available BACKGROUND: Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. METHODOLOGY/PRINCIPAL FINDINGS: For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. CONCLUSIONS/SIGNIFICANCE: Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly

  9. Microbial species delineation using whole genome sequences

    Energy Technology Data Exchange (ETDEWEB)

    Kyrpides, Nikos; Mukherjee, Supratim; Ivanova, Natalia; Mavrommatics, Kostas; Pati, Amrita; Konstantinidis, Konstantinos

    2014-10-20

    Species assignments in prokaryotes use a manual, poly-phasic approach utilizing both phenotypic traits and sequence information of phylogenetic marker genes. With thousands of genomes being sequenced every year, an automated, uniform and scalable approach exploiting the rich genomic information in whole genome sequences is desired, at least for the initial assignment of species to an organism. We have evaluated pairwise genome-wide Average Nucleotide Identity (gANI) values and alignment fractions (AFs) for nearly 13,000 genomes using our fast implementation of the computation, identifying robust and widely applicable hard cut-offs for species assignments based on AF and gANI. Using these cutoffs, we generated stable species-level clusters of organisms, which enabled the identification of several species mis-assignments and facilitated the assignment of species for organisms without species definitions.

  10. Genomic prediction using QTL derived from whole genome sequence data

    DEFF Research Database (Denmark)

    Brøndum, Rasmus Froberg; Su, Guosheng; Janss, Luc

    This study investigated the gain in accuracy of genomic prediction when a small number of significant variants from single marker analysis based on whole genome sequence data were added to the regular 54k SNP data. Analyses were performed for Nordic Holstein and Danish Jersey animals, using eithe...

  11. The characterization of twenty sequenced human genomes.

    Directory of Open Access Journals (Sweden)

    Kimberly Pelak

    2010-09-01

    Full Text Available We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten "case" genomes from individuals with severe hemophilia A and ten "control" genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways.

  12. Fathead minnow genome sequencing and assembly

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset provides the URLs for accessing the genome sequence data and two draft assemblies as well as fathead minnow genotyping data associated with estimating...

  13. Genome sequence and analysis of Lactobacillus helveticus

    Directory of Open Access Journals (Sweden)

    Paola eCremonesi

    2013-01-01

    Full Text Available The microbiological characterization of lactobacilli is historically well developed, but the genomic analysis is recent. Because of the widespread use of L. helveticus in cheese technology, information concerning the heterogeneity in this species is accumulating rapidly. Recently, the genome of five L. helveticus strains was sequenced to completion and compared with other genomically characterized lactobacilli. The genomic analysis of the first sequenced strain, L. helveticus DPC 4571, isolated from cheese and selected for its characteristics of rapid lysis and high proteolytic activity, has revealed a plethora of genes with industrial potential including those responsible for key metabolic functions such as proteolysis, lipolysis, and cell lysis. These genes and their derived enzymes can facilitate the production of cheese and cheese derivatives with potential for use as ingredients in consumer foods. In addition, L. helveticus has the potential to produce peptides with a biological function, such as angiotensin converting enzyme (ACE inhibitory activity, in fermented dairy products, demonstrating the therapeutic value of this species. A most intriguing feature of the genome of L. helveticus is the remarkable similarity in gene content with many intestinal lactobacilli. Comparative genomics has allowed the identification of key gene sets that facilitate a variety of lifestyles including adaptation to food matrices or the gastrointestinal tract.As genome sequence and functional genomic information continues to explode, key features of the genomes of L. helveticus strains continue to be discovered, answering many questions but also raising many new ones.

  14. Sequencing and comparing whole mitochondrial genomes ofanimals

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica

    2005-04-22

    Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based on our experiences to date with determining and comparing complete mtDNA sequences.

  15. Complete genome sequence of arracacha mottle virus.

    Science.gov (United States)

    Orílio, Anelise F; Lucinda, Natalia; Dusi, André N; Nagata, Tatsuya; Inoue-Nagata, Alice K

    2013-01-01

    Arracacha mottle virus (AMoV) is the only potyvirus reported to infect arracacha (Arracacia xanthorrhiza) in Brazil. Here, the complete genome sequence of an isolate of AMoV was determined to be 9,630 nucleotides in length, excluding the 3' poly-A tail, and encoding a polyprotein of 3,135 amino acids and a putative P3N-PIPO protein. Its genomic organization is typical of a member of the genus Potyvirus, containing all conserved motifs. Its full genome sequence shared 56.2 % nucleotide identity with sunflower chlorotic mottle virus and verbena virus Y, the most closely related viruses.

  16. Simple sequence repeats in mycobacterial genomes

    Indian Academy of Sciences (India)

    Vattipally B Sreenu; Pankaj Kumar; Javaregowda Nagaraju; Hampapathalu A Nagarajaram

    2007-01-01

    Simple sequence repeats (SSRs) or microsatellites are the repetitive nucleotide sequences of motifs of length 1–6 bp. They are scattered throughout the genomes of all the known organisms ranging from viruses to eukaryotes. Microsatellites undergo mutations in the form of insertions and deletions (INDELS) of their repeat units with some bias towards insertions that lead to microsatellite tract expansion. Although prokaryotic genomes derive some plasticity due to microsatellite mutations they have in-built mechanisms to arrest undue expansions of microsatellites and one such mechanism is constituted by post-replicative DNA repair enzymes MutL, MutH and MutS. The mycobacterial genomes lack these enzymes and as a null hypothesis one could expect these genomes to harbour many long tracts. It is therefore interesting to analyse the mycobacterial genomes for distribution and abundance of microsatellites tracts and to look for potentially polymorphic microsatellites. Available mycobacterial genomes, Mycobacterium avium, M. leprae, M. bovis and the two strains of M. tuberculosis (CDC1551 and H37Rv) were analysed for frequencies and abundance of SSRs. Our analysis revealed that the SSRs are distributed throughout the mycobacterial genomes at an average of 220–230 SSR tracts per kb. All the mycobacterial genomes contain few regions that are conspicuously denser or poorer in microsatellites compared to their expected genome averages. The genomes distinctly show scarcity of long microsatellites despite the absence of a post-replicative DNA repair system. Such severe scarcity of long microsatellites could arise as a result of strong selection pressures operating against long and unstable sequences although influence of GC-content and role of point mutations in arresting microsatellite expansions can not be ruled out. Nonetheless, the long tracts occasionally found in coding as well as non-coding regions may account for limited genome plasticity in these genomes.

  17. Sequencing the Cotton Genomes-Gossypium spp.

    Institute of Scientific and Technical Information of China (English)

    PATERSON Andrew H

    2008-01-01

    @@ The genomes of most major crops,including cotton,will be fully sequenced in the next fewyears.Cotton is unusual,although not unique,in that we will need to sequence not only cultivated(tetraploid) genotypes but their diploid progenitors,to understand how elite cottons have surpassedthe productivity and quality of their progenitors.

  18. Whole-genome sequencing for comparative genomics and de novo genome assembly.

    Science.gov (United States)

    Benjak, Andrej; Sala, Claudia; Hartkoorn, Ruben C

    2015-01-01

    Next-generation sequencing technologies for whole-genome sequencing of mycobacteria are rapidly becoming an attractive alternative to more traditional sequencing methods. In particular this technology is proving useful for genome-wide identification of mutations in mycobacteria (comparative genomics) as well as for de novo assembly of whole genomes. Next-generation sequencing however generates a vast quantity of data that can only be transformed into a usable and comprehensible form using bioinformatics. Here we describe the methodology one would use to prepare libraries for whole-genome sequencing, and the basic bioinformatics to identify mutations in a genome following Illumina HiSeq or MiSeq sequencing, as well as de novo genome assembly following sequencing using Pacific Biosciences (PacBio).

  19. Genome Sequence of the Palaeopolyploid soybean

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Cannon, Steven B.; Schlueter, Jessica; Ma, Jianxin; Mitros, Therese; Nelson, William; Hyten, David L.; Song, Qijian; Thelen, Jay J.; Cheng, Jianlin; Xu, Dong; Hellsten, Uffe; May, Gregory D.; Yu, Yeisoo; Sakura, Tetsuya; Umezawa, Taishi; Bhattacharyya, Madan K.; Sandhu, Devinder; Valliyodan, Babu; Lindquist, Erika; Peto, Myron; Grant, David; Shu, Shengqiang; Goodstein, David; Barry, Kerrie; Futrell-Griggs, Montona; Abernathy, Brian; Du, Jianchang; Tian, Zhixi; Zhu, Liucun; Gill, Navdeep; Joshi, Trupti; Libault, Marc; Sethuraman, Anand; Zhang, Xue-Cheng; Shinozaki, Kazuo; Nguyen, Henry T.; Wing, Rod A.; Cregan, Perry; Specht, James; Grimwood, Jane; Rokhsar, Dan; Stacey, Gary; Shoemaker, Randy C.; Jackson, Scott A.

    2009-08-03

    Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70percent more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78percent of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75percent of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.

  20. Rhipicephalus (Boophilus) microplus strain Deutsch, whole genome shotgun sequencing project first submission of genome sequence

    Science.gov (United States)

    The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence difficult. Cot filtration/selection techniques were used to reduce the repetitive fraction of the tick genome and enrich for the fraction of DNA with gene-containing regions. The Cot-selected ...

  1. Viral genome sequencing by random priming methods

    Directory of Open Access Journals (Sweden)

    Zhang Xinsheng

    2008-01-01

    Full Text Available Abstract Background Most emerging health threats are of zoonotic origin. For the overwhelming majority, their causative agents are RNA viruses which include but are not limited to HIV, Influenza, SARS, Ebola, Dengue, and Hantavirus. Of increasing importance therefore is a better understanding of global viral diversity to enable better surveillance and prediction of pandemic threats; this will require rapid and flexible methods for complete viral genome sequencing. Results We have adapted the SISPA methodology 123 to genome sequencing of RNA and DNA viruses. We have demonstrated the utility of the method on various types and sources of viruses, obtaining near complete genome sequence of viruses ranging in size from 3,000–15,000 kb with a median depth of coverage of 14.33. We used this technique to generate full viral genome sequence in the presence of host contaminants, using viral preparations from cell culture supernatant, allantoic fluid and fecal matter. Conclusion The method described is of great utility in generating whole genome assemblies for viruses with little or no available sequence information, viruses from greatly divergent families, previously uncharacterized viruses, or to more fully describe mixed viral infections.

  2. Sequencing and comparative analysis of the gorilla MHC genomic sequence.

    Science.gov (United States)

    Wilming, Laurens G; Hart, Elizabeth A; Coggill, Penny C; Horton, Roger; Gilbert, James G R; Clee, Chris; Jones, Matt; Lloyd, Christine; Palmer, Sophie; Sims, Sarah; Whitehead, Siobhan; Wiley, David; Beck, Stephan; Harrow, Jennifer L

    2013-01-01

    Major histocompatibility complex (MHC) genes play a critical role in vertebrate immune response and because the MHC is linked to a significant number of auto-immune and other diseases it is of great medical interest. Here we describe the clone-based sequencing and subsequent annotation of the MHC region of the gorilla genome. Because the MHC is subject to extensive variation, both structural and sequence-wise, it is not readily amenable to study in whole genome shotgun sequence such as the recently published gorilla genome. The variation of the MHC also makes it of evolutionary interest and therefore we analyse the sequence in the context of human and chimpanzee. In our comparisons with human and re-annotated chimpanzee MHC sequence we find that gorilla has a trimodular RCCX cluster, versus the reference human bimodular cluster, and additional copies of Class I (pseudo)genes between Gogo-K and Gogo-A (the orthologues of HLA-K and -A). We also find that Gogo-H (and Patr-H) is coding versus the HLA-H pseudogene and, conversely, there is a Gogo-DQB2 pseudogene versus the HLA-DQB2 coding gene. Our analysis, which is freely available through the VEGA genome browser, provides the research community with a comprehensive dataset for comparative and evolutionary research of the MHC.

  3. Sequencing and Analysis of a Genomic Fragment Provide an Insight into the Dunaliella viridis Genomic Sequence

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ming SUN; Yuan-Ping TANG; Xiang-Zong MENG; Wen-Wen ZHANG; Shan LI; Zhi-Rui DENG; Zheng-Kai XU; Ren-Tao SONG

    2006-01-01

    Dunaliella is a genus of wall-less unicellular eukaryotic green alga. Its exceptional resistances to salt and various other stresses have made it an ideal model for stress tolerance study. However, very little is known about its genome and genomic sequences. In this study, we sequenced and analyzed a 29,268 bp genomic fragment from Dunaliella viridis. The fragment showed low sequence homology to the GenBank database. At the nucleotide level, only a segment with significant sequence homology to 18S rRNA was found. The fragment contained six putative genes, but only one gene showed significant homology at the protein level to GenBank database. The average GC content of this sequence was 51.1%, which was much lower than that of close related green algae Chlamydomonas (65.7%). Significant segmental duplications were found within this fragment. The duplicated sequences accounted for about 35.7% of the entire region. Large amounts of simple sequence repeats (microsatellites) were found, with strong bias towards (AC)n type (76%). Analysis of other Dunaliella genomic sequences in the GenBank database (total 25,749 bp) was in agreement with these findings. These sequence features made it difficult to sequence Dunaliella genomic sequences. Further investigation should be made to reveal the biological significance of these unique sequence features.

  4. Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria

    DEFF Research Database (Denmark)

    Larsen, Mette Voldby; Cosentino, Salvatore; Rasmussen, Simon

    2012-01-01

    Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the "gold standard" of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS......) continue to decline, it becomes increasingly available to scientists and routine diagnostic laboratories. Currently, the cost is below that of traditional MLST. The new challenges will be how to extract the relevant information from the large amount of data so as to allow for comparison over time...... and between laboratories. Ideally, this information should also allow for comparison to historical data. We developed a Web-based method for MLST of 66 bacterial species based on WGS data. As input, the method uses short sequence reads from four sequencing platforms or preassembled genomes. Updates from...

  5. Sorghum genome sequencing by methylation filtration.

    Directory of Open Access Journals (Sweden)

    Joseph A Bedell

    2005-01-01

    Full Text Available Sorghum bicolor is a close relative of maize and is a staple crop in Africa and much of the developing world because of its superior tolerance of arid growth conditions. We have generated sequence from the hypomethylated portion of the sorghum genome by applying methylation filtration (MF technology. The evidence suggests that 96% of the genes have been sequence tagged, with an average coverage of 65% across their length. Remarkably, this level of gene discovery was accomplished after generating a raw coverage of less than 300 megabases of the 735-megabase genome. MF preferentially captures exons and introns, promoters, microRNAs, and simple sequence repeats, and minimizes interspersed repeats, thus providing a robust view of the functional parts of the genome. The sorghum MF sequence set is beneficial to research on sorghum and is also a powerful resource for comparative genomics among the grasses and across the entire plant kingdom. Thousands of hypothetical gene predictions in rice and Arabidopsis are supported by the sorghum dataset, and genomic similarities highlight evolutionarily conserved regions that will lead to a better understanding of rice and Arabidopsis.

  6. Sorghum genome sequencing by methylation filtration.

    Science.gov (United States)

    Bedell, Joseph A; Budiman, Muhammad A; Nunberg, Andrew; Citek, Robert W; Robbins, Dan; Jones, Joshua; Flick, Elizabeth; Rholfing, Theresa; Fries, Jason; Bradford, Kourtney; McMenamy, Jennifer; Smith, Michael; Holeman, Heather; Roe, Bruce A; Wiley, Graham; Korf, Ian F; Rabinowicz, Pablo D; Lakey, Nathan; McCombie, W Richard; Jeddeloh, Jeffrey A; Martienssen, Robert A

    2005-01-01

    Sorghum bicolor is a close relative of maize and is a staple crop in Africa and much of the developing world because of its superior tolerance of arid growth conditions. We have generated sequence from the hypomethylated portion of the sorghum genome by applying methylation filtration (MF) technology. The evidence suggests that 96% of the genes have been sequence tagged, with an average coverage of 65% across their length. Remarkably, this level of gene discovery was accomplished after generating a raw coverage of less than 300 megabases of the 735-megabase genome. MF preferentially captures exons and introns, promoters, microRNAs, and simple sequence repeats, and minimizes interspersed repeats, thus providing a robust view of the functional parts of the genome. The sorghum MF sequence set is beneficial to research on sorghum and is also a powerful resource for comparative genomics among the grasses and across the entire plant kingdom. Thousands of hypothetical gene predictions in rice and Arabidopsis are supported by the sorghum dataset, and genomic similarities highlight evolutionarily conserved regions that will lead to a better understanding of rice and Arabidopsis.

  7. Cactus: Algorithms for genome multiple sequence alignment

    OpenAIRE

    Paten, Benedict; Earl, Dent; Nguyen, Ngan; Diekhans, Mark; Zerbino, Daniel; Haussler, David

    2011-01-01

    Much attention has been given to the problem of creating reliable multiple sequence alignments in a model incorporating substitutions, insertions, and deletions. Far less attention has been paid to the problem of optimizing alignments in the presence of more general rearrangement and copy number variation. Using Cactus graphs, recently introduced for representing sequence alignments, we describe two complementary algorithms for creating genomic alignments. We have implemented these algorithms...

  8. Mapping and Sequencing the Human Genome

    Science.gov (United States)

    1988-01-01

    Numerous meetings have been held and a debate has developed in the biological community over the merits of mapping and sequencing the human genome. In response a committee to examine the desirability and feasibility of mapping and sequencing the human genome was formed to suggest options for implementing the project. The committee asked many questions. Should the analysis of the human genome be left entirely to the traditionally uncoordinated, but highly successful, support systems that fund the vast majority of biomedical research. Or should a more focused and coordinated additional support system be developed that is limited to encouraging and facilitating the mapping and eventual sequencing of the human genome. If so, how can this be done without distorting the broader goals of biological research that are crucial for any understanding of the data generated in such a human genome project. As the committee became better informed on the many relevant issues, the opinions of its members coalesced, producing a shared consensus of what should be done. This report reflects that consensus.

  9. The diploid genome sequence of an Asian individual

    DEFF Research Database (Denmark)

    Wang, Jun; Wang, Wei; Li, Ruiqiang

    2008-01-01

    Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we...

  10. Genome sequence of Lactobacillus farciminis KCTC 3681.

    Science.gov (United States)

    Nam, Seong-Hyeuk; Choi, Sang-Haeng; Kang, Aram; Kim, Dong-Wook; Kim, Ryong Nam; Kim, Aeri; Kim, Dae-Soo; Park, Hong-Seog

    2011-04-01

    Lactobacillus farciminis is one of the most prevalent lactic acid bacterial species present during the manufacturing process of kimchi, the best-known traditional Korean dish. Here, we present the draft genome sequence of the type strain Lactobacillus farciminis KCTC 3681 (2,498,309 bp, with a G+C content of 36.4%), which consists of 5 scaffolds.

  11. A Draft Sequence of the Neandertal Genome

    Science.gov (United States)

    Green, Richard E.; Li, Heng; Zhai, Weiwei; Fritz, Markus Hsi-Yang; Hansen, Nancy F.; Durand, Eric Y.; Malaspinas, Anna-Sapfo; Jensen, Jeffrey D.; Marques-Bonet, Tomas; Alkan, Can; Prüfer, Kay; Meyer, Matthias; Burbano, Hernán A.; Good, Jeffrey M.; Schultz, Rigo; Aximu-Petri, Ayinuer; Butthof, Anne; Höber, Barbara; Höffner, Barbara; Siegemund, Madlen; Weihmann, Antje; Nusbaum, Chad; Lander, Eric S.; Russ, Carsten; Novod, Nathaniel; Affourtit, Jason; Egholm, Michael; Verna, Christine; Rudan, Pavao; Brajkovic, Dejana; Kucan, Željko; Gušic, Ivan; Doronichev, Vladimir B.; Golovanova, Liubov V.; Lalueza-Fox, Carles; de la Rasilla, Marco; Fortea, Javier; Rosas, Antonio; Schmitz, Ralf W.; Johnson, Philip L. F.; Eichler, Evan E.; Falush, Daniel; Birney, Ewan; Mullikin, James C.; Slatkin, Montgomery; Nielsen, Rasmus; Kelso, Janet; Lachmann, Michael; Reich, David; Pääbo, Svante

    2016-01-01

    Neandertals, the closest evolutionary relatives of present-day humans, lived in large parts of Europe and western Asia before disappearing 30,000 years ago. We present a draft sequence of the Neandertal genome composed of more than 4 billion nucleotides from three individuals. Comparisons of the Neandertal genome to the genomes of five present-day humans from different parts of the world identify a number of genomic regions that may have been affected by positive selection in ancestral modern humans, including genes involved in metabolism and in cognitive and skeletal development. We show that Neandertals shared more genetic variants with present-day humans in Eurasia than with present-day humans in sub-Saharan Africa, suggesting that gene flow from Neandertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other. PMID:20448178

  12. BSMAP: whole genome bisulfite sequence MAPping program

    Directory of Open Access Journals (Sweden)

    Li Wei

    2009-07-01

    Full Text Available Abstract Background Bisulfite sequencing is a powerful technique to study DNA cytosine methylation. Bisulfite treatment followed by PCR amplification specifically converts unmethylated cytosines to thymine. Coupled with next generation sequencing technology, it is able to detect the methylation status of every cytosine in the genome. However, mapping high-throughput bisulfite reads to the reference genome remains a great challenge due to the increased searching space, reduced complexity of bisulfite sequence, asymmetric cytosine to thymine alignments, and multiple CpG heterogeneous methylation. Results We developed an efficient bisulfite reads mapping algorithm BSMAP to address the above issues. BSMAP combines genome hashing and bitwise masking to achieve fast and accurate bisulfite mapping. Compared with existing bisulfite mapping approaches, BSMAP is faster, more sensitive and more flexible. Conclusion BSMAP is the first general-purpose bisulfite mapping software. It is able to map high-throughput bisulfite reads at whole genome level with feasible memory and CPU usage. It is freely available under GPL v3 license at http://code.google.com/p/bsmap/.

  13. Agaricus bisporus genome sequence: a commentary.

    Science.gov (United States)

    Kerrigan, Richard W; Challen, Michael P; Burton, Kerry S

    2013-06-01

    The genomes of two isolates of Agaricus bisporus have been sequenced recently. This soil-inhabiting fungus has a wide geographical distribution in nature and it is also cultivated in an industrialized indoor process ($4.7bn annual worldwide value) to produce edible mushrooms. Previously this lignocellulosic fungus has resisted precise econutritional classification, i.e. into white- or brown-rot decomposers. The generation of the genome sequence and transcriptomic analyses has revealed a new classification, 'humicolous', for species adapted to grow in humic-rich, partially decomposed leaf material. The Agaricus biporus genomes contain a collection of polysaccharide and lignin-degrading genes and more interestingly an expanded number of genes (relative to other lignocellulosic fungi) that enhance degradation of lignin derivatives, i.e. heme-thiolate peroxidases and β-etherases. A motif that is hypothesized to be a promoter element in the humicolous adaptation suite is present in a large number of genes specifically up-regulated when the mycelium is grown on humic-rich substrate. The genome sequence of A. bisporus offers a platform to explore fungal biology in carbon-rich soil environments and terrestrial cycling of carbon, nitrogen, phosphorus and potassium.

  14. Synaptotagmin gene content of the sequenced genomes

    Directory of Open Access Journals (Sweden)

    Craxton Molly

    2004-07-01

    Full Text Available Abstract Background Synaptotagmins exist as a large gene family in mammals. There is much interest in the function of certain family members which act crucially in the regulated synaptic vesicle exocytosis required for efficient neurotransmission. Knowledge of the functions of other family members is relatively poor and the presence of Synaptotagmin genes in plants indicates a role for the family as a whole which is wider than neurotransmission. Identification of the Synaptotagmin genes within completely sequenced genomes can provide the entire Synaptotagmin gene complement of each sequenced organism. Defining the detailed structures of all the Synaptotagmin genes and their encoded products can provide a useful resource for functional studies and a deeper understanding of the evolution of the gene family. The current rapid increase in the number of sequenced genomes from different branches of the tree of life, together with the public deposition of evolutionarily diverse transcript sequences make such studies worthwhile. Results I have compiled a detailed list of the Synaptotagmin genes of Caenorhabditis, Anopheles, Drosophila, Ciona, Danio, Fugu, Mus, Homo, Arabidopsis and Oryza by examining genomic and transcript sequences from public sequence databases together with some transcript sequences obtained by cDNA library screening and RT-PCR. I have compared all of the genes and investigated the relationship between plant Synaptotagmins and their non-Synaptotagmin counterparts. Conclusions I have identified and compared 98 Synaptotagmin genes from 10 sequenced genomes. Detailed comparison of transcript sequences reveals abundant and complex variation in Synaptotagmin gene expression and indicates the presence of Synaptotagmin genes in all animals and land plants. Amino acid sequence comparisons indicate patterns of conservation and diversity in function. Phylogenetic analysis shows the origin of Synaptotagmins in multicellular eukaryotes and their

  15. Identifying driver mutations in sequenced cancer genomes

    DEFF Research Database (Denmark)

    Raphael, Benjamin J; Dobson, Jason R; Oesper, Layla

    2014-01-01

    High-throughput DNA sequencing is revolutionizing the study of cancer and enabling the measurement of the somatic mutations that drive cancer development. However, the resulting sequencing datasets are large and complex, obscuring the clinically important mutations in a background of errors, noise......, and random mutations. Here, we review computational approaches to identify somatic mutations in cancer genome sequences and to distinguish the driver mutations that are responsible for cancer from random, passenger mutations. First, we describe approaches to detect somatic mutations from high-throughput DNA...... sequencing data, particularly for tumor samples that comprise heterogeneous populations of cells. Next, we review computational approaches that aim to predict driver mutations according to their frequency of occurrence in a cohort of samples, or according to their predicted functional impact on protein...

  16. Whole genome sequence analysis of Mycobacterium suricattae

    KAUST Repository

    Dippenaar, Anzaan

    2015-10-21

    Tuberculosis occurs in various mammalian hosts and is caused by a range of different lineages of the Mycobacterium tuberculosis complex (MTBC). A recently described member, Mycobacterium suricattae, causes tuberculosis in meerkats (Suricata suricatta) in Southern Africa and preliminary genetic analysis showed this organism to be closely related to an MTBC pathogen of rock hyraxes (Procavia capensis), the dassie bacillus. Here we make use of whole genome sequencing to describe the evolution of the genome of M. suricattae, including known and novel regions of difference, SNPs and IS6110 insertion sites. We used genome-wide phylogenetic analysis to show that M. suricattae clusters with the chimpanzee bacillus, previously isolated from a chimpanzee (Pan troglodytes) in West Africa. We propose an evolutionary scenario for the Mycobacterium africanum lineage 6 complex, showing the evolutionary relationship of M. africanum and chimpanzee bacillus, and the closely related members M. suricattae, dassie bacillus and Mycobacterium mungi.

  17. What Will We Do with a Cotton Genome Sequence?

    Institute of Scientific and Technical Information of China (English)

    BRUBAKER Curt

    2008-01-01

    @@ With the publication of "Toward Sequencing Cotton (Gossypium) Genomes" [Chen et al.PlantPhysiology,2007,145:1303-1310-] a clear consensus emerged from the cotton genomics community not only that cotton genome sequences were a critical resource for research and commercial innovationin cotton genomics,but that there was a logical means of achieving this goal.

  18. Sequencing of a Cultivated Diploid Cotton Genome-Gossypium arboreum

    Institute of Scientific and Technical Information of China (English)

    WILKINS; Thea; A

    2008-01-01

    Sequencing the genomes of crop species and model systems contributes significantly to our understanding of the organization,structure and function of plant genomes.In a `white paper' published in 2007,the cotton community set forth a strategic plan for sequencing the AD genome of cultivated upland cotton that initially targets less complex diploid genomes.This strategy banks on the high degree

  19. Draft genome sequence of an aflatoxigenic Aspergillus species, A. bombycis

    Science.gov (United States)

    The genome of the A. bombycis Type strain was sequenced using a Personal Genome Machine, followed by annotation of its predicted genes. The genome size for A. bombycis was found to be approximately 37 Mb and contained 12,266 genes. This announcement introduces a sequenced genome for an aflatoxigenic...

  20. From Genome Sequence to Taxonomy - A Skeptic’s View

    DEFF Research Database (Denmark)

    Özen, Asli Ismihan; Vesth, Tammi Camilla; Ussery, David

    2012-01-01

    The relative ease of sequencing bacterial genomes has resulted in thousands of sequenced bacterial genomes available in the public databases. This same technology now allows for using the entire genome sequence as an identifier for an organism. There are many methods available which attempt to us...

  1. Enhanced Dynamic Algorithm of Genome Sequence Alignments

    Directory of Open Access Journals (Sweden)

    Arabi E. keshk

    2014-05-01

    Full Text Available The merging of biology and computer science has created a new field called computational biology that explore the capacities of computers to gain knowledge from biological data, bioinformatics. Computational biology is rooted in life sciences as well as computers, information sciences, and technologies. The main problem in computational biology is sequence alignment that is a way of arranging the sequences of DNA, RNA or protein to identify the region of similarity and relationship between sequences. This paper introduces an enhancement of dynamic algorithm of genome sequence alignment, which called EDAGSA. It is filling the three main diagonals without filling the entire matrix by the unused data. It gets the optimal solution with decreasing the execution time and therefore the performance is increased. To illustrate the effectiveness of optimizing the performance of the proposed algorithm, it is compared with the traditional methods such as Needleman-Wunsch, Smith-Waterman and longest common subsequence algorithms. Also, database is implemented for using the algorithm in multi-sequence alignments for searching the optimal sequence that matches the given sequence.

  2. Transforming clinical microbiology with bacterial genome sequencing.

    Science.gov (United States)

    Didelot, Xavier; Bowden, Rory; Wilson, Daniel J; Peto, Tim E A; Crook, Derrick W

    2012-09-01

    Whole-genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here, we review the current status of clinical microbiology and how it has already begun to be transformed by using next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties, such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. We predict that the application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow.

  3. Detecting overlapping coding sequences in virus genomes

    Directory of Open Access Journals (Sweden)

    Brown Chris M

    2006-02-01

    Full Text Available Abstract Background Detecting new coding sequences (CDSs in viral genomes can be difficult for several reasons. The typically compact genomes often contain a number of overlapping coding and non-coding functional elements, which can result in unusual patterns of codon usage; conservation between related sequences can be difficult to interpret – especially within overlapping genes; and viruses often employ non-canonical translational mechanisms – e.g. frameshifting, stop codon read-through, leaky-scanning and internal ribosome entry sites – which can conceal potentially coding open reading frames (ORFs. Results In a previous paper we introduced a new statistic – MLOGD (Maximum Likelihood Overlapping Gene Detector – for detecting and analysing overlapping CDSs. Here we present (a an improved MLOGD statistic, (b a greatly extended suite of software using MLOGD, (c a database of results for 640 virus sequence alignments, and (d a web-interface to the software and database. Tests show that, from an alignment with just 20 mutations, MLOGD can discriminate non-overlapping CDSs from non-coding ORFs with a typical accuracy of up to 98%, and can detect CDSs overlapping known CDSs with a typical accuracy of 90%. In addition, the software produces a variety of statistics and graphics, useful for analysing an input multiple sequence alignment. Conclusion MLOGD is an easy-to-use tool for virus genome annotation, detecting new CDSs – in particular overlapping or short CDSs – and for analysing overlapping CDSs following frameshift sites. The software, web-server, database and supplementary material are available at http://guinevere.otago.ac.nz/mlogd.html.

  4. Why Assembling Plant Genome Sequences Is So Challenging

    Directory of Open Access Journals (Sweden)

    Pedro Seoane

    2012-09-01

    Full Text Available In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed.

  5. Why Assembling Plant Genome Sequences Is So Challenging

    Science.gov (United States)

    Claros, Manuel Gonzalo; Bautista, Rocío; Guerrero-Fernández, Darío; Benzerki, Hicham; Seoane, Pedro; Fernández-Pozo, Noé

    2012-01-01

    In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed. PMID:24832233

  6. An evaluation of Comparative Genome Sequencing (CGS by comparing two previously-sequenced bacterial genomes

    Directory of Open Access Journals (Sweden)

    Herring Christopher D

    2007-08-01

    Full Text Available Abstract Background With the development of new technology, it has recently become practical to resequence the genome of a bacterium after experimental manipulation. It is critical though to know the accuracy of the technique used, and to establish confidence that all of the mutations were detected. Results In order to evaluate the accuracy of genome resequencing using the microarray-based Comparative Genome Sequencing service provided by Nimblegen Systems Inc., we resequenced the E. coli strain W3110 Kohara using MG1655 as a reference, both of which have been completely sequenced using traditional sequencing methods. CGS detected 7 of 8 small sequence differences, one large deletion, and 9 of 12 IS element insertions present in W3110, but did not detect a large chromosomal inversion. In addition, we confirmed that CGS also detected 2 SNPs, one deletion and 7 IS element insertions that are not present in the genome sequence, which we attribute to changes that occurred after the creation of the W3110 lambda clone library. The false positive rate for SNPs was one per 244 Kb of genome sequence. Conclusion CGS is an effective way to detect multiple mutations present in one bacterium relative to another, and while highly cost-effective, is prone to certain errors. Mutations occurring in repeated sequences or in sequences with a high degree of secondary structure may go undetected. It is also critical to follow up on regions of interest in which SNPs were not called because they often indicate deletions or IS element insertions.

  7. Genome sequence and analysis of the tuber crop potato

    DEFF Research Database (Denmark)

    Xu, X.; Pan, S.; Cheng, S.;

    2011-01-01

    and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade...... contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop....

  8. Building the sequence map of the human pan-genome

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Li, Yingrui; Zheng, Hancheng

    2010-01-01

    Here we integrate the de novo assembly of an Asian and an African genome with the NCBI reference human genome, as a step toward constructing the human pan-genome. We identified approximately 5 Mb of novel sequences not present in the reference genome in each of these assemblies. Most novel...... analysis of predicted genes indicated that the novel sequences contain potentially functional coding regions. We estimate that a complete human pan-genome would contain approximately 19-40 Mb of novel sequence not present in the extant reference genome. The extensive amount of novel sequence contributing...... to the genetic variation of the pan-genome indicates the importance of using complete genome sequencing and de novo assembly....

  9. Detecting long tandem duplications in genomic sequences

    Directory of Open Access Journals (Sweden)

    Audemard Eric

    2012-05-01

    Full Text Available Abstract Background Detecting duplication segments within completely sequenced genomes provides valuable information to address genome evolution and in particular the important question of the emergence of novel functions. The usual approach to gene duplication detection, based on all-pairs protein gene comparisons, provides only a restricted view of duplication. Results In this paper, we introduce ReD Tandem, a software using a flow based chaining algorithm targeted at detecting tandem duplication arrays of moderate to longer length regions, with possibly locally weak similarities, directly at the DNA level. On the A. thaliana genome, using a reference set of tandem duplicated genes built using TAIR,a we show that ReD Tandem is able to predict a large fraction of recently duplicated genes (dS  Conclusions ReD Tandem allows to identify large tandem duplications without any annotation, leading to agnostic identification of tandem duplications. This approach nicely complements the usual protein gene based which ignores duplications involving non coding regions. It is however inherently restricted to relatively recent duplications. By recovering otherwise ignored events, ReD Tandem gives a more comprehensive view of existing evolutionary processes and may also allow to improve existing annotations.

  10. Rapid whole genome sequencing and precision neonatology.

    Science.gov (United States)

    Petrikin, Joshua E; Willig, Laurel K; Smith, Laurie D; Kingsmore, Stephen F

    2015-12-01

    Traditionally, genetic testing has been too slow or perceived to be impractical to initial management of the critically ill neonate. Technological advances have led to the ability to sequence and interpret the entire genome of a neonate in as little as 26 h. As the cost and speed of testing decreases, the utility of whole genome sequencing (WGS) of neonates for acute and latent genetic illness increases. Analyzing the entire genome allows for concomitant evaluation of the currently identified 5588 single gene diseases. When applied to a select population of ill infants in a level IV neonatal intensive care unit, WGS yielded a diagnosis of a causative genetic disease in 57% of patients. These diagnoses may lead to clinical management changes ranging from transition to palliative care for uniformly lethal conditions for alteration or initiation of medical or surgical therapy to improve outcomes in others. Thus, institution of 2-day WGS at time of acute presentation opens the possibility of early implementation of precision medicine. This implementation may create opportunities for early interventional, frequently novel or off-label therapies that may alter disease trajectory in infants with what would otherwise be fatal disease. Widespread deployment of rapid WGS and precision medicine will raise ethical issues pertaining to interpretation of variants of unknown significance, discovery of incidental findings related to adult onset conditions and carrier status, and implementation of medical therapies for which little is known in terms of risks and benefits. Despite these challenges, precision neonatology has significant potential both to decrease infant mortality related to genetic diseases with onset in newborns and to facilitate parental decision making regarding transition to palliative care.

  11. Genomic Sequence Comparisons, 1987-2003 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    George M. Church

    2004-07-29

    This project was to develop new DNA sequencing and RNA and protein quantitation methods and related genome annotation tools. The project began in 1987 with the development of multiplex sequencing (published in Science in 1988), and one of the first automated sequencing methods. This lead to the first commercial genome sequence in 1994 and to the establishment of the main commercial participants (GTC then Agencourt) in the public DOE/NIH genome project. In collaboration with GTC we contributed to one of the first complete DOE genome sequences, in 1997, that of Methanobacterium thermoautotropicum, a species of great relevance to energy-rich gas production.

  12. Insights from 20 years of bacterial genome sequencing

    DEFF Research Database (Denmark)

    Land, Miriam; Hauser, Loren; Jun, Se-Ran

    2015-01-01

    of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome sequencing? There are many practical applications, such as genome-scale metabolic modeling, biosurveillance...

  13. Two genome sequences of the same bacterial strain, Gluconacetobacter diazotrophicus PAl 5, suggest a new standard in genome sequence submission.

    Science.gov (United States)

    Giongo, Adriana; Tyler, Heather L; Zipperer, Ursula N; Triplett, Eric W

    2010-06-15

    Gluconacetobacter diazotrophicus PAl 5 is of agricultural significance due to its ability to provide fixed nitrogen to plants. Consequently, its genome sequence has been eagerly anticipated to enhance understanding of endophytic nitrogen fixation. Two groups have sequenced the PAl 5 genome from the same source (ATCC 49037), though the resulting sequences contain a surprisingly high number of differences. Therefore, an optical map of PAl 5 was constructed in order to determine which genome assembly more closely resembles the chromosomal DNA by aligning each sequence against a physical map of the genome. While one sequence aligned very well, over 98% of the second sequence contained numerous rearrangements. The many differences observed between these two genome sequences could be owing to either assembly errors or rapid evolutionary divergence. The extent of the differences derived from sequence assembly errors could be assessed if the raw sequencing reads were provided by both genome centers at the time of genome sequence submission. Hence, a new genome sequence standard is proposed whereby the investigator supplies the raw reads along with the closed sequence so that the community can make more accurate judgments on whether differences observed in a single stain may be of biological origin or are simply caused by differences in genome assembly procedures.

  14. Complete Genome Sequence of Rift Valley Fever Virus Strain Lunyo.

    Science.gov (United States)

    Lumley, Sarah; Horton, Daniel L; Marston, Denise A; Johnson, Nicholas; Ellis, Richard J; Fooks, Anthony R; Hewson, Roger

    2016-04-14

    Using next-generation sequencing technologies, the first complete genome sequence of Rift Valley fever virus strain Lunyo is reported here. Originally reported as an attenuated antigenic variant strain from Uganda, genomic sequence analysis shows that Lunyo clusters together with other Ugandan isolates.

  15. Genome Sequence of Stachybotrys chartarum Strain 51-11

    OpenAIRE

    Betancourt, Doris A.; Dean, Timothy R.; Kim, Jean; Levy, Josh

    2015-01-01

    The Stachybotrys chartarum strain 51-11 genome was sequenced by shotgun sequencing utilizing Illumina HiSeq 2000 and PacBio technologies. Since S. chartarum has been implicated as having health impacts within water-damaged buildings, any information extracted from the genomic sequence data relating to toxins or the metabolism of the fungus might be useful.

  16. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis

    DEFF Research Database (Denmark)

    Carlton, Jane M.; Hirt, Robert P.; Silva, Joana C.

    2007-01-01

    We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the approximately 160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion...

  17. Coevolution between simple sequence repeats (SSRs and virus genome size

    Directory of Open Access Journals (Sweden)

    Zhao Xiangyan

    2012-08-01

    Full Text Available Abstract Background Relationship between the level of repetitiveness in genomic sequence and genome size has been investigated by making use of complete prokaryotic and eukaryotic genomes, but relevant studies have been rarely made in virus genomes. Results In this study, a total of 257 viruses were examined, which cover 90% of genera. The results showed that simple sequence repeats (SSRs is strongly, positively and significantly correlated with genome size. Certain repeat class is distributed in a certain range of genome sequence length. Mono-, di- and tri- repeats are widely distributed in all virus genomes, tetra- SSRs as a common component consist in genomes which more than 100 kb in size; in the range of genome  Conclusions We conducted this research standing on the height of the whole virus. We concluded that genome size is an important factor in affecting the occurrence of SSRs; hosts are also responsible for the variances of SSRs content to a certain degree.

  18. Draft Genome Sequences of Klebsiella variicola Plant Isolates.

    Science.gov (United States)

    Martínez-Romero, Esperanza; Silva-Sanchez, Jesús; Barrios, Humberto; Rodríguez-Medina, Nadia; Martínez-Barnetche, Jesús; Téllez-Sosa, Juan; Gómez-Barreto, Rosa Elena; Garza-Ramos, Ulises

    2015-09-10

    Three endophytic Klebsiella variicola isolates-T29A, 3, and 6A2, obtained from sugar cane stem, maize shoots, and banana leaves, respectively-were used for whole-genome sequencing. Here, we report the draft genome sequences of circular chromosomes and plasmids. The genomes contain plant colonization and cellulases genes. This study will help toward understanding the genomic basis of K. variicola interaction with plant hosts.

  19. Reconstructing cancer genomes from paired-end sequencing data

    Directory of Open Access Journals (Sweden)

    Oesper Layla

    2012-04-01

    Full Text Available Abstract Background A cancer genome is derived from the germline genome through a series of somatic mutations. Somatic structural variants - including duplications, deletions, inversions, translocations, and other rearrangements - result in a cancer genome that is a scrambling of intervals, or "blocks" of the germline genome sequence. We present an efficient algorithm for reconstructing the block organization of a cancer genome from paired-end DNA sequencing data. Results By aligning paired reads from a cancer genome - and a matched germline genome, if available - to the human reference genome, we derive: (i a partition of the reference genome into intervals; (ii adjacencies between these intervals in the cancer genome; (iii an estimated copy number for each interval. We formulate the Copy Number and Adjacency Genome Reconstruction Problem of determining the cancer genome as a sequence of the derived intervals that is consistent with the measured adjacencies and copy numbers. We design an efficient algorithm, called Paired-end Reconstruction of Genome Organization (PREGO, to solve this problem by reducing it to an optimization problem on an interval-adjacency graph constructed from the data. The solution to the optimization problem results in an Eulerian graph, containing an alternating Eulerian tour that corresponds to a cancer genome that is consistent with the sequencing data. We apply our algorithm to five ovarian cancer genomes that were sequenced as part of The Cancer Genome Atlas. We identify numerous rearrangements, or structural variants, in these genomes, analyze reciprocal vs. non-reciprocal rearrangements, and identify rearrangements consistent with known mechanisms of duplication such as tandem duplications and breakage/fusion/bridge (B/F/B cycles. Conclusions We demonstrate that PREGO efficiently identifies complex and biologically relevant rearrangements in cancer genome sequencing data. An implementation of the PREGO algorithm is

  20. Next-generation sequencing strategies for characterizing the turkey genome.

    Science.gov (United States)

    Dalloul, Rami A; Zimin, Aleksey V; Settlage, Robert E; Kim, Sungwon; Reed, Kent M

    2014-02-01

    The turkey genome sequencing project was initiated in 2008 and has relied primarily on next-generation sequencing (NGS) technologies. Our first efforts used a synergistic combination of 2 NGS platforms (Roche/454 and Illumina GAII), detailed bacterial artificial chromosome (BAC) maps, and unique assembly tools to sequence and assemble the genome of the domesticated turkey, Meleagris gallopavo. Since the first release in 2010, efforts to improve the genome assembly, gene annotation, and genomic analyses continue. The initial assembly build (2.01) represented about 89% of the genome sequence with 17X coverage depth (931 Mb). Sequence contigs were assigned to 30 of the 40 chromosomes with approximately 10% of the assembled sequence corresponding to unassigned chromosomes (ChrUn). The sequence has been refined through both genome-wide and area-focused sequencing, including shotgun and paired-end sequencing, and targeted sequencing of chromosomal regions with low or incomplete coverage. These additional efforts have improved the sequence assembly resulting in 2 subsequent genome builds of higher genome coverage (25X/Build3.0 and 30X/Build4.0) with a current sequence totaling 1,010 Mb. Further, BAC with end sequences assigned to the Z/W and MG18 (MHC) chromosomes, ChrUn, or not placed in the previous build were isolated, deeply sequenced (Hi-Seq), and incorporated into the latest build (5.0). To aid in the annotation and to generate a gene expression atlas of major tissues, a comprehensive set of RNA samples was collected at various developmental stages of female and male turkeys. Transcriptome sequencing data (using Illumina Hi-Seq) will provide information to enhance the final assembly and ultimately improve sequence annotation. The most current sequence covers more than 95% of the turkey genome and should yield a much improved gene level of annotation, making it a valuable resource for studying genetic variations underlying economically important traits in poultry.

  1. Complete Genome Sequence of Corynebacterium pseudotuberculosis Viscerotropic Strain N1

    Science.gov (United States)

    Portela, Ricardo W.; Sousa, Thiago J.; Rocha, Flávia; Pereira, Felipe L.; Dorella, Fernanda A.; Carvalho, Alex F.; Menezes, Nildo; Macedo, Eduardo S.; Moura-Costa, Lilia F.; Meyer, Roberto; Leal, Carlos A. G.; Figueiredo, Henrique C.; Azevedo, Vasco

    2016-01-01

    We present the complete genome sequence of Corynebacterium pseudotuberculosis strain N1. The sequencing was performed with the Ion Torrent Personal Genome Machine system. The genome is a circular chromosome with 2,337,845 bp, a G+C content of 52.85%, and a total of 2,045 coding sequences, 12 rRNAs, 49 tRNAs, and 58 pseudogenes. PMID:26823597

  2. Complete Genome Sequence of the Streptomyces Phage Nanodon

    Science.gov (United States)

    2016-01-01

    Streptomyces phage Nanodon is a temperate double-stranded DNA Siphoviridae belonging to cluster BD1. It was isolated from soil collected in Kilauea, HI, using Streptomyces griseus subsp. griseus as a host.

  3. A taste of pineapple evolution through genome sequencing.

    Science.gov (United States)

    Xu, Qing; Liu, Zhong-Jian

    2015-12-01

    The genome sequence assembly of the highly heterozygous Ananas comosus and its varieties is an impressive technical achievement. The sequence opens the door to a greater understanding of pineapple morphology and evolution.

  4. Insights from twenty years of bacterial genome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jun, Se Ran [ORNL; Nookaew, Intawat [ORNL; Leuze, Michael Rex [ORNL; Ahn, Tae-Hyuk [ORNL; Karpinets, Tatiana V [ORNL; Lund, Ole [Technical University of Denmark; Kora, Guruprasad H [ORNL; Wassenaar, Trudy [Molecular Microbiology & Genomics Consultants, Zotzenheim, Germany; Poudel, Suresh [ORNL; Ussery, David W [ORNL

    2015-01-01

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome

  5. Whole-Genome Sequence Assembly for Mammalian Genomes: Arachne 2

    OpenAIRE

    Jaffe, David B.; Butler, Jonathan; Gnerre, Sante; Mauceli, Evan; Lindblad-Toh, Kerstin; Jill P. Mesirov; Michael C Zody; Lander, Eric S.

    2003-01-01

    We previously described the whole-genome assembly program Arachne, presenting assemblies of simulated data for small to mid-sized genomes. Here we describe algorithmic adaptations to the program, allowing for assembly of mammalian-size genomes, and also improving the assembly of smaller genomes. Three principal changes were simultaneously made and applied to the assembly of the mouse genome, during a six-month period of development: (1) Supercontigs (scaffolds) were iteratively broken and rej...

  6. Genome Project Standards in a New Era of Sequencing

    Energy Technology Data Exchange (ETDEWEB)

    GSC Consortia; HMP Jumpstart Consortia; Chain, P. S. G.; Grafham, D. V.; Fulton, R. S.; FitzGerald, M. G.; Hostetler, J.; Muzny, D.; Detter, J. C.; Ali, J.; Birren, B.; Bruce, D. C.; Buhay, C.; Cole, J. R.; Ding, Y.; Dugan, S.; Field, D.; Garrity, G. M.; Gibbs, R.; Graves, T.; Han, C. S.; Harrison, S. H.; Highlander, S.; Hugenholtz, P.; Khouri, H. M.; Kodira, C. D.; Kolker, E.; Kyrpides, N. C.; Lang, D.; Lapidus, A.; Malfatti, S. A.; Markowitz, V.; Metha, T.; Nelson, K. E.; Parkhill, J.; Pitluck, S.; Qin, X.; Read, T. D.; Schmutz, J.; Sozhamannan, S.; Strausberg, R.; Sutton, G.; Thomson, N. R.; Tiedje, J. M.; Weinstock, G.; Wollam, A.

    2009-06-01

    For over a decade, genome 43 sequences have adhered to only two standards that are relied on for purposes of sequence analysis by interested third parties (1, 2). However, ongoing developments in revolutionary sequencing technologies have resulted in a redefinition of traditional whole genome sequencing that requires a careful reevaluation of such standards. With commercially available 454 pyrosequencing (followed by Illumina, SOLiD, and now Helicos), there has been an explosion of genomes sequenced under the moniker 'draft', however these can be very poor quality genomes (due to inherent errors in the sequencing technologies, and the inability of assembly programs to fully address these errors). Further, one can only infer that such draft genomes may be of poor quality by navigating through the databases to find the number and type of reads deposited in sequence trace repositories (and not all genomes have this available), or to identify the number of contigs or genome fragments deposited to the database. The difficulty in assessing the quality of such deposited genomes has created some havoc for genome analysis pipelines and contributed to many wasted hours of (mis)interpretation. These same novel sequencing technologies have also brought an exponential leap in raw sequencing capability, and at greatly reduced prices that have further skewed the time- and cost-ratios of draft data generation versus the painstaking process of improving and finishing a genome. The resulting effect is an ever-widening gap between drafted and finished genomes that only promises to continue (Figure 1), hence there is an urgent need to distinguish good and poor datasets. The sequencing institutes in the authorship, along with the NIH's Human Microbiome Project Jumpstart Consortium (3), strongly believe that a new set of standards is required for genome sequences. The following represents a set of six community-defined categories of genome sequence standards that better

  7. Finishing The Euchromatic Sequence Of The Human Genome

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Edward M.; Lucas, Susan; Richardson, Paul; Rokhsar, Daniel; Pennacchio, Len

    2004-09-07

    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process.The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers {approx}99% of the euchromatic genome and is accurate to an error rate of {approx}1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number,birth and death. Notably, the human genome seems to encode only20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead.

  8. Draft Genome Sequence of a Diarrheagenic Morganella morganii Isolate.

    Science.gov (United States)

    Singh, Pallavi; Mosci, Rebekah; Rudrik, James T; Manning, Shannon D

    2015-10-08

    This is a report of the whole-genome draft sequence of a diarrheagenic Morganella morganii isolate from a patient in Michigan, USA. This genome represents an important addition to the limited number of pathogenic M. morganii genomes available.

  9. Sequencing of a Cultivated Diploid CottonGenome-Gossypium arboreum

    Institute of Scientific and Technical Information of China (English)

    WILKINS Thea A

    2008-01-01

    @@ Sequencing the genomes of crop species and model systems contributes significantly to our under-standing of the organization,structure and function of plant genomes.In a "white paper" published in2007,the cotton community set forth a strategic plan for sequencing the AD genome of cultivated up-land cotton that initially targets less complex diploid genomes.This strategy banks on the high degreeof conservation between diploid progenitors and AD species that will allow information derived fromdiploid genomes to be directly applied to the tetraploids.

  10. Genome sequencing and annotation of Cellulomonas sp. HZM

    Directory of Open Access Journals (Sweden)

    Patric Chua

    2015-09-01

    Full Text Available We report the draft genome sequence of Cellulomonas sp. HZM, isolated from a tropical peat swamp forest. The draft genome size is 3,559,280 bp with a G + C content of 73% and contains 3 rRNA sequences (single copies of 5S, 16S and 23S rRNA.

  11. Complete Genome Sequence of the Human Gut Symbiont Roseburia hominis

    DEFF Research Database (Denmark)

    Travis, Anthony J.; Kelly, Denise; Flint, Harry J;

    2015-01-01

    We report here the complete genome sequence of the human gut symbiont Roseburia hominis A2-183(T) (= DSM 16839(T) = NCIMB 14029(T)), isolated from human feces. The genome is represented by a 3,592,125-bp chromosome with 3,405 coding sequences. A number of potential functions contributing to host-...

  12. Complete genome sequence of Enterobacter aerogenes KCTC 2190.

    Science.gov (United States)

    Shin, Sang Heum; Kim, Sewhan; Kim, Jae Young; Lee, Soojin; Um, Youngsoon; Oh, Min-Kyu; Kim, Young-Rok; Lee, Jinwon; Yang, Kap-Seok

    2012-05-01

    This is the first complete genome sequence of the Enterobacter aerogenes species. Here we present the genome sequence of E. aerogenes KCTC 2190, which contains 5,280,350 bp with a G + C content of 54.8 mol%, 4,912 protein-coding genes, and 109 structural RNAs.

  13. Investigation of genome sequences within the family Pasteurellaceae

    DEFF Research Database (Denmark)

    Angen, Øystein; Ussery, David

    . The homology between genomes ranged from 47.2% to 94.1%. The number of genes found increased steadily for each sequence added to the analysis and the pan-genome of all 20 sequences consisted of around 8500 genes. On the other hand, the number of genes found in all strains steadily decreased when adding...

  14. Draft Genome Sequence of Raoultella planticola, Isolated from River Water.

    Science.gov (United States)

    Jothikumar, Narayanan; Kahler, Amy; Strockbine, Nancy; Gladney, Lori; Hill, Vincent R

    2014-10-16

    We isolated Raoultella planticola from a river water sample, which was phenotypically indistinguishable from Escherichia coli on MI agar. The genome sequence of R. planticola was determined to gain information about its metabolic functions contributing to its false positive appearance of E. coli on MI agar. We report the first whole genome sequence of Raoultella planticola.

