WorldWideScience

Sample records for bcf-12 organic scintillators

  1. A comparison of BCF-12 organic scintillators and Al2O3:C crystals for real-time medical dosimetry

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Andersen, Claus Erik; Lindvold, Lars;

    2008-01-01

    Radioluminescence (RL) from aluminium oxide (Al2O3:C) crystals and organic scintillators such as the blue-emitting BCF-12 can be used for precise real-time dose rate measurements during radiation therapy of cancer patients. Attaching the dosimeters to thin light-guiding fiber cables enables in vi...

  2. Comparison of BCF-10, BCF-12, and BCF-20 Scintillating Fibers for Use in a 1-Dimensional Linear Sensor

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Scott M. Watson; James T. Johnson

    2012-10-01

    One-dimensional fiber-bundle arrays may prove useful in a number of radiation sensing applications where radiation detection over large areas is needed. Tests have been performed to evaluate the light generation and transmission characteristics of 15-meter long, 10-fiber bundles of BCF-10, BCF-12, and BCF-20 scintillating fibers (Saint Gobain) exposed to collimated gamma-ray sources. The test set-up used one R9800 (Hamamatsu) photomultiplier tube (PMT) at each end, with a high-speed waveform digitizer to collect data. Time constraints were imposed on the waveform data to perform time-of-flight analysis of the events in the fiber bundles, eliminating spurious noise pulses in the high gain PMTs and also allowing 1-dimensional localization of interactions along the lengths of the fiber bundles. This paper will present the results of these measurements including the attenuation coefficients of the two fiber types and the timing resolution (position uncertainty) possible for each fiber bundle when using the R9800 PMTs.

  3. Scintillation response of organic and inorganic scintillators

    CERN Document Server

    Papadopoulos, L M

    1999-01-01

    A method to evaluate the scintillation response of organic and inorganic scintillators to different heavy ionizing particles is suggested. A function describing the rate of the energy consumed as fluorescence emission is derived, i.e., the differential response with respect to time. This function is then integrated for each ion and scintillator (anthracene, stilbene and CsI(Tl)) to determine scintillation response. The resulting scintillation responses are compared to the previously reported measured responses. Agreement to within 2.5% is observed when these data are normalized to each other. In addition, conclusions regarding the quenching parameter kB dependence on the type of the particle and the computed values of kB for certain ions are included. (author)

  4. Cherenkov and Scintillation Light Separation in Organic Liquid Scintillators

    CERN Document Server

    Caravaca, J; Land, B J; Yeh, M; Gann, G D Orebi

    2016-01-01

    The CHErenkov / Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2g/L of PPO as a fluor (LAB/PPO). This is the first such demonstration for the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 +/- 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 +/- 3% and 63 +/- 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 +/- 5% and 38 +/- 4%. LAB/PPO data is consistent with a rise time of 0.75 +/- 0.25 ns.

  5. Proton recoils in organic liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Juergen [Technische Universitaet Muenchen, Physik Department E15, Garching (Germany); Collaboration: LENA Working Group

    2012-07-01

    In liquid-scintillator detectors like the LENA (Low Energy Neutrino Astronomy) project, understanding the nature of proton recoils is vital. First of all concerning the observation of the diffuse Supernova anti {nu}{sub e} background with the inverse beta decay (IBD). This signature can be mimicked by the thermalization and capture of a knockout neutron originating from inelastic NC interactions of atmospheric neutrinos on {sup 12}C. However, with the help of pulse shape discrimination between the neutron-induced proton recoils and the prompt positron signal from the IBD, this background might be reduced effectively. Furthermore, elastic {nu}-p scattering is an important channel for neutrinos from a galactic core-collapse SN. In order to reconstruct the initial neutrino energy, the energy-dependent quenching factor of proton recoils has to be known. Therefore, a neutron scattering experiment at the Maier-Leibnitz-Laboratorium in Garching has been set up in order to understand the response of proton recoils in organic liquid scintillator.

  6. Systematic study of particle quenching in organic scintillators

    International Nuclear Information System (INIS)

    Among the different factors that affect measurements by organic scintillators, the majority of attention has been focused on those related to the scintillator (i.e., ionization, chemical, color and optical quenching), and less attention has been paid to the loss of energy before the particle (i.e., alpha or beta) arrives at the scintillator (i.e., particle quenching). This study evaluates the effect of particle quenching in different scintillation methods (i.e., using two plastic scintillation microspheres (PSm1 and PSm2), liquid scintillator and gel scintillator) by measuring solutions that contain increasing concentrations of NaCl, BaCl2 and glycerin. The results show the importance of particle quenching in PSm measurements because detection efficiency decreases with increasing concentrations of the quenching component, although the spectrum position and external standard parameter remain constant. The results have shown evidence of particle quenching, although at a lower magnitude, in the liquid scintillation or gel scintillation measurements. Moreover, the use of two PSm with different diameters and salty compound that alters the equilibrium of the liquid and gel emulsions also exemplified the importance of the transmission of optical photons through different scintillation media (i.e., optical quenching). Improvement and deterioration of the optical conditions on the scintillation media is manifested as a movement of the spectrum to higher and lower energies, respectively. The results obtained with PSm were confirmed by Monte Carlo simulation.

  7. Metal-loaded organic scintillators for neutrino physics

    CERN Document Server

    Buck, Christian

    2016-01-01

    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can be used under stable conditions for many years even in ton scale experiments. Applications of metal loaded scintillators in neutrino experiments are reviewed and the performance as well as the prospects of different scintillator types are compared.

  8. Metal-loaded organic scintillators for neutrino physics

    Science.gov (United States)

    Buck, Christian; Yeh, Minfang

    2016-09-01

    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can be used under stable conditions for many years even in ton scale experiments. Applications of metal loaded scintillators in neutrino experiments are reviewed and the performance as well as the prospects of different scintillator types are compared.

  9. Preparation and properties of scintillating glass doped with organic activators

    Institute of Scientific and Technical Information of China (English)

    ZHU Dong-mei; LUO Fa; ZHAO Hong-sheng; ZHOU Wan-cheng

    2006-01-01

    A series of scintillating glasses were developed by doping organic activators into low melting temperature glasses according to different ratios. The fluorescence spectra and the transmission spectra of some scintillating glasses were explored and the actual concentration organic in scintillating glass was estimated. The results show that it is feasible to prepare the scintillating glass by doing organic scintillating activators into the low-melting glasses. There are two main reasons for the weak optical properties of the scintillation glasses: one is that the actual concentration of organic activators doped in the glasses is very low,and the other is the existence of lots of defects formed in the scintillating glasses due to the evaporation of organic activator,lowering the transmission of glasses. The fluorescence emission peaks of the glasses move to a longer wavelength compared with those in organic matrixes. To increase the light output of the glass,the optical transmittance of the glasses must be improved and the concentration of activators in the glasses must be increased.

  10. Organic scintillator detector response simulations with DRiFT

    Science.gov (United States)

    Andrews, M. T.; Bates, C. R.; McKigney, E. A.; Solomon, C. J.; Sood, A.

    2016-09-01

    This work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNP® output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed-field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNP® 6 , which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.

  11. Development of an Organic Scintillator Sensor for Radiation Dosimetry using Transparent Epoxy Resin and Optical Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Hee; Seo, Bun Kyung; Lee, Dong Gyu; Lee, Kune Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-06-15

    Remote detecting system for a radiation contamination using a plastic scintillator and an optical fiber was developed. Using a commercially available silica optical fiber and a plastic scintillator, we tested then for a real possibility as a remote monitoring detector. Also, a plastic scintillator was developed by itself, and evaluated as a radiation sensor. The plastic scintillator was made of epoxy resin, a hardener and an organic scintillation material. The mixture rate of the epoxy resin, hardener and organic scintillator was fixed by using their emission spectrum, transmittance, intensity etc. In this study, in order to decrease the light loss of an incomplete connection between an optical fiber and a scintillator, the optical fiber was inserted into the scintillator during the fabrication process. The senor used a plastic optical fiber and was estimated for its detection efficiency by an optic fiber's geometric factor.

  12. Positronium signature in organic liquid scintillators for neutrino experiments

    CERN Document Server

    Franco, D; Trezzi, D

    2010-01-01

    Electron anti-neutrinos are commonly detected in liquid scintillator experiments via inverse beta decay, by looking at the coincidence between the reaction products, neutron and positron. Prior to positron annihilation, an electron-positron pair may form an orthopositronium (o-Ps) state, with a mean life of a few ns. Even if the o-Ps decay is speeded up by spin flip or pick off effects, it may introduce distortions in the photon emission time distribution, crucial for position reconstruction and pulse shape discrimination algorithms in anti-neutrino experiments. Reversing the problem, the o-Ps induced time distortion represents a new signature for tagging anti-neutrinos in liquid scintillator. In this paper, we report the results of measurements of the o-Ps formation probability and lifetime, for the most used solvents for organic liquid scintillators in neutrino physics (pseudocumene, linear alkyl benzene, phenylxylylethane, and dodecane). We characterize also a mixture of pseudocumene +1.5 g/l of 2,5-diphen...

  13. Organic liquid scintillation detector shape and volume impact on radiation portal monitors

    Science.gov (United States)

    Paff, Marc G.; Clarke, Shaun D.; Pozzi, Sara A.

    2016-07-01

    We have developed and tested a radiation portal monitor using organic liquid scintillation detectors. In order to optimize our system designs, neutron measurements were carried out with three organic liquid scintillation detectors of different shapes and sizes, along with a 3He radiation portal monitor (RPM) as a reference. The three liquids tested were a 7.62 cm diameter by 7.62 cm length cylindrical active volume organic liquid scintillation detector, a 12.7 cm diameter by 12.7 cm length cylindrical active volume organic liquid scintillation detector, and a 25 cm by 25 cm by 10 cm "paddle" shaped organic liquid scintillation detector. Background and Cf-252 neutron measurements were recorded to allow for a comparison of neutron intrinsic efficiencies as well as receiver operating characteristics (ROC) curves between detectors. The 12.7 cm diameter cylindrical active volume organic liquid scintillation detector exhibited the highest intrinsic neutron efficiency (54%) of all three liquid scintillators. An ROC curve analysis for a heavily moderated Cf-252 measurement showed that using the 12.7 cm diameter by 12.7 cm length cylindrical active volume Eljen EJ309 organic liquid scintillation detector would result in the fewest needed detector units in order to achieve a near 100% positive neutron alarm rate while maintaining a better than 1 in 10,000 false alarm rate on natural neutron background. A small number of organic liquid scintillation detectors could therefore be a valid alternative to 3He in some RPM applications.

  14. Investigation of linear accelerator pulse delivery using fast organic scintillator measurements

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Andersen, Claus Erik; Lindvold, Lars René;

    2010-01-01

    Fiber-coupled organic plastic scintillators present an attractive method for time-resolved dose measurements during radiotherapy. Most organic scintillators exhibit a fast response, making it possible to use them to measure individual high-energy X-ray pulses from a medical linear accelerator. Th...

  15. Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection

    CERN Document Server

    Aberle, C; Gramlich, B; Hartmann, F X; Lindner, M; Schönert, S; Schwan, U; Wagner, S; Watanabe, H

    2011-01-01

    Over the course of several decades organic liquid scintillators form the basis for successful neutrino detectors. For electron antineutrino detection at nuclear reactor plants, gadolinium loaded liquid scintillators provide efficient background suppression. In the Double Chooz reactor antineutrino experiment a newly developed gadolinium-loaded scintillator is utilized for the first time. Its large scale production and characterization as well as the creation of an additional metalfree scintillator are presented. Both organic liquids are used in the inner part of the Double Chooz detectors.

  16. Generation of organic scintillators response function for fast neutrons using the Monte Carlo method

    International Nuclear Information System (INIS)

    A computer program (DALP) in Fortran-4-G language, has been developed using the Monte Carlo method to simulate the experimental techniques leading to the distribution of pulse heights due to monoenergetic neutrons reaching an organic scintillator. The calculation of the pulse height distribution has been done for two different systems: 1) Monoenergetic neutrons from a punctual source reaching the flat face of a cylindrical organic scintillator; 2) Environmental monoenergetic neutrons randomly reaching either the flat or curved face of the cylindrical organic scintillator. The computer program has been developed in order to be applied to the NE-213 liquid organic scintillator, but can be easily adapted to any other kind of organic scintillator. With this program one can determine the pulse height distribution for neutron energies ranging from 15 KeV to 10 MeV. (Author)

  17. Fast neutron spectrometry with organic scintillators applied to magnetic fusion experiments

    CERN Document Server

    Kaschuck, Y A; Trykov, L A; Semenov, V P

    2002-01-01

    Neutron spectrometry with NE213 liquid scintillators is commonly used in thermonuclear fusion experiments to measure the 2.45 and 14.1 MeV neutron flux. We present the unfolded neutron spectrum, which was accumulated during several ohmic deuterium plasma discharges in the Frascati Tokamak Upgrade using a 2''x2'' NE213 scintillator. In this paper, we review the application of organic scintillator neutron spectrometers to tokamaks, focusing in particular on the comparison between NE213 and stilbene scintillators. Various aspects of the calibration technique and neutron spectra unfolding procedure are considered in the context of their application for fusion neutron spectrometry. Testing and calibration measurements have been carried out using D-D and D-T neutron generator facilities with both NE213 and stilbene scintillators. The main result from these measurements is that stilbene scintillator has better neutron energy resolution than NE213. Our stilbene detector could be used for the determination of the ion ...

  18. Acquiring beam data for a flattening-filter free linear accelerator using organic scintillators

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Behrens, C.F.; Hoffmann, L.;

    2013-01-01

    Fibre-coupled organic scintillators have been proven a credible alternative to clinically implemented methods for radiotherapy dosimetry, primarily due to their water equivalence and good spatial resolution. Furthermore, the fast response of the scintillators can be exploited to perform time-reso...

  19. Synthesis and characterization of low-melting scintillating glass doped with organic activator

    CERN Document Server

    Zhao Hong Sheng; Zhu Dong Mei; Wu Jing

    2000-01-01

    New colliders for high-energy physics studies require scintillators with short decay time, high density, good radiation hardness and low cost. It is possible to make glass scintillators that can meet these requirements by doping organic scintillating activators into an inorganic glass host. In this research, p-Terphenyl as the activator is doped into lead-tin-fluorophosphate glasses. There is no detectable change of the dopant on the densities and characteristic temperatures of the glass host. The hybrid scintillating glasses doped with p-TP possess 5 ns decay time and a broad fluorescence emission band, the peak of which is at about 545 nm. Although the light yields of the glasses are low, this research shows that it is possible to develop good hybrid scintillating glasses by doping organic activators into inorganic glass host.

  20. Highly fluorescent xerogels with entrapped carbon dots for organic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Quaranta, A., E-mail: quaranta@ing.unitn.it [University of Trento, Department of Industrial Engineering, via Mesiano, 77, 38123 Trento (Italy); Laboratori Nazionali di Legnaro, INFN, Viale dell' Università, 2, 35020 Legnaro (PD) (Italy); Carturan, S. [Laboratori Nazionali di Legnaro, INFN, Viale dell' Università, 2, 35020 Legnaro (PD) (Italy); University of Padova, Department of Physics and Astronomy “Galileo Galilei”, Via Marzolo, 8, 35131 Padova (Italy); Campagnaro, A.; Dalla Palma, M. [University of Trento, Department of Industrial Engineering, via Mesiano, 77, 38123 Trento (Italy); Laboratori Nazionali di Legnaro, INFN, Viale dell' Università, 2, 35020 Legnaro (PD) (Italy); Giarola, M.; Daldosso, N. [University of Verona, Department of Informatics, Strada le Grazie,15, 37134 Verona (Italy); Maggioni, G. [Laboratori Nazionali di Legnaro, INFN, Viale dell' Università, 2, 35020 Legnaro (PD) (Italy); University of Padova, Department of Physics and Astronomy “Galileo Galilei”, Via Marzolo, 8, 35131 Padova (Italy); Mariotto, G. [University of Verona, Department of Informatics, Strada le Grazie,15, 37134 Verona (Italy)

    2014-02-28

    Organically modified silicate thin film and bulk samples were prepared using [3-(2-aminoethylamino)propyl]trimethoxysilane (AEAP-TMOS) as precursor with the addition of different amounts of AEAP-TMOS functionalized C-dots, prepared by reaction of AEAP-TMOS and citric acid at high temperature. The synthesis of surface functionalized C-dots was followed by Fourier Transform Infrared (FTIR) spectroscopy, and the C-dots optical properties were characterized by optical absorption and UV–vis fluorescence. Thin xerogel films and bulk samples were studied by FTIR, Raman and fluorescence spectroscopy. Intense blue-green emission was observed by UV excitation of functionalized C-dots. Carbon quantum dot (CQD) luminescence was preserved also in the xerogel matrices, and the energy transfer from the matrix to CQDs, which is a key characteristic for scintillation detectors, was investigated in the two systems. - Highlights: • Functionalized carbon dots were synthesized. • Carbon dots were dispersed in hybrid xerogel bulk and thin film. • Carbon dots exhibit a strong tunable blue luminescence. • Xerogels were characterized by FT-IR, Raman and fluorescence spectroscopies. • Energy transfer processes were evidenced between C-dots and xerogel matrix.

  1. Melt-cast organic glasses as high-efficiency fast neutron scintillators

    Science.gov (United States)

    Carlson, Joseph S.; Feng, Patrick L.

    2016-10-01

    In this work we report a new class of organic-based scintillators that combines several of the desirable attributes of existing crystalline, liquid, and plastic organic scintillators. The prepared materials may be isolated in single crystalline form or melt-cast to produce highly transparent glasses that have been shown to provide high light yields of up to 16,000 photons/MeVee, as evaluated against EJ-200 plastic scintillators and solution-grown trans-stilbene crystals. The prepared organic glasses exhibit neutron/gamma pulse-shape discrimination (PSD) and are compatible with wavelength shifters to reduce optical self-absorption effects that are intrinsic to pure materials such as crystalline organics. The combination of high scintillation efficiency, PSD capabilities, and facile scale-up via melt-casting distinguishes this new class of amorphous materials from existing alternatives.

  2. New Cerium-Based Metal-Organic Scintillators for Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, Lynn A [ORNL; Neal, John S [ORNL; Ramey, Joanne Oxendine [ORNL; Chakoumakos, Bryan C [ORNL; Custelcean, Radu [ORNL; Van Loef, Edgar [Radiation Monitoring Devices, Watertown, MA; Markosyan, G [Radiation Monitoring Devices, Watertown, MA

    2013-01-01

    We have previously shown that a new class of scintillating materials can be developed based on the synthesis and crystal growth of rare-earth metal-organic compounds. The first scintillator of this type consisted of single crystals of CeCl3(CH3OH)4 that were grown from a methanol solution. These crystals were shown to be applicable to both gamma-ray and fast neutron detection. Subsequently, metal-organic scintillators consisting of the compound LaBr3(CH3OH)4 activated with varying levels of Ce3+ and of CeBr3(CH3OH)4 were grown in single crystal form. We have now extended the development of this new class of scintillators to more complex organic components by reacting rare-earth halides such as CeCl3 or CeBr3 with different isomers of propanol and butanol including 1-propanol, isobutanol, n-butanol, and tert-butanol. The reaction of CeCl3 or CeBr3 with these organics results in the formation of new and relatively complex molecular crystals whose structures were determined using single-crystal X-ray diffraction. These new metal-organic scintillating materials were grown in single crystal form from solution, and their scintillation characteristics have been investigated using X-ray-excited luminescence plus energy spectra obtained with gamma-ray and alpha-particle sources. If the reactions between the inorganic and organic components are not carried out under very dry and highly controlled conditions, molecular structures can be formed that incorporate waters of hydration. The present observation of scintillation in these hydrated rare-earth metal-organic compounds is apparently an original finding, since we are not aware of any previous reports of scintillation being observed in a material that incorporates waters of hydration

  3. New cerium-based metal–organic scintillators for radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, L.A., E-mail: boatnerla@ornl.gov [Center for Radiation Detection Materials and Systems, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Neal, J.S. [Center for Radiation Detection Materials and Systems, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Global Nuclear Security Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Ramey, J.O. [Center for Radiation Detection Materials and Systems, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Chakoumakos, B.C. [Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Custelcean, R. [Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Loef, E.V.D. van; Markosyan, G.; Shah, K.S. [Radiation Monitoring Devices, Inc. Watertown, MA 02472 (United States)

    2013-03-01

    We have previously shown that a new class of scintillating materials can be developed based on the synthesis and crystal growth of rare-earth metal–organic compounds. The first scintillator of this type consisted of single crystals of CeCl{sub 3}(CH{sub 3}OH){sub 4} that were grown from a methanol solution. These crystals were shown to be applicable to both gamma-ray and fast neutron detection. Subsequently, metal–organic scintillators consisting of the compound LaBr{sub 3}(CH{sub 3}OH){sub 4} activated with varying levels of Ce{sup 3+} and of CeBr{sub 3}(CH{sub 3}OH){sub 4} were grown in single crystal form. We have now extended the development of this new class of scintillators to more complex organic components by reacting rare-earth halides such as CeCl{sub 3} or CeBr{sub 3} with different isomers of propanol and butanol—including 1-propanol, isobutanol, n-butanol, and tert-butanol. The reaction of CeCl{sub 3} or CeBr{sub 3} with these organics results in the formation of new and relatively complex molecular crystals whose structures were determined using single-crystal X-ray diffraction. These new metal–organic scintillating materials were grown in single crystal form from solution, and their scintillation characteristics have been investigated using X-ray-excited luminescence plus energy spectra obtained with gamma-ray and alpha-particle sources. If the reactions between the inorganic and organic components are not carried out under very dry and highly controlled conditions, molecular structures will be formed that incorporate waters of hydration. The present observation of scintillation in these hydrated rare-earth metal–organic compounds is apparently an original finding, since we are not aware of any previous reports of scintillation being observed in a material that incorporates waters of hydration. -- Highlights: ► New metal–organic scintillating materials were grown in single crystal form from solution. ► In two cases, molecular

  4. Intrinsic Evaluation of n/γ Discrimination in Organic Plastic Scintillators

    International Nuclear Information System (INIS)

    This paper is devoted to characterizing plastic scintillators with neutron/gamma (n/γ) discrimination abilities and understanding experimentally the photophysical processes downstream. This experimental work is divided into two main studies, neutron sources irradiations and optical photoionization on a range of organic scintillators. The commercial liquid and plastic scintillators, respectively BC-501A from Bicron and EJ-200 from Eljen, are used as references in term of respectively extremely high [1] and poor n/γ discrimination efficiency, or more precisely Triplet-Triplet Annihilation rate probabilities after nuclear irradiations. We have characterized a range of organic plastic scintillators including one developed in our laboratory that shows good discrimination efficiency when compared to plastics that discriminate from literature. For that purpose we use the well known charge comparison as a pulse shape discrimination (PSD) method. We have also studied raw wave forms acquired after neutron irradiation before any kind of treatment was applied and managed to separate two light components, prompt and delayed, thus two particle families. We have demonstrated that by exciting with a 70 femto-seconds pulsed Laser at the femtosecond up to 50 μJ at 260 nm, photoionization was achieved for a range of organic scintillators by observing a delayed light emission in the time decay fluorescence when the Laser energy deposited in the materials was increased. This work is ongoing at CEA in collaboration with the nuclear measurement industry Canberra and the Laboratoire de Chimie Physique from Orsay University. (authors)

  5. Hybrid metal organic scintillator materials system and particle detector

    Science.gov (United States)

    Bauer, Christina A.; Allendorf, Mark D.; Doty, F. Patrick; Simmons, Blake A.

    2011-07-26

    We describe the preparation and characterization of two zinc hybrid luminescent structures based on the flexible and emissive linker molecule, trans-(4-R,4'-R') stilbene, where R and R' are mono- or poly-coordinating groups, which retain their luminescence within these solid materials. For example, reaction of trans-4,4'-stilbenedicarboxylic acid and zinc nitrate in the solvent dimethylformamide (DMF) yielded a dense 2-D network featuring zinc in both octahedral and tetrahedral coordination environments connected by trans-stilbene links. Similar reaction in diethylformamide (DEF) at higher temperatures resulted in a porous, 3-D framework structure consisting of two interpenetrating cubic lattices, each featuring basic to zinc carboxylate vertices joined by trans-stilbene, analogous to the isoreticular MOF (IRMOF) series. We demonstrate that the optical properties of both embodiments correlate directly with the local ligand environments observed in the crystal structures. We further demonstrate that these materials produce high luminescent response to proton radiation and high radiation tolerance relative to prior scintillators. These features can be used to create sophisticated scintillating detection sensors.

  6. Investigation of linear accelerator pulse delivery using fast organic scintillator measurements

    Energy Technology Data Exchange (ETDEWEB)

    Beierholm, A.R., E-mail: anders.beierholm@risoe.d [Radiation Research Department, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Andersen, C.E.; Lindvold, L.R. [Radiation Research Department, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Aznar, M.C. [Department of Radiation Oncology, Copenhagen University Hospital, DK-2100 Copenhagen (Denmark)

    2010-03-15

    Fiber-coupled organic plastic scintillators present an attractive method for time-resolved dose measurements during radiotherapy. Most organic scintillators exhibit a fast response, making it possible to use them to measure individual high-energy X-ray pulses from a medical linear accelerator. This can be used in complex treatment procedures such as gated intensity-modulated radiotherapy (IMRT), where the advantage of dose rate measurements of high temporal resolution is highly emphasized. We report on development of a fast data acquisition scintillator-based system as well as measurements performed on Varian medical linear accelerators, delivering 6 MV X-ray beams. The dose delivery per radiation pulse was found to agree with expectations within roughly 1%, although minor discrepancies and transients were evident in the measurements.

  7. X-ray imaging with scintillator-sensitized hybrid organic photodetectors

    Science.gov (United States)

    Büchele, Patric; Richter, Moses; Tedde, Sandro F.; Matt, Gebhard J.; Ankah, Genesis N.; Fischer, Rene; Biele, Markus; Metzger, Wilhelm; Lilliu, Samuele; Bikondoa, Oier; MacDonald, J. Emyr; Brabec, Christoph J.; Kraus, Tobias; Lemmer, Uli; Schmidt, Oliver

    2015-12-01

    Medical X-ray imaging requires cost-effective and high-resolution flat-panel detectors for the energy range between 20 and 120 keV. Solution-processed photodetectors provide the opportunity to fabricate detectors with a large active area at low cost. Here, we present a disruptive approach that improves the resolution of such detectors by incorporating terbium-doped gadolinium oxysulfide scintillator particles into an organic photodetector matrix. The X-ray induced light emission from the scintillators is absorbed within hundreds of nanometres, which is negligible compared with the pixel size. Hence, optical crosstalk, a limiting factor in the resolution of scintillator-based X-ray detectors, is minimized. The concept is validated with a 256 × 256 pixel detector with a resolution of 4.75 lp mm-1 at a MTF = 0.2, significantly better than previous stacked scintillator-based flat-panel detectors. We achieved a resolution that proves the feasibility of solution-based detectors in medical applications. Time-resolved electrical characterization showed enhanced charge carrier mobility with increased scintillator filling, which is explained by morphological changes.

  8. Acquiring beam data for a flattening-filter free linear accelerator using organic scintillators

    International Nuclear Information System (INIS)

    Fibre-coupled organic scintillators have been proven a credible alternative to clinically implemented methods for radiotherapy dosimetry, primarily due to their water equivalence and good spatial resolution. Furthermore, the fast response of the scintillators can be exploited to perform time-resolved dosimetry on a highly detailed level. In this study, we present beam data for a Varian TrueBeam linear accelerator, which is capable of delivering flattening-filter free (FFF1) clinical X-ray beams. The beam data have been acquired using an in-house developed dosimetry system based on fibre-coupled organic scintillators. The presented data exhibit high accuracy and precision when compared with data obtained using commercial dosimetry methods, and agree well with results published in the literature. -- Highlights: •A dosimetry system based on fibre-coupled organic scintillators is presented. •The system is used for radiotherapy beams with and without flattening filter. •Measurements show good agreement with various commercial dosimeters

  9. An organic scintillator neutron spectrometer suitable for in-phantom studies

    International Nuclear Information System (INIS)

    A transportable organic scintillator spectrometry system based on a 1 cm high x 1 cm dia. cylindrical stilbene scintillator with a 30 cm light-pipe has been developed for neutron spectrometry inside anthropomorphic phantoms in order to improve knowledge of dose and dose-equivalent distributions in the body. Electronic pulse-shape discrimination is used to discriminate between neutron and gamma-ray events in the scintillator. The spectrometer is shown to give excellent results in the range of neutron energies from 1.5 to 7 MeV when used with an unfolding program based on differentiation of the pulse-height distribution. Below 1 MeV problems are experienced with pulse-shape discrimination, and below 2 MeV there are found to be some shortcomings in the differentiation method for this size of scintillator. Above about 9 MeV more sophisticated unfolding methods are shown to be desirable. Problems of stability of the system, difficulties in the measurement and calculation of the response functions, and disadvantages of using stilbene are discussed. (author)

  10. Large Area Scintillator Fiber Ion Detector Array Used in Vacuum

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The large area plastic scintillator fiber(BCF-12)ion detector array is mainly made of 4×108 fibers,2×108 photo-transmitters and 2×108 photomultiplier tubes.The fiber with single clad is about 111cm long and its cross seetion is a square whose size is 5 mm×5 mm.The fibers are arrayed perpendicularly to the direction of the incident beam.Each end side of every four pieces of fiber is connected to a bended photo-transmitter

  11. Monte Carlo and analytical models of neutron detection with organic scintillation detectors

    International Nuclear Information System (INIS)

    This paper presents a new technique for the analysis of neutron pulse height distributions generated in an organic scintillation detector. The methodology presented can be applied to techniques such as neutron spectrum unfolding, which have a variety of applications, including nuclear nonproliferation and homeland security. The technique is based on two independent approaches: (i) the use of the MCNP-PoliMi code to simulate neutron detection on an event-by-event basis with the Monte Carlo method and (ii) an analytical approach for neutron slowing down and detection processes. We show that the total neutron pulse height response measured by the organic scintillators is given by the sum of a large number of different neutron histories, each composed of a certain number of neutron scatterings on hydrogen and/or carbon. The relative contributions of each of these histories are described for a cylindrical liquid scintillator BC-501A. Simulations and measurements of neutron pulse height distributions are essential for neutron spectrum unfolding procedures

  12. O5S, Calibration of Organic Scintillation Detector by Monte-Carlo

    International Nuclear Information System (INIS)

    1 - Nature of physical problem solved: O5S is designed to directly simulate the experimental techniques used to obtain the pulse height distribution for a parallel beam of mono-energetic neutrons incident on organic scintillator systems. Developed to accurately calibrate the nominally 2 in. by 2 in. liquid organic scintillator NE-213 (composition CH-1.2), the programme should be readily adaptable to many similar problems. 2 - Method of solution: O5S is a Monte Carlo programme patterned after the general-purpose Monte Carlo neutron transport programme system, O5R. The O5S Monte Carlo experiment follows the course of each neutron through the scintillator and obtains the energy-deposits of the ions produced by elastic scatterings and reactions. The light pulse produced by the neutron is obtained by summing up the contributions of the various ions with the use of appropriate light vs. ion-energy tables. Because of the specialized geometry and simpler cross section needs O5S is able to by-pass many features included in O5R. For instance, neutrons may be followed individually, their histories analyzed as they occur, and upon completion of the experiment, the results analyzed to obtain the pulse-height distribution during one pass on the computer. O5S does allow the absorption of neutrons, but does not allow splitting or Russian roulette (biased weighting schemes). SMOOTHIE is designed to smooth O5S histogram data using Gaussian functions with parameters specified by the user

  13. Differentiation method for localization of Compton edge in organic scintillation detectors

    CERN Document Server

    Safari, M J; Afarideh, H

    2016-01-01

    This paper, presents a simple method for accurate calibration of organic scintillation detectors. The method is based on the fact that differentiating the response function leads to accurate estimation of the Compton edge. The differentiation method in addition to the location of the Compton edge, gives insights into the parameters of the folded Gaussian function which is useful for determination of the energy resolution. Moreover, it is observed that the uncorrelated noise in the measurement of the response function does not impose significant uncertainties in the evaluations. By simulation of the bounded electrons and considering the Doppler effects, we are able to calculate a first estimation for the intrinsic Doppler resolution of a plastic scintillator, benefiting from the capability of the differentiation method.

  14. Performances and stability of a 2.4 ton Gd organic liquid scintillator target for antineutrino detection

    CERN Document Server

    Barabanov, I R; Cattadori, C; Danilov, N A; Di Vacri, A; Krilov, Yu S; Ioannucci, L; Yanovich, E A; Aglietta, M; Bonardi, A; Bruno, G; Fulgione, W; Kemp, E; Malguin, A S; Porta, A; Selvi, M

    2008-01-01

    In this work we report the performances and the chemical and physical properties of a (2 x 1.2) ton organic liquid scintillator target doped with Gd up to ~0.1%, and the results of a 2 year long stability survey. In particular we have monitored the amount of both Gd and primary fluor actually in solution, the optical and fluorescent properties of the Gd-doped liquid scintillator (GdLS) and its performances as a neutron detector, namely neutron capture efficiency and average capture time. The experimental survey is ongoing, the target being continuously monitored. After two years from the doping time the performances of the Gd-doped liquid scintillator do not show any hint of degradation and instability; this conclusion comes both from the laboratory measurements and from the "in-tank" measurements. This is the largest stable Gd-doped organic liquid scintillator target ever produced and continuously operated for a long period.

  15. Temperature variations as a source of uncertainty in medical fiber-coupled organic plastic scintillator dosimetry

    DEFF Research Database (Denmark)

    Buranurak, Siritorn; Andersen, Claus Erik; Beierholm, Anders Ravnsborg;

    2013-01-01

    Fiber-coupled organic plastic scintillators have potential applications in medical dosimetry related to, for example, brachytherapy and external beam radiotherapy with MV photons. As medical dosimetry generally strives for high accuracy, we designed a study to assess if the light yield from commo...... found temperature coefficients of −0.15 ± 0.01%/K and −0.55 ± 0.04%/K, respectively. These values are sufficiently large to warrant careful consideration for clinical measurements. © 2013 Elsevier Ltd. All rights reserved....

  16. Passive Measurement of Organic-Scintillator Neutron Signatures for Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jennfier L. Dolan; Eric C. Miller; Alexis C. Kaplan; Andreas Enqvist; Marek Flaska; Alice Tomanin; Paolo Peerani; David L. Chichester; Sara A. Pozzi

    2012-10-01

    At nuclear facilities, domestically and internationally, most measurement systems used for nuclear materials’ control and accountability rely on He-3 detectors. Due to resource shortages, alternatives to He-3 systems are needed. This paper presents preliminary simulation and experimental efforts to develop a fast-neutron-multiplicity counter based on liquid organic scintillators. This mission also provides the opportunity to broaden the capabilities of such safeguards measurement systems to improve current neutron-multiplicity techniques and expand the scope to encompass advanced nuclear fuels.

  17. Crosslinked plastic scintillators: A new detection system for radioactivity measurement in organic and aggressive media

    International Nuclear Information System (INIS)

    Highlights: • A crosslinked plastic scintillatior for radioactivity measurement was developed. • The effect of C-PS composition in the detection efficiency was evaluated. • C-PS permits the measurement of radioactivity in organic and aggressive media. • C-PS exhibits high detection efficiency in water and even higher in organic media. • C-PS exhibits good reproducibility under different polymerisations with elevated yield. - Abstract: The measurement of radioactive solutions containing organic or aggressive media may cause stability problems in liquid and plastic scintillation (PS) techniques. In the case of PS, this can be overcome by adding a crosslinker to the polymer structure. The objectives of this study are to synthesise a suitable crosslinked plastic scintillator (C-PS) for radioactivity determination in organic and aggressive media. The results indicated that an increase in the crosslinker content reduces the detection efficiency and a more flexible crosslinker yields higher detection efficiency. For the polymer composition studied, 2,5-diphenyloxazole (PPO) is the most adequate fluorescent solute and an increase in its concentration causes little change in the detection efficiency. The inclusion of a secondary fluorescent solute 1,4-bis-2-(5-phenyloxazolyl) benzene (POPOP) improves the C-PS radiometrical characteristics. For the final composition chosen, the synthesis of the C-PS exhibits good reproducibility with elevated yield. The obtained C-PS also displays high stability in different organic (toluene, hydrotreated vegetable oil (HVO) and methanol) and aggressive media (hydrochloric acid, nitric acid and hydrogen peroxide). Finally, the C-PS exhibits high detection efficiency both in water and in aggressive media and can also be applied in organic media showing similar or even higher detection efficiency values

  18. Effect of annealing on Bridgman grown organic scintillation material of trans-stilbene

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, N., E-mail: nvijayan@mail.nplindia.ernet.in [National Physical Laboratory, Council of Scientific and Industrial research (CSIR), New Delhi 110012 (India); Bhagavannarayana, G.; Maurya, K.K. [National Physical Laboratory, Council of Scientific and Industrial research (CSIR), New Delhi 110012 (India); Haranath, D. [Luminescent Materials Section, National Physical Laboratory (CSIR), New Delhi 110012 (India); Rathi, Brijesh [Department of Chemistry, University of Delhi, Delhi 110007 (India); Balamurugan, N. [GT Solar Inc., Shanghai 200040 (China); Sharma, Y.K. [Department of Chemistry, University of Delhi, Delhi 110007 (India); Ramasamy, P. [SSN College of Engineering, SSN Nagar, Chennai 603110 (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer In this article we are reporting the effect of annealing on trans-stilbene single crystal. Black-Right-Pointing-Pointer We have studied its structural effects by high resolution X-ray diffraction and found its crystalline perfection was drastically improved. Black-Right-Pointing-Pointer It is good in agreement with the recoded PL measurements. Black-Right-Pointing-Pointer To the best of or knowledge this is first report to the literature. - Abstract: Organic scintillation materials are very much useful in the area of nuclear experiments, medical diagnostics and therapy. In the present investigation, we have systematically analyzed the vertical Bridgman grown organic scintillation material of trans-stilbene which is annealed at different annealing temperatures. Remarkable changes have been observed on its structural and optical properties. High resolution X-ray diffraction (HRXRD) analysis shows noticeable difference for the annealed specimen than the as-grown crystal. The observed results exposed that the crystalline quality was drastically improved by the elimination of defects or low angle boundaries by post growth annealing technique. Its optical behavior has been examined by photoluminescence, Raman and IR analyses. Vickers microhardness measurement has been carried out and found that hardness values increases for the annealed trans-stilbene single crystals.

  19. Effect of annealing on Bridgman grown organic scintillation material of trans-stilbene

    International Nuclear Information System (INIS)

    Highlights: ► In this article we are reporting the effect of annealing on trans-stilbene single crystal. ► We have studied its structural effects by high resolution X-ray diffraction and found its crystalline perfection was drastically improved. ► It is good in agreement with the recoded PL measurements. ► To the best of or knowledge this is first report to the literature. - Abstract: Organic scintillation materials are very much useful in the area of nuclear experiments, medical diagnostics and therapy. In the present investigation, we have systematically analyzed the vertical Bridgman grown organic scintillation material of trans-stilbene which is annealed at different annealing temperatures. Remarkable changes have been observed on its structural and optical properties. High resolution X-ray diffraction (HRXRD) analysis shows noticeable difference for the annealed specimen than the as-grown crystal. The observed results exposed that the crystalline quality was drastically improved by the elimination of defects or low angle boundaries by post growth annealing technique. Its optical behavior has been examined by photoluminescence, Raman and IR analyses. Vickers microhardness measurement has been carried out and found that hardness values increases for the annealed trans-stilbene single crystals.

  20. Pulse shape discrimination capability of metal-loaded organic liquid scintillators for a short-baseline reactor neutrino experiment

    Science.gov (United States)

    Kim, B. R.; Han, B. Y.; Jeon, E. J.; Joo, K. K.; Kang, Jeongsoo; Khan, N.; Kim, H. J.; Kim, Hyunsoo; Kim, J. Y.; Siyeon, Kim; Kim, S. C.; Kim, Yeongduk; Ko, Y. J.; Lee, Jaison; Lee, Jeong-Yeon; Lee, J. Y.; Ma, K. J.; Park, Hyeonseo; Park, H. K.; Park, K. S.; Seo, K. M.; Seon, Gwang-Min; Yeo, I. S.; Yeo, K. M.

    2015-05-01

    A new short-baseline (SBL) reactor neutrino experiment is proposed to investigate a reactor anti-neutrino anomaly. A liquid scintillator (LS) is used to detect anti-neutrinos emitted from a Hanaro reactor, and the pulse shape discrimination (PSD) ability of the metal-loaded organic LSs is evaluated on small-scale laboratory samples. PSD can be affected by selecting different base solvents, and several of the LSs used two different organic base solvents, such as linear alkyl benzene and di-isopropylnaphthalene. For the metallic content, gadolinium (Gd) or lithium (6Li) was loaded into a home-made organic LS and into a commercially available liquid scintillation cocktail. A feasibility study was performed for the PSD using several different liquid scintillation cocktails. In this work, the preparation and the PSD characteristics of a promising candidate, which will be used in an above-ground environment, are summarized and presented.

  1. Digital discrimination of neutrons and gamma-rays in organic scintillation detectors using moment analysis.

    Science.gov (United States)

    Xie, Xufei; Zhang, Xing; Yuan, Xi; Chen, Jinxiang; Li, Xiangqing; Zhang, Guohui; Fan, Tieshuan; Yuan, Guoliang; Yang, Jinwei; Yang, Qingwei

    2012-09-01

    Digital discrimination of neutron and gamma-ray events in an organic scintillator has been investigated by moment analysis. Signals induced by an americium-beryllium (Am/Be) isotropic neutron source in a stilbene crystal detector have been sampled with a flash analogue-to-digital converter (ADC) of 1 GSamples/s sampling rate and 10-bit vertical resolution. Neutrons and gamma-rays have been successfully discriminated with a threshold corresponding to gamma-ray energy about 217 keV. Moment analysis has also been verified against the results assessed by a time-of-flight (TOF) measurement. It is shown that the classification of neutrons and gamma-rays afforded by moment analysis is consistent with that achieved by digital TOF measurement. This method has been applied to analyze the data acquired from the stilbene crystal detector in mixed radiation field of the HL-2A tokamak deuterium plasma discharges and the results are described. PMID:23020376

  2. Design of organic scintillators for non-standard radiation field dosimetry: experimental setup.

    Science.gov (United States)

    Norman H, Machado R; Maximiliano, Trujillo T; Javier E, García G; Diana C, Narvaez G; Paula A, Marín M; Róbinson A, Torres V

    2013-01-01

    This paper describes an experimental setup designed for sensing the luminescent light coming from an organic plastic scintillator stimulated with ionizing radiation. This device is intended to be a part of a complete dosimeter system for characterization of small radiation fields which is the project of the doctoral thesis of the medical physicist at the Radiation Oncology facility of Hospital San Vicente Fundación in conjunction with the Universidad de Antioquia of Medellín Colombia. Some preliminary results predict a good performance of the unit, but further studies must be conducted in order to have a completed evaluation of the system. This is the first step in the development of an accuracy tool for measurement of non-standard fields in the Radiotherapy or Radiosurgery processes. PMID:24110369

  3. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Ravnsborg Beierholm, A.

    2011-05-15

    This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic scintillators and can be perceived as a well characterized, independent alternative to the methods that are in clinical use today. The dosimeter itself does not require a voltage supply, and is composed of water equivalent materials. The dosimeter can be fabricated with a sensitive volume smaller than a cubic millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising fiber-coupled organic scintillators and data acquisition hardware, was developed at the Radiation Research Division at Risoe DTU and tested using clinical x-ray beams at hospitals in Denmark and abroad. Measurements of output factors and percentage depth dose were performed and compared with reference values and Monte Carlo simulations for static square radiation fields for standard (4 cm x 4 cm to 20 cm x 20 cm) and small (down to 0.6 cm x 0.6 cm) field sizes. The accuracy of most of the obtained measurements was good, agreeing with reference and simulated dose values to within 2 % standard deviation for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy. (Author)

  4. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    International Nuclear Information System (INIS)

    This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic scintillators and can be perceived as a well characterized, independent alternative to the methods that are in clinical use today. The dosimeter itself does not require a voltage supply, and is composed of water equivalent materials. The dosimeter can be fabricated with a sensitive volume smaller than a cubic millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising fiber-coupled organic scintillators and data acquisition hardware, was developed at the Radiation Research Division at Risoe DTU and tested using clinical x-ray beams at hospitals in Denmark and abroad. Measurements of output factors and percentage depth dose were performed and compared with reference values and Monte Carlo simulations for static square radiation fields for standard (4 cm x 4 cm to 20 cm x 20 cm) and small (down to 0.6 cm x 0.6 cm) field sizes. The accuracy of most of the obtained measurements was good, agreeing with reference and simulated dose values to within 2 % standard deviation for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy. (Author)

  5. Application of digital zero-crossing technique for neutron-gamma discrimination in liquid organic scintillation detectors

    OpenAIRE

    Nakhostin, M; Walker, PM

    2010-01-01

    An algorithm for digital implementation of the zero-crossing method for n/γ discrimination in liquid organic scintillators is described. The method exhibits good performance at low energies and requires little computational effort, which makes it suitable for compact real-time neutron detectors.

  6. An organic dye in a polymer matrix – A search for a scintillator with long luminescent lifetime

    DEFF Research Database (Denmark)

    Lindvold, Lars René; Beierholm, Anders Ravnsborg; Andersen, Claus Erik

    2010-01-01

    Fiber-coupled organic plastic scintillators enable dose rate monitoring in conjunction with pulsed radiation sources like linear medical accelerators. The accelerator, however, generates a significant amount of stray ionizing radiation. This radiation excites the long optical fiber cable (15–20 m...

  7. Energy transfer and light yield properties of a new highly loaded indium(III) β-diketonate organic scintillator system

    Science.gov (United States)

    Buck, C.; Hartmann, F. X.; Motta, D.; Schoenert, S.

    2007-02-01

    We present combined experimental and model studies of the light yield and energy transfer properties of a newly developed high light yield scintillator based on indium(III)-tris(2,4-pentanedionate) in a 2-(4-biphenyl)-5-phenyloxazole (BPO), methoxybenzene organic liquid; of interest to the detection of solar electron neutrino oscillations. Optical measurements are made to understand the energy transfer properties and a model is advanced to treat the unusual conditions of high metal and fluor loadings. Such scintillator types are of interest to the exploration of novel luminescent materials and the development of large-scale detectors for studying fundamental properties of naturally occurring neutrinos.

