WorldWideScience

Sample records for bcr-abl1 oncogene relative

  1. bcr-abl oncogene activation in Philadelphia chromosome-positive acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Hermans, A.; Gow, J.; Selleri, L.; von Lindern, M.; Hagemeijer, A.; Wiedemann, L. M.; Grosveld, G.

    1988-01-01

    Tumor-specific alterations in oncogenes are thought to play a central role in the development of cancer. An example is the consistent fusion of the bcr gene to the c-abl oncogene on the Ph chromosome in CML. The Ph chromosome can also be observed in ALL. About 50% of Ph+ ALL cases, in contrast to

  2. Suppression of bcr-abl synthesis by siRNAs or tyrosine kinase activity by Glivec alters different oncogenes, apoptotic/antiapoptotic genes and cell proliferation factors (microarray study).

    Science.gov (United States)

    Zhelev, Zhivko; Bakalova, Rumiana; Ohba, Hideki; Ewis, Ashraf; Ishikawa, Mitsuru; Shinohara, Yasuo; Baba, Yoshinobu

    2004-07-16

    Short 21-mer double-stranded/small-interfering RNAs (ds/siRNAs) were designed to target bcr-abl mRNA in chronic myelogenous leukemia. The ds/siRNAs were transfected into bcr-abl-positive K-562 (derived from blast crisis chronic myelogenous leukemia), using lipofectamine. Penetrating of ds/siRNAs into the cells was detected by fluorescent confocal microscopy, using fluorescein-labeled ds/siRNAs. The cells were treated with mix of three siRNA sequences (3 x 60 nM) during 6 days with three repetitive transfections. The siRNA-treatment was accompanied with significant reduction of bcr-abl mRNA, p210, protein tyrosine kinase activity and cell proliferation index. Treatment of cells with Glivec (during 8 days with four repetitive doses, 180 nM single dose) resulted in analogous reduction of cell proliferation activity, stronger suppression of protein tyrosine kinase activity, and very low reduction of p210. siRNA-mix and Glivec did not affect significantly the viability of normal lymphocytes. Microarray analysis of siRNA- and Glivec-treated K-562 cells demonstrated that both pathways of bcr-abl suppression were accompanied with overexpression and suppression of many different oncogenes, apoptotic/antiapoptotic and cell proliferation factors. The following genes of interest were found to decrease in relatively equal degree in both siRNA- and Glivec-treated cells: Bcd orf1 and orf2 proto-oncogene, chromatin-specific transcription elongation factor FACT 140-kDa subunit mRNA, gene encoding splicing factor SF1, and mRNA for Tec protein tyrosine kinase. siRNA-mix and Glivec provoked overexpression of the following common genes: c-jun proto-oncogene, protein kinase C-alpha, pvt-1 oncogene homologue (myc activator), interleukin-6, 1-8D gene from interferon-inducible gene family, tumor necrosis factor receptor superfamily (10b), and STAT-induced STAT inhibitor.

  3. BCR-ABL fusion genes are inducible by X-irradiation in vitro

    International Nuclear Information System (INIS)

    Ito, Takashi; Seyama, Toshio; Mizuno, Terumi; Hayashi, Tomonori; Nakamura, Nori; Akiyama, Mitoshi; Dohi, Kiyohiko.

    1992-01-01

    The Philadelphia chromosome consists of a reciprocal translocation between the ABL oncogene at chromosome 9q34 and the BCR gene at chromosome 22q resulting in the expression of chimeric BCR-ABL mRNAs specific to chronic myelogenous leukemia (CML). The presence of the fusion genes can be detected with high specificity and sensitivity by means of reverse transcription and polymerase chain reaction. Using this assay, it was possible to detect BCR-ABL fusion genes induced among HL60 cells after 100 Gy of X-irradiation in vitro. A total of five fusion gene transcripts were obtained. These fusion genes contained not only CML-specific BCR-ABL rearrangements, but also other forms of BCR-ABL fusions. These latter genes had junctions of BCR exon 4/ABL exon 2 intervened by a segment of DNA of unknown origin, BCR exon 5/ABL exon 2, and BCR exon 4/ABL exon 2. The results appear to be the first evidence for the induction of the BCR-ABL fusion gene by X-irradiation. In terms of leukemogenesis, it is suggested that only those cells bearing certain CML-related BCR-ABL fusion genes are positively selected by virtue of a growth advantage in vivo. (author)

  4. Low expression of miR-196b enhances the expression of BCR-ABL1 and HOXA9 oncogenes in chronic myeloid leukemogenesis.

    Directory of Open Access Journals (Sweden)

    Yue Liu

    Full Text Available MicroRNAs (miRNAs can function as tumor suppressors or oncogene promoters during tumor development. In this study, low levels of expression of miR-196b were detected in patients with chronic myeloid leukemia. Bisulfite genomic sequencing PCR and methylation-specific PCR were used to examine the methylation status of the CpG islands in the miR-196b promoter in K562 cells, patients with leukemia and healthy individuals. The CpG islands showed more methylation in patients with chronic myeloid leukemia compared with healthy individuals (P<0.05, which indicated that low expression of miR-196b may be associated with an increase in the methylation of CpG islands. The dual-luciferase reporter assay system demonstrated that BCR-ABL1 and HOXA9 are the target genes of miR-196b, which was consistent with predictions from bioinformatics software analyses. Further examination of cell function indicated that miR-196b acts to reduce BCR-ABL1 and HOXA9 protein levels, decrease cell proliferation rate and retard the cell cycle. A low level of expression of miR-196b can cause up-regulation of BCR-ABL1 and HOXA9 expression, which leads to the development of chronic myeloid leukemia. MiR-196b may represent an effective target for chronic myeloid leukemia therapy.

  5. Allosteric inhibition enhances the efficacy of ABL kinase inhibitors to target unmutated BCR-ABL and BCR-ABL-T315I

    Directory of Open Access Journals (Sweden)

    Mian Afsar

    2012-09-01

    Full Text Available Abstract Background Chronic myelogenous leukemia (CML and Philadelphia chromosome-positive (Ph+ acute lymphatic leukemia (Ph + ALL are caused by the t(9;22, which fuses BCR to ABL resulting in deregulated ABL-tyrosine kinase activity. The constitutively activated BCR/ABL-kinase “escapes” the auto-inhibition mechanisms of c-ABL, such as allosteric inhibition. The ABL-kinase inhibitors (AKIs Imatinib, Nilotinib or Dasatinib, which target the ATP-binding site, are effective in Ph + leukemia. Another molecular therapy approach targeting BCR/ABL restores allosteric inhibition. Given the fact that all AKIs fail to inhibit BCR/ABL harboring the ‘gatekeeper’ mutation T315I, we investigated the effects of AKIs in combination with the allosteric inhibitor GNF2 in Ph + leukemia. Methods The efficacy of this approach on the leukemogenic potential of BCR/ABL was studied in Ba/F3 cells, primary murine bone marrow cells, and untransformed Rat-1 fibroblasts expressing BCR/ABL or BCR/ABL-T315I as well as in patient-derived long-term cultures (PDLTC from Ph + ALL-patients. Results Here, we show that GNF-2 increased the effects of AKIs on unmutated BCR/ABL. Interestingly, the combination of Dasatinib and GNF-2 overcame resistance of BCR/ABL-T315I in all models used in a synergistic manner. Conclusions Our observations establish a new approach for the molecular targeting of BCR/ABL and its resistant mutants using a combination of AKIs and allosteric inhibitors.

  6. Flow Cytometric Immunobead Assay for Detection of BCR-ABL1 Fusion Proteins in Chronic Myleoid Leukemia: Comparison with FISH and PCR Techniques

    Science.gov (United States)

    Recchia, Anna Grazia; Caruso, Nadia; Bossio, Sabrina; Pellicanò, Mariavaleria; De Stefano, Laura; Franzese, Stefania; Palummo, Angela; Abbadessa, Vincenzo; Lucia, Eugenio; Gentile, Massimo; Vigna, Ernesto; Caracciolo, Clementina; Agostino, Antolino; Galimberti, Sara; Levato, Luciano; Stagno, Fabio; Molica, Stefano; Martino, Bruno; Vigneri, Paolo; Di Raimondo, Francesco; Morabito, Fortunato

    2015-01-01

    Chronic Myeloid Leukemia (CML) is characterized by a balanced translocation juxtaposing the Abelson (ABL) and breakpoint cluster region (BCR) genes. The resulting BCR-ABL1 oncogene leads to increased proliferation and survival of leukemic cells. Successful treatment of CML has been accompanied by steady improvements in our capacity to accurately and sensitively monitor therapy response. Currently, measurement of BCR-ABL1 mRNA transcript levels by real-time quantitative PCR (RQ-PCR) defines critical response endpoints. An antibody-based technique for BCR-ABL1 protein recognition could be an attractive alternative to RQ-PCR. To date, there have been no studies evaluating whether flow-cytometry based assays could be of clinical utility in evaluating residual disease in CML patients. Here we describe a flow-cytometry assay that detects the presence of BCR-ABL1 fusion proteins in CML lysates to determine the applicability, reliability, and specificity of this method for both diagnosis and monitoring of CML patients for initial response to therapy. We show that: i) CML can be properly diagnosed at onset, (ii) follow-up assessments show detectable fusion protein (i.e. relative mean fluorescent intensity, rMFI%>1) when BCR-ABL1IS transcripts are between 1–10%, and (iii) rMFI% levels predict CCyR as defined by FISH analysis. Overall, the FCBA assay is a rapid technique, fully translatable to the routine management of CML patients. PMID:26111048

  7. Flow Cytometric Immunobead Assay for Detection of BCR-ABL1 Fusion Proteins in Chronic Myleoid Leukemia: Comparison with FISH and PCR Techniques.

    Directory of Open Access Journals (Sweden)

    Anna Grazia Recchia

    Full Text Available Chronic Myeloid Leukemia (CML is characterized by a balanced translocation juxtaposing the Abelson (ABL and breakpoint cluster region (BCR genes. The resulting BCR-ABL1 oncogene leads to increased proliferation and survival of leukemic cells. Successful treatment of CML has been accompanied by steady improvements in our capacity to accurately and sensitively monitor therapy response. Currently, measurement of BCR-ABL1 mRNA transcript levels by real-time quantitative PCR (RQ-PCR defines critical response endpoints. An antibody-based technique for BCR-ABL1 protein recognition could be an attractive alternative to RQ-PCR. To date, there have been no studies evaluating whether flow-cytometry based assays could be of clinical utility in evaluating residual disease in CML patients. Here we describe a flow-cytometry assay that detects the presence of BCR-ABL1 fusion proteins in CML lysates to determine the applicability, reliability, and specificity of this method for both diagnosis and monitoring of CML patients for initial response to therapy. We show that: i CML can be properly diagnosed at onset, (ii follow-up assessments show detectable fusion protein (i.e. relative mean fluorescent intensity, rMFI%>1 when BCR-ABL1IS transcripts are between 1-10%, and (iii rMFI% levels predict CCyR as defined by FISH analysis. Overall, the FCBA assay is a rapid technique, fully translatable to the routine management of CML patients.

  8. The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3' kinase pathway.

    Science.gov (United States)

    Sattler, M; Salgia, R; Okuda, K; Uemura, N; Durstin, M A; Pisick, E; Xu, G; Li, J L; Prasad, K V; Griffin, J D

    1996-02-15

    Chronic myelogenous leukemia (CML) and some acute lymphoblastic leukemias (ALL) are caused by the t(9;22) chromosome translocation, which produces the constitutively activated BCR/ABL tyrosine kinase. When introduced into factor dependent hematopoietic cell lines, BCR/ABL induces the tyrosine phosphorylation of many cellular proteins. One prominent BCR/ABL substrate is p120CBL, the cellular homolog of the v-Cbl oncoprotein. In an effort to understand the possible contribution of p120CBL to transformation by BCR/ABL, we looked for cellular proteins which associate with p120CBL in hematopoietic cell lines transformed by BCR/ABL. In addition to p210BCR/ABL and c-ABL, p120CBL coprecipitated with an 85 kDa phosphoprotein, which was identified as the p85 subunit of PI3K. Anti-p120CBL immunoprecipitates from BCR/ABL-transformed, but not from untransformed, cell lines contained PI3K lipid kinase activity. Interestingly, the adaptor proteins CRKL and c-CRK were also found in these complexes. In vitro binding studies indicated that the SH2 domains of CRKL and c-CRK bound directly to p120CBL, while the SH3 domains of c-CRK and CRKL bound to BCR/ABL and c-ABL. The N-terminal and the C-terminal SH2 and the SH3 domain of p85PI3K bound directly in vitro to p120CBL. The ABL-SH2, but not ABL-SH3, could also bind to p120CBL. These data suggest that BCR/ABL may induce the formation of multimeric complexes of signaling proteins which include p120CBL, PI3K, c-CRK or CRKL, c-ABL and BCR/ABL itself.

  9. Induction of autophagy by Imatinib sequesters Bcr-Abl in autophagosomes and down-regulates Bcr-Abl protein.

    LENUS (Irish Health Repository)

    Elzinga, Baukje M

    2013-06-01

    Chronic Myeloid Leukemia (CML) is a disease of hematopoietic stem cells which harbor the chimeric gene Bcr-Abl. Expression levels of this constitutively active tyrosine kinase are critical for response to tyrosine kinase inhibitor treatment and also disease progression, yet the regulation of protein stability is poorly understood. We have previously demonstrated that imatinib can induce autophagy in Bcr-Abl expressing cells. Autophagy has been associated with the clearance of large macromolecular signaling complexes and abnormal proteins, however, the contribution of autophagy to the turnover of Bcr-Abl protein in imatinib treated cells is unknown. In this study, we show that following imatinib treatment, Bcr-Abl is sequestered into vesicular structures that co-localize with the autophagy marker LC3 or GABARAP. This association is inhibited by siRNA mediated knockdown of autophagy regulators (Beclin 1\\/ATG7). Pharmacological inhibition of autophagy also reduced Bcr-Abl\\/LC3 co-localization in both K562 and CML patient cells. Bcr-Abl protein expression was reduced with imatinib treatment. Inhibition of both autophagy and proteasome activity in imatinib treated cells was required to restore Bcr-Abl protein levels to those of untreated cells. This ability to down-regulate Bcr-Abl protein levels through the induction of autophagy may be an additional and important feature of the activity of imatinib.

  10. Quantification of BCR-ABL transcripts in peripheral blood cells and ...

    African Journals Online (AJOL)

    Purpose: To investigate the feasibility of using peripheral blood plasma samples as surrogates for blood cell sampling for quantification of breakpoint cluster region-Abelson oncogene (BCR-ABL) transcript levels to monitor treatment responses in chronic myeloid leukemia (CML) patients. Methods: Peripheral blood samples ...

  11. Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia

    Science.gov (United States)

    Boer, Judith M.; Steeghs, Elisabeth M.P.; Marchante, João R.M.; Boeree, Aurélie; Beaudoin, James J.; Berna Beverloo, H.; Kuiper, Roland P.; Escherich, Gabriele; van der Velden, Vincent H.J.; van der Schoot, C. Ellen; de Groot-Kruseman, Hester A.; Pieters, Rob; den Boer, Monique L.

    2017-01-01

    Approximately 15% of pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by gene expression similar to that of BCR-ABL1-positive disease and unfavorable prognosis. This BCR-ABL1-like subtype shows a high frequency of B-cell development gene aberrations and tyrosine kinase-activating lesions. To evaluate the clinical significance of tyrosine kinase gene fusions in children with BCP-ALL, we studied the frequency of recently identified tyrosine kinase fusions, associated genetic features, and prognosis in a representative Dutch/German cohort. We identified 14 tyrosine kinase fusions among 77 BCR-ABL1-like cases (18%) and none among 76 non-BCR-ABL1-like B-other cases. Novel exon fusions were identified for RCSD1-ABL2 and TERF2-JAK2. JAK2 mutation was mutually exclusive with tyrosine kinase fusions and only occurred in cases with high CRLF2 expression. The non/late response rate and levels of minimal residual disease in the fusion-positive BCR-ABL1-like group were higher than in the non-BCR-ABL1-like B-others (p<0.01), and also higher, albeit not statistically significant, compared with the fusion-negative BCR-ABL1-like group. The 8-year cumulative incidence of relapse in the fusion-positive BCR-ABL1-like group (35%) was comparable with that in the fusion-negative BCR-ABL1-like group (35%), and worse than in the non-BCR-ABL1-like B-other group (17%, p=0.07). IKZF1 deletions, predominantly other than the dominant-negative isoform and full deletion, co-occurred with tyrosine kinase fusions. This study shows that tyrosine kinase fusion-positive cases are a high-risk subtype of BCP-ALL, which warrants further studies with specific kinase inhibitors to improve outcome. PMID:27894077

  12. Hypoxia-Like Signatures Induced by BCR-ABL Potentially Alter the Glutamine Uptake for Maintaining Oxidative Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Pallavi Sontakke

    Full Text Available The Warburg effect is probably the most prominent metabolic feature of cancer cells, although little is known about the underlying mechanisms and consequences. Here, we set out to study these features in detail in a number of leukemia backgrounds. The transcriptomes of human CB CD34+ cells transduced with various oncogenes, including BCR-ABL, MLL-AF9, FLT3-ITD, NUP98-HOXA9, STAT5A and KRASG12V were analyzed in detail. Our data indicate that in particular BCR-ABL, KRASG12V and STAT5 could impose hypoxic signaling under normoxic conditions. This coincided with an upregulation of glucose importers SLC2A1/3, hexokinases and HIF1 and 2. NMR-based metabolic profiling was performed in CB CD34+ cells transduced with BCR-ABL versus controls, both cultured under normoxia and hypoxia. Lactate and pyruvate levels were increased in BCR-ABL-expressing cells even under normoxia, coinciding with enhanced glutaminolysis which occurred in an HIF1/2-dependent manner. Expression of the glutamine importer SLC1A5 was increased in BCR-ABL+ cells, coinciding with an increased susceptibility to the glutaminase inhibitor BPTES. Oxygen consumption rates also decreased upon BPTES treatment, indicating a glutamine dependency for oxidative phosphorylation. The current study suggests that BCR-ABL-positive cancer cells make use of enhanced glutamine metabolism to maintain TCA cell cycle activity in glycolytic cells.

  13. Interphase FISH for BCR-ABL1 rearrangement on neutrophils: A decisive tool to discriminate a lymphoid blast crisis of chronic myeloid leukemia from a de novo BCR-ABL1 positive acute lymphoblastic leukemia.

    Science.gov (United States)

    Balducci, Estelle; Loosveld, Marie; Rahal, Ilhem; Boudjarane, John; Alazard, Emilie; Missirian, Chantal; Lafage-Pochitaloff, Marina; Michel, Gérard; Zattara, Hélène

    2018-02-01

    Discrimination between lymphoid blast crisis of chronic myeloid leukemia (CML) and de novo BCR-ABL1 positive acute lymphoblastic leukemia (ALL) represents a diagnostic challenge because this distinction has a major incidence on the management of patients. Here, we report an uncommon pediatric case of ALL with cryptic ins(22;9)(q11;q34q34) and p190-type BCR-ABL1 transcript. We performed interphase fluorescence in situ hybridization (FISH) for BCR-ABL1 rearrangement on blood neutrophils, which was positive consistent with the diagnosis of lymphoid blast crisis of CML. This case illustrates the major interest of interphase FISH for BCR-ABL1 rearrangement on blood neutrophils as a decisive method to discriminate a lymphoid blast crisis of CML from a de novo BCR-ABL1 positive ALL. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Dual Drug Targeting of Mutant Bcr-Abl Induces Inactive Conformation: New Strategy for the Treatment of Chronic Myeloid Leukemia and Overcoming Monotherapy Resistance.

    Science.gov (United States)

    El Rashedy, Ahmed A; Olotu, Fisayo A; Soliman, Mahmoud E S

    2018-03-01

    Bcr-Abl is an oncogenic fusion protein which expression enhances tumorigenesis, and has been highly associated with chronic myeloid leukemia (CML). Acquired drug resistance in mutant Bcr-Abl has enhanced pathogenesis with the use of single therapy agents such as nilotinib. Moreover, allosteric targeting has been identified to consequentially inhibit Bcr-Abl activity, which led to the recent development of ABL-001 (asciminib) that selectively binds the myristoyl pocket. Experimental studies have revealed that the combination of nilotinib and ABL-001 induced a 'bent' conformation in the C-terminal helix of Bcr-Abl; a benchmark of inhibition, thereby exhibiting a greater potency in the treatment of CML, surmounting the setbacks of drug resistance, disease regression and relapse. Therefore, we report the first account of the dynamics and conformational analysis of oncogenic T334I Bcr-Abl by dual targeting. Our findings revealed that unlike in the Bcr-Abl-Nilotinib complex, dual targeting by both inhibitors induced the bent conformation in the C-terminal helix that varied with time. This was coupled with significant alteration in Bcr-Abl stability, flexibility, and compactness and an overall structural re-orientation inwards towards the hydrophobic core, which reduced the solvent-exposed residues indicative of protein folding. This study will facilitate allosteric targeting and the design of more potent allosteric inhibitors for resistive target proteins in cancer. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  15. Expression of p190 BCR-ABL fusion gene in a patient with chronic myeloid leukemia Expressão do rearranjo gênico BCR-ABL com ponto de quebra na região menor do gene BCR em um paciente com leucemia mielóide crônica

    Directory of Open Access Journals (Sweden)

    P. V. B. Carvalho

    2003-01-01

    Full Text Available A minority of chronic myeloid leukemia cases have breakpoints in the minor cluster region (m-bcr of the BCR-ABL gene. We report on a patient with Ph-positive and m-bcr breakpoint at diagnosis. She was treated with hydroxyurea and interferon-alpha. Two years later, she developed a lymphoid blast crisis and died shortly after. We discuss herein the different forms of the BCR-ABL oncogene, its products, and the possible influence of them on the clinical outcome of patients with the disease.A leucemia mielóide crônica (LMC é uma doença mieloproliferativa clonal e caracteriza-se pela presença da translocação cromossômica entre os braços longos dos cromossomos 9 e 22, o denominado cromossomo Ph. Esta translocação determina a fusão dos genes BCR e ABL. Os diferentes pontos de quebra no gene BCR determinam a síntese de proteínas com diferentes pesos moleculares pelo gene BCR-ABL. Nós relatamos o caso de uma paciente portadora de LMC com ponto de quebra cromossômico na região menor do gene BCR. Foi tratada com hidroxiuréia e interferon alfa. Dois anos após o diagnóstico desenvolveu crise blástica linfóide e evoluiu rapidamente para o óbito. Nós discutimos nesta apresentação as diferentes formas do gene BCR-ABL e seus produtos e a possível influência dos mesmos na evolução clínica dos pacientes com a doença.

  16. The Bcr-Abl kinase inhibitor INNO-406 induces autophagy and different modes of cell death execution in Bcr-Abl-positive leukemias.

    Science.gov (United States)

    Kamitsuji, Y; Kuroda, J; Kimura, S; Toyokuni, S; Watanabe, K; Ashihara, E; Tanaka, H; Yui, Y; Watanabe, M; Matsubara, H; Mizushima, Y; Hiraumi, Y; Kawata, E; Yoshikawa, T; Maekawa, T; Nakahata, T; Adachi, S

    2008-11-01

    Bcr-Abl tyrosine kinase (TK) inhibitors are promising therapeutic agents for Bcr-Abl-positive (Bcr-Abl(+)) leukemias. Although they are known to promote caspase-mediated apoptosis, it remains unclear whether caspase-independent cell death-inducing mechanisms are also triggered. Here we demonstrated that INNO-406, a second-generation Bcr-Abl TK inhibitor, induces programmed cell death (PCD) in chronic myelogenous leukemia (CML) cell lines through both caspase-mediated and caspase-independent pathways. The latter pathways include caspase-independent apoptosis (CIA) and necrosis-like cell death (CIND), and the cell lines varied regarding which mechanism was elicited upon INNO-406 treatment. We also observed that the propensity toward CIA or CIND in cells was strongly associated with cellular dependency on apoptosome-mediated caspase activity. Cells that undergo CIND have a high apoptosome activity potential whereas cells that undergo CIA tend to have a lower potential. Moreover, we found that INNO-406 promotes autophagy. When autophagy was inhibited with chloroquine or gene knockdown of beclin1 by shRNA, INNO-406-induced cell death was enhanced, which indicates that the autophagic response of the tumor cells is protective. These findings suggest new insights into the biology and therapy of Bcr-Abl(+) leukemias.

  17. Disrupting BCR-ABL in combination with secondary leukemia-specific pathways in CML cells leads to enhanced apoptosis and decreased proliferation.

    Science.gov (United States)

    Woessner, David W; Lim, Carol S

    2013-01-07

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder caused by expression of the fusion gene BCR-ABL following a chromosomal translocation in the hematopoietic stem cell. Therapeutic management of CML uses tyrosine kinase inhibitors (TKIs), which block ABL-signaling and effectively kill peripheral cells with BCR-ABL. However, TKIs are not curative, and chronic use is required in order to treat CML. The primary failure for TKIs is through the development of a resistant population due to mutations in the TKI binding regions. This led us to develop the mutant coiled-coil, CC(mut2), an alternative method for BCR-ABL signaling inhibition by targeting the N-terminal oligomerization domain of BCR, necessary for ABL activation. In this article, we explore additional pathways that are important for leukemic stem cell survival in K562 cells. Using a candidate-based approach, we test the combination of CC(mut2) and inhibitors of unique secondary pathways in leukemic cells. Transformative potential was reduced following silencing of the leukemic stem cell factor Alox5 by RNA interference. Furthermore, blockade of the oncogenic protein MUC-1 by the novel peptide GO-201 yielded reductions in proliferation and increased cell death. Finally, we found that inhibiting macroautophagy using chloroquine in addition to blocking BCR-ABL signaling with the CC(mut2) was most effective in limiting cell survival and proliferation. This study has elucidated possible combination therapies for CML using novel blockade of BCR-ABL and secondary leukemia-specific pathways.

  18. Biodegradable charged polyester-based vectors (BCPVs) as an efficient non-viral transfection nanoagent for gene knockdown of the BCR-ABL hybrid oncogene in a human chronic myeloid leukemia cell line

    Science.gov (United States)

    Yang, Chengbin; Panwar, Nishtha; Wang, Yucheng; Zhang, Butian; Liu, Maixian; Toh, Huiting; Yoon, Ho Sup; Tjin, Swee Chuan; Chong, Peter Han Joo; Law, Wing-Cheung; Chen, Chih-Kuang; Yong, Ken-Tye

    2016-04-01

    First-line therapy of chronic myelogenous leukemia (CML) has always involved the use of BCR-ABL tyrosine-kinase inhibitors which is associated with an abnormal chromosome called Philadelphia chromosome. Although the overall survival rate has been improved by the current therapeutic regime, the presence of resistance has resulted in limited efficacy. In this study, an RNA interference (RNAi)-based therapeutic regime is proposed with the aim to knockdown the BCR-ABL hybrid oncogene using small interfering RNA (siRNA). The siRNA transfection rates have usually been limited due to the declining contact probability among polyplexes and the non-adherent nature of leukemic cells. Our work aims at addressing this limitation by using a biodegradable charged polyester-based vector (BCPV) as a nanocarrier for the delivery of BCR-ABL-specific siRNA to the suspension culture of a K562 CML cell line. BCR-ABL siRNAs were encapsulated in the BCPVs by electrostatic force. Cell internalization was facilitated by the BCPV and assessed by confocal microscopy and flow cytometry. The regulation of the BCR-ABL level in K562 cells as a result of RNAi was analyzed by real-time polymerase chain reaction (RT-PCR). We observed that BCPV was able to form stable nanoplexes with siRNA molecules, even in the presence of fetal bovine serum (FBS), and successfully assisted in vitro siRNA transfection in the non-adherent K562 cells. As a consequence of downregulation of BCR-ABL, BCPV-siRNA nanoplexes inhibited cell proliferation and promoted cell apoptosis. All results were compared with a commercial transfection reagent, Lipofectamine2000™, which served as a positive control. More importantly, this class of non-viral vector exhibits biodegradable features and negligible cytotoxicity, thus providing a versatile platform to deliver siRNA to non-adherent leukemia cells with high transfection efficiency by effectively overcoming extra- and intra-cellular barriers. Due to the excellent in vitro

  19. Guidelines for molecular monitoring of BCR-ABL1 in chronic myeloid leukemia patients by RT-qPCR

    Directory of Open Access Journals (Sweden)

    Irene Larripa

    2017-02-01

    Full Text Available Current clinical guidelines for managing chronic myeloid leukemia include molecular monitoring of BCR-ABL1 transcript quantitative reverse-transcription PCR. Despite the proven prognostic significance of molecular response, it is not widely appreciated that quantitative reverse-transcription PCR potentially produces highly variable data, which may affect the validity of results, making comparability between different laboratories difficult. Therefore, standardized reporting of BCR-ABL1 measurements is needed for optimal clinical management. An approach to achieve comparable BCR-ABL1 values is the use of an international reporting scale. Conversion to the international scale is achieved by the application of laboratory specific conversion factor that is obtained by using validated secondary reference calibrators. Moreover, with the aim to mitigate the interlaboratory imprecision of quantitative BCR-ABL1 measurements and to facilitate local laboratory results interpretation and reporting, we decide to prepare laboratory guidelines that will further facilitate interlaboratory comparative studies and independent quality-assessment programs, which are of paramount importance for worldwide standardization of BCR-ABL1 monitoring results, in particular for those most isolated laboratories, with not easy access to commercial kits or sample interchange programs

  20. The Role of Mitochondrial DNA Damage and Repair in the Resistance of BCR/ABL-Expressing Cells to Tyrosine Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Janusz Blasiak

    2013-08-01

    Full Text Available Chronic myeloid leukemia (CML is a hematological malignancy that arises from the transformation of stem hematopoietic cells by the fusion oncogene BCR/ABL and subsequent clonal expansion of BCR/ABL-positive progenitor leukemic cells. The BCR/ABL protein displays a constitutively increased tyrosine kinase activity that alters many regulatory pathways, leading to uncontrolled growth, impaired differentiation and increased resistance to apoptosis featured by leukemic cells. Current CML therapy is based on tyrosine kinase inhibitors (TKIs, primarily imatinib, which induce apoptosis in leukemic cells. However, some patients show primary resistance to TKIs while others develop it in the course of therapy. In both cases, resistance may be underlined by perturbations in apoptotic signaling in leukemic cells. As mitochondria may play an important role in such signaling, alteration in mitochondrial metabolism may change resistance to pro-apoptotic action of TKIs in BCR/ABL-positive cells. Because BCR/ABL may induce reactive oxygen species and unfaithful DNA repair, it may affect the stability of mitochondrial DNA, influencing mitochondrial apoptotic signaling and in this way change the sensitivity of CML cells to TKIs. Moreover, cancer cells, including BCR/ABL-positive cells, show an increased level of glucose metabolism, resulting from the shift from oxidative phosphorylation to glycolysis to supply ATP for extensive proliferation. Enhanced level of glycolysis may be associated with TKI resistance and requires change in the expression of several genes regulated mostly by hypoxia-inducible factor-1α, HIF-1α. Such regulation may be associated with the impaired mitochondrial respiratory system in CML cells. In summary, mitochondria and mitochondria-associated molecules and pathways may be attractive targets to overcome TKI resistance in CML.

  1. Rapid Evolution to Blast Crisis Associated with a Q252H ABL1 Kinase Domain Mutation in e19a2 BCR-ABL1 Chronic Myeloid Leukaemia

    Directory of Open Access Journals (Sweden)

    Sarah L. McCarron

    2013-01-01

    Full Text Available A minority of chronic myeloid leukaemia (CML patients express variant transcripts of which the e19a2 BCR-ABL1 fusion is the most common. Instances of tyrosine kinase inhibitor (TKI resistance in e19a2 BCR-ABL1 CML patients have rarely been reported. A case of e19a2 BCR-ABL1 CML is described in whom imatinib resistance, associated with a Q252H ABL1 kinase domain mutation, became apparent soon after initiation of TKI therapy. The patient rapidly transformed to myeloid blast crisis (BC with considerable bone marrow fibrosis and no significant molecular response to a second generation TKI. The clinical course was complicated by comorbidities with the patient rapidly succumbing to advanced disease. This scenario of Q252H-associated TKI resistance with rapid BC transformation has not been previously documented in e19a2 BCR-ABL1 CML. This case highlights the considerable challenges remaining in the management of TKI-resistant BC CML, particularly in the elderly patient.

  2. Frequency of BCR-ABL Transcript Types in Syrian CML Patients

    Directory of Open Access Journals (Sweden)

    Sulaf Farhat-Maghribi

    2016-01-01

    Full Text Available Background. In Syria, CML patients are started on tyrosine kinase inhibitors (TKIs and monitored until complete molecular response is achieved. BCR-ABL mRNA transcript type is not routinely identified, contrary to the recommendations. In this study we aimed to identify the frequency of different BCR-ABL transcripts in Syrian CML patients and highlight their significance on monitoring and treatment protocols. Methods. CML patients positive for BCR-ABL transcripts by quantitative RT-PCR were enrolled. BCR-ABL transcript types were investigated using a home-made PCR method that was adapted from published protocols and optimized. The transcript types were then confirmed using a commercially available research kit. Results. Twenty-four transcripts were found in 21 patients. The most common was b2a2, followed by b3a2, b3a3, and e1a3 present solely in 12 (57.1%, 3 (14.3%, 2 (9.5%, and 1 (4.8%, respectively. Three samples (14.3% contained dual transcripts. While b3a2 transcript was apparently associated with warning molecular response to imatinib treatment, b2a2, b3a3, and e1a3 transcripts collectively proved otherwise (P=0.047. Conclusion. It might be advisable to identify the BCR-ABL transcript type in CML patients at diagnosis, using an empirically verified method, in order to link the detected transcript with the clinical findings, possible resistance to treatment, and appropriate monitoring methods.

  3. BCR/ABL downregulates DNA-PK(CS)-dependent and upregulates backup non-homologous end joining in leukemic cells.

    Science.gov (United States)

    Poplawski, Tomasz; Blasiak, Janusz

    2010-06-01

    Non-homologous end joining (NHEJ) and homologous recombination repair (HRR) are the main mechanisms involved in the processing of DNA double strand breaks (DSBs) in humans. We showed previously that the oncogenic tyrosine kinase BCR/ABL stimulated DSBs repair by HRR. To evaluate the role of BCR/ABL in DSBs repair by NHEJ we examined the ability of leukemic BCR/ABL-expressing cell line BV173 to repair DNA damage induced by two DNA topoisomerase II inhibitors: etoposide and sobuzoxane. DNA lesions induced by sobuzoxane are repaired by a NHEJ pathway which is dependent on the catalytic subunit of protein kinase dependent on DNA (DNA-PK(CS); D-NHEJ), whereas damage evoked by etoposide are repaired by two distinct NHEJ pathways, dependent on or independent of DNA-PK(CS) (backup NHEJ, B-NHEJ). Cells incubated with STI571, a highly specific inhibitor of BCR/ABL, displayed resistance to these agents associated with an accelerated kinetics of DSBs repair, as measured by the neutral comet assay and pulsed field gel electrophoresis. However, in a functional NHEJ assay, cells preincubated with STI571 repaired DSBs induced by a restriction enzyme with a lower efficacy than without the preincubation and addition of wortmannin, a specific inhibitor of DNA-PK(CS), did not change efficacy of the NHEJ reaction. We suggest that BCR/ABL switch on B-NHEJ which is more error-prone then D-NHEJ and in such manner contribute to the increase of the genomic instability of leukemic cells.

  4. c-Myb and its target Bmi1 are required for p190BCR/ABL leukemogenesis in mouse and human cells.

    Science.gov (United States)

    Waldron, T; De Dominici, M; Soliera, A R; Audia, A; Iacobucci, I; Lonetti, A; Martinelli, G; Zhang, Y; Martinez, R; Hyslop, T; Bender, T P; Calabretta, B

    2012-04-01

    Expression of c-Myb is required for normal hematopoiesis and for proliferation of myeloid leukemia blasts and a subset of T-cell leukemia, but its role in B-cell leukemogenesis is unknown. We tested the role of c-Myb in p190(BCR/ABL)-dependent B-cell leukemia in mice transplanted with p190(BCR/ABL)-transduced marrow cells with a c-Myb allele (Myb(f/d)) and in double transgenic p190(BCR/ABL)/Myb(w/d) mice. In both models, loss of a c-Myb allele caused a less aggressive B-cell leukemia. In p190(BCR/ABL)-expressing human B-cell leukemia lines, knockdown of c-Myb expression suppressed proliferation and colony formation. Compared with c-Myb(w/f) cells, expression of Bmi1, a regulator of stem cell proliferation and maintenance, was decreased in pre-B cells from Myb(w/d) p190(BCR/ABL) transgenic mice. Ectopic expression of a mutant c-Myb or Bmi1 enhanced the proliferation and colony formation of Myb(w/d) p190(BCR/ABL) B-cells; by contrast, Bmi1 downregulation inhibited colony formation of p190(BCR/ABL)-expressing murine B cells and human B-cell leukemia lines. Moreover, c-Myb interacted with a segment of the human Bmi1 promoter and enhanced its activity. In blasts from 19 Ph(1) adult acute lymphoblastic leukemia patients, levels of c-Myb and Bmi1 showed a positive correlation. Together, these findings support the existence of a c-Myb-Bmi1 transcription-regulatory pathway required for p190(BCR/ABL) leukemogenesis.

  5. The novel anticancer agent JNJ-26854165 is active in chronic myeloid leukemic cells with unmutated BCR/ABL and T315I mutant BCR/ABL through promoting proteosomal degradation of BCR/ABL proteins.

    Science.gov (United States)

    You, Liangshun; Liu, Hui; Huang, Jian; Xie, Wanzhuo; Wei, Jueying; Ye, Xiujin; Qian, Wenbin

    2017-01-31

    Chronic myeloid leukemia (CML) is a clonal malignant disease caused by the expression of BCR/ABL. MDM2 (human homolog of the murine double minute-2) inhibitors such as Nutlin-3 have been shown to induce apoptosis in a p53-dependent manner in CML cells and sensitize cells to Imatinib. Here, we demonstrate that JNJ-26854165, an inhibitor of MDM2, inhibits proliferation and triggers cell death in a p53-independent manner in various BCR/ABL-expressing cells, which include primary leukemic cells from patients with CML blast crisis and cells expressing the Imatinib-resistant T315I BCR/ABL mutant. The response to JNJ-26854165 is associated with the downregulation of BCR/ABL dependently of proteosome activation. Moreover, in all tested CML cells, with the exception of T315I mutation cells, combining JNJ-26854165 and tyrosine kinase inhibitor (TKI) Imatinib or PD180970 leads to a synergistic effect. In conclusion, our results suggest that JNJ-26854165, used either alone or in combination with TKIs, represents a promising novel targeted approach to overcome TKI resistance and improve patient outcome in CML.

  6. Modeling of molecular interaction between apoptin, BCR-Abl and CrkL--an alternative approach to conventional rational drug design.

    Directory of Open Access Journals (Sweden)

    Soumya Panigrahi

    Full Text Available In this study we have calculated a 3D structure of apoptin and through modeling and docking approaches, we show its interaction with Bcr-Abl oncoprotein and its downstream signaling components, following which we confirm some of the newly-found interactions by biochemical methods. Bcr-Abl oncoprotein is aberrantly expressed in chronic myelogenous leukaemia (CML. It has several distinct functional domains in addition to the Abl kinase domain. The SH3 and SH2 domains cooperatively play important roles in autoinhibiting its kinase activity. Adapter molecules such as Grb2 and CrkL interact with proline-rich region and activate multiple Bcr-Abl downstream signaling pathways that contribute to growth and survival. Therefore, the oncogenic effect of Bcr-Abl could be inhibited by the interaction of small molecules with these domains. Apoptin is a viral protein with well-documented cancer-selective cytotoxicity. Apoptin attributes such as SH2-like sequence similarity with CrkL SH2 domain, unique SH3 domain binding sequence, presence of proline-rich segments, and its nuclear affinity render the molecule capable of interaction with Bcr-Abl. Despite almost two decades of research, the mode of apoptin's action remains elusive because 3D structure of apoptin is unavailable. We performed in silico three-dimensional modeling of apoptin, molecular docking experiments between apoptin model and the known structure of Bcr-Abl, and the 3D structures of SH2 domains of CrkL and Bcr-Abl. We also biochemically validated some of the interactions that were first predicted in silico. This structure-property relationship of apoptin may help in unlocking its cancer-selective toxic properties. Moreover, such models will guide us in developing of a new class of potent apoptin-like molecules with greater selectivity and potency.

  7. Growth of chronic myeloid leukemia cells is inhibited by infection with Ad-SH2-HA adenovirus that disrupts Grb2-Bcr-Abl complexes.

    Science.gov (United States)

    Peng, Zhi; Luo, Hong-Wei; Yuan, Ying; Shi, Jing; Huang, Shi-Feng; Li, Chun-Li; Cao, Wei-Xi; Huang, Zong-Gan; Feng, Wen-Li

    2011-05-01

    The persistence of Bcr-Abl-positive cells in patients on imatinib therapy indicates that inhibition of the Bcr-Abl kinase activity alone might not be sufficient to eradicate the leukemia cells. Many downstream effectors of Bcr-Abl have been described, including activation of both the Grb2-SoS-Ras-MAPK and Grb2-Gab2-PI3K-Akt pathways. The Bcr-Abl-Grb2 interaction, which is mediated by the direct interaction of the Grb2 SH2 domain with the phospho-Bcr-Abl Y177, is required for activation of these signaling pathways. Therefore, disrupting their interaction represents a potential therapeutic strategy for inhibiting the oncogenic downstream signals of Bcr-Abl. Adenovirus Ad-SH2-HA expressing the Grb2 SH2 domain was constructed and applied in this study. As expected, Ad-SH2-HA efficiently infected CML cells and functioned by binding to the phospho-Bcr-Abl Y177 site, competitively disrupting the Grb2 SH2-phospho-Bcr-Abl Y177 complex. They induced potent anti-proliferation and apoptosis-inducing effects in CML cell lines. Moreover, the Ras, MAPK and Akt activities were significantly reduced in the Ad-SH2-HA treated cells. These were not observed with the point-mutated control adenovirus Ad-Sm-HA with abolished phospho-Bcr-Abl Y177 binding sites. These data indicate that, in addition to the direct targeting of Bcr-Abl, selective inhibition of its downstream signaling pathways may be a therapeutic option for CML, and the Ad-SH2-HA-mediated killing strategy could be explored as a promising anti-leukemia agent in CML.

  8. Loss of the xeroderma pigmentosum group B protein binding site impairs p210 BCR/ABL1 leukemogenic activity

    International Nuclear Information System (INIS)

    Pannucci, N L; Li, D; Sahay, S; Thomas, E K; Chen, R; Tala, I; Hu, T; Ciccarelli, B T; Megjugorac, N J; Adams III, H C; Rodriguez, P L; Fitzpatrick, E R; Lagunoff, D; Williams, D A; Whitehead, I P

    2013-01-01

    Previous studies have demonstrated that p210 BCR/ABL1 interacts directly with the xeroderma pigmentosum group B (XPB) protein, and that XPB is phosphorylated on tyrosine in cells that express p210 BCR/ABL1. In the current study, we have constructed a p210 BCR/ABL1 mutant that can no longer bind to XPB. The mutant has normal kinase activity and interacts with GRB2, but can no longer phosphorylate XPB. Loss of XPB binding is associated with reduced expression of c-MYC and reduced transforming potential in ex-vivo clonogenicity assays, but does not affect nucleotide excision repair in lymphoid or myeloid cells. When examined in a bone marrow transplantation (BMT) model for chronic myelogenous leukemia, mice that express the mutant exhibit attenuated myeloproliferation and lymphoproliferation when compared with mice that express unmodified p210 BCR/ABL1. Thus, the mutant-transplanted mice show predominantly neutrophilic expansion and altered progenitor expansion, and have significantly extended lifespans. This was confirmed in a BMT model for B-cell acute lymphoblastic leukemia, wherein the majority of the mutant-transplanted mice remain disease free. These results suggest that the interaction between p210 BCR/ABL1 and XPB can contribute to disease progression by influencing the lineage commitment of lymphoid and myeloid progenitors

  9. Heterogeneity of BCR-ABL rearrangement in patients with chronic myeloid leukemia in Pakistan.

    Science.gov (United States)

    Tabassum, Najia; Saboor, Mohammad; Ghani, Rubina; Moinuddin, Moinuddin

    2014-07-01

    Breakpoint cluster region-Abelson (BCR-ABL) rearrangement or Philadelphia (Ph) chromosome in Chronic Myeloid Leukemia (CML) is derived from a reciprocal chromosomal translocation between ABL gene on chromosome 9 and BCR gene on chromosome 22. This chimeric protein has various sizes and therefore different clinical behaviour. The purpose of this study was to determine the heterogeneity of BCR-ABL rearrangement in patients with Ph(+)CML in Pakistan. The study was conducted at Civil Hospital and Baqai Institute of Hematology (BIH) Karachi. Blood samples from 25 patients with CML were collected. Multiplex reverse transcription polymerase chain reaction (RT-PCR) was performed to identify various BCR-ABL transcripts. All 25 samples showed BCR-ABL rearrangements. Out of these, 24 (96%) patients expressed p210 BCR-ABL rearrangements i.e. 60% (n=15) had b3a2 and 32% (n=8) had b2a2 rearrangements. Co-expression of b3a2 /b2a2 rearrangement and p190 (e1a3) rearrangement was also identified in two patients. It is apparent that majority of the patients had p210 BCR-ABL rearrangements. Frequency of co-expression and rare fusion transcripts was very low.

  10. Combining the ABL1 kinase inhibitor ponatinib and the histone deacetylase inhibitor vorinostat: a potential treatment for BCR-ABL-positive leukemia.

    Science.gov (United States)

    Okabe, Seiichi; Tauchi, Tetsuzo; Kimura, Shinya; Maekawa, Taira; Kitahara, Toshihiko; Tanaka, Yoko; Ohyashiki, Kazuma

    2014-01-01

    Resistance to imatinib (Gleevec®) in cancer cells is frequently because of acquired point mutations in the kinase domain of BCR-ABL. Ponatinib, also known as AP24534, is an oral multi-targeted tyrosine kinase inhibitor (TKI), and it has been investigated in a pivotal phase 2 clinical trial. The histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid) has been evaluated for its significant clinical activity in hematological malignancies. Thus, treatments combining ABL TKIs with additional drugs may be a promising strategy in the treatment of leukemia. In the current study, we analyzed the efficacy of ponatinib and vorinostat treatment by using BCR-ABL-positive cell lines. Treatment with ponatinib for 72 h inhibited cell growth and induced apoptosis in K562 cells in a dose-dependent manner. We found that ponatinib potently inhibited the growth of Ba/F3 cells ectopically expressing BCR-ABL T315I mutation. Upon BCR-ABL phosphorylation, Crk-L was decreased, and poly (ADP-ribose) polymerase (PARP) was activated in a dose-dependent manner. Combined treatment of Ba/F3 T315I mutant cells with vorinostat and ponatinib resulted in significantly increased cytotoxicity. Additionally, the intracellular signaling of ponatinib and vorinostat was examined. Caspase 3 and PARP activation increased after combination treatment with ponatinib and vorinostat. Moreover, an increase in the phosphorylation levels of γH2A.X was observed. Previously established ponatinib-resistant Ba/F3 cells were also resistant to imatinib, nilotinib, and dasatinib. We investigated the difference in the efficacy of ponatinib and vorinostat by using ponatinib-resistant Ba/F3 cells. Combined treatment of ponatinib-resistant cells with ponatinib and vorinostat caused a significant increase in cytotoxicity. Thus, combined administration of ponatinib and vorinostat may be a powerful strategy against BCR-ABL mutant cells and could enhance the cytotoxic effects of ponatinib in those BCR-ABL

  11. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway.

    OpenAIRE

    Puil, L; Liu, J; Gish, G; Mbamalu, G; Bowtell, D; Pelicci, P G; Arlinghaus, R; Pawson, T

    1994-01-01

    The cytosolic 185 and 210 kDa Bcr-Abl protein tyrosine kinases play important roles in the development of Philadelphia chromosome positive (Ph+) chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (Ph+ ALL). p185 and p210 Bcr-Abl contain identical abl-encoded sequences juxtaposed to a variable number of bcr-derived amino acids. As the mitogenic and transforming activities of tyrosine kinases involve stimulation of the Ras pathway, we analyzed Bcr-Abl oncoproteins for interacti...

  12. Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis.

    Science.gov (United States)

    Grebien, Florian; Hantschel, Oliver; Wojcik, John; Kaupe, Ines; Kovacic, Boris; Wyrzucki, Arkadiusz M; Gish, Gerald D; Cerny-Reiterer, Sabine; Koide, Akiko; Beug, Hartmut; Pawson, Tony; Valent, Peter; Koide, Shohei; Superti-Furga, Giulio

    2011-10-14

    Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Early BCR-ABL1 Transcript Decline after 1 Month of Tyrosine Kinase Inhibitor Therapy as an Indicator for Treatment Response in Chronic Myeloid Leukemia.

    Directory of Open Access Journals (Sweden)

    Mohamed El Missiry

    Full Text Available In chronic myeloid leukemia (CML, early treatment prediction is important to identify patients with inferior overall outcomes. We examined the feasibility of using reductions in BCR-ABL1 transcript levels after 1 month of tyrosine kinase inhibitor (TKI treatment to predict therapy response. Fifty-two first-line TKI-treated CML patients were included (imatinib n = 26, dasatinib n = 21, nilotinib n = 5, and BCR-ABL1 transcript levels were measured at diagnosis (dg and 1, 3, 6, 12, 18, 24, and 36 months. The fold change of the BCR-ABL1 transcripts at 1 month compared to initial BCR-ABL1 transcript levels was used to indicate early therapy response. In our cohort, 21% of patients had no decrease in BCR-ABL1 transcript levels after 1 month and were classified as poor responders. Surprisingly, these patients had lower BCR-ABL1 transcript levels at dg compared to responders (31% vs. 48%, p = 0.0083. Poor responders also significantly more often had enlarged spleen (55% vs. 15%; p<0.01 and a higher percentage of Ph+ CD34+CD38- cells in the bone marrow (91% vs. 75%, p<0.05. The major molecular response rates were inferior in the poor responders (at 12m 18% vs. 64%, p<0.01; 18m 27% vs. 75%, p<0.01; 24m 55% vs. 87%, p<0.01. In conclusion, early treatment response analysis defines a biologically distinct patient subgroup with inferior long-term outcomes.

  14. [JAK2 V617F and exon 12 genetic variations in Korean patients with BCR/ABL1-negative myeloproliferative neoplasms].

    Science.gov (United States)

    Kim, Jeong Tae; Cho, Yong Gon; Choi, Sam Im; Lee, Young Jin; Kim, Hye Ran; Jang, Sook Jin; Moon, Dae Soo; Park, Young Jin; Park, Geon

    2010-12-01

    JAK2 genetic variations have been described in a high proportion of patients with BCR/ABL1-negative myeloproliferative neoplasms (MPN). This study was designed to analyze the frequencies of JAK2 V617F and exon 12 variations, and their correlations with clinical characteristics of Korean patients with BCR/ABL1-negative MPN. We examined a total of 154 patients with BCR/ABL1-negative MPN that included 24, 26, 89, and 15 patients with polycythemia vera (PV), primary myelofibrosis (PMF), essential thrombocythemia (ET), and unclassified myeloproliferative neoplasms (MPNU), respectively. We performed allele-specific PCR to detect V617F in all BCR/ABL1-negative patients, and performed direct sequencing to detect exon 12 variations in 47 V617F-negative MPN patients. JAK2 c.1641+179_183del5 variation was detected by restriction fragment length polymorphism assay in 176 healthy subjects. JAK2 V617F was detected in 91 patients (59.1%): PV (91.6%), PMF (46.2%), ET (52.8%), and MPNU (66.7%). In V617F-negative MPN patients, no mutations were found in exon 12. The c.1641+179_183del5 was detected in 68.1% of V617F-negative MPN patients and 45.4% of healthy subjects (P=0.008). JAK2 V617F was closely correlated with age and leukocytosis in BCR/ABL1-negative MPN patients (P<0.05). However, c.1641+179_183del5 was not related to age, sex, or complete blood cell count parameters in V617F-negative MPN patients and healthy subjects. The c.1641+179_183del5 was associated with an increased odds ratio for MPN (odds ratio, 2.6; 95% confidences interval, 1.3-5.1; P=0.007). Frequencies of V617F are similar to reported results. JAK2 exon 12 mutations may be rare and c.1641+179_183del5 may influence the occurrence of MPN in Korean patients with V6 17F-negative MPN.

  15. Regulation of hTERT by BCR-ABL at multiple levels in K562 cells

    International Nuclear Information System (INIS)

    Chai, Juin Hsien; Zhang, Yong; Tan, Wei Han; Chng, Wee Joo; Li, Baojie; Wang, Xueying

    2011-01-01

    The cytogenetic characteristic of Chronic Myeloid Leukemia (CML) is the formation of the Philadelphia chromosome gene product, BCR-ABL. Given that BCR-ABL is the specific target of Gleevec in CML treatment, we investigated the regulation of the catalytic component of telomerase, hTERT, by BCR-ABL at multiple levels in K562 cells. Molecular techniques such as over expression, knockdown, real-time PCR, immunoprecipitation, western blotting, reporter assay, confocal microscopy, telomerase assays and microarray were used to suggest that hTERT expression and activity is modulated by BCR-ABL at multiple levels. Our results suggest that BCR-ABL plays an important role in regulating hTERT in K562 (BCR-ABL positive human leukemia) cells. When Gleevec inhibited the tyrosine kinase activity of BCR-ABL, phosphorylation of hTERT was downregulated, therefore suggesting a positive correlation between BCR-ABL and hTERT. Gleevec treatment inhibited hTERT at mRNA level and significantly reduced telomerase activity (TA) in K562 cells, but not in HL60 or Jurkat cells (BCR-ABL negative cells). We also demonstrated that the transcription factor STAT5a plays a critical role in hTERT gene regulation in K562 cells. Knockdown of STAT5a, but not STAT5b, resulted in a marked downregulation of hTERT mRNA level, TA and hTERT protein level in K562 cells. Furthermore, translocation of hTERT from nucleoli to nucleoplasm was observed in K562 cells induced by Gleevec. Our data reveal that BCR-ABL can regulate TA at multiple levels, including transcription, post-translational level, and proper localization. Thus, suppression of cell growth and induction of apoptosis by Gleevec treatment may be partially due to TA inhibition. Additionally, we have identified STAT5a as critical mediator of the hTERT gene expression in BCR-ABL positive CML cells, suggesting that targeting STAT5a may be a promising therapeutic strategy for BCR-ABL positive CML patients

  16. Effect of Thai saraphi flower extracts on WT1 and BCR/ABL protein ...

    African Journals Online (AJOL)

    In this study, the cytotoxic effects of crude ethanolic and fractional extracts including hexane, ethyl acetate, and methanol fractions from M. siamensis flowers were investigated in order to determine their effect on WT1 expression in Molt4 and K562 cells and Bcr/Abl expression in K562 cells. Materials and Methods: The ...

  17. Photodynamic treatment (ALA-PDT) suppresses the expression of the oncogenic Bcr-Abl kinase and affects the cytoskeleton organization in K562 cells

    Czech Academy of Sciences Publication Activity Database

    Pluskalová, M.; Pešlová, G.; Grebeňová, D.; Halada, Petr; Hrkal, Z.

    2006-01-01

    Roč. 83, - (2006), s. 205-212 ISSN 1011-1344 R&D Projects: GA MZd NL7681 Institutional research plan: CEZ:AV0Z50200510 Keywords : k562 * bcr -abl * photodynamic treatment Subject RIV: EE - Microbiology, Virology Impact factor: 1.909, year: 2006

  18. Molecular measurement of BCR-ABL transcript variations in chronic myeloid leukemia patients in cytogenetic remission

    Directory of Open Access Journals (Sweden)

    Costa Juliana

    2010-11-01

    Full Text Available Abstract Background The monitoring of BCR-ABL transcript levels by real-time quantitative polymerase chain reaction (RT-qPCR has become important to assess minimal residual disease (MRD and standard of care in the treatment of chronic myeloid leukemia (CML. In this study, we performed a prospective, sequential analysis using RT-qPCR monitoring of BCR-ABL gene rearrangements in blood samples from 91 CML patients in chronic phase (CP who achieved complete cytogenetic remission (CCyR and major molecular remission (MMR throughout imatinib treatment. Methods The absolute level of BCR-ABL transcript from peripheral blood was serially measured every 4 to 12 weeks by RT-qPCR. Only level variations > 0.5%, according to the international scale, was considered positive. Sequential cytogenetic analysis was also performed in bone marrow samples from all patients using standard protocols. Results Based on sequential analysis of BCR-ABL transcripts, the 91 patients were divided into three categories: (A 57 (62.6% had no variation on sequential analysis; (B 30 (32.9% had a single positive variation result obtained in a single sample; and (C 4 (4.39% had variations of BCR-ABL transcripts in at least two consecutive samples. Of the 34 patients who had elevated levels of transcripts (group B and C, 19 (55.8% had a BCR-ABL/BCR ratio, 13 (38.2% patients had a 1% to 10% increase and 2 patients had a >10% increase of RT-qPCR. The last two patients had lost a CCyR, and none of them showed mutations in the ABL gene. Transient cytogenetic alterations in Ph-negative cells were observed in five (5.5% patients, and none of whom lost CCyR. Conclusions Despite an increase levels of BCR-ABL/BCR ratio variations by RT-qPCR, the majority of CML patients with MMR remained in CCyR. Thus, such single variations should neither be considered predictive of subsequent failure and nor an indication for altering imatinib dose or switching to second generation therapy. Changing of

  19. A critical role of CDKN3 in Bcr-Abl-mediated tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Qinghuang Chen

    Full Text Available CDKN3 (cyclin-dependent kinase inhibitor 3, a dual specificity protein phosphatase, dephosphorylates cyclin-dependent kinases (CDKs and thus functions as a key negative regulator of cell cycle progression. Deregulation or mutations of CDNK3 have been implicated in various cancers. However, the role of CDKN3 in Bcr-Abl-mediated chronic myelogenous leukemia (CML remains unknown. Here we found that CDKN3 acts as a tumor suppressor in Bcr-Abl-mediated leukemogenesis. Overexpression of CDKN3 sensitized the K562 leukemic cells to imanitib-induced apoptosis and dramatically inhibited K562 xenografted tumor growth in nude mouse model. Ectopic expression of CDKN3 significantly reduced the efficiency of Bcr-Abl-mediated transformation of FDCP1 cells to growth factor independence. In contrast, depletion of CDKN3 expression conferred resistance to imatinib-induced apoptosis in the leukemic cells and accelerated the growth of xenograph leukemia in mice. In addition, we found that CDKN3 mutant (CDKN3-C140S devoid of the phosphatase activity failed to affect the K562 leukemic cell survival and xenografted tumor growth, suggesting that the phosphatase of CDKN3 was required for its tumor suppressor function. Furthermore, we observed that overexpression of CDKN3 reduced the leukemic cell survival by dephosphorylating CDK2, thereby inhibiting CDK2-dependent XIAP expression. Moreover, overexpression of CDKN3 delayed G1/S transition in K562 leukemic cells. Our results highlight the importance of CDKN3 in Bcr-Abl-mediated leukemogenesis, and provide new insights into diagnostics and therapeutics of the leukemia.

  20. Conventional and fluorescence in situ hybridization analysis of three-way complex BCR-ABL rearrangement in a chronic myeloid leukemia patient

    Directory of Open Access Journals (Sweden)

    Ganguly Bani

    2007-01-01

    Full Text Available Chromosomal analysis was carried out in bone marrow sample of an 11-year-old girl suspected of myeloproliferative disorder. Conventional G-banding study detected a complex three-way translocation involving 7, 9 and 22, which has resulted in the formation of a variant Philadelphia chromosome causing rearrangement of abl and bcr genes in 87% cells. Fluorescence in situ hybridization (FISH confirmed the fusion of bcr-abl oncogene. Thus the bone marrow karyotype was observed as 46,XX (13% / 46,XX,t(7;9;22(q11;q34;q11 (87%. Hyperdiploidy was present in two cells. In this study, both conventional cytogenetic and FISH diagnosis proved to be significant to identify the variant nature of the Philadelphia chromosome and hyperdiploid condition for introduction of a suitable treatment regimen and estimation of life expectancy of the young girl.

  1. Overcoming Bcr-Abl T315I mutation by combination of GNF-2 and ATP competitors in an Abl-independent mechanism

    International Nuclear Information System (INIS)

    Khateb, Mamduh; Ruimi, Nili; Khamisie, Hazem; Najajreh, Yousef; Mian, Afsar; Metodieva, Anna; Ruthardt, Martin; Mahajna, Jamal

    2012-01-01

    Philadelphia positive leukemias are characterized by the presence of Bcr-Abl fusion protein which exhibits an abnormal kinase activity. Selective Abl kinase inhibitors have been successfully established for the treatment of Ph (+) leukemias. Despite high rates of clinical response, Ph (+) patients can develop resistance against these kinase inhibitors mainly due to point mutations within the Abl protein. Of special interest is the ‘gatekeeper’ T315I mutation, which confers complete resistance to Abl kinase inhibitors. Recently, GNF-2, Abl allosteric kinase inhibitor, was demonstrated to possess cellular activity against Bcr-Abl transformed cells. Similarly to Abl kinase inhibitors (AKIs), GNF-2 failed to inhibit activity of mutated Bcr-Abl carrying the T315I mutation. Ba/F3 cells harboring native or T315I mutated Bcr-Abl constructs were treated with GNF-2 and AKIs. We monitored the effect of GNF-2 with AKIs on the proliferation and clonigenicity of the different Ba/F3 cells. In addition, we monitored the auto-phosphorylation activity of Bcr-Abl and JAK2 in cells treated with GNF-2 and AKIs. In this study, we report a cooperation between AKIs and GNF-2 in inhibiting proliferation and clonigenicity of Ba/F3 cells carrying T315I mutated Bcr-Abl. Interestingly, cooperation was most evident between Dasatinib and GNF-2. Furthermore, we showed that GNF-2 was moderately active in inhibiting the activity of JAK2 kinase, and presence of AKIs augmented GNF-2 activity. Our data illustrated the ability of allosteric inhibitors such as GNF-2 to cooperate with AKIs to overcome T315I mutation by Bcr-Abl-independent mechanisms, providing a possibility of enhancing AKIs efficacy and overcoming resistance in Ph+ leukemia cells

  2. Inhibitory effect of PTD-OD-HA fusion protein on Bcr-Abl in K562 cells

    Directory of Open Access Journals (Sweden)

    Miao GAO

    2012-10-01

    Full Text Available Objective To study the transduction dynamics, location of PTD-OD-HA fusion protein and its interaction with Bcr-Abl oncoprotein in K562 cell lines, and explore the influence of PTD-OD-HA fusion protein on oligomerization and tyrosine kinase activity of Bcr-Abl. Methods PTD-OD-HA fusion protein was labeled with FITC and co-cultured with K562 cells. The transduction efficiency of labeled PTD-OD-HA at different doses and time intervals was observed under fluorescence microscope. The location of labeled PTD-OD-HA fusion protein in K562 cells was detected by confocal microscopy. The interaction of PTD-OD-HA fusion protein with Bcr-Abl oncoprotein was confirmed by coimmunoprecipitation. The phosphorylation of Bcr-Abl oncoprotein was detected by Western blotting. Results PTD-OD-HA fusion protein labeled with FITC was transduced into K562 cells in a dose- and time-dependent manner. PTD-OD-HA fusion protein was located in the cytoplasm of K562 cells and was consistent with the location of Bcr-Abl oncoprotein. The interaction of PTD-OD-HA fusion protein with Bcr-Abl oncoprotein was proved in K562 cells. This interaction could interrupt the homologous oligomerization of Bcr-Abl oncoprotein and reduce the phosphorylation of Bcr-Abl oncoprotein. Conclusion PTD-OD-HA fusion protein could be transduced into K562 cells efficiently, inhibit the oligomerization and reduce the phosphorylation of Bcr-Abl oncoprotein.

  3. Coupling between p210bcr-abl and Shc and Grb2 adaptor proteins in hematopoietic cells permits growth factor receptor-independent link to ras activation pathway.

    Science.gov (United States)

    Tauchi, T; Boswell, H S; Leibowitz, D; Broxmeyer, H E

    1994-01-01

    Enforced expression of p210bcr-abl transforms interleukin 3 (IL-3)-dependent hematopoietic cell lines to growth factor-independent proliferation. It has been demonstrated that nonreceptor tyrosine kinase oncogenes may couple to the p21ras pathway to exert their transforming effect. In particular, p210bcr-abl was recently found to effect p21ras activation in hematopoietic cells. In this context, experiments were performed to evaluate a protein signaling pathway by which p210bcr-abl might regulate p21ras. It was asked whether Shc p46/p52, a protein containing a src-homology region 2 (SH2) domain, and known to function upstream from p21ras, might form specific complexes with p210bcr-abl and thus, possibly alter p21ras activity by coupling to the guanine nucleotide exchange factor (Sos/CDC25) through the Grb2 protein-Sos complex. This latter complex has been previously demonstrated to occur ubiquitously. We found that p210bcr-abl formed a specific complex with Shc and with Grb2 in three different murine cell lines transfected with a p210bcr-abl expression vector. There appeared to be a higher order complex containing Shc, Grb2, and bcr-abl proteins. In contrast to p210bcr-abl transformed cells, in which there was constitutive tight association between Grb2 and Shc, binding between Grb2 and Shc was Steel factor (SLF)-dependent in a SLF-responsive, nontransformed parental cell line. The SLF-dependent association between Grb2 and Shc in nontransformed cells involved formation of a complex of Grb2 with c-kit receptor after SLF treatment. Thus, p210bcr-abl appears to function in a hematopoietic p21ras activation pathway to allow growth factor-independent coupling between Grb2, which exists in a complex with the guanine nucleotide exchange factor (Sos), and p21ras. Shc may not be required for Grb2-c-kit interaction, because it fails to bind strongly to c-kit.

  4. CALR, JAK2 and MPL mutation status in Argentinean patients with BCR-ABL1- negative myeloproliferative neoplasms.

    Science.gov (United States)

    Ojeda, Mara Jorgelina; Bragós, Irma Margarita; Calvo, Karina Lucrecia; Williams, Gladis Marcela; Carbonell, María Magdalena; Pratti, Arianna Flavia

    2018-05-01

    To establish the frequency of JAK2, MPL and CALR mutations in Argentinean patients with BCR-ABL1-negative  myeloproliferative neoplasms (MPN) and to compare their clinical and haematological features. Mutations of JAK2V617F, JAK2 exon 12, MPL W515L/K and CALR were analysed in 439 Argentinean patients with BCR-ABL1-negative MPN, including 176 polycythemia vera (PV), 214 essential thrombocythemia (ET) and 49 primary myelofibrosis (PMF). In 94.9% of PV, 85.5% ET and 85.2% PMF, we found mutations in JAK2, MPL or CALR. 74.9% carried JAK2V617F, 12.3% CALR mutations, 2.1% MPL mutations and 10.7% were triple negative. In ET, nine types of CALR mutations were identified, four of which were novel. PMF patients were limited to types 1 and 2, type 2 being more frequent. In ET, patients with CALR mutation were younger and had higher platelet counts than those with JAK2V617F and triple negative. In addition, JAK2V617F patients had high leucocyte and haemoglobin values compared with CALR-mutated and triple-negative patients. In PMF, patients with mutant CALR were associated with higher platelet counts. Our study underscores the importance of JAK2, MPL and CALR genotyping for accurate diagnosis of patients with BCR-ABL1-negative MPN.

  5. Regulatory effects of sestrin 3 (SESN3 in BCR-ABL expressing cells.

    Directory of Open Access Journals (Sweden)

    Eliza Vakana

    Full Text Available Chronic myeloid leukemia (CML and Ph+ acute lymphoblastic leukemia (ALL are characterized by the presence of the BCR-ABL oncoprotein, which leads to activation of a plethora of pro-mitogenic and pro-survival pathways, including the mTOR signaling cascade. We provide evidence that in BCR-ABL expressing cells, treatment with tyrosine kinase inhibitors (TKIs results in upregulation of mRNA levels and protein expression of sestrin3 (SESN3, a unique cellular inhibitor of mTOR complex 1 (mTORC1. Such upregulation appears to be mediated by regulatory effects on mTOR, as catalytic inhibition of the mTOR kinase also induces SESN3. Catalytic mTOR inhibition also results in upregulation of SESN3 expression in cells harboring the TKI-insensitive T315I-BCR-ABL mutant, which is resistant to imatinib mesylate. Overexpression of SESN3 results in inhibitory effects on different Ph+ leukemic cell lines including KT-1-derived leukemic precursors, indicating that SESN3 mediates anti-leukemic responses in Ph+ cells. Altogether, our findings suggest the existence of a novel mechanism for the generation of antileukemic responses in CML cells, involving upregulation of SESN3 expression.

  6. Autophagy induction by Bcr-Abl-expressing cells facilitates their recovery from a targeted or nontargeted treatment.

    LENUS (Irish Health Repository)

    Crowley, Lisa C

    2012-01-31

    Although Imatinib has transformed the treatment of chronic myeloid leukemia (CML), it is not curative due to the persistence of resistant cells that can regenerate the disease. We have examined how Bcr-Abl-expressing cells respond to two mechanistically different therapeutic agents, etoposide and Imatinib. We also examined Bcr-Abl expression at low and high levels as elevated expression has been associated with treatment failure. Cells expressing low levels of Bcr-Abl undergo apoptosis in response to the DNA-targeting agent (etoposide), whereas high-Bcr-Abl-expressing cells primarily induce autophagy. Autophagic populations engage a delayed nonapoptotic death; however, sufficient cells evade this and repopulate following the withdrawal of the drug. Non-Bcr-Abl-expressing 32D or Ba\\/F3 cells induce both apoptosis and autophagy in response to etoposide and can recover. Imatinib treatment induces both apoptosis and autophagy in all Bcr-Abl-expressing cells and populations rapidly recover. Inhibition of autophagy with ATG7 and Beclin1 siRNA significantly reduced the recovery of Imatinib-treated K562 cells, indicating the importance of autophagy for the recovery of treated cells. Combination regimes incorporating agents that disrupt Imatinib-induced autophagy would remain primarily targeted and may improve response to the treatment in CML.

  7. Unexpected heterogeneity of BCR-ABL fusion mRNA detected by polymerase chain reaction in Philadelphia chromosome-positive acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Hooberman, A.L.; Carrino, J.J.; Leibowitz, D.; Rowley, J.D.; Le Beau, M.M.; Arlin, Z.A.; Westbrook, C.A.

    1989-01-01

    The Philadelphia (Ph 1 ) chromosome results in a fusion of portions of the BCR gene from chromosome 22 and the ABL gene from chromosome 9, producing a chimeric BCR-ABL mRNA and protein. In lymphoblastic leukemias, there are two molecular subtypes of the Ph 1 chromosome, one with a rearrangement of the breakpoint cluster region (bcr) of the BCR gene, producing the same 8.5-kilobase BCR-ABL fusion mRNA seen in chronic myelogenous leukemia (CML), and the other, without a bcr rearrangement, producing a 7.0-kilobase BCR-ABL fusion mRNA that is seen only in acute lymphoblastic leukemia (ALL). The authors studied the molecular subtype of the Ph 1 chromosome in 11 cases of Ph 1 -positive ALL, including 2 with a previous diagnosis of CML, using a sensitive method to analyze the mRNA species based on the polymerase chain reaction (PCR). They observed unexpected heterogeneity in BCR-ABL mRNA in this population. They conclude that the PCR gives additional information about the Ph 1 chromosome gene products that cannot be obtained by genomic analysis, but that it cannot be used as the sole means of detection of this chromosomal abnormality in ALL because of the high incidence of false negative results

  8. A BCR/ABL-hIL-2 DNA Vaccine Enhances the Immune Responses in BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Yanan Qin

    2013-01-01

    Full Text Available The use of a DNA vaccine encoding the BCR/ABL fusion gene is thought to be a promising approach for patients with chronic myeloid leukemia (CML to eradicate minimal residual disease after treatment with chemotherapy or targeted therapy. In this study, our strategy employs genetic technology to create a DNA vaccine encoding the BCR/ABL fusion and human interleukin-2 (hIL-2 genes. The successfully constructed plasmids BCR/ABL-pIRES-hIL-2, BCR/ABL-pIRES, and pIRES-hIL-2 were delivered intramuscularly to BALB/c mice at 14-day intervals for three cycles. The transcription and expression of the BCR/ABL and hIL-2 genes were found in the injected muscle tissues. The interferon-γ (IFN-γ serum levels were increased, and the splenic CD4+/CD8+ T cell ratio was significantly decreased in the BCR/ABL-pIRES-hIL-2-injected mice. Furthermore, specific antibodies against K562 cells could be detected by indirect immunofluorescence. These results indicate that a DNA vaccine containing BCR/ABL and hIL-2 together may elicit increased in vivo humoral and cellular immune responses in BALB/c mice.

  9. Association of HLA Class I and Class II genes with bcr-abl transcripts in leukemia patients with t(9;22) (q34;q11)

    International Nuclear Information System (INIS)

    Mundhada, Shailendra; Luthra, Rajyalakshmi; Cano, Pedro

    2004-01-01

    Based on the site of breakpoint in t(9;22) (q34;q11), bcr-abl fusion in leukemia patients is associated with different types of transcript proteins. In this study we have seen the association of HLA genes with different types of bcr-abl transcripts. The association could predict the bcr-abl peptide presentation by particular HLA molecules. The study included a total of 189 patients of mixed ethnicity with chronic myelogenous leukemia and acute lymphocytic leukemia who were being considered for bone marrow transplantation. Typing of bcr-abl transcripts was done by reverse transcriptase PCR method. HLA typing was performed by molecular methods. The bcr-abl and HLA association was studied by calculating the relative risks and chi-square test. Significant negative associations (p < 0.05) were observed with HLA-A*02 (b2a2, e1a2), -A*68 (b2a2, b3a2, e1a2), -B*14 (b2a2, b3a2, e1a2), -B*15 (b2a2, b3a2), -B*40 (b2a2), -DQB1*0303 (b2a2, b3a2), -DQB1*0603 (b2a2), -DRB1*0401 (e1a2), -DRB1*0701 (b3a2), and -DRB1*1101 (b2a2). The negative associations of a particular bcr-abl transcript with specific HLA alleles suggests that these alleles play a critical role in presenting peptides derived from the chimeric proteins and eliciting a successful T-cell cytotoxic response. Knowledge of differential associations between HLA phenotypes and bcr-abl fusion transcript types would help in developing better strategies for immunization with the bcr-abl peptides against t(9;22) (q34;q11)-positive leukemia

  10. [Early monitoring of BCR-ABL transcript levels and cytogenetic in assessing the prognosis of chronic myeloid leukemia].

    Science.gov (United States)

    Huang, Qin; Zhang, Xiao-yan; Li, Yan; Wang, Xiao-min

    2013-10-15

    To explore the prognostic significance of early monitoring of BCR-ABL transcript levels and cytogenetic evaluations for chronic myeloid leukemia in chronic phase (CML-CP). From July 2007 to May 2012, 56 CML-CP patients received oral imatinib 400 mg/d. The BCR-ABL transcript levels were monitored and cytogenetic examinations performed after 3 and 6 months respectively. The median follow-up time was 48 months. The 3-month BCR-ABL transcript levels ≤ 10% of patients 5-year overall survival (OS) and progression-free survival (PFS) were better than BCR-ABL transcript levels >10% of patients (OS: 100% vs 84.6%, P = 0.011; PFS: 94.6% vs 67.7%, P = 0.045); cytogenetics: Ph(+) ≤ 35 % of patients 5-year OS and PFS better than Ph(+) > 35% of patients (OS: 100% vs 76.2%, P = 0.001; PFS: 95.2% vs 38.1%, P = 0.001); the 6-month BCR-ABL transcripts level ≤ 1% of patients 5-year OS and PFS also better than BCR-ABL transcript levels> 1% of patients (OS: 100% vs 71.4%, P = 0.000; PFS: 95.2% vs 47.6%, P = 0.001); Ph(+) = 0% and Ph(+)> 0% patients, 5-year OS and PFS were significantly different (OS: 100% vs 68.6%, P = 0.000; PFS: 95.3% vs 45.7%, P = 0.000). Early molecular biology and cytogenetics monitoring have some significance in the prognostic assessment of CML-CP. And individualized treatment strategies should be based upon the monitoring results in conjunctions with comprehensive judgments.

  11. Estandarización de la TR-PCR para la detección de las fusiones génicas BCR-ABL en pacientes con leucemia Mieloide Crónica (LMC y Linfoide Aguda (LLA provenientes de HUSVP y Clíncia León XIII

    Directory of Open Access Journals (Sweden)

    Gonzálo Vásquez Palacio

    2006-04-01

    Full Text Available La translocación recíproca t(9:22(q34;q11 involucra el proto-oncogen ABL y el gen BCR, originando un gen de fusión BCR-ABL, que codifica una proteína con elevada actividad tirosina quinasa, implicada en la leucemogénesis.

  12. Overcoming imatinib resistance using Src inhibitor CGP76030, Abl inhibitor nilotinib and Abl/Lyn inhibitor INNO-406 in newly established K562 variants with BCR-ABL gene amplification.

    Science.gov (United States)

    Morinaga, Koji; Yamauchi, Takahiro; Kimura, Shinya; Maekawa, Taira; Ueda, Takanori

    2008-06-01

    Because imatinib (IM) resistance in chronic myeloid leukemia is primarily caused by the re-establishment of Abl kinase, new inhibitors may be efficacious. We evaluated 3 new agents against 2 new K562 variants, IM-R1 and IM-R2 cells, which were developed having 7- and 27-fold greater IM resistance, respectively, than the parental K562 cells. Both variants possessed BCR-ABL gene amplification along with elevated levels of its transcript and protein. Greater BCR-ABL gene amplification was observed in IM-R2 cells than in IM-R1 cells, which was consistent with the higher mRNA and protein levels of Bcr-Abl, and ultimately correlated with the greater IM resistance in IM-R2 cells. No mutation in the Abl kinase domain was detected in either variant. Despite the absence of Lyn overexpression, the Src kinase inhibitor CGP76030 showed positive cooperability with IM in inhibiting cell growth of not only K562 cells but also these 2 variants. This might be because of the augmented inhibition of Erk1/2 phosphorylation. The new Abl kinase inhibitor nilotinib was 10-fold more potent than IM in inhibiting the growth of K562 cells. Nilotinib inhibited the growth of IM-R1 and IM-R2 cells as potently as K562 cells. The combination of nilotinib with CGP76030 showed little additivity, because the potency of nilotinib masked the efficacy of CGP76030. The new dual Abl/Lyn inhibitor INNO-406 (formerly NS-187) was slightly more potent than nilotinib in inhibiting the growth of all 3 cell lines. Because BCR-ABL gene amplification occurs in blast crisis, these inhibitors might overcome IM resistance in such patients' leukemia. (c) 2008 Wiley-Liss, Inc.

  13. Long-term remission in BCR/ABL-positive AML-M6 patient treated with Imatinib Mesylate.

    Science.gov (United States)

    Pompetti, Franca; Spadano, Antonio; Sau, Antonella; Mennucci, Antonio; Russo, Rosa; Catinella, Virginia; Franchi, Paolo Guanciali; Calabrese, Giuseppe; Palka, Giandomenico; Fioritoni, Giuseppe; Iacone, Antonio

    2007-04-01

    BCR/ABL-positive acute myeloid leukemia (AML) is a rare disease, characterized by a poor prognosis, with resistance to induction chemotherapy and frequent relapses in responsive patients. Here we report a case of BCR/ABL-positive AML-M6 who, after relapse, was treated with Imatinib Mesylate (600 mg/die) and within 4 months achieved a cytogenetic and molecular complete response. After more than 4 years of continuous Imatinib therapy, nested RT-PCR for BCR/ABL is persistently negative. The case reported shows that the response obtained with Imatinib Mesylate in BCR/ABL-positive AML may be long lasting, offering a chance of successful treatment for this poor prognosis group of patients.

  14. Expression of P190 and P210 BCR/ABL1 in normal human CD34(+) cells induces similar gene expression profiles and results in a STAT5-dependent expansion of the erythroid lineage

    DEFF Research Database (Denmark)

    Järås, Marcus; Johnels, Petra; Agerstam, Helena

    2009-01-01

    OBJECTIVE: The P190 and P210 BCR/ABL1 fusion genes are mainly associated with different types of hematologic malignancies, but it is presently unclear whether they are functionally different following expression in primitive human hematopoietic cells. MATERIALS AND METHODS: We investigated...... and systematically compared the effects of retroviral P190 BCR/ABL1 and P210 BCR/ABL1 expression on cell proliferation, differentiation, and global gene expression in human CD34(+) cells from cord blood. RESULTS: Expression of either P190 BCR/ABL1 or P210 BCR/ABL1 resulted in expansion of erythroid cells...... and stimulated erythropoietin-independent burst-forming unit-erythroid colony formation. By using a lentiviral anti-signal transducer and activator of transcription 5 (STAT5) short-hairpin RNA, we found that both P190 BCR/ABL1- and P210 BCR/ABL1-induced erythroid cell expansion were STAT5-dependent. Under...

