WorldWideScience

Sample records for bcl-2 regulated apoptosis

  1. Down-Regulation of Bcl-2 Protein Sensitizes NCI 460 Cells to Radiotherapy-Induced Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Dongmei He; Yuan Zhang; Gexiu Liu

    2006-01-01

    OBJECTIVE To determine whether Bcl-2 protein down-regulation can render NCI-460 cells more susceptible to gamma radiation-induced apoptosis by treatment with antisense oligonucleotide (ASODN) against the coding region of Bcl-2 mRNA.METHODS Cell survival was determined using the trypan blue dye exclusion. Expression of the Bcl-2 protein was assayed using immunofluorescence labeling with fluoresce isothiocyanate. Apoptosis was determined by Giemsa staining and flow cytomertry.RESULTS It was found that Bcl-2 ASODN combined with radiation significantly reduced the number of viable cells (P<0.05). There was no difference in cell survival between a nonsense oligodeoxynucleotide/radiation combination and cells treated with radiation alone. Bcl-2 ASODN combined with radiation significantly inhibited expression of the Bcl-2protein in the NCI-H460 cells (P<0.05). Using Giemsa staining, cells treated with Bcl-2 ASODN combined with radiation at 72 h displayed classic apoptotic changes. Apoptotic rates of the NCI-H460 cells treated with Bcl-2 ASODN combined with radiation significantly increased (P<0.05), compared with either a nonsense oligodeoxynucleotide/radiation combination or radiation-treatment cells alone.CONCLUSION ASODN against the coding region of Bcl-2 mRNA increases radiation-induced apoptosis in NCI-H460 cells.

  2. Study on the Regulation of Bcl-2 Gene on Rat Spermatogenic Cells Apoptosis in Transcription Level

    Institute of Scientific and Technical Information of China (English)

    董强; 杨宇如; 黄明孔; 李虹; 张卫东; 徐震波

    2000-01-01

    Objective To detect the change of Bcl-2 gene expression in the apopototic process of spermatogenic cells in rat with vasoligation and vasostomy, and to find out the relationship between the transcription of Bcl-2 and the apoptosis of spermatognic cells.Materials & Methods Sixty adult male Sprague-Dawley rats in 3 groups were operated with vasoligation and vasostomy. Then hybridization in situ with hypersensitive Bcl-2 RNA probe was used to detect the change of Bcl-2 mRNA.Results The transcription of Bcl-2 gene in spermatogenic cells was obviously inhibited in the vasoligation group compared with that in the control group (P<0. 05), and the transcription in the vasostomy group showed no difference from that of the control group.Conclusion Bcl-2 gene has an anti-apoptotic effect in rats with vasostomy, and there was a transcriptional regulation of Bcl-2 gene in rat spermatogenic cell during the period of pre-vasoligation to post-vasoligation and to post-vasosotomy.

  3. SS-A/Ro52 promotes apoptosis by regulating Bcl-2 production

    International Nuclear Information System (INIS)

    Highlights: ► Ro52low HeLa cells are resistant to apoptosis upon various stimulations. ► Ro52 is upregulated by IFN-α, etoposide, or IFN-γ and anti-Fas Ab. ► Ro52-mediated apoptosis is independent of p53. ► Ro52 selectively regulates Bcl-2 expression. -- Abstract: SS-A/Ro52 (Ro52), an autoantigen in systemic autoimmune diseases such as systemic lupus erythematosus and Sjögren’s syndrome, has E3 ligase activity to ubiquitinate proteins that protect against viral infection. To investigate Ro52’s role during stress, we transiently knocked it down in HeLa cells by siRo52 transfection. We found that Ro52low HeLa cells were significantly more resistant to apoptosis than wild-type HeLa cells when stimulated by H2O2- or diamide-induced oxidative stress, IFN-α, IFN-γ and anti-Fas antibody, etoposide, or γ-irradiation. Furthermore, Ro52-mediated apoptosis was not influenced by p53 protein level in HeLa cells. Depleting Ro52 in HeLa cells caused Bcl-2, but not other Bcl-2 family molecules, to be upregulated. Taken together, our data showed that Ro52 is a universal proapoptotic molecule, and that its proapoptotic effect does not depend on p53, but is exerted through negative regulation of the anti-apoptotic protein Bcl-2. These findings shed light on a new physiological role for Ro52 that is important to intracellular immunity.

  4. SS-A/Ro52 promotes apoptosis by regulating Bcl-2 production

    Energy Technology Data Exchange (ETDEWEB)

    Jauharoh, Siti Nur Aisyah [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Faculty of Medicine and Health Science, Syarif Hidayatullah State Islamic University, Jakarta 15412 (Indonesia); Saegusa, Jun; Sugimoto, Takeshi [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Ardianto, Bambang [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Department of Child Health, Faculty of Medicine, Gadjah Mada University, Yogyakarta 55282 (Indonesia); Kasagi, Shimpei; Sugiyama, Daisuke; Kurimoto, Chiyo [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Tokuno, Osamu; Nakamachi, Yuji [Department of Laboratory Medicine, Kobe University Hospital, Hyogo 650-0017 (Japan); Kumagai, Shunichi [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Kawano, Seiji, E-mail: sjkawano@med.kobe-u.ac.jp [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Department of Laboratory Medicine, Kobe University Hospital, Hyogo 650-0017 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Ro52{sup low} HeLa cells are resistant to apoptosis upon various stimulations. Black-Right-Pointing-Pointer Ro52 is upregulated by IFN-{alpha}, etoposide, or IFN-{gamma} and anti-Fas Ab. Black-Right-Pointing-Pointer Ro52-mediated apoptosis is independent of p53. Black-Right-Pointing-Pointer Ro52 selectively regulates Bcl-2 expression. -- Abstract: SS-A/Ro52 (Ro52), an autoantigen in systemic autoimmune diseases such as systemic lupus erythematosus and Sjoegren's syndrome, has E3 ligase activity to ubiquitinate proteins that protect against viral infection. To investigate Ro52's role during stress, we transiently knocked it down in HeLa cells by siRo52 transfection. We found that Ro52{sup low} HeLa cells were significantly more resistant to apoptosis than wild-type HeLa cells when stimulated by H{sub 2}O{sub 2}- or diamide-induced oxidative stress, IFN-{alpha}, IFN-{gamma} and anti-Fas antibody, etoposide, or {gamma}-irradiation. Furthermore, Ro52-mediated apoptosis was not influenced by p53 protein level in HeLa cells. Depleting Ro52 in HeLa cells caused Bcl-2, but not other Bcl-2 family molecules, to be upregulated. Taken together, our data showed that Ro52 is a universal proapoptotic molecule, and that its proapoptotic effect does not depend on p53, but is exerted through negative regulation of the anti-apoptotic protein Bcl-2. These findings shed light on a new physiological role for Ro52 that is important to intracellular immunity.

  5. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update.

    Science.gov (United States)

    Siddiqui, Waseem Ahmad; Ahad, Amjid; Ahsan, Haseeb

    2015-03-01

    Apoptosis is a critically important biological process that plays an essential role in cell fate and homeostasis. An important component of the apoptotic pathway is the family of proteins commonly known as the B cell lymphoma-2 (Bcl-2). The primary role of Bcl-2 family members is the regulation of apoptosis. Although the structure of Bcl-2 family of proteins was reported nearly 10 years ago, however, it still surprises us with its structural and functional complexity and diversity. A number of studies have demonstrated that Bcl-2 family influences many other cellular processes beyond apoptosis which are generally independent of the regulation of apoptosis, suggesting additional roles for Bcl-2. The disruption of the regulation of apoptosis is a causative event in many diseases. Since the Bcl-2 family of proteins is the key regulator of apoptosis, the abnormalities in its function have been implicated in many diseases including cancer, neurodegenerative disorders, ischemia and autoimmune diseases. In the past few years, our understanding of the mechanism of action of Bcl-2 family of proteins and its implications in various pathological conditions has enhanced significantly. The focus of this review is to summarize the current knowledge on the structure and function of Bcl-2 family of proteins in apoptotic cellular processes. A number of drugs have been developed in the past few years that target different Bcl-2 members. The role of Bcl-2 proteins in the pathogenesis of various diseases and their pharmacological significance as effective molecular therapeutic targets is also discussed.

  6. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Changchien, Jung-Jung; Chen, Ying-Jung; Huang, Chia-Hui [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Cheng, Tian-Lu [Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lin, Shinne-Ren [Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, Long-Sen, E-mail: lschang@mail.nsysu.edu.tw [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2015-04-01

    Although previous studies have revealed the anti-cancer activity of quinacrine, its effect on leukemia is not clearly resolved. We sought to explore the cytotoxic effect and mechanism of quinacrine action in human leukemia K562 cells. Quinacrine induced K562 cell apoptosis accompanied with ROS generation, mitochondrial depolarization, and down-regulation of BCL2L1 and BCL2. Upon exposure to quinacrine, ROS-mediated p38 MAPK activation and ERK inactivation were observed in K562 cells. Quinacrine-induced cell death and mitochondrial depolarization were suppressed by the p38MAPK inhibitor SB202190 and constitutively active MEK1 over-expression. Activation of p38 MAPK was shown to promote BCL2 degradation. Further, ERK inactivation suppressed c-Jun-mediated transcriptional expression of BCL2L1. Over-expression of BCL2L1 and BCL2 attenuated quinacrine-evoked mitochondrial depolarization and rescued the viability of quinacrine-treated cells. Taken together, our data indicate that quinacrine-induced K562 cell apoptosis is mediated through mitochondrial alterations triggered by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. - Highlights: • Quinacrine induces K562 cell apoptosis via down-regulation of BCL2 and BCL2L1. • Quinacrine induces p38 MAPK activation and ERK inactivation in K562 cells. • Quinacrine elicits p38 MAPK-mediated BCL2 down-regulation. • Quinacrine suppresses ERK/c-Jun-mediated BCL2L1 expression.

  7. Atherosclerosis-Associated Endothelial Cell Apoptosis by MiR-429-Mediated Down Regulation of Bcl-2

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2015-10-01

    -associated endothelial cell apoptosis may result from down regulation of Bcl-2, through increased miR-429 that binds and suppresses translation of Bcl-2 mRNA.

  8. Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells

    Institute of Scientific and Technical Information of China (English)

    Guomin Niu; Songmei Yin; Shuangfeng Xie; Yiqing Li; Danian Nie; Liping Ma; Xiuju Wang; Yudan Wu

    2011-01-01

    Quercetin is one of the naturally occurring dietary flavo-nol compounds. It is present abundantly in plants and has chemopreventive and anticancer effects. To investigate its anticancer mechanism, we examined the activity of quercetin against acute leukemia cell line, HL-60. Our results showed that quercetin inhibited cell proliferation and induced apoptosis in a time- and dose-dependent manner. Furthermore, quercetin down-regulated the expression of anti-apoptosis protein Bcl-2 and up-regulated the expression of pro-apoptosis protein Bax. Caspase-3 was also activated by quercetin, which started a caspase-3-depended mitochodrial pathway to induce apoptosis. It was also found that quercetin inhibited the expression of the cycloocygenase-2 (Cox-2) mRNA and Cox-2 protein. Taken together, these findings suggested that quercetin induces apoptosis in a caspase-3-dependent pathway by inhibiting Cox-2 expression and regulates the expression of downstream apoptotic components, including Bcl-2 and Bax. Quercetin can be a potent and promising medicine which might be safely used in leukemia therapy.

  9. Transformer 2β and miR-204 regulate apoptosis through competitive binding to 3' UTR of BCL2 mRNA.

    Science.gov (United States)

    Kuwano, Y; Nishida, K; Kajita, K; Satake, Y; Akaike, Y; Fujita, K; Kano, S; Masuda, K; Rokutan, K

    2015-05-01

    RNA-binding proteins and microRNAs are potent post-transcriptional regulators of gene expression. Human transformer 2β (Tra2β) is a serine/arginine-rich-like protein splicing factor and is now implicated to have wide-ranging roles in gene expression as an RNA-binding protein. RNA immunoprecipitation (RIP) with an anti-Tra2β antibody and microarray analysis identified a subset of Tra2β-associated mRNAs in HCT116 human colon cancer cells, many of which encoded cell death-related proteins including Bcl-2 (B-cell CLL/lymphoma 2). Tra2β knockdown in HCT116 cells decreased Bcl-2 expression and induced apoptosis. Tra2β knockdown accelerated the decay of BCL2α mRNA that encodes Bcl-2 and full-length 3' UTR, while it did not affect the stability of BCL2β mRNA having a short, alternatively spliced 3' UTR different from BCL2α 3' UTR. RIP assays with anti-Tra2β and anti-Argonaute 2 antibodies, respectively, showed that Tra2β bound to BCL2α 3' UTR, and that Tra2β knockdown facilitated association of miR-204 with BCL2α 3' UTR. The consensus sequence (GAA) for Tra2β-binding lies within the miR-204-binding site of BCL2 3' UTR. Mutation of the consensus sequence canceled the binding of Tra2β to BCL2 3' UTR without disrupting miR-204-binding to BCL2 3' UTR. Transfection of an anti-miR-204 or introduction of three-point mutations into the miR-204-binding site increased BCL2 mRNA and Bcl-2 protein levels. Inversely, transfection of precursor miR-204 reduced their levels. Experiments with Tra2β-silenced or overexpressed cells revealed that Tra2β antagonized the effects of miR-204 and upregulated Bcl-2 expression. Furthermore, TRA2β mRNA expression was significantly upregulated in 22 colon cancer tissues compared with paired normal tissues and positively correlated with BCL2 mRNA expression. Tra2β knockdown in human lung adenocarcinoma cells (A549) increased their sensitivity to anticancer drugs. Taken together, our findings suggest that Tra2β regulates apoptosis by

  10. BET Inhibition Induces Apoptosis in Aggressive B-Cell Lymphoma via Epigenetic Regulation of BCL-2 Family Members.

    Science.gov (United States)

    Hogg, Simon J; Newbold, Andrea; Vervoort, Stephin J; Cluse, Leonie A; Martin, Benjamin P; Gregory, Gareth P; Lefebure, Marcus; Vidacs, Eva; Tothill, Richard W; Bradner, James E; Shortt, Jake; Johnstone, Ricky W

    2016-09-01

    Targeting BET bromodomain proteins using small molecules is an emerging anticancer strategy with clinical evaluation of at least six inhibitors now underway. Although MYC downregulation was initially proposed as a key mechanistic property of BET inhibitors, recent evidence suggests that additional antitumor activities are important. Using the Eμ-Myc model of B-cell lymphoma, we demonstrate that BET inhibition with JQ1 is a potent inducer of p53-independent apoptosis that occurs in the absence of effects on Myc gene expression. JQ1 skews the expression of proapoptotic (Bim) and antiapoptotic (BCL-2/BCL-xL) BCL-2 family members to directly engage the mitochondrial apoptotic pathway. Consistent with this, Bim knockout or Bcl-2 overexpression inhibited apoptosis induction by JQ1. We identified lymphomas that were either intrinsically resistant to JQ1-mediated death or acquired resistance following in vivo exposure. Strikingly, in both instances BCL-2 was strongly upregulated and was concomitant with activation of RAS pathways. Eμ-Myc lymphomas engineered to express activated Nras upregulated BCL-2 and acquired a JQ1 resistance phenotype. These studies provide important information on mechanisms of apoptosis induction and resistance to BET-inhibition, while providing further rationale for the translation of BET inhibitors in aggressive B-cell lymphomas. Mol Cancer Ther; 15(9); 2030-41. ©2016 AACR. PMID:27406984

  11. Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Intermittent hypoxia has been shown to provide myocardial protection against ishemia/reperfusion-induced injury.Cardiac myocyte loss through apoptosis has been reported in ischemia/reperfusion injury. Our aim was to investigate whether intermittent hypoxia could attenuate ischemia/reperfusion-induced apoptosis in cardiac myocytes and its potential mechanisms. Adult male Sprague-Dawley rats were exposed to hypoxia simulated 5000 m in a hypobaric chamber for 6 h/day, lasting 42 days. Normoxia group rats were kept under normoxic conditions. Isolated perfused hearts from both groups were subjected to 30 min of global ischemia followed by 60 min reperfusion.Incidence of apoptosis in cardiac myocytes was determined by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) and DNA agarose gel electrophoresis. Expressions of apoptosis related proteins,Bax and Bcl-2, in cytosolic and membrane fraction were detected by Western Blotting. After ischemia/reperfusion,enhanced recovery of cardiac function was observed in intermittent hypoxia hearts compared with normoxia group.Ischemia/reperfusion-induced apoptosis, as evidenced by TUNEL-positive nuclei and DNA fragmentation, was significantly reduced in intermittent hypoxia group compared with normoxia group. After ischemia/reperfusion,expression of Bax in both cytosolic and membrane fractions was decreased in intermittent hypoxia hearts compared with normoxia group. Although ischemia/reperfusion did not induce changes in the level of Bcl-2 expression in cytosolic fraction between intermittent hypoxia and normoxia groups, the expression of Bcl-2 in membrane fraction was upregulated in intermittent hypoxia group compared with normoxia group. These results indicated that the cardioprotection of intermittent hypoxia against ischemia/reperfusion injury appears to be in part due to reduce myocardial apoptosis. Intermittent hypoxia attenuated ischemia/reperfusion-induced apoptosis via increasing the ratio of Bcl

  12. Apoptosis in haematological cancer : regulation by mitochondria, the BCL-2 family and IAPs

    NARCIS (Netherlands)

    Graaf, Aniek Odorica de

    2006-01-01

    This thesis describes a number of studies that investigated several aspects of apoptosis in lymphoid malignancies. Resistance to apoptosis is an important asset of cancer cells, which allows them to evade cell death signals instigated by the changes they undergo during transformation, such as genet

  13. Labdane type diterpenes down-regulate the expression of c-Myc protein, but not of Bcl-2, in human leukemia T-cells undergoing apoptosis.

    Science.gov (United States)

    Dimas, K; Demetzos, C; Vaos, V; Ioannidis, P; Trangas, T

    2001-06-01

    Sclareol (1) and ent-3beta-hydroxy-13-epi-manoyl oxide (2) belong to the labdane type diterpenes. They were isolated from the leaves and from the fruits of Cistus creticus subsp. creticus, and were found to be active against human leukemic cell lines. Compound 2 was converted to its thiomidazolide derivative (3). Compounds 1 and 3 were found to induce apoptotic cell death in human T-cell leukemia lines and to interfere with their cell cycle, arresting cells at G(0/1) phase. Apoptosis can involve the activation and/or suppression of critical genes such as c-myc whose reduction or its inappropriate expression can be associated with induction of cell death and bcl-2 whose activation prevents apoptosis in the latter case. In order to detect any concomitant effect (1 and 3) upon c-myc and bcl-2 oncogene expression, we performed Western blot analysis to determine the levels of expression of these two genes upon treatment with the above compounds. Western blot analysis showed that of c-myc proto-oncogene levels were markedly reduced before massive apoptosis ensued in H33AJ-JA1 and MOLT3 cells, while bcl-2 expression remained unaffected. Thus, induction of apoptosis due to compounds 1 and 3 in these T-cell leukemic cell lines is preceded by c-myc down regulation and furthermore sustained bcl-2 expression does not rescue cells from apoptosis under the conditions used. PMID:11337016

  14. Acidosis Promotes Bcl-2 Family-mediated Evasion of Apoptosis

    Science.gov (United States)

    Ryder, Christopher; McColl, Karen; Zhong, Fei; Distelhorst, Clark W.

    2012-01-01

    Acidosis arises in solid and lymphoid malignancies secondary to altered nutrient supply and utilization. Tumor acidosis correlates with therapeutic resistance, although the mechanism behind this effect is not fully understood. Here we show that incubation of lymphoma cell lines in acidic conditions (pH 6.5) blocks apoptosis induced by multiple cytotoxic metabolic stresses, including deprivation of glucose or glutamine and treatment with dexamethasone. We sought to examine the role of the Bcl-2 family of apoptosis regulators in this process. Interestingly, we found that acidic culture causes elevation of both Bcl-2 and Bcl-xL, while also attenuating glutamine starvation-induced elevation of p53-up-regulated modulator of apoptosis (PUMA) and Bim. We confirmed with knockdown studies that these shifts direct survival decisions during starvation and acidosis. Importantly, the promotion of a high anti- to pro-apoptotic Bcl-2 family member ratio by acidosis renders cells exquisitely sensitive to the Bcl-2/Bcl-xL antagonist ABT-737, suggesting that acidosis causes Bcl-2 family dependence. This dependence appears to be mediated, in part, by the acid-sensing G protein-coupled receptor, GPR65, via a MEK/ERK pathway. PMID:22685289

  15. The Impact of Adenosine Fast Induction of Myocardial Arrest during CABG on Myocardial Expression of Apoptosis-Regulating Genes Bax and Bcl-2

    Directory of Open Access Journals (Sweden)

    Ahmed Shalaby

    2009-01-01

    Full Text Available Background. We studied the effect of fast induction of cardiac arrest with denosine on myocardial bax and bcl-2 expression. Methods and Results. 40 elective CABG patients were allocated into two groups. The adenosine group (n=20 received 250 μg/kg adenosine into the aortic root followed by blood potassium cardioplegia. The control group received potassium cardioplegia in blood. Bcl-2 and bax were measured. Bax was reduced in the postoperative biopsies (1.38 versus 0.47, P=.002 in the control group. Bcl-2 showed a reducing tendency (0.14 versus 0.085, P=.07. After the adenosine treatment, the expression of both bax (0.52 versus 0.59, P=.4 and bcl-2 (0.104 versus 0.107, P=.4 remained unaltered after the operation. Conclusion. Open heart surgery is associated with rapid reduction in the expression of apoptosis regulating genes bax and bcl-2. Fast Adenosine induction abolished changes in their expression.

  16. Expression of Bcl-2 inhibited Fas-mediated apoptosis in human hepatocellular carcinoma BEL-7404 cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Apoptosis plays an important role in embryonic development, tissue remodeling, immune regulation and tumor regression. Two groups of molecules (Bcl-2 family and"Death factor"family) are involved in regulating apoptosis. In order to know about the effect of Bcl-2 on apoptosis induced by Fas, a typical member of"Death factor" family, the transfection experiments with expression vectors pcDNA3-fland pcDNA3-bcl-2 were performed in BEL-7404 cells, a human hepatocellular carcinoma cell line which expresses endogenous Fas, but not FasL and Bcl2. The data showed that the expression of FasL in pcDNA3fl transfected hepatoma cells obviously induced the apoptosis of the cells. However, the overexpression of Bcl-2 in pcDNA3bcl-2 transfected 7404/b-16 cells counteracted pcDNA3-fltransient transfection mediated apoptosis. Further study by cotransfection experiments indicated that Bid but not Bax (both were pro-apoptotic proteins of Bcl-2 family) blocked the inhibitory effect of Bcl-2 on Fas-mediated apoptosis. These results suggested that Fas-mediated apoptosis in human hcpatoma cells is possibly regulated by Bcl-2 family proteins via mitochondria pathway.

  17. Roscovitine-induced apoptosis in neutrophils and neutrophil progenitors is regulated by the Bcl-2-family members Bim, Puma, Noxa and Mcl-1.

    Directory of Open Access Journals (Sweden)

    Sanjivan Gautam

    Full Text Available Neutrophil granulocyte (neutrophil apoptosis plays a key role in determining inflammation in infectious and non-infectious settings. Recent work has shown that inhibitors of cyclin-dependent kinases (cdk such as roscovitine can potently induce neutrophil apoptosis and reduce inflammation. Using a conditional Hoxb8-expression system we tested the participation of Bcl-2-family proteins to roscovitine-induced apoptosis in mouse neutrophils and in neutrophil progenitor cells. Bcl-2 strongly protected against roscovitine-induced apoptosis in neutrophils. The isolated loss of either Bim or noxa provided significant, partial protection while protection through combined loss of Bim and noxa or Bim and Puma was only slightly greater than this individual loss. The only substantial change in protein levels observed was the loss of Mcl-1, which was not transcriptional and was inhibited by proteasome blockade. In progenitor cells there was no protection by the loss of Bim alone but substantial protection by the loss of both Bim and Puma; surprisingly, strongest protection was seen by the isolated loss of noxa. The pattern of protein expression and Mcl-1-regulation in progenitor cells was very similar to the one observed in differentiated neutrophils. In addition, roscovitine strongly inhibited proliferation in progenitor cells, associated with an accumulation of cells in G2/M-phase.

  18. Bcl-2 gene therapy for apoptosis following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-feng; ZHENG Xue-sheng; LIU Wei-guo; FENG Jun-feng

    2006-01-01

    Objective: To investigate the therapeutic effect of Bcl- 2 fusion protein on apoptosis in brain following traumatic brain injury.Methods: Bcl-2 gene was cloned by RT-PCR. Bcl-2 and EGFP genes were linked together and inserted into pAdeno-X vector. This recombinant vector was packaged into infectious adenovirus in HEK293 cells. Ninety Wistar rats were assigned randomly into experimental group(n=45) and control group (n=45). All rats were subjected to traumatic brain injury. Then recombinant adenovirus (for experimental group) or saline (for control group) was injected into the traumatic brain. The expression of Bcl-2 fusion protein was investigated by Western blotting, immunohistochemistry and fluorescence microscopy. Apoptosis in the injured brain was studied by TUNEL. Animals' behavior capacity was evaluated by tiltboard test.Results: In the experimental group, many fluorescent cells were found around the traumatic locus,which were also proven to be Bcl-2-positive by immunohistochemistry. On the contrary, few Bcl-2-positive cells and no fluorescent cell were detected in the control group. Bcl-2 expression of experimental group was much higher than that of control group, which was illustrated by Western blotting. The apoptosis index of experimental group was 0.027 ± 0.005, and that of control group was 0.141±0.025 (P<0.01). Two weeks after injury, animals of the experimental group behaved better than those of the control group.Conclusions: A recombinant adenovirus vector expressing Bcl-2 fusion protein has been constructed. Bcl-2 fusion protein can suppress apoptosis and promote cell survival. Moreover, the behavior recovery of the injured animal is promoted. Bcl-2 fusion protein provides a way to track the target cells in vivo.

  19. BEX1 promotes imatinib-induced apoptosis by binding to and antagonizing BCL-2.

    Directory of Open Access Journals (Sweden)

    Qian Xiao

    Full Text Available An enhanced anti-apoptotic capacity of tumor cells plays an important role in the process of breakpoint cluster region/Abelson tyrosine kinase gene (BCR/ABL-independent imatinib resistance. We have previously demonstrated that brain expressed X-linked 1 (BEX1 was silenced in secondary imatinib-resistant K562 cells and that re-expression of BEX1 can restore imatinib sensitivity resulting in the induction of apoptosis. However, the mechanism by which BEX1 executes its pro-apoptotic function remains unknown. We identified B-cell lymphoma 2 (BCL-2 as a BEX1-interacting protein using a yeast two-hybrid screen. The interaction between BEX1 and BCL-2 was subsequently confirmed by co-immunoprecipitation assays. Like BCL-2, BEX1 was localized to the mitochondria. The region between 33K and 64Q on BEX1 is important for its localization to the mitochondria and its ability to interact with BCL-2. Additionally, we found that this region is essential for BEX1-regulated imatinib-induced apoptosis. Furthermore, we demonstrated that the interaction between BCL-2 and BEX1 promotes imatinib-induced apoptosis by suppressing the formation of anti-apoptotic BCL-2/BCL-2-associated X protein (BAX heterodimers. Our results revealed an interaction between BEX1 and BCL-2 and a novel mechanism of imatinib resistance mediated by the BEX1/BCL-2 pathway.

  20. BCL-2 family proteins as regulators of mitochondria metabolism.

    Science.gov (United States)

    Gross, Atan

    2016-08-01

    The BCL-2 family proteins are major regulators of apoptosis, and one of their major sites of action are the mitochondria. Mitochondria are the cellular hubs for metabolism and indeed selected BCL-2 family proteins also possess roles related to mitochondria metabolism and dynamics. Here we discuss the link between mitochondrial metabolism/dynamics and the fate of stem cells, with an emphasis on the role of the BID-MTCH2 pair in regulating this link. We also discuss the possibility that BCL-2 family proteins act as metabolic sensors/messengers coming on and off of mitochondria to "sample" the cytosol and provide the mitochondria with up-to-date metabolic information. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26827940

  1. Statins, Bcl-2 and Apoptosis: Cell Death or Cell Protection?

    OpenAIRE

    Wood, W. Gibson; Igbavboa, Urule; Muller, Walter E.; Gunter P. Eckert

    2013-01-01

    Statins have proven their effectiveness in the treatment of cardiovascular disease. This class of drugs has also attracted attention as a potential treatment for dissimilar diseases such as certain types of cancers and neurodegenerative diseases. What appears to be a contradiction is that in the case of cancer, it has been suggested that statins increase apoptosis and alter levels of Bcl-2 family members (e.g., reduce Bcl-2 and increase Bax) whereas, studies mainly using non-cancerous cells r...

  2. Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular-signal regulated kinase-mediated phosphorylation of Bcl-2.

    Science.gov (United States)

    Xiao, Dong; Choi, Sunga; Johnson, Daniel E; Vogel, Victor G; Johnson, Candace S; Trump, Donald L; Lee, Yong J; Singh, Shivendra V

    2004-07-22

    Garlic-derived organosulfides (OSCs) including diallyl trisulfide (DATS) are highly effective in affording protection against chemically induced cancer in animals. Evidence is also mounting to indicate that some naturally occurring OSCs can suppress proliferation of cancer cells by causing apoptosis, but the sequence of events leading to proapoptotic effect of OSCs is poorly defined. Using PC-3 and DU145 human prostate cancer cells as a model, we now demonstrate that DATS is a significantly more potent apoptosis inducer than diallyl sulfide (DAS) or diallyl disulfide (DADS). DATS-induced apoptosis in PC-3 cells was associated with phosphorylation of Bcl-2, reduced Bcl-2 : Bax interaction, and cleavage of procaspase-9 and -3. Bcl-2 overexpressing PC-3 cells were significantly more resistant to apoptosis induction by DATS compared with vector-transfected control cells. DATS treatment resulted in activation of extracellular-signal regulated kinase 1/2 (ERK1/2) and c-jun N-terminal kinase 1 (JNK1) and/or JNK2, but not p38 mitogen-activated protein kinase. Phosphorylation of Bcl-2 in DATS-treated PC-3 cells was fully blocked in the presence of JNK-specific inhibitor SP600125. Moreover, JNK inhibitor afforded significant protection against DATS-induced apoptosis in both cells. DATS-induced Bcl-2 phosphorylation and apoptosis were partially attenuated by pharmacological inhibition of ERK1/2 using PD98059 or U0126. Overexpression of catalase inhibited DATS-mediated activation of JNK1/2, but not ERK1/2, and apoptosis induction in DU145 cells suggesting involvement of hydrogen peroxide as a second messenger in DATS-induced apoptosis. In conclusion, our data point towards important roles for Bcl-2, JNK and ERK in DATS-induced apoptosis in human prostate cancer cells.

  3. Apoptosis Mediated by HIV Protease is Preceded by Cleavage of Bcl-2

    Science.gov (United States)

    Strack, Peter R.; West Frey, Michelle; Rizzo, Christopher J.; Cordova, Beverly; George, Henry J.; Meade, Raymond; Ho, Siew Peng; Corman, Jeanne; Tritch, Radonna; Korant, Bruce D.

    1996-09-01

    Expression of the human immunodeficiency virus type 1 (HIV) protease in cultured cells leads to apoptosis, preceded by cleavage of bcl-2, a key negative regulator of cell death. In contrast, a high level of bcl-2 protects cells in vitro and in vivo from the viral protease and prevents cell death following HIV infection of human lymphocytes, while reducing the yields of viral structural proteins, infectivity, and tumor necrosis factor α . We present a model for HIV replication in which the viral protease depletes the infected cells of bcl-2, leading to oxidative stress-dependent activation of NFkappa B, a cellular factor required for HIV transcription, and ultimately to cell death. Purified bcl-2 is cleaved by HIV protease between phenylalanine 112 and alanine 113. The results suggest a new option for HIV gene therapy; bcl-2 muteins that have noncleavable alterations surrounding the HIV protease cleavage site.

  4. The BCL2 rheostat in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia

    Science.gov (United States)

    Ploner, C; Rainer, J; Niederegger, H; Eduardoff, M; Villunger, A; Geley, S; Kofler, R

    2016-01-01

    Glucocorticoid (GC)-induced apoptosis is essential in the treatment of acute lymphoblastic leukemia (ALL) and related malignancies. Pro- and anti-apoptotic members of the BCL2 family control many forms of apoptotic cell death, but the extent to which this survival ‘rheostat’ is involved in the beneficial effects of GC therapy is not understood. We performed systematic analyses of expression, GC regulation and function of BCL2 molecules in primary ALL lymphoblasts and a corresponding in vitro model. Affymetrix-based expression profiling revealed that the response included regulations of pro-apoptotic and, surprisingly, anti-apoptotic BCL2 family members, and varied among patients, but was dominated by induction of the BH3-only molecules BMF and BCL2L11/Bim and repression of PMAIP1/Noxa. Conditional lentiviral gene overexpression and knock-down by RNA interference in the CCRF-CEM model revealed that induction of Bim, and to a lesser extent that of BMF, was required and sufficient for apoptosis. Although anti-apoptotic BCL2 members were not regulated consistently by GC in the various systems, their overexpression delayed, whereas their knock-down accelerated, GC-induced cell death. Thus, the combined clinical and experimental data suggest that GCs induce both pro- and anti-apoptotic BCL2 family member-dependent pathways, with the outcome depending on cellular context and additional signals feeding into the BCL2 rheostat. PMID:18046449

  5. N-acetylcysteine attenuates ischemia-reperfusion-induced apoptosis and autophagy in mouse liver via regulation of the ROS/JNK/Bcl-2 pathway.

    Directory of Open Access Journals (Sweden)

    Chengfen Wang

    Full Text Available BACKGROUND: Hepatic ischemia-reperfusion injury (HIRI remains a pivotal clinical problem after hemorrhagic shock, transplantation, and some types of toxic hepatic injury. Apoptosis and autophagy play important roles in cell death during HIRI. It is also known that N-acetylcysteine (NAC has significant pharmacologic effects on HIRI including elimination of reactive oxygen species (ROS and attenuation of hepatic apoptosis. However, the effects of NAC on HIRI-induced autophagy have not been reported. In this study, we evaluated the effects of NAC on autophagy and apoptosis in HIRI, and explored the possible mechanism involved. METHODS: A mouse model of segmental (70% hepatic warm ischemia was adopted to determine hepatic injury. NAC (150 mg/kg, a hepatoprotection agent, was administered before surgery. We hypothesized that the mechanism of NAC may involve the ROS/JNK/Bcl-2 pathway. We evaluated the expression of JNK, P-JNK, Bcl-2, Beclin 1 and LC3 by western blotting and immunohistochemical staining. Autophagosomes were evaluated by transmission electron microscopy (TEM. RESULTS: We found that ALT, AST and pathological changes were significantly improved in the NAC group. Western blotting analysis showed that the expression levels of Beclin 1 and LC3 were significantly decreased in NAC-treated mice. In addition, JNK, p-JNK, Bax, TNF-α, NF-κB, IL2, IL6 and levels were also decreased in NAC-treated mice. CONCLUSION: NAC can prevent HIRI-induced autophagy and apoptosis by influencing the JNK signal pathway. The mechanism is likely to involve attenuation of JNK and p-JNK via scavenged ROS, an indirect increase in Bcl-2 level, and finally an alteration in the balance of Beclin 1 and Bcl-2.

  6. Ginkgo biloba extract mitigates liver fibrosis and apoptosis by regulating p38 MAPK, NF-κB/IκBα, and Bcl-2/Bax signaling

    Directory of Open Access Journals (Sweden)

    Wang YY

    2015-12-01

    Full Text Available Yuanyuan Wang, Rong Wang, Yujie Wang, Ruqin Peng, Yan Wu, Yongfang Yuan Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China Background: Liver fibrosis is the consequence of diverse liver injuries and can eventually develop into liver cirrhosis. Ginkgo biloba extract (GBE is an extract from dried ginkgo leaves that has many pharmacological effects because of its various ingredients and has been shown to be hepatoprotective. Purpose and methods: Aimed to investigate the underlying protective mechanisms of GBE on carbon tetrachloride (CCl4-induced liver fibrosis in rats. Male Sprague Dawley rats were randomly divided into four groups: control group (C, model group (M, low-dose group (L, and high-dose group (H. Liver fibrosis was induced by CCl4 groups M, L, and H: group C was administered saline. In addition, GBE at different doses was used to treat groups L and H. Results: The results of hematoxylin and eosin staining, Masson’s trichrome staining, a liver function index, and a liver fibrosis index showed that GBE application noticeably mitigated fibrosis and improved the function of the liver. The western blotting and immunohistochemistry analyses indicated that GBE reduced liver fibrosis not only by inhibiting p38 MAPK and NF-κBp65 via inhibition of IκBα degradation but also by inhibiting hepatocyte apoptosis via downregulation of Bax, upregulation of Bcl-2, and subsequent inhibition of caspase-3 activation. Inflammation-associated factors and hepatic stellate cell (HSC-activation markers further demonstrated that GBE could effectively inhibit HSC activation and inflammation as a result of its regulation of p38 MAPK and nuclear factor-kappa B/IκBα signaling. Conclusion: Our findings indicated a novel role for GBE in the treatment of liver fibrosis. The potential mechanisms may be associated with the following signaling pathways: 1 the p38 MAPK

  7. MDA-7/IL-24 induces Bcl-2 denitrosylation and ubiquitin-degradation involved in cancer cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Hui Tian

    Full Text Available MDA-7/IL-24 was involved in the specific cancer apoptosis through suppression of Bcl-2 expression, which is a key apoptosis regulatory protein of the mitochondrial death pathway. However, the underlying mechanisms of this regulation are unclear. We report here that tumor-selective replicating adenovirus ZD55-IL-24 leads to Bcl-2 S-denitrosylation and concomitant ubiquitination, which take part in the 26S proteasome degradation. IL-24-siRNA completely blocks Bcl-2 ubiquitination via reversion of Bcl-2 S-denitrosylation and protects it from proteasomal degradation which confirmed the significant role of MDA-7/IL-24 in regulating posttranslational modification of Bcl-2 in cancer cells. Nitric oxide (NO is a key regulator of protein S-nitrosylation and denitrosylation. The NO donor, sodium nitroprusside (SNP, down-regulates Bcl-2 S-denitrosylation, attenuates Bcl-2 ubiquitination and subsequently counteracts MDA-7/IL-24 induced cancer cell apoptosis, whereas NO inhibitor 2-(4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (PTIO shows the opposite effect. At the same time, these NO modulators fail to affect Bcl-2 phosphorylation, suggesting that NO regulates Bcl-2 stability in a phosphorylation-independent manner. In addition, Bcl-2 S-nitrosylation reduction induced by ZD55-IL-24 was attributed to both iNOS decrease and TrxR1 increase. iNOS-siRNA facilitates Bcl-2 S-denitrosylation and ubiquitin-degradation, whereas the TrxR1 inhibitor auranofin prevents Bcl-2 from denitrosylation and ubiquitination, thus restrains the caspase signal pathway activation and subsequent cancer cell apoptosis. Taken together, our studies reveal that MDA-7/IL-24 induces Bcl-2 S-denitrosylation via regulation of iNOS and TrxR1. Moreover, denitrosylation of Bcl-2 results in its ubiquitination and subsequent caspase protease family activation, as a consequence, apoptosis susceptibility. These findings provide a novel insight into MDA-7/IL-24 induced growth

  8. Tubeimoside-1 induces glioma apoptosis through regulation of Bax/Bcl-2 and the ROS/Cytochrome C/Caspase-3 pathway

    Directory of Open Access Journals (Sweden)

    Jia G

    2015-01-01

    Full Text Available Geng Jia,1,* Qiang Wang,2,* Rong Wang,2,* Danni Deng,2 Lian Xue,2 Naiyuan Shao,1 Yi Zhang,1 Xiwei Xia,1 Feng Zhi,2 Yilin Yang1,2 1Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Jiangsu, People’s Republic of China; 2Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Jiangsu, People’s Republic of China * These authors contributed equally to this workBackground: Tubeimoside-1 (TBMS1 is a natural compound isolated from tubeimoside, which has been widely used as a traditional Chinese herbal medicine. The purpose of the present study is to investigate the anti-tumor effect and the underling mechanism of TBMS1 on glioma cancer cells.Methods: The MTT assay was performed to evaluate the effect of TBMS1 on glioma cell proliferation. The fluorescent microscopy and flow cytometry analysis were performed to evaluate the effect of TBMS1 on glioma cell apoptosis. The Western blot analysis was used to evaluate the protein change.Results: TBMS1 inhibited glioma cancer cell proliferation in a dose- and time-dependent manner. Fluorescent microscopy and flow cytometry analysis demonstrated that TBMS1 induced glioma cell apoptosis in a concentration-dependent manner. Western blotting showed that TBMS1 induced apoptosis by increasing the expression of Bax and downregulating the level of Bcl-2. Furthermore, we found that TBMS1 induced apoptosis by increasing the concentration of reactive oxygen species through the release of Cytochrome C and activation of Caspase-3.Conclusion: These findings indicate that TBMS1 may be developed as a possible therapeutic agent for the management of glioma. Keywords: Tubeimoside-1, glioma, proliferation, apoptosis

  9. Tissue factor/FVIIa activates Bcl-2 and prevents doxorubicin-induced apoptosis in neuroblastoma cells

    International Nuclear Information System (INIS)

    Tissue factor (TF) is a transmembrane protein that acts as a receptor for activated coagulation factor VII (FVIIa), initiating the coagulation cascade. Recent studies demonstrate that expression of tumor-derived TF also mediates intracellular signaling relevant to tumor growth and apoptosis. Our present study investigates the possible mechanism by which the interaction between TF and FVIIa regulates chemotherapy resistance in neuroblastoma cell lines. Gene and siRNA transfection was used to enforce TF expression in a TF-negative neuroblastoma cell line and to silence endogenous TF expression in a TF-overexpressing neuroblastoma line, respectively. The expression of TF, Bcl-2, STAT5, and Akt as well as the phosphorylation of STAT5 and Akt in gene transfected cells or cells treated with JAK inhibitor and LY294002 were determined by Western blot assay. Tumor cell growth was determined by a clonogenic assay. Cytotoxic and apoptotic effect of doxorubicin on neuroblastoma cell lines was analyzed by WST assay and annexin-V staining (by flow cytometry) respectively. Enforced expression of TF in a TF-negative neuroblastoma cell line in the presence of FVIIa induced upregulation of Bcl-2, leading to resistance to doxorubicin. Conversely, inhibition of endogenous TF expression in a TF-overexpressing neuroblastoma cell line using siRNA resulted in down-regulation of Bcl-2 and sensitization to doxorubicin-induced apoptosis. Additionally, neuroblastoma cells expressing high levels of either endogenous or transfected TF treated with FVIIa readily phosphorylated STAT5 and Akt. Using selective pharmacologic inhibitors, we demonstrated that JAK inhibitor I, but not the PI3K inhibitor LY294002, blocked the TF/FVIIa-induced upregulation of Bcl-2. This study shows that in neuroblastoma cell lines overexpressed TF ligated with FVIIa produced upregulation of Bcl-2 expression through the JAK/STAT5 signaling pathway, resulting in resistance to apoptosis. We surmise that this TF

  10. Silver Nanoparticles Biosynthesized Using Achillea biebersteinii Flower Extract: Apoptosis Induction in MCF-7 Cells via Caspase Activation and Regulation of Bax and Bcl-2 Gene Expression

    Directory of Open Access Journals (Sweden)

    Javad Baharara

    2015-02-01

    Full Text Available Silver nanoparticles (Ag-NPs, the most popular nanoparticles, possess unique properties. Achillea biebersteinii is a plant of the Asteraceae family rich in active antitumor components. The aim of this research was the characterization and investigation of the cytotoxic properties of Ag-NPs synthesized using A. biebersteinii flower extract, on a human breast cancer cell line. The Ag-NPs were synthesized after approximately 180 min of reaction at 40 °C, then they were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM and dynamic light scattering (DLS. The anti-apoptosis effect of Ag-NPs on the MCF-7 cell line was investigated by MTT assay, DAPI and acridine orange staining and caspase activity. The transcriptional expression of bax, bcl-2, caspase-3, -8 and -9 were also evaluated by RT-PCR. The TEM images revealed that the Ag-NPs morphology had a different shape. The DLS indicated that the average hydrodynamic diameter of the biosynthesized Ag-NPs was around 12 nm. By UV-visible spectroscopy the strongest absorbance peak was observed at 460 nm. The FTIR results also showed interaction between the plant extract and Ag-NPs due to the similarity in the peak patterns. The EDS results showed that Ag-NPs display an absorption peak at 3 keV, indicating the presence of the element silver. The Ag-NPs caused a dose-dependent decrease in cell viability, fragmentation in nucleic acid, inhibited the proliferation and induction of apoptosis on MCF-7 by suppressing specific cell cycle genes, and simulation programmed cell dead genes. Further investigation is required to establish the potential of this novel and promising approach in cancer therapy.

  11. Copper Induces Apoptosis of Neuroblastoma Cells Via Post-translational Regulation of the Expression of Bcl-2-family Proteins and the tx Mouse is a Better Model of Hepatic than Brain Cu Toxicity.

    Science.gov (United States)

    Chan, Hsien W; Liu, Tianbing; Verdile, Giuseppe; Bishop, Glenda; Haasl, Ryan J; Smith, Mark A; Perry, George; Martins, Ralph N; Atwood, Craig S

    2008-01-01

    The basic mechanism(s) by which altered Cu homeostasis is toxic to hepatocytes and neurons, the two major cell types affected in copper storage diseases such as Wilson's disease (WD), remain unclear. Using human M17 neuroblastoma cells as a model to examine Cu toxicity, we found that there was a time- and concentration-dependent induction of neuronal death, such that at 24 h there was a approximately 50 % reduction in viability with 25 muM Cu-glycine(2). Cu-glycine(2) (25:50 muM) treatment for 24 h significantly altered the expression of 296 genes, including 8 genes involved with apoptosis (BCL2-associated athanogene 3, BCL2/adenovirus E1B 19kDa interacting protein caspase 5, regulator of Fas-induced apoptosis, V-jun sarcoma virus 17 oncogene homolog, claudin 5, prostaglandin E receptor 3 and protein tyrosine phosphatase, non-receptor type 6). Surprisingly, changes in the expression of more 'traditional' apoptotic genes (Bcl-2, Bax, Bak and Bad) did not vary more than 20 %. To test whether the induction of apoptosis in neuroblastoma cells was via post-translational mechanisms, we measured the protein expression of these apoptotic markers in M17 neuroblastoma cells treated with Cu-glycine(2) (0-100 muM) for 24-48 h. Compared with glycine treated cells, Cu-glycine(2) reduced Bcl-2 expression by 50 %, but increased Bax and Bak expression by 130% and 400 %, respectively. To assess whether Cu also induced apoptotic cell death in a mouse model of WD, we measured the expression of these apoptotic markers in the liver and brain of mice expressing an ATP7b gene mutation (tx(J) mice) at 10 months of age (near the end of their lives when overt liver pathology is displayed). Changes in the liver expression of these apoptotic markers in tx(J) mice compared to background mice mirrored those of Cu treated neuroblastoma cells. In contrast, few changes in apoptotic protein expression were detected in the brain between tx(J) and background mice, indicating the tx(J) mouse is a good

  12. KSP inhibitor SB743921 inhibits growth and induces apoptosis of breast cancer cells by regulating p53, Bcl-2, and DTL.

    Science.gov (United States)

    Zhu, Li; Xiao, Fengjun; Yu, Yue; Wang, Hua; Fang, Min; Yang, Yuefeng; Sun, Huiyan; Wang, Lisheng; Sheng, Yuan

    2016-10-01

    Kinesin spindle protein (KSP) is a microtubule-associated motor protein that is specifically expressed by mitosis cells. It is highly expressed in various types of tumors including hematomalignances and solid tumors. Chemical KSP inhibition has become a novel strategy in the development of anticancer drugs. SB743921 is a selective inhibitor for KSP, which is a mitotic protein essential for cell-cycle progression. Although SB743921 has shown antitumor activities for several types of cancers and entered into clinical trials, its therapeutic effects on breast cancer and mechanisms have not been explored. In this study, we tested the antitumor activity of SB743921 in breast cancer cell lines and partly elucidated its mechanisms. KSP and denticleless E3 ubiquitin-protein ligase homolog (DTL) are overexpressed in breast cancer cells compared with no-cancer tissues. Chemical inhibition of KSP by SB743921 not only reduces proliferation but also induces cell-cycle arrest and leads to apoptosis in breast cancer cells. Treatment of MCF-7 and MDA-MB-231 breast cancer cell lines with SB743921 results in decreased ability of colony formation in culture. SB743921 treatment also causes a KSP accumulation in protein level that is associated with cell arrest. Furthermore, we showed that SB743921 treatment significantly reduces the expression of bcl-2 and cell cycle-related protein DTL, and upregulates p53 and caspase-3 in breast cancer cells. Taken together, these data indicated that SB743921 can be expected to be a novel treatment agent for breast cancers. PMID:27379929

  13. KSP inhibitor SB743921 inhibits growth and induces apoptosis of breast cancer cells by regulating p53, Bcl-2, and DTL.

    Science.gov (United States)

    Zhu, Li; Xiao, Fengjun; Yu, Yue; Wang, Hua; Fang, Min; Yang, Yuefeng; Sun, Huiyan; Wang, Lisheng; Sheng, Yuan

    2016-10-01

    Kinesin spindle protein (KSP) is a microtubule-associated motor protein that is specifically expressed by mitosis cells. It is highly expressed in various types of tumors including hematomalignances and solid tumors. Chemical KSP inhibition has become a novel strategy in the development of anticancer drugs. SB743921 is a selective inhibitor for KSP, which is a mitotic protein essential for cell-cycle progression. Although SB743921 has shown antitumor activities for several types of cancers and entered into clinical trials, its therapeutic effects on breast cancer and mechanisms have not been explored. In this study, we tested the antitumor activity of SB743921 in breast cancer cell lines and partly elucidated its mechanisms. KSP and denticleless E3 ubiquitin-protein ligase homolog (DTL) are overexpressed in breast cancer cells compared with no-cancer tissues. Chemical inhibition of KSP by SB743921 not only reduces proliferation but also induces cell-cycle arrest and leads to apoptosis in breast cancer cells. Treatment of MCF-7 and MDA-MB-231 breast cancer cell lines with SB743921 results in decreased ability of colony formation in culture. SB743921 treatment also causes a KSP accumulation in protein level that is associated with cell arrest. Furthermore, we showed that SB743921 treatment significantly reduces the expression of bcl-2 and cell cycle-related protein DTL, and upregulates p53 and caspase-3 in breast cancer cells. Taken together, these data indicated that SB743921 can be expected to be a novel treatment agent for breast cancers.

  14. Upregulation of Bax and Bcl-2 following prenatal cocaine exposure induces apoptosis in fetal rat brain

    Directory of Open Access Journals (Sweden)

    DaLiao Xiao, Lubo Zhang

    2008-01-01

    Full Text Available Cocaine abuse during pregnancy has been associated with numerous adverse perinatal outcomes. Aims: The present study was to determine whether prenatal cocaine exposure induced apoptosis and the possible role of Bcl-2 family genes in the programming cell death in fetal rat brain. Main methods: Pregnant rats were treated with cocaine subcutaneously (30 & 60 mg/kg/day from day 15 to 21 of gestation. Then the fetal and maternal brains were isolated. Key findings: Cocaine produced a dose-dependent decrease in fetal brain weight and brain/body weight ratio (P<0.05. Apoptotic nuclei in fetal brain were increased from 2.6 ± 0.1 (control to 8.1± 0.6 (low dose and 10.4 ± 0.2% (high dose (P<0.05. In accordance, cocaine dose dependently increased activities of caspase-3, caspase-8, and caspase-9 (% of control in the fetal brain by 177%, 155%, 174%, respectively, at 30 mg/kg/day, and by 191%, 176%, 274%, respectively, at 60 mg/kg/day. In contrast, cocaine showed no effect on caspase activities in the maternal brain. Cocaine produced a dose-dependent increase in both Bcl-2 and Bax protein expression in the fetal brain, and increased the ratio of Bax/Bcl-2 at dose of 30 mg/kg/day (P<0.05. Significance: Our study has demonstrated that prenatal cocaine exposure induces apoptosis in the fetal brain, and suggested that up-regulating Bax/Bcl-2 gene expression may be involved in cocaine-induced apoptosis. The increased apoptosis of neuronal cells in the fetal brain is likely to play a key role in cocaine-induced neuronal defects during fetal development.

  15. BIM (BCL-2 interacting mediator of cell death) SAHB (stabilized α helix of BCL2) not always convinces BAX (BCL-2-associated X protein) for apoptosis.

    Science.gov (United States)

    Verma, Sharad; Goyal, Sukriti; Tyagi, Chetna; Jamal, Salma; Singh, Aditi; Grover, Abhinav

    2016-06-01

    The interaction of BAX (BCL-2-associated X protein) with BIM (BCL-2 interacting mediator of cell death) SAHB (stabilized α helix of BCL2) directly initiates BAX-mediated mitochondrial apoptosis. This molecular dynamics study reveals that BIM SAHB forms a stable complex with BAX but it remains in a non-functional conformation. N terminal of BAX folds towards the core which has been reported exposed in the functional monomer. The α1-α2 loop, which has been reported in open conformation in functional BAX, acquires a closed conformation during the simulation. BH3/α2 remains less exposed as compared to initial structure. The hydrophobic residues of BIM accommodates in the rear pocket of BAX during the simulation. A steep decrease in radius of gyration and solvent accessible surface area (SASA) indicates the complex folding to acquire a more stable but inactive conformation. Further the covariance matrix reveals that the backbone atoms' motions favour the inactive conformation of the complex. This is the first report on the non-functional BAX-BIM SAHB complex by molecular dynamics simulation in the best of our knowledge. PMID:27262527

  16. Overexpression of Bcl2 in osteoblasts inhibits osteoblast differentiation and induces osteocyte apoptosis.

    Directory of Open Access Journals (Sweden)

    Takeshi Moriishi

    Full Text Available Bcl2 subfamily proteins, including Bcl2 and Bcl-X(L, inhibit apoptosis. As osteoblast apoptosis is in part responsible for osteoporosis in sex steroid deficiency, glucocorticoid excess, and aging, bone loss might be inhibited by the upregulation of Bcl2; however, the effects of Bcl2 overexpression on osteoblast differentiation and bone development and maintenance have not been fully investigated. To investigate these issues, we established two lines of osteoblast-specific BCL2 transgenic mice. In BCL2 transgenic mice, bone volume was increased at 6 weeks of age but not at 10 weeks of age compared with wild-type mice. The numbers of osteoblasts and osteocytes increased, but osteoid thickness and the bone formation rate were reduced in BCL2 transgenic mice with high expression at 10 weeks of age. The number of BrdU-positive cells was increased but that of TUNEL-positive cells was unaltered at 2 and 6 weeks of age. Osteoblast differentiation was inhibited, as shown by reduced Col1a1 and osteocalcin expression. Osteoblast differentiation of calvarial cells from BCL2 transgenic mice also fell in vitro. Overexpression of BCL2 in primary osteoblasts had no effect on osteoclastogenesis in co-culture with bone marrow cells. Unexpectedly, overexpression of BCL2 in osteoblasts eventually caused osteocyte apoptosis. Osteocytes, which had a reduced number of processes, gradually died with apoptotic structural alterations and the expression of apoptosis-related molecules, and dead osteocytes accumulated in cortical bone. These findings indicate that overexpression of BCL2 in osteoblasts inhibits osteoblast differentiation, reduces osteocyte processes, and causes osteocyte apoptosis.

  17. The bcl-2, bax gene expression and apoptosis of continuous low-dose-rate irradiation on PC-3 transplanting tumor

    International Nuclear Information System (INIS)

    Objective: The aim of this study was to investigate bcl-2, bax expression and apoptosis of continuous low-dose-rate irradiation on prostate cancer (PC)-3 transplanting tumor. Methods: The expression of bcl-2 and bax associated with apoptosis between experiment and control groups were analyzed using immunohistochemistry at 48, 96 and 192 h after two 125I seed sources implanting model. The correlation between apoptosis and the ratio of bax/bcl-2 was analyzed using Bi-variable linear correlation. SPSS 11.0 was used to analyse the data. Results: The bcl-2 expression in experiment group began to down-regulated significantly after 125I seed irradiation for 48 h as compared with control(t=2.500, P=0.067), though it was not reached to statistical significance. At 96 and 192 h after irradiation, significantly low expression of bcl- 2 were noted (t=4.950, 3.464; P=0.008 and 0.026). In contrast, significantly over expression of bax was noted at 48, 96 and 192 h after 12si irradiation (t=3.334,4.025,5.292;P=0.029, 0.016 and 0.006). The apoptotic index (AI) for PC-3 at 48, 96 and 192 h after 125I irradiation were 22.3%, 21.7% and 30.7%, which was significantly higher than controls when at 96 and 192 h after 125I irradiation (P= 0.016 and 0.036). Moreover, positive correlation was noted between AI and bax/bcl-2 ratio (r=0.784, P= 0.012). Conclusion: Low-dose-rate irradiation could down-regulate the expression of bcl-2, up-regulate the expression of bax and induced PC-3 cells apoptosis. (authors)

  18. Prognostic Significance of Apoptosis Related Gene Family bcl-2 in Human Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To study the prognostic effect of bcl-2 oncogene and its gene family members bax, bcl-x expression in breast cancer patients. Methods: expression of bcl-2, bax proteins in 91 human breast cancer tissue sections were studied by immunohistochemical method. Bcl-x1 mRNA expression in frozen tissues from 16 breast cancer patients were detected using Northern blot method. Results: bcl-2 protein positivity was found in 60/91 (65.9%) patients, and bax positivity 59/91 (64.8%). Bcl-2 and bax expression levels were associated with apoptotic index(AI), histological grade, axillary lymph node metastasis, postoperative local recurrence and metastasis. Bcl-2 expression was related to ER positivity. In univariate analysis for disease free survival (DFS), bcl-2 and bax protein levels, and Al were all found to have prognostic value. The result of Cox's model multivariate analysis showed that bcl-2 protein level was an independent prognostic factor. In 16 frozen breast cancer tissues, 8/16(50%) had higher level of bcl-x1 mRNA, which showed correlation with bcl-2 protein expression and axillary lymph node metastasis. Conclusion: The findings indicate that dysregulated expressions of bcl-2, bax and bcl-x1 apoptosis-related genes, suggestive of serious deregulation of apoptotic process, may contribute to the biologic aggressiveness of breast cancer. Bcl-2 protein is an independent indicator of prognosis in breast cancer patients.

  19. Tissue factor/FVIIa activates Bcl-2 and prevents doxorubicin-induced apoptosis in neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    Alvarado Carlos S

    2008-03-01

    Full Text Available Abstract Background Tissue factor (TF is a transmembrane protein that acts as a receptor for activated coagulation factor VII (FVIIa, initiating the coagulation cascade. Recent studies demonstrate that expression of tumor-derived TF also mediates intracellular signaling relevant to tumor growth and apoptosis. Our present study investigates the possible mechanism by which the interaction between TF and FVIIa regulates chemotherapy resistance in neuroblastoma cell lines. Methods Gene and siRNA transfection was used to enforce TF expression in a TF-negative neuroblastoma cell line and to silence endogenous TF expression in a TF-overexpressing neuroblastoma line, respectively. The expression of TF, Bcl-2, STAT5, and Akt as well as the phosphorylation of STAT5 and Akt in gene transfected cells or cells treated with JAK inhibitor and LY294002 were determined by Western blot assay. Tumor cell growth was determined by a clonogenic assay. Cytotoxic and apoptotic effect of doxorubicin on neuroblastoma cell lines was analyzed by WST assay and annexin-V staining (by flow cytometry respectively. Results Enforced expression of TF in a TF-negative neuroblastoma cell line in the presence of FVIIa induced upregulation of Bcl-2, leading to resistance to doxorubicin. Conversely, inhibition of endogenous TF expression in a TF-overexpressing neuroblastoma cell line using siRNA resulted in down-regulation of Bcl-2 and sensitization to doxorubicin-induced apoptosis. Additionally, neuroblastoma cells expressing high levels of either endogenous or transfected TF treated with FVIIa readily phosphorylated STAT5 and Akt. Using selective pharmacologic inhibitors, we demonstrated that JAK inhibitor I, but not the PI3K inhibitor LY294002, blocked the TF/FVIIa-induced upregulation of Bcl-2. Conclusion This study shows that in neuroblastoma cell lines overexpressed TF ligated with FVIIa produced upregulation of Bcl-2 expression through the JAK/STAT5 signaling pathway, resulting

  20. MicroRNA-125b Induces Cancer Cell Apoptosis Through Suppression of Bcl-2 Expression

    Institute of Scientific and Technical Information of China (English)

    Aihua Zhao; Quan Zeng; Xiaoyan Xie; unnian Zhou; Wen Yue; Yali Li; Xuetao Pei

    2012-01-01

    MicroRNAs (miRNAs) are small,noncoding RNAs which can often act as an oncogene or a tumor suppressor.Several miRNAs are associated with the development of hepatocellular carcinoma (HCC).We demonstrated that miR-125b significantly suppresses HCC cell proliferation and promotes apoptosis by inhibiting the gene expression of the anti-apoptotic protein,Bcl-2.Bioinformatic analysis indicated that the 3'UTR of Bcl-2 has binding sites for miR-125b.Luciferase reporter assay confirmed the ability of miR-125b to dramatically suppress Bcl-2 transcription,suggesting that Bcl-2 is a target gene for miR-125b.We concluded that miR-125b acts as a tumor suppressor in hepatic tumor development by targeting Bcl-2 and inducing cancer cell apoptosis.

  1. Relationship between expression of Bax and Bcl-2 proteins and apoptosis in radiation compound wound healing of rats

    Institute of Scientific and Technical Information of China (English)

    崔玉芳; 夏国伟; 付小兵; 杨红; 彭瑞云; 张莹; 谷庆阳; 高亚兵; 崔雪梅; 胡文华

    2003-01-01

    Objective: To study the relationship between the expression of Bax, Bcl-2 proteins, and apoptosis in radiation compound wound healing of rats.Methods: Apoptosis, Bax and Bcl-2 proteins were estimated by in situ terminal labeling (TUNEL) and immunohistochemical methods. Results: (1) Changes of the apoptosis in wound healing showed three typical characteristics: early occurrence, high frequency and delayed disappearance after radiation to rats when compared with those of simple wound group, which might be an important reason for radiation-induced delayed wound healing. (2) The expression of Bax protein increased evidently with the increment of apoptosis and showed a good corresponding relationship with the apoptotic frequency in the process of wound healing. While the expression of Bcl-2 protein decreased obviously as the apoptosis reached a maximum and showed increasing tendency up to normal level when the apoptosis decreased distinctively. Conclusions: Bax and Bcl-2 proteins play an important role in the apoptotic regulation of radiation compound wound healing in rats.

  2. Studies of Liposomal bcl-2 Antisense Oligode-oxynucleofide Induction of Apoptosis in Raji Cells

    Institute of Scientific and Technical Information of China (English)

    DongmeiHe; HuanZhong

    2004-01-01

    OBJECTIVE To explore the effect of liposomal G3139 and transfected antisense phosphorothioate oligodeoxynucleotides directed against the coding region of the bcl-2 messenger RNA and the translation site on apoptosis in Raji cells.METHODS Cytotoxic effects were measured by use of the MTT method; The expression levels of Bcl-2 protein were assayed by immunofiuorescence using a fluoresce isothiocyanate label. Apoptosis was determined by morphological observation and flow cytometric analysis.RESULTS The 2 antisense oligonucleotides and G3139 can reduce Bcl-2 protein levels and Raji cell viability (IC50=4.54, 4.72 and 4.26 μmol/L, respectively), and induce apoptosis. A scrambled sequence control oligonucleotide and empty liposomes did not alter cell viability, Bcl-2 protein expression or apoptosis rates. There was no difference in reducing Bcl-2 protein levels and apoptosis rates found among the 3 antisense oligonucleotides.CONCLUSION The 2 antisense oligodeoxynucleotides of bcl-2 messenger RNA can effectively induce apoptosis of Raji cells. The 2 antisense sequences and G3139 have a similarity in their antisense effect.

  3. Methionine adenosyltransferase α2 sumoylation positively regulate Bcl-2 expression in human colon and liver cancer cells.

    Science.gov (United States)

    Tomasi, Maria Lauda; Ryoo, Minjung; Ramani, Komal; Tomasi, Ivan; Giordano, Pasquale; Mato, José M; Lu, Shelly C

    2015-11-10

    Ubiquitin-conjugating enzyme 9 (Ubc9) is required for sumoylation and inhibits apoptosis via Bcl-2 by unknown mechanism. Methionine adenosyltransferase 2A (MAT2A) encodes for MATα2, the catalytic subunit of the MATII isoenzyme that synthesizes S-adenosylmethionine (SAMe). Ubc9, Bcl-2 and MAT2A expression are up-regulated in several malignancies. Exogenous SAMe decreases Ubc9 and MAT2A expression and is pro-apoptotic in liver and colon cancer cells. Here we investigated whether there is interplay between Ubc9, MAT2A and Bcl-2. We used human colon and liver cancer cell lines RKO and HepG2, respectively, and confirmed key finding in colon cancer specimens. We found MATα2 can regulate Bcl-2 expression at multiple levels. MATα2 binds to Bcl-2 promoter to activate its transcription. This effect is independent of SAMe as MATα2 catalytic mutant was also effective. MATα2 also directly interacts with Bcl-2 to enhance its protein stability. MATα2's effect on Bcl-2 requires Ubc9 as MATα2's stability is influenced by sumoylation at K340, K372 and K394. Overexpressing wild type (but not less stable MATα2 sumoylation mutants) protected from 5-fluorouracil-induced apoptosis in both colon and liver cancer cells. Colon cancer have higher levels of sumoylated MATα2, total MATα2, Ubc9 and Bcl-2 and higher MATα2 binding to the Bcl-2 P2 promoter. Taken together, Ubc9's protective effect on apoptosis may be mediated at least in part by sumoylating and stabilizing MATα2 protein, which in turn positively maintains Bcl-2 expression. These interactions feed forward to further enhance growth and survival of the cancer cell.

  4. Effect of Bcl-2 and caspase-3 on calcium distribution in apoptosis of HL-60 cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Apoptosis manifests in two major execution programs downstream of the death signal: the caspase pathway and organelle dysfunction. An important antiapoptosis factor, Bcl-2 protein, contributes in caspase pathway of apoptosis. Calcium, an important intracellular signal element in cells, is also observed to have changes during apoptosis, which maybe affected by Bcl2 protein. We have previously reported that in Harringtonine (HT) induced apoptosis of HL-60 cells, there's a change of intracellular calcium distribution, moving from cytoplast especially Golgi's apparatus to nucleus and accumulating there with the highest concentration. We report here that caspase-3 becomes activated in HT-induced apoptosis of HL-60 cells, which can be inhibited by overexpression of Bcl-2 protein. No sign of apoptosis or intracellular calcium movement from Golgi's apparatus to nucleus in HL-60 cells overexpressing Bcl-2 or treated with Ac-DEVD-CHO, a specific inhibitor of caspase-3. The results indicate that activated caspase-3 can promote the movement of intracellular calcium from Golgi's apparatus to nucleus, and the process is inhibited by Ac-DEVD-CHO (inhibitor of caspas-3), and that Bcl-2 can inhibit the movement and accumulation of intracellular calcium in nucleus through its inhibition on caspase3. Calcium relocalization in apoptosis seems to be irreversible, which is different from the intracellular calcium changes caused by growth factor.

  5. Aiolos transcription factor controls cell death in T cells by regulating Bcl-2 expression and its cellular localization.

    Science.gov (United States)

    Romero, F; Martínez-A, C; Camonis, J; Rebollo, A

    1999-01-01

    We searched for proteins that interact with Ras in interleukin (IL)-2-stimulated or IL-2-deprived cells, and found that the transcription factor Aiolos interacts with Ras. The Ras-Aiolos interaction was confirmed in vitro and in vivo by co-immunoprecipitation. Indirect immunofluorescence shows that IL-2 controls the cellular distribution of Aiolos and induces its tyrosine phosphorylation, required for dissociation from Ras. We also identified functional Aiolos-binding sites in the Bcl-2 promoter, which are able to activate the luciferase reporter gene. Mutation of Aiolos-binding sites within the Bcl-2 promoter inhibits transactivation of the reporter gene luciferase, suggesting direct control of Bcl-2 expression by Aiolos. Co-transfection experiments confirm that Aiolos induces Bcl-2 expression and prevents apoptosis in IL-2-deprived cells. We propose a model for the regulation of Bcl-2 expression via Aiolos. PMID:10369681

  6. Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Two major apoptosis pathways have been defined in mammalian cells, the Fas/TNF-R1 death receptor pathway and the mitochondria pathway. The Bcl-2 family proteins consist of both anti-apoptosis and pro- apoptosis members that regulate apoptosis, mainly by controlling the release of cytochrome c and other mitochondrial apoptotic events. However, death signals mediated by Fas/TNF-R1 receptors can usually activate caspases directly, bypassing the need for mitochondria and escaping the regulation by Bcl-2 family proteins. Bid is a novel pro-apoptosis Bcl-2 family protein that is activated by caspase 8 in response to Fas/TNF-R1 death receptor signals. Activated Bid is translocated to mitochondria and induces cytochrome c release, which in turn activates downstream caspases. Such a connection between the two apoptosis pathways could be important for induction of apoptosis in certain types of cells and responsible for the pathogenesis of a number of human diseases.

  7. Zerumbone induced apoptosis in liver cancer cells via modulation of Bax/Bcl-2 ratio

    Directory of Open Access Journals (Sweden)

    Azimahtol Hawariah LP

    2007-04-01

    Full Text Available Abstract Background Zerumbone is a cytotoxic component isolated from Zingiber zerumbet Smith, a herbal plant which is also known as lempoyang. This new anticancer bioactive compound from Z. zerumbet was investigated for its activity and mechanism in human liver cancer cell lines. Results Zerumbone significantly showed an antiproliferative activity upon HepG2 cells with an IC50 of 3.45 ± 0.026 μg/ml. Zerumbone was also found to inhibit the proliferation of non-malignant Chang Liver and MDBK cell lines. However the IC50 obtained was higher compared to the IC50 for HepG2 cells (> 10 μg/ml. The extent of DNA fragmentation was evaluated by the Tdt-mediated dUTP nick end labelling assay which showed that, zerumbone significantly increased apoptosis in HepG2 cells in a time-course manner. In detail, the apoptotic process triggered by zerumbone involved the up-regulation of pro-apoptotic Bax protein and the suppression of anti-apoptotic Bcl-2 protein expression. The changes that occurred in the levels of this antagonistic proteins Bax/Bcl-2, was independent of p53 since zerumbone did not affect the levels of p53 although this protein exists in a functional form. Western blotting analysis for Bax protein was further confirmed qualitatively with an immunoassay that showed the distribution of Bax protein in zerumbone-treated cells. Conclusion Therefore, zerumbone was found to induce the apoptotic process in HepG2 cells through the up and down regulation of Bax/Bcl-2 protein independently of functional p53 activity.

  8. Cannabinoids Regulate Bcl-2 and Cyclin D2 Expression in Pancreatic β Cells.

    Directory of Open Access Journals (Sweden)

    Jihye Kim

    Full Text Available Recent reports have shown that cannabinoid 1 receptors (CB1Rs are expressed in pancreatic β cells, where they induce cell death and cell cycle arrest by directly inhibiting insulin receptor activation. Here, we report that CB1Rs regulate the expression of the anti-apoptotic protein Bcl-2 and cell cycle regulator cyclin D2 in pancreatic β cells. Treatment of MIN6 and βTC6 cells with a synthetic CB1R agonist, WIN55,212-2, led to a decrease in the expression of Bcl-2 and cyclin D2, in turn inducing cell cycle arrest in G0/G1 phase and caspase-3-dependent apoptosis. Additionally, genetic deletion and pharmacological blockade of CB1Rs after injury in mice led to increased levels of Bcl-2 and cyclin D2 in pancreatic β cells. These findings provide evidence for the involvement of Bcl-2 and cyclin D2 mediated by CB1Rs in the regulation of β-cell survival and growth, and will serve as a basis for developing new therapeutic interventions to enhance β-cell function and growth in diabetes.

  9. The Expression of Apoptosis-Related Genes Bcl-2 and Bax Protein and Apoptosis Positivity in Cervical Carcinoma during Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZHAODongli; SHIJingsen; LIMingzhong; SONGLiping; WANGShuwen

    2005-01-01

    Objective: To evaluate the apoptosis positivity, the expression of Bcl-2. bax proteins in 30 patients with squamous cell cervix carcinoma before and after radiotherapy. Methods: By using immunohistochemical and TDT-dUTP nick end labelling techniques. 30 cases of squamous cell cervical carcinoma were analyzed. Results: The apoptosis positivity before and after irradiation was 76.7%, and 100% respectively, with the difference being significant (P<0.05); The positive rates of Bcl-2 protein before and after irradiation were 73.3% and 46.7% respectively, with the difference being significant (P<0.05): The positive rates of bax protein before and after irradiation were 86% and 100 respectively, with the difference being significant (P<0.05). Conclusion: bax and Bcl-2 protein play an important role in apoptosis induced by fractionated radiation therapy. Apoptosis induced by irradiation is contributed to upregulation of bax protein or downregulation of Bcl-2 protein.

  10. Allitridi induces apoptosis by affecting Bcl-2 expression and caspase-3 activity in human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Hong LAN; You-yong LU

    2004-01-01

    AIM: To investigate the mechanism of allitridi-induced apoptosis in human gastric cancer cell line BGC823.METHODS: Growth inhibition by allitridi was analyzed using cell growth curve and MTT assay. Apoptotic cells were detected using staining with Hoechst 33342, and confirmed by flow cytometric analysis and DNA fragmentation analysis. The protein expression affected by allitridi was determined using Western blot. The activity of caspase-3 was measured using a fluorescence assay. RESULTS: Allitridi induced apoptosis, and then inhibited cells proliferation in human gastric cancer cell line BGC823. The protein level of Bcl-2 was decreased dramatically,while Bax and p53 were not significantly affected by allitridi. The expression and activity of caspase-3 started to increase after allitridi treatment for 72 h. CONCLUSION: Allitridi induced apoptosis through down-regulation of Bcl-2, and increased caspase-3 expression and its activity.

  11. Combined transfection of Bcl-2 siRNA and miR-15a oligonucleotides enhanced methotrexate-induced apoptosis in Raji cells

    International Nuclear Information System (INIS)

    B-cell lymphoma 2 (Bcl-2) is an important member of the Bcl-2 family of proteins that regulate the induction of apoptosis. This study aims to investigate whether Bcl-2 small interfering RNA (siRNA) combined with miR-15a oligonucleotides (ODN) could enhance methotrexate (MTX)-induced apoptosis in Raji cells. Chemically synthesized miR-15a ODN and Bcl-2 siRNA were transfected in Raji cells by using a HiPerFect Transfection Reagent and then combined with MTX. Expression levels of Bcl-2 protein were detected by Western blot. Cell proliferation was determined by CCK8 assay. The rate of cell apoptosis was determined by Annexin V/PI double staining. The morphology of apoptotic cells was observed by Hoechst-33 258 staining. After the cells were transfected with miR-15a ODN combined with Bcl-2 siRNA, Bcl-2 protein levels were evidently decreased. CCK8 assay showed that cell proliferation was significantly decreased and was significantly lower in miR-15a ODN combined with Bcl-2 siRNA plus MTX group than in miR-15a ODN with methotrexate group, Bcl-2 siRNA with MTX group, and single MTX group (P<0.05). Hoechst 33258 staining revealed numerous apoptotic cells. AnnexinV/PI double staining showed that the apoptotic rates were (13.13±1.60)%, (34.47±2.96)%, (32.87±3.48)%, and (45.47±2.16)% in MTX, Bcl-2 siRNA plus MTX, miR-15a ODN plus MTX, and miR-15a ODN combined with Bcl-2 siRNA plus MTX groups, respectively. Among these groups, the apoptotic rate of miR-15a ODN combined with Bcl-2 siRNA plus MTX group was the highest; this apoptotic rate was also significantly different from that of miR-15a ODN or Bcl-2 siRNA plus MTX (P<0.05). Bcl-2 siRNA combined with miR-15a ODN could enhance MTX-induced apoptosis in Raji cells. Bcl-2 siRNA and miR-15a combined with MTX may be a useful approach to improve the treatment effects on lymphoma

  12. Therapeutic Modulation of Apoptosis: Targeting the BCL-2 Family at the Interface of the Mitochondrial Membrane

    Science.gov (United States)

    Nemec, Kathleen N.

    2008-01-01

    A vast portion of human disease results when the process of apoptosis is defective. Disorders resulting from inappropriate cell death range from autoimmune and neurodegenerative conditions to heart disease. Conversely, prevention of apoptosis is the hallmark of cancer and confounds the efficacy of cancer therapeutics. In the search for optimal targets that would enable the control of apoptosis, members of the BCL-2 family of anti- and pro-apoptotic factors have figured prominently. Development of BCL-2 antisense approaches, small molecules, and BH3 peptidomimetics has met with both success and failure. Success-because BCL-2 proteins play essential roles in apoptosis. Failure-because single targets for drug development have limited scope. By examining the activity of the BCL-2 proteins in relation to the mitochondrial landscape and drawing attention to the significant mitochondrial membrane alterations that ensue during apoptosis, we demonstrate the need for a broader based multi-disciplinary approach for the design of novel apoptosis-modulating compounds in the treatment of human disease. PMID:18972587

  13. Nitric oxide and oxygen radicals induced apoptosis via bcl-2 and p53 pathway in hypoxia-reoxygenated cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Neonatal rat cardiomyocytes were subjected to 24 h of hypoxia 95%N2/5%CO2 and 24 h of hypoxia plus 4 h of reoxygenation 95%O2/5%CO2. 24 h of hypoxia increased the levels of NO, TBARS and LDH. 24 h of hypoxia plus 4 h of reoxygenation decreased the levels of NO, but further increased TBARS and LDH. The hypoxia up-regulated the expression of bcl-2, p53 and p21/waf1/cip1 but the reoxygenation down-regulated the expression of bcl-2, and further up-regulated p53 and p21/waf1/cip1. The hypoxia increased cell apoptosis and reoxygenation further increased both apoptotic and necrotic cell death. NO, TBARS, DNA fragmentation and cell apoptosis were enhanced by SNP and inhibited by L-NAME respectively. In addition, SOD/catalase down-regulated the expression of p53, p21/wafl/cipl and TBARS but up-regulated bcl-2 and increased indirectly the level of NO, and inhibited DNA fragmentation. The results suggest that hypoxia-induced cell death is associated with the activation of NO, bcl-2 and p53 pathway, while hypoxia-reoxygenation induced cell death via the generation of reactive oxygen species and activation of p53 pathway. The present study clarified that NO may be an initiative signal to apoptotic cell death and the activation of bcl-2, p53 and p21/waf1/cip1 pathway in hypoxic and hypoxia-reoxygenated cardiomyocytes.