  8. Effects of Temperature and X-rays on Plastic Scintillating Fiber and Infrared Optical Fiber.

    Science.gov (United States)

    Lee, Bongsoo; Shin, Sang Hun; Jang, Kyoung Won; Yoo, Wook Jae

    2015-01-01

    In this study, we have studied the effects of temperature and X-ray energy variations on the light output signals from two different fiber-optic sensors, a fiber-optic dosimeter (FOD) based on a BCF-12 as a plastic scintillating fiber (PSF) and a fiber-optic thermometer (FOT) using a silver halide optical fiber as an infrared optical fiber (IR fiber). During X-ray beam irradiation, the scintillating light and IR signals were measured simultaneously using a dosimeter probe of the FOD and a thermometer probe of the FOT. The probes were placed in a beaker with water on the center of a hotplate, under variation of the tube potential of a digital radiography system or the temperature of the water in the beaker. From the experimental results, in the case of the PSF, the scintillator light output at the given tube potential decreased as the temperature increased in the temperature range from 25 to 60 °C. We demonstrated that commonly used BCF-12 has a significant temperature dependence of -0.263 ± 0.028%/°C in the clinical temperature range. Next, in the case of the IR fiber, the intensity of the IR signal was almost uniform at each temperature regardless of the tube potential range from 50 to 150 kVp. Therefore, we also demonstrated that the X-ray beam with an energy range used in diagnostic radiology does not affect the IR signals transmitted via a silver halide optical fiber.

  9. Neutron detector based on Particles of 6Li glass scintillator dispersed in organic lightguide matrix

    International Nuclear Information System (INIS)

    Most 3He replacement neutron detector technologies today have overlapping neutron–gamma pulse-height distributions, which limits their usefulness and performance. Different techniques are used to mitigate this shortcoming, including Pulse Shape Discrimination (PSD) or threshold settings that suppress all gammas as well as much of the neutrons. As a result, count rates are limited and dead times are high when PSD is used, and the detection efficiency for neutron events is reduced due to the high threshold. This is a problem in most applications where the neutron–gamma separation of 3He detectors had been essential. This challenge is especially severe for neutron coincidence and multiplicity measurements that have numerous conflicting requirements such as high detection efficiency, short die-away time, short dead time, and high stability. 6Li-glass scintillators have excellent light output and a single peak distribution, but they are difficult to implement because of their gamma sensitivity. The idea of reducing the gamma sensitivity of 6Li-glass scintillators by embedding small glass particles in an organic light-guide medium was first presented by L.M. Bollinger in the early 60s but, to the best of our knowledge, has never been reduced to practice. We present a proof of principle detector design and experimental data that develop this concept to a large-area neutron detector. This is achieved by using a multi-component optical medium (6Li glass particles attached to a glass supporting structure and a mineral oil light guide) which matches the indices of refraction and minimizes the absorption of the 395 nm scintillator light. The detector design comprises a 10 in. long tube with dual end readout with about 3% volume density of 6Li glass particles installed. The presented experimental data with various neutron and gamma sources show the desired wide gap between the neutron and gamma pulse height distributions, resulting in a true plateau in the counting

  10. Scintillating fibres

    International Nuclear Information System (INIS)

    In the search for new detector techniques, scintillating fibre technology has already gained a firm foothold, and is a strong contender for the extreme experimental conditions of tomorrow's machines. Organized by a group from the Institute of High Energy Physics, Berlin-Zeuthen, a workshop held from 3-5 September in the nearby village of Blossin brought together experts from East and West, and from science and industry

  11. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg

    This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic scintill......This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic...... millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising...... for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy....

  12. Development of a new neutron monitor using a boron-loaded organic liquid scintillation detector

    CERN Document Server

    Rasolonjatovo, A H D; Kim, E; Nakamura, T; Nunomiya, T; Endo, A; Yamaguchi, Y; Yoshizawa, M

    2002-01-01

    A new type of neutron dose monitor was developed by using a 12.7 cm diameterx12.7 cm long boron-loaded organic liquid scintillation detector BC523A. This detector aims to have a response in the wide energy range of thermal energy to 100 MeV by using the H and C reactions to the fast neutrons of organic liquid and the sup 1 sup 0 B(n, alpha) reaction to thermalized neutrons in the liquid. The response functions of this detector were determined by the Monte Carlo simulation in the energy region from thermal energy to 100 MeV. Using these response functions, the spectrum-weighted dose function, G-function, to get the neutron dose from the light output spectrum of the detector was also determined by the unfolding technique. The calculated G-function was applied to determine the neutron dose in real neutron fields having energies ranging from thermal energy to several tens of MeV, where the light output spectra were measured with the BC523A detector. The thus-obtained ambient doses and effective doses show rather ...

  13. Fast neutron tomography with real-time pulse-shape discrimination in organic scintillation detectors

    Science.gov (United States)

    Joyce, Malcolm J.; Agar, Stewart; Aspinall, Michael D.; Beaumont, Jonathan S.; Colley, Edmund; Colling, Miriam; Dykes, Joseph; Kardasopoulos, Phoevos; Mitton, Katie

    2016-10-01

    A fast neutron tomography system based on the use of real-time pulse-shape discrimination in 7 organic liquid scintillation detectors is described. The system has been tested with a californium-252 source of dose rate 163 μSv/h at 1 m and neutron emission rate of 1.5×107 per second into 4π and a maximum acquisition time of 2 h, to characterize two 100×100×100 mm3 concrete samples. The first of these was a solid sample and the second has a vertical, cylindrical void. The experimental data, supported by simulations with both Monte Carlo methods and MATLAB®, indicate that the presence of the internal cylindrical void, corners and inhomogeneities in the samples can be discerned. The potential for fast neutron assay of this type with the capability to probe hydrogenous features in large low-Z samples is discussed. Neutron tomography of bulk porous samples is achieved that combines effective penetration not possible with thermal neutrons in the absence of beam hardening.

  14. Warhead verification as inverse problem: Applications of neutron spectrum unfolding from organic-scintillator measurements

    Science.gov (United States)

    Lawrence, Chris C.; Febbraro, Michael; Flaska, Marek; Pozzi, Sara A.; Becchetti, F. D.

    2016-08-01

    Verification of future warhead-dismantlement treaties will require detection of certain warhead attributes without the disclosure of sensitive design information, and this presents an unusual measurement challenge. Neutron spectroscopy—commonly eschewed as an ill-posed inverse problem—may hold special advantages for warhead verification by virtue of its insensitivity to certain neutron-source parameters like plutonium isotopics. In this article, we investigate the usefulness of unfolded neutron spectra obtained from organic-scintillator data for verifying a particular treaty-relevant warhead attribute: the presence of high-explosive and neutron-reflecting materials. Toward this end, several improvements on current unfolding capabilities are demonstrated: deuterated detectors are shown to have superior response-matrix condition to that of standard hydrogen-base scintintillators; a novel data-discretization scheme is proposed which removes important detector nonlinearities; and a technique is described for re-parameterizing the unfolding problem in order to constrain the parameter space of solutions sought, sidestepping the inverse problem altogether. These improvements are demonstrated with trial measurements and verified using accelerator-based time-of-flight calculation of reference spectra. Then, a demonstration is presented in which the elemental compositions of low-Z neutron-attenuating materials are estimated to within 10%. These techniques could have direct application in verifying the presence of high-explosive materials in a neutron-emitting test item, as well as other for treaty verification challenges.

  15. A study of possibility to design a fast neutron spectrometer based on the organic scintillator with surrounding materials

    OpenAIRE

    Avdić Senada; Marinković Predrag; Osmanović Alma; Gazdić Izet; Hadžić Šejla; Demirović Damir

    2014-01-01

    This paper deals with the design of a novel spectrometer of fast neutrons in nuclear safeguards applications based on the liquid organic scintillator EJ-309 with materials of different thickness surrounding the detector. The investigation was performed on the simulated data obtained by the MCNPX-PoliMi numerical code based on the Monte Carlo method. Among the various materials (polyethylene, iron, aluminum, and graphite) investigated as layers around the sc...

  16. Integrated readout of organic scintillator and ZnS:Ag/6LiF for segmented antineutrino detectors.

    Energy Technology Data Exchange (ETDEWEB)

    Kiff, Scott D.; Reyna, David; Monahan, James; Bowden, Nathaniel S.

    2010-11-01

    Antineutrino detection using inverse beta decay conversion has demonstrated the capability to measure nuclear reactor power and fissile material content for nuclear safeguards. Current efforts focus on aboveground deployment scenarios, for which highly efficient capture and identification of neutrons is needed to measure the anticipated antineutrino event rates in an elevated background environment. In this submission, we report on initial characterization of a new scintillation-based segmented design that uses layers of ZnS:Ag/{sup 6}LiF and an integrated readout technique to capture and identify neutrons created in the inverse beta decay reaction. Laboratory studies with multiple organic scintillator and ZnS:Ag/{sup 6}LiF configurations reliably identify {sup 6}Li neutron captures in 60 cm-long segments using pulse shape discrimination.

  17. Integrated readout of organic scintillator and ZnS:Ag/6LiF for segmented antineutrino detectors.

    Energy Technology Data Exchange (ETDEWEB)

    Kiff, Scott D.; Reyna, David; Monahan, James (Drexel University, Philadelphia, PA); Bowden, Nathaniel S. (Lawrence Livermore National Laboratory, Livermore, CA)

    2010-10-01

    Antineutrino detection using inverse beta decay conversion has demonstrated the capability to measure nuclear reactor power and fissile material content for nuclear safeguards. Current efforts focus on aboveground deployment scenarios, for which highly efficient capture and identification of neutrons is needed to measure the anticipated antineutrino event rates in an elevated background environment. In this submission, we report on initial characterization of a new scintillation-based segmented design that uses layers of ZnS:Ag/{sup 6}LiF and an integrated readout technique to capture and identify neutrons created in the inverse beta decay reaction. Laboratory studies with multiple organic scintillator and ZnS:Ag/{sup 6}LiF configurations reliably identify {sup 6}Li neutron captures in 60 cm-long segments using pulse shape discrimination.

  18. Development of neutron-monitor detector using liquid organic scintillator coupled with 6Li + ZnS(Ag) Sheet.

    Science.gov (United States)

    Sato, Tatsuhiko; Endo, Akira; Yamaguchi, Yasuhiro; Takahashi, Fumiaki

    2004-01-01

    A phoswitch-type detector has been developed for monitoring neutron doses in high-energy accelerator facilities. The detector is composed of a liquid organic scintillator (BC501A) coupled with ZnS(Ag) sheets doped with 6Li. The dose from neutrons with energies above 1 MeV is evaluated from the light output spectrum of the BC501A by applying the G-function, which relates the spectrum to the neutron dose directly. The dose from lower energy neutrons, on the other hand, is estimated from the number of scintillations emitted from the ZnS(Ag) sheets. Characteristics of the phoswitch-type detector were studied experimentally in some neutron fields. It was found from the experiments that the detector has an excellent property of pulse-shape discrimination between the scintillations of BC501A and the ZnS(Ag) sheets. The experimental results also indicate that the detector is capable of reproducing doses from thermal neutrons as well as neutrons with energies from one to several tens of megaelectronvolts (MeV).

  19. Scintillators and other particle optical detectors

    International Nuclear Information System (INIS)

    The author reports and comments his researcher career in the field of particle optical detectors. He addresses the cases of organic scintillators (scintillating fibers, liquid scintillators), inorganic scintillators (crystals for electromagnetic calorimetry, crystals for solar neutrino spectroscopy), and Cherenkov Effect detectors. He also reports his works on Cd Te detectors and their modelling

  20. An algorithm for charge-integration, pulse-shape discrimination and estimation of neutron/photon misclassification in organic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Polack, J.K., E-mail: kpolack@umich.edu [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Flaska, M. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Enqvist, A. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Sosa, C.S.; Lawrence, C.C.; Pozzi, S.A. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2015-09-21

    Organic scintillators are frequently used for measurements that require sensitivity to both photons and fast neutrons because of their pulse shape discrimination capabilities. In these measurement scenarios, particle identification is commonly handled using the charge-integration pulse shape discrimination method. This method works particularly well for high-energy depositions, but is prone to misclassification for relatively low-energy depositions. A novel algorithm has been developed for automatically performing charge-integration pulse shape discrimination in a consistent and repeatable manner. The algorithm is able to estimate the photon and neutron misclassification corresponding to the calculated discrimination parameters, and is capable of doing so using only the information measured by a single organic scintillator. This paper describes the algorithm and assesses its performance by comparing algorithm-estimated misclassification to values computed via a more traditional time-of-flight estimation. A single data set was processed using four different low-energy thresholds: 40, 60, 90, and 120 keVee. Overall, the results compared well between the two methods; in most cases, the algorithm-estimated values fell within the uncertainties of the TOF-estimated values.

  1. Effects of Temperature and X-rays on Plastic Scintillating Fiber and Infrared Optical Fiber

    Directory of Open Access Journals (Sweden)

    Bongsoo Lee

    2015-05-01

    Full Text Available In this study, we have studied the effects of temperature and X-ray energy variations on the light output signals from two different fiber-optic sensors, a fiber-optic dosimeter (FOD based on a BCF-12 as a plastic scintillating fiber (PSF and a fiber-optic thermometer (FOT using a silver halide optical fiber as an infrared optical fiber (IR fiber. During X-ray beam irradiation, the scintillating light and IR signals were measured simultaneously using a dosimeter probe of the FOD and a thermometer probe of the FOT. The probes were placed in a beaker with water on the center of a hotplate, under variation of the tube potential of a digital radiography system or the temperature of the water in the beaker. From the experimental results, in the case of the PSF, the scintillator light output at the given tube potential decreased as the temperature increased in the temperature range from 25 to 60 °C. We demonstrated that commonly used BCF-12 has a significant temperature dependence of −0.263 ± 0.028%/°C in the clinical temperature range. Next, in the case of the IR fiber, the intensity of the IR signal was almost uniform at each temperature regardless of the tube potential range from 50 to 150 kVp. Therefore, we also demonstrated that the X-ray beam with an energy range used in diagnostic radiology does not affect the IR signals transmitted via a silver halide optical fiber.

  2. Development of an X-ray imaging system within 10-30 keV spectral range based on organic or inorganic scintillator

    International Nuclear Information System (INIS)

    This thesis aims at developing an x-ray imaging system intended for the Laser Mega Joule, within the framework of Inertial Confinement Fusion (ICF) experiments. ICF aims at yielding thermonuclear energy through laser-driven fusion of a deuterium-tritium mix. The operational function of our system is to acquire an image of the 10-30 keV x-rays emitted by the maximally compressed micro-balloon, with spatial resolution better than 10 μm. The presented system is only a part of a complete diagnostic system, which normally includes an x-ray optical subsystem. Our system conception largely takes vulnerability into account. The ignition phase of ICF yields 1016 neutrons, with energies scaling up to 14 MeV. The neutrons generate such a hard surrounding with effects scaling down from image degradation up to instrumentation destruction. The presented system consists in a scintillator which is focused on a CCD camera through a catadioptric image transport system. An innovation work has been lead on scintillators to provide an answer to specifications greatly influenced by vulnerability. Those thesis works lead to an imaging system allowing to deport the CCD camera by 4 meters from the scintillator, with 100 μm spatial resolution in the scintillator plane. Those works have paved the way to outlooks such as enhancement of organic loaded scintillators compositions and improvement of optical relay system. (author)

  3. Halide Scintillators

    NARCIS (Netherlands)

    Van Loef, E.V.D.

    2003-01-01

    Scintillators have been used for decades to make ionising radiation visible. Either by direct observation of the light flash produced by the material when it is exposed to radiation, or indirect by use of a photomultiplier tube or photodiode. Despite the enormous amount of commercially available sci

  4. Interplanetary Scintillation

    Science.gov (United States)

    Armstrong, John W.

    1995-01-01

    Interplanetary scintillation (IPS) has been used as a diagnostic of solar wind speed and interplanetary plasma turbulence, allowing inference of speed and electron density power spectrum close to the Sun and out of the ecliptic. In that context, IPS is 'signal' and provides scientifically interesting data. IPS is also of interest because amplitude and phase perturbations imposed on radio waves are 'noise' for telemetry and precision Doppler tracking of deep space probes and for some radio astronomical observations. This paper briefly reviews the connection between scattering observables and the electron density power spectrum. Interplanetary phase scintillation on time scales of 100 to 10 000 seconds is an important noise in mass determinations of small solar system bodies during space-probe fly-bys and in searches for low-frequency gravitational radiation.

  5. Investigation of optically-induced DFB lasing in organic scintillators in order to achieve active ionizing radiation measurement.

    OpenAIRE

    Michel, Maugan

    2014-01-01

    Transducers used for nuclear measurements are divided into two groups. The first one is made of detectors based on the movement of charged carriers created during the interaction of ionizing radiation with materials (ionization chambers, semiconductors, etc.). The second comprises scintillating materials which emit light following such interaction.The present work aims at shifting the current paradigm in order to achieve an active measurement of the interactions between particles and sensor. ...

  6. Investigation of optically-induced DFB lasing in organic scintillators in order to achieve active ionizing radiation measurement

    International Nuclear Information System (INIS)

    Transducers used for nuclear measurements are divided into two groups. The first one is made of detectors based on the movement of charged carriers created during the interaction of ionizing radiation with materials (ionization chambers, semiconductors, etc.). The second comprises scintillating materials which emit light following such interaction. The present work aims at shifting the current paradigm in order to achieve an active measurement of the interactions between particles and sensor. The aim of this thesis is to investigate the response of nano-structured scintillators when excited by a primary laser beam while in the presence of ionizing radiations. It consists more precisely in optically inducing a laser emission in scintillators so as to benefit from the inherent sensitivity of this kind of wave to any kind of change in its environment. This study is at first focused on controlling the propagation of the electromagnetic waves in nano-structured media. This nano-structuration allows the channeling of the electromagnetic energy in a particular direction and at a precise wavelength and thus to amplify the transduction signal. The second part of this study is dedicated to the attempts at observing any change in the emission in an amplified regime while exposed to ionizing radiations (alpha, beta). The limitation of these sources requires the use of an electron accelerator. The conclusion of this part lays the foundation for future work and provides hypotheses regarding the effects that could be expected from the irradiation with high electron fluxes. (author)

  7. Liquid scintillation counting standardization of 125I in organic and inorganic samples by the CIEMAT/NIST method; Calibracion por centelleo liquido del 125I en muestras inorganicas y organicas, mediante el metodo CIEMAT/NIST

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Barquero, L.; Grau Malonda, A.; Los Arcos Merino, J. M.; Grau Carles, A.

    1994-07-01

    The liquid scintillation counting standardization of organic and inorganic samples of ''I25I by the CIEMAT/NIST method using five different scintillators is described. The discrepancies between experimental and computed efficiencies are lower than 1.4% and 1.7%, for inorganic and organic samples, respectively, in the interval 421-226 of quenching parameter. Both organic and inorganic solutions have been standardized in terms of activity concentration to an overall uncertainty of 0.76%. (Author) 14 refs.

  8. A portable organic plastic scintillator dosimetry system for low energy X-rays: A feasibility study using an intraoperative X-ray unit as the radiation source

    Directory of Open Access Journals (Sweden)

    Williams Kerry

    2007-01-01

    Full Text Available The effective use of near water equivalent organic plastic scintillators (OPS for radiation dosimetry with high-energy sources under laboratory conditions is recognized. In this work, an OPS-based dosimeter using a photodiode combined with improved solid state detection and signal processing techniques has been developed; it offers the potential for the construction of a stable and fully portable dosimeter which will extend the useful range of measurement beyond the usual MeV area and provide reliable readings down to sub-′100 keV′ X-ray energy levels. In these experiments, the instrument described has been used for the dosimetry of INTRABEAM intraoperative radiotherapy (IORT equipment at distances as low as 1.8 mm from the effective source, i.e., 0.2 mm from the X-ray probe surface. Comparison is shown with dosimetry measurements made using the calibrated reference ion chamber supplied by the IORT equipment manufacturer.

  9. Measurements of high energy neutrons penetrated through iron shields using the Self-TOF detector and an NE213 organic liquid scintillator

    CERN Document Server

    Sasaki, M; Nunomiya, T; Nakamura, T; Fukumura, A; Takada, M

    2002-01-01

    Neutron energy spectra penetrated through iron shields were measured using the Self-TOF detector and an NE213 organic liquid scintillator which have been newly developed by our group at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) of National Institute of Radiological Sciences (NIRS), Japan. Neutrons were generated by bombarding 400 MeV/nucleon C ion on a thick (stopping-length) copper target. The neutron spectra in the energy range from 20 to 800 MeV were obtained through the FORIST unfolding code with their response functions and compared with the MCNPX calculations combined with the LA150 cross section library. The neutron fluence measured by the NE213 detector was simulated by the track length estimator in the MCNPX, and evaluated the contribution of the room-scattered neutrons. The calculations are in fairly good agreement with the measurements. Neutron fluence attenuation lengths were obtained from the experimental results and the calculation.

  10. Non-Carbon Dyes For Platic Scintillators- Report

    Energy Technology Data Exchange (ETDEWEB)

    Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gaillard, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sexton, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ward, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Velten, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-19

    Scintillation based detectors are desirable for many radiation detection applications (portal and border monitoring, safeguards verification, contamination detection and monitoring). The development of next generation scintillators will require improved detection sensitivity for weak gamma ray sources, and fast and thermal neutron quantification. Radiation detection of gamma and neutron sources can be accomplished with organic scintillators, however, the single crystals are difficult to grow for large area detectors and subject to cracking. Alternatives to single crystal organic scintillators are plastic scintillators (PS) which offer the ability to be shaped and scaled up to produce large sized detectors. PS is also more robust than the typical organic scintillator and are ideally suited for deployment in harsh real-world environments. PS contain a mixture of dyes to down-convert incident radiation into visible light that can be detected by a PMT. This project will evaluate the potential use of nano-carbon dyes in plastic scintillators.

  11. Development of medical scintillator

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This review presents the scintillators requirements for the medical imaging modalities. The history and the development in recent years of the medical scintillators (mainly for GSO:Ce, LSO:Ce, LuAP:Ce) are expatiated in detail.

  12. Radiation damages in chemical components of organic scintillator detectors; Danos de radiacao em componentes quimicos de detectores cintiladores organicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes Neto, Jose Maria

    2003-07-01

    Samples containing PPO (1%, g/ml), diluted in toluene, they were irradiated in a {sup 60}Co irradiator (6.46 kGy/h) at different doses. The PPO concentration decay bi-exponentially with the dose, generating the degradation products: benzoic acid, benzamide and benzilic alcohol. The liquid scintillator system was not sensitive to the radiation damage until 20 kGy. Otherwise, the pulse height analysis showed that dose among 30 to 40 kGy generate significant loss of quality of the sensor (liquid scintillating) and the light yield was reduced in half with the dose of (34.04 {+-} 0.80) kGy. This value practically was confirmed by the photo peak position analysis that resulted D{sub 1/2} = (31.7 {+-} 1,4) kGy, The transmittance, at 360 nm, of the irradiated solution decreased exponentially. The compartmental model using five compartments (fast decay PPO, slow decay PPO, benzamide, benzoic acid and benzilic alcohol) it was satisfactory to explain the decay of the PPO in its degradation products in function of the dose. The explanation coefficient r{sup 2} = 0.985636 assures that the model was capable to explain 98.6% of the experimental variations. The Target Theory together with the Compartmental Analysis showed that PPO irradiated in toluene solution presents two sensitive molecular diameters both of them larger than the true PPO diameter. >From this analysis it showed that the radiolytic are generated, comparatively, at four toluene molecules diameter far from PPO molecules. For each one PPO-target it was calculated the G parameter (damage/100 eV). For the target expressed by the fast decay the G value was (418.4 {+-} 54.1) damages/100 eV, and for the slow decay target the G value was (54.5 {+-} 8.9) damages/100 eV. The energies involved in the chemical reactions were w (0.239 {+-} 0.031) eV/damage (fast decay) and w = (1 834 {+-} 0.301) eV/damage (slow decay). (author)

  13. Scintillator manufacture at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  14. Construction and testing of a neutron and gamma spectrometry system using pulse shape discrimination with an organic scintillator

    Science.gov (United States)

    Pope, Robert S.

    1993-03-01

    The goal of this thesis was to construct and test a neutron detector to measure the energy spectrum of 1 to 14-MeV neutrons in the presence of gammas. A spectrometer based on the process of pulse shape discrimination (PSD) was constructed, in which the scintillator NE-213 was used. The primary neutron/gamma sources used were 78-mCi and 4.7-Ci Pu-239Be sources, while 4.7-micro-Ci and 97.6-micro-Ci Na-22 gamma sources were used for energy calibration and additional testing of the detector. Proton recoil spectra and Compton electron spectra were unfolded with the neutron and gamma unfolding code FORIST to generate the incident neutron and gamma spectra, respectively. FORIST, which was written for a CDC computer, was modified to run on a VAX 6420. The experimental spectra were compared to those in the literature. The locations of the peaks in the Pu-239Be spectrum agreed with the literature to within 8.3%, the Pu-239Be gamma spectrum agreed to within 0.7%, while the Na-22 gamma spectrum agreed exactly. Uncertainties in the detection system and unfolding procedure are on the order of 5-10%. This thesis is intended to be a summary of the relevant literature and a user's guide to the PSD spectrometer.

  15. Extruded Plastic Scintillation Detectors

    CERN Document Server

    Pla-Dalmau, A; Mellott, K L; Pla-Dalmau, Anna; Bross, Alan D.; Mellott, Kerry L.

    1999-01-01

    As a way to lower the cost of plastic scintillation detectors, commercially available polystyrene pellets have been used in the production of scintillating materials that can be extruded into different profiles. The selection of raw materials is discussed. Two techniques to add wavelength shifting dopants to polystyrene pellets and to extrude plastic scintillating strips are described. Data on light yield and transmittance measurements are presented.

  16. Phenylxylylethane (PXE): a high-density, high-flashpoint organic liquid scintillator for applications in low-energy particle and astrophysics experiments

    CERN Document Server

    Rappaport, S; Balata, M; Beau, T; Bellini, G; Benziger, J; Bonetti, S; Brigatti, A; Buck, C; Caccianiga, B; Cadonati, L; Calaprice, F; Cecchet, G; Chen, M; D'Angelo, D; Dadoun, O; De Bari, A; De Bellefon, A; De Kerret, H; Derbin, A; Deutsch, M; Di Credico, A; Elisei, F; Etenko, A; Fernholz, R; Ford, R; Franco, D; Freudiger, B; Galbiati, C; Gärtner, N; Gatti, F; Gazzana, S; Giammarchi, M G; Giugni, D; Goeger-Neff, M; Goretti, A; Grieb, C; HSchuhbeck, K; Haas; Hagner, C; Hampel, W; Harding, E; Hartmann, F X; Hertrich, T; Hess, H; Heusser, G; Ianni, A; Ianni, A M; Kiko, J; Kirsten, T; Korga, G; Korschinek, G; Kozlov, Y; Kryn, D; Laubenstein, M; Lendvai, C; Lombardi, P; Löser, F; Malvezzi, S; Maneira, J; Manno, I; Manuzio, D; Manuzio, G; Martemianov, A; Masetti, F; Mazzucato, U; McCarty, K; Meroni, E; Miramonti, L; Monzani, M E; Musico, P; Niedermeier, L; Oberauer, L; Obolensky, M; Ortica, F; Pallavicini, M; Papp, L; Parmeggiano, S; Perasso, L; Pocar, A; Raghavan, R S; Ranucci, G; Rau, W; Razeto, A; Resconi, E; Sabelnikov, A; Salvo, C; Scardaoni, R; Schimizzi, D; Schönert, S; Seitz, E; Shutt, T; Simgen, H; Skorokhvatov, M; Smirnov, O; Sonnenschein, A; Sotnikov, A; Sukhotin, S; Tarasenkov, V; Tartaglia, R; Testera, G; Vignaud, D; Vogelaar, R B; Von Feilitzsch, F; Vyrodov, V N; Wójcik, M; Zaimidoroga, O A; Zuzel, G

    2004-01-01

    We report on the study of a new liquid scintillator target for neutrino interactions in the framework of the research and development program of the BOREXINO solar neutrino experiment. The scintillator consists of 1,2-dimethyl-4-(1-phenylethyl)-benzene (phenyl-o-xylylethane, PXE) as solvent and 1,4-diphenylbenzene (para-Terphenyl, p-Tp) as primary and 1,4-bis(2-methylstyryl)benzene (bis-MSB) as secondary solute. The density close to that of water and the high flash point makes it an attractive option for large scintillation detectors in general. The study focused on optical properties, radioactive trace impurities and novel purification techniques of the scintillator. Attenuation lengths of the scintillator mixture of 12 m at 430 nm were achieved after purification with an alumina column. A radio carbon isotopic ratio of C-14/C-12 = 9.1 * 10^{-18}$ has been measured in the scintillator. Initial trace impurities, e.g. U-238 at 3.2 * 10^{-14} g/g could be purified to levels below 10^{-17} g/g by silica gel soli...

  17. Characterization of the scintillation anisotropy in crystalline stilbene scintillator detectors

    CERN Document Server

    Schuster, Patricia

    2016-01-01

    This paper reports a series of measurements that characterize the directional dependence of the scintillation response of crystalline melt-grown and solution-grown stilbene to incident DT and DD neutrons. These measurements give the amplitude and pulse shape dependence on the proton recoil direction over one hemisphere of the crystal, confirming and extending previous results in the literature for melt-grown stilbene and providing the first measurements for solution-grown stilbene. In similar measurements of liquid and plastic detectors, no directional dependence was observed, confirming the hypothesis that the anisotropy in stilbene and other organic crystal scintillators is a result of internal effects due to the molecular or crystal structure and not an external effect on the measurement system.

  18. Nonproportionality of inorganic scintillators

    NARCIS (Netherlands)

    Khodyuk, I.V.

    2013-01-01

    A scintillator is a transparent material that emits a flash of light when it absorbs a γ-ray photon or an energetic particle. Scintillation crystals are widely used as spectroscopic detectors of ionizing radiation in nuclear science, space exploration, medical imaging, homeland security, etc. This t

  19. Anticoincidence scintillation counter

    CERN Multimedia

    1966-01-01

    This anticoincidence scintillation counter will be mounted in a hydrogen target vessel to be used in a measurement of the .beta. parameter in the .LAMBDA0. decay. The geometry of the counter optimizes light collection in the central part where a scintillation disk of variable thickness can be fitted.

  20. Plasmonic light yield enhancement of a liquid scintillator

    Science.gov (United States)

    Bignell, Lindsey J.; Mume, Eskender; Jackson, Timothy W.; Lee, George P.

    2013-05-01

    We demonstrate modifications to the light yield properties of an organic liquid scintillator due to the localization of the tertiary fluorophore component to the surface of Ag-core silica-shell nanoparticles. We attribute this enhancement to the near-field interaction of Ag nanoparticle plasmons with these fluor molecules. The scintillation light yield enhancement is shown to be equal to the fluorescence enhancement within measurement uncertainties. With a suitable choice of plasmon energy and scintillation fluor, this effect may be used to engineer scintillators with enhanced light yields for radiation detection applications.

  1. The scintillating grid illusion.

    Science.gov (United States)

    Schrauf, M; Lingelbach, B; Wist, E R

    1997-04-01

    Disk-shaped luminance increments were added to the intersections of a Hermann grid consisting of medium grey bars on a black background. Illusory spots, darker than the background, were perceived as flashing within the white disks with each flick of the eye. This striking phenomenon may be referred to as the scintillating grid illusion. We determined the conditions necessary for cancelling the Hermann grid illusion, as well as the luminance requirements and the size ratio between disks and bars that elicits the scintillation effect. The fact that scanning eye movements are necessary to produce the scintillation effect sets it apart from the Hermann grid illusion.

  2. On the scintillation efficiency of carborane-loaded liquid scintillators for thermal neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Zheng, E-mail: zchang@scsu.edu [The Applied Radiation Sciences Laboratory, South Carolina State University, Orangeburg, SC 29117 (United States); Okoye, Nkemakonam C. [The Applied Radiation Sciences Laboratory, South Carolina State University, Orangeburg, SC 29117 (United States); Urffer, Matthew J.; Green, Alexander D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Childs, Kyle E. [The Applied Radiation Sciences Laboratory, South Carolina State University, Orangeburg, SC 29117 (United States); Miller, Laurence F. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2015-01-01

    The scintillation efficiency in response to thermal neutrons was studied by loading different concentrations of carborane (0–8.5 wt%) and naphthalene (0 and 100 g/L) in five liquid organic scintillators. The sample was characterized in Pb and Cd shields under the irradiation of the thermal neutrons from a {sup 252}Cf source. A method was developed to extract the net neutron response from the pulse-height spectra. It was found that the order of scintillation efficiencies for both γ-rays and thermal neutrons is as follows: diisopropylnaphthalene>toluene (concentrated solutes)>toluene∼pseudocumene∼m-xylene. The quench constants, obtained by fitting the Stern–Volmer model to the plots of light output versus carborane concentration, are in the range of 0.35–1.4 M{sup −1} for all the scintillators. The Birks factors, estimated using the specific energy loss profiles of the incident particles, are in the range of 9.3–14 mg cm{sup −2} MeV{sup −1} for all the samples. The light outputs are in the range of 63–86 keV electron equivalents (keVee) in response to thermal neutrons. Loading naphthalene generally promotes the scintillation efficiency of the scintillator with a benzene derivative solvent. Among all the scintillators tested, the diisopropylnaphthalene-based scintillator shows the highest scintillation efficiency, lowest Birks factor, and smallest quench constants. These properties are primarily attributed to the double fused benzene-ring structure of the solvent, which is more efficient to populate to the excited singlet state under ionizing radiation and to transfer the excitation energy to the fluorescent solutes.

  3. On the scintillation efficiency of carborane-loaded liquid scintillators for thermal neutron detection

    International Nuclear Information System (INIS)

    The scintillation efficiency in response to thermal neutrons was studied by loading different concentrations of carborane (0–8.5 wt%) and naphthalene (0 and 100 g/L) in five liquid organic scintillators. The sample was characterized in Pb and Cd shields under the irradiation of the thermal neutrons from a 252Cf source. A method was developed to extract the net neutron response from the pulse-height spectra. It was found that the order of scintillation efficiencies for both γ-rays and thermal neutrons is as follows: diisopropylnaphthalene>toluene (concentrated solutes)>toluene∼pseudocumene∼m-xylene. The quench constants, obtained by fitting the Stern–Volmer model to the plots of light output versus carborane concentration, are in the range of 0.35–1.4 M−1 for all the scintillators. The Birks factors, estimated using the specific energy loss profiles of the incident particles, are in the range of 9.3–14 mg cm−2 MeV−1 for all the samples. The light outputs are in the range of 63–86 keV electron equivalents (keVee) in response to thermal neutrons. Loading naphthalene generally promotes the scintillation efficiency of the scintillator with a benzene derivative solvent. Among all the scintillators tested, the diisopropylnaphthalene-based scintillator shows the highest scintillation efficiency, lowest Birks factor, and smallest quench constants. These properties are primarily attributed to the double fused benzene-ring structure of the solvent, which is more efficient to populate to the excited singlet state under ionizing radiation and to transfer the excitation energy to the fluorescent solutes

  4. The SNO+ Scintillator Purification Plant and Projected Sensitivity to Solar Neutrinos in the Pure Scintillator Phase

    Science.gov (United States)

    Pershing, Teal; SNO+ Collaboration

    2016-03-01

    The SNO+ detector is a neutrino and neutrinoless double-beta decay experiment utilizing the renovated SNO detector. In the second phase of operation, the SNO+ detector will contain 780 tons of organic liquid scintillator composed of 2 g/L 2,5-diphenyloxazole (PPO) in linear alkylbenzene (LAB). In this phase, SNO+ will strive to detect solar neutrinos in the sub-MeV range, including CNO production neutrinos and pp production neutrinos. To achieve the necessary detector sensitivity, a four-part scintillator purification plant has been constructed in SNOLAB for the removal of ionic and radioactive impurities. We present an overview of the SNO+ scintillator purification plant stages, including distillation, water extraction, gas stripping, and metal scavenger columns. We also give the projected SNO+ sensitivities to various solar-produced neutrinos based on the scintillator plant's projected purification efficiency.

  5. Scintillating properties of frozen new liquid scintillators

    CERN Document Server

    Britvich, G I; Golovkin, S V; Martellotti, G; Medvedkov, A M; Penso, G; Soloviev, A S; Vasilchenko, V G

    1999-01-01

    The light emission from scintillators which are liquid at room temperature was studied in the interval between $+20$~$^{\\circ}$C and $-120$~$^{\\circ}$C, where the phase transition from liquid to solid takes place. The light yield measured at $-120$~$^{\\circ}$C is about twice as much as that observed at $+20$~$^{\\circ}$C. By cooling the scintillator from $+20$~$^{\\circ}$C to $-120$~$^{\\circ}$C and then heating it from $-120$~$^{\\circ}$C to $+20$~$^{\\circ}$C, the light yield varies in steps at well defined temperatures, which are different for the cooling and heating processes. These hysteresis phenomena appear to be related to the solvent rather than to the dopant. The decay time of scintillation light was measured at $+20$~$^{\\circ}$C and $-120$~$^{\\circ}$C. Whilst at room temperature most of the light is emitted with a decay time of 6--8 ns, at $-120$~$^{\\circ}$C a slower component, with a decay time of 25--35 ns, becomes important.

  6. Scintillator Measurements for SNO+

    Science.gov (United States)

    Kaptanoglu, Tanner; SNO+ Collaboration

    2016-03-01

    SNO+ is a neutrino detector located 2km underground in the SNOLAB facility with the primary goal of searching for neutrinoless double beta decay. The detector will be filled with a liquid scintillator target primarily composed of linear alkyl benzene (LAB). As charged particles travel through the detector the LAB produces scintillation light which is detected by almost ten thousand PMTs. The LAB is loaded with Te130, an isotope known to undergo double beta decay. Additionally, the LAB is mixed with an additional fluor and wavelength shifter to improve the light output and shift the light to a wavelength regime in which the PMTs are maximally efficient. The precise scintillator optics drastically affect the ultimate sensitivity of SNO+. I will present work being done to measure the optical properties of the SNO+ scintillator cocktail. The measured properties are used as input to a scintillation model that allows us to extrapolate to the SNO+ scale and ultimately predict the sensitivity of the experiment. Additionally, I will present measurements done to characterize the R5912 PMT, a candidate PMT for the second phase of SNO+ that provides better light collection, improved charge resolution, and a narrower spread in timing.

  7. Atmospheric Scintillation in Astronomical Photometry

    CERN Document Server

    Osborn, J; Dhillon, V S; Wilson, R W

    2015-01-01

    Scintillation noise due to the Earth's turbulent atmosphere can be a dominant noise source in high-precision astronomical photometry when observing bright targets from the ground. Here we describe the phenomenon of scintillation from its physical origins to its effect on photometry. We show that Young's (1967) scintillation-noise approximation used by many astronomers tends to underestimate the median scintillation noise at several major observatories around the world. We show that using median atmospheric optical turbulence profiles, which are now available for most sites, provides a better estimate of the expected scintillation noise and that real-time turbulence profiles can be used to precisely characterise the scintillation noise component of contemporaneous photometric measurements. This will enable a better understanding and calibration of photometric noise sources and the effectiveness of scintillation correction techniques. We also provide new equations for calculating scintillation noise, including ...

  8. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  9. Scintillating fiber detector development for the SSC: Annual progress report

    International Nuclear Information System (INIS)

    During the past year, considerable effort has been applied to the development of scintillating fiber detectors in several areas: new scintillation liquids and studies of their fluorescence properties; new fluorescent dyes based on non-intramolecular proton transfer; new dyes based on intramolecular proton transfer; incorporation of these new dyes in plastic (polystyrene) and liquid scintillation solutions; development of small cross section glass capillaries for the containment of liquid scintillators; studies of waveguide characteristics; studies of image intensifier phosphor screen characteristics; initial steps to form a collaboration to study and develop appropriate new properties of the Solid State Photomultiplier; construction of a new laboratory at Notre Dame to enhance our capabilities for further measurements and studies; and organization of and execution of a Workshop on Scintillating Fiber Detector Development for the SSC, held at Fermilab, November 14--16, 1988

  10. Radioactivity measurement with a plastic scintillation vial

    International Nuclear Information System (INIS)

    Introduction: Liquid scintillation counting method is commonly used to measure radioactivity especially for beta emitters because of its high sensitivity. However, since the sample should be mixed with scintillation cocktail of organic liquid, there are problems that the sample could not be recovered and radioactive organic liquid waste is produced. The radioactive waste is usually burned with a specially designed incinerator, so that it needs costs and labor. To resolve the problems, I tried to develop a novel method to measure radioactivity using liquid scintillation counter without scintillation cocktail, and investigated the feasibility of the method. Method: A cylindrical plastic scintillator with well was installed in a counting vial, which is named 'ScintiVial' Sample contained in a 1500 μL microtube was put in the ScintiVial, and was measured with a liquid scintillation counter. Samples including 200-800 Bq of 32P in 25-1300 μL of solution and 900 Bq of 125I in 100 μL solution were measured using the ScintiVial. Results and Discussion: The counting efficiency for 25-1300 μL of 32P was 28-10%, and that for 100 μL of 125I was 3%. The counting efficiency was decreased with the increase of the sample volume. The pulse height distribution of the ScintiVial was similar to that of usual liquid scintillation of the nuclide in question. The microtube, commonly known as 'Eppendorf tube', for containing the sample is widely used for experiments of chemistry etc., and also used to contain most of labeled compounds. Using the ScintiVial made them possible that the sample on an experiment may be measured as it is and the sample may be recovered and reused. In addition, the method will not produce any radioactive organic liquid waste. Not producing the active organic liquid will eliminate the load for its incineration, and then CO2 with the incineration will not be generated. Therefore, the method will potentially assist the resolution of the environmental problem

  11. Research on scintillation mechanism in solids and fabrication of novel high-quality scintillation materials

    International Nuclear Information System (INIS)

    Development of novel scintillation materials and analysis of luminescence and scintillation processes are described. In particular, scintillation materials having nanostructures and scintillation processes at high LET are focused. In addition, various spectroscopic measurements on scintillation materials are briefly introduced. Finally, future prospects for utilizing the knowledge on scintillation processes for design of novel scintillation materials are discussed. (author)

  12. Boron loaded scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Zane William [Oak Ridge, TN; Brown, Gilbert Morris [Knoxville, TN; Maya, Leon [Knoxville, TN; Sloop, Jr., Frederick Victor (Oak Ridge, TN); Sloop, Jr., Frederick Victor [Oak Ridge, TN

    2009-10-20

    A scintillating composition for detecting neutrons and other radiation comprises a phenyl containing silicone rubber with carborane units and at least one phosphor molecule. The carbonate units can either be a carborane molecule dispersed in the rubber with the aid of a compatibilization agent or can be covalently bound to the silicone.

  13. Scintillation crystals required for PET

    International Nuclear Information System (INIS)

    In PET, inorganic scintillator crystals are used to record γ rays produced by the annihilation of positrons emitted by injected tracers. The ultimate performance of the camera is strongly tied to both the physical and scintillation properties of the crystals. For this reason, researchers have investigated virtually all known scintillator crystals for possible use in PET. Despite this massive research effort, only a few different scintillators have been found that have a suitable use. Two recently developed scintillator crystals (LSO and GSO), appears to surpass all previously used materials in most respects and promises to be the basis for the next generation of PET cameras. (authors)

  14. Digital discrimination of neutrons and γ rays with organic scintillation detectors in an 8-bit sampling system using frequency gradient analysis

    Institute of Scientific and Technical Information of China (English)

    YANG Jun; LUO Xiao-Liang; LIU Guo-Fu; LIN Cun-Bao; WANG Yan-Ling; HU Qing-Qing; PENG Jin-Xian

    2012-01-01

    The feasibility of using frequency gradient analysis (FGA),a digital method based on Fourier transform,to discriminate neutrons and γ rays in the environment of an 8-bit sampling system has been investigated.The performances of most pulse shape discrimination methods in a scintillation detection system using the time-domain features of the photomultiplier tube anode signal will be lower or non-effective in this low resolution sampling system.However,the FGA method using the frequency-domain features of the anode signal exhibits a strong insensitivity to noise and can be used to discriminate neutrons and γ rays in the above sampling system.A detailed study of the quality of the FGA method in BC501A liquid scintillators is presented using a 5 G samples/s 8-bit oscilloscope and a 14.1 MeV neutron generator.A comparison of the discrimination results of the time-of-flight and conventional charge comparison (CC) methods proves the applicability of this technique.Moreover,FGA has the potential to be implemented in current embedded electronics systems to provide real-time discrimination in standalone instruments.

  15. Light output of EJ228 scintillation neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Stevanato, L., E-mail: luca.stevanato@pd.infn.i [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); Fabris, D. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Hao, Xin [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); Lunardon, M.; Moretto, S. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G.; Pesente, S. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Sajo-Bohus, L. [Universidad Simon-Bolivar, Laboratorio Fisica Nuclear, Apartado 8900, 1080 A. Caracas (Venezuela, Bolivarian Republic of); Viesti, G. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2011-02-15

    The light output of neutron detectors based on the plastic scintillator EJ228 is studied as a function of neutron energy using a time tagged {sup 252}Cf source. Calibration of the light output scale is performed by fitting the experimental distribution of Compton scattering events of photons from a {sup 22}Na source with a response function obtained by Gaussian smearing of the predicted line-shape. The light output curve as well as the pulse height resolution for the EJ228 scintillators is very close (within 5%) to those recently reported for NE213 type organic liquid scintillators.

  16. Novel radiation hard microfabricated scintillation detectors with high spatial resolution

    CERN Document Server

    Mapelli, A; Haguenauerc, M; Jiguet, S; Vico Triviño, N; Renaud, P

    2010-01-01

    A novel liquid scintillation detector with high spatial resolution is being developed with standard microfabrication techniques. It consists of a dense array of scintillating waveguides obtained by filling microfluidic channels with an organic liquid scintillator and optically coupled to a pixellated photodetector. Such a microfluidic device can be designed and processed to meet the requirements of a wide range of applications like medical imaging, homeland security and high-energy physics. High-spatial resolution miniaturized detectors as well as large-area detectors can easily be fabricated. The fabrication process of a prototype detector and experimental results are presented in this paper.

  17. Measurement of the response function and the detection efficiency of an organic liquid scintillator for neutrons between 1 and 30 MeV

    Institute of Scientific and Technical Information of China (English)

    HUANG Han-Xiong; RUAN Xi-Chao; CHEN Guo-Chang; ZHOU Zu-Ying; LI Xia; BAO Jie; NIE Yang-Bo; ZHONG Qi-Ping

    2009-01-01

    The light output function of a φ50.8 mm×50.8 mm BC501A scintillation detector was measured in the neutron energy region of 1 to 30 MeV by fitting the pulse height (PH) spectra for neutrons with the simulations from the NRESP code at the edge range. Using the new light output function, the neutron detection efficiency was determined with two Monte-Carlo codes, NEFF and SCINFUL. The calculated efficiency was corrected by comparing the simulated PH spectra with the measured ones. The determined efficiency was verified at the near threshold region and normalized with a Proton-Recoil-Telescope (PRT) at the 8-14 MeV energy region.