  15. Characterization of leukemias with ETV6-ABL1 fusion

    Science.gov (United States)

    Zaliova, Marketa; Moorman, Anthony V.; Cazzaniga, Giovanni; Stanulla, Martin; Harvey, Richard C.; Roberts, Kathryn G.; Heatley, Sue L.; Loh, Mignon L.; Konopleva, Marina; Chen, I-Ming; Zimmermannova, Olga; Schwab, Claire; Smith, Owen; Mozziconacci, Marie-Joelle; Chabannon, Christian; Kim, Myungshin; Frederik Falkenburg, J. H.; Norton, Alice; Marshall, Karen; Haas, Oskar A.; Starkova, Julia; Stuchly, Jan; Hunger, Stephen P.; White, Deborah; Mullighan, Charles G.; Willman, Cheryl L.; Stary, Jan; Trka, Jan; Zuna, Jan

    2016-01-01

    To characterize the incidence, clinical features and genetics of ETV6-ABL1 leukemias, representing targetable kinase-activating lesions, we analyzed 44 new and published cases of ETV6-ABL1-positive hematologic malignancies [22 cases of acute lymphoblastic leukemia (13 children, 9 adults) and 22 myeloid malignancies (18 myeloproliferative neoplasms, 4 acute myeloid leukemias)]. The presence of the ETV6-ABL1 fusion was ascertained by cytogenetics, fluorescence in-situ hybridization, reverse transcriptase-polymerase chain reaction and RNA sequencing. Genomic and gene expression profiling was performed by single nucleotide polymorphism and expression arrays. Systematic screening of more than 4,500 cases revealed that in acute lymphoblastic leukemia ETV6-ABL1 is rare in childhood (0.17% cases) and slightly more common in adults (0.38%). There is no systematic screening of myeloproliferative neoplasms; however, the number of ETV6-ABL1-positive cases and the relative incidence of acute lymphoblastic leukemia and myeloproliferative neoplasms suggest that in adulthood ETV6-ABL1 is more common in BCR-ABL1-negative chronic myeloid leukemia-like myeloproliferations than in acute lymphoblastic leukemia. The genomic profile of ETV6-ABL1 acute lymphoblastic leukemia resembled that of BCR-ABL1 and BCR-ABL1-like cases with 80% of patients having concurrent CDKN2A/B and IKZF1 deletions. In the gene expression profiling all the ETV6-ABL1-positive samples clustered in close vicinity to BCR-ABL1 cases. All but one of the cases of ETV6-ABL1 acute lymphoblastic leukemia were classified as BCR-ABL1-like by a standardized assay. Over 60% of patients died, irrespectively of the disease or age subgroup examined. In conclusion, ETV6-ABL1 fusion occurs in both lymphoid and myeloid leukemias; the genomic profile and clinical behavior resemble BCR-ABL1-positive malignancies, including the unfavorable prognosis, particularly of acute leukemias. The poor outcome suggests that treatment with

  16. BCR-ABL1 tyrosine kinase inhibitors for the treatment of chronic myeloid leukemia.

    Science.gov (United States)

    Cuellar, Sandra; Vozniak, Michael; Rhodes, Jill; Forcello, Nicholas; Olszta, Daniel

    2017-01-01

    The management of chronic myeloid leukemia with BCR-ABL1 tyrosine kinase inhibitors has evolved chronic myeloid leukemia into a chronic, manageable disease. A patient-centered approach is important for the appropriate management of chronic myeloid leukemia and optimization of long-term treatment outcomes. The pharmacist plays a key role in treatment selection, monitoring drug-drug interactions, identification and management of adverse events, and educating patients on adherence. The combination of tyrosine kinase inhibitors with unique safety profiles and individual patients with unique medical histories can make managing treatment difficult. This review will provide up-to-date information regarding tyrosine kinase inhibitor-based treatment of patients with chronic myeloid leukemia. Management strategies for adverse events and considerations for drug-drug interactions will not only vary among patients but also across tyrosine kinase inhibitors. Drug-drug interactions can be mild to severe. In instances where co-administration of concomitant medications cannot be avoided, it is critical to understand how drug levels are impacted and how subsequent dose modifications ensure therapeutic drug levels are maintained. An important component of patient-centered management of chronic myeloid leukemia also includes educating patients on the significance of early and regular monitoring of therapeutic milestones, emphasizing the importance of adhering to treatment in achieving these targets, and appropriately modifying treatment if these clinical goals are not being met. Overall, staying apprised of current research, utilizing the close pharmacist-patient relationship, and having regular interactions with patients, will help achieve successful long-term treatment of chronic myeloid leukemia in the age of BCR-ABL1 tyrosine kinase inhibitors.

  17. Mapping of four distinct BCR-related loci to chromosome region 22q11: order of BCR loci relative to chronic myelogenous leukemia and acute lymphoblastic leukemia breakpoints

    International Nuclear Information System (INIS)

    Croce, C.M.; Huebner, K.; Isobe, M.; Fainstain, E.; Lifshitz, B.; Shtivelman, E.; Canaani, E.

    1987-01-01

    A probe derived from the 3' region of the BCR gene (breakpoint cluster region gene) detects four distinct loci in the human genome. One of the loci corresponds to the complete BCR gene, whereas the other contain a 3' segment of the gene. After HindIII cleavage of human DNA, these four loci are detected as 23-, 19-, 13-, and 9-kikobase-pair fragments, designated BCR4, BCR3, BCR2, and BCR1, respectively, with BCR1 deriving from the original complete BCR gene. All four BCR loci segregate 100% concordantly with human chromosome 22 in a rodent-human somatic cell hybrid panel and are located at chromosome region 22q11.2 by chromosomal in situ hybridization. The BCR2 and BCR4 loci are amplified in leukemia cell line K562 cells, indicating that they fall within the amplification unit that includes immunoglobulin λ light chain locus (IGL) and ABL locus on the K562 Philadelphia chromosome (Ph 1 ). Similarly, in mouse-human hybrids retaining a Ph 1 chromosome derived from an acute lymphoblastic leukemia-in the absence of the 9q + and 22, only BCR2 and BCR4 loci are retained. Thus, the order of loci on chromosome 22 is centromere → BCR2, BCR4, and IGL → BCR1BCR3 → SIS, possibly eliminating BCR2 and BCR4 loci as candidate targets for juxtaposition to the ABL gene in the acute lymphoblastic leukemia Ph 1 chromosome

  18. Expression of p210 BCR/ABl increases hematopoietic progenitor cell radiosensitivity

    International Nuclear Information System (INIS)

    Santucci, M.A.; Anklesaria, P.; Das, I.J.; Sakakeeny, M.A.; FitzGerald, T.J.; Greenberger, J.S.; Laneuville, P.

    1993-01-01

    The cytogenetic finding of the Ph1+ chromosome and its molecular biologic marker bcr/abl gene rearrangement in cells from patients with chronic myeloid leukemia are associated with a proliferative advantage of the Ph1+ clone in vivo. Although the transition to the acute terminal phase or blastic crisis is often associated with additional cytogenetic abnormalities, the molecular events which correlate the initial cytogenetic lesion with the terminal phase are poorly understood. Defective cellular DNA repair capacity is often associated with chromosomal instability, increased mutation frequency, and biologic alterations. The authors tested whether the protein product of the bcr/abl translocation (p210) could alter DNA repair after gamma-irradiation of murine cell lines expressing the bcr/abl cDNA. The 32D cl 3 parent, 32D cl 3 pYN (containing the control vector plasmid) and each of two sources of 32D cl 3 cells expressing p210 cDNA (32D-PC1 cell line and 32D-LG7 subclone) showed a D 0 of 1.62, 1.57, 1.16, and 1.27 Gy, respectively. Thus, expression of the p210 product induced a significant increase in radiosensitivity at the clinically relevant radiation therapy dose-rate. The increased radiosensitivity of p210-expressing cells persisted if cells were held before plating in a density-inhibited state for 8 hr after gamma-irradiation, indicating little effect on the repair of potentially lethal gamma-irradiation damage. The IL-3 dependent parent 32D cl 3 cells demonstrated programmed cell death in the absence of growth factor or following gamma-irradiation to 200 cGy. Expression of p210 cDNA in the 32D-PC1 and 32D-LG7 subclones abrogated IL-3 requirement of these cell lines and inhibited gamma-irradiation induced programmed cell death. These data suggest a role for p210 in amplifying gamma-irradiation DNA damage or broadly inhibiting DNA repair, conditions that may stimulate further cytogenetic alterations in hematopoietic cells. 43 refs., 3 figs., 1 tab

  19. Germline mutations in ABL1 cause an autosomal dominant syndrome characterized by congenital heart defects and skeletal malformations.

    Science.gov (United States)

    Wang, Xia; Charng, Wu-Lin; Chen, Chun-An; Rosenfeld, Jill A; Al Shamsi, Aisha; Al-Gazali, Lihadh; McGuire, Marianne; Mew, Nicholas Ah; Arnold, Georgianne L; Qu, Chunjing; Ding, Yan; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Walkiewicz, Magdalena; Xia, Fan; Plon, Sharon E; Lupski, James R; Schaaf, Christian P; Yang, Yaping

    2017-04-01

    ABL1 is a proto-oncogene well known as part of the fusion gene BCR-ABL1 in the Philadelphia chromosome of leukemia cancer cells. Inherited germline ABL1 changes have not been associated with genetic disorders. Here we report ABL1 germline variants cosegregating with an autosomal dominant disorder characterized by congenital heart disease, skeletal abnormalities, and failure to thrive. The variant c.734A>G (p.Tyr245Cys) was found to occur de novo or cosegregate with disease in five individuals (families 1-3). Additionally, a de novo c.1066G>A (p.Ala356Thr) variant was identified in a sixth individual (family 4). We overexpressed the mutant constructs in HEK 293T cells and observed increased tyrosine phosphorylation, suggesting increased ABL1 kinase activities associated with both the p.Tyr245Cys and p.Ala356Thr substitutions. Our clinical and experimental findings, together with previously reported teratogenic effects of selective BCR-ABL inhibitors in humans and developmental defects in Abl1 knockout mice, suggest that ABL1 has an important role during organismal development.

  20. The Prevalence of JAK2, MPL, and CALR Mutations in Chinese Patients With BCR-ABL1-Negative Myeloproliferative Neoplasms.

    Science.gov (United States)

    Lin, Yani; Liu, Enbin; Sun, Qi; Ma, Jiao; Li, QingHua; Cao, Zeng; Wang, Jun; Jia, Yujiao; Zhang, Hongju; Song, Zhen; Ai, Xiaofei; Shi, Lihui; Feng, Xiaofang; Li, Chenwei; Wang, Jianxiang; Ru, Kun

    2015-07-01

    To evaluate the mutation frequency of JAK2 V617F, JAK2 exon 12, MPL exon 10, and CALR exon 9 and the value of the combined tests in the diagnosis of BCR-ABL1-negative myeloproliferative neoplasms (MPNs). In the current study, mutations of JAK2 V617F, JAK2 exon 12, MPL exon 10, and CALR exon 9 were analyzed in 929 Chinese patients with BCR-ABL1-negative MPN, including 234 cases of polycythemia vera (PV), 428 ETs, 187 PMFs, and 80 unclassifiable MPNs (MPN-Us). Our result showed that the positive rate of any of four mutations in patients with PV, ET, PMF, and MPN-U was 89.3%, 83.4%, 87.2%, and 77.5%, respectively, which significantly improved the diagnostic rate, especially in ET and PMF. Meanwhile, we also found that the patients without any of four mutations were younger than those with one or more mutations. Unexpectedly, the coexistence of JAK2 V617F and CALR exon 9 was identified in six (0.6%) patients, and JAK2 V617F and MPL exon 10 were present simultaneously in two (0.2%) patients. In addition, we also identified several novel mutation types in CALR exon 9. The combined genetic tests of JAK2 V617F, JAK2 exon 12, MPL exon 10, and CALR exon 9 help improve the diagnostic rate for BCR-ABL1-negative MPN. Copyright© by the American Society for Clinical Pathology.

  1. Detection of BCR-ABL Fusion mRNA Using Reverse Transcriptase Loop-mediated Isothermal Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, L C; Hall, S; Kohlgruber, A; Urbin, S; Torres, C; Wilson, P

    2011-12-08

    RT-PCR is commonly used for the detection of Bcr-Abl fusion transcripts in patients diagnosed with chronic myelogenous leukemia, CML. Two fusion transcripts predominate in CML, Br-Abl e13a2 and e14a2. They have developed reverse transcriptase isothermal loop-mediated amplification (RT-LAMP) assays to detect these two fusion transcripts along with the normal Bcr transcript.

  2. Susceptibility of Ph-positive all to TKI therapy associated with Bcr-Abl rearrangement patterns: a retrospective analysis.

    Directory of Open Access Journals (Sweden)

    Yu Jing

    Full Text Available BACKGROUND: Tyrosine kinase inhibitors (TKIs have demonstrated success in the treatment of acute lymphoblastic leukemia (ALL in patients that express BCR-ABL rearrangements (Philadelphia chromosome [Ph]. The current study aimed to assess the efficacy of TKIs and prognostic factors in the treatment of adults with Ph+-ALL. METHODS: In this multicenter retrospective study, the relationship between Ph+-ALL and treatment outcomes among Chinese patients receiving TKI-containing induction/consolidation chemotherapy was examined. A total of 86 Ph+-ALL patients were included and followed for 3.85 (0.43-9.30 years. Overall survival (OS and event-free survival (EFS were analyzed. RESULTS: A total of 86 Ph+-ALL patients (40 females and 46 males; median age: 34.0 years were enrolled, including those with BCR/ABL transcripts 190 (n = 52, 210 (n = 25, and 230 (n = 2; BCR/ABL isoform determination was not available for 7 patients. Mortality was influenced by variable BCR/ABL transcripts and TKI administration, and BCR/ABL transcripts, hematopoietic stem cell transplantation (HSCT, and TKI administration were associated with the occurrence of events. The OS rate in the TKI administration group during steady state was significantly higher compared with those patients who did not receive TKI administration (P = 0.008, the EFS rate in the TKI administration group during steady state was significantly higher compared with those patients who did not receive TKIs (P = 0.012, and also higher than those with TKI salvage administration (P = 0.004. BCR/ABL transcripts 210 showed preferable OS and EFS compared with BCR/ABL transcripts 190 and 230 (P<0.05 for each. CONCLUSIONS: The susceptibility of Ph+-ALL to TKI associated with the patterns of BCR-ABL rearrangement is demonstrated for the first time, thus adding another risk-stratifying molecular prognostic tool for the management of patients with Ph+-ALL.

  3. Association of HLA Class I and Class II genes with bcr-abl transcripts in leukemia patients with t(9;22 (q34;q11

    Directory of Open Access Journals (Sweden)

    Cano Pedro

    2004-06-01

    Full Text Available Abstract Background Based on the site of breakpoint in t(9;22 (q34;q11, bcr-abl fusion in leukemia patients is associated with different types of transcript proteins. In this study we have seen the association of HLA genes with different types of bcr-abl transcripts. The association could predict the bcr-abl peptide presentation by particular HLA molecules. Methods The study included a total of 189 patients of mixed ethnicity with chronic myelogenous leukemia and acute lymphocytic leukemia who were being considered for bone marrow transplantation. Typing of bcr-abl transcripts was done by reverse transcriptase PCR method. HLA typing was performed by molecular methods. The bcr-abl and HLA association was studied by calculating the relative risks and chi-square test. Results Significant negative associations (p Conclusions The negative associations of a particular bcr-abl transcript with specific HLA alleles suggests that these alleles play a critical role in presenting peptides derived from the chimeric proteins and eliciting a successful T-cell cytotoxic response. Knowledge of differential associations between HLA phenotypes and bcr-abl fusion transcript types would help in developing better strategies for immunization with the bcr-abl peptides against t(9;22 (q34;q11-positive leukemia.

  4. Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance

    Science.gov (United States)

    Azam, Mohammad; Nardi, Valentina; Shakespeare, William C.; Metcalf, Chester A.; Bohacek, Regine S.; Wang, Yihan; Sundaramoorthi, Raji; Sliz, Piotr; Veach, Darren R.; Bornmann, William G.; Clarkson, Bayard; Dalgarno, David C.; Sawyer, Tomi K.; Daley, George Q.

    2006-01-01

    Mutation in the ABL kinase domain is the principal mechanism of imatinib resistance in patients with chronic myelogenous leukemia. Many mutations favor active kinase conformations that preclude imatinib binding. Because the active forms of ABL and SRC resemble one another, we tested two dual SRC-ABL kinase inhibitors, AP23464 and PD166326, against 58 imatinib-resistant (IMR) BCR/ABL kinase variants. Both compounds potently inhibit most IMR variants, and in vitro drug selection demonstrates that active (AP23464) and open (PD166326) conformation-specific compounds are less susceptible to resistance than imatinib. Combinations of inhibitors suppressed essentially all resistance mutations, with the notable exception of T315I. Guided by mutagenesis studies and molecular modeling, we designed a series of AP23464 analogues to target T315I. The analogue AP23846 inhibited both native and T315I variants of BCR/ABL with submicromolar potency but showed nonspecific cellular toxicity. Our data illustrate how conformational dynamics of the ABL kinase accounts for the activity of dual SRC-ABL inhibitors against IMR-mutants and provides a rationale for combining conformation specific inhibitors to suppress resistance. PMID:16754879

  5. Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains.

    Science.gov (United States)

    Sha, Fern; Gencer, Emel Basak; Georgeon, Sandrine; Koide, Akiko; Yasui, Norihisa; Koide, Shohei; Hantschel, Oliver

    2013-09-10

    The dysregulated tyrosine kinase BCR-ABL causes chronic myelogenous leukemia in humans and forms a large multiprotein complex that includes the Src-homology 2 (SH2) domain-containing phosphatase 2 (SHP2). The expression of SHP2 is necessary for BCR-ABL-dependent oncogenic transformation, but the precise signaling mechanisms of SHP2 are not well understood. We have developed binding proteins, termed monobodies, for the N- and C-terminal SH2 domains of SHP2. Intracellular expression followed by interactome analysis showed that the monobodies are essentially monospecific to SHP2. Two crystal structures revealed that the monobodies occupy the phosphopeptide-binding sites of the SH2 domains and thus can serve as competitors of SH2-phosphotyrosine interactions. Surprisingly, the segments of both monobodies that bind to the peptide-binding grooves run in the opposite direction to that of canonical phosphotyrosine peptides, which may contribute to their exquisite specificity. When expressed in cells, monobodies targeting the N-SH2 domain disrupted the interaction of SHP2 with its upstream activator, the Grb2-associated binder 2 adaptor protein, suggesting decoupling of SHP2 from the BCR-ABL protein complex. Inhibition of either N-SH2 or C-SH2 was sufficient to inhibit two tyrosine phosphorylation events that are critical for SHP2 catalytic activity and to block ERK activation. In contrast, targeting the N-SH2 or C-SH2 revealed distinct roles of the two SH2 domains in downstream signaling, such as the phosphorylation of paxillin and signal transducer and activator of transcription 5. Our results delineate a hierarchy of function for the SH2 domains of SHP2 and validate monobodies as potent and specific antagonists of protein-protein interactions in cancer cells.

  6. Germline mutations in ABL1 cause an autosomal dominant syndrome characterized by congenital heart defects and skeletal malformations

    Science.gov (United States)

    Wang, Xia; Charng, Wu-Lin; Chen, Chun-An; Rosenfeld, Jill A.; Shamsi, Aisha Al; Al-Gazali, Lihadh; McGuire, Marianne; Mew, Nicholas Ah; Arnold, Georgianne L.; Qu, Chunjing; Ding, Yan; Muzny, Donna M.; Gibbs, Richard A.; Eng, Christine M.; Walkiewicz, Magdalena; Xia, Fan; Plon, Sharon E.; Lupski, James R.; Schaaf, Christian P.; Yang, Yaping

    2017-01-01

    ABL1 is a proto-oncogene well known as part of the fusion gene BCR-ABL in the Philadelphia chromosome of leukemia cancer cells1. Inherited germline ABL1 changes have not been associated with genetic disorders. Here we report ABL1 germline variants co-segregating with an autosomal dominant disorder characterized by congenital heart disease, skeletal abnormalities, and failure to thrive. The variant c.734A>G (p.Tyr245Cys) was found as de novo or co-segregating with disease in five individuals (families 1-3). Additionally, a de novo c.1066G>A (p.Ala356Thr) variant was identified in the sixth individual (family 4). We overexpressed the mutant constructs in HEK 293T cells and observed increased tyrosine phosphorylation, suggesting increased ABL1 kinase activities associated with both p.Tyr245Cys and p.Ala356Thr substitutions. Our clinical and laboratory findings, together with previously reported teratogenic effects of selective BCR-ABL inhibitors in humans2-5 and developmental defects in Abl1 knock-out mice6,7, suggest ABL1 plays an important role during organismal development. PMID:28288113

  7. FUSION TRANSCRIPTS OF BCR/ABL GENE IN PATIENTES WITH CHRONIC MYELOID LEUKEMIA

    OpenAIRE

    Artigas, Carmen Gloria; Melo, Angélica; Roa, Juan Carlos; Roa, Iván; Quijada, Ingrid; Vittini, Cecilia; Cabrera, María Elena; Risueño, Concepción

    2003-01-01

    La anormalidad citogenética más común en la leucemia mieloide crónica (LMC) es el cromosoma Philadelphia, producida por la t(9;22), cuya expresión molecular es el gen de fusión BCR-ABL, que codifica proteínas con actividad tirosinquinasa. Según el punto de ruptura de los genes BCR o ABL se produce una proteína de fusión de 210-kD(p210) o 190-kD(p190). La presencia de este gen de fusión en pacientes con LMC tiene implicancia diagnóstica. Con el propósito de detectar transcriptos de fusión del ...

  8. Allogeneic stem cell transplantation for patients harboring T315I BCR-ABL mutated leukemias

    DEFF Research Database (Denmark)

    Nicolini, Franck Emmanuel; Basak, Grzegorz W; Soverini, Simona

    2011-01-01

    T315I(+) Philadelphia chromosome-positive leukemias are inherently resistant to all licensed tyrosine kinase inhibitors, and therapeutic options remain limited. We report the outcome of allogeneic stem cell transplantation in 64 patients with documented BCR-ABL(T315I) mutations. Median follow......) as unfavorable factors. We conclude that allogeneic stem cell transplantation represents a valuable therapeutic tool for eligible patients with BCR-ABL(T315I) mutation, a tool that may or may not be replaced by third-generation tyrosine kinase inhibitors....

  9. Concomitant BCR-ABL1 positive chronic myelogenous leukemia emerging in a patient with MPL W515L associated primary myelofibrosis

    Directory of Open Access Journals (Sweden)

    Juan C. Gomez-Gelvez, MD

    2016-03-01

    Full Text Available Myeloproliferative neoplasms (MPNs are clonal hematopoietic stem cell disorders characterized by proliferation of one or more cell lineages in the bone marrow. At present, the main criterion in the 2008 World Health Organization classification of MPNs is the presence of an underlying genetic abnormality. These mutations are generally mutually exclusive except for rare reports in the literature. We report for the first time a detailed analysis of the clinical, histologic and cytogenetic/molecular features of a patient who initially presented with MPL W515L positive primary myelofibrosis and over the course of five years developed an MPN associated with both BCR-ABL1 and MPL W515L mutation. We discuss the diagnostic challenges and therapeutic implications of concomitant BCR-ABL1 translocation with MPL W515L mutation. Multiple genetic alterations may simultaneously coexist in patients exhibiting features of myeloproliferative disorders.

  10. Ascorbate/menadione-induced oxidative stress kills cancer cells that express normal or mutated forms of the oncogenic protein Bcr-Abl. An in vitro and in vivo mechanistic study.

    Science.gov (United States)

    Beck, Raphaël; Pedrosa, Rozangela Curi; Dejeans, Nicolas; Glorieux, Christophe; Levêque, Philippe; Gallez, Bernard; Taper, Henryk; Eeckhoudt, Stéphane; Knoops, Laurent; Calderon, Pedro Buc; Verrax, Julien

    2011-10-01

    Numerous studies suggest that generation of oxidative stress could be useful in cancer treatment. In this study, we evaluated, in vitro and in vivo, the antitumor potential of oxidative stress induced by ascorbate/menadione (asc/men). This combination of a reducing agent (ascorbate) and a redox active quinone (menadione) generates redox cycling leading to formation of reactive oxygen species (ROS). Asc/men was tested in several cell types including K562 cells (a stable human-derived leukemia cell line), freshly isolated leukocytes from patients with chronic myeloid leukemia, BaF3 cells (a murine pro-B cell line) transfected with Bcr-Abl and peripheral blood leukocytes derived from healthy donors. Although these latter cells were resistant to asc/men, survival of all the other cell lines was markedly reduced, including the BaF3 cells expressing either wild-type or mutated Bcr-Abl. In a standard in vivo model of subcutaneous tumor transplantation, asc/men provoked a significant delay in the proliferation of K562 and BaF3 cells expressing the T315I mutated form of Bcr-Abl. No effect of asc/men was observed when these latter cells were injected into blood of mice most probably because of the high antioxidant potential of red blood cells, as shown by in vitro experiments. We postulate that cancer cells are more sensitive to asc/men than healthy cells because of their lack of antioxidant enzymes, mainly catalase. The mechanism underlying this cytotoxicity involves the oxidative cleavage of Hsp90 with a subsequent loss of its chaperone function thus leading to degradation of wild-type and mutated Bcr-Abl protein.

  11. Combined Targeting of BCL-2 and BCR-ABL Tyrosine Kinase Eradicates Chronic Myeloid Leukemia Stem Cells

    Science.gov (United States)

    Mak, Po Yee; Mu, Hong; Zhou, Hongsheng; Mak, Duncan H.; Schober, Wendy; Leverson, Joel D.; Zhang, Bin; Bhatia, Ravi; Huang, Xuelin; Cortes, Jorge; Kantarjian, Hagop; Konopleva, Marina

    2016-01-01

    BCR-ABL tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML), but they rarely eliminate CML stem cells. Disease relapse is common upon therapy cessation, even in patients with complete molecular responses. Furthermore, once CML progresses to blast crisis (BC), treatment outcomes are dismal. We hypothesized that concomitant targeting of BCL-2 and BCR-ABL tyrosine kinase could overcome these limitations. We demonstrate increased BCL-2 expression at the protein level in bone marrow cells, particularly in Lin−Sca-1+cKit+ cells of inducible CML in mice as determined by CyTOF mass cytometry. Further, selective inhibition of BCL-2, aided by TKI-mediated MCL-1 and BCL-XL inhibition, markedly decreased leukemic Lin−Sca-1+cKit+ cell numbers and long-term stem cell frequency, and prolonged survival in a murine CML model. Additionally, this combination effectively eradicated CD34+CD38−, CD34+CD38+, and quiescent stem/progenitor CD34+ cells from BC CML patient samples. Our results suggest that BCL-2 is a key survival factor for CML stem/progenitor cells and that combined inhibition of BCL-2 and BCR-ABL tyrosine kinase has the potential to significantly improve depth of response and cure rates of chronic phase and BC CML. PMID:27605552

  12. Chronic myeloid leukemia may be associated with several bcr-abl transcripts including the acute lymphoid leukemia-type 7 kb transcript

    NARCIS (Netherlands)

    Selleri, L.; von Lindern, M.; Hermans, A.; Meijer, D.; Torelli, G.; Grosveld, G.

    1990-01-01

    In the majority of Philadelphia (Ph)-positive chronic myeloid leukemia (CML) patients, the c-abl gene is fused to the bcr gene, resulting in the transcription of an 8.5 kb chimeric bcr-abl mRNA, which is translated into a p210bcr-abl fusion protein. In about 50% of the Ph-positive acute lymphoid

  13. Disrupting BCR-ABL in Combination with Secondary Leukemia-Specific Pathways in CML Cells Leads to Enhanced Apoptosis and Decreased Proliferation

    OpenAIRE

    Woessner, David W.; Lim, Carol S.

    2012-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder caused by expression of the fusion gene BCR-ABL following a chromosomal translocation in the hematopoietic stem cell.1 Therapeutic management of CML uses tyrosine kinase inhibitors (TKIs), which blocks ABL-signaling and effectively kill peripheral cells with BCR-ABL. However, TKIs are not curative, and chronic use of is required in order to treat CML. The primary failure for TKIs is through development of a resistant population d...

  14. Pristimerin induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T315I mutation by blocking NF-κB signaling and depleting Bcr-Abl

    Science.gov (United States)

    2010-01-01

    Background Chronic myelogenous leukemia (CML) is characterized by the chimeric tyrosine kinase Bcr-Abl. Bcr-Abl-T315I is the notorious point mutation that causes resistance to imatinib and the second generation tyrosine kinase inhibitors, leading to poor prognosis. CML blasts have constitutive p65 (RelA NF-κB) transcriptional activity, and NF-κB may be a potential target for molecular therapies in CML that may also be effective against CML cells with Bcr-Abl-T315I. Results In this report, we discovered that pristimerin, a quinonemethide triterpenoid isolated from Celastraceae and Hippocrateaceae, inhibited growth and induced apoptosis in CML cells, including the cells harboring Bcr-Abl-T315I mutation. Additionally, pristimerin inhibited the growth of imatinib-resistant Bcr-Abl-T315I xenografts in nude mice. Pristimerin blocked the TNFα-induced IκBα phosphorylation, translocation of p65, and expression of NF-κB-regulated genes. Pristimerin inhibited two steps in NF-κB signaling: TAK1→IKK and IKK→IκBα. Pristimerin potently inhibited two pairs of CML cell lines (KBM5 versus KBM5-T315I, 32D-Bcr-Abl versus 32D-Bcr-Abl-T315I) and primary cells from a CML patient with acquired resistance to imatinib. The mRNA and protein levels of Bcr-Abl in imatinib-sensitive (KBM5) or imatinib-resistant (KBM5-T315I) CML cells were reduced after pristimerin treatment. Further, inactivation of Bcr-Abl by imatinib pretreatment did not abrogate the TNFα-induced NF-κB activation while silencing p65 by siRNA did not affect the levels of Bcr-Abl, both results together indicating that NF-κB inactivation and Bcr-Abl inhibition may be parallel independent pathways. Conclusion To our knowledge, this is the first report to show that pristimerin is effective in vitro and in vivo against CML cells, including those with the T315I mutation. The mechanisms may involve inhibition of NF-κB and Bcr-Abl. We concluded that pristimerin could be a lead compound for further drug development to

  15. β-Catenin is required for intrinsic but not extrinsic BCR-ABL1 kinase-independent resistance to tyrosine kinase inhibitors in chronic myeloid leukemia.

    Science.gov (United States)

    Eiring, A M; Khorashad, J S; Anderson, D J; Yu, F; Redwine, H M; Mason, C C; Reynolds, K R; Clair, P M; Gantz, K C; Zhang, T Y; Pomicter, A D; Kraft, I L; Bowler, A D; Johnson, K; Partlin, M Mac; O'Hare, T; Deininger, M W

    2015-12-01

    Activation of nuclear β-catenin and expression of its transcriptional targets promotes chronic myeloid leukemia (CML) progression, tyrosine kinase inhibitor (TKI) resistance, and leukemic stem cell self-renewal. We report that nuclear β-catenin has a role in leukemia cell-intrinsic but not -extrinsic BCR-ABL1 kinase-independent TKI resistance. Upon imatinib inhibition of BCR-ABL1 kinase activity, β-catenin expression was maintained in intrinsically resistant cells grown in suspension culture and sensitive cells cultured in direct contact (DC) with bone marrow (BM) stromal cells. Thus, TKI resistance uncouples β-catenin expression from BCR-ABL1 kinase activity. In β-catenin reporter assays, intrinsically resistant cells showed increased transcriptional activity versus parental TKI-sensitive controls, and this was associated with restored expression of β-catenin target genes. In contrast, DC with BM stromal cells promoted TKI resistance, but had little effects on Lef/Tcf reporter activity and no consistent effects on cytoplasmic β-catenin levels, arguing against a role for β-catenin in extrinsic TKI resistance. N-cadherin or H-cadherin blocking antibodies abrogated DC-based resistance despite increasing Lef/Tcf reporter activity, suggesting that factors other than β-catenin contribute to extrinsic, BM-derived TKI resistance. Our data indicate that, while nuclear β-catenin enhances survival of intrinsically TKI-resistant CML progenitors, it is not required for extrinsic resistance mediated by the BM microenvironment.

  16. Allosteric Inhibition of Bcr-Abl Kinase by High Affinity Monobody Inhibitors Directed to the Src Homology 2 (SH2)-Kinase Interface*

    Science.gov (United States)

    Wojcik, John; Lamontanara, Allan Joaquim; Grabe, Grzegorz; Koide, Akiko; Akin, Louesa; Gerig, Barbara; Hantschel, Oliver; Koide, Shohei

    2016-01-01

    Bcr-Abl is a constitutively active kinase that causes chronic myelogenous leukemia. We have shown that a tandem fusion of two designed binding proteins, termed monobodies, directed to the interaction interface between the Src homology 2 (SH2) and kinase domains and to the phosphotyrosine-binding site of the SH2 domain, respectively, inhibits the Bcr-Abl kinase activity. Because the latter monobody inhibits processive phosphorylation by Bcr-Abl and the SH2-kinase interface is occluded in the active kinase, it remained undetermined whether targeting the SH2-kinase interface alone was sufficient for Bcr-Abl inhibition. To address this question, we generated new, higher affinity monobodies with single nanomolar KD values targeting the kinase-binding surface of SH2. Structural and mutagenesis studies revealed the molecular underpinnings of the monobody-SH2 interactions. Importantly, the new monobodies inhibited Bcr-Abl kinase activity in vitro and in cells, and they potently induced cell death in chronic myelogenous leukemia cell lines. This work provides strong evidence for the SH2-kinase interface as a pharmacologically tractable site for allosteric inhibition of Bcr-Abl. PMID:26912659

  17. Allosteric Inhibition of Bcr-Abl Kinase by High Affinity Monobody Inhibitors Directed to the Src Homology 2 (SH2)-Kinase Interface.

    Science.gov (United States)

    Wojcik, John; Lamontanara, Allan Joaquim; Grabe, Grzegorz; Koide, Akiko; Akin, Louesa; Gerig, Barbara; Hantschel, Oliver; Koide, Shohei

    2016-04-15

    Bcr-Abl is a constitutively active kinase that causes chronic myelogenous leukemia. We have shown that a tandem fusion of two designed binding proteins, termed monobodies, directed to the interaction interface between the Src homology 2 (SH2) and kinase domains and to the phosphotyrosine-binding site of the SH2 domain, respectively, inhibits the Bcr-Abl kinase activity. Because the latter monobody inhibits processive phosphorylation by Bcr-Abl and the SH2-kinase interface is occluded in the active kinase, it remained undetermined whether targeting the SH2-kinase interface alone was sufficient for Bcr-Abl inhibition. To address this question, we generated new, higher affinity monobodies with single nanomolar KD values targeting the kinase-binding surface of SH2. Structural and mutagenesis studies revealed the molecular underpinnings of the monobody-SH2 interactions. Importantly, the new monobodies inhibited Bcr-Abl kinase activity in vitro and in cells, and they potently induced cell death in chronic myelogenous leukemia cell lines. This work provides strong evidence for the SH2-kinase interface as a pharmacologically tractable site for allosteric inhibition of Bcr-Abl. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance

    Energy Technology Data Exchange (ETDEWEB)

    O’Hare, Thomas; Shakespeare, William C.; Zhu, Xiaotian; Eide, Christopher A.; Rivera, Victor M.; Wang, Frank; Adrian, Lauren T.; Zhou, Tianjun; Huang, Wei-Sheng; Xu, Qihong; Metcalf, III, Chester A.; Tyner, Jeffrey W.; Loriaux, Marc M.; Corbin, Amie S.; Wardwell, Scott; Ning, Yaoyu; Keats, Jeffrey A.; Wang, Yihan; Sundaramoorthi, Raji; Thomas, Mathew; Zhou, Dong; Snodgrass, Joseph; Commodore, Lois; Sawyer, Tomi K.; Dalgarno, David C.; Deininger, Michael W.N.; Druker, Brian J.; Clackson, Tim; (OHSU- Cancer Instit.); (ARIAD)

    2010-09-07

    Inhibition of BCR-ABL by imatinib induces durable responses in many patients with chronic myeloid leukemia (CML), but resistance attributable to kinase domain mutations can lead to relapse and a switch to second-line therapy with nilotinib or dasatinib. Despite three approved therapeutic options, the cross-resistant BCR-ABL{sup T315I} mutation and compound mutants selected on sequential inhibitor therapy remain major clinical challenges. We report design and preclinical evaluation of AP24534, a potent, orally available multitargeted kinase inhibitor active against T315I and other BCR-ABL mutants. AP24534 inhibited all tested BCR-ABL mutants in cellular and biochemical assays, suppressed BCR-ABL{sup T315I}-driven tumor growth in mice, and completely abrogated resistance in cell-based mutagenesis screens. Our work supports clinical evaluation of AP24534 as a pan-BCR-ABL inhibitor for treatment of CML.

  19. Functionally deregulated AML1/RUNX1 cooperates with BCR-ABL to induce a blastic phase-like phenotype of chronic myelogenous leukemia in mice.

    Directory of Open Access Journals (Sweden)

    Kiyoko Yamamoto

    Full Text Available Patients in the chronic phase (CP of chronic myelogenous leukemia (CML have been treated successfully following the advent of ABL kinase inhibitors, but once they progress to the blast crisis (BC phase the prognosis becomes dismal. Although mechanisms underlying the progression are largely unknown, recent studies revealed the presence of alterations of key molecules for hematopoiesis, such as AML1/RUNX1. Our analysis of 13 BC cases revealed that three cases had AML1 mutations and the transcript levels of wild-type (wt. AML1 were elevated in BC compared with CP. Functional analysis of representative AML1 mutants using mouse hematopoietic cells revealed the possible contribution of some, but not all, mutants for the BC-phenotype. Specifically, K83Q and R139G, but neither R80C nor D171N mutants, conferred upon BCR-ABL-expressing cells a growth advantage over BCR-ABL-alone control cells in cytokine-free culture, and the cells thus grown killed mice upon intravenous transfer. Unexpectedly, wt.AML1 behaved similarly to K83Q and R139G mutants. In a bone marrow transplantation assay, K83Q and wt.AML1s induced the emergence of blast-like cells. The overall findings suggest the roles of altered functions of AML1 imposed by some, but not all, mutants, and the elevated expression of wt.AML1 for the disease progression of CML.

  20. Prolonged treatment with imatinib mesylate in patients with advanced chronic myeloid leukemia causes a reduction of bcr/abl mRNA levels independent of cytogenetic response.

    Science.gov (United States)

    Cariani, E; Capucci, M; Micheletti, M; Spalenza, F; Zanella, I; Albertini, A; Rossi, G

    2003-06-01

    Bcr/abl mRNA levels were monitored in 13 patients with chronic myeloid leukemia receiving imatinib mesylate over a period of 78 weeks. During treatment median bcr/abl mRNA levels progressively declined from 77.2 normalized dose (nD) at baseline to 11.28 nD after 13 weeks ( P<0.05) and to 1.28 nD after 78 weeks ( P<0.05). After 13 weeks, bcr/abl mRNA levels were significantly lower in cytogenetic responders compared to nonresponders ( P<0.05), but subsequent decrease in the transcript levels caused the loss of any correlation to the cytogenetic status. These results suggest that bcr/abl mRNA levels may reflect cytogenetic response only during the early phases of imatinib therapy.

  1. Computational dissection of allosteric inhibition of the SH2 domain of Bcr-Abl kinase by the monobody inhibitor AS25.

    Science.gov (United States)

    Ji, Mingfei; Zheng, Guodong; Li, Xiaolong; Zhang, Zhongqin; Jv, Guanqun; Wang, Xiaowei; Wang, Jialin

    2017-06-01

    The deregulated breakpoint cluster region (Bcr)-Abelson tyrosine kinase (Abl) fusion protein represents an attractive pharmacological target for the treatment of chronic myeloid leukemia (CML). The high affinity of monobody AS25 was designed to target the Src homology 2 (SH2) domain of Bcr-Abl, leading to allosteric inhibition of Bcr-Abl through formation of protein-protein interactions. An I164E mutation in the SH2 domain disrupts AS25 binding to the SH2 domain of Bcr-Abl. The detailed mechanisms, however, remain to be unresolved. Here, molecular dynamics (MD) simulations and binding free energy calculations were performed to explore the conformational and energetic differences between the wild-type (WT) complexes of Bcr-Abl SH2 domain and AS25 (SH2 WT -AS25) as well as the mutated complexes (SH2 I164E -AS25). The results revealed that I164E mutation not only caused an increase in the conformational flexibility of SH2-AS25 complexes, but also weakened the binding affinity of AS25 to SH2. The comparative binding modes of SH2-AS25 complexes between WT and the I164E mutant were comprehensively analyzed to unravel the disruption of hydrophobic and hydrogen bonding interactions in the interface of the SH2-AS25 complex triggered by the I164E mutation. The results obtained may help to design the next generation of higher affinity Bcr-Abl SH2-specific peptide inhibitors.

  2. Frequency of p190 and p210 BCR-ABL rearrangements and survival in Brazilian adult patients with acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Ilana de França Azevedo

    2014-10-01

    Full Text Available Objective: This study investigated the occurrence of the p190 and p210 break point clusterregion-Abelson (BCR-ABL rearrangements in adults with acute lymphoblastic leukemia and possible associations with clinical and laboratory characteristics and survival. Methods: Forty-one over 18-year-old patients with acute lymphoblastic leukemia of both genders followed-up between January 2008 and May 2012 were included in this study. Clinical and laboratory data were obtained from the medical charts of the patients. Reverse transcription polymerase chain reaction (RT-PCR using specific primers was employed to identify molecular rearrangements. Results: At diagnosis, the median age was 33 years, and there was a predominance of males (61%. The most common immunophenotype was B lineage (76%. BCR-ABL rearrangements was detected in 14 (34% patients with the following distribution: p190 (28%, p210 (50% and double positive (22%. Overall survival of patients with a mean/median of 331/246 days of follow up was 39%, respectively, negative BCR-ABL (44% and positive BCR-ABL (28%. Conclusion: These results confirm the high frequency of BCR-ABL rearrangements and the low survival rate of adult Brazilian patients with acute lymphoblastic leukemia.

  3. Engineering and Functional Characterization of Fusion Genes Identifies Novel Oncogenic Drivers of Cancer. | Office of Cancer Genomics

    Science.gov (United States)

    Oncogenic gene fusions drive many human cancers, but tools to more quickly unravel their functional contributions are needed. Here we describe methodology permitting fusion gene construction for functional evaluation. Using this strategy, we engineered the known fusion oncogenes, BCR-ABL1, EML4-ALK, and ETV6-NTRK3, as well as 20 previously uncharacterized fusion genes identified in TCGA datasets.

  4. In chronic myeloid leukemia patients on second-line tyrosine kinase inhibitor therapy, deep sequencing of BCR-ABL1 at the time of warning may allow sensitive detection of emerging drug-resistant mutants.

    Science.gov (United States)

    Soverini, Simona; De Benedittis, Caterina; Castagnetti, Fausto; Gugliotta, Gabriele; Mancini, Manuela; Bavaro, Luana; Machova Polakova, Katerina; Linhartova, Jana; Iurlo, Alessandra; Russo, Domenico; Pane, Fabrizio; Saglio, Giuseppe; Rosti, Gianantonio; Cavo, Michele; Baccarani, Michele; Martinelli, Giovanni

    2016-08-02

    Imatinib-resistant chronic myeloid leukemia (CML) patients receiving second-line tyrosine kinase inhibitor (TKI) therapy with dasatinib or nilotinib have a higher risk of disease relapse and progression and not infrequently BCR-ABL1 kinase domain (KD) mutations are implicated in therapeutic failure. In this setting, earlier detection of emerging BCR-ABL1 KD mutations would offer greater chances of efficacy for subsequent salvage therapy and limit the biological consequences of full BCR-ABL1 kinase reactivation. Taking advantage of an already set up and validated next-generation deep amplicon sequencing (DS) assay, we aimed to assess whether DS may allow a larger window of detection of emerging BCR-ABL1 KD mutants predicting for an impending relapse. a total of 125 longitudinal samples from 51 CML patients who had acquired dasatinib- or nilotinib-resistant mutations during second-line therapy were analyzed by DS from the time of failure and mutation detection by conventional sequencing backwards. BCR-ABL1/ABL1%(IS) transcript levels were used to define whether the patient had 'optimal response', 'warning' or 'failure' at the time of first mutation detection by DS. DS was able to backtrack dasatinib- or nilotinib-resistant mutations to the previous sample(s) in 23/51 (45 %) pts. Median mutation burden at the time of first detection by DS was 5.5 % (range, 1.5-17.5 %); median interval between detection by DS and detection by conventional sequencing was 3 months (range, 1-9 months). In 5 cases, the mutations were detectable at baseline. In the remaining cases, response level at the time mutations were first detected by DS could be defined as 'Warning' (according to the 2013 ELN definitions of response to 2nd-line therapy) in 13 cases, as 'Optimal response' in one case, as 'Failure' in 4 cases. No dasatinib- or nilotinib-resistant mutations were detected by DS in 15 randomly selected patients with 'warning' at various timepoints, that later turned into optimal

  5. BCR-ABL1 mutation development during first-line treatment with dasatinib or imatinib for chronic myeloid leukemia in chronic phase.

    Science.gov (United States)

    Hughes, T P; Saglio, G; Quintás-Cardama, A; Mauro, M J; Kim, D-W; Lipton, J H; Bradley-Garelik, M B; Ukropec, J; Hochhaus, A

    2015-09-01

    BCR-ABL1 mutations are a common, well-characterized mechanism of resistance to imatinib as first-line treatment of chronic myeloid leukemia in chronic phase (CML-CP). Less is known about mutation development during first-line treatment with dasatinib and nilotinib, despite increased use because of higher response rates compared with imatinib. Retrospective analyses were conducted to characterize mutation development in patients with newly diagnosed CML-CP treated with dasatinib (n=259) or imatinib (n=260) in DASISION (Dasatinib versus Imatinib Study in Treatment-Naive CML-CP), with 3-year minimum follow-up. Mutation screening, including patients who discontinued treatment and patients who had a clinically relevant on-treatment event (no confirmed complete cytogenetic response (cCCyR) and no major molecular response (MMR) within 12 months; fivefold increase in BCR-ABL1 with loss of MMR; loss of CCyR), yielded a small number of patients with mutations (dasatinib, n=17; imatinib, n=18). Dasatinib patients had a narrower spectrum of mutations (4 vs 12 sites for dasatinib vs imatinib), fewer phosphate-binding loop mutations (1 vs 9 mutations), fewer multiple mutations (1 vs 6 patients) and greater occurrence of T315I (11 vs 0 patients). This trial was registered at www.clinicaltrials.gov as NCT00481247.

  6. AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance

    Science.gov (United States)

    O’Hare, Thomas; Shakespeare, William C.; Zhu, Xiaotian; Eide, Christopher A.; Rivera, Victor M.; Wang, Frank; Adrian, Lauren T.; Zhou, Tianjun; Huang, Wei-Sheng; Xu, Qihong; Metcalf, Chester A.; Tyner, Jeffrey W.; Loriaux, Marc M.; Corbin, Amie S.; Wardwell, Scott; Ning, Yaoyu; Keats, Jeffrey A.; Wang, Yihan; Sundaramoorthi, Raji; Thomas, Mathew; Zhou, Dong; Snodgrass, Joseph; Commodore, Lois; Sawyer, Tomi K.; Dalgarno, David C.; Deininger, Michael W.N.; Druker, Brian J.; Clackson, Tim

    2009-01-01

    SUMMARY Inhibition of BCR-ABL by imatinib induces durable responses in many patients with chronic myeloid leukemia (CML), but resistance attributable to kinase domain mutations can lead to relapse and a switch to second-line therapy with nilotinib or dasatinib. Despite three approved therapeutic options, the cross-resistant BCR-ABLT315I mutation and compound mutants selected on sequential inhibitor therapy remain major clinical challenges. We report design and pre-clinical evaluation of AP24534, a potent, orally available multi-targeted kinase inhibitor active against T315I and other BCR-ABL mutants. AP24534 inhibited all tested BCR-ABL mutants in cellular and biochemical assays, suppressed BCR-ABLT315I-driven tumor growth in mice, and completely abrogated resistance in cell-based mutagenesis screens. Our work supports clinical evaluation of AP24534 as a pan-BCR-ABL inhibitor for treatment of CML. PMID:19878872

  7. Evolution of BCR/ABL gene mutation in CML is time dependent and dependent on the pressure exerted by tyrosine kinase inhibitor.

    Directory of Open Access Journals (Sweden)

    Shantashri Vaidya

    Full Text Available BACKGROUND: Mutations in the ABL kinase domain and SH3-SH2 domain of the BCR/ABL gene and amplification of the Philadelphia chromosome are the two important BCR/ABL dependent mechanisms of imatinib resistance. Here, we intended to study the role played by TKI, imatinib, in selection of gene mutations and development of chromosomal abnormalities in Indian CML patients. METHODS: Direct sequencing methodology was employed to detect mutations and conventional cytogenetics was done to identify Philadelphia duplication. RESULTS: Among the different mechanisms of imatinib resistance, kinase domain mutations (39% of the BCR/ABL gene were seen to be more prevalent, followed by mutations in the SH3-SH2 domain (4% and then BCR/ABL amplification with the least frequency (1%. The median duration of occurrence of mutation was significantly shorter for patients with front line imatinib than those pre-treated with hydroxyurea. Patients with high Sokal score (p = 0.003 showed significantly higher incidence of mutations, as compared to patients with low/intermediate score. Impact of mutations on the clinical outcome in AP and BC was observed to be insignificant. Of the 94 imatinib resistant patients, only 1 patient exhibited duplication of Philadelphia chromosome, suggesting a less frequent occurrence of this abnormality in Indian CML patients. CONCLUSION: Close monitoring at regular intervals and proper analysis of the disease resistance would facilitate early detection of resistance and thus aid in the selection of the most appropriate therapy.

  8. Determination of lactate dehydrogenase (LDH and Bcr-Abl transcript in the follow-up of patients with chronic myeloid leukemia = Determinação da lactate desidrogenase (LDH e do transcrito Bcr-Abl em pacientes com leucemia mielóide crônica

    Directory of Open Access Journals (Sweden)

    Roberto Iemitsu Tatakihara

    2010-07-01

    Full Text Available Chronic myeloid leukemia (CML is a malignant myeloproliferative disorder that originates from a pluripotent stem cell characterized by abnormal release of the expanded, malignant stem cell clone from the bone marrow into the bloodstream. The vast majority of patients with CML present Bcr-Abl transcripts. Lactate dehydrogenase (LDH is considered a biochemical marker common for tumor growth, anaerobic glycolysis and has been considered a poor prognostic factor for acute myeloid leukemia. Therefore, this study aimed to evaluate the concentration of LDH in plasma and the detection of the Bcr-Abl transcripts in patients with CML and healthy donors. We analyzed 22 patients demonstrably diagnosed with CML and 56 healthy donors. LDH concentration in plasma was higher in patients with CML. All patients with CML in this study were under treatment, but even so four patients had the Bcr-Abl (b3a2 transcript in peripheral blood. Two out of the four patients with b3a2 showed higher LDH (486 U L-1 and 589 U L-1. Thus, although the study was conducted with small numbers of samples, it is possible to suggest therapy alteration for two patients who presented transcript b3a2 in the peripheral blood samples and whose LDH concentration was high, in order to improve the disease. Leucemia mieloide crônica (LMC é uma desordem mieloproliferativa maligna que é originada de célula-tronco pluripotente caracterizada por expansão anormal, maligna de clones de células tronco da medula óssea na circulação. A grande maioria dos pacientes com LMC apresentam transcritos Bcr-Abl. Lactato desidrogenase (LDH,considerado um marcador bioquímico para crescimento tumoral, glicólise anaeróbica, e tem sido considerado um fator de pior prognóstico da LMC. Portanto, este estudo visa avaliar a concentraçãode LDH no plasma e a detecção do transcrito Bcr-Abl em 22 pacientes com LMC e 56 indivíduos saudáveis. Foram avaliados 22 pacientes com LMC e 56 doadores saudáveis. A

  9. Structural Mechanism of the Pan-BCR-ABL Inhibitor Ponatinib (AP24534): Lessons for Overcoming Kinase Inhibitor Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tianjun; Commodore, Lois; Huang, Wei-Sheng; Wang, Yihan; Thomas, Mathew; Keats, Jeff; Xu, Qihong; Rivera, Victor M.; Shakespeare, William C.; Clackson, Tim; Dalgarno, David C.; Zhu, Xiaotian (ARIAD)

    2012-01-20

    The BCR-ABL inhibitor imatinib has revolutionized the treatment of chronic myeloid leukemia. However, drug resistance caused by kinase domain mutations has necessitated the development of new mutation-resistant inhibitors, most recently against the T315I gatekeeper residue mutation. Ponatinib (AP24534) inhibits both native and mutant BCR-ABL, including T315I, acting as a pan-BCR-ABL inhibitor. Here, we undertook a combined crystallographic and structure-activity relationship analysis on ponatinib to understand this unique profile. While the ethynyl linker is a key inhibitor functionality that interacts with the gatekeeper, virtually all other components of ponatinib play an essential role in its T315I inhibitory activity. The extensive network of optimized molecular contacts found in the DFG-out binding mode leads to high potency and renders binding less susceptible to disruption by single point mutations. The inhibitory mechanism exemplified by ponatinib may have broad relevance to designing inhibitors against other kinases with mutated gatekeeper residues.

  10. Stat5 Exerts Distinct, Vital Functions in the Cytoplasm and Nucleus of Bcr-Abl+ K562 and Jak2(V617F)+ HEL Leukemia Cells

    International Nuclear Information System (INIS)

    Weber, Axel; Borghouts, Corina; Brendel, Christian; Moriggl, Richard; Delis, Natalia; Brill, Boris; Vafaizadeh, Vida; Groner, Bernd

    2015-01-01

    Signal transducers and activators of transcription (Stats) play central roles in the conversion of extracellular signals, e.g., cytokines, hormones and growth factors, into tissue and cell type specific gene expression patterns. In normal cells, their signaling potential is strictly limited in extent and duration. The persistent activation of Stat3 or Stat5 is found in many human tumor cells and contributes to their growth and survival. Stat5 activation plays a pivotal role in nearly all hematological malignancies and occurs downstream of oncogenic kinases, e.g., Bcr-Abl in chronic myeloid leukemias (CML) and Jak2(V617F) in other myeloproliferative diseases (MPD). We defined the mechanisms through which Stat5 affects growth and survival of K562 cells, representative of Bcr-Abl positive CML, and HEL cells, representative for Jak2(V617F) positive acute erythroid leukemia. In our experiments we suppressed the protein expression levels of Stat5a and Stat5b through shRNA mediated downregulation and demonstrated the dependence of cell survival on the presence of Stat5. Alternatively, we interfered with the functional capacities of the Stat5 protein through the interaction with a Stat5 specific peptide ligand. This ligand is a Stat5 specific peptide aptamer construct which comprises a 12mer peptide integrated into a modified thioredoxin scaffold, S5-DBD-PA. The peptide sequence specifically recognizes the DNA binding domain (DBD) of Stat5. Complex formation of S5-DBD-PA with Stat5 causes a strong reduction of P-Stat5 in the nuclear fraction of Bcr-Abl-transformed K562 cells and a suppression of Stat5 target genes. Distinct Stat5 mediated survival mechanisms were detected in K562 and Jak2(V617F)-transformed HEL cells. Stat5 is activated in the nuclear and cytosolic compartments of K562 cells and the S5-DBD-PA inhibitor most likely affects the viability of Bcr-Abl + K562 cells through the inhibition of canonical Stat5 induced target gene transcription. In HEL cells, Stat5

  11. Successful treatment with allogeneic stem cell transplantation followed by DLI and TKIs for e6a2 BCR-ABL-positive acute myeloid leukaemia

    Science.gov (United States)

    Harada, Yasuhiko; Nishiwaki, Satoshi; Sugimoto, Takumi; Onodera, Koichi; Goto, Tatsunori; Sato, Takahiko; Kamoshita, Sonoko; Kawashima, Naomi; Seto, Aika; Okuno, Shingo; Yamamoto, Satomi; Iwasaki, Toshihiro; Ozawa, Yukiyasu; Miyamura, Koichi; Akatsuka, Yoshiki; Sugiura, Isamu

    2017-01-01

    Abstract Rationale: Patients with the e6a2 BCR-ABL transcript, 1 of the atypical transcripts, have been reported to have a poor prognosis, and allogeneic stem cell transplantation (ASCT) can be considered as additional therapy. However, long-term survival after ASCT for this disease is rare. Patient concerns: This report concerns a 55-year-old female patient with e6a2 BCR-ABL-positive acute myeloid leukemia including the outcome of ASCT followed by donor lymphocyte infusion (DLI). Diagnoses: The breakpoint was confirmed by direct sequencing. Her minimal residual disease could be detected by nested reverse-transcription polymerase chain reaction using primers for the minor BCR-ABL (e1a2) transcript. Interventions: Treatment with tyrosine kinase inhibitors (TKIs) and ASCT followed by DLI. Outcomes: Despite multiple cytogenetic and molecular relapses after ASCT, she remains in molecular remission at 46 months after ASCT. Lessons: This case indicates the efficacy of the combination of the graft-versus-leukemia effect and TKIs for e6a2 BCR-ABL-positive acute leukemia. When the Philadelphia chromosome with an unusual chromosomal breakpoint is suggested, we should clarify the breakpoint because that information can aid molecular assessments and decisions to provide an additional or alternative therapy. PMID:29390324

  12. Blockade of Y177 and Nuclear Translocation of Bcr-Abl Inhibits Proliferation and Promotes Apoptosis in Chronic Myeloid Leukemia Cells.

    Science.gov (United States)

    Li, Qianyin; Huang, Zhenglan; Gao, Miao; Cao, Weixi; Xiao, Qin; Luo, Hongwei; Feng, Wenli

    2017-03-02

    The gradual emerging of resistance to imatinib urgently calls for the development of new therapy for chronic myeloid leukemia (CML). The fusion protein Bcr-Abl, which promotes the malignant transformation of CML cells, is mainly located in the cytoplasm, while the c-Abl protein which is expressed in the nucleus can induce apoptosis. Based on the hetero-dimerization of FKBP (the 12-kDa FK506- and rapamycin-binding protein) and FRB (the FKBP-rapamycin binding domain of the protein kinase, mTOR) mediated by AP21967, we constructed a nuclear transport system to induce cytoplasmic Bcr-Abl into nuclear. In this study, we reported the construction of the nuclear transport system, and we demonstrated that FN3R (three nuclear localization signals were fused to FRBT2098L with a FLAG tag), HF2S (two FKBP domains were in tandem and fused to the SH2 domain of Grb2 with an HA tag) and Bcr-Abl form a complexus upon AP21967. Bcr-Abl was imported into the nucleus successfully by the nuclear transport system. The nuclear transport system inhibited CML cell proliferation through mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 5 (STAT5) pathways mainly by HF2S. It was proven that nuclear located Bcr-Abl induced CML cell (including imatinib-resistant K562G01 cells) apoptosis by activation of p73 and its downstream molecules. In summary, our study provides a new targeted therapy for the CML patients even with Tyrosine Kinase Inhibitor (TKI)-resistance.

  13. Blockade of Y177 and Nuclear Translocation of Bcr-Abl Inhibits Proliferation and Promotes Apoptosis in Chronic Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Qianyin Li

    2017-03-01

    Full Text Available The gradual emerging of resistance to imatinib urgently calls for the development of new therapy for chronic myeloid leukemia (CML. The fusion protein Bcr-Abl, which promotes the malignant transformation of CML cells, is mainly located in the cytoplasm, while the c-Abl protein which is expressed in the nucleus can induce apoptosis. Based on the hetero-dimerization of FKBP (the 12-kDa FK506- and rapamycin-binding protein and FRB (the FKBP-rapamycin binding domain of the protein kinase, mTOR mediated by AP21967, we constructed a nuclear transport system to induce cytoplasmic Bcr-Abl into nuclear. In this study, we reported the construction of the nuclear transport system, and we demonstrated that FN3R (three nuclear localization signals were fused to FRBT2098L with a FLAG tag, HF2S (two FKBP domains were in tandem and fused to the SH2 domain of Grb2 with an HA tag and Bcr-Abl form a complexus upon AP21967. Bcr-Abl was imported into the nucleus successfully by the nuclear transport system. The nuclear transport system inhibited CML cell proliferation through mitogen-activated protein kinase (MAPK and signal transducer and activator of transcription 5 (STAT5 pathways mainly by HF2S. It was proven that nuclear located Bcr-Abl induced CML cell (including imatinib-resistant K562G01 cells apoptosis by activation of p73 and its downstream molecules. In summary, our study provides a new targeted therapy for the CML patients even with Tyrosine Kinase Inhibitor (TKI-resistance.

  14. Bach2 regulates aberrant activation of B cell in systemic lupus erythematosus and can be negatively regulated by BCR-ABL/PI3K.

    Science.gov (United States)

    Zhu, Zhengwei; Yang, Chao; Wen, Leilei; Liu, Lu; Zuo, Xianbo; Zhou, Fusheng; Gao, Jinping; Zheng, Xiaodong; Shi, Yinjuan; Zhu, Caihong; Liang, Bo; Yin, Xianyong; Wang, Wenjun; Cheng, Hui; Shen, Songke; Tang, Xianfa; Tang, Huayang; Sun, Liangdan; Zhang, Anping; Yang, Sen; Cui, Yong; Zhang, Xuejun; Sheng, Yujun

    2018-04-01

    This study was aimed to explore the effect of Bach2 on B cells in systemic lupus erythematosus (SLE), as well as the underlying mechanisms. Expression of Bach2, phosphorylated-Bach2 (p-Bach2), Akt, p-Akt and BCR-ABL (p210) in B cells isolated from SLE patients and the healthy persons were assessed by Western blot. Immunofluorescence staining was performed to assess the localization of Bach2 in B cells. Enzyme-linked immunosorbent assay (ELISA) was employed to detect IgG produced by B cells. Cell counting kit-8 (CCK-8) and Annexin-V FITC/PI double staining assay were adopted to evaluate cell proliferation and apoptosis in B cells, respectively. Compared to the healthy controls, Bach2, p-Akt and p210 were significantly decreased, while nuclear translocation of Bach2, IgG, CD40 and CD86 obviously up-regulated in B cells from SLE patients. Bach2 significantly inhibited the proliferation, promoted apoptosis of B cells from SLE patients, whereas BCR-ABL dramatically reversed cell changes induced by Bach2. Besides, BCR-ABL also inhibited nuclear translocation of Bach2 in B cells from SLE patients. Further, LY294002 treatment had no effect on decreased expression of Bach2 induced by BCR-ABL, but significantly eliminated BCR-ABL-induced phosphorylation of Bach2 and restored reduced nuclear translocation of Bach2 induced by BCR-ABL in B cells from SLE. Bach2 may play a suppressive role in B cells from SLE, and BCR-ABL may inhibit the nuclear translocation of Bach2 via serine phosphorylation through the PI3K pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Stat5 Exerts Distinct, Vital Functions in the Cytoplasm and Nucleus of Bcr-Abl{sup +} K562 and Jak2(V617F){sup +} HEL Leukemia Cells

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Axel [Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main 60596 (Germany); Borghouts, Corina [Ganymed Pharmaceuticals AG, Mainz 55131 (Germany); Brendel, Christian [Boston Children’s Hospital, Division of Hematology/Oncology, Boston, MA 02115 (United States); Moriggl, Richard [Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna 1090 (Austria); Delis, Natalia; Brill, Boris; Vafaizadeh, Vida; Groner, Bernd, E-mail: Groner@em.uni-frankfurt.de [Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main 60596 (Germany)

    2015-03-19

    Signal transducers and activators of transcription (Stats) play central roles in the conversion of extracellular signals, e.g., cytokines, hormones and growth factors, into tissue and cell type specific gene expression patterns. In normal cells, their signaling potential is strictly limited in extent and duration. The persistent activation of Stat3 or Stat5 is found in many human tumor cells and contributes to their growth and survival. Stat5 activation plays a pivotal role in nearly all hematological malignancies and occurs downstream of oncogenic kinases, e.g., Bcr-Abl in chronic myeloid leukemias (CML) and Jak2(V617F) in other myeloproliferative diseases (MPD). We defined the mechanisms through which Stat5 affects growth and survival of K562 cells, representative of Bcr-Abl positive CML, and HEL cells, representative for Jak2(V617F) positive acute erythroid leukemia. In our experiments we suppressed the protein expression levels of Stat5a and Stat5b through shRNA mediated downregulation and demonstrated the dependence of cell survival on the presence of Stat5. Alternatively, we interfered with the functional capacities of the Stat5 protein through the interaction with a Stat5 specific peptide ligand. This ligand is a Stat5 specific peptide aptamer construct which comprises a 12mer peptide integrated into a modified thioredoxin scaffold, S5-DBD-PA. The peptide sequence specifically recognizes the DNA binding domain (DBD) of Stat5. Complex formation of S5-DBD-PA with Stat5 causes a strong reduction of P-Stat5 in the nuclear fraction of Bcr-Abl-transformed K562 cells and a suppression of Stat5 target genes. Distinct Stat5 mediated survival mechanisms were detected in K562 and Jak2(V617F)-transformed HEL cells. Stat5 is activated in the nuclear and cytosolic compartments of K562 cells and the S5-DBD-PA inhibitor most likely affects the viability of Bcr-Abl{sup +} K562 cells through the inhibition of canonical Stat5 induced target gene transcription. In HEL cells

  16. Heterogeneity of genomic fusion of BCR and ABL in Philadelphia chromosome-positive acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Rubin, C.M.; Carrino, J.J.; Dickler, M.N.; Leibowitz, D.; Smith, S.D.; Westbrook, C.A.

    1988-01-01

    Philadelphia chromosome-positive acute lymphoblastic leukemia occurs in two molecular forms, those with and those without rearrangement of the breakpoint cluster region on chromosome 22. The molecular abnormality in the former group is similar to that found in chronic myelogenous leukemia. To characterize the abnormality in the breakpoint cluster region-unrearranged form, the authors have mapped a 9; 22 translocation from the Philadelphia chromosome-positive acute lymphoblastic leukemia cell line SUP-B13 by using pulsed-field gel electrophoresis and have cloned the DNA at the translocation junctions. They demonstrate a BCR-ABL fusion gene on the Philadelphia chromosome. The exons from ABL are the same. Analysis of leukemic cells from four other patients with breakpoint cluster region-unrearranged Philadelphia chromosome-positive acute lymphoblastic leukemia revealed a rearrangement on chromosome 22 close to the breakpoint in SUP-B13 in only one patient. These data indicate that breakpoints do not cluster tightly in this region but are scattered, possibly in a large intron. Given the large size of BCR and the heterogeneity in breakpoint location, detection of BCR rearrangement by standard Southern blot analysis is difficult. Pulsed-field gel electrophoresis should allow detection at the DNA level in every patient and thus will permit clinical correlation of the breakpoint location with prognosis

  17. The chimeric ubiquitin ligase SH2-U-box inhibits the growth of imatinib-sensitive and resistant CML by targeting the native and T315I-mutant BCR-ABL.

    Science.gov (United States)

    Ru, Yi; Wang, Qinhao; Liu, Xiping; Zhang, Mei; Zhong, Daixing; Ye, Mingxiang; Li, Yuanchun; Han, Hua; Yao, Libo; Li, Xia

    2016-06-22

    Chronic myeloid leukemia (CML) is characterized by constitutively active fusion protein tyrosine kinase BCR-ABL. Although the tyrosine kinase inhibitor (TKI) against BCR-ABL, imatinib, is the first-line therapy for CML, acquired resistance almost inevitably emerges. The underlying mechanism are point mutations within the BCR-ABL gene, among which T315I is notorious because it resists to almost all currently available inhibitors. Here we took use of a previously generated chimeric ubiquitin ligase, SH2-U-box, in which SH2 from the adaptor protein Grb2 acts as a binding domain for activated BCR-ABL, while U-box from CHIP functions as an E3 ubiquitin ligase domain, so as to target the ubiquitination and degradation of both native and T315I-mutant BCR-ABL. As such, SH2-U-box significantly inhibited proliferation and induced apoptosis in CML cells harboring either the wild-type or T315I-mutant BCR-ABL (K562 or K562R), with BCR-ABL-dependent signaling pathways being repressed. Moreover, SH2-U-box worked in concert with imatinib in K562 cells. Importantly, SH2-U-box-carrying lentivirus could markedly suppress the growth of K562-xenografts in nude mice or K562R-xenografts in SCID mice, as well as that of primary CML cells. Collectively, by degrading the native and T315I-mutant BCR-ABL, the chimeric ubiquitin ligase SH2-U-box may serve as a potential therapy for both imatinib-sensitive and resistant CML.

  18. ON012380: A Non-ATP Competitive Inhibitor of BCR-ABL for the Therapy of Imatinib-Resistant CMLs

    National Research Council Canada - National Science Library

    Reddy, E. P

    2007-01-01

    Because it is now apparent that a significant proportion of patients chronically treated with imatinib develop resistance due to the acquisition of mutations in the kinase domain of BCR-ABL our aim...

  19. The First Pentacyclic Triterpenoid Gypsogenin Derivative Exhibiting Anti-ABL1 Kinase and Anti-chronic Myelogenous Leukemia Activities.

    Science.gov (United States)

    Ciftci, Halil Ibrahim; Ozturk, Safiye Emirdag; Ali, Taha F S; Radwan, Mohamed O; Tateishi, Hiroshi; Koga, Ryoko; Ocak, Zeynep; Can, Mustafa; Otsuka, Masami; Fujita, Mikako

    2018-04-01

    The discovery of the chimeric tyrosine kinase breakpoint cluster region kinase-Abelson kinase (BCR-ABL)-targeted drug imatinib conceptually changed the treatment of chronic myelogenous leukemia (CML). However, some CML patients show drug resistance to imatinib. To address this issue, some artificial heterocyclic compounds have been identified as BCR-ABL inhibitors. Here we examined whether plant-derived pentacyclic triterpenoid gypsogenin and/or their derivatives show inhibitory activity against BCR-ABL. Among the three derivatives, benzyl 3-hydroxy-23-oxoolean-12-en-28-oate (1c) was found to be the most effective anticancer agent on the CML cell line K562, with an IC 50 value of 9.3 µM. In contrast, the IC 50 against normal peripheral blood mononuclear cells was 276.0 µM, showing better selectivity than imatinib. Compound 1c had in vitro inhibitory activity against Abelson kinase 1 (ABL1) (IC 50 =8.7 µM), the kinase component of BCR-ABL. In addition, compound 1c showed a different inhibitory profile against eight kinases compared with imatinib. The interaction between ATP binding site of ABL and 1c was examined by molecular docking study, and the binding mode was different from imatinib and newer generation inhibitors. Furthermore, 1c suppressed signaling downstream of BCR-ABL. This study suggests the possibility that plant extracts may be a source for CML treatment and offer a strategy to overcome drug resistance to known BCR-ABL inhibitors.

  20. Detection of a rare BCR-ABL tyrosine kinase fusion protein in H929 multiple myeloma cells using immunoprecipitation (IP)-tandem mass spectrometry (MS/MS).

    Science.gov (United States)

    Breitkopf, Susanne B; Yuan, Min; Pihan, German A; Asara, John M

    2012-10-02

    Hypothesis directed proteomics offers higher throughput over global analyses. We show that immunoprecipitation (IP)-tandem mass spectrometry (LC-MS/MS) in H929 multiple myeloma (MM) cancer cells led to the discovery of a rare and unexpected BCR-ABL fusion, informing a therapeutic intervention using imatinib (Gleevec). BCR-ABL is the driving mutation in chronic myeloid leukemia (CML) and is uncommon to other cancers. Three different IP-MS experiments central to cell signaling pathways were sufficient to discover a BCR-ABL fusion in H929 cells: phosphotyrosine (pY) peptide IP, p85 regulatory subunit of phosphoinositide-3-kinase (PI3K) IP, and the GRB2 adaptor IP. The pY peptides inform tyrosine kinase activity, p85 IP informs the activating adaptors and receptor tyrosine kinases (RTKs) involved in AKT activation and GRB2 IP identifies RTKs and adaptors leading to ERK activation. Integration of the bait-prey data from the three separate experiments identified the BCR-ABL protein complex, which was confirmed by biochemistry, cytogenetic methods, and DNA sequencing revealed the e14a2 fusion transcript. The tyrosine phosphatase SHP2 and the GAB2 adaptor protein, important for MAPK signaling, were common to all three IP-MS experiments. The comparative treatment of tyrosine kinase inhibitor (TKI) drugs revealed only imatinib, the standard of care in CML, was inhibitory to BCR-ABL leading to down-regulation of pERK and pS6K and inhibiting cell proliferation. These data suggest a model for directed proteomics from patient tumor samples for selecting the appropriate TKI drug(s) based on IP and LC-MS/MS. The data also suggest that MM patients, in addition to CML patients, may benefit from BCR-ABL diagnostic screening.

  1. Combined inhibition of β-catenin and Bcr-Abl synergistically targets tyrosine kinase inhibitor-resistant blast crisis chronic myeloid leukemia blasts and progenitors in vitro and in vivo.

    Science.gov (United States)

    Zhou, H; Mak, P Y; Mu, H; Mak, D H; Zeng, Z; Cortes, J; Liu, Q; Andreeff, M; Carter, B Z

    2017-10-01

    Tyrosine kinase inhibitor (TKI) resistance and progression to blast crisis (BC), both related to persistent β-catenin activation, remain formidable challenges for chronic myeloid leukemia (CML). We observed overexpression of β-catenin in BC-CML stem/progenitor cells, particularly in granulocyte-macrophage progenitors, and highest among a novel CD34 + CD38 + CD123 hi Tim-3 hi subset as determined by CyTOF analysis. Co-culture with mesenchymal stromal cells (MSCs) induced the expression of β-catenin and its target CD44 in CML cells. A novel Wnt/β-catenin signaling modulator, C82, and nilotinib synergistically killed KBM5 T315I and TKI-resistant primary BC-CML cells with or without BCR-ABL kinase mutations even under leukemia/MSC co-culture conditions. Silencing of β-catenin by short interfering RNA restored sensitivity of primary BCR-ABL T315I/E255V BC-CML cells to nilotinib. Combining the C82 pro-drug, PRI-724, with nilotinib significantly prolonged the survival of NOD/SCID/IL2Rγ null mice injected with primary BCR-ABL T315I/E255V BC-CML cells. The combined treatment selectively targeted CML progenitors and inhibited CD44, c-Myc, survivin, p-CRKL and p-STAT5 expression. In addition, pretreating primary BC-CML cells with C82, or the combination, but not with nilotinib alone, significantly impaired their engraftment potential in NOD/SCID/IL2Rγ-null-3/GM/SF mice and significantly prolonged survival. Our data suggest potential benefit of concomitant β-catenin and Bcr-Abl inhibition to prevent or overcome Bcr-Abl kinase-dependent or -independent TKI resistance in BC-CML.

  2. Dasatinib rapidly induces deep molecular response in chronic-phase chronic myeloid leukemia patients who achieved major molecular response with detectable levels of BCR-ABL1 transcripts by imatinib therapy.

    Science.gov (United States)

    Shiseki, Masayuki; Yoshida, Chikashi; Takezako, Naoki; Ohwada, Akira; Kumagai, Takashi; Nishiwaki, Kaichi; Horikoshi, Akira; Fukuda, Tetsuya; Takano, Hina; Kouzai, Yasuji; Tanaka, Junji; Morita, Satoshi; Sakamoto, Junichi; Sakamaki, Hisashi; Inokuchi, Koiti

    2017-10-01

    With the introduction of imatinib, a first-generation tyrosine kinase inhibitor (TKI) to inhibit BCR-ABL1 kinase, the outcome of chronic-phase chronic myeloid leukemia (CP-CML) has improved dramatically. However, only a small proportion of CP-CML patients subsequently achieve a deep molecular response (DMR) with imatinib. Dasatinib, a second-generation TKI, is more potent than imatinib in the inhibition of BCR-ABL1 tyrosine kinase in vitro and more effective in CP-CML patients who do not achieve an optimal response with imatinib treatment. In the present study, we attempted to investigate whether switching the treatment from imatinib to dasatinib can induce DMR in 16 CP-CML patients treated with imatinib for at least two years who achieved a major molecular response (MMR) with detectable levels of BCR-ABL1 transcripts. The rates of achievement of DMR at 1, 3, 6 and 12 months after switching to dasatinib treatment in the 16 patients were 44% (7/16), 56% (9/16), 63% (10/16) and 75% (12/16), respectively. The cumulative rate of achieving DMR at 12 months from initiation of dasatinib therapy was 93.8% (15/16). The proportion of natural killer cells and cytotoxic T cells in peripheral lymphocytes increased after switching to dasatinib. In contrast, the proportion of regulatory T cells decreased during treatment. The safety profile of dasatinib was consistent with previous studies. Switching to dasatinib would be a therapeutic option for CP-CML patients who achieved MMR but not DMR by imatinib, especially for patients who wish to discontinue TKI therapy.

  3. Coupling a universal DNA circuit with graphene sheets/polyaniline/AuNPs nanocomposites for the detection of BCR/ABL fusion gene

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xueping [Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016 (China); Wang, Li [Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016 (China); Department of Medical Laboratory, Chongqing Emergency Medical Center (Chongqing The Fourth Hospital), Chongqing, 400016 (China); Sheng, Shangchun [The No.2 Peoples' Hospital of Yibin, Sichuan, 644000 (China); Wang, Teng; Yang, Juan [Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016 (China); Xie, Guoming, E-mail: guomingxie@cqmu.edu.cn [Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016 (China); Feng, Wenli, E-mail: fengwlcqmu@sina.com [Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016 (China)

    2015-08-19

    This article described a novel method by coupling a universal DNA circuit with graphene sheets/polyaniline/AuNPs nanocomposites (GS/PANI/AuNPs) for highly sensitive and specific detection of BCR/ABL fusion gene (bcr/abl) in chronic myeloid leukemia (CML). DNA circuit known as catalyzed hairpin assembly (CHA) is enzyme-free and can be simply operated to achieve exponential amplification, which has been widely employed in biosensing. However, application of CHA has been hindered by the need of specially redesigned sequences for each single-stranded DNA input. Herein, a transducer hairpin (HP) was designed to obtain a universal DNA circuit with favorable signal-to-background ratio. To further improve signal amplification, GS/PANI/AuNPs with excellent conductivity and enlarged effective area were introduced into this DNA circuit. Consequently, by combining the advantages of CHA and GS/PANI/AuNPs, bcr/abl could be detected in a linear range from 10 pM to 20 nM with a detection limit of 1.05 pM. Moreover, this protocol showed excellent specificity, good stability and was successfully applied for the detection of real sample, which demonstrated its great potential in clinical application. - Highlights: • A transducer hairpin was designed to improve the versatility of DNA circuit. • GS/PANI/AuNPs were introduced to the DNA circuit for further signal amplification. • The established biosensor displayed high sensitivity and good specificity.

  4. Determination of lactate dehydrogenase (LDH and Bcr-Abl transcript in the follow-up of patients with chronic myeloid leukemia - doi: 10.4025/actascihealthsci.v32i2.6408 Determination of lactate dehydrogenase (LDH and Bcr-Abl transcript in the follow-up of patients with chronic myeloid leukemia - doi: 10.4025/actascihealthsci.v32i2.6408

    Directory of Open Access Journals (Sweden)

    Thiago Cezar Fujita

    2010-09-01

    Full Text Available Chronic myeloid leukemia (CML is a malignant myeloproliferative disorder that originates from a pluripotent stem cell characterized by abnormal release of the expanded, malignant stem cell clone from the bone marrow into the bloodstream. The vast majority of patients with CML present Bcr-Abl transcripts. Lactate dehydrogenase (LDH is considered a biochemical marker common for tumor growth, anaerobic glycolysis and has been considered a poor prognostic factor for acute myeloid leukemia. Therefore, this study aimed to evaluate the concentration of LDH in plasma and the detection of the Bcr-Abl transcripts in patients with CML and healthy donors. We analyzed 22 patients demonstrably diagnosed with CML and 56 healthy donors. LDH concentration in plasma was higher in patients with CML. All patients with CML in this study were under treatment, but even so four patients had the Bcr-Abl (b3a2 transcript in peripheral blood. Two out of the four patients with b3a2 showed higher LDH (486 U L-1 and 589 U L-1. Thus, although the study was conducted with small numbers of samples, it is possible to suggest therapy alteration for two patients who presented transcript b3a2 in the peripheral blood samples and whose LDH concentration was high, in order to improve the disease.Chronic myeloid leukemia (CML is a malignant myeloproliferative disorder that originates from a pluripotent stem cell characterized by abnormal release of the expanded, malignant stem cell clone from the bone marrow into the bloodstream. The vast majority of patients with CML present Bcr-Abl transcripts. Lactate dehydrogenase (LDH is considered a biochemical marker common for tumor growth, anaerobic glycolysis and has been considered a poor prognostic factor for acute myeloid leukemia. Therefore, this study aimed to evaluate the concentration of LDH in plasma and the detection of the Bcr-Abl transcripts in patients with CML and healthy donors. We analyzed 22 patients demonstrably diagnosed

  5. Sensitive detection of pre-existing BCR-ABL kinase domain mutations in CD34+ cells of newly diagnosed chronic-phase chronic myeloid leukemia patients is associated with imatinib resistance: implications in the post-imatinib era.

    Directory of Open Access Journals (Sweden)

    Zafar Iqbal

    Full Text Available BACKGROUND: BCR-ABL kinase domain mutations are infrequently detected in newly diagnosed chronic-phase chronic myeloid leukemia (CML patients. Recent studies indicate the presence of pre-existing BCR-ABL mutations in a higher percentage of CML patients when CD34+ stem/progenitor cells are investigated using sensitive techniques, and these mutations are associated with imatinib resistance and disease progression. However, such studies were limited to smaller number of patients. METHODS: We investigated BCR-ABL kinase domain mutations in CD34+ cells from 100 chronic-phase CML patients by multiplex allele-specific PCR and sequencing at diagnosis. Mutations were re-investigated upon manifestation of imatinib resistance using allele-specific PCR and direct sequencing of BCR-ABL kinase domain. RESULTS: Pre-existing BCR-ABL mutations were detected in 32/100 patients and included F311L, M351T, and T315I. After a median follow-up of 30 months (range 8-48, all patients with pre-existing BCR-ABL mutations exhibited imatinib resistance. Of the 68 patients without pre-existing BCR-ABL mutations, 24 developed imatinib resistance; allele-specific PCR and BCR-ABL kinase domain sequencing detected mutations in 22 of these patients. All 32 patients with pre-existing BCR-ABL mutations had the same mutations after manifestation of imatinib-resistance. In imatinib-resistant patients without pre-existing BCR-ABL mutations, we detected F311L, M351T, Y253F, and T315I mutations. All imatinib-resistant patients except T315I and Y253F mutations responded to imatinib dose escalation. CONCLUSION: Pre-existing BCR-ABL mutations can be detected in a substantial number of chronic-phase CML patients by sensitive allele-specific PCR technique using CD34+ cells. These mutations are associated with imatinib resistance if affecting drug binding directly or indirectly. After the recent approval of nilotinib, dasatinib, bosutinib and ponatinib for treatment of chronic myeloid

  6. A comprehensive target selectivity survey of the BCR-ABL kinase inhibitor INNO-406 by kinase profiling and chemical proteomics in chronic myeloid leukemia cells.