  14. Curcumin significantly enhances dual PI3K/Akt and mTOR inhibitor NVP-BEZ235-induced apoptosis in human renal carcinoma Caki cells through down-regulation of p53-dependent Bcl-2 expression and inhibition of Mcl-1 protein stability.

    Directory of Open Access Journals (Sweden)

    Bo Ram Seo

    Full Text Available The PI3K/Akt and mTOR signaling pathways are important for cell survival and growth, and they are highly activated in cancer cells compared with normal cells. Therefore, these signaling pathways are targets for inducing cancer cell death. The dual PI3K/Akt and mTOR inhibitor NVP-BEZ235 completely inhibited both signaling pathways. However, NVP-BEZ235 had no effect on cell death in human renal carcinoma Caki cells. We tested whether combined treatment with natural compounds and NVP-BEZ235 could induce cell death. Among several chemopreventive agents, curcumin, a natural biologically active compound that is extracted from the rhizomes of Curcuma species, markedly induced apoptosis in NVP-BEZ235-treated cells. Co-treatment with curcumin and NVP-BEZ235 led to the down-regulation of Mcl-1 protein expression but not mRNA expression. Ectopic expression of Mcl-1 completely inhibited curcumin plus NVP-NEZ235-induced apoptosis. Furthermore, the down-regulation of Bcl-2 was involved in curcumin plus NVP-BEZ235-induced apoptosis. Curcumin or NVP-BEZ235 alone did not change Bcl-2 mRNA or protein expression, but co-treatment reduced Bcl-2 mRNA and protein expression. Combined treatment with NVP-BEZ235 and curcumin reduced Bcl-2 expression in wild-type p53 HCT116 human colon carcinoma cells but not p53-null HCT116 cells. Moreover, Bcl-2 expression was completely reversed by treatment with pifithrin-α, a p53-specific inhibitor. Ectopic expression of Bcl-2 also inhibited apoptosis in NVP-BE235 plus curcumin-treated cells. In contrast, NVP-BEZ235 combined with curcumin did not have a synergistic effect on normal human skin fibroblasts and normal human mesangial cells. Taken together, combined treatment with NVP-BEZ235 and curcumin induces apoptosis through p53-dependent Bcl-2 mRNA down-regulation at the transcriptional level and Mcl-1 protein down-regulation at the post-transcriptional level.

  15. THE EXPRESSION AND CLINICAL VALUE OF APOPTOSIS CONTROL GENE Bcl-2 AND Bax IN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jun; YAO Zhen-xiang; ZHANG Jing

    1999-01-01

    Objective: To study the expression and clinical value of apoptosis control gene bcl-2 and bax in breast cancer.Methods: Protein bax and bcl-2 in 41 breast cancers obtained from operations in our hospital in 1996 were detected using ABC immunohistochemical stain assay and compared with 10 cases with normal breast tissues.Results: The positive rate of bax in normal breast tissue was 90% and in breast cancer was 59%, with a significant statistical difference between them (P<0.05), but there was no statistical difference in bcl-2 protein expression. Among the 41 breast cancer, the group with lymph node metastasis (21 cases) had obviously low bax expression (43%) and high bcl-2 expression (76%), showing significant difference to the group without lymph node metastasis (P<0.05).Conclusion: The antiapoptosis function of bcl-2 was stronger than bax in breast cancer. Protein bax and bcl-2 assay may be useful in understanding the biological behaviors of breast cancer.

  16. Autophagy Regulates the Post-Translational Cleavage of BCL-2 and Promotes Neuronal Survival

    Directory of Open Access Journals (Sweden)

    Laura Lossi

    2010-01-01

    Full Text Available B-cell lymphoma 2 protein (BCL-2 is one of the more widely investigated anti-apoptotic protein in mammals, and its levels are critical for protecting from programmed cell death. We report here that the cellular content of BCL-2 is regulated at post-translational level along the autophagy/lysosome pathways in organotypic cultures of post-natal mouse cerebellar cortex. Specifically this mechanism appears to be effective in the cerebellar granule cells (CGCs that are known to undergo massive programmed cell death (apoptosis during post-natal maturation. By the use of specific agonists/antagonist of calcium channels at the endoplasmic reticulum it was possible to understand the pivotal role of calcium release from intracellular stores in CGC neuroprotection. The more general significance of these findings is supported by a very recent study Niemann-Pick transgenic mice.

  17. PPAR-γ Silencing Inhibits the Apoptosis of A549 Cells by Upregulating Bcl-2

    Directory of Open Access Journals (Sweden)

    Jingyu YANG

    2013-03-01

    Full Text Available Background and objective Drug resistance is the one of primary causes of death in patients with lung cancer, PPAR-γ could induce the apoptosis and reverse drug resistance. The aim of this study is to investigate the expression of PPAR-γ on cisplatin sensitivity and apoptosis response of human lung cancer cell line A549. Methods Reconstruction of PPAR-γ silencing A549 cells (A549/PPAR-γ(- by siRNA. MTT assay was employed to determine the effect of cisplatin on the proliferation of A549/PPAR-γ(-, flow cytometry to determine the effect of cisplatin on the cell apoptosis, Western blot to determine the change of phosphorylation of Akt, caspase-3 and expression of bcl-2/bax. Finally, RT-PCR was employed to determine the transcriptional level of bcl-2. Results Two PPAR-γ silencing A549 cell clones were established successfully, and the expression of PPAR-γ was downregulated significantly as confirmed by RT-PCR and Western blot. After PPAR-γ silencing, the resistance of these two A549 clones to cisplatin was increased by 1.29-fold and 1.60-fold respectively. Flow cytometry showed that the apoptosis rate was decreased, and Western Blot showed that the phosphorylation of Akt and expression of bcl-2/bax were upregulated, caspase-3 was downregulated. Finally, RT-PCR showed that the transcriptional level of bcl-2 was upregulated as well. Conclusion Downregulation of PPAR-γ in A549 cells led to increase of cisplatin resistance. One of the mechanisms was upregulatin of phosphorylation of Akt and expression of bcl-2, which inhibited the apoptosis of cells. The downregulation of PPAR-γ is a possible mechanism that leads to the clinical drug resistance of cancer.

  18. Effects of apoptosis-related proteins caspase-3, Bax and Bcl-2 on cerebral ischemia rats

    OpenAIRE

    Liu, Guangyi; Tao WANG; WANG, TINGING; Song, Jinming; Zhou, Zhen

    2013-01-01

    Neuron apoptosis is known to mediate a change of ethology following cerebral ischemia-reperfusion injury in rats. Additionally, Bcl-2, Bax and caspase-3 proteins may exert a significant effect on neuron injury. The aim of this study was to investigate the role, mechanism of action and clinical significance of these proteins in neuron apoptosis and functional impairment following cerebral ischemia-reperfusion injury in rats. Sixty male healthy adult Wistar rats were randomly assigned into cont...

  19. Flavonoids of Rosa roxburghii Tratt exhibit radioprotection and anti-apoptosis properties via the Bcl-2(Ca(2+))/Caspase-3/PARP-1 pathway.

    Science.gov (United States)

    Xu, Ping; Cai, Xinhua; Zhang, Wenbo; Li, Yana; Qiu, Peiyong; Lu, Dandan; He, Xiaoyang

    2016-10-01

    The objective of our study was to assess the radioprotective effect of flavonoids extracted from Rosa roxburghii Tratt (FRT) and investigate the role of Bcl-2(Ca(2+))/Caspase-3/PARP-1 pathway in radiation-induced apoptosis. Cells and mice were exposed to (60)Co γ-rays at a dose of 6 Gy. The radiation treatment induced significant effects on tissue pathological changes, apoptosis, Ca(2+), ROS, DNA damage, and expression levels of Bcl-2, Caspase-3 (C-Caspase-3), and PARP-1. The results showed that FRT acted as an antioxidant, reduced DNA damage, corrected the pathological changes of the tissue induced by radiation, promoted the formation of spleen nodules, resisted sperm aberration, and protected the thymus. FRT significantly reduced cell apoptosis compared with the irradiation group. The expression of Ca(2+) and C-Caspase-3 was decreased after FRT treatment compared with the radiation-treated group. At the same time, expression of prototype PARP-1 and Bcl-2 increased, leading to a decrease in the percentage of apoptosis cells in FRT treatment groups. We conclude that FRT acts as a radioprotector. Apoptosis signals were activated via the Bcl-2(Ca(2+))/Caspase-3/PARP-1 pathway in irradiated cells and FRT inhibited this pathway of apoptosis by down-regulation of C-Caspase-3 and Ca(2+) and up-regulation of prototype PARP-1 and Bcl-2.

  20. 奥曲肽对人肝星状细胞凋亡及Bcl-2/Bax表达的影响%Effects of octreotide on the apoptosis of human HSCs and expression of Bcl-2/Bax in HSCs

    Institute of Scientific and Technical Information of China (English)

    李春艳; 贾丽萍; 石蕾; 周贤

    2015-01-01

    Objective To investigate the effects of octreotide on the apoptosis of human hepatic stellate cells (HSCs) and expression of Bcl-2/Bax in HSCs,and to reveal the mechanism underlying octreotide against hepatic fibrosis. Methods HSCs lines (HSC-LX2) were incubated with different concentrations of octreotide for 24 and 48 hours. Cell apoptosis was evaluated by Fitc-tunel fluorescence staining. Bcl-2 and Bax protein exoression in HSC-LX2 was detected by immunocytochemistry. Meanwhile, Bcl-2 protein of HSC-LX2 were detected by Western blot assay. Results Octreotide could promote the apoptosis of HSC-LX2, and the apoptosis rate was significantly increased with the concentration of octreotide(P < 0.05). The HSC-LX2 were incubated with the same concentration of octreotide for 24 and 48 hours, the cell apoptosis rate of 48-hour octreotide treatment was significantly higher than that of 24-hour octreotide treatment (P < 0.05). The immunocytochemistry result indicated that octreotide could significantly decrease Bcl-2 expression and increase Bax expression in HSC-LX2 (P<0.05); Western blot assay showed that octreotide could also significantly inhibit Bcl-2 expression in HSC-LX2 (P<0.05). Conclusions Octreotide could induce the apoptosis of HSCs in a dose-and time-dependent manner, the mechanism of octreotide inducing HSCs apoptosis might be associated with down-regulation of Bcl-2 and upregulation of Bax in HSC.%目的:观察奥曲肽对活化人肝星状细胞凋亡和凋亡相关蛋白Bcl-2/Bax 表达的影响,探讨奥曲肽抗肝纤维化可能的作用机制。方法:不同浓度的奥曲肽作用于传代的人肝星状细胞株(HSC-LX2)24 h、48 h后,应用FITC-TUNEL检测各组细胞凋亡,应用免疫细胞化学法检测HSC-LX2中Bcl-2、Bax蛋白表达,应用Western-blot法检测HSC-LX2中Bcl-2蛋白表达。结果:奥曲肽可促进HSC-LX2细胞调亡,细胞凋亡率随奥曲肽浓度增加而增高(P <0.05);与24 h比较,相

  1. Inhibition of BCL-2 leads to increased apoptosis and delayed neuronal differentiation in human ReNcell VM cells in vitro.

    Science.gov (United States)

    Fröhlich, Michael; Jaeger, Alexandra; Weiss, Dieter G; Kriehuber, Ralf

    2016-02-01

    BCL-2 is a multifunctional protein involved in the regulation of apoptosis, cell cycle progression and neural developmental processes. Its function in the latter process is not well understood and needs further elucidation. Therefore, we characterized the protein expression kinetics of BCL-2 and associated regulatory proteins of the intrinsic apoptosis pathway during the process of neuronal differentiation in ReNcell VM cells with and without functional inhibition of BCL-2 by its competitive ligand HA14-1. Inhibition of BCL-2 caused a diminished BCL-2 expression and higher levels of cleaved BAX, activated Caspase-3 and cleaved PARP, all pro-apoptotic markers, when compared with untreated differentiating cells. In parallel, flow cytometric analysis of HA14-1-treated cells revealed a delayed differentiation into HuC/D+ neuronal cells when compared to untreated differentiating cells. In conclusion, BCL-2 possess a protective function in fully differentiated ReNcell VM cells. We propose that the pro-survival signaling of BCL-2 is closely connected with its stimulatory effects on neurogenesis of human neural progenitor cells.

  2. Virosecurinine induces apoptosis by affecting Bcl-2 and Bax expression in human colon cancer SW480 cells.

    Science.gov (United States)

    Chen, Chuan-Rong; Xia, Yong-Hui; Yao, Shu-Yan; Zhang, Qing; Wang, Ying; Ji, Zhao-Ning

    2012-04-01

    Virosecurinine, the major alkaloid isolated from Securinega suffruticosa Pall Rehd was found to exhibit growth inhibition and cytotoxicity against huaman colon cancer SW480 cells via the microculture tetrazolium (MTT) assay. Due to its greater cytotoxic potency and selectivity towards SW480 cells, flow cytometry was used to analyze the cell cycle distribution of control and treated SW480 cells whereas Annexin V-FITC/PI flow cytometry analysis was carried out to confirm apoptosis induced by virosecurinine in SW480 cells. Apoptotic regulatory genes were determined by RT-PCR analysis. Virosecurinine was found to induce G1/S cell cycle arrest which led to predominantly apoptotic mode of cell death. Mechanistically, virosecurinine was found to up-regulated the Bax gene expression and down-regulated the Bcl-2 expression in SW480, The ratio of Bcl-2 to Bax was significantly decreased. Hence, we suggest that virosecurinine induced apoptosis in SW480 cells by affecting the expression of bcl-2 and bax. PMID:22570942

  3. Downregulation of uPAR and cathepsin B induces apoptosis via regulation of Bcl-2 and Bax and inhibition of the PI3K/Akt pathway in gliomas.

    Directory of Open Access Journals (Sweden)

    Ramarao Malla

    Full Text Available BACKGROUND: Glioma is the most commonly diagnosed primary brain tumor and is characterized by invasive and infiltrative behavior. uPAR and cathepsin B are known to be overexpressed in high-grade gliomas and are strongly correlated with invasive cancer phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we observed that simultaneous downregulation of uPAR and cathepsin B induces upregulation of some pro-apoptotic genes and suppression of anti-apoptotic genes in human glioma cells. uPAR and cathepsin B (pCU-downregulated cells exhibited decreases in the Bcl-2/Bax ratio and initiated the collapse of mitochondrial membrane potential. We also observed that the broad caspase inhibitor, Z-Asp-2, 6-dichlorobenzoylmethylketone rescued pCU-induced apoptosis in U251 cells but not in 5310 cells. Immunoblot analysis of caspase-9 immunoprecipitates for Apaf-1 showed that uPAR and cathepsin B knockdown activated apoptosome complex formation in U251 cells. Downregulation of uPAR and cathepsin B also retarded nuclear translocation and interfered with DNA binding activity of CREB in both U251 and 5310 cells. Further western blotting analysis demonstrated that downregulation of uPAR and cathepsin B significantly decreased expression of the signaling molecules p-PDGFR-β, p-PI3K and p-Akt. An increase in the number of TUNEL-positive cells, increased Bax expression, and decreased Bcl-2 expression in nude mice brain tumor sections and brain tissue lysates confirm our in vitro results. CONCLUSIONS/SIGNIFICANCE: In conclusion, RNAi-mediated downregulation of uPAR and cathepsin B initiates caspase-dependent mitochondrial apoptosis in U251 cells and caspase-independent mitochondrial apoptosis in 5310 cells. Thus, targeting uPAR and cathepsin B-mediated signaling using siRNA may serve as a novel therapeutic strategy for the treatment of gliomas.

  4. Upregulation of Bax and Bcl-2 following prenatal cocaine exposure induces apoptosis in fetal rat brain

    OpenAIRE

    Xiao, DaLiao; Zhang, Lubo

    2008-01-01

    Cocaine abuse during pregnancy has been associated with numerous adverse perinatal outcomes. Aims: The present study was to determine whether prenatal cocaine exposure induced apoptosis and the possible role of Bcl-2 family genes in the programming cell death in fetal rat brain. Main methods: Pregnant rats were treated with cocaine subcutaneously (30 & 60 mg/kg/day) from day 15 to 21 of gestation. Then the fetal and maternal brains were isolated. Key findings: Cocaine produced a dose-dependen...

  5. Upregulation of Bax and Bcl-2 following prenatal cocaine exposure induces apoptosis in fetal rat brain

    OpenAIRE

    DaLiao Xiao, Lubo Zhang

    2008-01-01

    Cocaine abuse during pregnancy has been associated with numerous adverse perinatal outcomes. Aims: The present study was to determine whether prenatal cocaine exposure induced apoptosis and the possible role of Bcl-2 family genes in the programming cell death in fetal rat brain. Main methods: Pregnant rats were treated with cocaine subcutaneously (30 & 60 mg/kg/day) from day 15 to 21 of gestation. Then the fetal and maternal brains were isolated. Key findings: Cocaine produced a dose-depe...

  6. HAMLET triggers apoptosis but tumor cell death is independent of caspases, Bcl-2 and p53.

    Science.gov (United States)

    Hallgren, O; Gustafsson, L; Irjala, H; Selivanova, G; Orrenius, S; Svanborg, C

    2006-02-01

    HAMLET (Human alpha-lactalbumin Made Lethal to Tumor cells) triggers selective tumor cell death in vitro and limits tumor progression in vivo. Dying cells show features of apoptosis but it is not clear if the apoptotic response explains tumor cell death. This study examined the contribution of apoptosis to cell death in response to HAMLET. Apoptotic changes like caspase activation, phosphatidyl serine externalization, chromatin condensation were detected in HAMLET-treated tumor cells, but caspase inhibition or Bcl-2 over-expression did not prolong cell survival and the caspase response was Bcl-2 independent. HAMLET translocates to the nuclei and binds directly to chromatin, but the death response was unrelated to the p53 status of the tumor cells. p53 deletions or gain of function mutations did not influence the HAMLET sensitivity of tumor cells. Chromatin condensation was partly caspase dependent, but apoptosis-like marginalization of chromatin was also observed. The results show that tumor cell death in response to HAMLET is independent of caspases, p53 and Bcl-2 even though HAMLET activates an apoptotic response. The use of other cell death pathways allows HAMLET to successfully circumvent fundamental anti-apoptotic strategies that are present in many tumor cells.

  7. THE EXPERIMENTAL STUDY ON THE CELL APOPTOSIS AND EXPRESSION OF BCL-2 PROTEIN IN INTRACEREBRAL HEMORRHAGE IN MODEL OF RATS

    Institute of Scientific and Technical Information of China (English)

    Bao Gang; Guo Ning; Zhang Zhonglin; Chen Wei; Bao Dehu

    2006-01-01

    Otjective To study whether there is the apoptosis of neural cells and the expressionof Bcl-2 protein in intracerebral hemorrhage (ICH) in model of rats, for the further understanding the mechanism of the delayed damage of the neural cells around the hematoma after ICH. Methods Fifty SD rats were randomly divided into 5 groups, ten in each. With the Group A as the control, the rest 40 were used to set up intracerebral hemorrhage model. The brains were taken out at 12th, 24th, 48th and 72th hours, respectively. Apoptosis cells were detected with terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL), and the expression of Bcl-2 protein was detected with immunochemical stainging methed (SP). Results In the control group, no apoptosis cells and Bcl-2protein were detected. In rest groups, the apoptosis cells and Bcl-2 protein were expressed in different degree.Apoptosis rates verified and corresponded with the time after ICH, with the peak at 48th -72th hour after hemorrhage.The peak rate of apoptosis cells was (24. 50± 2.69)% and Bcl-2 protein expression was (20. 76 ± 1.97)% . There was significant difference between the experimental groups and control (P<0.05), and no linear relationship between the apoptosis rate and the expression of Bcl-2 protein. Conclusion Apoptosis may be an important factor in the secondary trauma of ICH. There is a time leg after hemorrhage. All this is instructive to clinical treatment in time. Bcl-2 protein keeps increasing in a certain time after hemorrhage, but not synchronize with the cell apoptosis. This indicates that bcl-2 has the effect to reduce the apoptosis of neural cells.

  8. Deregulation of apoptosis mediators' p53 and bcl2 in lung tissue of COPD patients

    Directory of Open Access Journals (Sweden)

    Pentilas Nikolaos

    2010-04-01

    Full Text Available Abstract Abnormal apoptotic events in chronic obstructive pulmonary disease (COPD subvert cellular homeostasis and may play a primary role in its pathogenesis. However, studies in human subjects are limited. p53 and bcl2 protein expression was measured by western blot on lung tissue specimens from 43 subjects (23 COPD smokers and 20 non-COPD smokers, using beta-actin as internal control. Additionally, p53 and bcl2 expression patterns were evaluated by immunohistochemistry in formalin-fixed, paraffin-embedded lung tissue sections from the same individuals. Western blot analysis showed statistically significant increased p53 protein levels in COPD smokers in comparison with non-COPD smokers (p = 0.038, while bcl2 protein levels were not statistically different between the two groups. Lung immunohistochemistry showed increased ratio of positive p53-stained type II pneumocytes/total type II pneumocytes in COPD smokers compared to non-COPD smokers (p = 0.01, whereas the p53 staining ratio in alveolar macrophages and in lymphocyte-like cells did not differ statistically between the two groups. On the other hand, bcl2 expression did not differ between the two groups in all three cell types. The increased expression of pro-apoptotic p53 in type II pneumocytes of COPD patients not counterbalanced by the anti-apoptotic bcl2 could reflect increased apoptosis in the alveolar epithelium of COPD patients. Our results confirm previous experiments and support the hypothesis of a disturbance in the balance between the pro- and anti-apoptotic mediators in COPD.

  9. Bcl-2, Bax, and c-Fos expression correlates to RPE cell apoptosis induced by UV-light and daunorubicin

    DEFF Research Database (Denmark)

    Liang, Y G; Jorgensen, A G; Kaestel, C G;

    2000-01-01

    PURPOSE. The aim of this study was to determine the role of Bcl-2, Bcl-X L, Bax, and c-Fos in regulation of apoptosis, induced by ultraviolet-light A (UV-A) and daunorubicin (DNR), in retinal pigment epithelium (RPE) cells grown on bovine extracellular matrix (ECM)-coated or uncoated plastic dishes....... METHODS. Apoptosis in confluent RPE cells cultured on ECM-coated or uncoated dishes was induced by UV-A or DNR. Apoptosis was detected by 7-amino-actinomycin D labeling followed by flow cytometry and by terminal deoxy-transferase mediated X-dUTP nick end labeling (TUNEL). Cellular expression of Bcl-2, Bcl......-X L, Bax, and c-Fos was determined by the use of antibodies and flow cytometry, Western blot analysis, and immunocytochemical staining. RESULTS. Both UV-A and DNR induce apoptosis in human RPE cells in vitro. Human fetal RPE cells grown on ECM-coated dishes were significantly more resistant to UV...

  10. Acidosis promotes Bcl-2 family-mediated evasion of apoptosis: involvement of acid-sensing G protein-coupled receptor Gpr65 signaling to Mek/Erk.

    Science.gov (United States)

    Ryder, Christopher; McColl, Karen; Zhong, Fei; Distelhorst, Clark W

    2012-08-10

    Acidosis arises in solid and lymphoid malignancies secondary to altered nutrient supply and utilization. Tumor acidosis correlates with therapeutic resistance, although the mechanism behind this effect is not fully understood. Here we show that incubation of lymphoma cell lines in acidic conditions (pH 6.5) blocks apoptosis induced by multiple cytotoxic metabolic stresses, including deprivation of glucose or glutamine and treatment with dexamethasone. We sought to examine the role of the Bcl-2 family of apoptosis regulators in this process. Interestingly, we found that acidic culture causes elevation of both Bcl-2 and Bcl-xL, while also attenuating glutamine starvation-induced elevation of p53-up-regulated modulator of apoptosis (PUMA) and Bim. We confirmed with knockdown studies that these shifts direct survival decisions during starvation and acidosis. Importantly, the promotion of a high anti- to pro-apoptotic Bcl-2 family member ratio by acidosis renders cells exquisitely sensitive to the Bcl-2/Bcl-xL antagonist ABT-737, suggesting that acidosis causes Bcl-2 family dependence. This dependence appears to be mediated, in part, by the acid-sensing G protein-coupled receptor, GPR65, via a MEK/ERK pathway. PMID:22685289

  11. Retinoids cause apoptosis in pancreatic cancer cells via activation of RAR-γ and altered expression of Bcl-2/Bax

    OpenAIRE

    Pettersson, F; Dalgleish, A G; Bissonnette, R P; Colston, K W

    2002-01-01

    All-trans-retinoic acid and 9-cis-retinoic acid have been reported to have inhibitory effects on pancreatic adenocarcinoma cells and we have shown that this is partly due to induction of apoptosis. In this study, the mechanisms whereby 9-cis-retinoic acid induces apoptosis in these cells were investigated. An involvement of the Bcl-2 family of proteins was shown, such that 9-cis-retinoic acid causes a decrease in the Bcl-2/Bax ratio. Overexpression of Bcl-2 also resulted in inhibition of apop...

  12. Induction of apoptosis in HepG2 cells by solanine and Bcl-2 protein.

    Science.gov (United States)

    Ji, Y B; Gao, S Y; Ji, C F; Zou, X

    2008-01-17

    The nightshade (Solanum nigrum Linn.) has been widely used in Chinese traditional medicine as a remedy for the treatment of digestive system cancer. The anti-tumor activity of solanine, a steroid alkaloid isolated from the nightshade has been demonstrated. To observe the effect of anti-tumor and mechanism of solanine. The MTT assay was used to evaluate the IC(50) on the three digestive system tumor cell lines. The effect on the morphology was observed with a laser confocal microscopy; the rate of apoptosis and the cell cycle were measured using flow cytometry (FCM); the expression of Bcl-2 protein was measured by Western blot. The results show that the IC(50) for HepG(2), SGC-7901, and LS-174 were 14.47, >50, and >50 microg/ml, respectively; the morphology of cells in the negative control was normal; for the treated groups, typical signs for apoptosis were found. The rate of apoptosis in HepG(2) cells induced by solanine was found to be 6.0, 14.4, 17.3, 18.9, and 32.2%, respectively. Observation of the cell cycle showed that cells in the G(2)/M phases disappeared while the number of cells in the S phase increased significantly for treated groups. Western blot showed that solanine decreased the expression of Bcl-2 protein. Therefore, the target of solanine in inducing apoptosis in HepG(2) cells seems to be mediated by the inhibition in the expression of Bcl-2 protein.

  13. Icariin Attenuates OGD/R-Induced Autophagy via Bcl-2-Dependent Cross Talk between Apoptosis and Autophagy in PC12 Cells

    Science.gov (United States)

    2016-01-01

    Icariin (ICA), an active component of Epimedium brevicornum Maxim, exerts a variety of neuroprotective effects such as antiapoptosis. However, the mechanisms underlying antiapoptosis of ICA in neurons exposed to oxygen-glucose deprivation and reperfusion (OGD/R) are unclear. The B-cell lymphoma-2 (Bcl-2) protein family plays an important role in the regulation of apoptosis and autophagy through Bcl-2-dependent cross talk. Bcl-2 suppresses apoptosis by binding to Bax and inhibits autophagy by binding to Beclin-1 which is an autophagy related protein. In the present study, MTT result showed that ICA increased cell viability significantly in OGD/R treated PC12 cells (P < 0.01). Results of western blotting analysis showed that ICA increased Bcl-2 expression significantly and decreased expressions of Bax, cleaved Caspase-3, Beclin-1, and LC3-II significantly in OGD/R treated PC12 cells (P < 0.01). These results suggest that ICA protects PC12 cells from OGD/R induced autophagy via Bcl-2-dependent cross talk between apoptosis and autophagy. PMID:27610184

  14. Hypoxia-induced modulation of apoptosis and BCL-2 family proteins in different cancer cell types.

    Directory of Open Access Journals (Sweden)

    Audrey Sermeus

    Full Text Available Hypoxia plays an important role in the resistance of tumour cells to chemotherapy. However, the exact mechanisms underlying this process are not well understood. Moreover, according to the cell lines, hypoxia differently influences cell death. The study of the effects of hypoxia on the apoptosis induced by 5 chemotherapeutic drugs in 7 cancer cell types showed that hypoxia generally inhibited the drug-induced apoptosis. In most cases, the effect of hypoxia was the same for all the drugs in one cell type. The expression profile of 93 genes involved in apoptosis as well as the protein level of BCL-2 family proteins were then investigated. In HepG2 cells that are strongly protected against cell death by hypoxia, hypoxia decreased the abundance of nearly all the pro-apoptotic BCL-2 family proteins while none of them are decreased in A549 cells that are not protected against cell death by hypoxia. In HepG2 cells, hypoxia decreased NOXA and BAD abundance and modified the electrophoretic mobility of BIM(EL. BIM and NOXA are important mediators of etoposide-induced cell death in HepG2 cells and the hypoxia-induced modification of these proteins abundance or post-translational modifications partly account for chemoresistance. Finally, the modulation of the abundance and/or of the post-translational modifications of most proteins of the BCL-2 family by hypoxia involves p53-dependent and -independent pathways and is cell type-dependent. A better understanding of these cell-to-cell variations is crucial in order to overcome hypoxia-induced resistance and to ameliorate cancer therapy.

  15. Effect of U-74389G on apoptosis and bcl-2 expression following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    骆纯; 卢亦成; 朱诚; 江基尧

    2003-01-01

    Objective: To investigate the relationship between oxidative stress and apoptosis and bcl-2 expression following traumatic brain injury (TBI). Methods: Male Sprague-Dawley rats were subjected to lateral fluid percussion brain injury (FPBI) of moderate severity. U-74389G (20 mg/kg) were administered intravenously before FPBI. The neurological functions were measured by beam-walk task (BWT) and beam-balance task (BBT). In addition to morphological evidence of apoptosis, TUNEL histochemistry was used to identify DNA fragmentation in situ with both light and electron microscopic levels. The internucleosomal fragments of DNA in apoptotic cells were examined using agarose gel electrophoresis. Bcl-2 protein expression was detected by immunohistochemistry. Results: The scores of BWT and BBT were significantly improved (P<0.01) in the treated animals. The treatment significantly reduced the number of apoptotic cells that was counted in the areas of the injured hemisphere at various time points following TBI. No DNA ladder was detected in the treated rats. Bcl-2 expression was observed in the cerebral cortex, subcortical white matter, dentate gyrus, hippocampal CA1 and CA3 region ipsilateral to injured hemisphere. Bcl-2 positive cells displayed normal nuclear morphology; Little Bcl-2 positive cells revealed morphological feature of apoptosis or necrosis. The immunoreactivity of Bcl-2 protein decreased significantly in the hippocampus ipsilateral impact site as early as 6 h post-injury. During 1-3 d after injury, the bcl-2 protein expression decreased relatively slow. In the U-74389G treated groups, the downregulation of bcl-2 expression was halted. Conclusion: In this model, apoptosis is associated with an activation of lipid peroxidation. U-74389G may block oxidative stress and halt the downregulation of bcl-2 expression. These may be one of the molecular mechanisms of the neuro-protective effects by U-74389G.

  16. IL-8通过上调Bcl-2的表达和下调caspase-3的表达抑制MCF-7乳腺癌细胞凋亡%IL-8 inhibits the apoptosis of MCF-7 human breast cancer cells by up-regulating Bcl-2 and down-regulating caspase-3

    Institute of Scientific and Technical Information of China (English)

    庞雪利; 李矿发; 魏兰; 黄云秀; 苏敏; 王林; 曹红; 陈婷梅

    2015-01-01

    目的 探讨白细胞介素8(IL-8)对乳腺癌细胞MCF-7凋亡的影响及其机制.方法 Westem blot法检测MCF-7细胞IL-8受体CXC趋化因子受体1(CXCR1)、CXCR2的表达;反转录PCR、Western blot法检测(0、20、40、80、160) ng/mL IL-8对MCF-7细胞Bcl-2、caspase-3表达的影响;CCK-8法检测(0、40、80) ng/mL IL-8对MCF-7细胞增殖的影响;相差显微镜下观察80 ng/mL IL-8处理MCF-7后细胞形态的变化;Western blot法检测80 ng/mL IL-8联合信号通路抑制剂10 μmol/L PD980590、10 μmol/L LY294002或50 μmol/L AG490[分别为丝裂原活化蛋白激酶/细胞外调节蛋白激酶(MAPK/ERK)、磷酸肌醇-3激酶/蛋白激酶B(PBK/AKT)、Janus激酶/信号转导子和转录激活子(JAK/STAT)信号通路抑制剂],共同处理MCF-7细胞后,细胞内Bcl-2蛋白表达的变化;Western blot法检测(0、20、40、80、160) ng/mL IL-8对MCF-7细胞磷酸化p-AKT表达的影响;流式细胞术、反转录PCR以及Westem blot法分别检测80 ng/mL IL-8联合10 μmol/L LY294002共同处理MCF-7细胞后,细胞凋亡以及细胞内Bcl-2、caspase-3表达的变化.结果 IL-8受体CXCR1、CXCR2在MCF-7细胞中均有表达;在IL-8的作用下,MCF-7细胞Bcl-2表达升高,caspase-3表达下降,抗凋亡能力明显增强;IL-8能显著上调MCF-7细胞中p-AKT的表达;PBK/AKT信号通路抑制剂LY294002能显著抑制IL-8抗MCF-7细胞凋亡的作用,且减少Bcl-2并增加caspase-3的表达.结论 IL-8可显著抑制MCF-7细胞的凋亡,其机制可能与IL-8激活PI3K/AKT信号通路而上调Bcl-2、下调caspase-3的表达有关.

  17. Bcl-2 over-expression and activation of protein kinase C suppress the Trail-induced apoptosis in Jurkat T cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Trail,a tumor necrosis factor-related apoptosis-inducing ligand,is a novel potent endogenous activator of the cell death pathway through the activation of cell surface death receptors Trail-R1 and Trail-R2.Its role,like FasL in activation-induced cell death(AICD),has been demonstrated in immune system.However the mechanism of Trail induced apoptosis remains unclear.In this report,the recombinant Trail protein was expressed and purified.The apoptosis-inducing activity and the regulation mechanism of recombinant Trail on Jurkat T cells were explored in vitro.Trypan blue exclusion assay demonstrated that the recombinant Trail protein actively killed Jurkat T cells in a dose-dependent manner.Trail-induced apoptosis in Jurkat T cells were remarkably reduced by Bcl-2 over expression in Bcl-2 gene transfected cells.Treatment with PMA(phorbol 12-myristate 13-acetate),a PKC activator,suppressed Trail-induced apoptosis in Jurkat T cells.The inhibition of apoptosis by PMA was abolished by pretreatment with Bis,a PKC inhibitor.Taken together,it was suggested that Bcl-2 over-expression and PMA activated PKC actively down-regulated the Trail-mediated apoptosis in Jurkat T cell.

  18. Combined expression of gastrointestinal hormone SP and anti-apoptosis geneBcl-2 in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yan Ling Feng; Qin Xian Zhang; Sheng Lei Li

    2000-01-01

    AIM To study the combined expression of gastrointestinal hormone substance P and anti-apoptosis gene Bcl-2 in gastric carcinoma and its significance.METHODS Substance P and Bcl-2 protein expression was examined by the S-P immunohistochemicalmethod in 33 cases of gastric carcinoma, 17 adjacent the carcinoma and 13 normal gastric mucoma.RESULTS Positive expression of SP in gastric carcinoma was higher than that of both adjacent and normalmucosa (P 0.05). The expression of bcl-2 both in gastric carcinoma and adjacent tissues werehigher than that of normal gastric mucosa (P< 0.05-0.01). But the positive expression of Bcl-2 had nostatistical significance between gastric carcinoma and adjacent tissues.CONCLUSION Both gastrointestinal hormone SP and Bcl-2 gene have synergistic expression in gastriccarcinoma, indicating that they all take part in the occurrence of gastric carcinoma. Abnormal expression ofBcl-2 gene occurred in benign gastric pathological changes, once they become carcinoma, the positiveexpression of cell is no more increased, possibly because that there is no more increase of the intensity of Bcl-2 inhibition of cell apoptosis.

  19. IMPORTANCE OF APOPTOSIS MARKERS (MDM2, BCL-2 AND Bax) IN CONVENTIONAL RENAL CELL CARCINOMA.

    Science.gov (United States)

    Saker, Z; Tsintsadze, O; Jiqia, I; Managadze, L; Chkhotua, A

    2015-12-01

    The goal of the current study was to analyze the expression of Bcl-2, MDM2 and Bax in benign and malignant renal tissue samples and assess their possible association with different clinical parameters. Prognostic significance of the markers in recurrence-free and cancer-specific survivals has also been evaluated. Activity of MDM2, Bcl-2 and Bax was evaluated in: 24 normal human kidney tissues resected from the patients of different ages (range: 21-80 years), and in 52 conventional RCC samples. Intensity of the markers' expression was compared between the groups and correlation was analyzed with different clinical parameters. Activity of anti-apoptotic MDM2 and Bcl-2 was significantly elevated while activity of pro-apoptotic Bax was decreased in RCC as compared with normal kidney tissues. Bax expression was positively correlated with patient age. Significant association has been detected between the evaluated markers and cancer clinical parameters like: tumor stage, grade, lymph node and distant metastases. The markers' activity was associates with the tumor morphological features, in particular: presence of tumor necrosis and microvascular invasion. Disease recurrence and 5-year patient survival were associated with the markers' activity. Cox regression analyses have shown that tumor size, pathological stage and grade are the risk factors for disease recurrence and patient death. Expression of MDM2 and Bcl-2 is significantly up-regulated, while Bax is down-regulated in RCC as compared with normal kidney tissue. Intensity of the markers'activities is associated with the tumor pathological and clinical parameters (stage, grade, lymph node and distant metastases, tumor recurrence and patient survival). Further studies with more patients and longer follow-up will uncover the clinical importance of the evaluated markers in RCC. PMID:26719546

  20. Dioscin-induced apoptosis of human LNCaP prostate carcinoma cells through activation of caspase-3 and modulation of Bcl-2 protein family.

    Science.gov (United States)

    Chen, Jing; Li, Hui-min; Zhang, Xue-nong; Xiong, Chao-mei; Ruan, Jin-lan

    2014-02-01

    Dioscin is a natural steroid saponin derived from several plants, showing potent anti-cancer effect against a variety of tumor cell lines. In the present study, we investigated the anti-cancer activity of dioscin against human LNCaP cells, and evaluated the possible mechanism involved in its antineoplastic action. It was found that dioscin (1, 2 and 4 μmol/L) could significantly inhibit the viability of LNCaP cells in a time- and concentration-dependent manner. Flow cytometry revealed that the apoptosis rate was increased after treatment of LNCaP cells with dioscin for 24 h, indicating that apoptosis was an important mechanism by which dioscin inhibited cancer. Western blotting was employed to detect the expression of caspase-3, Bcl-2 and Bax in LNCaP cells. The expression of cleaved caspase-3 was significantly increased, and meanwhile procaspase-3 was markedly decreased. The expression of anti-apoptotic protein Bcl-2 was down-regulated, whereas the pro-apoptotic protein Bax was up-regulated. Moreover, the Bcl-2/Bax ratio was drastically decreased. These results suggested that dioscin possessed potential anti-tumor activity in human LNCaP cells through the apoptosis pathway, which might be associated with caspase-3 and Bcl-2 protein family. PMID:24496691

  1. RLIP76-dependent suppression of PI3K/AKT/Bcl-2 pathway by miR-101 induces apoptosis in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jing; Song, Qi; Cai, Yi; Wang, Peng; Wang, Min; Zhang, Dong, E-mail: zhangd1117@yahoo.com

    2015-08-07

    MicroRNA-101 (miR-101) participates in carcinogenesis and tumor progression in various cancers. However, its biological functions in prostate cancer are still unclear. Here, we demonstrate that miR-101 represents a critical role in regulating cell apoptosis in prostate cancer cells. We first demonstrated that miR-101 treatment promoted apoptosis in DU145 and PC3 cells by using flow cytometric analysis and transmission electron microscopy (TEM). To verify the mechanisms, we identified a novel miR-101 target, Ral binding protein 1 (RLIP76). We found miR-101 transfection significantly suppresses RLIP76 expression, which can transactivate phosphorylation of PI3K-Akt signaling, and resulted in an amplification of Bcl2-induced apoptosis. Furthermore, we demonstrated that RLIP76 overexpression could reverse the anti-tumor effects of miR-101 in DU145 and PC3 cells by using flow cytometry assay and MTT assay. Taken together, our results revealed that the effect of miR-101 on prostate cancer cell apoptosis was due to RLIP76 regulation of the PI3K/Akt/Bcl-2 signaling pathway. - Highlights: • miR-101 inhibited prostate cancer cell proliferation and enhanced apoptosis. • miR-101 directly targeted and regulated RLIP76 expression. • miR-101 suppressed PI3K/Akt/Bcl-2 signaling pathway by targeting RLIP76.

  2. RLIP76-dependent suppression of PI3K/AKT/Bcl-2 pathway by miR-101 induces apoptosis in prostate cancer

    International Nuclear Information System (INIS)

    MicroRNA-101 (miR-101) participates in carcinogenesis and tumor progression in various cancers. However, its biological functions in prostate cancer are still unclear. Here, we demonstrate that miR-101 represents a critical role in regulating cell apoptosis in prostate cancer cells. We first demonstrated that miR-101 treatment promoted apoptosis in DU145 and PC3 cells by using flow cytometric analysis and transmission electron microscopy (TEM). To verify the mechanisms, we identified a novel miR-101 target, Ral binding protein 1 (RLIP76). We found miR-101 transfection significantly suppresses RLIP76 expression, which can transactivate phosphorylation of PI3K-Akt signaling, and resulted in an amplification of Bcl2-induced apoptosis. Furthermore, we demonstrated that RLIP76 overexpression could reverse the anti-tumor effects of miR-101 in DU145 and PC3 cells by using flow cytometry assay and MTT assay. Taken together, our results revealed that the effect of miR-101 on prostate cancer cell apoptosis was due to RLIP76 regulation of the PI3K/Akt/Bcl-2 signaling pathway. - Highlights: • miR-101 inhibited prostate cancer cell proliferation and enhanced apoptosis. • miR-101 directly targeted and regulated RLIP76 expression. • miR-101 suppressed PI3K/Akt/Bcl-2 signaling pathway by targeting RLIP76

  3. Melatonin may play a role in modulation of bax and bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, Mehran [Department of Radiology and Medical Physics, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan (Iran, Islamic Republic of); Mihandoost, Ehsan, E-mail: mihandoost.e@gmail.com [Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Shirazi, Alireza [Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sepehrizadeh, Zargham [Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Bazzaz, Javad Tavakkoly [Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ghazi-khansari, Mahmoud [Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2012-10-15

    The close relationship between free radicals effects and apoptosis process has been proved. Melatonin has been reported as a direct free radical scavenger. We investigated the capability of melatonin in the modification of radiation-induced apoptosis and apoptosis-associated upstream regulators expression in rat peripheral blood lymphocytes. Rats were irradiated with a single whole body Cobalt 60-gamma radiation dose of 8 Gy at a dose rate of 101 cGy/min with or without melatonin pretreatments at different concentrations of 10 and 100 mg/kg body weight. The rats were divided into eight groups of control, irradiation-only, vehicle-only, vehicle plus irradiation, 10 mg/kg melatonin alone, 10 mg/kg melatonin plus irradiation, 100 mg/kg melatonin alone and 100 mg/kg melatonin plus irradiation. Rats were given an intraperitoneal (IP) injection of melatonin or the same volume of vehicle alone 1 h prior to irradiation. Blood samples were taken 4, 24, 48 and 72 h after irradiation for evaluation of flow cytometric analysis of apoptotic lymphocytes using Annexin V/PI assay and measurement of bax and bcl-2 expression using quantitative real-time PCR (RT{sup 2}qPCR). Irradiation-only and vehicle plus irradiation showed an increase in the percentage of apoptotic lymphocytes significantly different from control group (P < 0.01), while melatonin pretreatments in a dose-dependent manner reduced it as compared with the irradiation-only and vehicle plus irradiation groups (P < 0.01) in all time points. This reduced apoptosis by melatonin was related to the downregulation of bax, upregulation of bcl-2, and therefore reduction of bax/bcl-2 ratio. Our results suggest that melatonin in these doses may provide modulation of bax and bcl-2 expression as well as bax/bcl-2 ratio to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis.

  4. Emodin inhibits LOVO colorectal cancer cell proliferation via the regulation of the Bcl-2/Bax ratio and cytochrome c.

    Science.gov (United States)

    Ma, Liang; Li, Wusheng

    2014-10-01

    In this study, the effect of emodin and its mechanism of action were investigated in LOVO colorectal cancer cells. Cell growth was determined using a Cell Counting kit-8 assay, and the results demonstrated that emodin significantly inhibited the growth of LOVO cells in a concentration-dependent manner. In order to investigate the anticancer mechanism of emodin, reverse transcription polymerase chain reaction assays were performed to determine the B-cell lymphoma-2 (Bcl-2)/Bcl-2-associated X protein (Bax) expression ratio in LOVO colorectal cancer cells following treatment with emodin. The results showed that emodin induced a significant increase in the Bax expression level and a marked reduction of the Bcl-2 expression level in LOVO cells. In addition, emodin was found to have an inhibitory effect on the mitochondrial membrane potential and the results from the western blot analysis revealed that cytochrome c was released from the mitochondria to the cytoplasm. In combination, these results suggest that emodin inhibits cancer cell growth via the regulation of the Bcl-2/Bax ratio and by its effect on the mitochondrial apoptosis pathway.

  5. Effects of genistein on neuronal apoptosis, and expression of Bcl-2 and Bax proteins in the hippocampus of ovariectomized rats

    Institute of Scientific and Technical Information of China (English)

    Yun Peng; Bo Jiang; Huiling Wu; Ruchun Dai; Liming Tan

    2012-01-01

    Genistein is one of several isoflavones that has a structure similar to 17β-estradiol, has a strong antioxidant effect, and a high affinity to estrogen receptors. At 15 weeks after ovariectomy, the expression of Bcl-2 in the hippocampus of rats decreased and Bax expression increased, with an obvious upregulation of apoptosis. However, intraperitoneal injection of genistein or 17β-estradiol for 15 consecutive weeks from the second day after operation upregulated Bcl-2 protein expression, downregulated Bax protein expression, and attenuated hippocampal neuron apoptosis. Our experimental findings indicate that long-term intervention with genistein can lead to a decrease in apoptosis in hippocampal neurons following ovariectomy, upregulate the expression of Bcl-2, and downregulate the expression of Bax. In addition, genistein and 17β-estradiol play equal anti-apoptotic and neuroprotective roles.

  6. Arsenite induces apoptosis in human mesenchymal stem cells by altering Bcl-2 family proteins and by activating intrinsic pathway

    International Nuclear Information System (INIS)

    Purpose: Environmental exposure to arsenic is an important public health issue. The effects of arsenic on different tissues and organs have been intensively studied. However, the effects of arsenic on bone marrow mesenchymal stem cells (MSCs) have not been reported. This study is designed to investigate the cell death process caused by arsenite and its related underlying mechanisms on MSCs. The rationale is that absorbed arsenic in the blood circulation can reach to the bone marrow and may affect the cell survival of MSCs. Methods: MSCs of passage 1 were purchased from Tulane University, grown till 70% confluency level and plated according to the experimental requirements followed by treatment with arsenite at various concentrations and time points. Arsenite (iAsIII) induced cytotoxic effects were confirmed by cell viability and cell cycle analysis. For the presence of canonic apoptosis markers; DNA damage, exposure of intramembrane phosphotidylserine, protein and m-RNA expression levels were analyzed. Results: iAsIII induced growth inhibition, G2-M arrest and apoptotic cell death in MSCs, the apoptosis induced by iAsIII in the cultured MSCs was, via altering Bcl-2 family proteins and by involving intrinsic pathway. Conclusion: iAsIII can induce apoptosis in bone marrow-derived MSCs via Bcl-2 family proteins, regulating intrinsic apoptotic pathway. Due to the multipotency of MSC, acting as progenitor cells for a variety of connective tissues including bone, adipose, cartilage and muscle, these effects of arsenic may be important in assessing the health risk of the arsenic compounds and understanding the mechanisms of arsenic-induced harmful effects.

  7. Di-(2-ethylhexyl) phthalate induces apoptosis of GC-2spd cells via TR4/Bcl-2 pathway.

    Science.gov (United States)

    Zhu, Lishan; Lu, Jinchang; Tang, Xiao; Fu, Guoqing; Duan, Peng; Quan, Chao; Zhang, Ling; Zhang, Zhibing; Chang, Wei; Shi, Yuqin

    2016-06-01

    Di-(2-ethylhexyl) phthalate (DEHP) is a widely used environmental endocrine disruptor. Many studies have reported that DEHP exposure causes reproductive toxicity and cells apoptosis. However, the mechanism by which DEHP exposure causes male reproductive toxicity remains unknown. This study investigated the role of the testicular orphan nuclear receptor4 (TR4)/Bcl-2 pathway in apoptosis induced by DEHP, which resulted in reproductive damage. To elucidate the mechanism underpinning the male reproductive toxicity of DEHP, we sought to investigate apoptotic effects, expression levels of TR4/Bcl-2 pathway in GC-2spd cells, including TR4, Bcl-2 and caspase-3. GC-2spd cells were exposed to various concentrations of DEHP (0, 50, 100, or 200μM). The results indicated that, with the increase of the concentrations of DEHP, the survival rate of cell decreased gradually. DEHP exposure at over 100μM significantly induced apoptotic cell death. DEHP decreased SOD and GSH-Px activity in 200μM group. Compared to the control group, the mRNA levels of caspase-3 increased significantly, however, Bcl-2 mRNA decreased (PBcl-2 and procaspase-3 protein levels. Taken together, these results lead us to speculate that in vitro exposure to DEHP might induce apoptosis in GC-2spd cells through the TR4/Bcl-2 pathway. PMID:27084994

  8. Bcl-2 Regulates Reactive Oxygen Species Signaling and a Redox-Sensitive Mitochondrial Proton Leak in Mouse Pancreatic β-Cells.

    Science.gov (United States)

    Aharoni-Simon, Michal; Shumiatcher, Rose; Yeung, Anthony; Shih, Alexis Z L; Dolinsky, Vernon W; Doucette, Christine A; Luciani, Dan S

    2016-06-01

    In pancreatic β-cells, controlling the levels of reactive oxygen species (ROS) is critical to counter oxidative stress, dysfunction and death under nutrient excess. Moreover, the fine-tuning of ROS and redox balance is important in the regulation of normal β-cell physiology. We recently demonstrated that Bcl-2 and Bcl-xL, in addition to promoting survival, suppress β-cell glucose metabolism and insulin secretion. Here, we tested the hypothesis that the nonapoptotic roles of endogenous Bcl-2 extend to the regulation of β-cell ROS and redox balance. We exposed mouse islet cells and MIN6 cells to the Bcl-2/Bcl-xL antagonist Compound 6 and the Bcl-2-specific antagonist ABT-199 and evaluated ROS levels, Ca(2+) responses, respiratory control, superoxide dismutase activity and cell death. Both acute glucose stimulation and the inhibition of endogenous Bcl-2 progressively increased peroxides and stimulated superoxide dismutase activity in mouse islets. Importantly, conditional β-cell knockout of Bcl-2 amplified glucose-induced formation of peroxides. Bcl-2 antagonism also induced a mitochondrial proton leak that was prevented by the antioxidant N-acetyl-L-cysteine and, therefore, secondary to redox changes. We further established that the proton leak was independent of uncoupling protein 2 but partly mediated by the mitochondrial permeability transition pore. Acutely, inhibitor-induced peroxides promoted Ca(2+) influx, whereas under prolonged Bcl inhibition, the elevated ROS was required for induction of β-cell apoptosis. In conclusion, our data reveal that endogenous Bcl-2 modulates moment-to-moment ROS signaling and suppresses a redox-regulated mitochondrial proton leak in β-cells. These noncanonical roles of Bcl-2 may be important for β-cell function and survival under conditions of high metabolic demand. PMID:27070098

  9. Safflor yellow B suppresses angiotensin II-mediated human umbilical vein cell injury via regulation of Bcl-2/p22{sup phox} expression

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chaoyun; He, Yanhao [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China); Department of Pharmacology, Xi' an Jiaotong University School of Medicine, Key Laboratory of Environment and Genes Related to Disease, Ministry of Education, Xi' an, Shaanxi 710061 (China); Yang, Ming; Sun, Hongliu; Zhang, Shuping [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China); Wang, Chunhua, E-mail: chunhuawang2012@163.com [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China)

    2013-11-15

    Intracellular reactive oxygen species (ROS) are derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Angiotensin II (Ang II) can cause endothelial dysfunction by promoting intracellular ROS generation. Safflor yellow B (SYB) effectively inhibits ROS generation by upregulating Bcl-2 expression. In this study, we examined the effects of SYB on Ang II-induced injury to human umbilical vein endothelial cells (HUVECs), and elucidated the roles of NADPH oxidase and Bcl-2. We treated cultured HUVECs with Ang II, SYB, and Bcl-2 siRNA, and determined NADPH oxidase activity and ROS levels. Furthermore, cellular and mitochondrial physiological states were evaluated, and the expression levels of target proteins were analyzed. Ang II significantly enhanced intracellular ROS levels, caused mitochondrial membrane dysfunction, and decreased cell viability, leading to apoptosis. This was associated with increased expression of AT1R and p22{sup phox}, increased NADPH oxidase activity, and an increased ratio of Bax/Bcl-2, leading to decreases in antioxidant enzyme activities, which were further strengthened after blocking Bcl-2. Compared to Ang II treatment alone, co-treatment with SYB significantly reversed HUVEC injury. Taken together, these results demonstrate that SYB could significantly protect endothelial cells from Ang II-induced cell damage, and that it does so by upregulating Bcl-2 expression and inhibiting ROS generation. - Highlights: • Angiotensin II depresses mitochondria physiological function. • Angiotensin II activates NADPH oxidase via up-regulating expresion of p22{sup phox}. • Bcl-2 plays a pivotal role in improving mitochondria function and regulates ROS level. • Inhibitor of Bcl-2 promotes angiotensin II mediated HUVEC injury. • SYB attenuates angiotensin II mediated HUVEC injury via up regulating Bcl-2 expression.

  10. Effect of ischemic preconditioning on the apoptosis of hepatocytes and expression of regulating gene (bcl-2,Fas protiens) in rats%缺血预处理对鼠肝细胞凋亡及调控基因(bcl-2,Fas)蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    陈能志; 吕新生; 魏尚典; 黎有典

    2001-01-01

    目的观察鼠肝缺血再灌注损伤对肝细胞凋亡 ,以及缺血预处理对缺血再灌注损伤引起的肝细胞凋亡以及对其调控基因(bcl-2,Fas)蛋白表达的影响.方法 Wistar大鼠分为假手术(SO)组、缺血再灌注(IR )组、缺血预处理(IP)组,后2组中分为3个亚组(IR1,2,3,IP1,2,3).缺血均为30 min.缺血预处理为缺血前采用5 min缺血及5 min再灌.分别于再灌注1.5,3,4.5 h后处死动物采取肝脏标本,SO组于术后3.5 h采取肝标本.检测细胞凋亡及bcl-2,Fas蛋白表达水平.结果 IR2组和IP2组与SO组比较细胞凋亡指数(AI)显著性增加(P0.05).Fas蛋白表达:IR2组和IP 2组较SO 显著性增高(P0.05).结论 IR 损伤可能通过激活Fas蛋白的表达而促发肝细胞凋亡;IP可能通过激活bcl-2蛋白的表达而抑制肝细胞凋亡.

  11. 龙葵碱调控Bcl-2与Bax蛋白表达及caspase-3活性诱导HepG2细胞凋亡的研究%Induction of solanine on HepG2 cell apoptosis by regulation of Bcl-2/Bax expression and caspase-3 activity

    Institute of Scientific and Technical Information of China (English)

    高世勇; 徐丽丽; 季宇彬

    2009-01-01

    目的 探讨龙葵碱诱导HepG2细胞凋亡的作用机制.方法 透射电镜观察凋亡细胞形态变化,原位缺口末端榆测法(TUNEL法)检测DNA断裂情况,流式细胞术检测细胞凋亡率,间接免疫荧光法激光共聚焦扫描显微术检测Bcl-2与Bax蛋白表达,比色法检测caspase-3活性的变化.结果 在透射电镜下观察,龙葵碱组细胞出现细胞固缩,染色质致密,核凝聚固缩,染色体断裂形成核碎块,凋亡小体形成等细胞凋亡特征形态.TUNEL法发现龙葵碱高、中、低剂量组HepG2细胞均有绿色荧光,阴性对照组无荧光.流式细胞术分析表明0.4、2、10μmol/L龙葵碱作用HepG2细胞24 h凋亡率分别为4.0%、8.5%、20.1%.同时,龙葵碱升高caspase-3活性,下调Bcl-2蛋白表达,上调Bax蛋白表达.结论 龙葵碱通过降低Bcl-2/Bax的值,激活caspase-3酶活性诱导HepG2细胞凋亡.

  12. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    Directory of Open Access Journals (Sweden)

    Mao Xinggang

    2010-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU in China. Human glioma cells (the U87, U251, and SHG44 cell lines were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM. The apoptosis rate was detected by flow cytometer (FCM. The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P 60Co] γ-rays (P P Conclusions Compared with ��-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by

  13. Oridonin induces apoptosis of HeLa cells via altering expres sion of Bcl-2/Bax and activating caspase-3/ICAD pathway

    Institute of Scientific and Technical Information of China (English)

    Chun-ling ZHANG; Li-jun WU; Shin-ichi TASHIRO; Satoshi ONODERA; Takashi IKEJIMA

    2004-01-01

    AIM: To study the mechanisms by which oridonin inhibited HeLa cell growth in vitro. METHODS: Viability of oridonin-induced HeLa cells was measured by MTT assay. Apoptotic cells with condensed nuclei were visualized by phase contrast microscopy. Nucleosomal DNA fragmentation was assayed by agarose gel electrophoresis.Caspase activity was assayed using fiuorometric protease assay. ICAD, Bcl-2, and Bax proteins expression were detected by Western blot analysis. RESULTS: Oridonin induced oligonucleosomal fragmentation of DNA and increased caspase-3 activity, on the other hand, reduced the expression of inhibitor of caspase-3-activated DNase (ICAD), a caspase-3 substrate, at 12 h in HeLa cells. Oridonin-induced DNA fragmentation, caspase-3 activation and down-regulation of ICAD expression were effectively inhibited by a caspase-3 inhibitor, z-DEVD-fmk (z-AspGlu-Val-Asp-fmk). However, pretreatment with an inhibitor of poly (ADP-ribose) polymerase (PARP), 3, 4-dihydro5-[4-(1-piperidinyl)butoxy]-1 (2H)-isoquinolinone (DPQ), did not suppress oridonin-induced HeLa cell death. In addition, oridonin-induced apoptosis was associated with an increase in the expression of the apoptosis inducer Bax, and a significant reduction in expression of the apoptosis suppressor Bcl-2 in mitochondria. CONCLUSION:Oridonin induces HeLa cells apoptosis by altering balance of Bcl-2 and Bax protein expression and activation of caspase-3/ICAD pathway.

  14. Gambogic acid induces mitochondria-dependent apoptosis by modulation of Bcl-2 and Bax in mantle cell lymphoma JeKo-1 cells

    Institute of Scientific and Technical Information of China (English)

    Jingyan Xu; Min Zhou; Jian Ouyang; Jing Wang; Qiguo Zhang; Yong Xu; Yueyi Xu

    2013-01-01

    Objective:To study the mechanisms in gambogic acid (GA)-induced JeKo-1 human Mantle Cell Lymphoma cell apoptosis in vitro.Methods:The proliferation of GA-treated JeKo-1 cells was measured by CCK-8 assay and Ki-67 immunocytochemical detection.Apoptosis,cell cycle and mitochondrial membrane potential were measured by flow cytometric analysis.Caspase-3,-8 and-9 were detected by colorimetric assay.Bcl-2 and Bax were analyzed by Western blotting.Results:GA inhibited cell growth in a time-and dose-dependent manner.GA induces apoptosis in JeKo-1 cells but not in normal bone marrow cells,which was involved in reducing the membrane potential of mitochondria,activating caspases-3,-8 and-9 and decreasing the ratio of Bcl-2 and Bax without cell cycle arresting.Conclusions:GA induced apoptosis in human MCL JeKo-1 cells by regulating Bcl-2/Bax and activating caspase-3,-8 and-9 via mitochondrial pathway without affecting cell cycle.

  15. Expression of protein encoded by apoptosis-associated gene p53, bcl-2, and bax in adaptive response of thymocyte apoptosis in mice induced by low dose radiation with X-rays

    International Nuclear Information System (INIS)

    Objective: To explore the regulative mechanism of apoptosis-associated gene proteins on the adaptive response of thymocyte apoptosis in mice induced by low dose radiation with X-rays. Methods: Kunming male mice were irradiated with the inductive doses (D1: 25, 50, 75, 100 and 200 mGy; dose rate: 12.5 mGy ·min-1) and the challenging dose (D2: 1.5 Gy; dose rate: 287 mGy·min-1). The time interval between D1 and D2 was 6 h. The expressive levels of thymocyte apoptosis-associated gene proteins were measured with flow cytometry. Results: As compared with the sham-irradiation, the positive percentage of thymocyte Bcl-2 protein expression decreased significantly in D2 group (P<0.05), Bax increased significantly (P<0.05), and Bcl-2/Bax decreased significantly (P<0.001); p 53 increased significantly (P<0.001). As compared with D2 group, the positive percentage of thymocyte Bcl-2 protein expression increased in varying degree in D1+ D2 group of 25-75 mGy D1, Bax decreased in varying degree, and Bcl-2/Bax increased significantly (P<0.01); p53 decreased significantly (P<0.001 or P<0.05). Conclusion: The apoptotic thymocytes in the adaptive response of thymocyte apoptosis in mice induced by irradiation with 25-75 mGy decrease significantly due to the increase of apoptosis-associated gene Bcl-2 protein expression and Bcl-2/Bax, the decrease of Bax and p53 protein expressions. (authors)

  16. Bcl-2/caspase 3 mucosal imbalance favors T cell resistance to apoptosis in dogs with inflammatory bowel disease.

    Science.gov (United States)

    Jergens, A; Young, J; Moore, D; Wang, C; Hostetter, J; Augustine, L; Allenspach, K; Schmitz, S; Mosher, C

    2014-04-15

    Canine idiopathic inflammatory bowel disease (IBD) is believed to result from complex interplay between genetic, microbial, and immunologic factors. Abnormal cell death by apoptosis may result in the persistence of activated intestinal T cells that contribute to mucosal inflammation and clinical severity. To test this hypothesis, we investigated the mucosal expression of pro- and anti-apoptotic proteins in different intestinal compartments and their association with inflammatory indices in dogs with IBD. Apoptosis of lamina propria (LP) T cells in duodenal, ileal, and colonic tissues in control and IBD dogs was analyzed by caspase 3/Bcl-2 immunohistochemistry and TUNEL assays. Densities and distributions of LP caspase 3 and Bcl-2 cells were correlated to histopathologic lesions and the clinical activity index (CIBDAI). Compared to control tissues, IBD dogs had significantly (Pdogs, there were significantly greater numbers of Bcl-2 cells at the apical and basilar villus in the duodenum as compared to the colon and to the apical and basilar villus in the ileum (Pdogs compared with controls (Pdogs and the CIBDAI (Pdogs with IBD. Mucosal imbalance of Bcl-2/caspase 3 expression favors T cell resistance to apoptosis which may contribute to T cell accumulation and chronic intestinal inflammation, similar to human IBD.

  17. THE EXPERIMENTAL STUDY ON THE CELL APOPTOSIS AND EXPRESSION OF BCL-2 PROTEIN IN INTRACEREBRAL HEMORRHAGE IN MODEL OF RATS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Intra-cerebral hemorrhage is a common clinicaldisease,with a high mortality and morbidity.So itis one of the clinical hot topics.It has been foundinrecent years that there is a close relationship bet weenthe cell apoptosis and the course or prognosis of in-tra-cerebral hemorrhage.Bcl-2,as the apoptosis-adjusted gene,plays ani mportant role in the courseof cell apoptosis,but the mechanis min the cell ap-optosis in intra-cerebral hemorrhage remains un-clear.In this experi ment,with the model buildingof the in...

  18. Expression of Bcl-2 in cells with different telomerase activities

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Both telomerase and Bcl-2 are important genes in controlling apoptosis. The activation of telomerase and the abnormal regulation of Bcl-2 are also closely related to carcinogenesis. However, little is known about the linkage between telomerase and Bcl-2. The effect of activated telomerase on the expression of Bcl-2 has been investigated. It is demonstrated that in tumor and transformed cells with higher telomerase activity, Bcl-2 expression is significantly lower than that in telomerase negative or less telomerose activity cells. Further study showed that in the telomerase gene-transformed 2BS-fibroblasts, Bcl-2 expression is inhibited significantly while the exogenous telomerase catalytic subunit gene is re-expressed in fibroblasts. Results indicated that there might be a certain linkage between the expression of telomerase and Bcl-2, and overexpression of exogenous telomerase gene might down regulate the expression of Bcl-2.

  19. The role of the expression of bcl-2, p53 gene in tamoxifen-induced apoptosis of breast cancer cells and its relationship with hormone receptor status

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Woo Chul; Ham, Yong Ho [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1998-01-01

    To investigate the relationship of bcl-2, p53, ER and tamoxifen-induced apoptosis of breast cancer cells, MCF-7 (ER+/bcl-2+/p53-) and MB MDA 468 (ER-/bcl-2-/p53+) cell line were cultured in estrogen-free condition. E2(10`-`9M) and tamoxifen (10`-`5M) were added to the media. The changes of bcl-2 and mutant p53 protein were checked by Western blot and apoptosis were measured by flowcytometry. In MCF-7 cells, we found that treatment with tamoxifen resulted in a decrease in bcl-2 protein level, but produced no change in mutant p53. In MB MDA 468 cell however, there were no changes of bcl-2 and mutant p53 protein level when E2 or tamoxifen were added. Apoptotic cells increased with time-dependent pattern when tamoxifen was added to MCF-7 cells. According to these result, ER+/blc-2+/mutant p53- cells, when treated with tamoxifen, were converted into bcl-2/mutant p53- cells which were more prone to apoptosis than bcl-2-/mutant p53+ cells. The paradoxical correlation of bcl-2 and ER which had been observed in clinical studies might be explained with this results and bcl-2 protein seems to be one of important factors that can predict the effect of hormone therapy. (author). 26 refs., 5 figs

  20. Exogenous phosphatidylethanolamine induces apoptosis of human hepatoma HepG2 cells via the bcl-2/bax pathway

    Institute of Scientific and Technical Information of China (English)

    Yu Yao; Chen Huang; Zong-Fang Li; Ai-Ying Wang; Li-Ying Liu; Xiao-Ge Zhao; Yu Luo; Lei Ni; Wang-Gang Zhang; Tu-Sheng Song

    2009-01-01

    AIM: To investigate the signaling pathways implicated in phosphatidylethanolamine (PE)-induced apoptosis of human hepatoma HepG2 cells. METHODS: Inhibitory effects of PE on human hepatoma HepG2 cells were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle, apoptosis and mitochondrial transmembrane potential (ΔΨm) were analyzed by flow cytometry. Immunocytochemical assay and Western blotting were used to examine Bcl-2, Bax and caspase-3 protein levels in HepG2 cells treated with PE. RESULTS: PE inhibited the growth of HepG2 cells in a dose- and time- dependent manner. It did not affect the cell cycle, but induced apoptosis. PE significantly decreased ΔΨm at 0.25, 0.5 and 1 mmol/L, respectively, suggesting that PE induces cell apoptosis by decreasing the mitochondrial transmembrane potential. The Bcl-2 expression level induced by different concentrations of PE was lower than that in control groups. However, the Bax expression level induced by PE was higher than that in the control group. Meanwhile, PE increased the caspase-3 expression in a dose- and time-dependent manner. CONCLUSION: Exogenous PE induces apoptosis of human hepatoma HepG2 cells via the bcl-2/bax pathway.

  1. Involvement of NF-κB and Bcl2/Bax signaling pathways in the apoptosis of MCF7 cells induced by a xanthone compound Pyranocycloartobiloxanthone A.

    Science.gov (United States)

    Mohan, Syam; Abdelwahab, Siddig Ibrahim; Kamalidehghan, Behnam; Syam, Suvitha; May, Koh Sue; Harmal, Nabil Saad Mohammed; Shafifiyaz, Noor; Hadi, A Hamid A; Hashim, Najihah Mohd; Rahmani, Mawardi; Taha, Manal Mohamed Elhassan; Cheah, Shiau-Chuen; Zajmi, Asdren

    2012-08-15

    The plant Artocarpus obtusus is a tropical plant that belongs to the family Moraceae. In the present study a xanthone compound Pyranocycloartobiloxanthone A (PA) was isolated from this plant and the apoptosis mechanism was investigated. PA induced cytotoxicity was observed using MTT assay. High content screening (HCS) was used to observe the nuclear condensation, cell permeability, mitochondrial membrane potential (MMP) and cytochrome c release. Reactive oxygen species formation was investigated on treated cells by using fluorescent analysis. Human apoptosis proteome profiler assays were performed to investigate the mechanism of cell death. In addition mRNA levels of Bax and Bcl2 were also checked using RT-PCR. Caspase 3/7, 8 and 9 were measured for their induction while treatment. The involvement of NF-κB was analyzed using HCS assay. The results showed that PA possesses the characteristics of selectively inducing cell death of tumor cells as no inhibition was observed in non-tumorigenic cells even at 30 μg/ml. Treatment of MCF7 cells with PA induced apoptosis with cell death-transducing signals, that regulate the MMP by down-regulation of Bcl2 and up-regulation of Bax, triggering the cytochrome c release from mitochondria to cytosol. The release of cytochrome c triggered the activation of caspases-9, then activates downstream executioner caspase-3/7 and consequently cleaved specific substrates leading to apoptotic changes. This form of apoptosis was found closely associated with the extrinsic pathway caspase (caspase-8) and inhibition of translocation of NF-κB from cytoplasm to nucleus. The results demonstrated that PA induced apoptosis of MCF7 cells through NF-κB and Bcl2/Bax signaling pathways with the involvement of caspases.

  2. Gli1 maintains cell survival by up-regulating IGFBP6 and Bcl-2 through promoter regions in parallel manner in pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Xu Xuan-Fu

    2009-01-01

    Full Text Available Background: Aberrant activation of Hedgehog (Hh signaling pathway has been reported to be related to malignant biological behavior of pancreatic cancer but its mechanism is unclear yet. Since IGF pathway and Bcl-2 family are involved in proliferation and apoptosis of pancreatic cancer cells, we hypothesize that they are possibly associated with Hh pathway. Materials and Methods: We studied the relationship of Shh-Gli1 signaling pathway with proliferation and apoptosis of pancreatic cancer cells and the regulation of transcription factor Gli1 to insulin-like growth factor binding protein 6 (IGFBP6 and Bcl-2 genes at the level of transcription. Results: Sonic hedgehog (Shh, Smoothened (Smo, patched and Gli1 were expressed in pancreatic cancer cells. Cyclopamine inhibited cell proliferation at low concentration and induced apoptosis at high concentration. Effect of RNA interference (RNAi for Gli1 to cell survival is mainly due to proliferation inhibition though involved in apoptosis. The transcription factor Gli1 bound to promoter regions of Bcl-2 and IGFBP6 genes and the levels of IGFBP6, proliferating cell nuclear antigen (PCNA and Bcl-2 messenger RNA (mRNA were decreased as well as Gli1 mRNA significantly by cyclopamine or RNAi in cultured pancreatic cancer cells (p < 0.01. Finally PCNA, IGFBP6 and Bcl-2 mRNA were upregulated as well as Shh or Gli1 in pancreatic cancer tissues (p < 0.01. Conclusions: Our study reveals that Gli1 maintained cell survival by binding the promoter regions and facilitating transcription of IGFBP6 and Bcl-2 genes in a parallel manner in pancreatic cancer cells and suggests it may be one of the mechanisms of Shh-Gli1 signaling pathway in pancreatic cancer.

  3. Effects of folic acid on epithelial apoptosis and expression of Bcl-2 and p53 in premalignant gastric lesions

    Institute of Scientific and Technical Information of China (English)

    Da-Zhong Cao; Wei-Hao Sun; Xi-Long Ou; Qian Yu; Ting Yu; You-Zhen Zhang; Zi-Ying Wu; Qi-Ping Xue; Yun-Lin Cheng

    2005-01-01

    AIM: To evaluate the effects of folic acid on epithelial apoptosis and expression of Bcl-2 and p53 in the tissues of premalignant gastric lesions.METHODS: Thirty-eight patients, with premalignant gastric lesions including 18 colonic-type intestinal metaplasia(IM)and 20 mild or moderate dysplasia, were randomly divided into a treatment group (n = 19) receiving folic acid 10 mg thrice daily and a control group (n = 19) receiving sucralfate 1 000 mg thrice daily for 3 mo. All patients undervvent endoscopies and four biopsies were taken prior to treatment and repeated after concluding therapy.Folate concentrations in gastric mucosa were measured with chemiluminescent enzyme immunoassay. Epithelial apoptosis and the expression of Bcl-2 and p53 protein in gastric mucosa were detected with flow cytometric assay.RESULTS: The mean of folate concentration in gastric mucosa was 9.03±3.37 μg/g wet wt in the folic acid treatment group, which was significantly higher than 6.83±3.02 μg/g wet wt in the control group. Both the epithelial apoptosis rate and the tumor suppressor p53expression in gastric mucosa significantly increased after folic acid treatment. In contrast, the expression of Bcl-2oncogene protein decreased after folic acid therapy.CONCLUSION: These data indicate that folic acid may play an important role in the chemoprevention of gastric carcinogenesis by enhancing gastric epithelial apoptosis in the patients with premalignant lesions.

  4. The flavonoid morin from Moraceae induces apoptosis by modulation of Bcl-2 family members and Fas receptor in HCT 116 cells.

    Science.gov (United States)

    Hyun, Hwang-Bo; Lee, Won Sup; Go, Se-Il; Nagappan, Arulkumar; Park, Cheol; Han, Min Ho; Hong, Su Hyun; Kim, Gonsup; Kim, Gi Young; Cheong, Jaehun; Ryu, Chung Ho; Shin, Sung Chul; Choi, Yung Hyun

    2015-01-01

    It is evident based on literature that flavonoids from fruit can safely modulate cancer cell biology and induce apoptosis. Therefore, we investigated the anticancer activity of morin, a flavonoid which is plentiful in twigs of mulberry focusing on apoptosis, and its mechanisms. Morin upregulated the Fas receptor, and activates caspase-8, -9 and -3 in HCT-116 cells. Morin also activates Bid, and induced the loss of mitochondrial membrane potential (MMP, ∆Ψm) with Bax protein activation and cytochrome c release. In addition, morin induced ROS generation which was not blocked by N-acetylcysteine. Morin also suppressed Bcl-2 and cIAP-1, anti-apoptotic proteins, which may contribute to augmentation of morin-triggered apoptosis. As an upstream signaling pathway, suppressed Akt activity by morin was associated to apoptosis. This study suggests that morin induces caspase-dependent apoptosis through extrinsic pathway by upregulating Fas receptor as well as through the intrinsic pathway by modulating Bcl-2 and IAP family members, and ROS generation, and that Akt is the critical upstream signaling that regulates the apoptotic effect of morin in human colon cancer HCT-116 cells.

  5. Effects of low dose radiation on tumor apoptosis, cell cycle progression and changes of apoptosis-related protein bcl-2 in tumor-bearing mice

    International Nuclear Information System (INIS)

    Objective: To study the effect of low dose radiation (LDR) on tumor apoptosis, cell cycle progression and changes of apoptosis-related protein bcl-2 in tumor-bearing mice. Methods: Kunming stain male mice were implanted with S180 sarcoma cells in the left inguen subcutaneously as an in situ experimental animal model. Seven days after implantation, the mice were given 75 mGy whole-body γ-irradiation. At 24 and 48 h after irradiation, all mice were sacrificed to measure the tumor volume, and tumor cell apoptosis, cell cycle progression were analyzed by flow cytometry. The expression of apoptosis-related protein bcl-2 and the apoptotic rate of tumor cells were observed by immunohistochemistry and electron microscopy. Results: Tumor growth was significantly slowed down after LDR (P1 phase and the expression of bcl-2 protein decreased at 24 h. Apoptotic rate of tumor cells increased significantly at 48 h after LDR. Conclusion: LDR could cause a G1-phase arrest and increase the apoptosis of tumor cells through the low level of apoptosis-related protein bcl-2 in the tumor-bearing mice. The organized immune function and anti-tumor ability are markedly increased after LDR. The study provides practical evidence of clinical application to cancer treatment

  6. Bcl-2与IP3R相互作用调控肿瘤细胞程序性死亡的研究进展%IP3R/Bcl-2-channel complexes regulates programmed cell death

    Institute of Scientific and Technical Information of China (English)

    顾文文; 施韬; 顾一骅; 杨军

    2013-01-01

    由1,4,5-三磷酸肌醇受体(inositol 1,4,5-trisphosphate receptor,IP3R)介导的细胞内钙离子释放在细胞生理学过程中具有中枢性作用,其通道活性受到复杂信号网络的精细调节.近来有研究发现,IP3R是抗凋亡分子B细胞性淋巴瘤-2(B cell lymphoma-2,Bcl-2)家族蛋白的一个作用靶点,而抗凋亡Bcl-2蛋白作为IP3R的内源性调节分子,具有控制内质网中IP3R活性和抑制促凋亡钙信号的功能.已有研究证实,基于干扰Bcl-2家族成员与IP3R相互作用功能区域的多肽分子具有一定的抗肿瘤作用,因此,根据Bcl-2蛋白分子的结构特征及其与IP3R的相互作用机制而设计的靶向药物,已成为抗肿瘤新药的一个重要发展方向,并且部分药物已进入临床研究阶段.这些处于研发中的新药有望为慢性淋巴细胞白血病(chronic lymphocytic leukemia,CLL)等Bcl-2依赖性肿瘤的治疗及对抗Bcl-2介导的化疗放疗耐药现象带来新希望.本文旨在对上述研究的进展作一综述,以期为肿瘤细胞程序性死亡的调控机制的研究提供一些有价值的参考依据.%The Ca2+ release through IP3R (inositol 1,4,5-trisphosphate receptor) channels mediates the essential procedure of cellular functions.The process of Ca2+ release is elaborately regulated by the complex network system of signal transduction pathway.Recently,anti-apoptotic Bcl-2 proteins were reported to modulate Ca2+ gating of IP3R in ER (endoplasmic reticular) resulting in enhanced cellular bioenergetics and death resistance.Targeting Bcl-2-IP3R interaction was found to be able to induce apoptosis in vitro and in vivo.In addition,the natural or chemically synthesized compounds depending on the molecular structure of anti-apoptotic Bcl-2 proteins,have been tested in several clinical trials of chronic lymphocytic leukemia to verify their anti-tumor effect.Overall,current studies have provided some novel strategies of anti-tumor therapy involved in the

  7. Effects of fluoride on liver apoptosis and Bcl-2, Bax protein expression in freshwater teleost, Cyprinus carpio.

    Science.gov (United States)

    Cao, Jinling; Chen, Jianjie; Wang, Jundong; Jia, Ruhui; Xue, Wenjuan; Luo, Yongju; Gan, Xi

    2013-05-01

    Fish take up fluoride directly from water and are the target organisms for fluoride pollution in the aquatic ecosystems. This study was conducted to evaluate oxidative stress, histopathological changes, apoptosis and Bcl-2, Bax expression in the livers of the common carp (Cyprinus carpio) chronically exposed to fluoride. Our results showed that after 90 d of exposure, the inhibition of SOD, GSH activities and a dose-dependent stimulation of MDA levels in the liver tissues indicated that fluoride caused oxidative stress in the fish. Microscopic examinations showed that damages to the liver tissues and cell organelles in the liver tissues increased with exposure concentration. A positive correlation was observed between the apoptosis index and fluoride levels in the livers (r=0.995). There was a negative correlation between the fluoride concentration of water and the expression of Bcl-2, Bcl-2/Bax (r=-0.98, r=-0.96). A positive correlation was showed between the fluoride concentration of water and the expression of Bax (r=0.96) after 90 d of exposure. Our results suggested that the common carp could tolerate relatively high levels of fluoride but adverse effects of fluoride occurred in the livers of the fish after 90 d of exposure. The apoptosis of liver cells had an important causative role in the process of fluoride-induced pathological changes of liver. PMID:23415306

  8. Inotodiol inhabits proliferation and induces apoptosis through modulating expression of cyclinE, p27, bcl-2, and bax in human cervical cancer HeLa cells.