  15. Whole-Genome Sequences of 26 Vibrio cholerae Isolates

    Science.gov (United States)

    Watve, Samit S.; Chande, Aroon T.; Rishishwar, Lavanya; Jordan, I. King

    2016-01-01

    The human pathogen Vibrio cholerae employs several adaptive mechanisms for environmental persistence, including natural transformation and type VI secretion, creating a reservoir for the spread of disease. Here, we report whole-genome sequences of 26 diverse V. cholerae isolates, significantly increasing the sequence diversity of publicly available V. cholerae genomes. PMID:28007852

  16. A gapless genome sequence of the fungus Botrytis cinerea

    NARCIS (Netherlands)

    Kan, Van Jan A.L.; Stassen, Joost H.M.; Mosbach, Andreas; Lee, Van Der Theo A.J.; Faino, Luigi; Farmer, Andrew D.; Papasotiriou, Dimitrios G.; Zhou, Shiguo; Seidl, Michael F.; Cottam, Eleanor; Edel, Dominique; Hahn, Matthias; Schwartz, David C.; Dietrich, Robert A.; Widdison, Stephanie; Scalliet, Gabriel

    2016-01-01

    Following earlier incomplete and fragmented versions of a genome sequence for the grey mould Botrytis cinerea, a gapless, near-finished genome sequence for B. cinerea strain B05.10 is reported. The assembly comprised 18 chromosomes and was confirmed by an optical map and a genetic map based on ap

  17. Initial sequencing and analysis of the human genome.

    Science.gov (United States)

    Lander, E S; Linton, L M; Birren, B; Nusbaum, C; Zody, M C; Baldwin, J; Devon, K; Dewar, K; Doyle, M; FitzHugh, W; Funke, R; Gage, D; Harris, K; Heaford, A; Howland, J; Kann, L; Lehoczky, J; LeVine, R; McEwan, P; McKernan, K; Meldrim, J; Mesirov, J P; Miranda, C; Morris, W; Naylor, J; Raymond, C; Rosetti, M; Santos, R; Sheridan, A; Sougnez, C; Stange-Thomann, Y; Stojanovic, N; Subramanian, A; Wyman, D; Rogers, J; Sulston, J; Ainscough, R; Beck, S; Bentley, D; Burton, J; Clee, C; Carter, N; Coulson, A; Deadman, R; Deloukas, P; Dunham, A; Dunham, I; Durbin, R; French, L; Grafham, D; Gregory, S; Hubbard, T; Humphray, S; Hunt, A; Jones, M; Lloyd, C; McMurray, A; Matthews, L; Mercer, S; Milne, S; Mullikin, J C; Mungall, A; Plumb, R; Ross, M; Shownkeen, R; Sims, S; Waterston, R H; Wilson, R K; Hillier, L W; McPherson, J D; Marra, M A; Mardis, E R; Fulton, L A; Chinwalla, A T; Pepin, K H; Gish, W R; Chissoe, S L; Wendl, M C; Delehaunty, K D; Miner, T L; Delehaunty, A; Kramer, J B; Cook, L L; Fulton, R S; Johnson, D L; Minx, P J; Clifton, S W; Hawkins, T; Branscomb, E; Predki, P; Richardson, P; Wenning, S; Slezak, T; Doggett, N; Cheng, J F; Olsen, A; Lucas, S; Elkin, C; Uberbacher, E; Frazier, M; Gibbs, R A; Muzny, D M; Scherer, S E; Bouck, J B; Sodergren, E J; Worley, K C; Rives, C M; Gorrell, J H; Metzker, M L; Naylor, S L; Kucherlapati, R S; Nelson, D L; Weinstock, G M; Sakaki, Y; Fujiyama, A; Hattori, M; Yada, T; Toyoda, A; Itoh, T; Kawagoe, C; Watanabe, H; Totoki, Y; Taylor, T; Weissenbach, J; Heilig, R; Saurin, W; Artiguenave, F; Brottier, P; Bruls, T; Pelletier, E; Robert, C; Wincker, P; Smith, D R; Doucette-Stamm, L; Rubenfield, M; Weinstock, K; Lee, H M; Dubois, J; Rosenthal, A; Platzer, M; Nyakatura, G; Taudien, S; Rump, A; Yang, H; Yu, J; Wang, J; Huang, G; Gu, J; Hood, L; Rowen, L; Madan, A; Qin, S; Davis, R W; Federspiel, N A; Abola, A P; Proctor, M J; Myers, R M; Schmutz, J; Dickson, M; Grimwood, J; Cox, D R; Olson, M V; Kaul, R; Raymond, C; Shimizu, N; Kawasaki, K; Minoshima, S; Evans, G A; Athanasiou, M; Schultz, R; Roe, B A; Chen, F; Pan, H; Ramser, J; Lehrach, H; Reinhardt, R; McCombie, W R; de la Bastide, M; Dedhia, N; Blöcker, H; Hornischer, K; Nordsiek, G; Agarwala, R; Aravind, L; Bailey, J A; Bateman, A; Batzoglou, S; Birney, E; Bork, P; Brown, D G; Burge, C B; Cerutti, L; Chen, H C; Church, D; Clamp, M; Copley, R R; Doerks, T; Eddy, S R; Eichler, E E; Furey, T S; Galagan, J; Gilbert, J G; Harmon, C; Hayashizaki, Y; Haussler, D; Hermjakob, H; Hokamp, K; Jang, W; Johnson, L S; Jones, T A; Kasif, S; Kaspryzk, A; Kennedy, S; Kent, W J; Kitts, P; Koonin, E V; Korf, I; Kulp, D; Lancet, D; Lowe, T M; McLysaght, A; Mikkelsen, T; Moran, J V; Mulder, N; Pollara, V J; Ponting, C P; Schuler, G; Schultz, J; Slater, G; Smit, A F; Stupka, E; Szustakowki, J; Thierry-Mieg, D; Thierry-Mieg, J; Wagner, L; Wallis, J; Wheeler, R; Williams, A; Wolf, Y I; Wolfe, K H; Yang, S P; Yeh, R F; Collins, F; Guyer, M S; Peterson, J; Felsenfeld, A; Wetterstrand, K A; Patrinos, A; Morgan, M J; de Jong, P; Catanese, J J; Osoegawa, K; Shizuya, H; Choi, S; Chen, Y J; Szustakowki, J

    2001-02-15

    The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

  18. Draft Genome Sequence of Enterococcus mundtii CRL1656

    OpenAIRE

    2012-01-01

    We report the draft genome sequence of Enterococcus mundtii CRL1656, which was isolated from the stripping milk of a clinically healthy adult Holstein dairy cow from a dairy farm of the northwestern region of Tucumán (Argentina). The 3.10-Mb genome sequence consists of 450 large contigs and contains 2,741 predicted protein-coding genes.

  19. Complete Genome Sequence of Staphylococcus pseudintermedius Type Strain LMG 22219

    Science.gov (United States)

    Abouelkhair, Mohamed A.; Riley, Matthew C.; Bemis, David A.

    2017-01-01

    ABSTRACT We report the first complete genome sequence of LMG 22219 (=ON 86T = CCUG 49543T), the Staphylococcus pseudintermedius type strain isolated from feline lung tissue. This sequence information will facilitate phylogenetic comparisons of staphylococcal species and other bacteria at the genome level. PMID:28209834

  20. Complete genome sequence of ‘Candidatus Liberibacter africanus’

    Science.gov (United States)

    The complete genome sequence of ‘Candidatus Liberibacter africanus’ (Laf), strain ptsapsy, was obtained by an Illumina HiSeq 2000. The Laf genome comprises 1,192,232 nucleotides, 34.5% GC content, 1,141 predicted coding sequences, 44 tRNAs, 3 complete copies of ribosomal RNA genes (16S, 23S and 5S) ...

  1. Genome sequence of Kocuria palustris strain W4

    DEFF Research Database (Denmark)

    Herschend, Jakob; Raghupathi, Prem Krishnan; Røder, Henriette Lyng;

    2016-01-01

    We report the 3.09 Mb draft genome sequence ofKocuria palustrisW4, isolated from a slaughterhouse in Denmark.......We report the 3.09 Mb draft genome sequence ofKocuria palustrisW4, isolated from a slaughterhouse in Denmark....

  2. Nearly Complete Genome Sequence of Lactobacillus plantarum Strain NIZO2877

    NARCIS (Netherlands)

    Martino, M.E.; Bayjanov, J.R.; Joncour, P.; Hughes, S.; Gillet, B.; Kleerebezem, M; Siezen, R.; Hijum, S.A.F.T. van; Leulier, F.

    2015-01-01

    Lactobacillus plantarum is a versatile bacterial species that is isolated mostly from foods. Here, we present the first genome sequence of L. plantarum strain NIZO2877 isolated from a hot dog in Vietnam. Its two contigs represent a nearly complete genome sequence.

  3. Complete Genome Sequence of Lactobacillus plantarum CGMCC 8198

    Science.gov (United States)

    Dong, Qing-Qing; Hu, Hai-Jie; Wang, Qiu-Tong; Gu, Xiang-Chao; Zhou, Hao; Zhou, Wen-Juan; Ni, Xiao-Meng

    2017-01-01

    ABSTRACT We report the complete genome sequence of Lactobacillus plantarum CGMCC 8198, a novel probiotic strain isolated from fermented herbage. We have determined the complete genome sequence of strain L. plantarum CGMCC 8198, which consists of genes that are likely to be involved in dairy fermentation and that have probiotic qualities. PMID:28183756

  4. Draft Genome Sequence of Tannerella forsythia Type Strain ATCC 43037.

    Science.gov (United States)

    Friedrich, Valentin; Pabinger, Stephan; Chen, Tsute; Messner, Paul; Dewhirst, Floyd E; Schäffer, Christina

    2015-06-11

    Tannerella forsythia is an oral pathogen implicated in the development of periodontitis. Here, we report the draft genome sequence of the Tannerella forsythia strain ATCC 43037. The previously available genome of this designation (NCBI reference sequence NC_016610.1) was discovered to be derived from a different strain, FDC 92A2 (= ATCC BAA-2717).

  5. Draft Genome Sequence of Tannerella forsythia Type Strain ATCC 43037

    OpenAIRE

    Friedrich, Valentin; Pabinger, Stephan; Chen, Tsute; Messner, Paul; Dewhirst, Floyd E.; Schäffer, Christina

    2015-01-01

    Tannerella forsythia is an oral pathogen implicated in the development of periodontitis. Here, we report the draft genome sequence of the Tannerella forsythia strain ATCC 43037. The previously available genome of this designation (NCBI reference sequence NC_016610.1) was discovered to be derived from a different strain, FDC 92A2 (= ATCC BAA-2717).

  6. Unexpected cross-species contamination in genome sequencing projects

    Directory of Open Access Journals (Sweden)

    Samier Merchant

    2014-11-01

    Full Text Available The raw data from a genome sequencing project sometimes contains DNA from contaminating organisms, which may be introduced during sample collection or sequence preparation. In some instances, these contaminants remain in the sequence even after assembly and deposition of the genome into public databases. As a result, searches of these databases may yield erroneous and confusing results. We used efficient microbiome analysis software to scan the draft assembly of domestic cow, Bos taurus, and identify 173 small contigs that appeared to derive from microbial contaminants. In the course of verifying these findings, we discovered that one genome, Neisseria gonorrhoeae TCDC-NG08107, although putatively a complete genome, contained multiple sequences that actually derived from the cow and sheep genomes. Our findings illustrate the need to carefully validate findings of anomalous DNA that rely on comparisons to either draft or finished genomes.

  7. Comparison of 61 Sequenced Escherichia coli Genomes

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Wassenaar, T. M.; Ussery, David

    2010-01-01

    MLST was performed, many of the various strains appear jumbled and less well resolved. The predicted pan-genome comprises 15,741 gene families, and only 993 (6%) of the families are represented in every genome, comprising the core genome. The variable or 'accessory' genes thus make up more than 90......% of the pan-genome and about 80% of a typical genome; some of these variable genes tend to be co-localized on genomic islands. The diversity within the species E. coli, and the overlap in gene content between this and related species, suggests a continuum rather than sharp species borders in this group...

  8. Draft sequences of the radish (Raphanus sativus L.) genome.

    Science.gov (United States)

    Kitashiba, Hiroyasu; Li, Feng; Hirakawa, Hideki; Kawanabe, Takahiro; Zou, Zhongwei; Hasegawa, Yoichi; Tonosaki, Kaoru; Shirasawa, Sachiko; Fukushima, Aki; Yokoi, Shuji; Takahata, Yoshihito; Kakizaki, Tomohiro; Ishida, Masahiko; Okamoto, Shunsuke; Sakamoto, Koji; Shirasawa, Kenta; Tabata, Satoshi; Nishio, Takeshi

    2014-10-01

    Radish (Raphanus sativus L., n = 9) is one of the major vegetables in Asia. Since the genomes of Brassica and related species including radish underwent genome rearrangement, it is quite difficult to perform functional analysis based on the reported genomic sequence of Brassica rapa. Therefore, we performed genome sequencing of radish. Short reads of genomic sequences of 191.1 Gb were obtained by next-generation sequencing (NGS) for a radish inbred line, and 76,592 scaffolds of ≥ 300 bp were constructed along with the bacterial artificial chromosome-end sequences. Finally, the whole draft genomic sequence of 402 Mb spanning 75.9% of the estimated genomic size and containing 61,572 predicted genes was obtained. Subsequently, 221 single nucleotide polymorphism markers and 768 PCR-RFLP markers were used together with the 746 markers produced in our previous study for the construction of a linkage map. The map was combined further with another radish linkage map constructed mainly with expressed sequence tag-simple sequence repeat markers into a high-density integrated map of 1,166 cM with 2,553 DNA markers. A total of 1,345 scaffolds were assigned to the linkage map, spanning 116.0 Mb. Bulked PCR products amplified by 2,880 primer pairs were sequenced by NGS, and SNPs in eight inbred lines were identified.

  9. Ancient Human Genome Sequence of an Extinct Palaeo-Eskimo

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Li, Yingrui; Lindgreen, Stinus;

    2010-01-01

    We report here the genome sequence of an ancient human. Obtained from approximately 4,000-year-old permafrost-preserved hair, the genome represents a male individual from the first known culture to settle in Greenland. Sequenced to an average depth of 20x, we recover 79% of the diploid genome, an...... for a migration from Siberia into the New World some 5,500 years ago, independent of that giving rise to the modern Native Americans and Inuit....

  10. Whole-Genome Sequences of Thirteen Isolates of Borrelia burgdorferi

    Energy Technology Data Exchange (ETDEWEB)

    Schutzer S. E.; Dunn J.; Fraser-Liggett, C. M.; Casjens, S. R.; Qiu, W.-G.; Mongodin, E. F.; Luft, B. J.

    2011-02-01

    Borrelia burgdorferi is a causative agent of Lyme disease in North America and Eurasia. The first complete genome sequence of B. burgdorferi strain 31, available for more than a decade, has assisted research on the pathogenesis of Lyme disease. Because a single genome sequence is not sufficient to understand the relationship between genotypic and geographic variation and disease phenotype, we determined the whole-genome sequences of 13 additional B. burgdorferi isolates that span the range of natural variation. These sequences should allow improved understanding of pathogenesis and provide a foundation for novel detection, diagnosis, and prevention strategies.

  11. Scrutinizing virus genome termini by high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Shasha Li

    Full Text Available Analysis of genomic terminal sequences has been a major step in studies on viral DNA replication and packaging mechanisms. However, traditional methods to study genome termini are challenging due to the time-consuming protocols and their inefficiency where critical details are lost easily. Recent advances in next generation sequencing (NGS have enabled it to be a powerful tool to study genome termini. In this study, using NGS we sequenced one iridovirus genome and twenty phage genomes and confirmed for the first time that the high frequency sequences (HFSs found in the NGS reads are indeed the terminal sequences of viral genomes. Further, we established a criterion to distinguish the type of termini and the viral packaging mode. We also obtained additional terminal details such as terminal repeats, multi-termini, asymmetric termini. With this approach, we were able to simultaneously detect details of the genome termini as well as obtain the complete sequence of bacteriophage genomes. Theoretically, this application can be further extended to analyze larger and more complicated genomes of plant and animal viruses. This study proposed a novel and efficient method for research on viral replication, packaging, terminase activity, transcription regulation, and metabolism of the host cell.

  12. The genome sequence of Schizosaccharomyces pombe.

    Science.gov (United States)

    Wood, V; Gwilliam, R; Rajandream, M-A; Lyne, M; Lyne, R; Stewart, A; Sgouros, J; Peat, N; Hayles, J; Baker, S; Basham, D; Bowman, S; Brooks, K; Brown, D; Brown, S; Chillingworth, T; Churcher, C; Collins, M; Connor, R; Cronin, A; Davis, P; Feltwell, T; Fraser, A; Gentles, S; Goble, A; Hamlin, N; Harris, D; Hidalgo, J; Hodgson, G; Holroyd, S; Hornsby, T; Howarth, S; Huckle, E J; Hunt, S; Jagels, K; James, K; Jones, L; Jones, M; Leather, S; McDonald, S; McLean, J; Mooney, P; Moule, S; Mungall, K; Murphy, L; Niblett, D; Odell, C; Oliver, K; O'Neil, S; Pearson, D; Quail, M A; Rabbinowitsch, E; Rutherford, K; Rutter, S; Saunders, D; Seeger, K; Sharp, S; Skelton, J; Simmonds, M; Squares, R; Squares, S; Stevens, K; Taylor, K; Taylor, R G; Tivey, A; Walsh, S; Warren, T; Whitehead, S; Woodward, J; Volckaert, G; Aert, R; Robben, J; Grymonprez, B; Weltjens, I; Vanstreels, E; Rieger, M; Schäfer, M; Müller-Auer, S; Gabel, C; Fuchs, M; Düsterhöft, A; Fritzc, C; Holzer, E; Moestl, D; Hilbert, H; Borzym, K; Langer, I; Beck, A; Lehrach, H; Reinhardt, R; Pohl, T M; Eger, P; Zimmermann, W; Wedler, H; Wambutt, R; Purnelle, B; Goffeau, A; Cadieu, E; Dréano, S; Gloux, S; Lelaure, V; Mottier, S; Galibert, F; Aves, S J; Xiang, Z; Hunt, C; Moore, K; Hurst, S M; Lucas, M; Rochet, M; Gaillardin, C; Tallada, V A; Garzon, A; Thode, G; Daga, R R; Cruzado, L; Jimenez, J; Sánchez, M; del Rey, F; Benito, J; Domínguez, A; Revuelta, J L; Moreno, S; Armstrong, J; Forsburg, S L; Cerutti, L; Lowe, T; McCombie, W R; Paulsen, I; Potashkin, J; Shpakovski, G V; Ussery, D; Barrell, B G; Nurse, P; Cerrutti, L

    2002-02-21

    We have sequenced and annotated the genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote: 4,824. The centromeres are between 35 and 110 kilobases (kb) and contain related repeats including a highly conserved 1.8-kb element. Regions upstream of genes are longer than in budding yeast (Saccharomyces cerevisiae), possibly reflecting more-extended control regions. Some 43% of the genes contain introns, of which there are 4,730. Fifty genes have significant similarity with human disease genes; half of these are cancer related. We identify highly conserved genes important for eukaryotic cell organization including those required for the cytoskeleton, compartmentation, cell-cycle control, proteolysis, protein phosphorylation and RNA splicing. These genes may have originated with the appearance of eukaryotic life. Few similarly conserved genes that are important for multicellular organization were identified, suggesting that the transition from prokaryotes to eukaryotes required more new genes than did the transition from unicellular to multicellular organization.

  13. Generation of physical map contig-specific sequences useful for whole genome sequence scaffolding.

    Directory of Open Access Journals (Sweden)

    Yanliang Jiang

    Full Text Available Along with the rapid advances of the nextgen sequencing technologies, more and more species are added to the list of organisms whose whole genomes are sequenced. However, the assembled draft genome of many organisms consists of numerous small contigs, due to the short length of the reads generated by nextgen sequencing platforms. In order to improve the assembly and bring the genome contigs together, more genome resources are needed. In this study, we developed a strategy to generate a valuable genome resource, physical map contig-specific sequences, which are randomly distributed genome sequences in each physical contig. Two-dimensional tagging method was used to create specific tags for 1,824 physical contigs, in which the cost was dramatically reduced. A total of 94,111,841 100-bp reads and 315,277 assembled contigs are identified containing physical map contig-specific tags. The physical map contig-specific sequences along with the currently available BAC end sequences were then used to anchor the catfish draft genome contigs. A total of 156,457 genome contigs (~79% of whole genome sequencing assembly were anchored and grouped into 1,824 pools, in which 16,680 unique genes were annotated. The physical map contig-specific sequences are valuable resources to link physical map, genetic linkage map and draft whole genome sequences, consequently have the capability to improve the whole genome sequences assembly and scaffolding, and improve the genome-wide comparative analysis as well. The strategy developed in this study could also be adopted in other species whose whole genome assembly is still facing a challenge.

  14. Generation of Physical Map Contig-Specific Sequences Useful for Whole Genome Sequence Scaffolding

    Science.gov (United States)

    Jiang, Yanliang; Ninwichian, Parichart; Liu, Shikai; Zhang, Jiaren; Kucuktas, Huseyin; Sun, Fanyue; Kaltenboeck, Ludmilla; Sun, Luyang; Bao, Lisui; Liu, Zhanjiang

    2013-01-01

    Along with the rapid advances of the nextgen sequencing technologies, more and more species are added to the list of organisms whose whole genomes are sequenced. However, the assembled draft genome of many organisms consists of numerous small contigs, due to the short length of the reads generated by nextgen sequencing platforms. In order to improve the assembly and bring the genome contigs together, more genome resources are needed. In this study, we developed a strategy to generate a valuable genome resource, physical map contig-specific sequences, which are randomly distributed genome sequences in each physical contig. Two-dimensional tagging method was used to create specific tags for 1,824 physical contigs, in which the cost was dramatically reduced. A total of 94,111,841 100-bp reads and 315,277 assembled contigs are identified containing physical map contig-specific tags. The physical map contig-specific sequences along with the currently available BAC end sequences were then used to anchor the catfish draft genome contigs. A total of 156,457 genome contigs (~79% of whole genome sequencing assembly) were anchored and grouped into 1,824 pools, in which 16,680 unique genes were annotated. The physical map contig-specific sequences are valuable resources to link physical map, genetic linkage map and draft whole genome sequences, consequently have the capability to improve the whole genome sequences assembly and scaffolding, and improve the genome-wide comparative analysis as well. The strategy developed in this study could also be adopted in other species whose whole genome assembly is still facing a challenge. PMID:24205335

  15. The minimum information about a genome sequence (MIGS) specification

    DEFF Research Database (Denmark)

    Field, D; Garrity, G; Gray, T;

    2008-01-01

    the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources...... that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the 'transparency' of the information contained in existing genomic databases....

  16. Genomic libraries: II. Subcloning, sequencing, and assembling large-insert genomic DNA clones.

    Science.gov (United States)

    Quail, Mike A; Matthews, Lucy; Sims, Sarah; Lloyd, Christine; Beasley, Helen; Baxter, Simon W

    2011-01-01

    Sequencing large insert clones to completion is useful for characterizing specific genomic regions, identifying haplotypes, and closing gaps in whole genome sequencing projects. Despite being a standard technique in molecular laboratories, DNA sequencing using the Sanger method can be highly problematic when complex secondary structures or sequence repeats are encountered in genomic clones. Here, we describe methods to isolate DNA from a large insert clone (fosmid or BAC), subclone the sample, and sequence the region to the highest industry standard. Troubleshooting solutions for sequencing difficult templates are discussed.

  17. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    Energy Technology Data Exchange (ETDEWEB)

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.; Kuehl, Jennifer V.; Boore, Jeffrey L.; dePamphilis, Claude W.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. A minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.

  18. A Probabilistic Genome-Wide Gene Reading Frame Sequence Model

    DEFF Research Database (Denmark)

    Have, Christian Theil; Mørk, Søren

    We introduce a new type of probabilistic sequence model, that model the sequential composition of reading frames of genes in a genome. Our approach extends gene finders with a model of the sequential composition of genes at the genome-level -- effectively producing a sequential genome annotation...... and are evaluated by the effect on prediction performance. Since bacterial gene finding to a large extent is a solved problem it forms an ideal proving ground for evaluating the explicit modeling of larger scale gene sequence composition of genomes. We conclude that the sequential composition of gene reading frames...... as output. The model can be used to obtain the most probable genome annotation based on a combination of i: a gene finder score of each gene candidate and ii: the sequence of the reading frames of gene candidates through a genome. The model --- as well as a higher order variant --- is developed and tested...

  19. Determining and comparing protein function in Bacterial genome sequences

    DEFF Research Database (Denmark)

    Vesth, Tammi Camilla

    In November 2013, there was around 21.000 different prokaryotic genomes sequenced and publicly available, and the number is growing daily with another 20.000 or more genomes expected to be sequenced and deposited by the end of 2014. An important part of the analysis of this data is the functional...... on known functions. This thesis describes the development of new tools for comparative functional annotation and a system for comparative genomics in general. As novel sequenced genomes are becoming more readily available, there is a need for standard analysis tools. The system CMG-biotools is presented...... here as an example of such a system and was used to analyze a set of genomes from the Negativicutes class, a group of bacteria closely related to Gram positives but which has a different cell wall structure and stains Gram negative, as the name indicates. The results of this work show that genomes...

  20. Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data.

    Science.gov (United States)

    Desai, Aarti; Marwah, Veer Singh; Yadav, Akshay; Jha, Vineet; Dhaygude, Kishor; Bangar, Ujwala; Kulkarni, Vivek; Jere, Abhay

    2013-01-01

    Next Generation Sequencing (NGS) is a disruptive technology that has found widespread acceptance in the life sciences research community. The high throughput and low cost of sequencing has encouraged researchers to undertake ambitious genomic projects, especially in de novo genome sequencing. Currently, NGS systems generate sequence data as short reads and de novo genome assembly using these short reads is computationally very intensive. Due to lower cost of sequencing and higher throughput, NGS systems now provide the ability to sequence genomes at high depth. However, currently no report is available highlighting the impact of high sequence depth on genome assembly using real data sets and multiple assembly algorithms. Recently, some studies have evaluated the impact of sequence coverage, error rate and average read length on genome assembly using multiple assembly algorithms, however, these evaluations were performed using simulated datasets. One limitation of using simulated datasets is that variables such as error rates, read length and coverage which are known to impact genome assembly are carefully controlled. Hence, this study was undertaken to identify the minimum depth of sequencing required for de novo assembly for different sized genomes using graph based assembly algorithms and real datasets. Illumina reads for E.coli (4.6 MB) S.kudriavzevii (11.18 MB) and C.elegans (100 MB) were assembled using SOAPdenovo, Velvet, ABySS, Meraculous and IDBA-UD. Our analysis shows that 50X is the optimum read depth for assembling these genomes using all assemblers except Meraculous which requires 100X read depth. Moreover, our analysis shows that de novo assembly from 50X read data requires only 6-40 GB RAM depending on the genome size and assembly algorithm used. We believe that this information can be extremely valuable for researchers in designing experiments and multiplexing which will enable optimum utilization of sequencing as well as analysis resources.

  1. Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT)

    Energy Technology Data Exchange (ETDEWEB)

    Clum, Alicia; Nolan, Matt; Lang, Elke; Glavina Del Rio, Tijana; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Goker, Markus; Spring, Stefan; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Chain, Patrick; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Lapidus, Alla

    2009-05-20

    Acidimicrobium ferrooxidans (Clark and Norris 1996) is the sole and type species of the genus, which until recently was the only genus within the actinobacterial family Acidimicrobiaceae and in the order Acidomicrobiales. Rapid oxidation of iron pyrite during autotrophic growth in the absence of an enhanced CO2 concentration is characteristic for A. ferrooxidans. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the order Acidomicrobiales, and the 2,158,157 bp long single replicon genome with its 2038 protein coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  2. Complete genome sequence of Sulfurospirillum deleyianum type strain (5175T)

    Energy Technology Data Exchange (ETDEWEB)

    Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Lang, Elke [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2010-01-01

    Sulfurospirillum deleyianum Schumacher et al. 1993 is the type species of the genus Sulfurospirillum. S. deleyianum is a model organism for studying sulfur reduction and dissimilatory nitrate reduction as energy source for growth. Also, it is a prominent model organism for studying the structural and functional characteristics of the cytochrome c nitrite reductase. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the genus Sulfurospirillum. The 2,306,351 bp long genome with its 2291 protein-coding and 52 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  3. Complete genome sequence of Klebsiella pneumoniae phage JD001.

    Science.gov (United States)

    Cui, Zelin; Shen, Wenbin; Wang, Zheng; Zhang, Haotian; Me, Rao; Wang, Yanchun; Zeng, Lingbin; Zhu, Yongzhang; Qin, Jinhong; He, Ping; Guo, Xiaokui

    2012-12-01

    Klebsiella pneumoniae is a member of the family Enterobacteriaceae, opportunistic pathogens that are among the eight most prevalent infectious agents in hospitals. The emergence of multidrug-resistant strains of K. pneumoniae has became a public health problem globally. To develop an effective antimicrobial agent, we isolated a bacteriophage, named JD001, from seawater and sequenced its genome. Comparative genome analysis of phage JD001 with other K. pneumoniae bacteriophages revealed that phage JD001 has little similarity to previously published K. pneumoniae phages KP15, KP32, KP34, and phiKO2. Here we announce the complete genome sequence of JD001 and report major findings from the genomic analysis.

  4. Complete genome sequence of Gordonia bronchialis type strain (3410T)

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Jando, Marlen [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J C [U.S. Department of Energy, Joint Genome Institute; Brettin, Thomas S [ORNL; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

    2010-01-01

    Gordonia bronchialis Tsukamura 1971 is the type species of the genus. G. bronchialis is a human-pathogenic organism that has been isolated from a large variety of human tissues. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the family Gordoniaceae. The 5,290,012 bp long genome with its 4,944 protein-coding and 55 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  5. Oxford Nanopore MinION Sequencing and Genome Assembly

    Institute of Scientific and Technical Information of China (English)

    Hengyun Lu; Francesca Giordano; Zemin Ning

    2016-01-01

    The revolution of genome sequencing is continuing after the successful second-generation sequencing (SGS) technology. The third-generation sequencing (TGS) technology, led by Pacific Biosciences (PacBio), is progressing rapidly, moving from a technology once only capable of providing data for small genome analysis, or for performing targeted screening, to one that pro-mises high quality de novo assembly and structural variation detection for human-sized genomes. In 2014, the MinION, the first commercial sequencer using nanopore technology, was released by Oxford Nanopore Technologies (ONT). MinION identifies DNA bases by measuring the changes in electrical conductivity generated as DNA strands pass through a biological pore. Its portability, affordability, and speed in data production makes it suitable for real-time applications, the release of the long read sequencer MinION has thus generated much excitement and interest in the geno-mics community. While de novo genome assemblies can be cheaply produced from SGS data, assem-bly continuity is often relatively poor, due to the limited ability of short reads to handle long repeats. Assembly quality can be greatly improved by using TGS long reads, since repetitive regions can be easily expanded into using longer sequencing lengths, despite having higher error rates at the base level. The potential of nanopore sequencing has been demonstrated by various studies in gen-ome surveillance at locations where rapid and reliable sequencing is needed, but where resources are limited.

  6. The Genomic Scrapheap Challenge; Extracting Relevant Data from Unmapped Whole Genome Sequencing Reads, Including Strain Specific Genomic Segments, in Rats.

    Science.gov (United States)

    van der Weide, Robin H; Simonis, Marieke; Hermsen, Roel; Toonen, Pim; Cuppen, Edwin; de Ligt, Joep

    2016-01-01

    Unmapped next-generation sequencing reads are typically ignored while they contain biologically relevant information. We systematically analyzed unmapped reads from whole genome sequencing of 33 inbred rat strains. High quality reads were selected and enriched for biologically relevant sequences; similarity-based analysis revealed clustering similar to previously reported phylogenetic trees. Our results demonstrate that on average 20% of all unmapped reads harbor sequences that can be used to improve reference genomes and generate hypotheses on potential genotype-phenotype relationships. Analysis pipelines would benefit from incorporating the described methods and reference genomes would benefit from inclusion of the genomic segments obtained through these efforts.

  7. Genome sequencing and annotation of Aeromonas sp. HZM

    Directory of Open Access Journals (Sweden)

    Patric Chua

    2015-09-01

    Full Text Available We report the draft genome sequence of Aeromonas sp. strain HZM, isolated from tropical peat swamp forest soil. The draft genome size is 4,451,364 bp with a G + C content of 61.7% and contains 10 rRNA sequences (eight copies of 5S rRNA genes, single copy of 16S and 23S rRNA each. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. JEMQ00000000.

  8. Complete Genome Sequence of Phytopathogenic Pectobacterium atrosepticum Bacteriophage Peat1.

    Science.gov (United States)

    Kalischuk, Melanie; Hachey, John; Kawchuk, Lawrence

    2015-08-13

    Pectobacterium atrosepticum is a common phytopathogen causing significant economic losses worldwide. To develop a biocontrol strategy for this blackleg pathogen of solanaceous plants, P. atrosepticum bacteriophage Peat1 was isolated and its genome completely sequenced. Interestingly, morphological and sequence analyses of the 45,633-bp genome revealed that phage Peat1 is a member of the family Podoviridae and most closely resembles the Klebsiella pneumoniae bacteriophage KP34. This is the first published complete genome sequence of a phytopathogenic P. atrosepticum bacteriophage, and details provide important information for the development of biocontrol by advancing our understanding of phage-phytopathogen interactions.

  9. MIPS: a database for genomes and protein sequences.

    Science.gov (United States)

    Mewes, H W; Frishman, D; Güldener, U; Mannhaupt, G; Mayer, K; Mokrejs, M; Morgenstern, B; Münsterkötter, M; Rudd, S; Weil, B

    2002-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) continues to provide genome-related information in a systematic way. MIPS supports both national and European sequencing and functional analysis projects, develops and maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences, and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the databases for the comprehensive set of genomes (PEDANT genomes), the database of annotated human EST clusters (HIB), the database of complete cDNAs from the DHGP (German Human Genome Project), as well as the project specific databases for the GABI (Genome Analysis in Plants) and HNB (Helmholtz-Netzwerk Bioinformatik) networks. The Arabidospsis thaliana database (MATDB), the database of mitochondrial proteins (MITOP) and our contribution to the PIR International Protein Sequence Database have been described elsewhere [Schoof et al. (2002) Nucleic Acids Res., 30, 91-93; Scharfe et al. (2000) Nucleic Acids Res., 28, 155-158; Barker et al. (2001) Nucleic Acids Res., 29, 29-32]. All databases described, the protein analysis tools provided and the detailed descriptions of our projects can be accessed through the MIPS World Wide Web server (http://mips.gsf.de).

  10. ICDS database: interrupted CoDing sequences in prokaryotic genomes.

    Science.gov (United States)

    Perrodou, Emmanuel; Deshayes, Caroline; Muller, Jean; Schaeffer, Christine; Van Dorsselaer, Alain; Ripp, Raymond; Poch, Olivier; Reyrat, Jean-Marc; Lecompte, Odile

    2006-01-01

    Unrecognized frameshifts, in-frame stop codons and sequencing errors lead to Interrupted CoDing Sequence (ICDS) that can seriously affect all subsequent steps of functional characterization, from in silico analysis to high-throughput proteomic projects. Here, we describe the Interrupted CoDing Sequence database containing ICDS detected by a similarity-based approach in 80 complete prokaryotic genomes. ICDS can be retrieved by species browsing or similarity searches via a web interface (http://www-bio3d-igbmc.u-strasbg.fr/ICDS/). The definition of each interrupted gene is provided as well as the ICDS genomic localization with the surrounding sequence. Furthermore, to facilitate the experimental characterization of ICDS, we propose optimized primers for re-sequencing purposes. The database will be regularly updated with additional data from ongoing sequenced genomes. Our strategy has been validated by three independent tests: (i) ICDS prediction on a benchmark of artificially created frameshifts, (ii) comparison of predicted ICDS and results obtained from the comparison of the two genomic sequences of Bacillus licheniformis strain ATCC 14580 and (iii) re-sequencing of 25 predicted ICDS of the recently sequenced genome of Mycobacterium smegmatis. This allows us to estimate the specificity and sensitivity (95 and 82%, respectively) of our program and the efficiency of primer determination.

  11. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens.

    Directory of Open Access Journals (Sweden)

    Martijn Staats

    Full Text Available Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22-82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus were generated with 81.4-97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2-71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes, but at least generating vital comparative genomic data for testing (phylogenetic, demographic and genetic hypotheses, that become increasingly more

  12. Real-time, portable genome sequencing for Ebola surveillance

    Science.gov (United States)

    Bore, Joseph Akoi; Koundouno, Raymond; Dudas, Gytis; Mikhail, Amy; Ouédraogo, Nobila; Afrough, Babak; Bah, Amadou; Baum, Jonathan HJ; Becker-Ziaja, Beate; Boettcher, Jan-Peter; Cabeza-Cabrerizo, Mar; Camino-Sanchez, Alvaro; Carter, Lisa L.; Doerrbecker, Juiliane; Enkirch, Theresa; Dorival, Isabel Graciela García; Hetzelt, Nicole; Hinzmann, Julia; Holm, Tobias; Kafetzopoulou, Liana Eleni; Koropogui, Michel; Kosgey, Abigail; Kuisma, Eeva; Logue, Christopher H; Mazzarelli, Antonio; Meisel, Sarah; Mertens, Marc; Michel, Janine; Ngabo, Didier; Nitzsche, Katja; Pallash, Elisa; Patrono, Livia Victoria; Portmann, Jasmine; Repits, Johanna Gabriella; Rickett, Natasha Yasmin; Sachse, Andrea; Singethan, Katrin; Vitoriano, Inês; Yemanaberhan, Rahel L; Zekeng, Elsa G; Trina, Racine; Bello, Alexander; Sall, Amadou Alpha; Faye, Ousmane; Faye, Oumar; Magassouba, N’Faly; Williams, Cecelia V.; Amburgey, Victoria; Winona, Linda; Davis, Emily; Gerlach, Jon; Washington, Franck; Monteil, Vanessa; Jourdain, Marine; Bererd, Marion; Camara, Alimou; Somlare, Hermann; Camara, Abdoulaye; Gerard, Marianne; Bado, Guillaume; Baillet, Bernard; Delaune, Déborah; Nebie, Koumpingnin Yacouba; Diarra, Abdoulaye; Savane, Yacouba; Pallawo, Raymond Bernard; Gutierrez, Giovanna Jaramillo; Milhano, Natacha; Roger, Isabelle; Williams, Christopher J; Yattara, Facinet; Lewandowski, Kuiama; Taylor, Jamie; Rachwal, Philip; Turner, Daniel; Pollakis, Georgios; Hiscox, Julian A.; Matthews, David A.; O’Shea, Matthew K.; Johnston, Andrew McD; Wilson, Duncan; Hutley, Emma; Smit, Erasmus; Di Caro, Antonino; Woelfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Gabriel, Martin; Weller, Simon A.; Koivogui, Lamine; Diallo, Boubacar; Keita, Sakoba; Rambaut, Andrew; Formenty, Pierre; Gunther, Stephan; Carroll, Miles W.

    2016-01-01

    The Ebola virus disease (EVD) epidemic in West Africa is the largest on record, responsible for >28,599 cases and >11,299 deaths 1. Genome sequencing in viral outbreaks is desirable in order to characterize the infectious agent to determine its evolutionary rate, signatures of host adaptation, identification and monitoring of diagnostic targets and responses to vaccines and treatments. The Ebola virus genome (EBOV) substitution rate in the Makona strain has been estimated at between 0.87 × 10−3 to 1.42 × 10−3 mutations per site per year. This is equivalent to 16 to 27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic 2-7. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought-after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions 8. Genomic surveillance during the epidemic has been sporadic due to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities 9. In order to address this problem, we devised a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. Here we present sequence data and analysis of 142 Ebola virus (EBOV) samples collected during the period March to October 2015. We were able to generate results in less than 24 hours after receiving an Ebola positive sample, with the sequencing process taking as little as 15-60 minutes. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks. PMID:26840485

  13. Complete genome sequence of Cellulomonas flavigena type strain (134T)

    Energy Technology Data Exchange (ETDEWEB)

    Abt, Birte [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Foster, Brian [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Clum, Alicia [U.S. Department of Energy, Joint Genome Institute; Sun, Hui [U.S. Department of Energy, Joint Genome Institute; Pukall, Rudiger [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2010-01-01

    Cellulomonas flavigena (Kellerman and McBeth 1912) Bergey et al. 1923 is the type species of the genus Cellulomonas of the actinobacterial family Cellulomonadaceae. Members of the genus Cellulomonas are of special interest for their ability to degrade cellulose and hemicellulose, particularly with regard to the use of biomass as an alternative energy source. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the genus Cellulomonas, and next to the human pathogen Tropheryma whipplei the second complete genome sequence within the actinobacterial family Cellulomonadaceae. The 4,123,179 bp long single replicon genome with its 3,735 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  14. Correction for Measurement Error from Genotyping-by-Sequencing in Genomic Variance and Genomic Prediction Models

    DEFF Research Database (Denmark)

    Ashraf, Bilal; Janss, Luc; Jensen, Just

    . In the current work we show how the correction for measurement error in GBSeq can also be applied in whole genome genomic variance and genomic prediction models. Bayesian whole-genome random regression models are proposed to allow implementation of large-scale SNP-based models with a per-SNP correction......Genotyping-by-sequencing (GBSeq) is becoming a cost-effective genotyping platform for species without available SNP arrays. GBSeq considers to sequence short reads from restriction sites covering a limited part of the genome (e.g., 5-10%) with low sequencing depth per individual (e.g., 5-10X per...... sample). The GBSeq data can be used directly in genomic models in the form of individual SNP allele-frequency estimates (e.g., reference reads/total reads per polymorphic site per individual), but is subject to measurement error due to the low sequencing depth per individual. Due to technical reasons...

  15. Analysis of Simple Sequence Repeats in Genomes of Rhizobia

    Institute of Scientific and Technical Information of China (English)

    GAO Ya-mei; HAN Yi-qiang; TANG Hui; SUN Dong-mei; WANG Yan-jie; WANG Wei-dong

    2008-01-01

    Simple sequence repeats (SSRs) or microsatellites, as genetic markers, are ubiquitous in genomes of various organisms. The analysis of SSR in rhizobia genome provides useful information for a variety of applications in population genetics of rhizobia. We analyzed the occurrences, relative abundance, and relative density of SSRs, the most common in Bradyrhizobium japonicum, Mesorhizobium loti, and Sinorhizobium meliloti genomes se-quenced in the microorganisms tandem repeats database, and SSRs in the three species genomes were compared with each other. The result showed that there were 1 410, 859, and 638 SSRs in B. japonicum, M. loti, and 5. meliloti genomes, respectively. In the genomes of B. japonicum, M. loti, and 5. meliloti, tetranucleotide, pentanucleotide, and hexanucleotide repeats were more abundant and indicated higher mutation rates in these species. The least abundance was mononucleotide repeat. The SSRs type and distribution were similar among these species.

  16. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tina T.; Pattyn, Pedro; Bakker, Erica G.; Cao, Jun; Cheng, Jan-Fang; Clark, Richard M.; Fahlgren, Noah; Fawcett, Jeffrey A.; Grimwood, Jane; Gundlach, Heidrun; Haberer, Georg; Hollister, Jesse D.; Ossowski, Stephan; Ottilar, Robert P.; Salamov, Asaf A.; Schneeberger, Korbinian; Spannagl, Manuel; Wang, Xi; Yang, Liang; Nasrallah, Mikhail E.; Bergelson, Joy; Carrington, James C.; Gaut, Brandon S.; Schmutz, Jeremy; Mayer, Klaus F. X.; Van de Peer, Yves; Grigoriev, Igor V.; Nordborg, Magnus; Weigel, Detlef; Guo, Ya-Long

    2011-04-29

    In our manuscript, we present a high-quality genome sequence of the Arabidopsis thaliana relative, Arabidopsis lyrata, produced by dideoxy sequencing. We have performed the usual types of genome analysis (gene annotation, dN/dS studies etc. etc.), but this is relegated to the Supporting Information. Instead, we focus on what was a major motivation for sequencing this genome, namely to understand how A. thaliana lost half its genome in a few million years and lived to tell the tale. The rather surprising conclusion is that there is not a single genomic feature that accounts for the reduced genome, but that every aspect centromeres, intergenic regions, transposable elements, gene family number is affected through hundreds of thousands of cuts. This strongly suggests that overall genome size in itself is what has been under selection, a suggestion that is strongly supported by our demonstration (using population genetics data from A. thaliana) that new deletions seem to be driven to fixation.

  17. Complete Genome Sequence of Mycobacterium phlei Type Strain RIVM601174

    KAUST Repository

    Abdallah, A. M.

    2012-05-24

    Mycobacterium phlei is a rapidly growing nontuberculous Mycobacterium species that is typically nonpathogenic, with few reported cases of human disease. Here we report the whole genome sequence of M. phlei type strain RIVM601174.

  18. Cancer Genome Sequencing and Its Implications for Personalized Cancer Vaccines

    Directory of Open Access Journals (Sweden)

    William E. Gillanders

    2011-11-01

    Full Text Available New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines.

  19. Cancer Genome Sequencing and Its Implications for Personalized Cancer Vaccines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lijin [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); Goedegebuure, Peter [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Mardis, Elaine R. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); The Genome Institute at Washington University School of Medicine, St. Louis, MO 63108 (United States); Ellis, Matthew J.C. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 (United States); Zhang, Xiuli; Herndon, John M. [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); Fleming, Timothy P. [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Carreno, Beatriz M. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 (United States); Hansen, Ted H. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Gillanders, William E., E-mail: gillandersw@wudosis.wustl.edu [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States)

    2011-11-25

    New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines.

  20. Draft Genome Sequence of Paecilomyces hepiali, Isolated from Cordyceps sinensis.

    Science.gov (United States)

    Yu, Yi; Wang, Wenting; Wang, Linping; Pang, Fang; Guo, Lanping; Song, Lai; Liu, Guiming; Feng, Chengqiang

    2016-07-07

    Paecilomyces hepiali is an endoparasitic fungus that commonly exists in the natural Cordyceps sinensis Here, we report the draft genome sequence of P. hepiali, which will facilitate the exploitation of medicinal compounds produced by the fungus.

  1. Draft Genome Sequences of Nine Cyanobacterial Strains from Diverse Habitats

    Science.gov (United States)

    Zhu, Tao; Hou, Shengwei

    2017-01-01

    ABSTRACT Here, we report the annotated draft genome sequences of nine different cyanobacteria, which were originally collected from different habitats, including hot springs, terrestrial, freshwater, and marine environments, and cover four of the five morphological subsections of cyanobacteria. PMID:28254973

  2. Draft Genome Sequence of Coprobacter fastidiosus NSB1T

    Science.gov (United States)

    Chaplin, A. V.; Efimov, B. A.; Khokhlova, E. V.; Kafarskaia, L. I.; Tupikin, A. E.; Kabilov, M. R.

    2014-01-01

    Coprobacter fastidiosus is a Gram-negative obligate anaerobic bacterium belonging to the phylum Bacteroidetes. In this work, we report the draft genome sequence of C. fastidiosus strain NSB1T isolated from human infant feces. PMID:24604645

  3. Comparative genomics beyond sequence-based alignments

    DEFF Research Database (Denmark)

    Þórarinsson, Elfar; Yao, Zizhen; Wiklund, Eric D.;

    2008-01-01

    Recent computational scans for non-coding RNAs (ncRNAs) in multiple organisms have relied on existing multiple sequence alignments. However, as sequence similarity drops, a key signal of RNA structure--frequent compensating base changes--is increasingly likely to cause sequence-based alignment me...

  4. Genome sequence of vanilla distortion mosaic virus infecting Coriandrum sativum.

    Science.gov (United States)

    Adams, I P; Rai, S; Deka, M; Harju, V; Hodges, T; Hayward, G; Skelton, A; Fox, A; Boonham, N

    2014-12-01

    The 9573-nucleotide genome of a potyvirus was sequenced from a Coriandrum sativum plant from India with viral symptoms. On analysis, this virus was shown to have greater than 85 % nucleotide sequence identity to vanilla distortion mosaic virus (VDMV). Analysis of the putative coat protein sequence confirmed that this virus was in fact VDMV, with greater than 91 % amino acid sequence identity. The genome appears to encode a 3083-amino-acid polyprotein potentially cleaved into the 10 mature proteins expected in potyviruses. Phylogenetic analysis confirmed that VDMV is a distinct but ungrouped member of the genus Potyvirus.

  5. Intra-species sequence comparisons for annotating genomes

    Energy Technology Data Exchange (ETDEWEB)

    Boffelli, Dario; Weer, Claire V.; Weng, Li; Lewis, Keith D.; Shoukry, Malak I.; Pachter, Lior; Keys, David N.; Rubin, Edward M.

    2004-07-15

    Analysis of sequence variation among members of a single species offers a potential approach to identify functional DNA elements responsible for biological features unique to that species. Due to its high rate of allelic polymorphism and ease of genetic manipulability, we chose the sea squirt, Ciona intestinalis, to explore intra-species sequence comparisons for genome annotation. A large number of C. intestinalis specimens were collected from four continents and a set of genomic intervals amplified, resequenced and analyzed to determine the mutation rates at each nucleotide in the sequence. We found that regions with low mutation rates efficiently demarcated functionally constrained sequences: these include a set of noncoding elements, which we showed in C intestinalis transgenic assays to act as tissue-specific enhancers, as well as the location of coding sequences. This illustrates that comparisons of multiple members of a species can be used for genome annotation, suggesting a path for the annotation of the sequenced genomes of organisms occupying uncharacterized phylogenetic branches of the animal kingdom and raises the possibility that the resequencing of a large number of Homo sapiens individuals might be used to annotate the human genome and identify sequences defining traits unique to our species. The sequence data from this study has been submitted to GenBank under accession nos. AY667278-AY667407.

  6. Genome Sequence of Mycobacterium Phage Waterfoul

    Science.gov (United States)

    Jackson, Paige N.; Embry, Ella K.; Johnson, Christa O.; Watson, Tiara L.; Weast, Sayre K.; DeGraw, Caroline J.; Douglas, Jessica R.; Sellers, J. Michael; D’Angelo, William A.

    2016-01-01

    Waterfoul is a newly isolated temperate siphovirus of Mycobacterium smegmatis mc2155. It was identified as a member of the K5 cluster of Mycobacterium phages and has a 61,248-bp genome with 95 predicted genes. PMID:27856585

  7. The complete chloroplast genome sequence of Abies nephrolepis (Pinaceae: Abietoideae

    Directory of Open Access Journals (Sweden)

    Dong-Keun Yi

    2016-06-01

    Full Text Available The plant chloroplast (cp genome has maintained a relatively conserved structure and gene content throughout evolution. Cp genome sequences have been used widely for resolving evolutionary and phylogenetic issues at various taxonomic levels of plants. Here, we report the complete cp genome of Abies nephrolepis. The A. nephrolepis cp genome is 121,336 base pairs (bp in length including a pair of short inverted repeat regions (IRa and IRb of 139 bp each separated by a small single copy (SSC region of 54,323 bp (SSC and a large single copy region of 66,735 bp (LSC. It contains 114 genes, 68 of which are protein coding genes, 35 tRNA and four rRNA genes, six open reading frames, and one pseudogene. Seventeen repeat units and 64 simple sequence repeats (SSR have been detected in A. nephrolepis cp genome. Large IR sequences locate in 42-kb inversion points (1186 bp. The A. nephrolepis cp genome is identical to Abies koreana’s which is closely related to taxa. Pairwise comparison between two cp genomes revealed 140 polymorphic sites in each. Complete cp genome sequence of A. nephrolepis has a significant potential to provide information on the evolutionary pattern of Abietoideae and valuable data for development of DNA markers for easy identification and classification.

  8. Complete Genome Sequence of Bacillus thuringiensis Bacteriophage Smudge.

    Science.gov (United States)

    Cornell, Jessica L; Breslin, Eileen; Schuhmacher, Zachary; Himelright, Madison; Berluti, Cassandra; Boyd, Charles; Carson, Rachel; Del Gallo, Elle; Giessler, Caris; Gilliam, Benjamin; Heatherly, Catherine; Nevin, Julius; Nguyen, Bryan; Nguyen, Justin; Parada, Jocelyn; Sutterfield, Blake; Tukruni, Muruj; Temple, Louise

    2016-08-18

    Smudge, a bacteriophage enriched from soil using Bacillus thuringiensis DSM-350 as the host, had its complete genome sequenced. Smudge is a myovirus with a genome consisting of 292 genes and was identified as belonging to the C1 cluster of Bacillus phages.

  9. Complete Genome Sequence of Bacillus thuringiensis Strain 407 Cry-

    OpenAIRE

    Poehlein, Anja; Liesegang, Heiko

    2013-01-01

    Bacillus thuringiensis is an insect pathogen that has been used widely as a biopesticide. Here, we report the genome sequence of strain 407 Cry-, which is used to study the genetic determinants of pathogenicity. The genome consists of a 5.5-Mb chromosome and nine plasmids, including a novel 502-kb megaplasmid.

  10. Complete genome sequence of Bifidobacterium bifidum S17.

    NARCIS (Netherlands)

    Zhurina, D.; Zomer, A.L.; Gleinser, M.; Brancaccio, V.F.; Auchter, M.; Waidmann, M.S.; Westermann, C.; Sinderen, D. van; Riedel, C.U.

    2011-01-01

    Here, we report on the first completely annotated genome sequence of a Bifidobacterium bifidum strain. B. bifidum S17, isolated from feces of a breast-fed infant, was shown to strongly adhere to intestinal epithelial cells and has potent anti-inflammatory activity in vitro and in vivo. The genome se

  11. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis

    NARCIS (Netherlands)

    Carlton, Jane M.; Hirt, Robert P.; Silva, Joana C.; Delcher, Arthur L.; Schatz, Michael; Zhao, Qi; Wortman, Jennifer R.; Bidwell, Shelby L.; Alsmark, U. Cecilia M.; Besteiro, Sebastien; Sicheritz-Ponten, Thomas; Noel, Christophe J.; Dacks, Joel B.; Foster, Peter G.; Simillion, Cedric; Van de Peer, Yves; Miranda-Saavedra, Diego; Barton, Geoffrey J.; Westrop, Gareth D.; Mueller, Sylke; Dessi, Daniele; Fiori, Pier Luigi; Ren, Qinghu; Paulsen, Ian; Zhang, Hanbang; Bastida-Corcuera, Felix D.; Simoes-Barbosa, Augusto; Brown, Mark T.; Hayes, Richard D.; Mukherjee, Mandira; Okumura, Cheryl Y.; Schneider, Rachel; Smith, Alias J.; Vanacova, Stepanka; Villalvazo, Maria; Haas, Brian J.; Pertea, Mihaela; Feldblyum, Tamara V.; Utterback, Terry R.; Shu, Chung-Li; Osoegawa, Kazutoyo; de Jong, Pieter J.; Hrdy, Ivan; Horvathova, Lenka; Zubacova, Zuzana; Dolezal, Pavel; Malik, Shehre-Banoo; Logsdon, John M.; Henze, Katrin; Gupta, Arti; Wang, Ching C.; Dunne, Rebecca L.; Upcroft, Jacqueline A.; Upcroft, Peter; White, Owen; Salzberg, Steven L.; Tang, Petrus; Chiu, Cheng-Hsun; Lee, Ying-Shiung; Embley, T. Martin; Coombs, Graham H.; Mottram, Jeremy C.; Tachezy, Jan; Fraser-Liggett, Claire M.; Johnson, Patricia J.