    Science.gov (United States)

    Rix, U; Remsing Rix, L L; Terker, A S; Fernbach, N V; Hantschel, O; Planyavsky, M; Breitwieser, F P; Herrmann, H; Colinge, J; Bennett, K L; Augustin, M; Till, J H; Heinrich, M C; Valent, P; Superti-Furga, G

    2010-01-01

    Resistance to the BCR-ABL tyrosine kinase inhibitor imatinib poses a pressing challenge in treating chronic myeloid leukemia (CML). This resistance is often caused by point mutations in the ABL kinase domain or by overexpression of LYN. The second-generation BCR-ABL inhibitor INNO-406 is known to inhibit most BCR-ABL mutants and LYN efficiently. Knowledge of its full target spectrum would provide the molecular basis for potential side effects or suggest novel therapeutic applications and possible combination therapies. We have performed an unbiased chemical proteomics native target profile of INNO-406 in CML cells combined with functional assays using 272 recombinant kinases thereby identifying several new INNO-406 targets. These include the kinases ZAK, DDR1/2 and various ephrin receptors. The oxidoreductase NQO2, inhibited by both imatinib and nilotinib, is not a relevant target of INNO-406. Overall, INNO-406 has an improved activity over imatinib but a slightly broader target profile than both imatinib and nilotinib. In contrast to dasatinib and bosutinib, INNO-406 does not inhibit all SRC kinases and most TEC family kinases and is therefore expected to elicit fewer side effects. Altogether, these properties may make INNO-406 a valuable component in the drug arsenal against CML.

  7. MPT0B169, a New Antitubulin Agent, Inhibits Bcr-Abl Expression and Induces Mitochondrion-Mediated Apoptosis in Nonresistant and Imatinib-Resistant Chronic Myeloid Leukemia Cells.

    Directory of Open Access Journals (Sweden)

    Shuit-Mun Wong

    Full Text Available Chronic myeloid leukemia (CML is a clonal disorder of hematopoietic stem/progenitor cells that is caused by the Bcr-Abl oncoprotein. Clinical resistance to the Bcr-Abl inhibitor imatinib is a critical problem in treating CML. This study investigated the antitumor effect and mechanism of MPT0B169, a new antitubulin agent, in K562 CML cells and their derived imatinib-resistant cells, IMR2 and IMR3. IMR2 and IMR3 cells showed complete resistance to imatinib-induced growth inhibition and apoptosis. Resistance involved ERK1/2 overactivation and MDR1 overexpression. MPT0B169 inhibited the growth of K562, IMR2, and IMR3 cells in a dose- and time-dependent manner. MPT0B169 substantially inhibited the mRNA and protein levels of Bcr-Abl, followed by its downstream pathways including Akt, ERK1/2, and STAT3 in these cells. MPT0B169 treatment resulted in a decrease in the polymer form of tubulin according to Western blot analysis. It triggered cell cycle arrest at the G2/M phase before apoptosis, which was related to the upregulation of the mitotic marker MPM2 and the cyclin B1 level, and a change in the phosphorylation of Cdk1. MPT0B169 induced apoptosis in nonresistant and imatinib-resistant cells via a mitochondrion-mediated caspase pathway. Further study showed that the agent led to a decrease in the antiapoptotic proteins Bcl-2, Bcl-xL, and Mcl-1 and an increase in the apoptotic protein Bax. Taken together, our results suggest that MPT0B169 might be a promising agent for overcoming imatinib resistance in CML cells.

  8. Screening und Charakterisierung von Peptidliganden für den BCR-ABL mRNA Translokationsbereich

    OpenAIRE

    Bäumler, Jörg

    2006-01-01

    Die reziproke Translokation t(9;22) ist in 95% der chronischen myeloischen Leukämie vorhanden. Bei der Translokation entsteht ein Fusionsprotein BCR-ABL, welches ausreichend für die Entstehung von Leukämien ist. 30% aller akuten lymphatischen Leukämien sind ebenfalls positiv für diese Translokation. Durch die Translokation entsteht am Translokationsbruchpunkt eine einzigartige RNA-Sequenz, welche als Ziel für eine RNA-Liganden Suche dienen kann. Ziel dieser Arbeit war es, Peptidliganden zu fi...

  9. BCR-ABL1- positive chronic myeloid leukemia with erythrocytosis presenting as polycythemia vera: a case report.

    Science.gov (United States)

    Cornea, Mihaela I Precup; Levrat, Emmanuel; Pugin, Paul; Betticher, Daniel C

    2015-04-08

    The World Health Organization classification of chronic myeloproliferative disease encompasses eight entities of bone marrow neoplasms, among them Breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1-positive chronic myeloid leukemia and polycythemia vera. Polycythemia vera requires, in the majority of cases (95%), the negativity of Breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 rearrangement and the presence of the Janus kinase 2 mutation. We report a case of erythrocytosis as the primary manifestation of a chronic myeloid leukemia, with the presence of the Philadelphia chromosome and the Breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 fusion gene, and in the absence of any Janus kinase 2 mutation. A 68-year-old Caucasian woman, with a history of cigarette consumption and obstructive sleep apnoea syndrome (undergoing continuous positive airway pressure treatment) had presented to our institution with fatigue and a hemoglobin level of 18.6g/L, with slight leukocytosis at 16G/L, and no other anomalies on her complete blood cell count. Examination of her arterial blood gases found only a slight hypoxemia; erythropoietin and ferritin levels were very low and could not explain a secondary erythrocytosis. Further analyses revealed the absence of any Janus kinase 2 mutation, thus excluding polycythemia vera. Taken together with a high vitamin B12 level, we conducted a Breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 gene analysis and bone marrow cytogenetic analysis, both of which returned positive, leading to the diagnosis of chronic myeloid leukemia. To date, this case is the first description of a Breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1-positive chronic myeloid leukemia, presenting with erythrocytosis as the initial manifestation, and mimicking a Janus kinase 2 V617F-negative polycythemia vera. Her impressive response to imatinib

  10. ON012380: A Non-ATP Competitive Inhibitor of BCR-ABL for the Therapy of Imatinib-Resistant CMLs

    Science.gov (United States)

    2010-05-01

    imatinib resistance with a novel ABL kinase inhibitor. Science. 2004; 305(5682):399-401 3. Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob... Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid...araldehyde (5) (10 mmol), glacial acetic acid (5 mL), and a catalytic amount (100 lL ) of benzyl amine was re- fluxed for 5–8 h. After completion of

  11. Ph1 chromosomes and bcr gene rearrangements in chronic myelocytic leukemia patients developed from atomic bomb survivors

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Takechi, Miho; Shigeta, Chiharu; Sakatani, Keiko; Oguma, Nobuo; Kamada, Nanao; Takimoto, Yasuo; Kuramoto, Atsushi

    1989-01-01

    This study compared findings of chronic myelocytic leukemia (CML) in A-bomb survivors (n=8) developing CML within 10 years after the bombing and in non-exposed CML patients (n=14). Both Ph 1 chromosomes and bcr rearrangement were observed in all patients in both exposed and non-exposed groups. There was no significant difference in distribution sites of bcr rearrangement between the groups. These results suggest that bcr-abl chimera mRNA and chimera protein associated with Ph 1 chromosomes have an important role in the development of CML among A-bomb survivors, as well as among non-exposed patients. (N.K.)

  12. Identification of small molecules that disrupt signaling between ABL and its positive regulator RIN1.

    Directory of Open Access Journals (Sweden)

    Pamela Y Ting

    Full Text Available Constitutively active BCR-ABL kinase fusions are causative mutations in the pathogenesis of hematopoietic neoplasias including chronic myelogenous leukemia (CML. Although these fusions have been successfully targeted with kinase inhibitors, drug-resistance and relapse continue to limit long-term survival, highlighting the need for continued innovative drug discovery. We developed a time-resolved Förster resonance energy transfer (TR-FRET -based assay to identify compounds that disrupt stimulation of the ABL kinase by blocking its ability to bind the positive regulator RIN1. This assay was used in a high throughput screen (HTS of two small molecule libraries totaling 444,743 compounds. 708 confirmed hits were counter-screened to eliminate off-target inhibitors and reanalyzed to prioritize compounds with IC50 values below 10 μM. The CML cell line K562 was then used to identify five compounds that decrease MAPK1/3 phosphorylation, which we determined to be an indicator of RIN1-dependent ABL signaling. One of these compounds is a thiadiazole, and the other four are structurally related acyl piperidine amides. Notably, these five compounds lower cellular BCR-ABL1 kinase activity by blocking a positive regulatory interaction rather than directly inhibiting ABL catalytic function.

  13. Extensive gene-specific translational reprogramming in a model of B cell differentiation and Abl-dependent transformation.

    Directory of Open Access Journals (Sweden)

    Jamie G Bates

    Full Text Available To what extent might the regulation of translation contribute to differentiation programs, or to the molecular pathogenesis of cancer? Pre-B cells transformed with the viral oncogene v-Abl are suspended in an immortalized, cycling state that mimics leukemias with a BCR-ABL1 translocation, such as Chronic Myelogenous Leukemia (CML and Acute Lymphoblastic Leukemia (ALL. Inhibition of the oncogenic Abl kinase with imatinib reverses transformation, allowing progression to the next stage of B cell development. We employed a genome-wide polysome profiling assay called Gradient Encoding to investigate the extent and potential contribution of translational regulation to transformation and differentiation in v-Abl-transformed pre-B cells. Over half of the significantly translationally regulated genes did not change significantly at the level of mRNA abundance, revealing biology that might have been missed by measuring changes in transcript abundance alone. We found extensive, gene-specific changes in translation affecting genes with known roles in B cell signaling and differentiation, cancerous transformation, and cytoskeletal reorganization potentially affecting adhesion. These results highlight a major role for gene-specific translational regulation in remodeling the gene expression program in differentiation and malignant transformation.

  14. Nuclear topography and expression of the BCR/ABL fusion gene and its protein level influenced by cell differentiation and RNA interference

    Czech Academy of Sciences Publication Activity Database

    Bártová, Eva; Harničarová, Andrea; Pacherník, Jiří; Kozubek, Stanislav

    2005-01-01

    Roč. 29, č. 8 (2005), s. 901-913 ISSN 0145-2126 R&D Projects: GA AV ČR(CZ) 1QS500040508; GA ČR(CZ) GA202/04/0907; GA MZd NC6987; GA AV ČR(CZ) IAA5004306; GA MŠk(CZ) LC535 Institutional research plan: CEZ:AV0Z50040507 Keywords : BCR /ABL fusion gene * chromatin arrangement * gene expression Subject RIV: BO - Biophysics Impact factor: 2.372, year: 2005

  15. Droplet Digital PCR for BCR/ABL(P210) Detecting of CML: A High Sensitive Method of the Minimal Residual Disease& Disease Progression.

    Science.gov (United States)

    Wang, Wen-Jun; Zheng, Chao-Feng; Liu, Zhuang; Tan, Yan-Hong; Chen, Xiu-Hua; Zhao, Bin-Liang; Li, Guo-Xia; Xu, Zhi-Fang; Ren, Fang-Gang; Zhang, Yao-Fang; Chang, Jian-Mei; Wang, Hong-Wei

    2018-04-25

    The present study intended to establish a droplet digital PCR (dd-PCR) for monitoring minimal residual disease (MRD) in patients with BCR/ABL (P210)-positive CML, thereby achieving deep-level monitoring of tumor load and determining the efficacy for guided clinically individualized treatment. Using dd-PCR and RT-qPCR, two cell suspensions were obtained from K562 cells and normal peripheral blood mononuclear cells by gradient dilution and were measured at the cellular level. At peripheral blood(PB) level, 61 cases with CML-chronic phase (CML-CP) were obtained after tyrosine kinase inhibitors (TKIs) treatment and regular follow-ups. By RT-qPCR, BCR/ABL (P210) fusion gene was undetectable in PB after three successive analyses, which were performed once every three months. At the same time, dd-PCR was performed simultaneously with the last equal amount of cDNA. Ten CML patients with MR4.5 were followed up by the two methods. At the cellular level, consistency of results of dd-PCR and RT-qPCR reached R 2 ≥0.99, with conversion equation of Y=33.148X 1.222 (Y: dd-PCR results; X: RT-qPCR results). In the dd-PCR test, 11 of the 61 CML patients (18.03%) tested positive and showed statistically significant difference (PPCR 3 months earlier than by RT-qPCR. In contrast with RT-qPCR, dd-PCR is more sensitive, thus enabling accurate conversion of dd-PCR results into internationally standard RT-qPCR results by conversion equation, to achieve a deeper molecular biology-based stratification of BCR/ABL(P210) MRD. It has some reference value to monitor disease progression in clinic. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Pan-SRC kinase inhibition blocks B-cell receptor oncogenic signaling in non-Hodgkin lymphoma.

    Science.gov (United States)

    Battistello, Elena; Katanayeva, Natalya; Dheilly, Elie; Tavernari, Daniele; Donaldson, Maria C; Bonsignore, Luca; Thome, Margot; Christie, Amanda L; Murakami, Mark A; Michielin, Olivier; Ciriello, Giovanni; Zoete, Vincent; Oricchio, Elisa

    2018-05-24

    In diffuse large B-cell lymphoma (DLBCL), activation of the B-cell receptor (BCR) promotes multiple oncogenic signals, which are essential for tumor proliferation. Inhibition of the Bruton's tyrosine kinase (BTK), a BCR downstream target, is therapeutically effective only in a subgroup of patients with DLBCL. Here, we used lymphoma cells isolated from patients with DLBCL to measure the effects of targeted therapies on BCR signaling and to anticipate response. In lymphomas resistant to BTK inhibition, we show that blocking BTK activity enhanced tumor dependencies from alternative oncogenic signals downstream of the BCR, converging on MYC upregulation. To completely ablate the activity of the BCR, we genetically and pharmacologically repressed the activity of the SRC kinases LYN, FYN, and BLK, which are responsible for the propagation of the BCR signal. Inhibition of these kinases strongly reduced tumor growth in xenografts and cell lines derived from patients with DLBCL independent of their molecular subtype, advancing the possibility to be relevant therapeutic targets in broad and diverse groups of DLBCL patients. © 2018 by The American Society of Hematology.

  17. Genetic polymorphisms of hemostatic factors and thrombotic risk in non BCR-ABL myeloproliferative neoplasms: A pilot study

    Directory of Open Access Journals (Sweden)

    Dambrauskienė R

    2017-06-01

    Full Text Available The most important complications of Philadelphianegagive (non BCR-ABL myeloproliferative neoplasms (MPNs are vascular events. Our aim was to evaluate the effects of single nucleotide polymorphisms (SNPs, platelet glycoproteins (GPs (Ia/IIa, Ibα, IIb/IIIa and VI, von Willebrand factor (vWF, coagulation factor VII (FVII, β-fibrinogen, and the risk of thrombosis in patients with non BCR-ABL MPNs at the Lithuanian University of Health Sciences. Kaunas, Lithuania. Genotyping was done for 108 patients. The TT genotype of the GP Ia/IIa c.807C>T polymorphism was more frequently found in the group of MPN patients with arterial thrombosis compared to MPN patients who were thrombosis-free [26.5 vs. 11.5%, p = 0.049; odds ratio (OR 2.68; 95% confidence interval (95% CI 1.01-7.38]. The CT genotype of the β-fibrinogen c.-148C>T polymorphism occurred more frequently in MPN patients with arterial, and total thrombosis compared to the wild or homozygous genotype (57.7 vs. 40.0 vs. 12.5%; p = 0.027, (64.7 vs. 44.4 vs. 25%; p = 0.032, respectively. The carrier state for the c.-323P10 variant of FVII SNP (summation of P10/10 and P0/10 was more frequent in MPN patients with thrombosis compared to the wild-type genotype carriers (71.4 vs. 43.4%; p = 0.049; OR 3.26; 95% CI 1.01-11.31. The coexistence of heterozygous β-fibrinogen c.-148C>T and FVII c.-323P0/10 SNP, increased the risk of arterial thrombosis (21.1 vs. 3.7%, p = 0.008; OR 6.93; 95% CI 1.38-34.80. The TT genotype of GP Ia/IIa c.807C>T, the CT genotype of β-fibrinogen c.-148C>T and FVII c.-323P0/10 SNP could be associated with risk of thrombosis in MPN patients.

  18. Bcr-aBL1 kinase domain mutation analysis in chronic myeloid leukaemia patients with suboptimal response to tyrosine kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Tadej Pajič

    2012-12-01

    Conclusions: It seems that the BCR-ABl1 mutations are rare in patients who do not achieve a MMR by 18 months or more or who have lost MMR. The T315I mutation detected in one patient in our cohort of CML patients indicates that the BCR-ABL1 mutation analysis could be recommended in these cases. The silent mutation detected did not lead to amino acid change, however, it is listed in major single nucleotide polymorphisms databases (SNP, rs2227985. The role of the SNP in the resistance to TKIs is not clear.

  19. A longitudinal evaluation of performance of automated BCR-ABL1 quantitation using cartridge-based detection system.

    Science.gov (United States)

    Enjeti, Anoop; Granter, Neil; Ashraf, Asma; Fletcher, Linda; Branford, Susan; Rowlings, Philip; Dooley, Susan

    2015-10-01

    An automated cartridge-based detection system (GeneXpert; Cepheid) is being widely adopted in low throughput laboratories for monitoring BCR-ABL1 transcript in chronic myelogenous leukaemia. This Australian study evaluated the longitudinal performance specific characteristics of the automated system.The automated cartridge-based system was compared prospectively with the manual qRT-PCR-based reference method at SA Pathology, Adelaide, over a period of 2.5 years. A conversion factor determination was followed by four re-validations. Peripheral blood samples (n = 129) with international scale (IS) values within detectable range were selected for assessment. The mean bias, proportion of results within specified fold difference (2-, 3- and 5-fold), the concordance rate of major molecular remission (MMR) and concordance across a range of IS values on paired samples were evaluated.The initial conversion factor for the automated system was determined as 0.43. Except for the second re-validation, where a negative bias of 1.9-fold was detected, all other biases fell within desirable limits. A cartridge-specific conversion factor and efficiency value was introduced and the conversion factor was confirmed to be stable in subsequent re-validation cycles. Concordance with the reference method/laboratory at >0.1-≤10 IS was 78.2% and at ≤0.001 was 80%, compared to 86.8% in the >0.01-≤0.1 IS range. The overall and MMR concordance were 85.7% and 94% respectively, for samples that fell within ± 5-fold of the reference laboratory value over the entire period of study.Conversion factor and performance specific characteristics for the automated system were longitudinally stable in the clinically relevant range, following introduction by the manufacturer of lot specific efficiency values.

  20. Clinical Efficacy and Safety of First-Line Dasatinib Therapy and the Relevance of Velocity of BCR-ABL1 Transcript Decline for Achievement of Molecular Responses in Newly Diagnosed Chronic-Phase Chronic Myeloid Leukemia: Report from the Juntendo Yamanashi Cooperative Study Group.

    Science.gov (United States)

    Takaku, Tomoiku; Iriyama, Noriyoshi; Mitsumori, Toru; Sato, Eriko; Gotoh, Akihiko; Kirito, Keita; Noguchi, Masaaki; Koike, Michiaki; Sakamoto, Junichi; Oba, Koji; Komatsu, Norio

    2018-01-01

    The use of tyrosine kinase inhibitors led to an improvement in the prognoses of patients with chronic myeloid leukemia (CML). The aims of this study were to investigate the efficacy and safety of dasatinib in Japanese patients and to explore the factors that affect the achievement of molecular responses. The primary endpoint was a major molecular response (MMR) by 12 months. The halving time for BCR-ABL1 transcripts was calculated using transcript levels. Thirty-two patients with chronic-phase CML (CML-CP) were enrolled and 30 received 100 mg dasatinib once daily. At 24 months of follow-up, 21 (72%) and 24 (83%) patients achieved an MMR by 12 and 24 months, respectively; the rates of a deep molecular response (DMR) by 12 and 24 months were 48 and 59%, respectively. A shorter halving time of BCR-ABL1 transcripts (≤10.6 days) accurately predicted both an MMR and a DMR. The incidence of pleural effusion was 50%. Our study reconfirmed the efficacy and safety of dasatinib treatment in Japanese patients with newly diagnosed CML-CP. In addition, the usefulness of the halving time of BCR-ABL1 transcripts was validated. These data emphasize the significance of an early treatment response in achieving a DMR during dasatinib therapy. © 2017 S. Karger AG, Basel.

  1. Silencing of BCR/ABL Chimeric Gene in Human Chronic Myelogenous Leukemia Cell Line K562 by siRNA-Nuclear Export Signal Peptide Conjugates.

    Science.gov (United States)

    Shinkai, Yasuhiro; Kashihara, Shinichi; Minematsu, Go; Fujii, Hirofumi; Naemura, Madoka; Kotake, Yojiro; Morita, Yasutaka; Ohnuki, Koichiro; Fokina, Alesya A; Stetsenko, Dmitry A; Filichev, Vyacheslav V; Fujii, Masayuki

    2017-06-01

    Herein we described the synthesis of siRNA-NES (nuclear export signal) peptide conjugates by solid phase fragment coupling and the application of them to silencing of bcr/abl chimeric gene in human chronic myelogenous leukemia cell line K562. Two types of siRNA-NES conjugates were prepared, and both sense strands at 5' ends were covalently linked to a NES peptide derived from TFIIIA and HIV-1 REV, respectively. Significant enhancement of silencing efficiency was observed for both of them. siRNA-TFIIIA NES conjugate suppressed the expression of BCR/ABL gene to 8.3% at 200 nM and 11.6% at 50 nM, and siRNA-HIV-1REV NES conjugate suppressed to 4.0% at 200 nM and 6.3% at 50 nM, whereas native siRNA suppressed to 36.3% at 200 nM and 30.2% at 50 nM. We could also show complex of siRNA-NES conjugate and designed amphiphilic peptide peptideβ7 could be taken up into cells with no cytotoxicity and showed excellent silencing efficiency. We believe that the complex siRNA-NES conjugate and peptideβ7 is a promising candidate for in vivo use and therapeutic applications.

  2. Predictive value of minimal residual disease in Philadelphia-chromosome-positive acute lymphoblastic leukemia treated with imatinib in the European intergroup study of post-induction treatment of Philadelphia-chromosome-positive acute lymphoblastic leukemia, based on immunoglobulin/T-cell receptor and BCR/ABL1 methodologies

    Science.gov (United States)

    Cazzaniga, Giovanni; De Lorenzo, Paola; Alten, Julia; Röttgers, Silja; Hancock, Jeremy; Saha, Vaskar; Castor, Anders; Madsen, Hans O.; Gandemer, Virginie; Cavé, Hélène; Leoni, Veronica; Köhler, Rolf; Ferrari, Giulia M.; Bleckmann, Kirsten; Pieters, Rob; van der Velden, Vincent; Stary, Jan; Zuna, Jan; Escherich, Gabriele; zur Stadt, Udo; Aricò, Maurizio; Conter, Valentino; Schrappe, Martin; Valsecchi, Maria Grazia; Biondi, Andrea

    2018-01-01

    The prognostic value of minimal residual disease (MRD) in Philadelphia-chromosome-positive (Ph+) childhood acute lymphoblastic leukemia (ALL) treated with tyrosine kinase inhibitors is not fully established. We detected MRD by real-time quantitative polymerase chain reaction (RQ-PCR) of rearranged immunoglobulin/T-cell receptor genes (IG/TR) and/or BCR/ABL1 fusion transcript to investigate its predictive value in patients receiving Berlin-Frankfurt-Münster (BFM) high-risk (HR) therapy and post-induction intermittent imatinib (the European intergroup study of post-induction treatment of Philadelphia-chromosome-positive acute lymphoblastic leukemia (EsPhALL) study). MRD was monitored after induction (time point (TP)1), consolidation Phase IB (TP2), HR Blocks, reinductions, and at the end of therapy. MRD negativity progressively increased over time, both by IG/TR and BCR/ABL1. Of 90 patients with IG/TR MRD at TP1, nine were negative and none relapsed, while 11 with MRD<5×10−4 and 70 with MRD≥5×10−4 had a comparable 5-year cumulative incidence of relapse of 36.4 (15.4) and 35.2 (5.9), respectively. Patients who achieved MRD negativity at TP2 had a low relapse risk (5-yr cumulative incidence of relapse (CIR)=14.3[9.8]), whereas those who attained MRD negativity at a later date showed higher CIR, comparable to patients with positive MRD at any level. BCR/ABL1 MRD negative patients at TP1 had a relapse risk similar to those who were IG/TR MRD negative (1/8 relapses). The overall concordance between the two methods is 69%, with significantly higher positivity by BCR/ABL1. In conclusion, MRD monitoring by both methods may be functional not only for measuring response but also for guiding biological studies aimed at investigating causes for discrepancies, although from our data IG/TR MRD monitoring appears to be more reliable. Early MRD negativity is highly predictive of favorable outcome. The earlier MRD negativity is achieved, the better the prognosis. PMID

  3. Cytoprotective effect of imatinib mesylate in non-BCR-ABL-expressing cells along with autophagosome formation

    International Nuclear Information System (INIS)

    Ohtomo, Tadashi; Miyazawa, Keisuke; Naito, Munekazu; Moriya, Shota; Kuroda, Masahiko; Itoh, Masahiro; Tomoda, Akio

    2010-01-01

    Treatment with imatinib mesylate (IM) results in an increased viable cell number of non-BCR-ABL-expressing cell lines by inhibiting spontaneous apoptosis. Electron microscopy revealed an increase of autophagosomes in response to IM. IM attenuated the cytotoxic effect of cytosine arabinoside, as well as inhibiting cell death with serum-deprived culture. Cytoprotection with autophagosome formation by IM was observed in various leukemia and cancer cell lines as well as normal murine embryonic fibroblasts (MEFs). Complete inhibition of autophagy by knockdown of atg5 in the Tet-off atg5 -/- MEF system attenuated the cytoprotective effect of IM, indicating that the effect is partially dependent on autophagy. However, cytoprotection by IM was not mediated through suppression of ROS production via mitophagy, ER stress via ribophagy, or proapoptotic function of ABL kinase. Although the target tyrosine kinase(s) of IM remains unclear, our data provide novel therapeutic possibilities of using IM for cytoprotection.

  4. SÍNTESES E PROPRIEDADES DE FÁRMACOS INIBIDORES DA TIROSINA QUINASE BCR-ABL, UTILIZADOS NO TRATAMENTO DA LEUCEMIA MIELOIDE CRÔNICA

    Directory of Open Access Journals (Sweden)

    Liviane D. de Azevedo

    Full Text Available The chronic myeloid leukemia (CML is characterized by presence of the Philadelphia chromosome (Ph, originated from the translocation between chromosomes 9 and 22. This chromosome generates an abnormal protein tyrosine kinase which is responsible for tumor cell proliferation. The emergence of tyrosine kinase inhibitors (TKIs has transformed the treatment of CML and imatinib being the first representative of this class. Although treatment with imatinib has reached surprising results, approximately 30% of patients exhibited resistance, especially in later stages of the disease. This fact stimulated the development of novel BCR-ABL enzyme inhibitors drugs classified as tyrosine kinase inhibitors (TKIs of second and third generations. The TKIs have different chemical functions in their structure, and the knowledge of synthetic methods for preparation of these compounds can be a powerful tool for the development of new derivatives. The five approved BCR-ABL Tyrosine Kinase inhibitors (TKI used in Chronic Myeloid Leukemia (CML are reviewed aiming the main synthetic routes, highlighting the advantages and disadvantages associated with them.

  5. Determination of cDNA encoding BCR/ABL fusion gene in patients with chronic myelogenous leukemia using a novel FRET-based quantum dots-DNA nanosensor.

    Science.gov (United States)

    Shamsipur, Mojtaba; Nasirian, Vahid; Barati, Ali; Mansouri, Kamran; Vaisi-Raygani, Asad; Kashanian, Soheila

    2017-05-08

    In the present study, we developed a sensitive method based on fluorescence resonance energy transfer (FRET) for the determination of the BCR/ABL fusion gene, which is used as a biomarker to confirm the clinical diagnosis of both chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL). For this purpose, CdTe quantum dots (QDs) were conjugated to amino-modified 18-mer oligonucleotide ((N)DNA) to form the QDs-(N)DNA nanosensor. In the presence of methylene blue (MB) as an intercalator, the hybridization of QDs-(N)DNA with the target BCR/ABL fusion gene (complementary DNA), brings the MB (acceptor) at close proximity of the QDs (donor), leading to FRET upon photoexcitation of the QDs. The enhancement in the emission intensity of MB was used to follow up the hybridization, which was linearly proportional to concentration of the target complementary DNA in a range from 1.0 × 10 -9 to 1.25 × 10 -7  M. The detection limit of the proposed method was obtained to be 1.5 × 10 -10  M. Finally, the feasibility and selectivity of the proposed nanosensor was evaluated by the analysis of derived nucleotides from both mismatched sequences and clinical samples of patients with leukemia as real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Andrographolide downregulates the v-Src and Bcr-Abl oncoproteins and induces Hsp90 cleavage in the ROS-dependent suppression of cancer malignancy.

    Science.gov (United States)

    Liu, Sheng-Hung; Lin, Chao-Hsiung; Liang, Fong-Ping; Chen, Pei-Fen; Kuo, Cheng-Deng; Alam, Mohd Mujahid; Maiti, Barnali; Hung, Shih-Kai; Chi, Chin-Wen; Sun, Chung-Ming; Fu, Shu-Ling

    2014-01-15

    Andrographolide is a diterpenoid compound isolated from Andrographis paniculata that exhibits anticancer activity. We previously reported that andrographolide suppressed v-Src-mediated cellular transformation by promoting the degradation of Src. In the present study, we demonstrated the involvement of Hsp90 in the andrographolide-mediated inhibition of Src oncogenic activity. Using a proteomics approach, a cleavage fragment of Hsp90α was identified in andrographolide-treated cells. The concentration- and time-dependent induction of Hsp90 cleavage that accompanied the reduction in Src was validated in RK3E cells transformed with either v-Src or a human truncated c-Src variant and treated with andrographolide. In cancer cells, the induction of Hsp90 cleavage by andrographolide and its structural derivatives correlated well with decreased Src levels, the suppression of transformation, and the induction of apoptosis. Moreover, the andrographolide-induced Hsp90 cleavage, Src degradation, inhibition of transformation, and induction of apoptosis were abolished by a ROS inhibitor, N-acetyl-cysteine. Notably, Hsp90 cleavage, decreased levels of Bcr-Abl (another known Hsp90 client protein), and the induction of apoptosis were also observed in human K562 leukemia cells treated with andrographolide or its active derivatives. Together, we demonstrated a novel mechanism by which andrographolide suppressed cancer malignancy that involved inhibiting Hsp90 function and reducing the levels of Hsp90 client proteins. Our results broaden the molecular basis of andrographolide-mediated anticancer activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Characterization of the CDR3 structure of the Vβ21 T cell clone in patients with P210(BCR-ABL)-positive chronic myeloid leukemia and B-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Zha, Xianfeng; Chen, Shaohua; Yang, Lijian; Li, Bo; Chen, Yu; Yan, Xiaojuan; Li, Yangqiu

    2011-10-01

    The clonally expanded T cells identified in most cancer patients that respond to tumor-associated antigen such as P210(BCR-ABL) protein have definite, specific antitumor cytotoxicity. T cell receptor (TCR) Vβ CDR3 repertoire diversity was analyzed in patients with chronic myeloid leukemia (CML) and BCR-ABL(+) B-cell acute lymphoblastic leukemia (B-ALL) by GeneScan. A high frequency of oligoclonal expansion of the TCR Vβ21 subfamily was observed in the peripheral blood of CML and B-ALL patients. These clonally expanded Vβ21 T cells were correlated with the pathophysiologic process of CML. A conserved amino acid motif (SLxxV) was observed within the CDR3 region in only 3 patients with CML. Preferential usage of the Jβ segments was also observed in a minority of patients. The 3-dimensional structures of the CDR3 region containing the same motif or using the same Jβ segment displayed low similarity; on the contrary, the conformation of the CDR3 region containing no conserved motif in some T cell clones was highly similar. In conclusion, our findings indicate a high frequency of TCR Vβ21 subfamily expansion in p210(BCR-ABL)-positive CML and B-ALL patients. The characterization of the CDR3 structure was complex. Regrettably, at this time it was not possible to confirm that the Vβ21 T cell clones were derived from the stimulation of p210(BCR-ABL) protein. Copyright © 2011 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  8. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors.

    Science.gov (United States)

    Henry, Curtis J; Casás-Selves, Matias; Kim, Jihye; Zaberezhnyy, Vadym; Aghili, Leila; Daniel, Ashley E; Jimenez, Linda; Azam, Tania; McNamee, Eoin N; Clambey, Eric T; Klawitter, Jelena; Serkova, Natalie J; Tan, Aik Choon; Dinarello, Charles A; DeGregori, James

    2015-12-01

    The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRAS(V12), or Myc restored B cell progenitor fitness, leading to selection for oncogenically initiated cells and leukemogenesis specifically in the context of an aged hematopoietic system. Aging was associated with increased inflammation in the BM microenvironment, and induction of inflammation in young mice phenocopied aging-associated B lymphopoiesis. Conversely, a reduction of inflammation in aged mice via transgenic expression of α-1-antitrypsin or IL-37 preserved the function of B cell progenitors and prevented NRAS(V12)-mediated oncogenesis. We conclude that chronic inflammatory microenvironments in old age lead to reductions in the fitness of B cell progenitor populations. This reduced progenitor pool fitness engenders selection for cells harboring oncogenic mutations, in part due to their ability to correct aging-associated functional defects. Thus, modulation of inflammation--a common feature of aging--has the potential to limit aging-associated oncogenesis.

  9. [Development of Ph negative acute myeloid leukemia in a patient with minor-BCR/ABL positive chronic myeloid leukemia achieving a partial cytogenetic response during tyrosine kinase inhibitor treatment].

    Science.gov (United States)

    Fujii, Soichiro; Miura, Ikuo; Tanaka, Hideo

    2015-06-01

    A 78-year-old male, who had CKD and chronic heart failure, was referred to our hospital for evaluation of leukocytosis. His bone marrow contained 12% blast cells and chromosome analysis showed the Ph chromosome as well as other changes. The patient was diagnosed with the accelerated-phase CML because FISH and RT-PCR disclosed BCR/ABL fusion signals and minor BCR/ABL, respectively. Imatinib was administered, but the CML was resistant to this treatment. We gave him nilotinib employing a reduced and intermittent administration protocol because of the progression of anemia and heart failure. The patient achieved PCyR in 8 months, but, 12 months later, his WBC count increased and 83% of the cells were blasts. Because the probable diagnosis was the blast crisis of CML, we switched from nilotinib to dasatinib. However, leukocytosis worsened and he died of pneumonia. It was later revealed that he had a normal karyotype and both FISH and RT-PCR analysis of BCR/ABL were negative. His final diagnosis was Ph negative AML developing from Ph positive CML in PCyR. Since there were no dysplastic changes indicative of MDS, it was assumed that the AML was not secondary leukemia caused by the tyrosine kinase inhibitor but, rather, de novo AML.

  10. Four-channel asymmetric Real-Time PCR hybridization probe assay: a rapid pre-screening method for critical BCR-ABL kinase domain mutations.

    Science.gov (United States)

    Martinez-Serra, Jordi; Gutiérrez, Antonio; Marcús, Toni F; Soverini, Simona; Amat, Juan Carlos; Navarro-Palou, María; Ros, Teresa; Bex, Teresa; Ballester, Carmen; Bauça, Josep Miquel; SanFelix, Sara; Novo, Andrés; Vidal, Carmen; Santos, Carmen; Besalduch, Joan

    2012-03-01

    Within the laboratory protocols, used for the study of BCR-ABL resistance mutations in chronic myeloid leukemia patients treated with Imatinib, direct sequencing remains the reference method. Since the incidence of patients with a mutation-related loss of response is not very high, it is very useful in the routine laboratory to perform a fast pre-screening method. With this in mind, we have designed a new technique, based on a single Real-Time FRET-based PCR, followed by a study of melting peaks. This new tool, developed in a LightCycler 2.0, combines four different fluorescence channels for the simultaneous detection, in a single close tube, of critical mutations within the ABL kinase domain. Assay evaluation performed on 33 samples, previously genotyped by sequentiation, resulted in full concordance of results. This new methodology detects in a few steps the presence of critical mutations associated to Imatinib resistance. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Frequency and clinical impact of ETV6/RUNX1, AF4‑MLL, and BCR ...

    African Journals Online (AJOL)

    2015-05-12

    May 12, 2015 ... features of prognostic importance, which include total white blood cell count (P = 0.416) and FAB subtype (P = 0.576). Conclusion: Presence of fusion ... Frequency and clinical impact of ETV6/RUNX1, AF4‑MLL, and BCR/ABL fusion ... define distinct clinic‑pathological subgroups and have been used in risk ...

  12. Molecular genetic tests for JAK2V617F, Exon12_JAK2 and MPLW515K/L are highly informative in the evaluation of patients suspected to have BCR-ABL1-negative myeloproliferative neoplasms.

    Science.gov (United States)

    dos Santos, Marcos Tadeu; Mitne-Neto, Miguel; Miyashiro, Kozue; Chauffaille, Maria de Lourdes L Ferrari; Rizzatti, Edgar Gil

    2014-02-01

    Polycythaemia vera (PV), essential thrombocythemia (ET) and idiopathic myelofibrosis (MF), are the most common myeloproliferative neoplasms (MPN) in patients without the BCR-ABL1 gene rearrangement. They are caused by clonal expansion of haematopoietic stem cells and share, as a diagnostic criterion, the identification of JAK2V617F mutation. Classically, when other clinical criteria are present, a JAK2V617F negative case requires the analysis of Exon12_JAK2 for the diagnosis of PV, and of MPL515K/L mutations for the diagnosis of ET and MF. Here, we evaluated 78 samples from Brazilian patients suspected to have MPN, without stratification for PV, ET or MF. We found that 28 (35.9%) are JAK2V617F carriers; from the 50 remaining samples, one (2%) showed an Exon12_JAK2 mutation, and another (2%) was positive for MPLW515L mutation. In summary, the investigation of JAK2V617F, Exon12_JAK2 and MPLW515K/L was relevant for the diagnosis of 38.4% of patients suspected to have BCR-ABL1-negative MPN, suggesting that molecular genetic tests are useful for a quick and unequivocal diagnosis of MPN.

  13. BCR-ABL1: Test

    Science.gov (United States)

    ... Gregory J. Tsongalis, PhD, HCLD, CC. Professor of Pathology, Director, Molecular Pathology, Dartmouth Hitchcock Medical Center and Geisel School of ... Reviews Besa, E. and Woermann, U. (Updated 2010 March 16). Chronic Myelogenous Leukemia. eMedicine [On-line information]. ...

  14. INNO-406, a novel BCR-ABL/Lyn dual tyrosine kinase inhibitor, suppresses the growth of Ph+ leukemia cells in the central nervous system, and cyclosporine A augments its in vivo activity.

    Science.gov (United States)

    Yokota, Asumi; Kimura, Shinya; Masuda, Satohiro; Ashihara, Eishi; Kuroda, Junya; Sato, Kiyoshi; Kamitsuji, Yuri; Kawata, Eri; Deguchi, Yasuyuki; Urasaki, Yoshimasa; Terui, Yasuhito; Ruthardt, Martin; Ueda, Takanori; Hatake, Kiyohiko; Inui, Ken-ichi; Maekawa, Taira

    2007-01-01

    Central nervous system (CNS) relapse accompanying the prolonged administration of imatinib mesylate has recently become apparent as an impediment to the therapy of Philadelphia chromosome-positive (Ph+) leukemia. CNS relapse may be explained by limited penetration of imatinib mesylate into the cerebrospinal fluid because of the presence of P-glycoprotein at the blood-brain barrier. To overcome imatinib mesylate-resistance mechanisms such as bcr-abl amplification, mutations within the ABL kinase domain, and activation of Lyn, we developed a dual BCR-ABL/Lyn inhibitor, INNO-406 (formerly NS-187), which is 25 to 55 times more potent than imatinib mesylate in vitro and at least 10 times more potent in vivo. The aim of this study was to investigate the efficacy of INNO-406 in treating CNS Ph+ leukemia. We found that INNO-406, like imatinib mesylate, is a substrate for P-glycoprotein. The concentrations of INNO-406 in the CNS were about 10% of those in the plasma. However, this residual concentration was enough to inhibit the growth of Ph+ leukemic cells which expressed not only wild-type but also mutated BCR-ABL in the murine CNS. Furthermore, cyclosporine A, a P-glycoprotein inhibitor, augmented the in vivo activity of INNO-406 against CNS Ph+ leukemia. These findings indicate that INNO-406 is a promising agent for the treatment of CNS Ph+ leukemia.

  15. Translocation of BCR to chromosome 9: A new cytogenetic variant detected by FISH in two Ph-negative, BCR-positive patients with chronic myeloid leukemia

    NARCIS (Netherlands)

    A. Hagemeijer (Anne); A. Buijs (Arjan); E.M.E. Smit (Elisabeth); L.A.J. Janssen (Bart); G.J.M. Creemers (Geert-Jan); D. van der Plas (D.); G.C. Grosveld (Gerard)

    1993-01-01

    textabstractLeukemic cells from two patients with Philadelphia-negative chronic myeloid leukemia (CML) were investigated: I) Cytogenetics showed a normal 46.XY karyotype in both cases, 2) molecular studies revealed rearrangement of the M-BCR region and formation of BCR-ABL fusion mRNA with b2a2

  16. Oncogenic Kinase Bcr-Abl and Its Resistance to Pharmacological Inhibitors

    Czech Academy of Sciences Publication Activity Database

    Kryštof, Vladimír

    2008-01-01

    Roč. 102, č. 9 (2008), s. 795-800 E-ISSN 1213-7103 Institutional research plan: CEZ:AV0Z50380511 Keywords : imatinib * inhibitor * chronic myeloid leukaemia * kinase * cancer Subject RIV: CE - Biochemistry www.chemicke-listy.cz/docs/full/2008_09_795-800.pdf

  17. Epidemiologic study on survival of chronic myeloid leukemia and Ph(+) acute lymphoblastic leukemia patients with BCR-ABL T315I mutation

    DEFF Research Database (Denmark)

    Nicolini, Franck E; Mauro, Michael J; Martinelli, Giovanni

    2009-01-01

    The BCR-ABL T315I mutation represents a major mechanism of resistance to tyrosine kinase inhibitors (TKIs). The objectives of this retrospective observational study were to estimate overall and progression-free survival for chronic myeloid leukemia in chronic-phase (CP), accelerated-phase (AP......), or blastic-phase (BP) and Philadelphia chromosome-positive (Ph)(+) acute lymphoblastic leukemia (ALL) patients with T315I mutation. Medical records of 222 patients from 9 countries were reviewed; data were analyzed using log-rank tests and Cox proportional hazard models. Median age at T315I mutation...

  18. An activating mutation of GNB1 is associated with resistance to tyrosine kinase inhibitors in ETV6-ABL1-positive leukemia

    Czech Academy of Sciences Publication Activity Database

    Zimmermannova, O.; Doktorova, E.; Stuchlý, J.; Kanderová, V.; Kuzilkova, D.; Strnad, Hynek; Starková, J.; Alberich-Jorda, Meritxell; Falkenburg, J.H.F.; Trka, J.; Petrák, J.; Zuna, J.; Žaliová, M.

    2017-01-01

    Roč. 36, č. 43 (2017), s. 5985-5994 ISSN 0950-9232 R&D Projects: GA ČR(CZ) GBP302/12/G101; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : acute lymphoblastic-leukemia * chronic myeloid-leukemia * bcr-abl * tel-abl * cytogenetic characterization * imatinib-mesylate * fusion proteins * blast crisis * rearrangement * patient Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 7.519, year: 2016

  19. Transforming and tumorigenic activity of JAK2 by fusion to BCR: molecular mechanisms of action of a novel BCR-JAK2 tyrosine-kinase.

    Directory of Open Access Journals (Sweden)

    Álvaro Cuesta-Domínguez

    Full Text Available Chromosomal translocations in tumors frequently produce fusion genes coding for chimeric proteins with a key role in oncogenesis. Recent reports described a BCR-JAK2 fusion gene in fatal chronic and acute myeloid leukemia, but the functional behavior of the chimeric protein remains uncharacterized. We used fluorescence in situ hybridization and reverse transcription polymerase chain reaction (RT-PCR assays to describe a BCR-JAK2 fusion gene from a patient with acute lymphoblastic leukemia. The patient has been in complete remission for six years following treatment and autologous transplantation, and minimal residual disease was monitored by real-time RT-PCR. BCR-JAK2 codes for a protein containing the BCR oligomerization domain fused to the JAK2 tyrosine-kinase domain. In vitro analysis of transfected cells showed that BCR-JAK2 is located in the cytoplasm. Transduction of hematopoietic Ba/F3 cells with retroviral vectors carrying BCR-JAK2 induced IL-3-independent cell growth, constitutive activation of the chimeric protein as well as STAT5 phosphorylation and translocation to the nuclei, where Bcl-xL gene expression was elicited. Primary mouse progenitor cells transduced with BCR-JAK2 also showed increased proliferation and survival. Treatment with the JAK2 inhibitor TG101209 abrogated BCR-JAK2 and STAT5 phosphorylation, decreased Bcl-xL expression and triggered apoptosis of transformed Ba/F3 cells. Therefore, BCR-JAK2 is a novel tyrosine-kinase with transforming activity. It deregulates growth factor-dependent proliferation and cell survival, which can be abrogated by the TG101209 inhibitor. Moreover, transformed Ba/F3 cells developed tumors when injected subcutaneously into nude mice, thus proving the tumorigenic capacity of BCR-JAK2 in vivo. Together these findings suggest that adult and pediatric patients with BCR-ABL-negative leukemia and JAK2 overexpression may benefit from targeted therapies.

  20. EVI1 activation in blast crisis CML due to juxtaposition to the rare 17q22 partner region as part of a 4-way variant translocation t(9;22

    Directory of Open Access Journals (Sweden)

    Verhasselt Bruno

    2008-07-01

    Full Text Available Abstract Background Variant translocations t(9;22 occur in 5 to 10% of newly diagnosed CMLs and additional genetic changes are present in 60–80% of patients in blast crisis (BC. Here, we report on a CML patient in blast crisis presenting with a four-way variant t(9;22 rearrangement involving the EVI1 locus. Methods Dual-colour Fluorescence In Situ Hybridisation was performed to unravel the different cytogenetic aberrations. Expression levels of EVI1 and BCR/ABL1 were investigated using real-time quantitative RT-PCR. Results In this paper we identified a patient with a complex 4-way t(3;9;17;22 which, in addition to BCR/ABL1 gene fusion, also resulted in EVI1 rearrangement and overexpression. Conclusion This report illustrates how a variant t(9;22 translocation can specifically target a second oncogene most likely contributing to the more aggressive phenotype of the disease. Molecular analysis of such variants is thus warranted to understand the phenotypic consequences and to open the way for combined molecular therapies in order to tackle the secondary oncogenic effect which is unresponsive to imatinib treatment.

  1. Structural Analysis of DFG-in and DFG-out Dual Src-Abl Inhibitors Sharing a Common Vinyl Purine Template

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tianjun; Commodore, Lois; Huang, Wei-Sheng; Wang, Yihan; Sawyer, Tomi K.; Shakespeare, William C.; Clackson, Tim; Zhu, Xiaotian; Dalgarno, David C. (ARIAD)

    2010-09-30

    Bcr-Abl is the oncogenic protein tyrosine kinase responsible for chronic myeloid leukemia (CML). Treatment of the disease with imatinib (Gleevec) often results in drug resistance via kinase mutations at the advanced phases of the disease, which has necessitated the development of new mutation-resistant inhibitors, notably against the T315I gatekeeper mutation. As part of our efforts to discover such mutation resistant Abl inhibitors, we have focused on optimizing purine template kinase inhibitors, leading to the discovery of potent DFG-in and DFG-out series of Abl inhibitors that are also potent Src inhibitors. Here we present crystal structures of Abl bound by two such inhibitors, based on a common N9-arenyl purine, and that represent both DFG-in and -out binding modes. In each structure the purine template is bound deeply in the adenine pocket and the novel vinyl linker forms a non-classical hydrogen bond to the gatekeeper residue, Thr315. Specific template substitutions promote either a DFG-in or -out binding mode, with the kinase binding site adjusting to optimize molecular recognition. Bcr-Abl T315I mutant kinase is resistant to all currently marketed Abl inhibitors, and is the focus of intense drug discovery efforts. Notably, our DFG-out inhibitor, AP24163, exhibits modest activity against this mutant, illustrating that this kinase mutant can be inhibited by DFG-out class inhibitors. Furthermore our DFG-out inhibitor exhibits dual Src-Abl activity, absent from the prototypical DFG-out inhibitor, imatinib as well as its analog, nilotinib. The data presented here provides structural guidance for the further design of novel potent DFG-out class inhibitors against Src, Abl and Abl T315I mutant kinases.

  2. Phase 1 study of INNO-406, a dual Abl/Lyn kinase inhibitor, in Philadelphia chromosome-positive leukemias after imatinib resistance or intolerance.

    Science.gov (United States)

    Kantarjian, Hagop; le Coutre, Phillipp; Cortes, Jorge; Pinilla-Ibarz, Javier; Nagler, Arnon; Hochhaus, Andreas; Kimura, Shinya; Ottmann, Oliver

    2010-06-01

    : INNO-406, a dual v-abl Abelson murine leukemia viral oncogene homolog (Abl)/v-yes-1 Yamaguchi sarcoma viral-related oncogene homolog (Lyn) tyrosine kinase inhibitor (TKI), has demonstrated specific Lyn kinase inhibitory activity with no or limited activity against other sarcoma (Src) family member kinases. Several breakpoint cluster region (Bcr)-Abl kinase domain mutations are sensitive to INNO-406 in vitro, including mutations that involve a phenylalanine-to-leucine or phenylalanine-to-valine substitution at codon 317 (F317L and F317V, respectively). In the current study, the authors evaluated the use of INNO-406 in patients with Philadelphia (Ph) chromosome-positive chronic myelogenous leukemia (CML) or acute lymphocytic leukemia (ALL) after imatinib resistance or intolerance. : A dose-escalation study was conducted at a starting dose of oral INNO-406 30 mg once daily. Cohorts of at least 3 patients were treated at each dose level until the maximum tolerated dose (MTD) was reached. Twice-daily dosing also was evaluated. Therapy was allowed to continue for a maximum of 24 months. : INNO-406 was administered to 56 patients with imatinib resistance (n = 40) or intolerance (n = 16). Other previous treatments included nilotinib (n = 20 patients), dasatinib (n = 26 patients), and dasatinib/nilotinib (n = 9 patients). Common mutations at the time of study entry included a tyrosine-to-histidine substitution at codon 253 (Y253H) (n = 6 patients), a glycine-to-glutamic acid substitution at codon 250 (G250E) (n = 4 patients), a threonine-to-isoleucine substitution at codon 315 (T315I) (n = 4 patients), and F317L (n = 3 patients). Of 31 patients with CML in chronic phase who received INNO-406, the major cytogenetic response rate was 19%. No responses were observed in patients who had CML in accelerated phase, CML in blastic phase, or Ph-positive ALL. The dose-limiting toxicities (DLTs) at an INNO-406 dose of 480 mg twice daily were liver function abnormalities and

  3. Bleeding complications in BCR-ABL negative myeloproliferative neoplasms: prevalence, type, and risk factors in a single-center cohort.

    Science.gov (United States)

    Kander, Elizabeth M; Raza, Sania; Zhou, Zheng; Gao, Juehua; Zakarija, Anaadriana; McMahon, Brandon J; Stein, Brady L

    2015-11-01

    The BCR-ABL1-negative myeloproliferative neoplasms (MPN) share an increased risk of thrombotic and hemorrhagic complications. Risk factors for hemorrhage are less well defined than those for thrombosis. Because patients with CALR mutations have higher platelet counts compared to JAK2 V617F-mutated patients, bleeding rates may be increased in this group. Our aim was to retrospectively evaluate whether acquired von Willebrand disease (AvWD), thrombocytosis, mutational status, or treatment history are associated with bleeding in a cohort of MPN patients. Using an electronic database, MPN patients seen between 2005 and 2013 were retrospectively identified using ICD-9 codes and billing records. A bleeding event was defined as one that was identified in the medical record and graded based on the Common Terminology Criteria for Adverse Event (CTCAE) version 4.0. Among 351 MPN patients, 15.6 % experienced 64 bleeding event types. There was no association of bleeding with mutational status, gender, MPN subtype, aspirin use, prior thrombosis, or platelet count at presentation. There was an association between bleeding and older age at diagnosis. aVWD was identified in six patients. In this single-center retrospective study, bleeding events were identified in 15 % of patients, and associated with older age at diagnosis. aVWD was rarely tested for in this cohort.

  4. Comparative study of different methodologies to detect the JAK2 V617F mutation in chronic BCR-ABL1 negative myeloproliferative neoplasms

    Directory of Open Access Journals (Sweden)

    Alline Didone

    2016-04-01

    Full Text Available Objectives: A mutation in the JAK2 gene, V617F, has been identified in several BCR-ABL1 negative myeloproliferative neoplasms (MPN: polycythemia vera (PV, essential thrombocythemia (ET, and primary myelofibrosis (PMF. Defining the presence or absence of this mutation is an essential part of clinical diagnostic algorithms and patient management. Here, we aimed to evaluate the performance of three PCR-based assays: Amplification Refractory Mutation System (ARMS, High-Resolution Melting analysis (HRM, and Sanger direct sequencing, and compare their results with those obtained by a PCR restriction fragment polymorphism assay (PCR-RFLP. Design and methods: We used blood samples from 136 patients (PV=20; PMF=20; ET=28, and other MPN suspected cases=68. Results: Comparable results were observed among the four assays in patients with PV, PMF, and MPN suspected cases. In patients with a diagnosis of ET, the JAK2 V617F mutation was detected in 67.8% of them by the PCR-ARMS and PCR-HRM assay and in 64% of them by the conventional Sanger sequence approach. The PCR-ARMS and PCR-HRM assays were 100% concordant. With these tests, only one of the 20 patients with ET and one of the three patients with clinically suspected MPN gave different results compared with those obtained by the PCR-RFLP. Conclusions: Our results have demonstrated that the PCR-ARMS and PCR-HRM assays could detect the JAK2 V617F mutation effectively in MPN patients, but PCR-HRM assays are rapid and the most cost-effective procedures. Keywords: Myeloproliferative, JAK2 V617F, Mutation, Wild type, Screening

  5. Oncogene mutational profile in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang ZC

    2014-03-01

    Full Text Available Zi-Chen Zhang,1,* Sha Fu,1,* Fang Wang,1 Hai-Yun Wang,1 Yi-Xin Zeng,2 Jian-Yong Shao11Department of Molecular Diagnostics, 2Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China *These authors contributed equally to this work Abstract: Nasopharyngeal carcinoma (NPC is a common tumor in Southern China, but the oncogene mutational status of NPC patients has not been clarified. Using time-of-flight mass spectrometry, 238 mutation hotspots in 19 oncogenes were examined in 123 NPC patients. The relationships between mutational status and clinical data were assessed with a χ2 or Fisher's exact test. Survival analysis was performed using the Kaplan–Meier method with the log-rank test. In 123 patients, 21 (17.1% NPC tumors were positive for mutations in eight oncogenes: six patients had PIK3CA mutations (4.9%, five NRAS mutations (4.1%, four KIT mutations (3.3%, two PDGFRA mutations (1.6%, two ABL mutations (1.6%, and one with simultaneous mutations in HRAS, EGFR, and BRAF (1%. Patients with mutations were more likely to relapse or develop metastasis than those with wild-type alleles (P=0.019. No differences or correlations were found in other clinical characteristics or in patient survival. No mutations were detected in oncogenes AKT1, AKT2, CDK, ERBB2, FGFR1, FGFR3, FLT3, JAK2, KRAS, MET, and RET. These results demonstrate an association between NPC and mutations in NRAS, KIT, PIK3CA, PDGFRA, and ABL, which are associated with patient relapse and metastasis. Keywords: NPC, oncogene, mutation

  6. A novel dic (17;18 (p13.1;q11.2 with loss of TP53 and BCR/ABL rearrangement in an Imatinib resistant chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Al-achkar Walid

    2012-08-01

    Full Text Available Abstract Background The so-called Philadelphia (Ph chromosome is present in more than 90% of chronic myeloid leukemia (CML cases. It results in juxtaposition of the 5′ part of the BCR gene on chromosome 22 to the 3′ part of the ABL gene on chromosome 9. Since the majority of CML cases are currently treated with Imatinib, variant rearrangements in general have no specific prognostic significance, although the mechanisms involved in resistance to therapy have yet to be investigated. The T315I mutation within the abl-gene is the most frequent one associated with resistance to tyrosine kinase inhibitors. Results This study evaluated a Ph chromosome positive CML case resistant to imatinib mesylate. A dic(17;18, loss of TP53 gene, co-expression of b2a2 and b3a2 fusions transcript and a T315I mutation were found. Conclusions We reported here a novel case of a Ph chromosome positive CML with a secondary abnormality [dic(17;18], resulting to Glivec resistance but good response to nilotinib. The dic(17;18 might be a marker for poor prognosis in CML. Our finding indicated for an aggressive progression of the disease. The patient died under the treatment due to unknown reasons.

  7. Frequency of janus associated kinase 2 (jak2) mutation in patients of bcr-abl negative myeloproliferative neoplasms

    International Nuclear Information System (INIS)

    Sadiq, M.A.; Ahmed, S.; Ali, N.

    2013-01-01

    To determine the frequency of Janus associated kinase 2 mutation in the patients of BCR-ABL negative classical myeloproliferative neoplasms. Study Design: Cross-sectional descriptive study Place and Duration of Study: Molecular Department of Haematology, Armed Forces Institute of Pathology (AFIP), Rawalpindi from Jul 2011 to Jul 2012. Patients and Methods: Ninety three consecutive patients of Polycythaemia vera (PV), Essential thrombocythaemia (ET) and Idiopathic myelofibrosis (IMF) diagnosed by the conventional haematological criteria were included in the study. All patients were screened for G-T point mutation (V617F) in the JAK2 gene on chromosome 9 by an allele specific PCR. Results: Out of the 93 myeloproliferative neoplasm (MPN) patients, 33(35%) had polycythaemia vera, 36(39%) had essential thrombocythaemia and 24(26%) had idiopathic myelofibrosis. JAK2 mutation was seen in 64/93 (69%) patients including 33/33(100%) in PV, 19/36(52.6%) in ET and 12/24(50%) in IMF. Conclusion: Classical myeloproliferative neoplasms are an important group of heamatological disorder in our country. JAK2 gene mutation is seen in significant proportion of these disorders (69%). JAK2 mutation analysis can be used to differentiate between polycythemia vera and secondary polycythemia in most cases with near certainty, where it was found in 100% of the cases. (author)

  8. Transformation of an Unclassified Myeloproliferative Neoplasm with a Rare BCR-JAK2 Fusion Transcript Resulting from the Translocation (9;22)(p24;q11)

    OpenAIRE

    A. N. Chamseddine; P. Etancelin; D. Penther; F. Parmentier; C. Kuadjovi; V. Camus; N. Contentin; P. Lenain; C. Bastard; H. Tilly; F. Jardin

    2015-01-01

    BCR-ABL1 negative myeloproliferative neoplasms (MPNs) are known to contain alterations of the tyrosine kinase JAK2 (located on 9p24) that result in constitutive activation of the encoded protein. JAK2 fusions are reported in acute and chronic leukemias of myeloid and lymphoid phenotypes. Here, we report an unclassified case of MPN (MPN-U) showing a t(9;22)(p24;q11), which generates a BCR-JAK2 fusion gene by fusing the BCR at intron 13 to JAK2 at intron 17 on the derivative chromosome 22. Most...

  9. Differential regulation of the Rac1 GTPase-activating protein (GAP) BCR during oxygen/glucose deprivation in hippocampal and cortical neurons.

    Science.gov (United States)

    Smith, Katharine R; Rajgor, Dipen; Hanley, Jonathan G

    2017-12-08

    Brain ischemia causes oxygen and glucose deprivation (OGD) in neurons, triggering a cascade of events leading to synaptic accumulation of glutamate. Excessive activation of glutamate receptors causes excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts, but the mechanisms that underlie this difference are unclear. Signaling via Rho-family small GTPases, their upstream guanine nucleotide exchange factors, and GTPase-activating proteins (GAPs) is differentially dysregulated in response to OGD/ischemia in hippocampal and cortical neurons. Increased Rac1 activity caused by OGD/ischemia contributes to neuronal death in hippocampal neurons via diverse effects on NADPH oxidase activity and dendritic spine morphology. The Rac1 guanine nucleotide exchange factor Tiam1 mediates an OGD-induced increase in Rac1 activity in hippocampal neurons; however, the identity of an antagonistic GAP remains elusive. Here we show that the Rac1 GAP breakpoint cluster region (BCR) associates with NMDA receptors (NMDARs) along with Tiam1 and that this protein complex is more abundant in hippocampal compared with cortical neurons. Although total BCR is similar in the two neuronal types, BCR is more active in hippocampal compared with cortical neurons. OGD causes an NMDAR- and Ca 2+ -permeable AMPAR-dependent deactivation of BCR in hippocampal but not cortical neurons. BCR knockdown occludes OGD-induced Rac1 activation in hippocampal neurons. Furthermore, disrupting the Tiam1-NMDAR interaction with a fragment of Tiam1 blocks OGD-induced Tiam1 activation but has no effect on the deactivation of BCR. This work identifies BCR as a critical player in Rac1 regulation during OGD in hippocampal neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Characterization of TRPS1 and ERAS as oncogenes implicated in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Gonzalez, L.

    2015-07-01

    New high throughput technologies have made possible to identify putative oncogenes in breast cancer. In this project we aim to relate and characterise two novel putative oncogenes, ERAS and TRPS1, in their role in human breast cancer. TRPS1, an atypical GATA factor, modulates cell proliferation and controls cell cycle progression through repression of GATA-regulated genes, therefore acting as a tumour suppressor gene. Conversely, TRPS1 expression has been shown to be significantly elevated in luminal and in a lesser extent in basal breast cancer cells, presenting roles both as an oncogene and as a tumour suppressor gene in breast cancer development. The aim of this project is therefore to determine the characteristics of TRPS1 either as a putative novel human oncogene or as a tumour suppressor gene in breast cancer cells. To this aim, we have cloned a novel isoform of TRPS1 and introduced it into several breast cancer cell lines. Our results show that overexpression of this isoform of TRPS1 results in variations in motility in non-carcinogenic cell lines, as well as in a series of EMT-like changes such as the down-regulation of the EMT marker E-cadherin, both of which can be associated to an increase in malignancy, suggesting an oncogenic behaviour for TRPS1. Furthermore, our results suggest that constitutively active members of the RAS protein family induce the expression of TRPS1, establishing a relationship between both genes. We can conclude that the effects of TRPS1 overexpression are moderate, inducing some changes but not fully transforming the cells. Therefore we cannot confirm that TRPS1 is a putative oncogene in breast cancer. (Author)

  11. Human Mut T Homolog 1 (MTH1): a roadblock for the tumor-suppressive effects of oncogenic RAS-induced ROS.

    Science.gov (United States)

    Rai, Priyamvada

    2012-01-01

    Oncogenic RAS-induced reactive oxygen species (ROS) trigger barriers to cell transformation and cancer progression through tumor-suppressive responses such as cellular senescence or cell death. We have recently shown that oncogenic RAS-induced DNA damage and attendant premature senescence can be prevented by overexpressing human MutT Homolog 1 (MTH1), the major mammalian detoxifier of the oxidized DNA precursor, 8-oxo-dGTP. Paradoxically, RAS-induced ROS are also able to participate in tumor progression via transformative processes such as mitogenic signaling, the epithelial-mesenchymal transition (EMT), anoikis inhibition, and PI3K/Akt-mediated survival signaling. Here we provide a preliminary insight into the influence of MTH1 levels on the EMT phenotype and Akt activation in RAS-transformed HMLE breast epithelial cells. Within this context, we will discuss the implications of MTH1 upregulation in oncogenic RAS-sustaining cells as a beneficial adaptive change that inhibits ROS-mediated cell senescence and participates in the maintenance of ROS-associated tumor-promoting mechanisms. Accordingly, targeting MTH1 in RAS-transformed tumor cells will not only induce proliferative defects but also potentially enhance therapeutic cytotoxicity by shifting cellular response away from pro-survival mechanisms.

  12. BCR translocation to derivative chromosome 2, a new case of chronic myeloid leukemia with complex variant translocation and Philadelphia chromosome

    International Nuclear Information System (INIS)

    Al-Achkar, W.; Wafa, A.; Al-Medani, S.

    2011-01-01

    The well-known typical fusion gene BCR/ABL can be observed in connection with a complex translocation event in only 5-8% of cases with chronic myeloid leukemia (CML). Herein we report an exceptional CML case with complex chromosomal aberrations not observed before, translocated BCR to the derivative chromosome 2 [der(2)], additional to involving a four chromosomes translocation implying chromosomal regions such as 1p32 and 2q21 besides 9q34 and 22q11.2. Which were characterized by molecular cytogenetics. (author)

  13. Modulation of BCR Signaling by the Induced Dimerization of Receptor-Associated SYK

    Directory of Open Access Journals (Sweden)

    Mark L. Westbroek

    2017-12-01

    Full Text Available Clustering of the B cell antigen receptor (BCR by polyvalent antigens is transmitted through the SYK tyrosine kinase to the activation of multiple intracellular pathways that determine the physiological consequences of receptor engagement. To explore factors that modulate the quantity and quality of signals sent by the crosslinked BCR, we developed a novel chemical mediator of dimerization to induce clustering of receptor-associated SYK. To accomplish this, we fused SYK with E. coli dihydrofolate reductase (eDHFR, which binds the small molecule trimethoprim (TMP with high affinity and selectivity and synthesized a dimer of TMP with a flexible linker. The TMP dimer is able to induce the aggregation of eDHFR-linked SYK in live cells. The induced dimerization of SYK bound to the BCR differentially regulates the activation of downstream transcription factors, promoting the activation of Nuclear Factor of Activated T cells (NFAT without affecting the activation of NFκB. The dimerization of SYK enhances the duration but not the amplitude of calcium mobilization by enhancing the extent and duration of its interaction with the crosslinked BCR at the plasma membrane.

  14. Computational study of molecular electrostatic potential, docking and dynamics simulations of gallic acid derivatives as ABL inhibitors.

    Science.gov (United States)

    Raghi, K R; Sherin, D R; Saumya, M J; Arun, P S; Sobha, V N; Manojkumar, T K

    2018-04-05

    Chronic myeloid leukemia (CML), a hematological malignancy arises due to the spontaneous fusion of the BCR and ABL gene, resulting in a constitutively active tyrosine kinase (BCR-ABL). Pharmacological activity of Gallic acid and 1,3,4-Oxadiazole as potential inhibitors of ABL kinase has already been reported. Objective of this study is to evaluate the ABL kinase inhibitory activity of derivatives of Gallic acid fused with 1,3,4-Oxadiazole moieties. Attempts have been made to identify the key structural features responsible for drug likeness of the Gallic acid and the 1,3,4-Oxadiazole ring using molecular electrostatic potential maps (MESP). To investigate the inhibitory activity of Gallic acid derivatives towards the ABL receptor, we have applied molecular docking and molecular dynamics (MD) simulation approaches. A comparative study was performed using Bosutinib as the standard which is an approved CML drug acting on the same receptor. Furthermore, the novel compounds designed and reported here in were evaluated for ADME properties and the results indicate that they show acceptable pharmacokinetic properties. Accordingly these compounds are predicted to be drug like with low toxicity potential. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. CRISPR-Cas9-mediated saturated mutagenesis screen predicts clinical drug resistance with improved accuracy.

    Science.gov (United States)

    Ma, Leyuan; Boucher, Jeffrey I; Paulsen, Janet; Matuszewski, Sebastian; Eide, Christopher A; Ou, Jianhong; Eickelberg, Garrett; Press, Richard D; Zhu, Lihua Julie; Druker, Brian J; Branford, Susan; Wolfe, Scot A; Jensen, Jeffrey D; Schiffer, Celia A; Green, Michael R; Bolon, Daniel N

    2017-10-31

    Developing tools to accurately predict the clinical prevalence of drug-resistant mutations is a key step toward generating more effective therapeutics. Here we describe a high-throughput CRISPR-Cas9-based saturated mutagenesis approach to generate comprehensive libraries of point mutations at a defined genomic location and systematically study their effect on cell growth. As proof of concept, we mutagenized a selected region within the leukemic oncogene BCR-ABL1 Using bulk competitions with a deep-sequencing readout, we analyzed hundreds of mutations under multiple drug conditions and found that the effects of mutations on growth in the presence or absence of drug were critical for predicting clinically relevant resistant mutations, many of which were cancer adaptive in the absence of drug pressure. Using this approach, we identified all clinically isolated BCR-ABL1 mutations and achieved a prediction score that correlated highly with their clinical prevalence. The strategy described here can be broadly applied to a variety of oncogenes to predict patient mutations and evaluate resistance susceptibility in the development of new therapeutics. Published under the PNAS license.

  16. Do endothelial cells belong to the primitive stem leukemic clone in CML? Role of extracellular vesicles.

    Science.gov (United States)

    Ramos, Teresa L; Sánchez-Abarca, Luis Ignacio; López-Ruano, Guillermo; Muntión, Sandra; Preciado, Silvia; Hernández-Ruano, Montserrat; Rosado, Belén; de las Heras, Natalia; Chillón, M Carmen; Hernández-Hernández, Ángel; González, Marcos; Sánchez-Guijo, Fermín; Del Cañizo, Consuelo

    2015-08-01

    The expression of BCR-ABL in hematopoietic stem cells is a well-defined primary event in chronic myeloid leukemia (CML). Some reports have described the presence of BCR-ABL on endothelial cells from CML patients, suggesting the origin of the disease in a primitive hemangioblastic cell. On the other hand, extracellular vesicles (EVs) released by CML leukemic cells are involved in the angiogenesis modulation process. In the current work we hypothesized that EVs released from BCR-ABL(+) cells may carry inside the oncogene that can be transferred to endothelial cells leading to the expression of both BCR-ABL transcript and the oncoprotein. EVs from K562 cells and plasma of newly diagnosed CML patients were isolated by ultracentrifugation. RT-PCR analysis detected the presence of BCR-ABL RNA in the EVs isolated from both K562 cells and plasma of CML patients. The incorporation of these EVs into endothelial cells was demonstrated by flow cytometry and fluorescence microscopy showed that after 24h of incubation most EVs were incorporated. BCR-ABL transcripts were detected in all experiments on endothelial cells incubated with EVs from both sources. The presence of BCR-ABL on endothelial cells incubated with Philadelphia(+) EVs was also confirmed by Western blot assays. In summary, endothelial cells acquire BCR-ABL RNA and the oncoprotein after incubation with EVs released from Ph(+) positive cells (either from K562 cells or from plasma of newly diagnosed CML patients). This results challenge the hypothesis that endothelial cells may be part of the Philadelphia(+) clone in CML. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Intracellular Retention of ABL Kinase Inhibitors Determines Commitment to Apoptosis in CML Cells

    Science.gov (United States)

    Dziadosz, Marek; Schnöder, Tina; Heidel, Florian; Schemionek, Mirle; Melo, Junia V.; Kindler, Thomas; Müller-Tidow, Carsten; Koschmieder, Steffen; Fischer, Thomas

    2012-01-01

    Clinical development of imatinib in CML established continuous target inhibition as a paradigm for successful tyrosine kinase inhibitor (TKI) therapy. However, recent reports suggested that transient potent target inhibition of BCR-ABL by high-dose TKI (HD-TKI) pulse-exposure is sufficient to irreversibly commit cells to apoptosis. Here, we report a novel mechanism of prolonged intracellular TKI activity upon HD-TKI pulse-exposure (imatinib, dasatinib) in BCR-ABL-positive cells. Comprehensive mechanistic exploration revealed dramatic intracellular accumulation of TKIs which closely correlated with induction of apoptosis. Cells were rescued from apoptosis upon HD-TKI pulse either by repetitive drug wash-out or by overexpression of ABC-family drug transporters. Inhibition of ABCB1 restored sensitivity to HD-TKI pulse-exposure. Thus, our data provide evidence that intracellular drug retention crucially determines biological activity of imatinib and dasatinib. These studies may refine our current thinking on critical requirements of TKI dose and duration of target inhibition for biological activity of TKIs. PMID:22815843

  18. Chronic myeloid leukemia and its induction by radiation

    International Nuclear Information System (INIS)

    Kozubek, S.; Lukasova, E.; Kozubek, M.; Bartova, E.; Skalnikova, M.; Kroha, V.

    1998-01-01

    Physical distance can play an important role in the process leading to the translocations that are responsible for oncogenic transformation of cells. Thus, e.g., one of the reasons of a high incidence of ABL/BCR fusion may be the physical closeness of ABL and BCR genes in cells. The average distance of ABL-BCR genes in interphase lymphocytes is only 24% of the nuclear radius; after stimulation, this distance increases to 35%. The mean value for randomly distributed genes in a sphere is 43%. This means that the mutual distance of the critical genes is largely smaller than the random distance. The distance between chromosomes 9 and 22 in prometaphase plates (rosettes) of human fibroblasts was also investigated. In many prometaphase rosettes, each copy of chromosome 9 was located near a copy of chromosome 22 and the pairs were located on opposite sides of the plate. Thus both in the interphase and in mitosis, the distance between ABL and BCR genes, located in chromosomes 9 and 22, is substantially shorter than the random value. This contributes to the observed incidence of leukemia. The positions of ABL and BCR genes in irradiated and stimulated lymphocytes are shifted to the centre of the nucleus. They are closer to each other, and also the distances between heterologous ABL and BCR genes are shorter. In 15% of the cell nuclei irradiated with gamma rays (5 Gy), the volume in which the genes appear is 6 times smaller than in control nuclei. Hence, the probability of interaction between ABL and CBR genes increases 6 2 x 0.15 = 5.4 times. Thus, radiation increases substantially the probability of induction of leukemia not only through DNA damage but also due to changes in the chromatin structure in irradiated cells, which concentrates the critical genes in a relatively small volume

  19. The Homeodomain Transcription Factor Cdx1 Does Not Behave as an Oncogene in Normal Mouse Intestine1

    Science.gov (United States)

    Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P

    2008-01-01

    The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium. PMID:18231635

  20. Lack of bcr and abr promotes hypoxia-induced pulmonary hypertension in mice.

    Directory of Open Access Journals (Sweden)

    Min Yu

    Full Text Available Bcr and Abr are GTPase activating proteins that specifically downregulate activity of the small GTPase Rac in restricted cell types in vivo. Rac1 is expressed in smooth muscle cells, a critical cell type involved in the pathogenesis of pulmonary hypertension. The molecular mechanisms that underlie hypoxia-associated pulmonary hypertension are not well-defined.Bcr and abr null mutant mice were compared to wild type controls for the development of pulmonary hypertension after exposure to hypoxia. Also, pulmonary arterial smooth muscle cells from those mice were cultured in hypoxia and examined for proliferation, p38 activation and IL-6 production. Mice lacking Bcr or Abr exposed to hypoxia developed increased right ventricular pressure, hypertrophy and pulmonary vascular remodeling. Perivascular leukocyte infiltration in the lungs was increased, and under hypoxia bcr-/- and abr-/- macrophages generated more reactive oxygen species. Consistent with a contribution of inflammation and oxidative stress in pulmonary hypertension-associated vascular damage, Bcr and Abr-deficient animals showed elevated endothelial leakage after hypoxia exposure. Hypoxia-treated pulmonary arterial smooth muscle cells from Bcr- or Abr-deficient mice also proliferated faster than those of wild type mice. Moreover, activated Rac1, phosphorylated p38 and interleukin 6 were increased in these cells in the absence of Bcr or Abr. Inhibition of Rac1 activation with Z62954982, a novel Rac inhibitor, decreased proliferation, p38 phosphorylation and IL-6 levels in pulmonary arterial smooth muscle cells exposed to hypoxia.Bcr and Abr play a critical role in down-regulating hypoxia-induced pulmonary hypertension by deactivating Rac1 and, through this, reducing both oxidative stress generated by leukocytes as well as p38 phosphorylation, IL-6 production and proliferation of pulmonary arterial smooth muscle cells.

  1. Localization of preferential sites of rearrangement within the BCR gene in Philadelphia chromosome-positive acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Denny, C.T.; Shah, N.P.; Ogden, S.; Willman, C.; McConnell, T.; Crist, W.; Carroll, A.; Witte, O.N.

    1989-01-01

    The Philadelphia chromosome associated with acute lymphoblastic leukemia (ALL) has been linked to a hybrid BCR/ABL protein product that differs from that found in chronic myelogenous leukemia. This implies that the molecular structures of the two chromosomal translocations also differ. Localization of translocation breakpoints in Philadelphia chromosome-positive ALL has been impeded due to the only partial characterization of the BCR locus. The authors have isolated the entire 130-kilobase BCR genomic locus from a human cosmid library. They have demonstrated that these breakpoints are all located at the 3' end of the intron around an unusual restriction fragment length polymorphism caused by deletion of a 1-kilobase fragment containing Alu family reiterated sequences. This clustering is unexpected in light of previous theories of rearrangement in Philadelphia chromosome-positive chronic myelogenous leukemia that would have predicted a random dispersion of breakpoints in the first intron in Philadelphia chromosome-positive ALL. The proximity of the translocation breakpoints to this constitutive deletion may indicate shared mechanisms of rearrangement or that such polymorphisms mark areas of the genome prone to recombination

  2. Mouse models in leukemia

    NARCIS (Netherlands)

    Voncken, J.W.

    1995-01-01

    Human Philadelphia-positive leukemia results from a balanced chromosomal translocation, which fuses the BCR gene on chromosome 22 to the ABL proto-oncogene on chromosome 9. The understanding of Ph-positive leukemogenesis has advanced enormously over

  3. Monovalent engagement of the BCR activates ovalbumin-specific transnuclear B cells

    NARCIS (Netherlands)

    Avalos, Ana M.; Bilate, Angelina M.; Witte, Martin D.; Tai, Albert K.; He, Jiang; Frushicheva, Maria P.; Thill, Peter D.; Meyer-Wentrup, Friederike; Theile, Christopher S.; Chakraborty, Arup K.; Zhuang, Xiaowei; Ploegh, Hidde L.

    2014-01-01

    Valency requirements for B cell activation upon antigen encounter are poorly understood. OB1 transnuclear B cells express an IgG1 B cell receptor (BCR) specific for ovalbumin (OVA), the epitope of which can be mimicked using short synthetic peptides to allow antigen-specific engagement of the BCR.

  4. THE MYC FAMILY OF ONCOGENES AND THEIR PRESENCE AND IMPORTANCE IN SMALL-CELL LUNG-CARCINOMA AND OTHER TUMOR TYPES

    NARCIS (Netherlands)

    DEVRIES, EGE; MULDER, NH

    1993-01-01

    The myc family of cellular oncogenes, c - myr, N - myc, encodes three highly related, cell cycle specific, nuclear phosphoproteins. All are able to transform primary rat embryo fibroblasts when cotransfected with the c - ras oncogene. Myc family genes am differentially expressed with respect to

  5. Nilotinib: optimal therapy for patients with chronic myeloid leukemia and resistance or intolerance to imatinib.

    Science.gov (United States)

    Swords, Ronan; Mahalingam, Devalingam; Padmanabhan, Swaminathan; Carew, Jennifer; Giles, Francis

    2009-09-21

    Chronic myeloid leukemia (CML) is the consequence of a single balanced translocation that produces the BCR-ABL fusion oncogene which is detectable in over 90% of patients at presentation. The BCR-ABL inhibitor imatinib mesylate (IM) has improved survival in all phases of CML and is the standard of care for newly diagnosed patients in chronic phase. Despite the very significant therapeutic benefits of IM, a small minority of patients with early stage disease do not benefit optimally while IM therapy in patients with advanced disease is of modest benefit in many. Diverse mechanisms may be responsible for IM failures, with point mutations within the Bcr-Abl kinase domain being amongst the most common resistance mechanisms described in patients with advanced CML. The development of novel agents designed to overcome IM resistance, while still primarily targeted on BCR-ABL, led to the creation of the high affinity aminopyrimidine inhibitor, nilotinib. Nilotinib is much more potent as a BCR-ABL inhibitor than IM and inhibits both wild type and IM-resistant BCR-ABL with significant clinical activity across the entire spectrum of BCR-ABL mutants with the exception of T315I. The selection of a second generation tyrosine kinase inhibitor to rescue patients with imatinib failure will be based on several factors including age, co-morbid medical problems and ABL kinase mutational profile. It should be noted that while the use of targeted BCR-ABL kinase inhibitors in CML represents a paradigm shift in CML management these agents are not likely to have activity against the quiescent CML stem cell pool. The purpose of this review is to summarize the pre-clinical and clinical data on nilotinib in patients with CML who have failed prior therapy with IM or dasatinib.

  6. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia

    Science.gov (United States)

    Piazza, Rocco; Valletta, Simona; Winkelmann, Nils; Redaelli, Sara; Spinelli, Roberta; Pirola, Alessandra; Antolini, Laura; Mologni, Luca; Donadoni, Carla; Papaemmanuil, Elli; Schnittger, Susanne; Kim, Dong-Wook; Boultwood, Jacqueline; Rossi, Fabio; Gaipa, Giuseppe; De Martini, Greta P; di Celle, Paola Francia; Jang, Hyun Gyung; Fantin, Valeria; Bignell, Graham R; Magistroni, Vera; Haferlach, Torsten; Pogliani, Enrico Maria; Campbell, Peter J; Chase, Andrew J; Tapper, William J; Cross, Nicholas C P; Gambacorti-Passerini, Carlo

    2013-01-01

    Atypical chronic myeloid leukemia (aCML) shares clinical and laboratory features with CML, but it lacks the BCR-ABL1 fusion. We performed exome sequencing of eight aCMLs and identified somatic alterations of SETBP1 (encoding a p.Gly870Ser alteration) in two cases. Targeted resequencing of 70 aCMLs, 574 diverse hematological malignancies and 344 cancer cell lines identified SETBP1 mutations in 24 cases, including 17 of 70 aCMLs (24.3%; 95% confidence interval (CI) = 16–35%). Most mutations (92%) were located between codons 858 and 871 and were identical to changes seen in individuals with Schinzel-Giedion syndrome. Individuals with mutations had higher white blood cell counts (P = 0.008) and worse prognosis (P = 0.01). The p.Gly870Ser alteration abrogated a site for ubiquitination, and cells exogenously expressing this mutant exhibited higher amounts of SETBP1 and SET protein, lower PP2A activity and higher proliferation rates relative to those expressing the wild-type protein. In summary, mutated SETBP1 represents a newly discovered oncogene present in aCML and closely related diseases. PMID:23222956

  7. The SH2 Domain Regulates c-Abl Kinase Activation by a Cyclin-Like Mechanism and Remodulation of the Hinge Motion

    OpenAIRE

    Dölker, N.; Górna, M. W.; Sutto, L.; Torralba, A. S.; Superti-Furga, G.; Gervasio, F. L.