  18. Nanophosphor composite scintillators comprising a polymer matrix

    Science.gov (United States)

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  19. Neutron crosstalk between liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-01

    We propose a method to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction.

  20. Scintillating polymer inclusion membrane for preconcentration and determination of radionuclides. Effect of plasticizer

    Energy Technology Data Exchange (ETDEWEB)

    Scindia, Y.M.; Sodaye, S.; Pandey, A.K.; Reddy, A.V.R. [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Desigan, N. [RDL, IGKAR, Kalpakkam (India)

    2004-07-01

    Extractive scintillators enable the preconcentration of a radionuclide of interest from an aqueous sample directly into the scintillator organic phase and its detection by scintillation counting. Many schemes for selective preconcentration and measurement of {alpha} and {beta} emitting nuclides have been developed using extractive scintillator liquids and resins. The extractive scintillating resins are prepared by impregnating polymer beads with an organic phase containing extractant, primary scintillator and a wavelength shifter. The extractive scintillating resins have the advantage over the extractive scintillating liquids, as they are amenable for on-line use with a high preconcentration factor. However, the stability of the organic phase held inside the resin matrix is a key issue for their application. As an alternative to extractive scintillating resins, we have developed a scintillating polymer inclusion membrane (S-PIM) for the preconcentration and determination of {alpha} - emitting radionuclides. The S-PIM was prepared by physical immobilization of an extractant bis(2-ethylhexyl)phosphoric acid (HDEHP) and, 2,5-diphenyloxazole (PPO) and 1,4-bis(2-methylstyryl)benzene (MSB) as primary and secondary fluors respectively in a dioctly phthalate (DOP) plasticized cellulose triacetate (CTA) matrix. The S-PIM has been found to be effective for quantitative sorption of trivalent lanthanides and actinides. The {alpha} emitting radionuclides held in the sample of S-PIM could be directly measured by scintillation counting. It was observed that {beta}-scintillation pulses could be discriminated from {alpha} pulses based on their pulse height, thereby achieving {alpha}/{beta} discrimination. In this work we have tested different plasticizers for preparing the S-PIM, in terms of maximum extraction and scintillation efficiency. (orig.)

  1. Scintillating fiber detector

    CERN Document Server

    Vozak, Matous

    2016-01-01

    NA61 is one of the physics experiments at CERN dedicated to study hadron states coming from interactions of SPS beams with various targets. To determine the position of a secondary beam, three proportional chambers are placed along the beamline. However, these chambers tend to have slow response. In order to obtain more precise time information, use of another detector is being considered. Fast response and compact size is making scintillation fiber (SciFi) with silicon photomultiplier (Si-PM) read out a good candidate. This report is focused on analysing data from SciFi collected in a test beam at the beginning of July 2016.

  2. Scintillating-fibre calorimetry

    International Nuclear Information System (INIS)

    In the past decade, calorimetry based on scintillating plastic fibres as active elements was developed from a conceptual idea to a mature detector technology, which is nowadays widely applied in particle physics experiments. This development and the performance characteristics of representative calorimeters, both for the detection of electromagnetic and hadronic showers, are reviewed. We also discuss new information on shower development processes in dense matter and its application to calorimetric principles that has emerged from some very thorough studies that were performed in the framework of this development. (orig.)

  3. Extruding plastic scintillator at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Anna Pla-Dalmau; Alan D. Bross; Victor V. Rykalin

    2003-10-31

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R&D program at Fermilab.

  4. Scintillator based beta batteries

    Science.gov (United States)

    Rensing, Noa M.; Tiernan, Timothy C.; Shirwadkar, Urmila; O'Dougherty, Patrick; Freed, Sara; Hawrami, Rastgo; Squillante, Michael R.

    2013-05-01

    Some long-term, remote applications do not have access to conventional harvestable energy in the form of solar radiation (or other ambient light), wind, environmental vibration, or wave motion. Radiation Monitoring Devices, Inc. (RMD) is carrying out research to address the most challenging applications that need power for many months or years and which have undependable or no access to environmental energy. Radioisotopes are an attractive candidate for this energy source, as they can offer a very high energy density combined with a long lifetime. Both large scale nuclear power plants and radiothermal generators are based on converting nuclear energy to heat, but do not scale well to small sizes. Furthermore, thermo-mechanical power plants depend on moving parts, and RTG's suffer from low efficiency. To address the need for compact nuclear power devices, RMD is developing a novel beta battery, in which the beta emissions from a radioisotope are converted to visible light in a scintillator and then the visible light is converted to electrical power in a photodiode. By incorporating 90Sr into the scintillator SrI2 and coupling the material to a wavelength-matched solar cell, we will create a scalable, compact power source capable of supplying milliwatts to several watts of power over a period of up to 30 years. We will present the latest results of radiation damage studies and materials processing development efforts, and discuss how these factors interact to set the operating life and energy density of the device.

  5. Scintillation counter, segmented shield

    International Nuclear Information System (INIS)

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  6. Position determination in scintillation detectors

    International Nuclear Information System (INIS)

    Three different methods are described to determine the ''true'' positions of a scintillation event in one- and two-dimensional position-sensitive scintillation detectors from experimental calibration data. Under certain assumptions the methods are shown to yield mathematically exact results. Computer-simulated results are presented to demonstrate the validity of the methods, to estimate the consequence of approximations to be made, and to provide figures for the required accuracy of experimental data. Results concerning spatial resolution and linearity of the response are discussed for the case that scintillation events are stored according to the precalculated and tabulated ''true'' positions. (orig.)

  7. Scintillator materials containing lanthanum fluorides

    Science.gov (United States)

    Moses, W.W.

    1991-05-14

    An improved radiation detector containing a crystalline mixture of LaF[sub 3] and CeF[sub 3] as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF[sub 3] and the remainder CeF[sub 3] have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography. 2 figures.

  8. Investigation on neutron/gamma discrimination phenomena in plastic scintillators

    International Nuclear Information System (INIS)

    This PhD topic was born from misunderstandings and incomplete knowledge of the mechanism and relative effectiveness of neutron and gamma-ray (n/γ) discrimination between plastic scintillators compared to liquid scintillators. The shape of the light pulse these materials generate following interaction with an ionizing particle (predominantly recoil protons in the case of neutrons and electrons in the case of gamma-rays) is different in time in a way that depends on the detected particle (nature and energy). It is this fact that enables separation (PSD). The behavior in liquid scintillators has been extensively studied experimentally for practical applications. Only recently has it been shown that a weak separation can also be achieved using specially prepared plastics. The study of this system presents an open field and the understanding of both liquids and plastics with respect to their PSD properties is far from complete. This work is dedicated to exploring the fundamental photophysical phenomena at play in the generation of luminescence emission, following the interaction of ionizing radiation with organic scintillators. For this purpose, firstly a detailed literature review of the state-of-the-art has been conducted extending from 1960 to the present day. Secondly a complete characterization of the main scintillating materials has been conducted to define their fluorescence properties and the characteristics of their scintillation under irradiation. Thirdly a proton beam has been used to simulate recoil protons to quantify under controlled laboratory conditions their specific energy deposition in a plastic scintillator with PSD properties. The fourth part of this thesis is devoted to the study of PSD efficiency of scintillators as a function of their molecular structure. This investigation has led to a plastic scintillator prepared in our laboratory with good PSD properties and a patent submission. Finally, photophysical experiments were performed using a

  9. Photon statistics in scintillation crystals

    Science.gov (United States)

    Bora, Vaibhav Joga Singh

    Scintillation based gamma-ray detectors are widely used in medical imaging, high-energy physics, astronomy and national security. Scintillation gamma-ray detectors are eld-tested, relatively inexpensive, and have good detection eciency. Semi-conductor detectors are gaining popularity because of their superior capability to resolve gamma-ray energies. However, they are relatively hard to manufacture and therefore, at this time, not available in as large formats and much more expensive than scintillation gamma-ray detectors. Scintillation gamma-ray detectors consist of: a scintillator, a material that emits optical (scintillation) photons when it interacts with ionization radiation, and an optical detector that detects the emitted scintillation photons and converts them into an electrical signal. Compared to semiconductor gamma-ray detectors, scintillation gamma-ray detectors have relatively poor capability to resolve gamma-ray energies. This is in large part attributed to the "statistical limit" on the number of scintillation photons. The origin of this statistical limit is the assumption that scintillation photons are either Poisson distributed or super-Poisson distributed. This statistical limit is often dened by the Fano factor. The Fano factor of an integer-valued random process is dened as the ratio of its variance to its mean. Therefore, a Poisson process has a Fano factor of one. The classical theory of light limits the Fano factor of the number of photons to a value greater than or equal to one (Poisson case). However, the quantum theory of light allows for Fano factors to be less than one. We used two methods to look at the correlations between two detectors looking at same scintillation pulse to estimate the Fano factor of the scintillation photons. The relationship between the Fano factor and the correlation between the integral of the two signals detected was analytically derived, and the Fano factor was estimated using the measurements for SrI2:Eu, YAP

  10. Ionospheric Scintillation Effects on GPS

    Science.gov (United States)

    Steenburgh, R. A.; Smithtro, C.; Groves, K.

    2007-12-01

    . Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active, although not limited to, a belt encircling the earth within 20 degrees of the geomagnetic equator. As GPS applications and users increases, so does the potential for detrimental impacts from scintillation. We examined amplitude scintillation data spanning seven years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/Americas longitudinal sector at as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K.; in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at one minute resolution. We examine diurnal, seasonal and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  11. Performance of Water-Based Liquid Scintillator: An Independent Analysis

    Directory of Open Access Journals (Sweden)

    D. Beznosko

    2014-01-01

    Full Text Available The water-based liquid scintillator (WbLS is a new material currently under development. It is based on the idea of dissolving the organic scintillator in water using special surfactants. This material strives to achieve the novel detection techniques by combining the Cerenkov rings and scintillation light, as well as the total cost reduction compared to pure liquid scintillator (LS. The independent light yield measurement analysis for the light yield measurements using three different proton beam energies (210 MeV, 475 MeV, and 2000 MeV for water, two different WbLS formulations (0.4% and 0.99%, and pure LS conducted at Brookhaven National Laboratory, USA, is presented. The results show that a goal of ~100 optical photons/MeV, indicated by the simulation to be an optimal light yield for observing both the Cerenkov ring and the scintillation light from the proton decay in a large water detector, has been achieved.

  12. Plastic scintillators: a powerful tool to reduce mixed waste

    International Nuclear Information System (INIS)

    Wastes containing radioactive and organic compounds (mixed wastes) are difficult to dispose because of the regulations established for nuclear and hazardous wastes. Mixed wastes originate mainly in the emulsions generated in beta emitter determinations by Liquid Scintillation techniques. The use of plastic scintillators instead of liquid cocktails may facilitate the segregation, after measurement, of sample and scintillator without introducing additional wastes in the measurement step. In this study, we compare the capability of Plastic Scintillation (PS) versus Liquid Scintillation (LS) and Cerenkov (C) techniques to determine beta emitters in routine measurements. Results obtained show that high and medium energy beta emitters (Sr-90/Y-90 and C-14) can be quantified in aqueous samples by using PS with similar relative errors (< 5%) as those obtained by LS or C, for any activity level considered. For low energy emitters (H-3), best results using PS are achieved for medium activity levels. Additionally, measurements performed in solutions including alpha (Pu-238) and beta-gamma (Cs-134) emitters confirm the capability of PS to extent the application of this technique to the determination of these types of isotopes. (authors)

  13. A Novel Particle Detector: Quantum Dot Doped Liquid Scintillator

    Science.gov (United States)

    Winslow, Lindley; Conrad, Janet; Jerry, Ruel

    2010-02-01

    Quantum dots are semiconducting nanocrystals. When excited by light shorter then their characteristic wavelength, they re-emit in a narrow band around this wavelength. The size of the quantum is proportional to the characteristic wavelength so they can be tuned for many applications. CdS quantum dots are made in wavelengths from 360nm to 460nm, a perfect range for the sensitivity of photo-multiplier tubes. The synthesis of quantum dots automatically leaves them in toluene, a good organic scintillator and Cd is a particularly interesting material as it has one of the highest thermal neutron cross sections and has several neutrinoless double beta decay and double electron capture isotopes. The performance of quantum dot loaded scintillator compared to standard scintillators is measured and some unique properties presented. )

  14. Radiopure Metal-Loaded Liquid Scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Rosero, Richard [Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.; Yeh, Minfang [Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.

    2015-03-18

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  15. Scintillation detectors in computerized tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gilar, O.; Pavlicek, Z.; Jursova, L. (Tesla, Premysleni (Czechoslovakia). Vyzkumny Ustav Pristroju Jaderne Techniky)

    1984-07-01

    A new scintillator, Bi/sub 4/Ge/sub 3/O/sub 12/ (BGO), was tested for use in the detection part of computerized tomographs. In comparison with the NaI(Tl) scintillator it has a three-fold mass stopping power and allows the detection of medium and high energy gamma radiation with a higher detection efficiency, i.e., for the same detection efficiency its size is much smaller. Some other mechanical, physical and optical parameters of the BGO scintillator are given. BGO is prospective for use in high energy spectrometry and may replace NaI(Tl) wherever the following parameters are significant: crystal size, detection efficiency for gamma radiation, and good spatial resolution.

  16. Ionospheric precursors to scintillation activity

    Directory of Open Access Journals (Sweden)

    Paul S.J. Spencer

    2014-03-01

    Full Text Available Ionospheric scintillation is the rapid fluctuation of both phase and amplitude of trans-ionospheric radio waves due to small scale electron density irregularities in the ionosphere. Prediction of the occurrence of scintillation at L band frequencies is needed to mitigate the disruption of space-based communication and navigation systems. The purpose of this paper is to present a method of using tomographic inversions of the ionospheric electron density obtained from ground-based GPS data to infer the location and strength of the post-sunset plasma drift vortex. This vortex is related to the pre-reversal enhancement in the eastwards electric field which has been correlated to the subsequent occurrence of scintillation.

  17. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  18. Characterization of liquid scintillation detectors

    CERN Document Server

    Schmidt, D; Böttger, R; Klein, H; Lebreton, L; Neumann, S; Nolte, R; Pichenot, G

    2002-01-01

    Five scintillation detectors of different scintillator size and type were characterized. The pulse height scale was calibrated in terms of electron light output units using photon sources. The response functions for time-of-flight (TOF)-selected monoenergetic neutrons were experimentally determined and also simulated with the NRESP code over a wide energy range. A comparison of the measured and calculated response functions allows individual characteristics of the detectors to be determined and the response matrix to be reliably derived. Various applications are discussed.

  19. Magnetic fields and scintillator performance

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.; Ronzhin, A. [Fermi National Accelerator Lab., Batavia, IL (United States); Hagopian, V. [Florida State Univ., Tallahasse, FL (United States)

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University.

  20. Magnetic fields and scintillator performance

    International Nuclear Information System (INIS)

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University

  1. Characteristics of High Latitude Ionosphere Scintillations

    Science.gov (United States)

    Morton, Y.

    2012-12-01

    As we enter a new solar maximum period, global navigation satellite systems (GNSS) receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to characterize scintillation signal parameters and ionosphere irregularities. While there are numerous GPS receivers deployed around the globe to monitor ionosphere scintillations, most of them are commercial receivers whose signal processing mechanisms are not designed to operate under ionosphere scintillation. As a result, they may distort scintillation signal parameters or lose lock of satellite signals under strong scintillations. Since 2008, we have established and continuously improved a unique GNSS receiver array at HAARP, Alaska. The array contains high ends commercial receivers and custom RF front ends which can be automatically triggered to collect high quality GPS and GLONASS satellite signals during controlled heating experiments and natural scintillation events. Custom designed receiver signal tracking algorithms aim to preserve true scintillation signatures are used to process the raw RF samples. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array since its inception have been analyzed to characterize high latitude scintillation phenomena. Daily, seasonal, and solar events dependency of scintillation occurrence, spectral contents of scintillation activities, and plasma drifts derived from these measurements will be presented. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  2. Composite scintillators for detection of ionizing radiation

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  3. SNO+ Scintillator Purification and Assay

    Science.gov (United States)

    Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vázquez-Jáuregui, E.

    2011-04-01

    We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  4. Microscopic Model for the Scintillation-Light Generation and Light-Quenching in CaWO$_4$ single crystals

    CERN Document Server

    Roth, S; Lanfranchi, J -C; Potzel, W; Schönert, S; Ulrich, A

    2015-01-01

    Scintillators are employed for particle detection and identification using light-pulse shapes and light quenching factors. We developed a comprehensive model describing the light generation and quenching in CaWO$_4$ single crystals used for direct dark matter search. All observed particle-dependent light-emission characteristics can be explained quantitatively, light-quenching factors and light-pulse shapes are calculated on a microscopic basis. This model can be extended to other scintillators such as inorganic crystal scintillators, liquid noble gases or organic liquid scintillators.

  5. Scintillation arrays characterization for photon emission imaging

    CERN Document Server

    Pani, R; De Vincentis, G; Indovina, P L; Pellegrini, R; Scafe, R; Soluri, A; Trotta, G

    2002-01-01

    The use of position sensitive photomultiplier tubes (PSPMT) in Nuclear Medicine imaging has recently produced some major steps forward in this field. In fact a dedicated camera for the organ under examination can improve imaging performances. However, in order to maximize them, scintillating crystals arrays have to be employed. In this work 13 Csl(Tl), Csl(Na), Nal(Tl), YAP(Ce) arrays were tested. Square pixel active area ranged between 1x1 and 2x2 mm sup 2 and thickness from 1 to 10 mm. Light output and energy resolution responses versus photon energy and pixel thickness were measured using a standard bialkali PMT. Scintillation light spatial distribution were analyzed coupling Csl(Tl) arrays to a recently available multianode 16 channel linear array PMT. Light output study shown that Csl(Tl) is the best considered material, optimizing optical, mechanical requirements and costs. Light output as well as energy resolution resulted independent on pixel area, but strongly dependent on thickness. Csl(Tl), 1 mm th...

  6. Highly lead-loaded red plastic scintillators as an X-ray imaging system for the Laser Mega Joule

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, M.; Normand, S. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Turk, G.; Darbon, S. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2011-07-01

    The scope of this project intends to record spatially resolved images of core shape and size of a DT micro-balloon during Inertial Confinement Fusion (ICF) experiments at Laser Mega Joule facility (LMJ). We need to develop an X-ray imaging system which can operate in the radiative background generated by an ignition shot of ICF. The scintillator is a part of the imaging system and has to gather a compromise of scintillating properties (scintillating efficiency, decay time, emission wavelength) so as to both operate in the hard radiative environment and to allow the acquisition of spatially resolved images. Inorganic scintillators cannot be used because no compromise can be found regarding the expected scintillating properties, most of them are not fast enough and emit blue light. Organic scintillators are generally fast, but present low X-ray absorption in the 10 to 40 keV range, that does not permit the acquisition of spatially resolved images. To this aim, we have developed highly lead-loaded and red-fluorescent fast plastic scintillators. Such a combination is not currently available via scintillator suppliers, since they propose only blue-fluorescent plastic scintillators doped with up to 12%w Pb. Thus, incorporation ratio up to 27%w Pb has been reached in our laboratory, which can afford a plastic scintillator with an outstanding Z{sub eff} close to 50. X-rays in the 10 to 40 keV range can thus be detected with a higher probability of photoelectric effect than for classic organic scintillators, such as NE102. The strong orange-red fluorescence can be filtered, so that we can eliminate residual Cerenkov light, generated by {gamma}-ray absorption in glass parts of the imaging system. Decay times of our scintillators evaluated under UV excitation were estimated to be in the range 10 to 13 ns. (authors)

  7. Neutron spectrometry with organic scintillation detector

    International Nuclear Information System (INIS)

    This work describes a fast neutron spectrometer using a stilbene crystal as head detector with pulse shape discrimination (P.S.D.) to reject gamma background. Tre experimental procedure involves the P.S.D., the measurements to calibrate the spectrometer and the corrections for several factors, mainly the non-linear response of the stilbene. Results of the measurements with the reaction D2(d,n)He3, and with an Am-Be neutron source are presented. It is also presented the measurement of the spectrum of the fast reactor CCRAl-1. (Author) 17 refs

  8. Light yield measurements of "finger" structured and unstructured scintillators after gamma and neutron irradiation

    Science.gov (United States)

    Afanasiev, S. V.; Boyarintsev, A. Yu.; Danilov, M. V.; Emeliantchik, I. F.; Ershov, Yu. V.; Golutvin, I. A.; Grinyov, B. V.; Ibragimova, E.; Levchuk, L. G.; Litomin, A. V.; Makankin, A. M.; Malakhov, A. I.; Moisenz, P. V.; Nuritdinov, I.; Popov, V. F.; Rusinov, V. Yu.; Shumeiko, N. M.; Smirnov, V. A.; Sorokin, P. V.; Tarkovskii, E. I.; Tashmetov, A.; Vasiliev, S. E.; Yuldashev, B.; Zamiatin, N. I.; Zhmurin, P. N.

    2016-05-01

    Plastic scintillators are often used as detectors in High Energy Physics (HEP), but have insufficient radiation hardness. Organization of better light collection inside a single detector may prolong operation life of scintillators. A finger-strip plastic scintillator option has many advantages to keep the excellent detector performance at high luminosity. Measurements assigned to show an advantage of a stripped detector vs. the un-stripped one in the range of increased absorbed doses and the smallest dose rates have been performed. This method has proved to be a good upgrade strategy.

  9. Development and studies of a novel microfabricated radiation hard scintillation particle detector with high spatial resolution

    CERN Document Server

    Mapelli, A; Haguenauer, M; Jiguet, S; Renaud, P

    2009-01-01

    A novel scintillation detector is being developed with standard microfabrication techniques. It consists of a dense array of scintillating waveguides obtained by filling microfluidic channels with an organic liquid scintillator. Such a microfluidic device can be designed and processed to meet the requirements of a wide range of applications like medical imaging, homeland security and high-energy physics. High-spatial resolution miniaturized detectors as well as large-area detectors can easily be fabricated. This paper presents the fabrication process of a prototype detector with 200 μm × 50 μm microchannels obtained by photolithography of the SU-8 photoresist. Preliminary experimental results are presented.

  10. Silicon photomultipliers for scintillating trackers

    Energy Technology Data Exchange (ETDEWEB)

    Rabaioli, S., E-mail: simone.rabaioli@gmail.com [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Berra, A.; Bolognini, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Bosisio, L. [Universita degli Studi di Trieste and INFN sezione di Trieste (Italy); Ciano, S.; Iugovaz, D. [INFN sezione di Trieste (Italy); Lietti, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Penzo, A. [INFN sezione di Trieste (Italy); Prest, M. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Rashevskaya, I.; Reia, S. [INFN sezione di Trieste (Italy); Stoppani, L. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2012-12-11

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain ({approx}10{sup 6}). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  11. Silicon photomultipliers for scintillating trackers

    Science.gov (United States)

    Rabaioli, S.; Berra, A.; Bolognini, D.; Bonvicini, V.; Bosisio, L.; Ciano, S.; Iugovaz, D.; Lietti, D.; Penzo, A.; Prest, M.; Rashevskaya, I.; Reia, S.; Stoppani, L.; Vallazza, E.

    2012-12-01

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain (∼106). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  12. LHCb Upgrade: Scintillating Fibre Tracker

    Science.gov (United States)

    Tobin, Mark

    2016-07-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and to read out the data at 40 MHz using a trigger-less read-out system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with higher occupancy. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed to read out the fibres and a custom ASIC will be used to digitise the signals from the SiPMs. The evolution of the design since the Technical Design Report in 2014 and the latest R & D results are presented.

  13. Particle tracking with scintillating fibres

    CERN Document Server

    D'Ambrosio, C; Leutz, H; Puertolas, D

    1996-01-01

    This article presents our R&D-work on particle tracking with scintillating fibres. We have developed new fibre dyes, more efficient fibre cladding, coherent fibre bundles with improved packing fraction and a new fibre readout technique (ISPA-tube). Altogether, these new developments increased the hit density of fine grain (60 µm) fibres by about 7 times. This results in mini-tracks per 2.5 mm fibre layer rather than in single hits only and enhances the track reconstruction efficiency to nearly 100 %. Compared with competing tracking methods (silicon strips, MSGCs), our scintillating fibres are superior in hit numbers per radiation length and in the 2-track resolution. They require much less readout channels and consequently no cooling provisions to remove their electronic heat.

  14. Detecting scintillations in liquid helium

    Science.gov (United States)

    Huffman, P. R.; McKinsey, D. N.

    2013-09-01

    We review our work in developing a tetraphenyl butadiene (TPB)-based detection system for a measurement of the neutron lifetime using magnetically confined ultracold neutrons (UCN). As part of the development of the detection system for this experiment, we studied the scintillation properties of liquid helium itself, characterized the fluorescent efficiencies of different fluors, and built and tested three detector geometries. We provide an overview of the results from these studies as well as references for additional information.

  15. General optical scintillation in turbulent atmosphere

    Institute of Scientific and Technical Information of China (English)

    Ruizhong Rao

    2008-01-01

    A general expression of the scintillation index is proposed for optical wave propagating in turbulent atmosphere under arbitrary fluctuation conditions. The expression depends on extreme behaviors of the scintillation indices under both weak and strong fluctuations. The maximum scintillation index in the onset region and the corresponding Rytov index can be evaluated from the general expression. Plane and spherical waves in the cases of zero and non-zero turbulence inner scale are given as examples for illustration of the general behaviors of scintillation indices.

  16. Divalent fluoride doped cerium fluoride scintillator

    Science.gov (United States)

    Anderson, David F.; Sparrow, Robert W.

    1991-01-01

    The use of divalent fluoride dopants in scintillator materials comprising cerium fluoride is disclosed. The preferred divalent fluoride dopants are calcium fluoride, strontium fluoride, and barium fluoride. The preferred amount of divalent fluoride dopant is less than about two percent by weight of the total scintillator. Cerium fluoride scintillator crystals grown with the addition of a divalent fluoride have exhibited better transmissions and higher light outputs than crystals grown without the addition of such dopants. These scintillators are useful in radiation detection and monitoring applications, and are particularly well suited for high-rate applications such as positron emission tomography (PET).

  17. Radio wave scintillations at equatorial regions

    Science.gov (United States)

    Poularikas, A. D.

    1972-01-01

    Radio waves, passing through the atmosphere, experience amplitude and phase fluctuations know as scintillations. A characterization of equatorial scintillation, which has resulted from studies of data recorded primarily in South America and equatorial Africa, is presented. Equatorial scintillation phenomena are complex because they appear to vary with time of day (pre-and postmidnight), season (equinoxes), and magnetic activity. A wider and more systematic geographical coverage is needed for both scientific and engineering purposes; therefore, it is recommended that more observations should be made at earth stations (at low-geomagnetic latitudes) to record equatorial scintillation phenomena.

  18. Waveshifters and Scintillators for Ionizing Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    B.Baumgaugh; J.Bishop; D.Karmgard; J.Marchant; M.McKenna; R.Ruchti; M.Vigneault; L.Hernandez; C.Hurlbut

    2007-12-11

    Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments.

  19. Waveshifters and Scintillators for Ionizing Radiation Detection

    International Nuclear Information System (INIS)

    Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments

  20. Application of a free parameter model to plastic scintillation samples

    Energy Technology Data Exchange (ETDEWEB)

    Tarancon Sanz, Alex, E-mail: alex.tarancon@ub.edu [Departament de Quimica Analitica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Kossert, Karsten, E-mail: Karsten.Kossert@ptb.de [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany)

    2011-08-21

    In liquid scintillation (LS) counting, the CIEMAT/NIST efficiency tracing method and the triple-to-double coincidence ratio (TDCR) method have proved their worth for reliable activity measurements of a number of radionuclides. In this paper, an extended approach to apply a free-parameter model to samples containing a mixture of solid plastic scintillation microspheres and radioactive aqueous solutions is presented. Several beta-emitting radionuclides were measured in a TDCR system at PTB. For the application of the free parameter model, the energy loss in the aqueous phase must be taken into account, since this portion of the particle energy does not contribute to the creation of scintillation light. The energy deposit in the aqueous phase is determined by means of Monte Carlo calculations applying the PENELOPE software package. To this end, great efforts were made to model the geometry of the samples. Finally, a new geometry parameter was defined, which was determined by means of a tracer radionuclide with known activity. This makes the analysis of experimental TDCR data of other radionuclides possible. The deviations between the determined activity concentrations and reference values were found to be lower than 3%. The outcome of this research work is also important for a better understanding of liquid scintillation counting. In particular the influence of (inverse) micelles, i.e. the aqueous spaces embedded in the organic scintillation cocktail, can be investigated. The new approach makes clear that it is important to take the energy loss in the aqueous phase into account. In particular for radionuclides emitting low-energy electrons (e.g. M-Auger electrons from {sup 125}I), this effect can be very important.

  1. Thermal neutron detection by entrapping 6LiF nanocrystals in siloxane scintillators

    Science.gov (United States)

    Carturan, S. M.; Marchi, T.; Maggioni, G.; Gramegna, F.; Degerlier, M.; Cinausero, M.; Dalla Palma, M.; Quaranta, A.

    2015-06-01

    Exploiting the long experience in design and production of scintillating mixtures based on siloxane matrices with combinations of primary dye and waveshifter, a first set of 6LiF loaded scintillator disks has been produced. The synthesis is herein described and reported, as well as preliminary results on their light response towards thermal neutrons. The preservation of transparency and mechanical integrity of the scintillator material is challenging when introducing the inorganic salt LiF which is a "foreign body" to the organic polysiloxane host matrix Different strategies such as synthesis of nanoparticles and surface functionalization have been pursued to succeed in the entrapment of the neutron converter whilst maintaining moderate light output, optical transparency and flexibility of the base scintillator.

  2. Thin films of barium fluoride scintillator deposited by chemical vapor deposition

    International Nuclear Information System (INIS)

    We have used metal-organic chemical vapor deposition (MOCVD) technology to coat optical substrates with thin (≅ 1-10 μm thick) films of inorganic BaF2 scintillator. Scanning electron microscope (SEM) photographs indicate that high-quality epitaxial crystalline film growth was achieved, with surface defects typically smaller than optical wavelengths. The scintillation light created by the deposition of ionizing radiation in the scintillating films was measured with a photomultiplier and shown to be similar to bulk melt-grown crystals. The results demonstrate the potential of these composite optical materials for planar and fiber scintillation radiation detectors in high energy and nuclear physics, synchrotron radiation research, and in radiation and X-ray imaging and monitoring. (orig.)

  3. How to observe 8B solar neutrinos in liquid scintillator detectors

    CERN Document Server

    Ianni, A; Villante, F L

    2016-01-01

    We show that liquid organic scintillator detectors (e.g., KamLAND and Borexino) can measure the 8B solar neutrino flux by means of the nu_e charged current interaction with the 13C nuclei naturally contained in the scintillators. The neutrino events can be identified by exploiting the time and space coincidence with the subsequent decay of the produced 13N nuclei. We perform a detailed analysis of the background in KamLAND, Borexino and in a possible liquid scintillator detector at SNOLab, showing that the 8B solar neutrino signal can be extracted with a reasonable uncertainty in a few years of data taking. KamLAND should be able to extract about 18 solar neutrino events from the already collected data. Prospects for gigantic scintillator detectors (such as LENA) are also studied.

  4. Scintillation properties of lead sulfate

    International Nuclear Information System (INIS)

    We report on the scintillation properties of lead sulfate (PbSO4), a scintillator that show promise as a high energy photon detector. It physical properties are well suited for gamma detection, as its has a density of 6.4 gm/cm3, a 1/e attenuation length for 511 keV photons of 1.2 cm, is not affected by air or moisture, and is cut and polished easily. In 99.998% pure PbSO4 crystals at room temperature excited by 511 keV annihilation photons, the fluorescence decay lifetime contains significant fast components having 1.8 ns (5%) and 19 ns (36%) decay times, but with longer components having 95 ns (36%) and 425 ns (23%) decays times. The peak emission wavelength is 335 nm, which is transmitted by borosilicate glass windowed photomultiplier tubes. The total scintillation light output increases with decreasing temperature fro 3,200 photons/MeV at +45 degrees C to 4, 900 photons/MeV at room temperature (+25 degrees C) and 68,500 photons/MeV at -145 degrees C. In an imperfect, 3 mm cube of a naturally occurring mineral form of PbSO4 (anglesite) at room temperature, a 511 keV photopeak is seen with a total light output of 60% that BGO. There are significant sample to sample variations of the light output among anglesite samples, so the light output of lead sulfate may improve when large synthetic crystals become available. 10 refs

  5. The observation of scintillation in a hydrated inorganic compound: CeCl3 6H2O

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, Lynn A [ORNL; Neal, John S [ORNL; Ramey, Joanne Oxendine [ORNL; Chakoumakos, Bryan C [ORNL; Custelcean, Radu [ORNL

    2013-01-01

    We have recently reported the discovery of a new family of rare-earth metal-organic single-crystal scintillators based on Ce3+ as the activator ion. Starting with the CeCl3(CH3OH)4 prototype, this family of scintillators has recently been extended to include complex metal-organic adducts produced by reacting CeCl3 with heavier organics (e.g., isomers of propanol and butanol). Some of these new rare-earth metal-organic materials incorporated waters of hydration in their structures, and the observation of scintillation in these hydrated compounds was an original finding for any solid scintillator. In the present work, we now report what is apparently the initial observation of gamma-ray-excited scintillation in an inorganic hydrated material, namely single-crystal monoclinic CeCl3 6H2O. This observation shows that the mechanisms of the various scintillation energy-transfer processes are not blocked by the presence of waters of hydration in an inorganic material and that the observation of scintillation in other hydrated inorganic compounds is not precluded.

  6. Pulsar scintillation patterns and strangelets

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-García, M. Ángeles, E-mail: mperezga@usal.es [Department of Fundamental Physics and IUFFyM, University of Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Silk, Joseph, E-mail: silk@iap.fr [Institut d' Astrophysique, UMR 7095, CNRS, Université Pierre et Marie Curie, 98bis Blvd Arago, 75014 Paris (France); Department of Physics and Astronomy, Johns Hopkins University, Homewood Campus, Baltimore MD 21218 (United States); Beecroft Institute of Particle Astrophysics and Cosmology, Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Pen, Ue-Li, E-mail: pen@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, University of Toronto, 0N M5S 3H8 (Canada)

    2013-12-18

    We propose that interstellar extreme scattering events, usually observed as pulsar scintillations, may be caused by a coherent agent rather than the usually assumed turbulence of H{sub 2} clouds. We find that the penetration of a flux of ionizing, positively charged strangelets or quark nuggets into a dense interstellar hydrogen cloud may produce ionization trails. Depending on the specific nature and energy of the incoming droplets, diffusive propagation or even capture in the cloud are possible. As a result, enhanced electron densities may form and constitute a lens-like scattering screen for radio pulsars and possibly for quasars.

  7. Mounting LHCb hadron calorimeter scintillating tiles

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Scintillating tiles are carefully mounted in the hadronic calorimeter for the LHCb detector. These calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  8. A proportional-scintillation counter beta spectrometer

    International Nuclear Information System (INIS)

    Using a proportional counter for coincidence gating of events in a plastic scintillator provides selective registration of beta interactions in the scintillator. This technique has been used to construct a field instrument that can selectively collect beta spectra (coincidence gating) or gamma spectra (anticoincidence gating). Associated dose rates are calculated from the spectra

  9. Liquid scintillators with near infrared emission based on organoboron conjugated polymers.

    Science.gov (United States)

    Tanaka, Kazuo; Yanagida, Takayuki; Yamane, Honami; Hirose, Amane; Yoshii, Ryousuke; Chujo, Yoshiki

    2015-11-15

    The organic liquid scintillators based on the emissive polymers are reported. A series of conjugated polymers containing organoboron complexes which show the luminescence in the near infrared (NIR) region were synthesized. The polymers showed good solubility in common organic solvents. From the comparison of the luminescent properties of the synthesized polymers between optical and radiation excitation, similar emission bands were detected. In addition, less significant degradation was observed. These data propose that the organoboron conjugated polymers are attractive platforms to work as an organic liquid scintillator with the emission in the NIR region.

  10. Equitorial scintillations: Advances since ISEA-6

    Science.gov (United States)

    Basu, S.

    1985-01-01

    Since the last equatorial aeronomy meeting in 1980, our understanding of the morphology of equatorial scintillations has advanced greatly due to more intensive observations at the equatorial anomaly locations in the different longitude zones. The unmistakable effect of the sunspot cycle in controlling irregularity belt width and electron concentration responsible for strong scintillation in the GHz range has been demonstrated. The fact that night-time F-region dynamics is an important factor in controlling the magnitude of scintillations has been recognized by interpreting scintillation observations in the light of realistic models of total electron content at various longitudes. A hypothesis based on the alignment of the solar terminator with the geomagnetic flux tubes as an indicator of enhanced scintillation occurrence and another based on the influence of a transequatorial thermospheric neutral wind have been postulated to describe the observed longitudinal variation.

  11. Scintillation Effects on Space Shuttle GPS Data

    Science.gov (United States)

    Goodman, John L.; Kramer, Leonard

    2001-01-01

    Irregularities in ionospheric electron density result in variation in amplitude and phase of Global Positioning System (GPS) signals, or scintillation. GPS receivers tracking scintillated signals may lose carrier phase or frequency lock in the case of phase sc intillation. Amplitude scintillation can cause "enhancement" or "fading" of GPS signals and result in loss of lock. Scintillation can occur over the equatorial and polar regions and is a function of location, time of day, season, and solar and geomagnetic activity. Mid latitude regions are affected only very rarely, resulting from highly disturbed auroral events. In the spring of 1998, due to increasing concern about scintillation of GPS signals during the upcoming solar maximum, the Space Shuttle Program began to assess the impact of scintillation on Collins Miniaturized Airborne GPS Receiver (MAGR) units that are to replace Tactical Air Control and Navigation (TACAN) units on the Space Shuttle orbiters. The Shuttle Program must determine if scintillation effects pose a threat to safety of flight and mission success or require procedural and flight rule changes. Flight controllers in Mission Control must understand scintillation effects on GPS to properly diagnose "off nominal" GPS receiver performance. GPS data from recent Space Shuttle missions indicate that the signals tracked by the Shuttle MAGR manifest scintillation. Scintillation is observed as anomalous noise in velocity measurements lasting for up to 20 minutes on Shuttle orbit passes and are not accounted for in the error budget of the MAGR accuracy parameters. These events are typically coincident with latitude and local time occurrence of previously identified equatorial spread F within about 20 degrees of the magnetic equator. The geographic and seasonal history of these events from ground-based observations and a simple theoretical model, which have potential for predicting events for operational purposes, are reviewed.

  12. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    International Nuclear Information System (INIS)

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % and 1.31 ± 0.59 % after 0≈ 80 Gy of proton dose, respectively. Whilst some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation

  13. Scintillation Breakdowns in Chip Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2008-01-01

    Scintillations in solid tantalum capacitors are momentarily local breakdowns terminated by a self-healing or conversion to a high-resistive state of the manganese oxide cathode. This conversion effectively caps the defective area of the tantalum pentoxide dielectric and prevents short-circuit failures. Typically, this type of breakdown has no immediate catastrophic consequences and is often considered as nuisance rather than a failure. Scintillation breakdowns likely do not affect failures of parts under surge current conditions, and so-called "proofing" of tantalum chip capacitors, which is a controllable exposure of the part after soldering to voltages slightly higher than the operating voltage to verify that possible scintillations are self-healed, has been shown to improve the quality of the parts. However, no in-depth studies of the effect of scintillations on reliability of tantalum capacitors have been performed so far. KEMET is using scintillation breakdown testing as a tool for assessing process improvements and to compare quality of different manufacturing lots. Nevertheless, the relationship between failures and scintillation breakdowns is not clear, and this test is not considered as suitable for lot acceptance testing. In this work, scintillation breakdowns in different military-graded and commercial tantalum capacitors were characterized and related to the rated voltages and to life test failures. A model for assessment of times to failure, based on distributions of breakdown voltages, and accelerating factors of life testing are discussed.

  14. Estimation of Fano factor in inorganic scintillators

    Science.gov (United States)

    Bora, Vaibhav; Barrett, Harrison H.; Fastje, David; Clarkson, Eric; Furenlid, Lars; Bousselham, Abdelkader; Shah, Kanai S.; Glodo, Jarek

    2016-01-01

    The Fano factor of an integer-valued random variable is defined as the ratio of its variance to its mean. Correlation between the outputs of two photomultiplier tubes on opposite faces of a scintillation crystal was used to estimate the Fano factor of photoelectrons and scintillation photons. Correlations between the integrals of the detector outputs were used to estimate the photoelectron and photon Fano factor for YAP:Ce, SrI2:Eu and CsI:Na scintillator crystals. At 662 keV, SrI2:Eu was found to be sub-Poisson, while CsI:Na and YAP:Ce were found to be super-Poisson. An experiment setup inspired from the Hanbury Brown and Twiss experiment was used to measure the correlations as a function of time between the outputs of two photomultiplier tubes looking at the same scintillation event. A model of the scintillation and the detection processes was used to generate simulated detector outputs as a function of time for different values of Fano factor. The simulated outputs from the model for different Fano factors was compared to the experimentally measured detector outputs to estimate the Fano factor of the scintillation photons for YAP:Ce, LaBr3:Ce scintillator crystals. At 662 keV, LaBr3:Ce was found to be sub-Poisson, while YAP:Ce was found to be close to Poisson.

  15. Liquid scintillation counting system with automatic gain correction

    International Nuclear Information System (INIS)

    An automatic liquid scintillation counting apparatus is described including a scintillating medium in the elevator ram of the sample changing apparatus. An appropriate source of radiation, which may be the external source for standardizing samples, produces reference scintillations in the scintillating medium which may be used for correction of the gain of the counting system

  16. PREFACE: Applications of Novel Scintillators for Research and Industry (ANSRI 2015)

    Science.gov (United States)

    Roberts, O. J.

    2015-06-01

    Scintillator detectors are used widely in the field of γ- and X-ray spectroscopy, particularly in the mid 1900s when the invention of NaI(Tl) by nobel laureate Robert Hofstadter in 1948, spurred the creation of new scintillator materials. In the development of such new scintillators, important characteristics such as its intrinsic efficiency, position sensitivity, robustness, energy and timing response, light output, etc, need to be addressed. To date, these requirements cannot be met by a single type of scintillator alone and therefore the development of an ''ideal'' scintillator remains the holy grail of nuclear instrumentation. Consequently, the last two decades have seen significant progress in the development of scintillator crystals, driven largely by technological advances. Conventional inorganic scintillators such as NaI(Tl) and BGO are now being replaced with better, novel organic, inorganic, ceramic and plastic scintillators offering a wider variety of options for many applications. The workshop on the Applications of Novel Scintillators in Research and Industry was held at University College Dublin in January 2015 and covered a wide range of topics that characterise modern advances in the field of scintillator technology. This set of proceedings covers areas including the growth, production and characterisation of such contemporary scintillators, along with their applications in various fields, such as; Medical Imaging; Defence/Security; Astrophysics; and Nuclear/Particle Physics. We would like to thank all those who presented their recent results on their research at the workshop. These proceedings atest to the excitement and interest in such a broad field, that pervades the pursuit of the development of novel materials for future applications. We would also like to thank Professor Luigi Piro, for giving an interesting public talk during the conference, and to the Institute of Physics Ireland Group for supporting the event. We thank ORTEC for

  17. Scintillation counter: photomultiplier tube alignment

    International Nuclear Information System (INIS)

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into the sample receiving zone. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (auth)

  18. Scintillation counter, maximum gamma aspect

    International Nuclear Information System (INIS)

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  19. Scintillation particle detection based on microfluidics

    CERN Document Server

    Mapelli, A; Renaud, P; Gorini, B; Trivino, N Vico; Jiguet, S; Vandelli, W; Haguenauer, M

    2010-01-01

    A novel type of particle detector based on scintillation, with precise spatial resolution and high radiation hardness, is being studied. It consists of a single microfluidic channel filled with a liquid scintillator and is designed to define an array of scintillating waveguides each independently coupled to a photodetector. Prototype detectors built using an SU-8 epoxy resin have been tested with electrons from a radioactive source. The experimental results show a light yield compatible with the theoretical expectations and confirm the validity of the approach. (C) 2010 Elsevier B.V. All rights reserved.

  20. Measurement of Radiation Damage of Water-based Liquid Scintillator and Liquid Scintillator

    CERN Document Server

    Bignell, Lindsey J; Hans, Sunej; Jaffe, David E; Rosero, Richard; Vigdor, Steven; Viren, Brett; Worcester, Elizabeth; Yeh, Minfang; Zhang, Chao

    2015-01-01

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of $5\\%$ scintillating phase) exhibit light yield reductions of $1.74 \\pm 0.55 \\%$ and $1.31 \\pm 0.59 \\%$ after $\\approx$ 800 Gy of proton dose, respectively. Whilst some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical conte...

  1. Testing Gravity with Pulsar Scintillation Measurements

    CERN Document Server

    Yang, Huan; Pen, Ue-Li

    2016-01-01

    We propose to use pulsar scintillation measurements to test predictions of alternative theories of gravity. Comparing to single-path pulsar timing measurements, the scintillation measurements can achieve a factor of 10^5 improvement in timing accuracy, due to the effect of multi-path interference. Previous scintillation measurements of PSR B0834+06 have data acquisition for hours, making this approach sensitive to mHz gravitational waves. Therefore it has unique advantages in measuring gravitational effect or other mechanisms (at mHz and above frequencies) on light propagation. We illustrate its application in constraining scalar gravitational-wave background, in which case the sensitivities can be greatly improved with respect to previous limits. We expect much broader applications in testing gravity with existing and future pulsar scintillation observations.

  2. Pulsar Scintillation and the Local Bubble

    CERN Document Server

    Bhat, N D R; Rao, A P; Gupta, Yashwant

    1998-01-01

    We present here the results from an extensive scintillation study of twenty pulsars in the dispersion measure (DM) range 3 - 35 pc cm^-3 caried out using the Ooty Radio Telescope (ORT) at 327 MHz, to investigate the distribution of ionized material in the local interstellar medium. Observations were made during the period January 1993 to August 1995, in which the dynamic scintillation spectra of these pulsars were regularly monitored over 10 - 90 epochs spanning 100 days. Reliable and accurate estimates of strengths of scattering have been deduced from the scintillation parameters averaged out for their long-term fluctuations arising from refractive scintillation (RISS) effects. Our analysis reveals several anomalies in the scattering strength, which suggest tht the distribution of scattering material in the Solar neighborhood is not uniform. We have modelled these anomalous scattering effects in terms of inhomogeneities in the distribution of electron dnsity fluctuations in the local interstellar medium (LIS...