    2007-01-01

    We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the similar to 160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction wi

  12. Complete genome sequence of Aeromonas hydrophila AL06-06

    Science.gov (United States)

    Aeromonas hydrophila occurs in freshwater environments and infects fish and mammals. In this work, we report the complete genome sequence of Aeromonas hydrophila AL06-06, which was isolated from diseased goldfish and is being used for comparative genomic studies with A. hydrophila strains causing ba...

  13. Draft Genome Sequence of Bacillus tequilensis Strain FJAT-14262a

    OpenAIRE

    Chen, Qian-Qian; Liu, Bo; Liu, Guo-hong; Wang, Jie-ping; Che, Jian-Mei

    2015-01-01

    Bacillus tequilensis FJAT-14262a is a Gram-positive rod-shaped bacterium. Here, we report the 4,038,551-bp genome sequence of B. tequilensis FJAT-14262a, which will provide useful information for genomic taxonomy and phylogenomics of Bacillus.

  14. Draft Genome Sequence of Bacillus tequilensis Strain FJAT-14262a.

    Science.gov (United States)

    Chen, Qian-Qian; Liu, Bo; Liu, Guo-Hong; Wang, Jie-Ping; Che, Jian-Mei

    2015-11-12

    Bacillus tequilensis FJAT-14262a is a Gram-positive rod-shaped bacterium. Here, we report the 4,038,551-bp genome sequence of B. tequilensis FJAT-14262a, which will provide useful information for genomic taxonomy and phylogenomics of Bacillus.

  15. Whole-Genome Sequences of Three Symbiotic Endozoicomonas Bacteria

    KAUST Repository

    Neave, Matthew J.

    2014-08-14

    Members of the genus Endozoicomonas associate with a wide range of marine organisms. Here, we report on the whole-genome sequencing, assembly, and annotation of three Endozoicomonas type strains. These data will assist in exploring interactions between Endozoicomonas organisms and their hosts, and it will aid in the assembly of genomes from uncultivated Endozoicomonas spp.

  16. Draft genome sequences of 10 strains of the genus exiguobacterium.

    Science.gov (United States)

    Vishnivetskaya, Tatiana A; Chauhan, Archana; Layton, Alice C; Pfiffner, Susan M; Huntemann, Marcel; Copeland, Alex; Chen, Amy; Kyrpides, Nikos C; Markowitz, Victor M; Palaniappan, Krishna; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Andersen, Evan W; Pati, Amrita; Stamatis, Dimitrios; Reddy, T B K; Shapiro, Nicole; Nordberg, Henrik P; Cantor, Michael N; Hua, X Susan; Woyke, Tanja

    2014-10-16

    High-quality draft genome sequences were determined for 10 Exiguobacterium strains in order to provide insight into their evolutionary strategies for speciation and environmental adaptation. The selected genomes include psychrotrophic and thermophilic species from a range of habitats, which will allow for a comparison of metabolic pathways and stress response genes.

  17. Finished Genome Sequence of Collimonas arenae Cal35

    NARCIS (Netherlands)

    Wu, Je-Jia; de Jager, Victor; Deng, Wen-ling; Leveau, Johan

    2015-01-01

    We announce the finished genome sequence of soil forest isolate Collimonas arenae Cal35, which comprises a 5.6-Mbp chromosome and 41-kb plasmid. The Cal35 genome is the second one published for the bacterial genus Collimonas and represents the first opportunity for high-resolution comparison of geno

  18. Draft genome sequence of the silver pomfret fish, Pampus argenteus.

    Science.gov (United States)

    AlMomin, Sabah; Kumar, Vinod; Al-Amad, Sami; Al-Hussaini, Mohsen; Dashti, Talal; Al-Enezi, Khaznah; Akbar, Abrar

    2016-01-01

    Silver pomfret, Pampus argenteus, is a fish species from coastal waters. Despite its high commercial value, this edible fish has not been sequenced. Hence, its genetic and genomic studies have been limited. We report the first draft genome sequence of the silver pomfret obtained using a Next Generation Sequencing (NGS) technology. We assembled 38.7 Gb of nucleotides into scaffolds of 350 Mb with N50 of about 1.5 kb, using high quality paired end reads. These scaffolds represent 63.7% of the estimated silver pomfret genome length. The newly sequenced and assembled genome has 11.06% repetitive DNA regions, and this percentage is comparable to that of the tilapia genome. The genome analysis predicted 16 322 genes. About 91% of these genes showed homology with known proteins. Many gene clusters were annotated to protein and fatty-acid metabolism pathways that may be important in the context of the meat texture and immune system developmental processes. The reference genome can pave the way for the identification of many other genomic features that could improve breeding and population-management strategies, and it can also help characterize the genetic diversity of P. argenteus.

  19. Complete Genome Sequence of Pediococcus pentosaceus Strain SL4

    DEFF Research Database (Denmark)

    Dantoft, Shruti Harnal; Bielak, Eliza Maria; Seo, Jae-Gu;

    2013-01-01

    Pediococcus pentosaceus SL4 was isolated from a Korean fermented vegetable product, kimchi. We report here the whole-genome sequence (WGS) of P. pentosaceus SL4. The genome consists of a 1.79-Mb circular chromosome (G+C content of 37.3%) and seven distinct plasmids ranging in size from 4 kb to 50...

  20. Whole-genome sequence-based analysis of thyroid function

    DEFF Research Database (Denmark)

    Taylor, Peter N.; Porcu, Eleonora; Chew, Shelby

    2015-01-01

    Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N = 2,287). Using additional whole-genome seque...

  1. Complete Genome Sequence of Phytopathogenic Pectobacterium atrosepticum Bacteriophage Peat1

    OpenAIRE

    Kalischuk, Melanie; Hachey, John; Kawchuk, Lawrence

    2015-01-01

    Pectobacterium atrosepticum is a common phytopathogen causing significant economic losses worldwide. To develop a biocontrol strategy for this blackleg pathogen of solanaceous plants, P. atrosepticum bacteriophage Peat1 was isolated and its genome completely sequenced. Interestingly, morphological and sequence analyses of the 45,633-bp genome revealed that phage Peat1 is a member of the family Podoviridae and most closely resembles the Klebsiella pneumoniae bacteriophage KP34. This is the fir...

  2. Draft genome sequence of Therminicola potens strain JR

    Energy Technology Data Exchange (ETDEWEB)

    Byrne-Bailey, K.G.; Wrighton, K.C.; Melnyk, R.A.; Agbo, P.; Hazen, T.C.; Coates, J.D.

    2010-07-01

    'Thermincola potens' strain JR is one of the first Gram-positive dissimilatory metal-reducing bacteria (DMRB) for which there is a complete genome sequence. Consistent with the physiology of this organism, preliminary annotation revealed an abundance of multiheme c-type cytochromes that are putatively associated with the periplasm and cell surface in a Gram-positive bacterium. Here we report the complete genome sequence of strain JR.

  3. Whole genome and transcriptome sequencing of a B3 thymoma.

    Directory of Open Access Journals (Sweden)

    Iacopo Petrini

    Full Text Available Molecular pathology of thymomas is poorly understood. Genomic aberrations are frequently identified in tumors but no extensive sequencing has been reported in thymomas. Here we present the first comprehensive view of a B3 thymoma at whole genome and transcriptome levels. A 55-year-old Caucasian female underwent complete resection of a stage IVA B3 thymoma. RNA and DNA were extracted from a snap frozen tumor sample with a fraction of cancer cells over 80%. We performed array comparative genomic hybridization using Agilent platform, transcriptome sequencing using HiSeq 2000 (Illumina and whole genome sequencing using Complete Genomics Inc platform. Whole genome sequencing determined, in tumor and normal, the sequence of both alleles in more than 95% of the reference genome (NCBI Build 37. Copy number (CN aberrations were comparable with those previously described for B3 thymomas, with CN gain of chromosome 1q, 5, 7 and X and CN loss of 3p, 6, 11q42.2-qter and q13. One translocation t(11;X was identified by whole genome sequencing and confirmed by PCR and Sanger sequencing. Ten single nucleotide variations (SNVs and 2 insertion/deletions (INDELs were identified; these mutations resulted in non-synonymous amino acid changes or affected splicing sites. The lack of common cancer-associated mutations in this patient suggests that thymomas may evolve through mechanisms distinctive from other tumor types, and supports the rationale for additional high-throughput sequencing screens to better understand the somatic genetic architecture of thymoma.

  4. Coelacanth genome sequence reveals the evolutionary history of vertebrate genes.

    Science.gov (United States)

    Noonan, James P; Grimwood, Jane; Danke, Joshua; Schmutz, Jeremy; Dickson, Mark; Amemiya, Chris T; Myers, Richard M

    2004-12-01

    The coelacanth is one of the nearest living relatives of tetrapods. However, a teleost species such as zebrafish or Fugu is typically used as the outgroup in current tetrapod comparative sequence analyses. Such studies are complicated by the fact that teleost genomes have undergone a whole-genome duplication event, as well as individual gene-duplication events. Here, we demonstrate the value of coelacanth genome sequence by complete sequencing and analysis of the protocadherin gene cluster of the Indonesian coelacanth, Latimeria menadoensis. We found that coelacanth has 49 protocadherin cluster genes organized in the same three ordered subclusters, alpha, beta, and gamma, as the 54 protocadherin cluster genes in human. In contrast, whole-genome and tandem duplications have generated two zebrafish protocadherin clusters comprised of at least 97 genes. Additionally, zebrafish protocadherins are far more prone to homogenizing gene conversion events than coelacanth protocadherins, suggesting that recombination- and duplication-driven plasticity may be a feature of teleost genomes. Our results indicate that coelacanth provides the ideal outgroup sequence against which tetrapod genomes can be measured. We therefore present L. menadoensis as a candidate for whole-genome sequencing.

  5. Large-Scale Sequencing: The Future of Genomic Sciences Colloquium

    Energy Technology Data Exchange (ETDEWEB)

    Margaret Riley; Merry Buckley

    2009-01-01

    Genetic sequencing and the various molecular techniques it has enabled have revolutionized the field of microbiology. Examining and comparing the genetic sequences borne by microbes - including bacteria, archaea, viruses, and microbial eukaryotes - provides researchers insights into the processes microbes carry out, their pathogenic traits, and new ways to use microorganisms in medicine and manufacturing. Until recently, sequencing entire microbial genomes has been laborious and expensive, and the decision to sequence the genome of an organism was made on a case-by-case basis by individual researchers and funding agencies. Now, thanks to new technologies, the cost and effort of sequencing is within reach for even the smallest facilities, and the ability to sequence the genomes of a significant fraction of microbial life may be possible. The availability of numerous microbial genomes will enable unprecedented insights into microbial evolution, function, and physiology. However, the current ad hoc approach to gathering sequence data has resulted in an unbalanced and highly biased sampling of microbial diversity. A well-coordinated, large-scale effort to target the breadth and depth of microbial diversity would result in the greatest impact. The American Academy of Microbiology convened a colloquium to discuss the scientific benefits of engaging in a large-scale, taxonomically-based sequencing project. A group of individuals with expertise in microbiology, genomics, informatics, ecology, and evolution deliberated on the issues inherent in such an effort and generated a set of specific recommendations for how best to proceed. The vast majority of microbes are presently uncultured and, thus, pose significant challenges to such a taxonomically-based approach to sampling genome diversity. However, we have yet to even scratch the surface of the genomic diversity among cultured microbes. A coordinated sequencing effort of cultured organisms is an appropriate place to begin

  6. Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species.

    Science.gov (United States)

    Hirakawa, Hideki; Shirasawa, Kenta; Kosugi, Shunichi; Tashiro, Kosuke; Nakayama, Shinobu; Yamada, Manabu; Kohara, Mistuyo; Watanabe, Akiko; Kishida, Yoshie; Fujishiro, Tsunakazu; Tsuruoka, Hisano; Minami, Chiharu; Sasamoto, Shigemi; Kato, Midori; Nanri, Keiko; Komaki, Akiko; Yanagi, Tomohiro; Guoxin, Qin; Maeda, Fumi; Ishikawa, Masami; Kuhara, Satoru; Sato, Shusei; Tabata, Satoshi; Isobe, Sachiko N

    2014-01-01

    Cultivated strawberry (Fragaria x ananassa) is octoploid and shows allogamous behaviour. The present study aims at dissecting this octoploid genome through comparison with its wild relatives, F. iinumae, F. nipponica, F. nubicola, and F. orientalis by de novo whole-genome sequencing on an Illumina and Roche 454 platforms. The total length of the assembled Illumina genome sequences obtained was 698 Mb for F. x ananassa, and ∼200 Mb each for the four wild species. Subsequently, a virtual reference genome termed FANhybrid_r1.2 was constructed by integrating the sequences of the four homoeologous subgenomes of F. x ananassa, from which heterozygous regions in the Roche 454 and Illumina genome sequences were eliminated. The total length of FANhybrid_r1.2 thus created was 173.2 Mb with the N50 length of 5137 bp. The Illumina-assembled genome sequences of F. x ananassa and the four wild species were then mapped onto the reference genome, along with the previously published F. vesca genome sequence to establish the subgenomic structure of F. x ananassa. The strategy adopted in this study has turned out to be successful in dissecting the genome of octoploid F. x ananassa and appears promising when applied to the analysis of other polyploid plant species.

  7. First fungal genome sequence from Africa: A preliminary analysis

    Directory of Open Access Journals (Sweden)

    Rene Sutherland

    2012-01-01

    Full Text Available Some of the most significant breakthroughs in the biological sciences this century will emerge from the development of next generation sequencing technologies. The ease of availability of DNA sequence made possible through these new technologies has given researchers opportunities to study organisms in a manner that was not possible with Sanger sequencing. Scientists will, therefore, need to embrace genomics, as well as develop and nurture the human capacity to sequence genomes and utilise the ’tsunami‘ of data that emerge from genome sequencing. In response to these challenges, we sequenced the genome of Fusarium circinatum, a fungal pathogen of pine that causes pitch canker, a disease of great concern to the South African forestry industry. The sequencing work was conducted in South Africa, making F. circinatum the first eukaryotic organism for which the complete genome has been sequenced locally. Here we report on the process that was followed to sequence, assemble and perform a preliminary characterisation of the genome. Furthermore, details of the computer annotation and manual curation of this genome are presented. The F. circinatum genome was found to be nearly 44 million bases in size, which is similar to that of four other Fusarium genomes that have been sequenced elsewhere. The genome contains just over 15 000 open reading frames, which is less than that of the related species, Fusarium oxysporum, but more than that for Fusarium verticillioides. Amongst the various putative gene clusters identified in F. circinatum, those encoding the secondary metabolites fumosin and fusarin appeared to harbour evidence of gene translocation. It is anticipated that similar comparisons of other loci will provide insights into the genetic basis for pathogenicity of the pitch canker pathogen. Perhaps more importantly, this project has engaged a relatively large group of scientists

  8. Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis.

    Science.gov (United States)

    Sato, Kengo; Kuroki, Yoko; Kumita, Wakako; Fujiyama, Asao; Toyoda, Atsushi; Kawai, Jun; Iriki, Atsushi; Sasaki, Erika; Okano, Hideyuki; Sakakibara, Yasubumi

    2015-11-20

    The first draft of the common marmoset (Callithrix jacchus) genome was published by the Marmoset Genome Sequencing and Analysis Consortium. The draft was based on whole-genome shotgun sequencing, and the current assembly version is Callithrix_jacches-3.2.1, but there still exist 187,214 undetermined gap regions and supercontigs and relatively short contigs that are unmapped to chromosomes in the draft genome. We performed resequencing and assembly of the genome of common marmoset by deep sequencing with high-throughput sequencing technology. Several different sequence runs using Illumina sequencing platforms were executed, and 181 Gbp of high-quality bases including mate-pairs with long insert lengths of 3, 8, 20, and 40 Kbp were obtained, that is, approximately 60× coverage. The resequencing significantly improved the MGSAC draft genome sequence. The N50 of the contigs, which is a statistical measure used to evaluate assembly quality, doubled. As a result, 51% of the contigs (total length: 299 Mbp) that were unmapped to chromosomes in the MGSAC draft were merged with chromosomal contigs, and the improved genome sequence helped to detect 5,288 new genes that are homologous to human cDNAs and the gaps in 5,187 transcripts of the Ensembl gene annotations were completely filled.

  9. Genome size evolution in pufferfish: an insight from BAC clone-based Diodon holocanthus genome sequencing

    Directory of Open Access Journals (Sweden)

    Gan Xiaoni

    2010-06-01

    Full Text Available Abstract Background Variations in genome size within and between species have been observed since the 1950 s in diverse taxonomic groups. Serving as model organisms, smooth pufferfish possess the smallest vertebrate genomes. Interestingly, spiny pufferfish from its sister family have genome twice as large as smooth pufferfish. Therefore, comparative genomic analysis between smooth pufferfish and spiny pufferfish is useful for our understanding of genome size evolution in pufferfish. Results Ten BAC clones of a spiny pufferfish Diodon holocanthus were randomly selected and shotgun sequenced. In total, 776 kb of non-redundant sequences without gap representing 0.1% of the D. holocanthus genome were identified, and 77 distinct genes were predicted. In the sequenced D. holocanthus genome, 364 kb is homologous with 265 kb of the Takifugu rubripes genome, and 223 kb is homologous with 148 kb of the Tetraodon nigroviridis genome. The repetitive DNA accounts for 8% of the sequenced D. holocanthus genome, which is higher than that in the T. rubripes genome (6.89% and that in the Te. nigroviridis genome (4.66%. In the repetitive DNA, 76% is retroelements which account for 6% of the sequenced D. holocanthus genome and belong to known families of transposable elements. More than half of retroelements were distributed within genes. In the non-homologous regions, repeat element proportion in D. holocanthus genome increased to 10.6% compared with T. rubripes and increased to 9.19% compared with Te. nigroviridis. A comparison of 10 well-defined orthologous genes showed that the average intron size (566 bp in D. holocanthus genome is significantly longer than that in the smooth pufferfish genome (435 bp. Conclusion Compared with the smooth pufferfish, D. holocanthus has a low gene density and repeat elements rich genome. Genome size variation between D. holocanthus and the smooth pufferfish exhibits as length variation between homologous region and different

  10. Complete genome sequence of Serratia plymuthica strain AS12

    Energy Technology Data Exchange (ETDEWEB)

    Neupane, Saraswoti [Uppsala University, Uppsala, Sweden; Finlay, Roger D. [Uppsala University, Uppsala, Sweden; Alstrom, Sadhna [Uppsala University, Uppsala, Sweden; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Hogberg, Nils [Uppsala University, Uppsala, Sweden

    2012-01-01

    A plant associated member of the family Enterobacteriaceae, Serratia plymuthica strain AS12 was isolated from rapeseed roots. It is of scientific interest due to its plant growth promoting and plant pathogen inhibiting ability. The genome of S. plymuthica AS12 comprises a 5,443,009 bp long circular chromosome, which consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced within the 2010 DOE-JGI Community Sequencing Program (CSP2010) as part of the project entitled 'Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens'.

  11. Complete genome sequence of Ferroglobus placidus AEDII12DO

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Risso, Carla [University of Massachusetts, Amherst; Holmes, Dawn [University of Massachusetts, Amherst; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Larimer, Frank W [ORNL; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Lovley, Derek [University of Massachusetts, Amherst; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Ferroglobus placidus belongs to the order Archaeoglobales within the archaeal phylum Euryar- chaeota. Strain AEDII12DO is the type strain of the species and was isolated from a shallow marine hydrothermal system at Vulcano, Italy. It is a hyperthermophilic, anaerobic chemoli- thoautotroph, but it can also use a variety of aromatic compounds as electron donors. Here we describe the features of this organism together with the complete genome sequence and anno- tation. The 2,196,266 bp genome with its 2,567 protein-coding and 55 RNA genes was se- quenced as part of a DOE Joint Genome Institute Laboratory Sequencing Program (LSP) project.

  12. Specialized microbial databases for inductive exploration of microbial genome sequences

    Directory of Open Access Journals (Sweden)

    Cabau Cédric

    2005-02-01

    Full Text Available Abstract Background The enormous amount of genome sequence data asks for user-oriented databases to manage sequences and annotations. Queries must include search tools permitting function identification through exploration of related objects. Methods The GenoList package for collecting and mining microbial genome databases has been rewritten using MySQL as the database management system. Functions that were not available in MySQL, such as nested subquery, have been implemented. Results Inductive reasoning in the study of genomes starts from "islands of knowledge", centered around genes with some known background. With this concept of "neighborhood" in mind, a modified version of the GenoList structure has been used for organizing sequence data from prokaryotic genomes of particular interest in China. GenoChore http://bioinfo.hku.hk/genochore.html, a set of 17 specialized end-user-oriented microbial databases (including one instance of Microsporidia, Encephalitozoon cuniculi, a member of Eukarya has been made publicly available. These databases allow the user to browse genome sequence and annotation data using standard queries. In addition they provide a weekly update of searches against the world-wide protein sequences data libraries, allowing one to monitor annotation updates on genes of interest. Finally, they allow users to search for patterns in DNA or protein sequences, taking into account a clustering of genes into formal operons, as well as providing extra facilities to query sequences using predefined sequence patterns. Conclusion This growing set of specialized microbial databases organize data created by the first Chinese bacterial genome programs (ThermaList, Thermoanaerobacter tencongensis, LeptoList, with two different genomes of Leptospira interrogans and SepiList, Staphylococcus epidermidis associated to related organisms for comparison.

  13. Monitoring genomic sequences during SELEX using high-throughput sequencing: neutral SELEX.

    Directory of Open Access Journals (Sweden)

    Bob Zimmermann

    Full Text Available BACKGROUND: SELEX is a well established in vitro selection tool to analyze the structure of ligand-binding nucleic acid sequences called aptamers. Genomic SELEX transforms SELEX into a tool to discover novel, genomically encoded RNA or DNA sequences binding a ligand of interest, called genomic aptamers. Concerns have been raised regarding requirements imposed on RNA sequences undergoing SELEX selection. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate SELEX and assess the extent of these effects, we designed and performed a Neutral SELEX experiment omitting the selection step, such that the sequences are under the sole selective pressure of SELEX's amplification steps. Using high-throughput sequencing, we obtained thousands of full-length sequences from the initial genomic library and the pools after each of the 10 rounds of Neutral SELEX. We compared these to sequences obtained from a Genomic SELEX experiment deriving from the same initial library, but screening for RNAs binding with high affinity to the E. coli regulator protein Hfq. With each round of Neutral SELEX, sequences became less stable and changed in nucleotide content, but no sequences were enriched. In contrast, we detected substantial enrichment in the Hfq-selected set with enriched sequences having structural stability similar to the neutral sequences but with significantly different nucleotide selection. CONCLUSIONS/SIGNIFICANCE: Our data indicate that positive selection in SELEX acts independently of the neutral selective requirements imposed on the sequences. We conclude that Genomic SELEX, when combined with high-throughput sequencing of positively and neutrally selected pools, as well as the gnomic library, is a powerful method to identify genomic aptamers.

  14. Pig genome sequence - analysis and publication strategy

    DEFF Research Database (Denmark)

    Archibald, Alan L.; Bolund, Lars; Churcher, Carol

    2010-01-01

    preferentially selected for sequencing. In accordance with the Bermuda and Fort Lauderdale agreements and the more recent Toronto Statement the data have been released into public sequence repositories (Genbank/EMBL, NCBI/Ensembl trace repositories) in a timely manner and in advance of publication. CONCLUSIONS...

  15. Genome sequence analysis of the model grass Brachypodium distachyon: insights into grass genome evolution

    Energy Technology Data Exchange (ETDEWEB)

    Schulman, Al

    2009-08-09

    Three subfamilies of grasses, the Erhardtoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the complete genome sequence of the wild grass Brachypodium distachyon (Brachypodium), the first member of the Pooideae subfamily to be completely sequenced. Comparison of the Brachypodium, rice and sorghum genomes reveals a precise sequence- based history of genome evolution across a broad diversity of the grass family and identifies nested insertions of whole chromosomes into centromeric regions as a predominant mechanism driving chromosome evolution in the grasses. The relatively compact genome of Brachypodium is maintained by a balance of retroelement replication and loss. The complete genome sequence of Brachypodium, coupled to its exceptional promise as a model system for grass research, will support the development of new energy and food crops

  16. Long-read sequence assembly of the gorilla genome

    Science.gov (United States)

    Gordon, David; Huddleston, John; Chaisson, Mark J. P.; Hill, Christopher M.; Kronenberg, Zev N.; Munson, Katherine M.; Malig, Maika; Raja, Archana; Fiddes, Ian; Hillier, LaDeana W.; Dunn, Christopher; Baker, Carl; Armstrong, Joel; Diekhans, Mark; Paten, Benedict; Shendure, Jay; Wilson, Richard K.; Haussler, David; Chin, Chen-Shan; Eichler, Evan E.

    2016-01-01

    Accurate sequence and assembly of genomes is a critical first step for studies of genetic variation. We generated a high-quality assembly of the gorilla genome using single-molecule, real-time sequence technology and a string graph de novo assembly algorithm. The new assembly improves contiguity by two to three orders of magnitude with respect to previously released assemblies, recovering 87% of missing reference exons and incomplete gene models. Although regions of large, high-identity segmental duplications remain largely unresolved, this comprehensive assembly provides new biological insight into genetic diversity, structural variation, gene loss, and representation of repeat structures within the gorilla genome. The approach provides a path forward for the routine assembly of mammalian genomes at a level approaching that of the current quality of the human genome. PMID:27034376

  17. Open access to sequence: Browsing the Pichia pastoris genome

    Directory of Open Access Journals (Sweden)

    Graf Alexandra

    2009-10-01

    Full Text Available Abstract The first genome sequences of the important yeast protein production host Pichia pastoris have been released into the public domain this spring. In order to provide the scientific community easy and versatile access to the sequence, two web-sites have been installed as a resource for genomic sequence, gene and protein information for P. pastoris: A GBrowse based genome browser was set up at http://www.pichiagenome.org and a genome portal with gene annotation and browsing functionality at http://bioinformatics.psb.ugent.be/webtools/bogas. Both websites are offering information on gene annotation and function, regulation and structure. In addition, a WiKi based platform allows all users to create additional information on genes, proteins, physiology and other items of P. pastoris research, so that the Pichia community can benefit from exchange of knowledge, data and materials.

  18. Sequencing and analysis of an Irish human genome.

    LENUS (Irish Health Repository)

    Tong, Pin

    2010-01-01

    Recent studies generating complete human sequences from Asian, African and European subgroups have revealed population-specific variation and disease susceptibility loci. Here, choosing a DNA sample from a population of interest due to its relative geographical isolation and genetic impact on further populations, we extend the above studies through the generation of 11-fold coverage of the first Irish human genome sequence.

  19. Complete Genome Sequence of Kocuria palustris MU14/1.

    Science.gov (United States)

    Calcutt, Michael J; Foecking, Mark F

    2015-10-15

    Presented here is the first completely assembled genome sequence of Kocuria palustris, an actinobacterial species with broad ecological distribution. The single, circular chromosome of K. palustris MU14/1 comprises 2,854,447 bp, has a G+C content of 70.5%, and contains a deduced gene set of 2,521 coding sequences.

  20. Complete Genome Sequence of Kocuria palustris MU14/1

    OpenAIRE

    2015-01-01

    Presented here is the first completely assembled genome sequence of Kocuria palustris, an actinobacterial species with broad ecological distribution. The single, circular chromosome of K. palustris MU14/1 comprises 2,854,447 bp, has a G+C content of 70.5%, and contains a deduced gene set of 2,521 coding sequences.

  1. Draft Genome Sequence of Lactobacillus fermentum NB-22

    Science.gov (United States)

    Shkoporov, A. N.; Efimov, B. A.; Pikina, A. P.; Borisova, O. Y.; Gladko, I. A.; Postnikova, E. A.; Lordkipanidze, A. E.; Kafarskaia, L. I.

    2015-01-01

    We announce here a draft genome sequence of Lactobacillus fermentum NB-22, a strain isolated from human vaginal microbiota. The assembled sequence consists of 190 contigs, joined into 137 scaffolds, and the total size is 2.01 Mb. PMID:26272572

  2. The genome sequence of the model ascomycete fungus Podospora anserina

    NARCIS (Netherlands)

    Espagne, Eric; Lespinet, Olivier; Malagnac, Fabienne; Da Silva, Corinne; Jaillon, Olivier; Porcel, Betina M; Couloux, Arnaud; Aury, Jean-Marc; Ségurens, Béatrice; Poulain, Julie; Anthouard, Véronique; Grossetete, Sandrine; Khalili, Hamid; Coppin, Evelyne; Déquard-Chablat, Michelle; Picard, Marguerite; Contamine, Véronique; Arnaise, Sylvie; Bourdais, Anne; Berteaux-Lecellier, Véronique; Gautheret, Daniel; de Vries, Ronald P; Battaglia, Evy; Coutinho, Pedro M; Danchin, Etienne Gj; Henrissat, Bernard; Khoury, Riyad El; Sainsard-Chanet, Annie; Boivin, Antoine; Pinan-Lucarré, Bérangère; Sellem, Carole H; Debuchy, Robert; Wincker, Patrick; Weissenbach, Jean; Silar, Philippe

    2008-01-01

    BACKGROUND: The dung-inhabiting ascomycete fungus Podospora anserina is a model used to study various aspects of eukaryotic and fungal biology, such as ageing, prions and sexual development. RESULTS: We present a 10X draft sequence of P. anserina genome, linked to the sequences of a large expressed

  3. Complete Genomic Sequence of Issyk-Kul Virus.

    Science.gov (United States)

    Atkinson, Barry; Marston, Denise A; Ellis, Richard J; Fooks, Anthony R; Hewson, Roger

    2015-07-02

    Issyk-Kul virus (ISKV) is an ungrouped virus tentatively assigned to the Bunyaviridae family and is associated with an acute febrile illness in several central Asian countries. Using next-generation sequencing technologies, we report here the full-genome sequence for this novel unclassified arboviral pathogen circulating in central Asia.

  4. Complete Genome Sequence of Zika Virus Isolated from Semen

    Science.gov (United States)

    Graham, Victoria; Lewandowski, Kuiama; Dowall, Stuart D.; Pullan, Steven T.; Hewson, Roger

    2016-01-01

    Zika virus (ZIKV) is an emerging pathogenic flavivirus currently circulating in numerous countries in South America, the Caribbean, and the Western Pacific Region. Using an unbiased metagenomic sequencing approach, we report here the first complete genome sequence of ZIKV isolated from a clinical semen sample. PMID:27738033

  5. Genome sequence of Stachybotrys chartarum Strain 51-11

    Science.gov (United States)

    Stachybotrys chartarum strain 51-11 genome was sequenced by shotgun sequencing utilizing Illumina Hiseq 2000 and PacBio long read technology. Since Stachybotrys chartarum has been implicated in health impacts within water-damaged buildings, any information extracted from the geno...

  6. Genomic Sequencing of Single Microbial Cells from Environmental Samples

    Energy Technology Data Exchange (ETDEWEB)

    Ishoey, Thomas; Woyke, Tanja; Stepanauskas, Ramunas; Novotny, Mark; Lasken, Roger S.

    2008-02-01

    Recently developed techniques allow genomic DNA sequencing from single microbial cells [Lasken RS: Single-cell genomic sequencing using multiple displacement amplification, Curr Opin Microbiol 2007, 10:510-516]. Here, we focus on research strategies for putting these methods into practice in the laboratory setting. An immediate consequence of single-cell sequencing is that it provides an alternative to culturing organisms as a prerequisite for genomic sequencing. The microgram amounts of DNA required as template are amplified from a single bacterium by a method called multiple displacement amplification (MDA) avoiding the need to grow cells. The ability to sequence DNA from individual cells will likely have an immense impact on microbiology considering the vast numbers of novel organisms, which have been inaccessible unless culture-independent methods could be used. However, special approaches have been necessary to work with amplified DNA. MDA may not recover the entire genome from the single copy present in most bacteria. Also, some sequence rearrangements can occur during the DNA amplification reaction. Over the past two years many research groups have begun to use MDA, and some practical approaches to single-cell sequencing have been developed. We review the consensus that is emerging on optimum methods, reliability of amplified template, and the proper interpretation of 'composite' genomes which result from the necessity of combining data from several single-cell MDA reactions in order to complete the assembly. Preferred laboratory methods are considered on the basis of experience at several large sequencing centers where >70% of genomes are now often recovered from single cells. Methods are reviewed for preparation of bacterial fractions from environmental samples, single-cell isolation, DNA amplification by MDA, and DNA sequencing.

  7. Genomic insight into the common carp (Cyprinus carpio genome by sequencing analysis of BAC-end sequences

    Directory of Open Access Journals (Sweden)

    Wang Jintu

    2011-04-01

    Full Text Available Abstract Background Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding. Result To develop such valuable resources in common carp (Cyprinus carpio, a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp. Conclusion BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3

  8. Sequence analysis of the genome of carnation (Dianthus caryophyllus L.).

    Science.gov (United States)

    Yagi, Masafumi; Kosugi, Shunichi; Hirakawa, Hideki; Ohmiya, Akemi; Tanase, Koji; Harada, Taro; Kishimoto, Kyutaro; Nakayama, Masayoshi; Ichimura, Kazuo; Onozaki, Takashi; Yamaguchi, Hiroyasu; Sasaki, Nobuhiro; Miyahara, Taira; Nishizaki, Yuzo; Ozeki, Yoshihiro; Nakamura, Noriko; Suzuki, Takamasa; Tanaka, Yoshikazu; Sato, Shusei; Shirasawa, Kenta; Isobe, Sachiko; Miyamura, Yoshinori; Watanabe, Akiko; Nakayama, Shinobu; Kishida, Yoshie; Kohara, Mitsuyo; Tabata, Satoshi

    2014-06-01

    The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. 'Francesco' was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568,887,315 bp, consisting of 45,088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16,644 bp and 60,737 bp, respectively, and the longest scaffold was 1,287,144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ∼ 98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at http://carnation.kazusa.or.jp.

  9. Combining two technologies for full genome sequencing of human.

    Science.gov (United States)

    Skryabin, K G; Prokhortchouk, E B; Mazur, A M; Boulygina, E S; Tsygankova, S V; Nedoluzhko, A V; Rastorguev, S M; Matveev, V B; Chekanov, N N; D A, Goranskaya; Teslyuk, A B; Gruzdeva, N M; Velikhov, V E; Zaridze, D G; Kovalchuk, M V

    2009-10-01

    At present, the new technologies of DNA sequencing are rapidly developing allowing quick and efficient characterisation of organisms at the level of the genome structure. In this study, the whole genome sequencing of a human (Russian man) was performed using two technologies currently present on the market - Sequencing by Oligonucleotide Ligation and Detection (SOLiD™) (Applied Biosystems) and sequencing technologies of molecular clusters using fluorescently labeled precursors (Illumina). The total number of generated data resulted in 108.3 billion base pairs (60.2 billion from Illumina technology and 48.1 billion from SOLiD technology). Statistics performed on reads generated by GAII and SOLiD showed that they covered 75% and 96% of the genome respectively. Short polymorphic regions were detected with comparable accuracy however, the absolute amount of them revealed by SOLiD was several times less than by GAII. Optimal algorithm for using the latest methods of sequencing was established for the analysis of individual human genomes. The study is the first Russian effort towards whole human genome sequencing.

  10. Genome sequencing of a single tardigrade Hypsibius dujardini individual.

    Science.gov (United States)

    Arakawa, Kazuharu; Yoshida, Yuki; Tomita, Masaru

    2016-08-16

    Tardigrades are ubiquitous microscopic animals that play an important role in the study of metazoan phylogeny. Most terrestrial tardigrades can withstand extreme environments by entering an ametabolic desiccated state termed anhydrobiosis. Due to their small size and the non-axenic nature of laboratory cultures, molecular studies of tardigrades are prone to contamination. To minimize the possibility of microbial contaminations and to obtain high-quality genomic information, we have developed an ultra-low input library sequencing protocol to enable the genome sequencing of a single tardigrade Hypsibius dujardini individual. Here, we describe the details of our sequencing data and the ultra-low input library preparation methodologies.

  11. Biased distribution of DNA uptake sequences towards genome maintenance genes

    DEFF Research Database (Denmark)

    Davidsen, T.; Rodland, E.A.; Lagesen, K.

    2004-01-01

    coding regions are the DNA uptake sequences (DUS) required for natural genetic transformation. More importantly, we found a significantly higher density of DUS within genes involved in DNA repair, recombination, restriction-modification and replication than in any other annotated gene group......Repeated sequence signatures are characteristic features of all genomic DNA. We have made a rigorous search for repeat genomic sequences in the human pathogens Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae and found that by far the most frequent 9-10mers residing within...

  12. DNA sequencing leads to genomics progress in China

    Institute of Scientific and Technical Information of China (English)

    WU JiaYan; XIAO JingFa; ZHANG RuoSi; YU Jun

    2011-01-01

    1 Science in the large-scale sequencing era Ten years ago,the first draft sequence assembly of the human genome was completed [1],bringing biomedical research one-step closer toward the goal of revolutionizing diagnosis,prevention,and treatment of human diseases.Recently,journalists from the journal Nature surveyed more than 1000 life scientists regarding this laudable aim [2],obtaining substantially negative responses [3].However,almost all of those surveyed had been influenced,in one way or another,by the availability of the human genome sequence,and they also agreed with the notion that the "sequence is the start." The complexity of genome biology and almost every aspect of human biology is far greater than previously thought [4].

  13. Genomic multiple sequence alignments: refinement using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Lefkowitz Elliot J

    2005-08-01

    Full Text Available Abstract Background Genomic sequence data cannot be fully appreciated in isolation. Comparative genomics – the practice of comparing genomic sequences from different species – plays an increasingly important role in understanding the genotypic differences between species that result in phenotypic differences as well as in revealing patterns of evolutionary relationships. One of the major challenges in comparative genomics is producing a high-quality alignment between two or more related genomic sequences. In recent years, a number of tools have been developed for aligning large genomic sequences. Most utilize heuristic strategies to identify a series of strong sequence similarities, which are then used as anchors to align the regions between the anchor points. The resulting alignment is globally correct, but in many cases is suboptimal locally. We describe a new program, GenAlignRefine, which improves the overall quality of global multiple alignments by using a genetic algorithm to improve local regions of alignment. Regions of low quality are identified, realigned using the program T-Coffee, and then refined using a genetic algorithm. Because a better COFFEE (Consistency based Objective Function For alignmEnt Evaluation score generally reflects greater alignment quality, the algorithm searches for an alignment that yields a better COFFEE score. To improve the intrinsic slowness of the genetic algorithm, GenAlignRefine was implemented as a parallel, cluster-based program. Results We tested the GenAlignRefine algorithm by running it on a Linux cluster to refine sequences from a simulation, as well as refine a multiple alignment of 15 Orthopoxvirus genomic sequences approximately 260,000 nucleotides in length that initially had been aligned by Multi-LAGAN. It took approximately 150 minutes for a 40-processor Linux cluster to optimize some 200 fuzzy (poorly aligned regions of the orthopoxvirus alignment. Overall sequence identity increased only

  14. Complete genome sequences of three strains of coxsackievirus a7.

    Science.gov (United States)

    Ylä-Pelto, Jani; Koskinen, Satu; Karelehto, Eveliina; Sittig, Eleonora; Roivainen, Merja; Hyypiä, Timo; Susi, Petri

    2013-04-11

    Genomes of three strains (Parker, USSR, and 275/58) of coxsackievirus A7 (CV-A7) were amplified by the long reverse transcription (RT)-PCR method and sequenced. While the sequences of Parker and USSR were identical, the similarities of 275/58 to the CV-A7 reference sequence, accession no. AY421765, were 82.6% and 96.2% for nucleotides and amino acids, respectively.

  15. Sequencing and Analysis of Neanderthal Genomic DNA

    OpenAIRE

    Noonan, James P.; Coop, Graham; Kudaravalli, Sridhar; Smith, Doug; Krause, Johannes; Alessi, Joe; Chen, Feng; Platt, Darren; Paabo, Svante; Pritchard, Jonathan K; Rubin, Edward M.

    2006-01-01

    Our knowledge of Neanderthals is based on a limited number of remains and artifacts from which we must make inferences about their biology, behavior, and relationship to ourselves. Here, we describe the characterization of these extinct hominids from a new perspective, based on the development of a Neanderthal metagenomic library and its high-throughput sequencing and analysis. Several lines of evidence indicate that the 65,250 base pairs of hominid sequence so far identified in the library a...

  16. Inconsistencies in Neanderthal genomic DNA sequences.

    Directory of Open Access Journals (Sweden)

    Jeffrey D Wall

    2007-10-01

    Full Text Available Two recently published papers describe nuclear DNA sequences that were obtained from the same Neanderthal fossil. Our reanalyses of the data from these studies show that they are not consistent with each other and point to serious problems with the data quality in one of the studies, possibly due to modern human DNA contaminants and/or a high rate of sequencing errors.

  17. Genome-wide sequence variations among Mycobacterium avium subspecies paratuberculosis.

    Directory of Open Access Journals (Sweden)

    Chung-Yi eHsu

    2011-12-01

    Full Text Available Mycobacterium avium subspecies paratuberculosis (M. ap, the causative agent of Johne’s disease (JD, infects many farmed ruminants, wildlife animals and humans. To better understand the molecular pathogenesis of these infections, we analyzed the whole genome sequences of several M. ap and M. avium subspecies avium (M. avium strains isolated from various hosts and environments. Using Next-generation sequencing technology, all 6 M. ap isolates showed a high percentage of homology (98% to the reference genome sequence of M. ap K-10 isolated from cattle. However, 2 M. avium isolates (DT 78 and Env 77 showed significant sequence diversity from the reference strain M. avium 104. The genomes of M. avium isolates DT 78 and Env 77 exhibited only 87% and 40% homology, respectively, to the M. avium 104 reference genome. Within the M. ap isolates, genomic rearrangements (insertions/deletions, Indels were not detected, and only unique single nucleotide polymorphisms (SNPs were observed among the 6 M. ap strains. While most of the SNPs (~100 in M. ap genomes were non-synonymous, a total of ~ 6000 SNPs were detected among M. avium genomes, most of them were synonymous suggesting a differential selective pressure between M. ap and M. avium isolates. In addition, SNPs-based phylo-genomic analysis showed that isolates from goat and Oryx are closely related to the cattle (K-10 strain while the human isolate (M. ap 4B is closely related to the environmental strains, indicating environmental source to human infections. Overall, SNPs were the most common variations among M. ap isolates while SNPs in addition to Indels were prevalent among M. avium isolates. Genomic variations will be useful in designing host-specific markers for the analysis of mycobacterial evolution and for developing novel diagnostics directed against Johne’s disease in animals.

  18. The diploid genome sequence of an individual human.

    Directory of Open Access Journals (Sweden)

    Samuel Levy

    2007-09-01

    Full Text Available Presented here is a genome sequence of an individual human. It was produced from approximately 32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel included 3,213,401 single nucleotide polymorphisms (SNPs, 53,823 block substitutions (2-206 bp, 292,102 heterozygous insertion/deletion events (indels(1-571 bp, 559,473 homozygous indels (1-82,711 bp, 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.

  19. Comparison of methods for genomic localization of gene trap sequences

    Directory of Open Access Journals (Sweden)

    Ferrin Thomas E

    2006-09-01

    Full Text Available Abstract Background Gene knockouts in a model organism such as mouse provide a valuable resource for the study of basic biology and human disease. Determining which gene has been inactivated by an untargeted gene trapping event poses a challenging annotation problem because gene trap sequence tags, which represent sequence near the vector insertion site of a trapped gene, are typically short and often contain unresolved residues. To understand better the localization of these sequences on the mouse genome, we compared stand-alone versions of the alignment programs BLAT, SSAHA, and MegaBLAST. A set of 3,369 sequence tags was aligned to build 34 of the mouse genome using default parameters for each algorithm. Known genome coordinates for the cognate set of full-length genes (1,659 sequences were used to evaluate localization results. Results In general, all three programs performed well in terms of localizing sequences to a general region of the genome, with only relatively subtle errors identified for a small proportion of the sequence tags. However, large differences in performance were noted with regard to correctly identifying exon boundaries. BLAT correctly identified the vast majority of exon boundaries, while SSAHA and MegaBLAST missed the majority of exon boundaries. SSAHA consistently reported the fewest false positives and is the fastest algorithm. MegaBLAST was comparable to BLAT in speed, but was the most susceptible to localizing sequence tags incorrectly to pseudogenes. Conclusion The differences in performance for sequence tags and full-length reference sequences were surprisingly small. Characteristic variations in localization results for each program were noted that affect the localization of sequence at exon boundaries, in particular.

  20. Deep whole-genome sequencing of 100 southeast Asian Malays.

    Science.gov (United States)

    Wong, Lai-Ping; Ong, Rick Twee-Hee; Poh, Wan-Ting; Liu, Xuanyao; Chen, Peng; Li, Ruoying; Lam, Kevin Koi-Yau; Pillai, Nisha Esakimuthu; Sim, Kar-Seng; Xu, Haiyan; Sim, Ngak-Leng; Teo, Shu-Mei; Foo, Jia-Nee; Tan, Linda Wei-Lin; Lim, Yenly; Koo, Seok-Hwee; Gan, Linda Seo-Hwee; Cheng, Ching-Yu; Wee, Sharon; Yap, Eric Peng-Huat; Ng, Pauline Crystal; Lim, Wei-Yen; Soong, Richie; Wenk, Markus Rene; Aung, Tin; Wong, Tien-Yin; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying

    2013-01-10

    Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies.

  1. Complete genome sequence of Arcobacter nitrofigilis type strain (CIT)

    Energy Technology Data Exchange (ETDEWEB)

    Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Gronow, Sabine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

    2010-01-01

    Arcobacter nitrofigilis (McClung et al. 1983) Vandamme et al. 1991 is the type species of the genus Arcobacter in the epsilonproteobacterial family Campylobacteraceae. The species was first described in 1983 as Campylobacter nitrofigilis [1] after its detection as a free-living, nitrogen-fixing Campylobacter species associated with Spartina alterniflora Loisel. roots [2]. It is of phylogenetic interest because of its lifestyle as a symbiotic organism in a marine environment in contrast to many other Arcobacter species which are associated with warm-blooded animals and tend to be pathogenic. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a type stain of the genus Arcobacter. The 3,192,235 bp genome with its 3,154 protein-coding and 70 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  2. Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT)

    Energy Technology Data Exchange (ETDEWEB)

    Clum, Alicia [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lang, Elke [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Bruce, David [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute

    2009-01-01

    Acidimicrobium ferrooxidans (Clark and Norris 1996) is the sole and type species of the ge-nus, which until recently was the only genus within the actinobacterial family Acidimicrobia-ceae and in the order Acidomicrobiales. Rapid oxidation of iron pyrite during autotrophic growth in the absence of an enhanced CO2 concentration is characteristic for A. ferrooxidans. Here we describe the features of this organism, together with the complete genome se-quence, and annotation. This is the first complete genome sequence of the order Acidomi-crobiales, and the 2,158,157 bp long single replicon genome with its 2038 protein coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  3. The complete plastid genome sequence of Bomarea edulis (Alstroemeriaceae: Liliales).

    Science.gov (United States)

    Kim, Jung Sung; Kim, Hyoung Tae; Yoon, Chang Young; Kim, Joo-Hwan

    2016-05-01

    Bomarea, a member of the family Alstroemeriaceae, is distributed from Chile to Mexico and includes approximately 120 species. Recent molecular phylogenetic studies have clarified the monophyly of the family within the order Liliales and the sister relationship with the family Colchicaceae. At this time, five plastid genomes of Liliales have been analyzed at the familial level. To examine plastid genome variation at the generic level, we sequenced the plastid genome of Bomarea edulis, which is the most widely distributed species in the genus, and compared it with Alstroemeria aurea. The plastid genome sequence of B. edulis was 154,925 bp in length with a similar structure as A. aurea, excluding the IR-LSC junction. Ycf68 and infA were pseudogenes caused by frameshift mutations, and the ycf15 gene was deleted, similar to A. aurea.

  4. Whole genome sequencing in clinical and public health microbiology.

    Science.gov (United States)

    Kwong, J C; McCallum, N; Sintchenko, V; Howden, B P

    2015-04-01

    Genomics and whole genome sequencing (WGS) have the capacity to greatly enhance knowledge and understanding of infectious diseases and clinical microbiology.The growth and availability of bench-top WGS analysers has facilitated the feasibility of genomics in clinical and public health microbiology.Given current resource and infrastructure limitations, WGS is most applicable to use in public health laboratories, reference laboratories, and hospital infection control-affiliated laboratories.As WGS represents the pinnacle for strain characterisation and epidemiological analyses, it is likely to replace traditional typing methods, resistance gene detection and other sequence-based investigations (e.g., 16S rDNA PCR) in the near future.Although genomic technologies are rapidly evolving, widespread implementation in clinical and public health microbiology laboratories is limited by the need for effective semi-automated pipelines, standardised quality control and data interpretation, bioinformatics expertise, and infrastructure.

  5. Using the NCBI Map Viewer to browse genomic sequence data.

    Science.gov (United States)

    Wolfsberg, Tyra G

    2011-04-01

    This unit includes a basic protocol with an introduction to the Map Viewer, describing how to perform a simple text-based search of genome annotations to view the genomic context of a gene, navigate along a chromosome, zoom in and out, and change the displayed maps to hide and show information. It also describes some of NCBI's sequence-analysis tools, which are provided as links from the Map Viewer. The alternate protocols describe different ways to query the genome sequence, and also illustrate additional features of the Map Viewer. Alternate Protocol 1 shows how to perform and interpret the results of a BLAST search against the human genome. Alternate Protocol 2 demonstrates how to retrieve a list of all genes between two STS markers. Finally, Alternate Protocol 3 shows how to find all annotated members of a gene family.

  6. Complete genome sequence of Desulfotomaculum acetoxidans type strain (5575T)

    Energy Technology Data Exchange (ETDEWEB)

    Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Schroder, Maren [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Gleim, Dorothea [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Sims, David [Los Alamos National Laboratory (LANL); Meincke, Linda [Los Alamos National Laboratory (LANL); Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Brettin, Tom [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Han, Cliff [Los Alamos National Laboratory (LANL)

    2009-01-01

    Desulfotomaculum acetoxidans Widdel and Pfennig 1977 was one of the first sulfate-reducing bacteria known to grow with acetate as sole energy and carbon source. It is able to oxidize substrates completely to carbon dioxide with sulfate as the electron acceptor, which is reduced to hydrogen sulfide. All available data about this species are based on strain 5575T, isolated from piggery waste in Germany. Here we describe the features of this organ-ism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a Desulfotomaculum species with validly published name. The 4,545,624 bp long single replicon genome with its 4370 protein-coding and 100 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  7. Complete genome sequence of Halorhabdus utahensis type strain (AX-2).

    Science.gov (United States)

    Anderson, Iain; Tindall, Brian J; Pomrenke, Helga; Göker, Markus; Lapidus, Alla; Nolan, Matt; Copeland, Alex; Glavina Del Rio, Tijana; Chen, Feng; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Chertkov, Olga; Bruce, David; Brettin, Thomas; Detter, John C; Han, Cliff; Goodwin, Lynne; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Pitluck, Sam; Pati, Amrita; Mavromatis, Konstantinos; Ivanova, Natalia; Ovchinnikova, Galina; Chen, Amy; Palaniappan, Krishna; Chain, Patrick; Rohde, Manfred; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2009-11-22

    Halorhabdus utahensis Wainø et al. 2000 is the type species of the genus, which is of phylogenetic interest because of its location on one of the deepest branches within the very extensive euryarchaeal family Halobacteriaceae. H. utahensis is a free-living, motile, rod shaped to pleomorphic, Gram-negative archaeon, which was originally isolated from a sediment sample collected from the southern arm of Great Salt Lake, Utah, USA. When grown on appropriate media, H. utahensis can form polyhydroxybutyrate (PHB). Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the a member of halobacterial genus Halorhabdus, and the 3,116,795 bp long single replicon genome with its 3027 protein-coding and 48 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  8. Complete genome sequence of Nakamurella multipartita type strain (Y-104).

    Science.gov (United States)

    Tice, Hope; Mayilraj, Shanmugam; Sims, David; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Glavina Del Rio, Tijana; Copeland, Alex; Cheng, Jan-Fang; Meincke, Linda; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Detter, John C; Brettin, Thomas; Rohde, Manfred; Göker, Markus; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Chen, Feng

    2010-03-30

    Nakamurella multipartita (Yoshimi et al. 1996) Tao et al. 2004 is the type species of the monospecific genus Nakamurella in the actinobacterial suborder Frankineae. The nonmotile, coccus-shaped strain was isolated from activated sludge acclimated with sugar-containing synthetic wastewater, and is capable of accumulating large amounts of polysaccharides in its cells. Here we describe the features of the organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Nakamurellaceae. The 6,060,298 bp long single replicon genome with its 5415 protein-coding and 56 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  9. Draft genome sequence of the rubber tree Hevea brasiliensis

    Directory of Open Access Journals (Sweden)

    Rahman Ahmad Yamin Abdul

    2013-02-01

    Full Text Available Abstract Background Hevea brasiliensis, a member of the Euphorbiaceae family, is the major commercial source of natural rubber (NR. NR is a latex polymer with high elasticity, flexibility, and resilience that has played a critical role in the world economy since 1876. Results Here, we report the draft genome sequence of H. brasiliensis. The assembly spans ~1.1 Gb of the estimated 2.15 Gb haploid genome. Overall, ~78% of the genome was identified as repetitive DNA. Gene prediction shows 68,955 gene models, of which 12.7% are unique to Hevea. Most of the key genes associated with rubber biosynthesis, rubberwood formation, disease resistance, and allergenicity have been identified. Conclusions The knowledge gained from this genome sequence will aid in the future development of high-yielding clones to keep up with the ever increasing need for natural rubber.