    2014-01-01

    Regulation of the c-Abl (ABL1) tyrosine kinase is important because of its role in cellular signaling, and its relevance in the leukemiogenic counterpart (BCR-ABL). Both auto-inhibition and full activation of c-Abl are regulated by the interaction of the catalytic domain with the Src Homology 2 (SH2) domain. The mechanism by which this interaction enhances catalysis is not known. We combined computational simulations with mutagenesis and functional analysis to find that the SH2 domain conveys...

  8. DMPD: Mechanisms of selection mediated by interleukin-7, the preBCR, and hemokinin-1during B-cell development. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14962188 Mechanisms of selection mediated by interleukin-7, the preBCR, and hemokin...ng) (.svg) (.html) (.csml) Show Mechanisms of selection mediated by interleukin-7, the preBCR, and hemokinin...-1during B-cell development. PubmedID 14962188 Title Mechanisms of selection medi

  9. Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells

    International Nuclear Information System (INIS)

    Okabe, Seiichi; Tauchi, Tetsuzo; Tanaka, Yuko; Ohyashiki, Kazuma

    2013-01-01

    Highlights: •Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells okabe et al. •Imatinib or nilotinib resistance was involved Src family kinase. •The BCR-ABL point mutation (E334V) was highly resistant to imatinib or nilotinib. •Ponatinib was a powerful strategy against imatinib or nilotinib resistant Ph-positive cells. -- Abstract: Because a substantial number of patients with chronic myeloid leukemia acquire resistance to ABL tyrosine kinase inhibitors (TKIs), their management remains a challenge. Ponatinib, also known as AP24534, is an oral multi-targeted TKI. Ponatinib is currently being investigated in a pivotal phase 2 clinical trial. In the present study, we analyzed the molecular and functional consequences of ponatinib against imatinib- or nilotinib-resistant (R) K562 and Ba/F3 cells. The proliferation of imatinib- or nilotinib-resistant K562 cells did not decrease after treatment with imatinib or nilotinib. Src family kinase Lyn was activated. Point mutation Ba/F3 cells (E334 V) were also highly resistant to imatinib and nilotinib. Treatment with ponatinib for 72 h inhibited the growth of imatinib- and nilotinib-resistant cells. The phosphorylation of BCR-ABL, Lyn, and Crk-L was reduced. This study demonstrates that ponatinib has an anti-leukemia effect by reducing ABL and Lyn kinase activity and this information may be of therapeutic relevance

  10. Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Okabe, Seiichi, E-mail: okabe@tokyo-med.ac.jp; Tauchi, Tetsuzo; Tanaka, Yuko; Ohyashiki, Kazuma

    2013-06-07

    Highlights: •Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells okabe et al. •Imatinib or nilotinib resistance was involved Src family kinase. •The BCR-ABL point mutation (E334V) was highly resistant to imatinib or nilotinib. •Ponatinib was a powerful strategy against imatinib or nilotinib resistant Ph-positive cells. -- Abstract: Because a substantial number of patients with chronic myeloid leukemia acquire resistance to ABL tyrosine kinase inhibitors (TKIs), their management remains a challenge. Ponatinib, also known as AP24534, is an oral multi-targeted TKI. Ponatinib is currently being investigated in a pivotal phase 2 clinical trial. In the present study, we analyzed the molecular and functional consequences of ponatinib against imatinib- or nilotinib-resistant (R) K562 and Ba/F3 cells. The proliferation of imatinib- or nilotinib-resistant K562 cells did not decrease after treatment with imatinib or nilotinib. Src family kinase Lyn was activated. Point mutation Ba/F3 cells (E334 V) were also highly resistant to imatinib and nilotinib. Treatment with ponatinib for 72 h inhibited the growth of imatinib- and nilotinib-resistant cells. The phosphorylation of BCR-ABL, Lyn, and Crk-L was reduced. This study demonstrates that ponatinib has an anti-leukemia effect by reducing ABL and Lyn kinase activity and this information may be of therapeutic relevance.

  11. Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation

    DEFF Research Database (Denmark)

    Satpathy, Shankha; Wagner, Sebastian A; Beli, Petra

    2015-01-01

    B-cell receptor (BCR) signaling is essential for the development and function of B cells; however, the spectrum of proteins involved in BCR signaling is not fully known. Here we used quantitative mass spectrometry-based proteomics to monitor the dynamics of BCR signaling complexes (signalosomes......) and to investigate the dynamics of downstream phosphorylation and ubiquitylation signaling. We identify most of the previously known components of BCR signaling, as well as many proteins that have not yet been implicated in this system. BCR activation leads to rapid tyrosine phosphorylation and ubiquitylation...... of the receptor-proximal signaling components, many of which are co-regulated by both the modifications. We illustrate the power of multilayered proteomic analyses for discovering novel BCR signaling components by demonstrating that BCR-induced phosphorylation of RAB7A at S72 prevents its association...

  12. Chronic Myeloid Leukemia in the Era of Tyrosine Kinase Inhibitors: An Evolving Paradigm of Molecularly Targeted Therapy.

    Science.gov (United States)

    Ali, Mohamed A M

    2016-08-01

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm, characterized by the unrestrained expansion of pluripotent hematopoietic stem cells. CML was the first malignancy in which a unique chromosomal abnormality was identified and a pathophysiologic association was suggested. The hallmark of CML is a reciprocal chromosomal translocation between the long arms of chromosomes 9 and 22, t(9; 22)(q34; q11), creating a derivative 9q+ and a shortened 22q-. The latter, known as the Philadelphia (Ph) chromosome, harbors the breakpoint cluster region-abelson (BCR-ABL) fusion gene, encoding the constitutively active BCR-ABL tyrosine kinase that is necessary and sufficient for initiating CML. The successful implementation of tyrosine kinase inhibitors (TKIs) for the treatment of CML remains a flagship for molecularly targeted therapy in cancer. TKIs have changed the clinical course of CML; however, some patients nonetheless demonstrate primary or secondary resistance to such therapy and require an alternative therapeutic strategy. Therefore, the assessment of early response to treatment with TKIs has become an important tool in the clinical monitoring of CML patients. Although mutations in the BCR-ABL have proven to be the most prominent mechanism of resistance to TKIs, other mechanisms-either rendering the leukemic cells still dependent on BCR-ABL activity or supporting oncogenic properties of the leukemic cells independent of BCR-ABL signaling-have been identified. This article provides an overview of the current understanding of CML pathogenesis; recommendations for diagnostic tools, treatment strategies, and management guidelines; and highlights the BCR-ABL-dependent and -independent mechanisms that contribute to the development of resistance to TKIs.

  13. Change of mitotic cycle and DNA repair in embryonic cells of rat, immortalized by E1 A oncogene and transformated by E1 A and c-Ha-Ras oncogenes under ionizing radiation action

    International Nuclear Information System (INIS)

    Kirillova, T.V.

    1997-01-01

    Comparison investigation into the repair of mitotic cycle and the reunion of DN single- and double-strand breaks in gamma-ray irradiated initial E1 A oncogene immortalized and E1 A and c-Ha-Ras oncogene transformed (mutant form) lines of rat embryonic fibroblasts was carried out. Possible involvement of Ras gene product in DNA repair speed governing and absence of tumor suppression function of p 53 protein in the embryonic and E1 A oncogene immortalized cells of rat fibroblast, as well as, presence of the mentioned function of p 53 protein in E1 A and c-Ha-Ras oncogene transformed cells were studied [ru

  14. Constitutive Activity in an Ancestral Form of Abl Tyrosine Kinase.

    Directory of Open Access Journals (Sweden)

    Saadat U Aleem

    Full Text Available The c-abl proto-oncogene encodes a nonreceptor tyrosine kinase that is found in all metazoans, and is ubiquitously expressed in mammalian tissues. The Abl tyrosine kinase plays important roles in the regulation of mammalian cell physiology. Abl-like kinases have been identified in the genomes of unicellular choanoflagellates, the closest relatives to the Metazoa, and in related unicellular organisms. Here, we have carried out the first characterization of a premetazoan Abl kinase, MbAbl2, from the choanoflagellate Monosiga brevicollis. The enzyme possesses SH3, SH2, and kinase domains in a similar arrangement to its mammalian counterparts, and is an active tyrosine kinase. MbAbl2 lacks the N-terminal myristoylation and cap sequences that are critical regulators of mammalian Abl kinase activity, and we show that MbAbl2 is constitutively active. When expressed in mammalian cells, MbAbl2 strongly phosphorylates cellular proteins on tyrosine, and transforms cells much more potently than mammalian Abl kinase. Thus, MbAbl2 appears to lack the autoinhibitory mechanism that tightly constrains the activity of mammalian Abl kinases, suggesting that this regulatory apparatus arose more recently in metazoan evolution.

  15. Nilotinib: optimal therapy for patients with chronic myeloid leukemia and resistance or intolerance to imatinib

    Directory of Open Access Journals (Sweden)

    Ronan Swords

    2009-03-01

    Full Text Available Ronan Swords, Devalingam Mahalingam, Swaminathan Padmanabhan, Jennifer Carew, Francis GilesInstitute for Drug Development, Cancer Therapy and Research Centre, University of Texas Health Science Centre at San Antonio, USAAbstract: Chronic myeloid leukemia (CML is the consequence of a single balanced translocation that produces the BCR-ABL fusion oncogene which is detectable in over 90% of patients at presentation. The BCR-ABL inhibitor imatinib mesylate (IM has improved survival in all phases of CML and is the standard of care for newly diagnosed patients in chronic phase. Despite the very significant therapeutic benefits of IM, a small minority of patients with early stage disease do not benefit optimally while IM therapy in patients with advanced disease is of modest benefit in many. Diverse mechanisms may be responsible for IM failures, with point mutations within the Bcr-Abl kinase domain being amongst the most common resistance mechanisms described in patients with advanced CML. The development of novel agents designed to overcome IM resistance, while still primarily targeted on BCR-ABL, led to the creation of the high affinity aminopyrimidine inhibitor, nilotinib. Nilotinib is much more potent as a BCR-ABL inhibitor than IM and inhibits both wild type and IM-resistant BCR-ABL with significant clinical activity across the entire spectrum of BCR-ABL mutants with the exception of T315I. The selection of a second generation tyrosine kinase inhibitor to rescue patients with imatinib failure will be based on several factors including age, co-morbid medical problems and ABL kinase mutational profile. It should be noted that while the use of targeted BCR-ABL kinase inhibitors in CML represents a paradigm shift in CML management these agents are not likely to have activity against the quiescent CML stem cell pool. The purpose of this review is to summarize the pre-clinical and clinical data on nilotinib in patients with CML who have failed prior

  16. The Homeodomain Transcription Factor Cdx1 Does Not Behave as an Oncogene in Normal Mouse Intestine

    Directory of Open Access Journals (Sweden)

    Mary Ann S. Crissey

    2008-01-01

    Full Text Available The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium.

  17. The Dictyostelium Bcr/Abr-related protein DRG regulates both Rac- and Rab-dependent pathways

    OpenAIRE

    Knetsch, Menno L.W.; Schäfers, Nicole; Horstmann, Heinz; Manstein, Dietmar J.

    2001-01-01

    Dictyostelium discoideum DdRacGap1 (DRG) contains both Rho-GEF and Rho-GAP domains, a feature it shares with mammalian Bcr and Abr. To elucidate the physiological role of this multifunctional protein, we characterized the enzymatic activity of recombinant DRG fragments in vitro, created DRG-null cells, and studied the function of the protein in vivo by analysing the phenotypic changes displayed by DRG-depleted cells and DRG-null cells complemented with DRG or DRG fragments. Our results show t...

  18. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress.

    Science.gov (United States)

    Macheret, Morgane; Halazonetis, Thanos D

    2018-03-01

    Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.

  19. Cumulative clinical experience from a decade of use: imatinib as first-line treatment of chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Baran Y

    2012-11-01

    Full Text Available Yusuf Baran,1 Guray Saydam21Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey; 2Department of Hematology, School of Medicine, Ege University, Izmir, TurkeyAbstract: Chronic myeloid leukemia (CML is a malignant disease that originates in the bone marrow and is designated by the presence of the Philadelphia (Ph+ chromosome, a translocation between chromosomes 9 and 22. Targeted therapy against CML commenced with the development of small-molecule tyrosine kinase inhibitors (TKIs exerting their effect against the oncogenic breakpoint cluster region (BCR-ABL fusion protein. Imatinib emerged as the first successful example of a TKI used for the treatment of chronic-phase CML patients and resulted in significant improvements in response rate and overall survival compared with previous treatments. However, a significant portion of patients failed to respond to the therapy and developed resistance against imatinib. Second-generation TKIs nilotinib and dasatinib were to have higher efficiency in clinical trials in imatinib- resistant or intolerant CML patients compared with imatinib. Identification of novel strategies such as dose escalation, drug combination therapy, and use of novel BCR-ABL inhibitors may eventually overcome resistance against BCR-ABL TKIs. This article reviews the history of CML, including the treatment strategies used prediscovery of TKIs and the preclinical and clinical data obtained after the use of imatinib, and the second-generation TKIs developed for the treatment of CML.Keywords: drug resistance, tyrosine kinase inhibitors, chronic myeloid leukemia, imatinib, BCR/ABL

  20. Sr and Pb isotopic composition of five USGS glasses (BHVO-2G, BIR-1G, BCR-2G, TB-1G, NKT-1G)

    NARCIS (Netherlands)

    Elburg, M.A.; Vroon, P.Z.; van der Wagt, R.A.C.A.; Tchalikian, A.

    2005-01-01

    Sr isotopic compositions and Rb/Sr ratios of three USGS glasses (BHVO-2G, BIR-1G, BCR-2G) are identical to those of the original USGS reference materials. NKT-1G and TB-1G give values of 0.70351 and 0.70558, respectively. Pb isotopic ratios were measured by the standard-sample bracketing technique

  1. Selective targeting of the mTORC1/2 protein kinase complexes leads to antileukemic effects in vitro and in vivo

    International Nuclear Information System (INIS)

    Schuster, K; Zheng, J; Arbini, A A; Zhang, C C; Scaglioni, P P

    2011-01-01

    The BCR/ABL tyrosine kinase promotes leukemogenesis through activation of several targets that include the phosphoinositide 3-kinase (PI3K). Tyrosine kinase inhibitors (TKIs), which target BCR/ABL, induce striking clinical responses. However, therapy with TKIs is associated with limitations such as drug intolerance, inability to universally eradicate the disease and emergence of BCR/ABL drug-resistant mutants. To overcome these limitations, we tested whether inhibition of the PI3K/target of rapamycin (mTOR) signaling pathway has antileukemic effect in primary hematopoietic stem cells and BA/F3 cells expressing the BCR/ABL oncoprotein. We determined that dual inhibition of PI3K/mTOR causes growth arrest and apoptosis leading to profound antileukemic effects both in vitro and in vivo. We also established that pharmacologic inhibition of the mTORC1/mTORC2 complexes is sufficient to cause these antileukemic effects. Our results support the development of inhibitors of the mTORC1/2 complexes for the therapy of leukemias that either express BCR/ABL or display deregulation of the PI3K/mTOR signaling pathway

  2. Evidence-based guidelines for the use of tyrosine kinase inhibitors in adults with Philadelphia chromosome–positive or BCR-ABL–positive acute lymphoblastic leukemia: a Canadian consensus

    Science.gov (United States)

    Couban, S.; Savoie, L.; Mourad, Y. Abou; Leber, B.; Minden, M.; Turner, R.; Palada, V.; Shehata, N.; Christofides, A.; Lachance, S.

    2014-01-01

    Adult Philadelphia chromosome–positive (Ph+) or BCR-ABL–positive (BCR-ABL+) acute lymphoblastic leukemia (all) is an acute leukemia previously associated with a high relapse rate, short disease-free survival, and poor overall survival. In adults, allogeneic hematopoietic cell transplant in first remission remains the only proven curative strategy for transplant-eligible patients. The introduction of tyrosine kinase inhibitors (tkis) in the treatment of patients with Ph+ or BCR-ABL+ all has significantly improved the depth and duration of complete remission, allowing more patients to proceed to transplantation. Although tkis are now considered a standard of care in this setting, few randomized trials have examined the optimal use of tkis in patients with Ph+ all. Questions of major importance remain, including the best way to administer these medications, the choice of tki to administer, and the schedule and the duration to use. We present the results of a systematic review of the literature with consensus recommendations based on the available evidence. PMID:24764712

  3. Identification of Genes Upregulated by the Transcription Factor Bcr1 That Are Involved in Impermeability, Impenetrability, and Drug Resistance of Candida albicans a/α Biofilms

    Science.gov (United States)

    Srikantha, Thyagarajan; Daniels, Karla J.; Pujol, Claude; Kim, Elena

    2013-01-01

    Candida albicans forms two types of biofilm, depending upon the configuration of the mating type locus. Although architecturally similar, a/α biofilms are impermeable, impenetrable, and drug resistant, whereas a/a and α/α biofilms lack these traits. The difference appears to be the result of an alternative matrix. Overexpression in a/a cells of BCR1, a master regulator of the a/α matrix, conferred impermeability, impenetrability, and drug resistance to a/a biofilms. Deletion of BCR1 in a/α cells resulted in the loss of these a/α-specific biofilm traits. Using BCR1 overexpression in a/a cells, we screened 107 genes of interest and identified 8 that were upregulated by Bcr1. When each was overexpressed in a/a biofilms, the three a/α traits were partially conferred, and when each was deleted in a/α cells, the traits were partially lost. Five of the eight genes have been implicated in iron homeostasis, and six encode proteins that are either in the wall or plasma membrane or secreted. All six possess sites for O-linked and N-linked glycosylation that, like glycosylphosphatidylinositol (GPI) anchors, can cross-link to the wall and matrix, suggesting that they may exert a structural role in conferring impermeability, impenetrability, and drug resistance, in addition to their physiological functions. The fact that in a screen of 107 genes, all 8 of the Bcr1-upregulated genes identified play a role in impermeability, impenetrability, and drug resistance suggests that the formation of the a/α matrix is highly complex and involves a larger number of genes than the initial ones identified here. PMID:23563485

  4. Selective Depletion of CD45RA+ T Cells From Allogeneic Peripheral Blood Stem Cell Grafts From HLA-Matched Related and Unrelated Donors in Preventing GVHD

    Science.gov (United States)

    2017-10-25

    Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Acute Biphenotypic Leukemia; Acute Leukemia of Ambiguous Lineage; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Blastic Plasmacytoid Dendritic Cell Neoplasm; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Lymphoblastic Lymphoma; Myelodysplastic Syndrome With Excess Blasts; Myelodysplastic Syndrome With Excess Blasts-1; Myelodysplastic Syndrome With Excess Blasts-2; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Refractory Acute Lymphoblastic Leukemia; Refractory Acute Myeloid Leukemia

  5. Reversal of oncogene transformation and suppression of tumor growth by the novel IGF1R kinase inhibitor A-928605

    International Nuclear Information System (INIS)

    Pappano, William N; Sheppard, George S; Donawho, Cherrie; Buchanan, Fritz G; Davidsen, Steven K; Bell, Randy L; Wang, Jieyi; Jung, Paul M; Meulbroek, Jonathan A; Wang, Yi-Chun; Hubbard, Robert D; Zhang, Qian; Grudzien, Meagan M; Soni, Niru B; Johnson, Eric F

    2009-01-01

    The insulin-like growth factor (IGF) axis is an important signaling pathway in the growth and survival of many cell and tissue types. This pathway has also been implicated in many aspects of cancer progression from tumorigenesis to metastasis. The multiple roles of IGF signaling in cancer suggest that inhibition of the pathway might yield clinically effective therapeutics. We describe A-928605, a novel pyrazolo [3,4-d]pyrimidine small molecule inhibitor of the receptor tyrosine kinases (IGF1R and IR) responsible for IGF signal transduction. This compound was first tested for its activity and selectivity via conventional in vitro kinome profiling and cellular IGF1R autophosphorylation. Additionally, cellular selectivity and efficacy of A-928605 were analyzed in an IGF1R oncogene-addicted cell line by proliferation, signaling and microarray studies. Finally, in vivo efficacy of A-928605 was assessed in the oncogene-addicted cell line and in a neuroblastoma model as a single agent as well as in combination with clinically approved therapeutics targeting EGFR in models of pancreatic and non-small cell lung cancers. A-928605 is a selective IGF1R inhibitor that is able to abrogate activation of the pathway both in vitro and in vivo. This novel compound dosed as a single agent is able to produce significant growth inhibition of neuroblastoma xenografts in vivo. A-928605 is also able to provide additive effects when used in combination with clinically approved agents directed against EGFR in non-small cell lung and human pancreatic tumor models. These results suggest that a selective IGF1R inhibitor such as A-928605 may provide a useful clinical therapeutic for IGF pathway affected tumors and warrants further investigation

  6. Ibrutinib inhibits pre-BCR+ B-cell acute lymphoblastic leukemia progression by targeting BTK and BLK.

    Science.gov (United States)

    Kim, Ekaterina; Hurtz, Christian; Koehrer, Stefan; Wang, Zhiqiang; Balasubramanian, Sriram; Chang, Betty Y; Müschen, Markus; Davis, R Eric; Burger, Jan A

    2017-03-02

    Targeting B-cell receptor (BCR) signaling is a successful therapeutic strategy in mature B-cell malignancies. Precursor BCR (pre-BCR) signaling, which is critical during normal B lymphopoiesis, also plays an important role in pre-BCR + B cell acute lymphoblastic leukemia (B-ALL). Here, we investigated the activity and mechanism of action of the BTK inhibitor ibrutinib in preclinical models of B-ALL. Pre-BCR + ALL cells were exquisitely sensitive to ibrutinib at therapeutically relevant drug concentrations. In pre-BCR + ALL, ibrutinib thwarted autonomous and induced pre-BCR signaling, resulting in deactivation of PI3K/Akt signaling. Ibrutinib modulated the expression of pre-BCR regulators (PTPN6, CD22, CD72, and PKCβ) and substantially reduced BCL6 levels. Ibrutinib inhibited ALL cell migration toward CXCL12 and beneath marrow stromal cells and reduced CD44 expression. CRISPR-Cas9 gene editing revealed that both BTK and B lymphocyte kinase (BLK) are relevant targets of ibrutinib in pre-BCR + ALL. Consequently, in mouse xenograft models of pre-BCR + ALL, ibrutinib treatment significantly prolonged survival. Combination treatment of ibrutinib with dexamethasone or vincristine demonstrated synergistic activity against pre-BCR + ALL. These data corroborate ibrutinib as a promising targeted agent for pre-BCR + ALL and highlight the importance of ibrutinib effects on alternative kinase targets. © 2017 by The American Society of Hematology.

  7. Tumor-Promoting Circuits That Regulate a Cancer-Related Chemokine Cluster: Dominance of Inflammatory Mediators Over Oncogenic Alterations

    International Nuclear Information System (INIS)

    Leibovich-Rivkin, Tal; Buganim, Yosef; Solomon, Hilla; Meshel, Tsipi; Rotter, Varda; Ben-Baruch, Adit

    2012-01-01

    Here, we investigated the relative contribution of genetic/signaling components versus microenvironmental factors to the malignancy phenotype. In this system, we took advantage of non-transformed fibroblasts that carried defined oncogenic modifications in Ras and/or p53. These cells were exposed to microenvironmental pressures, and the expression of a cancer-related chemokine cluster was used as readout for the malignancy potential (CCL2, CCL5, CXCL8, CXCL10). In cells kept in-culture, synergism between Ras hyper-activation and p53 dysfunction was required to up-regulate the expression of the chemokine cluster. The in vivo passage of Ras High /p53 Low -modified cells has led to tumor formation, accompanied by potentiation of chemokine release, implicating a powerful role for the tumor microenvironment in up-regulating the chemokine cluster. Indeed, we found that inflammatory mediators which are prevalent in tumor sites, such as TNFα and IL-1β, had a predominant impact on the release of the chemokines, which was substantially higher than that obtained by the oncogenic modifications alone, possibly acting through the transcription factors AP-1 and NF-κB. Together, our results propose that in the unbiased model system that we were using, inflammatory mediators of the tumor milieu have dominating roles over oncogenic modifications in dictating the expression of a pro-malignancy chemokine readout

  8. Mutations with epigenetic effects in myeloproliferative neoplasms and recent progress in treatment: Proceedings from the 5th International Post-ASH Symposium

    International Nuclear Information System (INIS)

    Tefferi, A; Abdel-Wahab, O; Cervantes, F; Crispino, J D; Finazzi, G; Girodon, F; Gisslinger, H; Gotlib, J; Kiladjian, J-J; Levine, R L; Licht, J D; Mullally, A; Odenike, O; Pardanani, A; Silver, R T; Solary, E; Mughal, T

    2011-01-01

    Immediately following the 2010 annual American Society of Hematology (ASH) meeting, the 5th International Post-ASH Symposium on Chronic Myelogenous Leukemia and BCR-ABL1-Negative Myeloproliferative Neoplasms (MPNs) took place on 7–8 December 2010 in Orlando, Florida, USA. During this meeting, the most recent advances in laboratory research and clinical practice, including those that were presented at the 2010 ASH meeting, were discussed among recognized authorities in the field. The current paper summarizes the proceedings of this meeting in BCR-ABL1-negative MPN. We provide a detailed overview of new mutations with putative epigenetic effects (TET oncogene family member 2 (TET2), additional sex comb-like 1 (ASXL1), isocitrate dehydrogenase (IDH) and enhancer of zeste homolog 2 (EZH2)) and an update on treatment with Janus kinase (JAK) inhibitors, pomalidomide, everolimus, interferon-α, midostaurin and cladribine. In addition, the new ‘Dynamic International Prognostic Scoring System (DIPSS)-plus' prognostic model for primary myelofibrosis (PMF) and the clinical relevance of distinguishing essential thrombocythemia from prefibrotic PMF are discussed

  9. Mutations with epigenetic effects in myeloproliferative neoplasms and recent progress in treatment: Proceedings from the 5th International Post-ASH Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Tefferi, A [Division of Hematology, Department of Medicine, Rochester, MN (United States); Abdel-Wahab, O [Department of Medicine, Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Cervantes, F [Hematology Department, Hospital Clínic, Institut d' Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona (Spain); Crispino, J D [Department of Hematology, Northwestern University, Chicago, IL (United States); Finazzi, G [Hematology Department of Ospedali Riuniti di Bergamo, Bergamo (Italy); Girodon, F [Laboratoire d' Hématologie, Hôpital du Bocage, Dijon (France); Gisslinger, H [Division of Hematology and Blood Coagulation, Department of Internal Medicine I, Medical University of Vienna, Vienna (Austria); Gotlib, J [Division of Hematology, Stanford University School of Medicine, Stanford, CA (United States); Kiladjian, J-J [Centre d' Investigations Cliniques 9504, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Université Paris 7, Paris (France); Levine, R L [Department of Medicine, Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Licht, J D [Department of Hematology, Northwestern University, Chicago, IL (United States); Mullally, A [Division of Hematology, Department of Medicine, Brigham and Women' s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA (United States); Odenike, O [Section of Hematology and Oncology, University of Chicago, Chicago, IL (United States); Pardanani, A [Division of Hematology, Department of Medicine, Rochester, MN (United States); Silver, R T [Division of Hematology and Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, NY (United States); Solary, E [Inserm U1009, Institut Gustave Roussy, Université Paris XI, Villejuif (France); Mughal, T [Department of Haematology, Guys Hospital Medical School, London (United Kingdom); Division of Hematology, Department of Medicine, Rochester, MN (United States)

    2011-03-01

    Immediately following the 2010 annual American Society of Hematology (ASH) meeting, the 5th International Post-ASH Symposium on Chronic Myelogenous Leukemia and BCR-ABL1-Negative Myeloproliferative Neoplasms (MPNs) took place on 7–8 December 2010 in Orlando, Florida, USA. During this meeting, the most recent advances in laboratory research and clinical practice, including those that were presented at the 2010 ASH meeting, were discussed among recognized authorities in the field. The current paper summarizes the proceedings of this meeting in BCR-ABL1-negative MPN. We provide a detailed overview of new mutations with putative epigenetic effects (TET oncogene family member 2 (TET2), additional sex comb-like 1 (ASXL1), isocitrate dehydrogenase (IDH) and enhancer of zeste homolog 2 (EZH2)) and an update on treatment with Janus kinase (JAK) inhibitors, pomalidomide, everolimus, interferon-α, midostaurin and cladribine. In addition, the new ‘Dynamic International Prognostic Scoring System (DIPSS)-plus' prognostic model for primary myelofibrosis (PMF) and the clinical relevance of distinguishing essential thrombocythemia from prefibrotic PMF are discussed.

  10. Purification and molecular cloning of SH2- and SH3-containing inositol polyphosphate-5-phosphatase, which is involved in the signaling pathway of granulocyte-macrophage colony-stimulating factor, erythropoietin, and Bcr-Abl.

    Science.gov (United States)

    Odai, H; Sasaki, K; Iwamatsu, A; Nakamoto, T; Ueno, H; Yamagata, T; Mitani, K; Yazaki, Y; Hirai, H

    1997-04-15

    -phosphorylated and associated with Shc and Bcr-Abl. These facts suggest that pp135 is a signaling molecule that has a unique enzymatic activity and should play an important role in the signaling pathway triggered by GM-CSF and in the transformation of hematopoietic cells caused by Bcr-Abl.

  11. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase.

    Science.gov (United States)

    Venkitachalam, Srividya; Chueh, Fu-Yu; Leong, King-Fu; Pabich, Samantha; Yu, Chao-Lan

    2011-03-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here, we report that among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine-inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identified the positive regulatory phosphotyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases.

  12. Clonal composition of human ovarian cancer based on copy number analysis reveals a reciprocal relation with oncogenic mutation status.

    Science.gov (United States)

    Sakai, Kazuko; Ukita, Masayo; Schmidt, Jeanette; Wu, Longyang; De Velasco, Marco A; Roter, Alan; Jevons, Luis; Nishio, Kazuto; Mandai, Masaki

    2017-10-01

    Intratumoral heterogeneity of cancer cells remains largely unexplored. Here we investigated the composition of ovarian cancer and its biological relevance. A whole-genome single nucleotide polymorphism array was applied to detect the clonal composition of 24 formalin-fixed, paraffin-embedded samples of human ovarian cancer. Genome-wide segmentation data consisting of the log2 ratio (log2R) and B allele frequency (BAF) were used to calculate an estimate of the clonal composition number (CC number) for each tumor. Somatic mutation profiles of cancer-related genes were also determined for the same 24 samples by next-generation sequencing. The CC number was estimated successfully for 23 of the 24 cancer samples. The mean ± SD value for the CC number was 1.7 ± 1.1 (range of 0-4). A somatic mutation in at least one gene was identified in 22 of the 24 ovarian cancer samples, with the mutations including those in the oncogenes KRAS (29.2%), PIK3CA (12.5%), BRAF (8.3%), FGFR2 (4.2%), and JAK2 (4.2%) as well as those in the tumor suppressor genes TP53 (54.2%), FBXW7 (8.3%), PTEN (4.2%), and RB1 (4.2%). Tumors with one or more oncogenic mutations had a significantly lower CC number than did those without such a mutation (1.0 ± 0.8 versus 2.3 ± 0.9, P = 0.0027), suggesting that cancers with driver oncogene mutations are less heterogeneous than those with other mutations. Our results thus reveal a reciprocal relation between oncogenic mutation status and clonal composition in ovarian cancer using the established method for the estimation of the CC number. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. Identifying Breast Cancer Oncogenes

    Science.gov (United States)

    2011-10-01

    cells we observed that it promoted transformation of HMLE cells, suggesting a tumor suppressive role of Merlin in breast cancer (Figure 4B). A...08-1-0767 TITLE: Identifying Breast Cancer Oncogenes PRINCIPAL INVESTIGATOR: Yashaswi Shrestha...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 W81XWH-08-1-0767 Identifying Breast Cancer Oncogenes Yashaswi Shrestha Dana-Farber

  14. Variable behavior of iPSCs derived from CML patients for response to TKI and hematopoietic differentiation.

    Directory of Open Access Journals (Sweden)

    Aurélie Bedel

    Full Text Available Chronic myeloid leukemia disease (CML found effective therapy by treating patients with tyrosine kinase inhibitors (TKI, which suppress the BCR-ABL1 oncogene activity. However, the majority of patients achieving remission with TKI still have molecular evidences of disease persistence. Various mechanisms have been proposed to explain the disease persistence and recurrence. One of the hypotheses is that the primitive leukemic stem cells (LSCs can survive in the presence of TKI. Understanding the mechanisms leading to TKI resistance of the LSCs in CML is a critical issue but is limited by availability of cells from patients. We generated induced pluripotent stem cells (iPSCs derived from CD34⁺ blood cells isolated from CML patients (CML-iPSCs as a model for studying LSCs survival in the presence of TKI and the mechanisms supporting TKI resistance. Interestingly, CML-iPSCs resisted to TKI treatment and their survival did not depend on BCR-ABL1, as for primitive LSCs. Induction of hematopoietic differentiation of CML-iPSC clones was reduced compared to normal clones. Hematopoietic progenitors obtained from iPSCs partially recovered TKI sensitivity. Notably, different CML-iPSCs obtained from the same CML patients were heterogeneous, in terms of BCR-ABL1 level and proliferation. Thus, several clones of CML-iPSCs are a powerful model to decipher all the mechanisms leading to LSC survival following TKI therapy and are a promising tool for testing new therapeutic agents.

  15. Clinical relevance of the breakpoint sites within the M-BCR in 50 patients from Argentina with chronic myeloid leukemia.

    Science.gov (United States)

    Giere, I A; Larripa, I B

    1996-08-01

    Fifty patients from Argentina with chronic myeloid leukemia (CML) were studied in order to characterize the breakpoint site within the major breakpoint cluster region (M-BCR) and its relationship with the duration of the chronic phase (CP). The DNA digestion with the restriction enzymes: Bgl II, BAM HI and Hind III and hybridization with the 1.2Kb Hind III-Bgl II bcr probe showed that 56% of cases had the breakpoint in 5'M-bcr region and the remaining 44% in 3'M-bcr region. The duration of chronic phase from diagnosis to the onset of the blast crisis (BC) was correlated with the location of the breakpoint within the M-bcr and no statistical differences were observed between the 5' and the 3' groups. These data indicate that the breakpoint site within the bcr gene is not a prognostic indicator of the duration of CP of the disease.

  16. Combined drug action of 2-phenylimidazo[2,1-b]benzothiazole derivatives on cancer cells according to their oncogenic molecular signatures.

    Directory of Open Access Journals (Sweden)

    Alessandro Furlan

    Full Text Available The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by "RTK swapping" by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in

  17. The APC/C E3 Ligase Complex Activator FZR1 Restricts BRAF Oncogenic Function.

    Science.gov (United States)

    Wan, Lixin; Chen, Ming; Cao, Juxiang; Dai, Xiangpeng; Yin, Qing; Zhang, Jinfang; Song, Su-Jung; Lu, Ying; Liu, Jing; Inuzuka, Hiroyuki; Katon, Jesse M; Berry, Kelsey; Fung, Jacqueline; Ng, Christopher; Liu, Pengda; Song, Min Sup; Xue, Lian; Bronson, Roderick T; Kirschner, Marc W; Cui, Rutao; Pandolfi, Pier Paolo; Wei, Wenyi

    2017-04-01

    BRAF drives tumorigenesis by coordinating the activation of the RAS/RAF/MEK/ERK oncogenic signaling cascade. However, upstream pathways governing BRAF kinase activity and protein stability remain undefined. Here, we report that in primary cells with active APC FZR1 , APC FZR1 earmarks BRAF for ubiquitination-mediated proteolysis, whereas in cancer cells with APC-free FZR1, FZR1 suppresses BRAF through disrupting BRAF dimerization. Moreover, we identified FZR1 as a direct target of ERK and CYCLIN D1/CDK4 kinases. Phosphorylation of FZR1 inhibits APC FZR1 , leading to elevation of a cohort of oncogenic APC FZR1 substrates to facilitate melanomagenesis. Importantly, CDK4 and/or BRAF/MEK inhibitors restore APC FZR1 E3 ligase activity, which might be critical for their clinical effects. Furthermore, FZR1 depletion cooperates with AKT hyperactivation to transform primary melanocytes, whereas genetic ablation of Fzr1 synergizes with Pten loss, leading to aberrant coactivation of BRAF/ERK and AKT signaling in mice. Our findings therefore reveal a reciprocal suppression mechanism between FZR1 and BRAF in controlling tumorigenesis. Significance: FZR1 inhibits BRAF oncogenic functions via both APC-dependent proteolysis and APC-independent disruption of BRAF dimers, whereas hyperactivated ERK and CDK4 reciprocally suppress APC FZR1 E3 ligase activity. Aberrancies in this newly defined signaling network might account for BRAF hyperactivation in human cancers, suggesting that targeting CYCLIN D1/CDK4, alone or in combination with BRAF/MEK inhibition, can be an effective anti-melanoma therapy. Cancer Discov; 7(4); 424-41. ©2017 AACR. See related commentary by Zhang and Bollag, p. 356 This article is highlighted in the In This Issue feature, p. 339 . ©2017 American Association for Cancer Research.

  18. The structural pathway of interleukin 1 (IL-1 initiated signaling reveals mechanisms of oncogenic mutations and SNPs in inflammation and cancer.

    Directory of Open Access Journals (Sweden)

    Saliha Ece Acuner Ozbabacan

    2014-02-01

    Full Text Available Interleukin-1 (IL-1 is a large cytokine family closely related to innate immunity and inflammation. IL-1 proteins are key players in signaling pathways such as apoptosis, TLR, MAPK, NLR and NF-κB. The IL-1 pathway is also associated with cancer, and chronic inflammation increases the risk of tumor development via oncogenic mutations. Here we illustrate that the structures of interfaces between proteins in this pathway bearing the mutations may reveal how. Proteins are frequently regulated via their interactions, which can turn them ON or OFF. We show that oncogenic mutations are significantly at or adjoining interface regions, and can abolish (or enhance the protein-protein interaction, making the protein constitutively active (or inactive, if it is a repressor. We combine known structures of protein-protein complexes and those that we have predicted for the IL-1 pathway, and integrate them with literature information. In the reconstructed pathway there are 104 interactions between proteins whose three dimensional structures are experimentally identified; only 15 have experimentally-determined structures of the interacting complexes. By predicting the protein-protein complexes throughout the pathway via the PRISM algorithm, the structural coverage increases from 15% to 71%. In silico mutagenesis and comparison of the predicted binding energies reveal the mechanisms of how oncogenic and single nucleotide polymorphism (SNP mutations can abrogate the interactions or increase the binding affinity of the mutant to the native partner. Computational mapping of mutations on the interface of the predicted complexes may constitute a powerful strategy to explain the mechanisms of activation/inhibition. It can also help explain how an oncogenic mutation or SNP works.

  19. Oncogene expression in primary lung tumors in dogs that inhaled 239PuO2

    International Nuclear Information System (INIS)

    Kelly, G.; Kerkof, P.R.; Haley, P.J.

    1988-01-01

    Ten radiation-induced and three spontaneous lung tumors were analyzed for aberrant expression of known oncogenes. In 12 of 13 tumors tested, sequences hybridizing to the c-myc oncogene were expressed at levels 1.5 times higher than sequences hybridizing to β-actin. This level of oncogene expression was also observed in 9 of 13 tumors for 1 or more members of the ras family of oncogenes. Seven of thirteen tumors examined express sequences that hybridize with clones of v-ros or c-met. The ros and met clones both code for oncogenes whose normal homologues are transmembrane proteins related to the insulin receptor. (author)

  20. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL.

    Science.gov (United States)

    Della Gatta, Giusy; Palomero, Teresa; Perez-Garcia, Arianne; Ambesi-Impiombato, Alberto; Bansal, Mukesh; Carpenter, Zachary W; De Keersmaecker, Kim; Sole, Xavier; Xu, Luyao; Paietta, Elisabeth; Racevskis, Janis; Wiernik, Peter H; Rowe, Jacob M; Meijerink, Jules P; Califano, Andrea; Ferrando, Adolfo A

    2012-02-26

    The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL.

  1. Knockout Serum Replacement Promotes Cell Survival by Preventing BIM from Inducing Mitochondrial Cytochrome C Release.

    Directory of Open Access Journals (Sweden)

    Yuki Ishii

    Full Text Available Knockout serum replacement (KOSR is a nutrient supplement commonly used to replace serum for culturing stem cells. We show here that KOSR has pro-survival activity in chronic myelogenous leukemia (CML cells transformed by the BCR-ABL oncogene. Inhibitors of BCR-ABL tyrosine kinase kill CML cells by stimulating pro-apoptotic BIM and inhibiting anti-apoptotic BCL2, BCLxL and MCL1. We found that KOSR protects CML cells from killing by BCR-ABL inhibitors--imatinib, dasatinib and nilotinib. The protective effect of KOSR is reversible and not due to the selective outgrowth of drug-resistant clones. In KOSR-protected CML cells, imatinib still inhibited the BCR-ABL tyrosine kinase, reduced the phosphorylation of STAT, ERK and AKT, down-regulated BCL2, BCLxL, MCL1 and up-regulated BIM. However, these pro-apoptotic alterations failed to cause cytochrome c release from the mitochondria. With mitochondria isolated from KOSR-cultured CML cells, we showed that addition of recombinant BIM protein also failed to cause cytochrome c release. Besides the kinase inhibitors, KOSR could protect cells from menadione, an inducer of oxidative stress, but it did not protect cells from DNA damaging agents. Switching from serum to KOSR caused a transient increase in reactive oxygen species and AKT phosphorylation in CML cells that were protected by KOSR but not in those that were not protected by this nutrient supplement. Treatment of KOSR-cultured cells with the PH-domain inhibitor MK2206 blocked AKT phosphorylation, abrogated the formation of BIM-resistant mitochondria and stimulated cell death. These results show that KOSR has cell-context dependent pro-survival activity that is linked to AKT activation and the inhibition of BIM-induced cytochrome c release from the mitochondria.

  2. Oncogenes and radiation resistance - a review

    International Nuclear Information System (INIS)

    Dritschilo, A.

    1992-01-01

    Oncogenes exert their effects on the genetic programs of cells by regulating signal transduction pathways, resulting in multi-factorial genetic responses. By such actions, the genetic elements responsible for the cellular responses to ionizing radiation may be affected. Reports implicating the association of oncogene expression with modulation of the radiation response include the ras, raf, and myc genes. Experiments overexpressing H-ras and c-raf-1 using genetically engineered constructs result in enhanced post-radiation cellular survival. Conversely, inhibition of raf gene expression has resulted in relative radiation sensitization and delay of human squamous cell carcinoma tumor growth in nude mice. There appears to be a potential strategy for therapeutic intervention. The identification of genes that confer survival advantage following radiation exposure, and understanding their mechanisms of action, may permit a genetically based intervention for radiation sensitization. One such approach employs oligo-deoxynucleotides complementary to oncogene-encoded in RNA's (antisense DNA). (author)

  3. Oncogenes in myeloproliferative disorders.

    Science.gov (United States)

    Tefferi, Ayalew; Gilliland, D Gary

    2007-03-01

    Myeloproliferative disorders (MPDs) constitute a group of hematopoietic malignancies that feature enhanced proliferation and survival of one or more myeloid lineage cells. William Dameshek is credited for introducing the term "MPDs" in 1951 when he used it to group chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF) under one clinicopathologic category. Since then, other myeloid neoplasms have been added to the MPD member list: chronic neutrophilic (CNL), eosinophilic (CEL) and myelomonocytic (CMML) leukemias; juvenile myelomonocytic leukemia (JMML); hypereosinophilic syndrome (HES); systemic mastocytosis (SM); and others. Collectively, MPDs are stem cell-derived clonal proliferative diseases whose shared and diverse phenotypic characteristics can be attributed to dysregulated signal transduction--a consequence of acquired somatic mutations. The most recognized among the latter is BCR-ABL, the disease-causing mutation in CML. Other mutations of putative pathogenetic relevance in MPDs include: JAK2V617F in PV, ET, and PMF; JAK2 exon 12 mutations in PV; MPLW515L/K in PMF and ET; KITD816V in SM; FIP1L1-PDGFRA in CEL-SM; rearrangements of PDGFRB in CEL-CMML and FGFR1 in stem cell leukemia-lymphoma syndrome; and RAS/PTPN11/NF1 mutations in JMML. This increasing repertoire of mutant molecules has streamlined translational research and molecularly targeted drug development in MPDs.

  4. Oncogenes, radiation and cancer; Oncogenes, radiacion y cancer

    Energy Technology Data Exchange (ETDEWEB)

    Michelin, S C

    1999-12-31

    The discovery of the oncogenic virus and the analysis of its nucleic acid, together with the development of new biochemical technology have permitted the partial knowledge of the molecular mechanisms responsible for the cellular neoplastic transformation. This work, besides describing the discovery of the first oncogenic virus and the experiments to demonstrate the existence of the oncogenes, summarizes its activation mechanisms and its intervention in cellular metabolisms. Ionizing radiation is among the external agents that induce the neoplastic process. Its participation in the genesis of this process and the contribution of oncogenes to the cellular radioresistance are among the topics, which are referred to another topic that makes reference. At the same time as the advancement of theoretical knowledge, lines of investigation for the application of the new concepts in diagnosis, prognosis and therapeutical treatment, were developed. An example of this, is the study of the participation of the oncogen c-erbB-2 in human breast cancer and its implications on the anti tumoral therapy. (author) 87 refs., 7 figs., 3 tabs. [Espanol] El descubrimiento de los virus oncogenicos y el analisis de su acido nucleico, junto con el desarrollo de nuevas tecnicas bioquimicas, ha permitido conocer parcialmente los mecanismos moleculares responsables de la transformacion de una celula normal en neoplasica. En este trabajo, ademas de describir el descubrimiento de los primeros virus oncogenicos y las experiencias para demostrar la existencia de los oncogenes, se resumen sus mecanismos de activacion y su intervencion en el metabolismo celular. Entre los agentes expernos que inducen un proceso oncogenico, se encuentran las radiaciones ionizantes. Su participacion en la genesis de este proceso y la contribucion de los oncogenes a la radioresistencia de las celulas tumorales, es otro de los temas a que se hace referencia. Paralelamente al avance del conocimiento teorico, se

  5. Gene activated by growth factors is related to the oncogene v-jun

    International Nuclear Information System (INIS)

    Ryder, K.; Lau, L.F.; Nathans, D.

    1988-01-01

    The authors have recently identified by cDNA cloning a set of genes that are rapidly activated in cultured mouse cells by protein growth factors. Here they report that the nucleotide sequence of a cDNA (clone 465) derived from one of these immediate early genes (hereafter called jun-B) encodes a protein homologous to that encoded by the avian sarcoma virus 17 oncogene v-jun. Homology between the jun-B and v-jun proteins is in two regions: one near the N terminus and the other at the C terminus. The latter sequence was shown to have regions of sequence similarity to the DNA-binding domain of the yeast transcriptional regulatory protein GCN4 and to the oncogenic protein fos. Southern blots of human, mouse, and chicken DNA demonstrate that jun-B and c-jun are different genes and that there may be other vertebrate genes related to jun-B and c-jun. These findings suggest that there is a jun family of genes encoding related transcriptional regulatory proteins. The jun-B protein, and perhaps other members of the jun family, may play a role in regulating the genomic response to growth factors

  6. Interaction of the B cell-specific transcriptional coactivator OCA-B and galectin-1 and a possible role in regulating BCR-mediated B cell proliferation.

    Science.gov (United States)

    Yu, Xin; Siegel, Rachael; Roeder, Robert G

    2006-06-02

    OCA-B is a B cell-specific transcriptional coactivator for OCT factors during the activation of immunoglobulin genes. In addition, OCA-B is crucial for B cell activation and germinal center formation. However, the molecular mechanisms for OCA-B function in these processes are not clear. Our previous studies documented two OCA-B isoforms and suggested a novel mechanism for the function of the myristoylated, membrane-bound form of OCA-B/p35 as a signaling molecule. Here, we report the identification of galectin-1, and related galectins, as a novel OCA-B-interacting protein. The interaction of OCA-B and galectin-1 can be detected both in vivo and in vitro. The galectin-1 binding domain in OCA-B has been localized to the N terminus of OCA-B. In B cells lacking OCA-B expression, increased galectin-1 expression, secretion, and cell surface association are observed. Consistent with these observations, and a reported inhibitory interaction of galectin-1 with CD45, the phosphatase activity of CD45 is reduced modestly, but significantly, in OCA-B-deficient B cells. Finally, galectin-1 is shown to negatively regulate B cell proliferation and tyrosine phosphorylation upon BCR stimulation. Together, these results raise the possibility that OCA-B may regulate BCR signaling through an association with galectin-1.

  7. Current trends in molecular diagnostics of chronic myeloid leukemia.

    Science.gov (United States)

    Vinhas, Raquel; Cordeiro, Milton; Pedrosa, Pedro; Fernandes, Alexandra R; Baptista, Pedro V

    2017-08-01

    Nearly 1.5 million people worldwide suffer from chronic myeloid leukemia (CML), characterized by the genetic translocation t(9;22)(q34;q11.2), involving the fusion of the Abelson oncogene (ABL1) with the breakpoint cluster region (BCR) gene. Early onset diagnosis coupled to current therapeutics allow for a treatment success rate of 90, which has focused research on the development of novel diagnostics approaches. In this review, we present a critical perspective on current strategies for CML diagnostics, comparing to gold standard methodologies and with an eye on the future trends on nanotheranostics.

  8. BCR-701: A review of 10-years of sequential extraction analyses

    International Nuclear Information System (INIS)

    Sutherland, Ross A.

    2010-01-01

    A detailed quantitative analysis was performed on data presented in the literature that focused on the sequential extraction of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) from the certified reference material BCR-701 (lake sediment) using the three-step harmonized BCR procedure. The accuracy of data reported in the literature, including precision and different measures of trueness, was assessed relative to the certified values for BCR-701. Forty data sets were accepted following extreme outlier removal, and statistically summarized with measures of central tendency, dispersion, and distribution form. In general, literature data were similar in their measurement precision to the expert laboratories used to certify the trace element contents in BCR-701. The overall median precision for literature reported data was 10% (range 6-19%), compared to certifying laboratories of 9% (range 4-33%). One measure of literature data trueness was assessed via a confirmatory approach using a robust bootstrap method. Only 22% of the comparisons indicated significantly different (all were lower) concentrations reported in the literature compared to certified values. The question of whether the differences are practically significant for environmental studies is raised. Bias was computed as a measure of trueness, and literature data were more frequently negatively biased, indicating lower concentrations reported in the literature for the six trace elements for the three-step sequential procedure compared to the certified values. However, 95% confidence intervals about the average bias for the 18 comparisons indicated only four instances when a mean bias of 0 (i.e., measured = certified) was not incorporated-suggesting statistical difference. Finally, Z-scores incorporating a Horwitz-type function were used to assess the general trueness of laboratory data. Of the 468 laboratory Z-score values computed, 92% were considered to be satisfactory, 5% were

  9. Development of imatinib and dasatinib resistance: dynamics of expression of drug transporters ABCB1, ABCC1, ABCG2, MVP, and SLC22A1.

    Science.gov (United States)

    Gromicho, Marta; Dinis, Joana; Magalhães, Marta; Fernandes, Alexandra R; Tavares, Purificação; Laires, António; Rueff, José; Rodrigues, António Sebastião

    2011-10-01

    About 20% of patients with chronic myeloid leukemia (CML) do not respond to treatment with imatinib either initially or because of acquired resistance. To study the development of CML drug resistance, an in vitro experimental system comprising cell lines with different resistance levels was established by exposing K562 cells to increasing concentrations of imatinib and dasatinib anticancer agents. The mRNA levels of BCR- ABL1 and of genes involved in drug transport or redistribution (ABCB1, ABCC1, ABCC3, ABCG2, MVP, and SLC22A1) were measured and the ABL1 kinase domain sequenced. Results excluded BCR- ABL1 overexpression and mutations as relevant resistance mechanisms. Most studied transporters were overexpressed in the majority of resistant cell lines. Their expression pattern was dynamic: varying with resistance level and chronic drug exposure. Studied efflux transporters may have an important role at the initial stages of resistance, but after prolonged exposure and for higher doses of drugs other mechanisms might take place.

  10. Oncogene expression in primary lung tumors in dogs that inhaled {sup 239}PuO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, G; Kerkof, P R; Haley, P J

    1988-12-01

    Ten radiation-induced and three spontaneous lung tumors were analyzed for aberrant expression of known oncogenes. In 12 of 13 tumors tested, sequences hybridizing to the c-myc oncogene were expressed at levels 1.5 times higher than sequences hybridizing to {beta}-actin. This level of oncogene expression was also observed in 9 of 13 tumors for 1 or more members of the ras family of oncogenes. Seven of thirteen tumors examined express sequences that hybridize with clones of v-ros or c-met. The ros and met clones both code for oncogenes whose normal homologues are transmembrane proteins related to the insulin receptor. (author)

  11. Combinations of Novel Histone Deacetylase and Bcr-Abl Inhibitors in the Therapy of Imatinib Mesylate-Sensitive and -Refractory Bcr-Abl Expressing Leukemia

    Science.gov (United States)

    2008-12-01

    Balasis,1Purva Bali,1Veronica Estrella ,1Sandhya Kumaraswamy,1 Rekha Rao,1Kathy Rocha,1Bryan Herger,1Francis Lee,2 Victoria Richon,3 and Kapil Bhalla1...Balasis M, Bali P, Estrella V, Kumaraswamy S, et al. Histone deacetylase inhibitors deplete EZH2 and associated Polycomb Repressive Complex 2 proteins

  12. The role of hypoxia inducible factor-1 alpha in bypassing oncogene-induced senescence.

    Directory of Open Access Journals (Sweden)

    Mehtap Kilic Eren

    Full Text Available Oncogene induced senescence (OIS is a sustained anti-proliferative response acutely induced in primary cells via activation of mitogenic oncogenes such as Ras/BRAF. This mechanism acts as an initial barrier preventing normal cells transformation into malignant cell. Besides oncogenic activation and DNA damage response (DDR, senescence is modulated by a plethora of other factors, and one of the most important one is oxygen tension of the tissue. The aim of this study was to determine the impact of hypoxia on RasV12-induced senescence in human diploid fibroblasts (HDFs. We showed here that hypoxia prevents execution of oncogene induced senescence (OIS, through a strong down-regulation of senescence hallmarks, such as SA- β-galactosidase, H3K9me3, HP1γ, p53, p21CIP1 and p16INK4a in association with induction of hypoxia inducible factor-1α (HIF-1α. In addition, hypoxia also decreased marks of H-RasV12-induced DDR in both cell lines through down-regulation of ATM/ATR, Chk1 and Chk2 phosphorylation as well as decreased γ-H2AX positivity. Utilizing shRNA system targeting HIF-1α we show that HIF-1α is directly involved in down regulation of p53 and its target p21CIP1 but not p16INK4a. In line with this finding we found that knock down of HIF-1α leads to a strong induction of apoptotic response, but not restoration of senescence in Ras expressing HDFs in hypoxia. This indicates that HIF-1α is an important player in early steps of tumorigenesis, leading to suppression of senescence through its negative regulation of p53 and p21CIP1. In our work we describe a mechanism through which hypoxia and specifically HIF-1α preclude cells from maintaining senescence-driven anti proliferative response. These findings indicate the possible mechanism through which hypoxic environment helps premalignant cells to evade impingement of cellular failsafe pathways.

  13. [Inheritable phenotypic normalization of rodent cells transformed by simian adenovirus SA7 E1 oncogenes by singled-stranded oligonucleotides complementary to a long region of integrated oncogenes].

    Science.gov (United States)

    Grineva, N I; Borovkova, T V; Sats, N V; Kurabekova, R M; Rozhitskaia, O S; Solov'ev, G Ia; Pantin, V I

    1995-08-01

    G11 mouse cells and SH2 rat cells transformed with simian adenovirus SA7 DNA showed inheritable oncogen-specific phenotypic normalization when treated with sense and antisense oligonucleotides complementary to long RNA sequences, plus or minus strands of the integrated adenovirus oncogenes E1A and E1B. Transitory treatment of the cells with the oligonucleotides in the absence of serum was shown to cause the appearance of normalized cell lines with fibroblastlike morphology, slower cell proliferation, and lack of ability to form colonies in soft agar. Proliferative activity and adhesion of the normalized cells that established cell lines were found to depend on the concentration of growth factors in the cultural medium. In some of the cell lines, an inhibition of transcription of the E1 oncogenes was observed. The normalization also produced cells that divided 2 - 5 times and died and cells that reverted to a transformed phenotype in 2 - 10 days. The latter appeared predominantly upon the action of the antisense oligonucleotides.

  14. Adaptive Immunity to Leukemia Is Inhibited by Cross-Reactive Induced Regulatory T Cells.

    Science.gov (United States)

    Manlove, Luke S; Berquam-Vrieze, Katherine E; Pauken, Kristen E; Williams, Richard T; Jenkins, Marc K; Farrar, Michael A

    2015-10-15

    BCR-ABL(+) acute lymphoblastic leukemia patients have transient responses to current therapies. However, the fusion of BCR to ABL generates a potential leukemia-specific Ag that could be a target for immunotherapy. We demonstrate that the immune system can limit BCR-ABL(+) leukemia progression although ultimately this immune response fails. To address how BCR-ABL(+) leukemia escapes immune surveillance, we developed a peptide: MHC class II tetramer that labels endogenous BCR-ABL-specific CD4(+) T cells. Naive mice harbored a small population of BCR-ABL-specific T cells that proliferated modestly upon immunization. The small number of naive BCR-ABL-specific T cells was due to negative selection in the thymus, which depleted BCR-ABL-specific T cells. Consistent with this observation, we saw that BCR-ABL-specific T cells were cross-reactive with an endogenous peptide derived from ABL. Despite this cross-reactivity, the remaining population of BCR-ABL reactive T cells proliferated upon immunization with the BCR-ABL fusion peptide and adjuvant. In response to BCR-ABL(+) leukemia, BCR-ABL-specific T cells proliferated and converted into regulatory T (Treg) cells, a process that was dependent on cross-reactivity with self-antigen, TGF-β1, and MHC class II Ag presentation by leukemic cells. Treg cells were critical for leukemia progression in C57BL/6 mice, as transient Treg cell ablation led to extended survival of leukemic mice. Thus, BCR-ABL(+) leukemia actively suppresses antileukemia immune responses by converting cross-reactive leukemia-specific T cells into Treg cells. Copyright © 2015 by The American Association of Immunologists, Inc.

  15. WSB1 overcomes oncogene-induced senescence by targeting ATM for degradation

    Science.gov (United States)

    Kim, Jung Jin; Lee, Seung Baek; Yi, Sang-Yeop; Han, Sang-Ah; Kim, Sun-Hyun; Lee, Jong-Min; Tong, Seo-Yun; Yin, Ping; Gao, Bowen; Zhang, Jun; Lou, Zhenkun

    2017-01-01

    Oncogene-induced senescence (OIS) or apoptosis through the DNA-damage response is an important barrier of tumorigenesis. Overcoming this barrier leads to abnormal cell proliferation, genomic instability, and cellular transformation, and finally allows cancers to develop. However, it remains unclear how the OIS barrier is overcome. Here, we show that the E3 ubiquitin ligase WD repeat and SOCS box-containing protein 1 (WSB1) plays a role in overcoming OIS. WSB1 expression in primary cells helps the bypass of OIS, leading to abnormal proliferation and cellular transformation. Mechanistically, WSB1 promotes ATM ubiquitination, resulting in ATM degradation and the escape from OIS. Furthermore, we identify CDKs as the upstream kinase of WSB1. CDK-mediated phosphorylation activates WSB1 by promoting its monomerization. In human cancer tissue and in vitro models, WSB1-induced ATM degradation is an early event during tumorigenic progression. We suggest that WSB1 is one of the key players of early oncogenic events through ATM degradation and destruction of the tumorigenesis barrier. Our work establishes an important mechanism of cancer development and progression in premalignant lesions. PMID:27958289

  16. The Atypical Kinase RIOK1 Promotes Tumor Growth and Invasive Behavior

    Directory of Open Access Journals (Sweden)

    Florian Weinberg

    2017-06-01

    Full Text Available Despite being overexpressed in different tumor entities, RIO kinases are hardly characterized in mammalian cells. We investigated the role of these atypical kinases in different cancer cells. Using isogenic colon-, breast- and lung cancer cell lines, we demonstrate that knockdown of RIOK1, but not of RIOK2 or RIOK3, strongly impairs proliferation and invasiveness in conventional and 3D culture systems. Interestingly, these effects were mainly observed in RAS mutant cancer cells. In contrast, growth of RAS wildtype Caco-2 and Bcr-Abl-driven K562 cells is not affected by RIOK1 knockdown, suggesting a specific requirement for RIOK1 in the context of oncogenic RAS signaling. Furthermore, we show that RIOK1 activates NF-κB signaling and promotes cell cycle progression. Using proteomics, we identified the pro-invasive proteins Metadherin and Stathmin1 to be regulated by RIOK1. Additionally, we demonstrate that RIOK1 promotes lung colonization in vivo and that RIOK1 is overexpressed in different subtypes of human lung- and breast cancer. Altogether, our data suggest RIOK1 as a potential therapeutic target, especially in RAS-driven cancers.

  17. A screen to identify drug resistant variants to target-directed anti-cancer agents

    Directory of Open Access Journals (Sweden)

    Azam Mohammad

    2003-01-01

    Full Text Available The discovery of oncogenes and signal transduction pathways important for mitogenesis has triggered the development of target-specific small molecule anti-cancer compounds. As exemplified by imatinib (Gleevec, a specific inhibitor of the Chronic Myeloid Leukemia (CML-associated Bcr-Abl kinase, these agents promise impressive activity in clinical trials, with low levels of clinical toxicity. However, such therapy is susceptible to the emergence of drug resistance due to amino acid substitutions in the target protein. Defining the spectrum of such mutations is important for patient monitoring and the design of next-generation inhibitors. Using imatinib and BCR/ABL as a paradigm for a drug-target pair, we recently reported a retroviral vector-based screening strategy to identify the spectrum of resistance-conferring mutations. Here we provide a detailed methodology for the screen, which can be generally applied to any drug-target pair.

  18. PCR detection of a Maell polymorphism in the human major breakpoint cluster region (BCR)

    Energy Technology Data Exchange (ETDEWEB)

    McClure, J.S.; Litz, C.E. (Medical School, Minneapolis, MN (United States))

    1991-09-25

    Nested primer pairs flanking the second intron of the breakpoint cluster region were constructed from the published cDNA sequence. The outer primer pair 5{prime}BCR Exon 2 (5{prime}-GTT TCA GAA GCT TCT CCC TG-3{prime}) and 3{prime}BCR Exon 3 (5{prime}-ACT CTG CTT AAA TCC AGT GG-3{prime}), amplified a fragment of genomic DNA approximately 810 bp in length. The inner primer pair, 3{prime}BCR Exon 2(5{prime}-CGC TGA CCA TCA ATA AGG AA-3{prime}) and 5{prime}BCR Exon 3 (5{prime}-AGA AAC CCA TAG AGC CCC GG-3{prime}), amplified a fragment approximately 730 bp in length. Double stranded DNA amplified with the outer primer pair was subjected to asymmetric PCR using the inner primer pair. Sequencing reactions were performed using the Sequenase dideoxy sequencing kit with S{sup 35}-dATP. Sequences in homozygotes revealed either an A or a G 85 bp 5{prime} of the BCR BamHI site. Heterozygotes demonstrated both bands at the corresponding position.

  19. GABP transcription factor is required for development of chronic myelogenous leukemia via its control of PRKD2.

    Science.gov (United States)

    Yang, Zhong-Fa; Zhang, Haojian; Ma, Leyuan; Peng, Cong; Chen, Yaoyu; Wang, Junling; Green, Michael R; Li, Shaoguang; Rosmarin, Alan G

    2013-02-05

    Hematopoietic stem cells (HSCs) are the source of all blood lineages, and HSCs must balance quiescence, self-renewal, and differentiation to meet lifelong needs for blood cell development. Transformation of HSCs by the breakpoint cluster region-ABL tyrosine kinase (BCR-ABL) oncogene causes chronic myelogenous leukemia (CML). The E-twenty six (ets) transcription factor GA binding protein (GABP) is a tetrameric transcription factor complex that contains GABPα and GABPβ proteins. Deletion in bone marrow of Gabpa, the gene that encodes the DNA-binding component, caused cell cycle arrest in HSCs and profound loss of hematopoietic progenitor cells. Loss of Gabpα prevented development of CML, although mice continued to generate BCR-ABL-expressing Gabpα-null cells for months that were serially transplantable and contributed to all lineages in secondary recipients. A bioinformatic screen identified the serine-threonine kinase protein kinase D2 (PRKD2) as a potential effector of GABP in HSCs. Prkd2 expression was markedly reduced in Gabpα-null HSCs and progenitor cells. Reduced expression of PRKD2 or pharmacologic inhibition decreased cell cycling, and PRKD2 rescued growth of Gabpα-null BCR-ABL-expressing cells. Thus, GABP is required for HSC cell cycle entry and CML development through its control of PRKD2. This offers a potential therapeutic target in leukemia.

  20. Macrophage colony-stimulating factor, CSF-1, and its proto-oncogene-encoded receptor

    International Nuclear Information System (INIS)

    Sherr, C.J.; Rettenmier, C.W.; Roussel, M.F.

    1988-01-01

    The macrophage colony-stimulating factor, CSF-1, or M-CSF, is one of a family of hematopoietic growth factors that stimulates the proliferation of monocytes, macrophages, and their committed bone marrow progenitors. Unlike pluripotent hemopoietins such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3 or multi-CSF), which affect the growth of myeloid cells of several different hematopoietic lineages, CSF-1 acts only on cells of the mononuclear phagocyte series to stimulate their growth and enhance their survival. Retroviral transduction of the feline c-fms gene in the Susan McDonough and Hardy Zuckerman-5 (HZ-5) strains of feline sarcoma virus (FeSV) led to genetic alterations that endowed the recombined viral oncogene (v-fms) with the ability to transform cells in culture morphologically and to induce firbrosarcomas and hematopoietic neoplasms in susceptible animals. The v-fms oncogene product differs from the normal CSF-1 receptor in certain of its cardinal biochemical properties, most notably in exhibiting constitutively high basal levels of tyrosine kinase activity in the absence of its ligand. Comparative studies of the c-fms and v-fms genes coupled with analyses of engineered mutants and receptor chimeras have begun to pinpoint pertinent genetic alterations in the normal receptor gene that unmask its latent oncogenic potential. In addition, the availability of biologically active c-fms, v-fms, and CSF-1 cDNAs has allowed these genes to be mobilized and expressed in naive cells, thereby facilitating assays for receptor coupling with downstream components of the mitogenic pathway in diverse cell types

  1. Oncogenic transformation in C3H10T1/2 cells by low-energy neutrons.

    Science.gov (United States)

    Miller, R C; Marino, S A; Napoli, J; Shah, H; Hall, E J; Geard, C R; Brenner, D J

    2000-03-01

    Occupational exposure to neutrons typically includes significant doses of low-energy neutrons, with energies below 100 keV. In addition, the normal-tissue dose from boron neutron capture therapy will largely be from low-energy neutrons. Microdosimetric theory predicts decreasing biological effectiveness for neutrons with energies below about 350 keV compared with that for higher-energy neutrons; based on such considerations, and limited biological data, the current radiation weighting factor (quality factor) for neutrons with energies from 10 keV to 100 keV is less than that for higher-energy neutrons. By contrast, some reports have suggested that the biological effectiveness of low-energy neutrons is similar to that of fast neutrons. The purpose of the current work is to assess the relative biological effectiveness of low-energy neutrons for an endpoint of relevance to carcinogenesis: in vitro oncogenic transformation. Oncogenic transformation induction frequencies were determined for C3H10T1/2 cells exposed to two low-energy neutron beams, respectively, with dose-averaged energies of 40 and 70 keV, and the results were compared with those for higher-energy neutrons and X-rays. These results for oncogenic transformation provide evidence for a significant decrease in biological effectiveness for 40 keV neutrons compared with 350 keV neutrons. The 70 keV neutrons were intermediate in effectiveness between the 70 and 350 keV beams. A decrease in biological effectiveness for low-energy neutrons is in agreement with most (but not all) earlier biological studies, as well as microdosimetric considerations. The results for oncogenic transformation were consistent with the currently recommended decreased values for low-energy neutron radiation weighting factors compared with fast neutrons.

  2. Anaerobic Biochemical Reactor (BCR) Treatment Of Mining-Influenced Water (MIW) - Investigation Of Metal Removal Efficiency and Ecotoxicity

    Science.gov (United States)

    BCR have been successful at removing a high percentage of metals from MIW, while BCR effluent toxicity has not been examined previously in the field. This study examined 4 active pilot BCR systems for removal of metals and toxicity. Removal efficiency for Al, As, Cd, Cu, Ni, Pb...

  3. CM363, a novel naphthoquinone derivative which acts as multikinase modulator and overcomes imatinib resistance in chronic myelogenous leukemia

    Science.gov (United States)

    Díaz-Chico, Juan Carlos; McNaughton-Smith, Grant; Jiménez-Alonso, Sandra; Hueso-Falcón, Idaira; Montero, Juan Carlos; Blanco, Raquel; León, Javier; Rodríguez-González, Germán; Estévez-Braun, Ana; Pandiella, Atanasio; Díaz-Chico, Bonifacio Nicolás; Fernández-Pérez, Leandro

    2017-01-01

    Human Chronic Myelogenous Leukemia (CML) is a hematological stem cell disorder which is associated with activation of Bcr-Abl-Stat5 oncogenic pathway. Direct Bcr-Abl inhibitors are initially successful for the treatment of CML but over time many patients develop drug resistance. In the present study, the effects of CM363, a novel naphthoquinone (NPQ) derivative, were evaluated on human CML-derived K562 cells. CM363 revealed an effective cell growth inhibition (IC50 = 0.7 ± 0.5 μM) by inducing cancer cells to undergo cell cycle arrest and apoptosis. CM363 caused a dose- and time-dependent reduction of cells in G0/G1 and G2/M phases. This cell cycle arrest was associated with increased levels of cyclin E, pChk1 and pChk2 whereas CM363 downregulated cyclin B, cyclin D3, p27, pRB, Wee1, and BUBR1. CM363 increased the double-strand DNA break marker γH2AX. CM363 caused a time-dependent increase of annexin V-positive cells, DNA fragmentation and increased number of apoptotic nuclei. CM363 triggered the mitochondrial apoptotic pathway as reflected by a release of cytochrome C from mitochondria and induction of the cleavage of caspase-3 and -9, and PARP. CM363 showed multikinase modulatory effects through an early increased JNK phosphorylation followed by inhibition of pY-Bcrl-Abl and pY-Stat5. CM363 worked synergistically with imatinib to inhibit cell viability and maintained its activity in imatinib-resistant cells. Finally, CM363 (10 mg/Kg) suppressed the growth of K562 xenograft tumors in athymic mice. In summary, CM363 is a novel multikinase modulator that offers advantages to circumvent imanitib resistance and might be therapeutically effective in Bcrl-Abl-Stat5 related malignancies. PMID:27557509

  4. Cellular oncogene expression following exposure of mice to γ-rays

    International Nuclear Information System (INIS)

    Anderson, A.; Woloschak, G.E.

    1991-01-01

    We examined the effects of total body exposure of BCF1 mice to γ-rays (300 cGy) in modulating expression of cellular oncogenes in both gut and liver tissues. We selected specific cellular oncogenes (c-fos, c-myc, c-src, and c-H-ras), based on their normal expression in liver and gut tissues from untreated mice. As early as 5 min. following whole body exposure of BCF1 mice to γ-rays we detected induction of mRNA specific for c-src and c-H-ras in both liver and gut tissues. c-fos RNA was slightly decreased in accumulation in gut but was unaffected in liver tissue from irradiated mice relative to untreated controls. c-myc mRNA accumulation was unaffected in all tissues examined. These experiments document that modulation of cellular oncogene expression can occur as an early event in tissues following irradiation and suggest that this modulation may play a role in radiation-induced carcinogenesis

  5. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein

    DEFF Research Database (Denmark)

    Järås, Marcus; Johnels, Petra; Hansen, Nils Gunder

    2010-01-01

    Chronic myeloid leukemia (CML) is genetically characterized by the Philadelphia (Ph) chromosome, formed through a reciprocal translocation between chromosomes 9 and 22 and giving rise to the constitutively active tyrosine kinase P210 BCR/ABL1. Therapeutic strategies aiming for a cure of CML...... will require full eradication of Ph chromosome-positive (Ph(+)) CML stem cells. Here we used gene-expression profiling to identify IL-1 receptor accessory protein (IL1RAP) as up-regulated in CML CD34(+) cells and also in cord blood CD34(+) cells as a consequence of retroviral BCR/ABL1 expression. To test...

  6. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  7. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    International Nuclear Information System (INIS)

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy

  8. THE RELATION BETWEEN MILD LEG-LENGTH INEQUALITY AND ABLE-BODIED GAIT ASYMMETRY

    Directory of Open Access Journals (Sweden)

    Matthew K. Seeley

    2010-12-01

    Full Text Available The causes of able-bodied gait asymmetries are unclear. Mild ( 1 cm; n = 7. Statistically significant relationships were observed between LLI and the symmetry coefficient for knee joint moment (r = -0.48 and power (r = -0.51, and ankle joint moment (r = -0.41 and power (r = -0.42. Similarly, subjects with relatively large LLI exhibited significantly lower symmetry coefficients for knee joint moment (p = 0.40 and power (p = 0.35, and ankle joint moment (p = 0.40 and power (p = 0.22 than subjects with relatively small LLI. Degree of bilateral symmetry for knee and ankle joint kinetics appears to be related to LLI in able- bodied gait. This finding supports the idea that LLI is one cause of able-bodied gait asymmetries. Other factors, however, are also likely to contribute to these gait asymmetries; these may include other morphological asymmetries as well as asymmetrical neuromuscular input to the lower limb muscles

  9. Towards Comprehension of the ABCB1/P-Glycoprotein Role in Chronic Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Raquel C. Maia

    2018-01-01

    Full Text Available Abstract: The introduction of imatinib (IM, a BCR-ABL1 tyrosine kinase inhibitor (TKI, has represented a significant advance in the first-line treatment of chronic myeloid leukemia (CML. However, approximately 30% of patients need to discontinue IM due to resistance or intolerance to this drug. Both resistance and intolerance have also been observed in treatment with the second-generation TKIs—dasatinib, nilotinib, and bosutinib—and the third-generation TKI—ponatinib. The mechanisms of resistance to TKIs may be BCR-ABL1-dependent and/or BCR-ABL1-independent. Although the role of efflux pump P-glycoprotein (Pgp, codified by the ABCB1 gene, is unquestionable in drug resistance of many neoplasms, a longstanding question exists about whether Pgp has a firm implication in TKI resistance in the clinical scenario. The goal of this review is to offer an overview of ABCB1/Pgp expression/activity/polymorphisms in CML. Understanding how interactions, associations, or cooperation between Pgp and other molecules—such as inhibitor apoptosis proteins, microRNAs, or microvesicles—impact IM resistance risk may be critical in evaluating the response to TKIs in CML patients. In addition, new non-TKI compounds may be necessary in order to overcome the resistance mediated by Pgp in CML.

  10. FOXO1 is a direct target of EWS-Fli1 oncogenic fusion protein in Ewing's sarcoma cells

    International Nuclear Information System (INIS)

    Yang, Liu; Hu, Hsien-Ming; Zielinska-Kwiatkowska, Anna; Chansky, Howard A.

    2010-01-01

    Research highlights: → Inducible and reversible siRNA knockdown of an oncogenic fusion protein such as EWS-Fli1 is feasible and more advantageous than other siRNA methods. → The tumor suppressor gene FOXO1 is a new EWS-Fli1 target. → While trans-activators are known for the FOXO1 gene, there has been no report on negative regulators of FOXO1 transcription. → This study provides first evidence that the EWS-Fli1 oncogenic fusion protein can function as a transcriptional repressor of the FOXO1 gene. -- Abstract: Ewing's family tumors are characterized by a specific t(11;22) chromosomal translocation that results in the formation of EWS-Fli1 oncogenic fusion protein. To investigate the effects of EWS-Fli1 on gene expression, we carried out DNA microarray analysis after specific knockdown of EWS-Fli1 through transfection of synthetic siRNAs. EWS-Fli1 knockdown increased expression of genes such as DKK1 and p57 that are known to be repressed by EWS-Fli1 fusion protein. Among other potential EWS-Fli1 targets identified by our microarray analysis, we have focused on the FOXO1 gene since it encodes a potential tumor suppressor and has not been previously reported in Ewing's cells. To better understand how EWS-Fli1 affects FOXO1 expression, we have established a doxycycline-inducible siRNA system to achieve stable and reversible knockdown of EWS-Fli1 in Ewing's sarcoma cells. Here we show that FOXO1 expression in Ewing's cells has an inverse relationship with EWS-Fli1 protein level, and FOXO1 promoter activity is increased after doxycycline-induced EWS-Fli1 knockdown. In addition, we have found that direct binding of EWS-Fli1 to FOXO1 promoter is attenuated after doxycycline-induced siRNA knockdown of the fusion protein. Together, these results suggest that suppression of FOXO1 function by EWS-Fli1 fusion protein may contribute to cellular transformation in Ewing's family tumors.

  11. The SH2 domain of Abl kinases regulates kinase autophosphorylation by controlling activation loop accessibility

    Science.gov (United States)

    Lamontanara, Allan Joaquim; Georgeon, Sandrine; Tria, Giancarlo; Svergun, Dmitri I.; Hantschel, Oliver

    2014-11-01

    The activity of protein kinases is regulated by multiple molecular mechanisms, and their disruption is a common driver of oncogenesis. A central and almost universal control element of protein kinase activity is the activation loop that utilizes both conformation and phosphorylation status to determine substrate access. In this study, we use recombinant Abl tyrosine kinases and conformation-specific kinase inhibitors to quantitatively analyse structural changes that occur after Abl activation. Allosteric SH2-kinase domain interactions were previously shown to be essential for the leukemogenesis caused by the Bcr-Abl oncoprotein. We find that these allosteric interactions switch the Abl activation loop from a closed to a fully open conformation. This enables the trans-autophosphorylation of the activation loop and requires prior phosphorylation of the SH2-kinase linker. Disruption of the SH2-kinase interaction abolishes activation loop phosphorylation. Our analysis provides a molecular mechanism for the SH2 domain-dependent activation of Abl that may also regulate other tyrosine kinases.

  12. Prognostic impact of IKZF1 deletion in adults with common B-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Yao, Qiu-Mei; Liu, Kai-Yan; Gale, Robert Peter; Jiang, Bin; Liu, Yan-Rong; Jiang, Qian; Jiang, Hao; Zhang, Xiao-Hui; Zhang, Mei-Jie; Chen, Shan-Shan; Huang, Xiao-Jun; Xu, Lan-Ping; Ruan, Guo-Rui

    2016-04-11

    Interrogate the impact of IKZF1 deletion on therapy-outcomes of adults with common B-cell acute lymphoblastic leukemia. One hundred sixty-five consecutive adults with common B-cell ALL were tested for IKZF1 deletion and for BCR/ABL. Deletions in IKZF1 were detected using multiplex RQ-PCR, multiplex fluorescent PCR, sequence analysis and multiplex ligation-dependent probe amplification (MLPA). BCR/ABL was detected using RQ-PCR. All subjects received chemotherapy and some also received an allotransplant and tyrosine kinase-inhibitors. Multivariate analyses were done to identify associations between IKZF1 deletion and other variables on non-relapse mortality (NRM), cumulative incidence of relapse (CIR), leukemia-free survival (LFS) and survival. Amongst subjects achieving complete remission those with IKZF1 deletion had similar 5-year non-relapse mortality (NRM) (11% [2-20%] vs. 16% [4-28%]; P = 0.736), a higher 5-year cumulative incidence of relapse (CIR) (55% [35-76%] vs. 25% [12-38%]; P = 0.004), and worse 5-year leukemia-free survival (LFS) (33% [16-52%] vs. 59% [42-73%]; P = 0.012) and survival (48% [33-62%] vs. 75% [57-86%]; P = 0.002). In multivariate analyses IKZF1 deletion was associated with an increased relapse (relative risk [RR] =2.7, [1.4-5.2]; P = 0.002), a higher risk of treatment-failure (inverse of LFS; RR = 2.1, [1.2-3.6]; P = 0.007) and a higher risk of death (RR = 2.8, [1.5-5.5]; P = 0.002). The adverse impact of IKZF1 deletion on outcomes was stronger in subjects without vs. with BCR-ABL1 and in subjects receiving chemotherapy-only vs. an allotransplant. IKZF1 deletion was independently-associated with a higher relapse risk and worse LFS and survival in adults with common B-cell ALL after adjusting for other prognostic variables and differences in therapies. These data suggest IKZF1 deletion may be a useful prognostic variable in adults with common B-cell ALL, especially in persons without BCR-ABL1 and those receiving chemotherapy

  13. Oncogenes, radiation and cancer

    International Nuclear Information System (INIS)

    Michelin, S.C.

    1998-01-01

    The discovery of the oncogenic virus and the analysis of its nucleic acid, together with the development of new biochemical technology have permitted the partial knowledge of the molecular mechanisms responsible for the cellular neoplastic transformation. This work, besides describing the discovery of the first oncogenic virus and the experiments to demonstrate the existence of the oncogenes, summarizes its activation mechanisms and its intervention in cellular metabolisms. Ionizing radiation is among the external agents that induce the neoplastic process. Its participation in the genesis of this process and the contribution of oncogenes to the cellular radioresistance are among the topics, which are referred to another topic that makes reference. At the same time as the advancement of theoretical knowledge, lines of investigation for the application of the new concepts in diagnosis, prognosis and therapeutical treatment, were developed. An example of this, is the study of the participation of the oncogen c-erbB-2 in human breast cancer and its implications on the anti tumoral therapy. (author) [es

  14. The certification of the surface density (kg/m sub 2 ) of BCR CRM 038 ('fly ash from pulverised coal') comprised in methyl cellulose films simulating dust charged filters. BCR 128

    Energy Technology Data Exchange (ETDEWEB)

    Griepink, B; Marchandise, H; Colinet, E; Dams, R

    1988-01-01

    BCR CRM 38 ('Fly Ash') has been embedded in a stable methylcellulose foil of about 10{mu}m thickness. This has been done by making a slurry of fly ash and methylcellulose in water and spiking it with {sup 42}K as a radioactive tracer. The slurry was spread over glass plates and allowed to dry. 'Filters' of uniform size were punched out of the foil. The surface density (e.g. {mu}g/cm{sup 2}) of the fly ash was calculated for each individual 'filter' by comparing the {sup 42}K-activity of the filter with that of the initial suspension. The uncertainties in the so obtained surface density of random and of systematic origin have been estimated. The total relative uncertainty in the surface density of every element certified in BCR 38 is 4-6%. Studies of stability and homogeneity have revealed that this material is well suited for the verification of the results of non-destructive analytical techniques for dust components.