    Science.gov (United States)

    Zhao, Li-Wei; Zhong, Xiu-Hong; Yang, Shu-Yan; Zhang, Yi-Zhong; Yang, Ning-Jiang

    2014-01-01

    Inonotus obliquus is a medicinal mushroom that has been used as an effective agent to treat various diseases such as diabetes, tuberculosis and cancer. Inotodiol, an included triterpenoid shows significant anti-tumor effect. However, the mechanisms have not been well documented. In this study, we aimed to explore the effect of inotodiol on proliferation and apoptosis in human cervical cancer HeLa cells and investigated the underlying molecular mechanisms. HeLa cells were treated with different concentrations of inotodiol. The MTT assay was used to evaluate cell proliferating ability, flow cytometry (FCM) was employed for cell cycle analysis and cell apoptosis, while expression of cyclinE, p27, bcl-2 and bax was detected by immunocytochemistry. Proliferation of HeLa cells was inhibited by inotodiolin a dose-dependent manner at 24h (r=0.9999, pInonotus obliquus inhibited the proliferation of HeLa cells and induced apoptosis in vitro. The mechanisms may be related to promoting apoptosis through increasing the expression of bax and cutting bcl-2 and affecting the cell cycle by down-regulation the expression of cyclin E and up-regulation of p27. The results further indicate the potential value of inotodiol for treatment of human cervical cancer. PMID:24815470

  9. Regulation of Caspase-3 and Bcl-2 Expression in Dalton's Lymphoma Ascites Cells by Abrin

    Directory of Open Access Journals (Sweden)

    V. Ramnath

    2009-01-01

    Full Text Available The role of abrin, a toxic lectin isolated from seeds of Abrus precatorius Linn in inducing apoptosis in murine Dalton's Lymphoma Ascites (DLA cells was evaluated. Abrin when incubated at the concentration of 10 ng per million DLA cells could bring about cell death as typical morphological changes with apoptosis. However, necrotic cell death dominated when a higher dose of abrin was used. DNA samples, isolated from DLA cells treated with abrin showed fragmentation. Abrin brought about induction of apoptosis by stimulating the expression of pro-apoptotic Caspase-3, at the same time blocking the expression of Bcl-2, which is an anti apoptotic gene. However, the expression of tumor suppressor gene p53 has not been observed in control and abrin-treated DLA cells. Results suggested that abrin effectively induced apoptotic changes in the tumor cells that led to cellular death.

  10. THE OVEREXPRESSION OF APOPTOSIS -RELATED GENES OF P53 AND BCL-2 IN CERVICAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To investigate the significance of overexpression of P53 and bcl-2 protein in carcinogenesis of cervix. Methods 10 cases of cervical intraepithelial neoplasis(CIN) and 57 cases of invasive cancer were investigated with immunohistochemistry technique. Results The overexpresion of P53 protein in CIN and cervical cancer was significantly higher than that of control, respectively (P<0.01). But there was no significant difference between CIN and cervical cancer(P>0. 05). The immunoreactivity of bcl-2 in CIN was much more higher than that of control (P<0.05). The positive rate and immunoreactivity of bcl-2 in cervical carcinoma were both remarkably higher than those of control (P<0. 01) ,but there was no significant difference between CIN and cervical carcinoma (P>0. 05). It was also found that there was a remarkably positive correlation between the overexpression of bcl-2 and P53 (P<0.01). Conclusion Because of the loss of wtP53 function,the expression of bcl-2 can not be down-reguated,which is associated with the pathogenesis and development of cervical carcinoma.

  11. Study of the expressions of p53 and bcl-2 genes, the telomerase activity and apoptosis in GIST patients

    Institute of Scientific and Technical Information of China (English)

    Qiang Wang; You-Wei Kou

    2007-01-01

    AIM: To explore the relationship between clinicobiological behavior and the expression levels of telomerase activity,apoptosis, p53 gene and bcl-2 gene in gastrointestinal stromal tumors (GISTs).METHODS: The intensity of telomerase activity,apoptosis, p53 and bcl-2 expression in GISTs were detected by telomeric repeat amplification protocol, in situ end-labeling technique, and immunohistochemistry,respectively.RESULTS: The positive rates of telomerase activity of malignant GIST, potential malignant GIST and benign GIST were 85% (17/20), 22.8% (2/9) and 0 (0/9),respectively. The apoptosis indices of malignant GIST,potential malignant GIST, and benign GIST were 11.7 ± 5.4, 30.2 ± 5.6 and 45.2 ± 7.2, respectively. The intensity of telomerase activity and apoptosis were related to the biological characteristics of GISTs (85% vs 22.8%, 0, 0; P < 0.01 or 11.7±5.4 vs 30.2 ± 5.6, 45.2 ± 7.2, 72.1 ± 9.3; P < 0.05). The intensity of telomerase activity was negatively correlated with cellular apoptosis (22.9 ± 8.4 vs 9.5 ± 5.7, P < 0.01). The intensity of telomerase activity was positively correlated with p53,bcl-2 expression (40.0% vs 78.9%, 40.0% vs 84.2%;P < 0.05).CONCLUSION: The detection of telomerase activity,apoptosis and its control genes in GIST will be helpful for the discrimination of the malignant and benign GIST and evaluation of the prognosis.

  12. Effects of Low Dose Radiation on Tumor Apoptosis, Cell Cycle and Apoptosis-Related Protein Bcl-2 in Tumor-Bearing Mice

    Institute of Scientific and Technical Information of China (English)

    YUHongsheng; SONGAiqin; FEIConghe; WANGZhuomin; QIUWensheng

    2005-01-01

    Objective: To study the effects of low dose radiation (LDR) on tumor apoptosis, cell cycle progression and changes of apoptosis-related protein Bcl-2 in tumor-bearing mice. Methods: Male mice of Kunming strain were implanted subcutaneously with S180 sarcoma cells in the left inguen as an in situ experimental animal model. Seven days later, the mice were subjected to 75 mGy whole-body γ-irradiation.At 24 and 48 h after the irradiation, all mice were sacrificed. The tumor sizes were measured, and tumor cell apoptosis and cell cycle progression were analyzed by flow cytometry. The expression of apoptosisrelated protein Bcl-2 and the apoptotic rate of tumor cells were observed by immunohistochemistry and electron microscopy. Results: Tumors grew significantly slower after LDR (P<0.05). The tumor cells were arrested in G1 phrase and the expression of Bcl-2 protein decreased at 24 h. Apoptotic rate of tumor cells was increased significantly at 48 h after LDR (P<0.01). Conclusion: LDR could cause a Gl-phase arrest and increase the apoptosis of tumor cells through the low level of apoptosis-related protein bcl-2 in the tumor-bearing mice. The organized immune function and anti-tumor ability are markedly increased after LDR. Our study provides practical evidence of clinical application to cancer treatment.

  13. Cytotoxicity of carteolol to human corneal epithelial cells by inducing apoptosis via triggering the Bcl-2 family protein-mediated mitochondrial pro-apoptotic pathway.

    Science.gov (United States)

    Shan, Ming; Fan, Ting-Jun

    2016-09-01

    Carteolol is a frequently used nonselective β-adrenoceptor antagonist for glaucoma and ocular hypertension treatment, and its repeated/prolonged usage might be cytotoxic to the cornea, especially the outmost human corneal epithelium (HCEP). The aim of the present study was to characterize the cytotoxicity of carteolol to HCEP and its underlying cellular and molecular mechanisms using an in vitro model of HCEP cells. After HCEP cells were treated with carteolol at concentrations varying from 2% to 0.015625%, the cytotoxicity, apoptosis-inducing effect and pro-apoptotic pathway was investigated, respectively. Our results showed that carteolol at concentrations above 0.03125% induced time- and dose-dependent growth retardation, cytopathic morphological changes and viability decline of HCEP cells. Moreover, carteolol induced G1 phase arrest, plasma membrane permeability elevation, phosphatidylserine externalization, DNA fragmentation, and apoptotic body formation of HCEP cells. Furthermore, carteolol also induced activation of caspase-9 and -3, disruption of mitochondrial transmembrane potential, up-regulation the cytoplasmic amount of cytochrome c and apoptosis-inducing factor, and up-regulation of pro-apoptotic Bax and Bad, down-regulation of anti-apoptotic Bcl-2 and Bcl-xL. In conclusion, carteolol above 1/64 of its clinical therapeutic dosage has a time- and dose-dependent cytotoxicity to HCEP cells, which is achieved by inducing apoptosis via triggering Bcl-2 family protein-mediated mitochondrial pro-apoptotic pathway. PMID:27216471

  14. JNK-Bcl-2/Bcl-xL-Bax/Bak Pathway Mediates the Crosstalk between Matrine-Induced Autophagy and Apoptosis via Interplay with Beclin 1

    Directory of Open Access Journals (Sweden)

    Jiong Yang

    2015-10-01

    Full Text Available Autophagy is associated with drug resistance which has been a threat in chemotherapy of hepatocellular carcinoma (HCC. The interconnected molecular regulators between autophagy and apoptosis serve as switching points critical to the ultimate outcome of the cell. Our study was performed to investigate the crosstalk between autophagy and apoptosis in HCC after the treatment of matrine. Flow cytometry and TUNEL (terminal dexynucleotidyl transferase (TdT-mediated dUTP nick end labeling assay were used to detect apoptosis in vitro and in vivo, respectively. Bax oligomerization and Cytochrome c release assay were performed. Immunoprecipitation and siRNA transfection were used to detect the interplay between Bcl-2/Bcl-xL,Bax, and Beclin 1. Our results showed that: (1 matrine not only activated caspase and PARP (poly ADP-ribose polymerase cleavage, but also triggered autophagy as shown by the increased levels of LC3II, Beclin 1, and PI3KC3, and the decreased level of p62; (2 matrine treatment promoted the JNK-Bcl-2/ Bcl-xL-Bax/Bak pathway; (3 Bax was oligomerized, the mitochondrial membrane potential altered, and Cytochrome c was released subsequently; (4 Bax interacts with Beclin 1 and inhibits autophagy, which may be a new crosstalk point; and (5 finally, we showed that matrine suppressed the growth of a MHCC97L xenograft in vivo for the first time. In conclusion, the JNK-Bcl-2/Bcl-xL-Bax/Bak pathway mediates the crosstalk between matrine-induced autophagy and apoptosis via interplay with Beclin 1.

  15. JNK-Bcl-2/Bcl-xL-Bax/Bak Pathway Mediates the Crosstalk between Matrine-Induced Autophagy and Apoptosis via Interplay with Beclin 1.

    Science.gov (United States)

    Yang, Jiong; Yao, Shukun

    2015-10-27

    Autophagy is associated with drug resistance which has been a threat in chemotherapy of hepatocellular carcinoma (HCC). The interconnected molecular regulators between autophagy and apoptosis serve as switching points critical to the ultimate outcome of the cell. Our study was performed to investigate the crosstalk between autophagy and apoptosis in HCC after the treatment of matrine. Flow cytometry and TUNEL (terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling) assay were used to detect apoptosis in vitro and in vivo, respectively. Bax oligomerization and Cytochrome c release assay were performed. Immunoprecipitation and siRNA transfection were used to detect the interplay between Bcl-2/Bcl-xL,Bax, and Beclin 1. Our results showed that: (1) matrine not only activated caspase and PARP (poly ADP-ribose polymerase) cleavage, but also triggered autophagy as shown by the increased levels of LC3II, Beclin 1, and PI3KC3, and the decreased level of p62; (2) matrine treatment promoted the JNK-Bcl-2/ Bcl-xL-Bax/Bak pathway; (3) Bax was oligomerized, the mitochondrial membrane potential altered, and Cytochrome c was released subsequently; (4) Bax interacts with Beclin 1 and inhibits autophagy, which may be a new crosstalk point; and (5) finally, we showed that matrine suppressed the growth of a MHCC97L xenograft in vivo for the first time. In conclusion, the JNK-Bcl-2/Bcl-xL-Bax/Bak pathway mediates the crosstalk between matrine-induced autophagy and apoptosis via interplay with Beclin 1.

  16. 雌激素对大鼠胸腺细胞凋亡及Bcl-2、Bax表达的影响%Effects of estrogen on apoptosis and expression of Bcl-2 and Bax in rat thymus

    Institute of Scientific and Technical Information of China (English)

    李雅娜; 孙研; 崔春红; 殷彦君

    2011-01-01

    目的:探讨苯甲酸雌二醇对大鼠胸腺Bcl-2和Bax表达及细胞凋亡的影响及其机制.方法:雌性大鼠行卵巢切除术,给予苯甲酸雌二醇后,观察胸腺指数的变化,Hochest33342荧光染色及透射电镜标本观察胸腺细胞凋亡情况,免疫组织化学检测胸腺组织中Bcl-2和Bax的表达情况,原位杂交技术检测Bcl-2、Bax m RNA的表达情况.结果:双侧卵巢切除组大鼠胸腺指数较假手术组增加,双侧卵巢切除+雌激素组大鼠胸腺指数较双侧卵巢切除组减小;假手术组和双侧卵巢切除组大鼠胸腺组织中以正常胸腺细胞为主,偶见凋亡细胞或凋亡小体,双侧卵巢切除+雌激素组可见较多凋亡细胞和凋亡小体;双侧卵巢切除+雌激素组大鼠胸腺组织中Bcl-2表达较双侧卵巢切除组和假手术组增高明显降低,而Bax表达呈现相反趋势;Bcl-2 mRNA、Bax mRNA的表达与Bcl-2、Bax的表达呈一致性.结论:雌激素可以降低大鼠胸腺指数,抑制胸腺组织中Bcl-2的表达,促进Bax的表达,从而诱导大鼠胸腺细胞凋亡,促进雌性大鼠胸腺退化.%Objective-. To explore the effects of estrogen on the apoptosis and the expression of Bcl-2 and Bax in rat thymus. Methods-. The rats performed with ovariectomy were injected with estradiol benzoate. Thymus was obtained 7 days after the injection. Thymic indexes were measured. Apoptosis of the thymus was detected after Hochest 33342 staining and examined under an electron microscope. The expression of Bcl-2 and Bax in the thymus was detected with a immunohistochemical method. The expression of Bcl-2 mRNA and Bax mRNA in the thymus was detected by in situ hybridization. The test was taken in statistical treatment. Results: The thymus quality index in ovariectomy group was higher than that in the model control group. The thymus quality index of rats injected with estradiol benzoate was reduced respectively. Apoptotic cells and apoptotic bodies were found in the

  17. Oxindole alkaloids from Uncaria tomentosa induce apoptosis in proliferating, G0/G1-arrested and bcl-2-expressing acute lymphoblastic leukaemia cells.

    Science.gov (United States)

    Bacher, Nicole; Tiefenthaler, Martin; Sturm, Sonja; Stuppner, Hermann; Ausserlechner, Michael J; Kofler, Reinhard; Konwalinka, Günther

    2006-03-01

    Natural products are still an untapped source of promising lead compounds for the generation of antineoplastic drugs. Here, we investigated for the first time the antiproliferative and apoptotic effects of highly purified oxindole alkaloids, namely isopteropodine (A1), pteropodine (A2), isomitraphylline (A3), uncarine F (A4) and mitraphylline (A5) obtained from Uncaria tomentosa, a South American Rubiaceae, on human lymphoblastic leukaemia T cells (CCRF-CEM-C7H2). Four of the five tested alkaloids inhibited proliferation of acute lymphoblastic leukaemia cells. Furthermore, the antiproliferative effect of the most potent alkaloids pteropodine (A2) and uncarine F (A4) correlated with induction of apoptosis. After 48 h, 100 micromol/l A2 or A4 increased apoptotic cells by 57%. CEM-C7H2 sublines with tetracycline-regulated expression of bcl-2, p16ink4A or constitutively expressing the cowpox virus protein crm-A were used for further studies of the apoptosis-inducing properties of these alkaloids. Neither overexpression of bcl-2 or crm-A nor cell-cycle arrest in G0/G1 phase by tetracycline-regulated expression of p16INK4A could prevent alkaloid-induced apoptosis. Our results show the strong apoptotic effects of pteropodine and uncarine F on acute leukaemic lymphoblasts and recommend the alkaloids for further studies in xenograft models.

  18. Bcl-2基因与神经生长因子(NGF)抑制神经细胞凋亡的研究%Abaissement role of bcl-2 gene and NGF on the apoptosis of nerve cel s

    Institute of Scientific and Technical Information of China (English)

    韩贵和; 魏威; 顾军

    2013-01-01

    目的探讨原癌基因bcl-2与神经生长因子(NGF)联合应用对抑制神经细胞凋亡的协同作用。方法培养PC12细胞至对数生长期,用100感染复数(multiplicity of infection,MOI)的携带bcl-2基因的慢病毒质粒及未携带bcl-2基因的慢病毒质粒感染PC12细胞。再将其分为A、B、C、D、E、F六组,A组为bcl-2-PC12细胞培养液中不加H2O2及NGF(bcl-2-PC12组);B组为bcl-2-PC12细胞培养液中加H2O2(bcl-2-PC12+ H2O2组);C组为bcl-2-PC12细胞培养液中加H2O2及NGF(bcl-2-PC12+ H2O2+NGF组)。D组为NC-PC12细胞培养液中不加H2O2及NGF(NC-PC12组);E组为NC-PC12细胞培养液中加H2O2(NC-PC12+H2O2组);F组为NC-PC12细胞培养液中加H2O2及NGF(NC-PC12+ H2O2+NGF组)。应用流式细胞仪检测各组细胞的凋亡率,采用BCA(bicinchoninic acid)法检测bcl-2基因表达蛋白浓度,数据进行统计学分析。结果 A组细胞凋亡率较D组低(u=2.16,0.02bcl-2基因表达蛋白浓度高于D组(t=2.87,0.005bcl-2基因及NGF均对正常神经细胞的凋亡有抑制作用,能够增强神经细胞的抗损伤能力,二者联合应用时具有协同作用。%Objective To approach synergia abaissement role of the proto-oncogene bcl-2 and NGF on the apoptosis of nerve cells.Methods PC12 cells were cultured to the logarithmic growth phase,slow virus plasmid carrying the bcl-2 gene and slow virus plasmid infected respectively PC12 cells by 100 MOI.Then they were divided into six groups(groupA,groupB,groupC ,groupD,groupE and groupF ). Group A:PC12 cells with slow virus plasmid carrying the bcl-2 gene.Group B: PC

  19. Mutual regulation of Bcl-2 proteins independent of the BH3 domain as shown by the BH3-lacking protein Bcl-x(AK.

    Directory of Open Access Journals (Sweden)

    Michael Plötz

    Full Text Available The BH3 domain of Bcl-2 proteins was regarded as indispensable for apoptosis induction and for mutual regulation of family members. We recently described Bcl-x(AK, a proapoptotic splice product of the bcl-x gene, which lacks BH3 but encloses BH2, BH4 and a transmembrane domain. It remained however unclear, how Bcl-x(AK may trigger apoptosis.For efficient overexpression, Bcl-x(AK was subcloned in an adenoviral vector under Tet-OFF control. The construct resulted in significant apoptosis induction in melanoma and nonmelanoma cell lines with up to 50% apoptotic cells as well as decreased cell proliferation and survival. Disruption of mitochondrial membrane potential, and cytochrome c release clearly indicated activation of the mitochondrial apoptosis pathways. Both Bax and Bak were activated as shown by clustering and conformation analysis. Mitochondrial translocation of Bcl-x(AK appeared as an essential and initial step. Bcl-x(AK was critically dependent on either Bax or Bak, and apoptosis was abrogated in Bax/Bak double knockout conditions as well by overexpression of Bcl-2 or Bcl-x(L. A direct interaction with Bcl-2, Bax, Bad, Noxa or Puma was however not seen by immunoprecipitation. Thus besides BH3-mediated interactions, there exists an additional way for mutual regulation of Bcl-2 proteins, which is independent of the BH3. This pathway appears to play a supplementary role also for other proapoptotic family members, and its unraveling may help to overcome therapy resistance in cancer.

  20. Mechanisms of arsenic trioxide induced apoptosis of human cervical cancer HeLa cells and protection by Bcl-2

    Institute of Scientific and Technical Information of China (English)

    邓友平; 林晨; 郑杰; 梁萧; 陈洁平; 付明; 肖培根; 吴旻

    1999-01-01

    It was recently reported that arsenic trioxide (As2O3) can induce complete remission in patients with acute promyelocytic leukemia (APL). In this present article, the biological effect of As2O3 on human cervical cancer HeLa cells and HeLa cells overexpressing Bcl-2 is studied. By MTT and colony forming ability assays, morphology alteration, flow cytometric analysis, DNA gel electrephoresis and in situ cell death detection (TUNEL), it was found that As2O3 inhibited the growth of HeLa cells and induced G2/M arrest and apoptosis of the cells. RT-PCR, Northern blot, Western blot analysis revealed that As2O3 induced HeLa cell apoptosis possibly via decreasing the expression of c-myc and viral genes. HeLa cells overexpressing Bcl-2 partly resist As2O3 induced apoptosis, which might be relative to preventing the cells from As2O3 caused G2/M block, downregulation of c-myc gene expression and inhibition of viral gene expression was also noted, However, it was found that As2O3 at a high concentratio

  1. Targeting γ-herpesvirus 68 Bcl-2-mediated down-regulation of autophagy.

    Science.gov (United States)

    Su, Minfei; Mei, Yang; Sanishvili, Ruslan; Levine, Beth; Colbert, Christopher L; Sinha, Sangita

    2014-03-21

    γ-herpesviruses (γHVs) are common human pathogens that encode homologs of the anti-apoptotic cellular Bcl-2 proteins, which are critical to viral reactivation and oncogenic transformation. The murine γHV68 provides a tractable in vivo model for understanding general features of these important human pathogens. Bcl-XL, a cellular Bcl-2 homolog, and the murine γHV68 Bcl-2 homolog, M11, both bind to a BH3 domain within the key autophagy effector Beclin 1 with comparable affinities, resulting in the down-regulation of Beclin 1-mediated autophagy. Despite this similarity, differences in residues lining the binding site of M11 and Bcl-XL dictate varying affinities for the different BH3 domain-containing proteins. Here we delineate Beclin 1 differential specificity determinants for binding to M11 or Bcl-XL by quantifying autophagy levels in cells expressing different Beclin 1 mutants and either M11 or Bcl-XL, and we show that a G120E/D121A Beclin 1 mutant selectively prevents down-regulation of Beclin 1-mediated autophagy by Bcl-XL, but not by M11. We use isothermal titration calorimetry to identify a Beclin 1 BH3 domain-derived peptide that selectively binds to M11, but not to Bcl-XL. The x-ray crystal structure of this peptide bound to M11 reveals the mechanism by which the M11 BH3 domain-binding groove accommodates this M11-specific peptide. This information was used to develop a cell-permeable peptide inhibitor that selectively inhibits M11-mediated, but not Bcl-XL-mediated, down-regulation of autophagy.

  2. High level of Bcl-2 counteracts apoptosis mediated by a live rabies virus vaccine strain and induces long-term infection

    International Nuclear Information System (INIS)

    We report here that rabies virus strains, currently used to immunize wildlife against rabies, induce not only caspase-dependent apoptosis in the human lymphoblastoid Jurkat T cell line (Jurkat-vect), but also a caspase-independent pathway involving the apoptosis-inducing factor (AIF). In contrast, a strain of neurotropic RV that does not induce apoptosis did not activate caspases or induce AIF translocation. Bcl-2 overproduction in Jurkat T cells (Jurkat-Bcl-2) abolished both pathways. ERA infection and production were similar in Jurkat-vect and Jurkat-Bcl-2 cells, indicating Bcl-2 has no direct antiviral effects. Bcl-2 production is naturally upregulated by day 3 in ERA-infected Jurkat-vect cultures. The increase in Bcl-2 levels seems to be controlled by the virus infection itself and results in the establishment of long-term, persistently infected cultures that continue to produce virus. Thus, in infections with live RV vaccine strains, infected cells may be productive reservoirs of virus in the long term. This may account for the high efficacy of live rabies vaccines

  3. Simultaneous gene silencing of Bcl-2, XIAP and Survivin re-sensitizes pancreatic cancer cells towards apoptosis

    International Nuclear Information System (INIS)

    Pancreatic ductal adenocarcinoma shows a distinct apoptosis resistance, which contributes significantly to the aggressive nature of this tumor and constrains the effectiveness of new therapeutic strategies. Apoptosis resistance is determined by the net balance of the cells pro-and anti-apoptotic 'control mechanisms'. Numerous dysregulated anti-apoptotic genes have been identified in pancreatic cancer and seem to contribute to the high anti-apoptotic buffering capacity. We aimed to compare the benefit of simultaneous gene silencing (SGS) of several candidate genes with conventional gene silencing of single genes. From literature search we identified the anti-apoptotic genes XIAP, Survivin and Bcl-2 as commonly upregulated in pancreatic cancer. We performed SGS and silencing of single candidate genes using siRNA molecules in two pancreatic cancer cell lines. Effectiveness of SGS was assessed by qRT-PCR and western blotting. Apoptosis induction was measured by flow cytometry and caspase activation. Simultaneous gene silencing reduced expression of the three target genes effectively. Compared to silencing of a single target or control, SGS of these genes resulted in a significant higher induction of apoptosis in pancreatic cancer cells. In the present study we performed a subliminal silencing of different anti-apoptotic target genes simultaneously. Compared to silencing of single target genes, SGS had a significant higher impact on apoptosis induction in pancreatic cancer cells. Thereby, we give further evidence for the concept of an anti-apoptotic buffering capacity of pancreatic cancer cells

  4. Effects of knocking out Bcl-2 gene on proliferation and apoptosis of human pancreatic cancer cells SW1990%Bcl-2基因敲除对人胰腺癌细胞增殖及凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    魏莉; 张海文; 涂芊茜; 刘斌; 蔡宏剑; 孙春亮; 陈海涛

    2015-01-01

    目的 探讨Bcl-2基因对人胰腺癌SW1990细胞增殖及凋亡的影响.方法 设计并合成靶向Bcl-2基因的sgRNA(Bcl-2-sgRNA),通过CRISPR-Cas9系统将其结合到CRISPR载体Cas9,经测序验证后转染人胰腺癌细胞株SW1990,筛选Bcl-2基因敲除稳转细胞,以野生型SW1990细胞作为对照.采用CCK-8法测定细胞生长曲线,通过克隆形成实验计数细胞克隆数,运用流式细胞仪检测细胞周期及凋亡.结果 成功获得Bcl-2基因敲除的人胰腺癌SW1990细胞株,其Bcl-2蛋白表达缺失.与野生SW1990细胞比较,敲除Bcl-2基因的SW1990细胞的生长被抑制,细胞克隆形成数量显著减少[(160.7±10.0)个比(285.3±14.2)个],G1期细胞比例显著增加[(84.51±0.97)%比(57.49±1.08)%],S期细胞比例显著减少[(12.82±0.99)%比(27.56±1.65)%],细胞凋亡率显著增加[(12.67±0.59)%比(0.37±0.35)%],差异均有统计学意义(P值均<0.01).结论 敲除Bcl-2基因可抑制胰腺癌SW1990细胞的生长,降低细胞克隆形成能力,使细胞阻滞在G1期,并显著增加细胞凋亡率.%Objective To investigate the effect of Bcl-2 gene expression on the proliferation and apoptosis of human pancreatic cancer SW1990 cells.Methods Bcl-2 short guide RNA (Bcl-2-sgRNA) was designed and synthesized,and it was combined with CRISPR-Cas 9.After confirmation by gene sequencing,it was transfected into human pancreatic cancer cell line SW1990,then the cells with stable Bcl-2 gene knock-out were selected,and wild type SW1990 cells were used as control.The cell growth curve was determined by CCK-8 method.The number of clone formation was measured.Flow cytometry was used to measure cell cycle and apoptosis.Results Human pancreatic cancer cell line SW1990 with Bcl-2 gene knock-out was successful constructed.Compared with wild type SW1990 cells,the growth of SW1990 cells with Bcl-2 gene knock-out was inhibited,the number of clone formation was significantly decreased [(160.7 ± 10.0) vs (285.3

  5. Effect of NF-κB, survivin, Bcl-2 and Caspase3 on apoptosis of gastric cancer cells induced by tumor necrosis factor related apoptosis inducing ligand

    Institute of Scientific and Technical Information of China (English)

    Liu-Qin Yang; Dian-Chun Fang; Rong-Quan Wang; Shi-Ming Yang

    2004-01-01

    AIM: To study the effect of NF-κB, survivin, Bcl-2 and Caspase3 on tumor necrosis factors related apoptosis inducing ligand (TRAIL) induced apoptosis of gastric cancer cells.METHODS: Gastric cancer cells of SGC-7901, MKN28,MKN45 and AGS lines were cultured in PRMI-1640 medium and the apoptosis rates of the cells of 4 lines were observed after treatment of tumor necrosis factors related apoptosis inducing ligand (TRAIL) with a flow cytometer. The expression of NF-κB, survivin, Bcl-2 and Caspase3 in gastric cancer cells of 4 lines was analyzed with Western blot.RESULTS: After the gastric cancer cells were exposed to TRAIL 300 ng/ml for 24 hours, the apoptosis rate was 36.05%, 20.27%, 16.50% and 11.80% in MKN28, MKN45,AGS and SGC-7901cells respectively. Western blot revealed that the expressions of NF-κB and survivin were lower in MKN28 cells than in MKN45, AGS and SGC-7901 cells. In contrast, the expression of Caspase3 was higher in MKN28 cells than in MKN45, AGS and SGC-7901 cells.CONCLUSION: There is a selectivity of TRAIL potency to induce apoptosis in gastric cancer cells of different cell lines.The anticancer potency of TRAIL is associated with the decreased expression of NF-κB and survivin and increased expression of Caspase3 of gastric cancer cells.

  6. The bcl-2 mRNA Expression in GCDC-induced Obstructive Jaundice in Rats and Its Implication in Hepatocellular Apoptosis

    Institute of Scientific and Technical Information of China (English)

    王剑明; 邹声泉

    2002-01-01

    The modulatory role of bcl-2 gene in hepatocellular apoptosis of rats with glycochenodeoxycholate (GCDC)-induced obstructive jaundice was investigated. The hepatocytes in normal rats and those with bile duct-ligation for 7 days, 14 days and 21 days were isolated and obtained by in situ collagenase perfusion and primary culture. The expression of bcl-2 mRNA in the hepatocytes was detected by RT-PCR. Primary culture was performed on the hepatocytes from normal rats and those with bile duct-ligation for 14 days. 100 μmol/L GCDC was added to the hepatocytes for incubation for 24 h. The hepatocellular apoptotic ratio was measured by using FCM and hepatocellular apoptosis detected in situ by using TUNEL technique. Results showed that the expression of bcl-2 mRNA was not detectable in the hepatocytes of normal rats by RT-PCR technique, while detectable in the hepatocytes of those with bile duct ligation (BDL) for 7, 14 and 21 days. Hepatocellular apoptosis in the BDL group was obviously decreased as compared with normal control group after addition of 100μmol/L GCDC to the cells for 24 h. It was concluded that the hepatocytes in the BDL rats expressed bcl-2. During obstructive jaundice, expression of bcl-2 from the hepatocytes can inhibit the bile saltinduced hepatocellular apoptosis.

  7. Bcl-2 regulates HIF-1alpha protein stabilization in hypoxic melanoma cells via the molecular chaperone HSP90.

    Directory of Open Access Journals (Sweden)

    Daniela Trisciuoglio

    Full Text Available BACKGROUND: Hypoxia-Inducible Factor 1 (HIF-1 is a transcription factor that is a critical mediator of the cellular response to hypoxia. Enhanced levels of HIF-1alpha, the oxygen-regulated subunit of HIF-1, is often associated with increased tumour angiogenesis, metastasis, therapeutic resistance and poor prognosis. It is in this context that we previously demonstrated that under hypoxia, bcl-2 protein promotes HIF-1/Vascular Endothelial Growth Factor (VEGF-mediated tumour angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS: By using human melanoma cell lines and their stable or transient derivative bcl-2 overexpressing cells, the current study identified HIF-1alpha protein stabilization as a key regulator for the induction of HIF-1 by bcl-2 under hypoxia. We also demonstrated that bcl-2-induced accumulation of HIF-1alpha protein during hypoxia was not due to an increased gene transcription or protein synthesis. In fact, it was related to a modulation of HIF-1alpha protein expression at a post-translational level, indeed its degradation rate was faster in the control lines than in bcl-2 transfectants. The bcl-2-induced HIF-1alpha stabilization in response to low oxygen tension conditions was achieved through the impairment of ubiquitin-dependent HIF-1alpha degradation involving the molecular chaperone HSP90, but it was not dependent on the prolyl hydroxylation of HIF-1alpha protein. We also showed that bcl-2, HIF-1alpha and HSP90 proteins form a tri-complex that may contribute to enhancing the stability of the HIF-1alpha protein in bcl-2 overexpressing clones under hypoxic conditions. Finally, by using genetic and pharmacological approaches we proved that HSP90 is involved in bcl-2-dependent stabilization of HIF-1alpha protein during hypoxia, and in particular the isoform HSP90beta is the main player in this phenomenon. CONCLUSIONS/SIGNIFICANCE: We identified the stabilization of HIF-1alpha protein as a mechanism through which bcl-2 induces the

  8. Bcl-2 Regulates HIF-1α Protein Stabilization in Hypoxic Melanoma Cells via the Molecular Chaperone HSP90

    Science.gov (United States)

    Trisciuoglio, Daniela; Gabellini, Chiara; Desideri, Marianna; Ziparo, Elio; Zupi, Gabriella; Del Bufalo, Donatella

    2010-01-01

    Background Hypoxia-Inducible Factor 1 (HIF-1) is a transcription factor that is a critical mediator of the cellular response to hypoxia. Enhanced levels of HIF-1α, the oxygen-regulated subunit of HIF-1, is often associated with increased tumour angiogenesis, metastasis, therapeutic resistance and poor prognosis. It is in this context that we previously demonstrated that under hypoxia, bcl-2 protein promotes HIF-1/Vascular Endothelial Growth Factor (VEGF)-mediated tumour angiogenesis. Methodology/Principal Findings By using human melanoma cell lines and their stable or transient derivative bcl-2 overexpressing cells, the current study identified HIF-1α protein stabilization as a key regulator for the induction of HIF-1 by bcl-2 under hypoxia. We also demonstrated that bcl-2-induced accumulation of HIF-1α protein during hypoxia was not due to an increased gene transcription or protein synthesis. In fact, it was related to a modulation of HIF-1α protein expression at a post-translational level, indeed its degradation rate was faster in the control lines than in bcl-2 transfectants. The bcl-2-induced HIF-1α stabilization in response to low oxygen tension conditions was achieved through the impairment of ubiquitin-dependent HIF-1α degradation involving the molecular chaperone HSP90, but it was not dependent on the prolyl hydroxylation of HIF-1α protein. We also showed that bcl-2, HIF-1α and HSP90 proteins form a tri-complex that may contribute to enhancing the stability of the HIF-1α protein in bcl-2 overexpressing clones under hypoxic conditions. Finally, by using genetic and pharmacological approaches we proved that HSP90 is involved in bcl-2-dependent stabilization of HIF-1α protein during hypoxia, and in particular the isoform HSP90β is the main player in this phenomenon. Conclusions/Significance We identified the stabilization of HIF-1α protein as a mechanism through which bcl-2 induces the activation of HIF-1 in hypoxic tumour cells involving the

  9. Apoptosis and the activity of ceramide, Bax and Bcl-2 in the lungs of neonatal rats exposed to limited and prolonged hyperoxia

    Directory of Open Access Journals (Sweden)

    Bitar Fadi F

    2006-07-01

    Full Text Available Abstract Background The aim of the study is to examine the effect of limited and prolonged hyperoxia on neonatal rat lung. This is done by examining the morphologic changes of apoptosis, the expression of ceramide, an important mediator of apoptosis, the expression of inflammatory mediators represented by IL-1β and the expression of 2 proto-oncogenes that appear to modulate apoptosis (Bax and Bcl-2. Methods Newborn rats were placed in chambers containing room air or oxygen above 90% for 7 days. The rats were sacrificed at 3, 7 or 14 days and their lungs removed. Sections were fixed, subjected to TUNEL, Hoechst, and E-Cadherin Staining. Sections were also incubated with anti-Bcl-2 and anti-Bax antisera. Bcl-2 and Bax were quantitated by immunohistochemistry. Lipids were extracted, and ceramide measured through a modified diacylglycerol kinase assay. RT-PCR was utilized to assess IL-1β expression. Results TUNEL staining showed significant apoptosis in the hyperoxia-exposed lungs at 3 days only. Co-staining of the apoptotic cells with Hoechst, and E-Cadherin indicated that apoptotic cells were mainly epithelial cells. The expression of Bax and ceramide was significantly higher in the hyperoxia-exposed lungs at 3 and 14 days of age, but not at 7 days. Bcl-2 was significantly elevated in the hyperoxia-exposed lungs at 3 and 14 days. IL-1β expression was significantly increased at 14 days. Conclusion Exposure of neonatal rat lung to hyperoxia results in early apoptosis documented by TUNEL assay. The early rise in Bax and ceramide appears to overcome the anti-apoptotic activity of Bcl-2. Further exposure did not result in late apoptotic changes. This suggests that apoptotic response to hyperoxia is time sensitive. Prolonged hyperoxia results in acute lung injury and the shifting balance of ceramide, Bax and Bcl-2 may be related to the evolution of the inflammatory process.

  10. 脊髓损伤后Bcl-2抗神经元凋亡的研究%Study on the role of Bcl-2 in anti- neuronal apoptosis after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    王瑛; 孙志扬; 张夔鸣; 许国强; 李光

    2010-01-01

    ,functional deficits were evaluated with BBB scales, and the apoptosis of neurons was investigated by using TUNEL method. Another three mice of control group were only treated with laminectomy without SCI for comparison. Results The mean functional scores in the control mice were lower than those in the Bcl-2 TG mice, although the unpaired T -test revealed no significant differences. On the other hand, the number of TUNEL positive neurons and IOD(Integrated Optical Density)score in the Bcl-2 TG mice were both significantly lower than those in the control mice. Conclusions This experiment suggests that overexpression of Bcl-2 may suppress neuronal apoptosis after SCI. The Bcl-2 may be an important factor in relieving the damage within CNS after trauma.

  11. Punicalagin attenuated cerebral ischemia-reperfusion insult via inhibition of proinflammatory cytokines, up-regulation of Bcl-2, down-regulation of Bax, and caspase-3.

    Science.gov (United States)

    Yaidikar, Lavanya; Thakur, Santhrani

    2015-04-01

    Punicalagin (PG) is a hydrolysable tannin compound found in Punica granatum L. The purpose of the present work is to explore the neuroprotective mechanism of PG against ischemia-reperfusion (I/R) injury in rat model of middle cerebral artery occlusion (MCAO). Rats were randomly divided into sham, MCAO, and PG-treated groups. PG (15 and 30 mg/kg), the vehicle was administered orally for 7 days prior to MCAO. Rats were anesthetised with ketamine (100 mg/kg/im), xylazine (10 mg/kg/im) and subjected to 2 h occlusion and 22 h reperfusion. The effects of PG on behavioral deficit and infarct volume, the levels of glutamate and calcium as well as the levels of inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) were evaluated. Moreover, the expressions of caspase-3, Bcl-2, and Bax were detected by Western blotting. As compared with MCAO group, PG-treated rats showed dose-dependent reduction in infarct volume and substantial improvement in behavioral deficit. The levels of glutamate, calcium, TNF-α, IL-1β, and IL-6 were restored significantly. The Western blotting results revealed that the expression of Bcl-2 was up-regulated and that of caspase-3, Bax were down-regulated when exposed to PG. From our results, it can be concluded that PG showed an ameliorative effect against cerebral I/R injury in rats through its anti-inflammatory, antioxidant actions besides it inhibits excitotoxicity. It also suppresses apoptosis through regulating, Bcl-2, caspase-3, and Bax protein expressions, perhaps another mechanism by which PG employs its neuroprotective action. PMID:25555468

  12. The distinct role of guanine nucleotide exchange factor Vav1 in Bcl-2 transcription and apoptosis inhibition in Jurkat leukemia T cells

    Institute of Scientific and Technical Information of China (English)

    Jie YIN; Ya-juan WAN; Shi-yang LI; Ming-juan DU; Cui-zhu ZHANG; Xing-long ZHOU; You-jia CAO

    2011-01-01

    Aim: To investigate a novel function of proto-oncogene Vavl in the apoptosis of human leukemia Jurkat cells.Methods: Jurkat cells,Jurkat-derived vavl-null cells(J.Vavl)and Vavl-reconstituted J.WT cells were treated with a Fas agonist antibody,IgM clone CH11.Apoptosis was determined using propidium iodide(PI)staining,Annexin-V staining,DNA fragmentation,cleavage of caspase 3/caspase 8,and poly(ADP-ribose)polymerase(PARP).Mitochondria transmembrane potential(Δψm)was measured using DiOC6(3)staining.Transcription and expression of the Bcl-2 family of proteins were evaluated using semi-quantitative RT-PCR and Western blot,respectively.Bcl-2 promoter activity was analyzed using luciferase reporter assays.Results: Cells lacking Vav1 were more sensitive to Fas-mediated apoptosis than Jurkat and J.WT cells.J.Vav1 cells lost mitochondria transmembrane potential(Δψm)more rapidly upon Fas induction.These phenotypes could be rescued by re-expression of Vav1 in J.Vav1 cells.The expression of Vav1 increased the transcription of pro-survival Bcl-2.The guanine nucleotide exchange activity of Vav1was required for enhancing Bcl-2 promoter activity,and the Vav1 downstream substrate,small GTPase Rac2,was likely involved in the control of Bcl-2 expression.Conclusion: Vav1 protects Jurkat cells from Fas-mediated apoptosis by promoting Bcl-2 transcription through its GEF activity.

  13. Function of apoptosis and expression of the proteins Bcl-2, p53 and C-myc in the development of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    An Gao Xu; Shao Guang Li; Ji Hong Liu; Ai Hua Gan

    2001-01-01

    @@INTRODUCTION In China ,the incidence and mortality of gastric cancer rank the second among all cancers. Recent development of cancer [1-20].The aim of this study was investigat the insight of apoptosis and bcl-2, p53 and C-myc protein expression in the development of gastric cancer .

  14. Depletion of Bcl-2 by an antisense oligonucleotide induces apoptosis accompanied by oxidation and externalization of phosphatidylserine in NCI-H226 lung carcinoma cells.

    Science.gov (United States)

    Koty, Patrick P; Tyurina, Yulia Y; Tyurin, Vladimir A; Li, Shang-Xi; Kagan, Valerian E

    2002-01-01

    Oxidant-induced apoptosis involves oxidation of many different and essential molecules including phospholipids. As a result of this non-specific oxidation, any signaling role of a particular phospholipid-class of molecules is difficult to elucidate. To determine whether preferential oxidation of phosphatidylserine (PS) is an early event in apoptotic signaling related to PS externalization and is independent of direct oxidant exposure, we chose a genetic-based induction of apoptosis. Apoptosis was induced in the lung cancer cell line NCI-H226 by decreasing the amount of Bcl-2 protein expression by preventing the translation of bcl-2 mRNA using an antisense bcl-2 oligonucleotide. Peroxidation of phospholipids was assayed using a fluorescent technique based on metabolic integration of an oxidation-sensitive and fluorescent fatty acid, cis-parinaric acid (PnA), into cellular phospholipids and subsequent HPLC separation of cis-PnA-labeled phospholipids. We found a decrease in Bcl-2 was associated with a selective oxidation of PS in a sub-population of the cells with externalized PS. No significant difference in oxidation of cis-PnA-labeled phospholipids was observed in cells treated with medium alone or a nonsense oligonucleotide. Treatment with either nonsensc or antisense bcl-2 oligonucleotides was not associated with changes in the pattern of individual phospholipid classes as determined by HPTLC. These metabolic and topographical changes in PS arrangement in plasma membrane appear to be early responses to antisense bcl-2 exposure that trigger a PS-dependent apoptotic signaling pathway. This observed externalization of PS may facilitate the 'labeling' of apoptotic cells for recognition by macrophage scavenger receptors and subsequent phagocytic clearance. PMID:12162425

  15. BEX1 Promotes Imatinib-Induced Apoptosis by Binding to and Antagonizing BCL-2

    OpenAIRE

    Qian Xiao; Yeting Hu; Yue Liu; Zhanhuai Wang; Haitao Geng; Lifeng Hu; Dengyong Xu; Ke Wang; Lei Zheng; Shu Zheng; Kefeng Ding

    2014-01-01

    An enhanced anti-apoptotic capacity of tumor cells plays an important role in the process of breakpoint cluster region/Abelson tyrosine kinase gene (BCR/ABL)-independent imatinib resistance. We have previously demonstrated that brain expressed X-linked 1 (BEX1) was silenced in secondary imatinib-resistant K562 cells and that re-expression of BEX1 can restore imatinib sensitivity resulting in the induction of apoptosis. However, the mechanism by which BEX1 executes its pro-apoptotic function r...

  16. The function of apoptosis and protein expression of bcl-2, p53 and C-myc inthe development of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    An Gao Xu; Shao Guang Li; Ji Hong Liu; Ai Hua Gan

    2000-01-01

    AIM To understand the rule and possible function of apoptosis and protein expression of bcl-2, p53 and C-myc in chronic gastritis, gastric ulcer, non-classic proliferation of gastric mucosa and gastric cancer.METHODS Apoptosis was detected by using in situ terminal labelling (TUNEL). The protein expression ofbcl-2, p53 and C-myc was detected by immunohistochemical method.RESULTS The indexes of apoptosis in chronic active gastritis, gastric ulcer, mild and severe non-classicproliferation of gastric mucosa, early and progressive gastric cancer were 16.8%±12.3%, 24.1%±20.0%,19.3%±16.4%, 15.7%±15.2%, 10.1%±9.1% and 6.3%±6.0%, respectively. The index of progressivegastric cancer was lower than that of early gastric cancer and non-classic proliferation of gastric mucosa(P<0.05). The positive rate of bcl-2 protein was 9.4%, 27.6%, 52.9%, 75.0%, 83.3% and 46.7%,respectively. The positive rate of bcl-2 of early gastric cancer was higher than that of progressive gastriccancer. The positive rates of p53 protein of severe non-classic proliferation, early and progressive gastriccancer were 25.0%, 33.3% and 63.3%, respectively. The positive rate of p53 of progressive gastric cancerwas higher than that of early gastric cancer and non-classic proliferation (P<0.05). In Lauren types, theindex of apoptosis, protein expression rates of bcl-2, p53 and C-myc of intestinal type were 8.3%±7.2%,38.9%, 77.7% and 56.6%, while that of diffuse type were 5.1%±4.9%, 58.3%, 50.0% and 8.3%,respectively. All markers had statistical difference between two types (P<0.05).CONCLUSION Apoptosis was inhibited stepwise in the development of non-classic proliferation of gastricmucosa to early gastric cancer and then to progressive gastric cancer. The high expression of bcl-2, p53 andC-myc was related to the development of gastric cancer, bcl-2 might play an important role in early gastriccancer while p53 and C-myc act mostly in middle and late stage gastric cancer. The Lauren typing of

  17. Adenosine triphosphate-sensitive potassium channel opener protects PC12 cells against hypoxia-induced apoptosis through PI3K/Akt and Bcl-2 signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Hong Zhang; Chunhong Jia; Danyang Zhao; Yang Lu; Runling Wang; Jia Li

    2010-01-01

    Although previous studies have shown the neuroprotective effects of the adenosine triphosphate (ATP)-sensitive potassium (KATP) channel opener against ischemic neuronal damage, little is known about the mechanisms involved. Phosphatidylinositol-3 kinase (PI3K)/v-akt murine thy-moma viral oncogene homolog (Akt) and Bcl-2 are thought to be important factors that mediate neuroprotection. The present study investigated the effects of KATP openers on hypoxia-induced PC12 cell apoptosis, as well as mRNA and protein expression of Akt and Bcl-2. Results demon-strated that pretreatment of PC12 cells with pinacidil, a KATP opener, resulted in decreased PC12 cell apoptosis following hypoxia, as detected by Annexin-V fluorescein isothiocyanate/ propidium iodide double staining flow cytometry. In addition, mRNA and protein expression of phosphorylated Akt (p-Akt) and Bcl-2 increased, as detected by immunofluorescence, Western blot analysis, and reverse-transcription polymerase chain reaction. The protective effect of this preconditioning was attenuated by glipizide, a selective KATP blocker. These results demonstrate for the first time that the protective mechanisms of KATP openers on PC12 cell apoptosis following hypoxia could result from activation of the PI3K/Akt signaling pathway, which further activates expression of the downstream Bcl-2 gene.

  18. Study on Apoptosis and Expression of P53, Bcl-2, Bax in Cardiac Myocytys of Congestive Heart Failure Induced by Ventricular Pacing

    Institute of Scientific and Technical Information of China (English)

    QI; Benling; CAO; Linsheng; WANG; Lin; ZHOU; Jingqun

    2001-01-01

    The apoptosis and the expression of p53, bcl-2 and Bax in myocytes of chronic rapid ventricular pacing-induced congestive heart failure (CHF) in rabbits were investigated. The CHF rabbit model (P, n= 7) was established by chronic rapid ventricular pacing for 3 weeks. By using TUNEL technique the apoptosis in the myocytes in the rabbit model was studied and the expression of p53,bcl-2 and Bax in myocytes was detected by using immunohistochemical method. Sham-operated (C,n = 9) group served as control group. The results showed that there were about 4033± 884.56 apoptotic cells/106 myocytes in P group, but no apoptotic cells were found in C group. Myocytes positive for p53 immunoreactivity (18. 86±8. 48 vs 5. 06±0. 87, P<0.01) and positive for Bax immunoreactivity (7. 15±1.91 vs 0. 43±0. 09, P<0.01) were increased in P group as compared with those in C group, while the myocytes positive for bcl-2 immunoreactivity (7. 08±1.05 vs 14. 97±4.47,P<0. 01) and the ratio of bcl-2/Bax were decreased in P group as compared with those in C group.Apoptosis was involved in the development of CHF induced by continuously rapid ventricular pacing in rabbit. The expression of p53 and Bax was increased, while the expression of bcl-2 was inhibited.These might play an important role in the acceleration of the apoptosis.

  19. Specific COX-2 inhibitor NS398 induces apoptosis in human liver cancer cell line HepG2 through BCL-2

    Institute of Scientific and Technical Information of China (English)

    Dong-Sheng Huang; Ke-Zhen Shen; Jian-Feng Wei; Ting-Bo Liang; Shu-Sen Zheng; Hai-Yang Xie

    2005-01-01

    AIM: To evaluate the effects of NS-398, a cyclooxygenase2 (COX-2) inhibitor, on the proliferation and apoptosis of HepG2 cells.METHODS: The effects of NS-398 on the proliferation of HepG2 cells were evaluated by MTT. DNA fragmentation gel analysis was used to analyze the apoptotic cells. DNA ploidy and apoptotic cell percentage were calculated by flow cytometry.The expression of COX-2 and Bcl-2 mRNA was identified by competitive RT-PCR. Furthermore, expression level of Bcl-2 was detected using Western blot in HepG2 after treated with NS-398.RESULTS: NS-398 inhibited cell proliferation and induced apoptosis of HepG2 cells in a concentration-dependent manner. DNA ploidy analysis showed that S phase cells were significantly decreased with increase of NS-398 concentration.The quiescent G0/G1 phase was accumulated with decrease of Bcl-2 mRNA. Whereas NS-398 had no effect on the expression of COX-2 mRNA, and no correlations were found between COX-2 mRNA and HepG2 cell proliferation and apoptosis induced by NS-398 (r = 0.056 and r= 0.119,respectively). Bcl-2 protein level was inhibited after treated with NS-398.CONCLUSION: NS-398 significantly inhibits the proliferation and induces apoptosis of HepG2 cells. Mechanisms involved may be accumulation of quiescent G0/G1 phase and decrease of Bcl-2 expression.

  20. AT-101, a small molecule inhibitor of anti-apoptotic Bcl-2 family members, activates the SAPK/JNK pathway and enhances radiation-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Rooswinkel Rogier

    2009-10-01

    Full Text Available Abstract Background Gossypol, a naturally occurring polyphenolic compound has been identified as a small molecule inhibitor of anti-apoptotic Bcl-2 family proteins. It induces apoptosis in a wide range of tumor cell lines and enhances chemotherapy- and radiation-induced cytotoxicity both in vitro and in vivo. Bcl-2 and related proteins are important inhibitors of apoptosis and frequently overexpressed in human tumors. Increased levels of these proteins confer radio- and chemoresistance and may be associated with poor prognosis. Consequently, inhibition of the anti-apoptotic functions of Bcl-2 family members represents a promising strategy to overcome resistance to anticancer therapies. Methods We tested the effect of (--gossypol, also denominated as AT-101, radiation and the combination of both on apoptosis induction in human leukemic cells, Jurkat T and U937. Because activation of the SAPK/JNK pathway is important for apoptosis induction by many different stress stimuli, and Bcl-XL is known to inhibit activation of SAPK/JNK, we also investigated the role of this signaling cascade in AT-101-induced apoptosis using a pharmacologic and genetic approach. Results AT-101 induced apoptosis in a time- and dose-dependent fashion, with ED50 values of 1.9 and 2.4 μM in Jurkat T and U937 cells, respectively. Isobolographic analysis revealed a synergistic interaction between AT-101 and radiation, which also appeared to be sequence-dependent. Like radiation, AT-101 activated SAPK/JNK which was blocked by the kinase inhibitor SP600125. In cells overexpressing a dominant-negative mutant of c-Jun, AT-101-induced apoptosis was significantly reduced. Conclusion Our data show that AT-101 strongly enhances radiation-induced apoptosis in human leukemic cells and indicate a requirement for the SAPK/JNK pathway in AT-101-induced apoptosis. This type of apoptosis modulation may overcome treatment resistance and lead to the development of new effective combination

  1. AT-101, a small molecule inhibitor of anti-apoptotic Bcl-2 family members, activates the SAPK/JNK pathway and enhances radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Gossypol, a naturally occurring polyphenolic compound has been identified as a small molecule inhibitor of anti-apoptotic Bcl-2 family proteins. It induces apoptosis in a wide range of tumor cell lines and enhances chemotherapy- and radiation-induced cytotoxicity both in vitro and in vivo. Bcl-2 and related proteins are important inhibitors of apoptosis and frequently overexpressed in human tumors. Increased levels of these proteins confer radio- and chemoresistance and may be associated with poor prognosis. Consequently, inhibition of the anti-apoptotic functions of Bcl-2 family members represents a promising strategy to overcome resistance to anticancer therapies. We tested the effect of (-)-gossypol, also denominated as AT-101, radiation and the combination of both on apoptosis induction in human leukemic cells, Jurkat T and U937. Because activation of the SAPK/JNK pathway is important for apoptosis induction by many different stress stimuli, and Bcl-XL is known to inhibit activation of SAPK/JNK, we also investigated the role of this signaling cascade in AT-101-induced apoptosis using a pharmacologic and genetic approach. AT-101 induced apoptosis in a time- and dose-dependent fashion, with ED50 values of 1.9 and 2.4 μM in Jurkat T and U937 cells, respectively. Isobolographic analysis revealed a synergistic interaction between AT-101 and radiation, which also appeared to be sequence-dependent. Like radiation, AT-101 activated SAPK/JNK which was blocked by the kinase inhibitor SP600125. In cells overexpressing a dominant-negative mutant of c-Jun, AT-101-induced apoptosis was significantly reduced. Our data show that AT-101 strongly enhances radiation-induced apoptosis in human leukemic cells and indicate a requirement for the SAPK/JNK pathway in AT-101-induced apoptosis. This type of apoptosis modulation may overcome treatment resistance and lead to the development of new effective combination therapies

  2. Effect of compound preparation Tongqiao Jiannao capsules on neural cell apoptosis and Bcl-2 and Bax protein levels in a rat model of brain ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Rui Wang; Guanglai Li; Wei Wang; Huanying Li

    2008-01-01

    BACKGROUND: Pharmacological studies have demonstrated that compound preparation Tongqiao Jiannao capsules composed of Zexie, Baizhu, Honghua, Danshen, and Shexiang can supplement qi,activate blood circulation, relieve blood stasis, induce resuscitation for alleviating pain, relieve pain, anddilate blood vessels.OBJECTIVE: To observe the effects of Tongqiao Jiannao capsules on the levels of the anti-apoptotic protein Bcl-2 and the pro-apoptotic protein Bax, and verify the mechanism of action.DESIGN, TIME AND SETTING: Randomized, controlled animal experiment, performed in the Laboratory of Biochemistry and Molecular Biology, Shanxi Medical University between June 2001 and December 2002.MATERIALS: The right middle cerebral arteries of 24 healthy adult Sprague Dawley rats were occluded by the suture method. The primary Chinese herbal medicinal ingredients of Tongqiao Jiannao capsules are Zexie. Baizhu, Honghua, Danshen, and Shexiang, which were purchased from Shanxi Provincial Medicinal Material Company, China, and prepared into condensed granules in the Room for Chinese Herbal Medicine Preparation, Second Hospital, Shanxi Medical University. Bcl-2 and Bax immunohistochemical staining kits, a 3,3-diaminobenzidine(DAB) kit, and an in situ apoptosis detection kit were purchased from Wuhan Boster Bioengineering Co., Ltd., China.METHODS: Twenty-four rats were randomly and evenly divided into three groups: (1) sham-operated rats in which sutures were inserted and immediately pulled out; (2) Tongqiao Jiannao capsule-treated rats that were intragastrically administered 6.5 g/kg/d Tongqiao Jiannao capsule preparation for seven successive days prior to middle cerebral artery occlusion (MCAO); and (3) MCAO rats without any other treatments.MAIN OUTCOME MEASURES: The levels of neural cell apoptosis and Bcl-2 and Bax proteins at 24 hours post-surgery.RESULTS: In the MCAO group, the numbers of apoptotic cells and Bax-positive cells were significantly increased, while the numbers of

  3. Targeting Antiapoptotic Bcl-2 Family Members with Cell-Permeable BH3 Peptides Induces Apoptosis Signaling, Death in Head, Neck Squamous Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Rongxiu Li

    2007-10-01

    Full Text Available Head, neck squamous cell carcinomas (HNSCCs are frequently characterized by chemotherapy, radiation resistance, by overexpression of Bcl-XL, an antiapoptotic member of the Bcl-2 protein family. In this report, we examined whether cell-permeable peptides derived from the BH3 domains of proapoptotic Bax, Bad, or Bak could be used to target Bcl-XL and/or Bcl-2 in HNSCC cells, induce apoptotic death in these cells. To render the peptides cell-permeable, Antennapedia (Ant or polyarginine (R8 peptide transduction domain was fused to the amino termini. Fluorescence microscopy of peptide-treated HNSCC cells revealed that the BH3 peptides colocalized with mitochondria, the site of Bcl-XL, Bcl-2 expression. By contrast, a mutant peptide (BaxE BH3 that cannot bind Bcl-XL or Bcl-2 was diffusely localized throughout the cytoplasm. Treatment of three HNSCC cell lines (1483, UM-22A, UM-22B with the wild-type BH3 peptides resulted in loss of viability, induction of apoptosis, as assessed by 3-(4,5-dimethythiazol-2yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium (MTS assays, annexin V staining. In general, Ant-conjugated peptides were more potent than R8-conjugated peptides, Bad BH3 peptide was typically more potent than Bax BH3 or Bak BH3. Treatment of purified HNSCC mitochondria with BH3 peptides resulted in robust release of cytochrome c. Thus, the relative apoptosis resistance of HNSCC cells is not due to a deficit in this step of the intrinsic, mitochondrialmediated apoptosis pathway. We conclude that cellpermeable BH3 peptides can be used to target Bcl-XL and/or Bcl-2 in HNSCC, that targeting of these proteins may have therapeutic value in the treatment of this disease.

  4. The Relationship of Expression of bcl-2, p53, and Proliferating Cell Nuclear Antigen (PCNA) to Cell Proliferation and Apoptosis in Renal Cell Carcinoma

    Institute of Scientific and Technical Information of China (English)

    朱朝辉; 邢诗安; 程平; 李国胜; 杨郁; 曾甫清; 鲁功成

    2004-01-01

    To investigate the relationship of bcl-2, p53, proliferating cell nuclear antigen (PCNA) to cell proliferation, apoptosis and pathological parameters, the patterns of cell growth and turnover in renal cell carcinoma (RCC), formalin-fixed and paraffin-embedded tissue blocks from 34 patients with RCC were examined. Cell proliferation activity was detected by PCNA immunostaining and the proliferation index (PI) was expressed as a percentage of the PCNA-positive cells in the tumor cells. Apoptosis was detected by terminal deoxy- nucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), and the apoptotic index (AI) was expressed as a percentage of the TUNEL-positive cells in the tumor cells. Expressions of bcl-2 and p53 were assessed immunohistochemically. Our results showed that the PI ranged from 6.0 % to 24.0 % (median 12.3 %) and theAI from 2.0 % to 8.0 % (median 5.4 %) in RCC. The expression of the bcl-2 protein was demonstrated in 15 cases (44.1 %); the expression of the p53 protein, however, was seen in only 3 case. bcl-2 positivity was not associated with PI or AI or any pathological parameters. There were close associations between PI and tumor grade and stage, and a significant relationship between AI and the tumor grade of RCC. Our study suggests that bcl-2 positivity was not associated with PI or AI or any pathological parameters. There are close associations between PI and AI and tumor grade and stage of RCC. Active cell proliferation may be accompanied by frequent apoptosis in RCC.

  5. Up-regulation of Bcl-2 is required for the progression of prostate cancer cells from an androgen-dependent to an androgen-independent growth stage

    Institute of Scientific and Technical Information of China (English)

    Yuting Lin; Junichi Fukuchi; Richard A Hiipakka; John M Kokontis; Jialing Xiang

    2007-01-01

    Bcl-2 is an anti-apoptotic oncoprotein and its protein levels are inversely correlated with prognosis in many cancers.However, the role of Bcl-2 in the progression of prostate cancer is not clear. Here we report that Bcl-2 is required for the progression of LNCaP prostate cancer cells from an androgen-dependent to an androgen-independent growth stage. The mRNA and protein levels of Bcl-2 are significantly increased in androgen-independent prostate cancer cells, shRNA-mediated gene silencing of Bcl-2 in androgen-independent prostate cancer cells promotes UV-induced apoptosis and suppresses the growth of prostate tumors in vivo. Growing androgen-dependent cells under androgen-deprivation conditions results in formation of androgen-independent colonies; and the transition from androgen-dependent to androgen-independent growth is blocked by ectopic expression of the Bcl-2 antagonist Bax or Bcl-2 shRNA. Thus, our results demonstrate that Bcl-2 is not only critical for the survival of androgen-independent prostate cancer cells, but is also required for the progression of prostate cancer cells from an androgen-dependent to an androgen-independent growth stage.

  6. Bcl-2 associated athanogene 5 (Bag5) is overexpressed in prostate cancer and inhibits ER-stress induced apoptosis

    International Nuclear Information System (INIS)

    The Bag (Bcl-2 associated athanogene) family of proteins consists of 6 members sharing a common, single-copied Bag domain through which they interact with the molecular chaperone Hsp70. Bag5 represents an exception in the Bag family since it consists of 5 Bag domains covering the whole protein. Bag proteins like Bag1 and Bag3 have been implicated in tumor growth and survival but it is not known whether Bag5 also exhibits this function. Bag5 mRNA and protein expression levels were investigated in prostate cancer patient samples using real-time PCR and immunoblot analyses. In addition immunohistological studies were carried out to determine the expression of Bag5 in tissue arrays. Analysis of Bag5 gene expression was carried out using one-way ANOVA and Bonferroni’s Multiple Comparison test. The mean values of the Bag5 stained cells in the tissue array was analyzed by Mann-Whitney test. Functional studies of the role of Bag5 in prostate cancer cell lines was performed using overexpression and RNA interference analyses. Our results show that Bag5 is overexpressed in malignant prostate tissue compared to benign samples. In addition we could show that Bag5 levels are increased following endoplasmic reticulum (ER)-stress induction, and Bag5 relocates from the cytoplasm to the ER during this process. We also demonstrate that Bag5 interacts with the ER-resident chaperone GRP78/BiP and enhances its ATPase activity. Bag5 overexpression in 22Rv.1 prostate cancer cells inhibited ER-stress induced apoptosis in the unfolded protein response by suppressing PERK-eIF2-ATF4 activity while enhancing the IRE1-Xbp1 axis of this pathway. Cells expressing high levels of Bag5 showed reduced sensitivity to apoptosis induced by different agents while Bag5 downregulation resulted in increased stress-induced cell death. We have therefore shown that Bag5 is overexpressed in prostate cancer and plays a role in ER-stress induced apoptosis. Furthermore we have identified GRP78/BiP as a novel

  7. Synergistic antitumoral activity and induction of apoptosis by novel pan Bcl-2 proteins inhibitor apogossypolone with adriamycin in human hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jin-xia MI; Guang-feng WANG; Heng-bang WANG; Xiao-qing SUN; Xin-yan NI; Xiong-wen ZHANG; Jia-ming TANG; Da-jun YANG

    2008-01-01

    Aim: To investigate the in vitro and in vivo activities and related mechanism of apogossypoione (ApoG2) alone or in combination with adriamycin (ADM) against human hepatocellular carcinoma (HCC). Methods: The IC50 of ApoG2 in vitro was tested by WST assay, and the synergistic effect was analyzed using the CalcuSyn method. Cell apoptosis was determined using 4',6-diamidino-2-phenylindole staining and flow cytometric analysis. Western blotting was used to determine the expression of apoptosis-related proteins. In vivo activity was evaluated in the xenograft model in nude mice, and apoptosis in tumor tissues was determined by terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling (TUNEL) assay. Results: The IC50 of ApoG2 in HCC cells was 17.28-30.63 μmol/L. When ApoG2 was combined with ADM, in-creased cytotoxicity and apoptosis were observed in SMMC-7721 cells compared to treatment with ApoG2 alone. The Western blotting results indicated that the ApoG2 induced apoptosis in SMMC-7721 cells by downregulating anti-apoptotic proteins Bcl-2, Mcl-1, and Bcl-XL, up-regulating pro-apoptotic protein Noxa, and promoting the activities of caspases-9 and -3. The tumor growth of xenograft SMMC-7721 was inhibited in nude mice when ApoG2 was administered orally without causing damage to the normal tissues. The in vivo study also indicated an increasing anti-tumoral effect when ApoG2 at 100 or 200 mg/kg dosages were used together with ADM at 5.5 mg/kg, with relative tumor proliferation rate (T/C) values of 0.456 and 0.323, respectively. Apoptosis induced in vivo by ApoG2 alone or combined with ADM was confirmed by TUNEL assay in tumor tissues. Conclusion: ApoG2 is a potential non-toxic target agent that induces apoptosis by upregulating Noxa, while inhibiting anti-apoptotic proteins and pro-moting the effect of chemotherapy agent ADM in HCC.

  8. DNA Hypermethylation of CREB3L1 and Bcl-2 Associated with the Mitochondrial-Mediated Apoptosis via PI3K/Akt Pathway in Human BEAS-2B Cells Exposure to Silica Nanoparticles

    Science.gov (United States)

    Zou, Yang; Li, Qiuling; Jiang, Lizhen; Guo, Caixia; Li, Yanbo; Yu, Yang; Li, Yang; Duan, Junchao; Sun, Zhiwei

    2016-01-01

    The toxic effects of silica nanoparticles (SiNPs) are raising concerns due to its widely applications in biomedicine. However, current information about the epigenetic toxicity of SiNPs is insufficient. In this study, the epigenetic regulation of low-dose exposure to SiNPs was evaluated in human bronchial epithelial BEAS-2B cells over 30 passages. Cell viability was decreased in a dose- and passage-dependent manner. The apoptotic rate, the expression of caspase-9 and caspase-3, were significantly increased induced by SiNPs. HumanMethylation450 BeadChip analysis identified that the PI3K/Akt as the primary apoptosis-related pathway among the 25 significant altered processes. The differentially methylated sites of PI3K/Akt pathway involved 32 differential genes promoters, in which the CREB3L1 and Bcl-2 were significant hypermethylated. The methyltransferase inhibitor, 5-aza, further verified that the DNA hypermethylation status of CREB3L1 and Bcl-2 were associated with downregulation of their mRNA levels. In addition, mitochondrial-mediated apoptosis was triggered by SiNPs via the downregulation of PI3K/Akt/CREB/Bcl-2 signaling pathway. Our findings suggest that long-term low-dose exposure to SiNPs could lead to epigenetic alterations. PMID:27362941

  9. The targeted inhibition of mitochondrial Hsp90 overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis

    International Nuclear Information System (INIS)

    Previous studies have reported that a Gamitrinib variant containing triphenylphosphonium (G-TPP) binds to mitochondrial Hsp90 and rapidly inhibits its activity, thus inducing the apoptotic pathway in the cells. Accordingly, G-TPP shows a potential as a promising drug for the treatment of cancer. A cell can die from different types of cell death such as apoptosis, necrosis, necroptosis, and autophagic cell death. In this study, we further investigated the mechanisms and modes of cell death in the G-TPP-treated Hep3B and U937 cell lines. We discovered that G-TPP kills the U937 cells through the apoptotic pathway and the overexpression of Bcl-2 significantly inhibits U937 cell death to G-TPP. We further discovered that G-TPP kills the Hep3B cells by activating necroptosis in combination with the partial activation of caspase-dependent apoptosis. Importantly, G-TPP overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. We also observed that G-TPP induces compensatory autophagy in the Hep3B cell line. We further found that whereas there is a Bcl-2-Beclin 1 interaction in response to G-TPP, silencing the beclin 1 gene failed to block LC3-II accumulation in the Hep3B cells, indicating that G-TPP triggers Beclin 1-independent protective autophagy in Hep3B cells. Taken together, these data reveal that G-TPP induces cell death through a combination of death pathways, including necroptosis and apoptosis, and overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. These findings are important for the therapeutic exploitation of necroptosis as an alternative cell death program to bypass the resistance to apoptosis. Highlights: ► G-TPP binds to mitochondrial Hsp90. ► G-TPP induces apoptosis in U937 human leukemia cancer cells. ► G-TPP induces combination of death pathways in Hep3B cell. ► G-TPP overcomes the resistance conferred by Bcl-2 in Hep3B cells via necroptosis. ► G-TPP triggers Beclin 1-independent

  10. Small interfering RNA of cyclooxygenase-2 induces growth inhibition and apoptosis independently of Bcl-2 in human myeloma RPMI8226 cells

    Institute of Scientific and Technical Information of China (English)

    Qiu-bai LI; Zhi-chao CHEN; Yong YOU; Ping ZOU

    2007-01-01

    Aim: To investigate the effects of small interfering RNA of cyclooxygenase-2 (COX-2) on the proliferation and apoptosis of human multiple myeloma RPMI8226 cells and its relation with the Bcl-2 family in vitro. Methods: Transcription and expression of COX-2 in human myeloma RPMI8226 cells were checked by RT-PCR and Western blot analysis, respectively. The COX-2 siRNA fragment targeting exon 5 of COX-2 gene was transfected into the cells with the Amaxa nucleofection technique. The inhibition of cell growth was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) assay. Apoptosis was estimated by Annexin-V/propidium iodide double-labeled cytometry and confirmed by termi-nal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. Bcl-2 and Bax expression was evaluated by Western blot analysis. Results: The COX-2 siRNA fragment could be successfully transfected into RPMI8226 cells, which resulted in the significant inhibition of transcription and expression of COX-2 in the myeloma cells. Proliferation of the transfected cells was inhibited and apoptosis was induced (6.52%±0.32%, 12.53%±2.52%, 24.39%±3.51% and 36.48%±4.96% for 0, 12, 24, and 48 h, respectively) in a time-dependent manner (P<0.01), However, the expression of Bcl-2 and Bax in the RPMI8226 cells had no significant changes after nucleofection. Conclusion: COX-2 siRNA transfection can suppress COX-2 expression in human myeloma RPMI8226 cells, which leads to growth inhibition and apoptosis independent of Bcl-2.

  11. 细胞凋亡相关基因Bcl-2及Bax在骨肉瘤中的表达与自下而上质量的关系%Expression of apoptosis related gene Bcl 2 and Bax in osteosarcoma and their relationship with the prognosis

    Institute of Scientific and Technical Information of China (English)

    黄鲁豫; 刘建; 王臻; 吕荣

    2002-01-01

    Objective Apoptosis related gene Bcl 2 and Bax in osteosarcoma patients with different clinical appearance were being studied to analyze the prognosis of the patients. Method The cases were divided into two different groups according to the results of the follow up.33 cases in high risk group and 18 cases in low risk group. Expression of Bcl 2 and Bax were immunohistochemically stained by ABC method. Result Positive expression rate of Bcl 2 was 61% in high risk group (20/23) and 33% in low risk group (1/8). Positive expression of Bax was 22% in high risk group (6/27) and 67% in low risk group(12/18).Conclusion Expression of Bcl 2 and Bax was related to the prognosis of osteosarcoma. Positively expressed Bcl 2 in osteosarcoma cells may indicate bad prognosis. If Bax is highly expressed in osteosarcoma cells, this may indicated a good prognosis.

  12. Effect of Hypoxic Preconditioning on Neural Cell Apoptosis and Expression of Bcl-2 and Bax in Cerebral Ischemia-Reperfusion in Rats

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to investigate the protective effect of hypoxic preconditioning on the cerebral ischemia-reperfusion injury, the expression of Bcl-2 and Bax was detected by using immunohistochemical staining after 3 h cerebral ischemia followed by 1, 6, 12, 24 and 48 h reperfusion respectively in rats treated with or without hypoxic preconditioning before cerebral ischemia. In addition,the apoptosis of neural cells and the behavioral scores for neurological functions recovery were evaluated by TUNEL staining and "crawvling method", respectively. Compared with control group (cerebral ischemia-reperfusion without hypoxic preconditioning), the expression of Bcl-2 was significantly increased, but that of Bax decreased in the hypoxic preconditioning group (cerebral ischemiareperfusion with hypoxic preconditioning), both P<0. 05. The pre-treatment with hypoxic preconditioning could reduce the apoptosis of neural cells and promote the neurological function recovery as compared to control group. It was suggested that hypoxic preconditioning may have protective effects on the cerebral ischemia-reperfusion injury by inhibiting the apoptosis of neural cells, increase the expression of Bcl-2 and decrease the expression of Bax.

  13. A novel BH3 mimetic efficiently induces apoptosis in melanoma cells through direct binding to anti-apoptotic Bcl-2 family proteins, including phosphorylated Mcl-1.

    Science.gov (United States)

    Liu, Yubo; Xie, Mingzhou; Song, Ting; Sheng, Hongkun; Yu, Xiaoyan; Zhang, Zhichao

    2015-03-01

    The Bcl-2 family modulates sensitivity to chemotherapy in many cancers, including melanoma, in which the RAS/BRAF/MEK/ERK pathway is constitutively activated. Mcl-1, a major anti-apoptotic protein in the Bcl-2 family, is extensively expressed in melanoma and contributes to melanoma's well-documented chemoresistance. Here, we provide the first evidence that Mcl-1 phosphorylation at T163 by ERK1/2 and JNK is associated with the resistance of melanoma cell lines to the existing BH3 mimetics gossypol, S1 and ABT-737, and a novel anti-apoptotic mechanism of phosphorylated Mcl-1 (pMcl-1) is revealed. pMcl-1 antagonized the known BH3 mimetics by sequestering pro-apoptotic proteins that were released from Bcl-2/Mcl-1. Furthermore, an anthraquinone BH3 mimetic, compound 6, was identified to be the first small molecule to that induces endogenous apoptosis in melanoma cells by directly binding Bcl-2, Mcl-1, and pMcl-1 and disrupting the heterodimers of these proteins. Although compound 6 induced upregulation of the pro-apoptotic protein Noxa, its apoptotic induction was independent of Noxa. These data reveal the promising therapeutic potential of targeting pMcl-1 to treat melanoma. Compound 6 is therefore a potent drug that targets pMcl-1 in melanoma.