  3. Equatorial scintillations: advances since ISEA-6

    Science.gov (United States)

    Basu, Sunanda; Basu, Santimay

    1985-10-01

    Since the last equatorial aeronomy meeting in 1980, our understanding of the morphology of equatorial scintillations has advanced greatly due to more intensive observations at the equatorial anomaly locations in the different longitude zones. The unmistakable effect of the sunspot cycle in controlling irregularity belt width and electron concentration responsible for strong scintillation in the GHz range has been demonstrated. The fact that night-time F-region dynamics is an important factor in controlling the magnitude of scintillations has been recognized by interpreting scintillation observations in the light of realistic models of total electron content at various longitudes. A hypothesis based on the alignment of the solar terminator with the geomagnetic flux tubes as an indicator of enhanced scintillation occurrence and another based on the influence of a transequatorial thermospheric neutral wind have been postulated to describe the observed longitudinal variation. A distinct class of equatorial irregularities known as the bottomside sinusoidal (BSS) type has been identified. Unlike equatorial bubbles, these irregularities occur in very large patches, sometimes in excess of several thousand kilometers in the E-W direction and are associated with frequency spread on ionograms. Scintillations caused by such irregularities exist only in the VHF band, exhibit Fresnel oscillations in intensity spectra and are found to give rise to extremely long durations (~ several hours) of uninterrupted scintillations. These irregularities maximize during solstices, so that in the VHF range, scintillation morphology at an equatorial station is determined by considering occurrence characteristics of both bubble type and BSS type irregularities. The temporal structure of scintillations in relation to the in situ measurements of irregularity spatial structure within equatorial bubbles has been critically examined. A two-component irregularity spectrum with a shallow slope ( p1

  4. Spectrometric characteristics of polystyrene scintillation films

    CERN Document Server

    Astvatsaturov, A R; Gavalyan, V B; Gavalyan, V G

    1999-01-01

    The spectrometric characteristics of five types of polystyrene scintillation films with thicknesses of 10, 30, 50 and 80 mu m and of analogous 250 mu m thick plates irradiated with sup 2 sup 3 sup 9 Pu, sup 2 sup 3 sup 8 Pu and sup 2 sup 2 sup 6 Ra sources of alpha-particles have been studied. The prospects of utilization of scintillation films as radiators for detection of heavy charged particles and measurement of their energy was experimentally shown.

  5. Constant fraction timing with scintillation detectors

    International Nuclear Information System (INIS)

    A model is presented for constant fraction pick-off timing with scintillator-photomultiplier detectors based on a statistical method for leading edge timing. Many of the essential features of this technique are obtained such as prompt time-response, the dependence of FWHM on dynamic range of pulse heights and on maximum energy deposited in scintillator; also the effect of delay time on the optimum resolution in CFPHT and ARC timing. The Walk component in this technique is also satisfactory reproduced

  6. Application of inorganic scintillator for neutron detector

    CERN Document Server

    Niki, N; Nakayama, S; Fushimi, K

    2003-01-01

    In a nuclear reactor institution, the neutron monitoring is indispensable in order to find an unusual neutron event which may be the signal of an accident or damage of a reactor. In this work, the possibility of a neutron monitor by means of an inorganic scintillator was researched. The detection efficiency and the intrinsic background of GSO scintillator and its sensitivity for neutrons have been studied.

  7. Elastic scintillation materials based on polyorganosiloxane

    Energy Technology Data Exchange (ETDEWEB)

    Grinev, B.V.; Andryushchenko, L.A.; Shershukov, V.M.; Ulanenko, K.B.; Minakova, R.A.; Sevastjanova, I.V. [Ukrainian Academy of Sciences, Kharkov (Ukraine). Inst. for Single Crystals

    1994-12-31

    The developed elastic scintillators based on polymethyl-phenylsiloxane rubber are characterized by an elevated light output and a low toxicity. The increase of their light output is achieved by raising the content of phenyl chains, varying the chemical structure of luminescent additions and using isopropylnaphthalene. This high-boiling solvent introduced into the scintillation siloxane compositions is confined within siloxane matrix after the hardening of the rubber.

  8. Design considerations for a scintillating plate calorimeter

    Science.gov (United States)

    Job, P. K.; Price, L. E.; Proudfoot, J.; Handler, T.; Gabriel, T. A.

    1992-06-01

    Results of the simulation studies for the design of a scintillating plate calorimeter for an SSC detector are presented. These simulation studies have been carried out with the CALOR89 code. The results show that both lead and uranium can yield good compensation in practical sampling geometries. However, the significant delayed energy release in the uranium systems can lead to a serious pile up problem at high rates. In the energy range under consideration, an iron-scintillator system is not compensating at any absorber to scintillator ratio. An inhomogeneous calorimeter with 4γ of lead-scintillator in a compensating configuration followed by 4γ of iron-scintillator with moderate sampling is found to perform as well as a homogeneous lead-scintillator compensating calorimeter. In such inhomogeneous systems the hadronic signal from different segments are weighted by a scheme based on minimum ionizing d E/d X. We show that, in a properly optimised three segment, compensation and good hadronic resolution can be achieved by appropriately weighting the signal from the segments.

  9. Scintillation Hole Observed by FORMOSAT-3/COSMIC

    Science.gov (United States)

    Chen, Shih Ping; Yenq Liu, Jann; Krishnanunni Rajesh, Panthalingal

    2013-04-01

    Ionospheric scintillations can significantly disturb satellite positioning, navigation, and communication. FORMOSAT-3/COSMIC provides the first 3-D global observation by solo instrument (radio occultation experiment, GOX). The GPS L-band amplitude fluctuation from 50Hz signal is received and recorded by F3/C GOX to calculate S4-index from 50-800km altitude. The global F3/C S4 index are subdivided and examined in various latitudes, longitudes, altitudes, and seasons during 2007-2012. The F-region scintillations in the equatorial and low-latitude ionosphere start around post-sunset period and often persist till post-midnight hours (0300 MLT, magnetic local time) during the March and September equinox as well as December Solstice seasons. The E-region scintillations reveal a clear solar zenith effect and yield pronounced intensities in mid-latitudes during the Summer Solstice seasons, which are well correlated with occurrences of the sporadic E-layer. It is interesting to find there is no scintillation, which is termed "scintillation hole", in the E region ranging from 80 to 130km altitude over the South Africa region, and become the most pronounced in November-January (December Solstice seasons or summer months). Other space-borne and ground based observations are use to confirm the existence of the scintillation hole.

  10. Ionospheric scintillation effects on single frequency GPS

    Science.gov (United States)

    Steenburgh, R. A.; Smithtro, C. G.; Groves, K. M.

    2008-04-01

    Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active within, although not limited to, a belt encircling the Earth within 20 degrees of the geomagnetic equator. As GPS applications and users increase, so does the potential for degraded precision and availability from scintillation. We examined amplitude scintillation data spanning 7 years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/American longitudinal sector as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K. in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at 1 min resolution. We examine diurnal, seasonal, and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  11. Light propagation in a large volume liquid scintillator

    CERN Document Server

    Alimonti, G; Balata, M; Bellini, G; Benziger, J; Bonetti, S; Caccianiga, B; Cadonati, L; Calaprice, F P; Cecchet, G; Chen, M; Darnton, N; De Bari, A; Deutsch, M; Elisei, F; Feilitzsch, F V; Galbiati, C; Gatti, F; Giammarchi, M G; Giugni, D; Goldbrunner, T; Golubchikov, A; Goretti, A; Hagner, T; Hartmann, F X; Hentig, R V; Heusser, G; Ianni, A; Johnson, M; Laubenstein, M; Lombardi, P; Magni, S; Malvezzi, S; Maneira, J; Manno, I; Manuzio, G; Masetti, F; Mazzucato, U; Meroni, E; Neff, M; Oberauer, L; Perotti, A; Raghavan, R S; Ranucci, G; Resconi, E; Salvo, C; Scardaoni, R; Schönert, S; Smirnov, O; Tartaglia, R; Testera, G; Vogelaar, R B; Vitale, S; Zaimidoroga, O A

    2000-01-01

    The fluorescence light propagation in a large volume detector based on organic liquid scintillators is discussed. In particular, the effects of the fluor radiative transport and solvent Rayleigh scattering are emphasized. These processes have been modelled by a ray-tracing Monte Carlo method and have been experimentally investigated in the Borexino prototype which was a 4.3 ton, 4 pi sensitive detector. The comparison between the model prediction and the experimental data shows a satisfactory agreement indicating that the main aspects of these processes are well understood. Some features of the experimental time response of the detector are still under study.

  12. Scintillation light, ionization yield and scintillation decay times in high pressure xenon and xenon methane

    NARCIS (Netherlands)

    Pushkin, K. N.; Akimov, D. Y.; Burenkov, A. A.; Dmitrenko, V. V.; Kovalenko, A. G.; Lebedenko, V. N.; Kuznetsov, I. S.; Stekhanov, V. N.; Tezuka, C.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2007-01-01

    Scintillation light, ionization yield and scintillation decay times have been measured in xenon and in its mixture with a 0.05% concentration of methane as a function of the reduced electric field (E/N)-the ratio of the electric field strength to the number density of gas-at a pressure of 21 atm. Th

  13. X-ray multi-energy radiography with "scintillator-photodiode" detectors

    CERN Document Server

    Ryzhikov, V D; Grinyov, B V; Lisetskaya, E K; Opolonin, A D; Kozin, D N

    2002-01-01

    For reconstruction of the spatial structure of many-component objects, it is proposed to use multi-radiography with detection of X-ray by combined detector arrays using detectors of ``scintillator-photodiode'' type. A theoretical model has been developed of multi-energy radiography for thickness measurements of multi-layered systems and systems with defects. Experimental studies of the sensitivity, output signal of various inspection systems based on scintillators $ZnSe(Te)$ and $CsI(Tl)$, and object image reconstruction (with organics and non-ogranics materials singled out) have been carried out.

  14. Neutron Scintillators for Downscattered Neutron Imaging

    International Nuclear Information System (INIS)

    Images of neutron emission from Inertial Confinement Fusion (ICF) (D,T) targets reveal the internal structure of the target during the fusion burn. 14-MeV neutrons provide images which show the size and shape of the region where (D,T) fusion is most intense. Images based on ''downscattered'' neutrons with energies from 5 to 10 MeV emphasize the distribution of deuterium and tritium fuel within the compressed target. The downscattered images are difficult to record because the lower energy neutrons are detected with less efficiency than the much more intense pulse of 14-MeV neutrons which precedes them at the detector. The success of downscattered neutron imaging will depend on the scintillation decay times and the sensitivities to lower-energy neutrons of the scintillator materials that are used in the detectors. A time-correlated photon counting system measured the decay of neutron-induced scintillation for times as long as several hundred ns. Accelerators at the University of California, Berkeley, and the Lawrence Livermore National Laboratory provided stable 14-MeV neutron sources for the measurements. Measurements of scintillator decay characteristics indicate that some commercially available scintillators should be suitable for recording both 14-MeV and downscattered neutron images of compressed ICF targets

  15. Scintillation Detectors for Charged Particles and Photons

    CERN Document Server

    Lecoq, P

    2011-01-01

    Scintillation Detectors for Charged Particles and Photons in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.1 Scintillation Detectors for Charged Particles and Photons' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.1 Scintillation Detectors for Charged Particles and Photons 3.1.1.1 Basic detector principles and scintillator requirements 3.1.1.1.1 Interaction of ionizing radiation with scintillator material 3.1.1.1.2 Important scint...

  16. Method for determination of radium-226 in water by liquid scintillation counting

    International Nuclear Information System (INIS)

    The chemical procedure involves the isolation or radium from the sample solution by co-precipitation with lead sulphate. The precipitate is dissolved in alkaline DTPA. The radium isotopes are separated from other radionuclides by co-precipitation with barium sulphate. The barium/radium precipitate is dissolved in alkaline EDTA, the solution is transfered to a liquid scintillation vial and the organic scintillant is added. After sealing, the sample is left until equilibrium between Ra-226 and Rn-222 is established or until a suitable ingrowth time has elapsed. The alpha activity of Rn-222 and its short-lived daughters, Po-218 and Po-214, are measured by the use of a commercial liquid scintillation counter. By using the following procedure and a low level LSC a lover limit of detection of 2 mBq/sample can be achieved

  17. Investigation on new scintillators for subnanosecond time-resolved x-ray measurements

    Science.gov (United States)

    Haruki, R.; Shibuya, K.; Nishikido, F.; Koshimizu, M.; Yoda, Y.; Kishimoto, S.

    2010-03-01

    We investigated new x-ray detectors for nuclear resonant scattering measurements with high energy x rays. The organic-inorganic perovskite scintillator of phenethylamine lead halide ((C6H5C2H4NH3)2PbX4) (X:Br, I) was used. These compounds have fast light emission due to an exciton. They include heavy atoms, which make the detector to have high efficiency to high energy x rays. The merit of these scintillators is that we can make a thick crystal compared to a Si wafer which is used in an avalanche photo-diode detector. We successfully measured 67.41 keV x ray signals, the energy of 61Ni nuclear resonant scattering, with high detection efficiency of 42.5 % by the scintillator.

  18. Characterization of ionospheric scintillation at a geomagnetic equatorial region station

    Science.gov (United States)

    Seba, Ephrem Beshir; Gogie, Tsegaye Kassa

    2015-11-01

    In this study, we analyzed ionospheric scintillation at Bahir Dar station, Ethiopia (11.6°N, 37.38°E) using GPS-SCINDA data between August 2010 and July 2011. We found that small scale variation in TEC caused high ionospheric scintillation, rather than large scale variation. We studied the daily and monthly variations in the scintillation index S4 during this year, which showed that scintillation was a post-sunset phenomenon on equinoctial days, with high activity during the March equinox. The scintillation activity observed on solstice days was relatively low and almost constant throughout the day with low post-sunset activity levels. Our analysis of the seasonal and annual scintillation characteristics showed that intense activity occurred in March and April. We also studied the dependence of the scintillation index on the satellite elevation angle and found that scintillation was high for low angles but low for high elevation angles.

  19. Current trends in scintillator detectors and materials

    CERN Document Server

    Moses, W W

    2002-01-01

    The last decade has seen a renaissance in inorganic scintillator development for gamma ray detection. Lead tungstate (PbWO sub 4) has been developed for high-energy physics experiments, and possesses exceptionally high density and radiation hardness, albeit with low luminous efficiency. Lutetium orthosilicate or LSO (Lu sub 2 SiO sub 5 :Ce) possesses a unique combination of high luminous efficiency, high density, and reasonably short decay time, and is now incorporated in commercial positron emission tomography cameras. There have been advances in understanding the fundamental mechanisms that limit energy resolution, and several recently discovered materials (such as LaBr sub 3 :Ce) possess energy resolution that approaches that of direct solid state detectors. Finally, there are indications that a neglected class of scintillator materials that exhibit near band-edge fluorescence could provide scintillators with sub-nanosecond decay times and high luminescent efficiency.

  20. Characterization of the new scintillator CLYC

    CERN Document Server

    Kui-Nian, Li; Qiang, Gui; Peng, Jin; Geng, Tian

    2016-01-01

    The first domestic inorganic scintillator CLYC was grown in Beijing Glass Research Instituteusing the vertical Bridgman method. In this work, we evaluated the performance of this new CLYC crystal in terms of gamma-ray energy resolution and pulse shape discrimination(PSD)capability between neutrons and gamma-rays. The decay times occurred throughdifferent scintillation mechanisms were achievedby fitting decay functions to the neutron and gamma-ray waveform structures. We found an energy resolution of 4.5% for 662-keV gamma-rays and efficient neutron/gamma PSD withFoM 2.6. Under gamma-ray excitation, there is ultrafast scintillation mechanism in CLYC, with a decay time about 2 ns,whereasthere is no evidence of ultrafast decay under thermal neutron excitation. This work contributes to promote domestic development of CLYC.

  1. Liquid scintillation counting of novel radionuclides

    International Nuclear Information System (INIS)

    The theoretical background of counting radionuclides in liquid scintillators is presented. The effects of quenching and finite scintillator size are briefly described and the theory is justified by an experimental comparison between 55Fe and 3H in which all facets of the theory are important. Counting efficiencies for other nuclides decaying by 100% electron capture are calculated and compared with efficiencies for the β emitters 3H, 14C and 36Cl. Also included are comments on the special problems associated with counting plutonium in biological materials. The essential conclusion is that in order to improve the technique and avoid unnecessary pitfalls it is necessary to have a sound understanding of the underlying theory of liquid scintillation counting

  2. Optics study of liquid scintillation counting systems

    International Nuclear Information System (INIS)

    Optics is a key issue in the development of any liquid scintillation counting (LSC) system. Light emission in the scintillating solution, transmission through the vial and reflector design are some aspects that need to be considered in detail. This paper describes measurements and calculations carried out to optimise these factors for the design of a new family of LSC counters. Measurements of the light distribution emitted by a scintillation vial were done by autoradiographs of cylindrical vials made of various materials and results were compared to those obtained by direct measurements of the light distribution made by scanning the vial with a photomultiplier tube. Calculations were also carried out to study the light transmission in the vial and the optimal design of the reflector for a system with one photomultiplier tube. (Author)

  3. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  4. Scintillation Caustics in Planetary Occultation Light Curves

    CERN Document Server

    Cooray, A R; Cooray, Asantha R.

    2003-01-01

    We revisit the GSC5249-01240 light curve obtained during its occultation by Saturn's North polar region. In addition to refractive scintillations, the power spectrum of intensity fluctuations shows an enhancement of power between refractive and diffractive regimes. We identify this excess power as due to high amplitude spikes in the light curve and suggest that these spikes are due to caustics associated with ray crossing situations. The flux variation in individual spikes follows the expected caustic behavior, including diffraction fringes which we have observed for the first time in a planetary occultation light curve. The presence of caustics in scintillation light curves require an inner scale cut off to the power spectrum of underlying density fluctuations associated with turbulence. Another possibility is the presence of gravity waves in the atmosphere. While occultation light curves previously showed the existence of refractive scintillations, a combination of small projected stellar size and a low rel...

  5. Scintillation γ spectrography. Physical principles. Apparatus. Operation

    International Nuclear Information System (INIS)

    The scintillation detector forms the main part of the instrument used, the electronic unit presenting the results produced. After a brief description of the process of γ photon absorption in the material, the particular case of NaI (T1), the scintillator used, is examined. The intensity of the scintillation caused by γ ray absorption and the characteristics of the photomultiplier play a determining part in the energy resolution of the instrument. For the γ recording spectrograph, we show to what extent the technique for using the electronic unit can modify the results. A detailed description is given of the activity measurement of a γ-emitting radioelement by the spectrographic method. (author)

  6. Scintillation-Induced Intermittency in SETI

    CERN Document Server

    Cordes, J M; Sagan, Carl Edward; Cordes, James M.; Sagan, Carl

    1997-01-01

    We consider interstellar scintillations as a cause of intermittency in radio signals from extraterrestrial intelligence (ETI). We demonstrate that scintillations are very likely to allow initial detections of narrowband signals from distant sources (> 100 pc), while making redetections improbable. We consider three models in order to assess the non-repeating, narrowband events found in recent SETI and to analyze large surveys in general: (I) Radiometer noise; (II) A population of constant Galactic sources undergoing interstellar scintillation,; and (III) Real, transient signals (or hardware errors) of either terrestrial or ET origin. We apply likelihood and Bayesian tests of the models to The Planetary Society/Harvard META data. We find that Models II and III are both highly preferred to Model I, but that Models II and III are about equally likely. Ruling out Model II in favor of Model III requires many more reobservations than were conducted in META *or* the reobservation threshold must be much lower than wa...

  7. Testing Gravity Using Pulsar Scintillation Measurements

    Science.gov (United States)

    Yang, Huan; Nishizawa, Atsushi; Pen, Ue-Li

    2016-03-01

    We propose to use pulsar scintillation measurements to test predictions of alternative theories of gravity. Comparing to single-path pulsar timing measurements, the scintillation measurements can achieve a factor of 104 ~105 improvement in timing accuracy, due to the effect of multi-path interference. The self-noise from pulsar also does not affect the interference pattern, where the data acquisition timescale is 103 seconds instead of years. Therefore it has unique advantages in measuring gravitational effect or other mechanisms (at mHz and above frequencies) on light propagation. We illustrate its application in constraining scalar gravitational-wave background and measuring gravitational-wave speed, in which cases the sensitivities are greatly improved with respect to previous limits. We expect much broader applications in testing gravity with existing and future pulsar scintillation observations.

  8. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    The objects of this invention are first to reduce the time required to obtain statistically significant data in trans-axial tomographic radioisotope scanning using a scintillation camera. Secondly, to provide a scintillation camera system to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a known radiation source without sacrificing spatial resolution. Thirdly to reduce the scanning time without loss of image clarity. The system described comprises a scintillation camera detector, means for moving this in orbit about a cranial-caudal axis relative to a patient and a collimator having septa defining apertures such that gamma rays perpendicular to the axis are admitted with high spatial resolution, parallel to the axis with low resolution. The septa may be made of strips of lead. Detailed descriptions are given. (U.K.)

  9. Combined scintillation detector for gamma dose rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L.; Novakova, O.; Jursova, L. (Tesla, Premysleni (Czechoslovakia). Vyzkumny Ustav Pristroju Jaderne Techniky)

    1990-01-01

    The specifications are described of a newly developed scintillation detector, essentially consisting of a plastic scintillator completed with inorganic scintillators ZnS(Ag) and NaI(Tl). The gamma dose rate is derived from the photomultiplier anode current. The composition and sizes of the scintillators and the capsule are selected so as to minimise the energy dependence errors and directional dependence errors of the detector response over a wide range of energies and/or angles. (author).

  10. Bipolar climatology of GNSS ionospheric scintillation under quiet geomagnetic conditions

    OpenAIRE

    Alfonsi, Lucilla; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Spogli, Luca; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; De Franceschi, Giorgiana; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Romano, Vincenzo; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Aquino, Marcio H. O.; Institute of Engineering Surveying and Space Geodesy (IESSG), University of Nottingham; Dodson, Alan; Institute of Engineering Surveying and Space Geodesy (IESSG) - University of Nottingham; Mitchell, Cathryn N.; 3Department of Electronic and Electrical Engineering, University of Bath

    2010-01-01

    We analyze data of GNSS ionospheric scintillation over polar regions of both hemispheres, to characterize the scintillation phenomena under quiet conditions of the near‐Earth environment through the development of a “scintillation climatology” of the high and mid latitude ionosphere. Maps of scintillation occurrence as a function of the magnetic local time and of the altitude adjusted corrected magnetic latitude are then analysed, together with the Total Electron Content (TEC) information,...

  11. Scintillation index in strong oceanic turbulence

    Science.gov (United States)

    Baykal, Yahya

    2016-09-01

    Scintillation index of spherical wave in strongly turbulent oceanic medium is evaluated. In the evaluation, modified Rytov solution and our recent formulation that expresses the oceanic turbulence parameters by the atmospheric turbulence structure constant, are employed. Variations of the scintillation index in strong oceanic turbulence are examined versus the oceanic turbulence parameters such as the rate of dissipation of kinetic energy per unit mass of fluid, the rate of dissipation of mean-squared temperature, viscosity, wavelength, the link length, and the ratio of temperature to salinity contributions to the refractive index spectrum.

  12. Near-infrared scintillation of liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T. [Fermilab; Escobar, C. O. [Campinas State U.; Lippincott, W. H. [Fermilab; Rubinov, P. [Fermilab

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  13. A new type of gas scintillation counter

    International Nuclear Information System (INIS)

    Design and construction of a new type of gas scintillation counter are discussed. It includes a scintillation gas proportional counter coupled to a photomultiplier. The electric field applied to the counter in the proportional region increases the number of photons resulting of the excitation of the inert gas, during the discharge produced by the passage of the primary ionizing particle. The number of initial photons is then increased and so is the impulse amplitude of the photomultiplier. The complexity of the electronic system necessary for the observation is thereby reduced. The influence of the electricfield on the resolution of the detector is especially emphasized. (I. C. R.)

  14. Near-infrared scintillation of liquid argon

    CERN Document Server

    Alexander, T; Lippincott, W H; Rubinov, P

    2016-01-01

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  15. The homestake surface-underground scintillations: Description

    Science.gov (United States)

    Corbato, S.; Daily, T.; Fenyves, E. J.; Kieda, D.; Cherry, M. L.; Lande, K.; Lee, C. K.

    1985-01-01

    Two new detectors are currently under construction at the Homestake Gold Mine a 140-ton Large Area Scintillation Detector (LASD) with an upper surface area of 130 square meters, a geometry factor (for an isotropic flux) of 1200 square meters, sr, and a depth of 4200 m.w.e.; and a surface air shower array consisting of 100 scintillator elements, each 3 square meters, spanning an area of approximately square kilometers. Underground, half of the LASD is currently running and collecting muon data; on the surface, the first section of the air shower array will begin operation in the spring of 1985. The detectors and their capabilities are described.

  16. Homestake surface-underground scintillations: description

    International Nuclear Information System (INIS)

    Two new detectors are currently under construction at the Homestake Gold Mine, a 140-ton Large Area Scintillation Detector (LASD) with an upper surface area of 130 square meters a geometry factor (for an isotropic flux) of 1200 square meters sr, and a depth of 4200 m.w.e.; and a surface air shower array consisting of 100 scintillator elements, each 3 square meters. Underground, half of the LASD is currently running and collecting muon data; on the surface, the first section of the air shower array will begin operation in the spring of 1985. The detectors and their capabilities are described

  17. Temperature dependence of alpha-induced scintillation in the 1,1,4,4-tetraphenyl-1,3-butadiene wavelength shifter

    CERN Document Server

    Veloce, L M; Di Stefano, P C F; Noble, A J; Boulay, M G; Nadeau, P; Pollmann, T; Clark, M; Piquemal, M; Schreiner, K

    2015-01-01

    Liquid noble gas based particle detectors often use the organic wavelength shifter 1,1,4,4-tetraphenyl-1,3-butadiene (TPB) which shifts UV scintillation light to the visible regime, facilitating its detection, but which also can scintillate on its own. Dark matter searches based on this type of detector commonly rely on pulse-shape discrimination (PSD) for background mitigation. Alpha-induced scintillation therefore represents a possible background source in dark matter searches. The timing characteristics of this scintillation determine whether this background can be mitigated through PSD. We have therefore characterized the pulse shape and light yield of alpha induced TPB scintillation at temperatures ranging from 300 K down to 4 K, with special attention given to liquid noble temperatures. We find that the pulse shapes and light yield depend strongly on temperature. In addition, the significant contribution of long time constants above ~50 K provides an avenue for discrimination between alpha decay events ...

  18. International Colloquium on Scattering and Scintillation in Radio Astronomy

    CERN Document Server

    Coles, W A; Rickett, B J; Bird, M K; Efimov, A I; Samoznaev, L N; Rudash, V K; Chashei, I V; Plettemeier, D; Spangler, S R; Tokarev, Y; Belov, Y; Boiko, G; Komrakov, G; Chau, J; Harmon, J; Sulzer, M; Kojima, M; Tokumaru, M; Fujiki, K; Janardhan, P; Jackson, B V; Hick, P P; Buffington, A; Olyak, M R; Fallows, R A; Nechaeva, M B; Gavrilenko, V G; Gorshenkov, Yu N; Alimov, V A; Molotov, I E; Pushkarev, A B; Shanks, R; Tuccari, G; Lotova, N A; Vladimirski, K V; Obridko, V N; Gubenko, V N; Andreev, V E; Stinebring, D R; Gwinn, C; Lovell, J E J; Jauncey, D L; Senkbeil, C; Shabala, S; Bignall, H E; MacQuart, J P; Kedziora-Chudczer, L; Smirnova, T V; Malofeev, V M; Malov, O I; Tyulbashev, S A; Jessner, A; Sieber, W; Wielebinski, R; Scattering and Scintillation in Radio Astronomy

    2006-01-01

    Topics of the Colloquium: a) Interplanetary scintillation b) Interstellar scintillation c) Modeling and physical origin of the interplanetary and the interstellar plasma turbulence d) Scintillation as a tool for investigation of radio sources e) Seeing through interplanetary and interstellar turbulent media Ppt-presentations are available on the Web-site: http://www.prao.ru/conf/Colloquium/main.html

  19. New liquid scintillators for fiber-optic applications

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, S.S.; Franks, L.A.; Flournoy, J.M.; Lyons, P.B.

    1981-01-01

    New long-wavelength-emitting, high-speed, liquid scintillators have been developed and tailored specifically for plasma diagnostic experiments employing fiber optics. These scintillators offer significant advantages over commercially available plastic scintillators in terms of sensitivity and bandwidth. FWHM response times as fast as 350 ps have been measured. Emission spectra, time response data, and relative sensitivity information are presented.

  20. Upconverting nanoparticles for optimizing scintillator based detection systems

    Science.gov (United States)

    Kross, Brian; McKisson, John E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zom, Carl

    2013-09-17

    An upconverting device for a scintillation detection system is provided. The detection system comprises a scintillator material, a sensor, a light transmission path between the scintillator material and the sensor, and a plurality of upconverting nanoparticles particles positioned in the light transmission path.

  1. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scintillation (gamma) camera. 892.1100 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1100 Scintillation (gamma) camera. (a) Identification. A scintillation (gamma) camera is a device intended to image the distribution of radionuclides...

  2. Development of scintillator plates with high energy resolution for alpha particles made of GPS scintillator grains

    Science.gov (United States)

    Shimaoka, Takehiro; Kaneko, Junichi H.; Izaki, Kenji; Tsubota, Youichi; Higuchi, Mikio; Nishiyama, Shusuke

    2014-01-01

    A scintillator plate with high energy resolution was developed to produce an alpha particle monitor used in nuclear fuel reprocessing plants and mixed plutonium-uranium oxide (MOX) fuel plants. Grains of a Gd2Si2O7 (GPS) scintillator of several 10 to 550 μm were fixed on a glass substrate and were then mechanically polished. By increasing the size of scintillator grains and removing fine powders, the collected light yield and energy resolution for alpha particles were drastically improved. Energy resolution of 9.3% was achieved using average grain size of 91 μm. Furthermore, the ratios between counts in a peak and total counts were improved by more than 60% by the further increase of grain size and adoption of mechanically polished surfaces on both sides. Beta and gamma ray influences were suppressed sufficiently by the thin 100 μm scintillator plates.

  3. Optical and Scintillation Properties of Inorganic Scintillators in High Energy Physics

    OpenAIRE

    Mao, Rihua; Zhang, Liyuan; Zhu, Ren-Yuan

    2008-01-01

    This paper presents a comparative study of optical and scintillation properties for various inorganic crystal scintillators, which are used, or actively pursued, by the high energy physics community for experiments. Transmittance, excitation and photo-luminescence spectra were measured for samples with a dimension of 1.5 radiation length. The transmittance data are compared to the theoretical limit calculated by using refractive index, assuming no internal absorption. Refractive index of lute...

  4. Applications of low level scintillation analyzers

    International Nuclear Information System (INIS)

    The use of a liquid scintillation counter to quantitate radio-activity for low level applications is explored. The applications include 14C dating, hydrology, geology studies, food adulteration studies, environmental monitoring, biomedical, and assessing radio-isotopes in nuclear power plants. (author). 1 fig

  5. Semiconductor high-energy radiation scintillation detector

    Energy Technology Data Exchange (ETDEWEB)

    Kastalsky, A. [University at Stony Brook, ECE Department and NY State Center for Advanced Sensor Technology, Stony Brook, NY 11794-2350 (United States); Luryi, S. [University at Stony Brook, ECE Department and NY State Center for Advanced Sensor Technology, Stony Brook, NY 11794-2350 (United States)]. E-mail: serge.luryi@stonybrook.edu; Spivak, B. [Department of Physics, University of Washington, Seattle, WA 98195 (United States)

    2006-09-15

    We propose a new scintillation-type detector in which high-energy radiation generates electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. An important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombination time of minority carriers. Notably, the fast response comes without any degradation in brightness. When the scintillator is implemented in a qualified semiconductor material (such as InP or GaAs), the photo-detector and associated circuits can be epitaxially integrated on the scintillator slab and the structure can be stacked-up to achieve virtually any desired absorption capability.

  6. Thallium bromide photodetectors for scintillation detection

    CERN Document Server

    Hitomi, K; Shoji, T; Hiratate, Y; Ishibashi, H; Ishii, M

    2000-01-01

    A wide bandgap compound semiconductor, TlBr, has been investigated as a blue sensitive photodetector material for scintillation detection. The TlBr photodetectors have been fabricated from the TlBr crystals grown by the TMZ method using materials purified by many pass zone refining. The performance of the photodetectors has been evaluated by measuring their leakage current, quantum efficiency, spatial uniformity, direct X-ray detection and scintillation detection characteristics. The photodetectors have shown high quantum efficiency for the blue wavelength region and high spatial uniformity for their optical response. In addition, good direct X-ray detection characteristics with an energy resolution of 4.5 keV FWHM for 22 keV X-rays from a sup 1 sup 0 sup 9 Cd radioactive source have been obtained. Detection of blue scintillation from GSO and LSO scintillators irradiated with a sup 2 sup 2 Na radioactive source has been done successfully by using the photodetectors at room temperature. A clear full-energy pea...

  7. Crystal scintillators for low background measurements

    OpenAIRE

    Bernabei R.

    2014-01-01

    Some general arguments in the light of the application of the inorganic crystal scintillators in the search for rare processes are addressed. The continuous innovation provided by physics, chemistry and technology in their development allows the improvement of their performances. Also the possibility of detectors exploiting new materials is open and the further application to this field of research is promising.

  8. Progress in studying scintillator proportionality: Phenomenological model

    Energy Technology Data Exchange (ETDEWEB)

    Bizarri, Gregory; Cherepy, Nerine; Choong, Woon-Seng; Hull, Giulia; Moses, William; Payne, Sephen; Singh, Jai; Valentine, John; Vasilev, Andrey; Williams, Richard

    2009-04-30

    We present a model to describe the origin of non-proportional dependence of scintillator light yield on the energy of an ionizing particle. The non-proportionality is discussed in terms of energy relaxation channels and their linear and non-linear dependences on the deposited energy. In this approach, the scintillation response is described as a function of the deposited energy deposition and the kinetic rates of each relaxation channel. This mathematical framework allows both a qualitative interpretation and a quantitative fitting representation of scintillation non-proportionality response as function of kinetic rates. This method was successfully applied to thallium doped sodium iodide measured with SLYNCI, a new facility using the Compton coincidence technique. Finally, attention is given to the physical meaning of the dominant relaxation channels, and to the potential causes responsible for the scintillation non-proportionality. We find that thallium doped sodium iodide behaves as if non-proportionality is due to competition between radiative recombinations and non-radiative Auger processes.

  9. Fluorescent compounds for plastic scintillation applications

    International Nuclear Information System (INIS)

    Several 2-(2'-hydroxyphenyl)benzothiazole, -benzoxazole, and -benzimidazole derivatives have been prepared. Transmittance, fluorescence, light yield, and decay time characteristics of these compounds have been studied in a polystyrene matrix and evaluated for use in plastic scintillation detectors. Radiation damage studies utilizing a 60C source have also been performed

  10. Fluorescent compounds for plastic scintillation applications

    Energy Technology Data Exchange (ETDEWEB)

    Pla-Dalmau, A.; Bross, A.D.

    1994-04-01

    Several 2-(2{prime}-hydroxyphenyl)benzothiazole, -benzoxazole, and -benzimidazole derivatives have been prepared. Transmittance, fluorescence, light yield, and decay time characteristics of these compounds have been studied in a polystyrene matrix and evaluated for use in plastic scintillation detectors. Radiation damage studies utilizing a {sup 60}C source have also been performed.

  11. Light propagation and fluorescence quantum yields in liquid scintillators

    International Nuclear Information System (INIS)

    For the simulation of the scintillation and Cherenkov light propagation in large liquid scintillator detectors a detailed knowledge about the absorption and emission spectra of the scintillator molecules is mandatory. Furthermore reemission probabilities and quantum yields of the scintillator components influence the light propagation inside the liquid. Absorption and emission properties are presented for liquid scintillators using 2,5-Diphenyloxazole (PPO) and 4-bis-(2-Methylstyryl)benzene (bis-MSB) as primary and secondary wavelength shifter. New measurements of the quantum yields for various aromatic molecules are shown

  12. Light propagation and fluorescence quantum yields in liquid scintillators

    CERN Document Server

    Buck, C; Wagner, S

    2015-01-01

    For the simulation of the scintillation and Cherenkov light propagation in large liquid scintillator detectors a detailed knowledge about the absorption and emission spectra of the scintillator molecules is mandatory. Furthermore reemission probabilities and quantum yields of the scintillator components influence the light propagation inside the liquid. Absorption and emission properties are presented for liquid scintillators using 2,5-Diphenyloxazole (PPO) and 4-bis-(2-Methylstyryl)benzene (bis-MSB) as primary and secondary wavelength shifter. New measurements of the quantum yields for various aromatic molecules are shown.

  13. Liquid scintillator production for the NOvA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mufson, S., E-mail: mufson@indiana.edu [Indiana University, Bloomington, IN 47405 (United States); Baugh, B.; Bower, C. [Indiana University, Bloomington, IN 47405 (United States); Coan, T.E. [Southern Methodist University, Dallas, TX 75275 (United States); Cooper, J. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Corwin, L. [South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Karty, J.A. [Indiana University, Bloomington, IN 47405 (United States); Mason, P. [University of Tennessee, Knoxville, TN 37916 (United States); Messier, M.D. [Indiana University, Bloomington, IN 47405 (United States); Pla-Dalmau, A. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Proudfoot, M. [Renkert Oil, Morgantown, PA 19543 (United States)

    2015-11-01

    The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was specifically developed to satisfy NOvA's performance requirements. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.

  14. Liquid scintillator production for the NOvA experiment

    Science.gov (United States)

    Mufson, S.; Baugh, B.; Bower, C.; Coan, T. E.; Cooper, J.; Corwin, L.; Karty, J. A.; Mason, P.; Messier, M. D.; Pla-Dalmau, A.; Proudfoot, M.

    2015-11-01

    The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was specifically developed to satisfy NOvA's performance requirements. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.

  15. Ionospheric scintillations associated with equatorial E-region

    Science.gov (United States)

    Chandra, H.; Vats, H. O.; Sethia, G.; Deshpande, M. R.; Rastogi, R. G.; Sastri, J. H.

    1978-01-01

    Amplitude scintillations at 40, 140, and 360 MHz recorded at an equatorial station Ootacamund (dip 4 deg N) during the ATS-6 phase II and the ionograms at a nearby station Kodaikanal (dip 3.5 deg N) are examined for the scintillation activity. Various sporadic E events, but not the Es-q, are associated with intense daytime scintillations. There are no scintillations at times of normal E-layer or cusp type of Es. Scintillations are also present at times of night Es.

  16. Monopole search and neutrino astrophysics with liquid scintillation detectors

    International Nuclear Information System (INIS)

    This chapter describes the 140 ton Large Area Scintillation Detector (LASD) being constructed in the Homestake Mine and discusses plans for a one kiloton liquid scintillation solar neutrino detector. The LASD consists of a hollow box 8 m high X 8 m wide X 16 m long, constructed from 200 liquid scintillator modules. Topics considered include magnetic monopoles, neutrino bursts from collapsing stars, solar neutrinos (the status of the search for neutrinos from the Sun, solar neutrino detection with the Large Mass Scintillation Detector), detector electronics for the LASD, and the construction status. Twenty tons of liquid scintillator (out of a total requirement of 140) are currently being pumped into the modules

  17. Development of a scintillating fiber-optic dosimeter for measuring the entrance surface dose in diagnostic radiology

    International Nuclear Information System (INIS)

    As a direct method, a scintillating fiber-optic dosimeter (SFOD) was fabricated using an organic scintillator, a plastic optical fiber, and a photomultiplier tube (PMT) to measure entrance surface doses (ESDs) in diagnostic radiology. In this study, we measured the scintillating lights, which are altered by to the exposure parameters, such as the tube potential, current-time product, and focus-surface distance (FSD), with an SFOD placed on the top of an acrylic and aluminum chest phantom to provide a backscatter medium. The scintillating light signals of the SFOD were compared with the ESDs obtained using conventional dosimeters. The ESDs that were measured using the dose-area product (DAP) meter, as an indirect method, and a semiconductor dosimeter, as a direct method, were distinguished according to differences in the measurement position and the method used. In the case of the two direct methods with the SFOD and the semiconductor dosimeter, the output light signals of the SFOD were similar to the ESDs of the semiconductor dosimeter. It is expected that the SFOD will be a useful dosimeter for diagnostic radiology due to its many advantages, including its small size, lightweight, substantial flexibility, remote sensing, real-time monitoring, and immunity to electromagnetic interference (EMI). - Highlights: ► Fabrication of a scintillating fiber-optic dosimeter for use in diagnostic radiology. ► Measurements of the scintillating light according to the exposure parameters. ► Comparison of the entrance surface doses obtained using conventional dosimeters

  18. Cross beam scintillations in non-Kolmogorov medium.

    Science.gov (United States)

    Baykal, Yahya

    2014-10-01

    For the collimated and focused cross beams, the on-axis scintillation index is evaluated when these beams propagate in weak non-Kolmogorov turbulence. In the limiting cases, our solution correctly reduces to the known Gaussian beam scintillations in Kolmogorov turbulence. For both the collimated and the focused cross beams, large power law exponent of the non-Kolmogorov turbulence is found to result in larger scintillations. Evaluating at a fixed power law exponent, the scintillation index of the collimated (focused) cross beam is higher (lower) than the collimated (focused) Gaussian beam scintillation index. When the asymmetry of the collimated (focused) cross beam increases, the scintillations increase (decrease). At a given cross beam configuration, change in the turbulence parameters varies the scintillations in the same manner for all power law exponent values.

  19. Liquid scintillator production for the NOvA experiment

    CERN Document Server

    Mufson, S; Bower, C; Coan, T; Cooper, J; Corwin, L; Karty, J; Mason, P; Pla-Dalmau, A; Proudfoot, M

    2015-01-01

    The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator to its detectors as its active detector medium. The composition of the scintillator was developed to meet the requirements of the experiment. The scintillator was shipped to the NOvA near and far detectors using dedicated stainless steel tanker trailers. A rigorous set of quality control procedures were put in place to assure that the liquid scintillator was blended to satisfy the transparency, light yield, and conductivity requirements. The incoming components, the blended scintillator, and the scintillator in the transport tanker trailers were all qualified with these procedures, which ensured that the NOvA scintillator was high quality and met its performance requirements.

  20. Dosimetric characterization of the Exradin W1 plastic scintillator detector through comparison with an in-house developed scintillator system

    International Nuclear Information System (INIS)

    New commercial dosimetry systems need careful characterization and can benefit from the comparison with similar, in-house developed solutions. A comparison between such two dosimetry systems, both based on fibre-coupled organic plastic scintillator detectors, is presented. One system is the Exradin W1, fully commercialized by Standard Imaging, while the other system is the non-commercial ME40 system, developed by DTU Nutech with the aim of fundamental dosimetric research. Both systems employ plastic scintillator detectors that can be considered similar in design, calibrated using the same method, but differing primarily in the signal detection hardware. The two systems were compared with respect to essential dosimetric properties, with the purpose of testing their performance under conditions less well discussed in the literature. A Farmer ionization chamber was used as the primary reference of the comparison. The study demonstrated that the Cerenkov light ratio calibration coefficient of both systems was not constant, but changed systematically with photon beam quality to a maximum difference of 1.1%. Calibration with respect to stem effect correction should therefore be performed for every investigated beam quality when using plastic scintillator detectors. Both systems were found to be dose rate independent, even for the highest instantaneous dose rate evaluated (1.5 mGy per pulse). Low-dose measurements revealed large uncertainties for both systems, although the ME40 system handled short beam deliveries under reference conditions with accuracy and precision within 0.4%. Changes in response due to field size dependence were investigated and found to be as large as 3.3% for the W1 and 5.4% for the ME40, biasing output factor measurements in large fields. Great caution is therefore advised if using either system for measurements in large fields or under circumstances where the fibre irradiation geometry is unfavourable. Measurements of reference dose to water

  1. Calculations and measurements of the scintillator-to-water stopping power ratio of liquid scintillators for use in proton radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Scott Ingram, W. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030 (United States); Robertson, Daniel [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); Beddar, Sam, E-mail: abeddar@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030 (United States)

    2015-03-11

    Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator’s stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent.