  15. From General Aberrant Alternative Splicing in Cancers and Its Therapeutic Application to the Discovery of an Oncogenic DMTF1 Isoform

    Directory of Open Access Journals (Sweden)

    Na Tian

    2017-03-01

    Full Text Available Alternative pre-mRNA splicing is a crucial process that allows the generation of diversified RNA and protein products from a multi-exon gene. In tumor cells, this mechanism can facilitate cancer development and progression through both creating oncogenic isoforms and reducing the expression of normal or controllable protein species. We recently demonstrated that an alternative cyclin D-binding myb-like transcription factor 1 (DMTF1 pre-mRNA splicing isoform, DMTF1β, is increasingly expressed in breast cancer and promotes mammary tumorigenesis in a transgenic mouse model. Aberrant pre-mRNA splicing is a typical event occurring for many cancer-related functional proteins. In this review, we introduce general aberrant pre-mRNA splicing in cancers and discuss its therapeutic application using our recent discovery of the oncogenic DMTF1 isoform as an example. We also summarize new insights in designing novel targeting strategies of cancer therapies based on the understanding of deregulated pre-mRNA splicing mechanisms.

  16. Identification of ALV-J associated acutely transforming virus Fu-J carrying complete v-fps oncogene.

    Science.gov (United States)

    Wang, Yixin; Li, Jianliang; Li, Yang; Fang, Lichun; Sun, Xiaolong; Chang, Shuang; Zhao, Peng; Cui, Zhizhong

    2016-06-01

    Transduction of oncogenes by ALVs and generation of acute transforming viruses is common in natural viral infections. In order to understand the molecular basis for the rapid oncogenicity of Fu-J, an acutely transforming avian leukosis virus isolated from fibrosarcomas in crossbreed broilers infected with subgroup J avian leukosis virus (ALV-J) in China, complete genomic structure of Fu-J virus was determined by PCR amplification and compared with those of Fu-J1, Fu-J2, Fu-J3, Fu-J4, and Fu-J5 reported previously. The results showed that the genome of Fu-J was defective, with parts of gag gene replaced by the complete v-fps oncogene and encoded a 137 kDa Gag-fps fusion protein. Sequence analysis revealed that Fu-J and Fu-J1 to Fu-J5 were related quasi-species variants carrying different lengths of v-fps oncogenes generated from recombination between helper virus and c-fps gene. Comparison of virus carrying v-fps oncogene also gave us a glimpse of the molecular characterization and evolution process of the acutely transforming ALV.

  17. Evaluation of cooperative antileukemic effects of nilotinib and vildagliptin in Ph+ chronic myeloid leukemia.

    Science.gov (United States)

    Willmann, Michael; Sadovnik, Irina; Eisenwort, Gregor; Entner, Martin; Bernthaler, Tina; Stefanzl, Gabriele; Hadzijusufovic, Emir; Berger, Daniela; Herrmann, Harald; Hoermann, Gregor; Valent, Peter; Rülicke, Thomas

    2018-01-01

    Chronic myeloid leukemia (CML) is a stem cell (SC) neoplasm characterized by the BCR/ABL1 oncogene. Although the disease can be kept under control using BCR/ABL1 tyrosine kinase inhibitors (TKIs) in most cases, some patients relapse or have resistant disease, so there is a need to identify new therapeutic targets in this malignancy. Recent data suggest that leukemic SCs (LSCs) in CML display the stem-cell (SC)-mobilizing cell surface enzyme dipeptidyl-peptidase IV (DPPIV = CD26) in an aberrant manner. In the present study, we analyzed the effects of the DPPIV blocker vildagliptin as single agent or in combination with the BCR/ABL1 TKI imatinib or nilotinib on growth and survival of CML LSCs in vitro and on LSC engraftment in an in vivo xenotransplantation nonobese diabetic SCID-IL-2Rγ -/- (NSG) mouse model. We found that nilotinib induces apoptosis in CML LSCs and inhibits their engraftment in NSG mice. In contrast, no substantial effects were seen with imatinib or vildagliptin. Nevertheless, vildagliptin was found to reduce the "mobilization" of CML LSCs from a stroma cell layer consisting of mouse fibroblasts in an in vitro co-culture model, suggesting reduced disease expansion. However, although vildagliptin and nilotinib produced cooperative effects in individual experiments, overall, no significant effects of coadministered vildagliptin over nilotinib or imatinib treatment alone were seen on the engraftment of CML cells in NSG mice. Gliptins may be interesting drugs in the context of CML and nilotinib therapy, but our preclinical studies did not reveal a major cooperative effect of the drug-combination vildagliptin + nilotinib on engraftment of CML cells in NSG mice. Copyright © 2018 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  18. The oncogenic action of ionizing radiation on rat skin: Progress report, February 1, 1988-January 31, 1989

    International Nuclear Information System (INIS)

    Burns, F.J.; Garte, S.J.

    1988-01-01

    Progress is described in 3 general areas corresponding to the specific aims of the proposal, including DNA strand breaks in the epidermis as a function of radiation penetration; oncogene activation in radiation-induced rat skin cancers; and carcinogenesis in rat skin induced by the neon ion beam. Numerous experiments have established that DNA strand breaks per unit dose in the rat epidermis are reduced by about 60% when the radiation penetration is reduced from 1.0 mm to 0.2 mm. The activation of oncogenes in the radiation-induced rat skin cancers followed a pattern. Four highly malignant cancers exhibited activation of K-ras and c-myc oncogenes, while the remaining 8 cancers exhibited only one or the other of these 2 oncogenes. Of 5 squamous carcinomas, 4 showed K-ras activation and 1 showed c-myc activation. Approximately 200 rats were exposed to the neon ion beam at the Bevalac in Berkeley, CA. The carcinogenicity of energetic electrons (2.0 MeV) was determined in conjunction with the neon ion experiment. It is too early to evaluate tumor incidence in the neon ion experiment, but for electrons an unusually large excess of connective tissue tumors, fibromas and sarcomas, have been observed so far. 59 refs., 2 tabs

  19. Deletion mutants of region E1 a of AD12 E1 plasmids: Effect on oncogenic transformation

    NARCIS (Netherlands)

    Bos, J.L.; Jochemsen, A.G.; Bernards, R.A.; Schrier, P.I.; Ormondt, H. van; Eb, A.J. van der

    1983-01-01

    Plasmids containing the El region of Ad12 DNA can transform certain rodent cells into oncogenic cells. To study the role of the Ela subregion in the process of oncogenic transformation, Ad12 region El mutants carrying deletions in the Ela region were constructed. Deletion mutants pR7 and pR8 affect

  20. A Network-Based Model of Oncogenic Collaboration for Prediction of Drug Sensitivity

    Directory of Open Access Journals (Sweden)

    Ted G Laderas

    2015-12-01

    Full Text Available Tumorigenesis is a multi-step process, involving the acquisition of multiple oncogenic mutations that transform cells, resulting in systemic dysregulation that enables proliferation, among other cancer hallmarks. High throughput omics techniques are used in precision medicine, allowing identification of these mutations with the goal of identifying treatments that target them. However, the multiplicity of oncogenes required for transformation, known as oncogenic collaboration, makes assigning effective treatments difficult. Motivated by this observation, we propose a new type of oncogenic collaboration where mutations in genes that interact with an oncogene may contribute to its dysregulation, a new genomic feature that we term surrogate oncogenes. By mapping mutations to a protein/protein interaction network, we can determine significance of the observed distribution using permutation-based methods. For a panel of 38 breast cancer cell lines, we identified significant surrogate oncogenes in oncogenes such as BRCA1 and ESR1. In addition, using Random Forest Classifiers, we show that these significant surrogate oncogenes predict drug sensitivity for 74 drugs in the breast cancer cell lines with a mean error rate of 30.9%. Additionally, we show that surrogate oncogenes are predictive of survival in patients. The surrogate oncogene framework incorporates unique or rare mutations on an individual level. Our model has the potential for integrating patient-unique mutations in predicting drug-sensitivity, suggesting a potential new direction in precision medicine, as well as a new approach for drug development. Additionally, we show the prevalence of significant surrogate oncogenes in multiple cancers within the Cancer Genome Atlas, suggesting that surrogate oncogenes may be a useful genomic feature for guiding pancancer analyses and assigning therapies across many tissue types.

  1. Quantification of BCR-ABL transcripts in peripheral blood cells and ...

    African Journals Online (AJOL)

    Makmor-Bakry1 and Norazrina Azmi1*. 1Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Wilayah Persekutuan, 2Department of Hematology,. Ampang Hospital, Ampang, Selangor, 3Quality Use of Medicines Research Group, Faculty of Pharmacy, Universiti Kebangsaan. Malaysia, Kuala Lumpur ...

  2. Melanoma Suppressor Functions of the Carcinoma Oncogene FOXQ1

    Directory of Open Access Journals (Sweden)

    Archis Bagati

    2017-09-01

    Full Text Available Lineage-specific regulation of tumor progression by the same transcription factor is understudied. We find that levels of the FOXQ1 transcription factor, an oncogene in carcinomas, are decreased during melanoma progression. Moreover, in contrast to carcinomas, FOXQ1 suppresses epithelial-to-mesenchymal transition, invasion, and metastasis in melanoma cells. We find that these lineage-specific functions of FOXQ1 largely depend on its ability to activate (in carcinomas or repress (in melanoma transcription of the N-cadherin gene (CDH2. We demonstrate that FOXQ1 interacts with nuclear β-catenin and TLE proteins, and the β-catenin/TLE ratio, which is higher in carcinoma than melanoma cells, determines the effect of FOXQ1 on CDH2 transcription. Accordingly, other FOXQ1-dependent phenotypes can be manipulated by altering nuclear β-catenin or TLE proteins levels. Our data identify FOXQ1 as a melanoma suppressor and establish a mechanism underlying its inverse lineage-specific transcriptional regulation of transformed phenotypes.

  3. Expression of p89c-Mybex9b, an alternatively spliced form of c-Myb, is required for proliferation and survival of p210BCR/ABL-expressing cells

    International Nuclear Information System (INIS)

    Manzotti, G; Mariani, S A; Corradini, F; Bussolari, R; Cesi, V; Vergalli, J; Ferrari-Amorotti, G; Fragliasso, V; Soliera, A R; Cattelani, S; Raschellà, G; Holyoake, T L; Calabretta, B

    2012-01-01

    The c-Myb gene encodes the p75 c-Myb isoform and less-abundant proteins generated by alternatively spliced transcripts. Among these, the best known is p c-Mybex9b , which contains 121 additional amino acids between exon 9 and 10, in a domain involved in protein–protein interactions and negative regulation. In hematopoietic cells, expression of p c-Mybex9b accounts for 10–15% of total c-Myb; these levels may be biologically relevant because modest changes in c-Myb expression affects proliferation and survival of leukemic cells and lineage choice and frequency of normal hematopoietic progenitors. In this study, we assessed biochemical activities of p c-Mybex9b and the consequences of perturbing its expression in K562 and primary chronic myeloid leukemia (CML) progenitor cells. Compared with p75 c-Myb , p c-Mybex9b is more stable and more effective in transactivating Myb-regulated promoters. Ectopic expression of p c-Mybex9b enhanced proliferation and colony formation and reduced imatinib (IM) sensitivity of K562 cells; conversely, specific downregulation of p c-Mybex9b reduced proliferation and colony formation, enhanced IM sensitivity of K562 cells and markedly suppressed colony formation of CML CD34 + cells, without affecting the levels of p75 c-Myb . Together, these studies indicate that expression of the low-abundance p c-Mybex9b isoform has an important role for the overall biological effects of c-Myb in BCR/ABL-transformed cells

  4. The inhibitory NKR-P1B:Clr-b recognition axis facilitates detection of oncogenic transformation and cancer immunosurveillance

    DEFF Research Database (Denmark)

    Tanaka, M; Fine, Jason; Kirkham, Christina

    2018-01-01

    Natural killer (NK) cells express receptors specific for MHC class I (MHC-I) molecules involved in "missing-self" recognition of cancer and virus-infected cells. Here we elucidate the role of MHC-I-independent NKR-P1B:Clr-b interactions in the detection of oncogenic transformation by NK cells. Ras......-b protein, in turn promoting missing-self recognition via the NKR-P1B inhibitory receptor. Both Ras- and c-Myc-mediated Clr-b loss selectively augmented cytotoxicity of oncogene-transformed leukemia cells by NKR-P1B+ NK cells in vitro and enhanced rejection by WT mice in vivo. Interestingly, genetic...

  5. Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells

    Directory of Open Access Journals (Sweden)

    Shi D

    2016-11-01

    realgar NP treatment, a Cav-1 overexpression cell model was established by using transient transfection. The results indicated that Cav-1 overexpression inhibited K562 cell proliferation, promoted endogenic autophagy, and increased the sensitivity of K562 cells to realgar NPs. Therefore, the results demonstrated that realgar NPs degraded Bcr-Abl oncoprotein, while the underlying mechanism might be related to apoptosis and autophagy, and Cav-1 might be considered as a potential target for clinical comprehensive therapy of CML. Keywords: realgar nanoparticles, Bcr-Abl fusion protein, apoptosis, autophagy, caveolin-1

  6. Expression of a fms-related oncogene in carcinogen-induced neoplastic epithelial cells

    International Nuclear Information System (INIS)

    Walker, C.; Nettesheim, P.; Barrett, J.C.; Gilmer, T.M.

    1987-01-01

    Following carcinogen exposure in vitro, normal rat tracheal epithelial cells are transformed in a multistage process in which the cultured cells become immortal and ultimately, neoplastic. Five cell lines derived from tumors produced by neoplastically transformed rat tracheal epithelial cells were examined for the expression of 11 cellular oncogenes previously implicated in pulmonary or epithelial carcinogenesis. RNA homologous to fms was expressed at a level 5-19 times higher than normal tracheal epithelial cells in three of five of the tumor-derived lines. All three lines expressing high levels of fms-related RNA gave rise to invasive tumors of epithelial origin when injected into nude mice. Increased expression of the fms-related mRNA was not due to gene amplification, and no gene rearrangement was detected by Southern analyses. RNA blot analysis using a 3' v-fms probe detected a 9.5-kilobase message in the three tumor-derived lines, whereas both normal rat aveolar macrophages and the human choriocarcinoma line BeWo expressed a fms transcript of ≅ 4 kilobases. The authors conclude from these data that the gene expressed as a 9.5-kilobase transcript in these neoplastic epithelial cells is a member of a fms-related gene family but may be distinct from the gene that encodes the macrophage colony-stimulating factor (CSF-1) receptor

  7. The BTK Inhibitor Ibrutinib (PCI-32765) Blocks Hairy Cell Leukaemia Survival, Proliferation and BCR Signalling: A New Therapeutic Approach

    Science.gov (United States)

    Sivina, Mariela; Kreitman, Robert J.; Arons, Evgeny; Ravandi, Farhad; Burger, Jan A.

    2014-01-01

    B cell receptor (BCR) signalling plays a critical role in the progression of several B-cell malignancies, but its role in hairy cell leukaemia (HCL) is ambiguous. Bruton tyrosine kinase (BTK), a key player in BCR signalling, migration and adhesion, can be targeted with ibrutinib, a selective, irreversible BTK inhibitor. We analysed BTK expression and function in HCL and analysed the effects of ibrutinib on HCL cells. We demonstrated uniform BTK protein expression in HCL cells. Ibrutinib significantly inhibited HCL proliferation and cell cycle progression. Accordingly, ibrutinib also reduced HCL cell survival after BCR triggering with anti-immunoglobulins (A, G, and M) and abrogated the activation of kinases downstream of the BCR (PI3K and MAPK). Ibrutinib also inhibited BCR-dependent secretion of the chemokines CCL3 and CCL4 by HCL cells. Interestingly, ibrutinib inhibited CXCL12-induced signalling, a key pathway for bone marrow homing. Collectively, our data support the clinical development of ibrutinib in patients with HCL. PMID:24697238

  8. Rapid internalization of the oncogenic K+ channel K(V10.1.

    Directory of Open Access Journals (Sweden)

    Tobias Kohl

    Full Text Available K(V10.1 is a mammalian brain voltage-gated potassium channel whose ectopic expression outside of the brain has been proven relevant for tumor biology. Promotion of cancer cell proliferation by K(V10.1 depends largely on ion flow, but some oncogenic properties remain in the absence of ion permeation. Additionally, K(V10.1 surface populations are small compared to large intracellular pools. Control of protein turnover within cells is key to both cellular plasticity and homeostasis, and therefore we set out to analyze how endocytic trafficking participates in controlling K(V10.1 intracellular distribution and life cycle. To follow plasma membrane K(V10.1 selectively, we generated a modified channel of displaying an extracellular affinity tag for surface labeling by α-bungarotoxin. This modification only minimally affected K(V10.1 electrophysiological properties. Using a combination of microscopy and biochemistry techniques, we show that K(V10.1 is constitutively internalized involving at least two distinct pathways of endocytosis and mainly sorted to lysosomes. This occurs at a relatively fast rate. Simultaneously, recycling seems to contribute to maintain basal K(V10.1 surface levels. Brief K(V10.1 surface half-life and rapid lysosomal targeting is a relevant factor to be taken into account for potential drug delivery and targeting strategies directed against K(V10.1 on tumor cells.

  9. Prox1-Heterozygosis Sensitizes the Pancreas to Oncogenic Kras-Induced Neoplastic Transformation

    Directory of Open Access Journals (Sweden)

    Yiannis Drosos

    2016-03-01

    Full Text Available The current paradigm of pancreatic neoplastic transformation proposes an initial step whereby acinar cells convert into acinar-to-ductal metaplasias, followed by progression of these lesions into neoplasias under sustained oncogenic activity and inflammation. Understanding the molecular mechanisms driving these processes is crucial to the early diagnostic and prevention of pancreatic cancer. Emerging evidence indicates that transcription factors that control exocrine pancreatic development could have either, protective or facilitating roles in the formation of preneoplasias and neoplasias in the pancreas. We previously identified that the homeodomain transcription factor Prox1 is a novel regulator of mouse exocrine pancreas development. Here we investigated whether Prox1 function participates in early neoplastic transformation using in vivo, in vitro and in silico approaches. We found that Prox1 expression is transiently re-activated in acinar cells undergoing dedifferentiation and acinar-to-ductal metaplastic conversion. In contrast, Prox1 expression is largely absent in neoplasias and tumors in the pancreas of mice and humans. We also uncovered that Prox1-heterozygosis markedly increases the formation of acinar-to-ductal-metaplasias and early neoplasias, and enhances features associated with inflammation, in mouse pancreatic tissues expressing oncogenic Kras. Furthermore, we discovered that Prox1-heterozygosis increases tissue damage and delays recovery from inflammation in pancreata of mice injected with caerulein. These results are the first demonstration that Prox1 activity protects pancreatic cells from acute tissue damage and early neoplastic transformation. Additional data in our study indicate that this novel role of Prox1 involves suppression of pathways associated with inflammatory responses and cell invasiveness.

  10. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling.

    Science.gov (United States)

    Shrestha, Y; Schafer, E J; Boehm, J S; Thomas, S R; He, F; Du, J; Wang, S; Barretina, J; Weir, B A; Zhao, J J; Polyak, K; Golub, T R; Beroukhim, R; Hahn, W C

    2012-07-19

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK MAPK pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce anchorage-independent growth in a derivative of immortalized human mammary epithelial cells (HMLE). We identified p21-activated kinase 1 (PAK1) as a kinase that permitted HMLE cells to form anchorage-independent colonies. PAK1 is amplified in several human cancer types, including 30--33% of breast tumor samples and cancer cell lines. The kinase activity of PAK1 is necessary for PAK1-induced transformation. Moreover, we show that PAK1 simultaneously activates MAPK and MET signaling; the latter via inhibition of merlin. Disruption of these activities inhibits PAK1-driven anchorage-independent growth. These observations establish PAK1 amplification as an alternative mechanism for MAPK activation in human breast cancer and credential PAK1 as a breast cancer oncogene that coordinately regulates multiple signaling pathways, the cooperation of which leads to malignant transformation.

  11. Oncogenic cancer/testis antigens

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Andersen, Mads H; Ditzel, Henrik J

    2015-01-01

    Recent developments have set the stage for immunotherapy as a supplement to conventional cancer treatment. Consequently, a significant effort is required to further improve efficacy and specificity, particularly the identification of optimal therapeutic targets for clinical testing. Cancer....../testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor...... immunology and immune escape suggests that targeting oncogenic antigens may be beneficial, meaning that identification of cancer/testis antigens with oncogenic properties is of high priority. Recent work from our lab and others provide evidence that many cancer/testis antigens, in fact, have oncogenic...

  12. Optimisation of beryllium-7 gamma analysis following BCR sequential extraction

    International Nuclear Information System (INIS)

    Taylor, A.; Blake, W.H.; Keith-Roach, M.J.

    2012-01-01

    Graphical abstract: Showing decrease in analytical uncertainty using the optimal (combined preconcentrated sample extract) method. nv (no value) where extract activities were 7 Be geochemical behaviour is required to support tracer studies. ► Sequential extraction with natural 7 Be returns high analytical uncertainties. ► Preconcentrating extracts from a large sample mass improved analytical uncertainty. ► This optimised method can be readily employed in studies using low activity samples. - Abstract: The application of cosmogenic 7 Be as a sediment tracer at the catchment-scale requires an understanding of its geochemical associations in soil to underpin the assumption of irreversible adsorption. Sequential extractions offer a readily accessible means of determining the associations of 7 Be with operationally defined soil phases. However, the subdivision of the low activity concentrations of fallout 7 Be in soils into geochemical fractions can introduce high gamma counting uncertainties. Extending analysis time significantly is not always an option for batches of samples, owing to the on-going decay of 7 Be (t 1/2 = 53.3 days). Here, three different methods of preparing and quantifying 7 Be extracted using the optimised BCR three-step scheme have been evaluated and compared with a focus on reducing analytical uncertainties. The optimal method involved carrying out the BCR extraction in triplicate, sub-sampling each set of triplicates for stable Be analysis before combining each set and coprecipitating the 7 Be with metal oxyhydroxides to produce a thin source for gamma analysis. This method was applied to BCR extractions of natural 7 Be in four agricultural soils. The approach gave good counting statistics from a 24 h analysis period (∼10% (2σ) where extract activity >40% of total activity) and generated statistically useful sequential extraction profiles. Total recoveries of 7 Be fell between 84 and 112%. The stable Be data demonstrated that the

  13. The DNA damage checkpoint precedes activation of ARF in response to escalating oncogenic stress during tumorigenesis

    DEFF Research Database (Denmark)

    Evangelou, K.; Bartkova, J.; Kotsinas, A.

    2013-01-01

    oncogenes showed that the delayed upregulation of ARF reflected a requirement for a higher, transcriptionally based threshold of oncogenic stress, elicited by at least two oncogenic 'hits', compared with lower activation threshold for DDR. We propose that relative to DDR activation, ARF provides...

  14. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma

    Directory of Open Access Journals (Sweden)

    Dinesh K. Singh

    2017-01-01

    Full Text Available Efforts to identify and target glioblastoma (GBM drivers have primarily focused on receptor tyrosine kinases (RTKs. Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2 transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2 and zinc-finger E-box binding homeobox 1 (ZEB1, which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.

  15. B lymphoma Moloney murine leukemia virus insertion region 1: An oncogenic mediator in prostate cancer.

    Science.gov (United States)

    Liu, Qipeng; Li, Qiaqia; Zhu, Sen; Yi, Yang; Cao, Qi

    2018-06-01

    B lymphoma Moloney murine leukemia virus insertion region 1 (BMI1), a core member of polycomb repressive complex 1 (PRC1), has been intensely investigated in the field of cancer epigenetics for decades. Widely known as a critical regulator in cellular physiology, BMI1 is essential in self-renewal and differentiation in different lineages of stem cells. BMI1 also plays a significant role in cancer etiology for its involvement in pathological progress such as epithelial-mesenchymal transition (EMT) and cancer stem cell maintenance, propagation, and differentiation. Importantly, overexpression of BMI1 is predictive for drug resistance, tumor recurrence, and eventual therapy failure of various cancer subtypes, which renders the pharmacological targeting at BMI1 as a novel and promising therapeutic approach. The study on prostate cancer, a prevalent hormone-related cancer among men, has promoted enormous research advancements in cancer genetics and epigenetics. This review summarizes the role of BMI1 as an oncogenic and epigenetic regulator in tumor initiation, progression, and relapse of prostate cancer.

  16. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia

    NARCIS (Netherlands)

    Gröschel, Stefan; Sanders, Mathijs A; Hoogenboezem, Remco; de Wit, Elzo; Bouwman, Britta A M; Erpelinck, Claudia; van der Velden, Vincent H J; Havermans, Marije; Avellino, Roberto; van Lom, Kirsten; Rombouts, Elwin J; van Duin, Mark; Döhner, Konstanze; Beverloo, H Berna; Bradner, James E; Döhner, Hartmut; Löwenberg, Bob; Valk, Peter J M; Bindels, Eric M J; de Laat, Wouter; Delwel, Ruud

    2014-01-01

    Chromosomal rearrangements without gene fusions have been implicated in leukemogenesis by causing deregulation of proto-oncogenes via relocation of cryptic regulatory DNA elements. AML with inv(3)/t(3;3) is associated with aberrant expression of the stem-cell regulator EVI1. Applying functional

  17. Effect of ionizing radiation on the biological activity of activated oncogenes and dormant proto-oncogenes

    International Nuclear Information System (INIS)

    Angenent, G.C.; Berg, K.J. van den.

    1984-01-01

    The authors have studied the effect of ionizing radiation on the cloned human activated Ha-ras oncogene, on the Ha-ras gene in integrated form and on the dormant proto-oncogene murine c-mos using the NIH/3T3 transfection system. NIH/3T3 cells were transfected with DNA from the plasmid pT24 carrying the cloned Ha-ras oncogene of the T24 bladder carcinoma cell line. Various individual foci which developed were injected into nude mice. DNA was isolated from tumours, digested with the restriction enzyme Bam HI, electrophoresed on agarose and blotted onto nitrocellulose filter according to Southern. Hybridization with a pT24 probe showed that all the primary foci of transformed cells contained various fragments of the pT24 plasmid indicating that fibroblast transformation had been induced by introduction of the Ha-ras oncogene. (Auth.)

  18. Oncogenic osteomalacia associated with soft tissue chondromyxoid fibroma

    International Nuclear Information System (INIS)

    Park, Jeong Mi; Woo, Young Kyun; Kang, Moo Il; Kang, Chang Suk; Hahn, Seong Tae

    2001-01-01

    Oncogenic osteomalacia is a rarely described clinical entity characterized by hypophosphatemia, phosphaturia, and a low concentration of 1,25-dihydroxyvitamin D 3 . It is most often associated with benign mesenchymal tumor and can be cured with surgical removal of the tumor. In this paper, we present a case of oncogenic osteomalacia caused by chondromyxoid fibroma in the soft tissue of the sole of the foot in a 56-year-old woman

  19. Nicotine-mediated suppression of the retinoic acid metabolizing enzyme CYP26A1 limits the oncogenic potential of breast cancer.

    Science.gov (United States)

    Osanai, Makoto; Lee, Gang-Hong

    2011-06-01

    Tobacco smoke influences cancer development in tissues that are not directly exposed, and epidemiological studies have indicated that smoking women might experience decreased risk of breast cancer as a result of antiestrogenic effects. However, it remains to be clarified whether nicotine, one of the major addictive and best-investigated constituents of tobacco smoke, has any effect on breast cancer. Our recent work demonstrated that the retinoic acid metabolizing enzyme CYP26A1 enhances oncogenic and cell survival properties of breast carcinoma cells, implying a role as an oncogene. Here, we present evidence that nicotine significantly suppresses constitutive expression of CYP26A1, and that cells treated with nicotine exhibit enhanced sensitivity to apoptosis. In addition, nicotine may inhibit anchorage independent growth, cellular invasiveness and motility. These data show that nicotine can limit CYP26A1-mediated oncogenic characteristics, and suggest mechanisms by which nicotine might inhibit breast cancer development. © 2011 Japanese Cancer Association.

  20. Genetic variations and alternative splicing. The Glioma associated oncogene 1, GLI1.

    Directory of Open Access Journals (Sweden)

    Peter eZaphiropoulos

    2012-07-01

    Full Text Available Alternative splicing is a post-transcriptional regulatory process that is attaining stronger recognition as a modulator of gene expression. Alternative splicing occurs when the primary RNA transcript is differentially processed into more than one mature RNAs. This is the result of a variable definition/inclusion of the exons, the sequences that are excised from the primary RNA to form the mature RNAs. Consequently, RNA expression can generate a collection of differentially spliced RNAs, which may distinctly influence subsequent biological events, such as protein synthesis or other biomolecular interactions. Still the mechanisms that control exon definition and exon inclusion are not fully clarified. This mini-review highlights advances in this field as well as the impact of single nucleotide polymorphisms in affecting splicing decisions. The Glioma associated oncogene 1, GLI1, is taken as an example in addressing the role of nucleotide substitutions for splicing regulation.

  1. Selective Depletion of CD45RA+ T Cells From Allogeneic Peripheral Blood Stem Cell Grafts in Preventing GVHD in Children

    Science.gov (United States)

    2018-04-23

    Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Acute Biphenotypic Leukemia; Acute Leukemia of Ambiguous Lineage; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Myelodysplastic Syndrome With Excess Blasts-1; Myelodysplastic Syndrome With Excess Blasts-2; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  2. mTORC1 is a critical mediator of oncogenic Semaphorin3A signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Daisuke; Kawahara, Kohichi; Maeda, Takehiko, E-mail: maeda@nupals.ac.jp

    2016-08-05

    Aberration of signaling pathways by genetic mutations or alterations in the surrounding tissue environments can result in tumor development or metastasis. However, signaling molecules responsible for these processes have not been completely elucidated. Here, we used mouse Lewis lung carcinoma cells (LLC) to explore the mechanism by which the oncogenic activity of Semaphorin3A (Sema3A) signaling is regulated. Sema3A knockdown by shRNA did not affect apoptosis, but decreased cell proliferation in LLCs; both the mammalian target of rapamycin complex 1 (mTORC1) level and glycolytic activity were also decreased. In addition, Sema3A knockdown sensitized cells to inhibition of oxidative phosphorylation by oligomycin, but conferred resistance to decreased cell viability induced by glucose starvation. Furthermore, recombinant SEMA3A rescued the attenuation of cell proliferation and glycolytic activity in LLCs after Sema3A knockdown, whereas mTORC1 inhibition by rapamycin completely counteracted this effect. These results demonstrate that Sema3A signaling exerts its oncogenic effect by promoting an mTORC1-mediated metabolic shift from oxidative phosphorylation to aerobic glycolysis. -- Highlights: •Sema3A knockdown decreased proliferation of Lewis lung carcinoma cells (LLCs). •Sema3A knockdown decreased mTORC1 levels and glycolytic activity in LLCs. •Sema3A knockdown sensitized cells to inhibition of oxidative phosphorylation. •Sema3A promotes shift from oxidative phosphorylation to aerobic glycolysis via mTORC1.

  3. The SH2 Domain Regulates c-Abl Kinase Activation by a Cyclin-Like Mechanism and Remodulation of the Hinge Motion

    Science.gov (United States)

    Dölker, Nicole; Górna, Maria W.; Sutto, Ludovico; Torralba, Antonio S.; Superti-Furga, Giulio; Gervasio, Francesco L.

    2014-01-01

    Regulation of the c-Abl (ABL1) tyrosine kinase is important because of its role in cellular signaling, and its relevance in the leukemiogenic counterpart (BCR-ABL). Both auto-inhibition and full activation of c-Abl are regulated by the interaction of the catalytic domain with the Src Homology 2 (SH2) domain. The mechanism by which this interaction enhances catalysis is not known. We combined computational simulations with mutagenesis and functional analysis to find that the SH2 domain conveys both local and global effects on the dynamics of the catalytic domain. Locally, it regulates the flexibility of the αC helix in a fashion reminiscent of cyclins in cyclin-dependent kinases, reorienting catalytically important motifs. At a more global level, SH2 binding redirects the hinge motion of the N and C lobes and changes the conformational equilibrium of the activation loop. The complex network of subtle structural shifts that link the SH2 domain with the activation loop and the active site may be partially conserved with other SH2-domain containing kinases and therefore offer additional parameters for the design of conformation-specific inhibitors. PMID:25299346

  4. The SH2 domain regulates c-Abl kinase activation by a cyclin-like mechanism and remodulation of the hinge motion.

    Science.gov (United States)

    Dölker, Nicole; Górna, Maria W; Sutto, Ludovico; Torralba, Antonio S; Superti-Furga, Giulio; Gervasio, Francesco L

    2014-10-01

    Regulation of the c-Abl (ABL1) tyrosine kinase is important because of its role in cellular signaling, and its relevance in the leukemiogenic counterpart (BCR-ABL). Both auto-inhibition and full activation of c-Abl are regulated by the interaction of the catalytic domain with the Src Homology 2 (SH2) domain. The mechanism by which this interaction enhances catalysis is not known. We combined computational simulations with mutagenesis and functional analysis to find that the SH2 domain conveys both local and global effects on the dynamics of the catalytic domain. Locally, it regulates the flexibility of the αC helix in a fashion reminiscent of cyclins in cyclin-dependent kinases, reorienting catalytically important motifs. At a more global level, SH2 binding redirects the hinge motion of the N and C lobes and changes the conformational equilibrium of the activation loop. The complex network of subtle structural shifts that link the SH2 domain with the activation loop and the active site may be partially conserved with other SH2-domain containing kinases and therefore offer additional parameters for the design of conformation-specific inhibitors.

  5. The SH2 domain regulates c-Abl kinase activation by a cyclin-like mechanism and remodulation of the hinge motion.

    Directory of Open Access Journals (Sweden)

    Nicole Dölker

    2014-10-01

    Full Text Available Regulation of the c-Abl (ABL1 tyrosine kinase is important because of its role in cellular signaling, and its relevance in the leukemiogenic counterpart (BCR-ABL. Both auto-inhibition and full activation of c-Abl are regulated by the interaction of the catalytic domain with the Src Homology 2 (SH2 domain. The mechanism by which this interaction enhances catalysis is not known. We combined computational simulations with mutagenesis and functional analysis to find that the SH2 domain conveys both local and global effects on the dynamics of the catalytic domain. Locally, it regulates the flexibility of the αC helix in a fashion reminiscent of cyclins in cyclin-dependent kinases, reorienting catalytically important motifs. At a more global level, SH2 binding redirects the hinge motion of the N and C lobes and changes the conformational equilibrium of the activation loop. The complex network of subtle structural shifts that link the SH2 domain with the activation loop and the active site may be partially conserved with other SH2-domain containing kinases and therefore offer additional parameters for the design of conformation-specific inhibitors.

  6. “Preleukemic or smoldering” chronic myelogenous leukemia (CML:BCR-ABL1 positive: A brief case report

    Directory of Open Access Journals (Sweden)

    John M. Bennett

    2015-01-01

    The most common feature of CML is an elevated WBC count, usually above 25×103/µL, and frequently above 100×103/µL. We report a case of confirmed Ph+CML with a normal CBC detected because of the presence of rare myelocytes and 2% basophils [Fig. 1]. Previous leukocyte counts for the preceding eight years were normal with the exception of one done four months prior to his presentation that showed an abnormal differential with 1% basophils, 2% metamyelocytes and 2% myelocytes.

  7. Orphan nuclear receptor TLX functions as a potent suppressor of oncogene-induced senescence in prostate cancer via its transcriptional co-regulation of the CDKN1A (p21(WAF1) (/) (CIP1) ) and SIRT1 genes.

    Science.gov (United States)

    Wu, Dinglan; Yu, Shan; Jia, Lin; Zou, Chang; Xu, Zhenyu; Xiao, Lijia; Wong, Kam-Bo; Ng, Chi-Fai; Chan, Franky L

    2015-05-01

    Oncogene-induced senescence is an important tumour-suppressing mechanism to prevent both premalignant transformation and cancer progression. Overcoming this process is a critical step in early cancer development. The druggable orphan nuclear receptor TLX (NR2E1) is characterized as an important regulator of neural stem cells and is also implicated in the development of some brain tumours. However, its exact functional roles in cancer growth regulation still remain unclear. Here we report that TLX can act as a promoter of tumourigenesis in prostate cancer by suppressing oncogene-induced senescence. We determined that TLX exhibited an increased expression in high-grade prostate cancer tissues and many prostate cancer cell lines. Functional studies revealed that TLX could perform an oncogenic function in prostate cancer cells, as its knockdown triggered cellular senescence and cell growth arrest in vitro and in vivo, whereas its over-expression promoted the malignant growth of prostate cancer cells. Furthermore, enhancement of TLX activity, by either ectopic expression or ligand stimulation, could potently prevent doxorubicin-induced senescence in prostate cancer cells and also allow prostatic epithelial cells to escape oncogene-induced senescence induced either by activated oncogene H-Ras(G12V) or knockdown of tumour suppressor PTEN, via a mechanism of direct but differential transcriptional regulation of two senescence-associated genes, repression of CDKN1A and transactivation of SIRT1. Together, our present study shows, for the first time, that TLX may play an important role in prostate carcinogenesis through its suppression of oncogene-induced senescence, and also suggests that targeting the senescence-regulatory TLX is of potential therapeutic significance in prostate cancer. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  8. Crystal structure of an SH2-kinase construct of c-Abl and effect of the SH2 domain on kinase activity.

    Science.gov (United States)

    Lorenz, Sonja; Deng, Patricia; Hantschel, Oliver; Superti-Furga, Giulio; Kuriyan, John

    2015-06-01

    Constitutive activation of the non-receptor tyrosine kinase c-Abl (cellular Abelson tyrosine protein kinase 1, Abl1) in the Bcr (breakpoint cluster region)-Abl1 fusion oncoprotein is the molecular cause of chronic myeloid leukaemia (CML). Recent studies have indicated that an interaction between the SH2 (Src-homology 2) domain and the N-lobe (N-terminal lobe) of the c-Abl kinase domain (KD) has a critical role in leukaemogenesis [Grebien et al. (2011) Cell 147, 306-319; Sherbenou et al. (2010) Blood 116, 3278-3285]. To dissect the structural basis of this phenomenon, we studied c-Abl constructs comprising the SH2 and KDs in vitro. We present a crystal structure of an SH2-KD construct bound to dasatinib, which contains the relevant interface between the SH2 domain and the N-lobe of the KD. We show that the presence of the SH2 domain enhances kinase activity moderately and that this effect depends on contacts in the SH2/N-lobe interface and is abrogated by specific mutations. Consistently, formation of the interface decreases slightly the association rate of imatinib with the KD. That the effects are small compared with the dramatic in vivo consequences suggests an important function of the SH2-N-lobe interaction might be to help disassemble the auto-inhibited conformation of c-Abl and promote processive phosphorylation, rather than substantially stimulate kinase activity.

  9. EphrinB1 expression is dysregulated and promotes oncogenic signaling in medulloblastoma.

    Science.gov (United States)

    McKinney, Nicole; Yuan, Liangping; Zhang, Hongying; Liu, Jingbo; Cho, Yoon-Jae; Rushing, Elisabeth; Schniederjan, Matthew; MacDonald, Tobey J

    2015-01-01

    Eph receptors and ephrin ligands are master regulators of oncogenic signaling required for proliferation, migration, and metastasis. Yet, Eph/ephrin expression and activity in medulloblastoma (MB), the most common malignant brain tumor of childhood, remains poorly defined. We hypothesized that Eph/ephrins are differentially expressed by sonic hedgehog (SHH) and non-SHH MB and that specific members contribute to the aggressive phenotype. Affymetrix gene expression profiling of 29 childhood MB, separated into SHH (N = 11) and non-SHH (N = 18), was performed followed by protein validation of selected Eph/ephrins in another 60 MB and two MB cell lines (DAOY, D556). Functional assays were performed using MB cells overexpressing or deleted for selected ephrins. We found EPHB4 and EFNA4 almost exclusively expressed by SHH MB, whereas EPHA2, EPHA8, EFNA1 and EFNA3 are predominantly expressed by non-SHH MB. The remaining family members, except EFNB1, are ubiquitously expressed by over 70-90 % MB, irrespective of subgroup. EFNB1 is the only member differentially expressed by 28 % of SHH and non-SHH MB. Corresponding protein expression for EphB/ephrinB1 and B2 was validated in MB. Only ephrinB2 was also detected in fetal cerebellum, indicating that EphB/ephrinB1 expression is MB-specific. EphrinB1 immunopositivity localizes to tumor cells within MB with the highest proliferative index. EphrinB1 overexpression promotes EphB activation, alters F-actin distribution and morphology, decreases adhesion, and significantly promotes proliferation. Either silencing or overexpression of ephrinB1 impairs migration. These results indicate that EphrinB1 is uniquely dysregulated in MB and promotes oncogenic responses in MB cells, implicating ephrinB1 as a potential target.

  10. Oncogenic osteomalacia associated with soft tissue chondromyxoid fibroma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Mi E-mail: jmpark@cmc.cuk.ac.kr; Woo, Young Kyun; Kang, Moo Il; Kang, Chang Suk; Hahn, Seong Tae

    2001-08-01

    Oncogenic osteomalacia is a rarely described clinical entity characterized by hypophosphatemia, phosphaturia, and a low concentration of 1,25-dihydroxyvitamin D{sub 3}. It is most often associated with benign mesenchymal tumor and can be cured with surgical removal of the tumor. In this paper, we present a case of oncogenic osteomalacia caused by chondromyxoid fibroma in the soft tissue of the sole of the foot in a 56-year-old woman.

  11. The oncogenic action of ionizing radiation on rat skin

    International Nuclear Information System (INIS)

    Burns, F.J.

    1991-01-01

    Progress has occurred in several areas corresponding to the specific aims of the proposal: (1) Progression and multiple events in radiation carcinogenesis of rat skin as a function of LET; (2) cell cycle kinetics of irradiated rat epidermis as determined by double labeling and double emulsion autoradiography; (3) oncogene activation detected by in situ hybridization in radiation-induced rat skin tumors; (4) amplification of the c-myc oncogene in radiation-induced rat skin tumors as a function of LET; and (5) transformation of rat skin keratinocytes by ionizing radiation in combination with c-Ki-ras and c-myc oncogenes. 111 refs., 13 figs., 12 tabs

  12. Adaptive immunity to leukemia is inhibited by cross-reactive induced regulatory T cells

    OpenAIRE

    Manlove, Luke S.; Berquam-Vrieze, Katherine E.; Pauken, Kristen E.; Williams, Richard T.; Jenkins, Marc K.; Farrar, Michael A.

    2015-01-01

    BCR-ABL+ acute lymphoblastic leukemia patients have transient responses to current therapies. However, the fusion of BCR to ABL generates a potential leukemia-specific antigen that could be a target for immunotherapy. We demonstrate that the immune system can limit BCR-ABL+ leukemia progression although ultimately this immune response fails. To address how BCR-ABL+ leukemia escapes immune surveillance, we developed a peptide: MHC-II tetramer that labels endogenous BCR-ABL-specific CD4+ T cell...

  13. Clinical Implication of Elevated Human Cervical Cancer Oncogene-1 Expression in Esophageal Squamous Cell Carcinoma

    OpenAIRE

    Liu, Ying; Li, Ke; Ren, Zhonghai; Li, Shenglei; Zhang, Hongyan; Fan, Qingxia

    2012-01-01

    The human cervical cancer oncogene 1 (HCCR-1), a novel human oncoprotein, has been shown to be upregulated in various human tumors and plays a critical role in tumorigenesis and tumor progression. Here, the authors investigated HCCR-1 level in esophageal squamous cell carcinoma (ESCC) tissues and assessed the correlation between HCCR-1 level and prognosis of the patients with ESCC. HCCR-1 levels were investigated by immunohistochemistry, in situ hybridization, real-time quantit...

  14. The chemokine CXCL1/growth related oncogene increases sodium currents and neuronal excitability in small diameter sensory neurons

    Directory of Open Access Journals (Sweden)

    Wick Dayna M

    2008-09-01

    Full Text Available Abstract Background Altered Na+ channel expression, enhanced excitability, and spontaneous activity occur in nerve-injury and inflammatory models of pathological pain, through poorly understood mechanisms. The cytokine GRO/KC (growth related oncogene; CXCL1 shows strong, rapid upregulation in dorsal root ganglion in both nerve injury and inflammatory models. Neurons and glia express its receptor (CXCR2. CXCL1 has well-known effects on immune cells, but little is known about its direct effects on neurons. Results We report that GRO/KC incubation (1.5 nM, overnight caused marked upregulation of Na+ currents in acutely isolated small diameter rat (adult sensory neurons in vitro. In both IB4-positive and IB4-negative sensory neurons, TTX-resistant and TTX-sensitive currents increased 2- to 4 fold, without altered voltage dependence or kinetic changes. These effects required long exposures, and were completely blocked by co-incubation with protein synthesis inhibitor cycloheximide. Amplification of cDNA from the neuronal cultures showed that 3 Na channel isoforms were predominant both before and after GRO/KC treatment (Nav 1.1, 1.7, and 1.8. TTX-sensitive isoforms 1.1 and 1.7 significantly increased 2 – 3 fold after GRO/KC incubation, while 1.8 showed a trend towards increased expression. Current clamp experiments showed that GRO/KC caused a marked increase in excitability, including resting potential depolarization, decreased rheobase, and lower action potential threshold. Neurons acquired a striking ability to fire repetitively; IB4-positive cells also showed marked broadening of action potentials. Immunohistochemical labelling confirmed that the CXCR2 receptor was present in most neurons both in dissociated cells and in DRG sections, as previously shown for neurons in the CNS. Conclusion Many studies on the role of chemokines in pain conditions have focused on their rapid and indirect effects on neurons, via release of inflammatory mediators

  15. Detailed conformation dynamics and activation process of wild type c-Abl and T315I mutant

    Science.gov (United States)

    Yang, Li-Jun; Zhao, Wen-Hua; Liu, Qian

    2014-10-01

    Bcr-Abl is an important target for therapy against chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL). The synergistic effect between myristyl pocket and the ATP pocket has been found. But its detailed information based on molecular level still has not been achieved. In this study, conventional molecular dynamics (CMD) and target molecular dynamics (TMD) simulations were performed to explore the effect of T315I mutation on dynamics and activation process of Abl containing the N-terminal cap (Ncap). The CMD simulation results reveal the increasing flexibility of ATP pocket in kinase domain (KD) after T315I mutation which confirms the disability of ATP-pocket inhibitors to the Abl-T315I mutant. On the contrary, the T315I mutation decreased the flexibility of remote helix αI which suggests the synergistic effect between them. The mobility of farther regions containing Ncap, SH3, SH2 and SH2-KD linker were not affected by T315I mutation. The TMD simulation results show that the activation process of wild type Abl and Abl-T315I mutant experienced global conformation change. Their differences were elucidated by the activation motion of subsegments including A-loop, P-loop and Ncap. Besides, the T315I mutation caused decreasing energy barrier and increasing intermediate number in activation process, which results easier activation process. The TMD and CMD results indicate that a drug targeting only the ATP pocket is not enough to inhibit the Abl-T315I mutant. An effective way to inhibit the abnormal activity of Abl-T315I mutant is to combine the ATP-pocket inhibitors with inhibitors binding at non-ATP pockets mainly related to Ncap, SH2-KD linker and myristyl pocket.

  16. Stat1 phosphorylation determines Ras oncogenicity by regulating p27 kip1.

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    Full Text Available Inactivation of p27 Kip1 is implicated in tumorigenesis and has both prognostic and treatment-predictive values for many types of human cancer. The transcription factor Stat1 is essential for innate immunity and tumor immunosurveillance through its ability to act downstream of interferons. Herein, we demonstrate that Stat1 functions as a suppressor of Ras transformation independently of an interferon response. Inhibition of Ras transformation and tumorigenesis requires the phosphorylation of Stat1 at tyrosine 701 but is independent of Stat1 phosphorylation at serine 727. Stat1 induces p27 Kip1 expression in Ras transformed cells at the transcriptional level through mechanisms that depend on Stat1 phosphorylation at tyrosine 701 and activation of Stat3. The tumor suppressor properties of Stat1 in Ras transformation are reversed by the inactivation of p27 Kip1. Our work reveals a novel functional link between Stat1 and p27 Kip1, which act in coordination to suppress the oncogenic properties of activated Ras. It also supports the notion that evaluation of Stat1 phosphorylation in human tumors may prove a reliable prognostic factor for patient outcome and a predictor of treatment response to anticancer therapies aimed at activating Stat1 and its downstream effectors.

  17. Understanding personal risk of oropharyngeal cancer: risk-groups for oncogenic oral HPV infection and oropharyngeal cancer.

    Science.gov (United States)

    D'Souza, G; McNeel, T S; Fakhry, C

    2017-12-01

    Incidence of human papillomavirus (HPV)-related oropharyngeal cancer is increasing. There is interest in identifying healthy individuals most at risk for development of oropharyngeal cancer to inform screening strategies. All data are from 2009 to 2014, including 13 089 people ages 20-69 in the National Health and Nutrition Examination Survey (NHANES), oropharyngeal cancer cases from the Surveillance, Epidemiology, and End Results (SEER 18) registries (representing ∼28% of the US population), and oropharyngeal cancer mortality from National Center for Health Statistics (NCHS). Primary study outcomes are (i) prevalence of oncogenic HPV DNA in an oral rinse and gargle sample, and (ii) incident oropharyngeal squamous cell cancer. Oncogenic oral HPV DNA is detected in 3.5% of all adults age 20-69 years; however, the lifetime risk of oropharyngeal cancer is low (37 per 10 000). Among men 50-59 years old, 8.1% have an oncogenic oral HPV infection, 2.1% have an oral HPV16 infection, yet only 0.7% will 'ever' develop oropharyngeal cancer in their lifetime. Oncogenic oral HPV prevalence was higher in men than women, and increased with number of lifetime oral sexual partners and tobacco use. Men who currently smoked and had ≥5 lifetime oral sexual partners had 'elevated risk' (prevalence = 14.9%). Men with only one of these risk factors (i.e. either smoked and had 2-4 partners or did not smoke and had ≥5 partners) had 'medium risk' (7.3%). Regardless of what other risk factors participants had, oncogenic oral HPV prevalence was 'low' among those with only ≤1 lifetime oral sexual partner (women = 0.7% and men = 1.7%). Screening based upon oncogenic oral HPV detection would be challenging. Most groups have low oncogenic oral HPV prevalence. In addition to the large numbers of individuals who would need to be screened to identify prevalent oncogenic oral HPV, the lifetime risk of developing oropharyngeal caner among those with infection remains

  18. Oncogene Mimicry as a Mechanism of Primary Resistance to BRAF Inhibitors

    Directory of Open Access Journals (Sweden)

    Martin L. Sos

    2014-08-01

    Full Text Available Despite the development of potent RAF/mitogen-activated protein kinase (MAPK pathway inhibitors, only a fraction of BRAF-mutant patients benefit from treatment with these drugs. Using a combined chemogenomics and chemoproteomics approach, we identify drug-induced RAS-RAF-MEK complex formation in a subset of BRAF-mutant cancer cells characterized by primary resistance to vemurafenib. In these cells, autocrine interleukin-6 (IL-6 secretion may contribute to the primary resistance phenotype via induction of JAK/STAT3 and MAPK signaling. In a subset of cell lines, combined IL-6/MAPK inhibition is able to overcome primary resistance to BRAF-targeted therapy. Overall, we show that the signaling plasticity exerted by primary resistant BRAF-mutant cells is achieved by their ability to mimic signaling features of oncogenic RAS, a strategy that we term “oncogene mimicry.” This model may guide future strategies for overcoming primary resistance observed in these tumors.

  19. Molecular biology III - Oncogenes and tumor suppressor genes

    International Nuclear Information System (INIS)

    Giaccia, Amato J.

    1996-01-01

    Purpose: The purpose of this course is to introduce to radiation oncologists the basic concepts of tumorigenesis, building on the information that will be presented in the first and second part of this series of lectures. Objective: Our objective is to increase the current understanding of radiation oncologists with the process of tumorigenesis, especially focusing on genes that are altered in many tumor types that are potential candidates for novel molecular strategies. As strategies to treat cancer of cancer are becoming more sophisticated, it will be important for both the practitioner and academician to develop a basic understanding of the function of cancer 'genes'. This will be the third in a series of refresher courses that are meant to address recent advances in Cancer Biology in a way that both clinicians without previous knowledge of molecular biology or experienced researchers will find interesting. The lecture will begin with a basic overview of tumorigenesis; methods of detecting chromosome/DNA alterations, approaches used to isolate oncogenes and tumor suppressor genes, and their role in cell killing by apoptosis. Special attention will be given to oncogenes and tumor suppressor genes that are modulated by ionizing radiation and the tumor microenvironment. We will relate the biology of oncogenes and tumor suppressor genes to basic aspects of radiation biology that would be important in clinical practice. Finally, we will review recent studies on the prognostic significance of p53 mutations and apoptosis in tumor specimens. The main point of this lecture is to relate both researcher and clinician what are the therapeutic ramifications of oncogene and tumor suppressor gene mutations found in human neoptasia

  20. Y-box Binding Protein-1 Enhances Oncogenic Transforming Growth Factor β Signaling in Breast Cancer Cells via Triggering Phospho-Activation of Smad2.

    Science.gov (United States)

    Stope, Matthias B; Weiss, Martin; Koensgen, Dominique; Popp, Simone L; Joffroy, Christian; Mustea, Alexander; Buck, Miriam B; Knabbe, Cornelius

    2017-12-01

    Transforming growth factor β (TGFβ) plays a role in diverse oncogenic pathways including cell proliferation and cell motility and is regulated by the pleiotropic factor Y-box binding protein-1 (YB-1). In breast cancer, Sma/Mad related protein 2 (Smad2) represents the most common downstream transducer in TGFβ signaling. Here, YB-1's impact on Smad2 phospho-activation was characterized by incubation of the breast cancer cell line MCF-7 with or without TGFβ1 in the absence or presence of overexpressed YB-1 protein. The phospho-status of Smad2 was assessed via western blotting. Analysis of MCF-7 cells revealed no induction of total Smad2 neither in the presence of TGFβ1, nor during YB-1 overexpression. In contrast, incubation with TGFβ1 led to an increase of phosphorylated Smad2 forms which was significantly amplified by simultaneously overexpressed YB-1 (2.8±0.2-fold). Oncogenic YB-1 indirectly enhances TGFβ signaling cascades via Smad2 phospho-activation and may represent a promising factor for future diagnosis and therapy of breast cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. 3D view to tumor suppression: Lkb1, polarity and the arrest of oncogenic c-Myc.

    Science.gov (United States)

    Partanen, Johanna I; Nieminen, Anni I; Klefstrom, Juha

    2009-03-01

    Machiavelli wrote, in his famous political treatise Il Principe, about disrupting organization by planting seeds of dissension or by eliminating necessary support elements. Tumor cells do exactly that by disrupting the organized architecture of epithelial cell layers during progression from contained benign tumor to full-blown invasive cancer. However, it is still unclear whether tumor cells primarily break free by activating oncogenes powerful enough to cause chaos or by eliminating tumor suppressor genes guarding the order of the epithelial organization. Studies in Drosophila have exposed genes that encode key regulators of the epithelial apicobasal polarity and which, upon inactivation, cause disorganization of the epithelial layers and promote unscheduled cell proliferation. These polarity regulator/tumor suppressor proteins, which include products of neoplastic tumor suppressor genes (nTSGs), are carefully positioned in polarized epithelial cells to maintain the order of epithelial structures and to impose a restraint on cell proliferation. In this review, we have explored the presence and prevalence of somatic mutations in the human counterparts of Drosophila polarity regulator/tumor suppressor genes across the human cancers. The screen points out LKB1, which is a causal genetic lesion in Peutz-Jeghers cancer syndrome, a gene mutated in certain sporadic cancers and a human homologue of the fly polarity gene par-4. We review the evidence linking Lkb1 protein to polarity regulation in the scope of our recent results suggesting a coupled role for Lkb1 as an architect of organized acinar structures and a suppressor of oncogenic c-Myc. We finally present models to explain how Lkb1-dependent formation of epithelial architecture is coupled to suppression of normal and oncogene-induced proliferation.

  2. Characterization of new cell line stably expressing CHI3L1 oncogene

    Directory of Open Access Journals (Sweden)

    Chekhonin V. P.

    2011-06-01

    Full Text Available Aim. To characterize the immortalized 293 cell line after stable transfection with human oncogene (CHI3L1. Methods. 293 cells, stably transfected with pcDNA3.1_CHI3L1, and 293 cells, stably transfected with pcDNA3.1 as a negative control, were used throughout all experiments. The clones of CHI3L1-expressing 293 cells and 293 cells, transfected with pcDNA3.1, were analyzed by immunofluorescence and confocal microscopy. Cell proliferation was measured using MTT assay; analyses of ERK1/2 and AKT activation and their cellular localization were performed with anti-phospho-ERK and anti-phospho-AKT antibodies. Specific activation of MAP and PI3 kinases was measured by densitometric analysis of Western-blot signals. Results. The obtained results show quite modest ability of CHI3L1 to stimulate cell growth and reflect rather an improved cellular plating efficiency of the 293 cells stably transfected with pcDNA3.1_CHI3L1 as compared to the 293 cells transfected with an «empty» vector. ERK1/2 and AKT are activated in the 293_CHI3L1 cells. In these cells phosphorylated ERK1/2 were localized in both cell cytoplasm and nuclei while AKT only in cytoplasm. The 293_CHI3L1 cells differed from the 293 cells, transfected with an «empty» vector, in their size and ability to adhere to the culture plates. Conclusions. The overexpression of CHI3L1 is likely to have an important role in tumorigenesis via a mechanism which involves activation of PI3K and ERK1/2 pathways. The tumors which can be induced by orthotopic implantation of the transformed human cells with overexpressed human oncogene CHI3L1 into the rat brain can be used as a target for anticancer drug development.

  3. Proteome-wide analysis of protein abundance and turnover remodelling during oncogenic transformation of human breast epithelial cells [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Tony Ly

    2018-05-01

    Full Text Available Background: Viral oncogenes and mutated proto-oncogenes are potent drivers of cancer malignancy. Downstream of the oncogenic trigger are alterations in protein properties that give rise to cellular transformation and the acquisition of malignant cellular phenotypes. Developments in mass spectrometry enable large-scale, multidimensional characterisation of proteomes. Such techniques could provide an unprecedented, unbiased view of how oncogene activation remodels a human cell proteome. Methods: Using quantitative MS-based proteomics and cellular assays, we analysed how transformation induced by activating v-Src kinase remodels the proteome and cellular phenotypes of breast epithelial (MCF10A cells. SILAC MS was used to comprehensively characterise the MCF10A proteome and to measure v-Src-induced changes in protein abundance across seven time-points (1-72 hrs. We used pulse-SILAC MS (Boisvert et al., 2012, to compare protein synthesis and turnover in control and transformed cells. Follow-on experiments employed a combination of cellular and functional assays to characterise the roles of selected Src-responsive proteins. Results: Src-induced transformation changed the expression and/or turnover levels of ~3% of proteins, affecting ~1.5% of the total protein molecules in the cell. Transformation increased the average rate of proteome turnover and disrupted protein homeostasis. We identify distinct classes of protein kinetics in response to Src activation. We demonstrate that members of the polycomb repressive complex 1 (PRC1 are important regulators of invasion and migration in MCF10A cells. Many Src-regulated proteins are present in low abundance and some are regulated post-transcriptionally. The signature of Src-responsive proteins is highly predictive of poor patient survival across multiple cancer types. Open access to search and interactively explore all these proteomic data is provided via the EPD database (www.peptracker.com/epd. Conclusions

  4. Identification of Novel Ovarian Cancer Oncogenes that Function by Regulating Exosome Function

    Science.gov (United States)

    2017-09-01

    Novel Ovarian Cancer Oncogenes that Function by Regulating Exosome Function September 2017 x 1Sep2016...31Aug2017 Email: mbirrer@partners.org 6 Identification of Novel Ovarian Cancer Oncogenes that Function by Regulating Exosome Function xx

  5. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzato, Annalisa; Biolatti, Marta [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy); Delogu, Giuseppe [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); Capobianco, Giampiero [Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari (Italy); Farace, Cristiano [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco [Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari (Italy); Madeddu, Roberto [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); National Institute of Biostructures and Biosystems, Rome (Italy); Olivero, Martina [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy); Di Renzo, Maria Flavia, E-mail: mariaflavia.direnzo@unito.it [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy)

    2013-10-15

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. - highlights: • CSE1L is a key player in nucleocytoplasmic traffic by forming complex with Ran. • AKT phosphorylates RanBP3 that regulates the nucleocytoplasmic gradient of Ran. • The activated oncogenic AKT drives the nuclear accumulation of CSE1L. • CSE1L in the nucleus up-regulates genes conveying pro-oncogenic signals. • CSE1L might contribute to tumor progression driven by the activated oncogenic AKT.

  6. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells

    International Nuclear Information System (INIS)

    Lorenzato, Annalisa; Biolatti, Marta; Delogu, Giuseppe; Capobianco, Giampiero; Farace, Cristiano; Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco; Madeddu, Roberto; Olivero, Martina; Di Renzo, Maria Flavia

    2013-01-01

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. - highlights: • CSE1L is a key player in nucleocytoplasmic traffic by forming complex with Ran. • AKT phosphorylates RanBP3 that regulates the nucleocytoplasmic gradient of Ran. • The activated oncogenic AKT drives the nuclear accumulation of CSE1L. • CSE1L in the nucleus up-regulates genes conveying pro-oncogenic signals. • CSE1L might contribute to tumor progression driven by the activated oncogenic AKT

  7. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils

    International Nuclear Information System (INIS)

    Pueyo, M.; Mateu, J.; Rigol, A.; Vidal, M.; Lopez-Sanchez, J.F.; Rauret, G.

    2008-01-01

    The modified BCR three-step sequential extraction procedure was used to examine the temporal dynamics of trace elements in soils contaminated by an accidental spill from an opencast mine in south-west Spain. Soils were mainly contaminated with pyritic sludge and acidic wastewater, whereas some soils were affected only by acidic wastewater. The distributions obtained for both some major (Ca, Fe and Mn) and trace elements (As, Cd, Cu, Pb and Zn) in the sludge and soil samples taken at different times after the accident, 1-3 months and 21 months, were compared. Sequential extractions were useful in identifying different sources of contamination, and in obtaining additional information on the solubility of secondary minerals formed by pyrite oxidation. Thus, the effectiveness of the BCR procedure has proved to be a useful tool for predicting short- and long-term mobility of trace elements, even in complex environmental scenarios. - The modified BCR three-step sequential extraction procedure has proved a useful prediction tool for short- and long-term mobility of trace elements in contaminated soils

  8. BCR ligation induced by IgM stimulation results in gene expression and functional changes only in IgV H unmutated chronic lymphocytic leukemia (CLL) cells.

    Science.gov (United States)

    Guarini, Anna; Chiaretti, Sabina; Tavolaro, Simona; Maggio, Roberta; Peragine, Nadia; Citarella, Franca; Ricciardi, Maria Rosaria; Santangelo, Simona; Marinelli, Marilisa; De Propris, Maria Stefania; Messina, Monica; Mauro, Francesca Romana; Del Giudice, Ilaria; Foà, Robert

    2008-08-01

    Chronic lymphocytic leukemia (CLL) patients exhibit a variable clinical course. To investigate the association between clinicobiologic features and responsiveness of CLL cells to anti-IgM stimulation, we evaluated gene expression changes and modifications in cell-cycle distribution, proliferation, and apoptosis of IgV(H) mutated (M) and unmutated (UM) samples upon BCR cross-linking. Unsupervised analysis highlighted a different response profile to BCR stimulation between UM and M samples. Supervised analysis identified several genes modulated exclusively in the UM cases upon BCR cross-linking. Functional gene groups, including signal transduction, transcription, cell-cycle regulation, and cytoskeleton organization, were up-regulated upon stimulation in UM cases. Cell-cycle and proliferation analyses confirmed that IgM cross-linking induced a significant progression into the G(1) phase and a moderate increase of proliferative activity exclusively in UM patients. Moreover, we observed only a small reduction in the percentage of subG(0/1) cells, without changes in apoptosis, in UM cases; contrariwise, a significant increase of apoptotic levels was observed in stimulated cells from M cases. These results document that a differential genotypic and functional response to BCR ligation between IgV(H) M and UM cases is operational in CLL, indicating that response to antigenic stimulation plays a pivotal role in disease progression.

  9. Loss of mutL homolog-1 (MLH1) expression promotes acquisition of oncogenic and inhibitor-resistant point mutations in tyrosine kinases.

    Science.gov (United States)

    Springuel, Lorraine; Losdyck, Elisabeth; Saussoy, Pascale; Turcq, Béatrice; Mahon, François-Xavier; Knoops, Laurent; Renauld, Jean-Christophe

    2016-12-01

    Genomic instability drives cancer progression by promoting genetic abnormalities that allow for the multi-step clonal selection of cells with growth advantages. We previously reported that the IL-9-dependent TS1 cell line sequentially acquired activating substitutions in JAK1 and JAK3 upon successive selections for growth factor independent and JAK inhibitor-resistant cells, suggestive of a defect in mutation avoidance mechanisms. In the first part of this paper, we discovered that the gene encoding mutL homolog-1 (MLH1), a key component of the DNA mismatch repair system, is silenced by promoter methylation in TS1 cells. By means of stable ectopic expression and RNA interference methods, we showed that the high frequencies of growth factor-independent and inhibitor-resistant cells with activating JAK mutations can be attributed to the absence of MLH1 expression. In the second part of this paper, we confirm the clinical relevance of our findings by showing that chronic myeloid leukemia relapses upon ABL-targeted therapy correlated with a lower expression of MLH1 messenger RNA. Interestingly, the mutational profile observed in our TS1 model, characterized by a strong predominance of T:A>C:G transitions, was identical to the one described in the literature for primitive cells derived from chronic myeloid leukemia patients. Taken together, our observations demonstrate for the first time a causal relationship between MLH1-deficiency and incidence of oncogenic point mutations in tyrosine kinases driving cell transformation and acquired resistance to kinase-targeted cancer therapies.

  10. FOXM1 is an oncogenic mediator in Ewing Sarcoma.

    Directory of Open Access Journals (Sweden)

    Laura Christensen

    Full Text Available Ewing Family Tumors (Ewing Sarcoma and peripheral Primitive Neuroectodermal Tumor are common bone and soft tissue malignancies of childhood, adolescence and young adulthood. Chromosomal translocation in these tumors produces fusion oncogenes of the EWS/ETS class, with EWS/FLI1 being by far the most common. EWS/ETS chimera are the only well established driver mutations in these tumors and they function as aberrant transcription factors. Understanding the downstream genes whose expression is modified has been a central approach to the study of these tumors. FOXM1 is a proliferation associated transcription factor which has increasingly been found to play a role in the pathogenesis of a wide range of human cancers. Here we demonstrate that FOXM1 is expressed in Ewing primary tumors and cell lines. Reduction in FOXM1 expression in Ewing cell lines results in diminished potential for anchorage independent growth. FOXM1 expression is enhanced by EWS/FLI1, though, unlike other tumor systems, it is not driven by expression of the EWS/FLI1 target GLI1. Thiostrepton is a compound known to inhibit FOXM1 by direct binding. We show that Thiostrepton diminishes FOXM1 expression in Ewing cell lines and this reduction reduces cell viability through an apoptotic mechanism. FOXM1 is involved in Ewing tumor pathogenesis and may prove to be a useful therapeutic target in Ewing tumors.

  11. A Novel Role for Keratin 17 in Coordinating Oncogenic Transformation and Cellular Adhesion in Ewing Sarcoma

    Science.gov (United States)

    Sankar, Savita; Tanner, Jason M.; Bell, Russell; Chaturvedi, Aashi; Randall, R. Lor; Beckerle, Mary C.

    2013-01-01

    Oncogenic transformation in Ewing sarcoma is caused by EWS/FLI, an aberrant transcription factor fusion oncogene. Glioma-associated oncogene homolog 1 (GLI1) is a critical target gene activated by EWS/FLI, but the mechanism by which GLI1 contributes to the transformed phenotype of Ewing sarcoma was unknown. In this work, we identify keratin 17 (KRT17) as a direct downstream target gene upregulated by GLI1. We demonstrate that KRT17 regulates cellular adhesion by activating AKT/PKB (protein kinase B) signaling. In addition, KRT17 is necessary for oncogenic transformation in Ewing sarcoma and accounts for much of the GLI1-mediated transformation function but via a mechanism independent of AKT signaling. Taken together, our data reveal previously unknown molecular functions for a cytoplasmic intermediate filament protein, KRT17, in coordinating EWS/FLI- and GLI1-mediated oncogenic transformation and cellular adhesion in Ewing sarcoma. PMID:24043308

  12. Double demonstration of oncogenic high risk human papilloma virus DNA and HPV-E7 protein in oral cancers.

    Science.gov (United States)

    Pannone, G; Santoro, A; Carinci, F; Bufo, P; Papagerakis, S M; Rubini, C; Campisi, G; Giovannelli, L; Contaldo, M; Serpico, R; Mazzotta, M; Lo Muzio, L

    2011-01-01

    Oncogenic HPVs are necessarily involved in cervical cancer but their role in oral carcinogenesis is debated. To detect HPV in oral cancer, 38 cases of formalin fixed-paraffin embedded OSCC were studied by both DNA genotyping (MY09/11 L1 consensus primers in combination with GP5-GP6 primer pair followed by sequencing) and immunohistochemistry (monoclonal Abs against capsid protein and HPV-E7 protein, K1H8 DAKO and clone 8C9 INVITROGEN, respectively). HPV-16 tonsil cancer was used as positive control. The overall prevalence of HPV infection in OSCCs was 10.5%. Amplification of DNA samples showed single HPV DNA infection in 3 cases (HPV16; HPV53; HPV70) and double infection in one case of cheek cancer (HPV31/HPV44). The overall HR-HPV prevalence was 7.5%. E-7 antigen was immunohistochemically detected in all HPV-positive cases. HPV+ OSCC cases showed an overall better outcome than HPV negative oral cancers, as evaluated by Kaplan-Meier curves. HPVs exert their oncogenic role after DNA integration, gene expression of E5, E6 and E7 loci and p53/pRb host proteins suppression. This study showed that HPV-E7 protein inactivating pRb is expressed in oral cancer cells infected by oncogenic HPV other than classical HR-HPV-16/18. Interestingly HPV-70, considered a low risk virus with no definite collocation in oncogenic type category, gives rise to the expression of HPV-E7 protein and inactivate pRb in oral cancer. HPV-70, as proved in current literature, is able to inactivates also p53 protein, promoting cell immortalization. HPV-53, classified as a possible high risk virus, expresses E7 protein in OSCC, contributing to oral carcinogenesis. We have identified among OSCCs, a subgroup characterized by HPV infection (10.5%). Finally, we have proved the oncogenic potential of some HPV virus types, not well known in literature.

  13. Oncogenes and tumor suppressors in the molecular pathogenesis of acute promyelocytic leukemia.

    Science.gov (United States)

    Pandolfi, P P

    2001-04-01

    Acute promyelocytic leukemia (APL) is associated with reciprocal chromosomal translocations always involving the retinoic acid receptor alpha (RARalpha) gene on chromosome 17 and variable partner genes (X genes) on distinct chromosomes. RARalpha fuses to the PML gene in the vast majority of APL cases, and in a few cases to the PLZF, NPM, NuMA and Stat5b genes, respectively, leading to the generation of RARalpha-X: and X:-RARalpha fusion genes. Both fusion proteins can exert oncogenic functions through their ability to interfere with the activities of X and RARalpha proteins. Here, it will be discussed in detail how an extensive biochemical analysis as well as a systematic in vivo genetic approach in the mouse has allowed the definition of the multiple oncogenic activities of PML-RARalpha, and how it has become apparent that this oncoprotein is able to impair RARalpha at the transcription level and the tumor suppressive function of the PML protein.

  14. Cyclin K and cyclin D1b are oncogenic in myeloma cells

    Directory of Open Access Journals (Sweden)

    Renoir Jack-Michel

    2010-05-01

    Full Text Available Abstract Background Aberrant expression of cyclin D1 is a common feature in multiple myeloma (MM and always associated with mantle cell lymphoma (MCL. CCND1 gene is alternatively spliced to produce two cyclin D1 mRNA isoforms which are translated in two proteins: cyclin D1a and cyclin D1b. Both isoforms are present in MM cell lines and primary cells but their relative role in the tumorigenic process is still elusive. Results To test the tumorigenic potential of cyclin D1b in vivo, we generated cell clones derived from the non-CCND1 expressing MM LP-1 cell line, synthesizing either cyclin D1b or cyclin K, a structural homolog and viral oncogenic form of cyclin D1a. Immunocompromised mice injected s.c. with LP-1K or LP-1D1b cells develop tumors at the site of injection. Genome-wide analysis of LP-1-derived cells indicated that several cellular processes were altered by cyclin D1b and/or cyclin K expression such as cell metabolism, signal transduction, regulation of transcription and translation. Importantly, cyclin K and cyclin D1b have no major action on cell cycle or apoptosis regulatory genes. Moreover, they impact differently cell functions. Cyclin K-expressing cells have lost their migration properties and display enhanced clonogenic capacities. Cyclin D1b promotes tumorigenesis through the stimulation of angiogenesis. Conclusions Our study indicates that cyclin D1b participates into MM pathogenesis via previously unrevealed actions.

  15. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 Synergistically Activate Transcription of Fatty-acid Synthase Gene (FASN)*S⃞

    Science.gov (United States)

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F.; Hur, Man-Wook

    2008-01-01

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation. PMID:18682402

  16. Retroviruses Hijack Chromatin Loops to Drive Oncogene Expression and Highlight the Chromatin Architecture around Proto-Oncogenic Loci

    Science.gov (United States)

    Pattison, Jillian M.; Wright, Jason B.; Cole, Michael D.

    2015-01-01

    The majority of the genome consists of intergenic and non-coding DNA sequences shown to play a major role in different gene regulatory networks. However, the specific potency of these distal elements as well as how these regions exert function across large genomic distances remains unclear. To address these unresolved issues, we closely examined the chromatin architecture around proto-oncogenic loci in the mouse and human genomes to demonstrate a functional role for chromatin looping in distal gene regulation. Using cell culture models, we show that tumorigenic retroviral integration sites within the mouse genome occur near existing large chromatin loops and that this chromatin architecture is maintained within the human genome as well. Significantly, as mutagenesis screens are not feasible in humans, we demonstrate a way to leverage existing screens in mice to identify disease relevant human enhancers and expose novel disease mechanisms. For instance, we characterize the epigenetic landscape upstream of the human Cyclin D1 locus to find multiple distal interactions that contribute to the complex cis-regulation of this cell cycle gene. Furthermore, we characterize a novel distal interaction upstream of the Cyclin D1 gene which provides mechanistic evidence for the abundant overexpression of Cyclin D1 occurring in multiple myeloma cells harboring a pathogenic translocation event. Through use of mapped retroviral integrations and translocation breakpoints, our studies highlight the importance of chromatin looping in oncogene expression, elucidate the epigenetic mechanisms crucial for distal cis-regulation, and in one particular instance, explain how a translocation event drives tumorigenesis through upregulation of a proto-oncogene. PMID:25799187

  17. Optimisation of beryllium-7 gamma analysis following BCR sequential extraction

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A. [Plymouth University, School of Geography, Earth and Environmental Sciences, 8 Kirkby Place, Plymouth PL4 8AA (United Kingdom); Blake, W.H., E-mail: wblake@plymouth.ac.uk [Plymouth University, School of Geography, Earth and Environmental Sciences, 8 Kirkby Place, Plymouth PL4 8AA (United Kingdom); Keith-Roach, M.J. [Plymouth University, School of Geography, Earth and Environmental Sciences, 8 Kirkby Place, Plymouth PL4 8AA (United Kingdom); Kemakta Konsult, Stockholm (Sweden)

    2012-03-30

    Graphical abstract: Showing decrease in analytical uncertainty using the optimal (combined preconcentrated sample extract) method. nv (no value) where extract activities were 1/2} = 53.3 days). Here, three different methods of preparing and quantifying {sup 7}Be extracted using the optimised BCR three-step scheme have been evaluated and compared with a focus on reducing analytical uncertainties. The optimal method involved carrying out the BCR extraction in triplicate, sub-sampling each set of triplicates for stable Be analysis before combining each set and coprecipitating the {sup 7}Be with metal oxyhydroxides to produce a thin source for gamma analysis. This method was applied to BCR extractions of natural {sup 7}Be in four agricultural soils. The approach gave good counting statistics from a 24 h analysis period ({approx}10% (2

  18. ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants.

    Science.gov (United States)

    Xu, Dong-Bei; Gao, Shi-Qing; Ma, You-Zhi; Xu, Zhao-Shi; Zhao, Chang-Ping; Tang, Yi-Miao; Li, Xue-Yin; Li, Lian-Cheng; Chen, Yao-Feng; Chen, Ming

    2014-12-01

    The phytohormone abscisic acid (ABA) plays crucial roles in adaptive responses of plants to abiotic stresses. ABA-responsive element binding proteins (AREBs) are basic leucine zipper transcription factors that regulate the expression of downstream genes containing ABA-responsive elements (ABREs) in promoter regions. A novel ABI-like (ABA-insensitive) transcription factor gene, named TaABL1, containing a conserved basic leucine zipper (bZIP) domain was cloned from wheat. Southern blotting showed that three copies were present in the wheat genome. Phylogenetic analyses indicated that TaABL1 belonged to the AREB subfamily of the bZIP transcription factor family and was most closely related to ZmABI5 in maize and OsAREB2 in rice. Expression of TaABL1 was highly induced in wheat roots, stems, and leaves by ABA, drought, high salt, and low temperature stresses. TaABL1 was localized inside the nuclei of transformed wheat mesophyll protoplast. Overexpression of TaABL1 enhanced responses of transgenic plants to ABA and hastened stomatal closure under stress, thereby improving tolerance to multiple abiotic stresses. Furthermore, overexpression of TaABL1 upregulated or downregulated the expression of some stress-related genes controlling stomatal closure in transgenic plants under ABA and drought stress conditions, suggesting that TaABL1 might be a valuable genetic resource for transgenic molecular breeding.

  19. Oncogenic LINE-1 Retroelements Sustain Prostate Tumor Cells and Promote Metastatic Progression

    Science.gov (United States)

    2015-10-01

    limit to 20 words ). 3. ACCOMPLISHMENTS: The PI is reminded that the recipient organization is required to obtain prior written approval...activating novel oncogenic transcriptional pathways and by acting as a telomerase thereby contributing to immortalization of the metastases. We also

  20. Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation.

    Science.gov (United States)

    Choi, Dongsic; Lee, Tae Hoon; Spinelli, Cristiana; Chennakrishnaiah, Shilpa; D'Asti, Esterina; Rak, Janusz

    2017-07-01

    Pathogenesis of human cancers bridges intracellular oncogenic driver events and their impact on intercellular communication. Among multiple mediators of this 'pathological connectivity' the role of extracellular vesicles (EVs) and their subsets (exosomes, ectosomes, oncosomes) is of particular interest for several reasons. The release of EVs from cancer cells represents a unique mechanism of regulated expulsion of bioactive molecules, a process that also mediates cell-to-cell transfer of lipids, proteins, and nucleic acids. Biological effects of these processes have been implicated in several aspects of cancer-related pathology, including tumour growth, invasion, angiogenesis, metastasis, immunity and thrombosis. Notably, the emerging evidence suggests that oncogenic mutations may impact several aspects of EV-mediated cell-cell communication including: (i) EV release rate and protein content; (ii) molecular composition of cancer EVs; (iii) the inclusion of oncogenic and mutant macromolecules in the EV cargo; (iv) EV-mediated release of genomic DNA; (v) deregulation of mechanisms responsible for EV biogenesis (vesiculome) and (vi) mechanisms of EV uptake by cancer cells. Intriguingly, EV-mediated intercellular transfer of mutant and oncogenic molecules between subpopulations of cancer cells, their indolent counterparts and stroma may exert profound biological effects that often resemble (but are not tantamount to) oncogenic transformation, including changes in cell growth, clonogenicity and angiogenic phenotype, or cause cell stress and death. However, several biological barriers likely curtail a permanent horizontal transformation of normal cells through EV-mediated mechanisms. The ongoing analysis and targeting of EV-mediated intercellular communication pathways can be viewed as a new therapeutic paradigm in cancer, while the analysis of oncogenic cargo contained in EVs released from cancer cells into biofluids is being developed for clinical use as a biomarker

  1. The c-Myc target glycoprotein1balpha links cytokinesis failure to oncogenic signal transduction pathways in cultured human cells.

    Directory of Open Access Journals (Sweden)

    Qian Wu

    2010-05-01

    Full Text Available An increase in chromosome number, or polyploidization, is associated with a variety of biological changes including breeding of cereal crops and flowers, terminal differentiation of specialized cells such as megakaryocytes, cellular stress and oncogenic transformation. Yet it remains unclear how cells tolerate the major changes in gene expression, chromatin organization and chromosome segregation that invariably accompany polyploidization. We show here that cancer cells can initiate increases in chromosome number by inhibiting cell division through activation of glycoprotein1b alpha (GpIbalpha, a component of the c-Myc signaling pathway. We are able to recapitulate cytokinesis failure in primary cells by overexpression of GpIbalpha in a p53-deficient background. GpIbalpha was found to localize to the cleavage furrow by microscopy analysis and, when overexpressed, to interfere with assembly of the cellular cortical contraction apparatus and normal division. These results indicate that cytokinesis failure and tetraploidy in cancer cells are directly linked to cellular hyperproliferation via c-Myc induced overexpression of GpIbalpha.

  2. Expression, prognostic significance and mutational analysis of protein tyrosine phosphatase SHP-1 in chronic myeloid leukemia.

    Science.gov (United States)

    Papadopoulou, Vasiliki; Kontandreopoulou, Elina; Panayiotidis, Panayiotis; Roumelioti, Maria; Angelopoulou, Maria; Kyriazopoulou, Lydia; Diamantopoulos, Panagiotis T; Vaiopoulos, George; Variami, Eleni; Kotsianidis, Ioannis; Athina Viniou, Nora

    2016-05-01

    The protein tyrosine phosphatase SHP-1 dephosphorylates BCR-ABL1, thereby serving as a potential control mechanism of BCR-ABL1 kinase activity. Pathways regulating SHP-1 expression, which could be exploited in the therapeutics of TKI-resistant chronic myeloid leukemia (CML), remain unknown. Moreover, the questions of whether there is any kind of SHP-1 deregulation in CML, contributing to disease initiation or evolution, as well as the question of prognostic significance of SHP-1, have not been definitively answered. This study shows moderately lower SHP-1 mRNA expression in chronic phase CML patients in comparison to healthy individuals and no change in SHP-1 mRNA levels after successful TKI treatment. Mutational analysis of the aminoterminal and phosphatase domains of SHP-1 in patients did not reveal genetic lesions. This study also found no correlation of SHP-1 expression at diagnosis with response to treatment, although a trend for lower SHP-1 expression was noted in the very small non-responders' group of the 3-month therapeutic milestone.