  14. Expression of P53, P21/WAF/CIP, BCL-2, BAX, BCL-X, and BAK in radiation-induced apoptosis in testicular germ cell tumor lines

    International Nuclear Information System (INIS)

    Purpose: Testicular germ cell tumors (TGCTs) represent one of the few tumor types that are curable by antineoplastic therapy, probably due to the high sensitivity of this neoplasm to induction of apoptosis by chemotherapeutic agents and/or ionizing radiation. Here, we tested cell susceptibility to radiation-induced apoptosis in a panel of TGCT cell lines and attempted to correlate this with the known potentially relevant molecular determinants (p53 gene status and Bcl-2 family proteins) of apoptosis. Methods and Materials: Induction of apoptosis by γ-radiation was morphologically recognized in NT2, NCCIT, S2, and 2102 EP using Hoechst/PI staining and additionally confirmed by Western blot analysis of PARP cleavage. The p53 gene status was estimated by sequence analysis. Expression of p21/WAF/CIP was determined by Northern blot analysis and immunoblotting was used to monitor p53, Bax, Bcl-2, Bcl-x, and Bak protein levels. In vitro colony formation was studied to establish clonogenic survival curves. Results: NT2 and NCCIT appeared to be susceptible for radiation-induced apoptosis, contrasting 2102 EP and S2 which were highly resistant. Sequence analysis showed that NT2, S2, and 2102 EP are homozygous for wild-type p53 (wtp53), whereas NCCIT contains mutant p53 (mtp53). NT2 and 2102 EP cells showed radiation-induced p53 upregulation, while NCCIT (mtp53) and S2 (no p53 protein) cells did not. Consistently, γ-radiation-induced DNA damage resulted in a p53-dependent transactivation of the p21/WAF/CIP gene in NT2 and 2102 EP, but not in mtp53-containing NCCIT cells and p53 nonexpressing S2 cells. Constitutive expression of Bax, Bcl-2, Bcl-x, and Bak was not affected by radiation and showed no correlation with cell susceptibility to radiation-induced apoptosis. A discrepancy was found between apoptosis and reproductive death. Conclusions: The present study revealed that: i) the presence of wtp53 may not be absolutely required for the hypersensitivity for radiation

  15. Study the Relativity of Bcl-2 Protein Expression in Apoptosis of Intervertebral Disc Cells. in Different Ages of Human Body%Bcl-2蛋白表达与人类不同年龄段椎间盘组织细胞凋亡的相关性研究

    Institute of Scientific and Technical Information of China (English)

    刘晓冬; 刘际红; 王传生; 邢淑芳; 秦博文; 王志彬

    2011-01-01

    目的:探讨凋亡相关蛋白Bcl-2在人类不同年龄段椎间盘组织细胞凋亡的作用.方法:采用脱氧核糖核苷酸末端转移酶介导的缺口末端标记法(terminal deoxynucleotidyl transferase mediated dUTP nick end labeling,TUNEL)、免疫组织化学方法以及HE染色法对人类不同年龄段正常人腰椎间盘髓核细胞对比.结果:①HE染色:在胚胎和儿童时期髓核内以脊索细胞为主,到成年后以软骨样细胞为主.从胚胎后期开始,椎间盘髓核细胞数量随年龄增长而逐渐减少,到老年阶段髓核细胞的数量已经很少(P<0.05).②TUNEL检测:胚胎后期即可见髓核细胞TUNEL反应阳性,而且在各年龄段均可见TUNEL反应阳性细胞,阳性颗粒的平均光密度值逐年增高(P<0.05).从胚胎后期到成年,TUNEL阳性细胞率随年龄增长而逐渐降低,并降到整个生命过程中的最低点;继之,TUNEL阳性细胞率又逐年升高(P<0.05).③Bcl-2蛋白免疫组织化学染色:自胚胎后期开始,Bcl-2蛋白就开始有较高水平的表达,但呈现逐年下降的趋势(P<0.05).Bcl-2蛋白阳性细胞表达率亦呈同样趋势(P<0.05).结论:在整个生命过程中,随年龄增长大量腰椎间盘髓核细胞发生凋亡,细胞数量明显减少.细胞凋亡是椎间盘细胞减少的原因之一.Bcl-2蛋白可能参与了椎间盘细胞凋亡的调节,但表达水平较低,不能阻止细胞凋亡的发生.%Objective: To explore the expression of Bcl-2 protein in apoptosis of intervertebral disc cells and gene regulation in different ages of human body. Method: The apoptotie status and the expression of Bcl-2 protein in the intervertebral disc ceils in different ages of human body were detected with TdT-mediated dUTP-biotin nick end labeling (TUNEL) and immunohistochemistry methods. Result: ①Hematoxylin and eosin staining: In embryonal and infantile stages, notochordal cells are the mainly kind of cells in different ages of human intervertebral disc

  16. Dexamethasone protected human glioblastoma U87MG cells from temozolomide induced apoptosis by maintaining Bax:Bcl-2 ratio and preventing proteolytic activities

    Directory of Open Access Journals (Sweden)

    Patel Sunil J

    2004-12-01

    Full Text Available Abstract Background Glioblastoma is the deadliest and most prevalent brain tumor. Dexamethasone (DXM is a commonly used steroid for treating glioblastoma patients for alleviation of vasogenic edema and pain prior to treatment with chemotherapeutic drugs. Temozolomide (TMZ, an alkylating agent, has recently been introduced in clinical trials for treating glioblastoma. Here, we evaluated the modulatory effect of DXM on TMZ induced apoptosis in human glioblastoma U87MG cells. Results Freshly grown cells were treated with different doses of DXM or TMZ for 6 h followed by incubation in a drug-free medium for 48 h. Wright staining and ApopTag assay showed no apoptosis in cells treated with 40 μM DXM but considerable amounts of apoptosis in cells treated with 100 μM TMZ. Apoptosis in TMZ treated cells was associated with an increase in intracellular free [Ca2+], as determined by fura-2 assay. Western blot analyses showed alternations in the levels of Bax (pro-apoptotic and Bcl-2 (anti-apoptotic proteins resulting in increased Bax:Bcl-2 ratio in TMZ treated cells. Western blot analyses also detected overexpression of calpain and caspase-3, which cleaved 270 kD α-spectrin at specific sites for generation of 145 and 120 kD spectrin break down products (SBDPs, respectively. However, 1-h pretreatment of cells with 40 μM DXM dramatically decreased TMZ induced apoptosis, decreasing Bax:Bcl-2 ratio and SBDPs. Conclusion Our results revealed an antagonistic effect of DXM on TMZ induced apoptosis in human glioblastoma U87MG cells, implying that treatment of glioblastoma patients with DXM prior to chemotherapy with TMZ might result in an undesirable clinical outcome.

  17. Apoptosis and the BCL-2 gene family - patterns of expression and prognostic value in STAGE I and II follicular center lymphoma

    International Nuclear Information System (INIS)

    Purpose: The prognostic significance of spontaneous levels of apoptosis and Bcl-2, Bax, and Bcl-x protein expression in follicular center lymphoma (FCL) is unknown. The objectives of this retrospective study were (1) to investigate the relationship between pretreatment apoptosis levels and long-term treatment outcome in patients with Stage I and II FCL; (2) to define the incidence and patterns of Bax and Bcl-x protein expression in human FC; and (3) to determine the relationship of Bcl-2, Bax, and Bcl-x expression with spontaneous apoptosis levels and clinical outcome in localized FCL. Methods and Materials: Between 1974 and 1988, 144 patients with Stage I or II FCL were treated. Hematoxylin and eosin (H and E) stained tissue sections of pretreatment specimens were retrieved for 96 patients. Treatment consisted of regional radiation therapy (XRT) for 25 patients, combined modality therapy (CMT) consisting of combination chemotherapy and XRT for 57 patients, and other treatments for 14 patients. Median follow-up for living patients was nearly 12 years. The apoptotic index (AI) was calculated by dividing the number of apoptotic cells by the total number of cells counted and multiplying by 100. Expression of Bcl-2, Bax, and Bcl-x proteins was assessed using immunohistochemistry. Results: The mean and median AI values for the entire group were 0.53 and 0.4, respectively (range: 0-5.2). The AI strongly correlated with cytologic grade, with mean AI values of 0.25 for grade 1, 0.56 for grade 2, and 0.84 for grade 3 (p < 0.0005; Kendall correlation). A positive correlation was present between grouped AI and grouped mitotic index (MI) (p = 0.014). For patients treated with CMT, an AI < 0.4 correlated with improved freedom from relapse (FFR) (p = 0.0145) and overall survival (OS) (p = 0.0081). An AI < 0.4 did not correlate with clinical outcome for the entire cohort or for patients receiving XRT only. Staining of tumor follicles for the Bcl-2 protein was positive, variable

  18. Development of bcl-2 mRNA repressor of apoptosis in human fetal central nervous system%人胎儿中枢神经系统凋亡抑制因子bcl-2mRNA的发育

    Institute of Scientific and Technical Information of China (English)

    李泽桂; 蔡文琴

    2003-01-01

    目的研究人胎儿中枢神经系统凋亡抑制因子 bcl-2 mRNA 的发育表达.方法用地高辛标记的bcl-2 cRNA 探针原位杂交组织化学技术,检测了12~39周胎儿中枢神经系统内bcl-2 mRNA的表达情况. 结果①在所检测的各脑区均有bcl-2 mRNA表达.第12周,有强阳性的bcl-2 mRNA出现在脊髓、延髓的运动神经元、大脑额叶的皮质板; 小脑和大脑室层的bcl-2 mRNA表达较弱.bcl-2 mRNA的水平一般是随胎龄的增长而下降,至第39周表达最弱.②bcl-2 mRNA主要在神经元表达.结论在人胎儿神经系统发育中表达的bcl-2可能与编程性细胞死亡有关.

  19. Involvement of BH4 domain of bcl-2 in the regulation of HIF-1-mediated VEGF expression in hypoxic tumor cells.

    Science.gov (United States)

    Trisciuoglio, D; Gabellini, C; Desideri, M; Ragazzoni, Y; De Luca, T; Ziparo, E; Del Bufalo, D

    2011-06-01

    In addition to act as an antiapoptotic protein, B-cell lymphoma (bcl)-2 can also promote tumor angiogenesis. In this context, we have previously demonstrated that under hypoxia bcl-2 promotes hypoxia-inducible factor-1 (HIF-1)-mediated vascular endothelial growth factor (VEGF) expression in melanoma and breast carcinoma. Here, we report on the role of the BH4 domain in bcl-2 functions, by showing that removal of or mutations at the BH4 domain abrogate the ability of bcl-2 to induce VEGF protein expression and transcriptional activity under hypoxia in human melanoma cells. We have also extended this observation to other human tumor histotypes, such as colon, ovarian and lung carcinomas. The involvement of BH4 on HIF-1α protein expression, stability, ubiquitination and HIF-1 transcriptional activity was also demonstrated in melanoma experimental model. Moreover, we validated the role of the BH4 domain of bcl-2 in the regulation of HIF-1/VEGF axis, demonstrating that BH4 peptide is sufficient to increase HIF-1α protein half-life impairing HIF-1α protein ubiquitination, and to enhance VEGF secretion in melanoma cells exposed to hypoxia. Finally, we found that the mechanism by which bcl-2 regulates HIF-1-mediated VEGF expression does not require BH1 and BH2 domains, and it is independent of antiapoptotic and prosurvival function of bcl-2. PMID:21233846

  20. 亚砷酸钠对人肺癌Spc-A1细胞Bcl-2、Fas表达的影响%The effect of apoptosis-related gene Bcl-2 and Fas of sodium arsenic on Spc-A1 cell

    Institute of Scientific and Technical Information of China (English)

    施睿; 梁标

    2011-01-01

    arsenite could obviously inhibit the proliferation of Spc - A1 cell ,induce cell cycle arrest and apoptosis and necrosis of the cella.The down - regulation of Bcl -2 gene and up - regulation of Fas gene may be one of the mechanisms.

  1. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    Energy Technology Data Exchange (ETDEWEB)

    Cekanova, Maria, E-mail: mcekanov@utk.edu [Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Fernando, Romaine I. [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Siriwardhana, Nalin [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Sukhthankar, Mugdha [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Parra, Columba de la [Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR (United States); Woraratphoka, Jirayus [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Malone, Christine [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Ström, Anders [Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Baek, Seung J. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Wade, Paul A. [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Saxton, Arnold M. [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Donnell, Robert M. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Pestell, Richard G. [Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States); and others

    2015-02-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis.

  2. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    International Nuclear Information System (INIS)

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis

  3. Garlic ((Allium sativum)) Fresh Juice Induces Apoptosis in Human Oral Squamous Cell Carcinoma: The Involvement of Caspase-3, Bax and Bcl-2.

    Science.gov (United States)

    Farhadi, Farrokh; Jahanpour, Salar; Hazem, Kameliya; Aghbali, Amirala; Baradran, Behzad; Vahid Pakdel, Seyyed Mahdi

    2015-01-01

    Background and aims. There is no report on the apoptotic impact of Allium sativum L.(Garlic) on the oral squamous cell carcinoma (KB); hence, this study was designed to survey the apoptotic effects of garlic fresh juice (GFJ) on the KB cells. Materials and methods. MTTassay (MicrocultureTetrazolium Assay) was carried out to evaluate the cytotoxicity of GFJ on KB cells. Furthermore, TUNEL(Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling)and DNA fragmentation tests were performed to determine if GFJ is able to induce apoptosis in KB cells. Also a standard kit was used to assess caspase-3 activity in KB cells. Also western blotting was employed to evaluate the effect of GFJ on Bax:Bcl-2 ratio. Results. Significant cytotoxic effects were observed for the minimum used concentration (1μg/mL) as calculated to be 77.97±2.3% for 24 h and 818±3.1% for 36h of incubation (P < 0.001). Furthermore, TUNEL and DNA fragmentation tests corroborated the apoptosis inducing activity of GFJ. Consistently, after treating KB cells with GFJ(1μg/mL), caspase-3 activity and Bax:Bcl-2 ratio were raised by 7.3±0.6 and (P <0.001) folds, respectively. Conclusion. The results of this study advanced that GFJ induces apoptosis in the KB cells through increasing caspase-3 activity and Bax:Bcl2 ratio which could be attributed to its organo-sulfurcomponents. PMID:26889365

  4. Carboxypeptidase E protects hippocampal neurons during stress in male mice by up-regulating prosurvival BCL2 protein expression.

    Science.gov (United States)

    Murthy, S R K; Thouennon, E; Li, W-S; Cheng, Y; Bhupatkar, J; Cawley, N X; Lane, M; Merchenthaler, I; Loh, Y P

    2013-09-01

    Prolonged chronic stress causing elevated plasma glucocorticoids leads to neurodegeneration. Adaptation to stress (allostasis) through neuroprotective mechanisms can delay this process. Studies on hippocampal neurons have identified carboxypeptidase E (CPE) as a novel neuroprotective protein that acts extracellularly, independent of its enzymatic activity, although the mechanism of action is unclear. Here, we aim to determine if CPE plays a neuroprotective role in allostasis in mouse hippocampus during chronic restraint stress (CRS), and the molecular mechanisms involved. Quantitative RT-PCR/in situ hybridization and Western blots were used to assay for mRNA and protein. After mild CRS (1 h/d for 7 d), CPE protein and mRNA were significantly elevated in the hippocampal CA3 region, compared to naïve littermates. In addition, luciferase reporter assays identified a functional glucocorticoid regulatory element within the cpe promoter that mediated the up-regulation of CPE expression in primary hippocampal neurons following dexamethasone treatment, suggesting that circulating plasma glucocorticoids could evoke a similar effect on CPE in the hippocampus in vivo. Overexpression of CPE in hippocampal neurons, or CRS in mice, resulted in elevated prosurvival BCL2 protein/mRNA and p-AKT levels in the hippocampus; however, CPE(-/-) mice showed a decrease. Thus, during mild CRS, CPE expression is up-regulated, possibly contributed by glucocorticoids, to mediate neuroprotection of the hippocampus by enhancing BCL2 expression through AKT signaling, and thereby maintaining allostasis.

  5. 光动力学调控miR143激活Bcl-2/Bax的信号路径对人宫颈癌的治疗机制%Regulation Effect of Photodynamic Therapy on Bcl-2/Bax Signal Path Activated by miR143 in Human Cervical Cancer

    Institute of Scientific and Technical Information of China (English)

    兰艳丽; 刘韵

    2016-01-01

    Objective To investigate the regulation effect of photodynamic therapy on Bcl-2/Bax signal path activated by miR143 in human cervical cancer ,and lay foundation for cervical cancer treated with photodynamic therapy along with miR 143. Methods Human HeLa cells received miR 143 interference ( miR143 group ) , photodynamic irradiation treatment ( PDT group ) and miR143 interference combined with photodynamic irradiation (PDT +miR143 group).The rate of inhibition,apoptosis and invasion were detected by CCK8,flow cytometry and Transwell model ,respectively.Meanwhile the expression levels of miR143, Bcl-2 and Bax before and after different treatments were detected by fluorescence quantitative PCR .Results The inhibition rates and apoptosis rates among the 3 groups were significantly different (P0.05).Conclusion In cervical cancer,photodynamic therapy upregulated the Bcl-2/Bax signal path activated by miR 143,and lay foundation for cervical cancer treated with photodynamic therapy along with miR 143.%目的 探讨在宫颈癌中光动力学调控对miR143激活Bcl-2/Bax的信号路径的影响,为光动力学联合miR143应用于宫颈癌的治疗机制奠定基础.方法 人宫颈癌HeLa细胞分别进行miR143干扰处理(miR143组)、光动力照射处理(PDT组)及miR143干扰联合光动力照射处理(PDT+miR143组),采用CCK8法、流式细胞术及Transwell小室侵袭模型对各组处理后HeLa细胞的抑制率、凋亡率及侵袭能力进行分析,同时采用荧光定量PCR检测不同处理前后各组细胞的miR143、Bcl-2和Bax的mRNA表达水平.结果 3组之间的细胞抑制率、凋亡率差异有统计学意义(P<0.05),PDT+miR143组细胞抑制率和凋亡率分别高于PDT组和miR143组,差异具有统计学意义(P<0.05),而PDT+miR143组穿膜细胞数显著高于miR143组和PDT组(P<0.05).处理后,3组miR143和Bcl-2 mRNA表达水平较处理前均显著升高(P<0.0001),且处理后PDT+miR143组miR143和Bcl-2 mRNA表达

  6. Effect of myocardial reperfusion on cardiocyte apoptosis and expression of bcl-2, bax and caspase-3 in rats with depression%心肌再灌注对抑郁大鼠心肌细胞凋亡以及bcl-2、bax和caspase-3表达的影响

    Institute of Scientific and Technical Information of China (English)

    刘淑珍; 尤鑫; 熊小栓; 刘兴德

    2012-01-01

    apoplolic cardiomyocyles were delecled by in siLu TdT - media-led dUTP nick end labeling (TUNEL) melhod, and ihe expression of bcl -2, bax and caspase - 3 was delemined by ihe melhods of immunohislochemislry and reverse Iranscriplion polymerase chain reaction ( RT - PCR) . RESULTS; Compared wilh group A and group B, ihe numbers of apoplolic cardiomyocyles in group C and group D were significantly increased (P < 0. 01) , and ihe expression of bcl - 2, bax and caspase - 3 in group C and group D was also significantly increased ( P < 0. 01). No significant difference between group A and B was observed. Compared wilh group C, the number of apoplolic cardiomyocyles in group D was significantly increased (P < 0. 05). The gene expression of bcl -2 in group D was decreased significantly ( P < 0. 05 ) , while the gene expression of bax and caspase - 3 in group D was significantly increased ( P < 0. 05 ) . CONCLUSION; Myocardial reperfusion increases apoptosis in ischemic cardiomyocyles in the rals with depression. The mechanisms may be associated with up - regulaling the gene expression of bax and caspase - 3 while down - regulaling bcl - 2 expression.

  7. Significance of Bcl-2 family in tumor progression and therapy%Bcl-2家族在肿瘤进展和治疗中的意义

    Institute of Scientific and Technical Information of China (English)

    朱园园

    2008-01-01

    Bcl-2 family have dual-regulating effects on cell apoptosis mediated by mitoehondrion. The ratio of pro-apoptosis members and anti-apoptosis members closely correlates with tumorigenesis, drug-resist-ance and prognosis. Therefore,Bcl-2 family become important targets in tumor biotherapy. Many strategies have been applied to tumors treatment targeting Bcl-2 family,such as some biological treatment,short peptides and organic small molecules.%Bcl-2家族对于线粒体途径细胞凋亡具有双重调控作用,其促凋亡蛋白与抑凋亡蛋白的比例与肿瘤形成、肿瘤耐药性的产生及预后密切相关.因此,Bcl-2家族成为肿瘤生物治疗中的重要靶点,针对Bcl-2家族的某些生物治疗手段和短肽、有机小分子等新药被开发应用于Bcl-2高表达肿瘤的治疗.

  8. Epstein-Barr virus interactions with the Bcl-2 protein family and apoptosis in human tumor cells

    Institute of Scientific and Technical Information of China (English)

    Qin FU; Chen HE; Zheng-rong MAO

    2013-01-01

    Epstein-Barr virus (EBV),a human gammaherpesvirus carried by more than 90% of the world's population,is associated with malignant tumors such as Burkitt's lymphoma (BL),Hodgkin lymphoma,post-transplant lymphoma,extra-nodal natural killer/T cell lymphoma,and nasopharyngeal and gastric carcinomas in immune-compromised patients.In the process of infection,EBV faces challenges:the host cell environment is harsh,and the survival and apoptosis of host cells are precisely regulated.Only when host cells receive sufficient survival signals may they immortalize.To establish efficiently a lytic or long-term latent infection,EBV must escape the host cell immunologic mechanism and resist host cell apoptosis by interfering with multiple signaling pathways.This review details the apoptotic pathway disrupted by EBV in EBV-infected cells and describes the interactions of EBV gene products with host cellular factors as well as the function of these factors,which decide the fate of the host cell.The relationships between other EBV-encoded genes and proteins of the B-cell leukemia/lymphoma (Bcl) family are unknown.Still,EBV seems to contribute to establishing its own latency and the formation of tumors by modifying events that impact cell survival and proliferation as well as the immune response of the infected host.We discuss potential therapeutic drugs to provide a foundation for further studies of tumor pathogenesis aimed at exploiting novel therapeutic strategies for EBV-associated diseases.

  9. Mitochondrial genome depletion in human liver cells abolishes bile acid-induced apoptosis: role of the Akt/mTOR survival pathway and Bcl-2 family proteins.

    Science.gov (United States)

    Marin, Jose J G; Hernandez, Alicia; Revuelta, Isabel E; Gonzalez-Sanchez, Ester; Gonzalez-Buitrago, Jose M; Perez, Maria J

    2013-08-01

    Acute accumulation of bile acids in hepatocytes may cause cell death. However, during long-term exposure due to prolonged cholestasis, hepatocytes may develop a certain degree of chemoresistance to these compounds. Because mitochondrial adaptation to persistent oxidative stress may be involved in this process, here we have investigated the effects of complete mitochondrial genome depletion on the response to bile acid-induced hepatocellular injury. A subline (Rho) of human hepatoma SK-Hep-1 cells totally depleted of mitochondrial DNA (mtDNA) was obtained, and bile acid-induced concentration-dependent activation of apoptosis/necrosis and survival signaling pathways was studied. In the absence of changes in intracellular ATP content, Rho cells were highly resistant to bile acid-induced apoptosis and partially resistant to bile acid-induced necrosis. In Rho cells, both basal and bile acid-induced generation of reactive oxygen species (ROS), such as hydrogen peroxide and superoxide anion, was decreased. Bile acid-induced proapoptotic signals were also decreased, as evidenced by a reduction in the expression ratios Bax-α/Bcl-2, Bcl-xS/Bcl-2, and Bcl-xS/Bcl-xL. This was mainly due to a downregulation of Bax-α and Bcl-xS. Moreover, in these cells the Akt/mTOR pathway was constitutively activated in a ROS-independent manner and remained similarly activated in the presence of bile acid treatment. In contrast, ERK1/2 activation was constitutively reduced and was not activated by incubation with bile acids. In conclusion, these results suggest that impaired mitochondrial function associated with mtDNA alterations, which may occur in liver cells during prolonged cholestasis, may activate mechanisms of cell survival accounting for an enhanced resistance of hepatocytes to bile acid-induced apoptosis. PMID:23597504

  10. BCL2L13 is a mammalian homolog of the yeast mitophagy receptor Atg32.

    Science.gov (United States)

    Otsu, Kinya; Murakawa, Tomokazu; Yamaguchi, Osamu

    2015-01-01

    Although Atg32 is essential for mitophagy in yeast, no mammalian homolog has been identified. Here, we demonstrate that BCL2L13 (BCL2-like 13 [apoptosis facilitator]) is a functional mammalian homolog of Atg32. First, we hypothesized that a mammalian mitophagy receptor will share certain molecular features with Atg32. Using the molecular profile of Atg32 as a search tool, we screened public databases for novel Atg32 functional homologs and identified BCL2L13. BCL2L13 induces mitochondrial fragmentation and mitophagy in HEK293 cells. In BCL2L13, the BH domains are important for fragmentation, whereas the WXXI motif, an LC3 interacting region, is needed for mitophagy. BCL2L13 induces mitochondrial fragmentation and mitophagy even in the absence of DNM1L/Drp1 and PARK2/Parkin, respectively. BCL2L13 is indispensable for mitochondrial damage-induced fragmentation and mitophagy. Furthermore, BCL2L13 induces mitophagy in Atg32-deficient yeast. Induction and/or phosphorylation of BCL2L13 may regulate its activity. Our findings thus open a new chapter in mitophagy research. PMID:26506896

  11. Wogonin inhibits the proliferation and invasion, and induces the apoptosis of HepG2 and Bel7402 HCC cells through NF‑κB/Bcl-2, EGFR and EGFR downstream ERK/AKT signaling.

    Science.gov (United States)

    Liu, Xiaodong; Tian, Shuo; Liu, Mei; Jian, Lingyan; Zhao, Limei

    2016-10-01

    The anticancer effects of the natural flavonoid, wogonin, have been reported. However, its molecular mechanisms of action have not yet been fully explored. In the present study, we aimed to examine the molecular mechanisms of action of wogonin and its effects on the biological behavior of the HepG2 and Bel7402 hepatocellular carcinoma (HCC) cell lines. We also examined the effects of wogonin on nuclear factor-κB (NF-κB)/Bcl-2 and epidermal growth factor receptor (EGFR) signaling, as well as on downstream pathways of EGFR, namely extracellular signal-regulated kinase (ERK)/AKT signaling. We found that treatment with wogonin inhibited the proliferation and invasion, and induced the apoptosis of the HepG2 and Bel7402 cells. In addition, treatment with wogonin decreased cyclin D1, cyclin E, CDK4/6, Bcl-2 and matrix metalloproteinase 2 (MMP2) expression, and promoted the cleavage of caspase-3 and caspase-9 in a concentration-dependent manner. Further experiments revealed that wogonin inhibited NF-κB/Bcl-2 signaling by decreasing the IκB and p65 phosphorylation levels. Wogonin also inhibited the activation of the EGFR (Tyr845) signaling pathway, and that of downstream pathways of EGFR, namely ERK/AKT/MMP2 signaling. The depletion of EGFR by siRNA partly abolished the inhibitory effects of wogonin on cyclin D1, MMP2 expression. On the whole, our our findings demonstrate that wogonin effectively suppresses the proliferation, invasion and survival of HCC cells through the modulation of the NF-κB and EGFR signaling pathways.

  12. Overexpression of the hydatidiform mole-related gene F10 inhibits apoptosis in A549 cells through downregulation of BCL2-associated X protein and caspase-3.

    Science.gov (United States)

    Song, Yali; Zhang, Gong; Zhu, Xiulan; Pang, Zhanjun; Xing, Fuqi; Quan, Song

    2012-09-01

    The aim of this study was to investigate how the overexpression of the hydatidiform mole-related gene F10 affects apoptosis in human lung cancer A549 cells. A549 cells were transfected with pEGFP-N1-F10 (A549-F10) or pEGFP-N1 empty vector (A549-empty). Untransfected A549, A549-F10 or A549-empty cells were examined using the MTT cell proliferation assay and the TUNEL-FITC/Hoechst 33258 apoptosis assay. Western blotting was used to examine the expression levels of the pro-apoptotic genes, BCL2-associated X protein (BAX) and caspase-3. F10 was stably expressed in A549 cells. From 12 h, A549-F10 cells proliferated markedly faster than the untransfected and A549-empty cells. F10 overexpression also significantly inhibited apoptosis, as shown by the reduced number of TUNEL and Hoechst 33258 double-positive cells. This inhibition was likely due to an F10-induced reduction in the BAX and caspase-3 levels. The results of this study indicate that F10 overexpression inhibits apoptosis in A549 cells through the downregulation of the pro-apoptotic genes BAX and caspase-3. PMID:23741243

  13. The effect of radiation on bcl-2 and bax in hyperplastic prostatic tissues

    International Nuclear Information System (INIS)

    Aim: To investigate the expressions of bcl-2 and bax in benign prostatic hyperplasia (BPH) and the effect of β-rays on bcl-2 and bax. Methods: The expressions of bcl-2 and bax are studied by means of immunohistochemical method in 9 normal prostate (NP) and 15 BPH and 35 patients treated with 90Sr/90Y Prostatic Hyperplasia Applicator. Results: The expressions of bcl-2 in epithelia of NP and BPH are higher than that in stroma P<0.01=. The expressions of bcl-2 in epithelia and stroma of BPH are higher than that in NP P<0.01=. The expressions of bax in epithelia of NP are higher than that in BPH P<0.05=. However ,the expressions of bcl-2 in epithelia and stroma of BPH are higher than bax P<0.01 =. Compared with the control group, the expressions of bcl-2 in epithelia and stroma of BPH treated with 90Sr/90Y Prostatic Hyperplasia Applicator decreased and the expressions of bax increased P<0.01=. Conclusion: bcl-2 gene and bax gene play an important role in the regulation of prostatic apoptosis and the treatment of β-rays can accelerate the apoptosis of prostatic tissues. (authors)

  14. 30例自然流产患者绒毛滋养细胞凋亡及调控蛋白Bcl-2、Bax的表达研究%Study on apoptosis and expression of modulin Bcl-2, Bax in villus syncytiotrophoblast cells in 30 patients with spontaneous abortion

    Institute of Scientific and Technical Information of China (English)

    郭冬瑾; 林秀玲; 樊柳宜

    2012-01-01

    目的 通过观察绒毛合体滋养细胞凋亡以及凋亡调控蛋白Bcl-2和Bax在自然流产患者中的表达,探讨细胞凋亡在自然流产的发病机制.方法 采用原位末端标记法(TUNEL)和免疫组织化学法对30例自然流产患者绒毛合体滋养细胞中调亡指数及凋亡调控蛋白Bcl-2和Bax阳性表达率进行检测,并以30例人工终止早孕的健康妇女做对照(对照组),所有数据采用SPSS16.0进行统计学分析.结果 自然流产组绒毛滋养细胞中凋亡指数为(32.45±5.87)%,明显高于对照组的(19.38±4.16)%,差异有统计学意义(P<0.01).Bax和Bcl-2在两组合体滋养细胞中的阳性率比较显示,自然流产组中Bax阳性率增高,Bcl-2阳性率下降,Bcl-2/Bax比值升高,差异均有统计学意义(P<0.01).结论 绒毛合体滋养细胞凋亡明显增加、Bax阳性率增高和Bcl-2阳性率下降在自然流产中产生重要作用.%Objective To observe the apoptosis and expression of modulin Bcl-2, Bax in villus syncytiotrophoblast cells in patients with spontaneous abortion, and to investigate the pathogenesis of apoptosis in spontaneous abortion. Methods TdT-mediated dUTP nick end labeling (TUNEL) and immunohistochemistry were respectively used in 30 patients with spontaneous abortion (the study group) and 30 individuals with artificial abortion (the control group). The apoptosis index, the positive expression rates of Bax and Bcl-2 in villus syncytiotrophoblast cells were detected. All the data were analyzed by SPSS 16.0. Results The apoptosis index of syncytiotrophoblast cells in the study group was (32.45±5.87)%, significantly higher than (19.38±4.16)% in the control group (P<0.01). The positive expression rate of Bax in the study group was significantly higher than in the control group, while that of Bcl-2 was significantly lower and Bcl-2/Bax ratio was significantly higher (P<0.01). Conclusion Intensive apoptosis, the increasing positive expression rate of Bax, and

  15. Affinity purification-mass spectrometry analysis of bcl-2 interactome identified SLIRP as a novel interacting protein.

    Science.gov (United States)

    Trisciuoglio, D; Desideri, M; Farini, V; De Luca, T; Di Martile, M; Tupone, M G; Urbani, A; D'Aguanno, S; Del Bufalo, D

    2016-01-01

    Members of the bcl-2 protein family share regions of sequence similarity, the bcl-2 homology (BH) domains. Bcl-2, the most studied member of this family, has four BH domains, BH1-4, and has a critical role in resistance to antineoplastic drugs by regulating the mitochondrial apoptotic pathway. Moreover, it is also involved in other relevant cellular processes such as tumor progression, angiogenesis and autophagy. Deciphering the network of bcl-2-interacting factors should provide a critical advance in understanding the different functions of bcl-2. Here, we characterized bcl-2 interactome by mass spectrometry in human lung adenocarcinoma cells. In silico functional analysis associated most part of the identified proteins to mitochondrial functions. Among them we identified SRA stem-loop interacting RNA-binding protein, SLIRP, a mitochondrial protein with a relevant role in regulating mitochondrial messenger RNA (mRNA) homeostasis. We validated bcl-2/SLIRP interaction by immunoprecipitation and immunofluorescence experiments in cancer cell lines from different histotypes. We showed that, although SLIRP is not involved in mediating bcl-2 ability to protect from apoptosis and oxidative damage, bcl-2 binds and stabilizes SLIRP protein and regulates mitochondrial mRNA levels. Moreover, we demonstrated that the BH4 domain of bcl-2 has a role in maintaining this binding. PMID:26866271

  16. Phyllanthus amarus inhibits cell growth and induces apoptosis in Dalton's lymphoma ascites cells through activation of caspase-3 and downregulation of Bcl-2.

    Science.gov (United States)

    Harikumar, Kuzhuvelil B; Kuttan, Girija; Kuttan, Ramadasan

    2009-06-01

    The authors found in an earlier study that Phyllanthus amarus extract could significantly inhibit the solid and ascites tumor development in mice induced by Dalton's lymphoma ascites (DLA) cells. In the present study, the apoptotic effects of P. amarus against DLA cells in culture was evaluated. P. amarus produced significant reduction in cell viability as determined by the MTT assay. It also induces the formation of apoptotic bodies with characteristic features like plasma membrane invagination, elongation, fragmentation, and chromatin condensation. P. amarus at concentrations of 100 and 200 microg/mL is shown to induce DNA fragmentation. Gene expression analysis reveals that P. amarus induces the expression of caspase-3 and inhibits the expression of Bcl-2, which is an antiapoptotic protein. So the present study provides some insights into the possible mechanism by which P. amarus brings about apoptosis and growth inhibition in DLA cells. PMID:19223368

  17. Apoptosis of Hepatoma Cell Line HepG2 Induced by the Combination of Radiotherapy and Thermotherapy and Its Relationship with Bcl-2/Bax Protein Expressions%放疗联合热疗诱导肝癌HepG2细胞凋亡及其与Bcl-2和Bax蛋白表达关系的研究

    Institute of Scientific and Technical Information of China (English)

    张力; 龚明玉; 李毅学; 张立广; 王兴艳

    2011-01-01

    Objective To explore the apoptosis of hepatoma cell line HepG2 induced by the combination of radiotherapy and thermotherapy and its relationship with Bcl - 2/Bax protein expressions. Methods In vitro cultured HepG2 cells were randomly divided into four groups: control group ( not treated ), radiotherapy group, thermotherapy group, and combination group. The apoptosis of HepG2 cells were detected by flow cytometry. The expressions of the apoptosis-related proteins of Bcl-2 and Bax were detected by immunohistochemical methods. Results The apoptosis rates of HepG2 cells were significantly different among these four groups ( P < 0. 05 ). The apoptosis rates were significantly higher in radiotherapy group, thermotherapy group, and combination group than in control group ( P <0. 05 ). It was also significantly higher in combination group than in radiotherapy group and thermotherapy group ( P < 0. 05 ). The expressions of Bcl-2 and Bax and the Bax/Bcl-2 ratio were also significantly different among these four groups ( P <0. 05 ). The expression of Bcl -2 protein were significantly decreased and the expression of Bax protein significantly increased in radiotherapy group, thermotherapy group, and combination group than in control group ( both P < 0. 05 ), and the Bax/Bcl - 2 ratio was also significantly increased ( P < 0. 05 ). The expression of Bcl - 2 protein were significantly decreased and the expression of Bax protein significantly increased in combination group than in radiotherapy group and thermotherapy group ( both P < 0. 05 ), and the Bax/Bcl - 2 ratio was also significantly increased ( P < 0. 05 ). Conclusion The combination of radiotherapy and thermotherapy can more effectively induce the apoptosis of HepG2, and it may be achieved by inhibiting the expression of Bcl - 2 protein and promoting the expression of Bax protein.%目的 探讨放疗联合热疗诱导人肝癌HepG2细胞凋亡及其与Bcl-2和Bax蛋白表达的关系.方法

  18. Microwave-Assisted Synthesis of Arene Ru(II Complexes Induce Tumor Cell Apoptosis Through Selectively Binding and Stabilizing bcl-2 G-Quadruplex DNA

    Directory of Open Access Journals (Sweden)

    Yanhua Chen

    2016-05-01

    Full Text Available A series of arene Ru(II complexes coordinated with phenanthroimidazole derivatives, [(η6-C6H6Ru(lCl]Cl(1b L = p-ClPIP = 2-(4-Chlorophenylimidazole[4,5f] 1,10-phenanthroline; 2b L = m-ClPIP = 2-(3-Chlorophenylimidazole[4,5f] 1,10-phenanthroline; 3b L = p-NPIP = 2-(4-Nitrophenylimidazole[4,5f] 1,10-phenanthroline; 4b L = m-NPIP = 2-(3-Nitrophenyl imidazole [4,5f] 1,10-phenanthroline were synthesized in yields of 89.9%–92.7% under conditions of microwave irradiation heating for 30 min to liberate four arene Ru(II complexes (1b, 2b, 3b, 4b. The anti-tumor activity of 1b against various tumor cells was evaluated by MTT assay. The results indicated that this complex blocked the growth of human lung adenocarcinoma A549 cells with an IC50 of 16.59 μM. Flow cytometric analysis showed that apoptosis of A549 cells was observed following treatment with 1b. Furthermore, the in vitro DNA-binding behaviors that were confirmed by spectroscopy indicated that 1b could selectively bind and stabilize bcl-2 G-quadruplex DNA to induce apoptosis of A549 cells. Therefore, the synthesized 1b has impressive bcl-2 G-quadruplex DNA-binding and stabilizing activities with potential applications in cancer chemotherapy.

  19. The influence of sleep deprivation on expression of apoptosis regulatory proteins p53, bcl-2 and bax following rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide

    Directory of Open Access Journals (Sweden)

    Juliana Noguti

    2013-01-01

    Full Text Available Background: The aim of this study was to evaluate whether paradoxical sleep deprivation could affects the mechanisms and pathways essentials for cancer cells in tongue cancer induced by 4-nitroquinole 1-oxide in Wistar rats. Materials and Methods: For this purpose, the animals were distributed into 4 groups of 5 animals each treated with 50 ppm 4 nitroquinoline 1 oxide (4 NQO solution through their drinking water for 4 and 12 weeks. The animals were submitted to paradoxical sleep deprivation (PSD for 72 h using the modified multiple platform method, which consisted of placing 5 mice in a cage (41 × 34 × 16 cm containing 10 circular platforms (3.5 cm in diameter with water 1 cm below the upper surface. The investigations were conducted using immunohistochemistry of p53, Bax and Bcl-2 proteins related to apoptosis and its pathways. Statistical analysis was performed by Kruskal-Wallis non-parametric test followed by the Dunn′s test using SPSS software pack (version 1.0. P value < 0.05 was considered for statistic significance. Results: Although no histopathological abnormalities were induced in the epithelium after 4 weeks of carcinogen exposure in all groups, in 12 weeks were observed pre-neoplasic lesions. Data analysis revealed statistically significant differences ( P < 0.05 in 4 weeks group for p53 and for bcl-2 and for all immunomarkers after 12 weeks of 4NQO administration. Conclusion: Our results reveal that sleep deprivation exerted alterations in proteins associated with proliferation and apoptosis in carcinogenesis.

  20. Zebrafish bcl2l is a survival factor in thyroid development.

    Science.gov (United States)

    Porreca, Immacolata; De Felice, Elena; Fagman, Henrik; Di Lauro, Roberto; Sordino, Paolo

    2012-06-15

    Regulated cell death, defined in morphological terms as apoptosis, is crucial for organ morphogenesis. While differentiation of the thyroid gland has been extensively studied, nothing is yet known about the survival mechanisms involved in the development of this endocrine gland. Using the zebrafish model system, we aim to understand whether genes belonging to the Bcl-2 family that control apoptosis are implicated in regulation of cell survival during thyroid development. Evidence of strong Bcl-2 gene expression in mouse thyroid precursors prompted us to investigate the functions played by its zebrafish homologs during thyroid development. We show that the bcl2-like (bcl2l) gene is expressed in the zebrafish thyroid primordium. Morpholino-mediated knockdown and mutant analyses revealed that bcl2l is crucial for thyroid cell survival and that this function is tightly modulated by the transcription factors pax2a, nk2.1a and hhex. Also, the bcl2l gene appears to control a caspase-3-dependent apoptotic mechanism during thyroid development. Thyroid precursor cells require an actively maintained survival mechanism to properly proceed through development. The bcl2l gene operates in the inhibition of cell death under direct regulation of a thyroid specific set of transcription factors. This is the first demonstration of an active mechanism to ensure survival of the thyroid primordium during morphogenesis.

  1. Targeted nano-delivery of novel omega-3 conjugate against hepatocellular carcinoma: Regulating COX-2/bcl-2 expression in an animal model.

    Science.gov (United States)

    Khan, Azmat Ali; Alanazi, Amer M; Jabeen, Mumtaz; Hassan, Iftekhar; Bhat, Mashooq Ahmad

    2016-07-01

    The present approach enumerates the effectiveness of tuftsin tagged nano-liposome for the cytosolic transport of 2,6-di-isopropylphenol-linolenic acid conjugate against liver cancer in mice. Initially, the conjugate in its free form was examined for anticancer potential on HepG2 liver cancer cells. Induction of apoptosis and suppression of migration and adhesion of HepG2 cells confirmed the effectiveness of conjugate as an anticancer agent. After this, role of the conjugate entrapped in a nano-carrier was evaluated in animal model. The nano-formulation comprising of conjugate bearing tuftsin tagged liposome was firsly characterized and then its therapeutic effect was determined. The nano-formulation had 100-130nm size nanoparticles and showed sustained release of the conjugate in the surrounding milieu. The nano-formulation distinctly reduced the expression of COX-2, an important molecule that is vastly expressed in hepatocellular carcinoma. The utilization of in-house engineered nano-formulation was also successful in significantly up-regulating Bax and down-regulating bcl-2 gene expression eventually helping in better survival of treated mice. Histopathological analysis also revealed positive recovery of the general architecture and the violent death of cancer cells by apoptosis at tumor specific site. The site specific delivery of conjugate entrapped in tuftsin tagged liposomes was highly safe as well as efficaceous. Nano-formulation based approach showed a visible chemotherapeutic effect on liver cancer progression in experimental mice thereby making it a potential candidate for treatment of liver cancer in clinical settings.

  2. SF Treg cells transcribing high levels of Bcl-2 and microRNA-21 demonstrate limited apoptosis in RA

    NARCIS (Netherlands)

    van der Geest, Kornelis S. M.; Smigielska, Katarzyna; Park, Ji-Ah; Abdulahad, Wayel H.; Kim, Hye-Won; Kroesen, Bart-Jan; van den Berg, Anke; Boots, Annemieke M. H.; Lee, Eun-Bong; Brouwer, Elisabeth

    2015-01-01

    Objective. The aim of this study was to investigate the turnover of Treg cells in the SF of RA patients. Methods. Treg cells were enumerated in peripheral blood and SF of RA patients and analysed by flow cytometry for expression of the proliferation marker Ki-67 and binding of the apoptosis marker a

  3. Biphasic onset of splenic apoptosis following hemorrhagic shock : critical implications for Bax, Bcl-2, and Mcl-1 proteins

    OpenAIRE

    Hostmann, Arwed; Jasse, Kerstin; Schulze-Tanzil, Gundula; Robinson, Yohan; Oberholzer, Andreas; Ertel, Wolfgang; Tschoeke, Sven K

    2008-01-01

    INTRODUCTION: The innate immune response to trauma hemorrhage involves inflammatory mediators, thus promoting cellular dysfunction as well as cell death in diverse tissues. These effects ultimately bear the risk of post-traumatic complications such as organ dysfunction, multiple organ failure, or adult respiratory distress syndrome. In this study, a murine model of resuscitated hemorrhagic shock (HS) was used to determine the apoptosis in spleen as a marker of cellular injury and reduced immu...

  4. Dynamin inhibitors induce caspase-mediated apoptosis following cytokinesis failure in human cancer cells and this is blocked by Bcl-2 overexpression

    Directory of Open Access Journals (Sweden)

    Braithwaite Antony W

    2011-06-01

    Full Text Available Abstract Background The aim of both classical (e.g. taxol and targeted anti-mitotic agents (e.g. Aurora kinase inhibitors is to disrupt the mitotic spindle. Such compounds are currently used in the clinic and/or are being tested in clinical trials for cancer treatment. We recently reported a new class of targeted anti-mitotic compounds that do not disrupt the mitotic spindle, but exclusively block completion of cytokinesis. This new class includes MiTMAB and OcTMAB (MiTMABs, which are potent inhibitors of the endocytic protein, dynamin. Like other anti-mitotics, MiTMABs are highly cytotoxic and possess anti-proliferative properties, which appear to be selective for cancer cells. The cellular response following cytokinesis failure and the mechanistic pathway involved is unknown. Results We show that MiTMABs induce cell death specifically following cytokinesis failure via the intrinsic apoptotic pathway. This involves cleavage of caspase-8, -9, -3 and PARP, DNA fragmentation and membrane blebbing. Apoptosis was blocked by the pan-caspase inhibitor, ZVAD, and in HeLa cells stably expressing the anti-apoptotic protein, Bcl-2. This resulted in an accumulation of polyploid cells. Caspases were not cleaved in MiTMAB-treated cells that did not enter mitosis. This is consistent with the model that apoptosis induced by MiTMABs occurs exclusively following cytokinesis failure. Cytokinesis failure induced by cytochalasin B also resulted in apoptosis, suggesting that disruption of this process is generally toxic to cells. Conclusion Collectively, these data indicate that MiTMAB-induced apoptosis is dependent on both polyploidization and specific intracellular signalling components. This suggests that dynamin and potentially other cytokinesis factors are novel targets for development of cancer therapeutics.

  5. The Role of Bcl-2 Family Proteins in Therapy Responses of Malignant Astrocytic Gliomas: Bcl2L12 and Beyond

    Directory of Open Access Journals (Sweden)

    Fotini M. Kouri

    2012-01-01

    Full Text Available Glioblastoma (GBM is a highly aggressive and lethal brain cancer with a median survival of less than two years after diagnosis. Hallmarks of GBM tumors include soaring proliferative indices, high levels of angiogenesis, diffuse invasion into normal brain parenchyma, resistance toward therapy-induced apoptosis, and pseudopallisading necrosis. Despite the recent advances in neurosurgery, radiation therapy, and the development of targeted chemotherapeutic regimes, GBM remains one of the deadliest types of cancer. Particularly, the alkylating agent temozolomide (TMZ in combination with radiation therapy prolonged patient survival only marginally, and clinical studies assessing efficacies of targeted therapies, foremost ATP mimetics inhibiting the activity of receptor tyrosine kinases (RTKs, revealed only few initial responders; tumor recurrence is nearly universal, and salvage therapies to combat such progression remain ineffective. Consequently, myriad preclinical and clinical studies began to define the molecular mechanisms underlying therapy resistance of GBM tumors, and pointed to the Bcl-2 protein family, in particular the atypical member Bcl2-Like 12 (Bcl2L12, as important regulators of therapy-induced cell death. This review will discuss the multi-faceted modi operandi of Bcl-2 family proteins, describe their roles in therapy resistance of malignant glioma, and outline current and future drug development efforts to therapeutically target Bcl-2 proteins.

  6. Phenazine-1-carboxamide (PCN) from Pseudomonas sp. strain PUP6 selectively induced apoptosis in lung (A549) and breast (MDA MB-231) cancer cells by inhibition of antiapoptotic Bcl-2 family proteins.

    Science.gov (United States)

    Kennedy, R Kamaraj; Veena, V; Naik, P Ravindra; Lakshmi, Pragna; Krishna, R; Sudharani, S; Sakthivel, N

    2015-06-01

    Phenazine-1-carboxamide (PCN), a naturally occurring simple phenazine derivative isolated from Pseudomonas sp. strain PUP6, exhibited selective cytotoxic activity against lung (A549) and breast (MDA-MB-231) cancer cell lines in differential and dose-dependent manner compared to normal peripheral blood mononuclear cells. PCN-treated cancer cells showed the induction of apoptosis as evidenced by the release of low level of LDH, morphological characteristics, production of reactive oxygen species, loss of mitochondrial membrane potential (ΔΨm) and induction of caspase-3. At molecular level, PCN instigates apoptosis by mitochondrial intrinsic apoptotic pathway via the overexpression of p53, Bax, cytochrome C release and activation of caspase-3 with the inhibition of oncogenic anti-apoptotic proteins such as PARP and Bcl-2 family proteins (Bcl-2, Bcl-w and Bcl-xL). The in silico docking studies of PCN targeted against the anti-apoptotic members of Bcl-2 family proteins revealed the interaction of PCN with the BH3 domain, which might lead to the induction of apoptosis due to the inhibition of antiapoptotic proteins. Due to its innate inhibition potential of antiapoptotic Bcl-2 family proteins, PCN may be used as potent anticancer agent against both lung and breast cancer.

  7. Crizotinib (PF-2341066) induces apoptosis due to downregulation of pSTAT3 and BCL-2 family proteins in NPM-ALK(+) anaplastic large cell lymphoma.

    Science.gov (United States)

    Hamedani, Farid Saei; Cinar, Munevver; Mo, Zhicheng; Cervania, Melissa A; Amin, Hesham M; Alkan, Serhan

    2014-04-01

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) is an aberrant fusion gene product with tyrosine kinase activity and is expressed in substantial subset of anaplastic large cell lymphomas (ALCL). It has been shown that NPM-ALK binds to and activates signal transducer and activator of transcription 3 (STAT3). Although NPM-ALK(+) ALCL overall shows a better prognosis, there is a sub-group of patients who relapses and is resistant to conventional chemotherapeutic regimens. NPM-ALK is a potential target for small molecule kinase inhibitors. Crizotinib (PF-2341066) is a small, orally bioavailable molecule that inhibits growth of tumors with ALK activity as shown in a subgroup of non-small lung cancer patients with EML4-ALK expression. In this study, we have investigated the in vitro effects of Crizotinib in ALCL cell line with NPM-ALK fusion. Crizotinib induced marked downregulation of STAT3 phosphorylation, which was associated with significant apoptotic cell death. Apoptosis induction was attributed to caspase-3 cleavage and marked downregulation of the Bcl-2 family of proteins including MCL-1. These findings implicate that Crizotinib has excellent potential to treat patients with NPM-ALK(+) ALCL through induction of apoptotic cell death and downregulation of major oncogenic proteins in this aggressive lymphoma.

  8. Dentatin Induces Apoptosis in Prostate Cancer Cells via Bcl-2, Bcl-xL, Survivin Downregulation, Caspase-9, -3/7 Activation, and NF-κB Inhibition

    Directory of Open Access Journals (Sweden)

    Ismail Adam Arbab

    2012-01-01

    Full Text Available This study was set to investigate antiproliferative potential of dentatin (a natural coumarin isolated from Clausena excavata Burm. F against prostate cancer and to delineate the underlying mechanism of action. Treatment with dentatin dose-dependently inhibited cell growth of PC-3 and LNCaP prostate cancer cell lines, whereas it showed less cytotoxic effects on normal prostate epithelial cell line (RWPE-1. The inhibitory effect of dentatin on prostate cancer cell growth was due to induction of apoptosis as evidenced by Annexin V staining and cell shrinkage. We found that dentatin-mediated accumulation of reactive oxygen species (ROS and downregulated expression levels of antiapoptotic molecules (Bcl-2, Bcl-xL, and Survivin, leading to disruption of mitochondrial membrane potential (MMP, cell membrane permeability, and release of cytochrome c from the mitochondria into the cytosol. These effects were associated with induction of caspase-9, -3/7 activities, and subsequent DNA fragmentation. In addition, we found that dentatin inhibited TNF-α-induced nuclear translocation of p65, suggesting dentatin as a potential NF-κB inhibitor. Thus, we suggest that dentatin may have therapeutic value in prostate cancer treatment worthy of further development.

  9. NEW EMBO MEMBER’S REVIEW: Viral and bacterial proteins regulating apoptosis at the mitochondrial level

    OpenAIRE

    Boya, Patricia; Roques, Bernard,; Kroemer, Guido

    2001-01-01

    Mitochondrial membrane permeabilization (MMP) is a critical step of several apoptotic pathways. Some infectious intracellular pathogens can regulate (induce or inhibit) apoptosis of their host cells at the mitochondrial level, by targeting proteins to mitochondrial membranes that either induce or inhibit MMP. Pathogen-encoded mitochondrion-targeted proteins may or may not show amino acid sequence homology to Bcl-2-like proteins. Among the Bcl-2-unrelated, mitochondrion-targeted proteins, seve...

  10. Cyanide-induced Death of Dopaminergic Cells is Mediated by Uncoupling Protein-2 Up-regulation and Reduced Bcl-2 Expression

    OpenAIRE

    Zhang, X.; Li, L.; Zhang, L.; Borowitz, J.L.; Isom, G.E.

    2009-01-01

    Cyanide is a potent inhibitor of mitochondrial oxidative metabolism and produces mitochondria-mediated death of dopaminergic neurons and sublethal intoxications are associated with a Parkinson-like syndrome. Cyanide toxicity is enhanced when mitochondrial uncoupling is stimulated following up-regulation of uncoupling protein-2 (UCP-2). In this study, the role of a pro-survival protein, Bcl-2, in cyanide-mediated cell death was determined in a rat dopaminergic immortalized mesencephalic cell l...

  11. NF-κB, Bcl-2 and the alcoholic liver disease%NF-κB、Bcl-2与酒精性肝病

    Institute of Scientific and Technical Information of China (English)

    张曦; 王沁

    2011-01-01

    酒精性肝病(ALD)是由于长期过度饮酒而引发的一系列肝脏损害疾病.现研究表明肝细胞的凋亡对该病的发生、发展起着十分重要的作用.其中核因子κB (NF-κB)、B细胞淋巴瘤-2基因(Bcl-2)与ALD关系密切.ALD患者肝细胞内活化的NF-κB,通过刺激大量炎性细胞因子释放,引发肝组织炎症、纤维化、坏死和凋亡,同时通过调控凋亡蛋白酶 (Caspase)、Bcl-2、死亡受体等基因来干预肝细胞凋亡;被激活的Bcl-2,除本身具有抗凋亡功能外,还与NF-κB以复合物的形式发挥抗凋亡作用,同时与同家族促凋亡蛋白Bax以二聚体的形式依比例对肝细胞凋亡发挥抑制或促进作用.肝细胞凋亡和抗凋亡的动态失衡将成为酒精性肝病发病的重要途径之一.%Alcoholic liver disease which causes the liver damage is due to the long series of heavy drinking. Present study shows that the hepatocytes apoptosis plays an important role in the development of ALD. The nuclear factor ΚB (NF-ΚB) and B cell lymphoma-2 genes (Bcl-2) are closely related with the hepatocyte apoptosis. The activate NF-ΚB in the hepatocyte of ALD, not only can stimulate the release of inflammatory cytokines and cause liver inflammation, fibrosis, necrosis and apoptosis, but also can interfere the hepatocyte apoptosis by regulation the caspase (Caspase), Bcl-2, death receptor and other genes. The activated Bcl-2 not only can inhibit apoptosis by itself function, but also can inhibit apoptosis in the form of complex with the activated NF-ΚB. Bcl-2 can be dimer with the same family protein Bax which is the pro-apoptotic protein. The dimer inhibiting or stimulating apoptosis depends on the proportion of Bcl-2 and Bax. Imbalance of stimulating apoptosis and anti-apoptosis will become an important way in the way of ALD pathogenesy.

  12. 辛伐他汀诱导人胃癌SGC7901细胞凋亡及其对Bax和Bcl-2表达的影响%Effect of Simvastatin on apoptosis and expressions of Bax and Bcl-2 gene in human gastric cancer cell line SGC7901

    Institute of Scientific and Technical Information of China (English)

    朱梦霞; 王芳; 谢娟; 熊文昊; 杨璐; 黄靓

    2015-01-01

    目的 研究辛伐他汀对人胃低分化腺癌细胞株SGC7901凋亡的影响及其可能的分子机制.方法 体外培养人胃癌SGC7901细胞至对数生长期, 再分别用不同浓度的辛伐他汀处理SGC7901细胞,48h后采用流式细胞术检测细胞凋亡;RT-PCR法和Western Blot法观察Bax和Bcl-2的表达.结果 辛伐他汀能诱导SGC7901细胞凋亡,且呈浓度依赖性.流式细胞术检测显示10、20、40μmol/L辛伐他汀组细胞凋亡率分别为(20.37±3.60)%、(35.17±3.91)%、(58.39±4.06)%,与对照组(4.78±1.51)%相比,凋亡率显著增强(P<0.05).不同浓度的辛伐他汀作用后能显著增强SGC7901细胞Bax mRNA和蛋白的表达,降低Bcl-2 mRNA和蛋白的表达(P<0.05). 结论 辛伐他汀呈浓度依赖性地诱导胃癌SGC7901细胞凋亡,其机制可能与上调Bax、下调Bcl-2表达有关.%Objective To investigate the effects of Simvastatin on apoptosis in human gastric lower-differentiation ade-nocarcinoma cell line SGC7901 and to explore its potential molecular mechanisms. Methods Gastric SGC7901 cells were cultured in vitro, cells of exponential phase of growth were used to experiment. Then using different concentrations of Simvas-tatin role in SGC7901, 48 hours later, flow cytometry method was used to detect the cell apoptosis, the expressions of Bax and Bcl-2 were tested by RT-PCR and Western-Blot assay. Results Simvastatin could promote the apoptosis of gastric cell line SGC7901 in a dose-dependent manner. Flow cytometry method showed that,Simvastatin (10μmol/L, 20μmol/L, 40μmol/L) role in SGC7901 for 48 hours, the apoptosis rates of the three groups were (20.37±3.60)%,(35.17±3.91)%,(58.39±4.06)%, the apoptosis rate of the control group was (4.78±1.51)%, the experimental groups were significantly higher than the control group (P<0.05). Different concentrations of Simvastatin could promote the expression of mRNA and protein of Bax, reduce the expres-sion of mRNA and protein of Bcl-2 in SGC7901

  13. The MUC1 oncomucin regulates pancreatic cancer cell biological properties and chemoresistance. Implication of p42–44 MAPK, Akt, Bcl-2 and MMP13 pathways

    Energy Technology Data Exchange (ETDEWEB)

    Tréhoux, Solange; Duchêne, Bélinda; Jonckheere, Nicolas; Van Seuningen, Isabelle, E-mail: isabelle.vanseuningen@inserm.fr

    2015-01-16

    Highlights: • Loss of MUC1 decreases proliferation and tumor growth via β-catenin and p42–44 MAPK. • Inhibition of MUC1 decreases cell migration and invasion through MMP13. • Loss of MUC1 decreases survival and increases apoptosis via Akt and Bcl-2 pathways. • Loss of MUC1 sensitizes cells to gemcitabine and 5-Fluorouracil chemotherapeutic drugs. - Abstract: MUC1 is an oncogenic mucin overexpressed in several epithelial cancers, including pancreatic ductal adenocarcinoma, and is considered as a potent target for cancer therapy. To this aim, we undertook to study MUC1 biological effects on pancreatic cancer cells and identify pathways mediating these effects. Our in vitro experiments indicate that inhibiting MUC1 expression decreases cell proliferation, cell migration and invasion, cell survival and increases cell apoptosis. Moreover, lack of MUC1 in these cells profoundly altered their sensitivity to gemcitabine and 5-Fluorouracil chemotherapeutic drugs. In vivo MUC1-KD cell xenografts in SCID mice grew slower. Altogether, we show that MUC1 oncogenic mucin alters proliferation, migration, and invasion properties of pancreatic cancer cells and that these effects are mediated by p42–44 MAPK, Akt, Bcl-2 and MMP13 pathways.

  14. FK506对大鼠面神经损伤后面运动神经元凋亡及bcl-2,bax表达的影响%Effects of FK506 on the Apoptosis and bcl-2, bax Expression of Rat Facial Motor Neurons after Facial Nerve Injury

    Institute of Scientific and Technical Information of China (English)

    惠莲; 刘凤啸; 袁婧; 姜学钧; 任重

    2013-01-01

    目的 研究FK506对大鼠面神经损伤后运动神经元凋亡及bcl-2和bax表达的影响.方法 将40只Wistar大鼠随机分为实验组和对照组,制作大鼠单侧面神经总干切断模型,实验组每日腹腔注射FK506注射液,对照组给予相同剂量的盐水,在术后各时间点,通过Nissl染色观测面神经核神经元的形态学变化;TUNEL检测细胞凋亡;免疫组化检测bcl-2和bax表达的变化.结果 面神经损伤后,FK506组与盐水组相比较,FK506组运动神经元凋亡明显减少,bcl-2表达增加,bax表达降低.结论 FK506有助于增加面神经损伤后运动神经元bcl-2的表达、降低bax表达,抑制细胞凋亡,为药物在神经损伤疾病的临床应用提供了实验依据.%Objective To investigate effects of FKS06 on the apoptosis and the expression of bcl-2 and bax of rat facial motor neurons after facial nerve injury.Methods A total of 40 Wistar rats were randomly divided into experimental and control group.Facial nerve injury model was established by transecting facial nerves at its stylomastoid foramen,and then the experimental group and the control group were treated with FK506(FK506-treated group) and normal saline(saline control group)by intraperitoneal injection,respectively.The morphology of facial neurons were observed under light microscope at different time points after injury;the apoptotic cells of injured facial motor neurons were detected by TUNEL staining;the expression of bcl-2 and bax were evaluated by immunohistochemistry method.Results After facial nerve transection,the apoptotic cells were significantly decreased in FK506-treated group compared with saline control group (P < 0.05).The expression level of bcl-2 in FKS06-treated group were higher than that in saline control group,and the expression level of bax in FK506-treated group were lower than the control group.Conclusion FK506 could increase the expression of bcl-2,and decrease the expression of bax,and inhibit the

  15. MiR-503 regulates cisplatin resistance of human gastric cancer cell lines by targeting IGF1R and BCL2

    Institute of Scientific and Technical Information of China (English)

    Wang Tongshan; Ge Gaoxia; Ding Yin; Zhou Xin; Huang Zebo; Zhu Wei; Shu Yongqian

    2014-01-01

    Background Studies have shown that the drug resistance of gastric cancer cells can be modulated by abnormal expression of microRNAs (miRNAs).We investigated the role of miR-503 in the development of cisplatin resistance in human gastric cancer cell lines.Methods MiR-503 expression was measured by quantitative real-time PCR.MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and clonogenic assays were used to examine changes in cell viability and the drug resistance phenotype of cancer cells associated with upregulation or downregulation of the miRNA.A dual-luciferase activity assay was used to verify target genes of miR-503.Immunohistochemistry,Western blotting analysis,and a flow cytometric apoptosis assay were used to elucidate the mechanism by which miR-503 modulates drug resistance in cancer cells.Results MiR-503 was significantly downregulated in gastric cancer tissues and several gastric cancer cell lines.Additionally,downregulation of miR-503 in the cisplatin (DDP)-resistant gastric cancer cell line SGC7901/DDP was concurrent with the upregulation of insulin-like growth factor-1 receptor (IGF1R) and B-cell lymphoma 2 (BCL2) expression compared with the parental SGC7901 cell line.An in vitro drug sensitivity assay showed that overexpression of miR-503 sensitized SGC7901/DDP cells to cisplatin.The luciferase activity of reporters driven by IGF1R and BCL2 3'-untranslated regions in SGC7901/DDP cells suggested that IGF1R and BCL2 were both direct target genes of miR-503.Enforced miR-503 expression in SGC7901/DDP cells reduced expression of the target proteins,inhibited proliferation,and sensitized the cells to DDP-induced apoptosis.Conclusion Our findings suggest that hsa-miR-503 modulates cisplatin resistance of human gastric cancer cells at least in part by targeting IGF1R and BCL2.

  16. Mechanisms of acupuncture and moxibustion in regulation of epithelial cell apoptosis in rat ulcerative colitis

    Institute of Scientific and Technical Information of China (English)

    Huan-Gan Wu; Xiao Gong; Li-Qing Yao; Wei Zhang; Yin Shi; Hui-Rong Liu; Ye-Jing Gong; Li-Bin Zhou; Yi Zhu

    2004-01-01

    AIM: To investigate the effect of acupuncture and moxibustion on epithelial cell apoptosis and expression of Bcl-2, Bax, fas and FasL proteins in rat ulcerative colitis.METHODS: A rat model of ulcerative colitis was estabelished by immunological methods and local stimulation. All rats were randomly divided into model control group (MC),electro-acupuncture group (EA), herbs-partition moxibustion group (HPM). Normal rats were used as normal control group (NC). Epithelial cell apoptosis and expression of Bcl-2, Bax, fas and FasL proteins were detected by TUNEL and immunohistochemiscal method respectively.RESULTS: The number of epithelial cell apoptosis in MC was significantly higher than that in NC, and was markedly decreased after the treatment with herbs-partition moxibustion or electro-acupuncture. The expression of Bcl2, Bax, fas and FasL in colonic epithelial cells in MC was higher than that in NC, and was markedly down- regulated by herbspartition moxibustion or electro-acupuncture treatment.CONCLUSION: The pathogenesis of ulcerative colitis in rats involves abnormality of apoptosis. Acupuncture and moxibustion can regulate the expression of Bcl-2, Bax, fas and FasL proteins and inhibit the apoptosis of epithelial cells of ulcerative colitis in rats by Bcl-2/Bax, fas/FasL pathways.

  17. Dioscorealide B from the traditional Thai medicine Hua-Khao-Yen induces apoptosis in MCF-7 human breast cancer cells via modulation of Bax, Bak and Bcl-2 protein expression.

    Science.gov (United States)

    Saekoo, Jiraporn; Graidist, Potchanapond; Leeanansaksiri, Wilairat; Dechsukum, Chavaboon; Itharat, Arunporn

    2010-12-01

    Dioscorealide B is a pharmacologically active compound from the rhizome of the Thai medicinal plant Dioscorea membranacea. Here, we demonstrated that in vitro treatment of dioscorealide B resulted in a cytotoxic effect on MCF-7 human breast cancer cells (IC50 = 2.82 microM). To determine whether this compound induces apoptosis in MCF-7, the Annexin V assay was performed. The data showed that the number of apoptotic cells were increased 7-12 folds over that of the control cells after treatment with various concentrations of dioscorealide B (3, 6 and 12 microM) for 24 hours. Dioscorealide B-induced apoptosis was associated with modulation of the multidomain Bcl-2 family members Bax, Bak and Bcl-2. After treatment with 3 microM dioscorealide B, acceleration of the level of proapoptotic proteins Bax and Bak were observed at 6 hours and 12 hours, respectively, while the decrease in the expression of antiapoptotic protein Bcl-2 was observed 3 hours after the treatment. These effects of dioscorealide B might result in the activation of caspase-8, -9 and -7, which lead to apoptosis in MCF-7 cells. Taken together, the results of this study provide evidence that dioscorealide B possesses an antitumor property against human breast cancer cells and thus provide the molecular basis for the further development of dioscorealide B as a novel chemotherapeutic agent for breast cancer treatment. PMID:21299121

  18. Structural and functional similarity between the bacterial type III secretion system needle protein PrgI and the eukaryotic apoptosis Bcl-2 proteins.

    Directory of Open Access Journals (Sweden)

    Matthew D Shortridge

    Full Text Available BACKGROUND: Functional similarity is challenging to identify when global sequence and structure similarity is low. Active-sites or functionally relevant regions are evolutionarily more stable relative to the remainder of a protein structure and provide an alternative means to identify potential functional similarity between proteins. We recently developed the FAST-NMR methodology to discover biochemical functions or functional hypotheses of proteins of unknown function by experimentally identifying ligand binding sites. FAST-NMR utilizes our CPASS software and database to assign a function based on a similarity in the structure and sequence of ligand binding sites between proteins of known and unknown function. METHODOLOGY/PRINCIPAL FINDINGS: The PrgI protein from Salmonella typhimurium forms the needle complex in the type III secretion system (T3SS. A FAST-NMR screen identified a similarity between the ligand binding sites of PrgI and the Bcl-2 apoptosis protein Bcl-xL. These ligand binding sites correlate with known protein-protein binding interfaces required for oligomerization. Both proteins form membrane pores through this oligomerization to release effector proteins to stimulate cell death. Structural analysis indicates an overlap between the PrgI structure and the pore forming motif of Bcl-xL. A sequence alignment indicates conservation between the PrgI and Bcl-xL ligand binding sites and pore formation regions. This active-site similarity was then used to verify that chelerythrine, a known Bcl-xL inhibitor, also binds PrgI. CONCLUSIONS/SIGNIFICANCE: A structural and functional relationship between the bacterial T3SS and eukaryotic apoptosis was identified using our FAST-NMR ligand affinity screen in combination with a bioinformatic analysis based on our CPASS program. A similarity between PrgI and Bcl-xL is not readily apparent using traditional global sequence and structure analysis, but was only identified because of conservation in

  19. RBP2 Promotes Adult Acute Lymphoblastic Leukemia by Upregulating BCL2

    Science.gov (United States)

    Wang, Xiaoming; Zhou, Minran; Fu, Yue; Sun, Ting; Chen, Jin; Qin, Xuemei; Yu, Yuan; Jia, Jihui; Chen, Chunyan

    2016-01-01

    Despite recent increases in the cure rate of acute lymphoblastic leukemia (ALL), adult ALL remains a high-risk disease that exhibits a high relapse rate. In this study, we found that the histone demethylase retinoblastoma binding protein-2 (RBP2) was overexpressed in both on-going and relapse cases of adult ALL, which revealed that RBP2 overexpression was not only involved in the pathogenesis of ALL but that its overexpression might also be related to relapse of the disease. RBP2 knockdown induced apoptosis and attenuated leukemic cell viability. Our results demonstrated that BCL2 is a novel target of RBP2 and supported the notion of RBP2 being a regulator of BCL2 expression via directly binding to its promoter. As the role of RBP2 in regulating apoptosis was confirmed, RBP2 overexpression and activation of BCL2 might play important roles in ALL development and progression. PMID:27008505

  20. RBP2 Promotes Adult Acute Lymphoblastic Leukemia by Upregulating BCL2.

    Directory of Open Access Journals (Sweden)

    Xiaoming Wang

    Full Text Available Despite recent increases in the cure rate of acute lymphoblastic leukemia (ALL, adult ALL remains a high-risk disease that exhibits a high relapse rate. In this study, we found that the histone demethylase retinoblastoma binding protein-2 (RBP2 was overexpressed in both on-going and relapse cases of adult ALL, which revealed that RBP2 overexpression was not only involved in the pathogenesis of ALL but that its overexpression might also be related to relapse of the disease. RBP2 knockdown induced apoptosis and attenuated leukemic cell viability. Our results demonstrated that BCL2 is a novel target of RBP2 and supported the notion of RBP2 being a regulator of BCL2 expression via directly binding to its promoter. As the role of RBP2 in regulating apoptosis was confirmed, RBP2 overexpression and activation of BCL2 might play important roles in ALL development and progression.

  1. 硫酸氨基葡萄糖胶囊对兔膝关节软骨细胞凋亡基因Bcl-2与Bax表达的影响%Effects of Glucosamine Sulfate Capsules on Cartilage Cell Apoptosis in Rabbit's Knee Joints

    Institute of Scientific and Technical Information of China (English)

    林宗汉; 郑铁牛; 黎强; 覃学流; 容向宾; 龙飞攀; 梁庆华; 王永乐

    2013-01-01

    Objective: To explore the influence and curing mechanism of glucosamine gulfate capsules on apoptosis of cartilage cells in rabbit's knee joints. Methods: A total of 30 New Zealand rabbits were divided randomly into three groups: drug group, control group and normal group, 10 for each group. Rabbits in the drug and control groups were operated to form knee joint instability, a week later, each rabbit was forced to walk every day for 4 weeks. Glucosamine gulfate capsules were given to the rabbits of drug group for 8 weeks. At the end, the animals were sacrificed and arthrodial cartilages of right tibial plateau were taken to detect the apoptosis rate by in situ end labeling and detect Bcl -2 and Bax expression by immunohistochemistry. Data were statistically processed. Results: The tissue cataplasis of the control group was clear. The rate of apoptosis of the control group was 30.19% ±3.08%, the Bcl-2 expression was 8.02% ±2.09% and the Bax expression was 26.69% ±2.78%. The rate of apoptosis of the drug group was 17.01% ±1.61%, the Bcl-2 expression was 16.34% ±2.26% and the Bax expression was 7.19%±1.71%. There were significant differences between each two groups. Conclusion: Glucosamine sulfate capsules can obviously up-regulate the apoptosis gene Bcl-2 expression and down-regulate Bax expression, and degrade the apoptosis rate of cartilage cells in rabbit's knee joints. A possibility mechanism of glucosamine sulfate capsules is to delay articular cartilage tissue degeneration.%目的:探讨硫酸氨基葡萄糖胶囊延缓软骨组织退变的可能作用机制.方法:采用30只新西兰兔,随机分为药物组、模型组和正常组各10只.前2组通过手术造成右膝关节失稳型动物模型,造模一周始驱赶全部兔子行走,连续4周;药物组并连续给药8周.造模后12周末处死所有动物,取右膝关节内侧胫骨平台软骨组织,采用原位末端标记法检测软骨细胞凋亡率,免疫组化法检测Bcl-2

  2. Effects of Roubin-manipulation on apoptosis of chondrocytes and expression of Bcl-2, Bax and Fas in rabbit knee joint%揉髌手法对兔膝关节软骨细胞凋亡及Bcl-2、Bax和Fas表达的影响

    Institute of Scientific and Technical Information of China (English)

    戴七一; 覃杰; 袁经阳; 吴兆沛; 王雄; 阮萍; 崔伟; 黎强; 覃学流; 林光琪; 刘靖; 容向宾; 韩杰

    2011-01-01

    BACKGROUND: Modern studies have demonstrated that excess we cellular apoptosis accelerates the degeneration ofrarety reported.OBJECTIVE: To observe the effects of flouAm-manipulation on apoptosis of chondrocytes and expression of Bck2.Bax and Fa;in rabbitknee joint.Hyaluronate groups. Rabbits in the latter three groups were established into high intraosseous pressure experiment model of rightRESULTS AND COHC LUSIOH: At the end of the 8n week, cartilaginous tissue of medial tibial plateau of rabbit right knee joint obvious, and chondrocyte apoptosis rate was significantly increased (P < 0.01). And Bcl-2. Bax and Fas expression in the tibialtissue degeneration was slight, chondrocyte apoptosis rate and BaxandFas expression were significantly decreased (p<0.01) but Bcl-2 expression in the tibial cartilaginous tissue was significantly increased (F < 0.01) in the manipulation and sodium%背景:现代研究证实细胞的过度凋亡加速软骨组织的退变,而手法的力学刺激对关节软骨影响的分子层面研究至今少有报道.目的:观察揉髌手法对兔膝关节软骨细胞凋亡及Bcl-2、Bax、Fas 表达的作用.方法:50 只新西兰兔随机等分为正常组、假手术组、模型组、手法组和针剂组,后3 组建立右下肢骨内高压型膝关节骨性关节炎模型.造模1 周后,手法组使用揉髌手法隔天治疗1 次,每次10 min,共治疗5 周共17 次;针剂组关节内注射玻璃酸钠液0.6 mL,每周1 次,共5 次.结果与结论:造模后8 周末取兔右膝关节内侧胫骨平台软骨组织,苏木精-伊红染色提示模型组软骨组织退变明显,软骨细胞凋亡率明显增加(P < 0.01),胫骨平台软骨组织中Bcl-2、Bax、Fas 表达率明显升高(P < 0.01),而手法组和针剂组软骨组织退变轻微,软骨细胞凋亡率及Bax、Fas 表达率较模型组降低(P < 0.01),但胫骨平台软骨组织中Bcl-2 表达升高(P < 0.01).说明揉髌手法与关节内注射玻璃酸钠一样可以明显降

  3. Effect of Bcl-2 rs956572 polymorphism on age-related gray matter volume changes.

    Directory of Open Access Journals (Sweden)

    Mu-En Liu

    Full Text Available The anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2 gene is a major regulator of neural plasticity and cellular resilience. Recently, the Bcl-2 rs956572 single nucleotide polymorphism was proposed to be a functional allelic variant that modulates cellular vulnerability to apoptosis. Our cross-sectional study investigated the genetic effect of this Bcl-2 polymorphism on age-related decreases in gray matter (GM volume across the adult lifespan. Our sample comprised 330 healthy volunteers (191 male, 139 female with a mean age of 56.2±22.0 years (range: 21-92. Magnetic resonance imaging and genotyping of the Bcl-2 rs956572 were performed for each participant. The differences in regional GM volumes between G homozygotes and A-allele carriers were tested using optimized voxel-based morphometry. The association between the Bcl-2 rs956572 polymorphism and age was a predictor of regional GM volumes in the right cerebellum, bilateral lingual gyrus, right middle temporal gyrus, and right parahippocampal gyrus. We found that the volume of these five regions decreased with increasing age (all P<.001. Moreover, the downward slope was steeper among the Bcl-2 rs956572 A-allele carriers than in the G-homozygous participants. Our data provide convergent evidence for the genetic effect of the Bcl-2 functional allelic variant in brain aging. The rs956572 G-allele, which is associated with significantly higher Bcl-2 protein expression and diminished cellular sensitivity to stress-induced apoptosis, conferred a protective effect against age-related changes in brain GM volume, particularly in the cerebellum.

  4. 中度低温体外循环后大鼠海马bcl-2和bax的表达与神经元凋亡%Hippocampal bcl-2 and bax expressions and neuronal apoptosis after moderate hypothermic cardiopulmonary extracorporeal circulation in rats

    Institute of Scientific and Technical Information of China (English)

    张挺杰

    2005-01-01

    BACKGROUND: Hippocampus injury is wildly believed to involve in neurocognitive dysfunction; the establishment of a rat model of cardiopulmonary bypass(CPB) allows us to investigate the mechanism of CPB-related hippocampus injury.OBJECTIVE: To investigate the effects of moderate hypothermic CPB with a hemodilution on hippocampal bcl-2 and bax gene expression and neuronal apoptosis in rats.DESIGN: A randomized group division study based on the experimental animals.SETTING: Department of anesthesiology in a university hospital.MATERIALS: Thirty Sprague-Dawley (SD) rats were randomly divided into two groups, CPB group and sham-CPB group with 15 rats in each group.METHODS: Total 15 rats of CPB group were subjected to 60-minute moderate hypothermic nonpulsatile CPB using a peristaltic pump and a membrane oxygenator. The CPB circuit was primed with approximately 20 mL 1:1crystaloid-colloid liquid, while another 15 rats of sham-CPB group underwent identical anesthetic and surgical procedures(including cannulation) except CPB itself. At 1 hour post-CPB, six rats in each group were decapitated, and hippocampi were removed, homogenized, and processed for apoptotic gene ( bcl-2 and bax) mRNAs detection. Reverse transcriptase polymerase chain reaction(RT-PCR) is used to detect expression of mRNA by comparing the PCR product of bcl-2 or bax to those of β-actin housekeeping gene. Immunohistochemistry is used to detect bcl-2 and bax protein expressions and terminal deoxynucleiotidyl transferase-mediated dUTP-biotion nick end labeling(TUNEL) staining method was used to detect neuronal apoptosis at 6 hours post-CPB ( n = 6 in each group) . The protein expression was quantitated as percentage of the positively stained area in the total stained. In addition, hippocampal neuronal ultrastructures were studied by electron microscopy at 6 hours post-CPB( n = 3 in each group).ronal apoptosis and ultrastructure changes between the two groups.RESULTS: At 1 hour post-CPB, the expressions of

  5. 硝苯地平对人牙龈上皮细胞bcl-2基因表达的影响%Nifedipine regulated expression of bcl-2 in human gingival epithelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    文海燕; 束蓉; 蒋少云; 姜云涛

    2010-01-01

    目的:体外观察硝苯地平(nifedipine,NIF)对人牙龈上皮细胞(human gingival epithelial cells,HGECs)bcl-2基因转录水平的调节,探讨NIF诱导的药物性牙龈增生(drug-induced gingival overgrowth,DGO)与凋亡抑制基因bcl-2的相关性.方法:采用牙周手术切除的健康牙龈组织.用酶消化法分离培养HGECs;免疫组织化学方法对培养细胞进行细胞鉴定;实时定量PCR技术检测不同浓度NIF(1 μg/ml、2 μg/ml和3 μg/ml)刺激下HGECs中bcl-2 mRNA水平,以0 μg/ml NIF为空白对照.采用SPSS 11.0软件包对所得数据进行单因素方差分析.结果:酶消化法获得的HGECs在体外培养中生长状态良好;免疫组织化学显示,HGECs抗角蛋白染色阳性,抗波形蛋白染色阴性;NIF处理24h后的HGECs bcl-2 mRNA水平随NIF浓度的增高而上升,3 μg/ml浓度组与空白对照组有显著差异(P<0.05);NIF处理48h后.2 μg/ml、3 μg/ml浓度组HGECs bcl-2 mRNA水平与空白对照组差异明显(P<0.05).结论:NIF调节体外培养的HGECs中bcl-2基因转录的水平.