  2. Neutron spectroscopy with scintillation detectors using wavelets

    Science.gov (United States)

    Hartman, Jessica

    The purpose of this research was to study neutron spectroscopy using the EJ-299-33A plastic scintillator. This scintillator material provided a novel means of detection for fast neutrons, without the disadvantages of traditional liquid scintillation materials. EJ-299-33A provided a more durable option to these materials, making it less likely to be damaged during handling. Unlike liquid scintillators, this plastic scintillator was manufactured from a non-toxic material, making it safer to use, as well as easier to design detectors. The material was also manufactured with inherent pulse shape discrimination abilities, making it suitable for use in neutron detection. The neutron spectral unfolding technique was developed in two stages. Initial detector response function modeling was carried out through the use of the MCNPX Monte Carlo code. The response functions were developed for a monoenergetic neutron flux. Wavelets were then applied to smooth the response function. The spectral unfolding technique was applied through polynomial fitting and optimization techniques in MATLAB. Verification of the unfolding technique was carried out through the use of experimentally determined response functions. These were measured on the neutron source based on the Van de Graff accelerator at the University of Kentucky. This machine provided a range of monoenergetic neutron beams between 0.1 MeV and 24 MeV, making it possible to measure the set of response functions of the EJ-299-33A plastic scintillator detector to neutrons of specific energies. The response of a plutonium-beryllium (PuBe) source was measured using the source available at the University of Nevada, Las Vegas. The neutron spectrum reconstruction was carried out using the experimentally measured response functions. Experimental data was collected in the list mode of the waveform digitizer. Post processing of this data focused on the pulse shape discrimination analysis of the recorded response functions to remove the

  3. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, L.A., E-mail: boatnerla@ornl.gov [Center for Radiation Detection Materials & Systems, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Ramey, J.O., E-mail: rameyjo@ornl.gov [Center for Radiation Detection Materials & Systems, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kolopus, J.A., E-mail: kolopusja@ornl.gov [Center for Radiation Detection Materials & Systems, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Neal, John S., E-mail: nealjs1@ornl.gov [Center for Radiation Detection Materials & Systems, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Nuclear Science and Isotope Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-06-21

    The alkaline-earth scintillator, CaI{sub 2}:Eu{sup 2+}, was initially discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI{sub 2}:Eu{sup 2+} has the potential to exceed the excellent scintillation performance of SrI{sub 2}:Eu{sup 2+}. In fact, theoretical predictions for the light yield of CaI{sub 2}:Eu{sup 2+} scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. As in the case of the early SrI{sub 2}:Eu{sup 2+} scintillator, the performance of CaI{sub 2}:Eu{sup 2+} scintillators has traditionally suffered due, at least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI{sub 2}:Eu{sup 2+} scintillators in single-crystal form, we have developed new techniques that are applied here to CaI{sub 2}:Eu{sup 2+} and pure CaI{sub 2} with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI{sub 2}:Eu{sup 2+} form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles—so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI{sub 2}. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI{sub 2}:Eu{sup 2+} and un-doped CaI{sub 2}. Large scintillating single crystals were obtained, and detailed characterization studies of the scintillation properties of CaI{sub 2}:Eu{sup 2+} and pure CaI{sub 2} single crystals are presented that include

  4. Simulation on spatial resolution of scintillator arrays based on neutron penumbral imaging system

    International Nuclear Information System (INIS)

    In order to compare three kinds of scintillation detectors, the Monte Carlo method is introduced to calculate the spatial resolution and energy deposition of scintillator arrays with different fiber diameters. According to simulation results, the resolution of standard liquid scintillator array is better than that of plastic scintillator array, and the resolution of deuterated liquid scintillator array is almost half that of standard liquid scintillator array. The energy deposition of hydrogen-rich scintillator is higher than that of deuterated scintillator. Moreover, smaller fiber diameter leads to better spatial resolution, and thicker scintillator leads to higher energy deposition. (authors)

  5. High-resolution tracking using large capillary bundles filled with liquid scintillator

    CERN Document Server

    Annis, P; Benussi, L; Bruski, N; Buontempo, S; Currat, C; D'Ambrosio, N; Van Dantzig, R; Dupraz, J P; Ereditato, A; Fabre, Jean-Paul; Fanti, V; Feyt, J; Frekers, D; Frenkel, A; Galeazzi, F; Garufi, F; Goldberg, J; Golovkin, S V; Gorin, A M; Grégoire, G; Harrison, K; Höpfner, K; Holtz, K; Konijn, J; Kozarenko, E N; Kreslo, I E; Kushnirenko, A E; Liberti, B; Martellotti, G; Medvedkov, A M; Michel, L; Migliozzi, P; Mommaert, C; Mondardini, M R; Panman, J; Penso, G; Petukhov, Yu P; Rondeshagen, D; Siegmund, W P; Tyukov, V E; Van Beek, G; Vasilchenko, V G; Vilain, P; Visschers, J L; Wilquet, G; Winter, Klaus; Wolff, T; Wörtche, H J; Wong, H; Zimyn, K V

    2000-01-01

    We have developed large high-resolution tracking detectors based on glass capillaries filled with organic liquid scintillator of high refractive index. These liquid-core scintillating optical fibres act simultaneously as detectors of charged particles and as image guides. Track images projected onto the readout end of a capillary bundle are visualized by an optoelectronic chain consisting of a set of image-intensifier tubes followed by a photosensitive CCD or by an EBCCD camera. Two prototype detectors, each composed of \\hbox{$\\approx 10^6$} capillaries with \\hbox{20$-$25 $\\mu$m} diameter and \\hbox{0.9$-$1.8 m} length, have been tested, and a spatial resolution of the order of \\hbox{20$-$40 $\\mu$m} has been attained. A high scintillation efficiency and a large light-attenuation length, in excess of 3 m, was achieved through special purification of the liquid scintillator. Along the tracks of minimum-ionizing particles, the hit densities obtained were $\\sim$ 8 hits/mm at the readout window, and \\hbox{$\\sim$ 3 ...

  6. Compensational scintillation detector with a flat energy response for flash X-ray measurements

    Science.gov (United States)

    Chen, Liang; Ouyang, Xiaoping; Liu, Bin; Liu, Jinliang; Quan, Lin; Zhang, Zhongbing

    2013-01-01

    To measure the intensity of flash X-ray sources directly, a novel scintillation detector with a fast time response and flat energy response is developed by combining film scintillators of doped ZnO crystal and fast organic scintillator together. Through compensation design, the dual-scintillator detector (DSD) achieved a flat energy response to X-rays from tens of keV to several MeV, and sub-nanosecond time response by coupling to ultrafast photo-electronic devices. A prototype detector was fabricated according to the theoretical design; it employed ZnO:In and EJ228 with thicknesses of 0.3 mm and 0.1 mm, respectively. The energy response of this detector was tested on monoenergetic X-ray and γ-ray sources. The detector performs very well with a sensitivity fluctuation below 5% for 8 discrete energy points within the 40-250 keV energy region and for other energies of 662 keV and 1.25 MeV as well, showing good accordance with the theoretical design. Additionally, the detector works properly for the application to the flash X-ray radiation field absolute intensity measurement. This DSD may be very useful for the diagnosis of time-resolved dynamic physical processes of flash X-ray sources without knowing the exact energy spectrum.

  7. Central Tracking Detector Based on Scintillating Fibres

    CERN Multimedia

    2002-01-01

    Scintillating fibres form a reasonable compromise for central tracking detectors in terms of price, resolution, response time, occupancy and heat production. \\\\ \\\\ New fluorescents with large Stokes shifts have been produced, capable of working without wavelength shifters. Coherent multibundles have been developed to achieve high packing fractions. Small segments of tracker shell have been assembled and beam tests have confirmed expectations on spatial resolution. An opto-electronic delay line has been designed to delay the track patterns and enable coincidences with a first level trigger. Replacement of the conventional phosphor screen anode with a Si pixel chip is achieved. This tube is called ISPA-tube and has already been operated in beam tests with a scintillating fibres tracker. \\\\ \\\\ The aim of the proposal is to improve hit densities for small diameter fibres by increasing the fraction of trapped light, by reducing absorption and reflection losses, by reflecting light at the free fibre end, and by inc...

  8. Semiconductor High-Energy Radiation Scintillation Detector

    CERN Document Server

    Kastalsky, A; Spivak, B

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation produces electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. The most important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombi...

  9. Transparent Ceramic Scintillator Fabrication, Properties and Applications

    International Nuclear Information System (INIS)

    Transparent ceramics offer an alternative to single crystals for scintillator applications such as gamma ray spectroscopy and radiography. We have developed a versatile, scaleable fabrication method, using Flame Spray Pyrolysis (FSP) to produce feedstock which is readily converted into phase-pure transparent ceramics. We measure integral light yields in excess of 80,000 Ph/MeV with Cerium-doped Garnets, and excellent optical quality. Avalanche photodiode readout of Garnets provides resolution near 6%. For radiography applications, Lutetium Oxide offers a high performance metric and is formable by ceramics processing. Scatter in transparent ceramics due to secondary phases is the principal limitation to optical quality, and afterglow issues that affect the scintillation performance are presently being addressed

  10. Scintillation detectors of Alborz-I experiment

    International Nuclear Information System (INIS)

    A new air shower experiment of the Alborz Observatory, Alborz-I, located at the Sharif University of Technology, Iran, will be constructed in near future. An area of about 30×40 m2 will be covered by 20 plastic scintillation detectors (each with an area of 50×50 cm2). A series of experiments have been performed to optimize the height of light enclosures of the detectors for this array and the results have been compared to an extended code simulation of these detectors. Operational parameters of the detector obtained by this code are cross checked by the Geant4 simulation. There is a good agreement between the extended-code and Geant4 simulations. We also present further discussions on the detector characteristics, which can be applicable for all scintillation detectors with a similar configuration

  11. Scintillation detectors of Alborz-I experiment

    CERN Document Server

    Pezeshkian, Yousef; Motlagh, Mehdi Abbasian; Rezaie, Masoume

    2014-01-01

    A new air shower experiment of the Alborz Observatory, Alborz-I, located at the Sharif University of Technology, Iran, will be constructed in near future. An area of about 30$\\times$40 m$^{2}$ will be covered by 20 plastic scintillation detectors (each with an area of 50$\\times$50 cm$^{2}$). A series of experiments have been performed to optimize the height of light enclosures of the detectors for this array and the results have been compared to an extended code simulation of these detectors. Operational parameters of the detector obtained by this code are cross checked by Geant4 simulation. There is a good agreement between extended-code and Geant4 simulations. We also present further discussions on the detector characteristics, which can be applicable for all scintillation detectors with a similar configuration.

  12. Scintillating Optical Fiber Imagers for biology

    International Nuclear Information System (INIS)

    S.O.F.I (Scintillating Optical Fiber Imager) is a detector developed to replace the autoradiographic films used in molecular biology for the location of radiolabelled (32P) DNA molecules in blotting experiments. It analyses samples on a 25 x 25 cm2 square area still 25 times faster than autoradiographic films, with a 1.75 and 3 mm resolution for two orthogonal directions. This device performs numerised images with a dynamic upper than 100 which allows the direct quantitation of the analysed samples. First, this thesis describes the S.O.F.I. development (Scintillating Optical Fibers, coding of these fibers and specific electronic for the treatment of the Multi-Anode Photo-Multiplier signals) and experiments made in collaboration with molecular biology laboratories. In a second place, we prove the feasibility of an automatic DNA sequencer issued from S.O.F.I

  13. Thin Film Polymer Composite Scintillators for Thermal Neutron Detection

    Directory of Open Access Journals (Sweden)

    Andrew N. Mabe

    2013-01-01

    Full Text Available Thin film polystyrene composite scintillators containing LiF6 and organic fluors have been fabricated and tested as thermal neutron detectors. Varying fluorescence emission intensities for different compositions are interpreted in terms of the Beer-Lambert law and indicate that the sensitivity of fluorescent sensors can be improved by incorporating transparent particles with refractive index different than that of the polymer matrix. Compositions and thicknesses were varied to optimize the fluorescence and thermal neutron response and to reduce gamma-ray sensitivity. Neutron detection efficiency and neutron/gamma-ray discrimination are reported herein as functions of composition and thickness. Gamma-ray sensitivity is affected largely by changing thickness and unaffected by the amount of LiF6 in the film. The best neutron/gamma-ray discrimination characteristics are obtained for film thicknesses in the range 25–150 μm.

  14. Measurements on scintillation light from liquid argon

    International Nuclear Information System (INIS)

    It is shown that an argon calorimeter can operate as a scintillation detector, provided that xenon is added. With the addition of 170 ppm xenon a light yield of 70% has been obtained. In addition the light yield is determined under influence of an electric field, from differently ionising particles and by the use of aluminium mirrors acting as light guides. Finally first measurements with a photomultiplier working at liquid argon temperatures are reported. (orig.)

  15. Simulating Silicon Photomultiplier Response to Scintillation Light

    OpenAIRE

    Jha, Abhinav K.; van Dam, Herman T.; Kupinski, Matthew A.; Clarkson, Eric

    2013-01-01

    The response of a Silicon Photomultiplier (SiPM) to optical signals is affected by many factors including photon-detection efficiency, recovery time, gain, optical crosstalk, afterpulsing, dark count, and detector dead time. Many of these parameters vary with overvoltage and temperature. When used to detect scintillation light, there is a complicated non-linear relationship between the incident light and the response of the SiPM. In this paper, we propose a combined discrete-time discrete-eve...

  16. Semiconductor High-Energy Radiation Scintillation Detector

    OpenAIRE

    Kastalsky, A.; Luryi, S.; Spivak, B

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation produces electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on d...

  17. Improved Neutron Scintillators Based on Nanomaterials

    International Nuclear Information System (INIS)

    The development work conducted in this SBIR has so far not supported the premise that using nano-particles in LiFZnS:Ag foils improves their transparency to 420 (or other frequency) light. This conclusion is based solely on the light absorption properties of LiFZnS foils fabricated from nano- and from micro-particles. Furthermore, even for the case of the Gd2O3 foils, the transmission of 420 nm light gained by using nano-particles all but disappears as the foil thickness is increased beyond about 0.2 mm, a practical scintillator thickness. This was not immediately apparent from the preliminary study since no foils thicker than about 0.04 mm were produced. Initially it was believed that the failure to see an improvement by using nano-particles for the LiFZnS foils was caused by the clumping of the particles in Toluene due to the polarity of the ZnS particles. However, we found, much to our surprise, that nano-particle ZnS alone in polystyrene, and in Epoxy, had worse light transmission properties than the micro-particle foils for equivalent thickness and density foils. The neutron detection measurements, while disappointing, are attributable to our inability to procure or fabricate Bulk Doped ZnS nanoparticles. The cause for the failure of nano-particles to improve the scintillation light, and hence improved neutron detection efficiency, is a fundamental one of light scattering within the scintillator. A consequence of PartTec's documentation of this is that several concepts for the fabrication of improved 6LiFZnS scintillators were formulated that will be the subject of a future SBIR submission.

  18. Homestake scintillation detectors. A status report

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, M.L.; Corbato, S.; Daily, T.; Kieda, D.; Lande, K.; Lee, C.K.

    We describe the 140 ton, 1200 m/sup 2/ sr Large-Area Scintillation Detector located underground at a depth of 4850 ft and the 0.8 km/sup 2/ surface air shower array at the Homestake Mine. Half of the underground detector is currently operating. We discuss its performance and describe the monopole sensitivity of the LASD and the ability of the surface-underground telescope to detect cosmic point sources.

  19. Sorohalide scintillators, phosphors, and uses thereof

    Science.gov (United States)

    Yang, Pin; Deng, Haoran; Doty, F. Patrick; Zhou, Xiaowang

    2016-05-10

    The present invention relates to sorohalide compounds having formula A.sub.3B.sub.2X.sub.9, where A is an alkali metal, B is a rare earth metal, and X is a halogen. Optionally, the sorohalide includes a dopant D. Such undoped and doped sorohalides are useful as scintillation materials or phosphors for any number of uses, including for radiation detectors, solid-state light sources, gamma-ray spectroscopy, medical imaging, and drilling applications.

  20. Improved Neutron Scintillators Based on Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Friesel, PhD

    2008-06-30

    The development work conducted in this SBIR has so far not supported the premise that using nano-particles in LiFZnS:Ag foils improves their transparency to 420 (or other frequency) light. This conclusion is based solely on the light absorption properties of LiFZnS foils fabricated from nano- and from micro-particles. Furthermore, even for the case of the Gd{sub 2}O{sub 3} foils, the transmission of 420 nm light gained by using nano-particles all but disappears as the foil thickness is increased beyond about 0.2 mm, a practical scintillator thickness. This was not immediately apparent from the preliminary study since no foils thicker than about 0.04 mm were produced. Initially it was believed that the failure to see an improvement by using nano-particles for the LiFZnS foils was caused by the clumping of the particles in Toluene due to the polarity of the ZnS particles. However, we found, much to our surprise, that nano-particle ZnS alone in polystyrene, and in Epoxy, had worse light transmission properties than the micro-particle foils for equivalent thickness and density foils. The neutron detection measurements, while disappointing, are attributable to our inability to procure or fabricate Bulk Doped ZnS nanoparticles. The cause for the failure of nano-particles to improve the scintillation light, and hence improved neutron detection efficiency, is a fundamental one of light scattering within the scintillator. A consequence of PartTec's documentation of this is that several concepts for the fabrication of improved {sup 6}LiFZnS scintillators were formulated that will be the subject of a future SBIR submission.

  1. New scintillating crystals for PET scanners

    CERN Document Server

    Lecoq, P

    2002-01-01

    Systematic R&D on basic mechanism in inorganic scintillators, initiated by the Crystal Clear Collaboration at CERN 10 years ago, has contributed not to a small amount, to the development of new materials for a new generation of medical imaging devices with increased resolution and sensitivity. The first important requirement for a scintillator to be used in medical imaging devices is the stopping power for the given energy range of X and gamma rays to be considered, and more precisely the conversion efficiency. A high light yield is also mandatory to improve the energy resolution, which is essentially limited by the photostatistics and the electronic noise at these energies. A short scintillation decay time allows to reduce the dead time and therefore to increase the limiting counting rate. When all these requirements are fulfilled the sensitivity and image contrast are increased for a given patient dose, or the dose can be reduced. Examples of new materials under development by the Crystal Clear Collabor...

  2. The DEuterated SCintillator Array for Neutron Tagging

    Directory of Open Access Journals (Sweden)

    Wong J.

    2014-03-01

    Full Text Available A neutron tagging array based upon liquid deuterated scintillators is being developed for the study of neutron-rich systems. The DEuterated SCintillator Array for Neutron Tagging, or DESCANT, will serve as an auxiliary detector for both the TIGRESS and GRIFFIN γ-ray spectrometers located at TRIUMF’s ISAC radioactive ion beam facility. DESCANT is comprised of 70 pseudohexaconical detectors of five varieties. The array is fully close-packed, subtends a downstream angle of θ = 65° and covers 92.6% of this solid angle or 1.08π sr. Each detector is 150 mm thick and filled with Bicron BC-537 liquid deuterated scintillator. The white, red and blue detectors are viewed by 127 mm diameter Hamamatsu R4155 photomultiplier tubes while the yellow and green detectors are viewed by 78 mm diameter ET Enterprises 9822B photomultiplier tubes. The aim of this work is to report on the mechanical design of DESCANT and the performance of a prototype detector measured using mono-energetic neutrons.

  3. Scintillation counter with MRS APD light readout

    CERN Document Server

    Akindinov, A; Golovin, V; Grigoriev, E; Grishuk, Yu G; Malkevich, D; Martemiyanov, A; Ryabinin, M; Smirnitsky, A V; Voloshin, K; Grishuk, Yu.

    2005-01-01

    START, a high-efficiency and low-noise scintillation detector for ionizing particles, was developed for the purpose of creating a high-granular system for triggering cosmic muons. Scintillation light in START is detected by MRS APDs (Avalanche Photo-Diodes with Metal-Resistance-Semiconductor structure), operated in the Geiger mode, which have 1 mm^2 sensitive areas. START is assembled from a 15 x 15 x 1 cm^3 scintillating plastic plate, two MRS APDs and two pieces of wavelength-shifting optical fiber stacked in circular coils inside the plastic. The front-end electronic card is mounted directly on the detector. Tests with START have confirmed its operational consistency, over 99% efficiency of MIP registration and good homogeneity. START demonstrates a low intrinsic noise of about 10^{-2} Hz. If these detectors are to be mass-produced, the cost of a mosaic array of STARTs is estimated at a moderate level of 2-3 kUSD/m^2.

  4. Chloride, bromide and iodide scintillators with europium

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, Mariya; Yang, Kan

    2016-09-27

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  5. Boron-Loaded Silicone Rubber Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  6. Scintillators with potential to supersede lanthanum bromide

    Energy Technology Data Exchange (ETDEWEB)

    Cherepy, Nerine; Payne, Steven; Aszatlos, Steve; Hull, Giulia; Kuntz, J.; Niedermayr, Tom; Pimputkar, S.; Roberts, J.; Sanner, R.; Tillotson, T.; van Loef, Edger; Wilson, Cody; Shah, Kanai; Roy, U.; Hawrami, R.; Burger, Arnold; Boatner, Lynn; Choong, Woon-Seng; Moses, William

    2009-06-01

    New scintillators for high-resolution gamma ray spectroscopy have been identified, grown and characterized. Our development efforts have focused on two classes of high light yield materials: Europium-doped alkaline earth halides and Cerium-doped garnets. Of the halide single crystals we have grown by the Bridgman method - SrI{sub 2}, CaI{sub 2}, SrBr{sub 2}, BaI{sub 2} and BaBr{sub 2} - SrI{sub 2} is the most promising. SrI{sub 2}(Eu) emits into the Eu{sup 2+} band, centered at 435 nm, with a decay time of 1.2 {micro}s and a light yield of up to 115,000 photons/MeV. It offers energy resolution better than 3% FWHM at 662 keV, and exhibits excellent light yield proportionality. Transparent ceramics fabrication allows production of Gadolinium- and Terbium-based garnets which are not growable by melt techniques due to phase instabilities. While scintillation light yields of Cerium-doped ceramic garnets are high, light yield non-proportionality and slow decay components appear to limit their prospects for high energy resolution. We are developing an understanding of the mechanisms underlying energy dependent scintillation light yield non-proportionality and how it affects energy resolution. We have also identified aspects of optical design that can be optimized to enhance energy resolution.

  7. B-Loaded Plastic Scintillator on the Base of Polystyrene

    CERN Document Server

    Brudanin, V B; Nemchenok, I B; Smolnikov, A A

    2000-01-01

    A method to produce polystyrene-based plastic scintillators with boron concentration from 0.38 to 5.0% of boron have been developed. o-Carborane was used as B-containing additive. The results of investigations of the optical, spectral and scintillation characteristics are presented and discussed. It is shown that 5% B-loaded scintillator has a light output as much as 70% relative to the unloaded one. High efficiency for thermal neutron registration achieved for produced samples makes it possible to use such scintillators in complex neutron high sensitive spectrometers. Measured level of radioactive contamination in this scintillation materials is good enough for using the B-loaded scintillators in the proposed large scale neutrino experiments.

  8. Separation of scintillation and Cherenkov lights in linear alkyl benzene

    Science.gov (United States)

    Li, Mohan; Guo, Ziyi; Yeh, Minfang; Wang, Zhe; Chen, Shaomin

    2016-09-01

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7 ± 3.0) ns and (36.6 ± 2.4) ns , respectively, while the full width [-3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. The scintillation light yield was measured to be (1.01 ± 0.12) ×103 photons / MeV .

  9. Separation of Scintillation and Cherenkov Lights in Linear Alkyl Benzene

    CERN Document Server

    Li, Mohan; Yeh, Minfang; Wang, Zhe; Chen, Shaomin

    2015-01-01

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay researches. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator being developed. In this paper we observed a good separation of scintillation and Cherenkov lights in an LAB sample. The rising and decay times of the scintillation light of the LAB were measured to be $(7.7\\pm3.0)\\ \\rm{ns}$ and $(36.6\\pm2.4)\\ \\rm{ns}$, respectively, while the full width [-3$\\sigma$, 3$\\sigma$] of the Cherenkov light was 12 ns dominated by the time resolution of our photomultiplier tubes. The light yield of the scintillation was measured to be $(1.01\\pm0.12)\\times10^3\\ \\rm{photons}/\\rm{MeV}$.

  10. Phase and coherence analysis of VHF scintillation over Christmas Island

    Science.gov (United States)

    Shume, E. B.; Mannucci, A. J.; Caton, R.

    2014-03-01

    This short paper presents phase and coherence data from the cross-wavelet transform applied on longitudinally separated very high frequency (VHF) equatorial ionospheric scintillation observations over Christmas Island. The phase and coherence analyses were employed on a pair of scintillation observations, namely, the east-looking and west-looking VHF scintillation monitors at Christmas Island. Our analysis includes 3 years of peak season scintillation data from 2008, 2009 (low solar activity), and 2011 (moderate solar activity). In statistically significant and high spectral coherence regions of the cross-wavelet transform, scintillation observations from the east-looking monitor lead those from the west-looking monitor by about 20 to 60 (40 ± 20) min (most frequent lead times). Using several years (seasons and solar cycle) of lead (or lag) and coherence information of the cross-wavelet transform, we envisage construction of a probability model for forecasting scintillation in the nighttime equatorial ionosphere.

  11. A Model for the Secondary Scintillation Pulse Shape from a Gas Proportional Scintillation Counter

    CERN Document Server

    Kazkaz, Kareem

    2015-01-01

    Proportional scintillation counters (PSCs), both single- and dual-phase, can measure the scintillation (S1) and ionization (S2) channels from particle interactions within the detector volume. The signal obtained from these detectors depends first on the physics of the medium (the initial scintillation and ionization), and second how the physics of the detector manipulates the resulting photons and liberated electrons. In this paper we develop a model of the detector physics that incorporates event topology, detector geometry, electric field configuration, purity, optical properties of components, and wavelength shifters. We present an analytic form of the model, which allows for general study of detector design and operation, and a Monte Carlo model which enables a more detailed exploration of S2 events. This model may be used to study systematic effects in currents detectors such as energy and position reconstruction, pulse shape discrimination, event topology, dead time calculations, purity, and electric fi...

  12. Polycrystalline para-terphenyl scintillator adopted in a $\\beta^-$ detecting probe for radio-guided surgery

    CERN Document Server

    Camillocci, Elena Solfaroli; Bocci, Valerio; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Patera, Vincenzo; Pinci, Davide; Recchia, Luigi; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Senzacqua, Martina; Voena, Cecilia

    2015-01-01

    A radio-guided surgery technique exploiting $\\beta^-$ emitters is under development. It aims at a higher target-to-background activity ratio implying both a smaller radiopharmaceutical activity and the possibility of extending the technique to cases with a large uptake of surrounding healthy organs. Such technique requires a dedicated intraoperative probe detecting $\\beta^-$ radiation. A first prototype has been developed relying on the low density and high light yield of the diphenylbutadiene doped para-therphenyl organic scintillator. The scintillation light produced in a cylindrical crystal, 5 mm in diameter and 3 mm in height, is guided to a photo-multiplier tube by optical fibres. The custom readout electronics is designed to optimize its usage in terms of feedback to the surgeon, portability and remote monitoring of the signal. Tests show that with a radiotracer activity comparable to those administered for diagnostic purposes the developed probe can detect a 0.1 ml cancerous residual of meningioma in a...

  13. Characterization of the lanthanum chloride scintillation detector

    International Nuclear Information System (INIS)

    This paper reports about the investigations on the performance of the new earth-rare halide Scintillator, the LaCl3:10%Ce, which has been discovered with attractive scintillation properties: fast, efficient, and high-energy resolution. The combination of good brightness and linear response has naturally resulted in a very good energy resolution, whereas the fast decay time promoted counting applications at very high rate and very fast timing resolution. Energy resolutions of (2.99±0.02) %, (8.66±0.02) %, and (2.05±0.01) % have been achieved by exciting the detector with 662 keV 137Cs, 122 keV 152Eu, and 1332.5 keV 60Co sources respectively, at room temperature. The variations of the resolution as a function of both shaping time and high voltage have been studied and found to be relatively linear. The timing resolution was also studied. The value of 1.07 ns FWHM has been recorded with LaCl3:10%Ce and BaF2 detectors operating in coincidence mode, using 1333.5 keV γ-ray 60Co peak. Compared to similar studies, this timing resolution was worse than expected even if the exciting radioactive sources used in the two experiments were different. The efficiency values of (0.24±0.01)%, (0.01±0.01)% and (0.09±0.01)% were obtained with laboratory 137Cs, 152Eu, 60Co isotopes respectively. These detector efficiency values were very low, due to the smaller detector sizes used in these earlier crystals and to the large detector-source-distance used in this experiment. The Lanthanum Chloride Scintillator detector is hygroscopic and relatively expensive compared to established scintillators. In addition, it carries internal contamination in 138La and 227Ac for larger thicknesses. Nevertheless, the energy resolution figures achieved, twice as good as that of NaI(Tl), are in good agreement with those reported elsewhere. They credit the scintillation detectors as good challengers of semiconductor-based detectors, allowing their application fields to be extended. (author)

  14. The Scintillator Purification System for the Borexino Solar Neutrino Detector

    CERN Document Server

    Benziger, J; Cadonati, L; Calaprice, F; Chen, M; Corsi, A; Cubaiu, A; Dalnoki-Veress, F; Di Pietro, G; Fernholz, R; Ford, R; Galbiati, C; Gazzana, S; Goretti, A; Harding, E; Ianni, Aldo; Ianni, Andrea; Kidner, S; Korga, G; Leung, M; Löser, F; Lombardi, P; McCarty, K; McKinsey, D; Montanari, D; Nelson, A; Orsini, M; Papp, L; Parmeggiano, S; Pocar, A; Salvo, C; Schimizzi, D; Shutt, T; Sonnenschein, A; Soricelli, F; Suvorov, Y

    2007-01-01

    Purification of the 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector was performed with a system that combined distillation, water extraction, gas stripping and filtration. The purification of the scintillator achieved unprecedented low backgrounds for the large scale liquid scintillation detector. This paper describes the principles of operation, design, construction and commissioning of the purification system, and reviews the requirements and methods to achieve system cleanliness and leak-tightness.

  15. The zinc sulphide scintillator for fast neutron radiography

    International Nuclear Information System (INIS)

    In this work, a mathematical model was established to estimate luminescence of the neutron radiography scintillator made of ZnS and polypropylene. Scintillators in different thicknesses and compositions were prepared for a radiography experiment using 14 MeV neutrons. The results showed that the optimum parameters of the scintillator were 3-mm in thickness and 1 : 1 to 2 : 1 of weight ratio of ZnS and polypropylene. (authors)

  16. Systematic studies of small scintillators for new sampling calorimeter

    Indian Academy of Sciences (India)

    E P Jacosalem; S Iba; N Nakajima; H Ono; A L C Sanchez; A M Bacala; H Miyata; GLD Calorimeter Group

    2007-12-01

    A new sampling calorimeter using very thin scintillators and the multi-pixel photon counter (MPPC) has been proposed to produce better position resolution for the international linear collider (ILC) experiment. As part of this R & D study, small plastic scintillators of different sizes, thickness and wrapping reflectors are systematically studied. The scintillation light due to beta rays from a collimated 90Sr source are collected from the scintillator by wavelength-shifting (WLS) fiber and converted into electrical signals at the PMT. The wrapped scintillator that gives the best light yield is determined by comparing the measured pulse height of each 10 × 40 × 2 mm strip scintillator covered with 3M reflective mirror film, teflon, white paint, black tape, gold, aluminum and white paint+teflon. The pulse height dependence on position, length and thickness of the 3M reflective mirror film and teflon wrapped scintillators are measured. Results show that the 3M radiant mirror film-wrapped scintillator has the greatest light yield with an average of 9.2 photoelectrons. It is observed that light yield slightly increases with scintillator length, but increases to about 100% when WLS fiber diameter is increased from 1.0 mm to 1.6 mm. The position dependence measurement along the strip scintillator showed the uniformity of light transmission from the sensor to the PMT. A dip across the strip is observed which is 40% of the maximum pulse height. The block type scintillator pulse height, on the other hand, is found to be almost proportional to scintillator thickness.

  17. Scintillations climatology over low latitudes: statistical analysis and WAM modelling

    OpenAIRE

    Spogli, Luca; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Alfonsi, Lucilla; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Materassi, Massimo; Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche; Wernik, Andrzej W.; Space Research Center, Polish Academy of Sciences

    2010-01-01

    Attempts of reconstructing the spatial and temporal distribution of the ionospheric irregularities have been conducted developing a scintillation “climatology” technique, which was very promising in characterizing the plasma conditions triggering L-band scintillations at high latitudes ([1.],[2.]) and further analysis on bipolar high sampling rate (50 Hz) GPS data are currently in progress for deeper investigations. The core of the scintillation climatology technique is represente...

  18. Rare-earth loaded liquid scintillator (for LENS experiment)

    CERN Document Server

    Barabanov, I R; Kornoukhov, V N; Yanovich, E A; Zatsepin, G T; Danilov, N A; Korpusov, G V; Kostukova, G V; Krylov, Y S; Yakshin, V V

    1999-01-01

    Rare-earth (Yb/Gd) complexes with neutral organophosphorus ligands are briefly discussed for their application in liquid scintillation technique. To evaluate the principal feasibility of rare-earth loaded scintillator, the ytterbium chloride complexes with tri-isoamylphosphine oxides were synthesized. Relative scintillation efficiency (RSE) for two Yb concentrations (78 and 88 g/L) was measured by means of the internal conversion exitation from Cs-137. The results obtained were 50 and 40% respectively.

  19. Preparation and standardization of a sample of P 32 by liquid scintillation

    International Nuclear Information System (INIS)

    A procedure to standardize P 32 in liquid scintillation counting by labelling a tsributyl phosphate organic molecule is described. This method shows a high counting efficiency, over 99%, while keeping a good stability of samples in PCS or toluene, which vary less that 1% in two weed periods. The global uncertainty that results for calibrating the radioactive solution through this method has been less that 2.2%. (Author)

  20. Development of polystyrene-based scintillation materials and its mechanisms

    Science.gov (United States)

    Nakamura, Hidehito; Kitamura, Hisashi; Shinji, Osamu; Saito, Katashi; Shirakawa, Yoshiyuki; Takahashi, Sentaro

    2012-12-01

    Scintillation materials based on polystyrene (PS) have been investigated. Para-terphenyl was employed as a fluorescent molecule (fluor) that functions as a wavelength shifter. A clear increase in photon yield of the scintillation materials relative to the pure PS was observed, which cannot be explained by the conventional theory of scintillation mechanism. Furthermore, the photon yield increased with flour concentration in accordance with a power-law. Here we reveal the emergence of a luminescence of PS-based scintillation materials and demonstrate that their photon yields can be controlled by the fluor concentration.

  1. Large-scale liquid scintillation detectors for solar neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Benziger, Jay B.; Calaprice, Frank P. [Princeton University Princeton, Princeton, NJ (United States)

    2016-04-15

    Large-scale liquid scintillation detectors are capable of providing spectral yields of the low energy solar neutrinos. These detectors require > 100 tons of liquid scintillator with high optical and radiopurity. In this paper requirements for low-energy neutrino detection by liquid scintillation are specified and the procedures to achieve low backgrounds in large-scale liquid scintillation detectors for solar neutrinos are reviewed. The designs, operations and achievements of Borexino, KamLAND and SNO+ in measuring the low-energy solar neutrino fluxes are reviewed. (orig.)

  2. Lanthanide doped strontium-barium cesium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  3. Improving performance of charge sensitive preamplifier in liquid scintillation counter using constant current technology

    International Nuclear Information System (INIS)

    There are various charge constant current technologies for liquid scintillation circuit. The constant current technology, charge technology and their application to liquid scintillation counter are emphasized

  4. AA, beam stopper with scintillator screen

    CERN Multimedia

    1980-01-01

    An insertable steel-plate beam stopper was located after nearly a full turn downstream of the injection point. It was fitted with a scintillator screen, a thin plate of Cr-doped alumina, imprinted with a grid and reference points. The screen was illuminated through a window and observed with a highly sensitive TV camera plus image intensifier. This allowed observation of beam position and size of a proton test beam and of the beam from the target, which consisted not only of antiprotons but contained as well electrons, pions and muons of the same momentum.

  5. Li2Se as a Neutron Scintillator

    International Nuclear Information System (INIS)

    We show that Li2Se:Te is a potential neutron scintillator material based on density functional calculations. Li2Se exhibits a number of properties favorable for efficient neutron detection, such as a high Li concentration for neutron absorption, a small effective atomic mass and a low density for reduced sensitivity to background gamma rays, and a small band gap for a high light yield. Our calculations show that Te doping should lead to the formation of deep acceptor complex VLi-TeSe, which can facilitate efficient light emission, similar to the emission activation in Te doped ZnSe

  6. Scintillating Fibre Calorimetry at the LHC

    CERN Multimedia

    2002-01-01

    Good electromagnetic and hadronic calorimetry will play a central role in an LHC detector. The lead/scintillating fibre calorimeter technique provides a fast signal response well matched to the LHC rate requirements. It can be made to give equal response for electrons and hadrons (compensation) with good electromagnetic and hadronic energy resolutions.\\\\ \\\\ The aim of this R&D proposal is to study in detail the aspects that are relevant for application of this type of calorimeter in an LHC environment, including its integration in a larger system of detectors, e.g.~projective geometry, radiation hardness, light detection, calibration and stability monitoring, electron/hadron separation.....

  7. The digitisation of the scintillating fibre detector

    CERN Document Server

    Cogneras, E; van Tilburg, J; de Vries, J

    2014-01-01

    In this note the digitisation of the scintillating fibre detector for the LHCb upgrade is described. The steps for transforming the hits generated by the GEANT simulation into a digital signal are given. The main effects of this detector are described in the simulation code for the LHCb upgrade. In particular, the attenuation of the fibres after irradiation, the geometry of the fibres with respect to the SiPM channels, the gain of the SiPM’s, the thermal noise, the noise from afterpulses and spillover, and the clustering are described. The output is given in the same data format as the one that is expected from the final detector.

  8. A multidetector scintillation camera with 254 channels

    DEFF Research Database (Denmark)

    Sveinsdottir, E; Larsen, B; Rommer, P;

    1977-01-01

    A computer-based scintillation camera has been designed for both dynamic and static radionuclide studies. The detecting head has 254 independent sodium iodide crystals, each with a photomultiplier and amplifier. In dynamic measurements simultaneous events can be recorded, and 1 million total counts...... per second can be accommodated with less than 0.5% loss in any one channel. This corresponds to a calculated deadtime of 5 nsec. The multidetector camera is being used for 133Xe dynamic studies of regional cerebral blood flow in man and for 99mTc and 197 Hg static imaging of the brain....

  9. A Minor Modification of Leading Edge Discriminator Circuitry with a Delay Line for Baseline Restoration of Scintillation Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, N

    2003-05-27

    Multi-channel neutron time-of-flight detector arrays LaNSA, T-ion, Medusa, and Mandala, have been used for neutron spectroscopy in inertial confinement fusion experiments. These multi-channel neutron detector arrays consist of many identical scintillation detectors (842 {approx} 1024 channel), data acquisition electronics (discriminators, time-to digital converters, and controller). Each detector element is operated in neutron counting mode. Time-of-flight of individual detected neutrons are recorded by time to digital converters. The energy of each detected neutrons is determined from its time-of-flight. The accurate time measurement ({Delta}t {approx} 0.5 ns) and straightforward statistical features of the data obtained with these systems provides good integrity and reliability. The elements detector used in these systems are organic scintillators coupled with photo multiplier tubes. A scintillation detector operated in particle-counting mode requires finite recovery time after each detection event. The recovery time is determined by the time responses of scintillators, photo multiplier tubes, and the dead times of following discriminators and time-to digital converters. The harsh gamma ray background environment of fast ignitor experiments requires detectors that have fast recovery times. In high intensity laser experiments (I > 10{sup 19} W/cm{sup 2}), strong gamma ray bursts are produced by relativistic laser plasma interactions. Prior to the neutron signal, these strong gamma ray bursts hit the detectors and interfere with the detection of following neutron signals. In these situations, the recovery time of the system after preceding gamma ray bursts is determined mainly by the base line shift of the PMT signal (due to slower decay components of scintillators ''after glow''). Discriminators cannot detect following signal pulses until the proceeding burst decays below its threshold voltage. The base line shift caused by the after glow

  10. Statistics of ionospheric scintillation occurrence over European high latitudes

    Science.gov (United States)

    Sreeja, V.; Aquino, M.

    2014-12-01

    Rapid fluctuation in the amplitude and phase of transionospheric radio signals caused by small scale ionospheric plasma density irregularities is known as scintillation. Over the high latitudes, irregularities causing scintillation are associated with large scale plasma structures and scintillation occurrence is mainly enhanced during geomagnetic storms. This paper presents a statistical analysis of scintillation occurrence on GPS L1C/A signal at a high latitude station located in Bronnoysund (geographic latitude 65.5°N, geographic longitude 12.2°E; corrected geomagnetic (CGM) latitude 62.77°N), Norway, during the periods around the peaks of solar cycles 23 (2002-2003) and 24 (2011-2013). The analysis revealed that the scintillation occurrence at Bronnoysund during both the solar maximum periods maximises close to the midnight magnetic local time (MLT) sector. A higher occurrence of scintillation is observed on geomagnetically active days during both the solar maximum periods. The seasonal pattern of scintillation occurrence indicated peaks during the summer and equinoctial months. A comparison with the interplanetary magnetic field (IMF) components By and Bz showed an association of scintillation occurrence with the southward IMF Bz conditions.

  11. Some history of liquid scintillator development at Los Alamos

    International Nuclear Information System (INIS)

    The early developments in liquid scintillation counting made at Los Alamos Scientific Laboratory are reviewed. Most of the work was under the direction of F.N. Hayes and included counter development and applications as well as synthesis and chemistry of liquid scintillators

  12. Statistical characteristics of low-latitude ionospheric scintillation over China

    Science.gov (United States)

    Liu, Kangkang; Li, Guozhu; Ning, Baiqi; Hu, Lianhuan; Li, Hongke

    2015-03-01

    The Global Positioning System (GPS) L-band ionospheric scintillation produced by electron density irregularities in the ionospheric E- and F-regions, is mainly a low- and high-latitude phenomenon. In this study, the statistical behavior of GPS ionospheric scintillation over a Chinese low-latitude station Sanya (18.3°N, 109.6°E; dip lat: 12.8°N) has been investigated. A detailed study on the seasonal and solar activity dependence of scintillation occurrence during July 2004-December 2012 show that the amplitude scintillation pattern, with a maximum occurrence during equinox of solar maximum, agrees with plasma bubble observations by in situ satellites in this longitude. A few daytime periodic scintillation events are found during June solstice months of solar minimum. Interestingly, a significant equinoctial asymmetry of scintillation onset time is found in 2011-2012. The initiation of scintillation during September-October is on average earlier than that of March-April about 25 min. Meanwhile, the zonal drifts of irregularities estimated using two spatially separated GPS receivers over Sanya show a similar behavior during the two equinoxes, slowly decreasing from 150 m/s at post-sunset to 50 m/s near midnight. The possible mechanisms responsible for the occurrence characteristics of GPS scintillation over Sanya, and relevant aspects of the zonal drifts of the irregularities are discussed.

  13. The scintillator solvent procurement for the Borexino solar neutrino detector

    International Nuclear Information System (INIS)

    This paper describes the procurement and the production quality control system of Pseudocumene, the scintillator solvent of the solar neutrino detector Borexino at the Laboratorio Nazionale del Gran Sasso (Italy). This material constitutes about 99.9% of the scintillator total mass, therefore being the most critical element for the radiopurity of the detector.

  14. Structured scintillators for X-ray imaging with micrometre resolution

    DEFF Research Database (Denmark)

    Olsen, Ulrik Lund; Schmidt, Søren; Poulsen, Henning Friis;

    2009-01-01

    A 3D X-ray detector for imaging of 30–200 keV photons is described. It comprises a stack of semitransparent structured scintillators, where each scintillator is a regular array of waveguides in silicon, and with pores filled with CsI. The performance of the detector is described theoretically...

  15. Performance comparison of scintillators for alpha particle detectors

    Science.gov (United States)

    Morishita, Yuki; Yamamoto, Seiichi; Izaki, Kenji; Kaneko, Junichi H.; Toui, Kohei; Tsubota, Youichi; Higuchi, Mikio

    2014-11-01

    Scintillation detectors for alpha particles are often used in nuclear fuel facilities. Alpha particle detectors have also become important in the research field of radionuclide therapy using alpha emitters. ZnS(Ag) is the most often used scintillator for alpha particle detectors because its light output is high. However, the energy resolution of ZnS(Ag)-based scintillation detectors is poor because they are not transparent. A new ceramic sample, namely the cerium doped Gd2Si2O7 (GPS) scintillator, has been tested as alpha particle detector and its performances have been compared to that one of three different scintillating materials: ZnS(Ag), GAGG and a standard plastic scintillator. The different scintillating materials have been coupled to two different photodetectors, namely a photomultiplier tube (PMT) and a Silicon Photo-multiplier (Si-PM): the performances of each detection system have been compared. Promising results as far as the energy resolution performances (10% with PMT and 14% with Si-PM) have been obtained in the case of GPS and GAGG samples. Considering the quantum efficiencies of the photodetectors under test and their relation to the emission wavelength of the different scintillators, the best results were achieved coupling the GPS with the PMT and the GAGG with the Si-PM

  16. Influence of propagation technology on radiation stability of polystyren scintillators

    International Nuclear Information System (INIS)

    In this work was studied the radiation hardness of polystyrene-based scintillators produced by injection molding technology and by polymerization in glass cast. The influence of crosslinking and low molecular filler on the radiation resistance was described. It was shown that the radiation resistance of scintillator depends on the viscosity properties of its polymer basis

  17. Microprocessor-based single particle calibration of scintillation counter

    Science.gov (United States)

    Mazumdar, G. K. D.; Pathak, K. M.

    1985-01-01

    A microprocessor-base set-up is fabricated and tested for the single particle calibration of the plastic scintillator. The single particle response of the scintillator is digitized by an A/D converter, and a 8085 A based microprocessor stores the pulse heights. The digitized information is printed. Facilities for CRT display and cassette storing and recalling are also made available.

  18. Purification of KamLAND-Zen liquid scintillator

    Science.gov (United States)

    Ikeda, Haruo

    2013-08-01

    KamLAND-Zen is neutrino-less double-beta decay search experiment using enriched 300 kg of 136Xe dissolved in pure liquid scintillator. This report is purification work of liquid scintillator for KamLAND-Zen experiment before installation in the inner-balloon and background rejection processes after installation.

  19. An Experiment to Demonstrate Cherenkov / Scintillation Signal Separation

    CERN Document Server

    Caravaca, J; Land, B J; Wallig, J; Yeh, M; Gann, G D Orebi

    2016-01-01

    The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. The CHESS (CHErenkov / Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. This paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstruct Cherenkov rings is demonstrated in a water target, and a time precision of 338 +/- 12 ps FWHM is achieved. Monte Carlo based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 +/- 1% and 81 +/- 1...

  20. Optimization of light collection from crystal scintillators for cryogenic experiments

    CERN Document Server

    Danevich, F A; Kobychev, V V; Kraus, H; Mikhailik, V B; Mokina, V M

    2014-01-01

    High light collection efficiency is an important requirement in any application of scintillation detectors. The purpose of this study is to investigate the possibility for improving this parameter in cryogenic scintillation bolometers, which can be considered as a promising detectors in experiments investigating neutrinoless double beta decay and dark matter. Energy resolutions and relative pulse amplitudes of scintillation detectors using ZnWO4 scintillation crystals of different shapes (cylinder 20 mm in dimater by 20 mm and hexagonal prism with diagonal 20 mm and height 20 mm), reflector materials and shapes, optical contact and surface properties (polished and diffused) were measured at room temperature. Propagation of optical photons in these experimental conditions was simulated using Geant4 and ZEMAX codes. The results of the simulations are found to be in good agreement with each other and with direct measurements of the crystals. This could be applied to optimize the geometry of scintillation detecto...

  1. Interstellar Refractive Scintillation and Intraday Polarization Angle Swings

    Institute of Scientific and Technical Information of China (English)

    Shan-Jie Qian; Xi-Zhen Zhang; A. Kraus

    2005-01-01

    Intraday polarization angle swings of ~180° observed in two sources (QSO 0917+624 and QSO 1150+812) are discussed in the framework of refractive interstellar scintillation by a continuous interstellar medium. Model-fits to the I-,Q- and U- light curves were made for both sources. It is shown that for the case of 0917+624 both the intraday intensity variations and the polarization angle swing of ~180° could be explained consistently in terms of a four-component model, which comprises one steady and two scintillating polarized components and one further non-polarized scintillating component. The polarization angle swing of ~180° observed in 1150+812, which occurred when the polarized flux density was almost constant, could not be explained in terms of refractive scintillation by a continuous medium and might be due to other mechanisms (e.g., scintillation by interstellar clouds).