  10. Plasmodium knowlesi genome sequences from clinical isolates reveal extensive genomic dimorphism.

    Directory of Open Access Journals (Sweden)

    Miguel M Pinheiro

    Full Text Available Plasmodium knowlesi is a newly described zoonosis that causes malaria in the human population that can be severe and fatal. The study of P. knowlesi parasites from human clinical isolates is relatively new and, in order to obtain maximum information from patient sample collections, we explored the possibility of generating P. knowlesi genome sequences from archived clinical isolates. Our patient sample collection consisted of frozen whole blood samples that contained excessive human DNA contamination and, in that form, were not suitable for parasite genome sequencing. We developed a method to reduce the amount of human DNA in the thawed blood samples in preparation for high throughput parasite genome sequencing using Illumina HiSeq and MiSeq sequencing platforms. Seven of fifteen samples processed had sufficiently pure P. knowlesi DNA for whole genome sequencing. The reads were mapped to the P. knowlesi H strain reference genome and an average mapping of 90% was obtained. Genes with low coverage were removed leaving 4623 genes for subsequent analyses. Previously we identified a DNA sequence dimorphism on a small fragment of the P. knowlesi normocyte binding protein xa gene on chromosome 14. We used the genome data to assemble full-length Pknbpxa sequences and discovered that the dimorphism extended along the gene. An in-house algorithm was developed to detect SNP sites co-associating with the dimorphism. More than half of the P. knowlesi genome was dimorphic, involving genes on all chromosomes and suggesting that two distinct types of P. knowlesi infect the human population in Sarawak, Malaysian Borneo. We use P. knowlesi clinical samples to demonstrate that Plasmodium DNA from archived patient samples can produce high quality genome data. We show that analyses, of even small numbers of difficult clinical malaria isolates, can generate comprehensive genomic information that will improve our understanding of malaria parasite diversity and

  11. Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence

    Directory of Open Access Journals (Sweden)

    Luo Ming-Cheng

    2011-01-01

    Full Text Available Abstract Background Many plants have large and complex genomes with an abundance of repeated sequences. Many plants are also polyploid. Both of these attributes typify the genome architecture in the tribe Triticeae, whose members include economically important wheat, rye and barley. Large genome sizes, an abundance of repeated sequences, and polyploidy present challenges to genome-wide SNP discovery using next-generation sequencing (NGS of total genomic DNA by making alignment and clustering of short reads generated by the NGS platforms difficult, particularly in the absence of a reference genome sequence. Results An annotation-based, genome-wide SNP discovery pipeline is reported using NGS data for large and complex genomes without a reference genome sequence. Roche 454 shotgun reads with low genome coverage of one genotype are annotated in order to distinguish single-copy sequences and repeat junctions from repetitive sequences and sequences shared by paralogous genes. Multiple genome equivalents of shotgun reads of another genotype generated with SOLiD or Solexa are then mapped to the annotated Roche 454 reads to identify putative SNPs. A pipeline program package, AGSNP, was developed and used for genome-wide SNP discovery in Aegilops tauschii-the diploid source of the wheat D genome, and with a genome size of 4.02 Gb, of which 90% is repetitive sequences. Genomic DNA of Ae. tauschii accession AL8/78 was sequenced with the Roche 454 NGS platform. Genomic DNA and cDNA of Ae. tauschii accession AS75 was sequenced primarily with SOLiD, although some Solexa and Roche 454 genomic sequences were also generated. A total of 195,631 putative SNPs were discovered in gene sequences, 155,580 putative SNPs were discovered in uncharacterized single-copy regions, and another 145,907 putative SNPs were discovered in repeat junctions. These SNPs were dispersed across the entire Ae. tauschii genome. To assess the false positive SNP discovery rate, DNA

  12. Complete coding sequences of the rabbitpox virus genome.

    Science.gov (United States)

    Li, G; Chen, N; Roper, R L; Feng, Z; Hunter, A; Danila, M; Lefkowitz, E J; Buller, R M L; Upton, C

    2005-11-01

    Rabbitpox virus (RPXV) is highly virulent for rabbits and it has long been suspected to be a close relative of vaccinia virus. To explore these questions, the complete coding region of the rabbitpox virus genome was sequenced to permit comparison with sequenced strains of vaccinia virus and other orthopoxviruses. The genome of RPXV strain Utrecht (RPXV-UTR) is 197 731 nucleotides long, excluding the terminal hairpin structures at each end of the genome. The RPXV-UTR genome has 66.5 % A + T content, 184 putative functional genes and 12 fragmented ORF regions that are intact in other orthopoxviruses. The sequence of the RPXV-UTR genome reveals that two RPXV-UTR genes have orthologues in variola virus (VARV; the causative agent of smallpox), but not in vaccinia virus (VACV) strains. These genes are a zinc RING finger protein gene (RPXV-UTR-008) and an ankyrin repeat family protein gene (RPXV-UTR-180). A third gene, encoding a chemokine-binding protein (RPXV-UTR-001/184), is complete in VARV but functional only in some VACV strains. Examination of the evolutionary relationship between RPXV and other orthopoxviruses was carried out using the central 143 kb DNA sequence conserved among all completely sequenced orthopoxviruses and also the protein sequences of 49 gene products present in all completely sequenced chordopoxviruses. The results of these analyses both confirm that RPXV-UTR is most closely related to VACV and suggest that RPXV has not evolved directly from any of the sequenced VACV strains, since RPXV contains a 719 bp region not previously identified in any VACV.

  13. Identification of probable genomic packaging signal sequence from SARS—CoV genome by bioinformatics analysis

    Institute of Scientific and Technical Information of China (English)

    QINLei; XIONGBin; LUOCheng; GUOZong-Ming; HAOPei; SUJiong; NANPeng; FENGYing; SHIYi-Xiang; YUXiao-Jing; LUOXiao-Min; CHENKai-Xian; SHENXu; SHENJian-Hua; ZOUJian-Ping; ZHAOGuo-Ping; SHITie-Liu; HEWei-Zhong; ZHONGYang; JIANGHua-Liang; LIYi-Xue

    2003-01-01

    AIM:To predict the probable genomic packaging signal of SARS-CoV by bioinformatics analysis. The derived packaging signal may be used to design antisense RNA and RNA interfere (RANi) drugs treating SARS. methods: Based on the studies about the genomic packaging signals of MHV and BCoV, especially the information about primary and secondary structures, the putative genomic packaging signal of SARS_CoV were analyzed by using bioinformatic tools. Multi-alignment for the genomic sequences was performed among SARS-CoV,MHV,BCoV, PEDV and HCoV 229E. Secondary structures of RNA sequences were also predicted for the identification fo the possible genomic packaging signals. Meanwhile, the N and M proteins of all five viruses were analyzed to study the evolutionary relationship with genomic packaging signals. RESULTS: The putative genomic packaging signal of SARS-CoV locates at the 3′ end of ORF1b near that of MHV and BCoV, where is the most variable region of this gene. The RNA secondary structure of SARS-CoV genomic packaging signal is very similar to that of MHV and BCoV. The same result was also obtained in studying the genomic packaging signals of PEDV and HCoV 229E. Further more, the genomic sequence multi-alignment indicated that the locations of packaging signals of SARS-CoV, PEDV, and HCoV overlaped each other. It seems that the mutation rate of packaging signal sequences is much higher than the N protein, while only subtle variations for the M protein. CONCLUSIONS: The probable genomic packaging signal of SARS-CoV is analogous to that of MHV and BCoV, with the corresponding secondary RNA structure locating at the similar region of ORF1b. The positions where genomic packaging signals exist have suffered rounds of mutations, which may influence the primary structures of the N and M proteins consequently.

  14. Genome Sequence of the Urethral Isolate Pseudomonas aeruginosa RN21

    OpenAIRE

    Wibberg, Daniel; Tielen, Petra; Narten, Maike; Schobert, Max; Blom, Jochen; Schatschneider, Sarah; Meyer, Ann-Kathrin; Neubauer, Rüdiger; Albersmeier, Andreas; Albaum, Stefan; Jahn, Martina; Goesmann, Alexander; Vorhölter, Frank-Jörg; Pühler, Alfred; Jahn, Dieter

    2015-01-01

    Pseudomonas aeruginosa is known to cause complicated urinary tract infections (UTI). The improved 7.0-Mb draft genome sequence of P. aeruginosa RN21, isolated from a patient with an acute UTI, was determined. It carries three (pro)phage genomes, genes for two restriction/modification systems, and a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system.

  15. Genome Sequences of Equid Herpesviruses 2 and 5

    Science.gov (United States)

    Wilkie, Gavin S.; Kerr, Karen; Stewart, James P.; Studdert, Michael J.

    2015-01-01

    We resequenced the genome of equid herpesvirus 2 (EHV2) strain 86/67 and sequenced the genomes of EHV2 strain G9/92 and equid herpesvirus 5 (EHV5) strain 2-141/67. The most prominent genetic differences are the dissimilar locations of the interleukin-10 (IL-10)-like genes and the presence of an OX-2-like gene in EHV5 only. PMID:25767243

  16. Complete Genome Sequence of Klebsiella pneumoniae YH43

    Science.gov (United States)

    Ogura, Yoshitoshi; Hayashi, Tetsuya; Mizunoe, Yoshimitsu

    2016-01-01

    We report here the complete genome sequence of Klebsiella pneumoniae strain YH43, isolated from sweet potato. The genome consists of a single circular chromosome of 5,520,319 bp in length. It carries 8 copies of rRNA operons, 86 tRNA genes, 5,154 protein-coding genes, and the nif gene cluster for nitrogen fixation. PMID:27081127

  17. The complete mitochondrial genome sequence of the Daweishan Mini chicken.

    Science.gov (United States)

    Yan, Ming-Li; Ding, Su-Ping; Ye, Shao-Hui; Wang, Chun-Guang; He, Bao-Li; Yuan, Zhi-Dong; Liu, Li-Li

    2016-01-01

    Daweishan Mini chicken is a valuable chicken breed in China. In this study, the complete mitochondrial genome sequence of Daweishan Mini chicken using PCR amplification, sequencing and assembling has been obtained for the first time. The total length of the mitochondrial genome was 16,785 bp, with the base composition of 30.26% A, 23.73% T, 32.51% C, 13.51% G. It contained 37 genes (2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes) and a major non-coding control region (D-loop region). The protein start codons are ATG, except for COX1 that begins with GTG. The complete mitochondrial genome sequence of Daweishan Mini chicken provides an important data set for further investigation on the phylogenetic relationships within Gallus gallus.

  18. Genome sequence and genetic diversity of European ash trees

    DEFF Research Database (Denmark)

    Sollars, Elizabeth S A; Harper, Andrea L; Kelly, Laura J;

    2016-01-01

    Ash trees (genus Fraxinus, family Oleaceae) are widespread throughout the Northern Hemisphere, but are being devastated in Europe by the fungus Hymenoscyphus fraxineus, causing ash dieback, and in North America by the herbivorous beetle Agrilus planipennis. Here we sequence the genome of a low......-heterozygosity Fraxinus excelsior tree from Gloucestershire, UK, annotating 38,852 protein-coding genes of which 25% appear ash specific when compared with the genomes of ten other plant species. Analyses of paralogous genes suggest a whole-genome duplication shared with olive (Olea europaea, Oleaceae). We also re......-sequence 37 F. excelsior trees from Europe, finding evidence for apparent long-term decline in effective population size. Using our reference sequence, we re-analyse association transcriptomic data, yielding improved markers for reduced susceptibility to ash dieback. Surveys of these markers in British...

  19. Genome and exome sequencing in the clinic: unbiased genomic approaches with a high diagnostic yield

    NARCIS (Netherlands)

    Nelen, M.; Veltman, J.A.

    2012-01-01

    For the reasons discussed here, we think whole-genome- or exome-based approaches are currently most suited for diagnostic implementation in genetically heterogeneous diseases, initially to complement and later to replace Sanger sequencing, qPCR and genomic microarrays. Patients do need to be counsel

  20. Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction

    DEFF Research Database (Denmark)

    Brøndum, Rasmus Froberg; Su, Guosheng; Janss, Luc

    2015-01-01

    This study investigated the effect on the reliability of genomic prediction when a small number of significant variants from single marker analysis based on whole genome sequence data were added to the regular 54k single nucleotide polymorphism (SNP) array data. The extra markers were selected wi...

  1. Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae

    NARCIS (Netherlands)

    Tettelin, H; Masignani, [No Value; Cieslewicz, MJ; Eisen, JA; Peterson, S; Paulsen, IT; Nelson, KE; Margarit, [No Value; Read, TD; Madoff, LC; Beanan, MJ; Brinkac, LM; Daugherty, SC; DeBoy, RT; Durkin, AS; Kolonay, JF; Madupu, R; Lewis, MR; Radune, D; Fedorova, NB; Scanlan, D; Khouri, H; Mulligan, S; Carty, HA; Cline, RT; Van Aken, SE; Gill, J; Scarselli, M; Mora, M; Iacobini, ET; Brettoni, C; Galli, G; Mariani, M; Vegni, F; Maione, D; Rinaudo, D; Rappuoli, R; Telford, JL; Kasper, DL; Grandi, G; Fraser, CM

    2002-01-01

    The 2,160,267 bp genome sequence of Streptococcus agalactiae, the leading cause of bacterial sepsis, pneumonia, and meningitis in neonates in the U.S. and Europe, is predicted to encode 2,175 genes. Genome comparisons among S. agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and the oth

  2. Whole-genome amplification of single-cell genomes for next-generation sequencing.

    Science.gov (United States)

    Korfhage, Christian; Fisch, Evelyn; Fricke, Evelyn; Baedker, Silke; Loeffert, Dirk

    2013-10-11

    DNA sequence analysis and genotyping of biological samples using next-generation sequencing (NGS), microarrays, or real-time PCR is often limited by the small amount of sample available. A single cell contains only one to four copies of the genomic DNA, depending on the organism (haploid or diploid organism) and the cell-cycle phase. The DNA content of a single cell ranges from a few femtograms in bacteria to picograms in mammalia. In contrast, a deep analysis of the genome currently requires a few hundred nanograms up to micrograms of genomic DNA for library formation necessary for NGS sequencing or labeling protocols (e.g., microarrays). Consequently, accurate whole-genome amplification (WGA) of single-cell DNA is required for reliable genetic analysis (e.g., NGS) and is particularly important when genomic DNA is limited. The use of single-cell WGA has enabled the analysis of genomic heterogeneity of individual cells (e.g., somatic genomic variation in tumor cells). This unit describes how the genome of single cells can be used for WGA for further genomic studies, such as NGS. Recommendations for isolation of single cells are given and common sources of errors are discussed.

  3. The genome sequence of the colonial chordate, Botryllus schlosseri

    Science.gov (United States)

    Voskoboynik, Ayelet; Neff, Norma F; Sahoo, Debashis; Newman, Aaron M; Pushkarev, Dmitry; Koh, Winston; Passarelli, Benedetto; Fan, H Christina; Mantalas, Gary L; Palmeri, Karla J; Ishizuka, Katherine J; Gissi, Carmela; Griggio, Francesca; Ben-Shlomo, Rachel; Corey, Daniel M; Penland, Lolita; White, Richard A; Weissman, Irving L; Quake, Stephen R

    2013-01-01

    Botryllus schlosseri is a colonial urochordate that follows the chordate plan of development following sexual reproduction, but invokes a stem cell-mediated budding program during subsequent rounds of asexual reproduction. As urochordates are considered to be the closest living invertebrate relatives of vertebrates, they are ideal subjects for whole genome sequence analyses. Using a novel method for high-throughput sequencing of eukaryotic genomes, we sequenced and assembled 580 Mbp of the B. schlosseri genome. The genome assembly is comprised of nearly 14,000 intron-containing predicted genes, and 13,500 intron-less predicted genes, 40% of which could be confidently parceled into 13 (of 16 haploid) chromosomes. A comparison of homologous genes between B. schlosseri and other diverse taxonomic groups revealed genomic events underlying the evolution of vertebrates and lymphoid-mediated immunity. The B. schlosseri genome is a community resource for studying alternative modes of reproduction, natural transplantation reactions, and stem cell-mediated regeneration. DOI: http://dx.doi.org/10.7554/eLife.00569.001 PMID:23840927

  4. Standardized metadata for human pathogen/vector genomic sequences.

    Directory of Open Access Journals (Sweden)

    Vivien G Dugan

    Full Text Available High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats. Here we report the development of the GSCID/BRC Project and Sample Application Standard, developed by representatives of the Genome Sequencing Centers for Infectious Diseases (GSCIDs, the Bioinformatics Resource Centers (BRCs for Infectious Diseases, and the U.S. National Institute of Allergy and Infectious Diseases (NIAID, part of the National Institutes of Health (NIH, informed by interactions with numerous collaborating scientists. It includes mapping to terms from other data standards initiatives, including the Genomic Standards Consortium's minimal information (MIxS and NCBI's BioSample/BioProjects checklists and the Ontology for Biomedical Investigations (OBI. The standard includes data fields about characteristics of the organism or environmental source of the specimen, spatial-temporal information about the specimen isolation event, phenotypic characteristics of the pathogen/vector isolated, and project leadership and support. By modeling metadata fields into an ontology-based semantic framework and reusing existing ontologies and minimum information checklists, the application standard can be extended to support additional project-specific data fields and integrated with other data represented with comparable standards. The use of this metadata standard by all ongoing and future GSCID sequencing projects will

  5. Low-pass sequencing for microbial comparative genomics

    Directory of Open Access Journals (Sweden)

    Kennedy Sean

    2004-01-01

    Full Text Available Abstract Background We studied four extremely halophilic archaea by low-pass shotgun sequencing: (1 the metabolically versatile Haloarcula marismortui; (2 the non-pigmented Natrialba asiatica; (3 the psychrophile Halorubrum lacusprofundi and (4 the Dead Sea isolate Halobaculum gomorrense. Approximately one thousand single pass genomic sequences per genome were obtained. The data were analyzed by comparative genomic analyses using the completed Halobacterium sp. NRC-1 genome as a reference. Low-pass shotgun sequencing is a simple, inexpensive, and rapid approach that can readily be performed on any cultured microbe. Results As expected, the four archaeal halophiles analyzed exhibit both bacterial and eukaryotic characteristics as well as uniquely archaeal traits. All five halophiles exhibit greater than sixty percent GC content and low isoelectric points (pI for their predicted proteins. Multiple insertion sequence (IS elements, often involved in genome rearrangements, were identified in H. lacusprofundi and H. marismortui. The core biological functions that govern cellular and genetic mechanisms of H. sp. NRC-1 appear to be conserved in these four other halophiles. Multiple TATA box binding protein (TBP and transcription factor IIB (TFB homologs were identified from most of the four shotgunned halophiles. The reconstructed molecular tree of all five halophiles shows a large divergence between these species, but with the closest relationship being between H. sp. NRC-1 and H. lacusprofundi. Conclusion Despite the diverse habitats of these species, all five halophiles share (1 high GC content and (2 low protein isoelectric points, which are characteristics associated with environmental exposure to UV radiation and hypersalinity, respectively. Identification of multiple IS elements in the genome of H. lacusprofundi and H. marismortui suggest that genome structure and dynamic genome reorganization might be similar to that previously observed in the

  6. Genomic Treasure Troves: Complete Genome Sequencing of Herbarium and Insect Museum Specimens

    Science.gov (United States)

    Staats, Martijn; Erkens, Roy H. J.; van de Vossenberg, Bart; Wieringa, Jan J.; Kraaijeveld, Ken; Stielow, Benjamin; Geml, József; Richardson, James E.; Bakker, Freek T.

    2013-01-01

    Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS) world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae) herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22–82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus) were generated with 81.4–97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2–71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes), but at least generating vital comparative genomic data for testing (phylo)genetic, demographic and genetic hypotheses, that become increasingly more

  7. The longest ultraconserved sequences and evolution of vertebrate mitochondrial genomes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    We compared 753 genomes of bacteria, archaea, and mitochondria (more than 540 M data) and found four unique ultraconserved sequences in 352 vertebrate mitochondrial genomes which are the longest or second longest or third longest ultraconserved subsequences in the vertebrate mitochondrial genomes, their lengths are approximate to those of small RNA. Surprisingly, the classification and evolution relationship among some high-level categories of animals can be clearly reflected by their regularity of occurrence; moreover, these findings gave rise to some new ideas of evolution of mitochondria and living beings. For instance, the variations in mitochondrial genomes of animals may help clarify the evolution relationship between Aves and Reptile, and understand the fact that the origin of mitochondrion is at least not a simple copy of genomes of lower living things such as bacteria and archaea.

  8. Complete genome sequence of Haliscomenobacter hydrossis type strain (OT)

    Energy Technology Data Exchange (ETDEWEB)

    Daligault, Hajnalka E. [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Zeytun, Ahmet [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Verbarg, Susanne [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Haliscomenobacter hydrossis van Veen et al. 1973 is the type species of the genus Halisco- menobacter, which belongs to order 'Sphingobacteriales'. The species is of interest because of its isolated phylogenetic location in the tree of life, especially the so far genomically un- charted part of it, and because the organism grows in a thin, hardly visible hyaline sheath. Members of the species were isolated from fresh water of lakes and from ditch water. The genome of H. hydrossis is the first completed genome sequence reported from a member of the family 'Saprospiraceae'. The 8,771,651 bp long genome with its three plasmids of 92 kbp, 144 kbp and 164 kbp length contains 6,848 protein-coding and 60 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  9. Sequencing and analysis of the giant panda genome

    Institute of Scientific and Technical Information of China (English)

    YANG HuanMing

    2010-01-01

    @@ The giant panda (Ailuropoda melanoleuca) is loved all over the world and is considered a symbol of China, as illustrated by its being one of the mascots for the Beijing 2008 Olympic Games.It is also one of the world's most endangered animals and a flagship species for conservation.Using next-generation sequencing technology (Illumina Genome Analyzer) and our in-house assembly software, we have generated the first map of the giant panda genome sequence.This map will provide an unparalleled amount of information to aid in understanding the genetic and biological nature of this unique species and will contribute significantly to disease control and conservation efforts for this endangered species.In March 2008, the giant panda genome sequencing and analysis project was started at the Beijing Genomics Institute (BGI) in Shenzhen with collaborators from the Kunming Institute of Zoology and the Chengdu Research Base of Giant Panda Breeding.On 21 Jan.2010, this collaboration resulted in the publication, as a cover story in the journal Nature, of the sequencing and analysis of the giant panda genome.

  10. Complete genome sequence of Pyrolobus fumarii type strain (1AT)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Huber, Harald [Universitat Regensburg, Regensburg, Germany; Yasawong, Montri [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Abt, Birte [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Wirth, Reinhard [Universitat Regensburg, Regensburg, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Pyrolobus fumarii Bl chl et al. 1997 is the type species of the genus Pyrolobus, which be- longs to the crenarchaeal family Pyrodictiaceae. The species is a facultatively microaerophilic non-motile crenarchaeon. It is of interest because of its isolated phylogenetic location in the tree of life and because it is a hyperthermophilic chemolithoautotroph known as the primary producer of organic matter at deep-sea hydrothermal vents. P. fumarii exhibits currently the highest optimal growth temperature of all life forms on earth (106 C). This is the first com- pleted genome sequence of a member of the genus Pyrolobus to be published and only the second genome sequence from a member of the family Pyrodictiaceae. Although Diversa Corporation announced the completion of sequencing of the P. fumarii genome on Septem- ber 25, 2001, this sequence was never released to the public. The 1,843,267 bp long genome with its 1,986 protein-coding and 52 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  11. Castor bean organelle genome sequencing and worldwide genetic diversity analysis.

    Directory of Open Access Journals (Sweden)

    Maximo Rivarola

    Full Text Available Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.

  12. Castor bean organelle genome sequencing and worldwide genetic diversity analysis.

    Science.gov (United States)

    Rivarola, Maximo; Foster, Jeffrey T; Chan, Agnes P; Williams, Amber L; Rice, Danny W; Liu, Xinyue; Melake-Berhan, Admasu; Huot Creasy, Heather; Puiu, Daniela; Rosovitz, M J; Khouri, Hoda M; Beckstrom-Sternberg, Stephen M; Allan, Gerard J; Keim, Paul; Ravel, Jacques; Rabinowicz, Pablo D

    2011-01-01

    Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.

  13. Castor Bean Organelle Genome Sequencing and Worldwide Genetic Diversity Analysis

    Science.gov (United States)

    Chan, Agnes P.; Williams, Amber L.; Rice, Danny W.; Liu, Xinyue; Melake-Berhan, Admasu; Huot Creasy, Heather; Puiu, Daniela; Rosovitz, M. J.; Khouri, Hoda M.; Beckstrom-Sternberg, Stephen M.; Allan, Gerard J.; Keim, Paul; Ravel, Jacques; Rabinowicz, Pablo D.

    2011-01-01

    Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade. PMID:21750729

  14. An automated annotation tool for genomic DNA sequences using GeneScan and BLAST

    Indian Academy of Sciences (India)

    Andrew M. Lynn; Chakresh Kumar Jain; K. Kosalai; Pranjan Barman; Nupur Thakur; Harish Batra; Alok Bhattacharya

    2001-04-01

    Genomic sequence data are often available well before the annotated sequence is published. We present a method for analysis of genomic DNA to identify coding sequences using the GeneScan algorithm and characterize these resultant sequences by BLAST. The routines are used to develop a system for automated annotation of genome DNA sequences.

  15. The complete mitochondrial genome sequence of Emperor Penguins (Aptenodytes forsteri).

    Science.gov (United States)

    Xu, Qiwu; Xia, Yan; Dang, Xiao; Chen, Xiaoli

    2016-09-01

    The emperor penguin (Aptenodytes forsteri) is the largest living species of penguin. Herein, we first reported the complete mitochondrial genome of emperor penguin. The mitochondrial genome is a circular molecule of 17 301 bp in length, consisting of 13 protein-coding genes, 22 tRNA genes, two rRNA, and one control region. To verify the accuracy and the utility of new determined mitogenome sequences, we constructed the species phylogenetic tree of emperor penguin together with 10 other closely species. This is the second complete mitochondrial genome of penguin, and this is going to be an important data to study mitochondrial evolution of birds.

  16. Establishing a framework for comparative analysis of genome sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, A.K.

    1995-06-01

    This paper describes a framework and a high-level language toolkit for comparative analysis of genome sequence alignment The framework integrates the information derived from multiple sequence alignment and phylogenetic tree (hypothetical tree of evolution) to derive new properties about sequences. Multiple sequence alignments are treated as an abstract data type. Abstract operations have been described to manipulate a multiple sequence alignment and to derive mutation related information from a phylogenetic tree by superimposing parsimonious analysis. The framework has been applied on protein alignments to derive constrained columns (in a multiple sequence alignment) that exhibit evolutionary pressure to preserve a common property in a column despite mutation. A Prolog toolkit based on the framework has been implemented and demonstrated on alignments containing 3000 sequences and 3904 columns.

  17. The mitochondrial genome sequence of the Tasmanian tiger (Thylacinus cynocephalus)

    DEFF Research Database (Denmark)

    Miller, Webb; Drautz, Daniela I; Janecka, Jan E;

    2009-01-01

    We report the first two complete mitochondrial genome sequences of the thylacine (Thylacinus cynocephalus), or so-called Tasmanian tiger, extinct since 1936. The thylacine's phylogenetic position within australidelphian marsupials has long been debated, and here we provide strong support for the ......We report the first two complete mitochondrial genome sequences of the thylacine (Thylacinus cynocephalus), or so-called Tasmanian tiger, extinct since 1936. The thylacine's phylogenetic position within australidelphian marsupials has long been debated, and here we provide strong support...... for the thylacine's basal position in Dasyuromorphia, aided by mitochondrial genome sequence that we generated from the extant numbat (Myrmecobius fasciatus). Surprisingly, both of our thylacine sequences differ by 11%-15% from putative thylacine mitochondrial genes in GenBank, with one of our samples originating...... from a direct offspring of the previously sequenced individual. Our data sample each mitochondrial nucleotide an average of 50 times, thereby providing the first high-fidelity reference sequence for thylacine population genetics. Our two sequences differ in only five nucleotides out of 15,452, hinting...

  18. An integrated semiconductor device enabling non-optical genome sequencing.

    Science.gov (United States)

    Rothberg, Jonathan M; Hinz, Wolfgang; Rearick, Todd M; Schultz, Jonathan; Mileski, William; Davey, Mel; Leamon, John H; Johnson, Kim; Milgrew, Mark J; Edwards, Matthew; Hoon, Jeremy; Simons, Jan F; Marran, David; Myers, Jason W; Davidson, John F; Branting, Annika; Nobile, John R; Puc, Bernard P; Light, David; Clark, Travis A; Huber, Martin; Branciforte, Jeffrey T; Stoner, Isaac B; Cawley, Simon E; Lyons, Michael; Fu, Yutao; Homer, Nils; Sedova, Marina; Miao, Xin; Reed, Brian; Sabina, Jeffrey; Feierstein, Erika; Schorn, Michelle; Alanjary, Mohammad; Dimalanta, Eileen; Dressman, Devin; Kasinskas, Rachel; Sokolsky, Tanya; Fidanza, Jacqueline A; Namsaraev, Eugeni; McKernan, Kevin J; Williams, Alan; Roth, G Thomas; Bustillo, James

    2011-07-20

    The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.

  19. Complete genome sequence of the European sheatfish virus.

    Science.gov (United States)

    Mavian, Carla; López-Bueno, Alberto; Fernández Somalo, María Pilar; Alcamí, Antonio; Alejo, Alí

    2012-06-01

    Viral diseases are an increasing threat to the thriving aquaculture industry worldwide. An emerging group of fish pathogens is formed by several ranaviruses, which have been isolated at different locations from freshwater and seawater fish species since 1985. We report the complete genome sequence of European sheatfish ranavirus (ESV), the first ranavirus isolated in Europe, which causes high mortality rates in infected sheatfish (Silurus glanis) and in other species. Analysis of the genome sequence shows that ESV belongs to the amphibian-like ranaviruses and is closely related to the epizootic hematopoietic necrosis virus (EHNV), a disease agent geographically confined to the Australian continent and notifiable to the World Organization for Animal Health.

  20. Whole-genome sequence-based analysis of thyroid function

    OpenAIRE

    Taylor, Peter N; Porcu, Eleonora; Chew, Shelby; Campbell, Purdey J.; Traglia, Michela; Brown, Suzanne J.; Mullin, Benjamin H; Shihab, Hashem A.; Min, Josine; Walter, Klaudia; Memari, Yasin; Huang, Jie; Barnes, Michael R.; Beilby, John P.; Charoen, Pimphen

    2015-01-01

    Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N=2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF≥1%) associated with TSH and FT4 (N=16,335). For TSH, we identify a novel variant in SYN2 (MAF=23.5%, P=6.15 × 1...

  1. Next-Generation Sequencing and Genome Editing in Plant Virology

    OpenAIRE

    Hadidi, Ahmed; Flores, Ricardo; Candresse, Thierry; Barba, Marina

    2016-01-01

    Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21–24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant vir...

  2. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp in size; it contains a large single-copy (LSC, 76,598 bp and a small single-copy region (SSC, 42,977 bp, separated by two inverted repeats (IRa and IRb: 5,404 bp. The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome.

  3. Sequence modelling and an extensible data model for genomic database

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peter Wei-Der [California Univ., San Francisco, CA (United States)]|[Lawrence Berkeley Lab., CA (United States)

    1992-01-01

    The Human Genome Project (HGP) plans to sequence the human genome by the beginning of the next century. It will generate DNA sequences of more than 10 billion bases and complex marker sequences (maps) of more than 100 million markers. All of these information will be stored in database management systems (DBMSs). However, existing data models do not have the abstraction mechanism for modelling sequences and existing DBMS`s do not have operations for complex sequences. This work addresses the problem of sequence modelling in the context of the HGP and the more general problem of an extensible object data model that can incorporate the sequence model as well as existing and future data constructs and operators. First, we proposed a general sequence model that is application and implementation independent. This model is used to capture the sequence information found in the HGP at the conceptual level. In addition, abstract and biological sequence operators are defined for manipulating the modelled sequences. Second, we combined many features of semantic and object oriented data models into an extensible framework, which we called the ``Extensible Object Model``, to address the need of a modelling framework for incorporating the sequence data model with other types of data constructs and operators. This framework is based on the conceptual separation between constructors and constraints. We then used this modelling framework to integrate the constructs for the conceptual sequence model. The Extensible Object Model is also defined with a graphical representation, which is useful as a tool for database designers. Finally, we defined a query language to support this model and implement the query processor to demonstrate the feasibility of the extensible framework and the usefulness of the conceptual sequence model.

  4. Sequence modelling and an extensible data model for genomic database

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peter Wei-Der (California Univ., San Francisco, CA (United States) Lawrence Berkeley Lab., CA (United States))

    1992-01-01

    The Human Genome Project (HGP) plans to sequence the human genome by the beginning of the next century. It will generate DNA sequences of more than 10 billion bases and complex marker sequences (maps) of more than 100 million markers. All of these information will be stored in database management systems (DBMSs). However, existing data models do not have the abstraction mechanism for modelling sequences and existing DBMS's do not have operations for complex sequences. This work addresses the problem of sequence modelling in the context of the HGP and the more general problem of an extensible object data model that can incorporate the sequence model as well as existing and future data constructs and operators. First, we proposed a general sequence model that is application and implementation independent. This model is used to capture the sequence information found in the HGP at the conceptual level. In addition, abstract and biological sequence operators are defined for manipulating the modelled sequences. Second, we combined many features of semantic and object oriented data models into an extensible framework, which we called the Extensible Object Model'', to address the need of a modelling framework for incorporating the sequence data model with other types of data constructs and operators. This framework is based on the conceptual separation between constructors and constraints. We then used this modelling framework to integrate the constructs for the conceptual sequence model. The Extensible Object Model is also defined with a graphical representation, which is useful as a tool for database designers. Finally, we defined a query language to support this model and implement the query processor to demonstrate the feasibility of the extensible framework and the usefulness of the conceptual sequence model.

  5. Genomic divergences among cattle, dog and human estimated from large-scale alignments of genomic sequences

    Directory of Open Access Journals (Sweden)

    Shade Larry L

    2006-06-01

    Full Text Available Abstract Background Approximately 11 Mb of finished high quality genomic sequences were sampled from cattle, dog and human to estimate genomic divergences and their regional variation among these lineages. Results Optimal three-way multi-species global sequence alignments for 84 cattle clones or loci (each >50 kb of genomic sequence were constructed using the human and dog genome assemblies as references. Genomic divergences and substitution rates were examined for each clone and for various sequence classes under different functional constraints. Analysis of these alignments revealed that the overall genomic divergences are relatively constant (0.32–0.37 change/site for pairwise comparisons among cattle, dog and human; however substitution rates vary across genomic regions and among different sequence classes. A neutral mutation rate (2.0–2.2 × 10(-9 change/site/year was derived from ancestral repetitive sequences, whereas the substitution rate in coding sequences (1.1 × 10(-9 change/site/year was approximately half of the overall rate (1.9–2.0 × 10(-9 change/site/year. Relative rate tests also indicated that cattle have a significantly faster rate of substitution as compared to dog and that this difference is about 6%. Conclusion This analysis provides a large-scale and unbiased assessment of genomic divergences and regional variation of substitution rates among cattle, dog and human. It is expected that these data will serve as a baseline for future mammalian molecular evolution studies.

  6. Building a model: developing genomic resources for common milkweed (Asclepias syriaca with low coverage genome sequencing

    Directory of Open Access Journals (Sweden)

    Weitemier Kevin

    2011-05-01

    Full Text Available Abstract Background Milkweeds (Asclepias L. have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L. could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. Results A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp and 5S rDNA (120 bp sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp, with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae unigenes (median coverage of 0.29× and 66% of single copy orthologs (COSII in asterids (median coverage of 0.14×. From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites and phylogenetics (low-copy nuclear genes studies were developed. Conclusions The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species

  7. Complete genome sequence of Thauera aminoaromatica strain MZ1T

    Science.gov (United States)

    Jiang, Ke; Sanseverino, John; Chauhan, Archana; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Del Rio, Tijana Glavina; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Sims, David; Brettin, Thomas; Detter, John C.; Han, Cliff; Chang, Y.J.; Larimer, Frank; Land, Miriam; Hauser, Loren; Kyrpides, Nikos C.; Mikhailova, Natalia; Moser, Scott; Jegier, Patricia; Close, Dan; DeBruyn, Jennifer M.; Wang, Ying; Layton, Alice C.; Allen, Michael S.; Sayler, Gary S.

    2012-01-01

    Thauera aminoaromatica strain MZ1T, an isolate belonging to genus Thauera, of the family Rhodocyclaceae and the class the Betaproteobacteria, has been characterized for its ability to produce abundant exopolysaccharide and degrade various aromatic compounds with nitrate as an electron acceptor. These properties, if fully understood at the genome-sequence level, can aid in environmental processing of organic matter in anaerobic cycles by short-circuiting a central anaerobic metabolite, acetate, from microbiological conversion to methane, a critical greenhouse gas. Strain MZ1T is the first strain from the genus Thauera with a completely sequenced genome. The 4,496,212 bp chromosome and 78,374 bp plasmid contain 4,071 protein-coding and 71 RNA genes, and were sequenced as part of the DOE Community Sequencing Program CSP_776774. PMID:23407619

  8. Complete genome sequence of Thauera aminoaromatica strain MZ1T

    Energy Technology Data Exchange (ETDEWEB)

    Sanseverino, John [ORNL; Chauhan, Archana [University of Tennessee, Knoxville (UTK); Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Sims, David [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chang, Yun-Juan [ORNL; Larimer, Frank W [ORNL; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Moser, Scott [University of Tennessee, Knoxville (UTK); Jegier, Patricia [University of Tennessee, Knoxville (UTK); Close, Dan [University of Tennessee, Knoxville (UTK); Wang, Ying [University of Tennessee, Knoxville (UTK); Layton, Alice [University of Tennessee, Knoxville (UTK); Allen, Michael S. [University of Tennessee, Knoxville (UTK); Sayler, Gary [University of Tennessee, Knoxville (UTK)

    2012-01-01

    Thauera aminoaromatica strain MZ1T, an isolate belonging to genus Thauera, of the family Rhodocyclaceae and the class the Betaproteobacteria, has been characterized for its ability to produce abundant exopolysaccharide and degrade various aromatic compounds with nitrate as an electron acceptor. These properties, if fully understood at the genome-sequence level, can aid in environmental processing of organic matter in anaerobic cycles by short-circuiting a central anaerobic metabolite, acetate, from microbiological conversion to methane, a criti-cal greenhouse gas. Strain MZ1T is the first strain from the genus Thauera with a completely sequenced genome. The 4,496,212 bp chromosome and 78,374 bp plasmid contain 4,071 protein-coding and 71 RNA genes, and were sequenced as part of the DOE Community Se-quencing Program CSP{_}776774.

  9. Genome Calligrapher: A Web Tool for Refactoring Bacterial Genome Sequences for de Novo DNA Synthesis.

    Science.gov (United States)

    Christen, Matthias; Deutsch, Samuel; Christen, Beat

    2015-08-21

    Recent advances in synthetic biology have resulted in an increasing demand for the de novo synthesis of large-scale DNA constructs. Any process improvement that enables fast and cost-effective streamlining of digitized genetic information into fabricable DNA sequences holds great promise to study, mine, and engineer genomes. Here, we present Genome Calligrapher, a computer-aided design web tool intended for whole genome refactoring of bacterial chromosomes for de novo DNA synthesis. By applying a neutral recoding algorithm, Genome Calligrapher optimizes GC content and removes obstructive DNA features known to interfere with the synthesis of double-stranded DNA and the higher order assembly into large DNA constructs. Subsequent bioinformatics analysis revealed that synthesis constraints are prevalent among bacterial genomes. However, a low level of codon replacement is sufficient for refactoring bacterial genomes into easy-to-synthesize DNA sequences. To test the algorithm, 168 kb of synthetic DNA comprising approximately 20 percent of the synthetic essential genome of the cell-cycle bacterium Caulobacter crescentus was streamlined and then ordered from a commercial supplier of low-cost de novo DNA synthesis. The successful assembly into eight 20 kb segments indicates that Genome Calligrapher algorithm can be efficiently used to refactor difficult-to-synthesize DNA. Genome Calligrapher is broadly applicable to recode biosynthetic pathways, DNA sequences, and whole bacterial genomes, thus offering new opportunities to use synthetic biology tools to explore the functionality of microbial diversity. The Genome Calligrapher web tool can be accessed at https://christenlab.ethz.ch/GenomeCalligrapher  .

  10. From Sequence to Morphology - Long-Range Correlations in Complete Sequenced Genomes

    NARCIS (Netherlands)

    T.A. Knoch (Tobias)

    2004-01-01

    textabstractThe largely unresolved sequential organization, i.e. the relations within DNA sequences, and its connection to the three-dimensional organization of genomes was investigated by correlation analyses of completely sequenced chromosomes from Viroids, Archaea, Bacteria, Arabidopsis thali

  11. Complete Genome Sequence of Streptococcus agalactiae CNCTC 10/84, a Hypervirulent Sequence Type 26 Strain

    OpenAIRE

    Hooven, Thomas A.; Randis, Tara M.; Daugherty, Sean C.; Narechania, Apurva; Planet, Paul J.; Tettelin, Hervé; Ratner, Adam J.

    2014-01-01

    Streptococcus agalactiae (group B Streptococcus [GBS]) is a human pathogen with a propensity to cause neonatal infections. We report the complete genome sequence of GBS strain CNCTC 10/84, a hypervirulent clinical isolate frequently used to study GBS pathogenesis. Comparative analysis of this sequence may shed light on novel pathogenic mechanisms.

  12. New complete genome sequences of human rhinoviruses shed light on their phylogeny and genomic features

    Directory of Open Access Journals (Sweden)

    Zdobnov Evgeny M

    2007-07-01

    Full Text Available Abstract Background Human rhinoviruses (HRV, the most frequent cause of respiratory infections, include 99 different serotypes segregating into two species, A and B. Rhinoviruses share extensive genomic sequence similarity with enteroviruses and both are part of the picornavirus family. Nevertheless they differ significantly at the phenotypic level. The lack of HRV full-length genome sequences and the absence of analysis comparing picornaviruses at the whole genome level limit our knowledge of the genomic features supporting these differences. Results Here we report complete genome sequences of 12 HRV-A and HRV-B serotypes, more than doubling the current number of available HRV sequences. The whole-genome maximum-likelihood phylogenetic analysis suggests that HRV-B and human enteroviruses (HEV diverged from the last common ancestor after their separation from HRV-A. On the other hand, compared to HEV, HRV-B are more related to HRV-A in the capsid and 3B-C regions. We also identified the presence of a 2C cis-acting replication element (cre in HRV-B that is not present in HRV-A, and that had been previously characterized only in HEV. In contrast to HEV viruses, HRV-A and HRV-B share also markedly lower GC content along the whole genome length. Conclusion Our findings provide basis to speculate about both the biological similarities and the differences (e.g. tissue tropism, temperature adaptation or acid lability of these three groups of viruses.

  13. Draft Genome Sequence of Corynebacterium diphtheriae Biovar Intermedius NCTC 5011

    OpenAIRE

    Sangal, Vartul; Nicholas P Tucker; Burkovski, Andreas; Hoskisson, Paul A.

    2012-01-01

    We report an annotated draft genome of the human pathogen Corynebacterium diphtheriae bv. intermedius NCTC 5011. This strain is the first C. diphtheriae bv. intermedius strain to be sequenced, and our results provide a useful comparison to the other primary disease-causing biovars, C. diphtheriae bv. gravis and C. diphtheriae bv. mitis. The sequence has been deposited at DDBJ/EMBL/GenBank with the accession number AJVH01000000.

  14. Draft genome sequence of Corynebacterium diphtheriae biovar intermedius NCTC 5011.

    Science.gov (United States)

    Sangal, Vartul; Tucker, Nicholas P; Burkovski, Andreas; Hoskisson, Paul A

    2012-09-01

    We report an annotated draft genome of the human pathogen Corynebacterium diphtheriae bv. intermedius NCTC 5011. This strain is the first C. diphtheriae bv. intermedius strain to be sequenced, and our results provide a useful comparison to the other primary disease-causing biovars, C. diphtheriae bv. gravis and C. diphtheriae bv. mitis. The sequence has been deposited at DDBJ/EMBL/GenBank with the accession number AJVH01000000.

  15. Mitochondrial genome sequences and comparative genomics ofPhytophthora ramorum and P. sojae

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Frank N.; Douda, Bensasson; Tyler, Brett M.; Boore,Jeffrey L.

    2007-01-01

    The complete sequences of the mitochondrial genomes of theoomycetes of Phytophthora ramorum and P. sojae were determined during thecourse of their complete nuclear genome sequencing (Tyler, et al. 2006).Both are circular, with sizes of 39,314 bp for P. ramorum and 42,975 bpfor P. sojae. Each contains a total of 37 identifiable protein-encodinggenes, 25 or 26 tRNAs (P. sojae and P. ramorum, respectively)specifying19 amino acids, and a variable number of ORFs (7 for P. ramorum and 12for P. sojae) which are potentially additional functional genes.Non-coding regions comprise approximately 11.5 percent and 18.4 percentof the genomes of P. ramorum and P. sojae, respectively. Relative to P.sojae, there is an inverted repeat of 1,150 bp in P. ramorum thatincludes an unassigned unique ORF, a tRNA gene, and adjacent non-codingsequences, but otherwise the gene order in both species is identical.Comparisons of these genomes with published sequences of the P. infestansmitochondrial genome reveals a number of similarities, but the gene orderin P. infestans differs in two adjacent locations due to inversions.Sequence alignments of the three genomes indicated sequence conservationranging from 75 to 85 percent and that specific regions were morevariable than others.

  16. Draft Genome Sequence of "Terrisporobacter othiniensis" Isolated from a Blood Culture from a Human Patient

    DEFF Research Database (Denmark)

    Lund, Lars Christian; Sydenham, Thomas Vognbjerg; Høgh, Silje Vermedal;

    2015-01-01

    "Terrisporobacter othiniensis" (proposed species) was isolated from a blood culture. Genomic DNA was sequenced using a MiSeq benchtop sequencer (Illumina) and assembled using the SPAdes genome assembler. This resulted in a draft genome sequence comprising 3,980,019 bp in 167 contigs containing 3,......,449 coding sequences, 7 rRNAs, and 58 tRNAs......."Terrisporobacter othiniensis" (proposed species) was isolated from a blood culture. Genomic DNA was sequenced using a MiSeq benchtop sequencer (Illumina) and assembled using the SPAdes genome assembler. This resulted in a draft genome sequence comprising 3,980,019 bp in 167 contigs containing 3...

  17. A Pan-HIV Strategy for Complete Genome Sequencing.

    Science.gov (United States)

    Berg, Michael G; Yamaguchi, Julie; Alessandri-Gradt, Elodie; Tell, Robert W; Plantier, Jean-Christophe; Brennan, Catherine A

    2016-04-01

    Molecular surveillance is essential to monitor HIV diversity and track emerging strains. We have developed a universal library preparation method (HIV-SMART [i.e.,switchingmechanismat 5' end ofRNAtranscript]) for next-generation sequencing that harnesses the specificity of HIV-directed priming to enable full genome characterization of all HIV-1 groups (M, N, O, and P) and HIV-2. Broad application of the HIV-SMART approach was demonstrated using a panel of diverse cell-cultured virus isolates. HIV-1 non-subtype B-infected clinical specimens from Cameroon were then used to optimize the protocol to sequence directly from plasma. When multiplexing 8 or more libraries per MiSeq run, full genome coverage at a median ∼2,000× depth was routinely obtained for either sample type. The method reproducibly generated the same consensus sequence, consistently identified viral sequence heterogeneity present in specimens, and at viral loads of ≤4.5 log copies/ml yielded sufficient coverage to permit strain classification. HIV-SMART provides an unparalleled opportunity to identify diverse HIV strains in patient specimens and to determine phylogenetic classification based on the entire viral genome. Easily adapted to sequence any RNA virus, this technology illustrates the utility of next-generation sequencing (NGS) for viral characterization and surveillance.

  18. Quantifying Next Generation Sequencing Sample Pre-Processing Bias in HIV-1 Complete Genome Sequencing.

    Science.gov (United States)

    Vrancken, Bram; Trovão, Nídia Sequeira; Baele, Guy; van Wijngaerden, Eric; Vandamme, Anne-Mieke; van Laethem, Kristel; Lemey, Philippe

    2016-01-07

    Genetic analyses play a central role in infectious disease research. Massively parallelized "mechanical cloning" and sequencing technologies were quickly adopted by HIV researchers in order to broaden the understanding of the clinical importance of minor drug-resistant variants. These efforts have, however, remained largely limited to small genomic regions. The growing need to monitor multiple genome regions for drug resistance testing, as well as the obvious benefit for studying evolutionary and epidemic processes makes complete genome sequencing an important goal in viral research. In addition, a major drawback for NGS applications to RNA viruses is the need for large quantities of input DNA. Here, we use a generic overlapping amplicon-based near full-genome amplification protocol to compare low-input enzymatic fragmentation (Nextera™) with conventional mechanical shearing for Roche 454 sequencing. We find that the fragmentation method has only a modest impact on the characterization of the population composition and that for reliable results, the variation introduced at all steps of the procedure--from nucleic acid extraction to sequencing--should be taken into account, a finding that is also relevant for NGS technologies that are now more commonly used. Furthermore, by applying our protocol to deep sequence a number of pre-therapy plasma and PBMC samples, we illustrate the potential benefits of a near complete genome sequencing approach in routine genotyping.

  19. Hellbender genome sequences shed light on genomic expansion at the base of crown salamanders.

    Science.gov (United States)

    Sun, Cheng; Mueller, Rachel Lockridge

    2014-07-01

    Among animals, genome sizes range from 20 Mb to 130 Gb, with 380-fold variation across vertebrates. Most of the largest vertebrate genomes are found in salamanders, an amphibian clade of 660 species. Thus, salamanders are an important system for studying causes and consequences of genomic gigantism. Previously, we showed that plethodontid salamander genomes accumulate higher levels of long terminal repeat (LTR) retrotransposons than do other vertebrates, although the evolutionary origins of such sequences remained unexplored. We also showed that some salamanders in the family Plethodontidae have relatively slow rates of DNA loss through small insertions and deletions. Here, we present new data from Cryptobranchus alleganiensis, the hellbender. Cryptobranchus and Plethodontidae span the basal phylogenetic split within salamanders; thus, analyses incorporating these taxa can shed light on the genome of the ancestral crown salamander lineage, which underwent expansion. We show that high levels of LTR retrotransposons likely characterize all crown salamanders, suggesting that disproportionate expansion of this transposable element (TE) class contributed to genomic expansion. Phylogenetic and age distribution analyses of salamander LTR retrotransposons indicate that salamanders' high TE levels reflect persistence and diversification of ancestral TEs rather than horizontal transfer events. Finally, we show that relatively slow DNA loss rates through small indels likely characterize all crown salamanders, suggesting that a decreased DNA loss rate contributed to genomic expansion at the clade's base. Our identification of shared genomic features across phylogenetically distant salamanders is a first step toward identifying the evolutionary processes underlying accumulation and persistence of high levels of repetitive sequence in salamander genomes.

  20. Complete Genome Sequence of Bradyrhizobium diazoefficiens USDA 122, a Nitrogen-Fixing Soybean Symbiont

    Science.gov (United States)

    Sugawara, Masayuki; Tsukui, Takahiro; Kaneko, Takakazu; Ohtsubo, Yoshiyuki; Sato, Shusei; Nagata, Yuji; Tsuda, Masataka; Mitsui, Hisayuki

    2017-01-01

    ABSTRACT We report the complete genome sequence of Bradyrhizobium diazoefficiens USDA 122, a nitrogen-fixing soybean symbiont. The genome consists of a 9.1 Mb circular chromosome, and 8,551 coding sequences (CDSs) were predicted on the genome. The sequence will provide insight into the evolution of rhizobial genome, and the symbiotic compatibility with host plants. PMID:28254989

  1. Characterizing the citrus cultivar Carrizo genome through 454 shotgun sequencing.

    Science.gov (United States)

    Belknap, William R; Wang, Yi; Huo, Naxin; Wu, Jiajie; Rockhold, David R; Gu, Yong Q; Stover, Ed

    2011-12-01

    The citrus cultivar Carrizo is the single most important rootstock to the US citrus industry and has resistance or tolerance to a number of major citrus diseases, including citrus tristeza virus, foot rot, and Huanglongbing (HLB, citrus greening). A Carrizo genomic sequence database providing approximately 3.5×genome coverage (haploid genome size approximately 367 Mb) was populated through 454 GS FLX shotgun sequencing. Analysis of the repetitive DNA fraction indicated a total interspersed repeat fraction of 36.5%. Assembly and characterization of abundant citrus Ty3/gypsy elements revealed a novel type of element containing open reading frames encoding a viral RNA-silencing suppressor protein (RNA binding protein, rbp) and a plant cytokinin riboside 5′-monophosphate phosphoribohydrolase-related protein (LONELY GUY, log). Similar gypsy elements were identified in the Populus trichocarpa genome. Gene-coding region analysis indicated that 24.4% of the nonrepetitive reads contained genic regions. The depth of genome coverage was sufficient to allow accurate assembly of constituent genes, including a putative phloem-expressed gene. The development of the Carrizo database (http://citrus.pw.usda.gov/) will contribute to characterization of agronomically significant loci and provide a publicly available genomic resource to the citrus research community.

  2. Genome sequence of the lager brewing yeast, an interspecies hybrid.

    Science.gov (United States)

    Nakao, Yoshihiro; Kanamori, Takeshi; Itoh, Takehiko; Kodama, Yukiko; Rainieri, Sandra; Nakamura, Norihisa; Shimonaga, Tomoko; Hattori, Masahira; Ashikari, Toshihiko

    2009-04-01

    This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production.

  3. Draft Genome Sequence of Campylobacter jejuni 11168H

    Science.gov (United States)

    Macdonald, Sarah E.; Gundogdu, Ozan; Dorrell, Nick; Wren, Brendan W.; Blake, Damer

    2017-01-01

    ABSTRACT Campylobacter jejuni is the most prevalent cause of food-borne gastroenteritis in the developed world. The reference and original sequenced strain C. jejuni NCTC11168 has low levels of motility compared to clinical isolates. Here, we describe the draft genome of the laboratory derived hypermotile variant named 11168H. PMID:28153902

  4. Genome sequence of Kingella kingae septic arthritis isolate PYKK081.

    Science.gov (United States)

    Kaplan, Jeffrey B; Lo, Chienchi; Xie, Gary; Johnson, Shannon L; Chain, Patrick S G; Donnelly, Robert; Kachlany, Scott C; Balashova, Nataliya V

    2012-06-01

    Kingella kingae is a human oral bacterium that can cause infections of the skeletal system in children. The bacterium is also a cardiovascular pathogen causing infective endocarditis in children and adults. We report herein the draft genome sequence of septic arthritis K. kingae strain PYKK081.

  5. Genome Sequence of Kingella kingae Septic Arthritis Isolate PYKK081

    OpenAIRE

    Kaplan, Jeffrey B.; Lo, Chienchi; Xie, Gary; Johnson, Shannon L.; Chain, Patrick S.G.; Donnelly, Robert; Kachlany, Scott C.; Balashova, Nataliya V.

    2012-01-01

    Kingella kingae is a human oral bacterium that can cause infections of the skeletal system in children. The bacterium is also a cardiovascular pathogen causing infective endocarditis in children and adults. We report herein the draft genome sequence of septic arthritis K. kingae strain PYKK081.

  6. Complete Genome Sequence of Neisseria weaveri Strain NCTC13585

    Science.gov (United States)

    Fazal, Mohammed-Abbas; Burnett, Edward; Deheer-Graham, Ana; Oliver, Karen; Holroyd, Nancy; Russell, Julie E.