  3. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells

    International Nuclear Information System (INIS)

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Audemard, Eric; Montermini, Laura; Meehan, Brian; Rak, Janusz

    2014-01-01

    Highlights: • Oncogenic H-ras stimulates emission of extracellular vesicles containing double-stranded DNA. • Vesicle-associated extracellular DNA contains mutant N-ras sequences. • Vesicles mediate intercellular transfer of mutant H-ras DNA to normal fibroblasts where it remains for several weeks. • Fibroblasts exposed to vesicles containing H-ras DNA exhibit increased proliferation. - Abstract: Cell free DNA is often regarded as a source of genetic cancer biomarkers, but the related mechanisms of DNA release, composition and biological activity remain unclear. Here we show that rat epithelial cell transformation by the human H-ras oncogene leads to an increase in production of small, exosomal-like extracellular vesicles by viable cancer cells. These EVs contain chromatin-associated double-stranded DNA fragments covering the entire host genome, including full-length H-ras. Oncogenic N-ras and SV40LT sequences were also found in EVs emitted from spontaneous mouse brain tumor cells. Disruption of acidic sphingomyelinase and the p53/Rb pathway did not block emission of EV-related oncogenic DNA. Exposure of non-transformed RAT-1 cells to EVs containing mutant H-ras DNA led to the uptake and retention of this material for an extended (30 days) but transient period of time, and stimulated cell proliferation. Thus, our study suggests that H-ras-mediated transformation stimulates vesicular emission of this histone-bound oncogene, which may interact with non-transformed cells

  4. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa [Montreal Children’s Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Audemard, Eric [McGill University and Genome Quebec Innovation Centre, Montreal, Quebec (Canada); Montermini, Laura; Meehan, Brian [Montreal Children’s Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Rak, Janusz, E-mail: janusz.rak@mcgill.ca [Montreal Children’s Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec (Canada)

    2014-08-22

    Highlights: • Oncogenic H-ras stimulates emission of extracellular vesicles containing double-stranded DNA. • Vesicle-associated extracellular DNA contains mutant N-ras sequences. • Vesicles mediate intercellular transfer of mutant H-ras DNA to normal fibroblasts where it remains for several weeks. • Fibroblasts exposed to vesicles containing H-ras DNA exhibit increased proliferation. - Abstract: Cell free DNA is often regarded as a source of genetic cancer biomarkers, but the related mechanisms of DNA release, composition and biological activity remain unclear. Here we show that rat epithelial cell transformation by the human H-ras oncogene leads to an increase in production of small, exosomal-like extracellular vesicles by viable cancer cells. These EVs contain chromatin-associated double-stranded DNA fragments covering the entire host genome, including full-length H-ras. Oncogenic N-ras and SV40LT sequences were also found in EVs emitted from spontaneous mouse brain tumor cells. Disruption of acidic sphingomyelinase and the p53/Rb pathway did not block emission of EV-related oncogenic DNA. Exposure of non-transformed RAT-1 cells to EVs containing mutant H-ras DNA led to the uptake and retention of this material for an extended (30 days) but transient period of time, and stimulated cell proliferation. Thus, our study suggests that H-ras-mediated transformation stimulates vesicular emission of this histone-bound oncogene, which may interact with non-transformed cells.

  5. CD40 signaling synergizes with TLR-2 in the BCR independent activation of resting B cells.

    Directory of Open Access Journals (Sweden)

    Shweta Jain

    Full Text Available Conventionally, signaling through BCR initiates sequence of events necessary for activation and differentiation of B cells. We report an alternative approach, independent of BCR, for stimulating resting B (RB cells, by involving TLR-2 and CD40--molecules crucial for innate and adaptive immunity. CD40 triggering of TLR-2 stimulated RB cells significantly augments their activation, proliferation and differentiation. It also substantially ameliorates the calcium flux, antigen uptake capacity and ability of B cells to activate T cells. The survival of RB cells was improved and it increases the number of cells expressing activation induced deaminase (AID, signifying class switch recombination (CSR. Further, we also observed increased activation rate and decreased threshold period required for optimum stimulation of RB cells. These results corroborate well with microarray gene expression data. This study provides novel insights into coordination between the molecules of innate and adaptive immunity in activating B cells, in a BCR independent manner. This strategy can be exploited to design vaccines to bolster B cell activation and antigen presenting efficiency, leading to faster and better immune response.

  6. CD40 signaling synergizes with TLR-2 in the BCR independent activation of resting B cells.

    Science.gov (United States)

    Jain, Shweta; Chodisetti, Sathi Babu; Agrewala, Javed N

    2011-01-01

    Conventionally, signaling through BCR initiates sequence of events necessary for activation and differentiation of B cells. We report an alternative approach, independent of BCR, for stimulating resting B (RB) cells, by involving TLR-2 and CD40--molecules crucial for innate and adaptive immunity. CD40 triggering of TLR-2 stimulated RB cells significantly augments their activation, proliferation and differentiation. It also substantially ameliorates the calcium flux, antigen uptake capacity and ability of B cells to activate T cells. The survival of RB cells was improved and it increases the number of cells expressing activation induced deaminase (AID), signifying class switch recombination (CSR). Further, we also observed increased activation rate and decreased threshold period required for optimum stimulation of RB cells. These results corroborate well with microarray gene expression data. This study provides novel insights into coordination between the molecules of innate and adaptive immunity in activating B cells, in a BCR independent manner. This strategy can be exploited to design vaccines to bolster B cell activation and antigen presenting efficiency, leading to faster and better immune response.

  7. Oncogenes and radiosensitivity: in vitro studies. Potential impact in radiotherapy

    International Nuclear Information System (INIS)

    Alapetite, C.; Moustacchi, E.; Cosset, J.M.

    1992-01-01

    It is of interest to address the question of whether or not activated oncogenes can influence tumorigenic cell response to radiations. Malignant transformation through transfection of oncogenes offers a possibility for in vitro comparison of transformed cells and parental cells. Murin cellular system analysis suggests an acquisition of radioresistance through some oncogenes transfection. In human cells, only a limited number of oncogenes (ras and myc) has been studied so far. To date, no crucial influence could be demonstrated. The extension of the analysis to other oncogenes and suppressor genes could potentially be helpful for the choice and the modalities of cancer treatment

  8. scid Thymocytes with TCRbeta gene rearrangements are targets for the oncogenic effect of SCL and LMO1 transgenes.

    Science.gov (United States)

    Chervinsky, D S; Lam, D H; Melman, M P; Gross, K W; Aplan, P D

    2001-09-01

    SCL and LMO1 were both discovered by virtue of their activation by chromosomaltranslocation in patients with T-cell acute lymphoblastic leukemia (T-ALL). Overexpression of SCL and LMO1 in the thymus of transgenic mice leads to T-ALL at a young age. scid (severe combined immunodeficient) mice are unable to efficiently recombine antigen receptor genes and consequently display a developmental block at the CD4-CD8- to CD4+CD8+ transition. To test the hypothesis that this developmental block would protect SCL/LMO1 transgenic mice from developing T-ALL, we crossed the SCL and LMO1 transgenes onto a scid background. The age of onset for T-ALL in the SCL/LMO1/scid mice was significantly delayed (P < 0.001) compared with SCL/LMO1/wild-type mice. Intriguingly, all of the SCL/LMO1/scid malignancies displayed clonal, in-frame TCRbeta gene rearrangements. Taken together, these findings suggest that the "leaky" scid thymocyte that undergoes a productive TCRbeta gene rearrangement is susceptible to the oncogenic action of SCL and LMO1 and additionally suggests that TCRbeta gene rearrangements may be required for the oncogenic action of SCL and LMO1.

  9. Fractionation of metals in street sediment samples by using the BCR sequential extraction procedure and multivariate statistical elucidation of the data

    International Nuclear Information System (INIS)

    Kartal, Senol; Aydin, Zeki; Tokalioglu, Serife

    2006-01-01

    The concentrations of metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in street sediment samples were determined by flame atomic absorption spectrometry (FAAS) using the modified BCR (the European Community Bureau of Reference) sequential extraction procedure. According to the BCR protocol for extracting the metals from the relevant target phases, 1.0 g of specimen of the sample was treated with 0.11 M acetic acid (exchangeable and bound to carbonates), 0.5 M hydroxylamine hydrochloride (bound to iron- and manganese-oxides), and 8.8 M hydrogen peroxide plus 1 M ammonium acetate (bound to sulphides and organics), sequentially. The residue was treated with aqua regia solution for recovery studies, although this step is not part of the BCR procedure. The mobility sequence based on the sum of the BCR sequential extraction stages was: Cd ∼ Zn (∼90%) > Pb (∼84%) > Cu (∼75%) > Mn (∼70%) > Co (∼57%) > Ni (∼43%) > Cr (∼40%) > Fe (∼17%). Enrichment factors as the criteria for examining the impact of the anthropogenic emission sources of heavy metals were calculated, and it was observed that the highest enriched elements were Cd, Pb, and Zn in the dust samples, average 190, 111, and 20, respectively. Correlation analysis (CA) and principal component analysis (PCA) were applied to the data matrix to evaluate the analytical results and to identify the possible pollution sources of metals. PCA revealed that the sampling area was mainly influenced from three pollution sources, namely; traffic, industrial, and natural sources. The results show that chemical sequential extraction is a precious operational tool. Validation of the analytical results was checked by both recovery studies and analysis of the standard reference material (NIST SRM 2711 Montana Soil)

  10. The Expression, Purification, and Characterization of a Ras Oncogene (Bras2) in Silkworm (Bombyx mori)

    OpenAIRE

    Lv, Zhengbing; Wang, Tao; Zhuang, Wenhua; Wang, Dan; Chen, Jian; Nie, Zuoming; Liu, Lili; Zhang, Wenping; Wang, Lisha; Wang, Deming; Wu, Xiangfu; Li, Jun; Qian, Lian; Zhang, Yaozhou

    2013-01-01

    The Ras oncogene of silkworm pupae (Bras2) may belong to the Ras superfamily. It shares 77% of its amino acid identity with teratocarcinoma oncogene 21 (TC21) related ras viral oncogene homolog-2 (R-Ras2) and possesses an identical core effector region. The mRNA of Bombyx mori Bras2 has 1412 bp. The open reading frame contains 603 bp, which encodes 200 amino acid residues. This recombinant BmBras2 protein was subsequently used as an antigen to raise a rabbit polyclonal antibody. Western blott...

  11. RCSD1-ABL1 Translocation Associated with IKZF1 Gene Deletion in B-Cell Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Shawana Kamran

    2015-01-01

    Full Text Available The RCSD1 gene has recently been identified as a novel gene fusion partner of the ABL1 gene in cases of B-cell Acute Lymphoblastic Leukemia (B-ALL. The RCSD1 gene is located at 1q23 and ABL1 is located at 9q34, so that the RCSD1-ABL1 fusion typically arises through a rare reciprocal translocation t(1;9(q23;q34. Only a small number of RCSD1-ABL1 positive cases of B-ALL have been described in the literature, and the full spectrum of clinical, morphological, immunophenotypic, and molecular features associated with this genetic abnormality has not been defined. We describe extensive genetic characterization of a case of B-ALL with RCSD1-ABL1 fusion, by using conventional cytogenetic analysis, Fluorescence In Situ Hybridization (FISH studies, and Chromosomal Microarray Analysis (CMA. The use of CMA resulted in detection of an approximately 70 kb deletion at 7p12.2, which caused a disruption of the IKZF1 gene. Deletions and mutations of IKZF1 are recurring abnormalities in B-ALL and are associated with a poor prognosis. Our findings highlight the association of the deletion of IKZF1 gene with the t(1;9(q24;q34 and illustrate the importance of comprehensive cytogenetic and molecular evaluation for accurate prediction of prognosis in patients with B-cell ALL.

  12. Intracortical osteoblastic osteosarcoma with oncogenic rickets

    International Nuclear Information System (INIS)

    Hasegawa, T.; Hirohashi, Setsuo; Shimoda, Tadakazu; Yokoyama, Ryohei; Beppu, Yasuo; Maeda, Shotaro

    1999-01-01

    Intracortical osteosarcoma is the rarest variant of osteosarcoma, occurring within, and usually confined to, the cortical bone. Oncogenic osteomalacia, or rickets, is an unusual clinicopathologic entity in which vitamin D-resistant osteomalacia, or rickets, occurs in association with some tumors of soft tissue or bone. We present a case of oncogenic rickets associated with intracortical osteosarcoma of the tibia in a 9-year-old boy, whose roentgenographic abnormalities of rickets disappeared and pertinent laboratory data except for serum alkaline phosphatase became normal after surgical resection of the tumor. Histologically, the tumor was an osteosarcoma with a prominent osteoblastic pattern. An unusual microscopic feature was the presence of matrix mineralization showing rounded calcified structures (calcified spherules). Benign osteoblastic tumors, such as osteoid osteoma and osteoblastoma, must be considered in the differential diagnosis because of the relatively low cellular atypia and mitotic activity of this tumor. The infiltrating pattern with destruction or engulfment of normal bone is a major clue to the correct diagnosis of intracortical osteosarcoma. The co-existing radiographic changes of rickets were due to the intracortical osteosarcoma. (orig.)

  13. Otimização das condições de pré-redução do As(V em extratos do método BCR para quantificação de arsênio por HG-AAS Optimization of pre-reduction conditions of as(V in BCR extracts to quantify arsenic by HG-AAS

    Directory of Open Access Journals (Sweden)

    Eduardo Vinícius Vieira Varejão

    2009-08-01

    conditions were evaluated using KI, L-Cysteine and ascorbic acid. For each of the BCR extraction steps, different conditions of pre-reduction enabled the quantitative detection of As. The use of the BCR method for the extraction of arsenic from contaminated sediment samples and the application of pre-reduction conditions of the As(V followed by HG-AAS detection resulted in relative recoveries between 91 and 99 %.

  14. Clinical implication of elevated human cervical cancer oncogene-1 expression in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Liu, Ying; Li, Ke; Ren, Zhonghai; Li, Shenglei; Zhang, Hongyan; Fan, Qingxia

    2012-07-01

    The human cervical cancer oncogene 1 (HCCR-1), a novel human oncoprotein, has been shown to be upregulated in various human tumors and plays a critical role in tumorigenesis and tumor progression. Here, the authors investigated HCCR-1 level in esophageal squamous cell carcinoma (ESCC) tissues and assessed the correlation between HCCR-1 level and prognosis of the patients with ESCC. HCCR-1 levels were investigated by immunohistochemistry, in situ hybridization, real-time quantitative RT-PCR and Western blotting methods; Kaplan-Meier curve was used to evaluate the prognostic value of HCCR-1 level in patients with ESCC using log-rank test. HCCR-1 displayed high levels in ESCC tissues compared to squamous dysplasia tissues and normal esophageal epithelial tissues. No significant correlation was observed between the levels of HCCR-1 mRNA and protein and gender and age (all p>0.05) but obviously related to histological grade, clinical stage, and lymph node metastasis (all p<0.001). Moreover, the survival rate of the patients with low HCCR-1 levels was higher than that of the patients with high HCCR-1 levels (both p<0.05). These data demonstrate that HCCR-1 may be used as a novel predictor for the prognosis of the patients with ESCC.

  15. SCD1 Expression is dispensable for hepatocarcinogenesis induced by AKT and Ras oncogenes in mice.

    Directory of Open Access Journals (Sweden)

    Lei Li

    Full Text Available Increased de novo lipogenesis is one of the major metabolic events in cancer. In human hepatocellular carcinoma (HCC, de novo lipogenesis has been found to be increased and associated with the activation of AKT/mTOR signaling. In mice, overexpression of an activated form of AKT results in increased lipogenesis and hepatic steatosis, ultimately leading to liver tumor development. Hepatocarcinogenesis is dramatically accelerated when AKT is co-expressed with an oncogenic form of N-Ras. SCD1, the major isoform of stearoyl-CoA desaturases, catalyzing the conversion of saturated fatty acids (SFA into monounsaturated fatty acids (MUFA, is a key enzyme involved in de novo lipogenesis. While many studies demonstrated the requirement of SCD1 for tumor cell growth in vitro, whether SCD1 is necessary for tumor development in vivo has not been previously investigated. Here, we show that genetic ablation of SCD1 neither inhibits lipogenesis and hepatic steatosis in AKT-overexpressing mice nor affects liver tumor development in mice co-expressing AKT and Ras oncogenes. Molecular analysis showed that SCD2 was strongly upregulated in liver tumors from AKT/Ras injected SCD1(-/- mice. Noticeably, concomitant silencing of SCD1 and SCD2 genes was highly detrimental for the growth of AKT/Ras cells in vitro. Altogether, our study provides the evidence, for the first time, that SCD1 expression is dispensable for AKT/mTOR-dependent hepatic steatosis and AKT/Ras-induced hepatocarcinogenesis in mice. Complete inhibition of stearoyl-CoA desaturase activity may be required to efficiently suppress liver tumor development.

  16. RASOnD - A comprehensive resource and search tool for RAS superfamily oncogenes from various species

    Directory of Open Access Journals (Sweden)

    Singh Tej P

    2011-07-01

    Full Text Available Abstract Background The Ras superfamily plays an important role in the control of cell signalling and division. Mutations in the Ras genes convert them into active oncogenes. The Ras oncogenes form a major thrust of global cancer research as they are involved in the development and progression of tumors. This has resulted in the exponential growth of data on Ras superfamily across different public databases and in literature. However, no dedicated public resource is currently available for data mining and analysis on this family. The present database was developed to facilitate straightforward accession, retrieval and analysis of information available on Ras oncogenes from one particular site. Description We have developed the RAS Oncogene Database (RASOnD as a comprehensive knowledgebase that provides integrated and curated information on a single platform for oncogenes of Ras superfamily. RASOnD encompasses exhaustive genomics and proteomics data existing across diverse publicly accessible databases. This resource presently includes overall 199,046 entries from 101 different species. It provides a search tool to generate information about their nucleotide and amino acid sequences, single nucleotide polymorphisms, chromosome positions, orthologies, motifs, structures, related pathways and associated diseases. We have implemented a number of user-friendly search interfaces and sequence analysis tools. At present the user can (i browse the data (ii search any field through a simple or advance search interface and (iii perform a BLAST search and subsequently CLUSTALW multiple sequence alignment by selecting sequences of Ras oncogenes. The Generic gene browser, GBrowse, JMOL for structural visualization and TREEVIEW for phylograms have been integrated for clear perception of retrieved data. External links to related databases have been included in RASOnD. Conclusions This database is a resource and search tool dedicated to Ras oncogenes. It has

  17. Early Death in Two Patients with Acute Promyelocytic Leukemia Presenting the bcr3 Isoform, FLT3-ITD Mutation, and Elevated WT1 Level

    Directory of Open Access Journals (Sweden)

    Marianna Greco

    2013-01-01

    Full Text Available Despite major advances in the treatment of acute promyelocytic leukemia (APL, the problem of early death (ED remains unsolved. Alongside the currently known clinical and hematological risk factors, prognostic significance has been attributed to internal tandem duplication mutations of the fms-like tyrosine kinase-3 (FLT3-ITD, hypogranular variant morphology, and the bcr-3 isoform of PML-RARα. We describe premature death of two patients with the hypogranular variant of APL who presented remarkably high expression levels of Wilms' tumor gene (WT1. Our results point to WT1 as an important prognostic factor of ED that needs to be promptly evaluated in all newly diagnosed cases of APL.

  18. Dual paraneoplastic syndromes: small cell lung carcinoma-related oncogenic osteomalacia, and syndrome of inappropriate antidiuretic hormone secretion: report of a case and review of the literature.

    Science.gov (United States)

    Tantisattamo, Ekamol; Ng, Roland C K

    2011-07-01

    Acquired isolated renal phosphate wasting associated with a tumor, known as oncogenic osteomalacia or tumor-induced osteomalacia, is a rare paraneoplastic syndrome caused by overproduction of fibroblast growth factor 23. Oncogenic osteomalacia is usually associated with benign mesenchymal tumors. Syndrome of inappropriate antidiuretic hormone secretion (SIADH), on the other hand, is a common paraneoplastic syndrome caused by small cell carcinoma (SCC). Concomitant oncogenic osteomalacia and SIADH associated with SCC is very rare with only 4 other cases reported in the literature. The authors report a case of small cell lung cancer (SCLC)-related renal wasting hypophosphatemia and concurrent SIADH, and review the literature reporting 9 other cases of SCC associated with oncogenic osteomalacia. Almost half of reported cases of renal phosphate wasting associated with SCC concomitantly presented with SIADH. These cases had initial serum phosphorus level lower and survival periods shorter than those without SIADH. This rare combination of a dual paraneoplastic syndrome and low serum phosphorus may be a poor prognostic sign. In addition, both renal phosphate wasting and SIADH usually occur in a short period of time before identification of SCC. Therefore, renal wasting hypophosphatemia with concomitant SIADH/hyponatremia should prompt a search for SCC rather than a benign mesenchymal tumor.

  19. Glucose-ABL1-TOR Signaling Modulates Cell Cycle Tuning to Control Terminal Appressorial Cell Differentiation.

    Science.gov (United States)

    Marroquin-Guzman, Margarita; Sun, Guangchao; Wilson, Richard A

    2017-01-01

    The conserved target of rapamycin (TOR) pathway integrates growth and development with available nutrients, but how cellular glucose controls TOR function and signaling is poorly understood. Here, we provide functional evidence from the devastating rice blast fungus Magnaporthe oryzae that glucose can mediate TOR activity via the product of a novel carbon-responsive gene, ABL1, in order to tune cell cycle progression during infection-related development. Under nutrient-free conditions, wild type (WT) M. oryzae strains form terminal plant-infecting cells (appressoria) at the tips of germ tubes emerging from three-celled spores (conidia). WT appressorial development is accompanied by one round of mitosis followed by autophagic cell death of the conidium. In contrast, Δabl1 mutant strains undergo multiple rounds of accelerated mitosis in elongated germ tubes, produce few appressoria, and are abolished for autophagy. Treating WT spores with glucose or 2-deoxyglucose phenocopied Δabl1. Inactivating TOR in Δabl1 mutants or glucose-treated WT strains restored appressorium formation by promoting mitotic arrest at G1/G0 via an appressorium- and autophagy-inducing cell cycle delay at G2/M. Collectively, this work uncovers a novel glucose-ABL1-TOR signaling axis and shows it engages two metabolic checkpoints in order to modulate cell cycle tuning and mediate terminal appressorial cell differentiation. We thus provide new molecular insights into TOR regulation and cell development in response to glucose.

  20. Two novel genital human papillomavirus (HPV) types, HPV68 and HPV70, related to the potentially oncogenic HPV39.

    OpenAIRE

    Longuet, M; Beaudenon, S; Orth, G

    1996-01-01

    The genomes of two novel human papillomavirus (HPV) types, HPV68 and HPV70, were cloned from a low-grade cervical intraepithelial neoplasia and a vulvar papilloma, respectively, and partially sequenced. Both types are related to HPV39, a potentially oncogenic virus. HPV68 and HPV70 were also detected in genital intraepithelial neoplasia from three patients and one patient, respectively. Comparison with sequence data in the literature indicates that the subgenomic ME180-HPV DNA fragment, clone...

  1. Malignant transformation of diploid human fibroblasts by transfection of oncogenes. Part 2, Progress report, July 1989--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, J.J.

    1992-12-31

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  2. Effects of c-myc oncogene modulation on differentiation of human small cell lung carcinoma cell lines

    NARCIS (Netherlands)

    Van Waardenburg, RCAM; Meijer, C; Pinto-Sietsma, SJ; De Vries, EGE; Timens, W; Mulder, NM

    1998-01-01

    Amplification and over-expression of oncogenes of the myc family are related to the prognosis of certain solid tumors such as small cell lung cancer (SCLC). For SCLC, c-myc is the oncogene most consistently found to correlate with the end stage behaviour of the tumour, in particular with survival

  3. Recent advances in the bcr-abl negative chronic myeloproliferative diseases

    Directory of Open Access Journals (Sweden)

    Stroncek David F

    2006-10-01

    Full Text Available Abstract The chronic myeloproliferative disorders are clonal hematopoietic stem cell disorders of unknown etiology. In one of these (chronic myeloid leukemia, there is an associated pathognomonic chromosomal abnormality known as the Philadelphia chromosome. This leads to constitutive tyrosine kinase activity which is responsible for the disease and is used as a target for effective therapy. This review concentrates on the search in the other conditions (polycythemia vera, essential thrombocythemia and idiopathic mylofibrosis for a similar biological marker with therapeutic potential. There is no obvious chromosomal marker in these conditions and yet evidence of clonality can be obtained in females by the use of X-inactivation patterns. PRV-1mRNA over expression, raised vitamin B12 levels and raised neutrophil alkaline phosphatase scores are evidence that cells in these conditions have received excessive signals for proliferation, maturation and reduced apoptosis. The ability of erythroid colonies to grow spontaneously without added external erythropoietin in some cases, provided a useful marker and a clue to this abnormal signaling. In the past year several important discoveries have been made which go a long way in elucidating the involved pathways. The recently discovered JAK2 V617F mutation which occurs in the majority of cases of polycythemia vera and in about half of the cases with the two other conditions, enables constitutive tyrosine kinase activity without the need for ligand binding to hematopoietic receptors. This mutation has become the biological marker for these conditions and has spurred the development of a specific therapy to neutralize its effects. The realization that inherited mutations in the thrombopoietin receptor (c-Mpl can cause a phenotype of thrombocytosis such as in Mpl Baltimore (K39N and in a Japanese family with S505A, has prompted the search for acquired mutations in this receptor in chronic myeloproliferative

  4. Prevalence of Gene Rearrangements in Mexican Children with Acute Lymphoblastic Leukemia: A Population Study—Report from the Mexican Interinstitutional Group for the Identification of the Causes of Childhood Leukemia

    Science.gov (United States)

    Bekker-Méndez, Vilma Carolina; Miranda-Peralta, Enrique; Núñez-Enríquez, Juan Carlos; Olarte-Carrillo, Irma; Guerra-Castillo, Francisco Xavier; Pompa-Mera, Ericka Nelly; Ocaña-Mondragón, Alicia; Bernáldez-Ríos, Roberto; Medina-Sanson, Aurora; Jiménez-Hernández, Elva; Amador-Sánchez, Raquel; Peñaloza-González, José Gabriel; de Diego Flores-Chapa, José; Fajardo-Gutiérrez, Arturo; Flores-Lujano, Janet; Rodríguez-Zepeda, María del Carmen; Dorantes-Acosta, Elisa María; Bolea-Murga, Victoria; Núñez-Villegas, Nancy; Velázquez-Aviña, Martha Margarita; Torres-Nava, José Refugio; Reyes-Zepeda, Nancy Carolina; González-Bonilla, Cesar; Mejía-Aranguré, Juan Manuel

    2014-01-01

    Mexico has one of the highest incidences of childhood leukemia worldwide and significantly higher mortality rates for this disease compared with other countries. One possible cause is the high prevalence of gene rearrangements associated with the etiology or with a poor prognosis of childhood acute lymphoblastic leukemia (ALL). The aims of this multicenter study were to determine the prevalence of the four most common gene rearrangements [ETV6-RUNX1, TCF3-PBX1, BCR-ABL1, and MLL rearrangements] and to explore their relationship with mortality rates during the first year of treatment in ALL children from Mexico City. Patients were recruited from eight public hospitals during 2010–2012. A total of 282 bone marrow samples were obtained at each child's diagnosis for screening by conventional and multiplex reverse transcription polymerase chain reaction to determine the gene rearrangements. Gene rearrangements were detected in 50 (17.7%) patients. ETV6-RUNX1 was detected in 21 (7.4%) patients, TCF3-PBX1 in 20 (7.1%) patients, BCR-ABL1 in 5 (1.8%) patients, and MLL rearrangements in 4 (1.4%) patients. The earliest deaths occurred at months 1, 2, and 3 after diagnosis in patients with MLL, ETV6-RUNX1, and BCR-ABL1 gene rearrangements, respectively. Gene rearrangements could be related to the aggressiveness of leukemia observed in Mexican children. PMID:25692130

  5. IQGAP1 is an oncogenic target in canine melanoma.

    Directory of Open Access Journals (Sweden)

    Becky H Lee

    Full Text Available Canine oral mucosal melanoma is an aggressive malignant neoplasm and is characterized by local infiltration and a high metastatic potential. The disease progression is similar to that of human oral melanomas. Whereas human cutaneous melanoma is primarily driven by activating mutations in Braf (60% or Nras (20%, human mucosal melanoma harbors these mutations much less frequently. This makes therapeutic targeting and research modeling of the oral form potentially different from that of the cutaneous form in humans. Similarly, research has found only rare Nras mutations and no activating Braf mutations in canine oral melanomas, but they are still reliant on MAPK signaling. IQGAP1 is a signaling scaffold that regulates oncogenic ERK1/2 MAPK signaling in human Ras- and Raf- driven cancers, including melanomas. To investigate whether IQGAP1 is a potential target in canine melanoma, we examined the expression and localization of IQGAP1 in primary canine melanomas and canine oral melanoma cell lines obtained from the University of California-Davis. Using CRISPR/Cas9 knockout of IQGAP1, we examined effects on downstream ERK1/2 pathway activity and assayed proliferation of cell lines when treated with a peptide that blocks the interaction between IQGAP1 and ERK1/2. We observed that canine IQGAP1 is expressed and localizes to a similar extent in both human and canine melanoma by qPCR, Western blot, and immunofluorescence. Deletion of IQGAP1 reduces MAPK pathway activation in cell lines, similar to effects seen in human BrafV600E cell lines. Additionally, we demonstrated reduced proliferation when these cells are treated with a blocking peptide in vitro.

  6. Enhancers of Polycomb EPC1 and EPC2 sustain the oncogenic potential of MLL leukemia stem cells

    Science.gov (United States)

    Huang, Xu; Spencer, Gary J; Lynch, James T; Ciceri, Filippo; Somerville, Tim D D; Somervaille, Tim C P

    2013-01-01

    Through a targeted knockdown (KD) screen of chromatin regulatory genes we identified the EP400 complex components EPC1 and EPC2 as critical oncogenic co-factors in acute myeloid leukemia (AML). EPC1 and EPC2 were required for the clonogenic potential of human AML cells of multiple molecular subtypes. Focusing on MLL-mutated AML as an exemplar, Epc1 or Epc2 KD induced apoptosis of murine MLL-AF9 AML cells and abolished leukemia stem cell potential. By contrast, normal hematopoietic stem and progenitor cells (HSPC) were spared. Similar selectivity was observed for human primary AML cells versus normal CD34+ HSPC. In keeping with these distinct functional consequences, Epc1 or Epc2 KD induced divergent transcriptional consequences in murine MLL-AF9 granulocyte-macrophage progenitor-like (GMP) cells versus normal GMP, with a signature of increased MYC activity in leukemic but not normal cells. This was caused by accumulation of MYC protein and was also observed following KD of other EP400 complex genes. Pharmacological inhibition of MYC:MAX dimerization, or concomitant MYC KD, reduced apoptosis following EPC1 KD, linking the accumulation of MYC to cell death. Therefore EPC1 and EPC2 are components of a complex which directly or indirectly serves to prevent MYC accumulation and AML cell apoptosis, thus sustaining oncogenic potential. PMID:24166297

  7. Oncogenic fusion proteins adopt the insulin-like growth factor signaling pathway.

    Science.gov (United States)

    Werner, Haim; Meisel-Sharon, Shilhav; Bruchim, Ilan

    2018-02-19

    The insulin-like growth factor-1 receptor (IGF1R) has been identified as a potent anti-apoptotic, pro-survival tyrosine kinase-containing receptor. Overexpression of the IGF1R gene constitutes a typical feature of most human cancers. Consistent with these biological roles, cells expressing high levels of IGF1R are expected not to die, a quintessential feature of cancer cells. Tumor specific chromosomal translocations that disrupt the architecture of transcription factors are a common theme in carcinogenesis. Increasing evidence gathered over the past fifteen years demonstrate that this type of genomic rearrangements is common not only among pediatric and hematological malignancies, as classically thought, but may also provide a molecular and cytogenetic foundation for an ever-increasing portion of adult epithelial tumors. In this review article we provide evidence that the mechanism of action of oncogenic fusion proteins associated with both pediatric and adult malignancies involves transactivation of the IGF1R gene, with ensuing increases in IGF1R levels and ligand-mediated receptor phosphorylation. Disrupted transcription factors adopt the IGF1R signaling pathway and elicit their oncogenic activities via activation of this critical regulatory network. Combined targeting of oncogenic fusion proteins along with the IGF1R may constitute a promising therapeutic approach.

  8. The small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma and full-length FOXP1 exert similar oncogenic and transcriptional activity in human B cells.

    Science.gov (United States)

    van Keimpema, Martine; Grüneberg, Leonie J; Schilder-Tol, Esther J M; Oud, Monique E C M; Beuling, Esther A; Hensbergen, Paul J; de Jong, Johann; Pals, Steven T; Spaargaren, Marcel

    2017-03-01

    The forkhead transcription factor FOXP1 is generally regarded as an oncogene in activated B cell-like diffuse large B-cell lymphoma. Previous studies have suggested that a small isoform of FOXP1 rather than full-length FOXP1, may possess this oncogenic activity. Corroborating those studies, we herein show that activated B cell-like diffuse large B-cell lymphoma cell lines and primary activated B cell-like diffuse large B-cell lymphoma cells predominantly express a small FOXP1 isoform, and that the 5'-end of the Foxp1 gene is a common insertion site in murine lymphomas in leukemia virus- and transposon-mediated insertional mutagenesis screens. By combined mass spectrometry, (quantative) reverse transcription polymerase chain reaction/sequencing, and small interfering ribonucleic acid-mediated gene silencing, we determined that the small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma lacks the N-terminal 100 amino acids of full-length FOXP1. Aberrant overexpression of this FOXP1 isoform (ΔN100) in primary human B cells revealed its oncogenic capacity; it repressed apoptosis and plasma cell differentiation. However, no difference in potency was found between this small FOXP1 isoform and full-length FOXP1. Furthermore, overexpression of full-length FOXP1 or this small FOXP1 isoform in primary B cells and diffuse large B-cell lymphoma cell lines resulted in similar gene regulation. Taken together, our data indicate that this small FOXP1 isoform and full-length FOXP1 have comparable oncogenic and transcriptional activity in human B cells, suggesting that aberrant expression or overexpression of FOXP1, irrespective of the specific isoform, contributes to lymphomagenesis. These novel insights further enhance the value of FOXP1 for the diagnostics, prognostics, and treatment of diffuse large B-cell lymphoma patients. Copyright© Ferrata Storti Foundation.

  9. Intracortical osteoblastic osteosarcoma with oncogenic rickets

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Hirohashi, Setsuo [Pathology Division, National Cancer Center Research Institute, Tokyo (Japan); Shimoda, Tadakazu [Clinical Laboratory Division, National Cancer Center Hospital, Tokyo (Japan); Yokoyama, Ryohei; Beppu, Yasuo [Orthopedic Division, National Cancer Center Hospital, Tokyo (Japan); Maeda, Shotaro [Department of Pathology, Nippon Medical School Hospital, Tokyo (Japan)

    1999-01-01

    Intracortical osteosarcoma is the rarest variant of osteosarcoma, occurring within, and usually confined to, the cortical bone. Oncogenic osteomalacia, or rickets, is an unusual clinicopathologic entity in which vitamin D-resistant osteomalacia, or rickets, occurs in association with some tumors of soft tissue or bone. We present a case of oncogenic rickets associated with intracortical osteosarcoma of the tibia in a 9-year-old boy, whose roentgenographic abnormalities of rickets disappeared and pertinent laboratory data except for serum alkaline phosphatase became normal after surgical resection of the tumor. Histologically, the tumor was an osteosarcoma with a prominent osteoblastic pattern. An unusual microscopic feature was the presence of matrix mineralization showing rounded calcified structures (calcified spherules). Benign osteoblastic tumors, such as osteoid osteoma and osteoblastoma, must be considered in the differential diagnosis because of the relatively low cellular atypia and mitotic activity of this tumor. The infiltrating pattern with destruction or engulfment of normal bone is a major clue to the correct diagnosis of intracortical osteosarcoma. The co-existing radiographic changes of rickets were due to the intracortical osteosarcoma. (orig.) With 8 figs., 25 refs.

  10. Determination of persistent organohalogenated pollutants in human hair reference material (BCR 397): an interlaboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Udai [Health Canada, Product Safety Laboratory, Ottawa, Ontario (Canada); Covaci, Adrian [University of Antwerp, Toxicological Center, Wilrijk (Belgium); Ryan, John Jake [Health Canada, Bureau of Chemical Safety, Health Products and Food Branch, Ottawa, Ontario (Canada); Emond, Andre [Health Canada, Environmental Research Division, First Nations and Inuit Health Branch, Ottawa, Ontario K1A0L2 (Canada)

    2004-12-01

    A human powdered hair material (BCR 397) was tested for its content in persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs). Using different methods, three laboratories (two from Canada and one from Belgium) analysed a powdered hair sample to evaluate some methodologies and to obtain consensus values for selected POPs. Measured values for all PCB congeners and p,p'-DDE were within a relative standard deviation (RSD) of 15%. These first results contribute to the accuracy and precision for POPs quantification in hair and render test results more comparable among different laboratories. (orig.)

  11. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hye Jin [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Lee, Dong-Hyung [Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University, Busan (Korea, Republic of); Park, Seong-Hwan; Kim, Juil; Do, Kee Hun [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); An, Tae Jin; Ahn, Young Sup; Park, Chung Berm [Department of Herbal Crop Research, NIHHS, RDA, Eumseong (Korea, Republic of); Moon, Yuseok, E-mail: moon@pnu.edu [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Medical Research Institute and Research Institute for Basic Sciences, Pusan National University, Busan (Korea, Republic of)

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  12. TUG1: a pivotal oncogenic long non-coding RNA of human cancers.

    Science.gov (United States)

    Li, Zheng; Shen, Jianxiong; Chan, Matthew T V; Wu, William Ka Kei

    2016-08-01

    Long non-coding RNAs (lncRNAs) are a group greater than 200 nucleotides in length. An increasing number of studies has shown that lncRNAs play important roles in diverse cellular processes, including proliferation, differentiation, apoptosis, invasion and chromatin remodelling. In this regard, deregulation of lncRNAs has been documented in human cancers. TUG1 is a recently identified oncogenic lncRNA whose aberrant upregulation has been detected in different types of cancer, including B-cell malignancies, oesophageal squamous cell carcinoma, bladder cancer, hepatocellular carcinoma and osteosarcoma. In these malignancies, knock-down of TUG1 has been shown to suppress cell proliferation, invasion and/or colony formation. Interestingly, TUG1 has been found to be downregulated in non-small cell lung carcinoma, indicative of its tissue-specific function in tumourigenesis. Pertinent to clinical practice, TUG1 may act as a prognostic biomarker for tumours. In this review, we summarize current knowledge concerning the role of TUG1 in tumour progression and discuss mechanisms associated with it. © 2016 John Wiley & Sons Ltd.

  13. The Oncogenic Roles of DICER1 RNase IIIb Domain Mutations in Ovarian Sertoli-Leydig Cell Tumors

    Directory of Open Access Journals (Sweden)

    Yemin Wang

    2015-08-01

    Full Text Available DICER1, an endoribonuclease required for microRNA (miRNA biogenesis, is essential for embryogenesis and the development of many organs including ovaries. We have recently identified somatic hotspot mutations in RNase IIIb domain of DICER1 in half of ovarian Sertoli-Leydig cell tumors, a rare class of sex-cord stromal cell tumors in young women. These hotspot mutations lost IIIb cleavage activity of DICER1 in vitro and failed to produce 5p-derived miRNAs in mouse Dicer1-null ES cells. However, the oncogenic potential of these hotspot DICER1 mutations has not been studied. Here, we further revealed that the global expression of 5p-derived miRNAs was dramatically reduced in ovarian Sertoli-Leydig cell tumors carrying DICER1 hotspot mutations compared with those without DICER1 hotspot mutation. The miRNA production defect was associated with the deregulation of genes controlling cell proliferation and the cell fate. Using an immortalized human granulosa cell line, SVOG3e, we determined that the D1709N-DICER1 hotspot mutation failed to produce 5p-derived miRNAs, deregulated the expression of several genes that control gonadal differentiation and cell proliferation, and promoted cell growth. Re-expression of let-7 significantly inhibited the growth of D1709N-DICER1 SVOG3e cells, accompanied by the suppression of key regulators of cell cycle control and ovarian gonad differentiation. Taken together, our data revealed that DICER1 hotspot mutations cause systemic loss of 5p-miRNAs that can both drive pseudodifferentiation of testicular elements and cause oncogenic transformation in the ovary.

  14. Fused pyrazine mono-N-oxides as bioreductive drugs. II cytotoxicity in human cells and oncogenicity in a rodent transformation assay

    International Nuclear Information System (INIS)

    Langmuir, Virginia K.; Laderoute, Keith R.; Mendonca, Holly L.; Sutherland, Robert M.; Hei, Tom K.; Liu, S.-X.; Hall, Eric J.; Naylor, Matthew A.; Adams, Gerald E.

    1996-01-01

    Purpose: To determine what structural moieties of the fused pyrazine mono-N-oxides are determining factors in their in vitro cytotoxicity and oncogenicity. Methods and Materials: A new series of experimental bioreductive drugs, fused pyrazine mono-N-oxides, was evaluated in vitro for aerobic and hypoxic cytotoxicity in the HT29 human colon adenocarcinoma cell line by using clonogenic assays. The relative oncogenicities of these compounds were also determined in aerobic cultures of C3H 10T1/2 mouse embryo fibroblasts by using a standard transformation assay. Results: Removal of the 4-methyl piperazine side chain from the parent compound, RB 90740, reduced the potency of the hypoxic cytotoxin. Reduction of the N-oxide function increased the aerobic cytotoxicity and eliminated most of the hypoxic/aerobic cytotoxic differential. The reduced N-oxide also had significant oncogenicity, consistent with a mechanism of genotoxicity following bioreduction of RB 90740. Conclusion: This new series of bioreductive compounds may be effective in cancer therapy, particularly the lead compound RB 90740. The oncogenic potential of these compounds is similar to that for other cancer therapies. Further studies should include evaluation of these compounds in vivo and the development of analogs with reduced oncogenic potential and retention of the hypoxic/aerobic cytotoxicity differential

  15. Characterization of a human cell line stably over-expressing the candidate oncogene, dual specificity phosphatase 12.

    Directory of Open Access Journals (Sweden)

    Erica L Cain

    2011-04-01

    Full Text Available Analysis of chromosomal rearrangements within primary tumors has been influential in the identification of novel oncogenes. Identification of the "driver" gene(s within cancer-derived amplicons is, however, hampered by the fact that most amplicons contain many gene products. Amplification of 1q21-1q23 is strongly associated with liposarcomas and microarray-based comparative genomic hybridization narrowed down the likely candidate oncogenes to two: the activating transcription factor 6 (atf6 and the dual specificity phosphatase 12 (dusp12. While atf6 is an established transcriptional regulator of the unfolded protein response, the potential role of dusp12 in cancer remains uncharacterized.To evaluate the oncogenic potential of dusp12, we established stable cell lines that ectopically over-express dusp12 in isolation and determined whether this cell line acquired properties frequently associated with transformed cells. Here, we demonstrate that cells over-expressing dusp12 display increased cell motility and resistance to apoptosis. Additionally, over-expression of dusp12 promoted increased expression of the c-met proto-oncogene and the collagen and laminin receptor intergrin alpha 1 (itga1 which is implicated in metastasis.Collectively, these results suggest that dusp12 is oncologically relevant and exposes a potential association between dusp12 and established oncogenes that could be therapeutically targeted.

  16. A Screen Identifies the Oncogenic Micro-RNA miR-378a-5p as a Negative Regulator of Oncogene-Induced Senescence

    DEFF Research Database (Denmark)

    Kooistra, Susanne Marije; Rudkjær, Lise Christine; Lees, Michael James

    2014-01-01

    Oncogene-induced senescence (OIS) can occur in response to hyperactive oncogenic signals and is believed to be a fail-safe mechanism protecting against tumorigenesis. To identify new factors involved in OIS, we performed a screen for microRNAs that can overcome or inhibit OIS in human diploid fib...

  17. Complete coding sequence of the human raf oncogene and the corresponding structure of the c-raf-1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, T I; Oppermann, H; Seeburg, P; Kerby, S B; Gunnell, M A; Young, A C; Rapp, U R

    1986-01-24

    The complete 648 amino acid sequence of the human raf oncogene was deduced from the 2977 nucleotide sequence of a fetal liver cDNA. The cDNA has been used to obtain clones which extend the human c-raf-1 locus by an additional 18.9 kb at the 5' end and contain all the remaining coding exons.

  18. Finding Combination of Features from Promoter Regions for Ovarian Cancer-related Gene Group Classification

    KAUST Repository

    Olayan, Rawan S.

    2012-01-01

    In classification problems, it is always important to use the suitable combination of features that will be employed by classifiers. Generating the right combination of features usually results in good classifiers. In the situation when the problem is not well understood, data items are usually described by many features in the hope that some of these may be the relevant or most relevant ones. In this study, we focus on one such problem related to genes implicated in ovarian cancer (OC). We try to recognize two important OC-related gene groups: oncogenes, which support the development and progression of OC, and oncosuppressors, which oppose such tendencies. For this, we use the properties of promoters of these genes. We identified potential “regulatory features” that characterize OC-related oncogenes and oncosuppressors promoters. In our study, we used 211 oncogenes and 39 oncosuppressors. For these, we identified 538 characteristic sequence motifs from their promoters. Promoters are annotated by these motifs and derived feature vectors used to develop classification models. We made a comparison of a number of classification models in their ability to distinguish oncogenes from oncosuppressors. Based on 10-fold cross-validation, the resultant model was able to separate the two classes with sensitivity of 96% and specificity of 100% with the complete set of features. Moreover, we developed another recognition model where we attempted to distinguish oncogenes and oncosuppressors as one group from other OC-related genes. That model achieved accuracy of 82%. We believe that the results of this study will help in discovering other OC-related oncogenes and oncosuppressors not identified as yet.

  19. Finding Combination of Features from Promoter Regions for Ovarian Cancer-related Gene Group Classification

    KAUST Repository

    Olayan, Rawan S.

    2012-12-01

    In classification problems, it is always important to use the suitable combination of features that will be employed by classifiers. Generating the right combination of features usually results in good classifiers. In the situation when the problem is not well understood, data items are usually described by many features in the hope that some of these may be the relevant or most relevant ones. In this study, we focus on one such problem related to genes implicated in ovarian cancer (OC). We try to recognize two important OC-related gene groups: oncogenes, which support the development and progression of OC, and oncosuppressors, which oppose such tendencies. For this, we use the properties of promoters of these genes. We identified potential “regulatory features” that characterize OC-related oncogenes and oncosuppressors promoters. In our study, we used 211 oncogenes and 39 oncosuppressors. For these, we identified 538 characteristic sequence motifs from their promoters. Promoters are annotated by these motifs and derived feature vectors used to develop classification models. We made a comparison of a number of classification models in their ability to distinguish oncogenes from oncosuppressors. Based on 10-fold cross-validation, the resultant model was able to separate the two classes with sensitivity of 96% and specificity of 100% with the complete set of features. Moreover, we developed another recognition model where we attempted to distinguish oncogenes and oncosuppressors as one group from other OC-related genes. That model achieved accuracy of 82%. We believe that the results of this study will help in discovering other OC-related oncogenes and oncosuppressors not identified as yet.

  20. The Oncogenic Risks of Diagnostic CT Scam Studies in Children

    International Nuclear Information System (INIS)

    Brent, R.

    2004-01-01

    Brenner et al (2001) reported that estimates of the exposure to children from CT scans indicates that the exposures are both higher than from conventional radiographic studies and higher than is necessary to obtain quality examinations. utilizing the oncogenic risk data from the RERF study in Japan, Brenner et al estimated that the oncogenic risk in this population of CT exposed children exposed each year would result in an additional 500 cases of cancer. This risk estimate is supported by the RERF epidemiological data obtained from the populations exposed in Hiroshima and Nagasaki. the increased risks associated with the increased exposure from CT scans have raised concern and stimulated discussion. Although there is little doubt about the benefits of CT scans in improving the health care of children, there is concern about the estimated oncogenic risk, especially since the frequency of CT studies has been increasing. Applying the oncogenic risks of ionizing radiation from the RERF data may not be appropriate for all types of radiation exposure for accurately predicting the incidence of cancer in exposed children because of the impact of 1) partial versus whole-body irradiation, and 2) the protraction of the exposure. Other population of children who have been exposed to radiation and whose incidence of cancer has been studied will be presented and those studies indicate that the risk of cancer is much lower or not increased at all with exposures in the diagnostic range. finally, the dramatic impact of the use of CT scans in clinical pediatric practice saves lives and improves diagnostic accuracy. Therefore, it is crucial that a scholarly evaluation of the risks and benefits should be initiated. The radiology community and the manufacturers have already initiated programs to decrease the exposure significantly. But it is essential that well-planned, retrospective and prospective epidemiology studies should be initiated to study the oncogenic risks. If you want to

  1. Inhibitor of CDK interacting with cyclin A1 (INCA1) regulates proliferation and is repressed by oncogenic signaling

    DEFF Research Database (Denmark)

    Baumer, Nicole; Tickenbrock, Lara; Tschanter, Petra

    2011-01-01

    The cell cycle is driven by the kinase activity of cyclin/CDK complexes which is negatively regulated by CDK inhibitor proteins. Recently, we identified INCA1 as interaction partner and substrate of cyclin A1 in complex with CDK2. On a functional level, we identified a novel cyclin binding site...... in the INCA1 protein. INCA1 inhibited CDK2 activity and cell proliferation. The inihibitory effects depended on the cyclin-interacting domain. Mitogenic and oncogenic signals suppressed INCA1 expression, while it was induced by cell cycle arrest. We established a deletional mouse model that showed increased...... CDK2 activity in spleen with altered spleen architecture in Inca1-/- mice. Inca1-/- embryonic fibroblasts showed an increase in the fraction of S-phase cells. Furthermore, blasts from ALL and AML patients expressed significantly reduced INCA1 levels highlighting its relevance for growth control...

  2. Eukaryotic translation initiator protein 1A isoform, CCS-3, enhances the transcriptional repression of p21CIP1 by proto-oncogene FBI-1 (Pokemon/ZBTB7A).

    Science.gov (United States)

    Choi, Won-Il; Kim, Youngsoo; Kim, Yuri; Yu, Mi-young; Park, Jungeun; Lee, Choong-Eun; Jeon, Bu-Nam; Koh, Dong-In; Hur, Man-Wook

    2009-01-01

    FBI-1, a member of the POK (POZ and Kruppel) family of transcription factors, plays a role in differentiation, oncogenesis, and adipogenesis. eEF1A is a eukaryotic translation elongation factor involved in several cellular processes including embryogenesis, oncogenic transformation, cell proliferation, and cytoskeletal organization. CCS-3, a potential cervical cancer suppressor, is an isoform of eEF1A. We found that eEF1A forms a complex with FBI-1 by co-immunoprecipitation, SDS-PAGE, and MALDI-TOF Mass analysis of the immunoprecipitate. GST fusion protein pull-downs showed that FBI-1 directly interacts with eEF1A and CCS-3 via the zinc finger and POZ-domain of FBI-1. FBI-1 co-localizes with either eEF1A or CCS-3 at the nuclear periplasm. CCS-3 enhances transcriptional repression of the p21CIP1 gene (hereafter referred to as p21) by FBI-1. The POZ-domain of FBI-1 interacts with the co-repressors, SMRT and BCoR. We found that CCS-3 also interacts with the co-repressors independently. The molecular interaction between the co-repressors and CCS-3 at the POZ-domain of FBI-1 appears to enhance FBI-1 mediated transcriptional repression. Our data suggest that CCS-3 may be important in cell differentiation, tumorigenesis, and oncogenesis by interacting with the proto-oncogene FBI-1 and transcriptional co-repressors. Copyright 2009 S. Karger AG, Basel.

  3. DNA damage and repair in oncogenic transformation by heavy ion radiation

    Science.gov (United States)

    Yang, T. C.; Mei, M.; George, K. A.; Craise, L. M.

    1996-01-01

    Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.

  4. Treatment-free remission following frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the ENESTfreedom study.

    Science.gov (United States)

    Hochhaus, A; Masszi, T; Giles, F J; Radich, J P; Ross, D M; Gómez Casares, M T; Hellmann, A; Stentoft, J; Conneally, E; García-Gutiérrez, V; Gattermann, N; Wiktor-Jedrzejczak, W; le Coutre, P D; Martino, B; Saussele, S; Menssen, H D; Deng, W; Krunic, N; Bedoucha, V; Saglio, G

    2017-07-01

    The single-arm, phase 2 ENESTfreedom trial assessed the potential for treatment-free remission (TFR; i.e., the ability to maintain a molecular response after stopping therapy) following frontline nilotinib treatment. Patients with Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase with MR 4.5 (BCR-ABL1⩽0.0032% on the International Scale (BCR-ABL1 IS )) and ⩾2 years of frontline nilotinib therapy were enrolled. Patients with sustained deep molecular response during the 1-year nilotinib consolidation phase were eligible to stop treatment and enter the TFR phase. Patients with loss of major molecular response (MMR; BCR-ABL1 IS ⩽0.1%) during the TFR phase reinitiated nilotinib. In total, 215 patients entered the consolidation phase, of whom 190 entered the TFR phase. The median duration of nilotinib before stopping treatment was 43.5 months. At 48 weeks after stopping nilotinib, 98 patients (51.6%; 95% confidence interval, 44.2-58.9%) remained in MMR or better (primary end point). Of the 86 patients who restarted nilotinib in the treatment reinitiation phase after loss of MMR, 98.8% and 88.4%, respectively, regained MMR and MR 4.5 by the data cutoff date. Consistent with prior reports of imatinib-treated patients, musculoskeletal pain-related events were reported in 24.7% of patients in the TFR phase (consolidation phase, 16.3%).

  5. The oncogenic potential of three different 7, 12-dimethylbenz (a)anthracene transformed C3H/10T1/2 cell clones at various passages and the importance of the mode of immunosuppression

    International Nuclear Information System (INIS)

    Saxholm, H.J.K.

    1979-01-01

    The oncogenic potential of C3H/10T1/2 cells which were transformed in vitro with 7,12-dimethylbenz(a)anthracene is reported. The ability of the cells to grow as malignant tumors in syngeneic immunosuppressed mice was used as parameter for oncogenic potential. Cells of types I, II and III were assayed at several dosage levels, i.e., 10 4 , 10 5 or 10 6 cells per inoculum, with or without immunosuppression by antithymocyte serum globulin fraction. The studies were performed in several strains of host animals, i.e., male and female syngeneic C3H mice supplied by the National Cancer Institute, C3H mice supplied by Charles River and nude, athymic female mice. Morphological transformation preceded oncological transformation, and type I cells could not be established as tumors. Type II and type III cells developed oncogenic potential only after several passages in culture. Oncogenic potential was pronounced in the type III cells, and less strongly expressed in type II cells. Also tested were different methods of immunosuppression of the animal against the expression of the oncogenic potential of DMBA transformed C3H/10T1/2 cells from type II and III clones. Immunosuppression by antithymocyte serum globulin fraction was an effective method of preparing the syngeneic host so that cells with a low oncogenic potential would grow as tumors, whereas total body irradiation was not effective. For cells with a high oncogenic potential both ways of immunosuppression were sufficient. Admixing lethally irradiated cells in the cell inoculum slightly enhanced the tumor development from cells with low oncogenic potential and such addition was clearly effective for cells with a higher oncogenic potential, both for the antibody-treated and for the irradiated series. The findings were reproducible. The study stresses the importance of immunosuppression by antithymocyte globulins for detecting in vitro transformed weakly oncogenic cells. (author)

  6. The human T-cell leukemia virus type-1 p30II protein activates p53 and induces the TIGAR and suppresses oncogene-induced oxidative stress during viral carcinogenesis.

    Science.gov (United States)

    Romeo, Megan; Hutchison, Tetiana; Malu, Aditi; White, Averi; Kim, Janice; Gardner, Rachel; Smith, Katie; Nelson, Katherine; Bergeson, Rachel; McKee, Ryan; Harrod, Carolyn; Ratner, Lee; Lüscher, Bernhard; Martinez, Ernest; Harrod, Robert

    2018-05-01

    In normal cells, aberrant oncogene expression leads to the accumulation of cytotoxic metabolites, including reactive oxygen species (ROS), which can cause oxidative DNA-damage and apoptosis as an intrinsic barrier against neoplastic disease. The c-Myc oncoprotein is overexpressed in many lymphoid cancers due to c-myc gene amplification and/or 8q24 chromosomal translocations. Intriguingly, p53 is a downstream target of c-Myc and hematological malignancies, such as adult T-cell leukemia/lymphoma (ATL), frequently contain wildtype p53 and c-Myc overexpression. We therefore hypothesized that p53-regulated pro-survival signals may thwart the cell's metabolic anticancer defenses to support oncogene-activation in lymphoid cancers. Here we show that the Tp53-induced glycolysis and apoptosis regulator (TIGAR) promotes c-myc oncogene-activation by the human T-cell leukemia virus type-1 (HTLV-1) latency-maintenance factor p30 II , associated with c-Myc deregulation in ATL clinical isolates. TIGAR prevents the intracellular accumulation of c-Myc-induced ROS and inhibits oncogene-induced cellular senescence in ATL, acute lymphoblastic leukemia, and multiple myeloma cells with elevated c-Myc expression. Our results allude to a pivotal role for p53-regulated antioxidant signals as mediators of c-Myc oncogenic functions in viral and non-viral lymphoid tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. An Interaction with Ewing's Sarcoma Breakpoint Protein EWS Defines a Specific Oncogenic Mechanism of ETS Factors Rearranged in Prostate Cancer.

    Science.gov (United States)

    Kedage, Vivekananda; Selvaraj, Nagarathinam; Nicholas, Taylor R; Budka, Justin A; Plotnik, Joshua P; Jerde, Travis J; Hollenhorst, Peter C

    2016-10-25

    More than 50% of prostate tumors have a chromosomal rearrangement resulting in aberrant expression of an oncogenic ETS family transcription factor. However, mechanisms that differentiate the function of oncogenic ETS factors expressed in prostate tumors from non-oncogenic ETS factors expressed in normal prostate are unknown. Here, we find that four oncogenic ETS (ERG, ETV1, ETV4, and ETV5), and no other ETS, interact with the Ewing's sarcoma breakpoint protein, EWS. This EWS interaction was necessary and sufficient for oncogenic ETS functions including gene activation, cell migration, clonogenic survival, and transformation. Significantly, the EWS interacting region of ERG has no homology with that of ETV1, ETV4, and ETV5. Therefore, this finding may explain how divergent ETS factors have a common oncogenic function. Strikingly, EWS is fused to various ETS factors by the chromosome translocations that cause Ewing's sarcoma. Therefore, these findings link oncogenic ETS function in both prostate cancer and Ewing's sarcoma. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Identifying Neurofibromin Specific Regulatory Nodes for Therapeutic Targeting in NF1

    Science.gov (United States)

    2017-10-01

    suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704...imatinib, an approved BCR-ABL inhibitor. Given the robustness of these results, we believe K562 is an ideal cancer cell line system to interrogate ...fusion gene partner NOL4L greatly increased viability in the NF1 knockout cells, suggesting that these genes normally suppress growth through

  9. Trisomy of the Dscr1 gene suppresses early progression of pancreatic intraepithelial neoplasia driven by oncogenic Kras

    International Nuclear Information System (INIS)

    Lee, Jang Choon; Shin, Jimin; Baek, Kwan-Hyuck

    2013-01-01

    Highlights: •A single extra copy of Dscr1 restrains progression of PanIN-1A to PanIN-1B lesions. •Dscr1 trisomy attenuates calcineurin–NFAT pathway in neoplastic ductal epithelium. •Dscr1 trisomy leads to upregulation of p15 INK4b in neoplastic ductal epithelium. •A single extra copy of Dscr1 reduces epithelial proliferation in early PanIN lesions. •Dscr1 trisomy may protect Down syndrome individuals from pancreatic cancer. -- Abstract: Individuals with Down syndrome exhibit remarkably reduced incidence of most solid tumors including pancreatic cancer. Multiple mechanisms arising from the genetic complexity underlying Down syndrome has been suggested to contribute to such a broad cancer protection. In this study, utilizing a genetically engineered mouse model of pancreatic cancer, we demonstrate that trisomy of the Down syndrome critical region-1 (Dscr1), an endogenous calcineurin inhibitor localized on chromosome 21, suppresses the progression of pancreatic intraepithelial neoplasia-1A (PanIN-1A) to PanIN-1B lesions without affecting the initiation of PanIN lesions mediated by oncogenic Kras G12D . In addition, we show that Dscr1 trisomy attenuates nuclear localization of nuclear factor of activated T-cells (NFAT) accompanied by upregulation of the p15 Ink4b tumor suppressor and reduction of cell proliferation in early PanIN lesions. Our data suggest that attenuation of calcineurin–NFAT signaling in neoplastic pancreatic ductal epithelium by a single extra copy of Dscr1 is sufficient to inhibit the progression of early PanIN lesions driven by oncogenic Kras, and thus may be a potential mechanism underlying reduced incidence of pancreatic cancer in Down syndrome individuals

  10. Proto-oncogene expression: a predictive assay for radiation biodosimetry applications

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.C.; Luo, L.; Chin, W.K.; Director-Myska, A.E.; Prasanna, P.G.S.; Blakely, W.F

    2002-07-01

    Using a model system of in vitro human peripheral blood lymphocytes, the effect of low-dose (0.25 to 1.50 Gy) 250-kV{sub p} X ray radiation (1 Gy.min{sup -1}) on the expression of several proto-oncogenes was examined (c-Haras, c-src, c-met, c-jun, c-fos, and c-myc) and {beta}-actin from 0.25 to 17 h post-radiation. RNA was extracted from cells harvested at various times after exposure and examined for levels of particular mRNAs by northern blot hybridisation. A progressive time- and dose-dependent increase in mRNA levels was observed for c-Haras mRNA, while the other proto-oncogenes (c-src, c-met, c-fos, c-jun, and c-myc) examined were variable during the same time period. {beta}-actin levels were initially decreased but at 17 h post-radiation had returned to control levels. A comparison of the rate of c-Haras transcription at 5 and 17 h post-irradiation revealed that c-Haras transcription was higher at 5 h than at 17 h. These findings suggest that the level of specific proto-oncogene expression, particularly c-Haras, may be useful early diagnostic molecular biomarkers for biodosimetry applications. The use of real-time PCR technologies to quantify gene expression changes will also be discussed. (author)

  11. Determination of cortisol in two BCR reference sera by isotope dilution gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Derks; H.J.G.M.; Freudenthal; J.; Heiningen; A.van; Gramberg; L.G.; Klaasen; R.

    1984-01-01

    In dit rapport wordt een analytische methode voor de juiste en preciese bepaling van cortisol in humaan serum en zijn toepassing bij de certificatie van twee gevriesdroogde referentiesera van de BCR beschreven. De methode is gebaseerd op isotoopverdunnings gaschromatografie-massaspectrometrie

  12. The Leukemic Stem Cell Niche: Adaptation to “Hypoxia” versus Oncogene Addiction

    Directory of Open Access Journals (Sweden)

    Giulia Cheloni

    2017-01-01

    Full Text Available Previous studies based on low oxygen concentrations in the incubation atmosphere revealed that metabolic factors govern the maintenance of normal hematopoietic or leukemic stem cells (HSC and LSC. The physiological oxygen concentration in tissues ranges between 0.1 and 5.0%. Stem cell niches (SCN are placed in tissue areas at the lower end of this range (“hypoxic” SCN, to which stem cells are metabolically adapted and where they are selectively hosted. The data reported here indicated that driver oncogenic proteins of several leukemias are suppressed following cell incubation at oxygen concentration compatible with SCN physiology. This suppression is likely to represent a key positive regulator of LSC survival and maintenance (self-renewal within the SCN. On the other hand, LSC committed to differentiation, unable to stand suppression because of addiction to oncogenic signalling, would be unfit to home in SCN. The loss of oncogene addiction in SCN-adapted LSC has a consequence of crucial practical relevance: the refractoriness to inhibitors of the biological activity of oncogenic protein due to the lack of their molecular target. Thus, LSC hosted in SCN are suited to sustain the long-term maintenance of therapy-resistant minimal residual disease.

  13. Naturally occurring CD4+ CD25+ FOXP3+ T-regulatory cells are increased in chronic myeloid leukemia patients not in complete cytogenetic remission and can be immunosuppressive.

    Science.gov (United States)

    Rojas, Jose M; Wang, Lihui; Owen, Sally; Knight, Katy; Watmough, Sarah J; Clark, Richard E

    2010-12-01

    Clinical presentation of chronic myeloid leukemia (CML) requires not only the deregulated tyrosine kinase BCR-ABL, but also the failure of an immune response against BCR-ABL-expressing cells. T-cell responses against BCR-ABL and other antigens are well-described, but their relevance to the in vivo control of CML is unclear. The suppressive role of naturally occurring T regulatory (T-reg) cells in antitumor immunity is well-established, although little is known about their role in modulating the T-cell response to BCR-ABL. Naturally occurring T-reg cells were characterized and quantified by flow cytometry in 39 CML patients and 10 healthy donors. Their function was studied by observing their effect on responses to purified protein derivative, a recall antigen, and on the response of an autologous T-cell line recognizing BCR-ABL. T-reg cells were CD4(+), CD25(+), FOXP3(+), CD127(low), and CD62L(high). T-reg numbers in patients in complete cytogenetic remission were significantly lower than in patients not in complete cytogenetic remission (p T-reg cell depletion using anti-CD25 selection enhanced proliferative responses to purified protein derivative. Furthermore, the interferon-γ and/or granzyme-B production of effector cells specific for viral peptides or a BCR-ABL HLA-A3-restricted peptide was inhibited when autologous T-reg cells were present. Taken together, these data suggest a role for T-reg cells in limiting immune responses in CML patients and this may include immune responses to BCR-ABL. The increased frequency of T-reg cells in patients with high levels of BCR-ABL transcripts indicates that an immune mechanism may be important in the control of CML. Copyright © 2010 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  14. Modeling chronic myeloid leukemia in immunodeficient mice reveals expansion of aberrant mast cells and accumulation of pre-B cells

    International Nuclear Information System (INIS)

    Askmyr, M; Ågerstam, H; Lilljebjörn, H; Hansen, N; Karlsson, C; Palffy, S von; Landberg, N; Högberg, C; Lassen, C; Rissler, M; Richter, J; Ehinger, M; Järås, M; Fioretos, T

    2014-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that, if not treated, will progress into blast crisis (BC) of either myeloid or B lymphoid phenotype. The BCR-ABL1 fusion gene, encoding a constitutively active tyrosine kinase, is thought to be sufficient to cause chronic phase (CP) CML, whereas additional genetic lesions are needed for progression into CML BC. To generate a humanized CML model, we retrovirally expressed BCR-ABL1 in the cord blood CD34 + cells and transplanted these into NOD-SCID (non-obese diabetic/severe-combined immunodeficient) interleukin-2-receptor γ-deficient mice. In primary mice, BCR-ABL1 expression induced an inflammatory-like state in the bone marrow and spleen, and mast cells were the only myeloid lineage specifically expanded by BCR-ABL1. Upon secondary transplantation, the pronounced inflammatory phenotype was lost and mainly human mast cells and macrophages were found in the bone marrow. Moreover, a striking block at the pre-B-cell stage was observed in primary mice, resulting in an accumulation of pre-B cells. A similar block in B-cell differentiation could be confirmed in primary cells from CML patients. Hence, this humanized mouse model of CML reveals previously unexplored features of CP CML and should be useful for further studies to understand the disease pathogenesis of CML

  15. An Unsuspected Finding of t(9;22: A Rare Case of Philadelphia Chromosome-Positive B-Lymphoblastic Lymphoma

    Directory of Open Access Journals (Sweden)

    Prajwal Boddu

    2017-01-01

    Full Text Available While rare, cases of isolated extramedullary disease of B-cell Lymphoblastic Lymphoma (B-LBL without morphologic bone marrow involvement have been described. In this report, we illustrate the case of an elderly gentleman who presented with isolated testicular and vertebral LBL involvement but had no morphologic bone marrow involvement. The initial plan of treatment was to treat along the lines of Philadelphia negative B-ALL/LBL. During this time, fluorescence in situ hybridization (FISH and PCR testing for BCR-ABL1 rearrangements were being performed on the marrow specimens as a part of routine diagnostic workup. While the FISH returned negative, PCR testing unexpectedly detected BCR-ABL1 fusion transcripts at a low level of 0.48%. Given their presence, we performed FISH for BCR/ABL1 rearrangement in both testicular and L5 vertebral specimens which were 80–90% positive. He subsequently received rituximab, hyper-CVAD, and dasatinib, along with prophylactic intrathecal prophylactic chemotherapy. The patient achieved a prolonged remission but eventually relapsed, 4 years later. Had it not been for this fortuitous discovery, the patient would not have been treated with tyrosine kinase inhibitors. We emphasize that FISH and PCR testing for BCR-ABL1 rearrangement are integral to arriving at an accurate diagnosis and should be routinely tested on B-LBL biopsy specimens.

  16. Effects of cellular non-protein sulfhydryl depletion in radiation induced oncogenic transformation and genotoxicity in mouse C3H 10T1/2 cells

    International Nuclear Information System (INIS)

    Hei, T.K.; Geard, C.R.; Hall, E.J.

    1984-01-01

    A study was made of the effects of cellular non-protein sulfhydryl (NPSH) depletion on cytotoxicity, cell cycle kinetics, oncogenic transformation and sister chromatid exchange (SCE) in C 3 H 10T1/2 cells. Using DL-Buthionine S-R-Sulfoximine (BSO) to deplete thiols, it was found spectrophotometrically that less than 5% of control NPSH level remained in the cells after 24-hour treatment under aerated conditions. Such NPSH depleted cells, when subject to a 3 Gy γ-ray treatment, were found to have no radiosensitizing response either in terms of cell survival or oncogenic transformation. In addition, decreased levels of NPSH had no effect on spontaneous or radiation-induced SCE nor were cell cycle kinetics additionally altered. Therefore, the inability of NPSH depletion to alter γ-ray induced cellular transformation was unrelated to any possible effect of BSO on the cell cycle. These results suggest that such depletion may result in little or no additional oncogenic or genotoxic effects on aerated normal tissues

  17. Oncogenic HPV among HIV infected female population in West Bengal, India

    Directory of Open Access Journals (Sweden)

    Sengupta Sharmila

    2011-03-01

    Full Text Available Abstract Background Prevalence of both cervical cancer and Human Immunodeficiency Virus (HIV infection are very high in India. Natural history of Human Papilloma Virus (HPV infection is known to be altered in HIV positive women and there is an increased possibility of persistence of HPV infections in this population. Therefore, this study was conducted to understand the epidemiology and circulating genotypes of oncogenic HPV among HIV positive and negative female population in West Bengal, India. Methods In this hospital-based cross-sectional study, 93 known HIV positive females attending a pre-ART registration clinic and 1106 HIV negative females attending a Reproductive and Child Health Care Clinic were subjected to study. Cervical cell samples collected from the study population were tested for the presence of HPV 16, 18 using specific primers. Roche PCR assay was used to detect other specific HPV genotypes in the cervical cells specimens of HIV positive cases only. Results Prevalence of HPV 16, 18 among HIV positive females (32.2%; n = 30 was higher than HIV negative females (9.1%; n = 101. About 53% (23/43 of cases with oncogenic HPV were infected with genotypes other than 16, 18 either as single/multiple infections. HPV 18 and HPV 16 were the predominant genotypes among HIV positive and HIV negative subjects respectively. Oncogenic HPV was not found to be associated with age and duration of sexual exposure. But the presence of HIV was found to a statistically significant predictor oncogenic HPV. Conclusion The currently available HPV vaccines offer protection only against HPV 16 and 18 and some cross- protection to few associated genotypes. These vaccines are therefore less likely to offer protection against cervical cancer in HIV positive women a high percentage of who were infected with non-16 and non-18 oncogenic HPV genotypes. Additionally, there is a lack of sufficient evidence of immunogenicity in HIV infected individuals. Therefore

  18. Inhibition of the H3K9 methyltransferase G9A attenuates oncogenicity and activates the hypoxia signaling pathway.

    Directory of Open Access Journals (Sweden)

    Jolene Caifeng Ho

    Full Text Available Epigenetic mechanisms play important roles in the regulation of tumorigenesis, and hypoxia-induced epigenetic changes may be critical for the adaptation of cancer cells to the hypoxic microenvironment of solid tumors. Previously, we showed that loss-of-function of the hypoxia-regulated H3K9 methyltransferase G9A attenuates tumor growth. However, the mechanisms by which blockade of G9A leads to a tumor suppressive effect remain poorly understood. We show that G9A is highly expressed in breast cancer and is associated with poor patient prognosis, where it may function as a potent oncogenic driver. In agreement with this, G9A inhibition by the small molecule inhibitor, BIX-01294, leads to increased cell death and impaired cell migration, cell cycle and anchorage-independent growth. Interestingly, whole transcriptome analysis revealed that genes involved in diverse cancer cell functions become hypoxia-responsive upon G9A inhibition. This was accompanied by the upregulation of the hypoxia inducible factors HIF1α and HIF2α during BIX-01294 treatment even in normoxia that may facilitate the tumor suppressive effects of BIX-01294. HIF inhibition was able to reverse some of the transcriptional changes induced by BIX-01294 in hypoxia, indicating that the HIFs may be important drivers of these derepressed target genes. Therefore, we show that G9A is a key mediator of oncogenic processes in breast cancer cells and G9A inhibition by BIX-01294 can successfully attenuate oncogenicity even in hypoxia.

  19. Inhibition of the H3K9 methyltransferase G9A attenuates oncogenicity and activates the hypoxia signaling pathway

    Science.gov (United States)

    Ho, Jolene Caifeng; Abdullah, Lissa Nurrul; Pang, Qing You; Jha, Sudhakar; Chow, Edward Kai-Hua; Yang, Henry; Kato, Hiroyuki; Ueda, Jun

    2017-01-01

    Epigenetic mechanisms play important roles in the regulation of tumorigenesis, and hypoxia-induced epigenetic changes may be critical for the adaptation of cancer cells to the hypoxic microenvironment of solid tumors. Previously, we showed that loss-of-function of the hypoxia-regulated H3K9 methyltransferase G9A attenuates tumor growth. However, the mechanisms by which blockade of G9A leads to a tumor suppressive effect remain poorly understood. We show that G9A is highly expressed in breast cancer and is associated with poor patient prognosis, where it may function as a potent oncogenic driver. In agreement with this, G9A inhibition by the small molecule inhibitor, BIX-01294, leads to increased cell death and impaired cell migration, cell cycle and anchorage-independent growth. Interestingly, whole transcriptome analysis revealed that genes involved in diverse cancer cell functions become hypoxia-responsive upon G9A inhibition. This was accompanied by the upregulation of the hypoxia inducible factors HIF1α and HIF2α during BIX-01294 treatment even in normoxia that may facilitate the tumor suppressive effects of BIX-01294. HIF inhibition was able to reverse some of the transcriptional changes induced by BIX-01294 in hypoxia, indicating that the HIFs may be important drivers of these derepressed target genes. Therefore, we show that G9A is a key mediator of oncogenic processes in breast cancer cells and G9A inhibition by BIX-01294 can successfully attenuate oncogenicity even in hypoxia. PMID:29145444

  20. Molecular relapse in chronic myelogenous leukemia patients after bone marrow transplantation detected by polymerase chain reaction

    International Nuclear Information System (INIS)

    Sawyers, C.L.; Timson, L.; Clark, S.S.; Witte, O.N.; Champlin, R.; Kawasaki, E.S.

    1990-01-01

    Relapse of chronic myelogenous leukemia after bone marrow transplantation can be detected by using clinical, cytogenetic, or molecular tools. A modification of the polymerase chain reaction can be used in patients to detect low levels of the BCR-ABL-encoded mRNA transcript, a specific marker for chronic myelogenous leukemia. Early detection of relapse after bone marrow transplantation could potentially alter treatment decisions. The authors prospectively evaluated 19 patients for evidence of molecular relapse, cytogenetic relapse, and clinical relapse after bone marrow transplantation. They used the polymerase chain reaction to detect residual BCR-ABL mRNA in patients followed up to 45 months after treatment and found 4 patients with BCR-ABL mRNA expression following bone marrow transplantation. Fifteen patients did not express detectable BCR-ABL mRNA. All 19 patients remain in clinical remission. In this prospective study of chronic myelogenous leukemia patients treated with bone marrow transplantation, molecular relapse preceded cytogenetic relapse in those patients who persistently express BCR-ABL mRNA. They recommend using standard clinical and cytogenetic testing to make patient care decisions until further follow-up determines the clinical outcome of those patients with residual BCR-ABL mRNA transcripts detected by polymerase chain reaction

  1. Trisomy of the Dscr1 gene suppresses early progression of pancreatic intraepithelial neoplasia driven by oncogenic Kras

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Choon; Shin, Jimin; Baek, Kwan-Hyuck, E-mail: khbaek@skku.edu

    2013-10-11

    Highlights: •A single extra copy of Dscr1 restrains progression of PanIN-1A to PanIN-1B lesions. •Dscr1 trisomy attenuates calcineurin–NFAT pathway in neoplastic ductal epithelium. •Dscr1 trisomy leads to upregulation of p15{sup INK4b} in neoplastic ductal epithelium. •A single extra copy of Dscr1 reduces epithelial proliferation in early PanIN lesions. •Dscr1 trisomy may protect Down syndrome individuals from pancreatic cancer. -- Abstract: Individuals with Down syndrome exhibit remarkably reduced incidence of most solid tumors including pancreatic cancer. Multiple mechanisms arising from the genetic complexity underlying Down syndrome has been suggested to contribute to such a broad cancer protection. In this study, utilizing a genetically engineered mouse model of pancreatic cancer, we demonstrate that trisomy of the Down syndrome critical region-1 (Dscr1), an endogenous calcineurin inhibitor localized on chromosome 21, suppresses the progression of pancreatic intraepithelial neoplasia-1A (PanIN-1A) to PanIN-1B lesions without affecting the initiation of PanIN lesions mediated by oncogenic Kras{sup G12D}. In addition, we show that Dscr1 trisomy attenuates nuclear localization of nuclear factor of activated T-cells (NFAT) accompanied by upregulation of the p15{sup Ink4b} tumor suppressor and reduction of cell proliferation in early PanIN lesions. Our data suggest that attenuation of calcineurin–NFAT signaling in neoplastic pancreatic ductal epithelium by a single extra copy of Dscr1 is sufficient to inhibit the progression of early PanIN lesions driven by oncogenic Kras, and thus may be a potential mechanism underlying reduced incidence of pancreatic cancer in Down syndrome individuals.

  2. Intramolecular dynamics within the N-Cap-SH3-SH2 regulatory unit of the c-Abl tyrosine kinase reveal targeting to the cellular membrane.

    Science.gov (United States)

    de Oliveira, Guilherme A P; Pereira, Elen G; Ferretti, Giulia D S; Valente, Ana Paula; Cordeiro, Yraima; Silva, Jerson L

    2013-09-27

    c-Abl is a key regulator of cell signaling and is under strict control via intramolecular interactions. In this study, we address changes in the intramolecular dynamics coupling within the c-Abl regulatory unit by presenting its N-terminal segment (N-Cap) with an alternative function in the cell as c-Abl becomes activated. Using small angle x-ray scattering, nuclear magnetic resonance, and confocal microscopy, we demonstrate that the N-Cap and the Src homology (SH) 3 domain acquire μs-ms motions upon N-Cap association with the SH2-L domain, revealing a stabilizing synergy between these segments. The N-Cap-myristoyl tether likely triggers the protein to anchor to the membrane because of these flip-flop dynamics, which occur in the μs-ms time range. This segment not only presents the myristate during c-Abl inhibition but may also trigger protein localization inside the cell in a functional and stability-dependent mechanism that is lost in Bcr-Abl(+) cells, which underlie chronic myeloid leukemia. This loss of intramolecular dynamics and binding to the cellular membrane is a potential therapeutic target.

  3. Malignant transformation of diploid human fibroblasts by transfection of oncogenes: Progress report, July 1986--June 1989

    International Nuclear Information System (INIS)

    McCormick, J.J.; Maher, V.M.

    1989-01-01

    Although there is good evidence that carcinogen exposure is a major cause of human cancer, it has proven impossible to transform normal human fibroblasts or epithelial cells in culture into malignant cells by treating them with carcinogens. This failure may reflect an inability to identify and isolate cells containing one or more premalignant changes so that these can be expanded and exposed to carcinogens a second time to induce additional required changes. A second serious roadblock to the sequential introduction of changes and expansion of clonally-derived cells containing such premalignant changes in the finite life span of human cells in culture. Using transfection of specific human oncogenes in a series of specially-selected vectors, we have overcome these obstacles and have recently succeeded in generating an infinite life span diploid human cell strain MSU-1.0, which appears to be normal in all other characteristics. From that cell a second cell strain, MSU-1.1, was generated which we have been able to transform into a malignant state not only by transfecting the cells with oncogenes but also by treating them with chemical carcinogens. We now have evidence that there is not just a single linear process which results in malignant transformation. Rather, cells appear to progress to malignancy on a series of parallel, sometimes overlapping tracks. We now propose to carry out detailed studies of the specific mechanisms of malignant cell transformation using the cell strains available in this laboratory to achieve the goal of building relevant quantitative models of carcinogenesis. 29 refs

  4. Voltammetric behaviour at gold electrodes immersed in the BCR sequential extraction scheme media Application of underpotential deposition-stripping voltammetry to determination of copper in soil extracts

    Energy Technology Data Exchange (ETDEWEB)

    Beni, Valerio; Newton, Hazel V.; Arrigan, Damien W.M.; Hill, Martin; Lane, William A.; Mathewson, Alan

    2004-01-30

    The development of mercury-free electroanalytical systems for in-field analysis of pollutants requires a foundation on the electrochemical behaviour of the chosen electrode material in the target sample matrices. In this work, the behaviour of gold working electrodes in the media employed in the BCR sequential extraction protocol, for the fractionation of metals in solid environmental matrices, is reported. All three of the BCR sequential extraction media are redox active, on the basis of acidity and oxygen content as well as the inherent reducing or oxidising nature of some of the reagents employed: 0.11 M acetic acid, 0.1 M hydroxylammonium chloride (adjusted to pH 2) and 1 M ammonium acetate (adjusted to pH 2) with added trace hydrogen peroxide. The available potential ranges together with the demonstrated detection of target metals in these media are presented. Stripping voltammetry of copper or lead in the BCR extract media solutions reveal a multi-peak behaviour due to the stripping of both bulk metal and underpotential metal deposits. A procedure based on underpotential deposition-stripping voltammetry (UPD-SV) was evaluated for application to determination of copper in 0.11 M acetic acid soil extracts. A preliminary screening step in which different deposition times are applied to the sample enables a deposition time commensurate with UPD-SV to be selected so that no bulk deposition or stripping occurs thus simplifying the shape and features of the resulting voltammograms. Choice of the suitable deposition time is then followed by standards addition calibration. The method was validated by the analysis of a number of BCR 0.11 M acetic acid soil extracts. Good agreement was obtained been the UPD-SV method and atomic spectroscopic results.