  2. Comparison of tropospheric scintillation prediction models of the Indonesian climate

    Science.gov (United States)

    Chen, Cheng Yee; Singh, Mandeep Jit

    2014-12-01

    Tropospheric scintillation is a phenomenon that will cause signal degradation in satellite communication with low fade margin. Few studies of scintillation have been conducted in tropical regions. To analyze tropospheric scintillation, we obtain data from a satellite link installed at Bandung, Indonesia, at an elevation angle of 64.7° and a frequency of 12.247 GHz from 1999 to 2000. The data are processed and compared with the predictions of several well-known scintillation prediction models. From the analysis, we found that the ITU-R model gives the lowest error rate when predicting the scintillation intensity for fade at 4.68%. However, the model should be further tested using data from higher-frequency bands, such as the K and Ka bands, to verify the accuracy of the model.

  3. Radiation Hard & High Light Yield Scintillator Search for CMS Phase II Upgrade

    CERN Document Server

    Tiras, Emrah

    2015-01-01

    The CMS detector at the LHC requires a major upgrade to cope with the higher instantaneous luminosity and the elevated radiation levels. The active media of the forward backing hadron calorimeters is projected to be radiation-hard, high light yield scintillation materials or similar alternatives. In this context, we have studied various radiation-hard scintillating materials such as Polyethylene Terephthalate (PET), Polyethylene Naphthalate (PEN), High Efficiency Mirror (HEM) and quartz plates with various coatings. The quartz plates are pure Cerenkov radiators and their radiation hardness has been confirmed. In order to increase the light output, we considered organic and inorganic coating materials such as p-Terphenyl (pTp), Anthracene and Gallium-doped Zinc Oxide (ZnO:Ga) that are applied as thin layers on the surface of the quartz plates. Here, we present the results of the related test beam activities, laboratory measurements and recent developments.

  4. Radiation Hard and High Light Yield Scintillator Search for CMS Phase II Upgrade

    CERN Document Server

    Tiras, Emrah

    2015-01-01

    The CMS detector at the LHC requires a major upgrade to cope with the higher instantaneous luminosity and the elevated radiation levels. The active media of the forward backing hadron calorimeters is projected to be radiation-hard, high light yield scintillation materials or similar alternatives. In this context, we have studied various radiation-hard scintillating materials such as Polyethylene Terephthalate (PET), Polyethylene Naphthalate (PEN), High Efficiency Mirror (HEM) and quartz plates with various coatings. The quartz plates are pure Cerenkov radiators and their radiation hardness has been confirmed. In order to increase the light output, we considered organic and inorganic coating materials such as p-Terphenyl (pTp), Anthracene and Gallium-doped Zinc Oxide (ZnO Ga) that are applied as thin layers on the surface of the quartz plates. Here, we present the results of the related test beam activities, laboratory measurements and recent developments.

  5. Novel Scintillating Materials Based on Phenyl-Polysiloxane for Neutron Detection and Monitoring

    CERN Document Server

    Degerlier, M; Gramegna, F; Marchi, T; Palma, M Dalla; Cinausero, M; Maggioni, G; Quaranta, A; Collazuol, G; Bermudez, J

    2013-01-01

    Neutron detectors are extensively used at many nuclear research facilities across Europe. Their application range covers many topics in basic and applied nuclear research: in nuclear structure and reaction dynamics (reaction reconstruction and decay studies); in nuclear astrophysics (neutron emission probabilities); in nuclear technology (nuclear data measurements and in-core/off-core monitors); in nuclear medicine (radiation monitors, dosimeters); in materials science (neutron imaging techniques); in homeland security applications (fissile materials investigation and cargo inspection). Liquid scintillators, widely used at present, have however some drawbacks given by toxicity, flammability, volatility and sensitivity to oxygen that limit their duration and quality. Even plastic scintillators are not satisfactory because they have low radiation hardness and low thermal stability. Moreover organic solvents may affect their optical properties due to crazing. In order to overcome these problems, phenyl-polysilox...

  6. Semiconductor scintillator detector for gamma radiation

    International Nuclear Information System (INIS)

    Nowadays the devices employed to evaluate individual radiation exposition are based on dosimetric films and thermoluminescent crystals, whose measurements must be processed in specific transductors. Hence, these devices carry out indirect measurements. Although a new generation of detectors based on semiconductors which are employed in EPD's (Electronic Personal Dosemeters) being yet available, it high producing costs and large dimensions prevents the application in personal dosimetry. Recent research works reports the development of new detection devices based on photovoltaic PIN diodes, which were successfully employed for detecting and monitoring exposition to X rays. In this work, we step forward by coupling a 2mm anthracene scintillator NE1, which converts the high energy radiation in visible light, generating a Strong signal which allows dispensing the use of photomultipliers. A low gain high performance amplifier and a digital acquisition device are employed to measure instantaneous and cumulative doses for energies ranging from X rays to Gamma radiation up to 2 MeV. One of the most important features of the PIN diode relies in the fact that it can be employed as a detector for ionization radiation, since it requires a small energy amount for releasing electrons. Since the photodiode does not amplify the corresponding photon current, it must be coupled to a low gain amplifier. Therefore, the new sensor works as a scintillator coupled with a photodiode PIN. Preliminary experiments are being performed with this sensor, showing good results for a wide range of energy spectrum. (author)

  7. Characterization of cerium fluoride nanocomposite scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Stange, Sy [Los Alamos National Laboratory; Esch, Ernst I [Los Alamos National Laboratory; Brown, Leif O [Los Alamos National Laboratory; Couture, Aaron J [Los Alamos National Laboratory; Mckigney, Edward A [Los Alamos National Laboratory; Muenchausen, Ross E [Los Alamos National Laboratory; Del Sesto, Rico E [Los Alamos National Laboratory; Gilbertson, Robert D [Los Alamos National Laboratory; Mccleskey, T Mark [Los Alamos National Laboratory; Reifarth, Rene [Los Alamos National Laboratory

    2009-01-01

    Measurement of the neutron capture cross-sections of a number of short-lived isotopes would advance both pure and applied scientific research. These cross-sections are needed for calculation of criticality and waste production estimates for the Advanced Fuel Cycle Initiative, for analysis of data from nuclear weapons tests, and to improve understanding of nucleosynthesis. However, measurement of these cross-sections would require a detector with a faster signal decay time than those used in existing neutron capture experiments. Crystals of faster detector materials are not available in sufficient sizes and quantities to supply these large-scale experiments. Instead, we propose to use nanocomposite detectors, consisting of nanoscale particles of a scintillating material dispersed in a matrix material. We have successfully fabricated cerium fluoride (CeF{sub 3}) nanoparticles and dispersed them in a liquid matrix. We have characterized this scintillator and have measured its response to neutron capture. Results of the optical, structural, and radiation characterization will be presented.

  8. Characterization of cerium fluoride nanocomposite scintillators

    International Nuclear Information System (INIS)

    Measurement of the neutron capture cross-sections of a number of short-lived isotopes would advance both pure and applied scientific research. These cross-sections are needed for calculation of criticality and waste production estimates for the Advanced Fuel Cycle Initiative, for analysis of data from nuclear weapons tests, and to improve understanding of nucleosynthesis. However, measurement of these cross-sections would require a detector with a faster signal decay time than those used in existing neutron capture experiments. Crystals of faster detector materials are not available in sufficient sizes and quantities to supply these large-scale experiments. Instead, we propose to use nanocomposite detectors, consisting of nanoscale particles of a scintillating material dispersed in a matrix material. We have successfully fabricated cerium fluoride (CeF3) nanoparticles and dispersed them in a liquid matrix. We have characterized this scintillator and have measured its response to neutron capture. Results of the optical, structural, and radiation characterization will be presented.

  9. Tracking heliospheric disturbances by interplanetary scintillation

    Directory of Open Access Journals (Sweden)

    M. Tokumaru

    2006-01-01

    Full Text Available Coronal mass ejections are known as a solar cause of significant geospace disturbances, and a fuller elucidation of their physical properties and propagation dynamics is needed for space weather predictions. The scintillation of cosmic radio sources caused by turbulence in the solar wind (interplanetary scintillation; IPS serves as an effective ground-based method for monitoring disturbances in the heliosphere. We studied global properties of transient solar wind streams driven by CMEs using 327-MHz IPS observations of the Solar-Terrestrial Environment Laboratory (STEL of Nagoya University. In this study, we reconstructed three-dimensional features of the interplanetary (IP counterpart of the CME from the IPS data by applying the model fitting technique. As a result, loop-shaped density enhancements were deduced for some CME events, whereas shell-shaped high-density regions were observed for the other events. In addition, CME speeds were found to evolve significantly during the propagation between the corona and 1 AU.

  10. Scintillating bolometers for the LUCIFER project

    Science.gov (United States)

    Pattavina, L.; LUCIFER Collaboration

    2016-05-01

    Neutrinoless double beta decay (0vββ) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature and masses of neutrinos. In order to explore the so-called inverted neutrino mass hierarchy region a further improvement on the upcoming 0vββ experiment is needed. In this respect, scintillating bolometers are the suitable technology for achieving such goal: they ensure excellent energy resolution and highly efficient particle discrimination. The LUCIFER project aims at deploying the first array of enriched scintillating bolometers for the investigation of 0vββ of 82Se. The matrix which embeds the source is an array of Zn 82Se crystals, where enriched 82Se is used as decay isotope. Taking advantage of the large Q-value (2997 keV) and of the particle discrimination, the expected background rate in the region of interest is as low as 10-3 c/keV/kg/y. The foreseen sensitivity after 2 years of live time will be 1.8×1025 years. We will report on the potential of such technology and on the present status of the project.

  11. Comparing the response of PSD-capable plastic scintillator to standard liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Richard S., E-mail: richard.woolf@nrl.navy.mil [High Energy Space Environment Branch, Space Science Division, U. S. Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC 20375 (United States); Hutcheson, Anthony L., E-mail: anthony.hutcheson@nrl.navy.mil [High Energy Space Environment Branch, Space Science Division, U. S. Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC 20375 (United States); Gwon, Chul, E-mail: chul.gwon@nrl.navy.mil [High Energy Space Environment Branch, Space Science Division, U. S. Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC 20375 (United States); Phlips, Bernard F., E-mail: bernard.phlips@nrl.navy.mil [High Energy Space Environment Branch, Space Science Division, U. S. Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC 20375 (United States); Wulf, Eric A., E-mail: eric.wulf@nrl.navy.mil [High Energy Space Environment Branch, Space Science Division, U. S. Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC 20375 (United States)

    2015-06-01

    This work discusses a test campaign to characterize the response of the recently developed plastic scintillator with pulse shape discrimination (PSD) capabilities (EJ-299-33). PSD is a property exhibited by certain types of scintillating material in which incident stimuli (fast neutrons or γ rays) can be separated by exploiting differences in the scintillation light pulse tail. Detector geometries used were: a 10 cm×10 cm×10 cm cube and a 10-cm diameter×10-cm long cylinder. EJ-301 and EJ-309 liquid scintillators with well-known responses were also tested. The work was conducted at the University of Massachusetts Lowell Van De Graaff accelerator. The facility accelerated protons on a thin Li target to yield quasi-monoenergetic neutrons from the {sup 7}Li(p,n){sup 7}Be reaction (Q-value: –1.644 MeV). Collimated fast neutrons were obtained by placing detectors behind a neutron spectrometer. Rotating the spectrometer, and thus changing the neutron energy, allowed us to achieve 0.5–3.2 MeV neutrons in 200–300 keV steps. Data were acquired through a flash analog-to-digital converter (ADC) capable of performing digital PSD measurements. By using the PSD technique to separate the neutron events from unwanted γ background, we constructed a pulse height spectrum at each energy. Obtaining a relationship of the relative light output versus energy allowed us to construct the response function for the EJ-299-33 and liquid scintillator. The EJ-299-33 response in terms of electron equivalent energy (E{sub e.e.}) vs. proton equivalent energy (E{sub p.e.}), how it compared with the standard xylene-based EJ-301 (or, NE-213/BC-501 A equivalent) and EJ-309 liquid scintillator response, and how the EJ-301 and EJ-309 compared, are presented. We find that the EJ-299-33 demonstrated a lower light output by up to 40% for <1.0 MeV neutrons; and ranging between a 5–35% reduction for 2.5–3.0 MeV neutrons compared to the EJ-301/309, depending on the scintillator and geometry

  12. Liquid scintillation for NORM in the oil and gas industry

    International Nuclear Information System (INIS)

    Natural radionuclides of Radium, Lead and Polonium are trapped along with crude oil and gas and accumulate as scale deposits on equipment in the oil industries. Problems arise by residues and sludge where such Norm often becomes concentrated during the process of extraction, transport, and storage of crude oil. Additionally, Radon is accumulated in natural gas or is co extracted into oil as organic phase where it equilibrates with its Progenies. Thus Norm creates a possible hazard to workers both by external radiation exposure and internal due to incorporation during intervention work, and to the environment due to waste disposal. The determination of 222Rn, 226,228Ra, 210Pb, and 210Po in the various production stages is a precondition for an efficient Radiation Protection Management. We have studied the applicability of Liquid Scintillation L S for the measurement of NORM in the oil and gas industry. Our investigations show that 226Ra may be quantified by L S in solid scale deposits as carbonate and sulphate after grinding and as carbonate additionally after dissolution. Then, an organic L S scintillation cocktail like Betaplate Scint is added and the sample stored for Rn equilibration. While 222Rn is quantitatively extracted from the solution, only 20 to 30% are emanated as free Rn from the powder into the organic phase. Emanation yield versus grain size and sample amount has been studied using synthetic Ra/Ca-carbonate powder and grinded Pitchblende ore samples. 226Ra, 228Ra and 210Pb in carbonate may be determined by α/β-discriminating L S after dissolution, mutual separation on Radium Rad Disk filters and final elution with DHC and EDTA. From these results the isotopic ratio of Radium isotopes in the different scale fractions may be determined. 226Ra, 228Ra and 210Pb in production and waste waters may be quantified accordingly. Radon in oil fractions has been measured as 0.1 to 2% solution in Betaplate Scint with sensitivity down to 5 Bq/l. From our findings

  13. Scintillating Cocktail Mixtures and the Role of Water on the Optophysical Properties.

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph Gabriel [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Feng, Patrick L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Mengesha, Wondwosen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Murtagh, Dustin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Anstey, Mitchell [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-10-01

    Two types of water - containing liquid scinti llation mixtures were prepared in the present work. In the first, m ixtures of 2 - phenylethanol, water, diphenyl phosphate, sodium phenyl phosphate dibasic dihydrate, and the dye 2,5 - diphenyloxazole (PPO) have been investigated as liquid scintillators. In th e second system, nonionic and mixed surfactant systems were investigated in conjunction with water and small amounts of toluene. In both cases, increasing amounts of water led to reductions in the scintillation light yield. Understanding what factors contr ibute to this phenomenon is the focus of this report. Changes in the solution microphase structure, diminishing aromatic content of the cocktail mixtures, and inefficient energy transfer to the dye a ppear to be responsible for the decreased light yield as more water is added . In the 2 - phenylethanol system, the observed experimental results are consistent with the formation of a bicontinuous microemulsion at higher water concentrations, which incorporates PPO and shields it from the quenching effects of the increasing polar matrix. Evidence for this proposed phase chan ge c ome s from light scattering data, photo - and x - ray luminescence measurements, and optical transparency measurements . In the surfactant - based system, the quenching effect of water was found to be less than both commercially - available dioxane - naphthalene mixtures used for scintillation counting as well as the 2 - phenylethanol mixtures described above. The effect of different surfactant mixtures and concentrations were studied, revealing a benefic ial effect upon the scintillation light yield for mixed surfactant mixtures. These results are interpreted in the context of r eactive radical species formation following water ionization , which leads to light - yield quenching in aqueous systems . The presenc e of surfactant(s) in these mixtures enables the formation of organic - rich regions that are spatially separated from the

  14. The effect of low temperature on the scintillation efficiency of liquid scintillator NE 213

    Energy Technology Data Exchange (ETDEWEB)

    Ul-Haq, F.; Butt, M.Z.; Ali, W.; Jamil, S.; Durrani, S.A. (Government Coll., Lahore (Pakistan). Nuclear Research Lab.)

    1990-01-01

    The scintillation response of the liquid scintillator NE 213 has been studied as function of temperature in the range 225 to 300 K. It has been found that the light output under gamma excitation increases with decrease in temperature. The data are well represented by the relation: I{sub low} - I = I{sub 0} exp(- E/kT), where I is the count rate at temperature T, I{sub low} is a constant equal to 750 counts/minute, the pre-exponential factor I{sub 0} is 15 x 10{sup 5} counts/minute, k is the Boltzmann constant and E is the activation energy equal to 0.21 eV, which is typical for a diffusion controlled process in the temperature range studied. (author).

  15. The Standardization of a Liquid Scintillation System

    International Nuclear Information System (INIS)

    An experimental evaluation is made of methods in current use for the routine standardization of liquid scintillation systems, with special reference to a single photomultiplier arrangement applied to the measurement of tritium in liquid samples. The investigation includes consideration of the problem of scintillator phosphorescence as well as those disadvantages usually associated with the internal standardization procedure, such as the necessity for very accurate dispensing of the small volumes involved. The complications due to phosphorescence, which also accompany the 57Co internal standard method, may be circumvented in the various ways discussed, but special attention has been given to the more satisfactory standardization procedure, the channel-ratio method. This method, which has the advantage of simultaneous measurement both of sample and quenching factor, has been studied in detail using a dioxane-based scintillator and an aqueous tritium standard. Pulse-height spectra were obtained for both quenched and unquenched samples (utilizing both chemical and colour quenching) and the variation of count-rate with pulse height was found to be exponential. The constant of the exponential was characteristic of the degree of quenching and bore a linear relationship to the relative efficiency over a wide range. Since colour quenching is usually accompanied with some chemical quenching, an attempt was made to separate the two effects. They were found to produce similar results down to an efficiency of 15% relative to the unquenched sample. Analysis of the experimental data suggests methods for selecting optimum settings for the two channels over this quenching range according to the requirements of the specific problem. An experimental relationship was also obtained for 57Co internal standardization. Finally the channel ratio, 57Co and internal standard methods were intercompared for various quenching agents. Although the results obtained were not widely different, the

  16. Rare-Earth Tri-Halide Methanol-Adduct Single-Crystal Scintillators for Gamma Ray and Neutron Detection - 8/17/09

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, Lynn A [ORNL; Wisniewski, D. [Institute of Physics, Nicolaus Copernicus University, Toruń, Poland; Neal, John S [ORNL; Bell, Zane W [ORNL; Ramey, Joanne Oxendine [ORNL; Kolopus, James A [ORNL; Chakoumakos, Bryan C [ORNL; Custelcean, Radu [ORNL; Wisniewska, Monika [Environmental College, Bydgoszcz, Poland; Peña, K. E. [Oak Ridge National Laboratory (ORNL)

    2009-01-01

    Cerium activated rare-earth tri- halides represent a well-known family of high performance inorganic rare-earth scintillators - including the high-light-yield, high-energy-resolution scintillator, cerium-doped lanthanum tribromide. These hygroscopic inorganic rare-earth halides are currently grown as single crystals from the melt - either by the Bridgman or Czochralski techniques slow and expensive processes that are frequently characterized by severe cracking of the material due to anisotropic thermal stresses and cleavage effects. We have recently discovered a new family of cerium-activated rare-earth metal organic scintillators consisting of tri-halide methanol adducts of cerium and lanthanum namely CeCl3(CH3OH)4 and LaBr3(CH3OH)4:Ce. These methanol-adduct scintillator materials can be grown near room temperature from a methanol solution, and their high solubility is consistent with the application of the rapid solution growth methods that are currently used to grow very large single crystals of potassium dihydrogen phosphate. The structures of these new rare-earth metal-organic scintillating compounds were determined by single crystal x-ray refinements, and their scintillation response to both gamma rays and neutrons, as presented here, was characterized using different excitation sources. Tri-halide methanol-adduct crystals activated with trivalent cerium apparently represent the initial example of a solution-grown rare-earth metal-organic molecular scintillator that is applicable to gamma ray, x-ray, and fast neutron detection.

  17. Tackling ionospheric scintillation threat to GNSS in Latin America

    Directory of Open Access Journals (Sweden)

    Monico Joao Francisco Galera

    2011-11-01

    Full Text Available Scintillations are rapid fluctuations in the phase and amplitude of transionospheric radio signals which are caused by small-scale plasma density irregularities in the ionosphere. In the case of the Global Navigation Satellite System (GNSS receivers, scintillation can cause cycle slips, degrade the positioning accuracy and, when severe enough, can even lead to a complete loss of signal lock. Thus, the required levels of availability, accuracy, integrity and reliability for the GNSS applications may not be met during scintillation occurrence; this poses a major threat to a large number of modern-day GNSS-based applications. The whole of Latin America, Brazil in particular, is located in one of the regions most affected by scintillations. These effects will be exacerbated during solar maxima, the next predicted for 2013. This paper presents initial results from a research work aimed to tackle ionospheric scintillation effects for GNSS users in Latin America. This research is a part of the CIGALA (Concept for Ionospheric Scintillation Mitigation for Professional GNSS in Latin America project, co-funded by the EC Seventh Framework Program and supervised by the GNSS Supervisory Authority (GSA, which aims to develop and test ionospheric scintillation countermeasures to be implemented in multi-frequency, multi-constellation GNSS receivers.

  18. Implications of Ionospheric Scintillation for GNSS Users in Northern Europe

    Science.gov (United States)

    Aquino, Marcio; Moore, Terry; Dodson, Alan; Waugh, Sam; Souter, Jock; Rodrigues, Fabiano S.

    2005-05-01

    Extensive ionospheric scintillation and Total Electron Content (TEC) data were collected by the Institute of Engineering Surveying and Space Geodesy (IESSG) in Northern Europe during years of great impact of the solar maximum on GNSS users (2001 2003). The ionospheric TEC is responsible for range errors due to its time delay effect on transionospheric signals. Electron density irregularities in the ionosphere, occurring frequently during these years, are responsible for (phase and amplitude) fluctuations on GNSS signals, known as ionospheric scintillation. Since June 2001 four GPS Ionospheric Scintillation and TEC Monitor receivers (the NovAtel/AJ Systems GSV4004) have been deployed at stations in the UK and Norway, forming a Northern European network, covering geographic latitudes from 53° to 70° N approximately. These receivers compute and record GPS phase and amplitude scintillation parameters, as well as TEC and TEC variations. The project involved setting up the network and developing automated archiving and data analysis strategies, aiming to study the impact of scintillation on DGPS and EGNOS users, and on different GPS receiver technologies. In order to characterise scintillation and TEC variations over Northern Europe, as well as investigate correlation with geomagnetic activity, long-term statistical analyses were also produced. This paper summarises our findings, providing an overview of the potential implications of ionospheric scintillation for the GNSS user in Northern Europe.

  19. Scintillation properties of N2 and CF4 and performances of a scintillating ionization chamber

    Science.gov (United States)

    Lehaut, G.; Salvador, S.; Fontbonne, J.-M.; Lecolley, F.-R.; Perronnel, J.; Vandamme, Ch.

    2015-10-01

    In this work, we studied the emission yields, decay times and coincidence resolving times (CRT) of two gases, nitrogen (N2) and tetrafluoromethane (CF4), used for particle detection in the context of fission products measurement. The set-up was made of an ionization chamber and two photomultiplier tubes (PMTs) placed front-to-front on each side of the active zone of the chamber. Using the photomultiplier tubes, the number of photoelectrons (phe) converted at the photocathodes from the scintillation processes in each gas was quantified and the scintillation time spectra were recorded. A scintillation emission yield of 24 phe MeV-1 with a decay time of τd = 2.5 ns in N2, and 225 phe MeV-1 with τd = 6.2 ns for CF4, has been measured. With our set-up, the coincidence resolving time (σ values) between the two PMTs have been measured using alpha particles at 1.4 ns and 0.34 ns for N2 and CF4, respectively.

  20. Surface preparation and coupling in plastic scintillator dosimetry.

    Science.gov (United States)

    Ayotte, Guylaine; Archambault, Louis; Gingras, Luc; Lacroix, Frédéric; Beddar, A Sam; Beaulieu, Luc

    2006-09-01

    One way to improve the performance of scintillation dosimeters is to increase the light-collection efficiency at the coupling interfaces of the detector system. We performed a detailed study of surface preparation of scintillating fibers and their coupling with clear optical fibers to minimize light loss and increase the amount of light collected. We analyzed fiber-surface polishing with aluminum oxide sheets, coating fibers with magnesium oxide, and the use of eight different coupling agents (air, three optical gels, an optical curing agent, ultraviolet light, cyanoacrylate glue, and acetone). We prepared 10 scintillating fiber and clear optical fiber light guide samples to test different coupling methods. To test the coupling, we first cut both the scintillating fiber and the clear optical fiber. Then, we cleaned and polished both ends of both fibers. Finally, we coupled the scintillating fiber with the clear optical fiber in either a polyethylene jacket or a V-grooved support depending on the coupling agent used. To produce more light, we used an ultraviolet lamp to stimulate scintillation. A typical series of similar couplings showed a standard deviation in light-collection efficiency of 10%. This can be explained by differences in the surface preparation quality and alignment of the scintillating fiber with the clear optical fiber. Absence of surface polishing reduced the light collection by approximately 40%, and application of magnesium oxide on the proximal end of the scintillating fiber increased the amount of light collected from the optical fiber by approximately 39%. Of the coupling agents, we obtained the best results using one of the optical gels. Because a large amount of the light produced inside a scintillator is usually lost, better light-collection efficiency will result in improved sensitivity. PMID:17022248

  1. Surface preparation and coupling in plastic scintillator dosimetry

    International Nuclear Information System (INIS)

    One way to improve the performance of scintillation dosimeters is to increase the light-collection efficiency at the coupling interfaces of the detector system. We performed a detailed study of surface preparation of scintillating fibers and their coupling with clear optical fibers to minimize light loss and increase the amount of light collected. We analyzed fiber-surface polishing with aluminum oxide sheets, coating fibers with magnesium oxide, and the use of eight different coupling agents (air, three optical gels, an optical curing agent, ultraviolet light, cyanoacrylate glue, and acetone). We prepared 10 scintillating fiber and clear optical fiber light guide samples to test different coupling methods. To test the coupling, we first cut both the scintillating fiber and the clear optical fiber. Then, we cleaned and polished both ends of both fibers. Finally, we coupled the scintillating fiber with the clear optical fiber in either a polyethylene jacket or a V-grooved support depending on the coupling agent used. To produce more light, we used an ultraviolet lamp to stimulate scintillation. A typical series of similar couplings showed a standard deviation in light-collection efficiency of 10%. This can be explained by differences in the surface preparation quality and alignment of the scintillating fiber with the clear optical fiber. Absence of surface polishing reduced the light collection by approximately 40%, and application of magnesium oxide on the proximal end of the scintillating fiber increased the amount of light collected from the optical fiber by approximately 39%. Of the coupling agents, we obtained the best results using one of the optical gels. Because a large amount of the light produced inside a scintillator is usually lost, better light-collection efficiency will result in improved sensitivity

  2. Elevator mechanism and method for scintillation detectors

    International Nuclear Information System (INIS)

    An elevator mechanism and method for raising and lowering radioactive samples through a shielded vertical counting chamber in a benchtop scintillation detector is described. The elevator mechanism adds little or nothing to the height of the detector by using an elongated flexible member such as a metal tape secured to the bottom of the elevator platform and extending downwardly through the counting chamber and its bottom shielding, where the tape is bent laterally for connection to a drive means. In the particular embodiment illustrated, the tape is bent laterally below the bottom shielding for the counting chamber, and then upwardly along or through one side of the shielding to a reel at the top of the shielding. The tape is wound onto the reel, and the reel is driven by a reversible motor which winds and unwinds the tape on the reel to raise and lower the elevator platform

  3. Bulk semiconducting scintillator device for radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Stowe, Ashley C.; Burger, Arnold; Groza, Michael

    2016-08-30

    A bulk semiconducting scintillator device, including: a Li-containing semiconductor compound of general composition Li-III-VI.sub.2, wherein III is a Group III element and VI is a Group VI element; wherein the Li-containing semiconductor compound is used in one or more of a first mode and a second mode, wherein: in the first mode, the Li-containing semiconductor compound is coupled to an electrical circuit under bias operable for measuring electron-hole pairs in the Li-containing semiconductor compound in the presence of neutrons and the Li-containing semiconductor compound is also coupled to current detection electronics operable for detecting a corresponding current in the Li-containing semiconductor compound; and, in the second mode, the Li-containing semiconductor compound is coupled to a photodetector operable for detecting photons generated in the Li-containing semiconductor compound in the presence of the neutrons.

  4. Study Performance of Liquid Scintillation Fiber Detector

    CERN Document Server

    Zhang, Yongpeng; Lu, Haoqi; Zhang, Peng; Zhang, Chengcai; Yang, Changgen

    2016-01-01

    Liquid scintillator (LS) with optical fiber detector (LSOF detector) is a new type of detector, which has been applied in large-scale particle physics experiments in recent years. We were proposing LSOF detector as one option of top veto detector in Jiangmen Underground Neutrino Observatory (JUNO) experiment. The prototype detector was located in laboratory of the institute of high energy physics (IHEP). From prototype study, we found that the detector have a good performance and can satisfy JUNO requirement. The detection efficiency of cosmic ray muon is greater than 98% and can collect 58 photon electrons (p.e.) when muon is going through the detector. Further more, the relationship between p.e., material reflectivity and LS depth are studied. We also compared the data with Monte Carlo simulation, and they have a good agreement with each other.

  5. OFFSET: Optical Fiber Folded Scintillating Extended Tracker

    International Nuclear Information System (INIS)

    The OFFSET collaboration aims at the development of a novel system for tracking charged particles, designed to achieve real-time imaging, large detection areas, and a high spatial resolution especially suitable for use in medical diagnostics. This paper presents the first prototype of this tracker, having a 20×20 cm2 sensitive area made by two crossed ribbons of 500μm square scintillating fibers. The track position information is extracted in real time using a reduced number of read-out channels to obtain very large detection area at moderate cost and complexity. The performance of the tracker was investigated using β sources, cosmic rays and a 62 MeV proton beam

  6. Liquid xenon/krypton scintillation calorimeter

    International Nuclear Information System (INIS)

    A scintillating LXe/LKr electromagnetic calorimeter has been built at the ITEP and tested at the BATES (MIT) accelerator. The detector consists of PMT matrix and 45 light collecting cells made of aluminized 50 microns Mylar partially covered with p-terphenyl as a wavelength-shifter. Each pyramidal cell has (2.1 x 2.1) x 40 x (4.15 x 4.15) cm dimensions and is viewed by FEU-85 glass-window photomultiplier. The detector has been exposed at 106-348 MeV electron beam. The energy resolution σE/E ≅ 5% √ E at 100 - 350 MeV range in LXe, the coordinate resolution τx ≅ 0.7 cm, the time resolution for single cell ≅ 0.6 ns have been obtained. Possible ways to improve energy resolution are discussed. 8 refs., 15 figs

  7. Homestake surface-underground scintillators: Initial results

    International Nuclear Information System (INIS)

    The first 70 tons of the 140-ton Large Area Scintillation Detector (LASD) have been operating since Jan. 1985 at a depth of 4850 ft. (4200 m.w.e.) in the Homestake Gold Mine, Lead, S.D. A total of 4 x 10(4) high-energy muons (E sub mu is approx. 2.7 TeV at the surface) have been detected. The remainder of the detector is scheduled to be in operation by the Fall of 1985. In addition, a surface air shower array is under construction. The first 27 surface counters, spaced out over an area of 270' x 500', began running in June, 1985. The LASD performance, the potential of the combined shower array and underground muon experiment for detecting point sources, and the initial results of a search for periodic emission from Cygnus X-3 are discussed

  8. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    The principal problem in trans-axial tomographic radioisotope scanning is the length of time required to obtain meaningful data. Patient movement and radioisotope migration during the scanning period can cause distortion of the image. The object of this invention is to reduce the scanning time without degrading the images obtained. A system is described in which a scintillation camera detector is moved to an orbit about the cranial-caudal axis relative to the patient. A collimator is used in which lead septa are arranged so as to admit gamma rays travelling perpendicular to this axis with high spatial resolution and those travelling in the direction of the axis with low spatial resolution, thus increasing the rate of acceptance of radioactive events to contribute to the positional information obtainable without sacrificing spatial resolution. (author)

  9. Scintillation material for radioactivity detection in chromatography

    International Nuclear Information System (INIS)

    A scintillation material was developed for radioactivity detection in liquid and gas chromatography. The starting material is crystalline Al-Y perovskite doped with Ce and La ions, which is heat treated at 1100-1700 degC under hydrogen for 1/2 to 8 hrs, ground, and screened to obtain a fraction 20-30 μm in grain size. The grain surface is modified by etching with phosphoric acid at 400-600 degC for 5-60 sec or with NaOH at 100-200 degC for 10 min. For some applications this material can be coated with a monomer (e.g., a styrene-divinylbenzene mixture) and exposed to gamma radiation to achieve complete polymerization of the monomer. The material suggested exhibits a high detection efficiency for β radiation, short luminescence times, a high chemical, mechanical and radiation resistance, and low sorption properties. (P.A.)

  10. Spectroscopic neutron detection using composite scintillators

    Science.gov (United States)

    Jovanovic, I.; Foster, A.; Kukharev, V.; Mayer, M.; Meddeb, A.; Nattress, J.; Ounaies, Z.; Trivelpiece, C.

    2016-09-01

    Shielded special nuclear material (SNM), especially highly enriched uranium, is exceptionally difficult to detect without the use of active interrogation (AI). We are investigating the potential use of low-dose active interrogation to realize simultaneous high-contrast imaging and photofission of SNM using energetic gamma-rays produced by low-energy nuclear reactions, such as 11B(d,nγ)12C and 12C(p,p‧)12C. Neutrons produced via fission are one reliable signature of the presence of SNM and are usually identified by their unique timing characteristics, such as the delayed neutron die-away. Fast neutron spectroscopy may provide additional useful discriminating characteristics for SNM detection. Spectroscopic measurements can be conducted by recoil-based or thermalization and capture-gated detectors; the latter may offer unique advantages since they facilitate low-statistics and event-by-event neutron energy measurements without spectrum unfolding. We describe the results of the development and characterization of a new type of capture-gated spectroscopic neutron detector based on a composite of scintillating polyvinyltoluene and lithium-doped scintillating glass in the form of millimeter-thick rods. The detector achieves >108 neutron-gamma discrimination resulting from its geometric properties and material selection. The design facilitates simultaneous pulse shape and pulse height discrimination, despite the fact that no materials intrinsically capable of pulse shape discrimination have been used to construct the detector. Accurate single-event measurements of neutron energy may be possible even when the energy is relatively low, such as with delayed fission neutrons. Simulation and preliminary measurements using the new composite detector are described, including those conducted using radioisotope sources and the low-dose active interrogation system based on low-energy nuclear reactions.

  11. Intensity Scintillations in Planetary Ring Occultations: Simulations

    Science.gov (United States)

    Marouf, E.

    2003-12-01

    A combined analytical and numerical simulation approach is used to investigate the first, second, and fourth statistical averages of the signal observed during a ring occultation experiment. The rings are modeled as a randomly blocked diffraction screen. The field behind the screen (the rings) assumes binary values: zero if located in the shadow area cast by ring particles and the full incident field otherwise. The stochastic geometry of the union of shadow areas cast behind the rings defines a so-called Boolean model. Either the random wavefront formed behind the screen or it's statistical averages can be propagated to an observer (a detector) some distance away from the diffraction screen. The parabolic approximation of the wave equation is used to model near-forward diffraction effects over the free-space path from the ring plane to the observation plane. The first and second moments were previously shown to correspond to the well-known coherent and scattered signal components observed during radio occultation experiments. Of particular interest here is the fourth moment of the random field at the observer, which determines the intensity scintillation index. Numerical simulations are used to investigate its behavior as a function of relevant model parameters, in particular, the ring particle radius and the Fresnel scale of observation. A monodispersion of ring particles is assumed to keep the model as simple as possible so as to investigate conditions under which the particle size may be recoverable from the intensity scintillation measurements. The model is also idealized to one-dimensional diffraction screen in order to speed up the computations; however, simulations of the more realistic two-dimensional diffraction screen models are also carried out.

  12. Scintillation spectrometer system for measuring fast-neutron spectra in beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Simons, G G; Larson, J M; Reynolds, R S

    1977-05-01

    A high-energy liquid-organic scintillation spectrometer system is described. This spectrometer was developed to measure neutron spectra in extracted beams from zero-power fast reactors. The highly efficient NE-213 scintillation solution was used as the neutron detection medium. Identification and removal of gamma-ray-induced events was accomplished using electronic pulse shape discrimination. Instrumentation used to process the discrete pulses stemming from neutron and gamma-ray interactions, within the scintillation solution, is described in detail. Evaluation of the system's performance is discussed for a gamma-ray discrimination ratio of nominally 1000:1, a total countrate of 3000 cps, and a dynamic range corresponding to neutron energies from 1 to 10 MeV. Operation above 10 MeV is certainly possible. However, since the neutron flux above 10 MeV was negligible in the radiation fields of interest in this work, the operating characteristics of the spectrometer were not evaluated above 10 MeV. Neutron spectra are reported for extracted beam measurements made on ZPPR assembly 4, phase 2.

  13. Evaluation of New Inorganic Scintillators for Application in a Prototype Small Animal PET Scanner

    CERN Document Server

    Kuntner, C

    2003-01-01

    In the study of new pharmaceuticals as well as brain and genetic research, Positron Emission Tomography (PET) is a useful method. It has also recently entered the clinical domain in cardiology and particularly in oncology. Small animals such as mice, are often used to validate sophisticated models of human disease. High spatial resolution PET instrumentation is therefore necessary due to the reduced dimensions of the organs. Inorganic scintillators are employed in most of the diagnostic imaging devices. The ultimate performance of the PET scanner is tightly bound to the scintillation properties of the crystals. In the last years there has been an effort to develop new scintillating materials characterized by high light output, high detection efficiency and fast decay time. The most studied systems are mainly Ce3+-doped crystals such as LSO:Ce, YAP:Ce, LuAP:Ce, and recently also mixed Lux(RE3+)1-xAlO3:Ce crystals. These crystals are very attractive for medical application because of their high density (with th...

  14. Measurement of proton quenching factors and PSD-parameters in liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, Vincenz; Winter, Juergen; Oberauer, Lothar; Meyer, Judith; Moellenberg, Randolph; Strauss, Raimund; Ciemniak, Christian; Wawoczny, Stephan; Scherzinger, Julius [Technische Universitaet Muenchen, Physik Department E15, Garching (Germany)

    2012-07-01

    In liquid-scintillator detectors like Borexino, Double Chooz and the LENA (Low Energy Neutrino Astronomy) project the inverse beta decay (IBD) is used to detect electron antineutrinos anti {nu}{sub e}. This causes a delayed coincidence signal reducing the background sources to those mimicking such a coincidence. Fast neutrons are one of the background sources by scattering off a proton followed by a capture on hydrogen or gadolinium. Therefore, it is vital to understand the nature of proton recoils in liquid scintillators. Using pulse shape discrimination (PSD) to distinguish the neutron-induced proton recoils from the prompt positron signal from the IBD this background might be reduced. Furthermore, elastic {nu}-p scattering is an important channel for neutrinos from a galactic core-collapse SN. In order to reconstruct the initial neutrino energy, the energy-dependent proton quenching factor has to be known. Therefore, a neutron scattering experiment at the Maier-Leibnitz-Laboratorium in Garching has been set up in order to understand the response of proton recoils in organic liquid scintillators.

  15. Some rules to improve the energy resolution in alpha liquid scintillation with beta rejection

    CERN Document Server

    Aupiais, J; Dacheux, N

    2003-01-01

    Two common scintillating mixtures dedicated to alpha measurements by means of alpha liquid scintillation with pulse shape discrimination were tested: the di-isopropylnaphthalene - based and the toluene-based solvents containing the commercial cocktails Ultima Gold AB trademark and Alphaex trademark. We show the possibility to enhance the resolution up to 200% by using no-water miscible cocktails and by reducing the optical path. Under these conditions, the resolution of about 200 keV can be obtained either by the Tri Carb sup T sup M or by the Perals sup T sup M spectrometers. The time responses, e.g., the time required for a complete energy transfer between the initial interaction alpha particle-solvent and the final fluorescence of the organic scintillator, have been compared. Both cocktails present similar behavior. According to the Foerster theory, about 6-10 ns are required to complete the energy transfer. For both apparatus, the detection limits were determined for alpha emitters. The sensitivity of the...

  16. Simultaneous separation and detection of actinides in acidic solutions using an extractive scintillating resin.

    Science.gov (United States)

    Roane, J E; DeVol, T A

    2002-11-01

    An extractive scintillating resin was evaluated for the simultaneous separation and detection of actinides in acidic solutions. The transuranic extractive scintillating (TRU-ES) resin is composed of an inert macroporous polystyrene core impregnated with organic fluors (diphenyloxazole and 1,4-bis-(4-methyl-5-phenyl-2-oxazolyl)benzene) and an extractant (octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide in tributyl phosphate). The TRU-ES resin was packed into FEP Teflon tubing to produce a flow cell (0.2-mL free column volume), which is placed into a scintillation detection system to obtain pulse height spectra and time series data during loading and elution of actinides onto/from the resin. The alpha-particle absolute detection efficiencies ranged from 77% to 96.5%, depending on the alpha energy and quench. In addition to the on-line analyses, off-line analyses of the effluent can be conducted using conventional detection methods. The TRU-ES resin was applied to the quantification of a mixed radionuclide solution and two actual waste samples. The on-line characterization of the mixed radionuclide solution was within 10% of the reported activities whereas the agreement with the waste samples was not as good due to sorption onto the sample container walls and the oxidation state of plutonium. Agreement between the on-line and off-line analyses was within 35% of one another for both waste samples. PMID:12433098

  17. Evaluation of an extractive scintillation medium for the detection of uranium in water

    International Nuclear Information System (INIS)

    An extractive scintillating (ES) resin was evaluated for its performance as an on-line monitor of uranium in water. The TRU-ES resin is comprised of an inert macroporous polystyrene core impregnated with the organic fluors [diphenyloxazole (PPO) and 1,4-bis-(4-methyl-5-phenyl-2-oxazolyl)benzene (DM-POPOP)) and the selective extract (octyl(phenyl)-N, N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) in tri-butyl phosphate (TBP)]. The TRU-ES resin, packed into translucent FEP Teflon tubing, was placed into a flow-cell scintillation detection system. Acidified aqueous solutions, 233U spiked synthetic ground water and EPA natural uranium QA samples, were pumped through the flow-cell while gross count rate and pulse-height spectra were collected. The increase in count rate is attributed to the uranium being extracted from the aqueous medium and retained by the TRU-ES resin with simultaneous detection of the resultant scintillation photons. The TRU-ES loading efficiency was nearly quantitative out of 2M HNO3 with a flow rate of 0.5 ml x min-1. The detection efficiency was measured to be 51% for 233U. The detection limit was determined to be ∼2 Bq x l-1 for 233U based on a resin free column volume of 0.2 ml, and 50 ml of 2M HNO3 acidified groundwater. (author)

  18. Production of scintillation fiber combinations for the NEPTUN photon tagger

    Energy Technology Data Exchange (ETDEWEB)

    Waelzlein, Cathrin; Glorius, Jan; Pietralla, Norbert; Savran, Deniz; Schnorrenberger, Linda; Sonnabend, Kerstin [Institut fuer Kernphysik, Technische Universitaet, Darmstadt (Germany); Endres, Janis; Zilges, Andreas [Institut fuer Kernphysik, Universitaet Koeln (Germany)

    2009-07-01

    At the S-DALINAC, the low-energy photon tagger NEPTUN has been constructed. An array of thin scintillation fibers is used to detect scattered electrons in the focal plane of the spectrometer. These fibers are connected to light guides to transmit the scintillation light to photomultiplier tubes. Connection methods were improved to reduce losses at the coupling areas. Additionally, the light yield is increased by using combinations of two scintillation fibers. A detection efficiency of nearly 100% is achieved. A report on the production process of the fibers and on their performance tests is given.

  19. Alpha counting and spectrometry using liquid scintillation methods

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, W J

    1986-01-01

    The material in this report is intended to be a practical introduction and guide to the use of liquid scintillation for alpha counting and spectrometry. Other works devoted to the development of the theory of liquid scintillation exist and a minimum of such material is repeated here. Much remains to be learned and many improvements remain to be made in the use of liquid scintillation for alpha counting and spectrometry. It is hoped that this modest work will encourage others to continue development in the field.

  20. Design and Prototyping of a High Granularity Scintillator Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Zutshi, Vishnu [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Physics

    2016-03-27

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  1. Neutron detector using lithiated glass-scintillating particle composite

    Science.gov (United States)

    Wallace, Steven; Stephan, Andrew C.; Dai, Sheng; Im, Hee-Jung

    2009-09-01

    A neutron detector composed of a matrix of scintillating particles imbedded in a lithiated glass is disclosed. The neutron detector detects the neutrons by absorbing the neutron in the lithium-6 isotope which has been enriched from the natural isotopic ratio to a commercial ninety five percent. The utility of the detector is optimized by suitably selecting scintillating particle sizes in the range of the alpha and the triton. Nominal particle sizes are in the range of five to twenty five microns depending upon the specific scintillating particle selected.

  2. Measurement of the liquid scintillator nonlinear energy response to electron

    CERN Document Server

    Zhang, Fei-Hong; Hu, Wei; Yang, Ma-Sheng; Cao, Guo-Fu; Cao, Jun; Zhou, Li

    2014-01-01

    Nonlinearity of the liquid scintillator energy response is a key to measuring the neutrino energy spectrum in reactor neutrino experiments such as Daya Bay and JUNO. We measured in laboratory the nonlinearity of the Linear Alkyl Benzene based liquid scintillator, which is used in Daya Bay and will be used in JUNO, via Compton scattering process. By tagging the scattered gamma from the liquid scintillator sample simultaneously at seven angles, the instability of the system was largely cancelled. The accurately measured nonlinearity will improve the precision of the $\\theta_{13}$, $\\Delta m^2$, and reactor neutrino spectrum measurements at Daya Bay.