    2016-01-01

    Neisseria weaveri is a commensal organism of the canine oral cavity and an occasional opportunistic human pathogen which is associated with dog bite wounds. Here we report the first complete genomic sequence of the N. weaveri NCTC13585 (CCUG30381) strain, which was originally isolated from a patient with a canine bite wound. PMID:27563039

  7. Draft genome sequence of the mulberry tree Morus notabilis.

    Science.gov (United States)

    He, Ningjia; Zhang, Chi; Qi, Xiwu; Zhao, Shancen; Tao, Yong; Yang, Guojun; Lee, Tae-Ho; Wang, Xiyin; Cai, Qingle; Li, Dong; Lu, Mengzhu; Liao, Sentai; Luo, Guoqing; He, Rongjun; Tan, Xu; Xu, Yunmin; Li, Tian; Zhao, Aichun; Jia, Ling; Fu, Qiang; Zeng, Qiwei; Gao, Chuan; Ma, Bi; Liang, Jiubo; Wang, Xiling; Shang, Jingzhe; Song, Penghua; Wu, Haiyang; Fan, Li; Wang, Qing; Shuai, Qin; Zhu, Juanjuan; Wei, Congjin; Zhu-Salzman, Keyan; Jin, Dianchuan; Wang, Jinpeng; Liu, Tao; Yu, Maode; Tang, Cuiming; Wang, Zhenjiang; Dai, Fanwei; Chen, Jiafei; Liu, Yan; Zhao, Shutang; Lin, Tianbao; Zhang, Shougong; Wang, Junyi; Wang, Jian; Yang, Huanming; Yang, Guangwei; Wang, Jun; Paterson, Andrew H; Xia, Qingyou; Ji, Dongfeng; Xiang, Zhonghuai

    2013-01-01

    Human utilization of the mulberry-silkworm interaction started at least 5,000 years ago and greatly influenced world history through the Silk Road. Complementing the silkworm genome sequence, here we describe the genome of a mulberry species Morus notabilis. In the 330-Mb genome assembly, we identify 128 Mb of repetitive sequences and 29,338 genes, 60.8% of which are supported by transcriptome sequencing. Mulberry gene sequences appear to evolve ~3 times faster than other Rosales, perhaps facilitating the species' spread worldwide. The mulberry tree is among a few eudicots but several Rosales that have not preserved genome duplications in more than 100 million years; however, a neopolyploid series found in the mulberry tree and several others suggest that new duplications may confer benefits. Five predicted mulberry miRNAs are found in the haemolymph and silk glands of the silkworm, suggesting interactions at molecular levels in the plant-herbivore relationship. The identification and analyses of mulberry genes involved in diversifying selection, resistance and protease inhibitor expressed in the laticifers will accelerate the improvement of mulberry plants.

  8. Complete Chloroplast Genome Sequence of Dendrobium nobile from Northeastern India

    Science.gov (United States)

    Parameswaran, Sriram; Sundar, Durai

    2016-01-01

    The orchid species Dendrobium nobile belonging to the family Orchidaceae and genus Dendrobium (a vast genus that encompasses nearly 1,200 species) has an herbal medicinal history of about 2000 years in east and south Asian countries. Here, we report the complete chloroplast genome sequence of D. nobile from northeastern India for the first time.

  9. Templated sequence insertion polymorphisms in the human genome

    Science.gov (United States)

    Onozawa, Masahiro; Aplan, Peter

    2016-11-01

    Templated Sequence Insertion Polymorphism (TSIP) is a recently described form of polymorphism recognized in the human genome, in which a sequence that is templated from a distant genomic region is inserted into the genome, seemingly at random. TSIPs can be grouped into two classes based on nucleotide sequence features at the insertion junctions; Class 1 TSIPs show features of insertions that are mediated via the LINE-1 ORF2 protein, including 1) target-site duplication (TSD), 2) polyadenylation 10-30 nucleotides downstream of a “cryptic” polyadenylation signal, and 3) preference for insertion at a 5’-TTTT/A-3’ sequence. In contrast, class 2 TSIPs show features consistent with repair of a DNA double-strand break via insertion of a DNA “patch” that is derived from a distant genomic region. Survey of a large number of normal human volunteers demonstrates that most individuals have 25-30 TSIPs, and that these TSIPs track with specific geographic regions. Similar to other forms of human polymorphism, we suspect that these TSIPs may be important for the generation of human diversity and genetic diseases.

  10. Targeted enrichment of genomic DNA regions for next generation sequencing

    NARCIS (Netherlands)

    Mertens, F.; El-Sharawy, A.; Sauer, S.; Van Helvoort, J.; Van der Zaag, P.J.; Franke, A.; Nilsson, M.; Lehrach. H.; Brookes, A.

    2011-01-01

    In this review we discuss the latest targeted enrichment methods, and aspects of their utilization along with second generation sequencing for complex genome analysis. In doing so we provide an overview of issues involved in detecting genetic variation, for which targeted enrichment has become a pow

  11. Genome sequence of the human pathogen Vibrio cholerae Amazonia.

    NARCIS (Netherlands)

    Thompson, C.C.; Marin, M.A.; Dias, G.M.; Dutilh, B.E.; Edwards, R.A.; Iida, T.; Thompson, F.L.; Vicente, A.C.

    2011-01-01

    Vibrio cholerae O1 Amazonia is a pathogen that was isolated from cholera-like diarrhea cases in at least two countries, Brazil and Ghana. Based on multilocus sequence analysis, this lineage belongs to a distinct profile compared to strains from El Tor and classical biotypes. The genomic analysis rev

  12. Complete genome sequence of the alfalfa latent virus

    Science.gov (United States)

    Alfalfa latent virus (ALV) is a member of the carlavirus group and occurs symptomlessly in alfalfa (Medicago sativa). In the US it is prevalent in Nebraska and Wisconsin. The virus is recognized as a strain of Pea streak virus (PeSV) So far, no complete genomic sequence of PSV or ALV is availab...

  13. Genome sequence of Mycoplasma hyorhinis strain GDL-1.

    Science.gov (United States)

    Calcutt, Michael J; Foecking, Mark F; Rosales, Ruben S; Ellis, Richard J; Nicholas, Robin A J

    2012-04-01

    Mycoplasma hyorhinis impacts swine health and production in many countries, either as a primary pathogen or as a component of a polymicrobial infection. Isolates of this species are also common contaminants of tissue culture lines. The genome sequence of the cell culture isolate M. hyorhinis GDL-1 is presented herein.

  14. Genome Sequence of the Pathogenic Fungus Sporothrix schenckii (ATCC 58251).

    Science.gov (United States)

    Cuomo, Christina A; Rodriguez-Del Valle, Nuri; Perez-Sanchez, Lizaida; Abouelleil, Amr; Goldberg, Jonathan; Young, Sarah; Zeng, Qiandong; Birren, Bruce W

    2014-05-22

    Sporothrix schenckii is a pathogenic dimorphic fungus that grows as a yeast and as mycelia. This species is the causative agent of sporotrichosis, typically a skin infection. We report the genome sequence of S. schenckii, which will facilitate the study of this fungus and of the Sporothrix schenckii group.

  15. Complete genome sequence of the myxobacterium Sorangium cellulosum

    DEFF Research Database (Denmark)

    Schneiker, S; Perlova, O; Kaiser, O

    2007-01-01

    The genus Sorangium synthesizes approximately half of the secondary metabolites isolated from myxobacteria, including the anti-cancer metabolite epothilone. We report the complete genome sequence of the model Sorangium strain S. cellulosum Soce56, which produces several natural products and has...

  16. Genome Sequences of 11 Human Vaginal Actinobacteria Strains.

    Science.gov (United States)

    Lewis, Amanda L; Deitzler, Grace E; Ruiz, Maria J; Weimer, Cory; Park, SoEun; Robinson, Lloyd S; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka; Lewis, Warren G

    2016-01-01

    The composition of the vaginal microbiota is an important health determinant. Several members of the phylum Actinobacteria have been implicated in bacterial vaginosis, a condition associated with many negative health outcomes. Here, we present 11 strains of vaginal Actinobacteria (now available through BEI Resources) along with draft genome sequences.

  17. Complete Genome Sequence of Bacillus megaterium Myophage Mater

    OpenAIRE

    Lancaster, Jacob C.; Hodde, Mary K.; Hernandez, Adriana C.; Kuty Everett, Gabriel F.

    2015-01-01

    Bacillus megaterium is a ubiquitous, soil inhabiting Gram-positive bacterium that is a common model organism and is used in industrial applications for protein production. The following reports the complete sequencing and annotation of the genome of B. megaterium myophage Mater and describes the major features identified.

  18. Complete Genome Sequence of Bacillus megaterium Siphophage Silence

    OpenAIRE

    Solis, Jonathan A.; Farmer, Nicholas G.; Cahill, Jesse L.; Rasche, Eric S.; Kuty Everett, Gabriel F.

    2015-01-01

    Silence is a newly isolated siphophage that infects Bacillus megaterium, a soil bacterium that is used readily in research and commercial applications. A study of B. megaterium phage Silence will enhance our knowledge of the diversity of Bacillus phages. Here, we describe the complete genome sequence and annotated features of Silence.

  19. Complete Genome Sequence of Mycobacterium vaccae Type Strain ATCC 25954

    KAUST Repository

    Ho, Y. S.

    2012-10-26

    Mycobacterium vaccae is a rapidly growing, nontuberculous Mycobacterium species that is generally not considered a human pathogen and is of major pharmaceutical interest as an immunotherapeutic agent. We report here the annotated genome sequence of the M. vaccae type strain, ATCC 25954.

  20. Whole genome sequencing for childhood cancer in Denmark

    DEFF Research Database (Denmark)

    Gupta, Ramneek

    of host, tumour and gut microbiome’s genomes. In Europe, cancer accounts for approximately 25% of all deaths in children >1 year. Most cured patients are burdened by late effects, including risk of second cancer and debilitating toxicities. Recent advancements in genetic sequencing technology...

  1. Genome Sequences of Nine Gram-Negative Vaginal Bacterial Isolates

    Science.gov (United States)

    Deitzler, Grace E.; Ruiz, Maria J.; Lu, Wendy; Weimer, Cory; Park, SoEun; Robinson, Lloyd S.; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka

    2016-01-01

    The vagina is home to a wide variety of bacteria that have great potential to impact human health. Here, we announce reference strains (now available through BEI Resources) and draft genome sequences for 9 Gram-negative vaginal isolates from the taxa Citrobacter, Klebsiella, Fusobacterium, Proteus, and Prevotella. PMID:27688330

  2. Genome Sequences of 11 Human Vaginal Actinobacteria Strains

    Science.gov (United States)

    Deitzler, Grace E.; Ruiz, Maria J.; Weimer, Cory; Park, SoEun; Robinson, Lloyd S.; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka

    2016-01-01

    The composition of the vaginal microbiota is an important health determinant. Several members of the phylum Actinobacteria have been implicated in bacterial vaginosis, a condition associated with many negative health outcomes. Here, we present 11 strains of vaginal Actinobacteria (now available through BEI Resources) along with draft genome sequences. PMID:27688328

  3. The complete mitochondrial genome sequence of Diaphorina citri (Hemiptera: Psyllidae)

    Science.gov (United States)

    The first complete mitochondrial genome (mitogenome) sequence of Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae), from Guangzhou, China is presented. The circular mitogenome is 14,996 bp in length with an A+T content of 74.5%, and contains 13 protein-coding genes (PCGs), 22 tRNA genes ...

  4. Genome Sequences of Gordonia terrae Bacteriophages Phinally and Vivi2.

    Science.gov (United States)

    Pope, Welkin H; Anderson, Kaitlyn C; Arora, Charu; Bortz, Michael E; Burnet, George; Conover, David H; D'Incau, Gina M; Ghobrial, Jonathan A; Jonas, Audrey L; Migdal, Emily J; Rote, Nicole L; German, Brian A; McDonnell, Jill E; Mezghani, Nadia; Schafer, Claire E; Thompson, Paige K; Ulbrich, Megan C; Yu, Victor J; Furbee, Emily C; Grubb, Sarah R; Warner, Marcie H; Montgomery, Matthew T; Garlena, Rebecca A; Russell, Daniel A; Jacobs-Sera, Deborah; Hatfull, Graham F

    2016-08-18

    Bacteriophages Phinally and Vivi2 were isolated from soil from Pittsburgh, Pennsylvania, USA, using host Gordonia terrae 3612. The Phinally and Vivi2 genomes are 59,265 bp and 59,337 bp, respectively, and share sequence similarity with each other and with GTE6. Fewer than 25% of the 87 to 89 putative genes have predictable functions.

  5. Complete Genome Sequence of the Cyanobacterium Anabaena sp. 33047

    Science.gov (United States)

    2016-01-01

    This study presents the complete nucleotide sequence of Anabaena sp. ATCC 33047 (Anabaena CA), a filamentous, nitrogen-fixing marine cyanobacterium, which under salt stress conditions accumulates sucrose internally. The elucidation of the genome will contribute to the understanding of cyanobacterial diversity. PMID:27516507

  6. Large-Scale Sequencing: The Future of Genomic Sciences Colloquium

    Energy Technology Data Exchange (ETDEWEB)

    Margaret Riley; Merry Buckley

    2009-01-01

    Genetic sequencing and the various molecular techniques it has enabled have revolutionized the field of microbiology. Examining and comparing the genetic sequences borne by microbes - including bacteria, archaea, viruses, and microbial eukaryotes - provides researchers insights into the processes microbes carry out, their pathogenic traits, and new ways to use microorganisms in medicine and manufacturing. Until recently, sequencing entire microbial genomes has been laborious and expensive, and the decision to sequence the genome of an organism was made on a case-by-case basis by individual researchers and funding agencies. Now, thanks to new technologies, the cost and effort of sequencing is within reach for even the smallest facilities, and the ability to sequence the genomes of a significant fraction of microbial life may be possible. The availability of numerous microbial genomes will enable unprecedented insights into microbial evolution, function, and physiology. However, the current ad hoc approach to gathering sequence data has resulted in an unbalanced and highly biased sampling of microbial diversity. A well-coordinated, large-scale effort to target the breadth and depth of microbial diversity would result in the greatest impact. The American Academy of Microbiology convened a colloquium to discuss the scientific benefits of engaging in a large-scale, taxonomically-based sequencing project. A group of individuals with expertise in microbiology, genomics, informatics, ecology, and evolution deliberated on the issues inherent in such an effort and generated a set of specific recommendations for how best to proceed. The vast majority of microbes are presently uncultured and, thus, pose significant challenges to such a taxonomically-based approach to sampling genome diversity. However, we have yet to even scratch the surface of the genomic diversity among cultured microbes. A coordinated sequencing effort of cultured organisms is an appropriate place to begin

  7. Draft Genome Sequence of Buttiauxella agrestis, Isolated from Surface Water

    OpenAIRE

    Jothikumar, Narayanan; Kahler, Amy; Strockbine, Nancy; Gladney, Lori; Hill, Vincent R.

    2014-01-01

    MI agar is routinely used for quantifying Escherichia coli in drinking water. A suspect E. coli colony isolated from a water sample was identified as Buttiauxella agrestis. The whole genome sequence of B. agrestis was determined to understand the genetic basis for its phenotypic resemblance to E. coli on MI agar.

  8. Complete Genome Sequence of Beijerinckia indica subsp. indica▿

    Science.gov (United States)

    Tamas, Ivica; Dedysh, Svetlana N.; Liesack, Werner; Stott, Matthew B.; Alam, Maqsudul; Murrell, J. Colin; Dunfield, Peter F.

    2010-01-01

    Beijerinckia indica subsp. indica is an aerobic, acidophilic, exopolysaccharide-producing, N2-fixing soil bacterium. It is a generalist chemoorganotroph that is phylogenetically closely related to facultative and obligate methanotrophs of the genera Methylocella and Methylocapsa. Here we report the full genome sequence of this bacterium. PMID:20601475

  9. Genome sequence and genetic diversity of European ash trees

    DEFF Research Database (Denmark)

    Sollars, Elizabeth S A; Harper, Andrea L; Kelly, Laura J;

    2016-01-01

    Ash trees (genus Fraxinus, family Oleaceae) are widespread throughout the Northern Hemisphere, but are being devastated in Europe by the fungus Hymenoscyphus fraxineus, causing ash dieback, and in North America by the herbivorous beetle Agrilus planipennis. Here we sequence the genome of a low...... to an emerging health threat in a non-model organism opens the way for mitigation of the epidemic....

  10. Complete Genome Sequence of Canine Papillomavirus Type 16

    OpenAIRE

    Luff, Jennifer; Mader, Michelle; Britton, Monica; Fass, Joseph; Rowland, Peter; Orr, Carolyn; Schlegel, Richard; Yuan, Hang

    2015-01-01

    Papillomaviruses are epitheliotropic, circular, double-stranded DNA viruses within the family Papillomaviridae that are associated with benign and malignant tumors in humans and animals. We report the complete genome sequence of canine papillomavirus type 16 identified within multiple pigmented cutaneous plaques and squamous cell carcinoma from an intact female Basenji dog.

  11. Genome Sequence of Lactobacillus farciminis KCTC 3681▿

    Science.gov (United States)

    Nam, Seong-Hyeuk; Choi, Sang-Haeng; Kang, Aram; Kim, Dong-Wook; Kim, Ryong Nam; Kim, Aeri; Kim, Dae-Soo; Park, Hong-Seog

    2011-01-01

    Lactobacillus farciminis is one of the most prevalent lactic acid bacterial species present during the manufacturing process of kimchi, the best-known traditional Korean dish. Here, we present the draft genome sequence of the type strain Lactobacillus farciminis KCTC 3681 (2,498,309 bp, with a G+C content of 36.4%), which consists of 5 scaffolds. PMID:21257766

  12. Genome Sequence of Herpes Simplex Virus 1 Strain SC16

    Science.gov (United States)

    Rastrojo, Alberto; López-Muñoz, Alberto Domingo

    2017-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1), also known as Human herpesvirus 1, is a highly prevalent human neurotropic pathogen that causes a variety of diseases, including lethal encephalitis. Here, we report the genome sequence of the HSV-1 strain SC16. PMID:28126930

  13. Draft Genome Sequences of Two Marinitoga camini Isolates Producing Bacterioviruses

    Science.gov (United States)

    Mercier, Coraline; Lossouarn, Julien; Haverkamp, Thomas; Bienvenu, Nadège; Godfroy, Anne; Cueff-Gauchard, Valérie

    2016-01-01

    Here, we present the draft genome sequences of two thermophilic Marinitoga strain members of the Thermotogales order, Marinitoga camini DV1155 and Marinitoga camini DV1197. These strains were isolated from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. PMID:27834711

  14. Complete Genome Sequence of the Haloalkaliphilic, Hydrogen Producing Halanaerobium hydrogenoformans

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D [ORNL; Begemann, Matthew B [University of Wisconsin, Madison; Mormile, Dr. Melanie R. [Missouri University of Science and Technology; Wall, Judy D. [University of Missouri; Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Samual [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Elias, Dwayne A [ORNL

    2011-01-01

    Halanaerobium hydrogenoformans is an alkaliphilic bacterium capable of biohydrogen production at pH 11 and 7% (w/v) salt. We present the 2.6 Mb genome sequence to provide insights into its physiology and potential for bioenergy applications.

  15. First Complete Genome Sequence of Haemophilus influenzae Serotype a

    Science.gov (United States)

    Hayden, Kristy

    2017-01-01

    ABSTRACT Haemophilus influenzae is an important human pathogen that primarily infects small children. In recent years, H. influenzae serotype a has emerged as a significant cause of invasive disease among indigenous populations. Here, we present the first complete whole-genome sequence of H. influenzae serotype a. PMID:28104664

  16. Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Lamour, Kurt H [ORNL; McDonald, W Hayes [ORNL; Savidor, Alon [ORNL

    2006-01-01

    Genome sequences of the soybean pathogen, Phytophthora sojae, and the sudden oak death pathogen, Phytophthora ramorum, suggest a photosynthetic past and reveal recent massive expansion and diversification of potential pathogenicity gene families. Abstract: Draft genome sequences of the soybean pathogen, Phytophthora sojae, and the sudden oak death pathogen, Phytophthora ramorum, have been determined. O mycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms and the presence of many Phytophthora genes of probable phototroph origin support a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors and, in particular, a superfamily of 700 proteins with similarity to known o mycete avirulence genes.

  17. Characterization of the complete genome sequence of pike fry rhabdovirus.

    Science.gov (United States)

    Chen, Hong-Lian; Liu, Hong; Liu, Zong-Xiao; He, Jun-Qiang; Gao, Long-Ying; Shi, Xiu-Jie; Jiang, Yu-Lin

    2009-01-01

    The complete genome sequence of pike fry rhabdovirus (PFRV), consisting of 11,097 nucleotides, was determined. The genome contains five genes, encoding the nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G), and RNA-dependent RNA polymerase (L) protein in the order 3'-N-P-M-G-L-5'. 3' leader- and 5' trailer-sequences in the PFRV genome show inverse complementarity. The PFRV proteins share the highest homology to the proteins of spring viremia of carp virus (SVCV), ranging from 55.3 to 91.4%. Phylogenetic analysis of the five proteins showed that PFRV clusters with SVCV and is closely related to the mammalian vesiculoviruses, 903/87, STRV and SCRV.

  18. Bioinformatics for whole-genome shotgun sequencing of microbial communities.

    Directory of Open Access Journals (Sweden)

    Kevin Chen

    2005-07-01

    Full Text Available The application of whole-genome shotgun sequencing to microbial communities represents a major development in metagenomics, the study of uncultured microbes via the tools of modern genomic analysis. In the past year, whole-genome shotgun sequencing projects of prokaryotic communities from an acid mine biofilm, the Sargasso Sea, Minnesota farm soil, three deep-sea whale falls, and deep-sea sediments have been reported, adding to previously published work on viral communities from marine and fecal samples. The interpretation of this new kind of data poses a wide variety of exciting and difficult bioinformatics problems. The aim of this review is to introduce the bioinformatics community to this emerging field by surveying existing techniques and promising new approaches for several of the most interesting of these computational problems.

  19. Assessment of whole genome amplification for sequence capture and massively parallel sequencing.

    Directory of Open Access Journals (Sweden)

    Johanna Hasmats

    Full Text Available Exome sequence capture and massively parallel sequencing can be combined to achieve inexpensive and rapid global analyses of the functional sections of the genome. The difficulties of working with relatively small quantities of genetic material, as may be necessary when sharing tumor biopsies between collaborators for instance, can be overcome using whole genome amplification. However, the potential drawbacks of using a whole genome amplification technology based on random primers in combination with sequence capture followed by massively parallel sequencing have not yet been examined in detail, especially in the context of mutation discovery in tumor material. In this work, we compare mutations detected in sequence data for unamplified DNA, whole genome amplified DNA, and RNA originating from the same tumor tissue samples from 16 patients diagnosed with non-small cell lung cancer. The results obtained provide a comprehensive overview of the merits of these techniques for mutation analysis. We evaluated the identified genetic variants, and found that most (74% of them were observed in both the amplified and the unamplified sequence data. Eighty-nine percent of the variations found by WGA were shared with unamplified DNA. We demonstrate a strategy for avoiding allelic bias by including RNA-sequencing information.

  20. Assessment of whole genome amplification for sequence capture and massively parallel sequencing.

    Science.gov (United States)

    Hasmats, Johanna; Gréen, Henrik; Orear, Cedric; Validire, Pierre; Huss, Mikael; Käller, Max; Lundeberg, Joakim

    2014-01-01

    Exome sequence capture and massively parallel sequencing can be combined to achieve inexpensive and rapid global analyses of the functional sections of the genome. The difficulties of working with relatively small quantities of genetic material, as may be necessary when sharing tumor biopsies between collaborators for instance, can be overcome using whole genome amplification. However, the potential drawbacks of using a whole genome amplification technology based on random primers in combination with sequence capture followed by massively parallel sequencing have not yet been examined in detail, especially in the context of mutation discovery in tumor material. In this work, we compare mutations detected in sequence data for unamplified DNA, whole genome amplified DNA, and RNA originating from the same tumor tissue samples from 16 patients diagnosed with non-small cell lung cancer. The results obtained provide a comprehensive overview of the merits of these techniques for mutation analysis. We evaluated the identified genetic variants, and found that most (74%) of them were observed in both the amplified and the unamplified sequence data. Eighty-nine percent of the variations found by WGA were shared with unamplified DNA. We demonstrate a strategy for avoiding allelic bias by including RNA-sequencing information.

  1. Genome sequence of the pea aphid Acyrthosiphon pisum

    DEFF Research Database (Denmark)

    Richards, S.; Gibbs, R. A.; Gerardo, N. M.;

    2010-01-01

    Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first...... published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we...... include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired...

  2. Draft genome sequence of the Algerian bee Apis mellifera intermissa.

    Science.gov (United States)

    Haddad, Nizar Jamal; Loucif-Ayad, Wahida; Adjlane, Noureddine; Saini, Deepti; Manchiganti, Rushiraj; Krishnamurthy, Venkatesh; AlShagoor, Banan; Batainh, Ahmed Mahmud; Mugasimangalam, Raja

    2015-06-01

    Apis mellifera intermissa is the native honeybee subspecies of Algeria. A. m. intermissa occurs in Tunisia, Algeria and Morocco, between the Atlas and the Mediterranean and Atlantic coasts. This bee is very important due to its high ability to adapt to great variations in climatic conditions and due to its preferable cleaning behavior. Here we report the draft genome sequence of this honey bee, its Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession JSUV00000000. The 240-Mb genome is being annotated and analyzed. Comparison with the genome of other Apis mellifera sub-species promises to yield insights into the evolution of adaptations to high temperature and resistance to Varroa parasite infestation.

  3. Genomic MRI - a Public Resource for Studying Sequence Patterns within Genomic DNA

    Science.gov (United States)

    Prakash, Ashwin; Bechtel, Jason; Fedorov, Alexei

    2011-01-01

    Non-coding genomic regions in complex eukaryotes, including intergenic areas, introns, and untranslated segments of exons, are profoundly non-random in their nucleotide composition and consist of a complex mosaic of sequence patterns. These patterns include so-called Mid-Range Inhomogeneity (MRI) regions -- sequences 30-10000 nucleotides in length that are enriched by a particular base or combination of bases (e.g. (G+T)-rich, purine-rich, etc.). MRI regions are associated with unusual (non-B-form) DNA structures that are often involved in regulation of gene expression, recombination, and other genetic processes (Fedorova & Fedorov 2010). The existence of a strong fixation bias within MRI regions against mutations that tend to reduce their sequence inhomogeneity additionally supports the functionality and importance of these genomic sequences (Prakash et al. 2009). Here we demonstrate a freely available Internet resource -- the Genomic MRI program package -- designed for computational analysis of genomic sequences in order to find and characterize various MRI patterns within them (Bechtel et al. 2008). This package also allows generation of randomized sequences with various properties and level of correspondence to the natural input DNA sequences. The main goal of this resource is to facilitate examination of vast regions of non-coding DNA that are still scarcely investigated and await thorough exploration and recognition. PMID:21610667

  4. Sequencing Crop Genomes: A Gateway to Improve Tropical Agriculture.

    Science.gov (United States)

    Thottathil, Gincy Paily; Jayasekaran, Kandakumar; Othman, Ahmad Sofiman

    2016-02-01

    Agricultural development in the tropics lags behind development in the temperate latitudes due to the lack of advanced technology, and various biotic and abiotic factors. To cope with the increasing demand for food and other plant-based products, improved crop varieties have to be developed. To breed improved varieties, a better understanding of crop genetics is necessary. With the advent of next-generation DNA sequencing technologies, many important crop genomes have been sequenced. Primary importance has been given to food crops, including cereals, tuber crops, vegetables, and fruits. The DNA sequence information is extremely valuable for identifying key genes controlling important agronomic traits and for identifying genetic variability among the cultivars. However, massive DNA re-sequencing and gene expression studies have to be performed to substantially improve our understanding of crop genetics. Application of the knowledge obtained from the genomes, transcriptomes, expression studies, and epigenetic studies would enable the development of improved varieties and may lead to a second green revolution. The applications of next generation DNA sequencing technologies in crop improvement, its limitations, future prospects, and the features of important crop genome projects are reviewed herein.

  5. ABySS-Explorer: visualizing genome sequence assemblies.

    Science.gov (United States)

    Nielsen, Cydney B; Jackman, Shaun D; Birol, Inanç; Jones, Steven J M

    2009-01-01

    One bottleneck in large-scale genome sequencing projects is reconstructing the full genome sequence from the short subsequences produced by current technologies. The final stages of the genome assembly process inevitably require manual inspection of data inconsistencies and could be greatly aided by visualization. This paper presents our design decisions in translating key data features identified through discussions with analysts into a concise visual encoding. Current visualization tools in this domain focus on local sequence errors making high-level inspection of the assembly difficult if not impossible. We present a novel interactive graph display, ABySS-Explorer, that emphasizes the global assembly structure while also integrating salient data features such as sequence length. Our tool replaces manual and in some cases pen-and-paper based analysis tasks, and we discuss how user feedback was incorporated into iterative design refinements. Finally, we touch on applications of this representation not initially considered in our design phase, suggesting the generality of this encoding for DNA sequence data.

  6. MetaSim: a sequencing simulator for genomics and metagenomics.

    Directory of Open Access Journals (Sweden)

    Daniel C Richter

    Full Text Available BACKGROUND: The new research field of metagenomics is providing exciting insights into various, previously unclassified ecological systems. Next-generation sequencing technologies are producing a rapid increase of environmental data in public databases. There is great need for specialized software solutions and statistical methods for dealing with complex metagenome data sets. METHODOLOGY/PRINCIPAL FINDINGS: To facilitate the development and improvement of metagenomic tools and the planning of metagenomic projects, we introduce a sequencing simulator called MetaSim. Our software can be used to generate collections of synthetic reads that reflect the diverse taxonomical composition of typical metagenome data sets. Based on a database of given genomes, the program allows the user to design a metagenome by specifying the number of genomes present at different levels of the NCBI taxonomy, and then to collect reads from the metagenome using a simulation of a number of different sequencing technologies. A population sampler optionally produces evolved sequences based on source genomes and a given evolutionary tree. CONCLUSIONS/SIGNIFICANCE: MetaSim allows the user to simulate individual read datasets that can be used as standardized test scenarios for planning sequencing projects or for benchmarking metagenomic software.

  7. Quantifying Next Generation Sequencing Sample Pre-Processing Bias in HIV-1 Complete Genome Sequencing

    Directory of Open Access Journals (Sweden)

    Bram Vrancken

    2016-01-01

    Full Text Available Genetic analyses play a central role in infectious disease research. Massively parallelized “mechanical cloning” and sequencing technologies were quickly adopted by HIV researchers in order to broaden the understanding of the clinical importance of minor drug-resistant variants. These efforts have, however, remained largely limited to small genomic regions. The growing need to monitor multiple genome regions for drug resistance testing, as well as the obvious benefit for studying evolutionary and epidemic processes makes complete genome sequencing an important goal in viral research. In addition, a major drawback for NGS applications to RNA viruses is the need for large quantities of input DNA. Here, we use a generic overlapping amplicon-based near full-genome amplification protocol to compare low-input enzymatic fragmentation (Nextera™ with conventional mechanical shearing for Roche 454 sequencing. We find that the fragmentation method has only a modest impact on the characterization of the population composition and that for reliable results, the variation introduced at all steps of the procedure—from nucleic acid extraction to sequencing—should be taken into account, a finding that is also relevant for NGS technologies that are now more commonly used. Furthermore, by applying our protocol to deep sequence a number of pre-therapy plasma and PBMC samples, we illustrate the potential benefits of a near complete genome sequencing approach in routine genotyping.

  8. Microsatellite discovery by deep sequencing of enriched genomic libraries.

    Science.gov (United States)

    Santana, Quentin; Coetzee, Martin; Steenkamp, Emma; Mlonyeni, Osmond; Hammond, Gifty; Wingfield, Michael; Wingfield, Brenda

    2009-03-01

    Robust molecular markers such as microsatellites are important tools used to understand the dynamics of natural populations, but their identification and development are typically time consuming and labor intensive. The recent emergence of so-called next-generation sequencing raised the question as to whether this new technology might be applied to microsatellite development. Following this view, we considered whether deep sequencing using the 454 Life Sciences/Roche GS-FLX genome sequencing system could lead to a rapid protocol to develop microsatellite primers as markers for genetic studies. For this purpose, genomic DNA was sourced from three unrelated organisms: a fungus (the pine pathogen Fusarium circinatum), an insect (the pine-damaging wasp Sirex noctilio), and the wasp's associated nematode parasite (Deladenus siricidicola). Two methods, FIASCO (fast isolation by AFLP of sequences containing repeats) and ISSR-PCR (inter-simple sequence repeat PCR), were used to generate microsatellite-enriched DNA for the 454 libraries. From the resulting 1.2-1.7 megabases of DNA sequence data, we were able to identify 873 microsatellites that have sufficient flanking sequence available for primer design and potential amplification. This approach to microsatellite discovery was substantially more rapid, effective, and economical than other methods, and this study has shown that pyrosequencing provides an outstanding new technology that can be applied to this purpose.

  9. Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates

    KAUST Repository

    Black, PA

    2015-10-24

    Background Whole genome sequencing has revolutionised the interrogation of mycobacterial genomes. Recent studies have reported conflicting findings on the genomic stability of Mycobacterium tuberculosis during the evolution of drug resistance. In an age where whole genome sequencing is increasingly relied upon for defining the structure of bacterial genomes, it is important to investigate the reliability of next generation sequencing to identify clonal variants present in a minor percentage of the population. This study aimed to define a reliable cut-off for identification of low frequency sequence variants and to subsequently investigate genetic heterogeneity and the evolution of drug resistance in M. tuberculosis. Methods Genomic DNA was isolated from single colonies from 14 rifampicin mono-resistant M. tuberculosis isolates, as well as the primary cultures and follow up MDR cultures from two of these patients. The whole genomes of the M. tuberculosis isolates were sequenced using either the Illumina MiSeq or Illumina HiSeq platforms. Sequences were analysed with an in-house pipeline. Results Using next-generation sequencing in combination with Sanger sequencing and statistical analysis we defined a read frequency cut-off of 30 % to identify low frequency M. tuberculosis variants with high confidence. Using this cut-off we demonstrated a high rate of genetic diversity between single colonies isolated from one population, showing that by using the current sequencing technology, single colonies are not a true reflection of the genetic diversity within a whole population and vice versa. We further showed that numerous heterogeneous variants emerge and then disappear during the evolution of isoniazid resistance within individual patients. Our findings allowed us to formulate a model for the selective bottleneck which occurs during the course of infection, acting as a genomic purification event. Conclusions Our study demonstrated true levels of genetic diversity

  10. Complete genome sequence of arracacha virus B: a novel cheravirus.

    Science.gov (United States)

    Adams, I P; Glover, R; Souza-Richards, R; Bennett, S; Hany, U; Boonham, N

    2013-04-01

    The complete genome sequences of RNA1 and RNA2 of the oca strain of the potato virus arracacha virus B were determined using next-generation sequencing. The RNA1 molecule is predicted to encode a 259-kDa polyprotein with homology to proteins of the cheraviruses apple latent spherical virus (ALSV) and cherry rasp leaf virus (CRLV). The RNA2 molecule is predicted to encode a 102-kDa polyprotein which also has homology to the corresponding protein of ALSV and, to a lesser degree, CRLV (30 % for RNA1, 24 % for RNA2). Detailed analysis of the genome sequence confirms that AVB is a distinct member of the genus Cheravirus.

  11. Ensemble analysis of adaptive compressed genome sequencing strategies

    Science.gov (United States)

    2014-01-01

    Background Acquiring genomes at single-cell resolution has many applications such as in the study of microbiota. However, deep sequencing and assembly of all of millions of cells in a sample is prohibitively costly. A property that can come to rescue is that deep sequencing of every cell should not be necessary to capture all distinct genomes, as the majority of cells are biological replicates. Biologically important samples are often sparse in that sense. In this paper, we propose an adaptive compressed method, also known as distilled sensing, to capture all distinct genomes in a sparse microbial community with reduced sequencing effort. As opposed to group testing in which the number of distinct events is often constant and sparsity is equivalent to rarity of an event, sparsity in our case means scarcity of distinct events in comparison to the data size. Previously, we introduced the problem and proposed a distilled sensing solution based on the breadth first search strategy. We simulated the whole process which constrained our ability to study the behavior of the algorithm for the entire ensemble due to its computational intensity. Results In this paper, we modify our previous breadth first search strategy and introduce the depth first search strategy. Instead of simulating the entire process, which is intractable for a large number of experiments, we provide a dynamic programming algorithm to analyze the behavior of the method for the entire ensemble. The ensemble analysis algorithm recursively calculates the probability of capturing every distinct genome and also the expected total sequenced nucleotides for a given population profile. Our results suggest that the expected total sequenced nucleotides grows proportional to log of the number of cells and proportional linearly with the number of distinct genomes. The probability of missing a genome depends on its abundance and the ratio of its size over the maximum genome size in the sample. The modified resource

  12. The impact of next-generation sequencing on genomics

    Institute of Scientific and Technical Information of China (English)

    Jun Zhang; Rod Chiodini; Ahmed Badr; Genfa Zhang

    2011-01-01

    This article reviews basic concepts,general applications,and the potential impact of next-generation sequencing(NGS)technologies on genomics,with particular reference to currently available and possible future platforms and bioinformatics.NGS technologies have demonstrated the capacity to sequence DNA at unprecedented speed,thereby enabling previously unimaginable scientific achievements and novel biological applications.But,the massive data produced by NGS also presents a significant challenge for data storage,analyses,and management solutions.Advanced bioinformatic tools are essential for the successful application of NGS technology.As evidenced throughout this review,NGS technologies will have a striking impact on genomic research and the entire biological field.With its ability to tackle the unsolved challenges unconquered by previous genomic technologies,NGS is likely to unravel the complexity of the human genome in terms of genetic variations,some of which may be confined to susceptible loci for some common human conditions.The impact of NGS technologies on genomics will be far reaching and likely change the field for years to come.

  13. The complete mitochondrial genome sequence of Eimeria magna (Apicomplexa: Coccidia).

    Science.gov (United States)

    Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Liu, Guo-Hua; Wang, Chun-Ren; Zhu, Xing-Quan

    2015-01-01

    In the present study, we determined the complete mitochondrial DNA (mtDNA) sequence of Eimeria magna from rabbits for the first time, and compared its gene contents and genome organizations with that of seven Eimeria spp. from domestic chickens. The size of the complete mt genome sequence of E. magna is 6249 bp, which consists of 3 protein-coding genes (cytb, cox1 and cox3), 12 gene fragments for the large subunit (LSU) rRNA, and 7 gene fragments for the small subunit (SSU) rRNA, without transfer RNA genes, in accordance with that of Eimeria spp. from chickens. The putative direction of translation for three genes (cytb, cox1 and cox3) was the same as those of Eimeria species from domestic chickens. The content of A + T is 65.16% for E. magna mt genome (29.73% A, 35.43% T, 17.09 G and 17.75% C). The E. magna mt genome sequence provides novel mtDNA markers for studying the molecular epidemiology and population genetics of Eimeria spp. and has implications for the molecular diagnosis and control of rabbit coccidiosis.

  14. Complete genome sequence of Actinosynnema mirum type strain (101T)

    Energy Technology Data Exchange (ETDEWEB)

    Land, Miriam L [ORNL; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Mayilraj, Shanmugam [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Bruce, David [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Brettin, Thomas S [ORNL; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2009-01-01

    Actinosynnema mirum Hasegawa et al. 1978 is the type species of the genus, and is of phylogenetic interest because of its central phylogenetic location in the Actino-synnemataceae, a rapidly growing family within the actinobacterial suborder Pseudo-nocardineae. A. mirum is characterized by its motile spores borne on synnemata and as a producer of nocardicin antibiotics. It is capable of growing aerobically and under a moderate CO2 atmosphere. The strain is a Gram-positive, aerial and substrate mycelium producing bacterium, originally isolated from a grass blade collected from the Raritan River, New Jersey. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Actinosynnemataceae, and only the second sequence from the actinobacterial suborder Pseudonocardineae. The 8,248,144 bp long single replicon genome with its 7100 protein-coding and 77 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  15. Complete genome sequence of Actinosynnema mirum type strain (101T)

    Energy Technology Data Exchange (ETDEWEB)

    Land, Miriam; Lapidus, Alla; Mayilraj, Shanmugam; Chen, Feng; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Chertkov, Olga; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Rohde, Manfred; Goker, Markus; Pati, Amrita; Ivanova, Natalia; Mavrommatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia; Brettin, Thomas; Detter, John C.; Han, Cliff; Chain, Patrick; Tindall, Brian; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Actinosynnema mirum Hasegawa et al. 1978 is the type species of the genus, and is of phylogenetic interest because of its central phylogenetic location in the Actino-synnemataceae, a rapidly growing family within the actinobacterial suborder Pseudo-nocardineae. A. mirum is characterized by its motile spores borne on synnemata and as a producer of nocardicin antibiotics. It is capable of growing aerobically and under a moderate CO2 atmosphere. The strain is a Gram-positive, aerial and substrate mycelium producing bacterium, originally isolated from a grass blade collected from the Raritan River, New Jersey. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Actinosynnemataceae, and only the second sequence from the actinobacterial suborder Pseudonocardineae. The 8,248,144 bp long single replicon genome with its 7100 protein-coding and 77 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  16. MIR retrotransposon sequences provide insulators to the human genome.

    Science.gov (United States)

    Wang, Jianrong; Vicente-García, Cristina; Seruggia, Davide; Moltó, Eduardo; Fernandez-Miñán, Ana; Neto, Ana; Lee, Elbert; Gómez-Skarmeta, José Luis; Montoliu, Lluís; Lunyak, Victoria V; Jordan, I King

    2015-08-11

    Insulators are regulatory elements that help to organize eukaryotic chromatin via enhancer-blocking and chromatin barrier activity. Although there are several examples of transposable element (TE)-derived insulators, the contribution of TEs to human insulators has not been systematically explored. Mammalian-wide interspersed repeats (MIRs) are a conserved family of TEs that have substantial regulatory capacity and share sequence characteristics with tRNA-related insulators. We sought to evaluate whether MIRs can serve as insulators in the human genome. We applied a bioinformatic screen using genome sequence and functional genomic data from CD4(+) T cells to identify a set of 1,178 predicted MIR insulators genome-wide. These predicted MIR insulators were computationally tested to serve as chromatin barriers and regulators of gene expression in CD4(+) T cells. The activity of predicted MIR insulators was experimentally validated using in vitro and in vivo enhancer-blocking assays. MIR insulators are enriched around genes of the T-cell receptor pathway and reside at T-cell-specific boundaries of repressive and active chromatin. A total of 58% of the MIR insulators predicted here show evidence of T-cell-specific chromatin barrier and gene regulatory activity. MIR insulators appear to be CCCTC-binding factor (CTCF) independent and show a distinct local chromatin environment with marked peaks for RNA Pol III and a number of histone modifications, suggesting that MIR insulators recruit transcriptional complexes and chromatin modifying enzymes in situ to help establish chromatin and regulatory domains in the human genome. The provisioning of insulators by MIRs across the human genome suggests a specific mechanism by which TE sequences can be used to modulate gene regulatory networks.

  17. Next-Generation Sequencing and Genome Editing in Plant Virology

    Directory of Open Access Journals (Sweden)

    Ahmed Hadidi

    2016-08-01

    Full Text Available Next-generation sequencing (NGS has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21-24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus; beet curly top virus and beet severe curly top virus (curtovirus; and bean yellow dwarf virus (mastrevirus. The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus and cucumber vein yellowing virus (ipomovirus, family, Potyviridae by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology.Keywords: Next-generation sequencing, NGS, plant virology, plant viruses, viroids, resistance to plant viruses by CRISPR-Cas9

  18. ReRep: Computational detection of repetitive sequences in genome survey sequences (GSS

    Directory of Open Access Journals (Sweden)

    Alves-Ferreira Marcelo

    2008-09-01

    Full Text Available Abstract Background Genome survey sequences (GSS offer a preliminary global view of a genome since, unlike ESTs, they cover coding as well as non-coding DNA and include repetitive regions of the genome. A more precise estimation of the nature, quantity and variability of repetitive sequences very early in a genome sequencing project is of considerable importance, as such data strongly influence the estimation of genome coverage, library quality and progress in scaffold construction. Also, the elimination of repetitive sequences from the initial assembly process is important to avoid errors and unnecessary complexity. Repetitive sequences are also of interest in a variety of other studies, for instance as molecular markers. Results We designed and implemented a straightforward pipeline called ReRep, which combines bioinformatics tools for identifying repetitive structures in a GSS dataset. In a case study, we first applied the pipeline to a set of 970 GSSs, sequenced in our laboratory from the human pathogen Leishmania braziliensis, the causative agent of leishmaniosis, an important public health problem in Brazil. We also verified the applicability of ReRep to new sequencing technologies using a set of 454-reads of an Escheria coli. The behaviour of several parameters in the algorithm is evaluated and suggestions are made for tuning of the analysis. Conclusion The ReRep approach for identification of repetitive elements in GSS datasets proved to be straightforward and efficient. Several potential repetitive sequences were found in a L. braziliensis GSS dataset generated in our laboratory, and further validated by the analysis of a more complete genomic dataset from the EMBL and Sanger Centre databases. ReRep also identified most of the E. coli K12 repeats prior to assembly in an example dataset obtained by automated sequencing using 454 technology. The parameters controlling the algorithm behaved consistently and may be tuned to the properties

  19. Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, Brett M.; Tripathy, Sucheta; Zhang, Xuemin; Dehal, Paramvir; Jiang, Rays H. Y.; Aerts, Andrea; Arredondo, Felipe D.; Baxter, Laura; Bensasson, Douda; Beynon, JIm L.; Chapman, Jarrod; Damasceno, Cynthia M. B.; Dorrance, Anne E.; Dou, Daolong; Dickerman, Allan W.; Dubchak, Inna L.; Garbelotto, Matteo; Gijzen, Mark; Gordon, Stuart G.; Govers, Francine; Grunwald, NIklaus J.; Huang, Wayne; Ivors, Kelly L.; Jones, Richard W.; Kamoun, Sophien; Krampis, Konstantinos; Lamour, Kurt H.; Lee, Mi-Kyung; McDonald, W. Hayes; Medina, Monica; Meijer, Harold J. G.; Nordberg, Erik K.; Maclean, Donald J.; Ospina-Giraldo, Manuel D.; Morris, Paul F.; Phuntumart, Vipaporn; Putnam, Nicholas J.; Rash, Sam; Rose, Jocelyn K. C.; Sakihama, Yasuko; Salamov, Asaf A.; Savidor, Alon; Scheuring, Chantel F.; Smith, Brian M.; Sobral, Bruno W. S.; Terry, Astrid; Torto-Alalibo, Trudy A.; Win, Joe; Xu, Zhanyou; Zhang, Hongbin; Grigoriev, Igor V.; Rokhsar, Daniel S.; Boore, Jeffrey L.

    2006-04-17

    Draft genome sequences have been determined for the soybean pathogen Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum. Oömycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms, and the presence of many Phytophthora genes of probable phototroph origin supports a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors, and, in particular, a superfamily of 700 proteins with similarity to known oömycete avirulence genes.

  20. Genomic organization and sequence analysis of the vomeronasal receptor V2R genes in mouse genome

    Institute of Scientific and Technical Information of China (English)

    YANG Hui; Zhang YaPing

    2007-01-01

    Two multigene superfamilies, named V1R and V2R, encoding seven-transmembrane-domain G-protein coupled receptors (GPCRs) have been identified as pheromone receptors in mammals. Three V2R gene families have been described in mouse and rat. Here we screened the updated mouse genome sequence database and finally retrieved 63 putative functional V2R genes including three newly identified genes which formed a new additional family. We described the genomic organization of these genes and also characterized the conservation of mouse V2R protein sequences. These genomic and sequence information we described are useful as part of the evidence to speculate the functional domain of V2Rs and should give aid to the functionality study in the future.

  1. Insights into the Evolution of Cotton Diploids and Polyploids from Whole-Genome Re-sequencing

    OpenAIRE

    Page, Justin T.; Huynh, Mark D; Zach S Liechty; Grupp, Kara; Stelly, David; Hulse, Amanda M; Ashrafi, Hamid; Van Deynze, Allen; Wendel, Jonathan F.; Udall, Joshua A.

    2013-01-01

    Understanding the composition, evolution, and function of the Gossypium hirsutum (cotton) genome is complicated by the joint presence of two genomes in its nucleus (AT and DT genomes). These two genomes were derived from progenitor A-genome and D-genome diploids involved in ancestral allopolyploidization. To better understand the allopolyploid genome, we re-sequenced the genomes of extant diploid relatives that contain the A1 (Gossypium herbaceum), A2 (Gossypium arboreum), or D5 (Gossypium ra...

  2. Genomic Sequencing of Orientia tsutsugamushi Strain Karp, an Assembly Comparable to the Genome Size of the Strain Ikeda

    Science.gov (United States)

    Liao, Hsiao-Mei; Chao, Chien-Chung; Lei, Haiyan; Li, Bingjie; Tsai, Shien; Hung, Guo-Chiuan

    2016-01-01

    Orientia tsutsugamushi, an intracellular bacterium, belongs to the family Rickettsiaceae. This study presents the draft genome sequence of strain Karp, with 2.0 Mb as the size of the completed genome. This nearly finished draft genome sequence was annotated with the RAST server and the contents compared to those of the other strains. PMID:27540052

  3. Genomic Sequencing of Orientia tsutsugamushi Strain Karp, an Assembly Comparable to the Genome Size of the Strain Ikeda.

    Science.gov (United States)

    Liao, Hsiao-Mei; Chao, Chien-Chung; Lei, Haiyan; Li, Bingjie; Tsai, Shien; Hung, Guo-Chiuan; Ching, Wei-Mei; Lo, Shyh-Ching

    2016-08-18

    Orientia tsutsugamushi, an intracellular bacterium, belongs to the family Rickettsiaceae This study presents the draft genome sequence of strain Karp, with 2.0 Mb as the size of the completed genome. This nearly finished draft genome sequence was annotated with the RAST server and the contents compared to those of the other strains.

  4. Constructed a cell line to express hBD1 stablly and detected the antimicrobial activity of hBD1 to multidrug resistant bacterial strains%hBD1稳定表达细胞株的建立及其表达产物对多重耐药菌的活性检测

    Institute of Scientific and Technical Information of China (English)

    崔南; 陈新年; 魏莲花; 李娟; 邹凤梅

    2011-01-01

    目的 构建人β防御素1( hBD1)稳定表达细胞株并检测其对多种多重耐药菌的抗菌活性.方法 将重组质粒pCMV-hBD1通过阳离子脂质体转染于非洲绿猴SV40转化的肾细胞(COS-7细胞),经过G418压力筛选后获得单克隆细胞株;提取细胞总RNA,用RT-PCR检测目的基因在转录水平的表达;收集细胞培养上清液,用Western blot检测hBD1基因蛋白的表达;将含有表达产物hBD1的细胞培养上清液分别同各耐药菌液混合,37℃孵育不同时间后涂布于LB平板,以各实验组和对照组的菌落数的比值作为该耐药菌的存活率.结果 经过G418压力筛选所得到的稳定表达细胞株,在转录水平和蛋白水平均检测到目的基因hBD1的表达,在表达产物hBD1的作用下,多重耐药鲍氏不动杆菌、多重耐药大肠埃希菌存活率和多重耐药肺炎克雷伯杆菌的存活率可以分别降至9%、22%和50%,多重耐药嗜麦芽窄食单胞菌的存活率同对照组没有明显差异.结论 成功获得hBD1稳定表达细胞株,目的基因hBD1的表达产物对多种多重耐药菌均具有抗菌活性.%Objective To established a cell line that expresses hBD1 stably,and detected the antimicrobial activity of the hBD1 to the muhidrug resistant bacterial strains.Methods Recombinant plasmid was introduced into COS-7 cells by lipofectamine,cells were selected in culture medium containing G418 to acquired the monoclonal cell lines,total RNA were extracted from the cultured cells,expression levels of hBD1 mRNA was identified by RT-PCR,collected the supernatant solution of the cultured cell,expression levels of protein was identified by Western blot.Put the expression products and resistant organisms mixed together,after incubation in different times in 37℃,coating the mixtures in LB flat,then obtained the ratios between colonies number of experimental groups and colonies number of control groups,put those ratios as the survival rate of the drug

  5. Application of massive parallel sequencing to whole genome SNP discovery in the porcine genome

    Directory of Open Access Journals (Sweden)

    Crooijmans Richard PMA

    2009-08-01

    Full Text Available Abstract Background Although the Illumina 1 G Genome Analyzer generates billions of base pairs of sequence data, challenges arise in sequence selection due to the varying sequence quality. Therefore, in the framework of the International Porcine SNP Chip Consortium, this pilot study aimed to evaluate the impact of the quality level of the sequenced bases on mapping quality and identification of true SNPs on a large scale. Results DNA pooled from five animals from a commercial boar line was digested with DraI; 150–250-bp fragments were isolated and end-sequenced using the Illumina 1 G Genome Analyzer, yielding 70,348,064 sequences 36-bp long. Rules were developed to select sequences, which were then aligned to unique positions in a reference genome. Sequences were selected based on quality, and three thresholds of sequence quality (SQ were compared. The highest threshold of SQ allowed identification of a larger number of SNPs (17,489, distributed widely across the pig genome. In total, 3,142 SNPs were validated with a success rate of 96%. The correlation between estimated minor allele frequency (MAF and genotyped MAF was moderate, and SNPs were highly polymorphic in other pig breeds. Lowering the SQ threshold and maintaining the same criteria for SNP identification resulted in the discovery of fewer SNPs (16,768, of which 259 were not identified using higher SQ levels. Validation of SNPs found exclusively in the lower SQ threshold had a success rate of 94% and a low correlation between estimated MAF and genotyped MAF. Base change analysis suggested that the rate of transitions in the pig genome is likely to be similar to that observed in humans. Chromosome X showed reduced nucleotide diversity relative to autosomes, as observed for other species. Conclusion Large numbers of SNPs can be identified reliably by creating strict rules for sequence selection, which simultaneously decreases sequence ambiguity. Selection of sequences using a higher SQ

  6. A hybrid approach for de novo human genome sequence assembly and phasing.

    Science.gov (United States)

    Mostovoy, Yulia; Levy-Sakin, Michal; Lam, Jessica; Lam, Ernest T; Hastie, Alex R; Marks, Patrick; Lee, Joyce; Chu, Catherine; Lin, Chin; Džakula, Željko; Cao, Han; Schlebusch, Stephen A; Giorda, Kristina; Schnall-Levin, Michael; Wall, Jeffrey D; Kwok, Pui-Yan

    2016-07-01

    Despite tremendous progress in genome sequencing, the basic goal of producing a phased (haplotype-resolved) genome sequence with end-to-end contiguity for each chromosome at reasonable cost and effort is still unrealized. In this study, we describe an approach to performing de novo genome assembly and experimental phasing by integrating the data from Illumina short-read sequencing, 10X Genomics linked-read sequencing, and BioNano Genomics genome mapping to yield a high-quality, phased, de novo assembled human genome.

  7. The draft genome sequence of the nematode Caenorhabditis briggsae, a companion to C. elegans.

    Science.gov (United States)

    Gupta, Bhagwati P; Sternberg, Paul W

    2003-01-01

    The publication of the draft genome sequence of Caenorhabditis briggsae improves the annotation of the genome of its close relative Caenorhabditis elegans and will facilitate comparative genomics and the study of the evolutionary changes during development.

  8. Sequencing of Ebola Virus Genomes Using Nanopore Technology

    Science.gov (United States)

    Hoenen, Thomas

    2017-01-01

    Sequencing of virus genomes during disease outbreaks can provide valuable information for diagnostics, epidemiology, and evaluation of potential countermeasures. However, particularly in remote areas logistical and technical challenges can be significant. Nanopore sequencing provides an alternative to classical Sanger and next-generation sequencing methods, and was successfully used under outbreak conditions (Hoenen et al., 2016; Quick et al., 2016). Here we describe a protocol used for sequencing of Ebola virus under outbreak conditions using Nanopore technology, which we successfully implemented at the CDC/NIH diagnostic laboratory (de Wit et al., 2016) located at the ELWA-3 Ebola virus Treatment Unit in Monrovia, Liberia, during the recent Ebola virus outbreak in West Africa.