  6. [Dexamethasone affect on the expression of bcl-2 and mTOR genes in T-lymphocytes from healthy donors].

    Science.gov (United States)

    Fatkhullina, A R; Abramov, S N; Skibo, Iu V; Abramova, Z I

    2014-01-01

    Synthetic glucocorticoids are able to activate apoptosis in the cells by regulating the transcription of the respective genes. Effect of dexamethasone on apoptosis is an established fact. However, its influence on another program of cell death autophagy, is currently unproven. Therefore, in this paper we have analyzed the influence of dexamethasone on the expression of bcl-2 and mTOR genes in T-lymphocytes from healthy donors. The results showed that dexamethasone reduced the expression of bcl-2 and mTOR genes. However, the nature of the effect of dexamethasone on mTOR and bcl-2 expression was different: the expression of bcl-2 gene in the long-term cultivation was maintained at the same reduced level, while the expression of mTOR was first reduced and then increased.

  7. P53,Bax,Bcl-2蛋白表达及细胞凋亡在急性放射性皮肤溃疡发生发展过程中的作用探讨%The role of P53, Bax, Bcl-2 expression and cell apoptosis in the formation and development of acute radiation-induced skin ulcers

    Institute of Scientific and Technical Information of China (English)

    谷庆阳; 曹卫红; 王德文; 高亚兵; 杨志祥; 赵坡

    2001-01-01

    目的:研究细胞凋亡及一些凋亡相关基因(p53,bcl-2,bax)的表达在急性放射性皮肤溃疡发生发展过程中的作用.方法:采用Wistar大鼠以60Co γ射线进行局部照射,建立急性放射性皮肤溃疡动物模型,观察病变40 d,然后采用免疫组化方法检测皮肤溃疡组织中P53,Bcl-2,Bax蛋白表达,并采用原位末端标记法(TUNEL)检测细胞凋亡.结果:照后14 d照射野内开始出现皮肤溃疡,之后逐渐扩大、融合、加深;照后11~40 d,P53蛋白表达明显增强,主要定位于血管内皮细胞和小血管平滑肌中;照后14~21 d为Bax蛋白表达高峰,之后逐渐减弱,主要定位于血管内皮细胞、部分成纤维细胞及新生表皮细胞中;Bcl-2则在照后1~11 d呈弱或中度阳性,定位于表皮、毛囊上皮及血管内皮中,之后为阴性或可疑阳性;照后11~35 d,上述细胞特别是血管内皮细胞凋亡率较正常伤口愈合早期增高.结论:辐射诱导的P53,Bax,Bcl-2表达的变化及细胞凋亡率特别是血管内皮细胞凋亡率的增高与放射性皮肤溃疡发生、发展及难愈合(不能形成有效肉芽组织)的分子机制相关.%Objective:To study the expression of P53, Bax, Bcl-2 proteins and the role of cell apoptosis in the formation and development of acute radiation-induced skin ulcers.Methods:A rat model which was locally irradiated with 60 Co γ-rays was used, and the pathological changes were observed for 40 days. Immunohistochemistry and TUNEL assay were performed which enabled the detection of P53, Bax, Bcl-2 and cell apoptosis during the formation and development of radiation skin ulcers.Results: Skin ulcers were found on day 14 after irradiation, and enlarged and deepened gradually during the observation period. P53 was over expressed during days 11 to 40 after irradiation and was localized in vascular endotheliocytes and smooth muscle cells. Bax was moderately positive during days 14 to 21 and weakly positive during days

  8. The Influence of Matrine on Apoptosis and Expression of Bax and Bci-2 in Colorectal Cancer Cells%苦参碱对大肠癌细胞凋亡及Bax、Bcl-2表达的影响

    Institute of Scientific and Technical Information of China (English)

    王雷; 刘明

    2012-01-01

    [Purpose] To investigate the effect of Matrine on proliferation inhibition, apoptotic and Bax and Bcl-2 expression in human colorectal cancer cell line Lovo. [Methods] Lovo cells cultured in vitro were interfered with 0.05-1.6mg/ml different concentration of Matrine. The proliferation inhibition effect on Lovo cells was observed by MTT method. Apoptosis induction effect on Lovo cells was detected by DNA ladder, flow cytometer and TUNEL staining. The expression of Bcl-2 and Bax proteins correlated with apoptosis were detected by Western Blot assay. [Results] After being exposed to Matrine (0.05-1.6mg/ml) for 24 and 48h, the proliferation of Lovo cells was inhibited in a dose-time dependent manner. DNA ladder, Annexin V-PI method and TUNEL staining showed Matrine was obviously increased along with Matrine concentration increased. The expression of pro-apoptotic protein Bax was increased, while anti-apoptotic protein Bcl-2 was decreased as Matrine doses increased. [Conclusion] Matrine can inhibit proliferation and induction of apoptosis in colorectal cancer cells. Increased expression of Bax and decreased expression of Bcl-2 might involve in Matrine-induced apoptosis.%[目的]探讨苦参碱对人大肠癌Lovo细胞增殖抑制和凋亡诱导作用及其对Bax、Bcl-2表达的影响.[方法] 0.05~l.6mg/ml不同浓度苦参碱作用Lovo细胞,采用MTT法检测苦参碱对大肠癌Lovo细胞增殖抑制作用,DNA ladder、AnnexinV -PI法及TUNEL染色检测细胞凋亡,Western Blot法检测凋亡相关蛋白Bax、Bcl-2表达的变化.[结果]0.05~1.6mg/ml苦参碱处理Lovo细胞24h或48h后,细胞增殖均明显受抑制;DNA ladder、Annexin V-PI法及TUNEL染色检测结果显示苦参碱呈时间、剂量依赖性诱导细胞凋亡;促凋亡蛋白Bax随着苦参碱剂量增加表达增加,抗凋亡蛋白Bcl-2随着苦参碱剂量增加表达减少.[结论]苦参碱具有抑制大肠癌细胞增殖,诱导其凋亡的作用.苦参碱诱导大肠癌细胞凋

  9. Serum level of IL13 and expression of BCL2 in Behcet's disease

    Directory of Open Access Journals (Sweden)

    Hanan.M.A Darwish*, Sabila Gomaa Mousa** Noha Hamdy

    2006-09-01

    Full Text Available Background BD: BCL2 family is a large family of apoptosis regulating proteins consisting of both blockers and promoters of cell death. Immunological processes and a variety of cytokines may play a role in pathophysiological process. Defective regulation of programmed cell death (apoptosis also play a role in development of Behcet's disease Objective: To investigate the level of BCL2 and IL13in BD and to determine their to relation monitory disease activity. Patients and methods: This study was conducted on thirty patients (15 active and 15 inactive and 15-health control, the activity of BD was evaluated according to international study group for BD disease, using ELISA technique for IL 13 and flow cytometry forBCL2. Results: Elevated serum levels of IL13 in patient with active BD than inactive and both had elevated levels than control(P< 0.01 and also the serum levels of Bcl2 was elevated in patient with active BD than inactive and control(P< 0.01. Concolusion: The data suggested that IL13 and BCL2 could be involved in the pathogenesis of BD and its serum levels can be used as marker to monitor disease activity.

  10. Pax-8基因敲除小鼠心脏中Bcl2l14基因表达上调%Up-regulation of Bcl2l14 gene in myocardium of Pax-8 gene knockout mouse

    Institute of Scientific and Technical Information of China (English)

    高瞻; 来丹丹; 黄晓燕; 褚茂平; 施翔翔; 张怀勤; 杨德业

    2010-01-01

    目的:寻找先天性心脏病相关基因-转录因子Pax-8的下游基因.方法:分别提取Pax-8基因敲除小鼠纯合子(Pax-8 KO~(-/-))和杂合子(Pax-8 KO~(+/-))的心脏总RNA,利用含31 802个小鼠基因的基因芯片检测两组小鼠基因表达水平,找出差异表达的基因,并经半定量RT-PCR和荧光实时定量PCR技术初步筛选出转录因子Pax-8的下游基因.结果:基因芯片检测发现,Pax-8 KO~(-/-) 组与Pax-8 KO~(+/-) 相比有25个基因表达下调,另有17个基因表达上调,差异基因涉及细胞周期及信号转导的调节因子,直接参与代谢的酶,以及核转录因子等.用半定量RT-PCR验证发现:Bcl2-like 14(Bcl2l14)基因在Pax-8 KO~(-/-) 组上调.定量RT-PCR亦证实在Pax-8 KO~(-/-)组Bcl2l14基因的表达水平较Pax-8 KO~(+/-) 组及Pax-8 KO~(+/+)(野生型)组分别上调2.07倍和2.23倍(P<0.01).结论:Bcl2l14基因为转录因子Pax-8的下游基因,可能在先天性心脏病室间隔缺损的发病机制中发挥重要作用.

  11. Effects of intermittent hypoxic preconditioning on apoptosis-related Bcl-2 and Bax protein expression in rat liver after partial hepatectomy under ischemia-reperfusion%间断低氧预适应对大鼠肝切除缺血再灌注肝脏凋亡相关蛋白Bcl-2、Bax表达的影响

    Institute of Scientific and Technical Information of China (English)

    王健; 李鹏飞; 韩效帆; 朱世春; 李广; 李俊; 张培建

    2014-01-01

    目的 观察术前间断低氧预适应对大鼠70%肝切术后缺血再灌注损伤肝脏凋亡相关蛋白Bcl-2和Bax表达的影响.方法 健康清洁级SD大鼠54只,用SPSS软件随机分为3组,每组18只:(1)肝切除组(PH组),切除肝脏的左叶和中叶(约占总肝重的70%);(2)缺血再灌注组(IR组),即在肝门阻断下切除肝脏的左叶和中叶,肝门阻断20 min后开放血流,残余肝脏发生了缺血再灌注过程;(3)间断低氧预适应组(IHP组),术前1周将大鼠置于氧气体积分数为10%的低氧环境中,每天1h.1周后在肝门阻断下行肝切除术(同IR组).各组分别于术后12、24、48 h进行取材检测,用全自动生化分析仪检测血清谷丙转氨酶(ALT)、谷草转氨酶(AST)含量,采用免疫组化方法检测残余肝组织Bcl-2、Bax表达情况.结果 在术后各时间点,IR组和IHP组血清ALT和AST水平均显著高于PH组,但IHP组明显低于IR组.与IR组相比,IHP组术后各时间点肝脏Bcl-2蛋白表达显著升高,而Bax蛋白表达显著下降.差异均有统计学意义(P<0.05).结论 间断低氧预适应对残余肝脏缺血再灌注损伤具有保护作用,其途径可能是通过促进抗凋亡蛋白Bcl-2表达和抑制促凋亡蛋白Bax表达,来减少肝细胞凋亡.%Objective To observe the effects of intermittent hypoxic preconditioning on the expression of apoptosis-related Bcl-2 and Bax protein after 70% hepatectomy combined with ischemia-reperfusion injury.Methods A total of fifty-four SD rats were randomly divided into three groups (n =18).Partial hepatectomy hroup (PH Group):Rats underwent the left and middle lobectomy of liver(70% hepatectomy).Ischemia reperfusion group (IR group):The left and middle lobes of liver were resected during the occlusion of the hepatoduodenal ligament for 20 minutes.Residual liver underwent the process of ischemia-reperfusion.Intermittent hypoxia preconditioning group (IHP group):rats were exposed to hypoxic environment of 10

  12. Effect of β Radiation on Bcl-2 and Bax Expressions in Benign Prostate Hyperplasia Tissues

    Institute of Scientific and Technical Information of China (English)

    MA Qing-jie; GAO Shi; ZHAO Jie; GU Xin-quan; CAI Shan-yu; ZHAO Guo-qing

    2008-01-01

    The authors chose specimens from nine normal prostate tissues(NP group),15 benign prostate hyperplasia(BPH) prostates(BPH group),and 35 BPH prostates that had been treated with 90Sr/90Y Prostatic Hyperplasia Applicator(exposure group),The expressions of bcl-2 and bax in stroma and epithelia of prostate tissues were demonstrated by means of immunohistochemical staining,and the staining positive rate was semiquantatively determined,so as to observe the expression of bcl-2 and bax genes in the prostate tissues of normal individuals and BPH patients,before and after β radiation,and to evaluate the influence of β radiation on bcl-2 and bax expressions,The expressions of gene bcl-2 in the prostate epithelia of NP and BPH are significantly higher than those in the prostate stroma(P<0.01),However,the expressions of bcl-2 in the prostate epithelia and stroma of the BPH group are obviously higher than those in the NP group(P<0.01),The expression of gene bax in the prostate epithelia of the NP group is higher than that in the BPH group(P<0.05),However,bcl-2 expressions in the prostate epithelia and stroma of the BPH group are significantly higher than the bax expressions(P<0.01),Compared with those of the NP group,the expressions of bcl-2 in the prostate epithelia and stroma of the exposure group decrease remarkably,even as the expressions of the bax notably increase(P<0.01),Thus,the administration of β radiation can remarkably affect bcl-2 and bax gene expressions,to regulate cell apoptosis,in the prostate tissues of BPH.

  13. Differential protection by wildtype vs. organelle-specific Bcl-2 suggests a combined requirement of both the ER and mitochondria in ceramide-mediated caspase-independent programmed cell death

    Directory of Open Access Journals (Sweden)

    Belka Claus

    2009-10-01

    Full Text Available Abstract Background Programmed cell death (PCD is essential for development and homeostasis of multicellular organisms and can occur by caspase-dependent apoptosis or alternatively, by caspase-independent PCD (ciPCD. Bcl-2, a central regulator of apoptosis, localizes to both mitochondria and the endoplasmic reticulum (ER. Whereas a function of mitochondrial and ER-specific Bcl-2 in apoptosis has been established in multiple studies, corresponding data for ciPCD do not exist. Methods We utilized Bcl-2 constructs specifically localizing to mitochondria (Bcl-2 ActA, the ER (Bcl-2 cb5, both (Bcl-2 WT or the cytosol/nucleus (Bcl-2 ΔTM and determined their protective effect on ceramide-mediated ciPCD in transiently and stably transfected Jurkat cells. Expression of the constructs was verified by immunoblots. Ceramide-mediated ciPCD was induced by treatment with human recombinant tumor necrosis factor and determined by flow cytometric measurement of propidium iodide uptake as well as by optical analysis of cell morphology. Results Only wildtype Bcl-2 had the ability to efficiently protect from ceramide-mediated ciPCD, whereas expression of Bcl-2 solely at mitochondria, the ER, or the cytosol/nucleus did not prevent ceramide-mediated ciPCD. Conclusion Our data suggest a combined requirement for both mitochondria and the ER in the induction and the signaling pathways of ciPCD mediated by ceramide.

  14. Differential protection by wildtype vs. organelle-specific Bcl-2 suggests a combined requirement of both the ER and mitochondria in ceramide-mediated caspase-independent programmed cell death

    International Nuclear Information System (INIS)

    Programmed cell death (PCD) is essential for development and homeostasis of multicellular organisms and can occur by caspase-dependent apoptosis or alternatively, by caspase-independent PCD (ciPCD). Bcl-2, a central regulator of apoptosis, localizes to both mitochondria and the endoplasmic reticulum (ER). Whereas a function of mitochondrial and ER-specific Bcl-2 in apoptosis has been established in multiple studies, corresponding data for ciPCD do not exist. We utilized Bcl-2 constructs specifically localizing to mitochondria (Bcl-2 ActA), the ER (Bcl-2 cb5), both (Bcl-2 WT) or the cytosol/nucleus (Bcl-2 ΔTM) and determined their protective effect on ceramide-mediated ciPCD in transiently and stably transfected Jurkat cells. Expression of the constructs was verified by immunoblots. Ceramide-mediated ciPCD was induced by treatment with human recombinant tumor necrosis factor and determined by flow cytometric measurement of propidium iodide uptake as well as by optical analysis of cell morphology. Only wildtype Bcl-2 had the ability to efficiently protect from ceramide-mediated ciPCD, whereas expression of Bcl-2 solely at mitochondria, the ER, or the cytosol/nucleus did not prevent ceramide-mediated ciPCD. Our data suggest a combined requirement for both mitochondria and the ER in the induction and the signaling pathways of ciPCD mediated by ceramide

  15. Enhanced apoptotic response to photodynamic therapy after bcl-2 transfection.

    Science.gov (United States)

    Kim, H R; Luo, Y; Li, G; Kessel, D

    1999-07-15

    Apoptosis is a cellular death process involving the sequential activation of a series of caspases, endonucleases, and other enzymes. The initiation of apoptosis can be inhibited by overexpression of bcl-2 and certain other members of a related family of proteins. We examined the effects of bcl-2 overexpression on the apoptotic response to photodynamic therapy (PDT), using aluminum phthalocyanine as the photosensitizing agent. In this study, we compared the immortalized human breast epithelial cell line MCF10A with a subline (MCF10A/bcl-2) transfected with the human bcl-2 gene. The latter was approximately 2-fold more sensitive to the phototoxic effects of PDT. At a 50 mJ/cm2 light dose, photodamage to MCF-10A/bcl-2 resulted in a greater loss of the mitochondrial membrane potential (delta(psi)m), enhanced release of mitochondrial cytochrome c, a more rapid and greater activation of caspase-3, and a greater apoptotic response. Western blot analysis revealed that the transfected cell line showed overexpression of both bcl-2 and bax, and that PDT caused selective destruction of bcl-2, leaving bax unaffected. The greater apoptotic response by the transfected line is, therefore, attributed to the higher bax:bcl-2 ratio after photodamage.

  16. The Study of Pentoxifylline Drug Effects on Renal Apoptosis and BCL-2 Gene Expression Changes Following Ischemic Reperfusion Injury in Rat

    OpenAIRE

    Hashemi, Mehrdad

    2014-01-01

    Ischemia Reperfusion injury is the tissue damage caused when blood supply returns to the tissue after a period of ischemia or lack of oxygen. In this study, the effect of pentoxyfylline on BCL-2 gene expression changes and cell injury in kidney of rat following Ischemia Reperfusion were evaluated. In this experimental study, 20 male wistar rats with average weight of 250-300 g were selected and then were accidently divided them on two tenth group of control and treatment groups. In the contro...

  17. Endothelium Expression of Bcl-2 Is Essential for Normal and Pathological Ocular Vascularization.

    Directory of Open Access Journals (Sweden)

    Ismail S Zaitoun

    Full Text Available Bcl-2 is an anti-apoptotic protein with important roles in vascular homeostasis and angiogenesis. Mice globally lacking Bcl-2 (Bcl-2 -/- are small in stature and succumb to renal failure shortly after weaning as a result of renal hypoplasia/cystic dysplasia. We have shown that Bcl-2 -/- mice displayed attenuated retinal vascular development and neovascularization. In vitro studies indicated that in addition to modulating apoptosis, Bcl-2 expression also impacts endothelial and epithelial cell adhesion, migration and extracellular matrix production. However, studies delineating the cell autonomous role Bcl-2 expression plays in the endothelium during vascular development, pruning and remodeling, and neovascularization are lacking. Here we generated mice carrying a conditional Bcl-2 allele (Bcl-2Flox/Flox and VE-cadherin-cre (Bcl-2EC mice. Bcl-2EC mice were of normal stature and lifespan and displayed some but not all of the retinal vascular defects previously observed in global Bcl-2 deficient mice. Bcl-2EC mice had decreased numbers of endothelial cells, decreased retinal arteries and premature primary branching of the retinal vasculature, but unlike the global knockout mice, spreading of the retinal superficial vascular layer proceeded normally. Choroidal neovascularization was attenuated in Bcl-2EC mice, although retinal neovascularization accompanying oxygen-induced ischemic retinopathy was not. Thus, Bcl-2 expression in the endothelium plays a significant role during postnatal retinal vascularization, and pathological choroidal but not retinal neovascularization, suggesting vascular bed specific Bcl-2 function in the endothelium.

  18. Endothelium Expression of Bcl-2 Is Essential for Normal and Pathological Ocular Vascularization.

    Science.gov (United States)

    Zaitoun, Ismail S; Johnson, Ryan P; Jamali, Nasim; Almomani, Reem; Wang, Shoujian; Sheibani, Nader; Sorenson, Christine M

    2015-01-01

    Bcl-2 is an anti-apoptotic protein with important roles in vascular homeostasis and angiogenesis. Mice globally lacking Bcl-2 (Bcl-2 -/-) are small in stature and succumb to renal failure shortly after weaning as a result of renal hypoplasia/cystic dysplasia. We have shown that Bcl-2 -/- mice displayed attenuated retinal vascular development and neovascularization. In vitro studies indicated that in addition to modulating apoptosis, Bcl-2 expression also impacts endothelial and epithelial cell adhesion, migration and extracellular matrix production. However, studies delineating the cell autonomous role Bcl-2 expression plays in the endothelium during vascular development, pruning and remodeling, and neovascularization are lacking. Here we generated mice carrying a conditional Bcl-2 allele (Bcl-2Flox/Flox) and VE-cadherin-cre (Bcl-2EC mice). Bcl-2EC mice were of normal stature and lifespan and displayed some but not all of the retinal vascular defects previously observed in global Bcl-2 deficient mice. Bcl-2EC mice had decreased numbers of endothelial cells, decreased retinal arteries and premature primary branching of the retinal vasculature, but unlike the global knockout mice, spreading of the retinal superficial vascular layer proceeded normally. Choroidal neovascularization was attenuated in Bcl-2EC mice, although retinal neovascularization accompanying oxygen-induced ischemic retinopathy was not. Thus, Bcl-2 expression in the endothelium plays a significant role during postnatal retinal vascularization, and pathological choroidal but not retinal neovascularization, suggesting vascular bed specific Bcl-2 function in the endothelium. PMID:26444547

  19. A component of green tea (-)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/Akt pathway and Bcl-2 family proteins

    International Nuclear Information System (INIS)

    Bladder cancer is the fourth most common cancer in men and ninth most common in women. It has a protracted course of progression and is thus an ideal candidate for chemoprevention strategies and trials. This study was conducted to evaluate the chemopreventive/antiproliferative potential of (-)-epigallocatechin gallate (EGCG, the major phytochemical in green tea) against bladder cancer and its mechanism of action. Using the T24 human bladder cancer cell line, we found that EGCG treatment caused dose- and time-dependent inhibition of cellular proliferation and cell viability, and induced apoptosis. Mechanistically, EGCG inhibits phosphatidylinositol 3'-kinase/Akt activation that, in turn, results in modulation of Bcl-2 family proteins, leading to enhanced apoptosis of T24 cells. These findings suggest that EGCG may be an important chemoprevention agent for the management of bladder cancer

  20. Protective Effect of Aliskiren in Experimental Ischemic Stroke: Up-Regulated p-PI3K, p-AKT, Bcl-2 Expression, Attenuated Bax Expression.

    Science.gov (United States)

    Miao, Jiangyong; Wang, Lina; Zhang, Xiangjian; Zhu, Chunhua; Cui, Lili; Ji, Hui; Liu, Ying; Wang, Xiaolu

    2016-09-01

    Aliskiren (ALK), a pharmacological renin inhibitor, is an effective antihypertensive drug and has potent anti-apoptotic activity, but it is currently unknown whether ALK is able to attenuate brain damage caused by acute cerebral ischemia independent of its blood pressure-lowering effects. This study aimed to investigate the role of ALK and its potential mechanism in cerebral ischemia. C57/BL6 mice were subjected to transient middle cerebral artery occlusion (tMCAO) and treated for 5 days with Vehicle or ALK (10 or 25 mg/kg per day via intragastric administration), whereas Sham-operated animals served as controls. Treatment with ALK significantly improved neurological deficits, infarct volume, brain water content and Nissl bodies after stroke (P < 0.05), which did not affect systemic blood pressure. Furthermore, the protection of ALK was also related to decreased levels of apoptosis in mice by enhanced activation of phosphatidylinositol 3-kinase (PI3K)/AKT pathway, increased level of Bcl-2 and reduced Bax expression (P < 0.05). In addition, ALK's effects were reversed by PI3K inhibitors LY294002 (P < 0.05). Our data indicated that ALK protected the brain from reperfusion injuries without affecting blood pressure, and this effect may be through PI3K/AKT signaling pathway. PMID:27180190

  1. Amorphous silica nanoparticles trigger vascular endothelial cell injury through apoptosis and autophagy via reactive oxygen species-mediated MAPK/Bcl-2 and PI3K/Akt/mTOR signaling

    Directory of Open Access Journals (Sweden)

    Guo C

    2016-10-01

    Full Text Available Caixia Guo,1,2 Man Yang,2,3 Li Jing,2,3 Ji Wang,2,3 Yang Yu,2,3 Yang Li,2,3 Junchao Duan,2,3 Xianqing Zhou,2,3 Yanbo Li,2,3 Zhiwei Sun2,3 1Department of Occupational and Environmental Health, School of Public Health, 2Beijing Key Laboratory of Environmental Toxicology, 3Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People’s Republic of China Abstract: Environmental exposure to silica nanoparticles (SiNPs is inevitable due to their widespread application in industrial, commercial, and biomedical fields. In recent years, most investigators focus on the evaluation of cardiovascular effects of SiNPs in vivo and in vitro. Endothelial injury and dysfunction is now hypothesized to be a dominant mechanism in the development of cardiovascular diseases. This study aimed to explore interaction of SiNPs with endothelial cells, and extensively investigate the exact effects of reactive oxygen species (ROS on the signaling molecules and cytotoxicity involved in SiNPs-induced endothelial injury. Significant induction of cytotoxicity as well as oxidative stress, apoptosis, and autophagy was observed in human umbilical vein endothelial cells following the SiNPs exposure (P<0.05. The oxidative stress was induced by ROS generation, leading to redox imbalance and lipid peroxidation. SiNPs induced mitochondrial dysfunction, characterized by membrane potential collapse, and elevated Bax and declined bcl-2 expression, ultimately leading to apoptosis, and also increased number of autophagosomes and autophagy marker proteins, such as LC3 and p62. Phosphorylated ERK, PI3K, Akt, and mTOR were significantly decreased, but phosphorylated JNK and p38 MAPK were increased in SiNPs-exposed endothelial cells. In contrast, all of these stimulation phenomena were effectively inhibited by N-acetylcysteine. The N-acetylcysteine supplement attenuated SiNPs-induced endothelial toxicity through inhibition of apoptosis

  2. Immunogenicity of Bcl-2 in patients with cancer

    DEFF Research Database (Denmark)

    Andersen, Mads Hald; Svane, Inge Marie; Kvistborg, Pia;

    2005-01-01

    -2 in cancer and the fact that immune escape by down-regulation or loss of expression of this protein would impair sustained tumor growth makes Bcl-2 a very attractive target for anticancer immunotherapy. Herein, we describe spontaneous T-cell reactivity against Bcl-2 in peripheral blood from...... patients suffering from unrelated tumor types (ie, pancreatic cancer, breast cancer, acute myeloid leukemia [AML], and chronic lymphocytic leukemia [CLL]). Additionally, we show that these Bcl-2-reactive T cells are indeed peptide-specific, cytotoxic effector cells. Thus, Bcl-2 may serve as an important...... and widely applicable target for anticancer immunotherapeutic strategies (eg, in the combination with conventional radiotherapy and chemotherapy)....

  3. 特发性脊柱侧凸椎旁肌组织Bcl-2蛋白表达及细胞凋亡的研究%Apoptosis and expression of Bcl-2 in the paraspinal muscles of idiopathic scoliosis

    Institute of Scientific and Technical Information of China (English)

    赵宇; 邱贵兴

    2004-01-01

    BACKGROUND: The etiology of idiopathic scoliosis is still uncertain. The paraspinal muscles have been implicated by several investigators as a possible causative factor in the production and progression of adolescent idiopathic scoliosis. Therefore, the role of the spinal musculature in the pathogenesis of scoliosis has been the subject of much investigation.OBJECTIVE: This study focused on the expressive difference among Bcl-2,Caspase-3 and bcl-x of the thoracic spinal musculature on convex side with those on the concave side in the scoliosis patients in order to explore the possible mechanism which paraspinal muscles play on scoliosis from the view of molecular biology.DESIGN:A randomized case-control study was conducted.SETTING and PARTICIPANTS: This research was completed in Department of Orthopaedics of Peking Union Hospital. Two patients with bursting fracture of thoracic vertebra and lumbar were selected as control group. The research group was composed by 10 patients which including 2 males and 8 females with scoliosis of thoracic vertebra, aged from 12 to 17 years old,mean age was 14. 3. The average Cobb angel was 57.7°(ranged from 45°~85°).INTERVENTION: Paraspinal muscles were taken from both sides during surgery from the apex of the curve between the 6th and 11th thoracic vertebral levels. Part of the tissue was fixed in formalin and stained with hematoxylin and eosin; the remaining tissue was snap frozen and processed for immunohistochemistry and Western blotting.muscles.RESULTS: The expression of Bcl-2 in convex side of paraspinal muscles was reduced. There was no difference between scoliosis patients and control group on cell apoptosis because it could be seen in both groups. Compared with concave side of scoliosis and control group, the muscle fibers were much thinner in convex side.CONCLUSION: The asymmetry of paraspinal muscles caused by anomaly of nerve and muscles may be the important factor which leads to the development of idiopathic

  4. α-2b干扰素对瘢痕疙瘩成纤维细胞凋亡及端粒酶逆转录酶、bcl-2 mRNA表达的影响%Effects of IFNα-2b on cell apoptosis and expression of hTERT and bcl-2 mRNA in keloid fibroblasts

    Institute of Scientific and Technical Information of China (English)

    黄勇; 孟强; 邢新

    2008-01-01

    目的 观察α-2b干扰素(IFNα-2b)对瘢痕疙瘩成纤维细胞生长增殖、凋亡及端粒酶逆转录酶(hTERT)、bcl-2 mRNA表达的影响,探讨其在瘢痕疙瘩治疗中的作用机制.方法 进行成纤维细胞原代培养,细胞分别来自8例瘢痕疙瘩标本和8例正常皮肤标本.第3~4代的细胞用于实验.以IFNa-2b作用于体外培养的瘢痕疙瘩和正常皮肤成纤维细胞,MTT法检测成纤维细胞生长增殖情况,应用流式细胞仪观察处理后成纤维细胞凋亡,RT-PCR法检测成纤维细胞hTERT和bcl-2mRNA的表达.结果 IFNα-2b对瘢痕疙瘩和正常皮肤成纤维细胞生长有抑制作用,体外培养的瘢痕疙瘩和正常皮肤成纤维细胞经10 000 U/ml IFNα-2b处理后,能诱导成纤维细胞凋亡发生,RT-PCR检测hTERT和bcb2 mRNA表达降低,和对照组相比,差异有统计学意义(P<0.01),且具有明显的时间依赖性.结论 作为一个负性调节因子,IFNα-2b能抑制瘢痕疙瘩成纤维细胞的生长增殖并诱导成纤维细胞发生调亡,下调成纤维细胞端粒酶活性是其重要作用机制之一.通过抑制端粒酶活性进行抗瘢痕疙瘩治疗可能是一个新途径.%Objective To observe the effects of IFNα-2b on keloid fibroblasts in cell prolifera-tion, apoptosis, expression of hTERT and bcl-2 mRNA and to explore its anti-keloid mechanism. Methods Primary cultures of dermal fibroblasts derived from 8 keloid and 8 normal skin samples were established, strains of fibroblasts at passages 3 to 4 were used in this study. Keloid and normal skin fibroblasts in culture medium in vitro were given IFNα-2b and were obsevered in different time. The proliferation of the fibroblasts was measured by MTT assay, the apoptosis was analysed by flow cytometry(FCM), and the expression of hTERT and bcl-2 mRNA were obsevered by semi-qnantitativere verse transcriptase-polymerase chain reaction (RT-PCR). The data were analyzed by statistical software (SPSS11. 5). Results IFNα-2

  5. EXPRESSION AND SIGNIFICANCE OF bcl-2 FAMILY IN AMELOBLASTONA

    Institute of Scientific and Technical Information of China (English)

    WANG Jie; MA Jie; ZHONG Ming; LIU Jing-dong

    2006-01-01

    Objective: To study the expression of bcl-2 and bax in human ameloblastoma (AB), and investigate the role of apoptosis in genesis and development of AB and the relation of apoptosis with the clinic biological characteristics of AB. Methods:BCL-2 and BAX proteins were detected in 75 cases of AB (primary AB 31 cases, recurrent AB 37 cases, malignant AB 7cases) by S-P method. Oral normal mucosa (NOM) and Odontogenic kerotosyst (OKC) were used as controls. Bcl-2 and bax mRNA in 20 cases of AB, 12 cases of OKC were detected by in situ hybridization. Results: The positive ratio of BCL-2protein was 88.0% ( 66/75 ) in AB, 74.3% (26/35) in OKC and 44.4% (4/9) in NOM, respectively (P<0.001). BCL-2 protein was expressed in peripheral cells and a few scattered stellate-shape cells in AB. The positive ratio of BAX protein was 74.7%(56/75)in AB, 65.7%(23/35)in OKC and 77.8%(7/9) in NOM, respectively (P<0.001). BAX protein was expressed in peripheral cells and stellate-shape cells with similar intensity. BCL-2 expression increased in recurrent and AB canceration(P<0.01), while for BAX expression, the positive ratio was higher in recurrent AB, but lower than that of malignant AB. A moderate negative correlation between BCL-2 and BAX protein was found (rk=-0.331, P<0.001).Conclusion: AB has much more apoptosis-inhibiting protein than apoptosis- accelarating protein. Apoptosis plays an important role in genesis, development of AB. The fashion and intensity of bcl-2 and bax expression were different in various tissues and in benign or malignant AB.

  6. Influence of oxidative stress on apoptosis and expression of bax and bcl-2 of enterocytes in burn rats with delayed resuscitation on the plateau%高原地区烧伤后延迟复苏氧化应激对大鼠肠上皮细胞凋亡及bax和bcl-2基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    周文军; 张诚; 刘毅; 刘萍; 马明; 张世范

    2009-01-01

    Objective To explore influence of oxidative stress reaction on apoptosis rate and expres-sion of apoptosis-related genes bax and bcl-2 of enterocytes in severely burned rats with delayed resuscitation on the plateau. Methods One hundred and twenty rats subjected to 30% TBSA full-thickness scald on the back were derided into plateau experimental group (PE, altitude 3840 m) and Lanzhou experimental group (LE, altitude 1517 m). Then LE and PE groups were subdivided into Lanzhou immediate fluid resus-citation group (LIFR, with immediate intraperitoneal injection of isotonic saline after scald, 40 mL/kg), Lanzhou delayed fluid resuscitation group [LDFR, with intraperitoneal injection of isotonic saline at 6 post scald hour (PSH), 40 mL/kg], and plateau immediate fluid resuscitation group (PIFR, with immediate in-traperitoneal injection of isotonic saline after scald, 40 mL/kg), plateau delayed fluid resuscitation group (PDFR, with intraperitoneal injection of isotonic saline at 6 PSH, 40 mL/kg). Another 12 rats were divided into Lanzhou sham scald group (LS) and plateau sham scald group (PS), with 6 rats in each group. Rats in LS and PS groups were sham scalded in a water bath for 15 s without fluid infusion. Rats were sacrificed at 6, 12, 24, 48, 72 PSH for collection of small intestine samples to determine the contents of malonaldehyde (MDA) and total hydrosulfide (TSH). The apoptosis of enterocytes was determined by TUNEL, and the ex-pression of bax and bcl-2 in epithelial cells were observed by immunohistochemical method. Intestinal sample of LS and PS groups were collected to determine the contents of MDA and TSH. Results After being scal-ded, content of MDA in intestinal tissue of rats in LDFR group and PDFR group was respectively greater than that in LIFR group and PIFR group (P<0.05 or P<0.01). Intestinal tissue content of MDA of rats in LDFR group (9.8±4.0 nmol/mg) and PDFR group (10.2±1.3 nmol/mg) was respectively greater than that in LIFR group (9.5±2

  7. Changes of expression of apoptosis-related proteins Smac and Bcl-2 in Parkinsonˊs disease rat induced by Rotenone%鱼藤酮致帕金森病大鼠黑质中Smac和Bcl-2的表达及意义

    Institute of Scientific and Technical Information of China (English)

    张延平; 李彦改; 徐晓臣; 王英杰; 李印杰

    2015-01-01

    目的:研究鱼藤酮致帕金森病( Parkinsonˊs disease,PD)大鼠脑黑质中凋亡相关蛋白Smac和Bcl-2表达的改变。方法:将Witstar大鼠随机分为对照组和实验组。对照组10只背部皮下注射葵花油1ml/kg,实验组25只分为A、B、C三组,按照3.0(5只)、2.0(10只)和1.0(10只)mg/(kg·d)背部皮下注射鱼藤酮(鱼藤酮溶解在葵花籽油中,充分震荡混匀后4℃避光保存)。结果:透射电镜观察下,鱼藤酮处置的实验组神经元细胞皱缩,胞质致密,核染色质边集,有部分细胞胞核裂解,胞质芽突脱落,形成凋亡小体。并且随着鱼藤酮染毒剂量的增大,凋亡小体形成更加明显。免疫组化染色显示,Smac的阳性表达实验组高于对照组,Bcl-2的阳性表达实验组低于对照组。结论:鱼藤酮具有明显的神经毒性,能导致大鼠脑内DA能神经元的损伤,细胞凋亡参与了鱼藤酮帕金森模型大鼠黑质多巴胺神经细胞的损伤。%Objective:To study the changes of expression of apoptosis-related proteins Smac and Bcl-2 in the midbrain substantia nigra in Parkinsonˊs disease rat induced by Rotenone. Methods:Witstar rats were randomly divid-ed into control group and experimental group. Control group 10 rats were treated by subcutaneously injection of sun-flower oil 1ml/kg,25 in experimental group were divided into A,B,C three groups,with 3. 0(5),2. 0(10)and 1. 0 (10)mg/(kg·d)(subcutaneous injection of Rotenone dissolved in sunflower oil,shake evenly mixed 4℃ stored a-way from light). Results:TEM observated results,neuronal cells in experimental group shrinkage Rotenone treatment, cytoplasmic dense,the nuclear chromatin,nuclear fragmentation and some cells,cytoplasmic buds abscission,and for-mation of apoptotic bodies. And with the increase of the dose of Rotenone,apoptotic body formation was more obvious.Immunohistochemical staining showed positive expression of Smac

  8. Association of Bax Expression and Bcl2/Bax Ratio with Clinical and Molecular Prognostic Markers in Chronic Lymphocytic Leukemia

    Directory of Open Access Journals (Sweden)

    Vucicevic Ksenija

    2016-04-01

    Full Text Available Background: In chronic lymphocytic leukemia (CLL, in vivo apoptotic resistance of malignant B lymphocytes results, in part, from the intrinsic defects of their apoptotic machinery. These include genetic alterations and aberrant expression of many apoptosis regulators, among which the Bcl2 family members play a central role.

  9. Immunohistochemical study of epidermal and dermal expression of Bcl-X, Bcl-2 and bax in psoriasis.

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate the regulation of cell proliferation and apoptosis in psoriasis. Methods: The expressions of Bcl-X, Bcl-2 and Bax were studied with immunohistochemical technique (SP) in the lesional and non-lesional psoriatic skin. Results: There were significant overexpressions of Bcl-X in all layers of epidermis, inflammatory cells and vascular endothelia in dermis;

  10. Paclitaxel Induces Apoptosis in Breast Cancer Cells through Different Calcium—Regulating Mechanisms Depending on External Calcium Conditions

    OpenAIRE

    Zhi Pan; Andrew Avila; Lauren Gollahon

    2014-01-01

    Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and...

  11. Homologous recombination control by the anti-apoptotic onco-protein Bcl-2

    International Nuclear Information System (INIS)

    This research thesis deals with the different biological mechanisms, notably the repair and apoptosis mechanisms induced by irradiation in cells. After a presentation of the genotoxic stress and DNA repair mechanisms, the author discusses the cellular response to a DNA double-strand break, and the regulation of these response mechanisms (how a cellular response emerges: life or death). The next part deals with the apoptosis (cell death by necrosis or apoptosis), and presents the BCL-2 protein family. Results are then reported on laboratory studies of the effect of this protein family

  12. Effect of Achyranthes bidentata polysaccharides on the expression of BCL-2 and bax in hepatic tissues after exhaustive exercise in rats.

    Science.gov (United States)

    Lin, Jinyang; Zhang, Zhuoying; Shan, Ying

    2010-01-01

    This study aims to assess the effects of Achyranthes bidentata polysaccharides (ABPS) on the expression of bcl-2 and bax in hepatic tissues after exhaustive exercise in order to provide theoretical support for the application of ABPS in the field of sports nutrition. Thirty male Sprague-Dawley rats were randomized into three groups, each consisting of 10 rats: Normal control group (NCG), Exhausting exercises control group (EECG), ABPS treated group (ATG). ABPS were fed orally by gastric intubation to rats of ABPS treated group (ATG) once daily for 7 days. Control animals (EECG and NCG) received the same amount of isotonic sodium chloride solution. Exhaustive exercise was performed on a rodent treadmill. The SP (streptavidin peroxidase) method for immunohistochemical staining was adopted to test the protein expression of bax and bcl-2 in the hepatic tissues of the rats. Exhausting exercises increased bax protein expression of hepatic tissues of rats and bax/bcl-2 ratio dramatically, but a decreased bcl-2 protein expression. In the rats fed ABPS orally by gastric intubation, the bax protein expression and bax/bcl-2 ratio obviously decreased, while bcl-2 protein expression increased. The result indicated that bax and bcl-2 co-regulated the exercise-induced hepatocyte apoptosis. Feeding ABPS orally by gastric intubation to rats can inhibit the hepatocyte apoptosis in exhaustive exercise. PMID:21731162

  13. MicroRNA-650 was a prognostic factor in human lung adenocarcinoma and confers the docetaxel chemoresistance of lung adenocarcinoma cells via regulating Bcl-2/Bax expression.

    Directory of Open Access Journals (Sweden)

    Jia-Yuan Huang

    Full Text Available Increasing evidence shows that dysregulation of microRNAs (miRNAs is involved in malignant transformation. We investigated the clinical significance of miR-650 and its involvement in chemoresistance to docetaxel. Our results showed that the relative expression level of miR-650 was significantly higher in LAD tissues than in corresponding nontumor tissues and high level of miR-650 expression was found to be significantly associated with high incidence of lymph node metastasis, advanced clinical stage and poor prognosis of LAD patients. Univariate and multivariate analyses indicated that high miR-650 expression was an independent prognostic factor for survival. Also, we found that the level of miR-650 in LAD tissues was correlated with the response of patients to docetaxel-based chemotherapy. Silencing of miR-650 could increase the in vitro sensitivity of docetaxel-resistant LAD cells to docetaxel, while upregulation of miR-650 decreased the sensitivity of parental LAD cells to docetaxel both in vitro and in vivo. Additionally, silencing of miR-650 could enhance the caspase-3-dependent apoptosis, which might be correlated with the decreased ratio of Bcl-2/Bax. Further researches suggested that inhibitor of growth 4 (ING4 was a direct target of miR-650. Downregulated or upregulated ING4 expression could partially rescue the effects of miR-650 inhibitor or mimics in docetaxel-resistant or parental LAD cells. Furthermore, we found that ING4 was upregulated in docetaxel-responding LAD tissues, and its expression was inversely correlated with miR-650. Thus, miR-650 is a novel prognostic marker in LAD and its expression is a potential indicator of chemosensitivity to docetaxel-based chemotherapy regimen.

  14. Characterization of vNr-13, the first alphaherpesvirus gene of the bcl-2 family

    International Nuclear Information System (INIS)

    The Bcl-2 family, including antiapoptotic and proapoptotic members, plays key regulating roles in programmed cell death. We report the characterization of a new member of the bcl-2 family, encoded by herpesvirus of turkeys (HVT). The product of this gene shares 80% homology with Nr-13, an apoptosis inhibitor, which is overexpressed in avian cells transformed by the v-src oncogene. This new gene, that we propose to call vnr-13, is the first member of the bcl-2 family to be isolated among α-herpesviruses. Results from cells expressing the HVT-vnr-13 gene product show that the encoded protein inhibits apoptosis and also reduces the rate of cellular proliferation. Contrary to all bcl-2 homologues found in γ-herpesvirus, which are intronless, vnr-13 has the same organization as the cellular nr-13 gene. Hence, the HVT vnr-13 gene may have been acquired from a reverse transcriptase product of an unspliced precursor RNA, or via direct recombination with the host chromosomal DNA

  15. Combinational effects of bcl-2 antisense oligodeoxynucleotide and Rituximab on proliferation and apoptosis of B-lymphoma Raji cells%Bcl-2反义寡核苷酸与Rituximab联合对Raji细胞增殖和凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    申咏梅; 杨晓春; 石怡珍; 谢小芳; 唐军

    2007-01-01

    目的:研究bcl-2硫代反义寡核苷酸(bcl-2 ASODN)联合Rituximab[CD20单克隆抗体(mAb)]对B细胞淋巴瘤Raji细胞株体内外增殖和凋亡的影响, 并探讨其作用机制.方法:bcl-2 ASODN和Rituximab分别和联合作用B细胞淋巴瘤Raji细胞后, 通过MTT法检测细胞生长情况;流式细胞术(FCM)检测bcl-2蛋白表达和细胞凋亡;RT-PCR检测bcl-2 mRNA表达水平;用Raji细胞建立裸鼠B细胞淋巴瘤模型观察bcl-2 ASODN与Rituximab联合在体内的抗肿瘤效果. 结果:5~30 μmol/L bcl-2 和1 ~16 mg/L Rituximab单独应用均能抑制Raji细胞生长、诱导细胞凋亡、使bcl-2蛋白和bcl-2 mRNA表达降低, 但两者联合应用较单独应用抑制作用更为明显(P<0.01).体内实验表明, bcl-2 ASODN与Rituximab联合应用较单独可有效抑制BALB/c裸鼠B细胞淋巴瘤的生长(P<0.01).结论:bcl-2 ASODN联合Rituximab较分别单独应用可明显抑制B细胞淋巴瘤Raji细胞生长, 促进细胞凋亡;其机制可能是通过联合下调bcl-2蛋白及bcl-2 mRNA表达而起作用.

  16. Molecular and Computational Studies on Apoptotic Pathway Regulator, Bcl-2 Gene from Breast Cancer Cell Line MCF-7.

    Science.gov (United States)

    Tiwari, Pragya; Khan, M J

    2016-01-01

    Cancer is a dreadful disease constituting abnormal growth and proliferation of malignant cells in the body. Next to lung cancer, breast cancer is the most common form of cancer affecting women. The apoptotic pathway regulators, B cell lymphoma family of protein, play a key role in various malignancies defining cancer and their constitutive expression plays an integral role in breast cancer chemotherapy. The research work discusses the identification and molecular cloning of a B cell lymphoma like gene from human breast cancer cell line. The open reading frame of the gene consisted of 965 nucleotides, encoding a protein of 380 amino acids with a predicted molecular weight of 42.5 kilodalton. The predicted physiochemical properties of the gene were as follows: Isoelectric point - 9.49, molecular formula - C1893H3004N534O548S16, total number of negatively charged residues, (Aspartate+Glutamate) - 26, total number of positively charged residues, (Arginine+Lysine)-39, instability index-42.08 (unstable protein) and grand average of hydropathicity is -0.202. Additionally, phobius prediction suggested non-cytoplasmic localization of the putative protein. The presence of secondary structure in the protein was determined by Memsat program. A 3 dimensional protein homology model was generated using threading based method of protein modeling for structural and functional annotation of the putative protein. Future prospects accounts for the biochemical characterization of the enzyme including in vitro assays on breast cancer cell line would establish the functional characteristics of the protein and its physiological mechanisms in breast cancer development and its therapeutic-target role in future. PMID:27168686

  17. Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX

    Institute of Scientific and Technical Information of China (English)

    Bonsu Ku; Chengyu Liang; Jae U Jung; Byung-Ha Oh

    2011-01-01

    Interactions between the BCL-2 family proteins determine the cell's fate to live or die. How they interact with each other to regulate apoptosis remains as an unsettled central issue. So far, the antiapoptotic Bc1-2 proteins are thought to interact with BAX weakly, but the physiological significance of this interaction has been vague.Herein, we show that recombinant BCL-2 and BCL-w interact potently with a BCL-2 homology (BH) 3 domain-containing peptide derived from BAX, exhibiting the dissociation constants of 15 and 23 nM, respectively. To clarify the basis for this strong interaction, we determined the three-dimensional structure of a complex of BCL-2 with a BAX peptide spanning its BH3 domain. It revealed that their interactions extended beyond the canonical BH3 domain and involved three nonconserved charged residues of BAX. A novel BAX variant, containing the alanine substitution of these three residues, had greatly impaired affinity for BCL-2 and BCL-w, hut was otherwise indistinguishable from wild-type BAX. Critically, the apoptotic activity of the BAX variant could not be restrained by BCL-2 and BCL-w, pointing that the observed tight interactions are critical for regulating BAX activation. We also comprehensively quantified the binding affinities between the three BCL-2 subfamily proteins. Collectively, the data show that due to the high affinity of BAX for BCL-2, BCL-w and A1, and of BAK for BCL-XL, MCL-1 and A1, only a subset of BH3-only proteins, commonly including BIM, BID and PUMA, could he expected to free BAX or BAK from the antiapoptotic BCL-2 proteins to elicit apoptosis.

  18. A Study on Evaluation of Apoptosis and Expression of Bcl-2-Related Marker in Wound Healing of Streptozotocin-Induced Diabetic Rats

    OpenAIRE

    Surya Bhan; Rahul Mitra; Arya, A. K.; Pandey, H. P.; Tripathi, K.

    2013-01-01

    Uncontrolled blood sugar is a major cause of vascular complications and delayed wound healing in diabetes mellitus. During wound healing process, normally, apoptosis is responsible for events such as removal of inflammatory cells and evolution of granulation tissue into scar which occur during the late phase of wound healing. Early apoptosis can lead to abnormal wound healing by removing granulation tissue including fibroblast, endothelial cell, and small vessels. To determine the role of apo...

  19. Fish oil administration mediates apoptosis of Walker 256 tumor cells by modulation of p53, Bcl-2, caspase-7 and caspase-3 protein expression

    OpenAIRE

    Borghetti, Gina; Yamaguchi, Adriana Aya; Aikawa, Julia; Yamazaki, Ricardo Key; de Brito, Gleisson Alisson Pereira; Fernandes, Luiz Claudio

    2015-01-01

    Background Several studies have been shown pro-apoptotic effects of fish oil (FO), rich in n-3 polyunsaturated fatty acids (n-3 PUFA) on cancer cells. Nevertheless, few in vivo experiments have provided data of its ability on apoptosis protein expression in tumor tissue. Thus, in this study we investigate the effect of FO supplementation on apoptosis protein expression in Walker 256 tumor bearing rats. Male Wistar rats were randomly assigned to three groups: fed with regular chow (W); fed reg...

  20. Effects of Exercise Pre-Conditioning on Hippocampus Expression of Bcl-2 and Bax Protein and Apoptosis Following Ischemia/Reperfusion Injury in Male Rats

    OpenAIRE

    Nabi Shamsaei; Hamid Rajabi; Nahid Aboutaleb; Farnaz Nikbakht; Pezhman Motamedi; Mehdi Khaksari; Sohaila Erfani

    2015-01-01

    Introduction: Cerebral ischemia/reperfusion leads to loss of vulnerable neurons by apoptosis in specific brain regions specially in the hippocampus. There is some evidence indicating that the neuroprotective effects of physical activity on the brain. Therefore,the main purpose of this study was to investigate the effect of exercise pre-conditioning on apoptosis-related proteins expression in hippocampal CA1 neurons after induction of ischemia. Methods: 21 Male rats weighing 260-300g were ...

  1. 细胞凋亡调控蛋白bcl-2和bax在涎腺肿瘤中的表达及意义%Expression and significance of apoptosis regulatory protein bcl-2 and bax in tumor of salivary gland

    Institute of Scientific and Technical Information of China (English)

    齐红; 袁红民; 安文生; 杨荔琳

    2002-01-01

    目的:探讨bcl-2和bax基因蛋白在涎腺肿瘤(Salivary tumer,ST)中表达及意义.方法:SABC法观察87例ST及12例正常涎腺组织(Natural salivary tissue,NST)中bcl-2及bax表达.结果:bcl-2及bax蛋白在ST中表达明显高于NST;bcl-2在涎腺恶性肿瘤(Salivary malignacy,SM)中表达明显高于良性肿瘤;SM中bcl-2表达与其恶性程度及临床分期显著相关;bax蛋白表达与SM临床病理指标均无相关性.结论:bcl-2蛋白表达有助于SM恶性程度判断;可作为判断SM生物特性、临床分期的重要指标;bax/bcl-2比率变化参与了ST发生及发展过程.

  2. Bcl-2 protein expression is associated with p27 and p53 protein expressions and MIB-1 counts in breast cancer

    Directory of Open Access Journals (Sweden)

    Nishizaki Takashi

    2006-07-01

    Full Text Available Abstract Background Recent experimental studies have shown that Bcl-2, which has been established as a key player in the control of apoptosis, plays a role in regulating the cell cycle and proliferation. The aim of this study was to investigate the relationship between Bcl-2 and p27 protein expression, p53 protein expression and the proliferation activity as defined by the MIB-1 counts. The prognostic implication of Bcl-2 protein expression in relation to p27 and p53 protein expressions and MIB-1 counts for breast cancer was also evaluated. Methods The immunohistochemical expression of Bcl-2 protein was evaluated in a series of 249 invasive ductal carcinomas of the breast, in which p27 and p53 protein expressions and MIB-1 counts had been determined previously. Results The Bcl-2 protein expression was found to be decreased in 105 (42% cases. A decreased Bcl-2 protein expression was significantly correlated with a nuclear grade of III, a negative estrogen receptor, a decreased p27 protein expression, a positive p53 protein expression, positive MIB-1 counts and a positive HER2 protein expression. The incidence of a nuclear grade of III and positive MIB-1 counts increased as the number of abnormal findings of Bcl-2, p27 and p53 protein expressions increased. A univariate analysis indicated a decreased Bcl-2 protein expression to be significantly (p = 0.0089 associated with a worse disease free survival (DFS, while a multivariate analysis indicated the lymph node status and MIB-1 counts to be independently significant prognostic factors for the DFS. Conclusion The Bcl-2 protein expression has a close correlation with p27 and p53 protein expressions and the proliferation activity determined by MIB-1 counts in invasive ductal carcinoma of the breast. The prognostic value of Bcl-2 as well as p27 and p53 protein expressions was dependent on the proliferation activity in breast cancer.

  3. Recombinant human erythropoietin suppresses endothelial cell apoptosis and reduces the ratio of Bax to Bcl-2 proteins in the aortas of apolipoprotein E-deficient mice

    OpenAIRE

    Warren, Jeffrey S.; Zhao, Ying; Yung, Raymond; Desai, Anjali

    2011-01-01

    Recent clinical trials have raised concern that therapy with recombinant human erythropoietin (EPO) may increase cardiovascular disease risk, event rate, and mortality. Endothelial cell (EC) apoptosis has been implicated in both atherogenesis as well as in the destabilization and rupture of atheromatous plaques.

  4. p53, Bcl-2 and cox-2 are involved in berberine hydrochloride-induced apoptosis of HeLa229 cells.

    Science.gov (United States)

    Wang, Hai-Yan; Yu, Hai-Zhong; Huang, Sheng-Mou; Zheng, Yu-Lan

    2016-10-01

    The present study aimed to investigate the effects of berberine hydrochloride on the proliferation and apoptosis of HeLa229 human cervical cancer cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to examine the cytotoxicity of berberine hydrochloride against HeLa229 cells. The effects of berberine hydrochloride on the apoptosis of HeLa229 cells was detected by immunofluorescence and flow cytometry, and the mRNA expression levels of p53, B‑cell lymphoma 2 (Bcl‑2) and cyclooxygenase‑2 (cox‑2) were analyzed by reverse transcription-quantitative polymerase chain reaction. Berberine hydrochloride inhibited the proliferation of HeLa229 cells in a dose‑dependent manner; minimum cell viability (3.61%) was detected following treatment with 215.164 µmol/l berberine hydrochloride and the half maximal inhibitory concentration value was 42.93 µmol/l following treatment for 72 h. In addition, berberine hydrochloride induced apoptosis in HeLa229 cells in a dose‑ and time‑dependent manner. Berberine hydrochloride upregulated the mRNA expression levels of p53, and downregulated mRNA expression levels of Bcl‑2 and cox‑2, in a dose‑dependent manner. In conclusion, berberine hydrochloride inhibited the proliferation and induced apoptosis of HeLa229 cells, potentially via the upregulation of p53 and the downregulation of Bcl‑2 and cox‑2 mRNA expression levels. PMID:27601129

  5. Effects of human interleukin 10 gene transfer on the expression of Bcl-2 Bax and apoptosis of hepatocyte in rats with acute hemorrhagic necrotizing pancreatitis

    Institute of Scientific and Technical Information of China (English)

    GU Jun-chao; WANG Yu; ZHANG Zhong-tao; XUE Jian-guo; LI Jian-she; ZHOU Yan-zhong

    2005-01-01

    @@ Acute necrotising pancreatitis is characterized by inflammatory and necrotic events, which follow the initial intra-acinar injury involving enzyme activation, and disruption of the acinar cytoskeleton.1 At present, apoptosis has become a hot topic in many kinds of disease.

  6. Effect of Bcl-2 and Bax on survival of side population cells from hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To understand the role and significance of side population (SP) cells from hepatocellular carcinoma (HCC) in hepatocarcinogenesis, development, relapse and metastasis, we simulated the denutrition conditions that cancer cells experience in clinical therapy, observed the different anti-apoptosis ability of SP cells and non-SP cells under such conditions, and established the possible effects of P53, Bcl-2 and Bax on survival of SP cells.METHODS: We used flow cytometry to analyze and sort the SP and non-SP cells in established HCC lines MHCC97and hHCC. We evaluated cell proliferation by methyl thiazolyl tetrazolium (MTT) assay and investigated the expression of p53, bd-2 and bax genes during denutrition,by RT-PCR and immunofluorescence staining.RESULTS: The percentage of SP cells in the two established HCC lines was 0.25% and 0.5%, respectively.SP cells had greater anti-apoptosis and proliferation ability than non-SP cells. Expression of Bcl-2 and Bax in SP and non-SP cells differed during denutrition. The former was up-regulated in SP cells, and the latter was up-regulated in non-SP cells.CONCLUSION: It may be that different upstream molecules acted and led to different expression levels of Bcl-2 and Bax in these two cell lines. There was a direct relationship between up-regulation of Bcl-2 and down-regulation of Bax and higher anti-apoptosis ability in SP cells. It may be that the existence and activity of SP cells are partly responsible for some of the clinical phenomena which are seen in HCC, such as relapse or metastasis. Further research on SP cells may have potential applications in the field of anticancer therapy.

  7. Bcl-2 Retards Cell Cycle Entry through p27Kip1, pRB Relative p130, and Altered E2F Regulation

    OpenAIRE

    Vairo, Gino; Soos, Timothy J.; Upton, Todd M.; Zalvide, Juan; DeCaprio, James A.; Ewen, Mark E.; Koff, Andrew; Adams, Jerry M.

    2000-01-01

    Independent of its antiapoptotic function, Bcl-2 can, through an undetermined mechanism, retard entry into the cell cycle. Cell cycle progression requires the phosphorylation by cyclin-dependent kinases (Cdks) of retinoblastoma protein (pRB) family members to free E2F transcription factors. We have explored whether retarded cycle entry is mediated by the Cdk inhibitor p27 or the pRB family. In quiescent fibroblasts, enforced Bcl-2 expression elevated levels of both p27 and the pRB relative p1...

  8. 犬弓首线虫感染小鼠脑组织细胞凋亡及凋亡基因bcl-2、bax的表达%Apoptosis in cerebral histiocytes and the expression of apoptosis-related genes Bcl-2 and bax in mice infected with Toxocara canis

    Institute of Scientific and Technical Information of China (English)

    郑胜生; 李建华; 沈继龙; 汪学龙

    2006-01-01

    目的研究犬弓首线虫(Toxocara canis)感染小鼠脑组织细胞凋亡及凋亡基因bcl-2、bax mRNA表达情况,探讨幼虫移行症对脑组织细胞影响可能机理.方法取狗小肠内犬弓首线虫成虫进行解剖,取子宫段的虫卵培养至感染期,感染小鼠后不同时间段取脑组织采用流式细胞仪检测小鼠脑组织细胞凋亡;应用原位杂交技术检测bcl-2、bax mRNA表达情况.结果 1.犬弓首线虫子宫段虫卵经培养有98%达感染期.2.病理切片HE染色均见感染小鼠脑组织有犬弓首线虫幼虫.3.流式细胞仪检测小鼠脑组织细胞凋亡10 d、15 d、20 d、25 d对照组与实验组比较,具统计学意义差别(P0.05).结论 1.犬弓首线虫感染小鼠早期,脑组织细胞有不同程度细胞凋亡出现.2.其细胞凋亡与凋亡基因bcl-2、bax无明显关系.

  9. MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3

    OpenAIRE

    Hirai, Hiroyuki; Verma, Mayank; Watanabe, Shuichi; Tastad, Christopher; Asakura, Yoko; Asakura, Atsushi

    2010-01-01

    The molecules that regulate the apoptosis cascade are also involved in differentiation and syncytial fusion in skeletal muscle. MyoD is a myogenic transcription factor that plays essential roles in muscle differentiation. We noticed that MyoD−/− myoblasts display remarkable resistance to apoptosis by down-regulation of miR-1 (microRNA-1) and miR-206 and by up-regulation of Pax3. This resulted in transcriptional activation of antiapoptotic factors Bcl-2 and Bcl-xL. Forced MyoD expression induc...

  10. Triphala Extract Suppresses Proliferation and Induces Apoptosis in Human Colon Cancer Stem Cells via Suppressing c-Myc/Cyclin D1 and Elevation of Bax/Bcl-2 Ratio

    Directory of Open Access Journals (Sweden)

    Ramakrishna Vadde

    2015-01-01

    Full Text Available Colon cancer is the second leading cause of cancer related deaths in the USA. Cancer stem cells (CSCs have the ability to drive continued expansion of the population of malignant cells. Therefore, strategies that target CSCs could be effective against colon cancer and in reducing the risk of relapse and metastasis. In this study, we evaluated the antiproliferative and proapoptotic effects of triphala, a widely used formulation in Indian traditional medicine, on HCT116 colon cancer cells and human colon cancer stem cells (HCCSCs. The total phenolic content, antioxidant activity, and phytochemical composition (LC-MS-MS of methanol extract of triphala (MET were also measured. We observed that MET contains a variety of phenolics including naringin, quercetin, homoorientin, and isorhamnetin. MET suppressed proliferation independent of p53 status in HCT116 and in HCCSCs. MET also induced p53-independent apoptosis in HCCSCs as indicated by elevated levels of cleaved PARP. Western blotting data suggested that MET suppressed protein levels of c-Myc and cyclin D1, key proteins involved in proliferation, and induced apoptosis through elevation of Bax/Bcl-2 ratio. Furthermore, MET inhibited HCCSCs colony formation, a measure of CSCs self-renewal ability. Anticancer effects of triphala observed in our study warrant future studies to determine its efficacy in vivo.

  11. Inclusion Complex of Zerumbone with Hydroxypropyl-β-Cyclodextrin Induces Apoptosis in Liver Hepatocellular HepG2 Cells via Caspase 8/BID Cleavage Switch and Modulating Bcl2/Bax Ratio

    Directory of Open Access Journals (Sweden)

    Nabilah Muhammad Nadzri

    2013-01-01

    Full Text Available Zerumbone (ZER isolated from Zingiber zerumbet was previously encapsulated with hydroxypropyl-β-cyclodextrin (HPβCD to enhance ZER’s solubility in water, thus making it highly tolerable in the human body. The anticancer effects of this new ZER-HPβCD inclusion complex via apoptosis cell death were assessed in this study for the first time in liver hepatocellular cells, HepG2. Apoptosis was ascertained by morphological study, nuclear stain, and sub-G1 cell population accumulation with G2/M arrest. Further investigations showed the release of cytochrome c and loss of mitochondrial membrane potential, proving mitochondrial dysfunction upon the ZER-HPβCD treatment as well as modulating proapoptotic and anti-apototic Bcl-2 family members. A significant increase in caspase 3/7, caspase 9, and caspase 8 was detected with the depletion of BID cleaved by caspase 8. Collectively, these results prove that a highly soluble inclusion complex of ZER-HPβCD could be a promising anticancer agent for the treatment of hepatocellular carcinoma in humans.

  12. Persea declinata (Bl. Kosterm Bark Crude Extract Induces Apoptosis in MCF-7 Cells via G0/G1 Cell Cycle Arrest, Bcl-2/Bax/Bcl-xl Signaling Pathways, and ROS Generation

    Directory of Open Access Journals (Sweden)

    Putri Narrima

    2014-01-01

    Full Text Available Persea declinata (Bl. Kosterm is a member of the Lauraceae family, widely distributed in Southeast Asia. It is from the same genus with avocado (Persea americana Mill, which is widely consumed as food and for medicinal purposes. In the present study, we examined the anticancer properties of Persea declinata (Bl. Kosterm bark methanolic crude extract (PDM. PDM exhibited a potent antiproliferative effect in MCF-7 human breast cancer cells, with an IC50 value of 16.68 µg/mL after 48 h of treatment. We observed that PDM caused cell cycle arrest and subsequent apoptosis in MCF-7 cells, as exhibited by increased population at G0/G1 phase, higher lactate dehydrogenase (LDH release, and DNA fragmentation. Mechanistic studies showed that PDM caused significant elevation in ROS production, leading to perturbation of mitochondrial membrane potential, cell permeability, and activation of caspases-3/7. On the other hand, real-time PCR and Western blot analysis showed that PDM treatment increased the expression of the proapoptotic molecule, Bax, but decreased the expression of prosurvival proteins, Bcl-2 and Bcl-xL, in a dose-dependent manner. These findings imply that PDM could inhibit proliferation in MCF-7 cells via cell cycle arrest and apoptosis induction, indicating its potential as a therapeutic agent worthy of further development.

  13. Persea declinata (Bl.) Kosterm Bark Crude Extract Induces Apoptosis in MCF-7 Cells via G0/G1 Cell Cycle Arrest, Bcl-2/Bax/Bcl-xl Signaling Pathways, and ROS Generation.

    Science.gov (United States)

    Narrima, Putri; Paydar, Mohammadjavad; Looi, Chung Yeng; Wong, Yi Li; Taha, Hairin; Wong, Won Fen; Ali Mohd, Mustafa; Hadi, A Hamid A

    2014-01-01

    Persea declinata (Bl.) Kosterm is a member of the Lauraceae family, widely distributed in Southeast Asia. It is from the same genus with avocado (Persea americana Mill), which is widely consumed as food and for medicinal purposes. In the present study, we examined the anticancer properties of Persea declinata (Bl.) Kosterm bark methanolic crude extract (PDM). PDM exhibited a potent antiproliferative effect in MCF-7 human breast cancer cells, with an IC50 value of 16.68 µg/mL after 48 h of treatment. We observed that PDM caused cell cycle arrest and subsequent apoptosis in MCF-7 cells, as exhibited by increased population at G0/G1 phase, higher lactate dehydrogenase (LDH) release, and DNA fragmentation. Mechanistic studies showed that PDM caused significant elevation in ROS production, leading to perturbation of mitochondrial membrane potential, cell permeability, and activation of caspases-3/7. On the other hand, real-time PCR and Western blot analysis showed that PDM treatment increased the expression of the proapoptotic molecule, Bax, but decreased the expression of prosurvival proteins, Bcl-2 and Bcl-xL, in a dose-dependent manner. These findings imply that PDM could inhibit proliferation in MCF-7 cells via cell cycle arrest and apoptosis induction, indicating its potential as a therapeutic agent worthy of further development. PMID:24808916

  14. BH4 domain of bcl-2 protein is required for its proangiogenic function under hypoxic condition.

    Science.gov (United States)

    Gabellini, Chiara; De Luca, Teresa; Trisciuoglio, Daniela; Desideri, Marianna; Di Martile, Marta; Passeri, Daniela; Candiloro, Antonio; Biffoni, Mauro; Rizzo, Maria Giulia; Orlandi, Augusto; Del Bufalo, Donatella

    2013-11-01

    Beyond its classical role as apoptosis inhibitor, bcl-2 protein promotes tumor angiogenesis and the removal of N-terminal bcl-2 homology (BH4) domain abrogates bcl-2-induced hypoxia-inducible factor 1 (HIF-1)-mediated vascular endothelial growth factor (VEGF) expression in hypoxic cancer cells. Using M14 human melanoma cell line and its derivative clones stably overexpressing bcl-2 wild-type or deleted of its BH4 domain, we found that conditioned media (CM) from cells expressing BH4-deleted bcl-2 protein showed a reduced capability to increase in vitro human endothelial cells proliferation and differentiation, and in vivo neovascularization compared with CM from cells overexpressing wild-type bcl-2. Moreover, xenografts derived from cells expressing bcl-2 lacking BH4 domain showed a reduction of metastatic potential compared with tumors derived from wild-type bcl-2 transfectants injection. Stably expressing the Flag-tagged N-terminal sequence of bcl-2 protein, encompassing BH4 domain, we found that this domain is sufficient to enhance the proangiogenic HIF-1/VEGF axis under hypoxic condition. Indeed, lacking of BH4 domain abolishes the interaction between bcl-2 and HIF-1α proteins and the capability of exogenous bcl-2 protein to localize in the nucleus. Moreover, when endoplasmic reticulum-targeted bcl-2 protein is overexpressed in cells, this protein lost the capability to synergize with hypoxia to induce the proangiogenic HIF-1/VEGF axis as shown by wild-type bcl-2 protein. These results demonstrate that BH4 domain of bcl-2 is required for the ability of this protein to increase tumor angiogenesis and progression and indicate that bcl-2 nuclear localization may be required for bcl-2-mediated induction of HIF-1/VEGF axis. PMID:23836782

  15. Glutathione and Bcl-2 targeting facilitates elimination by chemoradiotherapy of human A375 melanoma xenografts overexpressing bcl-xl, bcl-2, and mcl-1

    Directory of Open Access Journals (Sweden)

    Mena Salvador

    2012-01-01

    Full Text Available Abstract Background Bcl-2 is believed to contribute to melanoma chemoresistance. However, expression of Bcl-2 proteins may be different among melanomas. Thus correlations among expression of Bcl-2-related proteins and in vivo melanoma progression, and resistance to combination therapies, was investigated. Methods Human A375 melanoma was injected s.c. into immunodeficient nude mice. Protein expression was studied in tumor samples obtained by laser microdisection. Transfection of siRNA or ectopic overexpression were applied to manipulate proteins which are up- or down-regulated, preferentially, during melanoma progression. Anti-bcl-2 antisense oligonucleotides and chemoradiotherapy (glutathione-depleting agents, paclitaxel protein-binding particles, daunorubicin, X rays were administered in combination. Results In vivo A375 cells down-regulated pro-apoptotic bax expression; and up-regulated anti-apoptotic bcl-2, bcl-xl, and mcl-1, however only Bcl-2 appeared critical for long-term tumor cell survival and progression in vivo. Reduction of Bcl-2, combined with partial therapies, decreased melanoma growth. But only Bcl-2 targeting plus the full combination of chemoradiotherapy eradicated A375 melanoma, and led to long-term survival (> 120 days without recurrence in 80% of mice. Tumor regression was not due to immune stimulation. Hematology and clinical chemistry data were within accepted clinical toxicities. Conclusion Strategies to target Bcl-2, may increase the effectiveness of antitumor therapies against melanomas overexpressing Bcl-2 and likely other Bcl-2-related antiapoptotic proteins.

  16. EFFECT OF TWO NEW BCL-2 ANTISENSES ON DRUG-SENSITIVITY OF CELLS FROMN LEUKEMIA PATIENTS

    Institute of Scientific and Technical Information of China (English)

    LEI Xiao-yong; ZHANG Huan

    2005-01-01

    Objective:To investigate the effect of two antisense oligonucleotides on cell surviving, bcl-2 expression and apoptosis of leukemia cells. Methods: The experimental assays were performed with cell culture, immunochemistry and flowcytometry. Results: The two antisense oligodeoxynucleotides, combined with Vp16 or Ara-c or DNR, were able to decline the survival rate of myeleukemic cells, downregulate bcl-2 gene expression and induce apoptosis of leukemic cells significantly, as compared with Vp16 or Ara-c or DNR alone. Conclusion: It is possible for the two new bcl-2 antisenses to be developed into clinical trials for leukemia and tumor with bcl-2 gene overexpression.

  17. bax, but not bcl-2, influences the prognosis of human pancreatic cancer

    OpenAIRE

    Friess, H; Lu, Z; H. Graber; Zimmermann, A.; Adler, G.; Korc, M.; Schmid, R; Buchler, M

    1998-01-01

    Background—bcl-2 and bax belong to the bcl-2-related gene family, which marks a new class of genes that influence apoptosis. The bcl-2 oncogene acts as a broad antiapoptotic factor and extends both normal and tumour cell survival. In contrast, the bax gene is a promoter of apoptosis. 
Aims—To analyse the expression of bcl-2 and bax in pancreatic cancer and correlate the results with clinical parameters. 
Patients—Pancreatic cancer tissue samples were obtained fro...

  18. 苯扎贝特对ox-LDL诱导内皮细胞凋亡基因Bcl-2/Bax的影响%Effects of bezafibrate on apoptosis gene Bcl-2/Bax in cultured endothelial cells induced by ox-LDL

    Institute of Scientific and Technical Information of China (English)

    申晓彧; 薛丽霞; 屈巧芳; 曾秋棠

    2008-01-01

    目的 观察苯扎贝特对氧化型低密度脂蛋白(ox-LDL)诱导人脐静脉内皮细胞凋亡基因Bcl-2/Bax的影响. 方法 体外培养人脐静脉内皮细胞(HUVECs),根据实验要求分为正常对照组、ox-LDL组、低浓度苯扎贝特(50μmol/L)组、中浓度苯扎贝特(100 μmol/L)组、高浓度苯扎贝特(200μmol/L)组.RT-PCR观察各组凋亡基因Bcl-2、Bax及Bd-2/BaxmRNA的变化. 结果 与正常对照组比较,ox-LDL组凋亡基因Bcl-2表达下降(P<0.05),凋亡基因Bax表达增加(P<0.05),Bcl-2/Bax比值下降(P<0.05);不同浓度苯扎贝特组与ox-LDL组比较,Bcl-2表达增加(P<0.05),Bax表达降低(P<0.05),Bcl-2/Bax上调(P<0.05),且呈浓度效应依赖关系. 结论 ox-LDL可引起内皮细胞抗凋亡基因Bcl-2表达下调,凋亡基因Bax表达上调,Bcl-2和Bax比值下降,从而引起内皮细胞凋亡增加;苯扎贝特可通过上调Bcl-2与Bax的比值抑制ox-LDL引起的内皮细胞凋亡,起到抗动脉粥样硬化作用.

  19. Der Einfluss der Anästhetika Sevofluran und Propofol auf die Regulation der apoptoseassoziierten Proteine Bax, Bcl-2, Mdm-2 und p53 nach inkompletter zerebraler Hemisphärenischämie bei der Ratte

    OpenAIRE

    Bachl, Monika Maria

    2005-01-01

    Der Einfluss der Anästhetika Sevofluran und Propofol auf apoptoseassoziierte Proteine während zerebraler Ischämie ist bisher nicht erforscht. In der vorliegenden Studie wurden die Effekte dieser Narkotika auf die Regulation der Apoptosefaktoren Bax, Bcl-2, Mdm-2 und p53 bei 36 narkotisierten Sprague-Dawley-Ratten untersucht, bei denen eine inkomplette zerebrale Hemisphärenischämie mit anschließender Reperfusion induziert wurde. Die Apoptosefaktoren wurden mittels Immunfluoreszenz- und Western...

  20. Evaluation of Bcl-2 Family Gene Expression in Hippocampus of 3, 4-methylenedioxymethamphetamine Treated Rats

    Directory of Open Access Journals (Sweden)

    Hamed Hashemi-Nasl

    2012-01-01

    Full Text Available Objective: 3,4-methylenedioxymethamphetamine (MDMA is an illicit, recreational drugthat causes cellular death and neurotoxicity. This study evaluates the effects of differentdoses of MDMA on the expression of apoptosis–related proteins and genes in the hippocampusof adult rats.Materials and Methods: In this expremental study,a total of 20 male Sprague Dawley rats(200-250 g were treated with MDMA (0, 5, 10, 20 mg/kg i.p. twice daily for 7 days. Sevendays after the last administration of MDMA, the rats were killed. Bax and Bcl-2 genesin addition to protein expressions were detected by western blot and reverse transcriptionpolymerasechain reaction (RT-PCR.Results were analyzed using one-way ANOVA andp≤0.05 was considered statistically significant.Results: Our results showed that MDMA caused dose dependent up-regulation of Baxand down-regulation of Bcl-2 in the hippocampus. There was a significant alteration inbcl-2 and bax genes density.Conclusion: Changes in apoptosis-related proteins and respective genes relating to Baxand Bcl-2 might be involved in the molecular mechanism of MDMA-induced apoptosis.