  3. Ionization and scintillation of nuclear recoils in gaseous xenon

    CERN Document Server

    Renner, J; Goldschmidt, A; Matis, H S; Miller, T; Nakajima, Y; Nygren, D; Oliveira, C A B; Shuman, D; Álvarez, V; Borges, F I G; Cárcel, S; Castel, J; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Dias, T H V T; Díaz, J; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gil, A; Gómez, H; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Iguaz, F J; Irastorza, I G; Jinete, M A; Labarga, L; Laing, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Martínez, A; Moiseenko, A; Monrabal, F; Monserrate, M; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; da Luz, H Natal; Navarro, G; Nebot-Guinot, M; Palma, R; Pérez, J; Aparicio, J L Pérez; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Seguí, L; Serra, L; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Tomás, A; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Villar, J A; Webb, R C; White, J; Yahlali, N

    2014-01-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope $\\alpha$-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  4. Ionization and scintillation of nuclear recoils in gaseous xenon

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J., E-mail: jrenner@lbl.gov [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States); Gehman, V.M.; Goldschmidt, A.; Matis, H.S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C.A.B.; Shuman, D. [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Álvarez, V. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Borges, F.I.G. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Cárcel, S. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Castel, J.; Cebrián, S. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza (Spain); Cervera, A. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Conde, C.A.N. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); and others

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  5. The theory of scintillation with applications in remote sensing

    CERN Document Server

    Rino, Charles

    2011-01-01

    "In order to truly understand data signals transmitted by satellite, one must understand scintillation theory in addition to well established theories of EM wave propagation and scattering. Scintillation is a nuisance in satellite EM communications, but it has stimulated numerous theoretical developments with science applications. This book not only presents a thorough theoretical explanation of scintillation, but it also offers a complete library of MATLAB codes that will reproduce the book examples. The library includes GPS coordinate manipulations, satellite orbit prediction, and earth mean magnetic field computations. The subect matter is for EM researchers; however, also theory is relevant to geophysics, acoustics, optics and astoronomy"--Provided by publisher.

  6. Method for measuring multiple scattering corrections between liquid scintillators

    Science.gov (United States)

    Verbeke, J. M.; Glenn, A. M.; Keefer, G. J.; Wurtz, R. E.

    2016-07-01

    A time-of-flight method is proposed to experimentally quantify the fractions of neutrons scattering between scintillators. An array of scintillators is characterized in terms of crosstalk with this method by measuring a californium source, for different neutron energy thresholds. The spectral information recorded by the scintillators can be used to estimate the fractions of neutrons multiple scattering. With the help of a correction to Feynman's point model theory to account for multiple scattering, these fractions can in turn improve the mass reconstruction of fissile materials under investigation.

  7. Search of new scintillation materials for nuclear medicine application

    CERN Document Server

    Korzhik, M V

    2000-01-01

    Oxide crystals have a great potential to develop new advanced scintillation materials which are dense, fast, and bright. This combination of parameters, when combined to affordable price, gives a prospect for materials to be applied in nuclear medicine devices. Some of them have been developed for the last two decades along the line of rear-earth (RE) garnet (RE/sub 3/Al/sub 5/O/sub 12/) oxiorthosilicate (RE/sub 2/SiO/sub 5/) and perovskite (REAlO/sub 3/) crystals doped with Ce ions. Among recently developed oxide materials the lead tungstate scintillator (PWO) becomes the most used scintillation material in high energy physics experiments due to its application in CMS and ALICE experiments at LHC. In this paper we discuss scintillation properties of some new heavy compounds doped with Ce as well as light yield improvement of PWO crystals to apply them in low energy physics and nuclear medicine. (18 refs).

  8. Interstellar Seeing. I. Superresolution Techniques Using Radio Scintillation

    CERN Document Server

    Cordes, J M

    2000-01-01

    Interstellar scintillation can be used to probe transverse sizes of radio sources on scales inaccessible to the nominal resolution of any terrestrial telescope, e.g. $\\lesssim 10^{-6}$ arc sec. Methodology is presented that exploits this superresolution phenomenon for both single aperture and interferometer observations. The treatment applies to the saturated (strong-scattering) regime and holds for both thin screens and extended media. A general signal model for radio sources is presented, {\\it scintillated amplitude modulated noise}, which applies to compact, incoherent synchrotron sources such as AGNs and gamma-ray burst sources and also to known, coherent sources such as masers and pulsars. The exact probability density function for measured intensities and interferometric visibilities is obtained by solving a general Fredholm problem. An approximate density function is also obtained by using the equivalent number of degrees of freedom in scintillation modulations. The scintillation modulation variance is...

  9. Comparison of the methods for determination of scintillation light yield

    CERN Document Server

    Sysoeva, E; Zelenskaya, O

    2002-01-01

    One of the most important characteristics of scintillators is the light yield. It depends not only on the properties of scintillators, but also on the conditions of measurements. Even for widely used crystals, such as alkali halide scintillators NaI(Tl) and CsI(Tl), light yield data, obtained by various authors, are different. Therefore, it is very important to choose the convenient method of the light yield measurements. In the present work, methods for the determination of the physical light yield, based on measurements of pulse amplitude, single-electron pulses and intrinsic photomultiplier resolution are discussed. These methods have been used for the measurements of light yield of alkali halide crystals and oxide scintillators. Repeatability and reproducibility of results were determined. All these methods are rather complicated in use, not for measurements, but for further data processing. Besides that, they demand a precise determination of photoreceiver's parameters, as well as determination of light ...

  10. A lens-coupled scintillation counter in cryogenic environment

    CERN Document Server

    Stoykov, A; Amato, A; Bartkowiak, M; Konter, J A; Rodriguez, J; Sedlak, K

    2011-01-01

    In this work we present an elegant solution for a scintillation counter to be integrated into a cryogenic system. Its distinguishing feature is the absence of a continuous light guide coupling the scintillation and the photodetector parts, operating at cryogenic and room temperatures respectively. The prototype detector consists of a plastic scintillator with glued-in wavelength-shifting fiber located inside a cryostat, a Geiger-mode Avalanche Photodiode (G-APD) outside the cryostat, and a lens system guiding the scintillation light re-emitted by the fiber to the G-APD through optical windows in the cryostat shields. With a 0.8mm diameter multiclad fiber and a 1mm active area G-APD the coupling efficiency of the "lens light guide" is about 50%. A reliable performance of the detector down to 3K is demonstrated.

  11. Study of scintillation in natural and synthetic quartz and methacrylate

    CERN Document Server

    Amaré, J; Cebrián, S; Cuesta, C; Fortuño, D; García, E; Ginestra, C; Gómez, H; Herrera, D C; Martínez, M; Oliván, M A; Ortigoza, Y; de Solórzano, A Ortiz; Pobes, C; Puimedón, J; Sarsa, M L; Villar, J A; Villar, P

    2014-01-01

    Samples from different materials typically used as optical windows or light guides in scintillation detectors were studied in a very low background environment, at the Canfranc Underground Laboratory, searching for scintillation. A positive result can be confirmed for natural quartz: two distinct scintillation components have been identified, not being excited by an external gamma source. Although similar effect has not been observed neither for synthetic quartz nor for methacrylate, a fast light emission excited by intense gamma flux is evidenced for all the samples in our measurements. These results could affect the use of these materials in low energy applications of scintillation detectors requiring low radioactive background conditions, as they entail a source of background.

  12. Radio Scintillation due to Discontinuities in the Interstellar Plasma Density

    CERN Document Server

    Lambert, H; Lambert, Hendrik; Rickett, Barney

    1999-01-01

    We develop the theory of interstellar scintillation as caused by an irregular plasma having a power-law spatial density spectrum with a spectral exponent of 4 corresponding to a medium with abrupt changes in its density. An ``outer scale'' is included in the model representing the typical scale over which the density of the medium remains uniform. Such a spectrum could be used to model plasma shock fronts in supernova remnants or other plasma discontinuities. We investigate and develop equations for the decorrelation bandwidth of diffractive scintillations and the refractive scintillation index and compare our results with pulsar measurements. We consider both a medium concentrated in a thin layer and an extended irregular medium. We conclude that the discontinuity model gives satisfactory agreement for many diffractive measurements, in particular the VLBI meaurements of the structure function exponent between 5/3 and 2. However, it gives less satisfactory agreement for the refractive scintillation index than...

  13. Scintillation effects on radio wave propagation through solar corona

    Science.gov (United States)

    Ho, C. M.; Sue, M. K.; Bedrossian, A.; Sniffin, R. W.

    2002-01-01

    When RF waves pass through the solar corona and solar wind regions close to the Sun, strong scintillation effects appear at their amplitude, frequency and phase, especially in the regions very close to the Sun (less than 4 solar radius).

  14. A fine grained electromagnetic lead-liquid scintillator calorimeter

    Science.gov (United States)

    Bachman, L.; Bonesini, M.; Cavalli, D.; Costa, G.; Fischer, J.; Fluri, L.; Kienzle-Focacci, M. N.; Mandelli, L.; Martin, M.; Mazzanti, M.; Mermod, R.; Pensotti-Rancoita, S.; Perrin, D.; Rosselet, L.; Rutschmann, J.; Tamborini, M.; Vuilleumier, J. M.; Werlen, M.

    1983-02-01

    A new technique using liquid scintillator contained in teflon tubes to build a low cost high spatial resolution electromagnetic sampling calorimeter is described. Test results and comparison with a Monte Carlo simulation are presented.

  15. Fine grained electromagnetic lead-liquid scintillator calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, L.; Fluri, L.; Perrin, D.; Vuilleumier, J.M. (Neuchatel Univ. (Switzerland)); Bonesini, M.; Cavalli, D.; Costa, G.; Mandelli, L.; Mazzanti, M.; Tamborini, M. (Istituto Nazionale di Fisica Nucleare, Milan (Italy))

    1983-02-15

    A new technique using liquid scintillator contained in teflon tubes to build a low cost high spatial resolution electromagnetic sampling calorimeter is described. Test results and comparison with a Monte Carlo simulation are presented.

  16. New Radiation Stable and Long-Lived Plastic Scintillators

    International Nuclear Information System (INIS)

    A study of the influence of the concentration of secondary addition, high concentrations of primary dopant, diffusion enhancer and stabilizer on radiation hardness is presented. It is concluded that the diffusion enhancing technique is the most powerful method for improving radiation hardness. A new polystyrene scintillator which contains 2% pT, 0.02% POPOP, 20% diffusion enhancer and 0.02% stabilizer gave 91% of initial light output immediately after 3 Mrad irradiation in air. Data are presented that show that scintillator prepared from commercial polymer is more radiation-hard and has greater light output than scintillator prepared from monomer. It is assumed that this difference is due to different molecular weight distributions. Some protocols for acceleration of aging (yellowing and crazing) are presented. It is shown that one of the main reasons for aging of plastic scintillators is residual monomer. 10 refs., 18 figs., 1 tab

  17. Final LDRD report : advanced plastic scintillators for neutron detection.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Mascarenhas, Nicholas; O' Bryan, Greg; Mrowka, Stanley

    2010-09-01

    This report summarizes the results of a one-year, feasibility-scale LDRD project that was conducted with the goal of developing new plastic scintillators capable of pulse shape discrimination (PSD) for neutron detection. Copolymers composed of matrix materials such as poly(methyl methacrylate) (PMMA) and blocks containing trans-stilbene (tSB) as the scintillator component were prepared and tested for gamma/neutron response. Block copolymer synthesis utilizing tSBMA proved unsuccessful so random copolymers containing up to 30% tSB were prepared. These copolymers were found to function as scintillators upon exposure to gamma radiation; however, they did not exhibit PSD when exposed to a neutron source. This project, while falling short of its ultimate goal, demonstrated the possible utility of single-component, undoped plastics as scintillators for applications that do not require PSD.

  18. Direct current stabilization of scintillation counters used with pulsed accelerators

    NARCIS (Netherlands)

    Valckx, F.P.G.

    1961-01-01

    A simple system is described for the gain stabilization of the photomultiplier of a scintillation counter. Use is made of a constant light source. The stabilization factor of the system amounts to S = 200.

  19. Rational design of binary halide scintillators via data mining

    International Nuclear Information System (INIS)

    We introduce a new search strategy for the development of novel inorganic scintillators. For designing new scintillation host media having the improved properties, the potential candidate materials were chosen by using a chemical selection scheme based on a multi-dimensional similarity metric. For the quantitative assessment of the chosen materials, predictive models based on informatics were built by correlating a set of key parameters which reflect the features of the host materials with the performance of inorganic scintillators. The resulting design rules generated from the relationships serve as a guide to identify HfI4 and TaI5 as two new host lattices with high light yield. The method we have outlined here serves as a new computational template based statistical learning method to search for new inorganic scintillators with targeted properties.

  20. Broadband Meter-Wavelength Observations of Ionospheric Scintillation

    CERN Document Server

    Fallows, R A; McKay, D; Vierinen, J; Virtanen, I I; Postila, M; Ulich, Th; Enell, C-F; Kero, A; Iinatti, T; Lehtinen, M; Orispää, M; Raita, T; Roininen, L; Turunen, E; Brentjens, M; Ebbendorf, N; Gerbers, M; Grit, T; Gruppen, P; Meulman, H; Norden, M; de Reijer, J-P; Schoenmakers, A; Stuurwold, K

    2015-01-01

    Intensity scintillations of cosmic radio sources are used to study astrophysical plasmas like the ionosphere, the solar wind, and the interstellar medium. Normally these observations are relatively narrow band. With Low Frequency Array (LOFAR) technology at the Kilpisj\\"arvi Atmospheric Imaging Receiver Array (KAIRA) station in northern Finland we have observed scintillations over a 3 octave bandwidth. ``Parabolic arcs'', which were discovered in interstellar scintillations of pulsars, can provide precise estimates of the distance and velocity of the scattering plasma. Here we report the first observations of such arcs in the ionosphere and the first broad-band observations of arcs anywhere, raising hopes that study of the phenomenon may similarly improve the analysis of ionospheric scintillations. These observations were made of the strong natural radio source Cygnus-A and covered the entire 30-250\\,MHz band of KAIRA. Well-defined parabolic arcs were seen early in the observations, before transit, and disapp...

  1. Scintillation Particle Detectors Based on Plastic Optical Fibres and Microfluidics

    CERN Document Server

    Mapelli, Alessandro; Renaud, Philippe

    2011-01-01

    This thesis presents the design, development, and experimental validation of two types of scintillation particle detectors with high spatial resolution. The first one is based on the well established scintillating fibre technology. It will complement the ATLAS (A Toroidal Large ApparatuS) detector at the CERN Large Hadron Collider (LHC). The second detector consists in a microfabricated device used to demonstrate the principle of operation of a novel type of scintillation detector based on microfluidics. The first part of the thesis presents the work performed on a scintillating fibre tracking system for the ATLAS experiment. It will measure the trajectory of protons elastically scattered at very small angles to determine the absolute luminosity of the CERN LHC collider at the ATLAS interaction point. The luminosity of an accelerator characterizes its performance. It is a process-independent parameter that is completely determined by the properties of the colliding beams and it relates the cross section of a ...

  2. Large liquid-scintillator trackers for neutrino experiments

    CERN Document Server

    Benussi, L; D'Ambrosio, N; Déclais, Y; Dupraz, J P; Fabre, Jean-Paul; Fanti, V; Forton, E; Frekers, D; Frenkel, A; Girerd, C; Golovkin, S V; Grégoire, G; Harrison, K; Jonkmans, G; Jonsson, P; Katsanevas, S; Kreslo, I; Marteau, J; Martellotti, G; Martínez, S; Medvedkov, A M; Moret, G; Niwa, K; Novikov, V; Van Beek, G; Penso, G; Vasilchenko, V G; Vuilleumier, J L; Wilquet, G; Zucchelli, P; Kreslo, I E

    2002-01-01

    Results are given on tests of large particle trackers for the detection of neutrino interactions in long-baseline experiments. Module prototypes have been assembled using TiO$_2$-doped polycarbonate panels. These were subdivided into cells of $\\sim 1$~cm$^2$ cross section and 6~m length, filled with liquid scintillator. A wavelength-shifting fibre inserted in each cell captured a part of the scintillation light emitted when a cell was traversed by an ionizing particle. Two different fibre-readout systems have been tested: an optoelectronic chain comprising an image intensifier and an Electron Bombarded CCD (EBCCD); and a hybrid photodiode~(HPD). New, low-cost liquid scintillators have been investigated for applications in large underground detectors. Testbeam studies have been performed using a commercially available liquid scintillator. The number of detected photoelectrons for minimum-ionizing particles crossing a module at different distances from the fibre readout end was 6 to 12 with the EBCCD chain and ...

  3. The Effects of Dissolved Methane upon Liquid Argon Scintillation Light

    CERN Document Server

    Jones, B J P; Back, H O; Collin, G; Conrad, J M; Greene, A; Katori, T; Pordes, S; Toups, M

    2013-01-01

    In this paper we report on measurements of the effects of dissolved methane upon argon scintillation light. We monitor the light yield from an alpha source held 20 cm from a cryogenic photomultiplier tube (PMT) assembly as methane is injected into a high-purity liquid argon volume. We observe significant suppression of the scintillation light yield by dissolved methane at the 10 part per billion (ppb) level. By examining the late scintillation light time constant, we determine that this loss is caused by an absorption process and also see some evidence of methane-induced scintillation quenching at higher concentrations (50-100 ppb). Using a second PMT assembly we look for visible re-emission features from the dissolved methane which have been reported in gas-phase argon methane mixtures, and we find no evidence of visible re-emission from liquid-phase argon methane mixtures at concentrations between 10 ppb and 0.1%.

  4. Rational design of binary halide scintillators via data mining

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chang Sun [Department of Materials Science and Engineering, Iowa State University, 2220 Hoover Hall, Ames, Iowa 50011-2300 (United States); Rajan, Krishna, E-mail: krajan@iastate.edu [Department of Materials Science and Engineering, Iowa State University, 2220 Hoover Hall, Ames, Iowa 50011-2300 (United States)

    2012-07-11

    We introduce a new search strategy for the development of novel inorganic scintillators. For designing new scintillation host media having the improved properties, the potential candidate materials were chosen by using a chemical selection scheme based on a multi-dimensional similarity metric. For the quantitative assessment of the chosen materials, predictive models based on informatics were built by correlating a set of key parameters which reflect the features of the host materials with the performance of inorganic scintillators. The resulting design rules generated from the relationships serve as a guide to identify HfI{sub 4} and TaI{sub 5} as two new host lattices with high light yield. The method we have outlined here serves as a new computational template based statistical learning method to search for new inorganic scintillators with targeted properties.

  5. Scintillation Velocity of PSR B0329+54

    Indian Academy of Sciences (India)

    R. X. Zhou; N. Wang; Z. Y. Liu; X. Liu

    2011-03-01

    We monitored PSR B0329+54 for one year using the Nanshan 25-m radio telescope, the scintillation velocity VISS shows evidence of systematic variation with the day of the year. States of interstellar medium (ISM) are discussed.

  6. A Scintillator Purification Plant and Fluid Handling System for SNO+

    CERN Document Server

    Ford, Richard J

    2015-01-01

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with 130Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  7. Photonic Crystals: Enhancing the Light Output of Scintillation Based Detectors

    CERN Document Server

    Knapitsch, Arno Richard

    A scintillator is a material which emits light when excited by ionizing radiation. Such materials are used in a diverse range of applications; From high energy particle physics experiments, X-ray security, to nuclear cameras or positron emission tomography. Future high-energy physics (HEP) experiments as well as next generation medical imaging applications are more and more pushing towards better scintillation characteristics. One of the problems in heavy scintillating materials is related to their high index of refraction. As a consequence, most of the scintillation light produced in the bulk material is trapped inside the crystal due to total internal reflection. The same problem also occurs with light emitting diodes (LEDs) and has for a long time been considered as a limiting factor for their overall efficiency. Recent developments in the area of nanophotonics were showing now that those limitations can be overcome by introducing a photonic crystal (PhC) slab at the outcoupling surface of the substrate. P...

  8. Subnanosecond scintillation detector for high energy cosmic rays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The task objective is to develop a gamma ray scintillator technology with subnanosecond temporal resolution and the capability to withstand unprecedented rates and...

  9. Inorganic scintillators for detector systems physical principles and crystal engineering

    CERN Document Server

    Lecoq, Paul; Korzhik, Mikhail

    2017-01-01

    This second edition features new chapters highlighting advances in our understanding of the behavior and properties of scintillators, and the discovery of new families of materials with light yield and excellent energy resolution very close to the theoretical limit. The book focuses on the discovery of next-generation scintillation materials and on a deeper understanding of fundamental processes. Such novel materials with high light yield as well as significant advances in crystal engineering offer exciting new perspectives. Most promising is the application of scintillators for precise time tagging of events, at the level of 100 ps or higher, heralding a new era in medical applications and particle physics. Since the discovery of the Higgs Boson with a clear signature in the lead tungstate scintillating blocks of the CMS Electromagnetic Calorimeter detector, the current trend in particle physics is toward very high luminosity colliders, in which timing performance will ultimately be essential to mitigating...

  10. Improved Scintillator Materials For Compact Electron Antineutrino Detectors

    NARCIS (Netherlands)

    Dijkstra, Peter; Wortche, Heinrich J.; Browne, Wesley R.

    2012-01-01

    Recent developments provide new components holding the potential to improve the performance of liquid scintillation electron antineutrino detectors used as nuclear reactors monitors. Current systems raise issues regarding size, quantum efficiency, stability, and spatial resolution of the vertex dete

  11. The influence of chemical and color quenching on the shape of energy spectrum for Beta particles of 90Sr- 90Y by using liquid scintillation cocktail

    International Nuclear Information System (INIS)

    The effect of chemical quenching on the pulse height spectrum and Emax of Strontium 90Sr were studied using the organic scintillation cocktail and observing change in florescent yield and spectral shape (energy spectrum) of beta particles of 90Sr isotope in determining a relationship between the magnitude of material that causes quenching and the position of energy spectrum and Emax, adding 3 M nitric acid (HNO3) as chemical quencher to the scintillation, and added aqueous soluble yellow food dye with different concentration as color quencher. The beta detection efficiency depends on energy, spectral shape and cocktail. Typically, beta particles with maximum energies (Emax > 0.250 MeV) are detected with > 90% counting efficiency in organic liquid scintillation, where 90Sr has maximum beta energy, Emax, of 0.546 MeV and half-life of 28.17 years. The results were compared with reference and literature values. (author)

  12. Oxygen quenching in LAB based liquid scintillator and nitrogen bubbling

    CERN Document Server

    Hua-Lin, Xiao

    2009-01-01

    Oxygen quenching effect in Linear Alkl Benzne (LAB) based liquid scintillator (LAB+3g/L POPOP+ 15 mg Bis--MSB) was studied by measuring the light yield as the function of nitrogen bubbling time. it shows that the light yield of fully purged liquid scintillator would increase of nearly 11% in room temperature and room atmosphere pressure. A simple model of nitrogen bubbling was built to describe the relationship between relative light yield (oxygen quenching factor) and bubbling time.

  13. SNO+ scintillator cocktail studies using an ${}^{90}$Y source

    CERN Document Server

    Arushanova, Evelina

    2016-01-01

    We present the design of ${}^{90}$Y calibration source and its manufacturing procedure, that has been implemented in the University of Sussex radioactive laboratory. The radioactive source was first tested at the University of Sussex using a small scintillator cocktail sample. Further measurements were performed at the University of Pennsylvania using a larger volume of the scintillator cocktail. The results of both studies are presented and discussed.

  14. Research to Operations of Ionospheric Scintillation Detection and Forecasting

    Science.gov (United States)

    Jones, J.; Scro, K.; Payne, D.; Ruhge, R.; Erickson, B.; Andorka, S.; Ludwig, C.; Karmann, J.; Ebelhar, D.

    Ionospheric Scintillation refers to random fluctuations in phase and amplitude of electromagnetic waves caused by a rapidly varying refractive index due to turbulent features in the ionosphere. Scintillation of transionospheric UHF and L-Band radio frequency signals is particularly troublesome since this phenomenon can lead to degradation of signal strength and integrity that can negatively impact satellite communications and navigation, radar, or radio signals from other systems that traverse or interact with the ionosphere. Although ionospheric scintillation occurs in both the equatorial and polar regions of the Earth, the focus of this modeling effort is on equatorial scintillation. The ionospheric scintillation model is data-driven in a sense that scintillation observations are used to perform detection and characterization of scintillation structures. These structures are then propagated to future times using drift and decay models to represent the natural evolution of ionospheric scintillation. The impact on radio signals is also determined by the model and represented in graphical format to the user. A frequency scaling algorithm allows for impact analysis on frequencies other than the observation frequencies. The project began with lab-grade software and through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive promote adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourage rapid and flexible response to customer-driven changes. The Agile philosophy values individuals and interactions over processes and tools, working software over comprehensive documentation, customer collaboration over contract negotiation, and responding to change over following a rigid plan. The end result was an operational capability that met customer expectations. Details of the model and the process of

  15. Refractive Interstellar Scintillation for Flux Density Variations of Two Pulsars

    Institute of Scientific and Technical Information of China (English)

    周爱芝; 吴鑫基; 艾力·伊沙木丁

    2003-01-01

    The flux density structure functions of PSRs B0525+21 and B2111+46 are calculated with the refractive interstellar scintillation (RISS) theory. The theoretical curves are in good agreement with observations [Astrophys.J. 539 (2000) 300] (hereafter S2000). The spectra of the electron density fluctuations both are of Kolmogorov spectra. We suggest that the flux density variations observed for these two pulsars are attributed to refractive interstellar scintillation, not to intrinsic variability.

  16. High effective atomic number polymer scintillators for gamma ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cherepy, Nerine Jane; Sanner, Robert Dean; Payne, Stephen Anthony; Rupert, Benjamin Lee; Sturm, Benjamin Walter

    2014-04-15

    A scintillator material according to one embodiment includes a bismuth-loaded aromatic polymer having an energy resolution at 662 keV of less than about 10%. A scintillator material according to another embodiment includes a bismuth-loaded aromatic polymer having a fluor incorporated therewith and an energy resolution at 662 keV of less than about 10%. Additional systems and methods are also presented.

  17. Scintillation of thin tetraphenyl butadiene films under alpha particle excitation

    CERN Document Server

    Pollmann, Tina; Kuźniak, Marcin

    2010-01-01

    The alpha induced scintillation of the wavelength shifter 1,1,4,4-tetraphenyl-1,3-butadiene (TPB) was studied to improve the understanding of possible surface alpha backgrounds in the DEAP dark matter search experiment. We found that vacuum deposited thin TPB films emit 882 +/-210 photons per MeV under alpha particle excitation. The scintillation pulse shape consists of a double exponential decay with lifetimes of 11 +/-5 ns and 275 +/-10ns.

  18. A new scintillating glass for high energy physics applications

    International Nuclear Information System (INIS)

    A new scintillating glass has been developed containing Cerium (3+) oxide in an aluminate host glass. In this material the scintillation emission spectrum is red-shifted relative to that observed for Ce/sup 3+/ in silicate glasses. Additionally, emission and absorption spectra are more widely separated in the aluminate composition, suggesting that such glasses might have improved light transmission properties. The refractive index is high, making it a potentially interesting material for use in fiber-optic tracking detectors

  19. Lanthanum halide nanoparticle scintillators for nuclear radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Guss, Paul; Guise, Ronald [Remote Sensing Laboratory, P.O. Box 98521, M/S RSL-48, Las Vegas, Nevada 89193 (United States); Yuan Ding [National Security Technologies, LLC, Los Alamos Operations, P.O. Box 809, M/S LAO/C320, Los Alamos, New Mexico 87544 (United States); Mukhopadhyay, Sanjoy [Remote Sensing Laboratory-Andrews, Building 1783, Arnold Avenue Andrews AFB, Maryland 20762 (United States); O' Brien, Robert; Lowe, Daniel [University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154 (United States); Kang Zhitao; Menkara, Hisham [Georgia Tech Research Institute, 925 Dalney St., Atlanta, Georgia 30332 (United States); Nagarkar, Vivek V. [RMD, Inc., 44 Hunt Street, Watertown, Massachusetts 02472 (United States)

    2013-02-14

    Nanoparticles with sizes <10 nm were fabricated and characterized for their nanocomposite radiation detector properties. This work investigated the properties of several nanostructured radiation scintillators, in order to determine the viability of using scintillators employing nanostructured lanthanum trifluoride. Preliminary results of this investigation are consistent with the idea that these materials have an intrinsic response to nuclear radiation that may be correlated to the energy of the incident radiation.

  20. Performance Test of LASCAR Scintillator Detector Array at RIBLL

    Institute of Scientific and Technical Information of China (English)

    WangJinchuan; XiaoGuoqing; GuoZhongyan; ZhanWenlong; QiHuirong; WuLijie; XuZhiguo; ZhangLi; DingXianli; XuHushan; SunZhiyu; LiJiaxing; LiChen; WangMeng; ChenLixin; HuZhengguo; MaoRuishi; ZhaoTiecheng

    2003-01-01

    The LASCAR (Large Area Scattering Chamber at PABLL) scintillator detector array is developed to detect neutrons and charged particles from the reaction induced by, the RIBs from RIBLL. It consists of 8 scintillator plus light guide blocks. As shown in Fig.l, each block matches with 49 photomultipliers (PMTs) of 9214SB type from Electron Tubes Limited. Some technical improvements and the latest performance test of the 294 PMTs in 6 blocks of LASCAR are described in this report.

  1. Continuing Studies on Lead/Scintillating Fibres Calorimetry (LFC)

    CERN Multimedia

    2002-01-01

    Starting from the results obtained in the framework of the LAA Project~2B, we propose a continuation of the R&D on lead/scintillating fibres calorimetry (``spaghetti calorimetry''), including further tests on the old calorimeter prototypes and the construction and testing of new prototypes. The main results we pursue concern the performances of a projective calorimeter built with new, cheaper, techniques and the radiation hardness of the scintillating fibres, the optimization of a preshower detector system is also studied.

  2. Photoelectron anticorrelations and sub-Poisson statistics in scintillation detectors

    OpenAIRE

    Bousselham, Abdelkader; Barrett, Harrison H.; Bora, Vaibhav; Shah, Kanai

    2010-01-01

    The performance of scintillation detectors for x rays and gamma rays is limited fundamentally by the statistics of the scintillation light and the resulting photoelectrons. This paper presents a new experimental approach to studying these statistics by observing correlations in the signals from two photodetectors. It is shown that the Fano factors (ratios of variance to mean), both for the number the photoelectrons produced on the photocathode of the photomultiplier and for the underlying num...

  3. Li-containing scintillating bolometers for low background physics

    Directory of Open Access Journals (Sweden)

    Pattavina L.

    2014-01-01

    Full Text Available We present the performances of Li-based compounds used as scintillating bolometer for rare decay studies such as double-beta decay and direct dark matter investigations. The compounds are tested in a dilution refrigerator installed in the underground laboratory of Laboratori Nazionali del Gran Sasso (Italy. Low temperature scintillating properties are investigated by means of different radioactive sources, and the radio-purity level for internal contaminations are estimated for possible employment for next generation experiments.

  4. Performance studies of scintillating ceramic samples exposed to ionizing radiation

    CERN Document Server

    Dissertori, G; Nessi-Tedaldi, F; Wallny, R

    2014-01-01

    Scintillating ceramics are a promising, new development for various applications in science and industry. Their application in calorimetry for particle physics experiments is expected to involve an exposure to high levels of ionizing radiation. In this paper, changes in performance have been measured for scintillating ceramic samples of different composition after exposure to penetrating ionizing radiation up to a dose of 38 kGy. 2012 IEEE Nuclear Science Symposium Conference Record

  5. Precision beta gauge using a plastic scintillator and photomultiplier detector

    Energy Technology Data Exchange (ETDEWEB)

    Jaklevic, J.M.; Madden, N.W.; Wiegand, C.E. (Lawrence Berkely Lab., CA (USA))

    1983-09-01

    We describe the use of a plastic scintillator photomultiplier detector combination in applications involving the precision beta-gauge measurements of small mass deposits of thin substrates. The requisite precision (+- 2 ..mu..g/cm/sup 2/) places stringent requirements on the beta-particle counter and associated electronics. The scintillator based system is shown to be equivalent if not superior to previously employed semiconductor detectors with respect to long-term counting stability.

  6. Performance studies of scintillating ceramic samples exposed to ionizing radiation

    CERN Document Server

    Dissertori, G; Nessi-Tedaldi, F; Pauss, F; Wallny, R

    2012-01-01

    Scintillating ceramics are a promising, new development for various applications in science and industry. Their application in calorimetry for particle physics experiments is expected to involve an exposure to high levels of ionizing radiation. In this paper, changes in performance have been measured for scintillating ceramic samples of different composition after exposure to penetrating ionizing radiation up to a dose of 38 kGy.

  7. Pulse shape discrimination studies in a liquid Argon scintillation detector

    OpenAIRE

    Pollmann, T.

    2007-01-01

    Liquid rare gases have been gaining popularity as detector media in rare event searches, especially dark matter experiments, and one factor driving their adoption is the possibility to recognise different types of ionizing radiation by the pulse shapes they evoke. This work on pulse shape discrimination in a liquid argon scintillation detector was done in the framework of the GERDA experiment, where liquid argon scintillation signals may be used for background suppression purposes. Liquid arg...

  8. A BGO scintillating bolometer for gamma and alpha spectroscopy

    OpenAIRE

    Cardani, Laura; Di Domizio, Sergio; Gironi, Luca

    2012-01-01

    A 891 g BGO scintillating bolometer has been tested at 10 mK in the underground Laboratori Nazionali del Gran Sasso (Italy). The discrimination capability, the radio-purity of the compound and the main features of the crystal have been studied in order to demonstrate the excellent performances obtained by operating a scintillating bolometer in the field of gamma and alpha spectroscopy. The sensitivity of this detector in the study of extremely low surface contaminations has been investigated.

  9. Organizations

    DEFF Research Database (Denmark)

    Hatch, Mary Jo

    Most of us recognize that organizations are everywhere. You meet them on every street corner in the form of families and shops, study in them, work for them, buy from them, pay taxes to them. But have you given much thought to where they came from, what they are today, and what they might become...... and considers many more. Mary Jo Hatch introduces the concept of organizations by presenting definitions and ideas drawn from the a variety of subject areas including the physical sciences, economics, sociology, psychology, anthropology, literature, and the visual and performing arts. Drawing on examples from...... prehistory and everyday life, from the animal kingdom as well as from business, government, and other formal organizations, Hatch provides a lively and thought provoking introduction to the process of organization....

  10. A feasibility study of ortho-positronium decays measurement with the J-PET scanner based on plastic scintillators

    Science.gov (United States)

    Kamińska, D.; Gajos, A.; Czerwiński, E.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Dulski, K.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Korcyl, G.; Kowalski, P.; Krzemień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pawlik-Niedźwiecka, M.; Raczyński, L.; Rudy, Z.; Silarski, M.; Wieczorek, A.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2016-08-01

    We present a study of the application of the Jagiellonian positron emission tomograph (J-PET) for the registration of gamma quanta from decays of ortho-positronium (o-Ps). The J-PET is the first positron emission tomography scanner based on organic scintillators in contrast to all current PET scanners based on inorganic crystals. Monte Carlo simulations show that the J-PET as an axially symmetric and high acceptance scanner can be used as a multi-purpose detector well suited to pursue research including e.g. tests of discrete symmetries in decays of ortho-positronium in addition to the medical imaging. The gamma quanta originating from o-Ps decay interact in the plastic scintillators predominantly via the Compton effect, making the direct measurement of their energy impossible. Nevertheless, it is shown in this paper that the J-PET scanner will enable studies of the { o-Ps }→ 3γ decays with angular and energy resolution equal to σ (θ ) ≈ {0.4°} and σ (E) ≈ 4.1 {keV}, respectively. An order of magnitude shorter decay time of signals from plastic scintillators with respect to the inorganic crystals results not only in better timing properties crucial for the reduction of physical and instrumental background, but also suppresses significantly the pile-ups, thus enabling compensation of the lower efficiency of the plastic scintillators by performing measurements with higher positron source activities.

  11. Measurements and elimination of Cherenkov light in fiber-optic scintillating detector for electron beam therapy dosimetry

    International Nuclear Information System (INIS)

    In this study, a miniature fiber-optic radiation detector has been developed using a water-equivalent organic scintillator for electron beam therapy dosimetry. Usually, two kinds of light signals such as fluorescent and Cherenkov lights are generated in a fiber-optic radiation detector when a high-energy electron beam is irradiated. The fluorescent light signal is produced in the scintillator and is transmitted through a plastic optical fiber to a remote light-measuring device such as a PMT or a photodiode. The Cherenkov light could be also produced in the plastic optical fiber itself and be detected by a light-measuring device. Therefore, it could cause problems or limit the accuracy of the detection of a fluorescent light signal that is proportional to dose. The objectives of this study are to measure, characterize and eliminate Cherenkov light generated in a plastic optical fiber used as a component of a fiber-optic radiation detector and to detect a real fluorescent light signal from the scintillator. In this study, the intensity of Cherenkov light is measured and characterized as a function of the incident angle of an electron beam from a LINAC, as a function of the electron beam energy, and as a function of electron beam size. Also, a subtraction method using a background optical fiber without a scintillator and an optical discrimination method using optical filters are investigated to remove Cherenkov light

  12. The space weather of the global ionosphere S4 scintillation

    Science.gov (United States)

    Liu, Jann-Yenq; Chen, Shih-Ping; Yeh, Wen-Hao

    2016-04-01

    In this paper, a method is introduced which converts S4 index observations by radio occultation of FORMOSAT-3/COSMIC (F3/C) to the scintillation on the ground. To carry out the conversion, three dimensional (3D) structures of S4max, the maximum value on each profile probed by F3/C, are constructed, which allows us to understand GPS scintillation variations at various local times, seasons, and solar activity conditions, as well as the geographical distribution from the space-based point of view. By applying the method to data of the 3D structure, maps of the worst case scenario on the ground as functions of geomagnetic local time and geographic coordinates are constructed and reported here. The converted S4max for the first time estimates the global distribution of ionospheric scintillations in the GPS L1 band C/A code signal on the ground. The results show that the worst-case scintillations appear within the low latitude region of ±30°N, peaking around ±20°N magnetic latitude; they begin at 1900 MLT, reach their maximum at 2100 MLT, and vanish by about 0200-0300 MLT. The most pronounced low-latitude scintillation occurs over the South American and African sectors. Finally, based on the above the above data, an empirical model is constructed. For a given time, location, and solar activity, the model forecasts the ionospheric S4 scintillation in the L1 band signal on the ground.

  13. Glasses as active and passive components for scintillating fiber detectors

    International Nuclear Information System (INIS)

    Scintillating fibers are of growing interest in high energy physics for applications in calorimetry and in tracking detectors. At present plastic scintillating fibers are mainly used in these applications because of their high light yield and their fast decay rates; however, in thin fibers, required for high spatial resolution, these suffer from low attenuation lengths. Moreover, cross-talk is still a severe problem. As alternatives the authors will discuss the following two concepts: (1) using Ce- and Tb-doped multicomponent glasses as active core material of glass fibers and (2) using liquid scintillator filled glass capillary arrays. The optical properties of the rare earth doped glasses are described and the scintillation efficiency of the fibers and fiber bundles utilizing these glasses as core material are presented. Broad applications appear to be possible with liquid scintillator filled capillary arrays. Suitable liquid scintillators with high refractive index solvents and locally emitting solutes with high yields, short decay times and large Stokes-shifts are available. Arrays can be produced with and without extra mural absorber in various sizes and shapes. Theoretical estimates show that reflection losses at the liquid/glass interface do not effect the overall transmission up to length/diameter ratios of 105. In addition recent results have shown that the system resists radiation doses in the 100 kGy range. Further experimental results obtained at CERN with these arrays will be discussed

  14. Response of plastic scintillators to low-energy photons

    Science.gov (United States)

    Peralta, Luis; Rêgo, Florbela

    2014-08-01

    Diagnostic radiology typically uses x-ray beams between 25 and 150 kVp. Plastic scintillation detectors (PSDs) are potentially successful candidates as field dosimeters but careful selection of the scintillator is crucial. It has been demonstrated that they can suffer from energy dependence in the low-energy region, an undesirable dosimeter characteristic. This dependence is partially due to the nonlinear light yield of the scintillator to the low-energy electrons set in motion by the photon beam. In this work, PSDs made of PMMA, PVT or polystyrene were studied for the x-ray beam range 25 to 100 kVp. For each kVp data has been acquired for additional aluminium filtrations of 0.5, 1.0, 2.0 and 4.0 mm. Absolute dose in the point of measurement was obtained with an ionization chamber calibrated to dose in water. From the collected data, detector sensitivities were obtained as function of the beam kVp and additional filtration. Using Monte Carlo simulations relative scintillator sensitivities were computed. For some of the scintillators these sensitivities show strong energy-dependence for beam average energy below 35 keV for each additional filtration but fair constancy above. One of the scintillators (BC-404) has smaller energy-dependence at low photon average energy and could be considered a candidate for applications (like mammography) where beam energy has small span.

  15. Fast Neutron Detection with 6Li-loaded Liquid Scintillator

    CERN Document Server

    Fisher, B M; Coakley, K J; Gavrin, V N; Gilliam, D M; Nico, J S; Shikhin, A A; Thompson, A K; Vecchia, D F; Yants, V E

    2011-01-01

    We report on the development of a fast neutron detector using a liquid scintillator doped with enriched Li-6. The lithium was introduced in the form of an aqueous LiCl micro-emulsion with a di-isopropylnaphthalene-based liquid scintillator. A Li-6 concentration of 0.15 % by weight was obtained. A 125 mL glass cell was filled with the scintillator and irradiated with fission-source neutrons. Fast neutrons may produce recoil protons in the scintillator, and those neutrons that thermalize within the detector volume can be captured on the Li-6. The energy of the neutron may be determined by the light output from recoiling protons, and the capture of the delayed thermal neutron reduces background events. In this paper, we discuss the development of this 6Li-loaded liquid scintillator, demonstrate the operation of it in a detector, and compare its efficiency and capture lifetime with Monte Carlo simulations. Data from a boron-loaded plastic scintillator were acquired for comparison. We also present a pulse-shape di...

  16. GNSS-based Observations and Simulations of Spectral Scintillation Indices in the Arctic Ionosphere

    DEFF Research Database (Denmark)

    Durgonics, Tibor; Hoeg, Per; von Benzon, Hans-Henrik;

    , and development of data-driven methodologies to accurately localize ionospheric irregularities and simulate GNSS scintillation signals are highly desired. Ionospheric scintillations have traditionally been quantified by amplitude (S4) and phase scintillations (σφ). Our study focuses on the Arctic, where...... scintillations, especially phase scintillations, are prominent. We will present observations acquired from a network of Greenlandic GNSS stations, including 2D amplitude and phase scintillation index maps for representative calm and storm periods. In addition to the traditional indices described above, we....... The observations will then be compared to properties of simulated GNSS signals computed by the Fast Scintillation Mode (FSM). The FSM was developed to simulate ionospheric scintillations under different geophysical conditions, and is used to simulate GNSS signals with known scintillation characteristics...

  17. Characterization and development of an active scintillating target for nuclear reaction studies on actinides

    International Nuclear Information System (INIS)

    This article presents the development of a new kind of active actinide target, based on organic liquid scintillators containing the dissolved isotope. Amongst many advantages one can mention the very high detection efficiency, the Pulse Shape Discrimination capability, the fast response allowing high count rates and good time resolution and the ease of fabrication. The response of this target to fission fragments has been studied. The discrimination of alpha, fission and proton recoil events is demonstrated. The alpha decay and fission detection efficiencies are simulated and compared to measurements. Finally the use of such a target in the context of fast neutron induced reactions is discussed.

  18. Using ionospheric scintillation indices to estimate GPS receiver tracking performance

    Science.gov (United States)

    Elmas, Zeynep G.; Aquino, Marcio; Dodson, Alan

    2010-05-01

    The Institute of Engineering Surveying and Space Geodesy (IESSG), at the University of Nottingham, has been involved with ionospheric scintillation research and its impact on users of Global Navigation Satellite Systems (GNSS) since 2001. The IESSG hosts a comprehensive archive of scintillation data recorded during the last high of the solar cycle (2001-2003) by four GSV4004 receivers (GPS Silicon Valley) in the UK and Norway, at geographic latitudes varying from 53N to 71N. The scintillation data that forms this ~3-year archive is given solely by the widely used scintillation indices S4 and σφ (in particular the latter's 60 second version). Aquino et al (2007) describe a strategy devised to enable the combination of these scintillation indices and the spectral parameters T (the spectral strength of the phase noise at 1 Hz) and p (the spectral slope), extracted from high-rate GPS phase and amplitude data, with state-of-the-art receiver tracking models in order to study receiver tracking performance under scintillation conditions. Strangeways (2009) later devised a method to calculate the scintillation parameters T and p over a range of Fresnel frequencies based only on the scintillation indices, i.e. when high rate data is not available, as in the case of the IESSG archive of 2001-2003. This paper shows initial investigations on the retrieval of the spectral parameters p and T from actual GPS scintillation indices recorded more recently in Trondheim (app. Lat 64N, Long 10E) on 23 April 2008. T and p values are estimated from S4 and σφ and compared with actual spectral parameters obtained from high rate data that are now being recorded. The paper then takes investigations a step further, by comparing the output of a state of the art tracking model when the estimated and actual spectral parameters are used as input, respectively. This paper gives an initial insight on the applicability of the method to mitigate the effects of the ionospheric scintillation on

  19. A comparative study of 19-iodocholesterol-''125I 3-acetate and Na''125I in liquid scintillation measurements

    International Nuclear Information System (INIS)

    A comparative study of performance of 19-iodocholesterol-''125I 3-acetate and sodium iodine samples labelled with ''125 I is presented for liquid scintillation counting measurements. Quench effect, count rate stability and spectral evolution of samples have been followed for several weeks in Toluene, Hisafe II, Instagel, Dioxane-naphthalene and Toluene-alcohol scintillators. Organic samples have negligible quench effect in the interval of I''-concentration of 0-90 ug and inorganic samples only show a very small variation, lower than 12%, for Dioxane-naphthalene, in the same range of concentration. Satisfactory stability is obtained in general for both, organic and inorganic samples, but small counting losses, 0.03% for 19-iodocholesterol-''125I 3-acetate samples in Toluene-alcohol and 0.04% for Na''125I samples in Dioxane-naphthalene and Toluene-alcohol, have been reported. (Author) 8 refs

  20. Liquid Scintillation High Resolution Spectral Analysis

    International Nuclear Information System (INIS)

    The CIEMAT/NIST and the TDCR methods in liquid scintillation counting are based on the determination of the efficiency for total counting. This paper tries to expand these methods analysing the pulse-height spectrum of radionuclides. To reach this objective we have to generalize the equations used in the model and to analyse the influence of ionization and chemical quench in both spectra and counting efficiency. We present equations to study the influence of different photomultipliers response in systems with one, two or three photomultipliers. We study the effect of the electronic noise discriminator level in both spectra and counting efficiency. The described method permits one to study problems that up to now was not possible to approach, such as the high uncertainty in the standardization of pure beta-ray emitter with low energy when we apply the TDCR method, or the discrepancies in the standardization of some electron capture radionuclides, when the CIEMAT/NIST method is applied. (Author) 107 refs.