  9. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, R.D.; Adams, M.D.; White, O. [Institute for Genomic Research, Gaithersburg, MD (United States)] [and others

    1995-07-28

    An approach for genome analysis based on sequencing and assembly of unselected pieces of DNA from the whole chromosome has been applied to obtain the complete nucleotide sequence (1,830,137 base pairs) of the genome from the bacterium Haemophilus influenzae Rd. This approach eliminates the need for initial mapping efforts and is therefore applicable to the vast array of microbial species for which genome maps are unavailable. The H. influenzae Rd genome sequence (Genome Sequence DataBase accession number L42023) represents the only complete genome sequence from a free-living organism. 46 refs., 4 figs., 4 tabs.

  10. Reduced representation sequencing: a success in maize and a promise for other plant genomes.

    Science.gov (United States)

    Barbazuk, W Brad; Bedell, Joseph A; Rabinowicz, Pablo D

    2005-08-01

    Plant, and particularly cereal genomes, are challenging to sequence due to their large size and high repetitive DNA content. Gene-enrichment strategies are alternative or complementary approaches to complete genome sequencing that yield, rapidly and inexpensively, useful sequence data from large and complex genomes. The maize genome is large (2.7 Gbp) and contains large amounts of conserved repetitive elements. Furthermore, the high allelic diversity found between maize inbred lines may necessitate sequencing several inbred lines in order to recover the maize "gene pool". Two gene-enrichment approaches, methylation filtration (MF) and high C(o)t (HC) sequencing have been tested in maize and their ability to sample the gene space has been examined. Combined with other genomic sequencing strategies, gene-enriched genomic sequencing is a practical way to examine the maize gene pool, to order and orient the genic sequences on the genome, and to enable investigation of gene content of other complex plant genomes.

  11. Draft genome sequence of the oilseed species Ricinus communis.

    Science.gov (United States)

    Chan, Agnes P; Crabtree, Jonathan; Zhao, Qi; Lorenzi, Hernan; Orvis, Joshua; Puiu, Daniela; Melake-Berhan, Admasu; Jones, Kristine M; Redman, Julia; Chen, Grace; Cahoon, Edgar B; Gedil, Melaku; Stanke, Mario; Haas, Brian J; Wortman, Jennifer R; Fraser-Liggett, Claire M; Ravel, Jacques; Rabinowicz, Pablo D

    2010-09-01

    Castor bean (Ricinus communis) is an oilseed crop that belongs to the spurge (Euphorbiaceae) family, which comprises approximately 6,300 species that include cassava (Manihot esculenta), rubber tree (Hevea brasiliensis) and physic nut (Jatropha curcas). It is primarily of economic interest as a source of castor oil, used for the production of high-quality lubricants because of its high proportion of the unusual fatty acid ricinoleic acid. However, castor bean genomics is also relevant to biosecurity as the seeds contain high levels of ricin, a highly toxic, ribosome-inactivating protein. Here we report the draft genome sequence of castor bean (4.6-fold coverage), the first for a member of the Euphorbiaceae. Whereas most of the key genes involved in oil synthesis and turnover are single copy, the number of members of the ricin gene family is larger than previously thought. Comparative genomics analysis suggests the presence of an ancient hexaploidization event that is conserved across the dicotyledonous lineage.

  12. Genome sequence and description of Anaerosalibacter massiliensis sp. nov.

    Directory of Open Access Journals (Sweden)

    N. Dione

    2016-03-01

    Full Text Available Anaerosalibacter massiliensis sp. nov. strain ND1T (= CSUR P762 = DSM 27308 is the type strain of A. massiliensis sp. nov., a new species within the genus Anaerosalibacter. This strain, the genome of which is described here, was isolated from the faecal flora of a 49-year-old healthy Brazilian man. Anaerosalibacter massiliensis is a Gram-positive, obligate anaerobic rod and member of the family Clostridiaceae. With the complete genome sequence and annotation, we describe here the features of this organism. The 3 197 911 bp long genome (one chromosome but no plasmid contains 3271 protein-coding and 62 RNA genes, including six rRNA genes.

  13. Next-Generation Sequencing and Genome Editing in Plant Virology.

    Science.gov (United States)

    Hadidi, Ahmed; Flores, Ricardo; Candresse, Thierry; Barba, Marina

    2016-01-01

    Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21-24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology.

  14. Next-Generation Sequencing and Genome Editing in Plant Virology

    Science.gov (United States)

    Hadidi, Ahmed; Flores, Ricardo; Candresse, Thierry; Barba, Marina

    2016-01-01

    Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21–24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology. PMID:27617007

  15. Genome-Wide Identification of Regulatory Sequences Undergoing Accelerated Evolution in the Human Genome.

    Science.gov (United States)

    Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong

    2016-10-01

    Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes.

  16. Origin of noncoding DNA sequences: molecular fossils of genome evolution.

    OpenAIRE

    Naora, H.; MIYAHARA, K.; Curnow, R. N.

    1987-01-01

    The total amount of noncoding sequences on chromosomes of contemporary organisms varies significantly from species to species. We propose a hypothesis for the origin of these noncoding sequences that assumes that (i) an approximately equal to 0.55-kilobase (kb)-long reading frame composed the primordial gene and (ii) a 20-kb-long single-stranded polynucleotide is the longest molecule (as a genome) that was polymerized at random and without a specific template in the primordial soup/cell. The ...

  17. Construction of an integrated database to support genomic sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, W.; Overbeek, R.

    1994-11-01

    The central goal of this project is to develop an integrated database to support comparative analysis of genomes including DNA sequence data, protein sequence data, gene expression data and metabolism data. In developing the logic-based system GenoBase, a broader integration of available data was achieved due to assistance from collaborators. Current goals are to easily include new forms of data as they become available and to easily navigate through the ensemble of objects described within the database. This report comments on progress made in these areas.

  18. Sequencing and annotated analysis of an Estonian human genome.

    Science.gov (United States)

    Lilleoja, Rutt; Sarapik, Aili; Reimann, Ene; Reemann, Paula; Jaakma, Ülle; Vasar, Eero; Kõks, Sulev

    2012-02-01

    In present study we describe the sequencing and annotated analysis of the individual genome of Estonian. Using SOLID technology we generated 2,449,441,916 of 50-bp reads. The Bioscope version 1.3 was used for mapping and pairing of reads to the NCBI human genome reference (build 36, hg18). Bioscope enables also the annotation of the results of variant (tertiary) analysis. The average mapping of reads was 75.5% with total coverage of 107.72 Gb. resulting in mean fold coverage of 34.6. We found 3,482,975 SNPs out of which 352,492 were novel. 21,222 SNPs were in coding region: 10,649 were synonymous SNPs, 10,360 were nonsynonymous missense SNPs, 155 were nonsynonymous nonsense SNPs and 58 were nonsynonymous frameshifts. We identified 219 CNVs with total base pair coverage of 37,326,300 bp and 87,451 large insertion/deletion polymorphisms covering 10,152,256 bp of the genome. In addition, we found 285,864 small size insertion/deletion polymorphisms out of which 133,969 were novel. Finally, we identified 53 inversions, 19 overlapped genes and 2 overlapped exons. Interestingly, we found the region in chromosome 6 to be enriched with the coding SNPs and CNVs. This study confirms previous findings, that our genomes are more complex and variable as thought before. Therefore, sequencing of the personal genomes followed by annotation would improve the analysis of heritability of phenotypes and our understandings on the functions of genome.

  19. Complete genome sequence of Desulfomicrobium baculatum type strain (XT)

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Alex; Spring, Stefan; Goker, Markus; Schneider, Susanne; Lapidus, Alla; Glavina Del Rio, Tijana; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C; Meincke, Linda; Sims, David; Brettin, Thomas; Detter, John C; Han, Cliff; Chain, Patrick; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C; Lucas, Susan

    2009-05-20

    Desulfomicrobium baculatum is the type species of the genus Desulfomicrobium, which is the type genus of the family Desulfomicrobiaceae. It is of phylogenetic interest because of the isolated location of the family Desulfomicrobiaceae within the order Desulfovibrionales. D. baculatum strain XT is a Gram-negative, motile, sulfate-reducing bacterium isolated from water-saturated manganese carbonate ore. It is strictly anaerobic and does not require NaCl for growth, although NaCl concentrations up to 6percent (w/v) are tolerated. The metabolism is respiratory or fermentative. In the presence of sulfate, pyruvate and lactate are incompletely oxidized to acetate and CO2. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the deltaproteobacterial family Desulfomicrobiaceae, and this 3,942,657 bp long single replicon genome with its 3494 protein-coding and 72 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  20. Structure and sequence of the saimiriine herpesvirus 1 genome.

    Science.gov (United States)

    Tyler, Shaun; Severini, Alberto; Black, Darla; Walker, Matthew; Eberle, R

    2011-02-05

    We report here the complete genome sequence of the squirrel monkey α-herpesvirus saimiriine herpesvirus 1 (HVS1). Unlike the simplexviruses of other primate species, only the unique short region of the HVS1 genome is bounded by inverted repeats. While all Old World simian simplexviruses characterized to date lack the herpes simplex virus RL1 (γ34.5) gene, HVS1 has an RL1 gene. HVS1 lacks several genes that are present in other primate simplexviruses (US8.5, US10-12, UL43/43.5 and UL49A). Although the overall genome structure appears more like that of varicelloviruses, the encoded HVS1 proteins are most closely related to homologous proteins of the primate simplexviruses. Phylogenetic analyses confirm that HVS1 is a simplexvirus. Limited comparison of two HVS1 strains revealed a very low degree of sequence variation more typical of varicelloviruses. HVS1 is thus unique among the primate α-herpesviruses in that its genome has properties of both simplexviruses and varicelloviruses.

  1. Complete genome sequence Methanothermus fervidus type strain (V24ST)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Djao, Olivier Duplex [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Misra, Monica [Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Eichinger, Konrad [Universitat Regensburg, Regensburg, Germany; Huber, Harald [Universitat Regensburg, Regensburg, Germany; Wirth, Reinhard [Universitat Regensburg, Regensburg, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2010-01-01

    Methanothermus fervidus Stetter 1982 is the type strain of the genus Methanothermus. This hyperthermophilic genus is of a thought to be endemic in Icelandic hot springs. M. fervidus was not only the first characterized organism with a maximal growth temperature (97 C) close to the boiling point of water, but also the first archaeon in which a detailed functional analysis of its histone protein was reported and the first one in which the function of 2,3-cyclodiphosphoglycerate in thermoadaptation was characterized. Strain V24ST is of interest because of its very low substrate ranges, it grows only on H2 + CO2. This is the first completed genome sequence of the family Methanothermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,243,342 bp long genome with its 1,311 protein-coding and 50 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  2. Complete genome sequence of Desulfomicrobium baculatum type strain (XT)

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, A [U.S. Department of Energy, Joint Genome Institute; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Schneider, Susan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Bruce, David [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Meincke, Linda [Los Alamos National Laboratory (LANL); Sims, David [Los Alamos National Laboratory (LANL); Brettin, Tom [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2009-01-01

    Desulfomicrobium baculatum is the type species of the genus Desulfomicrobium, which is the type genus of the family Desulfomicrobiaceae. It is of phylogenetic interest because of the isolated location of the family Desulfomicrobiaceae within the order Desulfovibrionales. D. baculatum strain XT is a Gram-negative, motile, sulfate-reducing bacterium isolated from wa-ter-saturated manganese carbonate ore. It is strictly anaerobic and does not require NaCl for growth, although NaCl concentrations up to 6% (w/v) are tolerated. The metabolism is respi-ratory or fermentative. In the presence of sulfate, pyruvate and lactate are incompletely oxi-dized to acetate and CO2. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the deltaproteobacterial family Desulfomicrobiaceae, and this 3,942,657 bp long single replicon genome with its 3494 protein-coding and 72 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  3. Complete genome sequence of Halanaerobium praevalens type strain (GSLT)

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Chertkov, Olga [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kannan, K. Palani [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Halanaerobium praevalens Zeikus et al. 1984 is the type species of the genus Halanaero- bium, which in turn is the type genus of the family Halanaerobiaceae. The species is of inter- est because it is able to reduce a variety of nitro-substituted aromatic compounds at a high rate, and because of its ability to degrade organic pollutants. The strain is also of interest be- cause it functions as a hydrolytic bacterium, fermenting complex organic matter and produc- ing intermediary metabolites for other trophic groups such as sulfate-reducing and methano- genic bacteria. It is further reported as being involved in carbon removal in the Great Salt Lake, its source of isolation. This is the first completed genome sequence of a representative of the genus Halanaerobium and the second genome sequence from a type strain of the fami- ly Halanaerobiaceae. The 2,309,262 bp long genome with its 2,110 protein-coding and 70 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  4. Complete Genome Sequence of Mycobacterium xenopi Type Strain RIVM700367

    KAUST Repository

    Abdallah, A. M.

    2012-05-24

    Mycobacterium xenopi is a slow-growing, thermophilic, water-related Mycobacterium species. Like other nontuberculous mycobacteria, M. xenopi more commonly infects humans with altered immune function, such as chronic obstructive pulmonary disease patients. It is considered clinically relevant in a significant proportion of the patients from whom it is isolated. We report here the whole genome sequence of M. xenopi type strain RIVM700367.

  5. Genome Sequence of Borrelia garinii Strain SZ, Isolated in China

    OpenAIRE

    Wu, Qiong; Liu, Zhijie; Li, Youquan; Guan, Guiquan; Niu, Qingli; Chen, Ze; Luo, Jianxun; Yin, Hong

    2014-01-01

    We announce the genome sequence of Borrelia garinii strain SZ, isolated from Dermacentor ticks collected in northeastern China. B. garinii strain SZ carries numerous plasmids, both 10 circular and 9 linear plasmids. The 902,487-bp linear chromosome (28.2% GC content) contains 820 open reading frames, 33 tRNAs, and 4 complete rRNAs. The plasmid cp32-10 contains one clustered regularly interspaced short palindromic repeat (CRISPR) with four repeats.

  6. Evolutionary insights from suffix array-based genome sequence analysis

    Indian Academy of Sciences (India)

    Anindya Poddar; Nagasuma Chandra; Madhavi Ganapathiraju; K Sekar; Judith Klein-Seetharaman; Raj Reddy; N Balakrishnan

    2007-08-01

    Gene and protein sequence analyses, central components of studies in modern biology are easily amenable to string matching and pattern recognition algorithms. The growing need of analysing whole genome sequences more efficiently and thoroughly, has led to the emergence of new computational methods. Suffix trees and suffix arrays are data structures, well known in many other areas and are highly suited for sequence analysis too. Here we report an improvement to the design of construction of suffix arrays. Enhancement in versatility and scalability, enabled by this approach, is demonstrated through the use of real-life examples. The scalability of the algorithm to whole genomes renders it suitable to address many biologically interesting problems. One example is the evolutionary insight gained by analysing unigrams, bi-grams and higher n-grams, indicating that the genetic code has a direct influence on the overall composition of the genome. Further, different proteomes have been analysed for the coverage of the possible peptide space, which indicate that as much as a quarter of the total space at the tetra-peptide level is left un-sampled in prokaryotic organisms, although almost all tri-peptides can be seen in one protein or another in a proteome. Besides, distinct patterns begin to emerge for the counts of particular tetra and higher peptides, indicative of a ‘meaning’ for tetra and higher n-grams. The toolkit has also been used to demonstrate the usefulness of identifying repeats in whole proteomes efficiently. As an example, 16 members of one COG, coded by the genome of Mycobacterium tuberculosis H37Rv have been found to contain a repeating sequence of 300 amino acids.

  7. Viral Genome Sequencing Proves Nosocomial Transmission of Fatal Varicella

    Science.gov (United States)

    Depledge, Daniel P.; Brown, Julianne; Macanovic, Jasna; Underhill, Gill; Breuer, Judith

    2016-01-01

    We report the first use of whole viral genome sequencing to identify nosocomial transmission of varicella-zoster virus with fatal outcome. The index case patient, nursed in source isolation, developed disseminated zoster with rash present for 1 day before being transferred to the intensive care unit (ICU). Two patients who had received renal transplants while inpatients in an adjacent ward developed chickenpox and 1 died; neither patient had direct contact with the index patient. PMID:27571904

  8. Registered Report: Melanoma genome sequencing reveals frequent PREX2 mutations

    OpenAIRE

    2015-01-01

    Authors: Denise Chroscinski, Darryl Sampey, Alex Hewitt, The Reproducibility Project: Cancer Biology† ### Abstract The [Reproducibility Project: Cancer Biology](https://osf.io/e81xl/wiki/home/) seeks to address growing concerns about reproducibility in scientific research by conducting replications of 50 papers in the field of cancer biology published between 2010 and 2012. This Registered Report describes the proposed replication plan of key experiments from “Melanoma genome sequenci...

  9. Low coverage sequencing of two Asian elephant (Elephas maximus) genomes

    OpenAIRE

    Dastjerdi, Akbar; Robert, Christelle; Watson, Mick

    2014-01-01

    Background There are three species of elephant that exist, the Asian elephant (Elephas maximus) and two species of African elephant (Loxodonta africana and Loxodonta cyclotis). The populations of all three species are dwindling, and are under threat due to factors, such as habitat destruction and ivory hunting. The species differ in many respects, including in their morphology and response to disease. The availability of elephant genome sequence data from all three elephant species will compl...

  10. Whole genome sequencing of clinical isolates of Giardia lamblia.

    Science.gov (United States)

    Hanevik, K; Bakken, R; Brattbakk, H R; Saghaug, C S; Langeland, N

    2015-02-01

    Clinical isolates from protozoan parasites such as Giardia lamblia are at present practically impossible to culture. By using simple cyst purification methods, we show that Giardia whole genome sequencing of clinical stool samples is possible. Immunomagnetic separation after sucrose gradient flotation gave superior results compared to sucrose gradient flotation alone. The method enables detailed analysis of a wide range of genes of interest for genotyping, virulence and drug resistance.

  11. Genome Sequences of Three Novel Bacillus cereus Bacteriophages

    OpenAIRE

    Julianne H Grose; Jensen, Jordan D.; Merrill, Bryan D.; Fisher, Joshua N. B.; Burnett, Sandra H.; Breakwell, Donald P

    2014-01-01

    The Bacillus cereus group is an assemblage of highly related firmicute bacteria that cause a variety of diseases in animals, including insects and humans. We announce three high-quality, complete genome sequences of bacteriophages we isolated from soil samples taken at the bases of fruit trees in Utah County, Utah. While two of the phages (Shanette and JL) are highly related myoviruses, the bacteriophage Basilisk is a siphovirus.

  12. Sequence Collection - TMBETA-GENOME | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us TMBETA...-GENOME Sequence Collection Data detail Data name Sequence Collection Description of data contents A c...ultiple chromosomes, the entry set for each chormosome is given individually. Data file File name: tmbeta..._genome_sequence_collection.zip File URL: ftp://ftp.biosciencedbc.jp/archive/tmbeta-genome/LATEST/tmbeta...encedbc.jp/togodb/view/tmbeta_genome_sequence_collection#en Data acquisition meth

  13. Recoding of the stop codon UGA to glycine by a BD1-5/SN-2 bacterium and niche partitioning between Alpha- and Gammaproteobacteria in a tidal sediment microbial community naturally selected in a laboratory chemostat

    Energy Technology Data Exchange (ETDEWEB)

    Hanke, Anna [Max Planck Institute for Marine Microbiology; Hamann, Emmo [Max Planck Institute for Marine Microbiology; Sharma, Ritin [ORNL; Geelhoed, Jeanine [Max Planck Institute for Marine Microbiology; Hargesheimer, Theresa [Max Planck Institute for Marine Microbiology; Kraft, Beate [Max Planck Institute for Marine Microbiology; Meyer, Volker [Max Planck Institute for Marine Microbiology; Lenk, Sabine [Max Planck Institute for Marine Microbiology; Osmers, Harald [Max Planck Institute for Marine Microbiology; Wu, Rong [Delft University of Technology, Delft, Netherlands; Makinwa, Kofi [Delft University of Technology, Delft, Netherlands; Hettich, Robert {Bob} L [ORNL; Banfield, Jillian F. [University of California, Berkeley; Tegetmeyer, Halina [Max Planck Institute for Marine Microbiology; Strouss, Marc [University of Calgary, ALberta, Canada

    2014-01-01

    Sandy coastal sediments are global hot spots for microbial mineralization of organic matter and denitrification. These sediments are characterized by advective pore water flow, tidal cycling and an active and complex microbial community. Metagenomic sequencing of microbial communities sampled from such sediments showed that potential sulfuroxidizing Gammaproteobacteria and members of the enigmaticBD1-5/ SN-2 candidatephylumwereabundantinsitu (>10% and 2% respectively). By mimicking the dynamic oxic/anoxic environmental conditions of the sedimentin a laboratory chemostat, a simplified microbial community was selected from the more complex inoculum. Metagenomics, proteomics and fluorescenceinsituhybridization showed that this simplified community contained both a potential sulfuroxidizing Gamma proteobacteria (at 24 2% abundance) and a member of the BD1-5 / SN-2candidatephylum (at 7 6%abundance). Despite the abundant supply of organic substrates to the chemostat, proteomic analysis suggested that the selected gamma proteobacterium grew partially auto trophically and performed hydrogen/formate oxidation. The enrichment of a member of the BD1-5/SN-2candidatephylum enabled, for the first time, direct microscopic observation by fluorescent insitu hybridization and the experimental validation of the previously predicted translation of the stop codon UGA into glycine.

  14. Heterogeneous Cloud Framework for Big Data Genome Sequencing.

    Science.gov (United States)

    Wang, Chao; Li, Xi; Chen, Peng; Wang, Aili; Zhou, Xuehai; Yu, Hong

    2015-01-01

    The next generation genome sequencing problem with short (long) reads is an emerging field in numerous scientific and big data research domains. However, data sizes and ease of access for scientific researchers are growing and most current methodologies rely on one acceleration approach and so cannot meet the requirements imposed by explosive data scales and complexities. In this paper, we propose a novel FPGA-based acceleration solution with MapReduce framework on multiple hardware accelerators. The combination of hardware acceleration and MapReduce execution flow could greatly accelerate the task of aligning short length reads to a known reference genome. To evaluate the performance and other metrics, we conducted a theoretical speedup analysis on a MapReduce programming platform, which demonstrates that our proposed architecture have efficient potential to improve the speedup for large scale genome sequencing applications. Also, as a practical study, we have built a hardware prototype on the real Xilinx FPGA chip. Significant metrics on speedup, sensitivity, mapping quality, error rate, and hardware cost are evaluated, respectively. Experimental results demonstrate that the proposed platform could efficiently accelerate the next generation sequencing problem with satisfactory accuracy and acceptable hardware cost.

  15. Genome sequence and genetic diversity of European ash trees.

    Science.gov (United States)

    Sollars, Elizabeth S A; Harper, Andrea L; Kelly, Laura J; Sambles, Christine M; Ramirez-Gonzalez, Ricardo H; Swarbreck, David; Kaithakottil, Gemy; Cooper, Endymion D; Uauy, Cristobal; Havlickova, Lenka; Worswick, Gemma; Studholme, David J; Zohren, Jasmin; Salmon, Deborah L; Clavijo, Bernardo J; Li, Yi; He, Zhesi; Fellgett, Alison; McKinney, Lea Vig; Nielsen, Lene Rostgaard; Douglas, Gerry C; Kjær, Erik Dahl; Downie, J Allan; Boshier, David; Lee, Steve; Clark, Jo; Grant, Murray; Bancroft, Ian; Caccamo, Mario; Buggs, Richard J A

    2017-01-12

    Ash trees (genus Fraxinus, family Oleaceae) are widespread throughout the Northern Hemisphere, but are being devastated in Europe by the fungus Hymenoscyphus fraxineus, causing ash dieback, and in North America by the herbivorous beetle Agrilus planipennis. Here we sequence the genome of a low-heterozygosity Fraxinus excelsior tree from Gloucestershire, UK, annotating 38,852 protein-coding genes of which 25% appear ash specific when compared with the genomes of ten other plant species. Analyses of paralogous genes suggest a whole-genome duplication shared with olive (Olea europaea, Oleaceae). We also re-sequence 37 F. excelsior trees from Europe, finding evidence for apparent long-term decline in effective population size. Using our reference sequence, we re-analyse association transcriptomic data, yielding improved markers for reduced susceptibility to ash dieback. Surveys of these markers in British populations suggest that reduced susceptibility to ash dieback may be more widespread in Great Britain than in Denmark. We also present evidence that susceptibility of trees to H. fraxineus is associated with their iridoid glycoside levels. This rapid, integrated, multidisciplinary research response to an emerging health threat in a non-model organism opens the way for mitigation of the epidemic.

  16. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome.

    Science.gov (United States)

    Ley, Timothy J; Mardis, Elaine R; Ding, Li; Fulton, Bob; McLellan, Michael D; Chen, Ken; Dooling, David; Dunford-Shore, Brian H; McGrath, Sean; Hickenbotham, Matthew; Cook, Lisa; Abbott, Rachel; Larson, David E; Koboldt, Dan C; Pohl, Craig; Smith, Scott; Hawkins, Amy; Abbott, Scott; Locke, Devin; Hillier, Ladeana W; Miner, Tracie; Fulton, Lucinda; Magrini, Vincent; Wylie, Todd; Glasscock, Jarret; Conyers, Joshua; Sander, Nathan; Shi, Xiaoqi; Osborne, John R; Minx, Patrick; Gordon, David; Chinwalla, Asif; Zhao, Yu; Ries, Rhonda E; Payton, Jacqueline E; Westervelt, Peter; Tomasson, Michael H; Watson, Mark; Baty, Jack; Ivanovich, Jennifer; Heath, Sharon; Shannon, William D; Nagarajan, Rakesh; Walter, Matthew J; Link, Daniel C; Graubert, Timothy A; DiPersio, John F; Wilson, Richard K

    2008-11-06

    Acute myeloid leukaemia is a highly malignant haematopoietic tumour that affects about 13,000 adults in the United States each year. The treatment of this disease has changed little in the past two decades, because most of the genetic events that initiate the disease remain undiscovered. Whole-genome sequencing is now possible at a reasonable cost and timeframe to use this approach for the unbiased discovery of tumour-specific somatic mutations that alter the protein-coding genes. Here we present the results obtained from sequencing a typical acute myeloid leukaemia genome, and its matched normal counterpart obtained from the same patient's skin. We discovered ten genes with acquired mutations; two were previously described mutations that are thought to contribute to tumour progression, and eight were new mutations present in virtually all tumour cells at presentation and relapse, the function of which is not yet known. Our study establishes whole-genome sequencing as an unbiased method for discovering cancer-initiating mutations in previously unidentified genes that may respond to targeted therapies.

  17. Artificial duplicate reads in sequencing data of 454 Genome Sequencer FLX System

    Institute of Scientific and Technical Information of China (English)

    Hui Dong; Yangyi Chen; Yan Shen; Shengyue Wang; Guoping Zhao; Weirong Jin

    2011-01-01

    The 454 Genome Sequencer (GS) FLX System is one of the next-generation sequencing systems featured by long reads, high accuracy, and ultra-high throughput.Based on the mechanism of emulsion PCR, a unique DNA template would only generate a unique sequence read after being amplified and sequenced on GS FLX.However,biased amplification of DNA templates might occur in the process of emulsion PCR, which results in production of artificial duplicate reads.Under the condition that each DNA template is unique to another, 3.49%-18.14% of total reads in GS FLX-sequencing data were found to be artificial duplicate reads.These duplicate reads may lead to misunderstanding of sequencing data and special attention should be paid to the potential biases they introduced to the data.

  18. Complete genome sequence of the fish pathogen Flavobacterium branchiophilum.

    Science.gov (United States)

    Touchon, Marie; Barbier, Paul; Bernardet, Jean-François; Loux, Valentin; Vacherie, Benoit; Barbe, Valérie; Rocha, Eduardo P C; Duchaud, Eric

    2011-11-01

    Members of the genus Flavobacterium occur in a variety of ecological niches and represent an interesting diversity of lifestyles. Flavobacterium branchiophilum is the main causative agent of bacterial gill disease, a severe condition affecting various cultured freshwater fish species worldwide, in particular salmonids in Canada and Japan. We report here the complete genome sequence of strain FL-15 isolated from a diseased sheatfish (Silurus glanis) in Hungary. The analysis of the F. branchiophilum genome revealed putative mechanisms of pathogenicity strikingly different from those of the other, closely related fish pathogen Flavobacterium psychrophilum, including the first cholera-like toxin in a non-Proteobacteria and a wealth of adhesins. The comparison with available genomes of other Flavobacterium species revealed a small genome size, large differences in chromosome organization, and fewer rRNA and tRNA genes, in line with its more fastidious growth. In addition, horizontal gene transfer shaped the evolution of F. branchiophilum, as evidenced by its virulence factors, genomic islands, and CRISPR (clustered regularly interspaced short palindromic repeats) systems. Further functional analysis should help in the understanding of host-pathogen interactions and in the development of rational diagnostic tools and control strategies in fish farms.

  19. Genome Sequence of Prosthecochloris sp. Strain CIB 2401 of the Phylum Chlorobi

    OpenAIRE

    Nabhan, Shaza; Bunk, Boyke; Spröer, Cathrin; Liu, Zhenfeng; Bryant, Donald A.; Overmann, Jörg

    2016-01-01

    To date, only 13 genomes of green sulfur bacteria (family Chlorobiaceae) have been sequenced. The sequenced strains do not cover the full phylogenetic diversity of the family. We determined the complete genome sequence of Prosthecochloris sp. strain CIB 2401, thereby increasing the genome information for the poorly represented marine Chlorobiaceae.

  20. Genome Sequence of Prosthecochloris sp. Strain CIB 2401 of the Phylum Chlorobi.

    Science.gov (United States)

    Nabhan, Shaza; Bunk, Boyke; Spröer, Cathrin; Liu, Zhenfeng; Bryant, Donald A; Overmann, Jörg

    2016-11-03

    To date, only 13 genomes of green sulfur bacteria (family Chlorobiaceae) have been sequenced. The sequenced strains do not cover the full phylogenetic diversity of the family. We determined the complete genome sequence of Prosthecochloris sp. strain CIB 2401, thereby increasing the genome information for the poorly represented marine Chlorobiaceae.

  1. Draft genome sequences of seven isolates of Phytophthora ramorum EU2 from Northern Ireland

    Directory of Open Access Journals (Sweden)

    Lourdes de la Mata Saez

    2015-12-01

    Full Text Available Here we present draft-quality genome sequence assemblies for the oomycete Phytophthora ramorum genetic lineage EU2. We sequenced genomes of seven isolates collected in Northern Ireland between 2010 and 2012. Multiple genome sequences from P. ramorum EU2 will be valuable for identifying genetic variation within the clonal lineage that can be useful for tracking its spread.

  2. Genome Sequence of Southern tomato virus in Asymptomatic Tomato ‘Sweet Hearts’

    Science.gov (United States)

    Alcalá-Briseño, Ricardo I.; Coşkan, Sevgi; Londoño, Maria A.

    2017-01-01

    ABSTRACT The genome sequence of Southern tomato virus in asymptomatic Solanum lycopersicum ‘Sweet Hearts’ (STV-Florida) in Florida was assembled from small RNAs sequenced by Illumina RNA-seq. The STV-Florida genome shared 99.0 to 99.9% similarity with full genome sequences from Bangladesh, China, Mexico, and the United States (Mississippi and North Carolina). PMID:28209810

  3. Genome sequence of carboxylesterase, carboxylase and xylose isomerase producing alkaliphilic haloarchaeon Haloterrigena turkmenica WANU15

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2016-03-01

    Full Text Available We report draft genome sequence of Haloterrigena turkmenica strain WANU15, isolated from Soda Lake. The draft genome size is 2,950,899 bp with a G + C content of 64% and contains 49 RNA sequence. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LKCV00000000.

  4. Genome sequence of the plant growth-promoting rhizobacterium Pseudomonas putida S11.

    Science.gov (United States)

    Ponraj, Paramasivan; Shankar, Manoharan; Ilakkiam, Devaraj; Rajendhran, Jeyaprakash; Gunasekaran, Paramasamy

    2012-11-01

    Here we report the genome sequence of a plant growth-promoting rhizobacterium, Pseudomonas putida S11. The length of the draft genome sequence is approximately 5,970,799 bp, with a G+C content of 62.4%. The genome contains 6,076 protein-coding sequences.

  5. Complete Genome Sequence of Achromobacter xylosoxidans MN001, a Cystic Fibrosis Airway Isolate.

    Science.gov (United States)

    Badalamenti, Jonathan P; Hunter, Ryan C

    2015-08-20

    The genome of Achromobacter xylosoxidans MN001, a strain isolated from sputum derived from an adult cystic fibrosis patient, was sequenced using combined single-molecule real-time and Illumina sequencing. Assembly of the complete genome resulted in a 5,876,039-bp chromosome, representing the smallest A. xylosoxidans genome sequenced to date.

  6. Complete Genome Sequence of Achromobacter xylosoxidans MN001, a Cystic Fibrosis Airway Isolate

    OpenAIRE

    2015-01-01

    The genome of Achromobacter xylosoxidans MN001, a strain isolated from sputum derived from an adult cystic fibrosis patient, was sequenced using combined single-molecule real-time and Illumina sequencing. Assembly of the complete genome resulted in a 5,876,039-bp chromosome, representing the smallest A. xylosoxidans genome sequenced to date.

  7. Nullomers and High Order Nullomers in Genomic Sequences

    Science.gov (United States)

    Vergni, Davide; Santoni, Daniele

    2016-01-01

    A nullomer is an oligomer that does not occur as a subsequence in a given DNA sequence, i.e. it is an absent word of that sequence. The importance of nullomers in several applications, from drug discovery to forensic practice, is now debated in the literature. Here, we investigated the nature of nullomers, whether their absence in genomes has just a statistical explanation or it is a peculiar feature of genomic sequences. We introduced an extension of the notion of nullomer, namely high order nullomers, which are nullomers whose mutated sequences are still nullomers. We studied different aspects of them: comparison with nullomers of random sequences, CpG distribution and mean helical rise. In agreement with previous results we found that the number of nullomers in the human genome is much larger than expected by chance. Nevertheless antithetical results were found when considering a random DNA sequence preserving dinucleotide frequencies. The analysis of CpG frequencies in nullomers and high order nullomers revealed, as expected, a high CpG content but it also highlighted a strong dependence of CpG frequencies on the dinucleotide position, suggesting that nullomers have their own peculiar structure and are not simply sequences whose CpG frequency is biased. Furthermore, phylogenetic trees were built on eleven species based on both the similarities between the dinucleotide frequencies and the number of nullomers two species share, showing that nullomers are fairly conserved among close species. Finally the study of mean helical rise of nullomers sequences revealed significantly high mean rise values, reinforcing the hypothesis that those sequences have some peculiar structural features. The obtained results show that nullomers are the consequence of the peculiar structure of DNA (also including biased CpG frequency and CpGs islands), so that the hypermutability model, also taking into account CpG islands, seems to be not sufficient to explain nullomer phenomenon

  8. An efficient procedure for plant organellar genome assembly, based on whole genome data from the 454 GS FLX sequencing platform

    Directory of Open Access Journals (Sweden)

    Zhang Tongwu

    2011-11-01

    Full Text Available Abstract Motivation Complete organellar genome sequences (chloroplasts and mitochondria provide valuable resources and information for studying plant molecular ecology and evolution. As high-throughput sequencing technology advances, it becomes the norm that a shotgun approach is used to obtain complete genome sequences. Therefore, to assemble organellar sequences from the whole genome, shotgun reads are inevitable. However, associated techniques are often cumbersome, time-consuming, and difficult, because true organellar DNA is difficult to separate efficiently from nuclear copies, which have been transferred to the nucleus through the course of evolution. Results We report a new, rapid procedure for plant chloroplast and mitochondrial genome sequencing and assembly using the Roche/454 GS FLX platform. Plant cells can contain multiple copies of the organellar genomes, and there is a significant correlation between the depth of sequence reads in contigs and the number of copies of the genome. Without isolating organellar DNA from the mixture of nuclear and organellar DNA for sequencing, we retrospectively extracted assembled contigs of either chloroplast or mitochondrial sequences from the whole genome shotgun data. Moreover, the contig connection graph property of Newbler (a platform-specific sequence assembler ensures an efficient final assembly. Using this procedure, we assembled both chloroplast and mitochondrial genomes of a resurrection plant, Boea hygrometrica, with high fidelity. We also present information and a minimal sequence dataset as a reference for the assembly of other plant organellar genomes.

  9. The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics.

    Directory of Open Access Journals (Sweden)

    Lincoln D Stein

    2003-11-01

    Full Text Available The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp and C. elegans (100.3 Mbp genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C

  10. The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes

    NARCIS (Netherlands)

    Gil, R.; Silva, F.J.; Zientz, E.; Delmotte, F.; Gonzalez-Candelas, F.; Latorre, A.; Rausell, C.; Kamerbeek, J.; Gadau, J.; Hölldobler, B.; Ham, van R.C.H.J.; Gross, R.; Moya, A.

    2003-01-01

    Bacterial symbioses are widespread among insects, probably being one of the key factors of their evolutionary success. We present the complete genome sequence of Blochmannia floridanus, the primary endosymbiont of carpenter ants. Although these ants feed on a complex diet, this symbiosis very likely

  11. Integration of chicken genomic resources to enable whole-genome sequencing

    NARCIS (Netherlands)

    Aerts, J.A.; Crooijmans, R.P.M.A.; Cornelissen, S.J.B.; Hemmatian, K.; Veenendaal, A.; Jaader, A.; Poel, van der J.J.; Fillon, V.; Vignal, I.; Groenen, M.A.M.

    2003-01-01

    Different genomic resources in chicken were integrated through the Wageningen chicken BAC library. First, a BAC anchor map was created by screening this library with two sets of markers: microsatellite markers from the consensus linkage map and markers created from BAC end sequencing in chromosome w

  12. The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes

    Science.gov (United States)

    Gil, Rosario; Silva, Francisco J.; Zientz, Evelyn; Delmotte, François; González-Candelas, Fernando; Latorre, Amparo; Rausell, Carolina; Kamerbeek, Judith; Gadau, Jürgen; Hölldobler, Bert; van Ham, Roeland C. H. J.; Gross, Roy; Moya, Andrés

    2003-01-01

    Bacterial symbioses are widespread among insects, probably being one of the key factors of their evolutionary success. We present the complete genome sequence of Blochmannia floridanus, the primary endosymbiont of carpenter ants. Although these ants feed on a complex diet, this symbiosis very likely has a nutritional basis: Blochmannia is able to supply nitrogen and sulfur compounds to the host while it takes advantage of the host metabolic machinery. Remarkably, these bacteria lack all known genes involved in replication initiation (dnaA, priA, and recA). The phylogenetic analysis of a set of conserved protein-coding genes shows that Bl. floridanus is phylogenetically related to Buchnera aphidicola and Wigglesworthia glossinidia, the other endosymbiotic bacteria whose complete genomes have been sequenced so far. Comparative analysis of the five known genomes from insect endosymbiotic bacteria reveals they share only 313 genes, a number that may be close to the minimum gene set necessary to sustain endosymbiotic life. PMID:12886019

  13. What’s in the genome of a filamentous fungus? Analysis of the Neurospora genome sequence

    Science.gov (United States)

    Mannhaupt, Gertrud; Montrone, Corinna; Haase, Dirk; Mewes, H. Werner; Aign, Verena; Hoheisel, Jörg D.; Fartmann, Berthold; Nyakatura, Gerald; Kempken, Frank; Maier, Josef; Schulte, Ulrich

    2003-01-01

    The German Neurospora Genome Project has assembled sequences from ordered cosmid and BAC clones of linkage groups II and V of the genome of Neurospora crassa in 13 and 12 contigs, respectively. Including additional sequences located on other linkage groups a total of 12 Mb were subjected to a manual gene extraction and annotation process. The genome comprises a small number of repetitive elements, a low degree of segmental duplications and very few paralogous genes. The analysis of the 3218 identified open reading frames provides a first overview of the protein equipment of a filamentous fungus. Significantly, N.crassa possesses a large variety of metabolic enzymes including a substantial number of enzymes involved in the degradation of complex substrates as well as secondary metabolism. While several of these enzymes are specific for filamentous fungi many are shared exclusively with prokaryotes. PMID:12655011

  14. [The Mycobacterium leprae genome: from sequence analysis to therapeutic implications].

    Science.gov (United States)

    Honore, N

    2002-01-01

    The genome of Mycobacterium leprae, the causative agent of leprosy, was analyzed by rapid sequencing of cosmids and plasmids prepared from DNA isolated from one patient's strain. Results showed that the bacillus possesses a single circular chromosome that differs from other known mycobacterium chromosomes with regard to size (3.2 Mb) and G + C content (57.8%). Computer analysis demonstrated that only half of the sequence contains protein-coding genes. The other half contains pseudogenes and non-coding sequences. These findings indicate that M. leprae has undergone a major reductive evolution leaving a minimal set of functional genes for survival. Study of the coding region of the sequence provides evidence accounting for the particular pathogenic properties of M. leprae which is an obligate intracellular parasite. Disappearance of numerous enzymatic pathways in comparison with M. tuberculosis, an intracellular pathogen comparable to M. leprae, could explain the differences observed between the two organisms. Genomic analysis of the leprosy bacillus also provided insight into the molecular basis for resistance to various antibiotics and allowed identification of several potential targets for new drug treatments.

  15. Complete genome sequence of Borrelia afzelii K78 and comparative genome analysis.

    Directory of Open Access Journals (Sweden)

    Wolfgang Schüler

    Full Text Available The main Borrelia species causing Lyme borreliosis in Europe and Asia are Borrelia afzelii, B. garinii, B. burgdorferi and B. bavariensis. This is in contrast to the United States, where infections are exclusively caused by B. burgdorferi. Until to date the genome sequences of four B. afzelii strains, of which only two include the numerous plasmids, are available. In order to further assess the genetic diversity of B. afzelii, the most common species in Europe, responsible for the large variety of clinical manifestations of Lyme borreliosis, we have determined the full genome sequence of the B. afzelii strain K78, a clinical isolate from Austria. The K78 genome contains a linear chromosome (905,949 bp and 13 plasmids (8 linear and 5 circular together presenting 1,309 open reading frames of which 496 are located on plasmids. With the exception of lp28-8, all linear replicons in their full length including their telomeres have been sequenced. The comparison with the genomes of the four other B. afzelii strains, ACA-1, PKo, HLJ01 and Tom3107, as well as the one of B. burgdorferi strain B31, confirmed a high degree of conservation within the linear chromosome of B. afzelii, whereas plasmid encoded genes showed a much larger diversity. Since some plasmids present in B. burgdorferi are missing in the B. afzelii genomes, the corresponding virulence factors of B. burgdorferi are found in B. afzelii on other unrelated plasmids. In addition, we have identified a species specific region in the circular plasmid, cp26, which could be used for species determination. Different non-coding RNAs have been located on the B. afzelii K78 genome, which have not previously been annotated in any of the published Borrelia genomes.

  16. Complete genome sequence of an attenuated Sparfloxacin-resistant Streptococcus agalactiae strain 138spar

    Science.gov (United States)

    The complete genome of a sparfloxacin-resistant Streptococcus agalactiae vaccine strain 138spar is 1,838,126 bp in size. The genome has 1892 coding sequences and 82 RNAs. The annotation of the genome is added by the NCBI Prokaryotic Genome Annotation Pipeline. The publishing of this genome will allo...

  17. De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome

    Directory of Open Access Journals (Sweden)

    Iorizzo Massimo

    2012-05-01

    Full Text Available Abstract Background Sequence analysis of organelle genomes has revealed important aspects of plant cell evolution. The scope of this study was to develop an approach for de novo assembly of the carrot mitochondrial genome using next generation sequence data from total genomic DNA. Results Sequencing data from a carrot 454 whole genome library were used to develop a de novo assembly of the mitochondrial genome. Development of a new bioinformatic tool allowed visualizing contig connections and elucidation of the de novo assembly. Southern hybridization demonstrated recombination across two large repeats. Genome annotation allowed identification of 44 protein coding genes, three rRNA and 17 tRNA. Identification of the plastid genome sequence allowed organelle genome comparison. Mitochondrial intergenic sequence analysis allowed detection of a fragment of DNA specific to the carrot plastid genome. PCR amplification and sequence analysis across different Apiaceae species revealed consistent conservation of this fragment in the mitochondrial genomes and an insertion in Daucus plastid genomes, giving evidence of a mitochondrial to plastid transfer of DNA. Sequence similarity with a retrotransposon element suggests a possibility that a transposon-like event transferred this sequence into the plastid genome. Conclusions This study confirmed that whole genome sequencing is a practical approach for de novo assembly of higher plant mitochondrial genomes. In addition, a new aspect of intercompartmental genome interaction was reported providing the first evidence for DNA transfer into an angiosperm plastid genome. The approach used here could be used more broadly to sequence and assemble mitochondrial genomes of diverse species. This information will allow us to better understand intercompartmental interactions and cell evolution.

  18. Genome sequence and comparative analysis of Avibacterium paragallinarum

    Science.gov (United States)

    Requena, David; Chumbe, Ana; Torres, Michael; Alzamora, Ofelia; Ramirez, Manuel; Valdivia-Olarte, Hugo; Gutierrez, Andres Hazaet; Izquierdo-Lara, Ray; Saravia, Luis Enrique; Zavaleta, Milagros; Tataje-Lavanda, Luis; Best, Ivan; Fernández-Sánchez, Manolo; Icochea, Eliana; Zimic, Mirko; Fernández-Díaz, Manolo

    2013-01-01

    Background: Avibacterium paragallinarum, the causative agent of infectious coryza, is a highly contagious respiratory acute disease of poultry, which affects commercial chickens, laying hens and broilers worldwide. Methodology: In this study, we performed the whole genome sequencing, assembly and annotation of a Peruvian isolate of A. paragallinarum. Genome was sequenced in a 454 GS FLX Titanium system. De novo assembly was performed and annotation was completed with GS De Novo Assembler 2.6 using the H. influenzae str. F3031 gene model. Manual curation of the genome was performed with Artemis. Putative function of genes was predicted with Blast2GO. Virulence factors were identified by comparison with the Virulence Factor Database. Results: The genome obtained has a length of 2.47 Mb with 40.66% of GC content. Seventy five large contigs (>500 nt) were obtained, which comprised 1,204 predicted genes. All the contigs are available in Genbank [GenBank: PRJNA64665]. A total of 103 virulence factors, reported in the Virulence Factor Database, were found in A. paragallinarum. Forty four of them are present in 7 species of Haemophilus, which are related with pathogenesis, virulence and host immune system evasion. A tetracycline-resistance associated transposon (Tn10), was found in A. paragallinarum, possibly acting as a defense mechanism. Discussion and conclusion: The availability of A. paragallinarum genome represents an important source of information for the development of diagnostic tests, genotyping, and novel antigens for potential vaccines against infectious coryza. Identification of virulence factors contributes to better understanding the pathogenesis, and planning efforts for prevention and control of the disease. PMID:23861570

  19. Sequence imputation of HPV16 genomes for genetic association studies.

    Directory of Open Access Journals (Sweden)

    Benjamin Smith

    Full Text Available BACKGROUND: Human Papillomavirus type 16 (HPV16 causes over half of all cervical cancer and some HPV16 variants are more oncogenic than others. The genetic basis for the extraordinary oncogenic properties of HPV16 compared to other HPVs is unknown. In addition, we neither know which nucleotides vary across and within HPV types and lineages, nor which of the single nucleotide polymorphisms (SNPs determine oncogenicity. METHODS: A reference set of 62 HPV16 complete genome sequences was established and used to examine patterns of evolutionary relatedness amongst variants using a pairwise identity heatmap and HPV16 phylogeny. A BLAST-based algorithm was developed to impute complete genome data from partial sequence information using the reference database. To interrogate the oncogenic risk of determined and imputed HPV16 SNPs, odds-ratios for each SNP were calculated in a case-control viral genome-wide association study (VWAS using biopsy confirmed high-grade cervix neoplasia and self-limited HPV16 infections from Guanacaste, Costa Rica. RESULTS: HPV16 variants display evolutionarily stable lineages that contain conserved diagnostic SNPs. The imputation algorithm indicated that an average of 97.5±1.03% of SNPs could be accurately imputed. The VWAS revealed specific HPV16 viral SNPs associated with variant lineages and elevated odds ratios; however, individual causal SNPs could not be distinguished with certainty due to the nature of HPV evolution. CONCLUSIONS: Conserved and lineage-specific SNPs can be imputed with a high degree of accuracy from limited viral polymorphic data due to the lack of recombination and the stochastic mechanism of variation accumulation in the HPV genome. However, to determine the role of novel variants or non-lineage-specific SNPs by VWAS will require direct sequence analysis. The investigation of patterns of genetic variation and the identification of diagnostic SNPs for lineages of HPV16 variants provides a valuable

  20. Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides.

    Science.gov (United States)

    McGirt, Laura Y; Jia, Peilin; Baerenwald, Devin A; Duszynski, Robert J; Dahlman, Kimberly B; Zic, John A; Zwerner, Jeffrey P; Hucks, Donald; Dave, Utpal; Zhao, Zhongming; Eischen, Christine M

    2015-07-23

    The pathogenesis of mycosis fungoides (MF), the most common cutaneous T-cell lymphoma (CTCL), is unknown. Although genetic alterations have been identified, none are considered consistently causative in MF. To identify potential drivers of MF, we performed whole-genome sequencing of MF tumors and matched normal skin. Targeted ultra-deep sequencing of MF samples and exome sequencing of CTCL cell lines were also performed. Multiple mutations were identified that affected the same pathways, including epigenetic, cell-fate regulation, and cytokine signaling, in MF tumors and CTCL cell lines. Specifically, interleukin-2 signaling pathway mutations, including activating Janus kinase 3 (JAK3) mutations, were detected. Treatment with a JAK3 inhibitor significantly reduced CTCL cell survival. Additionally, the mutation data identified 2 other potential contributing factors to MF, ultraviolet light, and a polymorphism in the tumor suppressor p53 (TP53). Therefore, genetic alterations in specific pathways in MF were identified that may be viable, effective new targets for treatment.

  1. Second generation sequencing of the mesothelioma tumor genome.

    Directory of Open Access Journals (Sweden)

    Raphael Bueno

    Full Text Available The current paradigm for elucidating the molecular etiology of cancers relies on the interrogation of small numbers of genes, which limits the scope of investigation. Emerging second-generation massively parallel DNA sequencing technologies have enabled more precise definition of the cancer genome on a global scale. We examined the genome of a human primary malignant pleural mesothelioma (MPM tumor and matched normal tissue by using a combination of sequencing-by-synthesis and pyrosequencing methodologies to a 9.6X depth of coverage. Read density analysis uncovered significant aneuploidy and numerous rearrangements. Method-dependent informatics rules, which combined the results of different sequencing platforms, were developed to identify and validate candidate mutations of multiple types. Many more tumor-specific rearrangements than point mutations were uncovered at this depth of sequencing, resulting in novel, large-scale, inter- and intra-chromosomal deletions, inversions, and translocations. Nearly all candidate point mutations appeared to be previously unknown SNPs. Thirty tumor-specific fusions/translocations were independently validated with PCR and Sanger sequencing. Of these, 15 represented disrupted gene-encoding regions, including kinases, transcription factors, and growth factors. One large deletion in DPP10 resulted in altered transcription and expression of DPP10 transcripts in a set of 53 additional MPM tumors correlated with survival. Additionally, three point mutations were observed in the coding regions of NKX6-2, a transcription regulator, and NFRKB, a DNA-binding protein involved in modulating NFKB1. Several regions containing genes such as PCBD2 and DHFR, which are involved in growth factor signaling and nucleotide synthesis, respectively, were selectively amplified in the tumor. Second-generation sequencing uncovered all types of mutations in this MPM tumor, with DNA rearrangements representing the dominant type.

  2. The nucleotide sequence and genome organization of Plasmopara halstedii virus

    Directory of Open Access Journals (Sweden)

    Göpfert Jens C

    2011-03-01

    Full Text Available Abstract Background Only very few viruses of Oomycetes have been studied in detail. Isometric virions were found in different isolates of the oomycete Plasmopara halstedii, the downy mildew pathogen of sunflower. However, complete nucleotide sequences and data on the genome organization were lacking. Methods Viral RNA of different P. halstedii isolates was subjected to nucleotide sequencing and analysis of the viral genome. The N-terminal sequence of the viral coat protein was determined using Top-Down MALDI-TOF analysis. Results The complete nucleotide sequences of both single-stranded RNA segments (RNA1 and RNA2 were established. RNA1 consisted of 2793 nucleotides (nt exclusive its 3' poly(A tract and a single open-reading frame (ORF1 of 2745 nt. ORF1 was framed by a 5' untranslated region (5' UTR of 18 nt and a 3' untranslated region (3' UTR of 30 nt. ORF1 contained motifs of RNA-dependent RNA polymerases (RdRp and showed similarities to RdRp of Scleropthora macrospora virus A (SmV A and viruses within the Nodaviridae family. RNA2 consisted of 1526 nt exclusive its 3' poly(A tract and a second ORF (ORF2 of 1128 nt. ORF2 coded for the single viral coat protein (CP and was framed by a 5' UTR of 164 nt and a 3' UTR of 234 nt. The deduced amino acid sequence of ORF2 was verified by nano-LC-ESI-MS/MS experiments. Top-Down MALDI-TOF analysis revealed the N-terminal sequence of the CP. The N-terminal sequence represented a region within ORF2 suggesting a proteolytic processing of the CP in vivo. The CP showed similarities to CP of SmV A and viruses within the Tombusviridae family. Fragments of RNA1 (ca. 1.9 kb and RNA2 (ca. 1.4 kb were used to analyze the nucleotide sequence variation of virions in different P. halstedii isolates. Viral sequence variation was 0.3% or less regardless of their host's pathotypes, the geographical origin and the sensitivity towards the fungicide metalaxyl. Conclusions The results showed the presence of a single and new

  3. Complete genome sequence of Enterococcus faecium strain TX16 and comparative genomic analysis of Enterococcus faecium genomes

    Directory of Open Access Journals (Sweden)

    Qin Xiang

    2012-07-01

    Full Text Available Abstract Background Enterococci are among the leading causes of hospital-acquired infections in the United States and Europe, with Enterococcus faecalis and Enterococcus faecium being the two most common species isolated from enterococcal infections. In the last decade, the proportion of enterococcal infections caused by E. faecium has steadily increased compared to other Enterococcus species. Although the underlying mechanism for the gradual replacement of E. faecalis by E. faecium in the hospital environment is not yet understood, many studies using genotyping and phylogenetic analysis have shown the emergence of a globally dispersed polyclonal subcluster of E. faecium strains in clinical environments. Systematic study of the molecular epidemiology and pathogenesis of E. faecium has been hindered by the lack of closed, complete E. faecium genomes that can be used as references. Results In this study, we report the complete genome sequence of the E. faecium strain TX16, also known as DO, which belongs to multilocus sequence type (ST 18, and was the first E. faecium strain ever sequenced. Whole genome comparison of the TX16 genome with 21 E. faecium draft genomes confirmed that most clinical, outbreak, and hospital-associated (HA strains (including STs 16, 17, 18, and 78, in addition to strains of non-hospital origin, group in the same clade (referred to as the HA clade and are evolutionally considerably more closely related to each other by phylogenetic and gene content similarity analyses than to isolates in the community-associated (CA clade with approximately a 3–4% average nucleotide sequence difference between the two clades at the core genome level. Our study also revealed that many genomic loci in the TX16 genome are unique to the HA clade. 380 ORFs in TX16 are HA-clade specific and antibiotic resistance genes are enriched in HA-clade strains. Mobile elements such as IS16 and transposons were also found almost exclusively in HA strains

  4. Early insights into the genome sequence of Uromyces fabae

    Directory of Open Access Journals (Sweden)

    Tobias eLink

    2014-10-01

    Full Text Available Uromyces fabae is a major pathogen of broad bean, Vicia faba. U. fabae has served as a model among rust fungi to elucidate the development of infection structures, expression and secretion of cell wall degrading enzymes and gene expression. Using U. fabae, enormous progress was made regarding nutrient uptake and metabolism and in the search for secreted proteins and effectors. Here, we present results from a genome survey of U. fabae. Paired end Illumina sequencing provided 53 Gb of data. An assembly gave 59,735 scaffolds with a total length of 216 Mb. K-mer analysis estimated the genome size to be 329 Mb. Of a representative set of 23,153 predicted proteins we could annotate 10,209, and predict 599 secreted proteins. Clustering of the protein set indicates families of highly likely effectors. We also found new homologs of RTP1p, a prototype rust effector. The U. fabae genome will be an important resource for comparative analyses with U. appendiculatus and P. pachyrhizi and provide information regarding the phylogenetic relationship of the genus Uromyces with respect to other rust fungi already sequenced, namely Puccinia graminis f. sp. tritici, P. striiformis f. sp. tritici, Melampsora lini, and Melampsora larici-populina.