  1. Expression of Apoptosis Related Genes bcl-2 and p53 in Rat Brain after Exposure to +Gx in Simulated Emergent Return of Spacecraft%模拟飞船应急返回时+Gx暴露后大鼠脑细胞凋亡相关基因bcl-2、p53的表达

    Institute of Scientific and Technical Information of China (English)

    孙喜庆; 徐志鹏; 刘挺松; 吴斌; 张舒; 由广兴

    2005-01-01

    目的探讨bcl-2、p53在模拟飞船应急返回时高+Gx作用致大鼠脑细胞凋亡中的作用. 方法 40只雄性SD大鼠随机分为4组,即对照组、+15 Gx组、7 d模拟失重组、7 d模拟失重后再+15 Gx组,每组10只.大鼠在动物离心机上承受+Gx作用后,灌注取脑,固定包埋,做石腊切片.用免疫组化方法检测大鼠海马、顶叶皮层相关基因bcl-2和 p53表达的变化. 结果 +15 Gx暴露后1 d可见bcl-2表达减少,p53表达增加,在暴露后3 d改变明显;7 d模拟失重组大鼠在暴露后1 d可见bcl-2表达减少,p53表达增加;模拟失重后再+15 Gx组在暴露后1 d可见上述bcl-2、 p53表达的变化,在暴露后3 d改变最明显,变化比+15 Gx组或模拟失重组均明显. 结论 +15 Gx/180 s暴露可引起大鼠海马和顶叶皮层细胞凋亡相关基因bcl-2和p53表达的变化;7 d模拟失重可加重+Gx引起的大鼠脑组织损伤.

  2. Regulation of apoptosis and cell cycle in irradiated mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Yong; Song, Mi Hee; Hung, Eun Ji; Seong, Jin Sil; Suh, Chang Ok [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2001-06-01

    To investigate the regulation of apoptosis and cell cycle in mouse brain irradiation. 8-week old male mice, C57B 1/6J were given whole body {gamma} -radiation with a single dose of 25 Gy using Cobalt 60 irradiator. At different times 1, 2, 4, 8 and 24hr after irradiation, mice were killed and brain tissues were collected. Apoptotic cells were scored by TUNEL assay. Expression of p53, Bcl-2, and Bax and cell cycle regulating molecules; cyclins BI, D1, E and cdk2, cdk4, p34{sup cdc2} were analysed by Western blotting. Cell cycle was analysed by flow cytometry. The peak of radiation induced apoptosis is shown at 8 hour after radiation. With a single 25 Gy irradiation, the peak of apoptotic index in C57B1/6J is 24.0{+-}0.25 (p<0.05) at 8 hour after radiation. Radiation upregulated the expression of p53/tubulin, Bax/tubulin, and Bcl-2/tubulin with 1.3, 1.1 and 1.45 fold increase, respectively were shown at the peak level at 8 hour after radiation. The levels of cell cycle regulating molecules after radiation are not changed significantly except cyclin D1 with 1.3 fold increase. Fractions of Go-G 1, G2-M and S phase in the cell cycle does not specific changes by time. In mouse brain tissue, radiation induced apoptosis is particularly shown in a specific area, subependyma. These results and lack of radiation induced changes in cell cycle offer better understanding of radiation response of normal brain tissue.

  3. Study of immunohistochemical demonstration of Bcl-2 protein in ameloblastoma and keratocystic odontogenic tumor

    OpenAIRE

    C S Sindura; Chaitanya Babu; Vijaya Mysorekar; Vinod Kumar

    2013-01-01

    Background: The Bcl-2 (B-cell lymphoma) gene product also known as apoptotic inhibitor is expressed in many normal and tumor tissues. This Bcl-2 gene protects the cell by blocking postmitotic differentiation from apoptosis, thus maintaining the stem cell pool. Objective: To study the expression of Bcl-2 protein in ameloblastoma and keratocystic odontogenic tumor (KCOT) to determine their apoptotic behaviors and to analyze biological nature of KCOT, which has higher proliferative potential and...

  4. Human neuronal apoptosis secondary to traumatic brain injury and the regulative role of apoptosis-related genes

    Institute of Scientific and Technical Information of China (English)

    杨树源; 雪亮

    2004-01-01

    Objective: To observe human neuronal apoptosis secondary to traumatic brain injury, and to elucidate its regulative mechanism and the change of expression of apoptosis-related genes.Methods: Specimens of brain were collected from cases of traumatic brain injury in humans. The histological and cellular morphology was examined by light and electron microscopy. The extent of DNA injury to cortical neurons was detected by using TUNEL. By in situ hybridisation and immunohistochemistry the mRNA changes and protein expression of Bcl-2, Bax, p53, and caspase 3 p20 subunit were observed.Results: Apoptotic neurons appeared following traumatic brain injury, peaked at 24 hours and lasted for 7 days. In normal brain tissue activated caspase 3 was rare,but a short time after trauma it became activated. The activity peaked at 20-28 hours and remained higher than normal for 5-7 days. There was no expression of Bcl-2 mRNA and Bcl-2 protein in normal brain tissue but 8 hours after injury their expression became evident and then increased, peaked at 2-3 days and remained higher than normal for 5-7 days. The primary expression of Bax-mRNA and Bax protein was high in normal brain tissue. At 20-28 hours they increased and remained high for 2-3 days; on the 7th days they returned to a normal level. In normal brain tissue, p53mRNA and P53 were minimally expressed.Increased expression was detected at the 8th hour, and decreased at 20-28 hours but still remained higher than normal on the 5th day.Conclusions: Following traumatic injury to the human brain, apoptotic neurons appear around the focus of trauma. The mRNA and protein expression of Bcl-2, Bax and p53 and the activity of caspase 3 enzyme are increased.

  5. 扶正祛邪含药血清对白血病HL60/VCR细胞Bcl-2表达水平的影响%Effects and reversal mechanism of Fuzheng Quxie Prescription serum to the apoptosis gene (Bcl-2) of the human leukemia HL60/VCR cells

    Institute of Scientific and Technical Information of China (English)

    李秀军; 严鲁萍; 姚宇红

    2013-01-01

    目的:观察扶正祛邪中药复方含药血清对长春新碱诱导的急性早幼粒白血病耐药细胞株H L60/VCR0细胞耐药基因Bcl-2表达水平的影响.方法:采用流式细胞术检测法,选择HL60/VCR细胞为靶细胞,观察不同浓度扶正祛邪含药血清对其耐药基因Bcl-2表达的影响.结果:扶正祛邪含药血清对HL60/VCR细胞内凋亡抑制基因Bcl-2的表达有明显抑制作用,其中含药血清高、中、低剂量组荧光强度依次为401.67±0.86、453.69±0.40、516.66±0.40.结论:扶正祛邪复方中药抗白血病多药耐药的作用可能与下调Bcl-2的表达有关.

  6. Autophagy blockade sensitizes the anticancer activity of CA-4 via JNK-Bcl-2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yangling; Luo, Peihua; Wang, Jincheng; Dai, Jiabin; Yang, Xiaochun; Wu, Honghai; Yang, Bo, E-mail: yang924@zju.edu.cn; He, Qiaojun, E-mail: qiaojunhe@zju.edu.cn

    2014-01-15

    Combretastatin A-4 (CA-4) has already entered clinical trials of solid tumors over ten years. However, the limited anticancer activity and dose-dependent toxicity restrict its clinical application. Here, we offered convincing evidence that CA-4 induced autophagy in various cancer cells, which was demonstrated by acridine orange staining of intracellular acidic vesicles, the degradation of p62, the conversion of LC3-I to LC3-II and GFP-LC3 punctate fluorescence. Interestingly, CA-4-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitors (3-methyladenine and bafilomycin A1) or small interfering RNAs against the autophagic genes (Atg5 and Beclin 1). The enhanced anticancer activity of CA-4 and 3-MA was further confirmed in the SGC-7901 xenograft tumor model. These findings suggested that CA-4-elicited autophagic response played a protective role that impeded the eventual cell death while autophagy inhibition was expected to improve chemotherapeutic efficacy of CA-4. Meanwhile, CA-4 treatment led to phosphorylation/activation of JNK and JNK-dependent phosphorylation of Bcl-2. Importantly, JNK inhibitor or JNK siRNA inhibited autophagy but promoted CA-4-induced apoptosis, indicating a key requirement of JNK-Bcl-2 pathway in the activation of autophagy by CA-4. We also identified that pretreatment of Bcl-2 inhibitor (ABT-737) could significantly enhance anticancer activity of CA-4 due to inhibition of autophagy. Taken together, our data suggested that the JNK-Bcl-2 pathway was considered as the critical regulator of CA-4-induced protective autophagy and a potential drug target for chemotherapeutic combination. - Highlights: • Autophagy inhibition could be a potential for combretastatin A-4 antitumor efficacy. • The JNK-Bcl-2 pathway plays a critical role in CA-4-induced autophagy. • ABT-737 enhances CA-4 anticancer activity due to inhibition of autophagy.

  7. Sundew plant, a potential source of anti-inflammatory agents, selectively induces G2/M arrest and apoptosis in MCF-7 cells through upregulation of p53 and Bax/Bcl-2 ratio.

    Science.gov (United States)

    Ghate, N B; Das, A; Chaudhuri, D; Panja, S; Mandal, N

    2016-01-01

    The worldwide cancer incidences are remarkable despite the advancement in cancer drug discovery field, highlighting the need for new therapies focusing on cancer cell and its microenvironment, including inflammation. Several species of Drosera (family: Droseraceae) are used in various traditional as well as homeopathic systems of medicine. Drosera burmannii Vahl. is also enlisted in French Pharmacopoeia in 1965 for the treatment of inflammatory diseases, including chronic bronchitis, asthma and whooping cough. The present study is designed to substantiate the potential of D. burmannii in in vitro anticancer activity and its relation with anti-inflammatory property. In vitro anticancer study revealed that DBME is inhibiting the proliferation of MCF-7 cells without affecting the viability of other malignant and non-malignant cells. DBME induced G2/M phase arrest and apoptosis in MCF-7 cells by suppressing the expression of cyclin A1, cyclin B1 and Cdk-1 and increasing the expression of p53, Bax/Bcl-2 ratio leading to activation of caspases and PARP degradation. Presence of caspase-8 (Z-IETD-fmk) and caspase-9 (Z-LEHD-fmk) inhibitors alone did prevent the apoptosis partially while apoptosis prevention was significantly observed when used in combination, suggesting vital role of caspases in DBME-induced apoptosis in MCF-7 cells. DBME also downregulated LPS-induced increased expression of iNOS, COX-2 and TNF-α along with suppression on intracellular ROS production that confirms the potential of DBME as anti-inflammatory extract. GCMS analysis revealed the presence of four major compounds hexadecanoic acid, tetradecanoic acid, hexadecen-1-ol, trans-9 and 1-tetradecanol along with some other fatty acid derivatives and carotenoids (Beta-doradecin) in DBME. These findings confirmed the anti-inflammatory activity of DBME, which is already listed in French Pharmacopeia in 1965. Here we have additionally reported the anti-breast cancer activity of DBME and its relation to the

  8. Sundew plant, a potential source of anti-inflammatory agents, selectively induces G2/M arrest and apoptosis in MCF-7 cells through upregulation of p53 and Bax/Bcl-2 ratio

    Science.gov (United States)

    Ghate, NB; Das, A; Chaudhuri, D; Panja, S; Mandal, N

    2016-01-01

    The worldwide cancer incidences are remarkable despite the advancement in cancer drug discovery field, highlighting the need for new therapies focusing on cancer cell and its microenvironment, including inflammation. Several species of Drosera (family: Droseraceae) are used in various traditional as well as homeopathic systems of medicine. Drosera burmannii Vahl. is also enlisted in French Pharmacopoeia in 1965 for the treatment of inflammatory diseases, including chronic bronchitis, asthma and whooping cough. The present study is designed to substantiate the potential of D. burmannii in in vitro anticancer activity and its relation with anti-inflammatory property. In vitro anticancer study revealed that DBME is inhibiting the proliferation of MCF-7 cells without affecting the viability of other malignant and non-malignant cells. DBME induced G2/M phase arrest and apoptosis in MCF-7 cells by suppressing the expression of cyclin A1, cyclin B1 and Cdk-1 and increasing the expression of p53, Bax/Bcl-2 ratio leading to activation of caspases and PARP degradation. Presence of caspase-8 (Z-IETD-fmk) and caspase-9 (Z-LEHD-fmk) inhibitors alone did prevent the apoptosis partially while apoptosis prevention was significantly observed when used in combination, suggesting vital role of caspases in DBME-induced apoptosis in MCF-7 cells. DBME also downregulated LPS-induced increased expression of iNOS, COX-2 and TNF-α along with suppression on intracellular ROS production that confirms the potential of DBME as anti-inflammatory extract. GCMS analysis revealed the presence of four major compounds hexadecanoic acid, tetradecanoic acid, hexadecen-1-ol, trans-9 and 1-tetradecanol along with some other fatty acid derivatives and carotenoids (Beta-doradecin) in DBME. These findings confirmed the anti-inflammatory activity of DBME, which is already listed in French Pharmacopeia in 1965. Here we have additionally reported the anti-breast cancer activity of DBME and its relation to the

  9. Effects of L-Tetrahydropalmatine on the Expressions of bcl-2 and bax in Rat after Acute Global Cerebral Ischemia and Reperfusion

    Institute of Scientific and Technical Information of China (English)

    刘彬; 杨光田

    2004-01-01

    To investigate the effects of L-Tetrahydropalmatine (L-THP) on the expressions of bcl2, bax and neuronal apoptosis after cerebral ischemia and reperfusion, 60 Wistars rats were randomly divided into 3 groups: sham-operation group (group S, n = 20), ischemic-reperfusion group treated with saline (group I, n=20) and ischemia-reperfusion group treated with L-THP (group T, n=20) . The rat model of global cerebral ischemia and reperfusion was induced by Pulsinelli's four-vessel occlusion method. The expression of bcl-2 and bax mRNA was detected by in situ hybridization and reverse transcriptional polymerase chain reaction (RT-PCR). The number of apoptotic neurons was examined by terminal deoxynucleotidyl-transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) method. Compared with group S, the expression of bcl-2 and bax mRNA in group I was increased significantly (P<0.01), and the number of apoptotic neurons increased either (P<0.01). After L-THP treatment, the expression of bcl-2 mRNA was up-regulated (P<0.01) and that of bax mRNA was down-regulated (P<0.01); the number of apoptotic neurons was decreased (P<0.01). Our results indicated that bcl-2 may suppress apoptosis and bax promote apoptosis after cerebral ischemia and reperfusion. L-THP could ameliorate cerebral ischemia and reperfusion damage by reducing the apoptosis through regulating bcl-2 and bax.

  10. Bcl-2 Inhibitors: Targeting Mitochondrial Apoptotic Pathways in Cancer Therapy

    OpenAIRE

    Kang, Min H.; Reynolds, C. Patrick

    2009-01-01

    Defects in apoptotic pathways can promote cancer cell survival and also confer resistance to antineoplastic drugs. One pathway being targeted for antineoplastic therapy is the anti-apoptotic B-cell lymphoma-2 (Bcl-2) family of proteins (Bcl-2, Bcl-XL, Bcl-w, Mcl-1, Bfl1/A-1, and Bcl-B) that bind to and inactivate BH3-domain pro-apoptotic proteins. Signals transmitted by cellular damage (including antineoplastic drugs) or cytokine deprivation can initiate apoptosis via the intrinsic apoptotic ...

  11. Fibroblast Growth Factor-2 and the HIV-1 Tat Protein Synergize in Promoting Bcl-2 Expression and Preventing Endothelial Cell Apoptosis: Implications for the Pathogenesis of AIDS-Associated Kaposi's Sarcoma

    Directory of Open Access Journals (Sweden)

    Cecilia Sgadari

    2011-01-01

    Here we show that the development of angioproliferative lesions promoted in mice by combined Tat and FGF-2 associates with an increase in the levels of expression of the antiapoptotic Bcl-2 protein. Upregulation of Bcl-2 expression by combined FGF-2 and Tat occurs also in vitro, and this protects human primary endothelial cells from programmed cell death. As Bcl-2 is expressed in human KS lesions in a fashion paralleling the progression of the disease, these findings suggest a molecular mechanism by which Tat and FGF-2 cooperate in KS maintenance and progression in HIV-infected individuals.

  12. Arctigenin, a dietary phytoestrogen, induces apoptosis of estrogen receptor-negative breast cancer cells through the ROS/p38 MAPK pathway and epigenetic regulation.

    Science.gov (United States)

    Hsieh, Chia-Jung; Kuo, Po-Lin; Hsu, Ying-Chan; Huang, Ya-Fang; Tsai, Eing-Mei; Hsu, Ya-Ling

    2014-02-01

    This study investigates the anticancer effect of arctigenin (ATG), a natural lignan product of Arctium lappa L., in human breast cancer MDA-MB-231 cells. Results indicate that ATG inhibits MDA-MB-231 cell growth by inducing apoptosis in vitro and in vivo. ATG triggers the mitochondrial caspase-independent pathways, as indicated by changes in Bax/Bcl-2 ratio, resulting in AIF and EndoG nuclear translocation. ATG increased cellular reactive oxygen species (ROS) production by increasing p22(phox)/NADPH oxidase 1 interaction and decreasing glutathione level. ATG clearly increases the activation of p38 MAPK, but not JNK and ERK1/2. Antioxidant EUK-8, a synthetic catalytic superoxide and hydrogen peroxide scavenger, significantly decreases ATG-mediated p38 activation and apoptosis. Blocking p38 with a specific inhibitor suppresses ATG-mediated Bcl-2 downregulation and apoptosis. Moreover, ATG activates ATF-2, a transcription factor activated by p38, and then upregulates histone H3K9 trimethylation in the Bcl-2 gene promoter region, resulting in Bcl-2 downregulation. Taken together, the results demonstrate that ATG induces apoptosis of MDA-MB-231 cells via the ROS/p38 MAPK pathway and epigenetic regulation of Bcl-2 by upregulation of histone H3K9 trimethylation. PMID:24140706

  13. Bax, Bcl2, and p53 differentially regulate neomycin- and gentamicin-induced hair cell death in the zebrafish lateral line.

    Science.gov (United States)

    Coffin, Allison B; Rubel, Edwin W; Raible, David W

    2013-10-01

    Sensorineural hearing loss is a normal consequence of aging and results from a variety of extrinsic challenges such as excessive noise exposure and certain therapeutic drugs, including the aminoglycoside antibiotics. The proximal cause of hearing loss is often death of inner ear hair cells. The signaling pathways necessary for hair cell death are not fully understood and may be specific for each type of insult. In the lateral line, the closely related aminoglycoside antibiotics neomycin and gentamicin appear to kill hair cells by activating a partially overlapping suite of cell death pathways. The lateral line is a system of hair cell-containing sense organs found on the head and body of aquatic vertebrates. In the present study, we use a combination of pharmacologic and genetic manipulations to assess the contributions of p53, Bax, and Bcl2 in the death of zebrafish lateral line hair cells. Bax inhibition significantly protects hair cells from neomycin but not from gentamicin toxicity. Conversely, transgenic overexpression of Bcl2 attenuates hair cell death due to gentamicin but not neomycin, suggesting a complex interplay of pro-death and pro-survival proteins in drug-treated hair cells. p53 inhibition protects hair cells from damage due to either aminoglycoside, with more robust protection seen against gentamicin. Further experiments evaluating p53 suggest that inhibition of mitochondrial-specific p53 activity confers significant hair cell protection from either aminoglycoside. These results suggest a role for mitochondrial p53 activity in promoting hair cell death due to aminoglycosides, likely upstream of Bax and Bcl2.

  14. Effect of soluble CD44 molecule on the expression of apoptosis regulatory protein bcl-2 associated death factor bad in human trabecular meshwork cell%可溶性CD44分子对人眼小梁网细胞凋亡调节蛋白bcl-2相关死亡因子bad表达的影响

    Institute of Scientific and Technical Information of China (English)

    梁宗宝; 吴瑜瑜; 郭茂生

    2012-01-01

    亡因子bad蛋白的表达.%Background Researches demonstrated that the levels of soluble CD44 (sCD44)molecule in aqueous is significantly higher in primary open-angle glaucomous(POAG) eye than normal eye,but how the sCD44 would affect the expression of apoptosis protein in trabecular meshwork cells is below understanding. Objective The present study was to investigate the effect of sCD44 on the expression of regulatory proteins bcl-2 associated death factor bad in trabecular meshwork cells in the patients with POAG. Methods Human scleral tissue with trabecular meshwork were obtained from POAG patients during the surgery.The trabecular meshwork cells were primarily cultured by explant culture method and identified by immunochemistry.The third generation of cells were incubated with free-serum DMEM/F12 medium added differnt dosages of sCD44 (0,1,5,10,25,50 mg/L) for 48 hours.The expression of bad protein in cultured cells was detected using cell counting kit-8 (CCK-8) as the absorbance values at 490 nm(A,90 value),and the bad protein level in cultured cells was assayed by ELISA. Results The cultured cells showed the positive response for laminin ( LM ),neuron specific enolase ( NSE ),fibronectin ( FN ) monoclonal antibodies.The CCK-8 assay showed that the A490 values of the trabecular meshwork cells in 0,1,5,10,25,50 μg/L of sCD44 groups were 0.2460±0.0019,0.1874±0.0015,0.1570±0.0016,0.1302±0.0019,0.1084±0.0018,0.0940±0.0020 respectively with a statistically significant difference among the 6 groups( F =14.922,P =0.000 ),and the A490 values in various dosages of sCD44 groups were significantly lower than the 0 μg/L sCD44 group (P=0.013,0.008,0.011,0.005,0.004).The ELISA assay showed that bad protein levels in 0,1,5,10,25,50 μg/L of sCD44 groups were ( 114.8461 ± 2.9560 ),( 137.8270 ± 2.4259 ),( 161.4194 ± 3.7381 ),( 170.9453 ± 3.2006 ),( 221.2252 ±4.3738 ),( 324.6167±4.4220) ng/L,showing a total difference among them ( F =16.610,P =0.000 ),and the bad protein levels in various dosages of sCD44

  15. Expression and significance of Bcl-2 gene and Bax gene in lung cancer%凋亡相关基因bcl-2和bax在肺癌中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    郭雷; 王福昌; 杨五计

    2001-01-01

    To study the relationship between expression of bcl-2 and baxgene and lung cancer.The bcl-2 and bax gene expression in 51 lung cancer tissues and tissues near cancer were deteeted by immunohistochemical SP method.The positive degree of bcl-2 gene expression in lung cancer was higher than that in tissues near cancer.The positive degree of bax gene expression in lung cancer was lower than that in tissues near cancer.Both differences were very significant(P<0.01).There was no correlations between the immunoreactivity of bcl-2 and bax gene and histology,gender,smoking history,clinical subtypes,stage and lymphatic metastasis(P>0.05).It suggests that bcl-2 and bax gene may play an important role in tumorgenesis and tumor development.The detection and determination of bcl-2 and bax gene in preinvasive lesions may contribute to the early diagnosis of lung cancer.Some drugs can down-regulate bcl-2 expression and speed apoptosis so as to improve the sensitivity to chemical therapy and radiation.%为探讨B细胞淋巴瘤/白血病-2(bcl-2)基因及其同源类似物bax基因的表达与肺癌发生的关系,应用免疫组化SP法检测了51例肺癌患者的肺癌标本及其癌旁组织中bcl-2、bax的表达。结果显示,bcl-2在肺癌中染色比在癌旁组织中深,bax在肺癌中染色比在癌旁组织中浅,两者之间均有极显著差异(P<0.01);bcl-2、bax表达与肺癌的组织分型、患者的性别、吸烟史、临床分型、分期及淋巴结转移无关(P>0.05)。提示:①bcl-2、bax在肺癌发生中具有重要作用。②在癌前病变组织中检测并比较bcl-2和bax的表达,有利于肺癌的早期诊断。③可通过药物使bcl-2表达降低,促进凋亡,提高患者对放、化疗的敏感性。

  16. Correlation of apoptosis genes of p53 ,bcl-2 and bax in tissue of prostate%凋亡相关基因p53、bcl-2、bax在前列腺组织中的相关性

    Institute of Scientific and Technical Information of China (English)

    方志启; 吴刚; 王贺彬; 陈晓宇

    2013-01-01

    目的 探讨细胞凋亡相关基因p53、bcl-2、bax在前列腺组织中的相关性.方法 收集36例前列腺癌(prostate caner,PCa)、20例前列腺增生(benign prostatic hyperplasia,BPH)和11例正常前列腺(normal prostatic,NP),应用免疫组织化学S-P法检测凋亡相关基因p53、bcl-2、bax蛋白的表达.结果 ①PCa和BPH组bcl-2蛋白阳性表达率明显高于NP组(P>0.05),而PCa组与BPH组阳性率差异无显著性.PCa组p53蛋白阳性表达率明显高于BPH组和NP组(P<0.01),而BPH组与NP组阳性率无显著性 差异(P>0.05).②p53与PCa分级有关,随着肿瘤分级增高而呈正相关(P<0.05); bcl-2与PCa分级有关,随着肿瘤分级增高而呈正相关(P<0.01),显示bcl-2、p53蛋白表达随着病理分级的增高而增高.PCa、BPH 和NP中bax阳性表达率差异无显著性.③p53蛋白表达阳性率≤5年生存组明显高于>5年生存组,呈负相关(P<0.05);bcl-2、bax蛋白表达与生存期无关(P>0.05).结论 细胞凋亡相关基因p53、bcl-2、bax蛋白的异常表达与PCa的发生和发展、病理分级和预后有相关性.

  17. Correlation between expression of Bcl-2 protein and cell apoptosis in functioning and non-functioning adrenal tumours%功能性和非功能性肾上腺肿瘤与Bcl-2蛋白表达和细胞凋亡的关系

    Institute of Scientific and Technical Information of China (English)

    杨勇; 徐祗顺; 殷刚

    2006-01-01

    目的 探讨功能性和非功能性肾上腺肿瘤组织中Bcl-2的表达水平和细胞凋亡的关系.方法 运用免疫组织化学染色和TUNEL法检测细胞凋亡情况,探讨4例正常肾上腺(NA)、33例有功能性肾上腺肿瘤(FAT)和23例非功能性肾上腺肿瘤(NFAT)的Bcl-2表达及细胞凋亡情况.结果 Bcl-2阳性细胞的平均百分数在NA、FAT、NFAT分别为(3.8±1.1)%、(6.3±1.2)%、(13.1±1.8)%,其中FAT与NFAT、NA与NFAT比较,均有显著性差异(P<0.05);FAT与NA比较无显著性差异(P>0.05).凋亡的阳性细胞率FAT(1.14±0.30)%高于NFAT的(0.48±0.25)%和NA(0.18±0.05)%,其中FAT与NFAT、FAT与NA、NFAT与NA比较均有显著性差异(P<0.05).Bcl-2的表达与细胞凋亡指数(AI)呈显著负相关(rs=-0.560,P<0.02;rs=-0.530,P<0.03).结论 Bcl-2表达与细胞凋亡抑制关系密切;Bcl-2的表达及细胞凋亡检测对功能性肾上腺肿瘤和非功能性肾上腺肿瘤有一定诊断意义.

  18. Prometaphase arrest-dependent phosphorylation of Bcl-2 family proteins and activation of mitochondrial apoptotic pathway are associated with 17α-estradiol-induced apoptosis in human Jurkat T cells.

    Science.gov (United States)

    Han, Cho Rong; Jun, Do Youn; Kim, Yoon Hee; Lee, Ji Young; Kim, Young Ho

    2013-10-01

    In Jurkat T cell clone (JT/Neo), G2/M arrest, apoptotic sub-G1 peak, mitochondrial membrane potential (Δψm) loss, and TUNEL-positive DNA fragmentation were induced following exposure to 17α-estradiol (17α-E2), whereas none of these events (except for G2/M arrest) were induced in Jurkat cells overexpressing Bcl-2 (JT/Bcl-2). Under these conditions, phosphorylation at Thr161 and dephosphorylation at Tyr15 of Cdk1, upregulation of cyclin B1 level, histone H1 phosphorylation, Cdc25C phosphorylation at Thr-48, Bcl-2 phosphorylation at Thr-56 and Ser-70, Mcl-1 phosphorylation, and Bim phosphorylation were detected in the presence of Bcl-2 overexpression. However, the 17α-E2-induced upregulation of Bak levels, activation of Bak, activation of caspase-3, and PARP degradation were abrogated by Bcl-2 overexpression. In the presence of the G1/S blocking agent hydroxyurea, 17α-E2 failed to induce G2/M arrest and all apoptotic events including Cdk1 activation and phosphorylation of Bcl-2, Mcl-1 and Bim. The 17α-E2-induced phosphorylation of Bcl-2 family proteins and mitochondrial apoptotic events were suppressed by a Cdk1 inhibitor but not by aurora A and aurora B kinase inhibitors. Immunofluorescence microscopic analysis showed that an aberrant bipolar microtubule array, incomplete chromosome congression at the metaphase plate, and prometaphase arrest, which was reversible, were the underlying factors for 17α-E2-induced mitotic arrest. The in vitro microtubule polymerization assay showed that 17α-E2 could directly inhibit microtubule formation. These results show that the apoptogenic activity of 17α-E2 was due to the impaired mitotic spindle assembly causing prometaphase arrest and prolonged Cdk1 activation, the phosphorylation of Bcl-2, Mcl-1 and Bim, and the activation of Bak and mitochondria-dependent caspase cascade. PMID:23707954

  19. Asiaticoside: attenuation of neurotoxicity induced by MPTP in a rat model of Parkinsonism via maintaining redox balance and up-regulating the ratio of Bcl-2/Bax.

    Science.gov (United States)

    Xu, Chang-Liang; Wang, Qi-Zhi; Sun, Ling-Mei; Li, Xiu-Min; Deng, Ji-Min; Li, Lu-Fan; Zhang, Jin; Xu, Rong; Ma, Shi-Ping

    2012-01-01

    In this study, we investigated the neuroprotective effects of asiaticoside, a triterpenoid saponin isolated from the Chinese medicinal herb Centella asiatica, in the rats model of Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Rats were first injected with MPTP. One day after surgery, asiaticoside was administered and the behavioral tests were assessed. On 14th day, the rats were sacrificed, substantia nigra (SN) and striatum were dissected, and then dopamine (DA) and its metabolites in striatum and malonyldialdehyde (MDA) contents, reduced glutathione (GSH) level and gene expression level in SN were estimated. Treatment with asiaticoside was found to protect dopaminergic neuron by antagonizing MPTP induced neurotoxicity and to improve locomotor dysfunction. Asiaticoside significantly attenuated the MPTP-induced reduction of dopamine in the striatum. The content of MDA was significantly decreased while the GSH level was significantly increased in asiaticoside-treated groups. In addition, asiaticoside increased the Bcl-2/Bax ratio. These results indicated that asiaticoside was effective in reversing MPTP induced Parkinsonism via its neuroprotective effects including antioxidant activity, maintaining the metabolic balance of DA, and increasing ratio of Bcl-2/Bax.

  20. Effects of Serum of the Rats that are Given Arsenical Agents on Human Leukemia Apoptosis and Expression of bcl-2 Gene%注射砒霜大鼠的血清对白血病细胞凋亡及Bcl-2基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    臧运华; 李震; 张丹; 李洁; 高向慧; 李军山

    2003-01-01

    目的:探讨中药砒霜治疗白血病的作用机理.方法:运用血清药理学法孵育人白血病细胞株K562细胞,通过流式细胞术检测注射砒霜大鼠的血清对细胞凋亡及bcl-2基因表达的影响.结果:注射砒霜大鼠的血清能使K562细胞G0-G1期细胞百分数减少,S期细胞百分数增加,Bcl-2表达减少,具有诱导k562细胞凋亡的作用.

  1. Effect of Sargassum fusiforme Polysaccharide on the Ethology and Expressions of Bcl-2 and Bax in Brain Tissue for Alzheimer's Disease Rat model%羊栖菜多糖对老年痴呆模型大鼠Bcl-2和Bax基因表达的分析

    Institute of Scientific and Technical Information of China (English)

    汤从容; 曹高忠; 叶晓兰

    2012-01-01

    Objective:To study effect of Sargassum fusiforme Polysaccharide( SFPS) on ethology and expressions of Bcl - 2 and Bax in brain tissue of AD rats. Methods:The D - galactose AD rat model was applied,and blank group,model group, Piracetam control group and herbal group were designed. Index change of ethology , expressions of Bcl -2 and Bax in brain tissue were tested. Results: AD model may decrease cognitive ability,the ratio of Bcl -2/Bax in the hippocampus came down(P <0.05 ). Compared to the model group,Sargassum fusiforme Polysaccharide with 0. 8 ,1. 6g/kg can alleviate cognitive ability significantly,and the action had a does —dependent increase,the ratio of Bcl -2/Bax increased(P< 0.05). Conclusion; Sargassum fusiforme Polysaccharide can up - regulate expression of protein Bax and down -regulate expression of Bcl - 2 in brain tissu. It inhibits apoptosis through regulating the expressions of Bcl - 2 and Bax protein in hippocampal , which might be one of mechanisms of Sargassum fusiforme Polysaccharide to prevent and treat AD disease.%目的:探讨羊栖菜多糖提取物(SFPS)对阿尔茨海默病(AD)大鼠模型行为的干预作用及脑皮质Bcl-2和Bax基因表达的影响.方法:制作D-半乳糖阿尔茨海默病大鼠模型,设计正常对照组、模型组、吡拉西坦片、羊栖菜多糖提取物不同剂量组,观察大鼠行为学及脑皮质Bcl -2和Bax基因表达指标的改变.结果:与正常对照组相比,模型组学习记忆能力显著下降(P<0.05),其Bcl - 2/Bax值下降;与模型组相比,0.8g/kg、1.6g/kg羊栖菜多糖提取物治疗组均能较好的改善学习记忆能力,且具有一定剂量依赖性,其Bcl - 2/Bax值增加.结论:SFPS能调节海马组织Bcl -2和Bax的表达,显著提高Bcl - 2/Bax值,抑制海马神经元的凋亡,改善AD大鼠学习记忆能力.

  2. Pokemon reduces Bcl-2 expression through NF-κBp65:a possible mechanism of hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xinkai Zhao; Qiaoming Ning; Xiaoning Sun; Dean Tian

    2011-01-01

    Objective:To investigate the relationship among Pokemon, NF-κB p65 and Bcl-2 in hepatoma cells. Methods: HCC cell HepG2, SMMC7721 and human fetal liver cell line LO2 cells were used, and expression of Pokemon, NF-毷B p65 and Bcl-2 in three cells were detected by real-time PCR and western blot. Then siRNA of Pokemon was applied to inhibit the expression of Pokemon and NF-κB p65 and apoptotic rate was determined by flow cytometric analysis. Results: Expressions of Pokemon, NF-κB p65 and Bcl-2 in human hepatoma cell HepG2, SMMC7721 expression were significantly higher than those in human embryonic stem cells LO2. siRNA of Pokemon inhibited the expression of Pokemon, NF-κB p65 and Bcl-2 in liver cancer cells, and significantly increased apoptosis of liver cells. While siRNA of NF-κB p65 inhibited the expression of NF-κB p65 and Bcl-2, but Pokemon expression in hepatoma cells had no significant change. Conclusions:The proto-oncogene Pokemon can inhibit P14ARF by specific transcription regulation of cell cycle and can induce tumors. In addition, Pokemon can regulate NF-κB p65 through the expression of apoptosis repressor, and promote the development of liver cancer. It suggests signal network in the liver include the regulation of new non-classical NF-κB regulatory pathway.

  3. 莪术油诱导小鼠HepA肝癌细胞凋亡及其对bcl-2蛋白表达的影响%Influence of curcuma aramatica oil on apoptosis and Bcl - 2 expression of HepA liver cancer cells in mice

    Institute of Scientific and Technical Information of China (English)

    张维彬; 谭敏; 肖刚; 胡少为

    2009-01-01

    目的 研究莪术油诱导HepA肝癌细胞凋亡的生物学活性,探讨莪术油对肝癌细胞bcl-2表达水平的影响及其作用的分子机制.方法 用莪术油进行小鼠肝癌体内抑制实验,运用细胞凋亡原位末端标记及免疫组化方法分析莪术油对小鼠肝癌细胞凋亡的影响.结果 莪术油能有效降低小鼠肝癌细胞bcl-2的表达,诱导细胞凋亡.结论 莪术油对小鼠肝癌细胞具有明显抑制作用,其主要作用机制为降低bcl-2蛋白表达、诱导肿瘤细胞凋亡.

  4. Eurycomanone induce apoptosis in HepG2 cells via up-regulation of p53

    Directory of Open Access Journals (Sweden)

    Zakaria Yusmazura

    2009-06-01

    Full Text Available Abstract Background Eurycomanone is a cytotoxic compound found in Eurycoma longifolia Jack. Previous studies had noted the cytotoxic effect against various cancer cell lines. The aim of this study is to investigate the cytotoxicity against human hepato carcinoma cell in vitro and the mode of action. The cytotoxicity of eurycomanone was evaluated using MTT assay and the mode of cell death was detected by Hoechst 33258 nuclear staining and flow cytometry with Annexin-V/propidium iodide double staining. The protein expression Bax, Bcl-2, p53 and cytochrome C were studied by flow cytometry using a spesific antibody conjugated fluorescent dye to confirm the up-regulation of p53 and Bax in cancer cells. Results The findings suggested that eurycomanone was cytotoxic on cancerous liver cell, HepG2 and less toxic on normal cells Chang's liver and WLR-68. Furthermore, various methods proved that apoptosis was the mode of death in eurycomanone-treated HepG2 cells. The characteristics of apoptosis including chromatin condensation, DNA fragmentation and apoptotic bodies were found following eurycomanone treatment. This study also found that apoptotic process triggered by eurycomanone involved the up-regulation of p53 tumor suppressor protein. The up-regulation of p53 was followed by the increasing of pro-apoptotic Bax and decreasing of anti-apoptotic Bcl-2. The increased of cytochrome C levels in cytosol also results in induction of apoptosis. Conclusion The data suggest that eurycomanone was cytotoxic on HepG2 cells by inducing apoptosis through the up-regulation of p53 and Bax, and down-regulation of Bcl-2.

  5. Apoptosis regulatory protein,survivin,expression and relationship with bcl-2 protien in pituitary adenoma%Survivin凋亡抑制基因在垂体腺瘤中的表达及其与bcl-2、p53相关性的研究

    Institute of Scientific and Technical Information of China (English)

    马杰; 魏冰; 乔思杰

    2002-01-01

    目的: 探讨凋亡抑制基因survivin在垂体腺瘤中的表达,及其与bcl-2和p53表达蛋白的相关性.方法: 采用免疫组织化学链霉菌抗生物素蛋白-过氧化酶连接法(SP法),检测survivin、bcl-2、p53基因表达蛋白在8例正常垂体组织及38例垂体腺瘤组织中的表达.结果: survivin基因表达蛋白在正常垂体中无表达,38例垂体腺瘤中,23例表达阳性,占60.5%病理分型中PRL型、GH型、混合型阳性表达率分别为12/17、7/13、4/8三者比较,差异无显著性(P>0.05).垂体腺瘤bcl-2表达蛋白的阳性与阴性中,survivin蛋白表达阳性率分别为15/17、8/21.两者比较,差异有显著性(P<0.05):而p53表达蛋白的阳性和阴性中,survivin蛋白表达阳性率分别为2/6,22/23,两者相比,差异无显著性(P>0.05):survivin基因蛋白的表达阳性率与垂体腺瘤组织中的bcl-2蛋白表达密切相关,与p53蛋白表达无相关性.结论: survivin蛋白表达的异常而引起细胞凋亡抑制,在垂体腺瘤的发生中起一定作用,其过度表达提示垂体腺瘤增生极度活跃,survivin蛋白表达与垂体腺瘤中bcl-2蛋白的异常表达密切相关.

  6. Clinicopathological significance of Bcl-2 and Bax protein expression in human pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Ming Dong; Jian-Ping Zhou; Hao Zhang; Ke-Jian Guo; Yu-Lin Tian; Yu-Ting Dong

    2005-01-01

    AIM: To assess the clinicopathological significance of the expression of the apoptosis-inhibitory Bcl-2 protein (pBcl-2) and the apoptosis-promoting Bax protein (pBax) in human invasive ductal carcinomas (IDCs) of the pancreas. METHODS: Fifty-nine surgical specimens of IDCs of the pancreas were stained immunohistochemically to detectpBcl-2 and pBax expressions whose correlation to tumor classification, staging, and prognosis was analyzed by univariate and multivariate analyses. RESULTS: The expression of pBcl-2 and pBax was detected in 21 of 59 (35.6%) and in 29 of 59 (49.2%) patients with IDCs of the pancreas, respectively. Neither pBcl-2 nor pBax alone was correlated to TNM staging and differentiation degree of IDCs of the pancreas according to univariate analysis. By Mantel-Cox test, the median survival time after surgery for pBcl-2(+) and pBcl-2(-) groups were 14.3 and 7.3 mo, respectively (χ2= 9.357, P = 0.002) and that for pBax(+) and pBax(-) groups were 12.9 and 10.2 mo, respectively (χ2= 0.285, P>0.05).Contingency coefficient between pBd-2 and pBax expression was 0.298, indicating that there was correlation between them (χ2= 5.74, P<0.05). The median survival time after surgery for pBd-2(+)pBax(+) and pBcl-2(+)pBax(-) groups were 14.3 and 14.1 mo, respectively, and that for pBcl-2 (-)pBax(+) and pBcl-2(-)pBax(-) groups were 5.9 and 9.9 mo, respectively. There was a significant difference between pBcl-2(+)pBax(+) and pBcl-2(-)pBax(+) (χ2 = 5.06,P<0.05), such was the case for pBcl-2(+)pBax(+) andpBcl-2(-)pBax(-) (χ2= 7.18, P<0.01). Cox proportional hazards model for multivariate analysis was applied, indicating that pBcl-2, TNM staging, age and pBax were high risk factors of post-surgical survival time. CONCLUSION: Both pBcl-2 and pBax have high expression in IDCs of the pancreas, indicating that co-expression of pBcl-2 and pBax is a good indicator of favorable prognosis in IDCs of the pancreas.

  7. Bcl-2 and bax expression and prostate cancer outcome in men treated with radiotherapy in Radiation Therapy Oncology Group protocol 86-10

    International Nuclear Information System (INIS)

    Purpose: Bcl-2 and bax are proteins with opposing roles in apoptosis regulation; yet abnormal expression of either has been associated with failure after radiotherapy (RT). In this study we examined bcl-2 and bax expression as predictive markers in men treated with radiotherapy ± androgen deprivation on Radiation Therapy Oncology Group (RTOG) protocol 86-10. Experimental Design: Suitable archival diagnostic tissue was obtained from 119 (26%) patients for bcl-2 analysis and 104 (23%) patients for bax analysis. Cox proportional hazards multivariate analysis was used to determine the relationship of abnormal bcl-2 and bax expression to the end points of local failure, distant metastasis, cause-specific mortality, and overall mortality. Bcl-2 overexpression was classified as any tumor cell cytoplasmic staining and altered bax expression was classified as greater or lesser cytoplasmic staining intensity of tumor cells as compared with adjacent normal prostate epithelium. Results: The study cohort exhibited bcl-2 overexpression in 26% (n = 30) of cases and abnormal bax expression in 47% (n = 49) of cases. A borderline significant relationship was observed between abnormal bax expression and higher Gleason score (p = 0.08). In univariate and multivariate analyses, there was no statistically significant relationship seen between abnormal bcl-2 or bax expression and outcome. Conclusions: Abnormal bcl-2 and bax expression were not related to any of the end points tested. The cohort examined was comprised of patients with locally advanced disease and it is possible that these markers may be of greater value in men with earlier-stage prostate cancer

  8. Electroacupuncture Ameliorates Cerebral Ischemia-Reperfusion Injury by Regulation of Autophagy and Apoptosis

    Science.gov (United States)

    Shu, Shi; Li, Chun-Ming; You, Yan-Li; Qian, Xiao-Lu

    2016-01-01

    Background. The therapeutic mechanisms of cerebral ischemia treatment by acupuncture are yet not well addressed. Objective. We investigated the effects of electroacupuncture (EA) at GV26 observing the expression of autophagy-related proteins Beclin-1 and LC3B and proportion of apoptotic cells and Bcl-2 positive cells in MCAO/R model rats. Methods. Sprague-Dawley (SD) male rats were randomly assigned to 7 groups: model groups (M6h, M24h, and M72h), EA treatment groups (T6h, T24h, and T72h), and sham operation group (S). Neurological deficit and cerebral infarction volume were measured to assess the improvement effect, while the expression of Beclin-1 and LC3B and proportion of Tunel-positive and Bcl-2 positive cells were examined to explore EA effect on autophagy and apoptosis. Results. EA significantly decreased neurological deficit scores and the volume of cerebral infarction. Beclin-1 was significantly decreased in T24h, while LC3B-II/LC3B-I ratio markedly reduced in 6th hour. EA groups markedly reduced the number of Tunel positive cells, especially in T24h. Meanwhile, the number of Bcl-2 positive cells obviously increased after EA treatment, especially in T6h and T24h. Conclusions. The alleviation of inadequate autophagy and apoptosis may be a key mechanism involved in the reflex regulation of EA at GV26 to treat cerebral ischemia.

  9. Predictive value of bcl-2 immunoreactivity in prostate cancer patients treated with radiotherapy

    International Nuclear Information System (INIS)

    Background and purpose: Recent experimental evidence suggests that overexpression of bcl-2, a protein functioning by blocking apoptosis, may influence the treatment outcome in human tumours, including prostate cancer. To test the clinical implications of this hypothesis, tumours from patients with prostate cancer treated with external beam radiotherapy were investigated for bcl-2 immunoreactivity (IR) and correlated with prognosis and treatment outcome. Materials and methods: Bcl-2 IR was evaluated in archival tumour specimens obtained through transurethral resection from 42 patients with localized prostate cancer (T0-T4, N0 and M0). Bcl-2 IR expression was related to stage, grade and cancer-specific survival. Specimens were obtained prior to administrating routine radiotherapy for all patients. Results: Bcl-2 IR was present in 19/42 (45%) tumours. The bcl-2-positive patients had a significantly longer cancer-specific survival than the bcl-2-negative patients (10.3 versus 3.4 years, P<0.04). At follow-up (7-19 years), nine patients were still alive, 26 patients had died of prostate cancer and seven patients had died of other causes. Conclusions: This study indicates that pre-treatment bcl-2 overexpression is related to a favourable outcome in prostate cancer treated with radiotherapy. Low bcl-2 along with a high stage may be a predictor of poor prognosis and these patients might benefit from additional treatment. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Evaluation of CD40, its ligand CD40L and Bcl-2 in psoriatic patients

    Directory of Open Access Journals (Sweden)

    Bożena Chodynicka

    2012-04-01

    Full Text Available Psoriasis is a chronic, recurrent, inflammatory disease. Recent investigations indicate an autoimmune pathogenesis of the disease. Apoptosis plays an important role in the regulation of immune mechanisms in many autoimmune diseases. Although CD40, CD40L, and Bcl-2 have already been studied in psoriatic skin lesions, little is known about their circulating forms. The aim of the present study was to evaluate the serum concentrations of Bcl-2, soluble CD40 and CD40L in psoriatic patients. The study was performed using ELISA kits in 39 psoriatic patients before treatment and after two weeks of topical ointment. Data was analyzed with respect to severity of psoriasis, duration of the disease, and coexisting psoriatic arthritis. Our results revealed that serum concentrations of soluble CD40 and CD40L before and after treatment were significantly higher (p < 0.01 and p < 0.001 in patients with psoriasis compared to the control group. Topical treatment of psoriatic lesions with dithranol ointment failed to decrease serum of CD40 and CD40L, which has not been described until now. There was no significant difference in serum Bcl-2 concentration between the compared groups. We did not find significant differences in serum concentrations of Bcl-2, CD40 or CD40L between patients with mild or severe psoriasis, nor any correlation between disease duration and the presence of psoriatic arthritis symptoms. Our data indicates upregulation of the CD40/CD40L system in psoriatic patients despite topical treatment and suggests their possible role in the pathogenesis of psoriasis.

  11. Ekspresi Bcl-2 dan Caspase-3 Pascapaparan Hipoksia Hipobarik Intermiten

    Directory of Open Access Journals (Sweden)

    Achmad Hidayat

    2011-12-01

    Full Text Available Intermittent hypobaric hypoxia often suffered by cabin crew due to the fact that they are breathing lower pressured air inside the plane cabin. Human body will adapt by binding more oxygen and reducing hypoxia effect. Mitochondria function will be irritated by hypoxia which affect, outer mithochondrial membrane permeability due to decrease of Bcl-2 protein. Later on if hypoxia continues mitochondrial membrane will leaked cytocrome-c will released and apoptotic pathway will occur. The purpose of this study was to analyze Bcl-2 protein as antiapoptosis and caspase-3 as apoptosis indicator of intermittent hypobaric hypoxia exposure. Experimental study >was subjected to Spraque Dawley male mice during January–April 2010 by exposing them to several intermittent hypobaric hypoxias (one to four treatment in an interval of one week. Protein expression on mice heart cell were detected by immunohistochemistry in the Department of Pathology Anatomy Padjadjaran University-RS Dr. Hasan Sadikin Bandung and western blot methods in Department Biomolecullar Indonesia University Jakarta. Bcl-2 protein expressions increased according with the frequency of intermittent hypobaric hypoxia exposures while a reverse trend was found for caspase-3 protein expressions (rs=-0.448, p=0.013. From the study it can be concluded that apoptosis will be decreased as a result of intermittent hypobaric hypoxia exposures, which occurred from natural adaptation mechanism indicated by decrease of cell apoptosis and cardio protective effect will be emerged.

  12. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy.

    Science.gov (United States)

    Pedro, Jose Manuel Bravo-San; Wei, Yongjie; Sica, Valentina; Maiuri, Maria Chiara; Zou, Zhongju; Kroemer, Guido; Levine, Beth

    2015-01-01

    Disruption of the complex of BECN1 with BCL2 or BCL2L1/BCL-XL is an essential switch that turns on cellular autophagy in response to environmental stress or treatment with BH3 peptidomimetics. Recently, it has been proposed that BCL2 and BCL2L1/BCL-XL may inhibit autophagy indirectly through a mechanism dependent on the proapoptotic BCL2 family members, BAX and BAK1. Here we report that the BH3 mimetic, ABT-737, induces autophagy in parallel with disruption of BCL2-BECN1 binding in 2 different apoptosis-deficient cell types lacking BAX and BAK1, namely in mouse embryonic fibroblasts cells and in human colon cancer HCT116 cells. We conclude that the BH3 mimetic ABT-737 induces autophagy through a BAX and BAK1-independent mechanism that likely involves disruption of BECN1 binding to antiapoptotic BCL2 family members.

  13. Targeting glutamine metabolism in multiple myeloma enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax.

    Science.gov (United States)

    Bajpai, R; Matulis, S M; Wei, C; Nooka, A K; Von Hollen, H E; Lonial, S; Boise, L H; Shanmugam, M

    2016-07-28

    Multiple myeloma (MM) is a plasma cell malignancy that is largely incurable due to development of resistance to therapy-elicited cell death. Nutrients are intricately connected to maintenance of cellular viability in part by inhibition of apoptosis. We were interested to determine if examination of metabolic regulation of BCL-2 proteins may provide insight on alternative routes to engage apoptosis. MM cells are reliant on glucose and glutamine and withdrawal of either nutrient is associated with varying levels of apoptosis. We and others have demonstrated that glucose maintains levels of key resistance-promoting BCL-2 family member, myeloid cell leukemic factor 1 (MCL-1). Cells continuing to survive in the absence of glucose or glutamine were found to maintain expression of MCL-1 but importantly induce pro-apoptotic BIM expression. One potential mechanism for continued survival despite induction of BIM could be due to binding and sequestration of BIM to alternate pro-survival BCL-2 members. Our investigation revealed that cells surviving glutamine withdrawal in particular, enhance expression and binding of BIM to BCL-2, consequently sensitizing these cells to the BH3 mimetic venetoclax. Glutamine deprivation-driven sensitization to venetoclax can be reversed by metabolic supplementation with TCA cycle intermediate α-ketoglutarate. Inhibition of glucose metabolism with the GLUT4 inhibitor ritonavir elicits variable cytotoxicity in MM that is marginally enhanced with venetoclax treatment, however, targeting glutamine metabolism with 6-diazo-5-oxo-l-norleucine uniformly sensitized MM cell lines and relapse/refractory patient samples to venetoclax. Our studies reveal a potent therapeutic strategy of metabolically driven synthetic lethality involving targeting glutamine metabolism for sensitization to venetoclax in MM. PMID:26640142

  14. Caspase Induction and BCL2 Inhibition in Human Adipose Tissue

    Science.gov (United States)

    Tinahones, Francisco José; Coín Aragüez, Leticia; Murri, Mora; Oliva Olivera, Wilfredo; Mayas Torres, María Dolores; Barbarroja, Nuria; Gomez Huelgas, Ricardo; Malagón, Maria M.; El Bekay, Rajaa

    2013-01-01

    OBJECTIVE Cell death determines the onset of obesity and associated insulin resistance. Here, we analyze the relationship among obesity, adipose tissue apoptosis, and insulin signaling. RESEARCH DESIGN AND METHODS The expression levels of initiator (CASP8/9) and effector (CASP3/7) caspases as well as antiapoptotic B-cell lymphoma (BCL)2 and inflammatory markers were assessed in visceral (VAT) and subcutaneous (SAT) adipose tissue from patients with different degrees of obesity and without insulin resistance or diabetes. Adipose tissue explants from lean subjects were cultured with TNF-α or IL-6, and the expression of apoptotic and insulin signaling components was analyzed and compared with basal expression levels in morbidly obese subjects. RESULTS SAT and VAT exhibited increased CASP3/7 and CASP8/9 expression levels and decreased BCL2 expression with BMI increase. These changes were accompanied by increased inflammatory cytokine mRNA levels and macrophage infiltration markers. In obese subjects, CASP3/7 activation and BCL2 downregulation correlated with the IRS-1/2–expression levels. Expression levels of caspases, BCL2, p21, p53, IRS-1/2, GLUT4, protein tyrosine phosphatase 1B, and leukocyte antigen-related phosphatase in TNF-α– or IL-6–treated explants from lean subjects were comparable with those found in adipose tissue samples from morbidly obese subjects. These insulin component expression levels were reverted with CASP3/7 inhibition in these TNF-α– or IL-6–treated explants. CONCLUSIONS Body fat mass increase is associated with CASP3/7 and BCL2 expression in adipose tissue. Moreover, this proapoptotic state correlated with insulin signaling, suggesting its potential contribution to the development of insulin resistance. PMID:23193206

  15. Expression of bcl-2 in the Epithelial Lining of Odontogenic Keratocysts

    Directory of Open Access Journals (Sweden)

    Gh. Jahanshahi

    2006-03-01

    Full Text Available Statement of Problem: The aggressive nature and high recurrence rate of Odontogenic Keratocysts (OKCs may be due to unknown factors inherent in the epithelium or because of enzymatic activity in the fibrous wall. Bcl-2 protein is characterized by its ability to inhibit apoptosis.Purpose: The aim of the present study was to analyze the expression of bcl-2 protein in OKCs and to compare it with the more common radicular and dentigerous cysts. The possible relationship between inflammation and bcl-2 expression was also investigated.Materials and Methods: Formalin fixed paraffin-embedded tissue sections of 20 OKCs, 20 radicular and 20 dentigerous cysts were immunohistochemically analyzed for immunoreactivity of the bcl-2 protein.Results: Bcl-2 expression was observed in 19 OKCs (95%, one radicular cyst (5%and one dentigerous cyst (5%. There was no statistically significant relationship between inflammation and the number of bcl-2 positive cells. Immunoreactivity was mainly noted in the basal or basal/supra basal layers.Conclusion: Considering the fact that bcl-2 over expression may lead to increased survival of epithelial cells, present study may demonstrate a possible relationship between the aggressive nature of OKC and the intrinsic growth potential of its lining epithelium. Furthermore a basal/supra basal distribution of bcl-2 positive cells was seen in some odontogenic keratocysts which may have a significant impact on the behavior of this cyst.

  16. EFFECTS OF IVABRADINE ON CARDIOMYOCYTE APOPTOSIS AND EXPRESSIONS OF bcl-2 AND bax IN RABBITS AFTER ACUTE MYOCARDIAL INFARTION%伊伐布雷定对兔急性心梗后心肌细胞凋亡及bcl-2与bax蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    徐少杰; 刘松; 王宝魁; 黄玉晓; 张文忠

    2013-01-01

    目的 探讨伊伐布雷定(Iva)对兔急性心肌梗死(AMI)后心肌细胞凋亡及bcl-2、bax蛋白表达的影响.方法 新西兰大白兔32只,雌雄不拘,随机分成4组,各8只.假手术组(S组)只开胸不结扎动脉,心肌梗死组(M组)结扎左冠状动脉前降支建立AMI模型,阿替洛尔治疗组(A组)建立AMI模型后应用阿替洛尔治疗,Iva治疗组(Ⅰ组)建立AMI模型后应用Iva治疗.A组和Ⅰ组于术后12h开始通过食物给药,持续给药28 d.28 d后取缺血坏死区心肌组织,TUNEL法检测心肌细胞凋亡,免疫组织化学法检测bcl-2、bax蛋白的表达;应用心电图机记录并比较M组、A组和Ⅰ组兔术前及术后28d的心率变化.结果 Ⅰ组和A组的心肌细胞凋亡比例显著低于M组,高于S组,差异有显著性(F =89.36,q=5.59~22.25,P<0.01);Ⅰ组和A组之间比较差异无显著性(P>0.05).与M组相比较,Ⅰ组和A组的bcl-2蛋白水平显著升高(F=22.93,q =7.90、8.95,P<0.01),bax蛋白水平显著降低(F=55.59,q=13.83、16.83,P<0.01),Ⅰ组和A组之间比较差异无显著性(P>0.05).M组、A组和Ⅰ组基础心率差异无显著性;术后28 d,A组和Ⅰ组的心率较M组明显减慢,治疗前后心率变化值比较差异有显著性(F=739.55,q =47.18、47.01,P<0.01),而A组和Ⅰ组相比差异无显著性.结论 应用Iva治疗能有效减少心肌梗死后心肌细胞凋亡的发生,有一定的心肌保护作用.

  17. Effects of losartan on oxygen free radicals, cell apoptosis and Bcl-2 expression in ischemia-reperfusion injury of pancreas in rats%洛沙坦对缺血再灌注大鼠胰腺氧自由基、细胞凋亡和Bcl-2表达的影响

    Institute of Scientific and Technical Information of China (English)

    邢军; 许评; 梁德森; 陈艳波; 李爱东; 宋纯; 宋春芳

    2006-01-01

    目的探讨洛沙坦(losartan)对大鼠胰腺缺血再灌注(I/R)损伤的保护作用及机制.方法 SD大鼠72只随机分为假手术组、I/R组和Losartan组,每组24只.采用钳闭大鼠腹腔干、肠系膜上动脉15,30,60min,再灌注6h,制成胰腺I/R损伤模型.losartan组给予losartan(40mg/kg)灌胃预处理;假手术组和I/R给予等容积的无菌蒸馏水.3组均于术后6h断颈处死动物.用TUNEL法检测I/R区胰腺细胞凋亡、免疫组化法检测Bcl-2蛋白的表达, 并观察胰腺组织病理改变.结果 losartan可逆转胰腺组织炎症细胞浸润、腺泡萎缩等异常改变.缺血15,30min时段,losartan组胰腺细胞凋亡率为(6.5±2.9)%和(10.5±4.3)%显著低于I/R组的(10.2±3.2)%和(18.4±3.1)%(P<0.05);丙二醛水平为(17.9±2.1)nmol/g(湿重)和(25.2±3.3)nmol/g(湿重)显著低于I/R组的(20.1±1.2)nmol/g(湿重)和(34.9±2.6)nmol/g(湿重)(P<0.05);Bcl-2阳性细胞为(11.3±2.2)%和(16.2±2.7)%显著高于I/R组的(6.1±1.7)%和(10.3±2.1)%(P<0.05).结论 losartan可减轻I/R对大鼠胰腺病理改变、抑制细胞凋亡.

  18. Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer.

    Science.gov (United States)

    Merino, D; Lok, S W; Visvader, J E; Lindeman, G J

    2016-04-14

    The last three decades have seen significant progress in our understanding of the role of the pro-survival protein BCL-2 and its family members in apoptosis and cancer. BCL-2 and other pro-survival family members including Mcl-1 and BCL-XL have been shown to have a key role in keeping pro-apoptotic 'effector' proteins BAK and BAX in check. They also neutralize a group of 'sensor' proteins (such as BIM), which are triggered by cytotoxic stimuli such as chemotherapy. BCL-2 proteins therefore have a central role as guardians against apoptosis, helping cancer cells to evade cell death. More recently, an increasing number of BH3 mimetics, which bind and neutralize BCL-2 and/or its pro-survival relatives, have been developed. The utility of targeting BCL-2 in hematological malignancies has become evident in early-phase studies, with remarkable clinical responses seen in heavily pretreated patients. As BCL-2 is overexpressed in ~75% of breast cancer, there has been growing interest in determining whether this new class of drug could show similar promise in breast cancer. This review summarizes our current understanding of the role of BCL-2 and its family members in mammary gland development and breast cancer, recent progress in the development of new BH3 mimetics as well as their potential for targeting estrogen receptor-positive breast cancer.

  19. Expression of Bcl-2 in adult human brain regions with special reference to neurodegenerative disorders.

    Science.gov (United States)

    Vyas, S; Javoy-Agid, F; Herrero, M T; Strada, O; Boissiere, F; Hibner, U; Agid, Y

    1997-07-01

    The expression of the protooncogene bcl-2, an inhibitor of apoptosis in various cells, was examined in the adult human brain. Several experimental criteria were used to verify its presence; mRNA was analyzed by northern blot with parallel experiments in mouse tissues, by RNase protection, and by in situ hybridization histochemistry. Bcl-2 protein was detected by western blot analysis and immunohistochemistry. Two bcl-2 mRNA species were identified in the human brain. The pattern of distribution of bcl-2 mRNA at the cellular level showed labeling in neurons but not glia. The in situ hybridization signal was stronger in the pyramidal neurons of the cerebral cortex and in the cholinergic neurons of the nucleus basalis of Meynert than in the Purkinje neurons of the cerebellum. Both melanized and nonmelanized neurons were labeled in the substantia nigra. In the striatum, bcl-2 mRNA was detected in some but not all neurons. In the regions examined for Bcl-2 protein, the expression pattern correlated with the mRNA results. In patients with Alzheimer's and Parkinson's diseases, quantification of bcl-2 mRNA in the nucleus basalis of Meynert and substantia nigra, respectively, showed that the expression was unaltered compared with controls, raising the possibility that the expression of other components of apoptosis is modulated.

  20. Bcl-2、Caspase-3、Survivin与银屑病的研究进展%Research Progress of Bcl-2,Caspase-3,Survivin and Psoriasis

    Institute of Scientific and Technical Information of China (English)

    秦兰英; 邢卫斌; 叶文静

    2013-01-01

    Bcl-2, caspase-3, survivin genes are important genes in the process of apoptosis, playing important roles in psoriasis keratinocyte apoptosis. Bcl-2 is a kind of apoptosis suppressor gene, which can prolong life period of cells. Caspase-3 can promote cell apoptosis. Survivin is one of the strongest anti-apopto-sis factor discovered so far,which can inhibit cell apoptosis and promote cell proliferation. Psoriasis lesions contain less Bcl-2, more caspase-3 and survivin. Interaction between them may result in the shortened life period and fastened apoptosis in psoriasis keratinocy,and cells proliferation is obvious,which maintains the benign proliferative state of psoriasis epidermis.%Bcl-2、caspase-3、survivin是细胞凋亡过程中重要的调控基因,在银屑病角质形成细胞凋亡中,三种蛋白起着非常重要的作用.Bcl-2是一种凋亡抑制基因,可延长细胞的生存期,caspase-3可促进细胞凋亡,survivin是迄今发现最强的凋亡抑制因子,具有抑制细胞凋亡、促进细胞增殖的作用,在银屑病皮损中Bcl-2呈低表达,caspase-3、survivin呈高表达,三种蛋白的相互作用,可能导致银屑病角质形成细胞的生存期缩短、凋亡速度加快,同时细胞增殖明显,从而维持银屑病表皮的良性增生状态.

  1. Assessment of expression of selected Bcl-2 family proteins in lymphoid infiltration in patients with B-cell chronic lymphocytic leukaemia treated with nucleoside analogues.

    Directory of Open Access Journals (Sweden)

    Janusz Kłoczko

    2008-12-01

    Full Text Available B-cell chronic lymphocytic leukaemia (B-CLL is characterized by clonal growth and accumulation of mature lymphoid cells due to disturbance in genetically regulated form of cell death called apoptosis. The intrinsic mechanism of apoptosis is controlled by Bcl-2 family proteins. Purine nucleoside analogues induce the apoptosis in cells in a state of quiescence. The aim of the study was to assess expression of selected Bcl-2 family proteins in neoplastic infiltration in bone marrow in patients with B-CLL treated with nucleoside analogues. The study comprised examination of bone marrow obtained routinely by trephine biopsy from 18 patients with B-CLL diagnosed before administration of purine nucleoside analogues treatment and after its completion. Expression of Bcl-2, Bcl-x and Bax proteins was examined. Lymphoid cells in bone marrow were present in all patients before administration of treatment. After treatment in two patients bone marrow was infiltrated in diffuse pattern, whereas other patients presented nodular pattern of infiltration. The difference between stage of infiltration before and after treatment was statistically significant (p<0.002. High percentage of infiltration cells with positive anti Bcl-2 reaction from 42.0% in one patient to 85.33+/-3.06% in four patients before treatment was observed. After treatment percentage of infiltration cells with positive anti Bcl-2 antibody reaction was from 33.0+/-18.38% in two patients to 99.0% in one patient. Positive correlation between stage of infiltration and expression of Bcl-2 protein was confirmed before and after treatment. Such correlations were not observed in case of Bax and Bcl-x. Strong staining of immunohistochemical reaction of cells in lymphoid infiltration with Bcl-2 antibody was confirmed. There was a difference between Bcl-/Bax ratio before and after treatment. Immunohistochemical assessment of expression of Bcl-2 family proteins in cells of lymphoid infiltration in bone

  2. Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function

    Directory of Open Access Journals (Sweden)

    Iwamoto Sean

    2006-11-01

    Full Text Available Abstract Background Neurodegeneration in Alzheimer's disease is associated with increased apoptosis and parallels increased levels of amyloid beta, which can induce neuronal apoptosis. Estrogen exposure prior to neurotoxic insult of hippocampal neurons promotes neuronal defence and survival against neurodegenerative insults including amyloid beta. Although all underlying molecular mechanisms of amyloid beta neurotoxicity remain undetermined, mitochondrial dysfunction, including altered calcium homeostasis and Bcl-2 expression, are involved in neurodegenerative vulnerability. Results In this study, we investigated the mechanism of 17β-estradiol-induced prevention of amyloid beta-induced apoptosis of rat hippocampal neuronal cultures. Estradiol treatment prior to amyloid beta exposure significantly reduced the number of apoptotic neurons and the associated rise in resting intracellular calcium levels. Amyloid beta exposure provoked down regulation of a key antiapoptotic protein, Bcl-2, and resulted in mitochondrial translocation of Bax, a protein known to promote cell death, and subsequent release of cytochrome c. E2 pretreatment inhibited the amyloid beta-induced decrease in Bcl-2 expression, translocation of Bax to the mitochondria and subsequent release of cytochrome c. Further implicating the mitochondria as a target of estradiol action, in vivo estradiol treatment enhanced the respiratory function of whole brain mitochondria. In addition, estradiol pretreatment protected isolated mitochondria against calcium-induced loss of respiratory function. Conclusion Therefore, we propose that estradiol pretreatment protects against amyloid beta neurotoxicity by limiting mitochondrial dysfunction via activation of antiapoptotic mechanisms.

  3. Increased Fas and Bcl-2 Expression on Peripheral Blood T and B Lymphocytes from Juvenile-Onset Systemic Lupus Erythematosus, but not from Juvenile Rheumatoid Arthritis and Juvenile Dermatomyositis

    Directory of Open Access Journals (Sweden)

    Bernadete L. Liphaus

    2006-01-01

    Full Text Available Defective regulation of apoptosis may play a role in the development of autoimmune diseases. Fas and Bcl-2 proteins are involved in the control of apoptosis. The aims of this study were to determine the expression of Fas antigen and Bcl-2 protein on peripheral blood T and B lymphocytes from patients with juvenile-onset systemic lupus erythematosus (JSLE, juvenile rheumatoid arthritis (JRA and juvenile dermatomyositis (JDM. Thirty-eight patients with JSLE, 19 patients with JRA, 10 patients with JDM and 25 healthy controls entered the study. Freshly isolated peripheral blood mononuclear cells (PBMC were stained for lymphocyte markers CD3, CD4, CD8, CD19 and for Fas and Bcl-2 molecules. Expressions were measured by three-color flow cytometry. Statistical analysis was performed using Kruskal–Wallis test. Percentages of freshly isolated T lymphocytes positively stained for Fas protein from JSLE patients were significantly increased compared to healthy controls, patients with JRA and patients with JDM. Percentages of B lymphocytes positive for Fas from JSLE patients were higher than healthy controls and JRA patients. In addition, Fas expression on T cells from patients with JRA was increased compared to JDM patients. Otherwise, Fas expression on T and B cells from JRA and JDM patients were similar to healthy controls. MFI of Bcl-2 positive T lymphocytes from JSLE patients were significantly increased compared to healthy controls and JRA patients. MFI of Bcl-2 protein on B lymphocytes from JSLE patients was similar to healthy controls and patients with JRA and JDM. Bcl-2 expression did not differ between JRA and JDM patients and healthy controls. In conclusion, increased expression of Fas and Bcl-2 proteins observed in circulating T and B lymphocytes from patients with JSLE, but not from patients with JRA and JDM, suggests that abnormalities of apoptosis may be related to the pathogenesis of JSLE and probably are not a result of chronic inflammation.

  4. Increased Fas and Bcl-2 expression on peripheral blood T and B lymphocytes from juvenile-onset systemic lupus erythematosus, but not from juvenile rheumatoid arthritis and juvenile dermatomyositis.

    Science.gov (United States)

    Liphaus, Bernadete L; Kiss, Maria H B; Carrasco, Solange; Goldenstein-Schainberg, Claudia

    2006-01-01

    Defective regulation of apoptosis may play a role in the development of autoimmune diseases. Fas and Bcl-2 proteins are involved in the control of apoptosis. The aims of this study were to determine the expression of Fas antigen and Bcl-2 protein on peripheral blood T and B lymphocytes from patients with juvenile-onset systemic lupus erythematosus (JSLE), juvenile rheumatoid arthritis (JRA) and juvenile dermatomyositis (JDM). Thirty-eight patients with JSLE, 19 patients with JRA, 10 patients with JDM and 25 healthy controls entered the study. Freshly isolated peripheral blood mononuclear cells (PBMC) were stained for lymphocyte markers CD3, CD4, CD8, CD19 and for Fas and Bcl-2 molecules. Expressions were measured by three-color flow cytometry. Statistical analysis was performed using Kruskal-Wallis test. Percentages of freshly isolated T lymphocytes positively stained for Fas protein from JSLE patients were significantly increased compared to healthy controls, patients with JRA and patients with JDM. Percentages of B lymphocytes positive for Fas from JSLE patients were higher than healthy controls and JRA patients. In addition, Fas expression on T cells from patients with JRA was increased compared to JDM patients. Otherwise, Fas expression on T and B cells from JRA and JDM patients were similar to healthy controls. MFI of Bcl-2 positive T lymphocytes from JSLE patients were significantly increased compared to healthy controls and JRA patients. MFI of Bcl-2 protein on B lymphocytes from JSLE patients was similar to healthy controls and patients with JRA and JDM. Bcl-2 expression did not differ between JRA and JDM patients and healthy controls. In conclusion, increased expression of Fas and Bcl-2 proteins observed in circulating T and B lymphocytes from patients with JSLE, but not from patients with JRA and JDM, suggests that abnormalities of apoptosis may be related to the pathogenesis of JSLE and probably are not a result of chronic inflammation.

  5. Amelioration of apoptotic events in the skeletal muscle of intra-nigrally rotenone-infused Parkinsonian rats by Morinda citrifolia--up-regulation of Bcl-2 and blockage of cytochrome c release.

    Science.gov (United States)

    Narasimhan, Kishore Kumar S; Paul, Liya; Sathyamoorthy, Yogesh Kanna; Srinivasan, Ashokkumar; Chakrapani, Lakshmi Narasimhan; Singh, Abhilasha; Ravi, Divya Bhavani; Krishnan, Thulasi Raman; Velusamy, Prema; Kaliappan, Kathiravan; Radhakrishnan, Rameshkumar; Periandavan, Kalaiselvi

    2016-02-01

    Parkinson's disease is a progressive neurodegenerative movement disorder with the cardinal symptoms of bradykinesia, resting tremor, rigidity, and postural instability, which lead to abnormal movements and lack of activity, which in turn cause muscular damage. Even though studies have been carried out to elucidate the causative factors that lead to muscular damage in Parkinson's disease, apoptotic events that occur in the skeletal muscle and a therapeutical approach to culminate the muscular damage have not been extensively studied. Thus, this study evaluates the impact of rotenone-induced SNPc lesions on skeletal muscle apoptosis and the efficacy of an ethyl acetate extract of Morinda citrifolia in safeguarding the myocytes. Biochemical assays along with apoptotic markers studied by immunoblot and reverse transcription-polymerase chain reaction in the current study revealed that the supplementation of Morinda citrifolia significantly reverted alterations in both biochemical and histological parameters in rotenone-infused PD rats. Treatment with Morinda citrifolia also reduced the expression of pro-apoptotic proteins Bax, caspase-3 and caspase-9 and blocked the release of cytochrome c from mitochondria induced by rotenone. In addition, it augmented the expression of Bcl2 both transcriptionally and translationally. Thus, this preliminary study paves a way to show that the antioxidant and anti-apoptotic activities of Morinda citrifolia can be exploited to alleviate skeletal muscle damage induced by Parkinsonism.

  6. 苦参碱对 HaCaT 细胞 Bcl -2/Bax 和Fas/FasL 的调控%Regulation of Bcl-2/Bax and Fas/FasL by matrine in HaCaT cells

    Institute of Scientific and Technical Information of China (English)

    牟宽厚; 周艳; 韩丹; 穆欣

    2014-01-01

    目的:明确苦参碱对 HaCaT 细胞 Bcl-2/ Bax 和 Fas/ FasL 表达的影响。方法:体外培养HaCaT 细胞,选择第二代细胞对数生长期 HaCaT 细胞作为研究对象,将细胞随机分为4组:苦参碱2 mg/ mL、10 mg/ mL 和50 mg/ mL 3组及对照组(加入相同体积的0.9%盐水),孵育48 h 后,MTT 法测定各浓度下细胞增殖,RT-PCR 检测 Bcl-2/ Bax 和 Fas/ FasL 的表达。结果:与对照组相比,当苦参碱浓度为2 mg/ mL 时,HaCaT 细胞增殖活性无明显变化;Bcl -2、Bax、Fas、FasL 表达也无明显变化( P>0.05)。当苦参碱浓度为10 mg/ mL 时 HaCaT 细胞增殖活性较对照组明显下降(P0.05)。结论:苦参碱能够调控上皮细胞致炎因子的表达,抑制细胞的增殖。%To determine the effect of matrine on Bcl-2/ Bax and Fas/ FasL in keratinocytes in vitro. Methods: Second generation cultured HaCaT cells (logarithmic phase cells) were selected and divided into 4 groups:3 matrine groups (2 mg/ mL, 10 mg/ mL and 50 mg/ mL were used in each group) and the control group (0.9% Natrii Chloride). After 48-hour culture, the proliferation of HaCaT were detected by MTT and the levels of Bcl-2/ Bax and Fas/ FasL were measured by RT-PCR. Results: The viability of HaCaT cells was similar in 2 mg/ mL matrine group and control group (P>0.05). In 10 mg/ mL matrine group the proliferation of the cells was significantly decreased (P<0.001) and the Bcl-2 expression was remarkably reduced (P<0.001), while the expression of Bax, Fas and FasL was significantly increased (P<0.01 and P<0.05, respectively). When the concentration of matrine was increased to 50 mL, the viability and the expression of Bcl-2, Bax, Fas and FasL was similar to the results when 10 mL matrine was used. Conclusion: Matrine can inhibit HaCaT cells proliferation (at 10 mg/ mL or more) and may adjust expression of Bcl-2/ Bax and Fas/FasL in HaCaT cells.

  7. Suppression of bcl-2 Gene by RNA Interference Increases Chemosensitivity to Cisplatin in Nasopharyngeal Carcinoma Cell Line CNE1

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hua YIN; Cai-Ping REN; Feng LI; Xu-Yu YANG; Hui LI; Ming ZHAO; Kai-Tai YAO

    2004-01-01

    To explore the effect of suppressing BCL-2 expression using RNA interference (RNAi) technique in nasopharyngeal carcinoma cell line CNE1. CNE1 cell lines stably expressing shRNAs targeted bcl-2 and GL3 gene were established and gene expression inhibition was assessed by Western blotting analysis. The effect of suppressing bcl-2 by RNAi on cell growth was studied, the apoptosis induction and the sensitization of CNE 1 cells to cisplatin were quantified by MTT assay and flow cytometry. The results showed that: stable transfection of CNE 1 cells with vectors expressing shRNAs against bcl-2 decreased the expression of BCL-2 protein; suppression of BCL-2 expression did not affect cell proliferation but could increase the chemosensitivity to cisplatin in CNE1 cells. This will help physicians to make some clinical trials of gene therapy on nasopharyngeal carcinoma by RNAi.

  8. Paclitaxel induces apoptosis in human gastric carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Hai-Bo Zhou; Ju-Ren Zhu

    2003-01-01

    AIM: To investigate the apoptosis in gastric cancer cells induced by paclitaxel, and the relation between this apoptosis and expression of Bcl-2 and Bax.METHODS: In in vitro experiments, MTT assay was used to determine the cell growth inhibitory rate. Transmission electron microscope and TUNEL staining method were used to quantitatively and qualitively detect the apoptosis status of gastric cancer cell line SGC-7901 before and after the paditaxel treatment. Immunohistochemical staining was used to detect the expression of apoptosis-regulated gene Bcl-2and Bax.RESULTS: Paclitaxel inhibited the growth of gastric cancer cell line SGC-7901 in a dose-and time-dependent manner.Paclitaxel induced SGC-7901 cells to undergo apoptosis with typically apoptotic characteristics, including morphological changes of chromatin condensation, chromatin crescent formation, nucleus fragmentation and apoptotic body formation. Paclitaxel could reduce the expression of apoptosis-regulated gene Bcl-2, and improve the expression of apoptosis-regulated gene Bax.CONCLUSION: Paclitaxel is able to induce the apoptosis in gastric cancer. This apoptosis may be mediated by downexpression of apoptosis-regulated gene Bcl-2 and upexpression of apoptosis-regulated gene Bax.