  5. Voltammetric behaviour at gold electrodes immersed in the BCR sequential extraction scheme media Application of underpotential deposition-stripping voltammetry to determination of copper in soil extracts

    International Nuclear Information System (INIS)

    Beni, Valerio; Newton, Hazel V.; Arrigan, Damien W.M.; Hill, Martin; Lane, William A.; Mathewson, Alan

    2004-01-01

    The development of mercury-free electroanalytical systems for in-field analysis of pollutants requires a foundation on the electrochemical behaviour of the chosen electrode material in the target sample matrices. In this work, the behaviour of gold working electrodes in the media employed in the BCR sequential extraction protocol, for the fractionation of metals in solid environmental matrices, is reported. All three of the BCR sequential extraction media are redox active, on the basis of acidity and oxygen content as well as the inherent reducing or oxidising nature of some of the reagents employed: 0.11 M acetic acid, 0.1 M hydroxylammonium chloride (adjusted to pH 2) and 1 M ammonium acetate (adjusted to pH 2) with added trace hydrogen peroxide. The available potential ranges together with the demonstrated detection of target metals in these media are presented. Stripping voltammetry of copper or lead in the BCR extract media solutions reveal a multi-peak behaviour due to the stripping of both bulk metal and underpotential metal deposits. A procedure based on underpotential deposition-stripping voltammetry (UPD-SV) was evaluated for application to determination of copper in 0.11 M acetic acid soil extracts. A preliminary screening step in which different deposition times are applied to the sample enables a deposition time commensurate with UPD-SV to be selected so that no bulk deposition or stripping occurs thus simplifying the shape and features of the resulting voltammograms. Choice of the suitable deposition time is then followed by standards addition calibration. The method was validated by the analysis of a number of BCR 0.11 M acetic acid soil extracts. Good agreement was obtained been the UPD-SV method and atomic spectroscopic results

  6. FoxA1 as a lineage-specific oncogene in luminal type breast cancer

    International Nuclear Information System (INIS)

    Yamaguchi, Noritaka; Ito, Emi; Azuma, Sakura; Honma, Reiko; Yanagisawa, Yuka; Nishikawa, Akira; Kawamura, Mika; Imai, Jun-ichi

    2008-01-01

    The forkhead transcription factor FoxA1 is thought to be involved in mammary tumorigenesis. However, the precise role of FoxA1 in breast cancer development is controversial. We examined expression of FoxA1 in 35 human breast cancer cell lines and compared it with that of ErbB2, a marker of poor prognosis in breast cancer. We found that FoxA1 is expressed at high levels in all ErbB2-positive cell lines and a subset of ErbB2-negative cell lines. Down-regulation of FoxA1 by RNA interference significantly suppressed proliferation of ErbB2-negative and FoxA1-positive breast cancer cell lines. Down-regulation of FoxA1 also enhanced the toxic effect of Herceptin on ErbB2-positive cell lines through induction of apoptosis. Taken together with previous data that FoxA1 is a marker of luminal cells in mammary gland, our present results suggest that FoxA1 plays an important role as a lineage-specific oncogene in proliferation of cancer cells derived from mammary luminal cells

  7. Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer in vivo

    Science.gov (United States)

    Lobikin, Maria; Chernet, Brook; Lobo, Daniel; Levin, Michael

    2012-12-01

    Cancer may result from localized failure of instructive cues that normally orchestrate cell behaviors toward the patterning needs of the organism. Steady-state gradients of transmembrane voltage (Vmem) in non-neural cells are instructive, epigenetic signals that regulate pattern formation during embryogenesis and morphostatic repair. Here, we review molecular data on the role of bioelectric cues in cancer and present new findings in the Xenopus laevis model on how the microenvironment's biophysical properties contribute to cancer in vivo. First, we investigated the melanoma-like phenotype arising from serotonergic signaling by ‘instructor’ cells—a cell population that is able to induce a metastatic phenotype in normal melanocytes. We show that when these instructor cells are depolarized, blood vessel patterning is disrupted in addition to the metastatic phenotype induced in melanocytes. Surprisingly, very few instructor cells need to be depolarized for the hyperpigmentation phenotype to occur; we present a model of antagonistic signaling by serotonin receptors that explains the unusual all-or-none nature of this effect. In addition to the body-wide depolarization-induced metastatic phenotype, we investigated the bioelectrical properties of tumor-like structures induced by canonical oncogenes and cancer-causing compounds. Exposure to carcinogen 4-nitroquinoline 1-oxide (4NQO) induces localized tumors, but has a broad (and variable) effect on the bioelectric properties of the whole body. Tumors induced by oncogenes show aberrantly high sodium content, representing a non-invasive diagnostic modality. Importantly, depolarized transmembrane potential is not only a marker of cancer but is functionally instructive: susceptibility to oncogene-induced tumorigenesis is significantly reduced by forced prior expression of hyperpolarizing ion channels. Importantly, the same effect can be achieved by pharmacological manipulation of endogenous chloride channels, suggesting

  8. BCR-crosslinking induces a transcription of protein phosphatase component G5PR that is required for mature B-cell survival

    International Nuclear Information System (INIS)

    Huq Ronny, Faisal Mahmudul; Igarashi, Hideya; Sakaguchi, Nobuo

    2006-01-01

    BCR-crosslinking triggers activation-induced cell death (AICD) selectively in the restricted stage of B-cell differentiation. We examined the transcription of a protein phosphatase subunit G5PR in immature and mature B-cells, because absence of this factor augmented cell sensitivity to AICD, associated with increased activation of JNK and Bim. BCR-crosslinking-induced G5pr transcription in AICD-resistant mature splenic IgM lo IgD hi B-cells but not in AICD susceptible immature IgM hi IgD lo B-cells. Thus, G5pr induction correlated with the prevention of AICD; High in mature splenic CD23 hi B-cells but low in immature B-cells of neonatal mice, sub-lethally irradiated mice, or xid mice. Lack of G5pr upregulation was associated with the prolonged activation of JNK. The G5pr cDNA transfection protected an immature B-cell line WEHI-231 from BCR-mediated AICD. The differential expression of G5PR might be responsible for the antigen-dependent selection of B-cells

  9. Adenovirus-Mediated Delivery of Decoy Hyper Binding Sites Targeting Oncogenic HMGA1 Reduces Pancreatic and Liver Cancer Cell Viability.

    Science.gov (United States)

    Hassan, Faizule; Ni, Shuisong; Arnett, Tyler C; McKell, Melanie C; Kennedy, Michael A

    2018-03-30

    High mobility group AT-hook 1 (HMGA1) protein is an oncogenic architectural transcription factor that plays an essential role in early development, but it is also implicated in many human cancers. Elevated levels of HMGA1 in cancer cells cause misregulation of gene expression and are associated with increased cancer cell proliferation and increased chemotherapy resistance. We have devised a strategy of using engineered viruses to deliver decoy hyper binding sites for HMGA1 to the nucleus of cancer cells with the goal of sequestering excess HMGA1 at the decoy hyper binding sites due to binding competition. Sequestration of excess HMGA1 at the decoy binding sites is intended to reduce HMGA1 binding at the naturally occurring genomic HMGA1 binding sites, which should result in normalized gene expression and restored sensitivity to chemotherapy. As proof of principle, we engineered the replication defective adenovirus serotype 5 genome to contain hyper binding sites for HMGA1 composed of six copies of an individual HMGA1 binding site, referred to as HMGA-6. A 70%-80% reduction in cell viability and increased sensitivity to gemcitabine was observed in five different pancreatic and liver cancer cell lines 72 hr after infection with replication defective engineered adenovirus serotype 5 virus containing the HMGA-6 decoy hyper binding sites. The decoy hyper binding site strategy should be general for targeting overexpression of any double-stranded DNA-binding oncogenic transcription factor responsible for cancer cell proliferation.

  10. EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers

    Directory of Open Access Journals (Sweden)

    Joanna B. Wilson

    2018-04-01

    Full Text Available The presence of the Epstein-Barr virus (EBV-encoded nuclear antigen-1 (EBNA1 protein in all EBV-carrying tumours constitutes a marker that distinguishes the virus-associated cancer cells from normal cells and thereby offers opportunities for targeted therapeutic intervention. EBNA1 is essential for viral genome maintenance and also for controlling viral gene expression and without EBNA1, the virus cannot persist. EBNA1 itself has been linked to cell transformation but the underlying mechanism of its oncogenic activity has been unclear. However, recent data are starting to shed light on its growth-promoting pathways, suggesting that targeting EBNA1 can have a direct growth suppressing effect. In order to carry out its tasks, EBNA1 interacts with cellular factors and these interactions are potential therapeutic targets, where the aim would be to cripple the virus and thereby rid the tumour cells of any oncogenic activity related to the virus. Another strategy to target EBNA1 is to interfere with its expression. Controlling the rate of EBNA1 synthesis is critical for the virus to maintain a sufficient level to support viral functions, while at the same time, restricting expression is equally important to prevent the immune system from detecting and destroying EBNA1-positive cells. To achieve this balance EBNA1 has evolved a unique repeat sequence of glycines and alanines that controls its own rate of mRNA translation. As the underlying molecular mechanisms for how this repeat suppresses its own rate of synthesis in cis are starting to be better understood, new therapeutic strategies are emerging that aim to modulate the translation of the EBNA1 mRNA. If translation is induced, it could increase the amount of EBNA1-derived antigenic peptides that are presented to the major histocompatibility (MHC class I pathway and thus, make EBV-carrying cancers better targets for the immune system. If translation is further suppressed, this would provide another

  11. Type i CD20 antibodies recruit the B cell receptor for complement-dependent lysis of malignant B cells

    DEFF Research Database (Denmark)

    Engelberts, P. J.; Voorhorst, M.; Schuurman, J.

    2016-01-01

    . We hypothesized that CD20 Ab-induced clustering of the IgM or IgG BCR was involved in accessory CDC. Indeed, accessory CDC was consistently observed in B cell lines expressing an IgM BCR and in some cell lines expressing an IgG BCR, but it was absent in BCR- B cell lines. A direct relationship...... between BCR expression and accessory CDC was established by transfecting the BCR into CD20+ cells: OFA-F(ab')2 fragments were able to induce CDC in the CD20+BCR+ cell population, but not in the CD20+BCR- population. Importantly, OFA-F(ab')2 fragments were able to induce CDC ex vivo in malignant B cells...... isolated from patients with mantle cell lymphoma and Waldenström macroglobulinemia. In summary, accessory CDC represents a novel effector mechanism that is dependent on type I CD20 Ab-induced BCR clustering. Accessory CDC may contribute to the excellent capacity of type I CD20 Abs to induce CDC...

  12. Targeting MET Amplification as a New Oncogenic Driver

    International Nuclear Information System (INIS)

    Kawakami, Hisato; Okamoto, Isamu; Okamoto, Wataru; Tanizaki, Junko; Nakagawa, Kazuhiko; Nishio, Kazuto

    2014-01-01

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy

  13. Targeting MET Amplification as a New Oncogenic Driver

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hisato [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Okamoto, Isamu, E-mail: okamotoi@kokyu.med.kyushu-u.ac.jp [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Center for Clinical and Translational Research, Kyushu University Hospital, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582 (Japan); Okamoto, Wataru [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Division of Transrlational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577 (Japan); Tanizaki, Junko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, HIM223, 450 Brookline Avenue, Boston, MA 02215 (United States); Nakagawa, Kazuhiko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Nishio, Kazuto [Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan)

    2014-07-22

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy.

  14. The oncogenic action of ionizing radiation on rat skin: Progress report, February 1, 1987-January 31, 1988

    International Nuclear Information System (INIS)

    Burns, F.J.

    1987-01-01

    The work outlined in this report includes: epidermal DNA strand breaks and radiation penetration; activation of oncogenes in radiation induced rat skin tumors; and rat skin carcinogenesis by neon ions. The effect of radiation penetration on DNA single strand breaks has been studied extensively in rat and mouse epidermis. The results show clearly that the number of strand breaks per unit dose in the epidermal DNA is reduced by 50% to 65% when the radiation penetration is reduced from 1.0 mm to 0.2 mm. This penetration effect on DNA strand breaks was not seen in mouse epidermal cell lines growing in plastic dishes. The results imply that DNA strand breakage in superficial cells is partially dependent on the radiation dose to underlying tissue. The phenomenon is not mediated by systemic interactions as it was observed in irradiated explanted skin. The oncogene activation pattern in the radiation-induced skin tumors was found to be tumor dependent. Either K-ras activation or c-myc amplification or both was observed in each tumor analyzed so far. Even benign fibromas exhibited c-myc amplification. The carcinogenicity of high penetration electrons (2.0 MeV) was determined in preparation for similar studies with a neon ion beam at the Berkeley Bevelac. The principal finding so far is a large excess of connective tissue tumors, fibromas (benign) and sarcomas (malignant). 59 refs., 1 tab

  15. Oncogenic signalling pathways in benign odontogenic cysts and tumours.

    Science.gov (United States)

    Diniz, Marina Gonçalves; Gomes, Carolina Cavalieri; de Sousa, Sílvia Ferreira; Xavier, Guilherme Machado; Gomez, Ricardo Santiago

    2017-09-01

    The first step towards the prevention of cancer is to develop an in-depth understanding of tumourigenesis and the molecular basis of malignant transformation. What drives tumour initiation? Why do most benign tumours fail to metastasize? Oncogenic mutations, previously considered to be the hallmark drivers of cancers, are reported in benign cysts and tumours, including those that have an odontogenic origin. Despite the presence of such alterations, the vast majority of odontogenic lesions are benign and never progress to the stage of malignant transformation. As these lesions are likely to develop due to developmental defects, it is possible that they harbour quiet genomes. Now the question arises - do they result from DNA replication errors? Specific candidate genes have been sequenced in odontogenic lesions, revealing recurrent BRAF mutation in the case of ameloblastoma, KRAS mutation in adenomatoid odontogenic tumours, PTCH1 mutation in odontogenic keratocysts, and CTNNB1 (Beta-catenin) mutation in calcifying odontogenic cysts. Studies on these benign and rare entities might reveal important information about the tumorigenic process and the mechanisms that hinder/halt neoplastic progression. This is because the role of relatively common oncogenic mutations seems to be context dependent. In this review, each mutation signature of the odontogenic lesion and the affected signalling pathways are discussed in the context of tooth development and tumorigenesis. Furthermore, behavioural differences between different types of odontogenic lesions are explored and discussed based on the molecular alteration described. This review also includes the employment of molecular results for guiding therapeutic approaches towards odontogenic lesions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Neratinib: an oral, irreversible dual EGFR/HER2 inhibitor for breast and non-small cell lung cancer.

    Science.gov (United States)

    Bose, Prithviraj; Ozer, Howard

    2009-11-01

    The revolutionary success of imatinib, a specific inhibitor of the BCR-ABL tyrosine kinase (TK) in the treatment of chronic myelogenous leukemia ushered in the era of targeted therapies in cancer. The erythroblastic leukemia viral oncogene homolog family of receptor TKs, to which EGFR (HER1) and human epidermal growth factor receptor 2 (HER2)/neu TKs belong, has been implicated in a variety of cancers, and several agents that inhibit these TKs are in clinical use, with many more in various stages of development. To summarize current knowledge about neratinib (HKI-272), an oral, irreversible dual inhibitor of EGFR and HER2 and to define its future clinical role, especially in the context of related agents that are either available or in the pipeline. A Medline search using Pubmed was conducted using the keywords neratinib, HKI-272, EGFR, HER2, lapatinib, trastuzumab, erlotinib, gefitinib, cetuximab and panitumumab. Relevant abstracts presented at the American Society of Clinical Oncology and San Antonio Breast Cancer Symposium meetings were also reviewed. Both preclinical and human studies have shown that neratinib has promising activity in both advanced breast cancer and NSCLC with an acceptable safety profile. The data support its continued clinical development.

  17. [Oncogenic action of ionizing radiation

    International Nuclear Information System (INIS)

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. The carcinogenicity of energetic electrons was determined for comparison with the neon ion results. As in past reports we will describe progress in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) DNA strand breaks in the epidermis as a function of radiation penetration; (3) oncogene activation in radiation-induced rat skin cancers. 72 refs., 6 tabs

  18. Exosomes enriched in stemness/metastatic-related mRNAS promote oncogenic potential in breast cancer.

    Science.gov (United States)

    Rodríguez, Marta; Silva, Javier; Herrera, Alberto; Herrera, Mercedes; Peña, Cristina; Martín, Paloma; Gil-Calderón, Beatriz; Larriba, María Jesús; Coronado, M Josés; Soldevilla, Beatriz; Turrión, Víctor S; Provencio, Mariano; Sánchez, Antonio; Bonilla, Félix; García-Barberán, Vanesa

    2015-12-01

    Cancer cells efficiently transfer exosome contents (essentially mRNAs and microRNAs) to other cell types, modifying immune responses, cell growth, angiogenesis and metastasis. Here we analyzed the exosomes release by breast tumor cells with different capacities of stemness/metastasis based on CXCR4 expression, and evaluated their capacity to generate oncogenic features in recipient cells. Breast cancer cells overexpressing CXCR4 showed an increase in stemness-related markers, and in proliferation, migration and invasion capacities. Furthermore, recipient cells treated with exosomes from CXCR4-cells showed increased in the same abilities. Moreover, inoculation of CXCR4-cell-derived exosomes in immunocompromised mice stimulated primary tumor growth and metastatic potential. Comparison of nucleic acids contained into exosomes isolated from patients revealed a "stemness and metastatic" signature in exosomes of patients with worse prognosis. Finally, our data supported the view that cancer cells with stem-like properties show concomitant metastatic behavior, and their exosomes stimulate tumor progression and metastasis. Exosomes-derived nucleic acids from plasma of breast cancer patients are suitable markers in the prognosis of such patients.

  19. Electrochemical Branched-DNA Assay for Polymerase Chain Reaction-Free Detection and Quantification of Oncogenes in Messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ai Cheng; Dai, Ziyu; Chen, Baowei; Wu, Hong; Wang, Jun; Zhang, Aiguo; Zhang, Lurong; Lim, Tit-Meng; Lin, Yuehe

    2008-12-01

    We describe a novel electrochemical branched-DNA (bDNA) assay for polymerase chain reaction (PCR)-free detection and quantification of p185 BCR-ABL leukemia fusion transcript in the population of messenger RNA (mRNA) extracted from cell lines. The bDNA amplifier carrying high loading of alkaline phosphatase (ALP) tracers was used to amplify targets signal. The targets were captured on microplate well surfaces through cooperative sandwich hybridization prior to the labeling of bDNA. The activity of captured ALP was monitored by square-wave voltammetric (SWV) analysis of the electroactive enzymatic product in the presence of 1-napthyl-phosphate. The specificity and sensitivity of assay enabled direct detection of target transcript in as little as 4.6 ng mRNA without PCR amplification. In combination with the use of a well-quantified standard, the electrochemical bDNA assay was capable of direct use for a PCR-free quantitative analysis of target transcript in total mRNA population. The approach thus provides a simple, sensitive, accurate and quantitative tool alternate to the RQ-PCR for early disease diagnosis.

  20. MicroRNA-205 downregulates mixed-lineage-AF4 oncogene expression in acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Dou L

    2013-08-01

    Full Text Available Liping Dou,1,* Jingxin Li,1,* Dehua Zheng,2,* Yonghui Li,1 Xiaoning Gao,1 Chengwang Xu,1 Li Gao,1 Lili Wang,1 Li Yu1 1Department of Hematology, Chinese PLA General Hospital, Beijing, People's Republic of China; 2Department of Hepatobiliary Surgery, Organ Transplant Center, Chinese PLA 309th Hospital, Beijing, People's Republic of China*These authors contributed equally to this workAbstract: Myeloid/lymphoid or mixed-lineage AF4 acute lymphoblastic leukemia (MLL-AF4 ALL is a pediatric leukemia that occurs rarely in adults. MLL-AF4 ALL is typically characterized by the presence of chromosomal translocation (t(4;11(q21;q23, leading to expression of MLL-AF4 fusion protein. Although MLL-AF4 fusion protein triggers a molecular pathogenesis and hematological presentations that are unique to leukemias, the precise role of this oncogene in leukemogenesis remains unclear. Previous studies have indicated that microRNAs (miRs might modulate the expression of MLL-AF4 ALL fusion protein, thereby suggesting the involvement of miR in progression or suppression of MLL-AF4 ALL. We have previously demonstrated that miR-205 negatively regulates transcription of an MLL-AF4 luciferase reporter. Here, we report that exogenous expression of miR-205 in MLL-AF4 human cell lines (RS4;11 and MV4-11 inversely regulates the expression of MLL-AF4 at both messenger RNA (mRNA and protein level. Furthermore, miR-205 significantly induced apoptosis in MLL-AF4 cells as evidenced by Annexin V staining using fluorescence-activated cell sorting (FACS analysis. The proliferative capacity of leukemic cells was suppressed by miR-205. The addition of an miR-205 inhibitor was able to restore the observed effects. In conclusion, these findings demonstrate that miR-205 may have potential value as a novel therapeutic agent in the treatment of MLL-AF4 ALL.Keywords: miR-205, MLL-AF4, leukemia, microRNA, oncogene expression, untranslated regions, proliferation

  1. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises.

    Science.gov (United States)

    El-Araby, Amr M; Fouad, Abdelrahman A; Hanbal, Amr M; Abdelwahab, Sara M; Qassem, Omar M; El-Araby, Moustafa E

    2016-02-01

    Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Assessment of differential expression of oncogenes in adenocarcinoma of stomach with fluorescent labeling and simultaneous amplification of gene transcripts

    International Nuclear Information System (INIS)

    Rajcevic, U.; Hudler, P.; Komel, R.; Mijovski, G.; Gorjanc, G.; Kovac, M.; Hoelzl, G.; Repse, S.; Juvan, R.; Huber, C.G.

    2007-01-01

    Background. Gastric cancer is one of the leading malignancies with a poor prognosis and low survival rates. Although the mechanisms underlying its development are still unknown, there is a consensus that genetic instability, inactivation of tumor suppressor genes and over-expression of oncogenes are involved in the early and late stages of gastric carcinogenesis. In the present study we wanted to display differential expression of seven oncogenes, namely CCNE1, EGF, ERBB3, FGF4, HRG1, HGFR and TDGF1. Patients and methods. We employed a method based on the multiplex reverse transcription polymerase chain (RT-PCR) method with a fluorescence detection. Results. More than half of patients (74.3%) out of total 74 with gastric adenocarcinoma had over-expressed at least one oncogene, with the exception of FGF4, which was expressed in tumor tissue of less than one third of patients. 56.8% of the patients patients showed over-expression of two or more oncogenes. Conclusions. Patients with precancerous lesions had elevated levels of TDGF1 or cripto-1 (64.9%) and CCNE1 (57.1%), suggesting that they could be used as markers for an early detection of malignant changes in stomach. Finally, the fluorescent multiplex RT-PCR method could be of value for rapid assessment of oncogene mRNA levels in small samples of tumor or precancerous biopsies. (author)

  3. Oncogenic Notch signaling in T-cell and B-cell lymphoproliferative disorders.

    Science.gov (United States)

    Chiang, Mark Y; Radojcic, Vedran; Maillard, Ivan

    2016-07-01

    This article highlights recent discoveries about Notch activation and its oncogenic functions in lymphoid malignancies, and discusses the therapeutic potential of Notch inhibition. NOTCH mutations arise in a broad spectrum of lymphoid malignancies and are increasingly scrutinized as putative therapeutic targets. In T-cell acute lymphoblastic leukemia (T-ALL), NOTCH1 mutations affect the extracellular negative regulatory region and lead to constitutive Notch activation, although mutated receptors remain sensitive to Notch ligands. Other NOTCH1 mutations in T-ALL and NOTCH1/2 mutations in multiple B-cell malignancies truncate the C-terminal proline (P), glutamic acid (E), serine (S), threonine (T)-rich (PEST) domain, leading to decreased Notch degradation after ligand-mediated activation. Thus, targeting Notch ligand-receptor interactions could provide therapeutic benefits. In addition, we discuss recent reports on clinical testing of Notch inhibitors in T-ALL that influenced contemporary thinking on the challenges of targeting Notch in cancer. We review advances in the laboratory to address these challenges in regards to drug targets, the Notch-driven metabolome, and the sophisticated protein-protein interactions at Notch-dependent superenhancers that underlie oncogenic Notch functions. Notch signaling is a recurrent oncogenic pathway in multiple T- and B-cell lymphoproliferative disorders. Understanding the complexity and consequences of Notch activation is critical to define optimal therapeutic strategies targeting the Notch pathway.

  4. Oncogenic transformation systems involving mammalian cells in vitro to determine the relative risks of different treatment modalities

    International Nuclear Information System (INIS)

    Hall, E.J.

    1984-01-01

    An established line of mouse fibroblasts cultured in vitro were used to compare the incidence of oncogenic transformation produced by X-rays, heat, various hypoxid cell radiosensitizers and used chemotherapy agents. A variety of 2 and 5 substituted nitroimidazoles were tested; these included metronidazole, desmethylmisonidazole, misonidazole, SR-2508, SR-2555, Ro-0741, RSU-1047 and RSU-1021. Most of these sensitizers produced a similar level of transformation; for example a three day exposure of aerated cells to a concentration of 1 mM of the drug resulted in a transformation incidence comparable to 1Gy of X-rays. The notable exception was SR-2508 which produced a five-fold higher incidence of transformation. The potential carcinogenicity of sensitizers must be considered in choosing which of the currently available new drugs is to be used in clinical trials as an alternative to misonidazole. A variety of chemotherapy agents were tested at a concentration comparable to those used clinically and matched to produce about the same amount of cell killing. It was found that the incidence of oncogenic transformation varied widely. Some agents, such as Vincristine did not produce transformation at a level that could be detected above background, while others such as cis-Platinum appear to be potent carcinogens and produced transformation at a rate an order of magnitude higher than can be achieved by any dose of X-rays. Hyperthermia in the range of 40 0 C caused no transformation, whether or not the heat treatment was associated with significant cell killing. In addition modest hyperthermia appreciably reduced the transformation frequencies associated with X-ray doses. (orig./MG)

  5. V-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas

    International Nuclear Information System (INIS)

    Langdon, W.Y.; Klinken, S.P.; Hartley, J.W.; Morse, H.C. III; Ruscetti, S.K.

    1989-01-01

    Cas NS-1 is an acutely transforming murine retrovirus that induces pre-B and pro-B cell lymphomas. Molecular cloning showed it was generated from the ecotropic Cas-Br-M virus by sequential recombinations with endogenous retroviral sequences and a cellular oncogene. The oncogene sequence shows no homology with known oncogenes but some similarity to the yeast transcriptional activator GCN4. A 100-kDa gag-cbl fusion protein, with no detectable kinase activity, is responsible for the cellular transformation. The cellular homologue of v-cbl, present in mouse and human DNA, is expressed in a range of hemopoietic lineages

  6. Determination of the transforming activities of adenovirus oncogenes.

    Science.gov (United States)

    Speiseder, Thomas; Nevels, Michael; Dobner, Thomas

    2014-01-01

    The last 50 years of molecular biological investigations into human adenoviruses (Ads) have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of the Ad productive infection cycle in permissive host cells. Also, initial observations concerning the transforming potential of human Ads subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer and established Ads as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human Ads is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in Ad-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, studies on the transforming potential of several E4 gene products have now revealed new pathways that point to novel general mechanisms of virus-mediated oncogenesis. In this chapter we describe in vitro and in vivo assays to determine the transforming and oncogenic activities of the E1A, E1B, and E4 oncoproteins in primary baby rat kidney cells, human amniotic fluid cells and athymic nude mice.

  7. Final 5-Year Study Results of DASISION: The Dasatinib Versus Imatinib Study in Treatment-Naïve Chronic Myeloid Leukemia Patients Trial.

    Science.gov (United States)

    Cortes, Jorge E; Saglio, Giuseppe; Kantarjian, Hagop M; Baccarani, Michele; Mayer, Jiří; Boqué, Concepción; Shah, Neil P; Chuah, Charles; Casanova, Luis; Bradley-Garelik, Brigid; Manos, George; Hochhaus, Andreas

    2016-07-10

    We report the 5-year analysis from the phase III Dasatinib Versus Imatinib Study in Treatment-Naïve Chronic Myeloid Leukemia Patients (DASISION) trial, evaluating long-term efficacy and safety outcomes of patients with chronic myeloid leukemia (CML) in chronic phase (CP) treated with dasatinib or imatinib. Patients with newly diagnosed CML-CP were randomly assigned to receive dasatinib 100 mg once daily (n = 259) or imatinib 400 mg once daily (n = 260). At the time of study closure, 61% and 63% of dasatinib- and imatinib-treated patients remained on initial therapy, respectively. Cumulative rates of major molecular response and molecular responses with a 4.0- or 4.5-log reduction in BCR-ABL1 transcripts from baseline by 5 years remained statistically significantly higher for dasatinib compared with imatinib. Rates for progression-free and overall survival at 5 years remained high and similar across treatment arms. In patients who achieved BCR-ABL1 ≤ 10% at 3 months (dasatinib, 84%; imatinib, 64%), improvements in progression-free and overall survival and lower rates of transformation to accelerated/blast phase were reported compared with patients with BCR-ABL1 greater than 10% at 3 months. Transformation to accelerated/blast phase occurred in 5% and 7% of patients in the dasatinib and imatinib arms, respectively. Fifteen dasatinib-treated and 19 imatinib-treated patients had BCR-ABL1 mutations identified at discontinuation. There were no new or unexpected adverse events identified in either treatment arm, and pleural effusion was the only drug-related, nonhematologic adverse event reported more frequently with dasatinib (28% v 0.8% with imatinib). First occurrences of pleural effusion were reported with dasatinib, with the highest incidence in year 1. Arterial ischemic events were uncommon in both treatment arms. These final results from the DASISION trial continue to support dasatinib 100 mg once daily as a safe and effective first-line therapy for the long

  8. Imaging manifestations and its clinical significance in patients with oncogenic osteomalacia

    International Nuclear Information System (INIS)

    Yu Wei; Lin Qiang; Zhang Yunqing; Jiang Bo; Jin Jin; Jiang Yan; Li Mei; Li Fang

    2006-01-01

    Objective: To compare images from different modality for detecting lesions in patients with oncogenic osteomalacia. Methods: Eight patients with oncogenic osteomalacia were recruited in this study. The age ranged from 28 to 69 years (mean age 44.1, 5 men and 3 women). All patients were diagnosed as osteomalacia according to their clinical and radiographic manifestations. Main laboratory tests included serum calcium, phosphorus, alkaline phosphatase activity, parathyroid hormone, urinary phosphorus as well as liver and renal functions. Octreotide scans were performed for all patients according to clinical request for confirming the oncogenic osteomalacia. Further examinations of MR imaging in 8 patients, spiral CT in four patients and conventional radiography in four patients were obtained after the octreotide scans respectively. All patients had operation for their tumor resections and for the pathologic diagnostic findings. Results: Abnormal laboratory findings in all patients included low serum phosphorus level (ranged from 0.29 to 0.65 mmol·L -1 ), elevated alkaline phosphatase activity (ranged from 36. 6 to 310.6 μmol·s -1 ·L -1 ) as well as urinary phosphorus level (ranged from 11.5 to 40. 9 mmol·L -1 ). Normal results included parathyroid hormone level, liver and renal functions. Pathology confirmed the diagnosis of 4 soft tissue tumors including 1 hemangiomas, 1 giant-cell tumor of tendon sheath, 1 hemangiopericytoma and 1 mesenchymal tumor, as well as 4 bone tumors including 1 malignant neurofibroma, 2 mesenchymal tumors and 1 fibroblastoma. All lesions were shown abnormal region of increasing uptake tracer on octreotide scans. However, the octreotide scans could not determine where (bone or soft tissues) the lesions located. MR imaging could differentiate the lesions within the bone or within the soft tissues in all patients. All lesions had hypo- or iso- signal intensity on T 1 WI and high signal intensity on T 2 WI with heterogeneous in 6 tumors and

  9. The oncogenic properties of EWS/WT1 of desmoplastic small round cell tumors are unmasked by loss of p53 in murine embryonic fibroblasts

    International Nuclear Information System (INIS)

    Bandopadhayay, Pratiti; Thomas, David M; Algar, Elizabeth; Ekert, Paul G; Jabbour, Anissa M; Riffkin, Christopher; Salmanidis, Marika; Gordon, Lavinia; Popovski, Dean; Rigby, Lin; Ashley, David M; Watkins, David N

    2013-01-01

    Desmoplastic small round cell tumor (DSRCT) is characterized by the presence of a fusion protein EWS/WT1, arising from the t (11;22) (p13;q12) translocation. Here we examine the oncogenic properties of two splice variants of EWS/WT1, EWS/WT1-KTS and EWS/WT1 + KTS. We over-expressed both EWS/WT1 variants in murine embryonic fibroblasts (MEFs) of wild-type, p53 +/- and p53 -/- backgrounds and measured effects on cell-proliferation, anchorage-independent growth, clonogenicity after serum withdrawal, and sensitivity to cytotoxic drugs and gamma irradiation in comparison to control cells. We examined gene expression profiles in cells expressing EWS/WT1. Finally we validated our key findings in a small series of DSRCT. Neither isoform of EWS/WT1 was sufficient to transform wild-type MEFs however the oncogenic potential of both was unmasked by p53 loss. Expression of EWS/WT1 in MEFs lacking at least one allele of p53 enhanced cell-proliferation, clonogenic survival and anchorage-independent growth. EWS/WT1 expression in wild-type MEFs conferred resistance to cell-cycle arrest after irradiation and daunorubicin induced apoptosis. We show DSRCT commonly have nuclear localization of p53, and copy-number amplification of MDM2/MDMX. Expression of either isoform of EWS/WT1 induced characteristic mRNA expression profiles. Gene-set enrichment analysis demonstrated enrichment of WNT pathway signatures in MEFs expressing EWS/WT1 + KTS. Wnt-activation was validated in cell lines with over-expression of EWS/WT1 and in DSRCT. In conclusion, we show both isoforms of EWS/WT1 have oncogenic potential in MEFs with loss of p53. In addition we provide the first link between EWS/WT1 and Wnt-pathway signaling. These data provide novel insights into the function of the EWS/WT1 fusion protein which characterize DSRCT

  10. Transformation and oncogenicity by Adenoviruses

    NARCIS (Netherlands)

    Bernards, R.A.; Eb, A.J. van der

    1984-01-01

    Adenoviruses have attracted considerable attention since it was discovered by TRENTIN et all. and HUEBNER et al. that certain species (formerly called serotypes) are oncogenic when injected into newborn hamsters. Since then, adenoviruses have been used extensively as a model for studies on tumor

  11. An analysis of the kinetics of molecular response during the first trimester of treatment with nilotinib in newly diagnosed chronic myeloid leukemia patients in chronic phase.

    Science.gov (United States)

    Steegmann, Juan Luis; Colomer, Dolors; Gómez-Casares, Maria-Teresa; García-Gutiérrez, Valentín; Ortí, Guillermo; Ramírez-Payer, Angel; Olavarria, Eduardo; Vall-Llovera, Ferrán; Giraldo, Pilar; Conde, Eulogio; Vallansot, Rolando; López-Lorenzo, Jose Luis; Palomera, Luis; Álvarez-Larrán, Alberto; Conesa, Venancio; Bautista, Guiomar; Casas, Laura; Giles, Frank; Hochhaus, Andreas; Casado-Montero, Luis Felipe

    2017-10-01

    This study was aimed to analyze the association of very early molecular response to nilotinib with the achievement of deep molecular response (MR4) at 18 months. We hypothesized that the BCR-ABL1 levels during the first 3 months of therapy, and the kinetics of their descent in this period, could be predictive of deep molecular response thereafter. This substudy of the ENEST1st trial included 60 patients with chronic myeloid leukemia in chronic phase treated with front-line nilotinib, and BCR-ABL1IS levels were measured using GUS as the control gene. The analysis included seven time points during the first trimester of treatment (baseline and fortnightly thereafter). The rates of MMR at 12 months, and of MR4 at 18 months (primary variable of the study), were 70 and 41%, respectively, similar to those obtained in the core study. BCR-ABL1IS ≤10% was achieved at 1, 1.5, 2 and 3 months in 50, 70, 83 and 93% of the patients, respectively. The observed shape of the BCR-ABL1IS descent was biphasic, with a faster slope during the first trimester and a median halving time (HT) of 11 days, the shortest reported in the literature. An HT ≤13 days was predictive of MMR at 12 months and MR4 at 18 months. The association of a shorter HT with response provides a rationale for exploring very early kinetics patterns in all patients treated with potent TKIs such as nilotinib.

  12. Oncogenic N-Ras Stimulates SRF-Mediated Transactivation via H3 Acetylation at Lysine 9

    Directory of Open Access Journals (Sweden)

    Sun-Ju Yi

    2018-01-01

    Full Text Available Signal transduction pathways regulate the gene expression by altering chromatin dynamics in response to mitogens. Ras proteins are key regulators linking extracellular stimuli to a diverse range of biological responses associated with gene regulation. In mammals, the three ras genes encode four Ras protein isoforms: H-Ras, K-Ras4A, K-Ras4B, and N-Ras. Although emerging evidence suggests that Ras isoforms differentially regulate gene expressions and are functionally nonredundant, the mechanisms underlying Ras specificity and Ras signaling effects on gene expression remain unclear. Here, we show that oncogenic N-Ras acts as the most potent regulator of SRF-, NF-κB-, and AP-1-dependent transcription. N-Ras-RGL2 axis is a distinct signaling pathway for SRF target gene expression such as Egr1 and JunB, as RGL2 Ras binding domain (RBD significantly impaired oncogenic N-Ras-induced SRE activation. By monitoring the effect of Ras isoforms upon the change of global histone modifications in oncogenic Ras-overexpressed cells, we discovered that oncogenic N-Ras elevates H3K9ac/H3K23ac levels globally in the chromatin context. Importantly, chromatin immunoprecipitation (ChIP assays revealed that H3K9ac is significantly enriched at the promoter and coding regions of Egr1 and JunB. Collectively, our findings define an undocumented role of N-Ras in modulating of H3 acetylation and in gene regulation.

  13. Targeting oncogenic Myc as a strategy for cancer treatment.

    Science.gov (United States)

    Chen, Hui; Liu, Hudan; Qing, Guoliang

    2018-01-01

    The MYC family oncogene is deregulated in >50% of human cancers, and this deregulation is frequently associated with poor prognosis and unfavorable patient survival. Myc has a central role in almost every aspect of the oncogenic process, orchestrating proliferation, apoptosis, differentiation, and metabolism. Although Myc inhibition would be a powerful approach for the treatment of many types of cancers, direct targeting of Myc has been a challenge for decades owing to its "undruggable" protein structure. Hence, alternatives to Myc blockade have been widely explored to achieve desirable anti-tumor effects, including Myc/Max complex disruption, MYC transcription and/or translation inhibition, and Myc destabilization as well as the synthetic lethality associated with Myc overexpression. In this review, we summarize the latest advances in targeting oncogenic Myc, particularly for cancer therapeutic purposes.

  14. Modulating factors in the expression of radiation-induced oncogenic transformation

    International Nuclear Information System (INIS)

    Hall, E.J.; Hei, T.K.

    1990-01-01

    Many assays for oncogenic transformation have been developed ranging from those in established rodent cell lines where morphological alteration is scored, to those in human cells growing in nude mice where tumor invasiveness is scored. In general, systems that are most quantitaive are also the least relevant in terms of human carcinogenesis and human risk estimation. The development of cell culture systems has made it possible to assess at the cellular level the oncogenic potential of a variety of chemical, physical and viral agents. Cell culture systems afford the opportunity to identify factors and conditions that may prevent or enhance cellular transformation by radiation and chemicals. Permissive and protective factors in radiation-induced transformation include thyroid hormone and the tumor promoter TPA that increase the transformation incidence for a given dose of radiation, and retinoids, selenium, vitamin E, and 5-aminobenzamide that inhibit the expression of transformation. Densely ionizing α-particles, similar to those emitted by radon daughters, are highly effective in inducing transformations and appear to interact in a supra-additive fashion with asbestos fibers. The activation of a known dominant oncogene has not yet been demonstrated in radiation-induced oncogenic transformation. The most likely mechanism for radiation activation of an oncogene would be via the production of a chromosomal translocation. Radiation also efficiently induces deletions and may thus lead to the loss of a suppressor gene

  15. Dasatinib-induced pleural effusion: Chylothorax, an option to consider

    Directory of Open Access Journals (Sweden)

    Lucia Ferreiro

    2016-01-01

    Full Text Available Dasatinib is a drug for treatment of oncogene fusion protein BCR-ABL-positive chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia resistant/intolerant to imatinib. Pleural effusion (PE is a common adverse effect, and in this context, we present four cases seen due to this cause. One of them is a chylothorax. The PE grade is variable, and the physiopathology is not well established, although a block in T-lymphocyte function or inhibition of platelet-derived growth factor receptor-β is suggested being involved. The PE is generally a lymphocyte-predominant exudate, but can also present as chylothorax. Several factors have been associated with its appearance, particularly the administration in two daily doses. Low grade (1–2 PEs usually respond well to interrupt the treatment while those of higher grade may also require therapeutic thoracentesis and corticosteroids. There are currently no firm guidelines that establish when to resort to one form of treatment or another.

  16. Induction of non-apoptotic programmed cell death by oncogenic RAS in human epithelial cells and its suppression by MYC overexpression.

    Science.gov (United States)

    Dendo, Kasumi; Yugawa, Takashi; Nakahara, Tomomi; Ohno, Shin-Ichi; Goshima, Naoki; Arakawa, Hirofumi; Kiyono, Tohru

    2018-02-09

    Oncogenic mutations of RAS genes, found in about 30% of human cancers, are considered to play important roles in cancer development. However, oncogenic RAS can also induce senescence in mouse and human normal fibroblasts. In some cell lines, oncogenic RAS has been reported to induce non-apoptotic programed cell death (PCD). Here, we investigated effects of oncogenic RAS expression in several types of normal human epithelial cells. Oncogenic RAS but not wild-type RAS stimulated macropinocytosis with accumulation of large-phase lucent vacuoles in the cytoplasm, subsequently leading to cell death which was indistinguishable from a recently proposed new type of PCD, methuosis. A RAC1 inhibitor suppressed accumulation of macropinosomes and overexpression of MYC attenuated oncogenic RAS-induced such accumulation, cell cycle arrest and cell death. MYC suppression or rapamycin treatment in some cancer cell lines harbouring oncogenic mutations in RAS genes induced cell death with accumulation of macropinosomes. These results suggest that this type of non-apoptotic PCD is a tumour-suppressing mechanism acting against oncogenic RAS mutations in normal human epithelial cells, which can be overcome by MYC overexpression, raising the possibility that its induction might be a novel approach to treatment of RAS-mutated human cancers. © The Author(s) 2017. Published by Oxford University Press.

  17. Oncogenic transformation with radiation and chemicals: review

    International Nuclear Information System (INIS)

    Hall, E.J.; Hei, T.K.

    1985-01-01

    Quantitative in vitro assay systems for oncogenic transformation are a powerful research tool. They may be based on short-term cultures of hamster embryo cells, or established cell lines of mouse origin. While X-ray-induced transformation of human cells has been demonstrated, it has proved difficult to develop quantitative assay systems based on cells of human origin. The presently available quantitative assays have two quite distinct basic uses. First, they may be useful to accumulate data which is essentially pragmatic in nature. For example, they may be used to compare and contrast the oncogenic potential of chemotherapeutic agents or hypoxic cell sensitizers used or proposed in the clinic. They may be used to identify compounds that inhibit or suppress the transformation incidence resulting from known oncogenic agents, or they may be used to demonstrate the interaction between two different agents, such as radiation and asbestos. Second, they may prove to be invaluable in the study of the basic mechanisms of carcinogenesis, inasmuch as they represent models of tumourigenesis in which the various steps can be manipulated and modified more readily and in a controlled way. (author)

  18. Oncogenic osteomalacia diagnosed by blood pool scintigraphy

    International Nuclear Information System (INIS)

    Palaniswamy, Shanmuga Sundaram; Subramanyam, Padma; Kumar, Harish

    2011-01-01

    Oncogenic osteomalacia is a rare metabolic bone disease characterized by phosphaturia and hypophosphatemia. Certain tumors secrete a phosphaturic factor, which results in this metabolic abnormality; this factor called as phosphatonin, is in fact a fibroblast growth factor 23 (FGF-23) involved closely in phosphate homeostasis and skeletogenesis. Complete excision of these tumors facilitates reversal of the problem. We have reported here the case of a patient who was crippled with this disease and on thorough investigation revealed an oncogenic osteomalacia with tumor focus in the right tibia. The tumor was identified as a mesenchymal tumor, i.e., hemangiopericytoma. Tumor excision alleviated patient symptoms with rapid symptomatic and biochemical improvement

  19. Comparison of the oncogenic potential of several chemotherapeutic agents

    International Nuclear Information System (INIS)

    Miller, R.C.; Hall, E.J.; Osmak, R.S.

    1981-01-01

    Several chemotherapeutic drugs that have been routinely used in cancer treatment were tested for their carcinogenic potential. Two antitumor antibiotics (adriamycin and vincristine), an alkalating agent (melphalan), 5-azacytidine and the bifunctional agent cis-platinum that mimics alkylating agents and/or binds Oxygen-6 or Nitrogen-7 atoms of quanine were tested. Cell killing and cancer induction was assessed using in vitro transformation system. C3H/10T 1/2 cells, while normally exhibiting contact inhibition, can undergo transformation from normal contact inhibited cells to tumorgenic cells when exposed to chemical carcinogens. These cells have been used in the past by this laboratory to study oncogenic transformation of cells exposed to ionizing radiation and electron affinic compounds that sensitize hypoxic cells to x-rays. The endpoints of cell killing and oncogenic transformation presented here give an estimate of the carcinogenic potential of these agents

  20. BRAF and RAS oncogenes regulate Rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: a comparative study

    Directory of Open Access Journals (Sweden)

    Shirasawa Senji

    2011-09-01

    Full Text Available Abstract Background Colorectal cancer is a common disease that involves genetic alterations, such as inactivation of tumour suppressor genes and activation of oncogenes. Among them are RAS and BRAF mutations, which rarely coexist in the same tumour. Individual members of the Rho (Ras homology GTPases contribute with distinct roles in tumour cell morphology, invasion and metastasis. The aim of this study is to dissect cell migration and invasion pathways that are utilised by BRAFV600E as compared to KRASG12V and HRASG12V oncoproteins. In particular, the role of RhoA (Ras homolog gene family, member A, Rac1 (Ras-related C3 botulinum toxin substrate 1 and Cdc42 (cell division cycle 42 in cancer progression induced by each of the three oncogenes is described. Methods Colon adenocarcinoma cells with endogenous as well as ectopically expressed or silenced oncogenic mutations of BRAFV600E, KRASG12V and HRASG12V were employed. Signalling pathways and Rho GTPases were inhibited with specific kinase inhibitors and siRNAs. Cell motility and invasion properties were correlated with cytoskeletal properties and Rho GTPase activities. Results Evidence presented here indicate that BRAFV600E significantly induces cell migration and invasion properties in vitro in colon cancer cells, at least in part through activation of RhoA GTPase. The relationship established between BRAFV600E and RhoA activation is mediated by the MEK-ERK pathway. In parallel, KRASG12V enhances the ability of colon adenocarcinoma cells Caco-2 to migrate and invade through filopodia formation and PI3K-dependent Cdc42 activation. Ultimately increased cell migration and invasion, mediated by Rac1, along with the mesenchymal morphology obtained through the Epithelial-Mesenchymal Transition (EMT were the main characteristics rendered by HRASG12V in Caco-2 cells. Moreover, BRAF and KRAS oncogenes are shown to cooperate with the TGFβ-1 pathway to provide cells with additional transforming

  1. A Poly-ADP-Ribose Trigger Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene

    DEFF Research Database (Denmark)

    Singh, Hari R; Nardozza, Aurelio P; Möller, Ingvar R

    2017-01-01

    DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain......-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic...... cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD+-metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation....

  2. Structure of human POFUT1, its requirement in ligand-independent oncogenic Notch signaling, and functional effects of Dowling-Degos mutations

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Brian J.; Zimmerman, Brandon; Egan, Emily D.; Lofgren, Michael; Xu, Xiang; Hesser, Anthony; Blacklow, Stephen C.

    2017-03-17

    Protein O-fucosyltransferase-1 (POFUT1), which transfers fucose residues to acceptor sites on serine and threonine residues of epidermal growth factor-like repeats of recipient proteins, is essential for Notch signal transduction in mammals. Here, we examine the consequences of POFUT1 loss on the oncogenic signaling associated with certain leukemia-associated mutations of human Notch1, report the structures of human POFUT1 in free and GDP-fucose bound states, and assess the effects of Dowling-Degos mutations on human POFUT1 function. CRISPR-mediated knockout of POFUT1 in U2OS cells suppresses both normal Notch1 signaling, and the ligand-independent signaling associated with leukemogenic mutations of Notch1. Normal and oncogenic signaling are rescued by wild-type POFUT1 but rescue is impaired by an active-site R240A mutation. The overall structure of the human enzyme closely resembles that of the Caenorhabditis elegans protein, with an overall backbone RMSD of 0.93 Å, despite primary sequence identity of only 39% in the mature protein. GDP-fucose binding to the human enzyme induces limited backbone conformational movement, though the side chains of R43 and D244 reorient to make direct contact with the fucose moiety in the complex. The reported Dowling-Degos mutations of POFUT1, except for M262T, fail to rescue Notch1 signaling efficiently in the CRISPR-engineered POFUT1-/- background. Together, these studies identify POFUT1 as a potential target for cancers driven by Notch1 mutations and provide a structural roadmap for its inhibition.

  3. Oncogenic osteomalacia due to FGF23-expressing colon adenocarcinoma.

    Science.gov (United States)

    Leaf, David E; Pereira, Renata C; Bazari, Hasan; Jüppner, Harald

    2013-03-01

    Oncogenic osteomalacia, a paraneoplastic syndrome associated with hypophosphatemia due to increased urinary phosphate excretion, is caused by excessive synthesis and secretion of fibroblast growth factor 23 (FGF23), a phosphaturic hormone that is normally produced by osteocytes. Most cases of oncogenic osteomalacia have been associated with benign tumors of bone or soft tissue; however, whether malignant neoplasms can also produce and secrete FGF23 is currently unknown. The aim was to determine whether a malignant neoplasm could cause oncogenic osteomalacia through excessive production and secretion of FGF23. We describe an 80-year-old woman with stage IV colon adenocarcinoma who presented with severe hypophosphatemia (0.4 mg/dL; reference, 2.6-4.5 mg/dL). Fractional excretion of phosphate was 34% (reference, osteomalacia should be considered in the differential diagnosis for patients with a malignant tumor who present with hypophosphatemia.

  4. Targeting of the BLT2 in chronic myeloid leukemia inhibits leukemia stem/progenitor cell function

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Meifang; Ai, Hongmei; Li, Tao [Department of Laboratory Medicine, JingZhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou (China); Rajoria, Pasupati; Shahu, Prakash [Department of Clinical Medicine, Medical School of Yangtze University, Jingzhou (China); Li, Xiansong, E-mail: lixiansongjz@hotmail.com [Department of Neurosurgery, JingZhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou (China)

    2016-04-15

    Imatinib, a tyrosine kinase inhibitor (TKI) has significantly improved clinical outcome for chronic myeloid leukemia (CML) patients. However, patients develop resistance when the disease progresses to the blast phase (BP) and the mechanisms are not well understood. Here we show that BCR-ABL activates BLT2 in hematopoietic stem/progenitor cells to promote leukemogenesis and this involves the p53 signaling pathway. Compared to normal bone marrow (NBM), the mRNA and protein levels of BLT2 are significantly increased in BP-CML CD34{sup +} stem/progenitor cells. This is correlated with increasing BCR-ABL expression. In contrast, knockdown of BCR-ABL or inhibition of its tyrosine kinase activity decreases Blt2 protein level. BLT2 inhibition induces apoptosis, inhibits proliferation, colony formation and self-renewal capacity of CD34{sup +} cells from TKI-resistant BP-CML patients. Importantly, the inhibitory effects of BCR-ABL TKI on CML stem/progenitor cells are further enhanced upon combination with BLT2 inhibition. We further show that BLT2 activation selectively suppresses p53 but not Wnt or BMP-mediated luciferase activity and transcription. Our results demonstrate that BLT2 is a novel pathway activated by BCR-ABL and critically involved in the resistance of BP-CML CD34{sup +} stem/progenitors to TKIs treatment. Our findings suggest that BLT2 and p53 can serve as therapeutic targets for CML treatment. - Highlights: • BCR-ABL regulates BLT2 expression to promote leukemogenesis. • BLT2 is essential to maintain CML cell function. • Activation of BLT2 suppresses p53 signaling pathway in CML cells. • Inhibition of BLT2 and BCR-ABL synergize in eliminating CML CD34{sup +} stem/progenitors.

  5. Oncogenicity by adenovirus is not determined by the transforming region only

    NARCIS (Netherlands)

    Bernards, R.A.; Leeuw, M.G.W. de; Vaessen, M.J.; Houweling, A.; Eb, A.J. van der

    1984-01-01

    We have constructed a nondefective recombinant virus between the nononcogenic adenovirus 5 (Ad5) and the highly oncogenic Ad12. The recombinant genome consists essentially of Ad5 sequences, with the exception of the transforming early region 1 (E1) which is derived from Ad12. HeLa cells infected

  6. Oncogene-inducible organoids as a miniature platform to assess cancer characteristics

    NARCIS (Netherlands)

    Mizutani, Tomohiro; Tsukamoto, Yoshiyuki; Clevers, Hans

    2017-01-01

    Direct effects of oncogenic proteins or inhibitor treatments on signaling pathways are difficult to assess in transgenic mice. In this issue, Riemer et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201610058) demonstrate that oncogene-inducible organoids offer the experimental versatility of

  7. Synthesis and structure-activity relationship exploration of some potent anti-cancer phenyl amidrazone derivatives.

    Science.gov (United States)

    Habashneh, Almeqdad Y; El-Abadelah, Mustafa M; Bardaweel, Sanaa K; Taha, Mutasem O

    2017-12-04

    Amidrazones have been reported to have significant anti-tumor properties against several cancer cell lines. The current project aims to profile the structure-anticancer activity relationship of phenyl-amidrazons. Fifteen phenyl-amidrazone-piperazine derivatives were prepared and tested against four cancer cell lines (leukemia, prostate, breast and colon cancers). Six compounds illustrated low micromolar anticancer IC50 values, while the remaining compounds were either inactive or of moderate potencies. All compounds were virtually nontoxic against normal fibroblast cells. Docking into the oncogenic kinase bcr/abl illustrated the critical importance of (i) p-halogen substituent on the ligand's phenyl ring and (ii) the presence of positive ionizable moiety at the ligand's piperazine fragment for anticancer activity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. The effect of Tea Misletoe (Scurrula oortiana Stem Extract as Immuno-Modulator on Oncogenic Marek’s Disease Virus Infection

    Directory of Open Access Journals (Sweden)

    Mulyoto Samsi

    2007-11-01

    Full Text Available Marek’s disease virus (MDV is one of oncogenic herpesvirus. It causes immunosupresion and cancer in chicken. Several plants produce bioactive compounds which are very useful for treatment of many disease, especially hiperproliveration and virus infection. This study was aimed to find out mechanism of immuno-modulatory capacity in layer commercial chicken administered orally with extract of tea parasite (Scurrula oortiana in dose of 10 mg/kg BW through drinking water, then the chicken were infected by intraperitoneal oncogenic MDV in dose of 1,0 x103 TCID50. The study used 60 layer commercial day old chicks (DOC divided into four group treatments. The treatments were group A (administered S. oortiana extract and without MDV infection, B (neither S. oortiana nor MDV infection, C (administered S. oortiana extract and with MDV infection, and D (without administered S. oortiana extract, but with MDV infection. Results showed that MDV oncogenic caused immunosupresion at a day post infection (p.i and recovery to be normal based on relative weight of bursa Fabricius and thymus at 40 days p.i. The extract of S. oortiana had a capability as an immunomodulator indicated by the increase of relative weight of bursa Fabricius and thymus at day 20 days p.i. (Animal Production 9(2: 172-177 (2007 Key Words: Marek’s disease virus (MDV, Scurrula oortiana, immuno-modulator

  9. Alteration in gene expression profile and oncogenicity of esophageal squamous cell carcinoma by RIZ1 upregulation.

    Science.gov (United States)

    Dong, Shang-Wen; Li, Dong; Xu, Cong; Sun, Pei; Wang, Yuan-Guo; Zhang, Peng

    2013-10-07

    To investigate the effect of retinoblastoma protein-interacting zinc finger gene 1 (RIZ1) upregulation in gene expression profile and oncogenicity of human esophageal squamous cell carcinoma (ESCC) cell line TE13. TE13 cells were transfected with pcDNA3.1(+)/RIZ1 and pcDNA3.1(+). Changes in gene expression profile were screened and the microarray results were confirmed by reverse transcription-polymerase chain reaction (RT-PCR). Nude mice were inoculated with TE13 cells to establish ESCC xenografts. After two weeks, the inoculated mice were randomly divided into three groups. Tumors were injected with normal saline, transfection reagent pcDNA3.1(+) and transfection reagent pcDNA3.1(+)/RIZ1, respectively. Tumor development was quantified, and changes in gene expression of RIZ1 transfected tumors were detected by RT-PCR and Western blotting. DNA microarray data showed that RIZ1 transfection induced widespread changes in gene expression profile of cell line TE13, with 960 genes upregulated and 1163 downregulated. Treatment of tumor xenografts with RIZ1 recombinant plasmid significantly inhibited tumor growth, decreased tumor size, and increased expression of RIZ1 mRNA compared to control groups. The changes in gene expression profile were also observed in vivo after RIZ1 transfection. Most of the differentially expressed genes were associated with cell development, supervision of viral replication, lymphocyte costimulatory and immune system development in esophageal cells. RIZ1 gene may be involved in multiple cancer pathways, such as cytokine receptor interaction and transforming growth factor beta signaling. The development and progression of esophageal cancer are related to the inactivation of RIZ1. Virus infection may also be an important factor.

  10. Accurate determination of arsenic in arsenobetaine standard solutions of BCR-626 and NMIJ CRM 7901-a by neutron activation analysis coupled with internal standard method.

    Science.gov (United States)

    Miura, Tsutomu; Chiba, Koichi; Kuroiwa, Takayoshi; Narukawa, Tomohiro; Hioki, Akiharu; Matsue, Hideaki

    2010-09-15

    Neutron activation analysis (NAA) coupled with an internal standard method was applied for the determination of As in the certified reference material (CRM) of arsenobetaine (AB) standard solutions to verify their certified values. Gold was used as an internal standard to compensate for the difference of the neutron exposure in an irradiation capsule and to improve the sample-to-sample repeatability. Application of the internal standard method significantly improved linearity of the calibration curve up to 1 microg of As, too. The analytical reliability of the proposed method was evaluated by k(0)-standardization NAA. The analytical results of As in AB standard solutions of BCR-626 and NMIJ CRM 7901-a were (499+/-55)mgkg(-1) (k=2) and (10.16+/-0.15)mgkg(-1) (k=2), respectively. These values were found to be 15-20% higher than the certified values. The between-bottle variation of BCR-626 was much larger than the expanded uncertainty of the certified value, although that of NMIJ CRM 7901-a was almost negligible. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  11. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1)

    DEFF Research Database (Denmark)

    Marzec, Michal; Zhang, Qian; Goradia, Ami

    2008-01-01

    The mechanisms of malignant cell transformation caused by the oncogenic, chimeric nucleophosmin (NPM)/anaplastic lymphoma kinase (ALK) remain only partially understood, with most of the previous studies focusing mainly on the impact of NPM/ALK on cell survival and proliferation. Here we report th...

  12. Tyrosine kinase chromosomal translocations mediate distinct and overlapping gene regulation events

    International Nuclear Information System (INIS)

    Kim, Hani; Gillis, Lisa C; Jarvis, Jordan D; Yang, Stuart; Huang, Kai; Der, Sandy; Barber, Dwayne L

    2011-01-01

    Leukemia is a heterogeneous disease commonly associated with recurrent chromosomal translocations that involve tyrosine kinases including BCR-ABL, TEL-PDGFRB and TEL-JAK2. Most studies on the activated tyrosine kinases have focused on proximal signaling events, but little is known about gene transcription regulated by these fusions. Oligonucleotide microarray was performed to compare mRNA changes attributable to BCR-ABL, TEL-PDGFRB and TEL-JAK2 after 1 week of activation of each fusion in Ba/F3 cell lines. Imatinib was used to control the activation of BCR-ABL and TEL-PDGFRB, and TEL-JAK2-mediated gene expression was examined 1 week after Ba/F3-TEL-JAK2 cells were switched to factor-independent conditions. Microarray analysis revealed between 800 to 2000 genes induced or suppressed by two-fold or greater by each tyrosine kinase, with a subset of these genes commonly induced or suppressed among the three fusions. Validation by Quantitative PCR confirmed that eight genes (Dok2, Mrvi1, Isg20, Id1, gp49b, Cxcl10, Scinderin, and collagen Vα1(Col5a1)) displayed an overlapping regulation among the three tested fusion proteins. Stat1 and Gbp1 were induced uniquely by TEL-PDGFRB. Our results suggest that BCR-ABL, TEL-PDGFRB and TEL-JAK2 regulate distinct and overlapping gene transcription profiles. Many of the genes identified are known to be involved in processes associated with leukemogenesis, including cell migration, proliferation and differentiation. This study offers the basis for further work that could lead to an understanding of the specificity of diseases caused by these three chromosomal translocations

  13. JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    William Vainchenker

    2018-01-01

    Full Text Available JAK inhibitors have been developed following the discovery of the JAK2V617F in 2005 as the driver mutation of the majority of non-BCR-ABL1 myeloproliferative neoplasms (MPNs. Subsequently, the search for JAK2 inhibitors continued with the discovery that the other driver mutations (CALR and MPL also exhibited persistent JAK2 activation. Several type I ATP-competitive JAK inhibitors with different specificities were assessed in clinical trials and exhibited minimal hematologic toxicity. Interestingly, these JAK inhibitors display potent anti-inflammatory activity. Thus, JAK inhibitors targeting preferentially JAK1 and JAK3 have been developed to treat inflammation, autoimmune diseases, and graft-versus-host disease. Ten years after the beginning of clinical trials, only two drugs have been approved by the US Food and Drug Administration: one JAK2/JAK1 inhibitor (ruxolitinib in intermediate-2 and high-risk myelofibrosis and hydroxyurea-resistant or -intolerant polycythemia vera and one JAK1/JAK3 inhibitor (tofacitinib in methotrexate-resistant rheumatoid arthritis. The non-approved compounds exhibited many off-target effects leading to neurological and gastrointestinal toxicities, as seen in clinical trials for MPNs. Ruxolitinib is a well-tolerated drug with mostly anti-inflammatory properties. Despite a weak effect on the cause of the disease itself in MPNs, it improves the clinical state of patients and increases survival in myelofibrosis. This limited effect is related to the fact that ruxolitinib, like the other type I JAK2 inhibitors, inhibits equally mutated and wild-type JAK2 (JAK2WT and also the JAK2 oncogenic activation. Thus, other approaches need to be developed and could be based on either (1 the development of new inhibitors specifically targeting JAK2V617F or (2 the combination of the actual JAK2 inhibitors with other therapies, in particular with molecules targeting pathways downstream of JAK2 activation or the stability of JAK2

  14. Stepwise effects of the BCR sequential chemical extraction procedure on dissolution and metal release from common ferromagnesian clay minerals: A combined solution chemistry and X-ray powder diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, P.C. [Geology Department, Middlebury College, Middlebury, Vermont 05753 (United States)], E-mail: pryan@middlebury.edu; Hillier, S. [Macaulay Institute, Aberdeen, AB15 8QH UK (United Kingdom); Wall, A.J. [Department of Geosciences, Penn State University, University Park, Pennsylvania, 16802 (United States)

    2008-12-15

    Sequential extraction procedures (SEPs) are commonly used to determine speciation of trace metals in soils and sediments. However, the non-selectivity of reagents for targeted phases has remained a lingering concern. Furthermore, potentially reactive phases such as phyllosilicate clay minerals often contain trace metals in structural sites, and their reactivity has not been quantified. Accordingly, the objective of this study is to analyze the behavior of trace metal-bearing clay minerals exposed to the revised BCR 3-step plus aqua regia SEP. Mineral quantification based on stoichiometric analysis and quantitative powder X-ray diffraction (XRD) documents progressive dissolution of chlorite (CCa-2 ripidolite) and two varieties of smectite (SapCa-2 saponite and SWa-1 nontronite) during steps 1-3 of the BCR procedure. In total, 8 ({+-} 1) % of ripidolite, 19 ({+-} 1) % of saponite, and 19 ({+-} 3) % of nontronite (% mineral mass) dissolved during extractions assumed by many researchers to release trace metals from exchange sites, carbonates, hydroxides, sulfides and organic matter. For all three reference clays, release of Ni into solution is correlated with clay dissolution. Hydrolysis of relatively weak Mg-O bonds (362 kJ/mol) during all stages, reduction of Fe(III) during hydroxylamine hydrochloride extraction and oxidation of Fe(II) during hydrogen peroxide extraction are the main reasons for clay mineral dissolution. These findings underscore the need for precise mineral quantification when using SEPs to understand the origin/partitioning of trace metals with solid phases.

  15. Oncogenic osteomalacia presenting as bilateral stress fractures of the tibia

    International Nuclear Information System (INIS)

    Ohashi, Kenjirou; Ohnishi, Takeshi; Ishikawa, Tohru; Tani, Haruo; Uesugi, Keisuke; Takagi, Masayuki

    1999-01-01

    We report on a patient with bilateral stress fractures of the tibia who subsequently showed classic biochemical features of oncogenic osteomalacia. Conventional radiographs were normal. MR imaging revealed symmetric, bilateral, band-like low-signal lesions perpendicular to the medial cortex of the tibiae and corresponding to the only lesions subsequently seen on the bone scan. A maxillary sinus lesion was subsequently detected and surgically removed resulting in prompt alleviation of symptoms and normalization of hypophosphatemia and low 1,25-(OH) 2 vitamin D 3 . The lesion was pathologically diagnosed as a hemangiopericytoma-like tumor. Patients with oncogenic osteomalacia may present with stress fractures limited to the tibia, as seen in athletes. The clue to the real diagnosis lies in paying close attention to the serum phosphate levels, especially in patients suffering generalized symptoms of weakness and not given to unusual physical activity. (orig.)

  16. AZIN1 RNA editing confers cancer stemness and enhances oncogenic potential in colorectal cancer.

    Science.gov (United States)

    Shigeyasu, Kunitoshi; Okugawa, Yoshinaga; Toden, Shusuke; Miyoshi, Jinsei; Toiyama, Yuji; Nagasaka, Takeshi; Takahashi, Naoki; Kusunoki, Masato; Takayama, Tetsuji; Yamada, Yasuhide; Fujiwara, Toshiyoshi; Chen, Leilei; Goel, Ajay

    2018-06-21

    Adenosine-to-inosine (A-to-I) RNA editing, a process mediated by adenosine deaminases that act on the RNA (ADAR) gene family, is a recently discovered epigenetic modification dysregulated in human cancers. However, the clinical significance and the functional role of RNA editing in colorectal cancer (CRC) remain unclear. We have systematically and comprehensively investigated the significance of the expression status of ADAR1 and of the RNA editing levels of antizyme inhibitor 1 (AZIN1), one of the most frequently edited genes in cancers, in 392 colorectal tissues from multiple independent CRC patient cohorts. Both ADAR1 expression and AZIN1 RNA editing levels were significantly elevated in CRC tissues when compared with corresponding normal mucosa. High levels of AZIN1 RNA editing emerged as a prognostic factor for overall survival and disease-free survival and were an independent risk factor for lymph node and distant metastasis. Furthermore, elevated AZIN1 editing identified high-risk stage II CRC patients. Mechanistically, edited AZIN1 enhances stemness and appears to drive the metastatic processes. We have demonstrated that edited AZIN1 functions as an oncogene and a potential therapeutic target in CRC. Moreover, AZIN1 RNA editing status could be used as a clinically relevant prognostic indicator in CRC patients.

  17. hrHPV E5 oncoprotein: immune evasion and related immunotherapies.

    Science.gov (United States)

    de Freitas, Antonio Carlos; de Oliveira, Talita Helena Araújo; Barros, Marconi Rego; Venuti, Aldo

    2017-05-25

    The immune response is a key factor in the fight against HPV infection and related cancers, and thus, HPV is able to promote immune evasion through the expression of oncogenes. In particular, the E5 oncogene is responsible for modulation of several immune mechanisms, including antigen presentation and inflammatory pathways. Moreover, E5 was suggested as a promising therapeutic target, since there is still no effective medical therapy for the treatment of HPV-related pre-neoplasia and cancer. Indeed, several studies have shown good prospective for E5 immunotherapy, suggesting that it could be applied for the treatment of pre-cancerous lesions. Thus, insofar as the majority of cervical, oropharyngeal and anal cancers are caused by high-risk HPV (hrHPV), mainly by HPV16, the aim of this review is to discuss the immune pathways interfered by E5 oncoprotein of hrHPV highlighting the various aspects of the potential immunotherapeutic approaches.

  18. Quantitation of multiple myeloma oncogene 1/interferon-regulatory factor 4 gene expression in malignant B-cell proliferations and normal leukocytes.

    Science.gov (United States)

    Yamada, M; Asanuma, K; Kobayashi, D; Moriai, R; Yajima, T; Yagihashi, A; Yamamori, S; Watanabe, N

    2001-01-01

    We studied multiple myeloma oncogene 1/interferon-regulatory factor 4 (MUM1/IRF4) mRNA expression in various malignant human hematopoietic cell lines and normal leukocyte fractions. A quantitative reverse transcription-polymerase chain reaction was used to assess expression and chromosomes were examined for anomalies by fluorescent in situ hybridization. Among 12 cell lines examined, mRNA transcripts were expressed only in B-lymphoblastic and myeloma cell lines. Myeloma cells and malignant cell lines derived from mature B cells expressed more transcript than cell lines derived from immature B cells. Transcript levels, however, showed no association with chromosomal translocations. Expression in B-cell fractions from healthy donors was much less than in the malignant cells. In addition, MUM1/IRF4 mRNA expressed in samples from patients with acute lymphoblastic leukemia derived from B cells but not T cells. Our results suggested that MUM1/IRF4 gene expression is related to stage of differentiation of malignant B cells and they indicated the possibility that the quantitative analysis of MUM1/IRF4 gene is a useful tool for detection of malignant B-cell proliferations in clinical laboratory tests.

  19. BCR-ABL V280G Mutation, Potential Role in Imatinib Resistance: First Case Report

    OpenAIRE

    Azevedo, Ana P; Reichert, Alice; Afonso, Celina; Alberca, Maria D; Tavares, Purifica??o; Lima, Fernando

    2017-01-01

    Export Date: 28 December 2017 Correspondence Address: Azevedo, A.P.; Department of Clinical Pathology, Hospital São Francisco Xavier, Centro Hospitalar Lisboa Ocidental, Estrada do Forte do Alto do Duque, Portugal; email: Chemicals/CAS: glycine, 56-40-6, 6000-43-7, 6000-44-8; hydroxyurea, 127-07-1; imatinib, 152459-95-5, 220127-57-1; nilotinib, 641571-10-0; valine, 7004-03-7, 72-18-4 References: Radich, J.P., Shah, N.P., Mauro, M.J., Integrating current treatment options ...

  20. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation.

    Science.gov (United States)

    Filippakopoulos, Panagis; Kofler, Michael; Hantschel, Oliver; Gish, Gerald D; Grebien, Florian; Salah, Eidarus; Neudecker, Philipp; Kay, Lewis E; Turk, Benjamin E; Superti-Furga, Giulio; Pawson, Tony; Knapp, Stefan

    2008-09-05

    The SH2 domain of cytoplasmic tyrosine kinases can enhance catalytic activity and substrate recognition, but the molecular mechanisms by which this is achieved are poorly understood. We have solved the structure of the prototypic SH2-kinase unit of the human Fes tyrosine kinase, which appears specialized for positive signaling. In its active conformation, the SH2 domain tightly interacts with the kinase N-terminal lobe and positions the kinase alphaC helix in an active configuration through essential packing and electrostatic interactions. This interaction is stabilized by ligand binding to the SH2 domain. Our data indicate that Fes kinase activation is closely coupled to substrate recognition through cooperative SH2-kinase-substrate interactions. Similarly, we find that the SH2 domain of the active Abl kinase stimulates catalytic activity and substrate phosphorylation through a distinct SH2-kinase interface. Thus, the SH2 and catalytic domains of active Fes and Abl pro-oncogenic kinases form integrated structures essential for effective tyrosine kinase signaling.

  1. The Curcumin Analogue 1,5-Bis(2-hydroxyphenyl-1,4-pentadiene-3-one Induces Apoptosis and Downregulates E6 and E7 Oncogene Expression in HPV16 and HPV18-Infected Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Felicia Paulraj

    2015-06-01

    Full Text Available In an effort to study curcumin analogues as an alternative to improve the therapeutic efficacy of curcumin, we screened the cytotoxic potential of four diarylpentanoids using the HeLa and CaSki cervical cancer cell lines. Determination of their EC50 values indicated relatively higher potency of 1,5-bis(2-hydroxyphenyl-1,4-pentadiene-3-one (MS17, 1.03 ± 0.5 μM; 2.6 ± 0.9 μM and 1,5-bis(4-hydroxy-3-methoxyphenyl-1,4-pentadiene-3-one (MS13, 2.8 ± 0.4; 6.7 ± 2.4 μM in CaSki and HeLa, respectively, with significantly greater growth inhibition at 48 and 72 h of treatment compared to the other analogues or curcumin. Based on cytotoxic and anti-proliferative activity, MS17 was selected for comprehensive apoptotic studies. At 24 h of treatment, fluorescence microscopy detected that MS17-exposed cells exhibited significant morphological changes consistent with apoptosis, corroborated by an increase in nucleosomal enrichment due to DNA fragmentation in HeLa and CaSki cells and activation of caspase-3 activity in CaSki cells. Quantitative real-time PCR also detected significant down-regulation of HPV18- and HPV16-associated E6 and E7 oncogene expression following treatment. The overall data suggests that MS17 treatment has cytotoxic, anti-proliferative and apoptosis-inducing potential in HPV-positive cervical cancer cells. Furthermore, its role in down-regulation of HPV-associated oncogenes responsible for cancer progression merits further investigation into its chemotherapeutic role for cervical cancer.

  2. FACTORES PRONOSTICOS DEL CANCER DE MAMA Y ONCOGEN HER2/NEU

    Directory of Open Access Journals (Sweden)

    F.J. Martín Gil

    2006-08-01

    Full Text Available ABSTRACT: PRONOSTIC FACTORS OF BREAST CANCER AND HER2/NEUThe breast cancer constitutes the main cause of death by cancer in women of our country. In spite of the efforts directed in campaigns of precocious detection, the incidence continues increasing in a 1% approximately per year and the rate of mortality stay constant. Therefore it is of great importance to consolidate efforts directed towards the development and use of therapeutic and diagnostic methods. The development of neoplasia is directly related to successive genetic mutations in which cellular oncogenes are involved.It is known that in case of breast cancer the Her2/neu oncogene (Human epidermal growth receptor-2 factor is amplified and/or overexpressed in approximately a 30% of the cases. The knowledge of a positive result for Her2/neu overexpression has an important value in prognosis as it is associated to a greater aggressiveness of the disease. Also, this gene can be an answer marker to certain treatments like trastuzumab. RESUMEN:El cáncer de mama (CM constituye la principal causa de muerte por cáncer en mujeres de nuestro país. A pesar de los esfuerzos dirigidos hacia las campañas de detección precoz, la incidencia sigue aumentando aproximadamente en un 1% por año y la tasa de mortalidad sigue manteniéndose constante.Es por ello de gran importancia aunar esfuerzos dirigidos al desarrollo y utilización de métodos diagnósticos y terapéuticos. El desarrollo de una neoplasia está directamente relacionado con mutaciones genéticas sucesivas en las que están involucrados oncogenes celulares.En el caso del cáncer de mama se sabe que el encogen Her2/neu (Human epidermal growth factor receptor-2 está amplificado y/o sobreexpresado en aproximadamente un 30% de los casos. El conocimiento de la positividad del mismo tiene un importante valor pronóstico asociándose a una mayor agresividad de la enfermedad. Así mismo dicho gen puede ser un marcador predictivo de respuesta

  3. A view on EGFR-targeted therapies from the oncogene-addiction perspective.

    Science.gov (United States)

    Perez, Rolando; Crombet, Tania; de Leon, Joel; Moreno, Ernesto

    2013-01-01

    Tumor cell growth and survival can often be impaired by inactivating a single oncogen- a phenomenon that has been called as "oncogene addiction." It is in such scenarios that molecular targeted therapies may succeed. among known oncogenes, the epidermal growth factor receptor (EGFR) has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. a critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the "EGFR addiction" phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.

  4. A view on EGFR-targeted therapies from the oncogene-addiction perspective

    Directory of Open Access Journals (Sweden)

    Rolando ePerez

    2013-04-01

    Full Text Available Tumor cell growth and survival can often be impaired by inactivating a single oncogen – a phenomenon that has been called as 'oncogene addiction'. It is in such scenarios that molecular targeted therapies may succeed. Among known oncogenes, the epidermal growth factor receptor (EGFR has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. A critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the 'EGFR addiction' phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.

  5. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer

    DEFF Research Database (Denmark)

    Vallejo, Adrian; Perurena, Naiara; Guruceaga, Elisabet

    2017-01-01

    KRAS mutated tumours represent a large fraction of human cancers, but the vast majority remains refractory to current clinical therapies. Thus, a deeper understanding of the molecular mechanisms triggered by KRAS oncogene may yield alternative therapeutic strategies. Here we report the identifica...

  6. Oncogenic osteomalacia presenting as bilateral stress fractures of the tibia

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kenjirou; Ohnishi, Takeshi; Ishikawa, Tohru [Department of Radiology, St. Marianna University Hospital, Kanagawa (Japan); Tani, Haruo [Department of Internal Medicine III, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan); Uesugi, Keisuke [Department of Otolaryngology, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan); Takagi, Masayuki [Department of Pathology, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan)

    1999-01-01

    We report on a patient with bilateral stress fractures of the tibia who subsequently showed classic biochemical features of oncogenic osteomalacia. Conventional radiographs were normal. MR imaging revealed symmetric, bilateral, band-like low-signal lesions perpendicular to the medial cortex of the tibiae and corresponding to the only lesions subsequently seen on the bone scan. A maxillary sinus lesion was subsequently detected and surgically removed resulting in prompt alleviation of symptoms and normalization of hypophosphatemia and low 1,25-(OH){sub 2} vitamin D{sub 3}. The lesion was pathologically diagnosed as a hemangiopericytoma-like tumor. Patients with oncogenic osteomalacia may present with stress fractures limited to the tibia, as seen in athletes. The clue to the real diagnosis lies in paying close attention to the serum phosphate levels, especially in patients suffering generalized symptoms of weakness and not given to unusual physical activity. (orig.) With 4 figs., 6 refs.

  7. Silencing Agrobacterium oncogenes in transgenic grapevine results in strain-specific crown gall resistance.

    Science.gov (United States)

    Galambos, A; Zok, A; Kuczmog, A; Oláh, R; Putnoky, P; Ream, W; Szegedi, E

    2013-11-01

    Grapevine rootstock transformed with an Agrobacterium oncogene-silencing transgene was resistant to certain Agrobacterium strains but sensitive to others. Thus, genetic diversity of Agrobacterium oncogenes may limit engineering crown gall resistance. Crown gall disease of grapevine induced by Agrobacterium vitis or Agrobacterium tumefaciens causes serious economic losses in viticulture. To establish crown gall-resistant lines, somatic proembryos of Vitis berlandieri × V. rupestris cv. 'Richter 110' rootstock were transformed with an oncogene-silencing transgene based on iaaM and ipt oncogene sequences from octopine-type, tumor-inducing (Ti) plasmid pTiA6. Twenty-one transgenic lines were selected, and their transgenic nature was confirmed by polymerase chain reaction (PCR). These lines were inoculated with two A. tumefaciens and three A. vitis strains. Eight lines showed resistance to octopine-type A. tumefaciens A348. Resistance correlated with the expression of the silencing genes. However, oncogene silencing was mostly sequence specific because these lines did not abolish tumorigenesis by A. vitis strains or nopaline-type A. tumefaciens C58.

  8. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling

    OpenAIRE

    Shrestha, Yashaswi; Schafer, Eric J.; Boehm, Jesse S.; Thomas, Sapana R.; He, Frank; Du, Jinyan; Wang, Shumei; Barretina, Jordi; Weir, Barbara A.; Zhao, Jean J.; Polyak, Kornelia; Golub, Todd R.; Beroukhim, Rameen; Hahn, William C.

    2011-01-01

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK Mitogen-Activated Protein Kinase (MAPK) pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce ...