  5. A high-resolution radiation hybrid map of the human genome draft sequence.

    Science.gov (United States)

    Olivier, M; Aggarwal, A; Allen, J; Almendras, A A; Bajorek, E S; Beasley, E M; Brady, S D; Bushard, J M; Bustos, V I; Chu, A; Chung, T R; De Witte, A; Denys, M E; Dominguez, R; Fang, N Y; Foster, B D; Freudenberg, R W; Hadley, D; Hamilton, L R; Jeffrey, T J; Kelly, L; Lazzeroni, L; Levy, M R; Lewis, S C; Liu, X; Lopez, F J; Louie, B; Marquis, J P; Martinez, R A; Matsuura, M K; Misherghi, N S; Norton, J A; Olshen, A; Perkins, S M; Perou, A J; Piercy, C; Piercy, M; Qin, F; Reif, T; Sheppard, K; Shokoohi, V; Smick, G A; Sun, W L; Stewart, E A; Fernando, J; Tejeda; Tran, N M; Trejo, T; Vo, N T; Yan, S C; Zierten, D L; Zhao, S; Sachidanandam, R; Trask, B J; Myers, R M; Cox, D R

    2001-02-16

    We have constructed a physical map of the human genome by using a panel of 90 whole-genome radiation hybrids (the TNG panel) in conjunction with 40,322 sequence-tagged sites (STSs) derived from random genomic sequences as well as expressed sequences. Of 36,678 STSs on the TNG radiation hybrid map, only 3604 (9.8%) were absent from the unassembled draft sequence of the human genome. Of 20,030 STSs ordered on the TNG map as well as the assembled human genome draft sequence and the Celera assembled human genome sequence, 36% of the STSs had a discrepant order between the working draft sequence and the Celera sequence. The TNG map order was identical to one of the two sequence orders in 60% of these discrepant cases.

  6. Survey Sequencing and Comparative Analysis of the Elephant Shark (Callorhinchus milii) Genome

    Science.gov (United States)

    Venkatesh, Byrappa; Kirkness, Ewen F; Loh, Yong-Hwee; Halpern, Aaron L; Lee, Alison P; Johnson, Justin; Dandona, Nidhi; Viswanathan, Lakshmi D; Tay, Alice; Venter, J. Craig; Strausberg, Robert L; Brenner, Sydney

    2007-01-01

    Owing to their phylogenetic position, cartilaginous fishes (sharks, rays, skates, and chimaeras) provide a critical reference for our understanding of vertebrate genome evolution. The relatively small genome of the elephant shark, Callorhinchus milii, a chimaera, makes it an attractive model cartilaginous fish genome for whole-genome sequencing and comparative analysis. Here, the authors describe survey sequencing (1.4× coverage) and comparative analysis of the elephant shark genome, one of the first cartilaginous fish genomes to be sequenced to this depth. Repetitive sequences, represented mainly by a novel family of short interspersed element–like and long interspersed element–like sequences, account for about 28% of the elephant shark genome. Fragments of approximately 15,000 elephant shark genes reveal specific examples of genes that have been lost differentially during the evolution of tetrapod and teleost fish lineages. Interestingly, the degree of conserved synteny and conserved sequences between the human and elephant shark genomes are higher than that between human and teleost fish genomes. Elephant shark contains putative four Hox clusters indicating that, unlike teleost fish genomes, the elephant shark genome has not experienced an additional whole-genome duplication. These findings underscore the importance of the elephant shark as a critical reference vertebrate genome for comparative analysis of the human and other vertebrate genomes. This study also demonstrates that a survey-sequencing approach can be applied productively for comparative analysis of distantly related vertebrate genomes. PMID:17407382

  7. Clinical genomics information management software linking cancer genome sequence and clinical decisions.

    Science.gov (United States)

    Watt, Stuart; Jiao, Wei; Brown, Andrew M K; Petrocelli, Teresa; Tran, Ben; Zhang, Tong; McPherson, John D; Kamel-Reid, Suzanne; Bedard, Philippe L; Onetto, Nicole; Hudson, Thomas J; Dancey, Janet; Siu, Lillian L; Stein, Lincoln; Ferretti, Vincent

    2013-09-01

    Using sequencing information to guide clinical decision-making requires coordination of a diverse set of people and activities. In clinical genomics, the process typically includes sample acquisition, template preparation, genome data generation, analysis to identify and confirm variant alleles, interpretation of clinical significance, and reporting to clinicians. We describe a software application developed within a clinical genomics study, to support this entire process. The software application tracks patients, samples, genomic results, decisions and reports across the cohort, monitors progress and sends reminders, and works alongside an electronic data capture system for the trial's clinical and genomic data. It incorporates systems to read, store, analyze and consolidate sequencing results from multiple technologies, and provides a curated knowledge base of tumor mutation frequency (from the COSMIC database) annotated with clinical significance and drug sensitivity to generate reports for clinicians. By supporting the entire process, the application provides deep support for clinical decision making, enabling the generation of relevant guidance in reports for verification by an expert panel prior to forwarding to the treating physician.

  8. The zebrafish reference genome sequence and its relationship to the human genome.

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D; Torroja, Carlos F; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T; Guerra-Assunção, José A; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F; Laird, Gavin K; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Elliot, David; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Begum, Sharmin; Mortimore, Beverley; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Lloyd, Christine; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James D; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Lanz, Christa; Raddatz, Günter; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Schuster, Stephan C; Carter, Nigel P; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M J; Enright, Anton; Geisler, Robert; Plasterk, Ronald H A; Lee, Charles; Westerfield, Monte; de Jong, Pieter J; Zon, Leonard I; Postlethwait, John H; Nüsslein-Volhard, Christiane; Hubbard, Tim J P; Roest Crollius, Hugues; Rogers, Jane; Stemple, Derek L

    2013-04-25

    Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.

  9. The zebrafish reference genome sequence and its relationship to the human genome

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D.; Torroja, Carlos F.; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E.; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C.; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T.; Guerra-Assunção, José A.; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F.; Laird, Gavin K.; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M.; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Carter, Nigel P.; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M. J.; Enright, Anton; Geisler, Robert; Plasterk, Ronald H. A.; Lee, Charles; Westerfield, Monte; de Jong, Pieter J.; Zon, Leonard I.; Postlethwait, John H.; Nüsslein-Volhard, Christiane; Hubbard, Tim J. P.; Crollius, Hugues Roest; Rogers, Jane; Stemple, Derek L.

    2013-01-01

    Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination. PMID:23594743

  10. The sequence and analysis of a Chinese pig genome

    Directory of Open Access Journals (Sweden)

    Fang Xiaodong

    2012-11-01

    Full Text Available Abstract Background The pig is an economically important food source, amounting to approximately 40% of all meat consumed worldwide. Pigs also serve as an important model organism because of their similarity to humans at the anatomical, physiological and genetic level, making them very useful for studying a variety of human diseases. A pig strain of particular interest is the miniature pig, specifically the Wuzhishan pig (WZSP, as it has been extensively inbred. Its high level of homozygosity offers increased ease for selective breeding for specific traits and a more straightforward understanding of the genetic changes that underlie its biological characteristics. WZSP also serves as a promising means for applications in surgery, tissue engineering, and xenotransplantation. Here, we report the sequencing and analysis of an inbreeding WZSP genome. Results Our results reveal some unique genomic features, including a relatively high level of homozygosity in the diploid genome, an unusual distribution of heterozygosity, an over-representation of tRNA-derived transposable elements, a small amount of porcine endogenous retrovirus, and a lack of type C retroviruses. In addition, we carried out systematic research on gene evolution, together with a detailed investigation of the counterparts of human drug target genes. Conclusion Our results provide the opportunity to more clearly define the genomic character of pig, which could enhance our ability to create more useful pig models.

  11. The complete chloroplast and mitochondrial genome sequences of Boea hygrometrica: insights into the evolution of plant organellar genomes.

    Directory of Open Access Journals (Sweden)

    Tongwu Zhang

    Full Text Available The complete nucleotide sequences of the chloroplast (cp and mitochondrial (mt genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147 with a 72% coding sequence, and the larger mitochondrial genome have less genes (65 with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage.

  12. The complete chloroplast and mitochondrial genome sequences of Boea hygrometrica: insights into the evolution of plant organellar genomes.

    Science.gov (United States)

    Zhang, Tongwu; Fang, Yongjun; Wang, Xumin; Deng, Xin; Zhang, Xiaowei; Hu, Songnian; Yu, Jun

    2012-01-01

    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage.

  13. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution

    NARCIS (Netherlands)

    Hillier, L.W.; Miller, W.; Birney, E.; Groenen, M.A.M.; Crooijmans, R.P.M.A.; Aerts, J.; Poel, van der J.J.

    2004-01-01

    We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome—composed of approximately one billion base pairs of sequence a

  14. Complete genome sequence of a new tobamovirus naturally infecting tomatoes in Mexico

    Science.gov (United States)

    The complete genomic sequence of a new tobamovirus in tomato was determined through deep sequencing and assembly of small RNAs, thenvalidated through Sanger sequencing of the overlapping RT-PCR products and rapid amplification of cDNA ends (RACE). Based on the genomic sequence identity (85%) to kn...

  15. Sequence to Medical Phenotypes: A Framework for Interpretation of Human Whole Genome DNA Sequence Data.

    Directory of Open Access Journals (Sweden)

    Frederick E Dewey

    2015-10-01

    Full Text Available High throughput sequencing has facilitated a precipitous drop in the cost of genomic sequencing, prompting predictions of a revolution in medicine via genetic personalization of diagnostic and therapeutic strategies. There are significant barriers to realizing this goal that are related to the difficult task of interpreting personal genetic variation. A comprehensive, widely accessible application for interpretation of whole genome sequence data is needed. Here, we present a series of methods for identification of genetic variants and genotypes with clinical associations, phasing genetic data and using Mendelian inheritance for quality control, and providing predictive genetic information about risk for rare disease phenotypes and response to pharmacological therapy in single individuals and father-mother-child trios. We demonstrate application of these methods for disease and drug response prognostication in whole genome sequence data from twelve unrelated adults, and for disease gene discovery in one father-mother-child trio with apparently simplex congenital ventricular arrhythmia. In doing so we identify clinically actionable inherited disease risk and drug response genotypes in pre-symptomatic individuals. We also nominate a new candidate gene in congenital arrhythmia, ATP2B4, and provide experimental evidence of a regulatory role for variants discovered using this framework.

  16. Origin of noncoding DNA sequences: molecular fossils of genome evolution.

    Science.gov (United States)

    Naora, H; Miyahara, K; Curnow, R N

    1987-09-01

    The total amount of noncoding sequences on chromosomes of contemporary organisms varies significantly from species to species. We propose a hypothesis for the origin of these noncoding sequences that assumes that (i) an approximately equal to 0.55-kilobase (kb)-long reading frame composed the primordial gene and (ii) a 20-kb-long single-stranded polynucleotide is the longest molecule (as a genome) that was polymerized at random and without a specific template in the primordial soup/cell. The statistical distribution of stop codons allows examination of the probability of generating reading frames of approximately equal to 0.55 kb in this primordial polynucleotide. This analysis reveals that with three stop codons, a run of at least 0.55-kb equivalent length of nonstop codons would occur in 4.6% of 20-kb-long polynucleotide molecules. We attempt to estimate the total amount of noncoding sequences that would be present on the chromosomes of contemporary species assuming that present-day chromosomes retain the prototype primordial genome structure. Theoretical estimates thus obtained for most eukaryotes do not differ significantly from those reported for these specific organisms, with only a few exceptions. Furthermore, analysis of possible stop-codon distributions suggests that life on earth would not exist, at least in its present form, had two or four stop codons been selected early in evolution.

  17. Origin of noncoding DNA sequences: molecular fossils of genome evolution

    Energy Technology Data Exchange (ETDEWEB)

    Naora, H.; Miyahara, K.; Curnow, R.N.

    1987-09-01

    The total amount of noncoding sequences on chromosomes of contemporary organisms varies significantly from species to species. The authors propose a hypothesis for the origin of these noncoding sequences that assumes that (i) an approx. 0.55-kilobase (kb)-long reading frame composed the primordial gene and (ii) a 20-kb-long single-stranded polynucleotide is the longest molecule (as a genome) that was polymerized at random and without a specific template in the primordial soup/cell. The statistical distribution of stop codons allows examination of the probability of generating reading frames of approx. 0.55 kb in this primordial polynucleotide. This analysis reveals that with three stop codons, a run of at least 0.55-kb equivalent length of nonstop codons would occur in 4.6% of 20-kb-long polynucleotide molecules. They attempt to estimate the total amount of noncoding sequences that would be present on the chromosomes of contemporary species assuming that present-day chromosomes retain the prototype primordial genome structure. Theoretical estimates thus obtained for most eukaryotes do not differ significantly from those reported for these specific organisms, with only a few exceptions. Furthermore, analysis of possible stop-codon distributions suggests that life on earth would not exist, at least in its present form, had two or four stop codons been selected early in evolution.

  18. Sequencing ebola and marburg viruses genomes using microarrays.

    Science.gov (United States)

    Hardick, Justin; Woelfel, Roman; Gardner, Warren; Ibrahim, Sofi

    2016-08-01

    Periodic outbreaks of Ebola and Marburg hemorrhagic fevers have occurred in Africa over the past four decades with case fatality rates reaching as high as 90%. The latest Ebola outbreak in West Africa in 2014 raised concerns that these infections can spread across continents and pose serious health risks. Early and accurate identification of the causative agents is necessary to contain outbreaks. In this report, we describe sequencing-by-hybridization (SBH) technique using high density microarrays to identify Ebola and Marburg viruses. The microarrays were designed to interrogate the sequences of entire viral genomes, and were evaluated with three species of Ebolavirus (Reston, Sudan, and Zaire), and three strains of Marburgvirus (Angola, Musoke, and Ravn). The results showed that the consensus sequences generated with four or more hybridizations had 92.1-98.9% accuracy over 95-99% of the genomes. Additionally, with SBH microarrays it was possible to distinguish between different strains of the Lake Victoria Marburgvirus. J. Med. Virol. 88:1303-1308, 2016. © 2016 Wiley Periodicals, Inc.

  19. Bacillus anthracis genome organization in light of whole transcriptome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey; Zhu, Wenhan; Passalacqua, Karla D.; Bergman, Nicholas; Borodovsky, Mark

    2010-03-22

    Emerging knowledge of whole prokaryotic transcriptomes could validate a number of theoretical concepts introduced in the early days of genomics. What are the rules connecting gene expression levels with sequence determinants such as quantitative scores of promoters and terminators? Are translation efficiency measures, e.g. codon adaptation index and RBS score related to gene expression? We used the whole transcriptome shotgun sequencing of a bacterial pathogen Bacillus anthracis to assess correlation of gene expression level with promoter, terminator and RBS scores, codon adaptation index, as well as with a new measure of gene translational efficiency, average translation speed. We compared computational predictions of operon topologies with the transcript borders inferred from RNA-Seq reads. Transcriptome mapping may also improve existing gene annotation. Upon assessment of accuracy of current annotation of protein-coding genes in the B. anthracis genome we have shown that the transcriptome data indicate existence of more than a hundred genes missing in the annotation though predicted by an ab initio gene finder. Interestingly, we observed that many pseudogenes possess not only a sequence with detectable coding potential but also promoters that maintain transcriptional activity.

  20. Complete sequence of the first chimera genome constructed by cloning the whole genome of Synechocystis strain PCC6803 into the Bacillus subtilis 168 genome.

    Science.gov (United States)

    Watanabe, Satoru; Shiwa, Yuh; Itaya, Mitsuhiro; Yoshikawa, Hirofumi

    2012-12-01

    Genome synthesis of existing or designed genomes is made feasible by the first successful cloning of a cyanobacterium, Synechocystis PCC6803, in Gram-positive, endospore-forming Bacillus subtilis. Whole-genome sequence analysis of the isolate and parental B. subtilis strains provides clues for identifying single nucleotide polymorphisms (SNPs) in the 2 complete bacterial genomes in one cell.

  1. An empirical strategy for characterizing bacterial proteomes across species in the absence of genomic sequences

    Energy Technology Data Exchange (ETDEWEB)

    Turse, Joshua E.; Marshall, Matthew J.; Fredrickson, Jim K.; Lipton, Mary S.; Callister, Stephen J.

    2010-11-12

    Current methods in proteomics are dependent on the availability of sequenced genomes to identify proteins. However, genomic sequences are not always available for bacteria or microbial communities, even with high throughput sequencing technology becoming more readily available. Nevertheless, the homology that exists between related bacteria makes possible the extraction of meaningful biological information from an organism’s, or community’s proteome using the genomic sequence of a near neighbor. Here, a cross-organism search strategy was used to look at the amount of proteomics information obtainable with relative genetic distance from a near neighbor organism and to identify proteins in the proteome of minimally characterized environmental isolates. We conclude that closely related organisms with sequenced genomes, can be used to characterize proteomes of organisms with unsequenced genomes. In general, a cross-organism search strategy demonstrates the first step to use of sequences genomes to evaluate the proteomes of environmental bacteria and microbial communities that have no sequenced genome

  2. Complete genome sequence of Paenibacillus sp. strain JDR-2

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Virginia [University of Florida; Nong, Guang [University of Florida; St. John, Franz J. [US Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA; Dickstein, Ellen [University of Florida; Chertkov, Olga [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Brettin, Thomas S [ORNL; Han, James [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Martin, Joel [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Jones, Jeffrey B. [University of Florida; Ingram, Lonnie O. [University of Florida; Shanmugam, Keelnathan T. [University of Florida; Preston, James F. [University of Florida

    2012-01-01

    Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from sweetgum (Liquidambar styraciflua) wood, is able to efficiently depolymerize, assimilate and metabolize 4-O-methylglucuronoxylan, the predominant structural component of hardwood hemicelluloses. A basis for this capability was first supported by the identification of genes and characterization of encoded enzymes and has been further defined by the sequencing and annotation of the complete genome, which we describe. In addition to genes implicated in the utilization of -1,4-xylan, genes have also been identified for the utilization of other hemicellulosic polysaccharides. The genome of Paenibacillus sp. JDR-2 contains 7,184,930 bp in a single replicon with 6,288 protein-coding and 122 RNA genes. Uniquely prominent are 874 genes encoding proteins involved in carbohydrate transport and metabolism. The prevalence and organization of these genes support a metabolic potential for bioprocessing of hemicellulose fractions derived from lignocellulosic resources.

  3. Computational Comparison of Human Genomic Sequence Assemblies for a Region of Chromosome 4

    OpenAIRE

    Semple, Colin; Stewart W. Morris; Porteous, David J.; Evans, Kathryn L.

    2002-01-01

    Much of the available human genomic sequence data exist in a fragmentary draft state following the completion of the initial high-volume sequencing performed by the International Human Genome Sequencing Consortium (IHGSC) and Celera Genomics (CG). We compared six draft genome assemblies over a region of chromosome 4p (D4S394–D4S403), two consecutive releases by the IHGSC at University of California, Santa Cruz (UCSC), two consecutive releases from the National Centre for Biotechnology Informa...

  4. Whole-Genome de novo Sequencing Of Quail And Grey Partridge

    DEFF Research Database (Denmark)

    Holm, Lars-Erik; Panitz, Frank; Burt, Dave;

    2011-01-01

    The development in sequencing methods has made it possible to perform whole genome de novo sequencing of species without large commercial interests. Within the EU-financed QUANTOMICS project (KBBE-2A-222664), we have performed de novo sequencing of quail (Coturnix coturnix) and grey partridge...... comparative studies towards the chicken genome and will aid in identifying evolutionarily conserved sequences within the Galliformes. The obtained sequences from quail and partridge represent a beginning of generating the whole genome sequence for these species. The continuation of establishing the genome...

  5. The complete chloroplast genome sequence of Brachypodium distachyon: sequence comparison and phylogenetic analysis of eight grass plastomes

    Directory of Open Access Journals (Sweden)

    Anderson Olin D

    2008-07-01

    Full Text Available Abstract Background Wheat, barley, and rye, of tribe Triticeae in the Poaceae, are among the most important crops worldwide but they present many challenges to genomics-aided crop improvement. Brachypodium distachyon, a close relative of those cereals has recently emerged as a model for grass functional genomics. Sequencing of the nuclear and organelle genomes of Brachypodium is one of the first steps towards making this species available as a tool for researchers interested in cereals biology. Findings The chloroplast genome of Brachypodium distachyon was sequenced by a combinational approach using BAC end and shotgun sequences derived from a selected BAC containing the entire chloroplast genome. Comparative analysis indicated that the chloroplast genome is conserved in gene number and organization with respect to those of other cereals. However, several Brachypodium genes evolve at a faster rate than those in other grasses. Sequence analysis reveals that rice and wheat have a ~2.1 kb deletion in their plastid genomes and this deletion must have occurred independently in both species. Conclusion We demonstrate that BAC libraries can be used to sequence plastid, and likely other organellar, genomes. As expected, the Brachypodium chloroplast genome is very similar to those of other sequenced grasses. The phylogenetic analyses and the pattern of insertions and deletions in the chloroplast genome confirmed that Brachypodium is a close relative of the tribe Triticeae. Nevertheless, we show that some large indels can arise multiple times and may confound phylogenetic reconstruction.

  6. The first complete chloroplast genome sequences of Ulmus species by de novo sequencing: Genome comparative and taxonomic position analysis

    Science.gov (United States)

    Zhang, Shuang; Yu, Xiao-Yue; Ren, Ya-Chao; Yang, Min-Sheng; Wang, Jin-Mao

    2017-01-01

    Elm (Ulmus) has a long history of use as a high-quality heavy hardwood famous for its resistance to drought, cold, and salt. It grows in temperate, warm temperate, and subtropical regions. This is the first report of Ulmaceae chloroplast genomes by de novo sequencing. The Ulmus chloroplast genomes exhibited a typical quadripartite structure with two single-copy regions (long single copy [LSC] and short single copy [SSC] sections) separated by a pair of inverted repeats (IRs). The lengths of the chloroplast genomes from five Ulmus ranged from 158,953 to 159,453 bp, with the largest observed in Ulmus davidiana and the smallest in Ulmus laciniata. The genomes contained 137–145 protein-coding genes, of which Ulmus davidiana var. japonica and U. davidiana had the most and U. pumila had the fewest. The five Ulmus species exhibited different evolutionary routes, as some genes had been lost. In total, 18 genes contained introns, 13 of which (trnL-TAA+, trnL-TAA−, rpoC1-, rpl2-, ndhA-, ycf1, rps12-, rps12+, trnA-TGC+, trnA-TGC-, trnV-TAC-, trnI-GAT+, and trnI-GAT) were shared among all five species. The intron of ycf1 was the longest (5,675bp) while that of trnF-AAA was the smallest (53bp). All Ulmus species except U. davidiana exhibited the same degree of amplification in the IR region. To determine the phylogenetic positions of the Ulmus species, we performed phylogenetic analyses using common protein-coding genes in chloroplast sequences of 42 other species published in NCBI. The cluster results showed the closest plants to Ulmaceae were Moraceae and Cannabaceae, followed by Rosaceae. Ulmaceae and Moraceae both belonged to Urticales, and the chloroplast genome clustering results were consistent with their traditional taxonomy. The results strongly supported the position of Ulmaceae as a member of the order Urticales. In addition, we found a potential error in the traditional taxonomies of U. davidiana and U. davidiana var. japonica, which should be confirmed with a

  7. Draft Sequence of the Rice Genome:A Milestone Publication

    Institute of Scientific and Technical Information of China (English)

    Guo Haiyan; Zhao Baohua

    2002-01-01

    @@ Following China's announcement of its completion of the draft genome sequence of the rice indica subspecies on October 12,2001 (page 126, Bulletin of the Chinese Academy of Sciences Vol. 15 No.3), Chinese scientists published their findings in the April 5 issue of Science, the journal of the American Association for the Advancement of Science (AAAS). In the same issue, a team of scientists with the Switzerland-based Syngenta company reported a similar achievement for another major rice subspecies,japonica.

  8. Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D [ORNL; Utturkar, Sagar M [ORNL; Klingeman, Dawn Marie [ORNL; Johnson, Courtney M [ORNL; Martin, Stanton [ORNL; Land, Miriam L [ORNL; Lu, Tse-Yuan [ORNL; Schadt, Christopher Warren [ORNL; Doktycz, Mitchel John [ORNL; Pelletier, Dale A [ORNL

    2012-01-01

    To aid in the investigation of the Populus deltoides microbiome we generated draft genome sequences for twenty one Pseudomonas and twenty one other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Burkholderia, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium and Variovorax were generated.

  9. Complete Genome Sequences of Isolates of Enterococcus faecium Sequence Type 117, a Globally Disseminated Multidrug-Resistant Clone

    Science.gov (United States)

    Tedim, Ana P.; Lanza, Val F.; Manrique, Marina; Pareja, Eduardo; Ruiz-Garbajosa, Patricia; Cantón, Rafael; Baquero, Fernando; Tobes, Raquel

    2017-01-01

    ABSTRACT The emergence of nosocomial infections by multidrug-resistant sequence type 117 (ST117) Enterococcus faecium has been reported in several European countries. ST117 has been detected in Spanish hospitals as one of the main causes of bloodstream infections. We analyzed genome variations of ST117 strains isolated in Madrid and describe the first ST117 closed genome sequences. PMID:28360174

  10. Pigs in sequence space: A 0.66X coverage pig genome survey based on shotgun sequencing

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Schierup, M.H.; Jorgensen, F.G.;

    2005-01-01

    sequences (0.66X coverage) from the pig genome. The data are hereby released (NCBI Trace repository with center name "SDJVP", and project name "Sino-Danish Pig Genome Project") together with an initial evolutionary analysis. The non-repetitive fraction of the sequences was aligned to the UCSC human...

  11. Identification of transcribed sequences in the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, K.

    1992-12-01

    The workshop was held at the National Institutes of Mental Health, Bethesda, Maryland, on October 4 and 5, 1991. Twenty-four investigators attended from England, Germany and the United States. The topics discussed included: Genome sequence analysis using computer assisted detection of open reading frames, splice sites and hexamer patterns, direct exon identification using trapping of internal and 3' exons, and a recombination based system, cDNA library construction and screening, including the use of normalization and subtraction procedures, Alu and splice donor site PCR from hybrid cell lines, and microdissection clones as probes, use of labeled CDNAS as probes to screen lambda and cosmid libraries, and sequencing of random cDNAs.

  12. The mitochondrial genome sequence and molecular phylogeny of the turkey, Meleagris gallopavo.

    Science.gov (United States)

    Guan, X; Silva, P; Gyenai, K B; Xu, J; Geng, T; Tu, Z; Samuels, D C; Smith, E J

    2009-04-01

    The mitochondrial genome (mtGenome) has been little studied in the turkey (Meleagris gallopavo), a species for which there is no publicly available mtGenome sequence. Here, we used PCR-based methods with 19 pairs of primers designed from the chicken and other species to develop a complete turkey mtGenome sequence. The entire sequence (16,717 bp) of the turkey mtGenome was obtained, and it exhibited 85% similarity to the chicken mtGenome sequence. Thirteen genes and 24 RNAs (22 tRNAs and 2 rRNAs) were annotated. An mtGenome-based phylogenetic analysis indicated that the turkey is most closely related to the chicken, Gallus gallus, and quail, Corturnix japonica. Given the importance of the mtGenome, the present work adds to the growing genomic resources needed to define the genetic mechanisms that underlie some economically significant traits in the turkey.

  13. Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath.

    Directory of Open Access Journals (Sweden)

    Naomi Ward

    2004-10-01

    Full Text Available Methanotrophs are ubiquitous bacteria that can use the greenhouse gas methane as a sole carbon and energy source for growth, thus playing major roles in global carbon cycles, and in particular, substantially reducing emissions of biologically generated methane to the atmosphere. Despite their importance, and in contrast to organisms that play roles in other major parts of the carbon cycle such as photosynthesis, no genome-level studies have been published on the biology of methanotrophs. We report the first complete genome sequence to our knowledge from an obligate methanotroph, Methylococcus capsulatus (Bath, obtained by the shotgun sequencing approach. Analysis revealed a 3.3-Mb genome highly specialized for a methanotrophic lifestyle, including redundant pathways predicted to be involved in methanotrophy and duplicated genes for essential enzymes such as the methane monooxygenases. We used phylogenomic analysis, gene order information, and comparative analysis with the partially sequenced methylotroph Methylobacterium extorquens to detect genes of unknown function likely to be involved in methanotrophy and methylotrophy. Genome analysis suggests the ability of M. capsulatus to scavenge copper (including a previously unreported nonribosomal peptide synthetase and to use copper in regulation of methanotrophy, but the exact regulatory mechanisms remain unclear. One of the most surprising outcomes of the project is evidence suggesting the existence of previously unsuspected metabolic flexibility in M. capsulatus, including an ability to grow on sugars, oxidize chemolithotrophic hydrogen and sulfur, and live under reduced oxygen tension, all of which have implications for methanotroph ecology. The availability of the complete genome of M. capsulatus (Bath deepens our understanding of methanotroph biology and its relationship to global carbon cycles. We have gained evidence for greater metabolic flexibility than was previously known, and for

  14. Simple sequence repeat map of the sunflower genome.

    Science.gov (United States)

    Tang, S.; Yu, J.-K.; Slabaugh, B.; Shintani, K.; Knapp, J.

    2002-12-01

    Several independent molecular genetic linkage maps of varying density and completeness have been constructed for cultivated sunflower ( Helianthus annuus L.). Because of the dearth of sequence and probe-specific DNA markers in the public domain, the various genetic maps of sunflower have not been integrated and a single reference map has not emerged. Moreover, comparisons between maps have been confounded by multiple linkage group nomenclatures and the lack of common DNA markers. The goal of the present research was to construct a dense molecular genetic linkage map for sunflower using simple sequence repeat (SSR) markers. First, 879 SSR markers were developed by identifying 1,093 unique SSR sequences in the DNA sequences of 2,033 clones isolated from genomic DNA libraries enriched for (AC)(n) or (AG)(n) and screening 1,000 SSR primer pairs; 579 of the newly developed SSR markers (65.9% of the total) were polymorphic among four elite inbred lines (RHA280, RHA801, PHA and PHB). The genetic map was constructed using 94 RHA280 x RHA801 F(7) recombinant inbred lines (RILs) and 408 polymorphic SSR markers (462 SSR marker loci segregated in the mapping population). Of the latter, 459 coalesced into 17 linkage groups presumably corresponding to the 17 chromosomes in the haploid sunflower genome ( x = 17). The map was 1,368.3-cM long and had a mean density of 3.1 cM per locus. The SSR markers described herein supply a critical mass of DNA markers for constructing genetic maps of sunflower and create the basis for unifying and cross-referencing the multitude of genetic maps developed for wild and cultivated sunflowers.

  15. The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081.

    Directory of Open Access Journals (Sweden)

    Nicholas R Thomson

    2006-12-01

    Full Text Available The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common

  16. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution

    OpenAIRE

    Hillier, LaDeana W.; Miller, Webb; Birney, Ewan; Warren, Wesley; Hardison, Ross C.; Chris P Ponting; Bork, Peer; Burt, Peer; Martien A M Groenen; Delany, Mary E.; Dodgson, Jerry B; Chinwalla, Asif; Cliften, Paul F; Sandra W Clifton; Delehaunty, Kimberly D

    2004-01-01

    We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance bet...

  17. Genome-Wide Association Study of HIV Whole Genome Sequences Validated using Drug Resistance

    Science.gov (United States)

    Power, Robert A.; Davaniah, Siva; Derache, Anne; Wilkinson, Eduan; Tanser, Frank; Pillay, Deenan; de Oliveira, Tulio

    2016-01-01

    Background Genome-wide association studies (GWAS) have considerably advanced our understanding of human traits and diseases. With the increasing availability of whole genome sequences (WGS) for pathogens, it is important to establish whether GWAS of viral genomes could reveal important biological insights. Here we perform the first proof of concept viral GWAS examining drug resistance (DR), a phenotype with well understood genetics. Method We performed a GWAS of DR in a sample of 343 HIV subtype C patients failing 1st line antiretroviral treatment in rural KwaZulu-Natal, South Africa. The majority and minority variants within each sequence were called using PILON, and GWAS was performed within PLINK. HIV WGS from patients failing on different antiretroviral treatments were compared to sequences derived from individuals naïve to the respective treatment. Results GWAS methodology was validated by identifying five associations on a genetic level that led to amino acid changes known to cause DR. Further, we highlighted the ability of GWAS to identify epistatic effects, identifying two replicable variants within amino acid 68 of the reverse transcriptase protein previously described as potential fitness compensatory mutations. A possible additional DR variant within amino acid 91 of the matrix region of the Gag protein was associated with tenofovir failure, highlighting GWAS’s ability to identify variants outside classical candidate genes. Our results also suggest a polygenic component to DR. Conclusions These results validate the applicability of GWAS to HIV WGS data even in relative small samples, and emphasise how high throughput sequencing can provide novel and clinically relevant insights. Further they suggested that for viruses like HIV, population structure was only minor concern compared to that seen in bacteria or parasite GWAS. Given the small genome length and reduced burden for multiple testing, this makes HIV an ideal candidate for GWAS. PMID:27677172

  18. Multiple Genome Sequences of Important Beer-Spoiling Lactic Acid Bacteria

    Science.gov (United States)

    Geissler, Andreas J.; Vogel, Rudi F.

    2016-01-01

    Seven strains of important beer-spoiling lactic acid bacteria were sequenced using single-molecule real-time sequencing. Complete genomes were obtained for strains of Lactobacillus paracollinoides, Lactobacillus lindneri, and Pediococcus claussenii. The analysis of these genomes emphasizes the role of plasmids as the genomic foundation of beer-spoiling ability. PMID:27795248

  19. Draft Genome Sequences of Seven Pseudomonas fluorescens Subclade III Strains Isolated from Cystic Fibrosis Patients.

    Science.gov (United States)

    Scales, Brittan S; Erb-Downward, John R; Huffnagle, Ian M; LiPuma, John J; Huffnagle, Gary B

    2015-01-29

    We report here the first draft genome sequences of Pseudomonas fluorescens strains that have been isolated from humans. The seven assembled draft genomes contained an average of 60.1% G+C content, were an average genomic size of 6.3 Mbp, and mapped by multilocus sequence analysis to subclade III.

  20. Draft Genome Sequence of Lactobacillus gorillae Strain KZ01T, Isolated from a Western Lowland Gorilla

    OpenAIRE

    TSUCHIDA, Sayaka; Nezuo, Maiko; Tsukahara, Masatoshi; Ogura, Yoshitoshi; Hayashi, Tetsuya; Ushida, Kazunari

    2015-01-01

    Here, we report the draft genome sequence of Lactobacillus gorillae strain KZ01T isolated from a western lowland gorilla (Gorilla gorilla gorilla). This genome sequence will be helpful for the comparative genomics between human and nonhuman primate-associated Lactobacillus.

  1. SmashCell: A software framework for the analysis of single-cell amplified genome sequences

    DEFF Research Database (Denmark)

    Harrington, Eoghan D; Arumugam, Manimozhiyan; Raes, Jeroen;

    2010-01-01

    SUMMARY: Recent advances in single-cell manipulation technology, whole genome amplification and high-throughput sequencing have now made it possible to sequence the genome of an individual cell. The bioinformatic analysis of these genomes however is far more complicated than the analysis of those...

  2. Complete DNA sequence of Kuraishia capsulata illustrates novel genomic features among budding yeasts (Saccharomycotina)

    NARCIS (Netherlands)

    Morales, L.; Noel, B.; Porcel, B.; Marcet-Houben, M.; Hullo, M.F.; Sacerdot, C.; Tekaia, F.; Leh-Louis, V.; Despons, L.; Khanna, V.; Aury, J.M.; Barbe, V.; Couloux, A.; Labadie, K.; Pelletier, E.; Souciet, J.L.; Boekhout, T.; Gabaldon, T.; Wincker, P.; Dujon, B.

    2013-01-01

    The numerous yeast genome sequences presently available provide a rich source of information for functional as well as evolutionary genomics, but unequally cover the large phylogenetic diversity of extant yeasts. We present here the complete sequence of the nuclear genome of the haploid type strain

  3. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease

    NARCIS (Netherlands)

    El-Sayed, NM; Myler, PJ; Bartholomeu, DC; Nilsson, D; Aggarwal, G; Tran, AN; Ghedin, E; Worthey, EA; Delcher, AL; Blandin, G; Westenberger, SJ; Caler, E; Cerqueira, GC; Branche, C; Haas, B; Anupama, A; Arner, E; Aslund, L; Attipoe, P; Bontempi, E; Bringaud, F; Burton, P; Cadag, E; Campbell, DA; Carrington, M; Crabtree, J; Darban, H; da Silveira, JF; de Jong, P; Edwards, K; Englund, PT; Fazelina, G; Feldblyum, T; Ferella, M; Frasch, AC; Gull, K; Horn, D; Hou, LH; Huang, YT; Kindlund, E; Ktingbeil, M; Kluge, S; Koo, H; Lacerda, D; Levin, MJ; Lorenzi, H; Louie, T; Machado, CR; McCulloch, R; McKenna, A; Mizuno, Y; Mottram, JC; Nelson, S; Ochaya, S; Osoegawa, K; Pai, G; Parsons, M; Pentony, M; Pettersson, U; Pop, M; Ramirez, JL; Rinta, J; Robertson, L; Salzberg, SL; Sanchez, DO; Seyler, A; Sharma, R; Shetty, J; Simpson, AJ; Sisk, E; Tammi, MT; Tarteton, R; Teixeira, S; Van Aken, S; Vogt, C; Ward, PN; Wickstead, B; Wortman, J; White, O; Fraser, CM; Stuart, KD; Andersson, B

    2005-01-01

    Whole-genome sequencing of the protozoan pathogen Trypanosoma cruzi revealed that the diploid genome contains a predicted 22,570 proteins encoded by genes, of which 12,570 represent allelic pairs. Over 50% of the genome consists of repeated sequences, such as retrotransposons and genes for large, fa

  4. Draft Genome Sequence of Kluyveromyces marxianus Strain DMB1, Isolated from Sugarcane Bagasse Hydrolysate.

    Science.gov (United States)

    Suzuki, Toshihiro; Hoshino, Tamotsu; Matsushika, Akinori

    2014-07-24

    We determined the genome sequence of a thermotolerant yeast, Kluyveromyces marxianus strain DMB1, isolated from sugarcane bagasse hydrolysate, and the sequence provides further insights into the genomic differences between this strain and other reported K. marxianus strains. The genome described here is composed of 11,165,408 bases and has 4,943 protein-coding genes.

  5. Complete Genome Sequence of Porcine Parvovirus 2 Recovered from Swine Sera

    Science.gov (United States)

    Kluge, M.; Franco, A. C.; Giongo, A.; Valdez, F. P.; Saddi, T. M.; Brito, W. M. E. D.; Roehe, P. M.

    2016-01-01

    A complete genomic sequence of porcine parvovirus 2 (PPV-2) was detected by viral metagenome analysis on swine sera. A phylogenetic analysis of this genome reveals that it is highly similar to previously reported North American PPV-2 genomes. The complete PPV-2 sequence is 5,426 nucleotides long. PMID:26823583

  6. Multiple Genome Sequences of Important Beer-Spoiling Lactic Acid Bacteria

    OpenAIRE

    Geissler, Andreas J.; Behr, Jürgen; Vogel, Rudi F.

    2016-01-01

    Seven strains of important beer-spoiling lactic acid bacteria were sequenced using single-molecule real-time sequencing. Complete genomes were obtained for strains of Lactobacillus paracollinoides, Lactobacillus lindneri, and Pediococcus claussenii. The analysis of these genomes emphasizes the role of plasmids as the genomic foundation of beer-spoiling ability.

  7. Complete Genome Sequence of a Giant Sea Perch Iridovirus in Kaohsiung, Taiwan

    Science.gov (United States)

    Hong, Jiann-Ruey

    2016-01-01

    We report here the complete genome sequence of a megalocytivirus strain, GSIV-K1, isolated from a farmed giant sea perch (Lates calcarifer) in Kaohsiung, Taiwan. GSIV-K1 causes mortality in farmed marine fish, including giant sea perch and groupers. The genome sequence is nearly identical to the genome of the orange-spotted grouper iridovirus. PMID:27125488

  8. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima.

    OpenAIRE

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologue...

  9. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede strigamia maritima

    OpenAIRE

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologue...

  10. The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima

    OpenAIRE

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologue...

  11. Genotype-Specific Genomic Markers Associated with Primary Hepatomas, Based on Complete Genomic Sequencing of Hepatitis B Virus▿

    OpenAIRE

    Sung, Joseph J. Y.; Tsui, Stephen K. W.; Tse, Chi-Hang; Ng, Eddie Y. T.; Leung, Kwong-Sak; Lee, Kin-Hong; Mok, Tony S. K.; Bartholomeusz, Angeline; Au, Thomas C. C.; Tsoi, Kelvin K. F.; Locarnini, Stephen; Chan, Henry L. Y.

    2008-01-01

    We aimed to identify genomic markers in hepatitis B virus (HBV) that are associated with hepatocellular carcinoma (HCC) development by comparing the complete genomic sequences of HBVs among patients with HCC and those without. One hundred patients with HBV-related HCC and 100 age-matched HBV-infected non-HCC patients (controls) were studied. HBV DNA from serum was directly sequenced to study the whole viral genome. Data mining and rule learning were employed to develop diagnostic algorithms. ...

  12. Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems

    OpenAIRE

    Minoche, André E.; Dohm, Juliane C.; Himmelbauer, Heinz

    2011-01-01

    Background The generation and analysis of high-throughput sequencing data are becoming a major component of many studies in molecular biology and medical research. Illumina's Genome Analyzer (GA) and HiSeq instruments are currently the most widely used sequencing devices. Here, we comprehensively evaluate properties of genomic HiSeq and GAIIx data derived from two plant genomes and one virus, with read lengths of 95 to 150 bases. Results We provide quantifications and evidence for GC bias, er...

  13. Insights into three whole-genome duplications gleaned from the Paramecium caudatum genome sequence.

    Science.gov (United States)

    McGrath, Casey L; Gout, Jean-Francois; Doak, Thomas G; Yanagi, Akira; Lynch, Michael

    2014-08-01

    Paramecium has long been a model eukaryote. The sequence of the Paramecium tetraurelia genome reveals a history of three successive whole-genome duplications (WGDs), and the sequences of P. biaurelia and P. sexaurelia suggest that these WGDs are shared by all members of the aurelia species complex. Here, we present the genome sequence of P. caudatum, a species closely related to the P. aurelia species group. P. caudatum shares only the most ancient of the three WGDs with the aurelia complex. We found that P. caudatum maintains twice as many paralogs from this early event as the P. aurelia species, suggesting that post-WGD gene retention is influenced by subsequent WGDs and supporting the importance of selection for dosage in gene retention. The availability of P. caudatum as an outgroup allows an expanded analysis of the aurelia intermediate and recent WGD events. Both the Guanine+Cytosine (GC) content and the expression level of preduplication genes are significant predictors of duplicate retention. We find widespread asymmetrical evolution among aurelia paralogs, which is likely caused by gradual pseudogenization rather than by neofunctionalization. Finally, cases of divergent resolution of intermediate WGD duplicates between aurelia species implicate this process acts as an ongoing reinforcement mechanism of reproductive isolation long after a WGD event.

  14. Data structures of genome and protein sequences indexing

    Directory of Open Access Journals (Sweden)

    Adeleh asadi

    2016-03-01

    Full Text Available Data structure is a tool for storage and retrieval of information which is named logic and mathematic way of specific data organization. various sequences of genes and proteins in various creatures increases the amount of data in genome databases, and finding appropriate data structure and indexing are subject for many studies. String data structures are general data structure for genome indexing, and this article would review the many used three types of string data structure, suffix tree, suffix array, and Directed Acyclic Word Graphs. This paper is a review of the literature related to three types of data, including genome databases indexing field, tree, postfix, postfix and graphs spiral array directly introduces the word. Findings of this research show that suffix tree and Directed Acyclic Word Graph (DAWG structures need much space however suffix array need less space. Against the Directed Acyclic Word Graph, suffix array can be stored on Memory Stick. Suffix tree and Directed Acyclic Word Graph are a dynamic structures but as suffix array is a Sorted out structure, it could hardly be changed.

  15. Analysis of chimpanzee history based on genome sequence alignments.

    Directory of Open Access Journals (Sweden)

    Jennifer L Caswell

    2008-04-01

    Full Text Available Population geneticists often study small numbers of carefully chosen loci, but it has become possible to obtain orders of magnitude for more data from overlaps of genome sequences. Here, we generate tens of millions of base pairs of multiple sequence alignments from combinations of three western chimpanzees, three central chimpanzees, an eastern chimpanzee, a bonobo, a human, an orangutan, and a macaque. Analysis provides a more precise understanding of demographic history than was previously available. We show that bonobos and common chimpanzees were separated approximately 1,290,000 years ago, western and other common chimpanzees approximately 510,000 years ago, and eastern and central chimpanzees at least 50,000 years ago. We infer that the central chimpanzee population size increased by at least a factor of 4 since its separation from western chimpanzees, while the western chimpanzee effective population size decreased. Surprisingly, in about one percent of the genome, the genetic relationships between humans, chimpanzees, and bonobos appear to be different from the species relationships. We used PCR-based resequencing to confirm 11 regions where chimpanzees and bonobos are not most closely related. Study of such loci should provide information about the period of time 5-7 million years ago when the ancestors of humans separated from those of the chimpanzees.

  16. Cryptococcus gattii in the Age of Whole-Genome Sequencing.

    Science.gov (United States)

    Meyer, Wieland

    2015-11-17

    Cryptococcus gattii, the sister species of Cryptococcus neoformans, is an emerging pathogen which gained importance in connection with the ongoing cryptococcosis outbreak on Vancouver Island. Many molecular studies have divided this species into for major lineages: VGI, VGII, VGIII, and VGIV. This commentary summarizes the whole-genome sequencing (WGS) studies that have been carried out with this species, re-emphasizing the phylogenetic relationships, showing chromosomal rearrangements between those four groups, and identifying VGII as ancestral population within C. gattii. In addition, WGS specific to VGII, containing the Vancouver Island outbreak genotypes and those from the Pacific Northwest region of the United States, has placed the origin of this lineage within South America and identified specific genes responsible for either brain or lung infection. It also showed, that many genotypes are spread across a number of different continents, as has been previously shown by multilocus sequence typing (MLST). In addition, it showed that recombination occurs more frequently between mitochondrial than nuclear genomes.

  17. Functional annotation from the genome sequence of the giant panda.

    Science.gov (United States)

    Huo, Tong; Zhang, Yinjie; Lin, Jianping

    2012-08-01

    The giant panda is one of the most critically endangered species due to the fragmentation and loss of its habitat. Studying the functions of proteins in this animal, especially specific trait-related proteins, is therefore necessary to protect the species. In this work, the functions of these proteins were investigated using the genome sequence of the giant panda. Data on 21,001 proteins and their functions were stored in the Giant Panda Protein Database, in which the proteins were divided into two groups: 20,179 proteins whose functions can be predicted by GeneScan formed the known-function group, whereas 822 proteins whose functions cannot be predicted by GeneScan comprised the unknown-function group. For the known-function group, we further classified the proteins by molecular function, biological process, cellular component, and tissue specificity. For the unknown-function group, we developed a strategy in which the proteins were filtered by cross-Blast to identify panda-specific proteins under the assumption that proteins related to the panda-specific traits in the unknown-function group exist. After this filtering procedure, we identified 32 proteins (2 of which are membrane proteins) specific to the giant panda genome as compared against the dog and horse genomes. Based on their amino acid sequences, these 32 proteins were further analyzed by functional classification using SVM-Prot, motif prediction using MyHits, and interacting protein prediction using the Database of Interacting Proteins. Nineteen proteins were predicted to be zinc-binding proteins, thus affecting the activities of nucleic acids. The 32 panda-specific proteins will be further investigated by structural and functional analysis.

  18. Whole genome sequencing analysis of Plasmodium vivax using whole genome capture

    Directory of Open Access Journals (Sweden)

    Bright A

    2012-06-01

    Full Text Available Abstract Background Malaria caused by Plasmodium vivax is an experimentally neglected severe disease with a substantial burden on human health. Because of technical limitations, little is known about the biology of this important human pathogen. Whole genome analysis methods on patient-derived material are thus likely to have a substantial impact on our understanding of P. vivax pathogenesis and epidemiology. For example, it will allow study of the evolution and population biology of the parasite, allow parasite transmission patterns to be characterized, and may facilitate the identification of new drug resistance genes. Because parasitemias are typically low and the parasite cannot be readily cultured, on-site leukocyte depletion of blood samples is typically needed to remove human DNA that may be 1000X more abundant than parasite DNA. These features have precluded the analysis of archived blood samples and require the presence of laboratories in close proximity to the collection of field samples for optimal pre-cryopreservation sample preparation. Results Here we show that in-solution hybridization capture can be used to extract P. vivax DNA from human contaminating DNA in the laboratory without the need for on-site leukocyte filtration. Using a whole genome capture method, we were able to enrich P. vivax DNA from bulk genomic DNA from less than 0.5% to a median of 55% (range 20%-80%. This level of enrichment allows for efficient analysis of the samples by whole genome sequencing and does not introduce any gross biases into the data. With this method, we obtained greater than 5X coverage across 93% of the P. vivax genome for four P. vivax strains from Iquitos, Peru, which is similar to our results using leukocyte filtration (greater than 5X coverage across 96% . Conclusion The whole genome capture technique will enable more efficient whole genome analysis of P. vivax from a larger geographic region and from valuable archived sample collections.

  19. Effective Normalization for Copy Number Variation Detection from Whole Genome Sequencing

    NARCIS (Netherlands)

    Janevski, A.; Varadan, V.; Kamalakaran, S.; Banerjee, N.; Dimitrova, D.

    2012-01-01

    Background Whole genome sequencing enables a high resolution view ofthe human genome and provides unique insights into genome structureat an unprecedented scale. There have been a number of tools to infer copy number variation in the genome. These tools while validatedalso include a number of parame

  20. Genome Sequence of Torulaspora delbrueckii NRRL Y-50541, Isolated from Mezcal Fermentation.

    Science.gov (United States)

    Gomez-Angulo, Jorge; Vega-Alvarado, Leticia; Escalante-García, Zazil; Grande, Ricardo; Gschaedler-Mathis, Anne; Amaya-Delgado, Lorena; Arrizon, Javier; Sanchez-Flores, Alejandro

    2015-07-23

    Torulaspora delbrueckii presents metabolic features interesting for biotechnological applications (in the dairy and wine industries). Recently, the T. delbrueckii CBS 1146 genome, which has been maintained under laboratory conditions since 1970, was published. Thus, a genome of a new mezcal yeast was sequenced and characterized and showed genetic differences and a higher genome assembly quality, offering a better reference genome.

  1. Draft genome sequences of two closely-related aflatoxigenic Aspergillus species obtained from the Ivory Coast

    Science.gov (United States)

    The genomes of the A. ochraceoroseus and A. rambellii type strains were sequenced using a personal genome machine, followed by annotation of their genes. The genome size for A. ochraceoroseus was found to be approximately 23 Mb and contained 7,837 genes, while the A. rambellii genome was found to be...

  2. Genome Sequence of the Mycorrhizal Helper Bacterium Pseudomonas fluorescens BBc6R8

    OpenAIRE

    2014-01-01

    We report the draft genome sequence of the mycorrhizal helper bacterium Pseudomonas fluorescens strain BBc6R8. This is the first genome of a mycorrhizal helper bacterium. The draft genome contains 6,952,353 bp and is predicted to encode 6,317 open reading frames. Comparative genomic analyses will help to identify helper traits.

  3. Genome Sequence of the Mycorrhizal Helper Bacterium Pseudomonas fluorescens BBc6R8.

    Science.gov (United States)

    Deveau, A; Gross, H; Morin, E; Karpinets, T; Utturkar, S; Mehnaz, S; Martin, F; Frey-Klett, P; Labbé, J

    2014-01-09

    We report the draft genome sequence of the mycorrhizal helper bacterium Pseudomonas fluorescens strain BBc6R8. This is the first genome of a mycorrhizal helper bacterium. The draft genome contains 6,952,353 bp and is predicted to encode 6,317 open reading frames. Comparative genomic analyses will help to identify helper traits.

  4. Complete genome sequence of a virulent Streptococcus agalactiae strain 138P isolated from disease Nile tilapia

    Science.gov (United States)

    The complete genome of a virulent Streptococcus agalactiae strain 138P is 1838701 bp in size, containing 1831 genes. The genome has 1593 coding sequences, 152 pseudo genes, 16 rRNAs, 69 tRNAs, and 1 non-coding RNA. The annotation of the genome is added by the NCBI Prokaryotic Genome Annotation Pipel...

  5. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms.

    Directory of Open Access Journals (Sweden)

    Francesca Bertolini

    Full Text Available Few studies investigated the donkey (Equus asinus at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca. The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing and Ion Torrent (RRL runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.

  6. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms.

    Science.gov (United States)

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.

  7. GI-SVM: A sensitive method for predicting genomic islands based on unannotated sequence of a single genome.

    Science.gov (United States)

    Lu, Bingxin; Leong, Hon Wai

    2016-02-01

    Genomic islands (GIs) are clusters of functionally related genes acquired by lateral genetic transfer (LGT), and they are present in many bacterial genomes. GIs are extremely important for bacterial research, because they not only promote genome evolution but also contain genes that enhance adaption and enable antibiotic resistance. Many methods have been proposed to predict GI. But most of them rely on either annotations or comparisons with other closely related genomes. Hence these methods cannot be easily applied to new genomes. As the number of newly sequenced bacterial genomes rapidly increases, there is a need for methods to detect GI based solely on sequences of a single genome. In this paper, we propose a novel method, GI-SVM, to predict GIs given only the unannotated genome sequence. GI-SVM is based on one-class support vector machine (SVM), utilizing composition bias in terms of k-mer content. From our evaluations on three real genomes, GI-SVM can achieve higher recall compared with current methods, without much loss of precision. Besides, GI-SVM allows flexible parameter tuning to get optimal results for each genome. In short, GI-SVM provides a more sensitive method for researchers interested in a first-pass detection of GI in newly sequenced genomes.