  9. Bcl-2 promotes malignant progression in a PDGF-B-dependent murine model of oligodendroglioma.

    Science.gov (United States)

    Doucette, Tiffany; Yang, Yuhui; Zhang, Wei; Fuller, Gregory N; Suki, Dima; Fults, Daniel W; Rao, Ganesh

    2011-11-01

    A significant subset of gliomas arises after activation of the proproliferative platelet-derived growth factor (PDGF) pathway. The progression of low-grade gliomas to more malignant tumors may be due to oncogenic cellular programs combining with those suppressing apoptosis. Antiapoptotic genes are overexpressed in a variety of cancers, and the antiapoptotic gene, BCL2, is associated with treatment resistance and tumor recurrence in gliomas. However, the impact of antiapoptotic gene expression to tumor formation and progression is unclear. We overexpressed Bcl-2 in a PDGFB-dependent mouse model of oligodendroglioma, a common glioma subtype, to assess its effect in vivo. We hypothesized that the antiapoptotic effect would complement the proproliferative effect of PDGFB to promote tumor formation and progression to anaplastic oligodendroglioma (AO). Here, we show that coexpression of PDGFB and Bcl-2 results in a higher overall tumor formation rate compared to PDGFB alone. Coexpression of PDGFB and Bcl-2 promotes progression to AO with prominent foci of necrosis, a feature of high-grade gliomas. Median tumor latency was shorter in mice injected with PDGFB and Bcl-2 compared to those injected with PDGFB alone. Although independent expression of Bcl-2 was insufficient to induce tumors, suppression of apoptosis (detected by cleaved caspase-3 expression) was more pronounced in AOs induced by PDGFB and Bcl-2 compared to those induced by PDGFB alone. Tumor cell proliferation (detected by phosphohistone H3 activity) was also more robust in high-grade tumors induced by PDGFB and Bcl-2. Our results indicate that suppressed apoptosis enhances oligodendroglioma formation and engenders a more malignant phenotype.

  10. Curcumin induces the expression of NF-κB and Bcl-2/Bax in human renal cell carcinoma cell line ACHN

    Institute of Scientific and Technical Information of China (English)

    Gang Li; Tie Chong; Ziming Wang

    2009-01-01

    Objective: To explore the in vitro effects of curcumin on the proliferation and apoptosis of the human renal cell carcinoma cell line ACHN, and to investigate its mechanisms of action. Methods: The human renal cell carcinoma cell line ACHN was treated with different concentrations of curcumin for 24 h. The MTT assay was used to evaluate the cytotoxic effects of curcumin and flow cytometry was utilized to observe and detect the apoptosis of ACHN cells induced by curcumin. The expression levels of Bcl-2, Bax and NF-κBP65 mRNA were evaluated by Reverse Transcription-Polymerase Chain Reaction (RT-PCR), while the expression of Bcl-2, Bax, NF-κBP65 and IkB proteins was evaluated by Western blot. Results: The concentrations of curcumin used significantly inhibited the proliferation of ACHN human renal cell carcinoma cells in vitro in a dose and time-dependent manner (Ftime=5.55, P < 0.05; Fdose=110.05, P < 0.05). Obvious apoptosis of cells treated with different concentrations of curcumin could be observed by FCM. Compared with the control group, the apoptosis rates of curcumin-treated cells were markedly increased (F=96.35, P < 0.05). Lower dose of curcumin significantly induced the apoptosis of ACHN cells. With intervention of different concentrations of curcumin (0, 10, 20 and 40 μmol/L) for 24 h, the expression levels of Bcl-2 and NF-κBP65 mRNA in ACHN cells were decreased while the expression level of Bax mRNA was increased (P < 0.05), and Bcl-2, and NF-κBP65 protein decreased, while Bax and IκB protein increased compared with those in the untreated group. Conclusion: Curcumin inhibited proliferation and increased apoptosis of the human renal cell carcinoma cell line ACHN. These curcumin effects appear to involve up-regulating IκB, down-regulating NF-κB, and regulating the expression of the apoptosis genes Bcl-2/Bax.

  11. The anti-apoptotic members of the Bcl-2 family are attractive tumor-associated antigens

    DEFF Research Database (Denmark)

    Straten, Per thor; Andersen, Mads Hald

    2010-01-01

    Anti-apoptotic members of the Bcl-2 family (Bcl-2, Bcl-X(L) and Mcl-2) are pivotal regulators of apoptotic cell death. They are all highly overexpressed in cancers of different origin in which they enhance the survival of the cancer cells. Consequently, they represent prime candidates for anti......, spontaneous cellular immune responses against the Bcl-2 family proteins have been identified as frequent features in cancer patients underscoring that these proteins are natural targets for the immune system. Thus, Bcl-2 family may serve as an important and widely applicable target for anti......-cancer immunotherapeutic strategies, alone or in the combination with conventional therapy. Here, we summarize the current knowledge of Bcl-2 family proteins as T-cell antigens, which has set the stage for the first explorative trial using these antigens in therapeutic vaccinations against cancer, and discuss future...

  12. Expression of P16 protein and Bcl-2 protein in malignant eyelid tumors

    Institute of Scientific and Technical Information of China (English)

    牛膺筠; 周占宇; 刘夫玲; 王红云

    2002-01-01

    Objective To investigate the relationship between P16 gene (the tumor suppressor gene) and the bcl-2 gene (the apoptosis inhibitor gene) and the incidence and development of malignant eyelid tumors. Methods The streptavidin-biotin-peroxidase complex immunohistochemistry method was used to study the expression of P16 gene and the bcl-2 gene in 96 cases of malignant eyelid tumors. Results Among the 96 cases, there were 40 basal cell carcinomas (BCCs), 33 squamous carcinomas and 23 sebaceous carcinoma, with P16 protein positive (nuclear staining) rates 70%, 54.6% and 56.5%, respectively. The P16 positive rate was negatively correlated with the degree of tumor histological differentiation, and the rate difference between the high differentiated carcinomas was significant (P<0.05). Positive Bcl-2 protein expression was detected in the cytoplasm. All 40 BCC cases were Bcl-2 positive, and nearly all of the tumor cells showed positive cytoplasmic expression, while in the 33 squamous cell carcinoma cases only one showed positive focal reaction, and the staining in the other 32 cases was relatively faint. None of the 23 sebaceous carcinomas expressed Bcl-2. Conclusions The expression of the P16 protein was related to the occurrence and degree of differentiation of malignant eyelid tumors. The overexpression of the Bcl-2 protein suggests that suppression of apoptosis might play a role in the tumorigenesis of BCC.

  13. A PRELIMINARY STUDY ON SURVIVIN AND BCL-2 EXPRESSION IN CERVICAL CARCINOMAS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To study the expression of a novel inhibitor of apptosis and survivin in cervical carcinoma and its relationship to the expression of Bcl-2.Methods Using SP immunohistochemical technique, we examined the expression of survivin and Bcl-2 in 59 cervical invasive squamous cell carcinomas.Results Survivin was expressed in 41 of 59 cases(69.5%) of cervical carcinomas. In contrast, no expression of survivin in normal cervical tissues was observed. Overexpression of survivin was related to the tumor grade and clinical stage. Survivin positive cases were strongly associated with Bcl-2 expression(80% versus 35.7%;P<0.005).Conclusion Apoptosis inhibition by survivin abnormal expression, alone or in cooperation with Bcl-2, may participate in the onset and progression of cervical carcinoma. Survivin is a new diagnostic/therapeutic target in cervical cancer.

  14. Identification of an HLA-A*0201 restricted Bcl2-derived epitope expressed on tumors

    DEFF Research Database (Denmark)

    Wang, Mingjun; Johansen, Britta; Nissen, Mogens H;

    2006-01-01

    A large number of human tumor-associated antigen-derived peptides have been identified that are recognized by CTLs in a MHC-I restricted fashion. The apoptosis inhibitory protein Bcl2 is overexpressed in many human cancers as part of their neoplastic phenotype. Since inhibition or loss of Bcl2...... expression might impair tumor growth and survival, this protein may serve as a rational target for vaccine-induced CTL responses. By Western blot technique, we screened a panel of established human tumor cell lines for proteins involved in the apoptotic process. Two of eight tumor cell lines, a B lymphoma...... (Loukes) and a colon carcinoma (CCL220) cell line showed increased Bcl2 protein expression whereas the majority of tumor cell lines expressed proapoptotic proteins. Neither fibroblasts nor peripheral blood mononuclear cells showed Bcl2 expression. An HLA-A*0201 restricted CTL epitope was deduced in silica...

  15. American Ginseng Stimulates Insulin Production and Prevents Apoptosis through Regulation of Uncoupling Protein-2 in Cultured β Cells

    Directory of Open Access Journals (Sweden)

    John Zeqi Luo

    2006-01-01

    Full Text Available American ginseng root displays the ability to achieve glucose homeostasis both experimentally and clinically but the unknown mechanism used by ginseng to achieve its therapeutic effects on diabetes limits its application. Disruption in the insulin secretion of pancreatic β cells is considered the major cause of diabetes. A mitochondrial protein, uncoupling protein-2 (UCP-2 has been found to play a critical role in insulin synthesis and β cell survival. Our preliminary studies found that the extracts of American ginseng inhibit UCP-2 expression which may contribute to the ability of ginseng protecting β cell death and improving insulin synthesis. Therefore, we hypothesized that ginseng extracts suppress UCP-2 in the mitochondria of pancreatic β cells, promoting insulin synthesis and anti-apoptosis (a programmed cell-death mechanism. To test the hypothesis, the serum-deprived quiescent β cells were cultured with or without interleukin-1β (IL-1β, (200 pg ml−1, a cytokine to induce β cell apoptosis and water extracts of American ginseng (25 μg per 5 μl administered to wells of 0.5 ml culture for 24 h. We evaluated effects of ginseng on UCP-2 expression, insulin production, anti-/pro-apoptotic factors Bcl-2/caspase-9 expression and cellular ATP levels. We found that ginseng suppresses UCP-2, down-regulates caspase-9 while increasing ATP and insulin production/secretion and up-regulates Bcl-2, reducing apoptosis. These findings suggest that stimulation of insulin production and prevention of β cell loss by American ginseng extracts can occur via the inhibition of mitochondrial UCP-2, resulting in increase in the ATP level and the anti-apoptotic factor Bcl-2, while down-regulation of pro-apoptotic factor caspase-9 occurs, lowering the occurrence of apoptosis, which support the hypothesis.

  16. bcl-2 expression is not associated with survival in metastatic cutaneous melanoma: A historical cohort study

    Directory of Open Access Journals (Sweden)

    Corleta Oly C

    2008-06-01

    Full Text Available Abstract Background Programmed cell death (apoptosis has been implicated in tumor development and may affect the metastatic potential of tumor cells. The role of bcl-2, a proto-oncogene that inhibits apoptosis, has been studied in several malignancies, including cutaneous melanoma (CM. The purpose of this study was to evaluate the immunohistochemical expression of bcl-2 in 35 regional lymph node, 28 subcutaneous and 17 visceral CM metastases, correlating the findings with patient survival. Methods In a historical cohort study patient survival was correlated with the expression of bcl-2 in regional lymph node, subcutaneous and visceral metastases of CM. Eighty slides containing surgical specimens from 50 patients diagnosed with stage III and IV CM, 28 male (56% and 22 female (44%, were analyzed. Mean age at diagnosis was 43 years (16–74 years; median = 42 years. Mean Breslow depth was 5.01 mm (0.4–27.5 mm. The slides were submitted to immunohistochemical reaction using anti-bcl-2 monoclonal antibody and classified according to the degree of staining ( 50% of tumor cells stained. The relationship between bcl-2 protein expression and survival for each type of metastasis, gender and age at initial diagnosis was analyzed. Results Mean overall survival was 33.9 months after the diagnosis of the initial metastatic lesion (range: 0 to 131 months. Twenty-four out of 50 patients (48% had died from CM by the end of the study period. bcl-2 expression was detected in 74.3, 85.7 and 82.4% of lymph node, subcutaneous and visceral metastases, respectively. After univariate and multivariate analyses, no correlation was found between positive bcl-2 expression and overall survival for the types of metastases evaluated. Conclusion The immunohistochemical expression of bcl-2 in metastasis alone is not a prognostic marker for CM.

  17. The B-cell lymphoma 2 (BCL2)-inhibitors, ABT-737 and ABT-263, are substrates for P-glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Vogler, Meike, E-mail: mv62@le.ac.uk [MRC Toxicology Unit, University of Leicester, LE1 9HN Leicester (United Kingdom); Dickens, David, E-mail: David.Dickens@liverpool.ac.uk [Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, L69 3GL Liverpool (United Kingdom); Dyer, Martin J.S., E-mail: mjsd1@le.ac.uk [MRC Toxicology Unit, University of Leicester, LE1 9HN Leicester (United Kingdom); Owen, Andrew, E-mail: aowen@liverpool.ac.uk [Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, L69 3GL Liverpool (United Kingdom); Pirmohamed, Munir, E-mail: munirp@liv.ac.uk [Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, L69 3GL Liverpool (United Kingdom); Cohen, Gerald M., E-mail: gmc2@le.ac.uk [MRC Toxicology Unit, University of Leicester, LE1 9HN Leicester (United Kingdom)

    2011-05-06

    Highlights: {yields} The BCL2-inhibitor ABT-263 is a substrate for P-glycoprotein. {yields} Apoptosis is inhibited by P-glycoprotein expression. {yields} Overexpression of P-glycoprotein may contribute to resistance to ABT-263 or ABT-737. -- Abstract: Inhibition of BCL2 proteins is one of the most promising new approaches to targeted cancer therapy resulting in the induction of apoptosis. Amongst the most specific BCL2-inhibitors identified are ABT-737 and ABT-263. However, targeted therapy is often only effective for a limited amount of time because of the occurrence of drug resistance. In this study, the interaction of BCL2-inhibitors with the drug efflux transporter P-glycoprotein was investigated. Using {sup 3}H labelled ABT-263, we found that cells with high P-glycoprotein activity accumulated less drug. In addition, cells with increased P-glycoprotein expression were more resistant to apoptosis induced by either ABT-737 or ABT-263. Addition of tariquidar or verapamil sensitized the cells to BCL2-inhibitor treatment, resulting in higher apoptosis. Our data suggest that the BCL2-inhibitors ABT-737 and ABT-263 are substrates for P-glycoprotein. Over-expression of P-glycoprotein may be, at least partly, responsible for resistance to these BCL2-inhibitors.

  18. Protection of Bcl-2 by salubrinal

    OpenAIRE

    Kessel, David

    2006-01-01

    The drug salubrinal has been identified as an inhibitor of phosphatases that act on the eukaryotic translation initiation factor 2 subunit (eIF2α). The resulting maintenance of protein phosphorylation results in enhanced protection from the adverse effects of initiators of the unfolded protein response. We found that salubrinal can also interact with the anti-apoptotic protein Bcl-2, inhibiting binding of the non-peptidic antagonist HA14-1 and of a porphycene that can catalyze Bcl-2 photodama...

  19. Targeting BCL-2 and ABL/LYN in Philadelphia chromosome-positive acute lymphoblastic leukemia.

    Science.gov (United States)

    Leonard, Jessica T; Rowley, Joelle S J; Eide, Christopher A; Traer, Elie; Hayes-Lattin, Brandon; Loriaux, Marc; Spurgeon, Stephen E; Druker, Brian J; Tyner, Jeffrey W; Chang, Bill H

    2016-08-31

    Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph(+)ALL) remains a challenge. Although the addition of targeted tyrosine kinase inhibitors (TKIs) to standard cytotoxic therapy has greatly improved upfront treatment, treatment-related morbidity and mortality remain high. TKI monotherapy provides only temporary responses and renders patients susceptible to the development of TKI resistance. Thus, identifying agents that could enhance the activity of TKIs is urgently needed. Recently, a selective inhibitor of B cell lymphoma 2 (BCL-2), ABT-199 (venetoclax), has shown impressive activity against hematologic malignancies. We demonstrate that the combination of TKIs with venetoclax is highly synergistic in vitro, decreasing cell viability and inducing apoptosis in Ph(+)ALL. Furthermore, the multikinase inhibitors dasatinib and ponatinib appear to have the added advantage of inducing Lck/Yes novel tyrosine kinase (LYN)-mediated proapoptotic BCL-2-like protein 11 (BIM) expression and inhibiting up-regulation of antiapoptotic myeloid cell leukemia 1 (MCL-1), thereby potentially overcoming the development of venetoclax resistance. Evaluation of the dasatinib-venetoclax combination for the treatment of primary Ph(+)ALL patient samples in xenografted immunodeficient mice confirmed the tolerability of this drug combination and demonstrated its superior antileukemic efficacy compared to either agent alone. These data suggest that the combination of dasatinib and venetoclax has the potential to improve the treatment of Ph(+)ALL and should be further evaluated for patient care. PMID:27582059

  20. Effects of Jiedu Quyu Ziyin Recipe on the apoptosis and expressions of bcl-2 and bax mRNA of peripheralblood lymphocyte in MRL/lpr mice%解毒祛瘀滋阴药对MRL/lpr小鼠外周血淋巴细胞凋亡及线粒体跨膜电位的影响

    Institute of Scientific and Technical Information of China (English)

    曹灵勇; 谢志军; 王新昌; 温成平; 范永升

    2010-01-01

    Objective To explore the effects of Jiedu Quyu Ziyin Recipe (JQZR) on the apoptosis and expressions of bcl-2 and bax mRNA of peripheral-blood lymphocyte in MRL/lpr mice. Methods 80 MRL/lpr mice were randomly divided into model group,TCM group, Western medicine group and TCM and Western medicine group,20 mice in each group, meanwhile,20 Kunming mice were selected as normal group, then intragastrically administered normal sodium, JQZR apozem, prednisone suspension and JQZR apozem and prednisone suspension, 0. 5ml every time,once daily for 12 weeks respectively. At the end of the 12th week, peripheral-blood lymphocytes of every mice purified by gradient centrifugation were cultivated for 48 hours ,then the apoptosis was detected by flow cytometry. Furthermore,the expressions of bcl-2 and bax mRNA of peripheral-blood lymphocyte were detected by RT-PCR. Results At Oh or 48h,the apoptosis ratios of PBLC in normal group, TCM group,Western medicine group and TCM and Western medicine group are higher than model group and the differences are significant(P 0. 05) ,even if which are significant between TCM group and TCM and Western medicine group or between model group and TCM and Western medicine group( P 0.05),但中药组和模型组与中西药组比较,差异有显著性(P0.05);西药组与中西药组之间差异无显著性(P>0.05).结论 解毒祛瘀滋阴药能增加MRL/lpr小鼠的PBLC凋亡率并下调其线粒体跨膜电位水平.

  1. Comparative study of Bax, Bcl-2 protein expression in villi structure during normal pregnancy and missed abortion%正常早孕与稽留流产绒毛组织结构中Bax和Bcl-2蛋白表达的对比研究

    Institute of Scientific and Technical Information of China (English)

    杨兴爽

    2014-01-01

    Objective To study apoptosis regulating proteins Bcl-2 and Bax in normal pregnancy and missed abortion villi structure and its significance, and explore the reasons for missed abortion. Methods Choose our hospital patients missed abortion and early pregnancy abortion patients, 60 cases in total, divided into group A and group B. Immediately after abortion, embryonic villi specimens sent to pathology. Light microscopy were applied in each group villi morphological changes in the structure, while applying immunohistochemical methods and computer image analysis system to detect Bax, Bcl-2 expression in each group villi and cell apoptosis. Results Missed abortion group trophoblast cell apoptosis index was (33.32±0.79)%, was significantly higher in group B(18.90±0.63)%, difference was statistically significant (P<0.01). Bax and Bcl-2 in the two groups syncytiotrophoblast cells show positive rate. In missed abortion group, Bax positive rate increased, Bcl-2 positive rate of decline, Bcl-2/Bax ratio increased, differences were statistically significant (P<0.01). Conclusion The increasing positive expression rate of Bax and the decreasing positive expression rate of Bcl-2 in decidua villi can lead to villous syncytiotrophoblast cells increased significantly,and further lead to missed abortion.%目的:研究凋亡调控蛋白Bcl-2和Bax在正常早孕与稽留流产绒毛组织结构中的表达及其意义,探讨稽留流产原因。方法选择本院就诊的稽留流产患者和早孕人工流产患者各60例,分为A组、B组。流产后立即留取胚胎绒毛组织送病理。分别应用光镜观察各组绒毛组织细胞形态结构的改变;同时应用免疫组织化学方法和计算机图文分析系统检测Bax、Bcl-2在各组绒毛的表达及细胞凋亡情况。结果稽留流产组绒毛滋养细胞中凋亡指数为(33.32±0.79)%,明显高于对照组B组的(18.90±0.63)%,差异有统计学意义(P<0.01)。Bax和Bcl-2在两组合体滋养

  2. Effect of silencing Bcl-2 expression by small interfering RNA on radiosensitivity of gastric cancer BGC823 cells

    Institute of Scientific and Technical Information of China (English)

    Hong-Tao Liu; Chun-Lei Lu

    2013-01-01

    Objective: To explore the influence of silencing Bcl-2 expression by small interfering RNA (siRNA) on Bcl-2 protein expression, cell apoptosis rate and radiosensitivity of gastric cancer BGC823 cells. Methods: siRNA segment for Bcl-2 gene was designed and synthesized, then was induced into gastric cancer BGC 823 cells by liposome transfection. Bcl-2 protein expression was detected by Western Blotting. After X radiation, flow cytometry and clone forming assay were used to determine the effects of RNA interference on BGC823 cell apoptosis rate and radiosensitivity.Result:After the transfection of Bcl-2 siRNA, the positive expression rate of Bcl-2 protein in BGC823 cells was (35.45±2.35)%. Compared with the control group and negative siRNA transfection group, the rate was significantly decreased (P<0.01). The apoptosis rate of BGC823-RNAi cell was (10.81±0.91)%, which was significantly higher than the control group and negative siRNA transfection group (P<0.01). After 48h X radiation, the apoptosis rate of BGC823-RNAi was (28.91 ±1.40)%, which was significantly higher than the control group and the group without radiation (P<0.01). During clone forming assay D0, Dq and SF2 values in Bcl-2 siRNA1 transfection group were all lower than those in the control group. The radiosensitivity ratio was 1.28 (the ratio of D0) and 1.60 (the ratio of Dq). Conclusions: Specific siRNA of Bcl-2 gene can effectively inhibit the expression of Bcl-2 gene, enhance the radiosensitivity and apoptosis of gastric cancer BGC823 cells, having good clinical application perspective.

  3. Antisense bcl-2 treatment increases programmed cell death in non-small cell lung cancer cell lines.

    Science.gov (United States)

    Koty, P P; Zhang, H; Levitt, M L

    1999-02-01

    Programmed cell death (PCD) is a genetically regulated pathway that is altered in many cancers. This process is, in part, regulated by the ratio of PCD inducers (Bax) or inhibitors (Bcl-2). An abnormally high ratio of Bcl-2 to Bax prevents PCD, thus contributing to resistance to chemotherapeutic agents, many of which are capable of inducing PCD. Non-small cell lung cancer (NSCLC) cells demonstrate resistance to these PCD-inducing agents. If Bcl-2 prevents NSCLC cells from entering the PCD pathway, then reducing the amount of endogenous Bcl-2 product may allow these cells to spontaneously enter the PCD pathway. Our purpose was to determine the effects of bcl-2 antisense treatment on the levels of programmed cell death in NSCLC cells. First, we determined whether bcl-2 and bax mRNA were expressed in three morphologically distinct NSCLC cell lines: NCI-H226 (squamous), NCI-H358 (adenocarcinoma), and NCI-H596 (adenosquamous). Cells were then exposed to synthetic antisense bcl-2 oligonucleotide treatment, after which programmed cell death was determined, as evidenced by DNA fragmentation. Bcl-2 protein expression was detected immunohistochemically. All three NSCLC cell lines expressed both bcl-2 and bax mRNA and had functional PCD pathways. Synthetic antisense bcl-2 oligonucleotide treatment resulted in decreased Bcl-2 levels, reduced cell proliferation, decreased cell viability, and increased levels of spontaneous PCD. This represents the first evidence that decreasing Bcl-2 in three morphologically distinct NSCLC cell lines allows the cells to spontaneously enter a PCD pathway. It also indicates the potential therapeutic use of antisense bcl-2 in the treatment of NSCLC. PMID:10217615

  4. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hyeon [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Lee, Jeong Eun [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Shin, In Chul [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Koh, Hyun Chul, E-mail: hckoh@hanyang.ac.kr [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of)

    2013-04-01

    Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. - Highlights: ► Chlorpyrifos (CPF) is cytotoxic to SH-SY5Y cells ► CPF-induced cytotoxicity is mediated by

  5. The Effect of Growth Hormone Administration on the Regulation of Mitochondrial Apoptosis in-Vivo

    Directory of Open Access Journals (Sweden)

    James Keane

    2015-06-01

    Full Text Available The purpose of this study was to determine whether recombinant human growth hormone (rhGH would show any significant effects on the expression of apoptosis regulating proteins in peripheral blood mononuclear cells (PBMCs. Additionally, the potential for post-transcriptional regulation of gene expression by miRNA was assessed in two cellular compartments, the cytosol and the mitochondria. Ten male subjects were subcutaneously injected with either rhGH (1 mg or saline (0.9% for seven consecutive days in a double-blinded fashion. Blood sampling was undertaken prior to treatment administration and over a period of three weeks following treatment cessation. Bcl-2 and Bak gene and protein expression levels were measured in PBMCs, while attention was also directed to the expression of miR-181a and miR-125b, known translational inhibitors of Bcl-2 and Bak respectively. Results showed that rhGH significantly decreased Bak protein concentrations compared to placebo samples for up to 8 days post treatment. While cytosolic miRNA expression was not found to be significantly affected by rhGH, measurement of the expression of miR-125b in mitochondrial fractions showed a significant down-regulation eight days post-rhGH administration. These findings suggest that rhGH induces short-term anti-apoptotic effects which may be partially mediated through a novel pathway that alters the concentration of mitochondrially-associated miRNAs.

  6. Methylmercury, an environmental electrophile capable of activation and disruption of the Akt/CREB/Bcl-2 signal transduction pathway in SH-SY5Y cells

    Science.gov (United States)

    Unoki, Takamitsu; Abiko, Yumi; Toyama, Takashi; Uehara, Takashi; Tsuboi, Koji; Nishida, Motohiro; Kaji, Toshiyuki; Kumagai, Yoshito

    2016-01-01

    Methylmercury (MeHg) modifies cellular proteins via their thiol groups in a process referred to as “S-mercuration”, potentially resulting in modulation of the cellular signal transduction pathway. We examined whether low-dose MeHg could affect Akt signaling involved in cell survival. Exposure of human neuroblastoma SH-SY5Y cells of up to 2 μM MeHg phosphorylated Akt and its downstream signal molecule CREB, presumably due to inactivation of PTEN through S-mercuration. As a result, the anti-apoptotic protein Bcl-2 was up-regulated by MeHg. The activation of Akt/CREB/Bcl-2 signaling mediated by MeHg was, at least in part, linked to cellular defence because either pretreatment with wortmannin to block PI3K/Akt signaling or knockdown of Bcl-2 enhanced MeHg-mediated cytotoxicity. In contrast, increasing concentrations of MeHg disrupted Akt/CREB/Bcl-2 signaling. This phenomenon was attributed to S-mercuration of CREB through Cys286 rather than Akt. These results suggest that although MeHg is an apoptosis-inducing toxicant, this environmental electrophile is able to activate the cell survival signal transduction pathway at lower concentrations prior to apoptotic cell death. PMID:27357941

  7. TIPE2 Inhibits Lung Cancer Growth Attributing to Promotion of Apoptosis by Regulating Some Apoptotic Molecules Expression.

    Directory of Open Access Journals (Sweden)

    Qing-Qing Liu

    Full Text Available Recent studies found that TIPE2 was involved in cancer development. However, little is known about TIPE2 in lung cancer. Our study aims to clarify the role of TIPE2 in lung carcinogenesis. We examined the expression of TIPE2 in lung squamous cancer (LSC, small cell lung cancer and lung adenocarcinoma (AdC tissues and found that TIPE2 expression was lost in small cell lung cancer, compared with adjacent non-tumor tissues. Overexpression of TIPE2 significantly inhibited the growth of lung cancer cell H446 in vitro and even suppressed tumor formation in vivo. Flow cytometry analysis found TIPE2 overexpression promoted apoptosis of H446. In TIPE2 over-expression cells, caspase-3, caspase-9, and Bax were significantly up-regulated while Bcl-2 was down-regulated. Moreover, coincident results were shown by immunohistochemistry in tumors from nude mice. TIPE2 inhibited the phosphorylation of Akt, while promoting the phosphorylation of P38, but had no effect on IκBα and ERK pathway. Taken together, TIPE2 promoted lung cancer cell apoptosis through affecting apoptosis-related molecules caspase-3, caspase-9, Bcl-2 and Bax, possibly via regulating P38 and Akt pathways, indicating that TIPE2 might be a novel marker for lung cancer diagnosis and therapy.

  8. EGFR and Bcl-2 in gastric mucosa of children infected with Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Ewa Ryszczuk

    2016-03-01

    Full Text Available Aim: The aim of the study was to evaluate the expression of EGFR and Bcl-2 proteins as inhibitory markers of apoptosis in surface epithelial cells and gland cells of antral gastric mucosa in children infected with Helicobacter pylori according to the severity and activity of antral gastritis and to assess the correlation between the number of cells expressing EGFR and the number of cells expressing Bcl-2 in H. pylori infected children. Materials and methods: The study included 44 children: 68.2% with chronic gastritis and positive IgG against H. pylori, and 31.8% with functional disorders of the gastrointestinal tract and with normal IgG against H. pylori. The evaluation of EGFR expression in gastric mucosa was performed immunohistochemically using monoclonal mouse anti-EGFR antibody. The polyclonal antibody was used to determine the expression of anti-Bcl-2. Results: A significant increase in the number of cells expressing EGFR and Bcl-2 protein was found in the epithelial cells in severe as well as mild and moderate gastritis in the group of children infected with H. pylori. An increase in the number of cells expressing EGFR and Bcl-2 protein was also found in the epithelial cells in group I according to the activity of gastritis. There was a statistically significant positive correlation between the numbers of cells expressing EGFR and Bcl-2 in H. pylori infected children. Conclusion: Increased expression of EGFR and Bcl-2 proteins in the epithelial cells and a statistically significant positive correlation between the numbers of cells expressing EGFR and Bcl-2 in H. pylori infected children could suggest increased regeneration abilities of gastric mucosa.

  9. Inclusion Complex of Zerumbone with Hydroxypropyl- β -Cyclodextrin Induces Apoptosis in Liver Hepatocellular HepG2 Cells via Caspase 8/BID Cleavage Switch and Modulating Bcl2/Bax Ratio

    OpenAIRE

    Nabilah Muhammad Nadzri; Ahmad Bustamam Abdul; Mohd Aspollah Sukari; Siddig Ibrahim Abdelwahab; Eid, Eltayeb E. M.; Syam Mohan; Behnam Kamalidehghan; Theebaa Anasamy; Kuan Beng Ng; Suvitha Syam; Ismail Adam Arbab; Heshu Sulaiman Rahman; Hapipah Mohd Ali

    2013-01-01

    Zerumbone (ZER) isolated from Zingiber zerumbet was previously encapsulated with hydroxypropyl- β -cyclodextrin (HP β CD) to enhance ZER's solubility in water, thus making it highly tolerable in the human body. The anticancer effects of this new ZER-HP β CD inclusion complex via apoptosis cell death were assessed in this study for the first time in liver hepatocellular cells, HepG2. Apoptosis was ascertained by morphological study, nuclear stain, and sub-G1 cell population accumulation with G...

  10. Immunohistochemical expression of Bcl-2 in oral epithelial dysplasia and oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    S Juneja

    2015-01-01

    Full Text Available BACKGROUND: The B cell lymphoma-2 gene is a proto-oncogene whose protein product inhibits apoptosis. Its role is associated with keeping cells alive, but not by stimulating them to proliferation, as other proto-oncogenes do. Increased expression of protein product of Bcl-2 gene appears in the early phase of carcinogenesis leading to apoptosis impairment and in consequence to the progression of neoplastic changes. OBJECTIVE: To evaluate and compare the expression of Bcl-2 protein in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC. MATERIALS AND METHODS: Sixty cases of formalin-fixed paraffin-embedded archival specimens comprising of 30 cases of leukoplakia with oral epithelial dysplasia and 30 cases of OSCC were taken for immunohistochemical analysis using monoclonal antibody against anti-human Bcl-2 oncoprotein. RESULTS: Immunostaining for Bcl-2 protein was identified in basal and parabasal layers as granular cytoplasmic staining in oral epithelial dysplasia. In OSCC, Bcl-2 immunoreactivity was most prominent in the peripheral cells of the infiltrating tumor islands which diminished toward the center in well-differentiated and moderately differentiated OSCC, whereas stronger and more diffuse expression of Bcl-2 oncoprotein was seen in poorly differentiated OSCC. Overall positivity of 26.7% (8/30 was observed in oral epithelial dysplasia and 30% (9/30 in OSCC in this study. INTERPRETATION AND CONCLUSION: Altered expression of Bcl-2 oncoprotein may be an early molecular event which leads to prolonged cell survival, increased chances of accumulation of genetic alterations, and subsequent increase in malignant transformation potential.

  11. Immunolocalization of Bcl-2 oncoprotein in amlodipine-induced gingival overgrowth

    Directory of Open Access Journals (Sweden)

    Lalitha Tanjore Arunachalam

    2013-01-01

    Full Text Available Background: Drug-induced gingival overgrowth (DIGO is one of the unwanted side effects of amlodipine therapy, but the pathogenesis still remains unclear. Apoptosis, which plays a ubiquitous role in tissue homeostasis, including gingiva, may be involved in the development of gingival enlargement. Aims and Objectives: (i To study the distribution of Bcl-2 in healthy and overgrown gingival tissues. (ii To compare and correlate the Bcl-2 expression in gingival samples from subjects on amlodipine therapy to the findings in healthy controls. Materials and Methods: A total of 25 subjects were recruited for the study - 15 hypertensive patients and 10 systemically healthy subjects. Both the groups were analyzed for Bcl-2 expression using immunohistochemistry. Results: Few of the control specimens showed weak positivity to Bcl-2 antibody, with the distribution limited to the basal cell layers alone, whereas 10 hyperplastic specimens expressed Bcl-2 and, unlike the control group, the distribution pattern was seen in both basal and suprabasal layers. Conclusion: The results indicate that the pathogenesis of amlodipine-induced gingival overgrowth might involve inhibition of apoptosis, especially with morphogenesis of hyperplastic gingival epithelia.

  12. Increased expression of Bcl-2 during mucous cell metaplasia induced by endotoxin and ozone

    Energy Technology Data Exchange (ETDEWEB)

    Tesfaigzi, J.; Ray, L.M.; Hotchkiss, J.A. [Michigan State Univ., East Lansing, MI (United States)] [and others

    1995-12-01

    Apoptosis or programmed cell death is accompanied by characteristic morphological changes that distinguish apoptosis from other forms of cell death. These changes include DNA fragmentation, chromatin condensation, cell shrinkage, cell surface pseudopodia, and finally the cellular collapse into membrane-enclosed apoptotic bodies which are rapidly engulfed by macrophages or neighboring cells. Although the morphological features of apoptotic cells are well studied, the biochemical events that control apoptosis are not understood. Programmed cell death is triggered by a variety of pathways that are initiated by different stimuli including noxious agents, DNA damage, the activation of TNF receptors, or the withdrawl of growth factors. The central process of programmed cell death involves a cascade of biochemical events that begins with the initiation of a family of cysteine proteases, including the interleukin-1-{Beta}-converting enzyme, CPP-32, and Apopain. The ratio of Bax, a death-inducer gene, to Bcl-2, an apoptosis suppressor gene, determines whether or not the main apoptotic pathyway is blocked. Apoptosis is suppressed if the ratio of Bcl-2/Bax is > 1, and cells undergo apoptosis if the ratio is < 1. The overexpression of Bcl-2 has been shown to block the apoptotic program triggered by a variety of agents. Therefore, Bcl-2 must be involved in blocking the central pathway of the cell death program. In conclusion, this study showed that high levels of Bcl-2 were detected in some mucous cells at specific time points during mucous cell metaplasia, and this expression was reduced at later time points or was absent after remodeling of this epithelium.

  13. Death by a thousand knives: Multiple BH3-only proteins are required for maximal apoptosis triggered through the BCR.

    Science.gov (United States)

    Carter, Matthew J; Cragg, Mark S

    2016-03-01

    The B-cell receptor (BCR) represents a key driver of B-cell development. Consequently, multiple mechanisms link inappropriate BCR signaling to apoptosis. Recently, we characterized the molecular regulators involved in lymphoma cells, confirming a major role for Bcl-2 interacting mediator of cell death (Bim) and supplementary roles for Bcl-2 interacting killer (Bik) and Noxa, and showing that all 3 proteins are required for maximal apoptosis. PMID:27308607

  14. Involvement of PI3K and MAPK Signaling in bcl-2-induced Vascular Endothelial Growth Factor Expression in Melanoma Cells

    Science.gov (United States)

    Trisciuoglio, Daniela; Iervolino, Angela; Zupi, Gabriella; Del Bufalo, Donatella

    2005-01-01

    We have previously demonstrated that bcl-2 overexpression in tumor cells exposed to hypoxia increases the expression of vascular endothelial growth factor (VEGF) gene through the hypoxia-inducible factor-1 (HIF-1). In this article, we demonstrate that exposure of bcl-2 overexpressing melanoma cells to hypoxia induced phosphorylation of AKT and extracellular signal-regulated kinase (ERK)1/2 proteins. On the contrary, no modulation of these pathways by bcl-2 was observed under normoxic conditions. When HIF-1α expression was reduced by RNA interference, AKT and ERK1/2 phosphorylation were still induced by bcl-2. Pharmacological inhibition of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways reduced the induction of VEGF and HIF-1 in response to bcl-2 overexpression in hypoxia. No differences were observed between control and bcl-2-overexpressing cells in normoxia, in terms of VEGF protein secretion and in response to PI3K and MAPK inhibitors. We also demonstrated that RNA interference-mediated down-regulation of bcl-2 expression resulted in a decrease in the ERK1/2 phosphorylation and VEGF secretion only in bcl-2-overexpressing cell exposed to hypoxia but not in control cells. In conclusion, our results indicate, for the first time, that bcl-2 synergizes with hypoxia to promote expression of angiogenesis factors in melanoma cells through both PI3K- and MAPK-dependent pathways. PMID:15987743

  15. Sheeppox Virus SPPV14 Encodes a Bcl-2-Like Cell Death Inhibitor That Counters a Distinct Set of Mammalian Proapoptotic Proteins

    OpenAIRE

    Okamoto, Toru; Campbell, Stephanie; Mehta, Ninad; Thibault, John; Colman, Peter M.; Barry, Michele; Huang, David C. S.; Kvansakul, Marc

    2012-01-01

    Many viruses express inhibitors of programmed cell death (apoptosis), thereby countering host defenses that would otherwise rapidly clear infected cells. To counter this, viruses such as adenoviruses and herpesviruses express recognizable homologs of the mammalian prosurvival protein Bcl-2. In contrast, the majority of poxviruses lack viral Bcl-2 (vBcl-2) homologs that are readily identified by sequence similarities. One such virus, myxoma virus, which is the causative agent of myxomatosis, e...

  16. Genetic Variation in BCL2 3′-UTR Was Associated with Lung Cancer Risk and Prognosis in Male Chinese Population

    OpenAIRE

    Xu, Ping; Liu, Li; Wang, Jianzhong; Zhang, Kai; Hong, Xiaohua; Deng, Qifei; Xiang, Jingjun; Zhang, Xiaomin; He, Meian; WU, TANGCHUN; Guo, Huan

    2013-01-01

    Objectives Bcl-2 is a critical apoptosis inhibitor with established carcinogenic potential, and can confer cancer cell resistance to therapeutic treatments by activating anti-apoptotic cellular defense. We hypothesized that genetic variants of BCL2 gene may be associated with lung cancer susceptibility and prognosis. Methods Three selected tagSNPs of BCL2 (rs2279115, rs1801018, and rs1564483) were genotyped in 1017 paired male Chinese lung cancer cases and controls by TaqMan assay. The associ...

  17. Bid, a widely expressed proapoptotic protein of the Bcl-2 family, displays lipid transfer activity

    DEFF Research Database (Denmark)

    Esposti, M D; Erler, Janine Terra; Hickman, J A;

    2001-01-01

    Bid is an abundant proapoptotic protein of the Bcl-2 family that is crucial for the induction of death receptor-mediated apoptosis in primary tissues such as liver. Bid action has been proposed to involve the relocation of its truncated form, tBid, to mitochondria to facilitate the release of apo...

  18. Expression of caspase-3, p53 and Bcl-2 in generalized aggressive periodontitis

    Directory of Open Access Journals (Sweden)

    Özdemir B Handan

    2006-06-01

    Full Text Available Abstract Background Apoptosis, or programmed cell death is a form of physiological cell death. It is increased or decreased in the presence of infection, inflammation or tissue remodelling. Previous studies suggest that apoptosis is involved in the pathogenesis of inflammatory periodontal disease. The aim of the present study was to investigate the clinical features and known indicators of apoptosis (p53, Bcl-2, Caspase-3 in patients with generalized aggressive periodontitis (GAP Methods Eight patients with GAP, who had sites with probing depths (PD > 5 mm, and 10 periodontally-healthy persons were included in the study. Clinical examinations and PD were performed, and the plaque index and gingival index were recorded. Gingival tissues biopsies were obtained from active site of each patient and from healthy individuals. The expression of caspase-3, Bcl-2, and p53 was evaluated by immunohistochemistry Results There were no significant differences between GAP and control group with respect to levels of caspase-3 and p53 expression (P > 0.05. Contrary, the frequency of grade 3 expression of Bcl-2 was higher in GAP group than the control group. Conclusion The higher frequency of Bcl-2 expression in GAP group indicates and delayed apoptosis can lead to increasing resident inflammatory cells in periodontal tissues and resulting in progressive periodontal destruction.

  19. Expression of TP53, BCL-2, and VEGFA Genes in Esophagus Carcinoma and its Biological Significance

    OpenAIRE

    Wei, Wei; Wang, Yanqin; YU, XIAOMING; Ye, Lan; Jiang, Yuhua; Cheng, Yufeng

    2015-01-01

    Background The pathogenesis of esophagus carcinoma involves a cascade process consisting of multiple factors and accumulation of gene mutations. It is known that vascular endothelial growth factor (VEGF) mainly regulates de novo vascular formation while B-cell lymphoma-2 (BCL-2) gene exerts a tumor-suppressing effect. The prominent expression of VEGFA and BCL-2 genes, along with the most famous tumor-suppressor gene, TP53, raise the possibly of gene interaction. This study therefore investiga...

  20. 化癥散积颗粒对小鼠原位肝癌Bcl-2/Bax表达的影响%The effects of Huazhengsanjikeli on Bcl-2/Bax expression in mouse of primary Hepatic carcinoma

    Institute of Scientific and Technical Information of China (English)

    金学洙; 李超英; 周磊; 邢美茜; 刘铁军

    2012-01-01

    目的 通过建立小鼠原位肝癌模型,给予化癥散积颗粒灌胃,探讨其对小鼠原位肝癌Bcl-2/Bax表达的影响.方法 将H22瘤株直接注射到肝脏的方法建立小鼠原位肝癌模型;分组:模型组、阳性对照组、化癥散积颗粒高、中、低剂量组;采用TUNEL染色法检测凋亡细胞;RT-PCR和Western-Blot分别检测肿瘤组织Bcl-2和Bax mRNA和蛋白表达差异.结果 阳性对照组(又称斑蝥组)和中、高剂量组中药可以诱导肝癌细胞发生凋亡;可以显著增加肿瘤组织中Bax(P<0.05),同时Bcl-2表达与对照组相比明显降低(P<0.05),低剂量组Bcl-2和Bax表达与对照组相比无明显差异(P>0.05).结论 斑蝥组和中、高剂量组中药诱导肝癌细胞发生凋亡可能是通过抑制Bcl-2基因表达,同时增加Bax表达,从而引发一系列凋亡级联反应.%Objective To study the antitumor mechanism of Granules scattered plot of disease through the insitu-liver cancer model,in order to offer some evidence for clinical Chinese crude drug treatment. Methods Use H22 cells inject liver to build liver caner modcr; Detect apoptosis cells in tumor by TUNKL; Detect the expression difference of Bel-2/Bax by RT-PCR and Western-blot;Results The number of apoptosis cells were significantly increased in Cantharidin,medium and high dose Granules scattered plot of disease groups than in control and low dose groups; The mRNA and protein expression of Bax can be significantly up-rcgulation(P0. 05). Conclusion Cantharidin,medium and high dose Granules scattered plot of disease can induce H22 liver cancr cells to apoptosis; Granules? Scattered plot of disease can be induce liver cancer cells to apoptosis through inhibited the expression of Bcl-2 and up-regulated the expression of Bax at the same time.

  1. 3-Bromopyruvate and sodium citrate induce apoptosis in human gastric cancer cell line MGC-803 by inhibiting glycolysis and promoting mitochondria-regulated apoptosis pathway.

    Science.gov (United States)

    Guo, Xingyu; Zhang, Xiaodong; Wang, Tingan; Xian, Shulin; Lu, Yunfei

    2016-06-17

    Cancer cells are mainly dependent on glycolysis to generate adenosine triphosphate (ATP) and intermediates required for cell growth and proliferation. Thus, inhibition of glycolysis might be of therapeutic value in antitumor treatment. Our previously studies had found that both 3-bromopyruvate (BP) and sodium citrate (SCT) can inhibit tumor growth and proliferation in vitro and in vivo. However, the mechanism involved in the BP and SCT mediated antitumor activity is not entirely clear. In this work, it is demonstrated that BP inhibits the enzyme hexokinase (HK) activity and SCT suppresses the phosphofructokinase (PFK) activity respectively, both the two agents decrease viability, ATP generation and lactate content in the human gastric cancer cell line MGC-803. These effects are directly correlated with blockage of glycolysis. Furthermore, BP and SCT can induce the characteristic manifestations of mitochondria-regulated apoptosis, such as down-regulation of anti-apoptosis proteins Bcl-2 and Survivin, up-regulation of pro-apoptosis protein Bax, activation of caspase-3, as well as leakage of cytochrome c (Cyt-c). In summary, our results provided evidences that BP and SCT inhibit the MGC-803 cells growth and proliferation might be correlated with inhibiting glycolysis and promoting mitochondria-regulated apoptosis. PMID:27163639

  2. Effect of Exercise Training on Bcl-2 and Bax Gene Expression in the Rat Heart

    OpenAIRE

    Jafari; Pourrazi; Nikookheslat; Baradaran

    2015-01-01

    Background Apoptosis or programmed cell death plays an important role in the development of cardiovascular diseases, particularly heart failure. Current evidence suggests that exercise training may alter apoptosis-related signaling in sensitive somatic tissues such as the myocardium. Objectives The aim of this study was to assess the effect of exercise training on Bcl-2 and Bax genes expression as key molecules involved in intrins...

  3. c-Fos enhances the survival of thymocytes during positive selection by upregulating Bcl-2

    Institute of Scientific and Technical Information of China (English)

    Xiaoming Wang; Yafeng Zhang; Gang Xiao; Xiang Gao; Xiaolong Liu

    2009-01-01

    T cells are derived from progenitor thymocytes, of which only a minority receive the appropriate TCR signal, undergo positive selection and mature. Owing to the very short lifespan of thymocytes, the prerequisite for posi-tive selection is survival. TCR signal-induced Bcl-2 expression is believed to play a dominant role in the survival of positively selecting thymocytes, but how Bcl-2 is directly regulated is unknown. Here we report that the immediate early gene (lEG) c-Fos can stimulate the expression of Bcl-2, depending on a specific AP-l-binding site in the Bcl-2 promoter. In c-Fos transgenic (Fos-Tg) mice, c-Fos binds to this site and promotes the expression of Bcl-2. As a result, Fos-Tg thymocytes exhibited enhanced survival, and more mature single-positive (SP) thymocytes were generated, even on a unique TCR background. The TCR repertoire remained normal in Fos-Tg mice. Our results identified e-Fos as the mediator of the stimulatory effect of TCR signaling on Bcl-2 expression. Therefore, c-Fos, as an IEG, because of its early response ability, can quickly rescue the survival of short-lived thymocytes during positive selection. Our results provide novel insight into the mechanism regulating the survival of positively selecting thymocytes.

  4. HERBAL MEDICINE 960 RECIPE REGULATES THE PROLIFERATION AND APOPTOSIS OF HUMAN HEPATOMA CELL LINE SMMC-7721 CELLS

    Institute of Scientific and Technical Information of China (English)

    王昌俊; 李建军; 陈庆强; 陈伟; 钱伯文

    2001-01-01

    To investigate the mechanism of 960 recipe regulating the proliferation and apoptosis of human hepatoma SMMC7721 cells.Methods 960 recipe-containing serum was derived from rats that pre-treated with 960 recipe through gastrogavage, and was added to cultured human hepatoma SMMC-7721 cells while the normal rat serum was tested as control. Cell proliferation was measured with 3H-TdR incorporation. Cell morphology was tested by acridine orange staining. Cell apoptosis and expressions of p53, bcl-2 and p21ras gene protein were analyzed with flow cytometry.Results After treating with 960 recipe, the inhibitory rate of 3H-TdR was 42.2% for 48h. Cell morphology showed typical apoptotic cells with condensed and fragmented nuclei. There were typical apoptotic peaks in DNA histogram, the apoptotic rate being 21.25% and 27.77% for 24h, 48h respectively. Cell cycle analysis showed that cells were arrested at S-phase by treating with 960 recipe for 24h and at G0/G1 phase for 48h. The expression of p53 increased, but bcl-2 and ras were reduced by treating with 960 recipe for 24h.Conclusion 960 recipe can inhibit proliferation and induce apoptosis of human hepatoma cells, and affect the cell cycle, the expression of oncogene and tumor suppressor gene. These might be the main antihepatoma mechanisms of 960 recipe.

  5. Paclitaxel Induces Apoptosis in Breast Cancer Cells through Different Calcium—Regulating Mechanisms Depending on External Calcium Conditions

    Directory of Open Access Journals (Sweden)

    Zhi Pan

    2014-02-01

    Full Text Available Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an “Enhanced Calcium Efflux” mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel’s stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis.

  6. In situ hybridisation detects pro-apoptotic gene expression of a Bcl-2 family member in white syndrome-affected coral.

    Science.gov (United States)

    Ainsworth, T D; Knack, B; Ukani, L; Seneca, F; Weiss, Y; Leggat, W

    2015-12-01

    White syndrome has been described as one of the most prolific diseases on the Great Barrier Reef. Previously, apoptotic cell death has been described as the mechanism driving the characteristic rapid tissue loss associated with this disease, but the molecular mechanisms controlling apoptotic cell death in coral disease have yet to be investigated. In situ methods were used to study the expression patterns of 2 distinct regulators of apoptosis in Acropora hyacinthus tissues undergoing white syndrome and apoptotic cell death. Apoptotic genes within the Bcl-2 family were not localized in apparently healthy coral tissues. However, a Bcl-2 family member (bax-like) was found to localize to cells and tissues affected by white syndrome and those with morphological evidence for apoptosis. A potential up-regulation of pro-apoptotic or bax-like gene expression in tissues with apoptotic cell death adjacent to disease lesions is consistent with apoptosis being the primary cause of rapid tissue loss in coral affected by white syndrome. Pro-apoptotic (bax-like) expression in desmocytes and the basal tissue layer, the calicodermis, distant from the disease lesion suggests that apoptosis may also underlie the sloughing of healthy tissues associated with the characteristic, rapid spread of tissue loss, evident of this disease. This study also shows that in situ hybridisation is an effective tool for studying gene expression in adult corals, and wider application of these methods should allow a better understanding of many aspects of coral biology and disease pathology. PMID:26648107

  7. Study of immunohistochemical demonstration of Bcl-2 protein in ameloblastoma and keratocystic odontogenic tumor

    Directory of Open Access Journals (Sweden)

    C S Sindura

    2013-01-01

    Full Text Available Background: The Bcl-2 (B-cell lymphoma gene product also known as apoptotic inhibitor is expressed in many normal and tumor tissues. This Bcl-2 gene protects the cell by blocking postmitotic differentiation from apoptosis, thus maintaining the stem cell pool. Objective: To study the expression of Bcl-2 protein in ameloblastoma and keratocystic odontogenic tumor (KCOT to determine their apoptotic behaviors and to analyze biological nature of KCOT, which has higher proliferative potential and aggressive clinical behavior like odontogenic tumors. Materials and Methods: Formalin-fixed paraffin sections of ameloblastoma (n = 20 and KCOT (n = 20 are considered for immunohistochemical analysis using monoclonal antibody against antihuman Bcl-2 oncoprotein. Lymphomas (n = 3 were used as controls. Statistical Analysis: The statistical analysis was performed using software package of social science version 16.The data were analyzed using Chi-square test and Student′s t test. In all the above tests, P < 0.05 was accepted as statistically significant. Results: The positive ratio of Bcl-2 was 85% (17/20 in ameloblastoma, 85% (17/20 in KCOT and 100% (3/3 in lymphomas. Bcl-2 was expressed in peripheral cells and few scattered cells of stellate reticulum in ameloblastoma. KCOT showed strong positivity for Bcl-2 mainly in the basal layer. Interpretation and Conclusion: The present study demonstrates the aggressive nature of KCOT and intrinsic growth potential of its lining epithelium. This study clearly demonstrates that KCOT like ameloblastoma demonstrates aggressive clinical and noticeable invasive behavior. Therefore, it is now considered as no longer a developmental cyst but as odontogenic tumor.

  8. Utility of adenovirus-mediated Fas ligand and bcl-2 gene transfer to modulate rat liver allograft survival

    Institute of Scientific and Technical Information of China (English)

    De-Sheng Wang; Yu Li; Ke-Feng Dou; Kai-Zong Li; Zhen-Shun Song

    2006-01-01

    BACKGROUND: Expression of Fas ligand (FasL) on the graft by gene transduction is expected to introduce apoptosis to lymphocytes to protect rejection, but the FasL-expressing graft cells may also induce apoptosis as the graft usually expresses Fas antigens. In this study, a strong antiapoptotic gene, bcl-2, was cotransfected with the FasL gene in rat liver graft to protect against Fas-mediated cell death and to prolong recipient survival. METHODS: Orthotopic liver transplantation was done in a strain combination of DA to LEW rats. After donor vascular isolation, adenovirus-mediated FasL and bcl-2 genes were cotransfected in the liver graft. RESULTS: Intragraft expression of FasL mRNA was constitutively expressed after adenovirus-mediated transduction, although expression of FasL increased mildly in control grafts. Bcl-2 mRNA was highly expressed at 2 days after reperfusion. In contrast, lower expression of bcl-2 was observed in the control group. The average survival of the gene transferred allografts increased from (9.8+1.3) days to (18.5+8.7) days compared with the control group. CONCLUSION: Our results indicate that rat liver allografts can be protected against host immune responses by adenovirus-mediated FasL and bcl-2 transfection, and that bcl-2 expression prevents the graft from Fas-mediated apoptosis.

  9. Morin, a flavonoid from moraceae, induces apoptosis by induction of BAD protein in human leukemic cells.

    Science.gov (United States)

    Park, Cheol; Lee, Won Sup; Go, Se-Il; Nagappan, Arulkumar; Han, Min Ho; Hong, Su Hyun; Kim, Gon Sup; Kim, Gi Young; Kwon, Taeg Kyu; Ryu, Chung Ho; Shin, Sung Chul; Choi, Yung Hyun

    2015-01-01

    Evidence suggests that phytochemicals can safely modulate cancer cell biology and induce apoptosis. Here, we investigated the anti-cancer activity of morin, a flavone originally isolated from members of the Moraceae family in human leukemic cells, focusing on apoptosis. An anti-cancer effect of morin was screened with several human leukemic cell lines. U937 cells were most sensitive to morin, where it induced caspase-dependent apoptosis in a dose-dependent manner. It also induced loss of MMP (ΔΨm) along with cytochrome c release, down-regulated Bcl-2 protein, and up-regulated BAX proteins. The apoptotic activity of morin was significantly attenuated by Bcl-2 augmentation. In conclusion, morin induced caspase-dependent apoptosis through an intrinsic pathway by upregulating BAD proteins. In addition, Bcl-2 protein expression is also important in morin-induced apoptosis of U937 cells. This study provides evidence that morin might have anticancer properties in human leukemic cells.

  10. Two independent positive feedbacks and bistability in the Bcl-2 apoptotic switch.

    Directory of Open Access Journals (Sweden)

    Jun Cui

    Full Text Available BACKGROUND: The complex interplay between B-cell lymphoma 2 (Bcl-2 family proteins constitutes a crucial checkpoint in apoptosis. Its detailed molecular mechanism remains controversial. Our former modeling studies have selected the 'Direct Activation Model' as a better explanation for experimental observations. In this paper, we continue to extend this model by adding interactions according to updating experimental findings. METHODOLOGY/PRINCIPAL FINDINGS: Through mathematical simulation we found bistability, a kind of switch, can arise from a positive (double negative feedback in the Bcl-2 interaction network established by anti-apoptotic group of Bcl-2 family proteins. Moreover, Bax/Bak auto-activation as an independent positive feedback can enforce the bistability, and make it more robust to parameter variations. By ensemble stochastic modeling, we also elucidated how intrinsic noise can change ultrasensitive switches into gradual responses. Our modeling result agrees well with recent experimental data where bimodal Bax activation distributions in cell population were found. CONCLUSIONS/SIGNIFICANCE: Along with the growing experimental evidences, our studies successfully elucidate the switch mechanism embedded in the Bcl-2 interaction network and provide insights into pharmacological manipulation of Bcl-2 apoptotic switch as further cancer therapies.

  11. Cbl participates in shikonin-induced apoptosis by negatively regulating phosphoinositide 3-kinase/protein kinase B signaling.

    Science.gov (United States)

    Qu, Dan; Xu, Xiao-Man; Zhang, Meng; Jiang, Ting-Shu; Zhang, Yi; Li, Sheng-Qi

    2015-07-01

    Shikonin, a naturally occurring naphthoquinone, exhibits anti-tumorigenic activity. However, its precise mechanisms of action have remained elusive. In the present study, the involvement in the action of shikonin of the ubiquitin ligases Cbl-b and c-Cbl, which are negative regulators of phosphoinositide 3-kinase (PI3K) activation, was investigated. Shikonin was observed to reduce cell viability and induce apoptosis and G2/M phase arrest in lung cancer cells. In addition, shikonin increased the protein levels of B-cell lymphoma 2 (Bcl-2)-associated X and p53 and reduced those of Bcl-2. Additionally, shikonin inhibited PI3k/Akt activity and upregulated Cbl protein expression. In addition, a specific inhibitor of PI3K, LY294002, was observed to have a synergistic effect on the proliferation inhibition and apoptotic induction of A549 cells with shikonin. In conclusion, the results of the present study suggested that Cbl proteins promote shikonin-induced apoptosis by negatively regulating PI3K/Akt signaling in lung cancer cells.

  12. Effect of Clofarabine on Proliferation and Bcl-2 Expression of NB4 Cells%氯法拉滨对NB4细胞的增殖抑制作用及对Bcl-2表达的影响

    Institute of Scientific and Technical Information of China (English)

    刘海波; 张梅; 李呈亮; 贺鹏程

    2012-01-01

    本研究观察氯法拉滨对人急性髓系白血病NB4细胞的增殖抑制作用并探讨其可能的作用机制.用MTT法观察氯法拉滨0.01 -0.1 μmol/L作用于NB4细胞48 h的增殖抑制作用;氯法拉滨0.01- 0.1 μmol/L作用于NB4细胞24h后,用流式细胞术分析其细胞的凋亡水平,Western blot检测细胞内Bcl-2的蛋白表达.结果表明,氯法拉滨对NB4细胞具有浓度依赖性增殖抑制作用.氯法拉滨作用24h后,NB4细胞凋亡率明显增加,Bcl-2蛋白表达下调.结论:氯法拉滨能抑制NB4细胞增殖,其作用机制可能与下调Bcl-2的蛋白表达,诱导NB4细胞凋亡有关.%The aim of this study was to observe the effect of clofarabine on proliferation of NB4 cells and its possible mechanism. MTT method was used to detect proliferation of NB4 cells treated with clofarabine 0.01 -0.1 μmol/L for 48 h. The treated with clofarabine 0.01 -0.1 (unol/L for 24 h, apoptosis rate and Bcl-2 expression of NB4 cells were measured by flow cytometry and Western blot respectively. The results showed that clofarabine inhibited proliferation of NB4 cells in a concentration-depended manner (r = 0.78). After treated with clofarabine for 24 h, apoptosis rate of NB4 cells increased and Bcl-2 expression in NB4 cells decreased obviously (P < 0. 05). It is concluded that clofarabine inhibits proliferation of NB4 cells, which may be related with the down-regulation of Bcl-2 and induction of apoptosis.

  13. Effect of low dose radiation on P53 and Bcl-2 protein expression in spermatogenic cells of mouse testis

    International Nuclear Information System (INIS)

    Objective: To investigate the effect of low dose radiation (LDR) with different dose of X-rays on P53 and Bcl-2 protein expression in spermatogenic cells of male Kunming mouse testis. Methods: The relationships between time-effect and dose-effect of P53 and Bcl-2 protein expression positive rate in spermatogenic cells of mouse testis after LDR with different dose of X-rays were studied with immunohistochemical technique (SABC). Results: P53 and Bcl-2 protein expressed in spermatogonia and spermatocytes in varying degrees, the positive rate of spermatogonia was obviously superior to that of spermatocytes. With the increase of irradiation dose, the expression of P53 protein showed a increasing tendency, however, the P53 protein expression of spermatozoa scarcely occurred after LDR. Bcl-2 protein was primarily expressed in spermatozoa. With the increase of irradiation dose, the positive rate of Bcl-2 protein expression showed a downregulated tendency. However, the Bcl-2 protein expression of spermatogonia and spermatocytes scarcely occurred after LDR. Conclusion: The expressions of P53 and Bcl-2 may have regular changes in mouse testis induced by LDR, which may provide a experimental evidence for the mechanism study of spermatogonic cell apoptosis induced selectively by ionizing radiation

  14. CO-EXPRESSIONS OF SURVIVIN GENE,BCL-2 AND BAX PROTEINS IN OVARIAN CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    林蓓; 张淑兰; 赵长清

    2004-01-01

    Objective To characterize the cellular properties of ovarian cancer, we examined the correlation between the expression of apoptosis-related gene survivin and those of Bcl-2 and Bar proteins. Methods Expressions of survivin mRNA, and Bcl-2 and Bax proteins in 35 cases of ovarian carcinoma, 10 cases of borderline carcinoma, 10 cases of benign tumors and 10 cases of normal tissue were evaluated by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry SABC method, respectively. Results Expression of survivin gene was detected in a significantly greater proportion in ovarian carcinoma and borderline carcinoma than those in benign tumors and normal tissues. Although there was no relationship between expression of survivin gene and FIGO stage, histologic grade, pathological type and lymphatic metastasis, expressions of Bcl-2 and Bar proteins were positively and negatively correlated with that of survivin gene, respectively. Conclusion Survivin may play an important role in pathogenesis of ovarian carcinoma, with a synergistic role of apoptosis-related gene Bcl-2protein and an antagonistic role of Bax protein in formation and progression of ovarian carcinoma.

  15. Ginsenoside Rh2 Mitigates Pediatric Leukemia Through Suppression of Bcl-2 in Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Xiaoru Wang

    2015-09-01

    Full Text Available Background/Aims: Acute myeloid leukemia (AML is a severe malignant cancer worldwide, in both adult and pediatric patients. Since bone marrow cell transplantation is seriously limited by the availability of the immune-paired donor sources, the therapy for pediatric leukemia remains challenging. Ginsenoside Rh2 (GRh2 is a well-characterized component in red ginseng, and has established therapeutic effects for different diseases, although whether GRh2 may have a therapeutic effect on pediatric leukemia has not been investigated. Methods: We examined the effects of GRh2 on the survival of mice in an acute leukemia model. We analyzed the effects of GRh2 on the cell viability of leukemia cell lines in vitro, using a CCK-8 assay and an MTT assay. We analyzed the effects of GRh2 on the apoptosis of leukemia cell lines in vitro, by flow cytometry. We analyzed the levels of Bcl-2 and microRNA-21 (miR-21 in GRh2-treated leukemia cells. Prediction of binding between miR-21 and 3'-UTR of Bcl-2 mRNA was performed by a bioinformatics algorithm and confirmed by a dual luciferase reporter assay. Results: GRh2 significantly prolonged the survival of mice with pediatric leukemia. GRh2 significantly decreased the viability of leukemia cells in vitro, through induction of apoptosis. GRh2 significantly decreased the levels of an anti-apoptotic protein Bcl-2 in leukemia cells, possibly through induction of miR-21, which suppressed the translation of Bcl-2 mRNA via 3'-UTR binding. Conclusion: GRh2 may be an effective treatment for pediatric leukemia, and GRh2 may induce apoptosis of leukemia cells through miR-21-modulated suppression of Bcl-2.

  16. Drosophila larvae lacking the bcl-2 gene, buffy, are sensitive to nutrient stress, maintain increased basal target of rapamycin (Tor signaling and exhibit characteristics of altered basal energy metabolism

    Directory of Open Access Journals (Sweden)

    Monserrate Jessica P

    2012-07-01

    Full Text Available Abstract Background B cell lymphoma 2 (Bcl-2 proteins are the central regulators of apoptosis. The two bcl-2 genes in Drosophila modulate the response to stress-induced cell death, but not developmental cell death. Because null mutants are viable, Drosophila provides an optimum model system to investigate alternate functions of Bcl-2 proteins. In this report, we explore the role of one bcl-2 gene in nutrient stress responses. Results We report that starvation of Drosophila larvae lacking the bcl-2 gene, buffy, decreases survival rate by more than twofold relative to wild-type larvae. The buffy null mutant reacted to starvation with the expected responses such as inhibition of target of rapamycin (Tor signaling, autophagy initiation and mobilization of stored lipids. However, the autophagic response to starvation initiated faster in larvae lacking buffy and was inhibited by ectopic buffy. We demonstrate that unusually high basal Tor signaling, indicated by more phosphorylated S6K, was detected in the buffy mutant and that removal of a genomic copy of S6K, but not inactivation of Tor by rapamycin, reverted the precocious autophagy phenotype. Instead, Tor inactivation also required loss of a positive nutrient signal to trigger autophagy and loss of both was sufficient to activate autophagy in the buffy mutant even in the presence of enforced phosphoinositide 3-kinase (PI3K signaling. Prior to starvation, the fed buffy mutant stored less lipid and glycogen, had high lactate levels and maintained a reduced pool of cellular ATP. These observations, together with the inability of buffy mutant larvae to adapt to nutrient restriction, indicate altered energy metabolism in the absence of buffy. Conclusions All animals in their natural habitats are faced with periods of reduced nutrient availability. This study demonstrates that buffy is required for adaptation to both starvation and nutrient restriction. Thus, Buffy is a Bcl-2 protein that plays an

  17. Computational Systems Biology Approach Predicts Regulators and Targets of microRNAs and Their Genomic Hotspots in Apoptosis Process.

    Science.gov (United States)

    Alanazi, Ibrahim O; Ebrahimie, Esmaeil

    2016-07-01

    Novel computational systems biology tools such as common targets analysis, common regulators analysis, pathway discovery, and transcriptomic-based hotspot discovery provide new opportunities in understanding of apoptosis molecular mechanisms. In this study, after measuring the global contribution of microRNAs in the course of apoptosis by Affymetrix platform, systems biology tools were utilized to obtain a comprehensive view on the role of microRNAs in apoptosis process. Network analysis and pathway discovery highlighted the crosstalk between transcription factors and microRNAs in apoptosis. Within the transcription factors, PRDM1 showed the highest upregulation during the course of apoptosis, with more than 9-fold expression increase compared to non-apoptotic condition. Within the microRNAs, MIR1208 showed the highest expression in non-apoptotic condition and downregulated by more than 6 fold during apoptosis. Common regulators algorithm showed that TNF receptor is the key upstream regulator with a high number of regulatory interactions with the differentially expressed microRNAs. BCL2 and AKT1 were the key downstream targets of differentially expressed microRNAs. Enrichment analysis of the genomic locations of differentially expressed microRNAs led us to the discovery of chromosome bands which were highly enriched (p < 0.01) with the apoptosis-related microRNAs, such as 13q31.3, 19p13.13, and Xq27.3 This study opens a new avenue in understanding regulatory mechanisms and downstream functions in the course of apoptosis as well as distinguishing genomic-enriched hotspots for apoptosis process.

  18. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tee, Thiam-Tsui, E-mail: thiamtsu@yahoo.com [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Cheah, Yew-Hoong [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur (Malaysia); Meenakshii, Nallappan [Biology Department, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  19. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    International Nuclear Information System (INIS)

    Highlights: ► We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. ► Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. ► Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. ► DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. ► DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-XL expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  20. Increased expression of 78 kD glucose-regulated protein promotes cardiomyocyte apoptosis in a rat model of liver cirrhosis

    Science.gov (United States)

    Zhang, Lili; Zhang, Huiying; Lv, Minli; Jia, Jiantao; Fan, Yimin; Tian, Xiaoxia; Li, Xujiong; Li, Baohong; Ji, Jingquan; Wang, Limin; Zhao, Zhongfu; Han, Dewu; Ji, Cheng

    2015-01-01

    Aims: This study was to investigate the role and underlying mechanism of 78 kD glucose-regulated protein (GRP78) in cardiomyocyte apoptosis in a rat model of liver cirrhosis. Methods: A rat model of liver cirrhosis was established with multiple pathogenic factors. A total of 42 male SD rats were randomly divided into the liver cirrhosis group and control group. Cardiac structure analysis was performed to assess alterations in cardiac structure. Cardiomyocytes apoptosis was detected by TdT-mediated dUTP nick end labeling method. Expression of GRP78, CCAAT/enhancer-binding protein homologous protein (CHOP), caspase-12, nuclear factor kappa-light-chain-enhancer of activated B cells p65 subunit (NF-κB p65) and B cell lymphoma-2 (Bcl-2) was detected by immunohistochemical staining. Results: The ratios of left ventricular wall thickness to heart weight and heart weight to body weight were significantly increased with the progression of liver cirrhosis (P < 0.05). Apoptosis index of cardiomyocytes was significantly increased with the progression of liver cirrhosis (P < 0.05). The expression levels of GRP78, CHOP and caspase-12 were significantly increased in the progression of liver cirrhosis (P < 0.05). The expression levels of NF-κB p65 and Bcl-2 were highest in the 4-wk liver cirrhosis, and they were decreased in the 6-wk and 8-wk in the progression of liver cirrhosis. GRP78 expression levels were positively correlated with apoptosis index, CHOP and caspase-12 expression levels (P < 0.05). CHOP expression levels were negatively correlated with NF-κB p65 and Bcl-2 expression levels (P < 0.05). Conclusion: Increased expression of GRP78 promotes cardiomyocyte apoptosis in rats with cirrhotic cardiomyopathy. PMID:26464674

  1. Effects of aspartame on hsp70, bcl-2 and bax expression in immune organs of Wistar albino rats

    Science.gov (United States)

    Choudhary, Arbind Kumar; Devi, Rathinasamy Sheela

    2016-01-01

    Abstract Aspartame, a “first generation sweetener”, is widely used in a variety of foods, beverages, and medicine. The FDA has determined the acceptable daily intake (ADI) value of aspartame to be 50 mg/kg·day, while the JECFA (Joint FAO/WHO Expert Committee on Food Additives) has set this value at 40 mg/kg of body weight/day. Safety issues have been raised about aspartame due to its metabolites, specifically toxicity from methanol and/or its systemic metabolites formaldehyde and formic acid. The immune system is now recognized as a target organ for many xenobiotics, such as drugs and chemicals, which are able to trigger unwanted apoptosis or to alter the regulation of apoptosis. Our previous studies has shown that oral administration of aspartame [40 mg/(kg·day)] or its metabolites for 90 days increased oxidative stress in immune organs of Wistar albino rats. In this present study, we aimed to clarify whether aspartame consumption over a longer period (90-days) has any effect on the expression of hsp70, bcl-2 and bax at both mRNA transcript and protein expression levels in immune organs. We observed that oral administration of aspartame for 90 days did not cause any apparent DNA fragmentation in immune organs of aspartame treated animals; however, there was a significant increase in hsp70 expression, apart from significant alteration in bcl-2 and bax at both mRNA transcript and protein expression level in the immune organs of aspartame treated animals compared to controls. Hence, the results indicated that hsp70 levels increased in response to oxidative injury induced by aspartame metabolites; however, these metabolites did not induce apoptosis in the immune organs. Furthermore, detailed analyses are needed to elucidate the precise molecular mechanisms involved in these changes.

  2. The Regulating Effect of CCK and Gastrin on Apoptosis of Bile Duct Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    MAKuansheng; ZHANGFengshen; HEZhenping; DONGJiahong

    2002-01-01

    Objective:Probe into the influence and the mechanisms of CCK and gastrin on the apoptosis of bile duct carcinoma cells. Methods:By taking beauvericin as the revulsant to the apoptosis of bile duct carcinoma cells, the influence of CCK and gastrin on the apoptosis of bile duct carcinoma cells was investigated by using the teehniques such as TUNEL fluorescent staining, stream mode cell detecting instrument and reverse bcl-2 oligonucleotide. Techifiques of immunohistochemistry, in situ hybridization,flow cytometry(FCM),RT-PCR were used to study the roles of apoptosis-related genes bcl-2 and bax Results:After beauvericin 40 μM worked for 12 h, the survival rate of QBC939 bile duct carcinoma cells was decreased by 35%-40%.About 80% of the bile duct carcinoma cells showed various degrees of apoptosis.CCK and gastrin could upregulate the threshold value of the apoptosis of bile duct carcinoma cells, which could be inhibited by L60,L18 and reverse bcl-2 oligonucleotide. In terms of both transcription and translating levels,CCK and gastrin could obviously promote the genetic expression of bel-2,but had no influence on the genetic expression of bax. Addition of CCK-A receptor or CCK-B/gastr in receptor antagonist could remarkably inhibit the expression of bel-2 boosted by gastrin-17 and CCK-8S. Conclusion:CCK and gastrin inhibited the apoptosis of bile duct carcinoma cells through upregulating the genetic expression of bcl-2.Theoretically, this research has expanded our understanding to the mechanism of CCK and gastrin in controlling the growth of tumors, enriched our view to the mechanism of apoptosis of alimentary tract tumors, and has provided a new thinking for the assistant treatment to bile duct carcinoma cells as well.

  3. The effect of Bcl-2 gene silencing on the sensitivity of cell line A549 to chemotherapeutic drugs

    Institute of Scientific and Technical Information of China (English)

    王姣琦

    2013-01-01

    Objective To investigate the effects of miRNA-mediated down-regulation of the Bcl-2gene on the chemotherapeutic sensitivities and mRNA transcriptions of sensitivity associated genes in human lung adenocarcinoma cell

  4. Correlation of Hp infection and the expressions of bcl-2 and bad in patients with gastric carcinoma%胃癌患者幽门螺杆菌感染及与bcl-2、bad相关性研究

    Institute of Scientific and Technical Information of China (English)

    王兰; 张志广; 闻淑军; 李熳

    2011-01-01

    Objective: To explore the influence of Helicobacter pylori(Hp) on gastric epithelial cell proliferation and apoptosis.Methods: Hp was assessed by using rapid urease staining test combined with modified Giemsa staining test in 79 cases of gastric carcinoma and 29 cases of chronic gastritis.The expressions of bcl-2 and bad proteins in gastric mucosa were detected by immunohistochemistry (SABC) staining, Results: The positive rates of Hp in gastric carcinoma group and chronic gastritis group were 69.6% (55/79) and 48.3%(14/29) (P<0.05).The positive rate of bcl-2 protein in gastric carcinoma group was 65.8%(52/79),which was significantly higher than that in chronic gastritis group 24.1%(7/29)(P<0.05); The positive rate of bad protein in gastric carcinoma group was 46.8% (37/79),which was significantly lower than that in chronic gastritis 69.0%(20/29)(P<0.05).In gastric carcinoma group, the positive rate of bcl-2 protein in Hp positive group was significantly higher than that in Hp negative group( 78.2% vs 37.5% )(P<O.05).The positive rate of bad protein in Hp positive group significantly lower than that in Hp negative group( 38.2% vs 66.7% )(P<0.05).The expression of bcl-2 and bad proteins were correlated with gastric carcinoma differentiation grade and infiltration range (P<0.05),but not related with lymph node metastasis (P>0.05).Conclusion:Hp infection may participate the development of gastric carcinoma by regulating the expression of apoptosis relate gene proteins which makes cell proliferation and apoptosis abnomal.%目的:通过检测凋亡相关基因bcl-2、bad在胃癌中的表达,进一步探讨幽门螺杆菌(Hp)对胃上皮细胞增殖和凋亡的影响.方法:对79例胃癌及29例慢性浅表性胃炎受试者应用快速尿素酶法及改良吉姆萨染色法检测Hp感染情况,用免疫组化SABC法检测胃黏膜中bcl-2、bad蛋白的表达.结果:胃癌组和慢性浅表性胃炎组中Hp阳性率分别为69

  5. PUMA Promotes Bax Translocation by Both Directly Interacting with Bax and by Competitive Binding to Bcl-XL during UV-induced Apoptosis

    OpenAIRE

    Zhang, Yingjie; Xing, Da; Liu, Lei

    2009-01-01

    Cell apoptosis induced by UV irradiation is a highly complex process in which different molecular signaling pathways are involved. p53 up-regulated modulator of apoptosis (PUMA) has been proposed as an important regulator in UV irradiation-induced apoptosis. However, the molecular mechanism through which PUMA regulates apoptosis, especially how PUMA activates Bcl-2-associated X protein (Bax) in response to UV irradiation is still controversial. In this study, by using real-time single-cell an...

  6. Effect of Exercise Training on Bcl-2 and Bax Gene Expression in the Rat Heart

    Directory of Open Access Journals (Sweden)

    Jafari

    2015-10-01

    Full Text Available Background Apoptosis or programmed cell death plays an important role in the development of cardiovascular diseases, particularly heart failure. Current evidence suggests that exercise training may alter apoptosis-related signaling in sensitive somatic tissues such as the myocardium. Objectives The aim of this study was to assess the effect of exercise training on Bcl-2 and Bax genes expression as key molecules involved in intrinsic pathway of apoptosis in the rat heart. Materials and Methods This study was conducted with a two-group experimental design (animal model and sixteen three-month-old male rats were selected and randomly divided to two groups of exercise training (n = 8 and control (n = 8. Rats in the trained group participated in an exercise training program for 12 weeks (10 – 60 m min-1, 24 – 33 min d-1, 15%. The rat hearts were removed forty-eight hours after the last training session. RNA extraction and synthesis of cDNA was done, and Bax and Bcl2 genes expression was analyzed through the Real Time-Polymerase Chain Reaction (RT-PCR. Kolmogorov-Smirnov and independent t-test were applied for statistical analysis of the data (P 0.05. However, Bcl2 expression was higher in the trained group compared to the control group (11%. Conclusions In general, it seems that three-month exercise training was effective in reducing cardiac mitochondrial pro-apoptotic protein. However, considering the results of the Bcl2 gene expression, more researches are needed to identify effects of exercise trainings on indices of myocardial apoptosis.

  7. Dioscin alleviates dimethylnitrosamine-induced acute liver injury through regulating apoptosis, oxidative stress and inflammation.