  9. Attempts on producing lymphoid cell line from Penaeus monodon by induction with SV40-T and 12S EIA oncogenes.

    Science.gov (United States)

    Puthumana, Jayesh; Prabhakaran, Priyaja; Philip, Rosamma; Singh, I S Bright

    2015-12-01

    In an attempt of in vitro transformation, transfection mediated expression of Simian virus-40 (T) antigen (SV40-T) and transduction mediated expression of Adenovirus type 12 early region 1A (12S E1A) oncogene were performed in Penaeus monodon lymphoid cells. pSV3-neo vector encoding SV40-T oncogene and a recombinant baculovirus BacP2-12S E1A-GFP encoding 12S E1A oncogene under the control of hybrid promoters were used. Electroporation and lipofection mediated transformation of SV40-T in lymphoid cells confirmed the transgene expression by phenotypic variation and the expression of GFP in co-transfection experiment. The cells transfected by lipofection (≥ 5%) survived for 14 days with lower toxicity (30%), whilst on electroporation, most of the cells succumbed to death (60%) and survived cells lived up to 7 days. Transduction efficiency in primary lymphoid cells was more than 80% within 14 days of post-transduction, however, an incubation period of 7 days post-transduction was observed without detectable expression of 12S E1A. High level of oncogenic 12S E1A expression were observed after 14 day post-transduction and the proliferating cells survived for more than 90 days with GFP expression, however, without in vitro transformation and immortalization. The study put forth the requirement of transduction mediated 'specific' oncogene expression along with telomerase activation and epigenetic induction for the immortalization and establishment of shrimp cell line. Copyright © 2015. Published by Elsevier Ltd.

  10. [Genotyping of oncogenic human papilloma viruses in women with HG SIL diagnosis].

    Science.gov (United States)

    Kedzia, Witold; Pruski, Dominik; Józefiak, Agata; Rokita, Wojciech; Spaczyński, Marek

    2010-10-01

    Development of primary prevention of cervical cancer in other words a vaccination against selected, oncogenic HPV types, entails an increasing importance of epidemiological studies and prevalence of various types of human papilloma virus. The incidence of HPV varies depending on the geographic location of the population. The effectiveness of primary prevention against HPV 16, 18, in the context of reducing the incidence of cervical cancer will depend, among others, on the prevalence of these types in the population and virus-like antigens, which are partially cross-resistant. Identification of the most frequent, oncogenic HPV types in women with HG SIL diagnosis from Central and Western Poland to assess the merits of the development of primary prevention. For the purpose of molecular tests identifying the presence of 13 DNA oncogenic virus types, swabs were taken with the cyto-brush from 76 women diagnosed with CIN 2 or CIN 3 (HG SIL). Patients eligible for the study were diagnosed at the Laboratory of Pathophysiology of Uterine Cervix, Gynecology and Obstetrics Clinical Hospital of Karol Marcinkowski University of Medical Sciences. Patients came from Central and Western parts of Poland. Cell material in which the method of Amplicor HPV (Roche Diagnostics) identified the presence of DNA of oncogenic HPV types was in each case subsequently subjected to genotyping using the molecular test - Linear Array HPV Genotyping (Roche Diagnostics). Five most common oncogenic HPV types in order of detection included: 16, 33, 18, 31, 56. Together these five types of virus comprised 75.86% (88/116) of all detected HPV types. 1. In women from Central and Western Poland, diagnosed with HG SIL, the most common HPV genotypes were HPV 16, HPV33, HPV 18, HPV31, HPV56. 2. Two HPV types 16 and 18, against which vaccinations are directed, belong to the group of three genotypes of HPV most commonly identified in the evolution of CIN 2, CIN 3 diagnosed in women from Central and Western

  11. Comparison of imatinib, dasatinib, nilotinib and INNO-406 in imatinib-resistant cell lines.

    Science.gov (United States)

    Deguchi, Yasuyuki; Kimura, Shinya; Ashihara, Eishi; Niwa, Tomoko; Hodohara, Keiko; Fujiyama, Yoshihide; Maekawa, Taira

    2008-06-01

    We compared the growth-inhibitory effects and inhibition profile of the SRC family kinases (SFKs) of imatinib, dasatinib, nilotinib and INNO-406. Dasatinib exhibited the strongest potency against BCR-ABL with little selectivity over SFKs. Nilotinib exhibited a weaker affinity than the other inhibitors, but was highly specific for ABL and may be useful for the treatment of P-glycoprotein overexpressing leukemic cells. INNO-406 had an intermediate affinity for BCR-ABL between that of dasatinib and nilotinib, and inhibited only SFKs LCK and LYN among SFKs. Both nilotinib and INNO-406 were potent inhibitors of the dasatinib-resistant T315A, F317L and F317V BCR-ABL mutations.

  12. BCR: a service to quality assurance in analytical chemistry - some experiences and achievements with regard to reference material preparation

    Energy Technology Data Exchange (ETDEWEB)

    Griepink, B. (Commission of the European Communities, Measurements and Testing Programme (BCR), Brussels (Belgium)); Quevauviller, P. (Commission of the European Communities, Measurements and Testing Programme (BCR), Brussels (Belgium)); Maier, E.A. (Commission of the European Communities, Measurements and Testing Programme (BCR), Brussels (Belgium)); Vandendriessche, S. (Commission of the European Communities, Measurements and Testing Programme (BCR), Brussels (Belgium))

    Despite all efforts to improve the quality of results of measurements, intercomparisons demonstrate a considerable discrepancy. This fact was also shown by many of the round robins organised by the BCR (Commission of the European Communities) on inorganic, speciation, and organic determinations in various environmental matrices. It is clear that further efforts have to be made to improve the state of the art of a wide variety of analyses. This means that the demand for certified reference materials (CRMs) is and will be in constant increase. RMs are required for the validation of methods, for proficiency testing or for training purposes. The production of RMs and CRMs resembling the composition of real matrices poses difficult problems for some compounds and is a challenge for the producers. This paper presents some recent experiences and achievements of the BCR in special cases. (orig.)

  13. Early bichemical markers of effects: Enzyme induction, oncogene activation and markers of oxidative damage

    DEFF Research Database (Denmark)

    Poulsen, Henrik E.; Loft, Steffen

    1995-01-01

    Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein......Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein...

  14. Role of trace metals in cell proliferation in the human neuroblastoma: relations with the oncogene N-myc

    International Nuclear Information System (INIS)

    Moretto, Ph.; Michelet, C.; Gouget, B.; Ortega, R.; Sergiant, C.; Llabador, Y.; Simonoff, M.; Benard, J.

    1997-01-01

    Neuroblastoma is one of the most common tumors in young children. Iron is known to be necessary for cellular proliferation. Several studies have suggested that neuroblastoma cells appear to be relatively sensitive to growth inhibition by specific Fe chelators, in vitro. In addition, it appeared that an increased serum ferritin level at diagnosis was associated with a poorer outcome than a normal level. On the other hand it was reported that untreated primary neuroblastoma had multiple copies of the N-myc oncogene. A significant association between genomic amplification and rapid tumor progression after diagnosis has been demonstrated. In order to study the relationship between iron N-myc amplification, we propose to determine the trace metal content of neuroblastoma cells. Preliminary results obtained with two distinct cell lines: SK-N-SH, a neuroblastoma cell line with a single copy of N-myc and IGR-N-91, a metastatic cell line exhibiting 60 copies of N-myc are presented. (authors)

  15. The WIP1 oncogene promotes progression and invasion of aggressive medulloblastoma variants.

    Science.gov (United States)

    Buss, M C; Remke, M; Lee, J; Gandhi, K; Schniederjan, M J; Kool, M; Northcott, P A; Pfister, S M; Taylor, M D; Castellino, R C

    2015-02-26

    Recent studies suggest that medulloblastoma, the most common malignant brain tumor of childhood, is comprised of four disease variants. The WIP1 oncogene is overexpressed in Group 3 and 4 tumors, which contain medulloblastomas with the most aggressive clinical behavior. Our data demonstrate increased WIP1 expression in metastatic medulloblastomas, and inferior progression-free and overall survival of patients with WIP1 high-expressing medulloblastoma. Microarray analysis identified upregulation of genes involved in tumor metastasis, including the G protein-coupled receptor CXCR4, in medulloblastoma cells with high WIP1 expression. Stimulation with the CXCR4 ligand SDF1α activated PI-3 kinase signaling, and promoted growth and invasion of WIP1 high-expressing medulloblastoma cells in a p53-dependent manner. When xenografted into the cerebellum of immunodeficient mice, medulloblastoma cells with stable or endogenous high WIP1 expression exhibited strong expression of CXCR4 and activated AKT in primary and invasive tumor cells. WIP1 or CXCR4 knockdown inhibited medulloblastoma growth and invasion. WIP1 knockdown also improved the survival of mice xenografted with WIP1 high-expressing medulloblastoma cells. WIP1 knockdown inhibited cell surface localization of CXCR4 by suppressing expression of the G protein receptor kinase 5, GRK5. Restoration of wild-type GRK5 promoted Ser339 phosphorylation of CXCR4 and inhibited the growth of WIP1-stable medulloblastoma cells. Conversely, GRK5 knockdown inhibited Ser339 phosphorylation of CXCR4, increased cell surface localization of CXCR4 and promoted the growth of medulloblastoma cells with low WIP1 expression. These results demonstrate crosstalk among WIP1, CXCR4 and GRK5, which may be important for the aggressive phenotype of a subclass of medulloblastomas in children.

  16. Overexpression of hepatoma-derived growth factor in melanocytes does not lead to oncogenic transformation

    International Nuclear Information System (INIS)

    Sedlmaier, Angela; Wernert, Nicolas; Gallitzendörfer, Rainer; Abouzied, Mekky M; Gieselmann, Volkmar; Franken, Sebastian

    2011-01-01

    HDGF is a growth factor which is overexpressed in a wide range of tumors. Importantly, expression levels were identified as a prognostic marker in some types of cancer such as melanoma. To investigate the presumed oncogenic/transforming capacity of HDGF, we generated transgenic mice overexpressing HDGF in melanocytes. These mice were bred with mice heterozygous for a defective copy of the Ink4a tumor suppressor gene and were exposed to UV light to increase the risk for tumor development both genetically and physiochemically. Mice were analyzed by immunohistochemistry and Western blotting. Furthermore, primary melanocytes were isolated from different strains created. Transgenic animals overexpressed HDGF in hair follicle melanocytes. Interestingly, primary melanocytes isolated from transgenic animals were not able to differentiate in vitro whereas cells isolated from wild type and HDGF-deficient animals were. Although, HDGF -/- /Ink4a +/- mice displayed an increased number of epidermoid cysts after exposure to UV light, no melanomas or premelanocytic alterations could be detected in this mouse model. The results therefore provide no evidence that HDGF has a transforming capacity in tumor development. Our results in combination with previous findings point to a possible role in cell differentiation and suggest that HDGF promotes tumor progression after secondary upregulation and may represent another protein fitting into the concept of non-oncogene addiction of tumor tissue

  17. Biologically based risk estimation for radiation-induced CML. Inferences from BCR and ABL geometric distributions

    Czech Academy of Sciences Publication Activity Database

    Radivoyevitch, T.; Kozubek, Stanislav; Sachs, R. K.

    2001-01-01

    Roč. 40, č. 1 (2001), s. 1-9 ISSN 0301-634X Institutional research plan: CEZ:AV0Z5004920 Keywords : chronic myeloid leukemia * chronic myelogenous leukemia Subject RIV: BO - Biophysics Impact factor: 1.776, year: 2001

  18. Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3 and KIT driven Leukemogenesis

    Science.gov (United States)

    Chatterjee, Anindya; Ghosh, Joydeep; Ramdas, Baskar; Mali, Raghuveer Singh; Martin, Holly; Kobayashi, Michihiro; Vemula, Sasidhar; Canela, Victor H.; Waskow, Emily R.; Visconte, Valeria; Tiu, Ramon V.; Smith, Catherine C.; Shah, Neil; Bunting, Kevin D.; Boswell, H. Scott; Liu, Yan; Chan, Rebecca J.; Kapur, Reuben

    2015-01-01

    SUMMARY Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPN) and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK), whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis. PMID:25456130

  19. Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Anindya Chatterjee

    2014-11-01

    Full Text Available Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML and myeloproliferative neoplasms (MPNs, and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription, is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis.

  20. Activating mutation in MET oncogene in familial colorectal cancer

    Directory of Open Access Journals (Sweden)

    Schildkraut Joellen M

    2011-10-01

    Full Text Available Abstract Background In developed countries, the lifetime risk of developing colorectal cancer (CRC is 5%, and it is the second leading cause of death from cancer. The presence of family history is a well established risk factor with 25-35% of CRCs attributable to inherited and/or familial factors. The highly penetrant inherited colon cancer syndromes account for approximately 5%, leaving greater than 20% without clear genetic definition. Familial colorectal cancer has been linked to chromosome 7q31 by multiple affected relative pair studies. The MET proto-oncogene which resides in this chromosomal region is considered a candidate for genetic susceptibility. Methods MET exons were amplified by PCR from germline DNA of 148 affected sibling pairs with colorectal cancer. Amplicons with altered sequence were detected with high-resolution melt-curve analysis using a LightScanner (Idaho Technologies. Samples demonstrating alternative melt curves were sequenced. A TaqMan assay for the specific c.2975C >T change was used to confirm this mutation in a cohort of 299 colorectal cancer cases and to look for allelic amplification in tumors. Results Here we report a germline non-synonymous change in the MET proto-oncogene at amino acid position T992I (also reported as MET p.T1010I in 5.2% of a cohort of sibling pairs affected with CRC. This genetic variant was then confirmed in a second cohort of individuals diagnosed with CRC and having a first degree relative with CRC at prevalence of 4.1%. This mutation has been reported in cancer cells of multiple origins, including 2.5% of colon cancers, and in Conclusions Although the MET p.T992I genetic mutation is commonly found in somatic colorectal cancer tissues, this is the first report also implicating this MET genetic mutation as a germline inherited risk factor for familial colorectal cancer. Future studies on the cancer risks associated with this mutation and the prevalence in different at-risk populations will

  1. Expression of proto-oncogenes in non-Hodgkin's lymphomas by in situ hybridization with biotinylated DNA probes

    International Nuclear Information System (INIS)

    Hamatani, Kiyohiro; Yoshida, Kuniko; Abe, Masumi; Shimaoka, Katsutaro; Shiku, Hiroshi; Akiyama, Mitoshi; Kondo, Hisayoshi.

    1989-11-01

    Expression of six proto-oncogenes (fos, myc, myb, Ki-ras, Ha-ras, and N-ras) in 43 cases of non-Hodgkin's lymphoma was analyzed by means of in situ hybridization. Biotinylated DNA probes of the six oncogenes and those of the immunoglobulin H-chain (IgH) gene and the T cell receptor β-chain (TCRβ) gene were used. The results of in situ hybridization performed under blind conditions by IgH and TCRβ gene probes were compatible with those of typing by cell surface markers. The nuclear protein-related proto-oncogenes, fos myc, and myb, were expressed in about 70 % - 80 % of all cases regardless of phenotypes, histology or histologic grade. On the contrary, genes of the ras family were expressed in fewer cases except for the Ki-ras gene which was more frequently expressed by cases of the T cell immunophenotype with a high malignancy grade. The results of dot hybridization with RNA extracted from some cases were compatible with those of in situ hybridization, further demonstrating the specificity of in situ hybridization. (author)

  2. Activity of the novel BCR kinase inhibitor IQS019 in preclinical models of B-cell non-Hodgkin lymphoma

    Directory of Open Access Journals (Sweden)

    P. Balsas

    2017-03-01

    Full Text Available Abstract Background Pharmacological inhibition of B cell receptor (BCR signaling has recently emerged as an effective approach in a wide range of B lymphoid neoplasms. However, despite promising clinical activity of the first Bruton’s kinase (Btk and spleen tyrosine kinase (Syk inhibitors, a small fraction of patients tend to develop progressive disease after initial response to these agents. Methods We evaluated the antitumor activity of IQS019, a new BCR kinase inhibitor with increased affinity for Btk, Syk, and Lck/Yes novel tyrosine kinase (Lyn, in a set of 34 B lymphoid cell lines and primary cultures, including samples with acquired resistance to the first-in-class Btk inhibitor ibrutinib. Safety and efficacy of the compound were then evaluated in two xenograft mouse models of B cell lymphoma. Results IQS019 simultaneously engaged a rapid and dose-dependent de-phosphorylation of both constitutive and IgM-activated Syk, Lyn, and Btk, leading to impaired cell proliferation, reduced CXCL12-dependent cell migration, and induction of caspase-dependent apoptosis. Accordingly, B cell lymphoma-bearing mice receiving IQS019 presented a reduced tumor outgrowth characterized by a decreased mitotic index and a lower infiltration of malignant cells in the spleen, in tight correlation with downregulation of phospho-Syk, phospho-Lyn, and phospho-Btk. More interestingly, IQS019 showed improved efficacy in vitro and in vivo when compared to the first-in-class Btk inhibitor ibrutinib, and was active in cells with acquired resistance to this latest. Conclusions These results define IQS019 as a potential drug candidate for a variety of B lymphoid neoplasms, including cases with acquired resistance to current BCR-targeting therapies.

  3. Using 18F FDG PET/CT to Detect an occult Mesenchymal Tumor Causing Oncogenic Osteomalacia

    International Nuclear Information System (INIS)

    Seo, Hyo Jung; Choi, Yun Jung; Kim, Hyun Jeong; Jeong, Yong Hyu; Cho, Arthur; Lee, Jae Hoon; Yun, Mijin; Lee, Jong Doo; Kang, Won Jun

    2011-01-01

    Oncogenic osteomalacia is a rare paraneoplastic syndrome characterized by renal phosphate excretion, hypophosphatemia, and osteomalacia. This syndrome is often caused by tumors of mesenchymal origin. Patients with oncogenic osteomalacia have abnormal bone mineralization, resulting in a high frequency of fractures. Tumor resection is the treatment of choice, as it will often correct the metabolic imbalance. Although oncogenic osteomalacia is a potentially curable disease, diagnosis is difficult and often delayed because of the small size and sporadic location of the tumor. Bone scintigraphy and radiography best characterize osteoma lacia; magnetic resonance imaging findings are nonspecific. Here, we report a case of oncogenic osteomalacia secondary to a phosphaturic mesenchymal tumor that was successfully detected by 18F fluorodeoxyglucose positron emission tomography/computed tomography ( 18F FDG PET/CT). This case illustrates the advantages of 18F FDG PET/CT in detecting the occult mesenchymal tumor that causes oncogenic osteomalacia.

  4. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.

    Science.gov (United States)

    Kamerkar, Sushrut; LeBleu, Valerie S; Sugimoto, Hikaru; Yang, Sujuan; Ruivo, Carolina F; Melo, Sonia A; Lee, J Jack; Kalluri, Raghu

    2017-06-22

    The mutant form of the GTPase KRAS is a key driver of pancreatic cancer but remains a challenging therapeutic target. Exosomes are extracellular vesicles generated by all cells, and are naturally present in the blood. Here we show that enhanced retention of exosomes, compared to liposomes, in the circulation of mice is likely due to CD47-mediated protection of exosomes from phagocytosis by monocytes and macrophages. Exosomes derived from normal fibroblast-like mesenchymal cells were engineered to carry short interfering RNA or short hairpin RNA specific to oncogenic Kras G12D , a common mutation in pancreatic cancer. Compared to liposomes, the engineered exosomes (known as iExosomes) target oncogenic KRAS with an enhanced efficacy that is dependent on CD47, and is facilitated by macropinocytosis. Treatment with iExosomes suppressed cancer in multiple mouse models of pancreatic cancer and significantly increased overall survival. Our results demonstrate an approach for direct and specific targeting of oncogenic KRAS in tumours using iExosomes.

  5. A chimeric 18L1-45RG1 virus-like particle vaccine cross-protects against oncogenic alpha-7 human papillomavirus types.

    Directory of Open Access Journals (Sweden)

    Bettina Huber

    Full Text Available Persistent infection with oncogenic human papillomaviruses (HPV types causes all cervical and a subset of other anogenital and oropharyngeal carcinomas. Four high-risk (hr mucosal types HPV16, 18, 45, or 59 cause almost all cervical adenocarcinomas (AC, a subset of cervical cancer (CxC. Although the incidence of cervical squamous cell carcinoma (SCC has dramatically decreased following introduction of Papanicolaou (PAP screening, the proportion of AC has relatively increased. Cervical SCC arise mainly from the ectocervix, whereas AC originate primarily from the endocervical canal, which is less accessible to obtain viable PAP smears. Licensed (bivalent and quadrivalent HPV vaccines comprise virus-like particles (VLP of the most important hr HPV16 and 18, self-assembled from the major capsid protein L1. Due to mainly type-restricted efficacy, both vaccines do not target 13 additional hr mucosal types causing 30% of CxC. The papillomavirus genus alpha species 7 (α7 includes a group of hr types of which HPV18, 45, 59 are proportionally overrepresented in cervical AC and only partially (HPV18 targeted by current vaccines. To target these types, we generated a chimeric vaccine antigen that consists of a cross-neutralizing epitope (homologue of HPV16 RG1 of the L2 minor capsid protein of HPV45 genetically inserted into a surface loop of HPV18 L1 VLP (18L1-45RG1. Vaccination of NZW rabbits with 18L1-45RG1 VLP plus alum-MPL adjuvant induced high-titer neutralizing antibodies against homologous HPV18, that cross-neutralized non-cognate hr α7 types HPV39, 45, 68, but not HPV59, and low risk HPV70 in vitro, and induced a robust L1-specific cellular immune response. Passive immunization protected mice against experimental vaginal challenge with pseudovirions of HPV18, 39, 45 and 68, but not HPV59 or the distantly related α9 type HPV16. 18L1-45RG1 VLP might be combined with our previously described 16L1-16RG1 VLP to develop a second generation bivalent

  6. The BCR-ABLT315I mutation compromises survival in chronic phase chronic myelogenous leukemia patients resistant to tyrosine kinase inhibitors, in a matched pair analysis

    DEFF Research Database (Denmark)

    Nicolini, Franck E; Ibrahim, Amr R; Soverini, Simona

    2013-01-01

    The BCR-ABL T315I mutation confers resistance to currently licensed tyrosine kinase inhibitors in chronic myelogenous leukemia. However, the impact of this mutation on survival in early stages of disease, in chronic phase, has never been detailed. Using matched pair analysis, a cohort of 64...... patients with chronic phase chronic myelogenous leukemia harboring a T315I mutation and resistant to imatinib mesylate was compared to a similar cohort of 53 chronic phase patients resistant to imatinib, but with no detectable T315I mutation, in the pre-ponatinib era. These patients were matched according...... to age at diagnosis, interval between disease diagnosis and start of imatinib treatment, and duration of imatinib therapy. Kaplan-Meier survival analyses demonstrated the significant negative impact of the presence of the T315I mutation on overall survival (since imatinib-resistance: 48.4 months for T315...

  7. BCR CDR3 length distributions differ between blood and spleen and between old and young patients, and TCR distributions can be used to detect myelodysplastic syndrome

    International Nuclear Information System (INIS)

    Pickman, Yishai; Mehr, Ramit; Dunn-Walters, Deborah

    2013-01-01

    Complementarity-determining region 3 (CDR3) is the most hyper-variable region in B cell receptor (BCR) and T cell receptor (TCR) genes, and the most critical structure in antigen recognition and thereby in determining the fates of developing and responding lymphocytes. There are millions of different TCR Vβ chain or BCR heavy chain CDR3 sequences in human blood. Even now, when high-throughput sequencing becomes widely used, CDR3 length distributions (also called spectratypes) are still a much quicker and cheaper method of assessing repertoire diversity. However, distribution complexity and the large amount of information per sample (e.g. 32 distributions of the TCRα chain, and 24 of TCRβ) calls for the use of machine learning tools for full exploration. We have examined the ability of supervised machine learning, which uses computational models to find hidden patterns in predefined biological groups, to analyze CDR3 length distributions from various sources, and distinguish between experimental groups. We found that (a) splenic BCR CDR3 length distributions are characterized by low standard deviations and few local maxima, compared to peripheral blood distributions; (b) healthy elderly people's BCR CDR3 length distributions can be distinguished from those of the young; and (c) a machine learning model based on TCR CDR3 distribution features can detect myelodysplastic syndrome with approximately 93% accuracy. Overall, we demonstrate that using supervised machine learning methods can contribute to our understanding of lymphocyte repertoire diversity. (paper)

  8. BCR CDR3 length distributions differ between blood and spleen and between old and young patients, and TCR distributions can be used to detect myelodysplastic syndrome

    Science.gov (United States)

    Pickman, Yishai; Dunn-Walters, Deborah; Mehr, Ramit

    2013-10-01

    Complementarity-determining region 3 (CDR3) is the most hyper-variable region in B cell receptor (BCR) and T cell receptor (TCR) genes, and the most critical structure in antigen recognition and thereby in determining the fates of developing and responding lymphocytes. There are millions of different TCR Vβ chain or BCR heavy chain CDR3 sequences in human blood. Even now, when high-throughput sequencing becomes widely used, CDR3 length distributions (also called spectratypes) are still a much quicker and cheaper method of assessing repertoire diversity. However, distribution complexity and the large amount of information per sample (e.g. 32 distributions of the TCRα chain, and 24 of TCRβ) calls for the use of machine learning tools for full exploration. We have examined the ability of supervised machine learning, which uses computational models to find hidden patterns in predefined biological groups, to analyze CDR3 length distributions from various sources, and distinguish between experimental groups. We found that (a) splenic BCR CDR3 length distributions are characterized by low standard deviations and few local maxima, compared to peripheral blood distributions; (b) healthy elderly people's BCR CDR3 length distributions can be distinguished from those of the young; and (c) a machine learning model based on TCR CDR3 distribution features can detect myelodysplastic syndrome with approximately 93% accuracy. Overall, we demonstrate that using supervised machine learning methods can contribute to our understanding of lymphocyte repertoire diversity.

  9. Oncogenic IDH1 Mutations Promote Enhanced Proline Synthesis through PYCR1 to Support the Maintenance of Mitochondrial Redox Homeostasis

    Directory of Open Access Journals (Sweden)

    Kate E.R. Hollinshead

    2018-03-01

    Full Text Available Summary: Since the discovery of mutations in isocitrate dehydrogenase 1 (IDH1 in gliomas and other tumors, significant efforts have been made to gain a deeper understanding of the consequences of this oncogenic mutation. One aspect of the neomorphic function of the IDH1 R132H enzyme that has received less attention is the perturbation of cellular redox homeostasis. Here, we describe a biosynthetic pathway exhibited by cells expressing mutant IDH1. By virtue of a change in cellular redox homeostasis, IDH1-mutated cells synthesize excess glutamine-derived proline through enhanced activity of pyrroline 5-carboxylate reductase 1 (PYCR1, coupled to NADH oxidation. Enhanced proline biosynthesis partially uncouples the electron transport chain from tricarboxylic acid (TCA cycle activity through the maintenance of a lower NADH/NAD+ ratio and subsequent reduction in oxygen consumption. Thus, we have uncovered a mechanism by which tumor cell survival may be promoted in conditions associated with perturbed redox homeostasis, as occurs in IDH1-mutated glioma. : Hollinshead et al. demonstrate a role for PYCR1 in control of mitochondrial redox homeostasis. Expression of IDH1 R132H mutation leads to increased NADH-coupled proline biosynthesis, mediated by PYCR1. The resulting metabolic phenotype partially uncouples mitochondrial NADH oxidation from respiration, representing an oxygen-sparing metabolic phenotype. Keywords: glioma, IDH1, redox, metabolism, proline

  10. Tyrosine phosphorylation of 3BP2 is indispensable for the interaction with VAV3 in chicken DT40 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chihara, Kazuyasu [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193 (Japan); Kimura, Yukihiro [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Honjoh, Chisato [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Third Department of Internal Medicine, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Yamauchi, Shota; Takeuchi, Kenji [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193 (Japan); Sada, Kiyonao, E-mail: ksada@u-fukui.ac.jp [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193 (Japan)

    2014-03-10

    Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr{sup 174}, Tyr{sup 183} and Tyr{sup 446} in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr{sup 183} and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutational analysis showed that Tyr{sup 174}, Tyr{sup 183} and Tyr{sup 426} of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr{sup 426} is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr{sup 426} was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr{sup 426} following BCR stimulation. - Highlights: • 3BP2 is phosphorylated by Syk, but not Abl family kinases in BCR signaling. • Tyr183 and Tyr426 in chicken 3BP2 are the major phosphorylation sites by Syk. • The SH2 domain of 3BP2 is critical for tyrosine phosphorylation of 3BP2. • Phosphorylation of Tyr426 in 3BP2 is required for the inducible binding with Vav3. • 3BP2 is involved in the regulation of BCR-mediated Rac1 activation.

  11. Tyrosine phosphorylation of 3BP2 is indispensable for the interaction with VAV3 in chicken DT40 cells

    International Nuclear Information System (INIS)

    Chihara, Kazuyasu; Kimura, Yukihiro; Honjoh, Chisato; Yamauchi, Shota; Takeuchi, Kenji; Sada, Kiyonao

    2014-01-01

    Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr 174 , Tyr 183 and Tyr 446 in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr 183 and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutational analysis showed that Tyr 174 , Tyr 183 and Tyr 426 of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr 426 is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr 426 was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr 426 following BCR stimulation. - Highlights: • 3BP2 is phosphorylated by Syk, but not Abl family kinases in BCR signaling. • Tyr183 and Tyr426 in chicken 3BP2 are the major phosphorylation sites by Syk. • The SH2 domain of 3BP2 is critical for tyrosine phosphorylation of 3BP2. • Phosphorylation of Tyr426 in 3BP2 is required for the inducible binding with Vav3. • 3BP2 is involved in the regulation of BCR-mediated Rac1 activation

  12. GSK3 is required for rapalogs to induce degradation of some oncogenic proteins and to suppress cancer cell growth.

    Science.gov (United States)

    Koo, Junghui; Wang, Xuerong; Owonikoko, Taofeek K; Ramalingam, Suresh S; Khuri, Fadlo R; Sun, Shi-Yong

    2015-04-20

    The single-agent activity of rapalogs (rapamycin and its analogues) in most tumor types has been modest at best. The underlying mechanisms are largely unclear. In this report, we have uncovered a critical role of GSK3 in regulating degradation of some oncogenic proteins induced by rapalogs and cell sensitivity to rapalogs. The basal level of GSK3 activity was positively correlated with cell sensitivity of lung cancer cell lines to rapalogs. GSK3 inhibition antagonized rapamycin's growth inhibitory effects both in vitro and in vivo, while enforced activation of GSK3β sensitized cells to rapamycin. GSK3 inhibition rescued rapamcyin-induced reduction of several oncogenic proteins such as cyclin D1, Mcl-1 and c-Myc, without interfering with the ability of rapamycin to suppress mTORC1 signaling and cap binding. Interestingly, rapamycin induces proteasomal degradation of these oncogenic proteins, as evidenced by their decreased stabilities induced by rapamcyin and rescue of their reduction by proteasomal inhibition. Moreover, acute or short-time rapamycin treatment dissociated not only raptor, but also rictor from mTOR in several tested cell lines, suggesting inhibition of both mTORC1 and mTORC2. Thus, induction of GSK3-dependent degradation of these oncogenic proteins is likely secondary to mTORC2 inhibition; this effect should be critical for rapamycin to exert its anticancer activity.

  13. c-Abl phosphorylation of Yin Yang 1's conserved tyrosine 254 in the spacer region modulates its transcriptional activity.

    Science.gov (United States)

    Daraiseh, Susan I; Kassardjian, Ari; Alexander, Karen E; Rizkallah, Raed; Hurt, Myra M

    2018-05-25

    Yin Yang 1 (YY1) is a multifunctional transcription factor that can activate or repress transcription depending on the promotor and/or the co-factors recruited. YY1 is phosphorylated in various signaling pathways and is critical for different biological functions including embryogenesis, apoptosis, proliferation, cell-cycle regulation and tumorigenesis. Here we report that YY1 is a substrate for c-Abl kinase phosphorylation at conserved residue Y254 in the spacer region. Pharmacological inhibition of c-Abl kinase by imatinib, nilotinib and GZD824, knock-down of c-Abl using siRNA, and the use of c-Abl kinase-dead drastically reduces tyrosine phosphorylation of YY1. Both radioactive and non-radioactive in vitro kinase assays, as well as co-immunoprecipitation in different cell lines, show that the target of c-Abl phosphorylation is tyrosine residue 254. c-Abl phosphorylation has little effect on YY1 DNA binding ability or cellular localization in asynchronous cells. However, functional studies reveal that c-Abl mediated phosphorylation of YY1 regulates YY1's transcriptional ability in vivo. In conclusion, we demonstrate the novel role of c-Abl kinase in regulation of YY1's transcriptional activity, linking YY1 regulation with c-Abl tyrosine kinase signaling pathways. Copyright © 2018. Published by Elsevier B.V.

  14. TRAP1 Regulation of Cancer Metabolism: Dual Role as Oncogene or Tumor Suppressor

    Directory of Open Access Journals (Sweden)

    Danilo Swann Matassa

    2018-04-01

    Full Text Available Metabolic reprogramming is an important issue in tumor biology. An unexpected inter- and intra-tumor metabolic heterogeneity has been strictly correlated to tumor outcome. Tumor Necrosis Factor Receptor-Associated Protein 1 (TRAP1 is a molecular chaperone involved in the regulation of energetic metabolism in cancer cells. This protein is highly expressed in several cancers, such as glioblastoma, colon, breast, prostate and lung cancers and is often associated with drug resistance. However, TRAP1 is also downregulated in specific tumors, such as ovarian, bladder and renal cancers, where its lower expression is correlated with the worst prognoses and chemoresistance. TRAP1 is the only mitochondrial member of the Heat Shock Protein 90 (HSP90 family that directly interacts with respiratory complexes, contributing to their stability and activity but it is still unclear if such interactions lead to reduced or increased respiratory capacity. The role of TRAP1 is to enhance or suppress oxidative phosphorylation; the effects of such regulation on tumor development and progression are controversial. These observations encourage the study of the mechanisms responsible for the dualist role of TRAP1 as an oncogene or oncosuppressor in specific tumor types. In this review, TRAP1 puzzling functions were recapitulated with a special focus on the correlation between metabolic reprogramming and tumor outcome. We wanted to investigate whether metabolism-targeting drugs can efficiently interfere with tumor progression and whether they might be combined with chemotherapeutics or molecular-targeted agents to counteract drug resistance and reduce therapeutic failure.

  15. Novel Combinatorial Chemistry-Derived Inhibitors of Oncogenic Phosphatases

    National Research Council Canada - National Science Library

    Lazo, John

    1999-01-01

    Our overall goal of this US Army Breast Cancer Grant entitled "Novel Combinatorial Chemistry-Derived Inhibitors of Oncogenic Phosphatases" is to identity and develop novel therapeutic agents for human breast cancer...

  16. Activation of oncogenes by radon progeny and x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Ling, C.C.

    1990-01-01

    The overall goal of this proposal is to study the carcinogenic effect of both high and low LET radiation at the molecular level, utilizing techniques developed in molecular biology, cancer cell biology and radiation biology. The underlying assumption is that malignant transformation of normal cells is a multistep process requiring two or more molecular events in the genomic DNA. We hypothesize that radiation may induce such events in one or more steps of the multistep process. We will use in vitro models of transformation that reproduce the stepwise progression of normal cells toward the transformed phenotype and ask whether radiation can provide the necessary activating function at discrete steps along this path. Our strategy involves transfecting into normal primary cells a variety of cloned oncogenes that are known to supply only some of the functions necessary for full transformation. These partially transformed'' cells will be the targets for irradiation by x-rays and alpha particles. The results will provide the basis for assessing the ability of ionizing radiation to activate oncogenic functions that complement'' the oncogene already present in the transfected cells and produce the fully transformed phenotype. Progress is described. 121 refs.

  17. Activation of oncogenes by radon progeny and x-rays

    International Nuclear Information System (INIS)

    Ling, C.C.

    1990-01-01

    The overall goal of this proposal is to study the carcinogenic effect of both high and low LET radiation at the molecular level, utilizing techniques developed in molecular biology, cancer cell biology and radiation biology. The underlying assumption is that malignant transformation of normal cells is a multistep process requiring two or more molecular events in the genomic DNA. We hypothesize that radiation may induce such events in one or more steps of the multistep process. We will use in vitro models of transformation that reproduce the stepwise progression of normal cells toward the transformed phenotype and ask whether radiation can provide the necessary activating function at discrete steps along this path. Our strategy involves transfecting into normal primary cells a variety of cloned oncogenes that are known to supply only some of the functions necessary for full transformation. These ''partially transformed'' cells will be the targets for irradiation by x-rays and alpha particles. The results will provide the basis for assessing the ability of ionizing radiation to activate oncogenic functions that ''complement'' the oncogene already present in the transfected cells and produce the fully transformed phenotype. Progress is described. 121 refs

  18. The non-small cell lung cancer EGFR extracellular domain mutation, M277E, is oncogenic and drug-sensitive

    Directory of Open Access Journals (Sweden)

    Yu S

    2017-09-01

    Full Text Available Su Yu,1,2 Yang Zhang,1 Yunjian Pan,1 Chao Cheng,1,3 Yihua Sun,1,3 Haiquan Chen1–4 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; 2Cancer Research Center, Fudan University Shanghai Cancer Center, Shanghai, China; 3Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; 4Institutes of Biomedical Sciences, Fudan University, Shanghai, China Purpose: To identify novel oncogenic mutations in non-small cell lung cancer patient specimens that lack mutations in known targetable genes (“pan-negative” patients.Methods: Comprehensive mutational analyses were performed on 1,356 lung adenocarcinoma specimens. In this cohort of patients, common lung cancer oncogenic driver mutations were detected in the epidermal growth factor receptor (EGFR kinase domain, the human epidermal growth factor receptor 2 kinase domain, as well as the KRAS, BRAF, ALK, ROS1 and RET genes. A sub-cohort of pan-negative patient specimens was assayed for mutations in the EGFR extracellular domain (ECD. Additionally, EGFR mutant NIH-3T3 stable cell lines were constructed and assessed for protein content, anchorage-independent growth, and tumor formation in xenograft models to identify oncogenic mutations. BaF3 lymphocytes were also used to test sensitivities of the mutations to tyrosine kinase inhibitors.Results: In pan-negative lung adenocarcinoma cases, a novel oncogenic EGFR ECD mutation was identified (M277E. EGFR M277E mutations encoded oncoproteins that transformed NIH-3T3 cells to grow in the absence of exogenous epidermal growth factor. Transformation was further evidenced by anchorage-independent growth and tumor formation in immunocompromised xenograft mouse models. Finally, as seen in the canonical EGFR L858R mutation, the M277E mutation conferred sensitivity to both erlotinib and cetuximab in BaF3 cell lines and to erlotinib in xenograft models.Conclusion: Here, a new EGFR driver mutation, M277E

  19. Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    NARCIS (Netherlands)

    Schaub, Franz X.; Dhankani, Varsha; Berger, Ashton C.; Trivedi, Mihir; Richardson, Anne B.; Shaw, Reid; Zhao, Wei; Zhang, Xiaoyang; Ventura, Andrea; Liu, Yuexin; Ayer, Donald E.; Hurlin, Peter J.; Cherniack, Andrew D.; Eisenman, Robert N.; Bernard, Brady; Grandori, Carla; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Angulo Gonzalez, Ana Maria; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Mora Pinero, Edna M.; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz

    2018-01-01

    Although the MYC oncogene has been implicated in cancer, a systematic assessment of alterations of MYC, related transcription factors, and co-regulatory proteins, forming the proximal MYC network (PMN), across human cancers is lacking. Using computational approaches, we define genomic and proteomic

  20. ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress

    International Nuclear Information System (INIS)

    Pauklin, Siim; Kristjuhan, Arnold; Maimets, Toivo; Jaks, Viljar

    2005-01-01

    Induction of apoptosis is pivotal for eliminating cells with damaged DNA or deregulated proliferation. We show that tumor suppressor ARF and ATM/ATR kinase pathways cooperate in the induction of apoptosis in response to elevated expression of c-myc, β-catenin or human papilloma virus E7 oncogenes. Overexpression of oncogenes leads to the formation of phosphorylated H2AX foci, induction of Rad51 protein levels and ATM/ATR-dependent phosphorylation of p53. Inhibition of ATM/ATR kinases abolishes both induction of Rad51 and phosphorylation of p53, and remarkably reduces the level of apoptosis induced by co-expression of oncogenes and ARF. However, the induction of apoptosis is downregulated in p53-/- cells and does not depend on activities of ATM/ATR kinases, indicating that efficient induction of apoptosis by oncogene activation depends on coordinated action of ARF and ATM/ATR pathways in the regulation of p53

  1. Thermodynamic dissection of the binding energetics of proline-rich peptides to the Abl-SH3 domain: implications for rational ligand design.

    Science.gov (United States)

    Palencia, Andrés; Cobos, Eva S; Mateo, Pedro L; Martínez, Jose C; Luque, Irene

    2004-02-13

    The inhibition of the interactions between SH3 domains and their targets is emerging as a promising therapeutic strategy. To date, rational design of potent ligands for these domains has been hindered by the lack of understanding of the origins of the binding energy. We present here a complete thermodynamic analysis of the binding energetics of the p41 proline-rich decapeptide (APSYSPPPPP) to the SH3 domain of the c-Abl oncogene. Isothermal titration calorimetry experiments have revealed a thermodynamic signature for this interaction (very favourable enthalpic contributions opposed by an unfavourable binding entropy) inconsistent with the highly hydrophobic nature of the p41 ligand and the Abl-SH3 binding site. Our structural and thermodynamic analyses have led us to the conclusion, having once ruled out any possible ionization events or conformational changes coupled to the association, that the establishment of a complex hydrogen-bond network mediated by water molecules buried at the binding interface is responsible for the observed thermodynamic behaviour. The origin of the binding energetics for proline-rich ligands to the Abl-SH3 domain is further investigated by a comparative calorimetric analysis of a set of p41-related ligands. The striking effects upon the enthalpic and entropic contributions provoked by conservative substitutions at solvent-exposed positions in the ligand confirm the complexity of the interaction. The implications of these results for rational ligand design are discussed.

  2. Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets.

    Directory of Open Access Journals (Sweden)

    Dong Wang

    Full Text Available MicroRNAs (miRNAs are small noncoding RNAs which play essential roles in many important biological processes. Therefore, their dysfunction is associated with a variety of human diseases, including cancer. Increasing evidence shows that miRNAs can act as oncogenes or tumor suppressors, and although there is great interest in research into these cancer-associated miRNAs, little is known about them. In this study, we performed a comprehensive analysis of putative human miRNA oncogenes and tumor suppressors. We found that miRNA oncogenes and tumor suppressors clearly show different patterns in function, evolutionary rate, expression, chromosome distribution, molecule size, free energy, transcription factors, and targets. For example, miRNA oncogenes are located mainly in the amplified regions in human cancers, whereas miRNA tumor suppressors are located mainly in the deleted regions. miRNA oncogenes tend to cleave target mRNAs more frequently than miRNA tumor suppressors. These results indicate that these two types of cancer-associated miRNAs play different roles in cancer formation and development. Moreover, the patterns identified here can discriminate novel miRNA oncogenes and tumor suppressors with a high degree of accuracy. This study represents the first large-scale bioinformatic analysis of human miRNA oncogenes and tumor suppressors. Our findings provide help for not only understanding of miRNAs in cancer but also for the specific identification of novel miRNAs as miRNA oncogenes and tumor suppressors. In addition, the data presented in this study will be valuable for the study of both miRNAs and cancer.

  3. Repression of transcription mediated at a thyroid hormone response element by the v-erb-A oncogene product

    DEFF Research Database (Denmark)

    Sap, J; Muñoz, A; Schmitt, J

    1989-01-01

    Several recent observations, such as the identification of the cellular homologue of the v-erb-A oncogene as a thyroid-hormone receptor, have strongly implicated nuclear oncogenes in transcriptional control mechanisms. The v-erb-A oncogene blocks the differentiation of erythroid cells, and changes...

  4. Tc-99m-HYNIC-TOC SPECT/CT in Oncogenic Osteomalacia

    International Nuclear Information System (INIS)

    Pusuwan, Pawana; Sriwijitkamol, Apiradee; Muangsomboon, Kobkun; Jantanayingyong, Jantanaras; Muangsomboon, Soranart; Poramatikul, Nipavan

    2009-07-01

    Full text: Oncogenic osteomalacia is a rare condition characterized by progressive bone pain, muscle weakness and multiple biochemical abnormalities such as hypophosphataemia, hyper phosphaturia and elevated serum alkaline phosphatase. The cause of this syndrome is most commonly from a benign mesenchymal tumor. The tumor is usually small and difficult to localize. We report two patients with oncogenic osteomalacia diagnosed and localized of the tumors by Tc-99m HYNIC-TOC SPECT/CT imaging. The tumors were localized at right thigh and right inguinal region. Tumor removal was successfully done

  5. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission

    Directory of Open Access Journals (Sweden)

    Agnes S. M. Yong

    2017-04-01

    Full Text Available Chronic myeloid leukemia (CML is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01% in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR, which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important

  6. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission

    Science.gov (United States)

    Hughes, Amy; Yong, Agnes S. M.

    2017-01-01

    Chronic myeloid leukemia (CML) is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22)], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs) represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01%) in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR), which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK) cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important in mediating

  7. Characterization of the human oncogene SCL/TAL1 interrupting locus (Stil) mediated Sonic hedgehog (Shh) signaling transduction in proliferating mammalian dopaminergic neurons

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lei [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Department of Physiology, Nankai University School of Medicine, Tianjin 300071 (China); Carr, Aprell L. [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556 (United States); Li, Ping; Lee, Jessica; McGregor, Mary [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Li, Lei, E-mail: Li.78@nd.edu [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2014-07-11

    Highlights: • Stil is a human oncogene that is conserved in vertebrate species. • Stil functions in the Shh pathway in mammalian cells. • The expression of Stil is required for mammalian dopaminergic cell proliferation. - Abstract: The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in all vertebrate species. In humans, the expression of Stil is involved in cancer cell survival, apoptosis and proliferation. In this research, we investigated the roles of Stil expression in cell proliferation of mammalian dopaminergic (DA) PC12 cells. Stil functions through the Sonic hedgehog (Shh) signal transduction pathway. Co-immunoprecipitation tests revealed that STIL interacts with Shh downstream components, which include SUFU and GLI1. By examining the expression of Stil, Gli1, CyclinD2 (cell-cycle marker) and PCNA (proliferating cell nuclear antigen), we found that up-regulation of Stil expression (transfection with overexpression plasmids) increased Shh signaling transduction and PC12 cell proliferation, whereas down-regulation of Stil expression (by shRNA) inhibited Shh signaling transduction, and thereby decreased PC12 cell proliferation. Transient transfection of PC12 cells with Stil knockdown or overexpression plasmids did not affect PC12 cell neural differentiation, further indicating the specific roles of Stil in cell proliferation. The results from this research suggest that Stil may serve as a bio-marker for neurological diseases involved in DA neurons, such as Parkinson’s disease.

  8. The Src family kinase inhibitor dasatinib delays pain-related behaviour and conserves bone in a rat model of cancer-induced bone pain

    DEFF Research Database (Denmark)

    Appel, Camilla Kristine; Gallego-Pedersen, Simone; Andersen, Line

    2017-01-01

    -induced bone pain, including cancer growth, osteoclastic bone degradation and nociceptive signalling. Here we investigate the role of dasatinib, an oral Src kinase family and Bcr-Abl tyrosine kinase inhibitor, in an animal model of cancer-induced bone pain. Daily administration of dasatinib (15 mg/kg, p...

  9. The prognostic value of oncogenic antigen 519 (OA-519) expression and proliferative activity detected by antibody MIB-1 in node-negative breast cancer

    DEFF Research Database (Denmark)

    Jensen, V; Ladekarl, M; Holm-Nielsen, P

    1995-01-01

    The prognostic value of oncogenic antigen 519 (OA-519) expression and tumour proliferative activity was evaluated in a retrospective series of 118 patients with low-risk breast cancer. Low risk was defined as negative axillary nodes, tumour diameter histological evidence...... analysis, both the MIB-1 index and OA-519 expression were of independent prognostic value (2p breast cancer who might benefit from adjuvant therapy....

  10. TGFβ activated kinase 1 (TAK1 at the crossroad of B cell receptor and Toll-like receptor 9 signaling pathways in human B cells.

    Directory of Open Access Journals (Sweden)

    Dániel Szili

    Full Text Available B cell development and activation are regulated by combined signals mediated by the B cell receptor (BCR, receptors for the B-cell activating factor of the tumor necrosis factor family (BAFF-R and the innate receptor, Toll-like receptor 9 (TLR9. However, the underlying mechanisms by which these signals cooperate in human B cells remain unclear. Our aim was to elucidate the key signaling molecules at the crossroads of BCR, BAFF-R and TLR9 mediated pathways and to follow the functional consequences of costimulation.Therefore we stimulated purified human B cells by combinations of anti-Ig, B-cell activating factor of the tumor necrosis factor family (BAFF and the TLR9 agonist, CpG oligodeoxynucleotide. Phosphorylation status of various signaling molecules, B cell proliferation, cytokine secretion, plasma blast generation and the frequency of IgG producing cells were investigated. We have found that BCR induced signals cooperate with BAFF-R- and TLR9-mediated signals at different levels of cell activation. BCR and BAFF- as well as TLR9 and BAFF-mediated signals cooperate at NFκB activation, while BCR and TLR9 synergistically costimulate mitogen activated protein kinases (MAPKs, ERK, JNK and p38. We show here for the first time that the MAP3K7 (TGF beta activated kinase, TAK1 is responsible for the synergistic costimulation of B cells by BCR and TLR9, resulting in an enhanced cell proliferation, plasma blast generation, cytokine and antibody production. Specific inhibitor of TAK1 as well as knocking down TAK1 by siRNA abrogates the synergistic signals. We conclude that TAK1 is a key regulator of receptor crosstalk between BCR and TLR9, thus plays a critical role in B cell development and activation.

  11. Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis.

    Science.gov (United States)

    Chatterjee, Anindya; Ghosh, Joydeep; Ramdas, Baskar; Mali, Raghuveer Singh; Martin, Holly; Kobayashi, Michihiro; Vemula, Sasidhar; Canela, Victor H; Waskow, Emily R; Visconte, Valeria; Tiu, Ramon V; Smith, Catherine C; Shah, Neil; Bunting, Kevin D; Boswell, H Scott; Liu, Yan; Chan, Rebecca J; Kapur, Reuben

    2014-11-20

    Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs), and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription, is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK) whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Long-term safety and efficacy of dasatinib in the treatment of chronic-phase chronic myeloid leukemia patients resistant or intolerant to imatinib

    Directory of Open Access Journals (Sweden)

    Shoumariyeh K

    2014-09-01

    Full Text Available Khalid Shoumariyeh, Nikolas von BubnoffDepartment of Hematology, Oncology and Stem Cell Transplantation, University Hospital Freiburg, Freiburg, Germany Abstract: Treatment of chronic myeloid leukemia (CML has undergone dramatic changes in the last decade. Dissecting the molecular pathways that lead to the development of this disease resulted in the development of targeted therapy against the molecular driver of CML, namely the aberrantly activated tyrosine kinase BCR-ABL1. By introducing the tyrosine kinase inhibitor imatinib to the treatment repertoire, the natural course of the disease has been dramatically altered and overall survival of patients with CML prolonged substantially. Nevertheless, a significant number of patients are primarily resistant, acquire resistance during the course of their disease, or do not tolerate the intake of imatinib due to adverse effects. Second-generation tyrosine kinase inhibitors were developed in an attempt to overcome these problems. Dasatinib is a potent oral kinase inhibitor that was originally developed as an Src-kinase inhibitor but exhibited promising potency against BCR-ABL1 as well. Phase I and II trials demonstrated efficacy in patients failing imatinib, and thus dasatanib was approved in 2006 for the treatment of imatinib-resistant or -intolerant patients with chronic-phase CML harboring the BCR-ABL1 fusion protein. It has since shown promising efficacy and good overall tolerability in subsequent clinical trials, including the Phase III first-line DASISION trial that led to the extension of its approval for first-line treatment of chronic-phase CML. The following review summarizes the available data on the long-term efficacy and safety of dasatinib as a second-line therapy in chronic-phase CML. Keywords: BCR-ABL1, TKI, CML-CP, second-line treatment

  13. BCR Signaling Inhibitors: an Overview of Toxicities Associated with Ibrutinib and Idelalisib in Patients with Chronic Lymphocytic Leukemia

    Science.gov (United States)

    Falchi, Lorenzo; Baron, Jessica M.; Orlikowski, Carrie Anne; Ferrajoli, Alessandra

    2016-01-01

    The B-cell receptor (BCR) signaling inhibitors ibrutinib and idelalisib are revolutionizing the treatment of chronic lymphocytic leukemia (CLL) and other B-cell malignancies. These oral agents, both alone and in combination with other drugs, have shown remarkable clinical activity in relapsed or refractory CLL across all risk groups, and have been approved by the Food and Drug Administration for this indication. Preliminary data suggest that an even greater benefit can be expected in treatment-naïve CLL patients. Both ibrutinib and idelalisib are well tolerated by most patients, including older, frailer individuals. Toxicities are usually mild and self-resolving. Clinicians must, however, be aware of a number of peculiar adverse events, the effects of which can be severe enough to limit the clinical use of these agents. In this review, we survey the salient aspects of the pharmacology and clinical experience with the use of BCR signaling inhibitors for the treatment of patients with CLL. We next focus on both the most common and the most clinically significant toxicities associated with these drugs. PMID:26977270

  14. Role of 18F FDG PET scan to localize tumor in patients of oncogenic osteomalacia

    International Nuclear Information System (INIS)

    Malhotra, Gaurav; Mukta, K.; Asopa, V.; Varsha, J.; Vijaya, S.; Shah, Nalini S.; Padmavathy, M.

    2010-01-01

    Full text: Oncogenic osteomalacia is a rare paraneoplastic syndrome of renal phosphate wasting which is usually caused by phosphaturic mesenchymal tumors. Conventional radiologic techniques usually fail to detect these small, slow growing neoplasms located at unusual sites. The objective of this study was to evaluate the role of 18 F FDG PET imaging in patients of oncogenic osteomalacia. Materials and Methods: Fifteen patients (8 males and 7 females) (mean age: 38.5 ± 12.2 years) with clinical and biochemical evidence of oncogenic osteomalacia were subjected to 'total' whole body 18 F FDG PET scan including both limbs and skull views. The images were reconstructed and the final output was displayed as per the standard institution protocol. Results: 18 F FDG PET imaging localized suspicious hypermetabolic foci of SUVmax ranging from 1.4 to 3.8 (Mean ± S.D.: 2.39 ± 0.63) suggesting presence of occult tumor in 11 of 15 patients. The suspected foci were localized in lower limbs in ten patients and in the petrous temporal region of skull in 1 patient. FDG localized tumors were histopathologically correlated in 6 patients who underwent surgical biopsy/excision after correlative radiological investigations. Four of these patients were cured after surgical excision while partial surgical excision/biopsy was performed in two patients. Conclusions: 18 F FDG PET imaging is a promising technique for detection of occult tumors in patients of oncogenic osteomalacia. It is mandatory to include limbs in the field as these tumors are common in limbs and may be easily missed. Preoperative localization increases odds for cure after surgical removal of tumor

  15. T-lineage blast crisis of chronic myelogenous leukemia: simple record of 4 cases

    Directory of Open Access Journals (Sweden)

    Kartika W. Taroeno-Hariadi

    2005-09-01

    Full Text Available Blast crisis (BC transformation in chronic myelogenous leukemia (CML can involve each differentiation lineage of the hematopoietic system, i.e. granulocyte, monocyte, erythrocyte, megakaryocyte, and lymphocyte lineage. The lymphoid blast crisis (BC leukemia cells usually belong to B-lineage, commonly having the phenotype of Pre-B stage of the B-lineage, in which cell-surface immunoglobulin (sIg is not yet expressed. In contrast, T-lineage BC of CML is extremely rare. The objective of this study is to describe the fenotype, fusion transcript of bcr-abl, TdT, and cytoplasmic CD3 in T-lineage BC CML cases. Case report study. This report shows a simple summary of 4 cases of T-lineage BC of CML which have been collected in the phenotypic and genotypic analysis study for 17 years (1987-2004. In all cases, the chromosomal analysis revealed the presence of t(9;22(q34;q11 at presentation. Cell surface analysis were done at diagnosis. Cases’ mononuclear cells stored as 10% DMSO were retrieved to be performed reverse transcription (RT PCR BCR-ABL multiplex to demonstrate the presence of the fusion transcript of bcr-abl. RT-PCR was also performed for detecting the expression of cytoplasmic CD3ε and terminal deoxynucleotydil transferase (TdT. The results of cell surface antigen (CSA at presentation showed that 1 case was CD7+, CD5-, and CD2-; 1 case CD7+, CD5+, and CD2-; and 2 cases CD7+, CD5+ and CD2+ indicating that all these T-lineage BC of CML cells show the phenotype of pre-(pro- thymic stage phenotype. In the present study, two cases showed b2a2, one e1a2, and one negative bcr-abl transcript. The RT-PCR revealed the presence of CD3ε mRNA in all cases, and TdT mRNA in only one case. These results can constitute a basis for the future analysis of T-lineage BC of CML from now on. (Med J Indones 2005; 14: 184-9Keywords: chronic myelogenous leukemia (CML, blastic crisis (BC, T-lineage, bcr-abl fusion gene, CDε, TdT

  16. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    International Nuclear Information System (INIS)

    Mancuso, Mariateresa; Leonardi, Simona; Giardullo, Paola; Pasquali, Emanuela; Tanori, Mirella; De Stefano, Ilaria; Casciati, Arianna; Naus, Christian C.; Pazzaglia, Simonetta; Saran, Anna

    2013-01-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1 +/− ) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1 +/− and Cx43 +/− mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1 +/− mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases

  17. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Mariateresa, E-mail: mariateresa.mancuso@enea.it [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); Leonardi, Simona [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); Giardullo, Paola; Pasquali, Emanuela [Department of Radiation Physics, Guglielmo Marconi University, Rome (Italy); Tanori, Mirella [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); De Stefano, Ilaria [Department of Radiation Physics, Guglielmo Marconi University, Rome (Italy); Casciati, Arianna [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); Naus, Christian C. [Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia (Canada); Pazzaglia, Simonetta; Saran, Anna [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy)

    2013-08-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1{sup +/−}) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1{sup +/−} and Cx43{sup +/−} mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1{sup +/−} mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases.

  18. Multiple-integrations of HPV16 genome and altered transcription of viral oncogenes and cellular genes are associated with the development of cervical cancer.

    Directory of Open Access Journals (Sweden)

    Xulian Lu

    Full Text Available The constitutive expression of the high-risk HPV E6 and E7 viral oncogenes is the major cause of cervical cancer. To comprehensively explore the composition of HPV16 early transcripts and their genomic annotation, cervical squamous epithelial tissues from 40 HPV16-infected patients were collected for analysis of papillomavirus oncogene transcripts (APOT. We observed different transcription patterns of HPV16 oncogenes in progression of cervical lesions to cervical cancer and identified one novel transcript. Multiple-integration events in the tissues of cervical carcinoma (CxCa are significantly more often than those of low-grade squamous intraepithelial lesions (LSIL and high-grade squamous intraepithelial lesions (HSIL. Moreover, most cellular genes within or near these integration sites are cancer-associated genes. Taken together, this study suggests that the multiple-integrations of HPV genome during persistent viral infection, which thereby alters the expression patterns of viral oncogenes and integration-related cellular genes, play a crucial role in progression of cervical lesions to cervix cancer.

  19. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li [Department of Thoracic Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China); Jiaojie, Zhou [Zhejiang University School of Medicine, Hangzhou (China); Xiaoyi, Yan, E-mail: xiaoyiyan163@163.com [Zhejiang University School of Medicine, Hangzhou (China); Xiujun, Cai, E-mail: xiujuncaomaj@163.com [Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China)

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.

  20. Using {sup 18F} FDG PET/CT to Detect an occult Mesenchymal Tumor Causing Oncogenic Osteomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyo Jung; Choi, Yun Jung; Kim, Hyun Jeong; Jeong, Yong Hyu; Cho, Arthur; Lee, Jae Hoon; Yun, Mijin; Lee, Jong Doo; Kang, Won Jun [Yonsei Univ. College of Medicine, Seoul (Korea, Republic of)

    2011-09-15

    Oncogenic osteomalacia is a rare paraneoplastic syndrome characterized by renal phosphate excretion, hypophosphatemia, and osteomalacia. This syndrome is often caused by tumors of mesenchymal origin. Patients with oncogenic osteomalacia have abnormal bone mineralization, resulting in a high frequency of fractures. Tumor resection is the treatment of choice, as it will often correct the metabolic imbalance. Although oncogenic osteomalacia is a potentially curable disease, diagnosis is difficult and often delayed because of the small size and sporadic location of the tumor. Bone scintigraphy and radiography best characterize osteoma lacia; magnetic resonance imaging findings are nonspecific. Here, we report a case of oncogenic osteomalacia secondary to a phosphaturic mesenchymal tumor that was successfully detected by {sup 18F} fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18F} FDG PET/CT). This case illustrates the advantages of {sup 18F} FDG PET/CT in detecting the occult mesenchymal tumor that causes oncogenic osteomalacia.

  1. The oncogenic action of ionizing radiation on rat skin

    International Nuclear Information System (INIS)

    Burns, F.J.; Garte, S.J.

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. Progress is described in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) oncogene activation in radiation-induced rat skin cancers; (3) DNA strand breaks in the epidermis as a function of radiation penetration. 59 refs., 4 tabs

  2. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christoph Campregher

    Full Text Available BACKGROUND/AIM: Elevated microsatellite instability at selected tetranucleotide repeats (EMAST is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. METHODS: HCT116 and HCT116+chr3 (both MSH3-deficient and primary human colon epithelial cells (HCEC, MSH3-wildtype were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs were assessed by Comet assay. RESULTS: Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4 at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50, apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. CONCLUSIONS: MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon

  3. Tyrosine kinase receptor c-ros-oncogene 1 inhibition alleviates aberrant bone formation of TWIST-1 haploinsufficient calvarial cells from Saethre-Chotzen syndrome patients.

    Science.gov (United States)

    Camp, Esther; Anderson, Peter J; Zannettino, Andrew C W; Glackin, Carlotta A; Gronthos, Stan

    2018-09-01

    Saethre-Chotzen syndrome (SCS), associated with TWIST-1 mutations, is characterized by premature fusion of cranial sutures. TWIST-1 haploinsufficiency, leads to alterations in suture mesenchyme cellular gene expression patterns, resulting in aberrant osteogenesis and craniosynostosis. We analyzed the expression of the TWIST-1 target, Tyrosine kinase receptor c-ros-oncogene 1 (C-ROS-1) in TWIST-1 haploinsufficient calvarial cells derived from SCS patients and calvaria of Twist-1 del/+ mutant mice and found it to be highly expressed when compared to TWIST-1 wild-type controls. Knock-down of C-ROS-1 expression in TWIST-1 haploinsufficient calvarial cells derived from SCS patients was associated with decreased capacity for osteogenic differentiation in vitro. Furthermore, treatment of human SCS calvarial cells with the tyrosine kinase chemical inhibitor, Crizotinib, resulted in reduced C-ROS-1 activity and the osteogenic potential of human SCS calvarial cells with minor effects on cell viability or proliferation. Cultured human SCS calvarial cells treated with Crizotinib exhibited a dose-dependent decrease in alkaline phosphatase activity and mineral deposition, with an associated decrease in expression levels of Runt-related transcription factor 2 and OSTEOPONTIN, with reduced PI3K/Akt signalling in vitro. Furthermore, Crizotinib treatment resulted in reduced BMP-2 mediated bone formation potential of whole Twist-1 del/+ mutant mouse calvaria organotypic cultures. Collectively, these results suggest that C-ROS-1 promotes osteogenic differentiation of TWIST-1 haploinsufficient calvarial osteogenic progenitor cells. Furthermore, the aberrant osteogenic potential of these cells is inhibited by the reduction of C-ROS-1. Therefore, targeting C-ROS-1 with a pharmacological agent, such as Crizotinib, may serve as a novel therapeutic strategy to alleviate craniosynostosis associated with aberrant TWIST-1 function. © 2018 Wiley Periodicals, Inc.

  4. Multiple oncogenic viruses identified in Ocular surface squamous neoplasia in HIV-1 patients

    Directory of Open Access Journals (Sweden)

    Bisson Gregory

    2010-03-01

    Full Text Available Abstract Background Ocular surface squamous neoplasia (OSSN is a rare cancer that has increased in incidence with the HIV pandemic in Africa. The underlying cause of this cancer in HIV-infected patients from Botswana is not well defined. Results Tissues were obtained from 28 OSSN and 8 pterygia patients. The tissues analyzed from OSSN patients were 83% positive for EBV, 75% were HPV positive, 70% were KSHV positive, 75% were HSV-1/2 positive, and 61% were CMV positive by PCR. Tissues from pterygium patients were 88% positive for EBV, 75% were HPV positive, 50% were KSHV positive, and 60% were CMV positive. None of the patients were JC or BK positive. In situ hybridization and immunohistochemistry analyses further identified HPV, EBV, and KSHV in a subset of the tissue samples. Conclusion We identified the known oncogenic viruses HPV, KSHV, and EBV in OSSN and pterygia tissues. The presence of these tumor viruses in OSSN suggests that they may contribute to the development of this malignancy in the HIV population. Further studies are necessary to characterize the molecular mechanisms associated with viral antigens and their potential role in the development of OSSN.

  5. Natural immune responses against eight oncogenic human papillomaviruses in the ASCUS-LSIL triage study

    Science.gov (United States)

    Wilson, Lauren E.; Pawlita, Michael; Castle, Phillip E.; Waterboer, Tim; Sahasrabuddhe, Vikrant; Gravitt, Patti E.; Schiffman, Mark; Wentzensen, Nicolas

    2014-01-01

    Only a subset of women with human papillomavirus (HPV) infections will become seropositive, and the factors influencing seroconversion are not well-understood. We used a multiplex serology assay in women with mildly abnormal cytology results to examine seroreactivity to oncogenic HPV genotypes. An unbiased subset of women in the atypical squamous cell of undetermined significance /low-grade squamous intraepithelial lesion Triage Study (ALTS) provided blood samples at trial enrollment for serological testing. A Luminex assay based on GST-L1 fusion proteins as antigens was used to test seroreactivity against eight carcinogenic HPV genotypes (16, 18, 31, 33, 35, 45, 52, 58). We analyzed the relationship between seroprevalence in women free of precancer (N=2464) and HPV DNA status, age, sexual behavior, and other HPV-related risk factors. The overall seroprevalence was 24.5% for HPV16 L1 and ~ 20% for 18L1 and 31L1. Among women free of precancer, seroprevalence peaked in women less than 29 years and decreased with age. Type-specific seroprevalence was associated with baseline DNA detection for HPV16 (OR= 1.36, 95%CI: 1.04–1.79) and HPV18 (OR= 2.31, 95%CI: 1.61–3.32), as well as for HPV52 and HPV58. Correlates of sexual exposure were associated with increased seroprevalence across most genotypes. Women who were current or former smokers were less likely to be seropositive for all eight of the tested oncogenic genotypes. The multiplex assay showed associations between seroprevalence and known risk factors for HPV infection across nearly all tested HPV genotypes but associations between DNA- and serostatus were weak, suggesting possible misclassification of the participants’ HPV serostatus. PMID:23588935

  6. N-myc oncogene amplification is correlated to trace metal concentrations in neuroblastoma cultured cells

    International Nuclear Information System (INIS)

    Gouget, B.; Sergeant, C.; Benard, J.; Llabador, Y.; Simonoff, M.

    2000-01-01

    N-myc oncogene amplification is a powerful predictor of aggressive behavior of neuroblastoma (NB), the most common solid tumor of the early childhood. Since N-myc overexpression - subsequent to amplification - determines a phenotype of invasiveness and metastatic spreading, it is assumed that N-myc amplified neuroblasts synthesize zinc metalloenzymes leading to tumor invasion and formation of metastases. In order to test a possible relation between N-myc oncogene amplification and trace metal contents in human NB cells, Fe, Cu and Zn concentrations have been measured by nuclear microprobe analysis in three human neuroblastoma cell lines with various degrees of N-myc amplification. Elemental determinations show uniform distribution of trace metals within the cells, but variations of intracellular trace metal concentrations with respect to the degree of N-myc amplification are highly dependent on the nature of the element. Zinc concentration is higher in both N-myc amplified cell lines (IMR-32 and IGR-N-91) than in the non-amplified cells (SK-N-SH). In contrast, intracellular iron content is particularly low in N-myc amplified cell lines. Moreover, copper concentrations showed an increase with the degree of N-myc amplification. These results indicate that a relationship exists between intracellular trace metals and N-myc oncogene amplification. They further suggest that trace metals very probably play a determinant role in mechanisms of the neuroblastoma invasiveness

  7. Frequency and clinical impact of ETV6/RUNX1, AF4‑MLL, and BCR ...

    African Journals Online (AJOL)

    Background: Variations in disease presentation and outcome of leukemia treatment has been associated with the presence of certain mutant genes. Three major translocations (ETV6‑RUNX1, BCR‑ABL, and AF4‑MLL) in acute lymphoblastic leukemia (ALL) have been shown to affect treatment outcome. This study is aimed ...

  8. Ras oncogenes in oral cancer: the past 20 years.

    Science.gov (United States)

    Murugan, Avaniyapuram Kannan; Munirajan, Arasambattu Kannan; Tsuchida, Nobuo

    2012-05-01

    Oral squamous cell carcinoma (OSCC) of head and neck is associated with high morbidity and mortality in both Western and Asian countries. Several risk factors for the development of oral cancer are very well established, including tobacco chewing, betel quid, smoking, alcohol drinking and human papilloma virus (HPV) infection. Apart from these risk factors, many genetic factors such as oncogenes, tumor suppressor genes and regulatory genes are identified to involve in oral carcinogenesis with these risk factors dependent and independent manner. Ras is one of the most frequently genetically deregulated oncogene in oral cancer. In this review, we analyze the past 22years of literature on genetic alterations such as mutations and amplifications of the isoforms of the ras oncogene in oral cancer. Further, we addressed the isoform-specific role of the ras in oral carcinogenesis. We also discussed how targeting the Akt and MEK, downstream effectors of the PI3K/Akt and MAPK pathways, respectively, would probably pave the possible molecular therapeutic target for the ras driven tumorigenesis in oral cancer. Analysis of these ras isoforms may critically enlighten specific role of a particular ras isoform in oral carcinogenesis, enhance prognosis and pave the way for isoform-specific molecular targeted therapy in OSCC. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Links between human LINE-1 retrotransposons and hepatitis virus-related hepatocellular carcinoma

    Science.gov (United States)

    Honda, Tomoyuki

    2016-05-01

    Hepatocellular carcinoma (HCC) accounts for approximately 80% of liver cancers, the third most frequent cause of cancer mortality. The most prevalent risk factors for HCC are infections by hepatitis B or hepatitis C virus. Findings suggest that hepatitis virus-related HCC might be a cancer in which LINE-1 retrotransposons, often termed L1, activity plays a potential role. Firstly, hepatitis viruses can suppress host defense factors that also control L1 mobilization. Secondly, many recent studies also have indicated that hypomethylation of L1 affects the prognosis of HCC patients. Thirdly, endogenous L1 retrotransposition was demonstrated to activate oncogenic pathways in HCC. Fourthly, several L1 chimeric transcripts with host or viral genes are found in hepatitis virus-related HCC. Such lines of evidence suggest a linkage between L1 retrotransposons and hepatitis virus-related HCC. Here, I briefly summarize current understandings of the association between hepatitis virus-related HCC and L1. Then, I discuss potential mechanisms of how hepatitis viruses drive the development of HCC via L1 retrotransposons. An increased understanding of the contribution of L1 to hepatitis virus-related HCC may provide unique insights related to the development of novel therapeutics for this disease.

  10. JAK2 aberrations in childhood B-cell precursor acute lymphoblastic leukemia

    Science.gov (United States)

    de Goffau-Nobel, Willemieke; Hoogkamer, Alex Q.; Boer, Judith M.; Boeree, Aurélie; van de Ven, Cesca; Koudijs, Marco J.; Besselink, Nicolle J.M.; de Groot-Kruseman, Hester A.; Zwaan, Christian Michel; Horstmann, Martin A.; Pieters, Rob; den Boer, Monique L.

    2017-01-01

    JAK2 abnormalities may serve as target for precision medicines in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In the current study we performed a screening for JAK2 mutations and translocations, analyzed the clinical outcome and studied the efficacy of two JAK inhibitors in primary BCP-ALL cells. Importantly, we identify a number of limitations of JAK inhibitor therapy. JAK2 mutations mainly occurred in the poor prognostic subtypes BCR-ABL1-like and non- BCR-ABL1-like B-other (negative for sentinel cytogenetic lesions). JAK2 translocations were restricted to BCR-ABL1-like cases. Momelotinib and ruxolitinib were cytotoxic in both JAK2 translocated and JAK2 mutated cells, although efficacy in JAK2 mutated cells highly depended on cytokine receptor activation by TSLP. However, our data also suggest that the effect of JAK inhibition may be compromised by mutations in alternative survival pathways and microenvironment-induced resistance. Furthermore, inhibitors induced accumulation of phosphorylated JAK2Y1007, which resulted in a profound re-activation of JAK2 signaling upon release of the inhibitors. This preclinical evidence implies that further optimization and evaluation of JAK inhibitor treatment is necessary prior to its clinical integration in pediatric BCP-ALL. PMID:29163799

  11. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Copp& #233; , Jean-Philippe; Patil, Christopher; Rodier, Francis; Sun, Yu; Munoz, Denise; Goldstein, Joshua; Nelson, Peter; Desprez, Pierre-Yves; Campisi, Judith

    2008-10-24

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

  12. Scintigraphic imaging of oncogenes with antisense probes: does it make sense?

    International Nuclear Information System (INIS)

    Urbain, J.L.C.; Shore, S.K.; Vekemans, M.C.; Cosenza, S.C.; DeRiel, K.; Patel, G.V.; Charkes, N.D.; Malmud, L.S.; Reddy, E.P.

    1995-01-01

    The aim of this study was to demonstrate that cells which are expressing a particular mRNA transcript do preferentially and specifically retain the antisense probe targeting that mRNA. Using a mouse plasmacytoma cell line (MOPC315) which produces high levels of IgA heavy chain mRNA, a control mouse pre B cell line (7OZ/3B), a human mammary cell line (MCF7) which expresses the erbB2 or neu oncogene, MOPC315 cells as neu-negative controls, and antisense DNA oligonucleotides complementary to the 5' region of the mRNAs and the sense sequence, we have shown that there is a preferential, specific retention of the IgA and neu antisense sequence in MOPC315 and MCF7 cells, respectively. We have further demonstrated that this retention is time and concentration dependent with a maximum at 24 h. We conclude that cancer cells which express a particular oncogene are suitable targets for radiolabeled antisense deoxyoligonucleotides directed toward the oncogene transcript. (orig.)

  13. A Poly-ADP-Ribose Trigger Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene.

    Science.gov (United States)

    Singh, Hari R; Nardozza, Aurelio P; Möller, Ingvar R; Knobloch, Gunnar; Kistemaker, Hans A V; Hassler, Markus; Harrer, Nadine; Blessing, Charlotte; Eustermann, Sebastian; Kotthoff, Christiane; Huet, Sébastien; Mueller-Planitz, Felix; Filippov, Dmitri V; Timinszky, Gyula; Rand, Kasper D; Ladurner, Andreas G

    2017-12-07

    DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain with the ATPase module mediates auto-inhibition. PARP1 activation suppresses this inhibitory interaction. Crucially, release from auto-inhibition requires a poly-ADP-ribose (PAR) binding macrodomain. We identify tri-ADP-ribose as a potent PAR-mimic and synthetic allosteric effector that abrogates ATPase-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD + -metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Oncogenic human papilloma virus and cervical pre-cancerous lesions in brothel-based sex workers in India

    Directory of Open Access Journals (Sweden)

    Kamalesh Sarkar

     = 9, those with two to three clients had a prevalence of 30% (n = 34 and those with one or less clients had a prevalence of 10% (n = 9 (statistically significant differences, P = 0.00003. Multivariate analysis showed a statistical association only with a duration of sex work of ≤1 year [odds ratio (OR = 3.3; 95% confidence interval (CI 1.4–7.6] and daily income of Rupees (Rp ≥101 (OR = 2.5; 95% CI 1.3–5. Regarding pre-cancerous lesions, 2 of 229 sex workers showed the presence of a low-grade squamous intraepithelial lesion along with high-risk HPV. Thus, 1% of the studied population suffer from a pre-cancerous lesion caused by high-risk HPV. This study concludes that young sex workers are particularly vulnerable to high-risk HPV, similar to human immunodeficiency virus (HIV. The observation of older sex workers relatively free from HPV supports the view of acquired immunity against HPV, which needs to be studied in-depth further. There is a need for a suitable community-based intervention programme targeted towards sex workers, with special reference to younger sex workers, for control and prevention of HPV and cervical cancer. Vaccination against HPV for newly entrant sex workers may be an important component for a successful intervention programme. Keywords: Human papillomavirus, Oncogenic HPV, Sex workers, India, Risk factors, Cervicitis, Cervical pre-cancerous lesion, STI

  15. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice

    Science.gov (United States)

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-01-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/- Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas WT cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53. PMID:19047147

  16. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice.

    Science.gov (United States)

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-12-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here, we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/-Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas wild-type cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53.

  17. The oncogenic role of the In1-ghrelin splicing variant in prostate cancer aggressiveness.

    Science.gov (United States)

    Hormaechea-Agulla, Daniel; Gahete, Manuel D; Jiménez-Vacas, Juan M; Gómez-Gómez, Enrique; Ibáñez-Costa, Alejandro; L-López, Fernando; Rivero-Cortés, Esther; Sarmento-Cabral, André; Valero-Rosa, José; Carrasco-Valiente, Julia; Sánchez-Sánchez, Rafael; Ortega-Salas, Rosa; Moreno, María M; Tsomaia, Natia; Swanson, Steve M; Culler, Michael D; Requena, María J; Castaño, Justo P; Luque, Raúl M

    2017-08-29

    The Ghrelin-system is a complex, pleiotropic family composed of several peptides, including native-ghrelin and its In1-ghrelin splicing variant, and receptors (GHSR 1a/b), which are dysregulated in various endocrine-related tumors, where they associate to pathophysiological features, but the presence, functional role, and mechanisms of actions of In1-ghrelin splicing variant in prostate-cancer (PCa), is completely unexplored. Herein, we aimed to determine the presence of key ghrelin-system components (native-ghrelin, In1-ghrelin, GHSR1a/1b) and their potential pathophysiological role in prostate cancer (PCa). In1-ghrelin and native-ghrelin expression was evaluated by qPCR in prostate tissues from patients with high PCa-risk (n = 52; fresh-tumoral biopsies), and healthy-prostates (n = 12; from cystoprostatectomies) and correlated with clinical parameters using Spearman-test. In addition, In1-ghrelin and native-ghrelin was measured in plasma from an additional cohort of PCa-patients with different risk levels (n = 30) and control-healthy patients (n = 20). In vivo functional (proliferation/migration) and mechanistic (gene expression/signaling-pathways) assays were performed in PCa-cell lines in response to In1-ghrelin and native-ghrelin treatment, overexpression and/or silencing. Finally, tumor progression was monitored in nude-mice injected with PCa-cells overexpressing In1-ghrelin, native-ghrelin and empty vector (control). In1-ghrelin, but not native-ghrelin, was overexpressed in high-risk PCa-samples compared to normal-prostate (NP), and this expression correlated with that of PSA. Conversely, GHSR1a/1b expression was virtually absent. Remarkably, plasmatic In1-ghrelin, but not native-ghrelin, levels were also higher in PCa-patients compared to healthy-controls. Furthermore, In1-ghrelin treatment/overexpression, and to a much lesser extent native-ghrelin, increased aggressiveness features (cell-proliferation, migration and PSA secretion) of NP and PCa

  18. Acute WT1-positive promyelocytic leukemia with hypogranular variant morphology, bcr-3 isoform of PML-RARα and Flt3-ITD mutation: a rare case report

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    Full Text Available ABSTRACT CONTEXT: Acute promyelocytic leukemia (APL accounts for 8% to 10% of cases of acute myeloid leukemia (AML. Remission in cases of high-risk APL is still difficult to achieve, and relapses occur readily. CASE REPORT: Here, we describe a case of APL with high white blood cell counts in blood tests and hypogranular variant morphology in bone marrow, together with fms-like tyrosine kinase-3 with internal tandem duplication mutations (FLT3-ITD, and bcr-3 isoform of PML-RARα. Most importantly, we detected high level of Wilms’ tumor gene (WT1 in marrow blasts, through the reverse transcription polymerase chain reaction (RT-PCR. To date, no clear conclusions about an association between WT1 expression levels and APL have been reached. This patient successively received a combined treatment regimen consisting of hydroxycarbamide, arsenic trioxide and idarubicin plus cytarabine, which ultimately enabled complete remission. Unfortunately, he subsequently died of sudden massive hemoptysis because of pulmonary infection. CONCLUSION: Based on our findings and a review of the literature, abnormal functioning of WT1 may be a high-risk factor in cases of APL. Further studies aimed towards evaluating the impact of WT1 expression on the prognosis for APL patients are of interest.

  19. Oncogenic osteomalacia secondary to a hemangiopericytoma of the hip: case report

    International Nuclear Information System (INIS)

    Baronofsky, S.I.; Kalbhen, C.L.; Demos, T.C.; Sizemore, G.W.

    1999-01-01

    Osteomalacia is characterized by abnormally increased unmineralized osteoid within the bone matrix. This metabolic bone disease is usually the result of decreased uptake or abnormal metabolism of vitamin D or of renal tubular phosphate loss. Dietary deficiency, malabsorption, cirrhosis, renal tubular acidosis and certain drugs can cause osteomalacia., Oncogenic osteomalacia - osteomalacia secondary to tumours - is rare, and the exact mechanisms by which neoplasms induce osteomalacia are not known. We describe a patient with chronic osteomalacia of unknown origin who was subsequently found to have oncogenic osteomalacia secondary to a hemangiopericytoma of the hip. (author)

  20. Oncogenic osteomalacia secondary to a hemangiopericytoma of the hip: case report

    Energy Technology Data Exchange (ETDEWEB)

    Baronofsky, S.I.; Kalbhen, C.L.; Demos, T.C.; Sizemore, G.W. [Loyola Univ. Medical Center, Dept. of Medicine, Maywood, IL (United States)

    1999-02-01

    Osteomalacia is characterized by abnormally increased unmineralized osteoid within the bone matrix. This metabolic bone disease is usually the result of decreased uptake or abnormal metabolism of vitamin D or of renal tubular phosphate loss. Dietary deficiency, malabsorption, cirrhosis, renal tubular acidosis and certain drugs can cause osteomalacia., Oncogenic osteomalacia - osteomalacia secondary to tumours - is rare, and the exact mechanisms by which neoplasms induce osteomalacia are not known. We describe a patient with chronic osteomalacia of unknown origin who was subsequently found to have oncogenic osteomalacia secondary to a hemangiopericytoma of the hip. (author)