  8. Comparative analysis of whole-genome sequences of Streptococcus suis

    Institute of Scientific and Technical Information of China (English)

    LI Pengli; WEI Wu; LI Yixue; MA Yuanyuan; DING Guohui; LI Xiaoping; WANG Xiaojing; ZHANG Liwen; SUN Jingchun; WANG Yong; TU Kang; WANG Ningning; HAO Pei; WANG Chuan; CAO Zhiwei; SHI Tieliu

    2006-01-01

    The outbreak of Streptococcus suis recently in some districts of Sichuan Province in China has caused over 30 deaths and over 200 infections in human beings. In order to study the pathogenicity mechanism and to prevent the bacteria from spreading and infecting human beings and swine, we have annotated and analyzed the genomes of two strains, Streptococcus suis P1/7 and 89-1591 respectively. The whole length of P1/7 is 2.007 Mb,and has 1969 ORFs. In contrast, the partial genome sequence of 89-1591 is 1.98 Mb in length and exists in 177 contigs with 1918 ORFs. Analysis shows that the average lengths of CDSs in two genomes are very close, and the numbers of the homolog ORFs are 1306 between those two strains. Most of the toxicity factors of the two strains are homologeous, but there are still some significant differences between those two strains. For example, among the 11 genes (cps2A-cps2K) encoding for the capsules in P1/7, 4(cps2A, 2B, 2I, 2J) are not detected in strain 89-1591.At the same time, the genes encoding EF and Haemolysin in P1/7 are also not found in strain 89-1591. Besides, the genes related to DNA replication, repair and recombination differ from each other significantly and there also exist certain differences among the surface proteins. Those characteristics indicate that those two strains have evolved their own specific functions to adapt to the different environments and that the pathogenesis of the two strains is different. We have accumulated comprehensive genomics information for future systematic studies of S.sui. Our results are helpful for disease prevention,vaccine development, as well as drug design for S.suis.

  9. Characterization of the NTPR and BD1 interacting domains of the human PICH-BEND3 complex

    DEFF Research Database (Denmark)

    Pitchai, Ganesha P; Hickson, Ian D; Streicher, Werner

    2016-01-01

    Chromosome integrity depends on DNA structure-specific processing complexes that resolve DNA entanglement between sister chromatids. If left unresolved, these entanglements can generate either chromatin bridging or ultrafine DNA bridging in the anaphase of mitosis. These bridge structures...... are defined by the presence of the PICH protein, which interacts with the BEND3 protein in mitosis. To obtain structural insights into PICH-BEND3 complex formation at the atomic level, their respective NTPR and BD1 domains were cloned, overexpressed and crystallized using 1.56 M ammonium sulfate...

  10. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences

    Directory of Open Access Journals (Sweden)

    Yandell Mark

    2010-07-01

    Full Text Available Abstract Background In today's age of genomic discovery, no attempt has been made to comprehensively sequence a gymnosperm genome. The largest genus in the coniferous family Pinaceae is Pinus, whose 110-120 species have extremely large genomes (c. 20-40 Gb, 2N = 24. The size and complexity of these genomes have prompted much speculation as to the feasibility of completing a conifer genome sequence. Conifer genomes are reputed to be highly repetitive, but there is little information available on the nature and identity of repetitive units in gymnosperms. The pines have extensive genetic resources, with approximately 329000 ESTs from eleven species and genetic maps in eight species, including a dense genetic map of the twelve linkage groups in Pinus taeda. Results We present here the Sanger sequence and annotation of ten P. taeda BAC clones and Genome Analyzer II whole genome shotgun (WGS sequences representing 7.5% of the genome. Computational annotation of ten BACs predicts three putative protein-coding genes and at least fifteen likely pseudogenes in nearly one megabase of sequence. We found three conifer-specific LTR retroelements in the BACs, and tentatively identified at least 15 others based on evidence from the distantly related angiosperms. Alignment of WGS sequences to the BACs indicates that 80% of BAC sequences have similar copies (≥ 75% nucleotide identity elsewhere in the genome, but only 23% have identical copies (99% identity. The three most common repetitive elements in the genome were identified and, when combined, represent less than 5% of the genome. Conclusions This study indicates that the majority of repeats in the P. taeda genome are 'novel' and will therefore require additional BAC or genomic sequencing for accurate characterization. The pine genome contains a very large number of diverged and probably defunct repetitive elements. This study also provides new evidence that sequencing a pine genome using a WGS approach is

  11. A biologist's guide to de novo genome assembly using next-generation sequence data: A test with fungal genomes.

    Science.gov (United States)

    Haridas, Sajeet; Breuill, Colette; Bohlmann, Joerg; Hsiang, Tom

    2011-09-01

    We offer a guide to de novo genome assembly using sequence data generated by the Illumina platform for biologists working with fungi or other organisms whose genomes are less than 100Mb in size. The guide requires no familiarity with sequencing assembly technology or associated computer programs. It defines commonly used terms in genome sequencing and assembly; provides examples of assembling short-read genome sequence data for four strains of the fungus Grosmannia clavigera using four assembly programs; gives examples of protocols and software; and presents a commented flowchart that extends from DNA preparation for submission to a sequencing center, through to processing and assembly of the raw sequence reads using freely available operating systems and software.

  12. Complete sequence of the mitochondrial genome of Odontamblyopus rubicundus (Perciformes: Gobiidae): genome characterization and phylogenetic analysis.

    Science.gov (United States)

    Liu, Tianxing; Jin, Xiaoxiao; Wang, Rixin; Xu, Tianjun

    2013-12-01

    Odontamblyopus rubicundus is a species of gobiid fishes, inhabits muddy-bottomed coastal waters. In this paper, the first complete mitochondrial genome sequence of O. rubicundus is reported. The complete mitochondrial genome sequence is 17119 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, a control region and an L-strand origin as in other teleosts. Most mitochondrial genes are encoded on H-strand except for ND6 and seven tRNA genes. Some overlaps occur in protein-coding genes and tRNAs ranging from 1 to 7 bp. The possibly nonfunctional L-strand origin folded into a typical stem-loop secondary structure and a conserved motif (5'-GCCGG-3') was found at the base of the stem within the tRNACys gene. The TAS, CSB-2 and CSB-3 could be detected in the control region. However, in contrast to most of other fishes, the central conserved sequence block domain and the CSB-1 could not be recognized in O. rubicundus, which is consistent with Acanthogobius hasta (Gobiidae). In addition, phylogenetic analyses based on different sequences of species of Gobiidae and different methods showed that the classification of O. rubicundus into Odontamblyopus due to morphology is debatable.

  13. Complete sequence of the mitochondrial genome of Odontamblyopus rubicundus (Perciformes: Gobiidae): genome characterization and phylogenetic analysis

    Indian Academy of Sciences (India)

    Tianxing Liu; Xiaoxiao Jin; Rixin Wang; Tianjun Xu

    2013-12-01

    Odontamblyopus rubicundus is a species of gobiid fishes, inhabits muddy-bottomed coastal waters. In this paper, the first complete mitochondrial genome sequence of O. rubicundus is reported. The complete mitochondrial genome sequence is 17119 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, a control region and an L-strand origin as in other teleosts. Most mitochondrial genes are encoded on H-strand except for ND6 and seven tRNA genes. Some overlaps occur in protein-coding genes and tRNAs ranging from 1 to 7 bp. The possibly nonfunctional L-strand origin folded into a typical stem-loop secondary structure and a conserved motif (5′-GCCGG-3′) was found at the base of the stem within the $tRNA^{Cys}$ gene. The TAS, CSB-2 and CSB-3 could be detected in the control region. However, in contrast to most of other fishes, the central conserved sequence block domain and the CSB-1 could not be recognized in O. rubicundus, which is consistent with Acanthogobius hasta (Gobiidae). In addition, phylogenetic analyses based on different sequences of species of Gobiidae and different methods showed that the classification of O. rubicundus into Odontamblyopus due to morphology is debatable.

  14. It's more than stamp collecting: how genome sequencing can unify biological research.

    Science.gov (United States)

    Richards, Stephen

    2015-07-01

    The availability of reference genome sequences, especially the human reference, has revolutionized the study of biology. However, while the genomes of some species have been fully sequenced, a wide range of biological problems still cannot be effectively studied for lack of genome sequence information. Here, I identify neglected areas of biology and describe how both targeted species sequencing and more broad taxonomic surveys of the tree of life can address important biological questions. I enumerate the significant benefits that would accrue from sequencing a broader range of taxa, as well as discuss the technical advances in sequencing and assembly methods that would allow for wide-ranging application of whole-genome analysis. Finally, I suggest that in addition to 'big science' survey initiatives to sequence the tree of life, a modified infrastructure-funding paradigm would better support reference genome sequence generation for research communities most in need.

  15. DEVELOPMENT OF NEW SEQUENCING TECHNOLOGIES AND THEIR APPLICATION IN GENOME ANALYSIS OF DOMESTIC ANIMALS

    Directory of Open Access Journals (Sweden)

    Kristina Gvozdanović

    2015-12-01

    Full Text Available Sequencing and detailed study of the genom of domestic animals began in the middle of the last century. It was primarily referred to development of the first generation sequencing methods, i.e. Sanger sequencing method. Next generation sequencing methods are currently the most common methods in the analysis of domestic animals genom. The application of these methods gave us up to 100 time more data in comparison with Sanger method. Analyses including RNA sequencing, genotyping of whole genome, immunoprecipitation associated with DNA microarrays, detection ofmutations and inherited diseases, sequencing ofthemitochondrial genome and many others have been conducted with development and application of new sequencing methods since 2005 until today. Application of new sequencing methods in the analysis ofdomestic animal genome provides better understanding of the genetic basis for important production traits which could help in improving the livestock production.

  16. Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946

    Science.gov (United States)

    Erwinia amylovora causes the economically important disease fire blight that affects rosaceous plants, especially pear and apple. Here we report the complete genome sequence and annotation of strain ATCC 49946. The analysis of the sequence and its comparison with sequenced genomes of closely related...

  17. Genome Sequences of 14 Firmicutes Strains Isolated from the Human Vagina.

    Science.gov (United States)

    Deitzler, Grace E; Ruiz, Maria J; Weimer, Cory; Park, SoEun; Robinson, Lloyd; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka; Lewis, Amanda L; Lewis, Warren G

    2016-01-01

    Research on vaginal infections is currently limited by a lack of available fully sequenced bacterial reference strains. Here, we present strains (now available through BEI Resources) and genome sequences for a set of 14 vaginal isolates from the phylum Firmicutes These genome sequences provide a valuable resource for future research in understanding the role of Gram-positive bacteria in vaginal health and disease.

  18. Complete Genome Sequence of a Tomato Isolate of Parietaria Mottle Virus from Italy.

    Science.gov (United States)

    Martínez, Carolina; Aramburu, José; Rubio, Luis; Galipienso, Luis

    2015-12-17

    We report here the complete genome sequence of isolate T32 of parietaria mottle virus (PMoV) infecting tomato plants in Turin, Italy, obtained by Sanger sequencing. T32 shares 90.48 to 96.69% nucleotide identity with other two PoMV isolates, CR8 and Pe1, respectively, whose complete genome sequences are available.

  19. Draft Genome Sequence of Microdochium bolleyi, a Dark Septate Fungal Endophyte of Beach Grass

    OpenAIRE

    David, Aaron S; Haridas, Sajeet; LaButti, Kurt; Lim, Joanne; Lipzen, Anna; Wang, Mei; Barry, Kerrie; Grigoriev, Igor V.; Spatafora, Joseph W.; May, Georgiana

    2016-01-01

    Here, we present the genome sequence of the dark septate fungal endophyte Microdochium bolleyi (Ascomycota, Sordariomycetes, Xylariales). The assembled genome size was 38.84 Mbp and consisted of 173 scaffolds and 13,177 predicted genes.

  20. Draft Genome Sequence of Microdochium bolleyi, a Dark Septate Fungal Endophyte of Beach Grass.

    Science.gov (United States)

    David, Aaron S; Haridas, Sajeet; LaButti, Kurt; Lim, Joanne; Lipzen, Anna; Wang, Mei; Barry, Kerrie; Grigoriev, Igor V; Spatafora, Joseph W; May, Georgiana

    2016-04-28

    Here, we present the genome sequence of the dark septate fungal endophyte Microdochium bolleyi (Ascomycota, Sordariomycetes, Xylariales). The assembled genome size was 38.84 Mbp and consisted of 173 scaffolds and 13,177 predicted genes.

  1. Inferring patient to patient transmission of Mycobacterium tuberculosis from whole genome sequencing data

    NARCIS (Netherlands)

    J.M. Bryant (Josephine); A. Schürch (Anita); H. van Deutekom (Henk); S.R. Harris (Simon); J.L. de Beer (Jessica); V. de Jager (Victor); K. Kremer (Kristin); S.A.F.T. van Hijum (Sacha); R.J. Siezen (Roland); M.W. Borgdorff (Martien ); S.D. Bentley (Stephen); J. Parkhill (Julian); D. van Soolingen (Dick)

    2013-01-01

    textabstractBackground: Mycobacterium tuberculosis is characterised by limited genomic diversity, which makes the application of whole genome sequencing particularly attractive for clinical and epidemiological investigation. However, in order to confidently infer transmission events, an accurate kno

  2. Inferring patient to patient transmission of Mycobacterium tuberculosis from whole genome sequencing data

    NARCIS (Netherlands)

    Bryant, J.M.; Schürch, A.C.; Deutekom, van H.; Harris, S.R.; Beer, de J.L.; Jager, de V.C.L.; Kremer, K.; Hijum, van S.A.F.T.; Siezen, R.J.; Borgdorff, M.; Bentley, S.D.; Parkhill, J.; Soolingen, van D.

    2013-01-01

    BACKGROUND: Mycobacterium tuberculosis is characterised by limited genomic diversity, which makes the application of whole genome sequencing particularly attractive for clinical and epidemiological investigation. However, in order to confidently infer transmission events, an accurate knowledge of th

  3. Inferring patient to patient transmission of Mycobacterium tuberculosis from whole genome sequencing data.

    NARCIS (Netherlands)

    Bryant, J.M.; Schurch, A.C.; Deutekom, H. van; Harris, S.R.; Beer, J.L. de; Jager, V. de; Kremer, K.; Hijum, S.A.F.T. van; Siezen, R.J.; Borgdorff, M.; Bentley, S.D.; Parkhill, J.; Soolingen, D. van

    2013-01-01

    BACKGROUND: Mycobacterium tuberculosis is characterised by limited genomic diversity, which makes the application of whole genome sequencing particularly attractive for clinical and epidemiological investigation. However, in order to confidently infer transmission events, an accurate knowledge of th

  4. Accurate Prediction of the Statistics of Repetitions in Random Sequences: A Case Study in Archaea Genomes.

    Science.gov (United States)

    Régnier, Mireille; Chassignet, Philippe

    2016-01-01

    Repetitive patterns in genomic sequences have a great biological significance and also algorithmic implications. Analytic combinatorics allow to derive formula for the expected length of repetitions in a random sequence. Asymptotic results, which generalize previous works on a binary alphabet, are easily computable. Simulations on random sequences show their accuracy. As an application, the sample case of Archaea genomes illustrates how biological sequences may differ from random sequences.

  5. Multi-scale coding of genomic information: From DNA sequence to genome structure and function

    Energy Technology Data Exchange (ETDEWEB)

    Arneodo, Alain, E-mail: alain.arneodo@ens-lyon.f [Universite de Lyon, F-69000 Lyon (France); Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS, Ecole Normale Superieure de Lyon, F-69007 Lyon (France); Vaillant, Cedric, E-mail: cedric.vaillant@ens-lyon.f [Universite de Lyon, F-69000 Lyon (France); Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS, Ecole Normale Superieure de Lyon, F-69007 Lyon (France); Audit, Benjamin, E-mail: benjamin.audit@ens-lyon.f [Universite de Lyon, F-69000 Lyon (France); Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS, Ecole Normale Superieure de Lyon, F-69007 Lyon (France); Argoul, Francoise, E-mail: francoise.argoul@ens-lyon.f [Universite de Lyon, F-69000 Lyon (France); Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS, Ecole Normale Superieure de Lyon, F-69007 Lyon (France); D' Aubenton-Carafa, Yves, E-mail: daubenton@cgm.cnrs-gif.f [Centre de Genetique Moleculaire, CNRS, Allee de la Terrasse, 91198 Gif-sur-Yvette (France); Thermes, Claude, E-mail: claude.thermes@cgm.cnrs-gif.f [Centre de Genetique Moleculaire, CNRS, Allee de la Terrasse, 91198 Gif-sur-Yvette (France)

    2011-02-15

    Understanding how chromatin is spatially and dynamically organized in the nucleus of eukaryotic cells and how this affects genome functions is one of the main challenges of cell biology. Since the different orders of packaging in the hierarchical organization of DNA condition the accessibility of DNA sequence elements to trans-acting factors that control the transcription and replication processes, there is actually a wealth of structural and dynamical information to learn in the primary DNA sequence. In this review, we show that when using concepts, methodologies, numerical and experimental techniques coming from statistical mechanics and nonlinear physics combined with wavelet-based multi-scale signal processing, we are able to decipher the multi-scale sequence encoding of chromatin condensation-decondensation mechanisms that play a fundamental role in regulating many molecular processes involved in nuclear functions.

  6. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome.

    Science.gov (United States)

    Kim, Moon Young; Lee, Sunghoon; Van, Kyujung; Kim, Tae-Hyung; Jeong, Soon-Chun; Choi, Ik-Young; Kim, Dae-Soo; Lee, Yong-Seok; Park, Daeui; Ma, Jianxin; Kim, Woo-Yeon; Kim, Byoung-Chul; Park, Sungjin; Lee, Kyung-A; Kim, Dong Hyun; Kim, Kil Hyun; Shin, Jin Hee; Jang, Young Eun; Kim, Kyung Do; Liu, Wei Xian; Chaisan, Tanapon; Kang, Yang Jae; Lee, Yeong-Ho; Kim, Kook-Hyung; Moon, Jung-Kyung; Schmutz, Jeremy; Jackson, Scott A; Bhak, Jong; Lee, Suk-Ha

    2010-12-21

    The genome of soybean (Glycine max), a commercially important crop, has recently been sequenced and is one of six crop species to have been sequenced. Here we report the genome sequence of G. soja, the undomesticated ancestor of G. max (in particular, G. soja var. IT182932). The 48.8-Gb Illumina Genome Analyzer (Illumina-GA) short DNA reads were aligned to the G. max reference genome and a consensus was determined for G. soja. This consensus sequence spanned 915.4 Mb, representing a coverage of 97.65% of the G. max published genome sequence and an average mapping depth of 43-fold. The nucleotide sequence of the G. soja genome, which contains 2.5 Mb of substituted bases and 406 kb of small insertions/deletions relative to G. max, is ∼0.31% different from that of G. max. In addition to the mapped 915.4-Mb consensus sequence, 32.4 Mb of large deletions and 8.3 Mb of novel sequence contigs in the G. soja genome were also detected. Nucleotide variants of G. soja versus G. max confirmed by Roche Genome Sequencer FLX sequencing showed a 99.99% concordance in single-nucleotide polymorphism and a 98.82% agreement in insertion/deletion calls on Illumina-GA reads. Data presented in this study suggest that the G. soja/G. max complex may be at least 0.27 million y old, appearing before the relatively recent event of domestication (6,000∼9,000 y ago). This suggests that soybean domestication is complicated and that more in-depth study of population genetics is needed. In any case, genome comparison of domesticated and undomesticated forms of soybean can facilitate its improvement.

  7. Personal Genome Sequencing in Ostensibly Healthy Individuals and the PeopleSeq Consortium.

    Science.gov (United States)

    Linderman, Michael D; Nielsen, Daiva E; Green, Robert C

    2016-03-25

    Thousands of ostensibly healthy individuals have had their exome or genome sequenced, but a much smaller number of these individuals have received any personal genomic results from that sequencing. We term those projects in which ostensibly healthy participants can receive sequencing-derived genetic findings and may also have access to their genomic data as participatory predispositional personal genome sequencing (PPGS). Here we are focused on genome sequencing applied in a pre-symptomatic context and so define PPGS to exclude diagnostic genome sequencing intended to identify the molecular cause of suspected or diagnosed genetic disease. In this report we describe the design of completed and underway PPGS projects, briefly summarize the results reported to date and introduce the PeopleSeq Consortium, a newly formed collaboration of PPGS projects designed to collect much-needed longitudinal outcome data.

  8. Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea

    Directory of Open Access Journals (Sweden)

    Joon-Hee Han

    2016-06-01

    Full Text Available Colletotrichum acutatum is a destructive fungal pathogen which causes anthracnose in a wide range of crops. Here we report the whole genome sequence and annotation of C. acutatum strain KC05, isolated from an infected pepper in Kangwon, South Korea. Genomic DNA from the KC05 strain was used for the whole genome sequencing using a PacBio sequencer and the MiSeq system. The KC05 genome was determined to be 52,190,760 bp in size with a G + C content of 51.73% in 27 scaffolds and to contain 13,559 genes with an average length of 1516 bp. Gene prediction and annotation were performed by incorporating RNA-Seq data. The genome sequence of the KC05 was deposited at DDBJ/ENA/GenBank under the accession number LUXP00000000.

  9. Rediscovery by Whole Genome Sequencing: Classical Mutations and Genome Polymorphisms in Neurospora crassa

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, Kevin; Wiest, Aric E.; Grigoriev, Igor V.; Lipzen, Anna; Martin, Joel; Schackwitz, Wendy; Baker, Scott E.

    2011-06-02

    Classical forward genetics has been foundational to modern biology, and has been the paradigm for characterizing the role of genes in shaping phenotypes for decades. In recent years, reverse genetics has been used to identify the functions of genes, via the intentional introduction of variation and subsequent evaluation in physiological, molecular, and even population contexts. These approaches are complementary and whole genome analysis serves as a bridge between the two. We report in this article the whole genome sequencing of eighteen classical mutant strains of Neurospora crassa and the putative identification of the mutations associated with corresponding mutant phenotypes. Although some strains carry multiple unique nonsynonymous, nonsense, or frameshift mutations, the combined power of limiting the scope of the search based on genetic markers and of using a comparative analysis among the eighteen genomes provides strong support for the association between mutation and phenotype. For ten of the mutants, the mutant phenotype is recapitulated in classical or gene deletion mutants in Neurospora or other filamentous fungi. From thirteen to 137 nonsense mutations are present in each strain and indel sizes are shown to be highly skewed in gene coding sequence. Significant additional genetic variation was found in the eighteen mutant strains, and this variability defines multiple alleles of many genes. These alleles may be useful in further genetic and molecular analysis of known and yet-to-be-discovered functions and they invite new interpretations of molecular and genetic interactions in classical mutant strains.

  10. Genomic view of bipolar disorder revealed by whole genome sequencing in a genetic isolate.

    Directory of Open Access Journals (Sweden)

    Benjamin Georgi

    2014-03-01

    Full Text Available Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable effort to elucidate the genetic underpinnings of bipolar disorder, causative genetic risk factors remain elusive. We conducted a comprehensive genomic analysis of bipolar disorder in a large Old Order Amish pedigree. Microsatellite genotypes and high-density SNP-array genotypes of 388 family members were combined with whole genome sequence data for 50 of these subjects, comprising 18 parent-child trios. This study design permitted evaluation of candidate variants within the context of haplotype structure by resolving the phase in sequenced parent-child trios and by imputation of variants into multiple unsequenced siblings. Non-parametric and parametric linkage analysis of the entire pedigree as well as on smaller clusters of families identified several nominally significant linkage peaks, each of which included dozens of predicted deleterious variants. Close inspection of exonic and regulatory variants in genes under the linkage peaks using family-based association tests revealed additional credible candidate genes for functional studies and further replication in population-based cohorts. However, despite the in-depth genomic characterization of this unique, large and multigenerational pedigree from a genetic isolate, there was no convergence of evidence implicating a particular set of risk loci or common pathways. The striking haplotype and locus heterogeneity we observed has profound implications for the design of studies of bipolar and other related disorders.

  11. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes.

    Science.gov (United States)

    Sun, Yan-Bo; Xiong, Zi-Jun; Xiang, Xue-Yan; Liu, Shi-Ping; Zhou, Wei-Wei; Tu, Xiao-Long; Zhong, Li; Wang, Lu; Wu, Dong-Dong; Zhang, Bao-Lin; Zhu, Chun-Ling; Yang, Min-Min; Chen, Hong-Man; Li, Fang; Zhou, Long; Feng, Shao-Hong; Huang, Chao; Zhang, Guo-Jie; Irwin, David; Hillis, David M; Murphy, Robert W; Yang, Huan-Ming; Che, Jing; Wang, Jun; Zhang, Ya-Ping

    2015-03-17

    The development of efficient sequencing techniques has resulted in large numbers of genomes being available for evolutionary studies. However, only one genome is available for all amphibians, that of Xenopus tropicalis, which is distantly related from the majority of frogs. More than 96% of frogs belong to the Neobatrachia, and no genome exists for this group. This dearth of amphibian genomes greatly restricts genomic studies of amphibians and, more generally, our understanding of tetrapod genome evolution. To fill this gap, we provide the de novo genome of a Tibetan Plateau frog, Nanorana parkeri, and compare it to that of X. tropicalis and other vertebrates. This genome encodes more than 20,000 protein-coding genes, a number similar to that of Xenopus. Although the genome size of Nanorana is considerably larger than that of Xenopus (2.3 vs. 1.5 Gb), most of the difference is due to the respective number of transposable elements in the two genomes. The two frogs exhibit considerable conserved whole-genome synteny despite having diverged approximately 266 Ma, indicating a slow rate of DNA structural evolution in anurans. Multigenome synteny blocks further show that amphibians have fewer interchromosomal rearrangements than mammals but have a comparable rate of intrachromosomal rearrangements. Our analysis also identifies 11 Mb of anuran-specific highly conserved elements that will be useful for comparative genomic analyses of frogs. The Nanorana genome offers an improved understanding of evolution of tetrapod genomes and also provides a genomic reference for other evolutionary studies.

  12. Whole genome sequence analysis of unidentified genetically modified papaya for development of a specific detection method.

    Science.gov (United States)

    Nakamura, Kosuke; Kondo, Kazunari; Akiyama, Hiroshi; Ishigaki, Takumi; Noguchi, Akio; Katsumata, Hiroshi; Takasaki, Kazuto; Futo, Satoshi; Sakata, Kozue; Fukuda, Nozomi; Mano, Junichi; Kitta, Kazumi; Tanaka, Hidenori; Akashi, Ryo; Nishimaki-Mogami, Tomoko

    2016-08-15

    Identification of transgenic sequences in an unknown genetically modified (GM) papaya (Carica papaya L.) by whole genome sequence analysis was demonstrated. Whole genome sequence data were generated for a GM-positive fresh papaya fruit commodity detected in monitoring using real-time polymerase chain reaction (PCR). The sequences obtained were mapped against an open database for papaya genome sequence. Transgenic construct- and event-specific sequences were identified as a GM papaya developed to resist infection from a Papaya ringspot virus. Based on the transgenic sequences, a specific real-time PCR detection method for GM papaya applicable to various food commodities was developed. Whole genome sequence analysis enabled identifying unknown transgenic construct- and event-specific sequences in GM papaya and development of a reliable method for detecting them in papaya food commodities.

  13. Draft Genome Sequence of the Cyanide-Utilizing Bacterium Pseudomonas fluorescens Strain NCIMB 11764

    OpenAIRE

    2012-01-01

    We report here the 6.97-Mb draft genome sequence of Pseudomonas fluorescens strain NCIMB 11764, which is capable of growth on cyanide as the sole nitrogen source. The draft genome sequence allowed the discovery of several genes implicated in enzymatic cyanide turnover and provided additional information contributing to a better understanding of this organism's unique cyanotrophic ability. This is the first sequenced genome of a cyanide-assimilating bacterium.

  14. Draft genome sequence of the cyanide-utilizing bacterium Pseudomonas fluorescens strain NCIMB 11764.

    Science.gov (United States)

    Vilo, Claudia A; Benedik, Michael J; Kunz, Daniel A; Dong, Qunfeng

    2012-12-01

    We report here the 6.97-Mb draft genome sequence of Pseudomonas fluorescens strain NCIMB 11764, which is capable of growth on cyanide as the sole nitrogen source. The draft genome sequence allowed the discovery of several genes implicated in enzymatic cyanide turnover and provided additional information contributing to a better understanding of this organism's unique cyanotrophic ability. This is the first sequenced genome of a cyanide-assimilating bacterium.

  15. Genomic Resources for Water Yam (Dioscorea alata L.: Analyses of EST-Sequences, De Novo Sequencing and GBS Libraries.

    Directory of Open Access Journals (Sweden)

    Christopher A Saski

    Full Text Available The reducing cost and rapid progress in next-generation sequencing techniques coupled with high performance computational approaches have resulted in large-scale discovery of advanced genomic resources in several model and non-model plant species. Yam (Dioscorea spp. is a major food and cash crop in many countries but research efforts have been limited to understand the genetics and generate genomic information for the crop. The availability of a large number of genomic resources including genome-wide molecular markers will accelerate the breeding efforts and application of genomic selection in yams. In the present study, several methods including expressed sequence tags (EST-sequencing, de novo sequencing, and genotyping-by-sequencing (GBS profiles on two yam (Dioscorea alata L. genotypes (TDa 95/00328 and TDa 95-310 was performed to generate genomic resources for use in its improvement programs. This includes a comprehensive set of EST-SSRs, genomic SSRs, whole genome SNPs, and reduced representation SNPs. A total of 1,152 EST-SSRs were developed from >40,000 EST-sequences generated from the two genotypes. A set of 388 EST-SSRs were validated as polymorphic showing a polymorphism rate of 34% when tested on two diverse parents targeted for anthracnose disease. In addition, approximately 40X de novo whole genome sequence coverage was generated for each of the two genotypes, and a total of 18,584 and 15,952 genomic SSRs were identified for TDa 95/00328 and TDa 95-310, respectively. A custom made pipeline resulted in the selection of 573 genomic SSRs common across the two genotypes, of which only eight failed, 478 being polymorphic and 62 monomorphic indicating a polymorphic rate of 83.5%. Additionally, 288,505 high quality SNPs were also identified between these two genotypes. Genotyping by sequencing reads on these two genotypes also revealed 36,790 overlapping SNP positions that are distributed throughout the genome. Our efforts in using

  16. Near-complete genome sequencing of swine vesicular disease virus using the Roche GS FLX sequencing platform

    DEFF Research Database (Denmark)

    Nielsen, Sandra Cathrine Abel; Bruhn, Christian Anders Wathne; Samaniego Castruita, Jose Alfredo;

    2014-01-01

    that is suitable for sequencing the complete protein-encoding sequences of SVDV isolates in which the RNA is relatively intact. The approach couples a single PCR amplification reaction, using only a single PCR primer set to amplify the near-complete SVDV genome, with deep-sequencing using a small fraction...

  17. A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control.

    Science.gov (United States)

    Bartha, István; Carlson, Jonathan M; Brumme, Chanson J; McLaren, Paul J; Brumme, Zabrina L; John, Mina; Haas, David W; Martinez-Picado, Javier; Dalmau, Judith; López-Galíndez, Cecilio; Casado, Concepción; Rauch, Andri; Günthard, Huldrych F; Bernasconi, Enos; Vernazza, Pietro; Klimkait, Thomas; Yerly, Sabine; O'Brien, Stephen J; Listgarten, Jennifer; Pfeifer, Nico; Lippert, Christoph; Fusi, Nicolo; Kutalik, Zoltán; Allen, Todd M; Müller, Viktor; Harrigan, P Richard; Heckerman, David; Telenti, Amalio; Fellay, Jacques

    2013-10-29

    HIV-1 sequence diversity is affected by selection pressures arising from host genomic factors. Using paired human and viral data from 1071 individuals, we ran >3000 genome-wide scans, testing for associations between host DNA polymorphisms, HIV-1 sequence variation and plasma viral load (VL), while considering human and viral population structure. We observed significant human SNP associations to a total of 48 HIV-1 amino acid variants (pgenome-to-genome approach highlights sites of genomic conflict and is a strategy generally applicable to studies of host-pathogen interaction. DOI:http://dx.doi.org/10.7554/eLife.01123.001.

  18. The complete chloroplast genome sequence of Dianthus superbus var. longicalycinus.

    Science.gov (United States)

    Gurusamy, Raman; Lee, Do-Hyung; Park, SeonJoo

    2016-05-01

    The complete chloroplast genome (cpDNA) sequence of Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicine was reported and characterized. The cpDNA of Dianthus superbus var. longicalycinus is 149,539 bp, with 36.3% GC content. A pair of inverted repeats (IRs) of 24,803 bp is separated by a large single-copy region (LSC, 82,805 bp) and a small single-copy region (SSC, 17,128 bp). It encodes 85 protein-coding genes, 36 tRNA genes and 8 rRNA genes. Of 129 individual genes, 13 genes encoded one intron and three genes have two introns.

  19. Complete Genomic Sequence of Bacteriophage Felix O1

    Directory of Open Access Journals (Sweden)

    Andrew M. Kropinski

    2010-03-01

    Full Text Available Bacteriophage O1 is a Myoviridae A1 group member used historically for identifying Salmonella. Sequencing revealed a single, linear, 86,155-base-pair genome with 39% average G+C content, 131 open reading frames, and 22 tRNAs. Closest protein homologs occur in Erwinia amylovora phage φEa21-4 and Escherichia coli phage wV8. Proteomic analysis indentified structural proteins: Gp23, Gp36 (major tail protein, Gp49, Gp53, Gp54, Gp55, Gp57, Gp58 (major capsid protein, Gp59, Gp63, Gp64, Gp67, Gp68, Gp69, Gp73, Gp74 and Gp77 (tail fiber. Based on phage-host codon differences, 7 tRNAs could affect translation rate during infection. Introns, holin-lysin cassettes, bacterial toxin homologs and host RNA polymerase-modifying genes were absent.

  20. Complete genome sequence of Anabaena variabilis ATCC 29413

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Teresa [University of Missouri, St. Louis; Pratte, Brenda S. [University of Missouri, St. Louis; Zhong, Jinshun [University of Missouri, St. Louis; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute

    2013-01-01

    Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as both carbon and energy source. While this strain was first isolated in 1964 in Mississippi and named Ana-baena flos-aquae MSU A-37, it clusters phylogenetically with cyanobacteria of the genus Nostoc. The strain is a moderate thermophile, growing well at approximately 40 C. Here we provide some additional characteristics of the strain, and an analysis of the complete genome sequence.

  1. Complete genome sequence of Desulfurispirillum indicum strain S5(T).

    Science.gov (United States)

    Bini, Elisabetta; Rauschenbach, Ines; Narasingarao, Priya; Starovoytov, Valentin; Hauser, Lauren; Jeffries, Cynthia D; Land, Miriam; Bruce, David; Detter, Chris; Goodwin, Lynne; Han, Shunsheng; Held, Brittany; Tapia, Roxanne; Copeland, Alex; Ivanova, Natalia; Mikhailova, Natalia; Nolan, Matt; Pati, Amrita; Pennacchio, Len; Pitluck, Sam; Woyke, Tanja; Häggblom, Max

    2011-12-31

    Desulfurispirillum indicum strain S5(T) is a strictly anaerobic bacterium isolated from river sediment in Chennai, India. D. indicum belongs to the deep branching phylum of Chrysiogenetes, which currently only includes three other cultured species. Strain S5(T) is the type strain of the species and it is capable of growth using selenate, selenite, arsenate, nitrate or nitrite as terminal electron acceptors. The 2,928,377 bp genome encodes 2,619 proteins and 49 RNA genes, and the information gained from its sequence will be relevant to the elucidation of microbially-mediated transformations of arsenic and selenium, in addition to deepening our knowledge of the underrepresented phylum of Chrysiogenetes.

  2. Complete Genome Sequences of Five Bacteriophages That Infect Rhodobacter capsulatus.

    Science.gov (United States)

    Bollivar, David W; Bernardoni, Brooke; Bockman, Matthew R; Miller, Brenda M; Russell, Daniel A; Delesalle, Veronique A; Krukonis, Gregory P; Hatfull, Graham F; Cross, Madeline R; Szewczyk, Marlena M; Eppurath, Atul

    2016-05-26

    Five bacteriophages that infect the Rhodobacter capsulatus strain YW1 were isolated from stream water near Bloomington, Illinois, USA. Two distinct genome types are represented in the newly isolated bacteriophages. These genomes are different from other bacteriophage genomes previously described.

  3. Genome3D: exploiting structure to help users understand their sequences

    OpenAIRE

    Lewis, Tony E.; Sillitoe, Ian; Andreeva, Antonina; Blundell, Tom L.; Buchan, Daniel W. A.; Chothia, Cyrus; Cozzetto, Domenico; Dana, José M.; Filippis, Ioannis; Gough, Julian; Jones, David T.; Kelley, Lawrence A; Kleywegt, Gerard J.; Minneci, Federico; Mistry, Jaina

    2014-01-01

    Genome3D (http://www.genome3d.eu) is a collaborative resource that provides predicted domain annotations and structural models for key sequences. Since introducing Genome3D in a previous NAR paper, we have substantially extended and improved the resource. We have annotated representatives from Pfam families to improve coverage of diverse sequences and added a fast sequence search to the website to allow users to find Genome3D-annotated sequences similar to their own. We have improved and exte...

  4. Genome sequence of Kocuria varians G6 ssolated from a slaughterhouse in Denmark

    DEFF Research Database (Denmark)

    Raghupathi, Prem Krishnan; Herschend, Jakob; Røder, Henriette Lyng;

    2016-01-01

    We report here the first draft genome sequence ofKocuria variansG6, which was isolated from a meat chopper at a small slaughterhouse in Denmark. The 2.90-Mb genome sequence consists of 95 contigs and contains 2,518 predicted protein-coding genes.......We report here the first draft genome sequence ofKocuria variansG6, which was isolated from a meat chopper at a small slaughterhouse in Denmark. The 2.90-Mb genome sequence consists of 95 contigs and contains 2,518 predicted protein-coding genes....

  5. Whole genome sequence of Enterobacter ludwigii type strain EN-119T, isolated from clinical specimens.

    Science.gov (United States)

    Li, Gengmi; Hu, Zonghai; Zeng, Ping; Zhu, Bing; Wu, Lijuan

    2015-04-01

    Enterobacter ludwigii strain EN-119(T) is the type strain of E. ludwigii, which belongs to the E. cloacae complex (Ecc). This strain was first reported and nominated in 2005 and later been found in many hospitals. In this paper, the whole genome sequencing of this strain was carried out. The total genome size of EN-119(T) is 4952,770 bp with 4578 coding sequences, 88 tRNAs and 10 rRNAs. The genome sequence of EN-119(T) is the first whole genome sequence of E. ludwigii, which will further our understanding of Ecc.

  6. A Mitochondrial Genome Sequence of the Tibetan Antelope( Pantholops hodgsonii )

    Institute of Scientific and Technical Information of China (English)

    Shu-Qing Xu; Xiao-Guang Zheng; Ri-Li Ge; Ying-Zhong Yang; Jun Zhou; Guo-En Jing; Yun-Tian Chen; Jun Wang; Huan-Ming Yang; Jian Wang; Jun Yu

    2005-01-01

    To investigate genetic mechanisms of high altitude adaptations of native mammals on the Tibetan Plateau, we compared mitochondrial sequences of the endangered Pantholops hodgsonii with its lowland distant relatives Ovis aries and Capra hircus, as well as other mammals. The complete mitochondrial genome of P. hodgsonii (16,498 bp) revealed a similar gene order as of other mammals. Because of tandem duplications, the control region of P. hodgsonii mitochondrial genome is shorter than those of O. aries and C. hircus, but longer than those of Bos species. Phylogenetic analysis based on alignments of the entire cytochrome b genes suggested that P. hodgsonii is more closely related to O. aries and C. hircus, rather than to species of the Antilopinae subfamily. The estimated divergence time between P.hodgsonii and O. aries is about 2.25 million years ago. Further analysis on natural selection indicated that the COXI (cytochrome c oxidase subunit I) gene was under positive selection in P. hodgsonii and Bos grunniens. Considering the same climates and environments shared by these two mammalian species, we proposed that the mitochondrial COXI gene is probably relevant for these native mammals to adapt the high altitude environment unique to the Tibetan Plateau.

  7. Information recovery from low coverage whole-genome bisulfite sequencing.

    Science.gov (United States)

    Libertini, Emanuele; Heath, Simon C; Hamoudi, Rifat A; Gut, Marta; Ziller, Michael J; Czyz, Agata; Ruotti, Victor; Stunnenberg, Hendrik G; Frontini, Mattia; Ouwehand, Willem H; Meissner, Alexander; Gut, Ivo G; Beck, Stephan

    2016-06-27

    The cost of whole-genome bisulfite sequencing (WGBS) remains a bottleneck for many studies and it is therefore imperative to extract as much information as possible from a given dataset. This is particularly important because even at the recommend 30X coverage for reference methylomes, up to 50% of high-resolution features such as differentially methylated positions (DMPs) cannot be called with current methods as determined by saturation analysis. To address this limitation, we have developed a tool that dynamically segments WGBS methylomes into blocks of comethylation (COMETs) from which lost information can be recovered in the form of differentially methylated COMETs (DMCs). Using this tool, we demonstrate recovery of ∼30% of the lost DMP information content as DMCs even at very low (5X) coverage. This constitutes twice the amount that can be recovered using an existing method based on differentially methylated regions (DMRs). In addition, we explored the relationship between COMETs and haplotypes in lymphoblastoid cell lines of African and European origin. Using best fit analysis, we show COMETs to be correlated in a population-specific manner, suggesting that this type of dynamic segmentation may be useful for integrated (epi)genome-wide association studies in the future.

  8. The complete genome sequence of shope (rabbit) fibroma virus.

    Science.gov (United States)

    Willer, D O; McFadden, G; Evans, D H

    1999-11-25

    We have determined the complete DNA sequence of the Leporipoxvirus Shope fibroma virus (SFV). The SFV genome spans 159.8 kb and encodes 165 putative genes of which 13 are duplicated in the 12.4-kb terminal inverted repeats. Although most SFV genes have homologs encoded by other Chordopoxvirinae, the SFV genome lacks a key gene required for the production of extracellular enveloped virus. SFV also encodes only the smaller ribonucleotide reductase subunit and has a limited nucleotide biosynthetic capacity. SFV preserves the Chordopoxvirinae gene order from S012L near the left end of the chromosome through to S142R (homologs of vaccinia F2L and B1R, respectively). The unique right end of SFV appears to be genetically unstable because when the sequence is compared with that of myxoma virus, five myxoma homologs have been deleted (C. Cameron, S. Hota-Mitchell, L. Chen, J. Barrett, J.-X. Cao, C. Macaulay, D. Willer, D. Evans, and G. McFadden, 1999, Virology 264, 298-318). Most other differences between these two Leporipoxviruses are located in the telomeres. Leporipoxviruses encode several genes not found in other poxviruses including four small hydrophobic proteins of unknown function (S023R, S119L, S125R, and S132L), an alpha 2, 3-sialyltransferase (S143R), a protein belonging to the Ig-like protein superfamily (S141R), and a protein resembling the DNA-binding domain of proteins belonging to the HIN-200 protein family S013L). SFV also encodes a type II DNA photolyase (S127L). Melanoplus sanguinipes entomopoxvirus encodes a similar protein, but SFV is the first mammalian virus potentially capable of photoreactivating ultraviolet DNA damage.

  9. Long-range genomic enrichment, sequencing, and assembly to determine unknown sequences flanking a known microRNA.

    Directory of Open Access Journals (Sweden)

    Zhaorong Ma

    Full Text Available Conserved plant microRNAs (miRNAs modulate important biological processes but little is known about conserved cis-regulatory elements (CREs surrounding MIRNA genes. We developed a solution-based targeted genomic enrichment methodology to capture, enrich, and sequence flanking genomic regions surrounding conserved MIRNA genes with a locked-nucleic acid (LNA-modified, biotinylated probe complementary to the mature miRNA sequence. Genomic DNA bound by the probe is captured by streptavidin-coated magnetic beads, amplified, sequenced and assembled de novo to obtain genomic DNA sequences flanking MIRNA locus of interest. We demonstrate the sensitivity and specificity of this enrichment methodology in Arabidopsis thaliana to enrich targeted regions spanning 10-20 kb surrounding known MIR166 and MIR165 loci. Assembly of the sequencing reads successfully recovered all targeted loci. While further optimization for larger, more complex genomes is needed, this method may enable determination of flanking genomic DNA sequence surrounding a known core (like a conserved mature miRNA from multiple species that currently don't have a full genome assembly available.

  10. Co-barcoded sequence reads from long DNA fragments: A cost-effective solution for Perfect Genome sequencing

    Directory of Open Access Journals (Sweden)

    Brock A Peters

    2015-01-01

    Full Text Available Next generation sequencing (NGS technologies, primarily based on massively parallel sequencing (MPS, have touched and radically changed almost all aspects of research worldwide. These technologies have allowed for the rapid analysis, to date, of the genomes of more than 2,000 different species. In humans, NGS has arguably had the largest impact. Over 100,000 genomes of individual humans (based on various estimates have been sequenced allowing for deep insights into what makes individuals and families unique and what causes disease in each of us. Despite all of this progress, the current state of the art in sequence technology is far from generating a perfect genome sequence and much remains to be understood in the biology of human and other organisms’ genomes. In the article that follows we outline, why the perfect genome in humans is important, what is lacking from current human whole genome sequences, and a potential strategy for achieving the perfect genome in a cost effective manner.

  11. Countering Gattaca: Efficient and Secure Testing of Fully-Sequenced Human Genomes

    CERN Document Server

    Baldi, Pierre; De Cristofaro, Emiliano; Gasti, Paolo; Tsudik, Gene

    2011-01-01

    Recent advances in DNA sequencing technologies have put ubiquitous availability of fully sequenced human genomes within reach. It is no longer hard to imagine the day when everyone will have the means to obtain and store one's own DNA sequence. Widespread and affordable availability of fully sequenced genomes immediately opens up important opportunities in a number of health-related fields. In particular, common genomic applications and tests performed in vitro today will soon be conducted computationally, using digitized genomes. New applications will be developed as genome-enabled medicine becomes increasingly preventive and personalized. However, this progress also prompts significant privacy challenges associated with potential loss, theft, or misuse of genomic data. In this paper, we begin to address genomic privacy by focusing on three important applications: Paternity Tests, Personalized Medicine, and Genetic Compatibility Tests. After carefully analyzing these applications and their privacy requiremen...

  12. High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations

    Directory of Open Access Journals (Sweden)

    Magness Charles L

    2007-01-01

    Full Text Available Abstract Background Until recently, few genomic reagents specific for non-human primate research have been available. To address this need, we have constructed a macaque-specific high-density oligonucleotide microarray by using highly fragmented low-pass sequence contigs from the rhesus genome project together with the detailed sequence and exon structure of the human genome. Using this method, we designed oligonucleotide probes to over 17,000 distinct rhesus/human gene orthologs and increased by four-fold the number of available genes relative to our first-generation expressed sequence tag (EST-derived array. Results We constructed a database containing 248,000 exon sequences from 23,000 human RefSeq genes and compared each human exon with its best matching sequence in the January 2005 version of the rhesus genome project list of 486,000 DNA contigs. Best matching rhesus exon sequences for each of the 23,000 human genes were then concatenated in the proper order and orientation to produce a rhesus "virtual transcriptome." Microarray probes were designed, one per gene, to the region closest to the 3' untranslated region (UTR of each rhesus virtual transcript. Each probe was compared to a composite rhesus/human transcript database to test for cross-hybridization potential yielding a final probe set representing 18,296 rhesus/human gene orthologs, including transcript variants, and over 17,000 distinct genes. We hybridized mRNA from rhesus brain and spleen to both the EST- and genome-derived microarrays. Besides four-fold greater gene coverage, the genome-derived array also showed greater mean signal intensities for genes present on both arrays. Genome-derived probes showed 99.4% identity when compared to 4,767 rhesus GenBank sequence tag site (STS sequences indicating that early stage low-pass versions of complex genomes are of sufficient quality to yield valuable functional genomic information when combined with finished genome information from

  13. A comparison of virus genome sequences with their host silkworm, Bombyx mori.

    Science.gov (United States)

    Tang, Xu-Dong; Yue, Ya-Jie; Wang, Wei; Li, Nan; Shen, Zhong-Yuan

    2016-01-15

    With the recent availability of the genomes of many viruses and the silkworm, Bombyx mori, as well as a variety of Basic Local Alignment Search Tool (BLAST) programs, a new opportunity to gain insight into the interaction of viruses with the silkworm is possible. This study aims to determine the possible existence of sequence identities between the genomes of viruses and the silkworm and attempts to explain this phenomenon. BLAST searches of the genomes of viruses against the silkworm genome were performed using the resources of the National Center for Biotechnology Information. All studied viruses contained variable numbers of short regions with sequence identity to the genome of the silkworm. The short regions of sequence identity in the genome of the silkworm may be derived from the genomes of viruses in the long history of silkworm-virus interaction. This study is the first to compare these genomes, and may contribute to research on the interaction between viruses and the silkworm.

  14. How evolution of genomes is reflected in exact DNA sequence match statistics.

    Science.gov (United States)

    Massip, Florian; Sheinman, Michael; Schbath, Sophie; Arndt, Peter F

    2015-02-01

    Genome evolution is shaped by a multitude of mutational processes, including point mutations, insertions, and deletions of DNA sequences, as well as segmental duplications. These mutational processes can leave distinctive qualitative marks in the statistical features of genomic DNA sequences. One such feature is the match length distribution (MLD) of exactly matching sequence segments within an individual genome or between the genomes of related species. These have been observed to exhibit characteristic power law decays in many species. Here, we show that simple dynamical models consisting solely of duplication and mutation processes can already explain the characteristic features of MLDs observed in genomic sequences. Surprisingly, we find that these features are largely insensitive to details of the underlying mutational processes and do not necessarily rely on the action of natural selection. Our results demonstrate how analyzing statistical features of DNA sequences can help us reveal and quantify the different mutational processes that underlie genome evolution.

  15. Complete Genome Sequence of Mayaro Virus (Togaviridae, Alphavirus) Strain BeAr 20290 from Brazil.

    Science.gov (United States)

    Espósito, Danillo Lucas Alves; da Fonseca, Benedito Antônio Lopes

    2015-12-17

    We report here the complete genome sequence of Mayaro virus strain BeAr 20290 isolated from Haemagogus mosquitoes in 1960. The sequence presented here includes all nonstructural and structural proteins and the 5'- and 3'-untranslated (UTR) regions.

  16. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans.

    Science.gov (United States)

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-07-20

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures.

  17. Genome size and sequence composition of moso bamboo: A comparative study

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Moso bamboo (Phyllostachys pubescens) is one of the world's most important bamboo species. It has the largest area of all planted bamboo―over two-thirds of the total bamboo forest area―and the highest economic value in China. Moso bamboo is a tetraploid (4x=48) and a special member of the grasses family. Although several genomes have been sequenced or are being sequenced in the grasses family, we know little about the genome of the bambusoids (bamboos). In this study, the moso bamboo genome size was estimated to be about 2034 Mb by flow cytometry (FCM), using maize (cv. B73) and rice (cv. Nipponbare) as internal references. The rice genome has been sequenced and the maize genome is being sequenced. We found that the size of the moso bamboo genome was similar to that of maize but significantly larger than that of rice. To determine whether the bamboo genome had a high proportion of repeat elements, similar to that of the maize genome, approximately 1000 genome survey sequences (GSS) were generated. Sequence analysis showed that the proportion of repeat elements was 23.3% for the bamboo genome, which is significantly lower than that of the maize genome (65.7%). The bamboo repeat elements were mainly Gypsy/DIRS1 and Ty1/Copia LTR retrotransposons (14.7%), with a few DNA transposons. However, more genomic sequences are needed to confirm the above results due to several factors, such as the limitation of our GSS data. This study is the first to investigate sequence composition of the bamboo genome. Our results are valuable for future genome research of moso and other bamboos.

  18. Genome-wide association analysis of milk yield traits in Nordic Red Cattle using imputed whole genome sequence variants

    DEFF Research Database (Denmark)

    Iso-Touru, T; Sahana, G; Guldbrandtsen, B;

    2016-01-01

    variants behind them. In this study, we used whole genome sequence level data from 4280 progeny tested Nordic Red Cattle bulls to scan the genome for loci affecting milk, fat and protein yields. RESULTS: Using a genome-wise significance threshold, regions on Bos taurus chromosomes 5, 14, 23, 25 and 26 were...... traits via biological networks. CONCLUSION: This is the first time when whole genome sequence data is utilized to study genomic regions affecting milk production in the Nordic Red Cattle population. Sequence level data offers the possibility to study quantitative traits in detail but still cannot......BACKGROUND: The Nordic Red Cattle consisting of three different populations from Finland, Sweden and Denmark are under a joint breeding value estimation system. The long history of recording of production and health traits offers a great opportunity to study production traits and identify causal...

  19. Genome Sequence of a Novel Archaeal Rudivirus Recovered from a Mexican Hot Spring

    DEFF Research Database (Denmark)

    Servín-Garcidueñas, L; Peng, X; Garrett, R;

    2013-01-01

    We report the consensus genome sequence of a novel GC-rich rudivirus, designated SMR1 (Sulfolobales Mexican rudivirus 1), assembled from a high-throughput sequenced environmental sample from a hot spring in Los Azufres National Park in western Mexico.......We report the consensus genome sequence of a novel GC-rich rudivirus, designated SMR1 (Sulfolobales Mexican rudivirus 1), assembled from a high-throughput sequenced environmental sample from a hot spring in Los Azufres National Park in western Mexico....

  20. Construction of a phylogenetic tree of photosynthetic prokaryotes based on average similarities of whole genome sequences.

    Science.gov (United States)

    Satoh, Soichirou; Mimuro, Mamoru; Tanaka, Ayumi

    2013-01-01

    Phylogenetic trees have been constructed for a wide range of organisms using gene sequence information, especially through the identification of orthologous genes that have been vertically inherited. The number of available complete genome sequences is rapidly increasing, and many tools for construction of genome trees based on whole genome sequences have been proposed. However, development of a reasonable method of using complete genome sequences for construction of phylogenetic trees has not been established. We have developed a method for construction of phylogenetic trees based on the average sequence similarities of whole genome sequences. We used this method to examine the phylogeny of 115 photosynthetic prokaryotes, i.e., cyanobacteria, Chlorobi, proteobacteria, Chloroflexi, Firmicutes and nonphotosynthetic organisms including Archaea. Although the bootstrap values for the branching order of phyla were low, probably due to lateral gene transfer and saturated mutation, the obtained tree was largely consistent with the previously reported phylogenetic trees, indicating that this method is a robust alternative to traditional phylogenetic methods.