    Science.gov (United States)

    Zhang, Weixin; Yin, Lianhong; Tao, Xufeng; Xu, Lina; Zheng, Lingli; Han, Xu; Xu, Youwei; Wang, Changyuan; Peng, Jinyong

    2016-07-01

    In our previous study, the effects of dioscin against alcohol-, carbon tetrachloride- and acetaminophen-induced liver damage have been found. However, the activity of it against dimethylnitrosamine (DMN)-induced acute liver injury remained unknown. In the present study, dioscin markedly decreased serum ALT and AST levels, significantly increased the levels of SOD, GSH-Px, GSH, and decreased the levels of MDA, iNOS and NO. Mechanism study showed that dioscin significantly decreased the expression levels of IL-1β, IL-6, TNF-α, IκBα, p50 and p65 through regulating TLR4/MyD88 pathway to rehabilitate inflammation. In addition, dioscin markedly up-regulated the expression levels of SIRT1, HO-1, NQO1, GST and GCLM through increasing nuclear translocation of Nrf2 against oxidative stress. Furthermore, dioscin significantly decreased the expression levels of FasL, Fas, p53, Bak, Caspase-3/9, and upregulated Bcl-2 level through decreasing IRF9 level against apoptosis. In conclusion, dioscin showed protective effect against DMN-induced acute liver injury via ameliorating apoptosis, oxidative stress and inflammation, which should be developed as a new candidate for the treatment of acute liver injury in the future. PMID:27317992

  8. Increased ratio of anti-apoptotic to pro-apoptotic Bcl2 gene-family members in lithium-responders one month after treatment initiation

    Directory of Open Access Journals (Sweden)

    Lowthert Lori

    2012-09-01

    Full Text Available Abstract Background Lithium is considered by many as the gold standard medication in the management of bipolar disorder (BD. However, the clinical response to lithium is heterogeneous, and the molecular basis for this difference in response is unknown. In the present study, we sought to determine how the peripheral blood gene expression profiles of patients with bipolar disorder (BD changed over time following intitiation of treatment with lithium, and whether differences in those profiles over time were related to the clinical response. Methods Illumina Sentrix Beadchip (Human-6v2 microarrays containing > 48,000 transcript probes were used to measure levels of expression of gene-expression in peripheral blood from 20 depressed subjects with BD prior to and every two weeks during 8 weeks of open-label treatment with lithium. Changes in gene-expression were compared between treatment responders (defined as a decrease in the Hamilton Depression Rating Scale of 50% or more and non-responders. Pathway analysis was conducted using GeneGO Metacore software. Results 127 genes showed a differential response in responders vs. non-responders. Pathway analysis showed that regulation of apoptosis was the most significantly affected pathway among these genes. Closer examination of the time-course of changes among BCL2 related genes showed that in lithium-responders, one month after starting treatment with lithium, several anti-apoptotic genes including Bcl2 and insulin receptor substrate 2 (IRS2 were up-regulated, while pro-apoptotic genes, including BCL2-antagonist/killer 1 (BAK1 and BCL2-associated agonist of cell death (BAD, were down-regulated. In contrast, in lithium non-responders, BCL2 and IRS2 were down-regulated, while BAK1 and BAD up-regulated at the one-month time-point. Conclusions These results suggest that differential changes in the balance of pro- and anti- apoptotic gene-expression following treatment with lithium may explain some of

  9. Bcl-2-dependent upregulation of autophagy by sequestosome 1/p62 in vitro

    Institute of Scientific and Technical Information of China (English)

    Liang ZHOU; Hong-feng WANG; Hai-gang REN; Dong CHEN; Feng GAO; Qing-song HU; Chen FU

    2013-01-01

    To investigate whether sequestosome 1/p62 (p62),a key cargo adaptor protein involved in both the ubiquitin-proteasome system and the autophagy-lysosome system,could directly regulate autophagy in vitro.Methods:HEK 293 cells or HeLa cells were transfected with p62-expressing plasmids or siRNA targeting p62.The cells or the cell lysates were subsequently subjected to immunofluorescence assay,immunoprecipitation assay,or immunoblot analysis.In vitro pulldown assay was used to study the interaction of p62 with Bcl-2.Results:Overexpression of p62 significantly increased the basal level of autophagy in both HEK 293 cells and HeLa cells,whereas knockdown of p62 significantly decreased the basal level of autophagy.In vitro pulldown assay showed that p62 directly interacted with Bcl-2.It was observed in HeLa cells that p62 co-localized with Bcl-2.Furthermore,knockdown of p62 in HEK 293 cells significantly increased the amount of Beclin 1 that co-immunoprecipitated with Bcl-2.Conclusion:p62 induces autophagy by disrupting the association between Bcl-2 and Beclin 1.

  10. Effect of small dose of radiation on induction of apoptosis in murine tumors

    International Nuclear Information System (INIS)

    To investigate the presence of adaptive response by low dose radiation in murine tumors in relation to radiation induced apoptosis as well as related mechanism. Syngeneic murine tumors, OCa-1 and HCa-l, were given 0.05 Gy pretreatment followed by therapeutic dose of 25 Gy radiation. Induction of apoptosis was analyzed for each treatment group. Regulating molecules of apoptosis. p53, Bcl-2, Sax, Bel-X, were also analyzed by Western blotting. In 0.05 Gy pretreatment group of OCa-l, 25 Gy-induced apoptosis per 1000 cells was 229, which was estimated at 30% lower level than the expected (p<0.05). In contrast, this reduction in radiation induced apoptosis was not seen in HCa-1. In the expression of apoptosis regulating molecules, p53 increased in both tumors in response to radiation. Bcl-2 and Bax did not show significant change in both tumors however, the expression of Bcl-2 surpassed that of Bax in 0.05 Gy pretreatment group of OCa-1. Bcl-X was not expressed in OCa-1. In HCa-l, ScI-X showed increased expression even with 0.05 Gy. Adaptive response by low dose radiation is shown in one murine tumor, OCa-I, in relation to radiation induced apoptosis. Apoptosis regulating molecules including Bcl-2/Bax and Bcl-X, appear to related. This study shows an evidence that adaptive response is present, but not a generalized phenomenon in vivo

  11. Apoptosis-related protein expression in rabbits with blast brain injury following early hyperbaric oxygen therapy

    Institute of Scientific and Technical Information of China (English)

    Shaonian Xu; Jiachuan Liu; Yongming Zhang; Chunlin Wang; Jinbiao Wang; Yanyan Yang; Jian Huo; Wenjiang Sun

    2012-01-01

    We treated detonator-explosion-induced craniocerebral injury in rabbits with hyperbaric oxygen 1-24 hours post-injury. Expression of the apoptosis-regulating protein cytochrome c, the pro-apoptotic protein Bax and the apoptosis marker caspase-3 in the tissues surrounding the area of injury was significantly reduced, while that of the anti-apoptotic protein Bcl-2 was significantly increased. Our findings indicate that the curative effects of early hyperbaric oxygen on cortical cell apoptosis is associated with suppression of cytochrome c release from mitochondria. This mechanism underlies the observed reduction in Bax expression and upregulation of Bcl-2 expression.

  12. Effects of Nerve Growth Factor on Bcl-2 Protein after Spinal Cord Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    汤长华; 曹晓建; 王道新

    2002-01-01

    Objective To explore the protective mechanisms of nerve growth factor( NGF) ou spinal cord injury(SCI) and provide theoretical basis for its clinical application. MethodsThe SCI of Wistar rats was done by Allens weight dropping way by a 10 g × 2.5 cm impact on theposterior of spinal cord T8 NGF ( 3 g/L, 20d) or normal saline was injected to treatment group ratsthrough catheter into subarachnoid space at 0,2,4,8,12 and 24 h after SCI. The expression of bcl-2 protein levels in rat spinal cord was detected by immunohistoclemistry. Results The strong expres-sion sequence of bcl-2 protein was found in spinal cord of normal rat group. The levels of bcl-2 pro-tein after SCI in NGF treatment group increased more significantly than those in normal saline treatmentgroup (P<0. 01). Conclusion NGF could protect injured spinal cord by stimulating bcl-2 pro-tein expression and suppressing apoptosis after SCI.

  13. Bcl-2 family members inhibit oxidative stress-induced programmed cell death in Saccharomyces cerevisiae.

    Science.gov (United States)

    Chen, Shao-Rong; Dunigan, David D; Dickman, Martin B

    2003-05-15

    Selected antiapoptotic genes were expressed in baker's yeast (Saccharomyces cerevisiae) to evaluate cytoprotective effects during oxidative stress. When exposed to treatments resulting in the generation of reactive oxygen species (ROS), including H(2)O(2), menadione, or heat shock, wild-type yeast died and exhibited apoptotic-like characteristics, consistent with previous studies. Yeast strains were generated expressing nematode ced-9, human bcl-2, or chicken bcl-xl genes. These transformants tolerated a range of oxidative stresses, did not display features associated with apoptosis, and remained viable under conditions that were lethal to wild-type yeast. Yeast strains expressing a mutant antiapoptotic gene (bcl-2 deltaalpha 5-6), known to be nonfunctional in mammalian cells, were unable to tolerate any of the ROS-generating insults. These data are the first report showing CED-9 has cytoprotective effects against oxidative stress, and add CED-9 to the list of Bcl-2 protein family members that modulate ROS-mediated programmed cell death. In addition, these data indicate that Bcl-2 family members protect wild-type yeast from physiological stresses. Taken together, these data support the concept of the broad evolutionary conservation and functional similarity of the apoptotic processes in eukaryotic organisms.

  14. Effects of exercises on mitochondrial permeability transition pore,and bcl-2 and bax mRNA expression in rat skeletal muscle%骨骼肌细胞线粒体通透性转换孔及bcl-2和bax mRNA表达与运动

    Institute of Scientific and Technical Information of China (English)

    王冬梅; 漆正堂; 丁树哲

    2011-01-01

    BACKGROUND:Exercises influence the apoptosis of skeletal muscle cells and mitochondrial pathway is one of important pathways mediating cellular apoptosis.OBJECTIVE:To investigate the effects of exercises on mitochondrial permeability transition pore, and bcl-2 and bax mRNA expression in rat skeletal muscle .METHODS:Twenty-four Sprague-Dawley male rats were randomly divided into three groups: the control group, 6-week swimming training group (six swimming trainings per week) and one -off exhaustive swimming group (one -off exhaustive swimming exercise).The opening state of mitochondrial permeability transition pore in skeletal muscle was examined with ultraviolet spectrophotometer,and the mRNA expression of bcl-2 and bax in rat skeletal muscle was determined by reverse transcription-polymerase chain reaction.RESULTS AND CONCLUSION:6-week swimming training resulted in significant increase of bcl-2 mRNA expression and significant decrease of bax mRNA expression , as well as significant increase of bcl-2lbax mRNA (P < 0.01) but the opening state of mitochondrial permeability transition pore was not altered obviously, compared with the control group. The opening state of mitochondrial permeability transition pore was significantly increased (P < 0.01), bcl-2 mRNA expression was significantly decreased, bax mRNA expression was significantly increased, bcl-2/bax mRNA expression was significantly decreased in the one-off exhaustive swimming group than in the control group (P < 0.01). These findings suggest that exercise training can regulate skeletal muscle cell apoptosis by altering the opening stage of mitochondrial permeability transition pore and regulating bcl-2/bax mRNA expression in rat skeletal muscle.%背景:运动影响骨骼肌细胞的凋亡,而线粒体途径是介导细胞凋亡的一个重要途径.目的:研究运动对大鼠骨骼肌线粒体通透性转换孔、凋亡调控基因bcl-2 和bax 表达的影响.方法:将24 只成

  15. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  16. Effects of acupoint versus non-acupoint electroacupuncture on cerebral cortical neuronal Bcl-2,Bax and caspase-3 expression in a rat model of focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Junming Fan; Yongshu Dong; Xia Huang; Hongxia Zhang

    2008-01-01

    each group for specimen preparation. A brain tissue block comprising the frontal lobe and the occipital lobe was cut into five coronal sections of equal-thickness. Neuronal apoptosis was detected by the terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling technique. Expression levels of caspase-3, Bcl-2 and Bax were evaluated by immunohistochemistry.RESULTS: Compared with the sham-operated group, the model group exhibited significantly decreased Bcl-2 expression (P 0.05).CONCLUSION: Electroacupuncture by acpoint selection can up-regulate Bcl-2 expression and concomitantly inhibit caspase-3 and Bax expression, inhibiting neuronal poptosis in rat cerebral cortex following cerebral ischemia/reperfusion.

  17. Phenylboronic acid-functionalized polyamidoamine-mediated Bcl-2 siRNA delivery for inhibiting the cell proliferation.

    Science.gov (United States)

    Wu, Di; Yang, Jiebing; Xing, Zhen; Han, Haobo; Wang, Tingting; Zhang, Aijun; Yang, Yan; Li, Quanshun

    2016-10-01

    In this study, the conjugation of phenylboronic acid (PBA) to amine-terminated polyamidoamine (PAMAM) was successfully conducted to prepare a tumor-targeted gene carrier PBA-functionalized PAMAM (PPP) for Bcl-2 siRNA delivery, using a heterobifunctional crosslinker NHS-PEG5k-Mal. The carrier possessed favorable capacity for siRNA condensation and could protect siRNA from the degradation against RNase and serum. The introduction of PBA could facilitate the cellular uptake and further transfection of Bcl-2 siRNA demonstrated by confocal laser scanning microscopy and flow cytometry. Meanwhile, PPP-mediated transfection of Bcl-2 siRNA could significantly inhibit the expression of Bcl-2 gene at both mRNA and protein levels. Furthermore, owing to the knock-down of Bcl-2, PPP/siRNA could significantly inhibit the cell proliferation by inducing the cell apoptosis, and also enhance the antitumor efficiency of doxorubicin by suppressing the resistance of tumor cells to chemotherapeutics. In conclusion, the PPP-mediated Bcl-2 siRNA delivery could potentially be an effective platform for solving the drug resistance and further achieving the combined chemotherapy and gene therapy in tumor treatment. PMID:27371891

  18. Bcl-2 and N-Myc Coexpression Increases IGF-IR and Features of Malignant Growth in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Rama Jasty

    2001-01-01

    Full Text Available The bcl-2 and c-myc oncogenes cooperate to transform multiple cell types. In the pediatric malignancy NB2, Bcl2 is highly expressed. In tumors with a poor prognosis, N-Myc, a protein homologous to c-Myc, is overexpressed as a result of gene amplification. The present study was designed to determine whether Bcl-2 cooperates with N-Myc to bestow a tumorigenic phenotype to neuroblastoma (NB cells. NB cell lines that at baseline express neither Bcl-2 nor N-Myc were stably transfected to express these gene products. In this model, we found Bcl-2 rescues N-Myc-expressing cells from apoptosis induced by serum withdrawal. Coexpression of Bcl-2 and N-Myc supports growth in low serum conditions and anchorage-independent growth in soft agar. Similarly, in vivo tumorigenic and angiogenic activity was dependent on coexpression. Our data further suggests that the mechanism underlying these changes involves the receptor for insulin growth factor type I (IGF-IR.

  19. E2F-1 induces melanoma cell apoptosis via PUMA up-regulation and Bax translocation

    International Nuclear Information System (INIS)

    PUMA is a pro-apoptotic Bcl-2 family member that has been shown to be involved in apoptosis in many cell types. We sought to ascertain whether induction of PUMA plays a crucial role in E2F-1-induced apoptosis in melanoma cells. PUMA gene and protein expression levels were detected by real-time PCR and Western blot in SK-MEL-2 and HCT116 cell lines after Ad-E2F-1 infection. Activation of the PUMA promoter by E2F-1 overexpression was detected by dual luciferase reporter assay. E2F-1-induced Bax translocation was shown by immunocytochemistry. The induction of caspase-9 activity was measured by caspase-9 colorimetric assay kit. Up-regulation of the PUMA gene and protein by E2F-1 overexpression was detected by real-time PCR and Western blot analysis in the SK-MEL-2 melanoma cell line. In support of this finding, we found six putative E2F-1 binding sites within the PUMA promoter. Subsequent dual luciferase reporter assay showed that E2F-1 expression could increase the PUMA gene promoter activity 9.3 fold in SK-MEL-2 cells. The role of PUMA in E2F-1-induced apoptosis was further investigated in a PUMA knockout cell line. Cell viability assay showed that the HCT116 PUMA-/- cell line was more resistant to Ad-E2F-1-mediated cell death than the HCT116 PUMA+/+ cell line. Moreover, a 2.2-fold induction of the PUMA promoter was also noted in the HCT116 PUMA+/+ colon cancer cell line after Ad-E2F-1 infection. Overexpression of a truncated E2F-1 protein that lacks the transactivation domain failed to up-regulate PUMA promoter, suggesting that PUMA may be a transcriptional target of E2F-1. E2F-1-induced cancer cell apoptosis was accompanied by Bax translocation from the cytosol to mitochondria and the induction of caspase-9 activity, suggesting that E2F-1-induced apoptosis is mediated by PUMA through the cytochrome C/Apaf-1-dependent pathway. Our studies strongly demonstrated that E2F-1 induces melanoma cell apoptosis via PUMA up-regulation and Bax translocation. The signaling

  20. Resveratrol induces apoptosis in human esophageal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Hai-Bo Zhou; Yun Yan; Ya-Ni Sun; Ju-Ren Zhu

    2003-01-01

    AIM: To investigate the apoptosis in esophageal cancer cells induced by resveratrol, and the relation between this apoptosis and expression of Bcl-2 and Bax.METHODS: In in vitro experiments, MTr assay was used to determine the cell growth inhibitory rate. Transmission electron microscope and TUNEL staining method were used to quantitatively and qualitively detect the apoptosis status of esophageal cancer cell line EC-9706 before and after the resveratrol treatment. Immunohistochemical staining was used to detect the expression of apoptosis-regulated gene Bcl-2 and Bax.RESULTS: Resveratrol inhibited the growth of esophageal cancer cell line EC-9706 in a dose-and time-dependent manner. Resveratrol induced EC-9706 cells to undergo apoptosis with typically apoptotic characteristics, including morphological changes of chromatin condensation, chromatin crescent formation, nucleus fragmentation and apoptotic body formation. TUNEL assay showed that after the for 24 to 96 hours, the AIs were apparently increased with treated time (P<0.05). Immunohistochemical staining showed that after the treatment of EC-9706 cells with proteins were apparently reduced with treated time (P<0.05)and the PRs of Bax proteins were apparently increased with treated time (P<0.05).CONCLUSION: Resveratrol is able to induce the apoptosisin esophageal cancer. This apoptosis may be mediated by down-regulating the apoptosis-regulated gene Bcl-2 and upregulating the expression of apoptosis-regulated gene bax.

  1. Human Papillomavirus 16 E6E7 fusion gene′s impact on the expression of apoptosis regulation genes in esophageal squamous cancer cells KYSE450%HPV16 E6/E7对凋亡调控基因表达影响的研究

    Institute of Scientific and Technical Information of China (English)

    沙亚哈提·别尔克哈之; 李卉; 吉别克·瓦提别克; 刘伊宁; 李晓苗; 来雯婷; 美丽吾尔提·达吾列提汗; 谌宏鸣; 李惠武

    2014-01-01

    目的:探讨 HPV16E6/E7对 KYSE450细胞中凋亡调控因子 Bcl-2和 Bad 表达的影响。方法采用瞬时转染技术将 HPV1E6/E7融合基因的真核表达载体转染食管癌细胞株 KYSE450中,分组用 TSA(HDACi)处理后,收集 RNA,应用反转录-聚合酶链反应(reverse transcription polymerase chain reaction RT-PCR)技术检测Bcl-2、Bad 的 mRNA 表达情况。结果(1)用 RT-PCR 检测转染后的结果为阳性。(2)Bad mRNA 在食管癌细胞KYSE450中表达较低,E6E7过表达对细胞内 Bad 基因 mRNA 水平无影响,各转染组之间没有差异。(3)Bcl-2 mRNA 在食管癌细胞 KYSE450中均有表达,E6/E7对 Bcl-2有轻度调控作用。(4)HDAC 抑制剂 TSA 处理后, TSA 明显增加了 E6对 Bcl-2基因表达的诱导调控作用。结论KYSE450细胞中 E6和 E7基因促进 Bcl-2在转录水平上的表达,而对 Bad 的表达无明显的影响。在病毒感染鳞状上皮细胞后早期表达致癌基因 E6、E7可能诱导凋亡调控因子 Bcl-2在转录水平上的表达。%Objective To investigate the human papillomavirus 16 (HPV16 )E6E7′s impact on the expres-sion of apoptosis regulation genes Bcl-2 and Bad in esophageal squamous cancer cell line KYSE-450.Meth-ods E6E7 fusion eukaryotic expression vector was transfected into the esophageal cell lines KYSE450 by transient transfection technique,and grouped with TSA(HDACi)treatment;the expressions of Bcl-2 and Bad were detected by reverse transcription polymerase chain reaction RT-PCR.Results (1)The result af-ter transfection was positive by RT-PCR.(2)There was low expression of Bad gene in KYSE-450 cell lines;E6E7overexpression had no effect on Bad mRNA and there was no any difference between the groups.(3)Bcl-2 gene was expressed in KYSE-450 cell lines,suggesting that Bcl-2 was slightly regulated by E6E7.(4)Treatment after TSA(HDACi),which significantly increase the regulation of E6 on the Bcl-2 expres-sion.Conclusion E6,E7

  2. Effect of nitric oxide with different doses on Bcl-2/Bax in spinal dorsal horn in rats induced by formalin%不同剂量的一氧化氮对福尔马林炎性痛大鼠脊髓背角Bcl-2/Bax表达的影响

    Institute of Scientific and Technical Information of China (English)

    未小明; 李宽; 祁文秀

    2011-01-01

    Objective: To investigate the effects of multiple application of different doses of nitric oxide (NO) on Bcl-2/ Bax in spinal dorsal horn induced by formalin. Methods: A succession of 4 d intrathecal injection of NO precursor L-arginine (L-Arg)10 μg/d (low L-Arg group) or 250 μg/d (high L-Arg group) or NOS inhibitor Nω-nitro-L-arginine methylester (L-NAME) 2700 μg/d (L-NAME group) in rats, and normal saline (NS group) was applied as a control, and administration once a day. Then rats were subcutaneously injected formalin (2%, 100 μL) into the right hindpaw, four hours later after formalin injection, Bcl-2 or Bax protein expression were detected with immunocytochemistry and Western Blot. Results: The immunocytochemistry showed the distributions of Bcl-2 and Bax were in both sides of the dorsal horn,especially in superficial laminae, and the expressions of bcl-2 and bax in the ipsilateral side of formalin injection were significantly increased than that in contralateral side of formalin injection in all four groups; the ratio of Bcl-2/Bax with Western-Blot was increased in low L-Arg group compared with normal saline group and was all decreased in high L-Arg group or L-NAME group compared with normal saline group. bcl-2 and bax are two major genes in the regulation of apoptosis, bcl-2 inhibits apoptosis and bax promotes apoptosis. Conclusion: Therefore, in inflammatory pain model, low doses of NO can promote the antiapoptotic gene expression, while high doses of NO and insufficient of NO both can promote pro-apoptotic gene expression, which affect the incidence of inflammatory pain.%目的:探讨多次应用不同剂量的一氧化氮(NO)对福尔马林炎性痛中脊髓背角神经元Bcl-2、Bax表达的影响.方法:连续4 d给大鼠各进行鞘内注射不同剂量的一氧化氮前体左旋精氨酸(L-arginine,L-Arg)10μg/d(低L-Arg组)、250 μg/d(高L-Arg组)或一氧化氮合酶(nitric oxide synthase,NOS)抑制剂Nω-硝基-L

  3. Expression and Significance of Bcl-2, Bax, Fas and Caspase-3 in Different Phases of Human Hemangioma

    Institute of Scientific and Technical Information of China (English)

    YANG Hong; DENG Chenguo; SHEN Shengguo; ZHANG Duanlian; YUYing

    2006-01-01

    The relationship between Bcl-2, Bax, Fas, caspase-3 and development of hemangioma and the molecular mechanism was investigated. By using immunohistochemical S-P method, proliferating cell nuclear antigen was detected. According to the classification of Mulliken in combination with PCNA expression, 27 cases were identified as proliferating hemangioma and 22 cases as involutive hemangioma. Five normal skin tissues around the tumor tissue served as controls. By using immunohistochemical technique, the expression of Bcl-2, Bax, Fax and Caspase-3 was detected. The cells expressing Bcl-2, Bax, Fax and cappase-3 were identified as hemangioma endothelia by immunohistochemical staining of Ⅷ factor. The average absorbance (A) and average positive area rate of Bcl-2, Bax, Fas and caspase-3 expression were measured by using HPIAS-2000 imaging analysis system. The results showed that the expression of Bcl-2 in the endothelia of proliferating hemangioma was significantly higher that in involutive degenerative hemangioma endothelia and vascular endothelia of normal skin tissue (P<0.01). The expression of Bax, Fas and Caspase-3 in the endothelia of involutive hemangioma was obviously higher than in the endothelia of proliferating hemangioma and normal skin tissue (P<0.01). The expression of BAx and Fas in endothelia of proliferating hemangioma was higher than in those of normal skin tissue (P<0.05). It was suggested that Bcl-2,Bax, Fas and caspase-3 might be involved in the development and involution of hemangioma. Bcl-2 could promote the growth of hemangioma by inhibiting apoptosis of endothelia. Bax, Fas and caspase-3 promote the switch of hemangioma from proliferation to involution by inducing the apoptosis of hemangioma endothelia.

  4. Expression of Ki-67, Bcl-2 and Bax in the First Trimester Abortion Materials

    Directory of Open Access Journals (Sweden)

    Ender DÜZCAN

    2010-01-01

    Full Text Available Objective: The aim of this study was to investigate possible similar or different mechanisms in recurrent and spontaneous abortion by evaluating immunohistochemical correlation between proliferation marker Ki-67, and apoptosis markers Bcl-2 and Bax in the fetal trophoblasts and maternal deciduas from abortion material.Material and Method: Eighty samples of curettage materials from 65 abortion patients histopathologically diagnosed “decidua showing Arias-Stella reaction and chorionic villi” or only “decidua showing Arias-Stella reaction” were included in the study. Hematoxylin&Eosin stained sections from all cases were re-evaluated and further stained immunohistochemically using antibodies against Ki-67, Bcl-2 and Bax.Results: Proliferation rate evaluated by Ki-67 expression both in the cytotrophoblastic cells and decidua was found to be significantly lower in spontaneous and recurrent abortions compared to evacuation abortion. The extent of Bcl-2 expression in syncytiotrophoblastic cells covering villous stroma was also decreased in spontaneous abortion. There were no significant differences between spontaneous and recurrent abortions in terms of Bcl-2 expression in syncytiotrophoblasts and Ki-67 proliferation index in cytotrophoblastic cells or decidua. Bax staining showed minimal decidual expression in a few spontaneous and recurrent abortions.Conclusion: We concluded that proliferation rate was decreased in fetal villous cytotrophoblasts and maternal deciduas in spontaneous and recurrent abortions. We also proposed that loss of Bcl-2 expression in syncytiotrophoblasts may cause abortion in a subset of cases. However, the data from spontaneous and recurrent abortions did not not support the presence of different mechanisms in both groups.

  5. Apoptosis of human primary gastric carcinoma cells induced by genistein

    Institute of Scientific and Technical Information of China (English)

    Hai-Bo Zhou; Juan-Juan Chen; Wen-Xia Wang; Jian-Ting Cai; Qin Du

    2004-01-01

    AIM: To investigate the apoptosis in primary gastric cancer cells induced by genistein, and the relationship between this apoptosis and expression of bcl-2 and bax.METHODS: MTT assay was used to determine the cell growth inhibitory rate in vitro. Transmission electron microscope and TUNEL staining were used to quantitatively and qualitatively detect the apoptosis of primary gastric cancer cells before and after genistein treatment. Immunohistochemical staining and RT-PCR were used to detect the expression of apoptosisassociated genes bcl-2 and bax.RESULTS: Genistein inhibited the growth of primary gastric cancer cells in dose-and time-dependent manner. Genistein induced primary gastric cancer cells to undergo apoptosis with typically apoptotic characteristics. TUNEL assay showed that after the treatment of primary gastric cancer cells with genistein for 24 to 96 h, the apoptotic rates of primary gastric cancer cells increased time-dependently. Immunohistochemical staining showed that after the treatment of primary gastric cancer cells with genistein for 24 to 96 h, the positivity rates of Bcl-2 proteins were apparently reduced with time and the positivity rates of Bax proteins were apparently increased with time. After exposed to genistein at 20 μmol/L for 24,48, 72 and 96 respectively, the density of bcl-2 mRNA decreased progressively and the density of bax mRNA increased progressively with elongation of time.CONCLUSION: Genistein is able to induce the apoptosis in primary gastric cancer cells. This apoptosis may be mediated by down-regulating the apoptosis- associated bcl-2 gene and up-regulating the expression of apoptosis-associated bax gene.

  6. Induction of Apoptosis and expression of Apoptosis-related gene products in response to radiation in murine tumors

    International Nuclear Information System (INIS)

    To analyze the involvement of apoptosis regulatory genes p53, p21waf1/cip1, bax and bcl-2 in induction of apoptosis by radiation in murine tumors. The radiation-sensitive ovarian carcinoma OCa-I and the radiation-resistant hepatocarcinoma HCa-I were used. Tumors, 8mm in diameter, were irradiated with 25Gy and at various times after irradiation, ranging from 1 to 48 h, were analyzed histologically for apoptosis and by western blot for alterations in the expression of these genes. The p53 status of the tumors were determined by the polymerase chain reaction-single strand conformation polymorphism assay. Both tumors were positive for wild-type p53. Radiation induced apoptosis in OCa-I but not in HCa-I. Apoptosis developed rapidly, peaked at 2 h after irradiation and returned to almost the background level at 48 h. In OCa-I radiation upregulated the expression of p53, p21waf1/cip1, and the bcl-2/bax ratio was decreased. In HCa-I radiation increased the expression of both p53 and p21waf1/cip1, although the increase of the latter was small. The bcl-2/bax ratio was greatly increased. In general the observed changes occurred within a few hours after irradiation, and either preceded or coincided with development of apoptosis. The development of apoptosis required upregulation of both p53 and p21waf1/cip1 as well as a decrease in bcl-2/bax ratio. In contrast, an increase in bcl-2/bax ratio prevented apoptosis in the presence of upregulated p53 and p21waf1/cip1. These findings identified the involvement of multiple oncogenes in apoptosis regulation in vivo and demonstrate the complexity that may be associated with the use of a single oncogene assessment for predicting the outcome of cancer therapy with cytotoxic agents. (author)

  7. The regulation of thermal stress induced apoptosis in corals reveals high similarities in gene expression and function to higher animals

    Science.gov (United States)

    Kvitt, Hagit; Rosenfeld, Hanna; Tchernov, Dan

    2016-01-01

    Recent studies suggest that controlled apoptotic response provides an essential mechanism, enabling corals to respond to global warming and ocean acidification. However, the molecules involved and their functions are still unclear. To better characterize the apoptotic response in basal metazoans, we studied the expression profiles of selected genes that encode for putative pro- and anti-apoptotic mediators in the coral Stylophora pistillata under thermal stress and bleaching conditions. Upon thermal stress, as attested by the elevation of the heat-shock protein gene HSP70’s mRNA levels, the expression of all studied genes, including caspase, Bcl-2, Bax, APAF-1 and BI-1, peaked at 6–24 h of thermal stress (hts) and declined at 72 hts. Adversely, the expression levels of the survivin gene showed a shifted pattern, with elevation at 48–72 hts and a return to basal levels at 168 hts. Overall, we show the quantitative anti-apoptotic traits of the coral Bcl-2 protein, which resemble those of its mammalian counterpart. Altogether, our results highlight the similarities between apoptotic networks operating in simple metazoans and in higher animals and clearly demonstrate the activation of pro-cell survival regulators at early stages of the apoptotic response, contributing to the decline of apoptosis and the acclimation to chronic stress. PMID:27460544

  8. The regulation of thermal stress induced apoptosis in corals reveals high similarities in gene expression and function to higher animals

    Science.gov (United States)

    Kvitt, Hagit; Rosenfeld, Hanna; Tchernov, Dan

    2016-07-01

    Recent studies suggest that controlled apoptotic response provides an essential mechanism, enabling corals to respond to global warming and ocean acidification. However, the molecules involved and their functions are still unclear. To better characterize the apoptotic response in basal metazoans, we studied the expression profiles of selected genes that encode for putative pro- and anti-apoptotic mediators in the coral Stylophora pistillata under thermal stress and bleaching conditions. Upon thermal stress, as attested by the elevation of the heat-shock protein gene HSP70’s mRNA levels, the expression of all studied genes, including caspase, Bcl-2, Bax, APAF-1 and BI-1, peaked at 6–24 h of thermal stress (hts) and declined at 72 hts. Adversely, the expression levels of the survivin gene showed a shifted pattern, with elevation at 48–72 hts and a return to basal levels at 168 hts. Overall, we show the quantitative anti-apoptotic traits of the coral Bcl-2 protein, which resemble those of its mammalian counterpart. Altogether, our results highlight the similarities between apoptotic networks operating in simple metazoans and in higher animals and clearly demonstrate the activation of pro-cell survival regulators at early stages of the apoptotic response, contributing to the decline of apoptosis and the acclimation to chronic stress.

  9. The regulation of thermal stress induced apoptosis in corals reveals high similarities in gene expression and function to higher animals.

    Science.gov (United States)

    Kvitt, Hagit; Rosenfeld, Hanna; Tchernov, Dan

    2016-01-01

    Recent studies suggest that controlled apoptotic response provides an essential mechanism, enabling corals to respond to global warming and ocean acidification. However, the molecules involved and their functions are still unclear. To better characterize the apoptotic response in basal metazoans, we studied the expression profiles of selected genes that encode for putative pro- and anti-apoptotic mediators in the coral Stylophora pistillata under thermal stress and bleaching conditions. Upon thermal stress, as attested by the elevation of the heat-shock protein gene HSP70's mRNA levels, the expression of all studied genes, including caspase, Bcl-2, Bax, APAF-1 and BI-1, peaked at 6-24 h of thermal stress (hts) and declined at 72 hts. Adversely, the expression levels of the survivin gene showed a shifted pattern, with elevation at 48-72 hts and a return to basal levels at 168 hts. Overall, we show the quantitative anti-apoptotic traits of the coral Bcl-2 protein, which resemble those of its mammalian counterpart. Altogether, our results highlight the similarities between apoptotic networks operating in simple metazoans and in higher animals and clearly demonstrate the activation of pro-cell survival regulators at early stages of the apoptotic response, contributing to the decline of apoptosis and the acclimation to chronic stress. PMID:27460544

  10. Blockade of the BAK hydrophobic groove by inhibitory phosphorylation regulates commitment to apoptosis.

    Directory of Open Access Journals (Sweden)

    Abul Azad

    Full Text Available The BCL-2 family protein BAK is a key regulator of mitochondrial apoptosis. BAK activation first involves N-terminal conformational changes that lead to the transient exposure of the BAK BH3 domain that then inserts into a hydrophobic groove on another BAK molecule to form symmetric dimers. We showed recently that post-translational modifications are important in the regulation of BAK conformational change and multimerization, with dephosphorylation at tyrosine 108 constituting an initial step in the BAK activation process. We now show that dephosphorylation of serine 117 (S117, located in the BAK hydrophobic groove, is also critical for BAK activation to proceed to completion. Phosphorylation of BAK at S117 has two important regulatory functions: first, it occludes the binding of BH3-containing peptides that bind to BAK causing activation and cytochrome c release from mitochondria; second, it prevents BAK-BH3:BAK-Groove interactions that nucleate dimer formation for subsequent multimerization. Hence, BH3-mediated BAK conformational change and subsequent BAK multimerization for cytochrome c release and cell death is intimately linked to, and dependent on, dephosphorylation at S117. Our study reveals important novel mechanistic and structural insights into the temporal sequence of events governing the process of BAK activation in commitment to cell death and how they are regulated.

  11. Analysis of the Expression of Fas, FasL and Bcl-2 in the Pathogenesis of Autoimmune Thyroid Disorders

    Institute of Scientific and Technical Information of China (English)

    Shenren Chen; S.M.Fazle Akbar; Zhichao Zhen; Yiping Luo; Lijuan Deng; Haihua Huang; Linxin Chen; Wei Li

    2004-01-01

    To investigate the expression of apoptosis-related protein (Fas, FasL, and Bcl-2) in the pathogenesis of autoimmune thyroid disorders (ATDs), immunohistochemical staining was performed on 20 Hashimoto's thyroiditis (HT), 20 Graves' disease (GD), and 20 thyroid follicular adenoma (TFA, as control). All the cases expressed Fas, mainly on the cell surface and cytoplasm. FasL was found in 17 cases of the TFA. Bcl-2 was detected in 15 cases of HT, 19 of GD and 17 of TFA. In TFA, a moderate Fas expression and a minimal or no FasL expression was detected on follicular cells. In HT, the follicles adjacent to infiltrating lymphocytes showed increased levels of Fas and FasL expression. A weaker staining of Fas and FasL was exhibited on infiltrating lymphocytes than on thyrocytes. In a comparison of GD with HT, thyrocytes and lymphocytes showed similar Fas staining, but for FasL the staining was rather weaker in HT. The expression of Bcl-2 was nearly identical in GD and TFA, but much weaker on the follicular cells in vicinity of lymphocytes and on the lymphocytes located in germinal centers of HT tissues. The expression of Fas, FasL, Bcl-2 in Hashimoto's thyroiditis and Graves' disease were almost same. FasL strong expression and Bcl-2 weak expression on the follicles in HT may induce apoptosis. These results provided evidence for expression of Fas, FasL and Bcl-2 in the pathogenesis of autoimmune thyroid disease. The lymphocytes seem not to be directly engaged in the process via their own FasL, but they may provide some cytokines that, in turn, upregulate Fas and/or FasL expression to induce apoptosis.

  12. Differential expression of Bcl-2 and Bax during gastric ischemia-reperfusion of rats

    Institute of Scientific and Technical Information of China (English)

    Wei-Li Qiao; Guang-Ming Wang; Yue Shi; Jin-Xia Wu; You-Jian Qi; Jian-Fu Zhang; Hong Sun; Chang-Dong Yan

    2011-01-01

    AIM: To investigate expression of Bcl-2 and Bax in gastric ischemia-reperfusion (GI-R) and involvement of extracellular signal-regulated kinase (ERK) 1/2 activation.METHODS: The GI-R model was established by ligature of the celiac artery for 30 min and reperfusion in Sprague-Dawley rats. Rats were assigned to groups in accordancewith their evaluation period: control, 0, 0.5, 1, 3, 6, 24,48, and 72 h. Expression and distribution of Bcl-2 and Bax proteins were analyzed by immunohistochemistry and western blotting in gastric tissue samples after sacrifice.RESULTS: Compared with controls, the percentage of positive cells and protein levels of Bcl-2 decreased in the early phases of reperfusion, reached its minimumat 1 h (P < 0.05); it then increased, reaching its peak at 24 h of reperfusion (P < 0.05). The pattern of Bax expression was opposite to that of Bcl-2. Bax expressionincreased after reperfusion, with its peak at 1 h of reperfusion (P < 0.05), and then it decreased gradually to a minimum at 24 h after reperfusion (P < 0.05).On the other hand, inhibition of activation of ERK1/2 induced by PD98059, a specific upstream MEK inhibitor,had significant effects on Bcl-2 and Bax in GI-R.Compared with GI-R treatment only at 3 h of reperfusion,PD98059 reduced the number of Bcl-2 positive cells (0.58% of R3h group, P < 0.05) and Bcl-2 proteinlevel (74% of R3h group, P < 0.05) but increased the number of Bax-positive cells (1.33-fold vs R3h group, P< 0.05) and Bax protein level (1.35-fold of R3h group,P < 0.05).CONCLUSION: These results indicated that the Bcl-2 and Bax played a pivotal role in the gastric mucosal I-R injury and repair by activation of ERK1/2.

  13. Deletion of AU-rich elements within the Bcl2 3'UTR reduces protein expression and B cell survival in vivo.

    Directory of Open Access Journals (Sweden)

    Manuel D Díaz-Muñoz

    Full Text Available Post-transcriptional mRNA regulation by RNA binding proteins (RBPs associated with AU-rich elements (AREs present in the 3' untranslated region (3'UTR of specific mRNAs modulates transcript stability and translation in eukaryotic cells. Here we have functionally characterised the importance of the AREs present within the Bcl2 3'UTR in order to maintain Bcl2 expression. Gene targeting deletion of 300 nucleotides of the Bcl2 3'UTR rich in AREs diminishes Bcl2 mRNA stability and protein levels in primary B cells, decreasing cell lifespan. Generation of chimeric mice indicates that Bcl2-ARE∆/∆ B cells have an intrinsic competitive disadvantage compared to wild type cells. Biochemical assays and predictions using a bioinformatics approach show that several RBPs bind to the Bcl2 AREs, including AUF1 and HuR proteins. Altogether, association of RBPs to Bcl2 AREs contributes to Bcl2 protein expression by stabilizing Bcl2 mRNA and promotes B cell maintenance.

  14. Bcl-2 Knockdown Accelerates T Cell Receptor-Triggered Activation-Induced Cell Death in Jurkat T Cells

    OpenAIRE

    Lee, Yun-Jung; Won, Tae Joon; Hyung, Kyeong Eun; Lee, Mi Ji; Moon, Young-hye; Lee, Ik Hee; Go, Byung Sung; Hwang, Kwang Woo

    2014-01-01

    Cell death and survival are tightly controlled through the highly coordinated activation/inhibition of diverse signal transduction pathways to insure normal development and physiology. Imbalance between cell death and survival often leads to autoimmune diseases and cancer. Death receptors sense extracellular signals to induce caspase-mediated apoptosis. Acting upstream of CED-3 family proteases, such as caspase-3, Bcl-2 prevents apoptosis. Using short hairpin RNAs (shRNAs), we suppressed Bcl-...

  15. Effects of oxymatrine on expressions of Bcl-2,OCLN and TUBA1A in human colon carcinoma LoVo cells%氧化苦参碱对LoVo细胞Bcl-2、OCLN、TUBA1A mRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    韩凌; 彭燕; 孙静; 危建安

    2012-01-01

    目的 探讨氧化苦参碱(OM)抑制人结肠癌LoVo细胞增殖和诱导凋亡的分子作用机制.方法 采用实时荧光定量PCR法以及免疫组化法检测OM对LoVo细胞凋亡相关以及细胞骨架相关的B细胞淋巴瘤因子2(Bcl-2)、微管蛋白1A(TUBA1A)、咬合蛋白(OCLN)的基因及蛋白表达的影响.结果 OM能显著抑制LoVo细胞增殖;可明显抑制LoVo细胞Bcl-2的mRNA以及蛋白的表达(P<0.05),抑制TUBA1A mRNA表达,同时上调OCLN蛋白的表达,但并不能明显上调OCLN mRNA的表达.结论 OM抑制LoVo细胞增殖,可能与下调LoVo细胞Bcl-2、TUBA1A表达以及上调OCLN表达有关.%Objective To explore the molecular mechanism of oxymatrine (OM) on inhibiting proliferation and inducing apopto-sis in human colon carcinoma LoVo cells. Methods Using fluorescence quantitative PCR and immunohistochemistry assay to detect the effects of OM on apoptosis and cytoskeleton-related molecular gene and protein expression,such as Bcl-2,OCLN,TUBA1A on LoVo cells. Results OM could inhibit LoVo cells proliferation and significantly inhibit Bc1-2 gene and protein expression on LoVo cells. OM could also significantly inhibit TUBA1A gene expression on LoVo cells. OM showed only a slight increase trend on OCLN gene expression,but with immunohistochemical assay OM could significantly increase the OCLN protein expression on LoVo cells. Conclusion The molecular mechanism of OM to inhibit tumor cell proliferation may be related to down-regulate Bcl-2 and TUBA1A expression while increased expression of OCLN on LoVo cells.

  16. Associations of MMP-2, BAX, and Bcl-2 mRNA and Protein Expressions with Development of Atrial Fibrillation.

    Science.gov (United States)

    Diao, Shu-Ling; Xu, Hui-Pu; Zhang, Bei; Ma, Bao-Xin; Liu, Xian-Liang

    2016-01-01

    BACKGROUND To examine changes of mRNA and protein expressions of MMP-2, Bcl-2, and BAX in atrial fibrillation (AF) patients, and investigate the correlations among these 3 biomarkers. MATERIAL AND METHODS Rheumatic heart disease patients (n=158) undergoing cardiac surgical procedures for mitral valve repair or replacement were included as the AF group (n=123), containing paroxysmal AF (n=42), persistent AF (n=36), and permanent AF (n=45). Rheumatic heart disease patients with sinus rhythm (SR) (n=35) were enrolled as the SR group (control group). Immunohistochemistry, Western blot, and real-time polymerase chain reaction (PCR) were applied to detect the protein and mRNA expression levels of MMP-2, Bcl-2, and BAX. Apoptosis was observed with light and electron microscopes and detected by TdT-mediated dUTP nick-end labeling (TUNEL). RESULTS Compared with the SR group, the left atrial diameters (LADs), protein and mRNA expression levels of MMP-2 and BAX, apoptotic index (AI), and Bcl-2/BAX ratio were evidently increased in the 3 AF groups, but protein and mRNA expression levels of Bcl-2 decreased in the AF groups (all P<0.05). Correlation analysis found that MMP-2 protein expression levels was positively correlated with BAX expression, but negatively correlated with Bcl-2 expression levels. CONCLUSIONS Our study results suggest that elevated MMP-2 expression and disturbance balance of Bcl-2/BAX expressions may be associated with the development and maintenance of AF. MMP-2 may be involved in the development of AF through promoting BAX expressions and inhibiting Bcl-2. PMID:27141955

  17. Caspase Family Proteases and Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Ting-Jun FAN; Li-Hui HAN; Ri-Shan CONG; Jin LIANG

    2005-01-01

    Apoptosis, or programmed cell death, is an essential physiological process that plays a critical role in development and tissue homeostasis. The progress of apoptosis is regulated in an orderly way by a series of signal cascades under certain circumstances. The caspase-cascade system plays vital roles in the induction, transduction and amplification of intracellular apoptotic signals. Caspases, closely associated with apoptosis, are aspartate-specific cysteine proteases and members of the interleukin-1β-converting enzyme family. The activation and function of caspases, involved in the delicate caspase-cascade system, are regulated by various kinds of molecules, such as the inhibitor of apoptosis protein, Bcl-2 family proteins, calpain,and Ca2+. Based on the latest research, the members of the caspase family, caspase-cascade system and caspase-regulating molecules involved in apoptosis are reviewed.

  18. Effects of curcumin on hippocampal Bax and Bcl-2 expression and cognitive function of a rat model of Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Yunliang Wang; Honglei Yin; Jiyu Lou; Bing Han; Xinyue Qin; Fanchao Meng; Shuang Geng; Yajun Liu

    2011-01-01

    We tested the effects of curcumin treatment on a rat model of Alzheimer's disease induced by beta-amlyoid (Aβ1-40) expression. We investigated alterations in the expression of the apoptosis-related genes Bax and Bcl-2 in the hippocampus, as well as changes in the spatial memory and cognitive function of the rats. Reverse transcription-polymerase chain reaction and immunohistochemistry results showed that Bax expression was remarkably decreased and Bcl-2 expression was increased in the rat Alzheimer's disease model after curcumin treatment. Morris water maze results showed that the average time of escape latency was shortened in the curcumin treated model rats. Our study shows that curcumin can significantly improve spatial learning and memory functions in rats with Aβ1-40-induced Alzheimer's disease by modulating Bax and Bcl-2 expression.

  19. Evaluation of Bcl-2, Bcl-x and Cleaved Caspase-3 in Malignant Peripheral Nerve Sheath Tumors and Neurofibromas

    Directory of Open Access Journals (Sweden)

    KARIN S. CUNHA

    2013-11-01

    Full Text Available AIMS: To study the expression of Bcl-2, Bcl-x, as well the presence of cleaved caspase-3 in neurofibromas and malignant peripheral nerve sheath tumors. The expression of Bcl-2 and Bcl-x and the presence of cleaved caspase 3 were compared to clinicopathological features of malignant peripheral nerve sheath tumors and their impact on survival rates were also investigated. MATERIALS AND METHODS: The evaluation of Bcl-2, Bcl-x and cleaved caspase-3 was performed by immunohistochemistry using tissue microarrays in 28 malignant peripheral nerve sheath tumors and 38 neurofibromas. Immunoquantification was performed by computerized digital image analysis. CONCLUSIONS: Apoptosis is altered in neurofibromas and mainly in malignant peripheral nerve sheath tumors. High levels of cleaved caspase-3 are more common in tumors with more aggressive histological features and it is associated with lower disease free survival of patients with malignant peripheral nerve sheath tumors.

  20. Sheeppox virus SPPV14 encodes a Bcl-2-like cell death inhibitor that counters a distinct set of mammalian proapoptotic proteins.

    Science.gov (United States)

    Okamoto, Toru; Campbell, Stephanie; Mehta, Ninad; Thibault, John; Colman, Peter M; Barry, Michele; Huang, David C S; Kvansakul, Marc

    2012-11-01

    Many viruses express inhibitors of programmed cell death (apoptosis), thereby countering host defenses that would otherwise rapidly clear infected cells. To counter this, viruses such as adenoviruses and herpesviruses express recognizable homologs of the mammalian prosurvival protein Bcl-2. In contrast, the majority of poxviruses lack viral Bcl-2 (vBcl-2) homologs that are readily identified by sequence similarities. One such virus, myxoma virus, which is the causative agent of myxomatosis, expresses a virulence factor that is a potent inhibitor of apoptosis. In spite of the scant sequence similarity to Bcl-2, myxoma virus M11L adopts an almost identical 3-dimensional fold. We used M11L as bait in a sequence similarity search for other Bcl-2-like proteins and identified six putative vBcl-2 proteins from poxviruses. Some are potent inhibitors of apoptosis, in particular sheeppox virus SPPV14, which inhibited cell death induced by multiple agents. Importantly, SPPV14 compensated for the loss of antiapoptotic F1L in vaccinia virus and acts to directly counter the cell death mediators Bax and Bak. SPPV14 also engages a unique subset of the death-promoting BH3-only ligands, including Bim, Puma, Bmf, and Hrk. This suggests that SPPV14 may have been selected for specific biological roles as a virulence factor for sheeppox virus. PMID:22896610

  1. An Ingenol Derived from Euphorbia kansui Induces Hepatocyte Cytotoxicity by Triggering G0/G1 Cell Cycle Arrest and Regulating the Mitochondrial Apoptosis Pathway in Vitro.

    Science.gov (United States)

    Yan, Xiaojing; Zhang, Li; Cao, Yudan; Yao, Weifeng; Tang, Yuping; Ding, Anwei

    2016-01-01

    Natural product lingenol, a purified diterpenoid compound derived from the root of Euphorbia kansui, exerts serious hepatotoxicity; however, the molecular mechanisms remain to be defined. In the present study, cell counting Kit-8 (CCK-8), inverted phase contrast microscope and flow cytometry were used to demonstrate that lingenol significantly inhibited L-O2 cells proliferation, and induced cell cycle arrest and apoptosis. Moreover, the results investigated that lingenol markedly disrupted mitochondrial functions by high content screening (HCS). In addition, the up-regulation of cytochrome c, AIF and Apaf-1 and activation of caspases were found in L-O2 cells detected by Western blotting and ELISA assay, which was required for lingenol activation of cytochrome c-mediated caspase cascades and AIF-mediated DNA damage. Mechanistic investigations revealed that lingenol significantly down-regulated the Bcl-2/Bax ratio and enhanced the reactive oxygen species (ROS) in L-O2 cells. These data collectively indicated that lingenol modulation of ROS and Bcl-2/Bax ratio led to cell cycle arrest and mitochondrial-mediated apoptosis in L-O2 cells in vitro. All of these results will be helpful to reveal the hepatotoxicity mechanism of Euphorbia kansui and to effectively guide safer and better clinical application of this herb. PMID:27338329

  2. An Ingenol Derived from Euphorbia kansui Induces Hepatocyte Cytotoxicity by Triggering G0/G1 Cell Cycle Arrest and Regulating the Mitochondrial Apoptosis Pathway in Vitro

    Directory of Open Access Journals (Sweden)

    Xiaojing Yan

    2016-06-01

    Full Text Available Natural product lingenol, a purified diterpenoid compound derived from the root of Euphorbia kansui, exerts serious hepatotoxicity; however, the molecular mechanisms remain to be defined. In the present study, cell counting Kit-8 (CCK-8, inverted phase contrast microscope and flow cytometry were used to demonstrate that lingenol significantly inhibited L-O2 cells proliferation, and induced cell cycle arrest and apoptosis. Moreover, the results investigated that lingenol markedly disrupted mitochondrial functions by high content screening (HCS. In addition, the up-regulation of cytochrome c, AIF and Apaf-1 and activation of caspases were found in L-O2 cells detected by Western blotting and ELISA assay, which was required for lingenol activation of cytochrome c-mediated caspase cascades and AIF-mediated DNA damage. Mechanistic investigations revealed that lingenol significantly down-regulated the Bcl-2/Bax ratio and enhanced the reactive oxygen species (ROS in L-O2 cells. These data collectively indicated that lingenol modulation of ROS and Bcl-2/Bax ratio led to cell cycle arrest and mitochondrial-mediated apoptosis in L-O2 cells in vitro. All of these results will be helpful to reveal the hepatotoxicity mechanism of Euphorbia kansui and to effectively guide safer and better clinical application of this herb.

  3. EXPRESSION OF BAX AND BCL-2 IN MOUSE OFFSPRING BRAIN AFTER MATERNAL ORAL ADMINIS TRATION OF MONOSODIUM GLUTAMATE

    Institute of Scientific and Technical Information of China (English)

    徐磊; 赵晏; 展淑琴; 王会生; 史文春

    2002-01-01

    Objective To analyze the excitotoxicity of monoso dium glutamate (MSG) in the offspring cerebral cortex and hippocampal subregions after maternal oral administration of MSG. Methods Kunming mi ce were given per os MSG ( 4.0 g/kg ) at 17~21 days of pregnancy and their offs pring behaviors were studied at 10, 20 , 30 days postnatally. By using immunohis tochemical means, the involvement of Bcl-2 and Bax in the glutamate-induced c ell death in cortical and hippocampal neur ons were examined. Cell damage was assessed by direct cell counting. Res ults Administration of monosodium glutamate during the fetal period in mice resulted in a moderate increase in the expression of Bax in principal neuro ns in CA1, CA2, CA3, CA4 and in the cerebral cortex at postpartum 10, 20, 30 day s in the offspring mice, whereas Bcl-2 protein expressions were reduced signif icantly in the same regions as compared with those of controls. Conclusi on These findings suggest that glutamate toxicity results in cellular d eath via an apoptotic mechanism in which the Bcl-2/Bax-alpha molecular comple x may be involved. The glutamate-induced apoptosis appears to be related to the modulation of Bcl-2 family gene products such as Bcl-2 and Bax.

  4. Pan-Bcl-2 inhibitor obatoclax delays cell cycle progression and blocks migration of colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Bruno Christian Koehler

    Full Text Available Despite the fact that new treatment regimes have improved overall survival of patients challenged by colorectal cancer (CRC, prognosis in the metastatic situation is still restricted. The Bcl-2 family of proteins has been identified as promising anti cancer drug target. Even though small molecules targeting Bcl-2 proteins are in clinical trials, little is known regarding their effects on CRC. The aim of this study was to preclinically investigate the value of ABT-737 and Obatoclax as anticancer drugs for CRC treatment. The effects of the BH3-mimetics ABT-737 and Obatoclax on CRC cells were assessed using viability and apoptosis assays. Wound healing migration and boyden chamber invasion assays were applied. 3-dimensional cell cultures were used for long term assessment of invasion and proliferation. Clinically relevant concentrations of pan-Bcl-2 inhibitor Obatoclax did not induce cell death. In contrast, the BH3-mimetic ABT-737 induced apoptosis in a dose dependent manner. Obatoclax caused a cell line specific slowdown of CRC cell growth. Furthermore, Obatoclax, but not ABT-737, recovered E-Cadherin expression and led to impaired migration and invasion of CRC cells. The proliferative capacity and invasiveness of CRC cells was strikingly inhibited by low dose Obatoclax in long term 3-dimensional cell cultures. Obatoclax, but not ABT-737, caused a G1-phase arrest accompanied by a downregulation of Cyclin D1 and upregulation of p27 and p21. Overexpression of Mcl-1, Bcl-xL or Bcl-2 reversed the inhibitory effect of Obatoclax on migration but failed to restore the proliferative capacity of Obatoclax-treated CRC cells. The data presented indicate broad and multifaceted antitumor effects of the pan-Bcl-2 inhibitor Obatoclax on CRC cells. In contrast to ABT-737, Obatoclax inhibited migration, invasion and proliferation in sublethal doses. In summary, this study recommends pan-Bcl-2 inhibition as a promising approach for clinical trials in CRC.

  5. Study of PHI on regulating apoptosis of Burkitt lymphoma Daudi cell line%PHI对Burkitt淋巴瘤Daudi细胞株凋亡调控的实验研究

    Institute of Scientific and Technical Information of China (English)

    洪苓苓; 黄轶群; 马旭东

    2011-01-01

    Objective:To investigate the effect of PHI on Burkitt lymphoma Daudi cell line in vitro and discuss its potential mechanism.Method:The viability of Daudi cells was observed by MTT method.Apoptotic rate was measured by flow cytometry.The expressions of apoptosis associated protein Bcl-2, proCaspase-9, proCaspase-3,McL-1, XIAP and Cyt-C were detected by Western Blot.Result:Compared with untreated cells, PHI inhibited the proliferation and induced the apoptosis of Daudi cells.It inhibited the expression of Bcl-2, McL-1, XIAP, Cyt-C,proCaspase-9, and proCaspase-3.Conclusion: In vitro, PHI could down-regulate the expression of Bcl-2, McL-1,XIAP, Cyt-C, proCaspase-9, and proCaspase-3.PHI might induce the apoptosis through mitochondrion pathway and inhibite the cells growth in Burkitt lymphoma Daudi cell line.PH1 might be a potential new drug for anti Burkitt lymphoma.%目的:研究PHI在体外对伯基特淋巴瘤淋巴瘤Daudi细胞株的作用,观察PHI对诱导淋巴瘤细胞凋亡的影响,初步探讨其可能的机制.方法:用MTT比色法检测体外Daudi细胞在PHI作用后增殖率的变化.用流式细胞术观察PHI诱导Daudi细胞凋亡.用蛋白免疫印迹法(Western Blot)观察在PHI作用下凋亡相关蛋白Bcl-2、proCaspase-9、proCaspase-3、McL-1、XIAP、Cyt-C表达的变化.结果:经PHI处理的Daudi细胞增殖受到明显抑制;PHI可下调Daudi细胞凋亡相关蛋白Bcl-2、McL-1、XIAP、Cyt-C,proCaspase-9、proCaspase-3的表达,诱导Daudi细胞凋亡.结论:PHI抑制伯基特淋巴瘤淋巴瘤细胞凋亡相关蛋白Bcl-2、McL-1、XIAP、Cyt-C、proCaspase-9、proCaspase-3的表达,可能通过影响线粒体凋亡途径促进Daudi细胞凋亡,抑制其细胞增殖,可能是治疗淋巴瘤的潜在新药.

  6. Apoptosis of human gastric cancer SGC-7901 cells induced by mitomycin combined with sulindac

    Institute of Scientific and Technical Information of China (English)

    Li Ma; Yong-Le Xie; Yi Yu; Qiu-Ning Zhang

    2005-01-01

    AIM: To investigate the effects of mitomycin (MMC)combined with sulindac on cell viability, apoptotic induction and expression of apoptosis-related gene Bcl-2 and cyclooxygenase-2 (COX-2)in gastric cancer SGC-7901cells.METHODS: Human gastric cancer SGC-7901 cells were divided into three treatment groups,namely sulindac treatment group, MMC treatment group and combined sulindac with MMC treatment group. After being treated with drugs, cell viability was examined by MTr assay.Flow cytometry was used to evaluate the cell cycle distribution and apoptotic rates. Morphology of the cells was observed under light microscope and interactive laser microscope. Expression of COX-2 and Bcl-2 was determined by immunocytochemical method.RESULTS: After exposure for 12 h to three kinds of drugs,gastric cancer SGC-7901 cells presented some morphological features of apoptosis, including cell shrinkage, nuclear condensation, DNA fragmentation and formation of apoptotic bodies. Growth inhibition was more obvious in combined sulindac with MMC treatment group and sulindac treatment group than in MMC treatment group. The apoptotic rates in co-treated cells and MMC-treated cells 24 h after treatment were 12.0% and 7.2%, respectively.After exposure for 24 h to MMC, the expression of COX-2and Bcl-2 protein was up-regulated, COX-2 levels were down-regulated but Bcl-2 gene expression was not changed significantly in combined treatment group.CONCLUSION: MMC-induced apoptosis is reduced by up-regulating the expression of COX-2 and Bcl-2 genes.MMC combined with sulindac can suppress the growth of gastric cancer cells through induction of apoptosis mediated by down-regulation of apoptosis-related Bcl-2and COX-2 gene.

  7. Inhibition of precancerous lesions development in kidneys by chrysin via regulating hyperproliferation, inflammation and apoptosis at pre clinical stage.

    Science.gov (United States)

    Rashid, Summya; Nafees, Sana; Vafa, Abul; Afzal, Shekh Muhammad; Ali, Nemat; Rehman, Muneeb U; Hasan, Syed Kazim; Siddiqi, Aisha; Barnwal, Preeti; Majed, Ferial; Sultana, Sarwat

    2016-09-15

    Chrysin (CH) is natural, biologically active compound, belongs to flavoniod family and possesses diverse pharmacological activities as anti-inflammatory, anti-oxidant and anti-cancer. It is found in many plants, honey and propolis. In the present study, we investigated the chemopreventive efficacy of CH against N-nitrosodiethylamine (DEN) initiated and Fe-NTA induced precancerous lesions and its role in regulating oxidative injury, hyperproliferation, tumor incidences, histopathological alterations, inflammation, and apoptosis in the kidneys of Wistar rats. Renal cancer was initiated by single intraperitoneal (i.p.) injection of DEN (200 mg/kg bw) and promoted by twice weekly injection of ferric nitrilotriacetate (Fe-NTA) 9 mg Fe/kg bw for 16 weeks. CH attenuated Fe-NTA enhanced renal lipid peroxidation, serum toxicity markers and restored renal anti oxidant armory significantly. CH supplementation suppressed the development of precancerous lesions via down regulation of cell proliferation marker like PCNA; inflammatory mediators like TNF-α, IL-6, NFkB, COX-2, iNOS; tumor incidences. CH up regulated intrinsic apoptotic pathway proteins like bax, caspase-9 and caspase-3 along with down regulation of Bcl-2 triggering apoptosis. Histopathological and ultra structural alterations further confirmed biochemical and immunohistochemical results. These results provide powerful evidence for the chemopreventive efficacy of CH against chemically induced renal carcinogenesis possibly by modulation of multiple molecular pathways. PMID:27403965

  8. Simulated Microgravity Promotes Cell Apoptosis Through Suppressing Uev1A/TICAM/TRAF/NF-κB-Regulated Anti-Apoptosis and p53/PCNA- and ATM/ATR-Chk1/2-Controlled DNA-Damage Response Pathways.

    Science.gov (United States)

    Zhao, Tuo; Tang, Xin; Umeshappa, Channakeshava Sokke; Ma, Hong; Gao, Haijun; Deng, Yulin; Freywald, Andrew; Xiang, Jim

    2016-09-01

    Microgravity has been known to induce cell death. However, its underlying mechanism is less studied. In this study, BL6-10 melanoma cells were cultured in flasks under simulated microgravity (SMG). We examined cell apoptosis, and assessed expression of genes associated with apoptosis and genes regulating apoptosis in cells under SMG. We demonstrate that SMG induces cell morphological changes and microtubule alterations by confocal microscopy, and enhances apoptosis by flow cytometry, which was associated with up- and down-regulation of pro-apoptotic and anti-apoptotic genes, respectively. Moreover, up- and down-regulation of pro-apoptotic (Caspases 3, 7, 8) and anti-apoptotic (Bcl2 and Bnip3) molecules was confirmed by Western blotting analysis. Western blot analysis also indicates that SMG causes inhibition of an apoptosis suppressor, pNF-κB-p65, which is complemented by the predominant localization of NF-κB-p65 in the cytoplasm. SMG also reduces expression of molecules regulating the NF-κB pathway including Uev1A, TICAM, TRAF2, and TRAF6. Interestingly, 10 DNA repair genes are down-regulated in cells exposed to SMG, among which down-regulation of Parp, Ercc8, Rad23, Rad51, and Ku70 was confirmed by Western blotting analysis. In addition, we demonstrate a significant inhibition of molecules involved in the DNA-damage response, such as p53, PCNA, ATM/ATR, and Chk1/2. Taken together, our work reveals that SMG promotes the apoptotic response through a combined modulation of the Uev1A/TICAM/TRAF/NF-κB-regulated apoptosis and the p53/PCNA- and ATM/ATR-Chk1/2-controlled DNA-damage response pathways. Thus, our investigation provides novel information, which may help us to determine the cause of negative alterations in human physiology occurring at spaceflight environment. J. Cell. Biochem. 117: 2138-2148, 2016. © 2016 Wiley Periodicals, Inc. PMID:26887372

  9. Shifting the balance of mitochondrial apoptosis: therapeutic perspectives

    Directory of Open Access Journals (Sweden)

    Simone eFulda

    2012-10-01

    Full Text Available Signaling via the intrinsic (mitochondrial pathway of apoptosis represents one of the critical signal transduction cascades that control the regulation of cell death. This pathway is typically altered in human cancers, thereby providing a suitable target for therapeutic intervention. Members of the Bcl-2 family of proteins as well as cell survival signaling cascades such as the PI3K/Akt/mTOR pathway are involved in the regulation of mitochondria-mediated apoptosis. Therefore, further insights into the molecular mechanisms that form the basis for the control of mitochondria-mediated apoptosis will likely open new perspectives to bypass evasion of apoptosis and treatment resistance in human cancers.

  10. Electroporation increases antitumoral efficacy of the bcl-2 antisense G3139 and chemotherapy in a human melanoma xenograft

    Directory of Open Access Journals (Sweden)

    Baldi Alfonso

    2011-07-01

    Full Text Available Abstract Background Nucleic acids designed to modulate the expression of target proteins remain a promising therapeutic strategy in several diseases, including cancer. However, clinical success is limited by the lack of efficient intracellular delivery. In this study we evaluated whether electroporation could increase the delivery of antisense oligodeoxynucleotides against bcl-2 (G3139 as well as the efficacy of combination chemotherapy in human melanoma xenografts. Methods Melanoma-bearing nude mice were treated i.v. with G3139 and/or cisplatin (DDP followed by the application of trains of electric pulses to tumors. Western blot, immunohistochemistry and real-time PCR were performed to analyze protein and mRNA expression. The effect of electroporation on muscles was determined by histology, while tumor apoptosis and the proliferation index were analyzed by immunohistochemistry. Antisense oligodeoxynucleotides tumor accumulation was measured by FACS and confocal microscopy. Results The G3139/Electroporation combined therapy produced a significant inhibition of tumor growth (TWI, more than 50% accompanied by a marked tumor re-growth delay (TRD, about 20 days. The efficacy of this treatment was due to the higher G3139 uptake in tumor cells which led to a marked down-regulation of bcl-2 protein expression. Moreover, the G3139/EP combination treatment resulted in an enhanced apoptotic index and a decreased proliferation rate of tumors. Finally, an increased tumor response was observed after treatment with the triple combination G3139/DDP/EP, showing a TWI of about 75% and TRD of 30 days. Conclusions These results demonstrate that electroporation is an effective strategy to improve the delivery of antisense oligodeoxynucleotides within tumor cells in vivo and it may be instrumental in optimizing the response of melanoma to chemotherapy. The high response rate observed in this study suggest to apply this strategy for the treatment of melanoma patients.

  11. Apoptosis of human pancreatic cancer cells induced by Triptolide

    Institute of Scientific and Technical Information of China (English)

    Guo-Xiong Zhou; Xiao-Ling Ding; Jie-Fei Huang; Hong Zhang; Sheng-Bao Wu; Jian-Ping Cheng; Qun Wei

    2008-01-01

    AIM:To investigate apoptosis in human pancreatic cancer ceils induced by Triptolide (TL),and the relationship between this apoptosis and expression of caspase-3' bcl-2 and bax.METHODS:Human pancreatic cancer cell line SW1990 was cultured in DIEM media for this study.MTT assay was used to determine the cell growth inhibitory rate in vitro.Flow cytometry and TUNEL assay were used to detect the apoptosis of human pancreatic cancer cells before and after TL treatment.RT-PCR was used to detect the expression of apoptosis-associated gene caspase-3' bcl-2 and bax.RESULTS:TL inhibited the growth of human pancreatic cancer cells in a dose-and time-dependent manner.TL induced human pancreatic cancer cells to undergo apoptosis with typically apoptotic characteristics.TUNEL assay showed that after the treatment of human pancreatic cancer cells with 40 ng/mL TL for 12 h and 24 h,the apoptotic rates of human pancreatic cancer cells increased significantly.RT-PCR demonstrated that caspase-3 and bax were significantly up-regulated in SW1990 cells treated with TL while bcl-2 mRNA was not.CONCLUSION:TL is able to induce the apoptosis in human pancreatic cancer cells.This apoptosis may be mediated by up-regulating the expression of apoptosisassociated caspase-3 and bax gene.

  12. Influence of neurotrophin-3 on Bcl-2 and Bax expressions in spinal cord injury of rats

    Institute of Scientific and Technical Information of China (English)

    GUO Shu-zhang; JIANG Tao; REN Xian-jun

    2007-01-01

    Objective:To study the protective mechanisms of neurotrophin-3 (NT-3) on the spinal cord injury.Methods:Totally 105 SD rats were randomly divided into 3 groups:control group,experimental group and sham operation group.Rats from the former 2 groups were inflicted to animal model of acute spinal cord injury according to Allen's (WD) by situating a thin plastic tube in the subarachnoid space below the injury level for perfusion.Rats in experimental group received 20μl NT-3 (200 ng) from the tube at 0,4,8,12,24 h and 3,7 d after injury,and those in control group got an equal volume of normal saline at the same time.The animals in sham operation group only received opening vertebral plate and tube was put in subarachnoid space.The rats were sacrificed at 4,8,12,24 h and 3,7,14 d post injury (n=5).The expression levels of Bcl-2 and Bax proteins in spinal cord of rats were detected by immunohistochemistry assay.Results:The level of Bax protein in control group significantly increased as compared with those in sham operation group, and the peak reached at 8 h after spinal cord injury.The Bcl-2 proteins were always weakly positive.The Bax proteins in NT-3 group significantly decreased but the Bcl-2 proteins obviously increased as compared with those in control group.Conclusion:NT-3 can protect spinal cord from injury in vivo.One of the mechanisms is that NT-3 can inhibit abnormal expression of Bax protein,and increase the expression of Bcl-2 protein,then inhibit apoptosis after spinal cord injury.

  13. Acteoside-mediates chemoprevention of experimental liver carcinogenesis through STAT-3 regulated oxidative stress and apoptosis.

    Science.gov (United States)

    Peerzada, Kaiser J; Faridi, Aamir H; Sharma, Love; Bhardwaj, Subhash C; Satti, Naresh K; Shashi, Bhushan; Tasduq, Sheikh A

    2016-07-01

    In the absence of an effective therapy against Hepatocellular Carcinoma (HCC), chemoprevention remains an important strategy to circumvent morbidity and mortality. Here, we examined chemopreventive potential of Acteoside (ACT), a plant derived phenylethanoid glycoside against an environmental and dietary carcinogen, diethylnitrosamine (DEN)-induced rat hepatocarcinogenesis. ACT treatment (0.1 and 0.3% supplemented with diet) started 2 weeks before DEN challenge and continued for 18 weeks thereafter, showed a remarkable chemopreventive activity. ACT treatment resulted in reduced HCC nodules. Histopathology showed progressive tissue damage, necrosis (5 weeks), hepatocytic injury (10 weeks), anisonucleosis with presence of prominent nucleoli, sinusidal dilations, and lymphomono nuclear inflammation (18 weeks). Biochemical analysis showed hepatocytic injury (raised ALT, p reactive oxygen species (ROS) levels and prevented mitochondrial membrane potential (MMP) loss. Immunoblotting showed ACT treatment reversed DEN-induced NF-κB, Bax, Cytochrome C, Bcl-2, and Stat-3 levels. We conclude that chemoprotective effect of ACT is mediated by STAT-3 dependent regulation of oxidative stress and apoptosis and ACT has potential to be developed as a chemopreventive agent. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 782-798, 2016. PMID:26990576

  14. The Action of Bcl-2 Apoptotic Family Proteins and Caspases in Mediating Follicle Atresia in Adult Mouse

    Directory of Open Access Journals (Sweden)

    Liliana Petculescu-Ciochină

    2011-05-01

    Full Text Available Among follicles present on the surface of the ovary only a small part reach ovulation, the majority entering atresia, which is an apoptotic process regulated hormonally in general. Apoptosis (from greek: apo = from, ptosis = falling - is a normal physiological process, genetically programmed cell death, which carries energy consumption by activating a program of internal suicide. This occurs at each stage of follicular development and is accompanied by a significant reduction in the number of follicles present at birth. Development stage-dependent mechanisms coordinate the evolution of follicles, leading to ovulation of a very small number of them. At follicular level apoptosis involves many morphological and biochemical processes that are based on pro-and anti-apoptotic members of Bcl-2 family of proteins (located on mitochondrial outer membrane and caspases. These changes aim internucleosomal DNA fragmentation, cell retraction followed by its wrinkling, cytoskeleton disruption, preservation of cytoplasmic organelles structure and function, loss of intercellular ties with the reduced expression of conexine 43 (key protein of communication junctions between granulose cells, progressive fragmentation of nucleus and cytoplasm, and finally the appearance of apoptotic bodies, and their inclusion by phagocytes, without the involvement of any inflammatory response.

  15. Expression of p53, Bax and Bcl-2 proteins in hepatocytes in non-alcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    Anatol Panasiuk; Janusz Dzieciol; Bozena Panasiuk; Danuta Prokopowicz

    2006-01-01

    AIM: To analyze the protein expression essential for apoptosis in liver steatosis.METHODS: The expression of proapoptotic proteinsp53, Bax, and antiapoptotic Bcl-2 in hepatocytes with steatosis (SH) and without steatosis (NSH) was evaluated in 84 patients at various stages of non-alcoholic fatty liver disease (NAFLD).RESULTS: Immunohistochemical staining of liver tissue showed the activation of p53 protein in SH and NSH with increased liver steatosis, diminished Bcl-2 and slightly decreased Bax protein. Positive correlation was found between the stage of liver steatosis with p53 expression in SH (r = 0.54, P < 0.01) and NSH (r = 0.49,P < 0.01).The antiapoptotic protein Bcl-2 was diminished together with the advancement of liver steatosis, especially in non-steatosed hepatocytes (r =0.43, P < 001).CONCLUSION: Apoptosis is one of the most important mechanisms leading to hepatocyte elimination in NAFLD. The intensification of inflammation in NAFLD induces proapoptotic protein p53 with the inhibition of antiapoptotic Bcl-2.

  16. Molecular signal transduction in vascular cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Apoptosis is a form of genetically programmed cell death, which plays a key role in regulation of cellularity in a variety of tissue and cell types including the cardiovascular tissues. Under both physiological and pathophysiological conditions, various biophysiological and biochemical factors, including mechanical forces, reactive oxygen and nitrogen species, cytokines, growth factors, oxidized lipoproteins, etc., may influence apoptosis of vascular cells. The Fas/Fas ligand/caspase death-signaling pathway, Bcl-2 protein family/mitochondria, the tumor suppressive gene p53, and the proto-oncogene c-myc may be activated in atherosclerotic lesions, and mediates vascular apoptosis during the development of atherosclerosis. Abnormal expression and dysfunction of these apoptosis-regulating genes may attenuate or accelerate vascular cell apoptosis and affect the integrity and stability of atherosclerotic plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of atherosclerosis and its major complication, the acute vascular syndromes.

  17. Detection of apoptotic cells and immunohistochemical study of bcl-2 and p53 gene protein in primary gastric mucosa-associated lymphoid tissue (MALT) lymphoma

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To identify the apoptotic cells in gastric MALT lymphoma and its relationship between bcl-2 and p53 gene expression. Methods: TdT-mediated dUTP biotin Nick End labeling (TUNEL) and immuno-histochemistry ABC method were used to display apoptotic cells and the gene protein expression of bcl-2 and p53 independently. Results: Apoptotic indices (AI) in high-grade MALT lymphomas were significantly higher than in mixed-grade group and low-grade group (P<0.05). Bcl-2 was expressed in 83% of low-grade tumors, 61.6% of the median-grade tumors and 43.7% of high-grade tumors. An inverse correlation was observed between the expression of bcl-2 and apoptotic indices. Only 27 cases were p53 positive. The frequency of p53 positivity was significantly increased as the histologic grade advanced (P<0.05). There was also an inverse correlation between the expression of bcl-2 and p53. Conclusion: Apoptosis may be important in tumors development and transmission. P53 and bcl-2 were important regulatory genes of apoptosis and may be associated with transformation from low-grade to high-grade lymphomas.

  18. Modulated Binding of SATB1, a Matrix Attachment Region Protein, to the AT-Rich Sequence Flanking the Major Breakpoint Region of BCL2

    Science.gov (United States)

    Ramakrishnan, Meera; Liu, Wen-Man; DiCroce, Patricia A.; Posner, Aleza; Zheng, Jian; Kohwi-Shigematsu, Terumi; Krontiris, Theodore G.

    2000-01-01

    The t(14,18) chromosomal translocation that occurs in human follicular lymphoma constitutively activates the BCL2 gene and disrupts control of apoptosis. Interestingly, 70% of the t(14,18) translocations are confined to three 15-bp clusters positioned within a 150-bp region (major breakpoint region or [MBR]) in the untranslated portion of terminal exon 3. We analyzed DNA-protein interactions in the MBR, as these may play some role in targeting the translocation to this region. An 87-bp segment (87MBR) immediately 3′ to breakpoint cluster 3 was essential for DNA-protein interaction monitored with mobility shift assays. We further delineated a core binding region within 87MBR: a 33-bp, very AT-rich sequence highly conserved between the human and mouse BCL2 gene (37MBR). We have purified and identified one of the core factors as the matrix attachment region (MAR) binding protein, SATB1, which is known to bind to AT-rich sequences with a high propensity to unwind. Additional factors in nuclear extracts, which we have not yet characterized further, increased SATB1 affinity for the 37MBR target four- to fivefold. Specific binding activity within 37MBR displayed cell cycle regulation in Jurkat T cells, while levels of SATB1 remained constant throughout the cell cycle. Finally, we demonstrated in vivo binding of SATB1 to the MBR, strongly suggesting the BCL2 major breakpoint region is a MAR. We discuss the potential consequences of our observations for both MBR fragility and regulatory function. PMID:10629043

  19. Alisertib added to rituximab and vincristine is synthetic lethal and potentially curative in mice with aggressive DLBCL co-overexpressing MYC and BCL2.

    Directory of Open Access Journals (Sweden)

    Daruka Mahadevan

    Full Text Available Pearson correlation coefficient