  1. Liquid Scintillation High Resolution Spectral Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A.

    2010-08-06

    The CIEMAT/NIST and the TDCR methods in liquid scintillation counting are based on the determination of the efficiency for total counting. This paper tries to expand these methods analysing the pulse-height spectrum of radionuclides. To reach this objective we have to generalize the equations used in the model and to analyse the influence of ionization and chemical quench in both spectra and counting efficiency. We present equations to study the influence of different photomultipliers response in systems with one, two or three photomultipliers. We study the effect of the electronic noise discriminator level in both spectra and counting efficiency. The described method permits one to study problems that up to now was not possible to approach, such as the high uncertainty in the standardization of pure beta-ray emitter with low energy when we apply the TDCR method, or the discrepancies in the standardization of some electron capture radionuclides, when the CIEMAT/NIST method is applied. (Author) 107 refs.

  2. Lutetium oxide-based transparent ceramic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, Zachary; Cherepy, Nerine; Kuntz, Joshua; Payne, Stephen A.

    2016-01-19

    In one embodiment, a transparent ceramic of sintered nanoparticles includes gadolinium lutetium oxide doped with europium having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YEu.sub.YO.sub.3, where X is any value within a range from about 0.05 to about 0.45 and Y is any value within a range from about 0.01 to about 0.2, and where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm. In another embodiment, a transparent ceramic scintillator of sintered nanoparticles, includes a body of sintered nanoparticles including gadolinium lutetium oxide doped with a rare earth activator (RE) having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YRE.sub.YO.sub.3, where RE is selected from the group consisting of: Sm, Eu, Tb, and Dy, where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm.

  3. An ellipsoidal grid gas proportional scintillation counter

    International Nuclear Information System (INIS)

    Gas Proportional Scintillation Counters using curved grids for solid angle and reflection compensation have been described in the recent literature. They allow large radiation windows with diameters of 25 mm keeping at the same time the good energy resolutions characteristic of those X-ray detectors. However, the grids used have a spherical curvature, which does not correspond to the optimal curvature. In the present work we have calculated by computer simulation an improved shape for the curved grid. This shape can be well fitted to an ellipsoid of revolution, with a large eccentricity. A detector was designed with such an ellipsoidal grid and a radiation window 40 mm in diameter, filled with pure xenon at 927 Torr coupled to an EMI D676QB VUV photomultiplier tube having a 2'' diameter window. For the experiments envisaged, detection of solar X-rays in the 20-80 keV energy range, a 7 cm thick drift region was used, leading to efficiencies from 80% to 20%, respectively. Such a thick drift region reduces the performance mainly for soft X-rays. For 22 keV X-rays the energy resolution obtained, for a broad X-ray beam entering the full 40 mm diameter detector window, is 6.0%. Results are presented showing the variation of the energy resolution with the window diameter and a performance, for ellipsoidal grids superior to that for spherical grids. A discussion of the results obtained is presented

  4. Cost effective segmented scintillating converters for hard x-rays

    International Nuclear Information System (INIS)

    Thick segmented scintillating converters coupled to optical imaging detectors offer the advantage of large area, high stopping power sensors for high energy X-ray digital imaging. The recent advent of high resolution and solid state optical sensors such as amorphous silicon arrays and CCD optical imaging detectors makes it feasible to build large, cost effective imaging arrays. This technology, however, shifts the sensor cost burden to the segmented scintillators needed for imaging. The required labor intensive fabrication of high resolution, large area hard X-ray converters results in high cost and questionable manufacturability on a large scale. The authors report on recent research of a new segmented X-ray imaging converter. This converter is fabricated using vacuum injection and crystal growth methods to induce defect free, high density scintillating fibers into a collimator matrix. This method has the potential to fabricate large area (>400 cm2), thick (10 cm) segmented scintillators. Spatial resolution calculations of these scintillator injected collimators show that the optical light spreading is significantly reduced compared to single crystalline scintillators and sub-millimeter resolution can be achieved for 10 MeV photons. They have produced 2.5 cm thick converters and sub-millimeter resolution X-ray images acquired with the segmented converter coupled to a cooled CCD camera provided the resolution to characterize the converter efficiency and noise. The proposed concept overcomes the above mentioned limitations by producing a cost-effective technique of fabricating large area X-ray scintillator converters with high stopping power and high spatial resolution. This technology will readily benefit diverse fields such as particle physics, astronomy, medicine, as well as industrial nuclear and non-destructive testing

  5. Development and characterization of a 2D scintillation detector for quality assurance in scanned carbon ion beams

    Science.gov (United States)

    Tamborini, A.; Raffaele, L.; Mirandola, A.; Molinelli, S.; Viviani, C.; Spampinato, S.; Ciocca, M.

    2016-04-01

    At the Centro Nazionale di Adroterapia Oncologica (CNAO Foundation), a two-dimensional high resolution scintillating dosimetry system has been developed and tested for daily Quality Assurance measurements (QA) in carbon ion radiotherapy with active scanning technique, for both single pencil beams and scanned fields produced by a synchrotron accelerator. The detector consists of a thin plane organic scintillator (25×25 cm2, 2 mm thick) coupled with a high spatial resolution CCD camera (0.25 mm) in a light-tight box. A dedicated Labview software was developed for image acquisition triggered with the beam extraction, data post-processing and analysis. The scintillator system was preliminary characterized in terms of short-term reproducibility (found to be within±0.5%), linearity with the number of particles (linear fit χ2 = 0.996) and dependence on particle flux (measured to be < 1.5 %). The detector was then tested for single beam spot measurements (Full Width at Half Maximum and position) and for 6×6 cm2 reference scanned field (determination of homogeneity) for carbon ions with energy from 115 MeV/u up to 400 MeV/u. No major differences in the investigated beam parameters measured with scintillator system and the radiochromic EBT3 reference films were observed. The system allows therefore real-time monitoring of the carbon ion beam relevant parameters, with a significant daily time saving with respect to films currently used. The results of this study show the suitability of the scintillation detector for daily QA in a carbon ion facility with an active beam delivery system.

  6. Temperature dependence of alpha-induced scintillation in the 1,1,4,4-tetraphenyl-1,3-butadiene wavelength shifter

    Science.gov (United States)

    Veloce, L. M.; Kuźniak, M.; Di Stefano, P. C. F.; Noble, A. J.; Boulay, M. G.; Nadeau, P.; Pollmann, T.; Clark, M.; Piquemal, M.; Schreiner, K.

    2016-06-01

    Liquid noble based particle detectors often use the organic wavelength shifter 1,1,4,4-tetraphenyl-1,3-butadiene (TPB) which shifts UV scintillation light to the visible regime, facilitating its detection, but which also can scintillate on its own. Dark matter searches based on this type of detector commonly rely on pulse-shape discrimination (PSD) for background mitigation. Alpha-induced scintillation therefore represents a possible background source in dark matter searches. The timing characteristics of this scintillation determine whether this background can be mitigated through PSD. We have therefore characterized the pulse shape and light yield of alpha induced TPB scintillation at temperatures ranging from 300 K down to 4 K, with special attention given to liquid noble gas temperatures. We find that the pulse shapes and light yield depend strongly on temperature. In addition, the significant contribution of long time constants above ~50 K provides an avenue for discrimination between alpha decay events in TPB and nuclear-recoil events in noble liquid detectors.

  7. Development of InP solid state detector and liquid scintillator containing metal complex for measurement of pp/7Be solar neutrinos and neutrinoless double beta decay

    Science.gov (United States)

    Fukuda, Yoshiyuki; Moriyama, Shigetaka

    2012-07-01

    A large volume solid state detector using a semi-insulating Indium Phosphide (InP) wafer have been developed for measurement of pp/7Be solar neutrinos. Basic performance such as the charge collection efficiency and the energy resolution were measured by 60% and 20%, respectively. In order to detect two gammas (115keV and 497keV) from neutrino capture, we have designed hybrid detector which consist InP detector and liquid xenon scintillator for IPNOS experiment. New InP detector with thin electrode (Cr 50Å- Au 50Å). For another possibility, an organic liquid scintillator containing indium complex and zirconium complex were studied for a measurement of low energy solar neutrinos and neutrinosless double beta decay, respectively. Benzonitrile was chosen as a solvent because of good solubility for the quinolinolato complexes (2 wt%) and of good light yield for the scintillation induced by gamma-ray irradiation. The photo-luminescence emission spectra of InQ3 and ZrQ4 in benzonitrile was measured and liquid scintillator cocktail using InQ3 and ZrQ4 (50mg) in benzonitrile solutions (20 mL) with secondary scintillators with PPO (100mg) and POPOP (10mg) was made. The energy spectra of incident gammas were measured, and they are first results of the gamma-ray energy spectra using luminescent of metal complexes.

  8. New approach to neutron spectrometry with multi element scintillator

    International Nuclear Information System (INIS)

    A recently developed scintillator has been investigated for possible use as a dual detector for neutron and gamma spectrometry. A 7Li-enriched version of the scintillator has been investigated. The 35Cl(n,p)35S nuclear reaction provides a possibility for fast neutron detection. The sensor has been mounted on a photomultiplier tube controlled with a miniature electronics board and irradiated in different gamma and neutron radiation fields. A series of experiments has been carried out with different gamma energies as well as well with mono-energetic neutrons from a KN Van de Graaff accelerator, and the pulse height spectra have been measured. To clarify different features observed on the response functions of the detector, a Monte Carlo model of the scintillator has been built using MCNP6 and emitted charged particles have been tracked. The simulation data along with the experiments are analyzed, compared and reported. - Highlights: • Elpasolite scintillator CLYC. • The scintillator mounted on a photomultiplier has been tested with different gamma and fast neutrons. • The response functions of the detector have been measured. • Monte Carlo simulations have been performed. • The experimental and simulation data have been presented

  9. Ionosphere Scintillation at Low and High Latitudes (Modelling vs Measurement)

    Science.gov (United States)

    Béniguel, Yannick

    2016-04-01

    This paper will address the problem of scintillations characteristics, focusing on the parameters of interest for a navigation system. Those parameters are the probabilities of occurrence of simultaneous fading, the bubbles surface at IPP level, the cycle slips and the fades duration statistics. The scintillation characteristics obtained at low and high latitudes will be compared. These results correspond to the data analysis performed after the ESA Monitor ionosphere measurement campaign [1], [2]. A second aspect of the presentation will be the modelling aspect. It has been observed that the phase scintillation dominates at high latitudes while the intensity scintillation dominates at low latitudes. The way it can be reproduced and implemented in a propagation model (e.g. GISM model [3]) will be presented. Comparisons of measurements with results obtained by modelling will be presented on some typical scenarios. References [1] R. Prieto Cerdeira, Y. Beniguel, "The MONITOR project: architecture, data and products", Ionospheric Effects Symposium, Alexandria (Va), May 2011 [2] Y. Béniguel, R Orus-Perez , R. Prieto-Cerdeira , S. Schlueter , S. Scortan, A. Grosu "MONITOR 2: ionospheric monitoring network in support to SBAS and other GNSS and scientific purposes", IES Conference, Alexandria (Va), May 2015-05-22 [3] Y. Béniguel, P. Hamel, "A Global Ionosphere Scintillation Propagation Model for Equatorial Regions", Journal of Space Weather Space Climate, 1, (2011), doi: 10.1051/swsc/2011004

  10. Comparison of accelerator mass spectrometric measurement with liquid scintillation counting measurement for the determination of {sup 14}C in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Yasuike, Kaeko, E-mail: k-yasuike@hokuriku-u.ac.j [Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3, Kanagawa-machi, Kanazawa, Ishikawa 920-1181 (Japan); Yamada, Yoshimune [Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3, Kanagawa-machi, Kanazawa, Ishikawa 920-1181 (Japan); Amano, Hikaru [AMS Management Section, Japan Atomic Energy Agency, 4-24, Minato-machi, Mutsu, Aomori 035-0064 (Japan)

    2010-04-15

    The concentrations of organically-bound {sup 14}C in tree-ring cellulose of a Japanese Black Pine grown in Shika-machi (37.0 deg. N, 136.8 deg. E) and those of a Japanese Cedar grown in Kanazawa (36.5 deg. N, 136.7 deg. E), Japan, were analyzed for the ring-years from 1989 to 1998 by the accelerator mass spectrometric measurement. The results were compared with those of the same samples analyzed by the liquid scintillation counting measurement to determine the reliability of liquid scintillation counting measurement. An important result of this study is that the sensitivity and reproducibility of accelerator mass spectrometric measurement was almost equal to that of liquid scintillation counting measurement.

  11. Radio Wave Scintillations and Models of Interstellar Turbulence

    Science.gov (United States)

    Spangler, Steven R.

    1998-05-01

    There are a number of well-established observational results from radio scintillations which have implications for the nature of interstellar turbulence. Among such results are evidence for anisotropy and a Kolmogorov spectrum for the density irregularities. It is probable the galactic magnetic field organizes these irregularities so that spatial gradients along the field are much less than those perpendicular to the field. Such a behavior for turbulence is predicted by theories of magnetohydrodynamic turbulence in which the amplitude is small. The turbulence is then described by a theory termed reduced magnetohydrodynamics. A limiting case of reduced magnetohydrodynamics is two dimensional magnetohydrodynamics, in which the direction of the large scale magnetic field z defines the ignorable coordinate. Two dimensional magnetohydrodynamics consists of a pair of coupled nonlinear partial differential equations for the velocity stream function psi and the z component of the magnetic vector potential A_z. A number of observed features of interstellar turbulence can be identified with solutions to the equations of two dimensional magnetohydrodynamics. Examples are the development of Kolmogorov-like spectra for the velocity and magnetic field from a wide class (although not totally general) initial conditions, a natural explanation for the formation of intermittancy in turbulence, and the rapid development of small scale, large spatial wavenumber fluctuations, in contrast to the eddy cascade of hydrodynamic turbulence. The equations of two dimensional magnetohydrodynamics may serve as a simple but tractable model of interstellar plasma turbulence that may complement and be superior to the traditional model of an ensemble of magnetohydrodynamic waves.

  12. New scintillators for fiber optics: system sensitivity and bandwidth as a function of fiber length

    International Nuclear Information System (INIS)

    Long-wavelength liquid scintillators have been developed for fiber-optic plasma-diagnostic experiments. Relative system sensitivity and bandwidth data as a function of fiber length for several scintillator systems will be presented

  13. Recent Progress in Liquid Scintillation Counting System for Absolute Radioactivity Measurement

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The triple to double coincidence ratio (TDCR) method is an absolute activity measurement method in liquid scintillation counting, especially developed for pure β- and EC-emitters activity standardization. Such a liquid scintillation counting system is now

  14. Preparation and characterization of a novel UV-curable plastic scintillator

    Science.gov (United States)

    Zhu, Jun; Ding, Yunyu; Zhu, Jiayi; Qi, Di; Su, Ming; Xu, Yewei; Bi, Yutie; Lin, Runxiong; Zhang, Lin

    2016-05-01

    A novel UV-curable plastic scintillator was first prepared by using the technology of photosensitivity rapid prototyping. It used the copolymer of 621A-80, TPGDA and styrene as the matrix doped with PPO and POPOP. Its fluorescence spectra displayed a maximum emission wavelength at 428 nm. The light yield of the plastic scintillator was approximately 7.1% of anthracene on the basis of a comparison with the commercially available scintillator (ST-401). The as-prepared plastic scintillator also displayed a fast scintillation decay. Its decay time is 2.6 ns approximately. Importantly, through the technology of photosensitivity rapid prototyping, the plastic scintillator could be prepared in a short period of time at low temperature. What's more, this preparation method provides the possibility of combining the plastic scintillator with 3D printing technology, and then the applications of the plastic scintillator may be expanded greatly.

  15. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    Energy Technology Data Exchange (ETDEWEB)

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D. [National Institute for Cryogenics and Isotopic Technologies, Valcea (Romania)

    2015-03-15

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ({sup 14}C from organically compounds, {sup 36}Cl as chloride and free chlorine, {sup 40}K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}), lyophilization, chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization.

  16. ATLAS Rewards Russian Supplier for Scintillating Tile Production

    CERN Multimedia

    2001-01-01

    At a ceremony held at CERN on 30 July, the ATLAS collaboration awarded Russian firm SIA Luch from Podolsk in the Moscow region an ATLAS Suppliers Award. This follows delivery by the company of the final batch of scintillating tiles for the collaboration's Tile Calorimeter some six months ahead of schedule.   Representatives of Russian firm Luch Podolsk received the ATLAS Suppliers Award in the collaboration's Tile Calorimeter instrumentation plant at CERN on 30 July. In front of one Tile Calorimeter module instrumented by scintillating tiles are (left to right) IHEP physicists Evgueni Startchenko and Andrei Karioukhine, Luch Podolsk representatives Igor Karetnikov and Yuri Zaitsev, Tile Calorimeter Project Leader Rupert Leitner, ATLAS spokesperson Peter Jenni, and CERN Tile Calorimeter group leader Ana Henriques-Correia. Scintillating tiles form the active part of the ATLAS hadronic Tile Calorimeter, which will measure the energy and direction of particles produced in LHC collisions. They are emb...

  17. Optical and scintillation properties of bulk ZnO crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196 (Japan); Fujimoto, Yutaka; Kurosawa, Shunsuke [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yamanoi, Kohei; Sarukura, Nobuhiko [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Kano, Masataka; Wakamiya, Akira [Daishinku Corporation, 1389 Shinzaike, Hiraoka-cho, Kakogawa, Hyogo 675-0194 (Japan)

    2012-12-15

    Single crystal bulk ZnO scintillator grown by the hydrothermal method was tested on its scintillation performances. In X-ray induced radio luminescence spectrum, it exhibited two intense emission peaks at 400 and 550 nm. The former was ascribed to the free and bound exciton related luminescence and the latter to oxygen vacancy related one, respectively. X-ray induced scintillation decay time of the exciton related emission measured by the pulse X-ray streak camera system resulted {proportional_to} 4 ns. Finally, the light yield under {sup 241}Am 5.5 MeV {alpha}-ray was examined and it resulted {proportional_to} 500 ph/5.5 MeV-{alpha}.(copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. High Latitude Scintillations during the ICI-4 Rocket Campaign.

    Science.gov (United States)

    Patra, S.; Moen, J.

    2015-12-01

    We present the first results from the Norwegian ICI-4 sounding rocket campaign in February 2015. The ICI-4 was launched into F-region auroral blobs from the Andøya Space Center. The multi needle langmuir probe (m-NLP) on board the rocket sampled the ionospheric density structures at a sub-meter spatial resolution. A multi-phase screen model has been developed to estimate the scintillations from the density measurements acquired on-board spacecrafts. The phase screen model is validated and the comparison of the estimated values with scintillations measured by ground receivers during the campaign will be presented. A combination of scintillation receivers in Svalbard and surrounding areas as well as all sky imagers at Ny Ålesund, Longyerbyen, and Skibotn are used to improve the performance of the model.

  19. The Origin of Radio Scintillation In the Local Interstellar Medium

    CERN Document Server

    Linsky, Jeffrey L; Redfield, Seth

    2007-01-01

    We study three quasar radio sources (B1257-326, B1519-273, and J1819+385) that show large amplitude intraday and annual scintillation variability produced by the Earth's motion relative to turbulent-scattering screens located within a few parsecs of the Sun. We find that the lines of sight to these sources pass through the edges of partially ionized warm interstellar clouds where two or more clouds may interact. From the gas flow vectors of these clouds, we find that the relative radial and transverse velocities of these clouds are large and could generate the turbulence that is responsible for the observed scintillation. For all three sight lines the flow velocities of nearby warm local interstellar clouds are consistent with the fits to the transverse flows of the radio scintillation signals.

  20. Detecting Pulsars with Interstellar Scintillation in Variance Images

    CERN Document Server

    Dai, S; Bell, M E; Coles, W A; Hobbs, G; Ekers, R D; Lenc, E

    2016-01-01

    Pulsars are the only cosmic radio sources known to be sufficiently compact to show diffractive interstellar scintillations. Images of the variance of radio signals in both time and frequency can be used to detect pulsars in large-scale continuum surveys using the next generation of synthesis radio telescopes. This technique allows a search over the full field of view while avoiding the need for expensive pixel-by-pixel high time resolution searches. We investigate the sensitivity of detecting pulsars in variance images. We show that variance images are most sensitive to pulsars whose scintillation time-scales and bandwidths are close to the subintegration time and channel bandwidth. Therefore, in order to maximise the detection of pulsars for a given radio continuum survey, it is essential to retain a high time and frequency resolution, allowing us to make variance images sensitive to pulsars with different scintillation properties. We demonstrate the technique with Murchision Widefield Array data and show th...

  1. Detectors for proton counting. Si-APD and scintillation detectors

    International Nuclear Information System (INIS)

    Increased intensity of synchrotron radiation requests users to prepare photon pulse detectors having higher counting rates. As detectors for photon counting, silicon-avalanche photodiode (Si-APD) and scintillation detectors were chosen for the fifth series of detectors. Principle of photon detection by pulse and need of amplification function of the detector were described. Structure and working principle, high counting rate measurement system, bunch of electrons vs. counting rate, application example of NMR time spectroscopy measurement and comments for users were described for the Si-APD detector. Structure of scintillator and photomultiplier tube, characteristics of scintillator and performance of detector were shown for the NaI detector. Future development of photon pulse detectors was discussed. (T. Tanaka)

  2. Calibration of sample channel ratio (SCR) in liquid scintillation counting

    International Nuclear Information System (INIS)

    In PHWR type nuclear power plants tritium is a major internal exposure hazard for the plant personnel. The dose due to tritium is measured by periodic analysis of urine samples by the liquid scintillation counting method. Due to the coloured and other impurity content in the urine, varying levels of quenching of the counts occur, thereby affecting the liquid scintillation counting efficiency. In using the sample channel ratio (SCR) method of quench correction it was observed that a single calibration curve does not hold good for all types of urine samples. The variations seem to result due to different quench characteristics applicable to the coloured and colourless samples. Hence the urine samples are segregated into coloured and colourless samples using a UV-spectrophotometer and separate calibration curves are drawn for these. The use of the appropriate calibration curves for the urine samples minimises the errors associated with quenching during tritium measurement by liquid scintillation counting. (author). 1 tab., 1 fig

  3. Explore nuclearites in a large liquid scintillator neutrino detector

    CERN Document Server

    Guo, Wan-Lei; Lin, Tao; Wang, Zhi-Min

    2016-01-01

    We take the JUNO experiment as an example to explore nuclearites in the future large liquid scintillator detector. Comparing to the previous calculations, the visible energy of nuclearites across the liquid scintillator will be reestimated for the liquid scintillator based detector. Then the JUNO sensitivities to the nuclearite flux are presented. It is found that the JUNO projected sensitivities can be better than $7.7 \\times 10^{-17} {\\rm cm^{-2} s^{-1} sr^{-1}}$ for the nuclearite mass $10^{15} \\; {\\rm GeV} \\leq M \\leq 10^{24}$ GeV and initial velocity $10^{-4} \\leq \\beta_0 \\leq 10^{-1}$ with a 20 year running. Note that the JUNO will give the most stringent limits for downgoing nuclearites with $1.6 \\times 10^{13} \\; {\\rm GeV} \\leq M \\leq 4.0 \\times 10^{15}$ GeV and a typical galactic velocity $\\beta_0 = 10^{-3}$.

  4. Pulse-shape discrimination in NE213 liquid scintillator detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cavallaro, M., E-mail: manuela.cavallaro@lns.infn.it [INFN-Laboratori Nazionali del Sud, Catania (Italy); CSFNSM, Catania (Italy); Tropea, S. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Agodi, C. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Assié, M.; Azaiez, F. [Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS/IN2P3, 91406 Orsay (France); Boiano, C. [INFN - Sezione di Milano, Milano (Italy); Bondì, M.; Cappuzzello, F.; Carbone, D. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); De Napoli, M. [INFN - Sezione di Catania, Catania (Italy); Séréville, N. de [Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS/IN2P3, 91406 Orsay (France); Foti, A. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); INFN - Sezione di Catania, Catania (Italy); Linares, R. [Instituto de Física da Universidade Federal Fluminense, Rio de Janeiro, Niterói, RJ (Brazil); Nicolosi, D. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Scarpaci, J.A. [Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS/IN2P3, 91406 Orsay (France)

    2013-02-01

    The 16-channel fast stretcher BaFPro module, originally developed for processing signals of Barium Fluoride scintillators, has been modified to make a high performing analog pulse-shape analysis of signals from the NE213 liquid scintillators of the EDEN neutron detector array. The module produces two Gaussian signals, whose amplitudes are proportional to the height of the fast component of the output light and to the total energy deposited into the scintillator, respectively. An in-beam test has been performed at INFN-LNS (Italy) demonstrating a low detection threshold, a good pulse-shape discrimination even at low energies and a wide dynamic range for the measurement of the neutrons energy.

  5. A remote reactor monitoring with plastic scintillation detector

    CERN Document Server

    Georgadze, A Sh; Ponkratenko, O A; Litvinov, D A

    2016-01-01

    Conceiving the possibility of using plastic scintillator bars as robust detectors for antineutrino detection for the remote reactor monitoring and nuclear safeguard application we study expected basic performance by Monte Carlo simulation. We present preliminary results for a 1 m3 highly segmented detector made of 100 rectangular scintillation bars forming an array which is sandwiched at both sides by the continuous light guides enabling light sharing between all photo detectors. Light detection efficiency is calculated for several light collection configurations, considering different scintillation block geometries and number of photo-detectors. The photo-detectors signals are forming the specific hit pattern, which is characterizing the impinging particle. The statistical analysis of hit patterns allows effectively select antineutrino events and rejects backgrounds. To evaluate detector sensitivity to fuel isotopic composition evolution during fuel burning cycle we have calculated antineutrino spectra. The ...

  6. The scintillating grid illusion in stereo-depth.

    Science.gov (United States)

    Schrauf, M; Spillmann, L

    2000-01-01

    The dark scintillating dots occurring on a gray-on-black, modified Hermann grid [Schrauf, M., Lingelbach, B., & Wist, E. R. (1997). The scintillating grid illusion. Vision Research, 37, 1033-1038] were studied in stereo-depth by assigning various degrees of disparity to the white inducing disks. Dependent on the sign of disparity, the disks and the dark illusory spots within them appeared to lie either in the same plane, in front of, or behind the grid. At zero disparity, illusory strength was maximum and was the same for stereo, binocular and monocular viewing. With increasing disparity, the illusion became progressively weaker; however, the decrease for stereo-patterns was significantly less than for control patterns presented binocularly or monocularly. These results suggest a central contribution to the scintillation effect.

  7. A novel boron-loaded liquid scintillator for neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Bentoumi, G.; Dai, X.; Pruszkowski, E.; Li, L.; Sur, B., E-mail: bentoumg@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-06-15

    A boron-loaded liquid scintillator (LS) has been optimized for neutron detection application in a high gamma field environment. It is composed of the solvent linear alkylbenzene (LAB), a boron containing material, o-carborane (C{sub 2}B{sub 10}H{sub 12}); a fluor, 2,5-diphenyloxazole (PPO); and a wavelength shifter, 1,4-bis[2-methylstyryl] benzene (bis-MSB). Preparation of the liquid scintillator and optimization of its chemical composition are described. The boron-loaded LS has been tested with a neutron beam at the National Research Universal (NRU) reactor. A peak at an equivalent energy of 60 keV is observed in the energy spectrum and is attributed to neutrons. The results confirm the possibility of using B-10 loaded scintillator as a sensitive medium for neutron detection in a relatively large background of gamma rays. (author)

  8. Scintillator-based fast ion loss measurements in the EAST

    Science.gov (United States)

    Chang, J. F.; Isobe, M.; Ogawa, K.; Huang, J.; Wu, C. R.; Xu, Z.; Jin, Z.; Lin, S. Y.; Hu, L. Q.

    2016-11-01

    A new scintillator-based fast ion loss detector (FILD) has been installed on Experimental Advanced Superconducting Tokamak (EAST) to investigate the fast ion loss behavior in high performance plasma with neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH). A two dimensional 40 mm × 40 mm scintillator-coated (ZnS:Ag) stainless plate is mounted in the front of the detector, capturing the escaping fast ions. Photons from the scintillator plate are imaged with a Phantom V2010 CCD camera. The lost fast ions can be measured with the pitch angle from 60° to 120° and the gyroradius from 10 mm to 180 mm. This paper will describe the details of FILD diagnostic on EAST and describe preliminary measurements during NBI and ICRH heating.

  9. Photoelectron anticorrelations and sub-Poisson statistics in scintillation detectors.

    Science.gov (United States)

    Bousselham, Abdelkader; Barrett, Harrison H; Bora, Vaibhav; Shah, Kanai

    2010-08-01

    The performance of scintillation detectors for x rays and gamma rays is limited fundamentally by the statistics of the scintillation light and the resulting photoelectrons. This paper presents a new experimental approach to studying these statistics by observing correlations in the signals from two photodetectors. It is shown that the Fano factors (ratios of variance to mean), both for the number the photoelectrons produced on the photocathode of the photomultiplier and for the underlying number of scintillation photons, can be deduced from these correlations. For LaBr(3)(Ce) and 662 keV gamma rays, the photopeak signals obtained by photomultipliers on opposite faces of a thin sample are negatively correlated, and the Fano factor for the photoelectrons is significantly less than one. The inferred Fano factor for the optical photons is very small, indistinguishable from zero within experimental error. PMID:20725609

  10. Radioactive contamination of BaF2 crystal scintillator

    CERN Document Server

    Polischuk, O G; Bernabei, R; Cappella, F; Caracciolo, V; Cerulli, R; Di Marco, A; Danevich, F A; Incicchitti, A; Poda, D V; Tretyak, V I

    2013-01-01

    Barium fluoride (BaF$_2$) crystal scintillators are promising detectors to search for double beta decay processes in $^{130}$Ba ($Q_{2{\\beta}}$ = 2619(3) keV) and $^{132}$Ba ($Q_{2{\\beta}}$ = 844(1) keV). The $^{130}$Ba isotope is of particular interest because of the indications on 2${\\beta}$ decay found in two geochemical experiments. The radioactive contamination of BaF$_2$ scintillation crystal with mass of 1.714 kg was measured over 113.4 hours in a low-background DAMA/R&D set-up deep underground (3600 m w.e.) at the Gran Sasso National Laboratories of INFN (LNGS, Italy). The half-life of $^{212}$Po (present in the crystal scintillator due to contamination by radium) was estimated as $T_{1/2}$ = 298.8 $\\pm$ 0.8(stat.) $\\pm$ 1.4(syst.) ns by analysis of the events pulse profiles.

  11. Performance of the CHORUS lead-scintillating fiber calorimeter

    CERN Document Server

    Buontempo, S

    1997-01-01

    We report on the design and performance of the lead-scintillating fiber calorimeter of the CHORUS experiment, which searches for νμ-ντ oscillations in the CERN Wide Band Neutrino beam. Two of the three sectors in which the calorimeter is divided are made of lead and plastic scintillating fibers, and they represent the first large scale application of this technique for combined electromagnetic and hadronic calorimetry. The third sector is built using the sandwich technique with lead plates and scintillator strips and acts as a tail catcher for the hadronic energy flow. From tests performed at the CERN SPS and PS an energy resolution of σ(E)/E=(32.3±2.4)%/E(GeV)+(1.4±0.7)% was measured for pions, and σ(E)/E=(13.8±0.9)%/E(GeV)+(−0.2±0.4)% for electrons.

  12. A fluorocarbon plastic scintillator for neutron detection: Proof of concept

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, Matthieu, E-mail: matthieu.hamel@cea.fr [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France); Sibczynski, Pawel, E-mail: Pawel.Sibczynski@ncbj.gov.pl [National Centre for Nuclear Research, Soltan Street 7, 05-400 Otwock/Świerk (Poland); Blanc, Pauline [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France); Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (CNRS UMR 8531), École Normale Supérieure de Cachan, 61 Avenue du Président Wilson, F-94235 Cachan Cedex (France); Iwanowska, Joanna [National Centre for Nuclear Research, Soltan Street 7, 05-400 Otwock/Świerk (Poland); Carrel, Frédérick [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France); Syntfeld-Każuch, Agnieszka [National Centre for Nuclear Research, Soltan Street 7, 05-400 Otwock/Świerk (Poland); Normand, Stéphane [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France)

    2014-12-21

    The fast neutron nuclear reactions, such as {sup 19}F(n, α){sup 16}N and {sup 19}F(n, p){sup 19}O, can be used to detect highly energetic neutrons due to their energy thresholds above which these activation reactions can occur. This was recently shown (Gozani et al., 2011 [2]) as a means to detect concealed nuclear materials via the detection of the high energy (≈3 MeV) prompt neutrons emitted during the photofission process. Fluorine-loaded scintillation detectors, such as inorganic BaF{sub 2} and CaF{sub 2}, and non-hydrogenous fluorocarbon (FC) liquid scintillators, such as Saint-Gobain BC-509 and Eljen Technology EJ-313, are possible candidates. The latter was selected and implemented in the above mentioned reference. In our paper, we propose a new pentafluorostyrene-based plastic scintillator (F-plastic) which can be a good alternative to the abovementioned scintillators. The fluorine content of F-plastic is equal to 3.73×10{sup 22} atoms/cm{sup 3}, and the F/H ratio is 1.66. The fluorescence and radioluminescence spectra of the F-plastic display an emission maximum centered approximately at 420 nm. The light output measured for gamma rays is 3100±300 photons/MeV, which is approximately 30% of the light output of the standard EJ-200 plastic scintillator and is similar to EJ-313. The response of the F-plastic to neutrons and gamma rays is presented and compared to the EJ-200 scintillator. Additionally, the n/γ pulse shape discrimination (PSD) was measured and showed improvement of the discrimination at neutron energies as high as 3 MeV.

  13. Correlation analysis between ionospheric scintillation levels and receiver tracking performance

    Science.gov (United States)

    Sreeja, V.; Aquino, M.; Elmas, Z. G.; Forte, B.

    2012-06-01

    Rapid fluctuations in the amplitude and phase of a transionospheric radio signal caused by small scale plasma density irregularities in the ionosphere are known as scintillation. Scintillation can seriously impair a GNSS (Global Navigation Satellite Systems) receiver tracking performance, thus affecting the required levels of availability, accuracy and integrity, and consequently the reliability of modern day GNSS based applications. This paper presents an analysis of correlation between scintillation levels and tracking performance of a GNSS receiver for GPS L1C/A, L2C and GLONASS L1, L2 signals. The analyses make use of data recorded over Presidente Prudente (22.1°S, 51.4°W, dip latitude ˜12.3°S) in Brazil, a location close to the Equatorial Ionisation Anomaly (EIA) crest in Latin America. The study presents for the first time this type of correlation analysis for GPS L2C and GLONASS L1, L2 signals. The scintillation levels are defined by the amplitude scintillation index, S4 and the receiver tracking performance is evaluated by the phase tracking jitter. Both S4 and the phase tracking jitter are estimated from the post correlation In-Phase (I) and Quadra-Phase (Q) components logged by the receiver at a high rate. Results reveal that the dependence of the phase tracking jitter on the scintillation levels can be represented by a quadratic fit for the signals. The results presented in this paper are of importance to GNSS users, especially in view of the forthcoming high phase of solar cycle 24 (predicted for 2013).

  14. A fluorocarbon plastic scintillator for neutron detection: Proof of concept

    International Nuclear Information System (INIS)

    The fast neutron nuclear reactions, such as 19F(n, α)16N and 19F(n, p)19O, can be used to detect highly energetic neutrons due to their energy thresholds above which these activation reactions can occur. This was recently shown (Gozani et al., 2011 [2]) as a means to detect concealed nuclear materials via the detection of the high energy (≈3 MeV) prompt neutrons emitted during the photofission process. Fluorine-loaded scintillation detectors, such as inorganic BaF2 and CaF2, and non-hydrogenous fluorocarbon (FC) liquid scintillators, such as Saint-Gobain BC-509 and Eljen Technology EJ-313, are possible candidates. The latter was selected and implemented in the above mentioned reference. In our paper, we propose a new pentafluorostyrene-based plastic scintillator (F-plastic) which can be a good alternative to the abovementioned scintillators. The fluorine content of F-plastic is equal to 3.73×1022 atoms/cm3, and the F/H ratio is 1.66. The fluorescence and radioluminescence spectra of the F-plastic display an emission maximum centered approximately at 420 nm. The light output measured for gamma rays is 3100±300 photons/MeV, which is approximately 30% of the light output of the standard EJ-200 plastic scintillator and is similar to EJ-313. The response of the F-plastic to neutrons and gamma rays is presented and compared to the EJ-200 scintillator. Additionally, the n/γ pulse shape discrimination (PSD) was measured and showed improvement of the discrimination at neutron energies as high as 3 MeV

  15. Smaller, Lower-Power Fast-Neutron Scintillation Detectors

    Science.gov (United States)

    Patel, Jagdish; Blaes, Brent

    2008-01-01

    Scintillation-based fast-neutron detectors that are smaller and less power-hungry than mainstream scintillation-based fast-neutron detectors are undergoing development. There are numerous applications for such detectors in monitoring fast-neutron fluxes from nuclear reactors, nuclear materials, and natural sources, both on Earth and in outer space. A particularly important terrestrial application for small, low-power, portable fast-neutron detectors lies in the requirement to scan for nuclear materials in cargo and baggage arriving at international transportation facilities. The present development of miniature, low-power scintillation-based fast-neutron detectors exploits recent advances in the fabrication of avalanche photodiodes (APDs). Basically, such a detector includes a plastic scintillator, typically between 300 and 400 m thick with very thin silver mirror coating on all its faces except the one bonded to an APD. All photons generated from scintillation are thus internally reflected and eventually directed to the APD. This design affords not only compactness but also tight optical coupling for utilization of a relatively large proportion of the scintillation light. The combination of this tight coupling and the avalanche-multiplication gain (typically between 750 and 1,000) of the APD is expected to have enough sensitivity to enable monitoring of a fast-neutron flux as small as 1,000 cm(exp -2)s(exp -1). Moreover, pulse-height analysis can be expected to provide information on the kinetic energies of incident neutrons. It has been estimated that a complete, fully developed fast-neutron detector of this type, would be characterized by linear dimensions of the order of 10 cm or less, a mass of no more than about 0.5 kg, and a power demand of no more than a few watts.

  16. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, Mary; Stave, Jean A.

    2012-10-01

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a

  17. Time performances of a scintillator-photodiode system

    International Nuclear Information System (INIS)

    Time characteristics of the system with surface-barrier photodiode are investigated by calculations on the example of photodiodes made of semiconductor with electron conductivity. The forms of charge pulses of scintillator-surface-barrier photodiode system are obtained at different values of the relation of scintillator luminescence time constant to the time of electron flight and holes. It is shown, that the charge pulse form of the system with surface-barrier photodiode is determined by silicon specific resistance and the constant of the scintillator luminescence time. The pulse form also depends on the diode side, where scintillator optical coupling is carried out: either from the side of golden contact or back contact side. The time of charge pulse increasing is determined by luminescence time for great constants of the scintillator luminescence time. Besides, an essential difference is observed in the time of pulse increasing in the case of generating nonequilibrium carriers by photons of scintillations and in the case of uniform generation by the depth of sensitive region. It is noted, that during generating the current carriers from the side of back contact a time delay from generation moment up to the moment of pulse occurrence, is observed. It is explained by the fact, that nonequilibrium carriers are generated in this case in the region of weak field intensity, and therefore the rate of their movement is inessential. The value of the potential slightly changes with the coordinate change in this region, i.e. the charge on a collecting electrode is not practically guided up to a certain moment of time during the movement of nonequilibrium carriers

  18. Interstellar scintillations as a tool for studying the hyperfine radio structure of quasars and galaxy nuclei

    International Nuclear Information System (INIS)

    Interstellar scintillations can be utilized to investigate the hyperfine (-5 arc sec) angular structure of quasars and galaxy nuclei, as well as its evolution with time. The detection of such scintillations is most promising at wavelengths near 3 cm. The expected scintillation index mapprox. =1%, with a time scale of approx. =3/sup h/. Scintillation measurements of compact structures in quasars and galaxy nuclei would be a valuable complement to results obtained by the VLBI method

  19. Scintillation index of optical wave propagating in turbulent atmosphere

    Institute of Scientific and Technical Information of China (English)

    Rao Rui-Zhong

    2009-01-01

    A concise expression of the scintillation index is proposed for a plane optical wave and a spherical optical wave both propagating in a turbulent atmosphere with a zero inner scale and a finite inner scale under an arbitrary fluc- tuation condition. The expression is based on both the results in the Rytov approximation under a weak fluctuation condition and the numerical results in a strong fluctuation regime. The maximum value of the scintillation index and its corresponding Rytov index axe evaluated. These quantities are affected by the ratio of the turbulence inner scale to the Frcsnel size.

  20. Polystyrene-based scintillator with pulse-shape discrimination capability

    Energy Technology Data Exchange (ETDEWEB)

    Zhmurin, P.N.; Lebedev, V.N.; Titskaya, V.D.; Adadurov, A.F., E-mail: adadurov@isma.kharkov.ua; Elyseev, D.A.; Pereymak, V.N.

    2014-10-11

    Polystyrene-based scintillators with 2-phenyl-5-(4-tert-butylephenyl)-1,3,4-oxadiazole (tert-BuPPD) or 2,5-di-(3-methylphenyl)-1,3,4 oxadiazole (m-DMePPD) are proposed for pulse-shape n/γ-discrimination. These scintillators have improved mechanical properties, long operational time and high n/γ discrimination parameter – figure of merit (1.49 and 1.81 in a wide energy region), so they can be used as detectors of fast neutrons in the presence of gamma radiation background.

  1. MASIV:The Microarcsecond Scintillation-Induced Variability Survey

    CERN Document Server

    Lovell, J E J; Senkbeil, C; Shabala, S; Bignall, H E; Pursimo, T; Ojha, R; MacQuart, J P; Rickett, B J; Dutka, M; Kedziora-Chudczer, L

    2007-01-01

    We are undertaking a large-scale 5 GHz VLA survey of the northern sky to search for rapid intra-day variability (IDV). Over four observing epochs we found that 56% of the sources showed variability on timescales of hours to several days. Fewer variables were seen at high galactic latitudes, supporting interstellar-scintillation as the principal mechanism responsible for IDV. We find evidence that many of the scattering screens are not moving with the local standard of rest. There are few scintillating sources seen at high redshift which may be an indication of scattering in the turbulent intergalactic medium.

  2. The Plastic Scintillator Detector of the DAMPE space experiment

    Science.gov (United States)

    Sun, Zhiyu

    2016-07-01

    The DArk Matter Explorer (DAMPE) is a satellite based experiment aiming for dark matter search and many other topics astronomy interested. The Plastic Scintillator Detector (PSD) gives DAMPE the ability to measure charge of the crossing particles and separate gamma from electrons, which are necessary for achieving the goals of the experiment. The PSD is composed by 82 scintillator counters and read at both ends by a total of 162 photomultiplier tubes. In this paper, we describe the final design of DAMPE-PSD, the expected performances, and shows some results of the beam test carried on at CERN.

  3. Scintillation Dynamic Spectra and Transverse Velocities of Seven Pulsars

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using a pulsar timing system developed at Urumqi Astronomical Observatory's 25-m telescope, we observed scintillation dynamic spectra for seven pulsars at the relatively high frequency of 1540 MHz over a wide frequency band of 320 MHz. Averaging observations at different epochs, we obtain time scales and decorrelation bandwidths for diffractive scintillation and show that these imply a power-law index for the electron density fluctuation close to 4.0. Assuming this value and that the scattering disk is approximately midway between the pulsar and the earth, we compute transverse velocities for the seven pulsars. These values are generally in good agreement with the proper motion velocities.

  4. Proton induced radiation damage in fast crystal scintillators

    Science.gov (United States)

    Yang, Fan; Zhang, Liyuan; Zhu, Ren-Yuan; Kapustinsky, Jon; Nelson, Ron; Wang, Zhehui

    2016-07-01

    This paper reports proton induced radiation damage in fast crystal scintillators. A 20 cm long LYSO crystal, a 15 cm long CeF3 crystal and four liquid scintillator based sealed quartz capillaries were irradiated by 800 MeV protons at Los Alamos up to 3.3 ×1014 p /cm2. Four 1.5 mm thick LYSO plates were irradiated by 24 GeV protons at CERN up to 6.9 ×1015 p /cm2. The results show an excellent radiation hardness of LYSO crystals against charged hadrons.

  5. Pulsed cathodoluminescence and γ-luminescence of scintillation crystals

    Science.gov (United States)

    Kozlov, V. A.; Ochkin, V. N.; Pestovskii, N. V.; Petrov, A. A.; Savinov, S. Yu; Zagumennyi, A. I.; Zavertyaev, M. V.

    2015-11-01

    The spectra and decay time of pulsed cathodoluminescence (PCL) of a scintillating crystals excited by the electron beam is compared to the spectra and decay time of the luminescence of the same crystals initiated by γ-rays (GL). It is shown that spectra and decay time of PCL and GL are identical within the experimental errors. The explanation of these results is based on taking into account the physical processes within the crystal media under the irradiation by high-energy particles. The results of this study confirm that the PCL method may be used for the rapid analysis of the luminescent properties of scintillators.

  6. Alkali metal and alkali earth metal gadolinium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  7. Liquid scintillation counting as a calibration method for PAEC monitors

    International Nuclear Information System (INIS)

    Measurements of potential alpha energy concentration (PAEC) of radon progeny are obligatory in Polish coal mines. Very important problem is a proper calibration of PAEC monitors for coal mining industry. It is very know fact, that is no possibility of producing of standard atmosphere of radon progeny. Therefore calibration is usually based on comparison of read-out of PAEC monitor with more counting of this filter immersed in a liquid scintillation counter (LSC) gives as a result an absolute method of PAEC measurements, because of very high efficiency for alpha and beta particles in liquid scintillator (almost 100%). (author). 30 refs, 2 figs

  8. Transition effect of extensive air showers in thick scintillators

    International Nuclear Information System (INIS)

    Transition effect of extensive air showers has been measured by means of the ''Kover'' facility of the Baksan neutrino laboratory. The transition effect represents the ratio of ''scintillation'' particle density detected with detectors and particle density under the facility concrete roof (21 gxcm-2). Measurement results are compared with data obtained by means of the program of electron-photon cascade gaming. Good agreement of experimental and calculational data has been obtained. It follows from the data in the paper that the transition effect for one scintillator in the absence of roof can be produced by the gaming rather reliably

  9. Scintillating optical fibers for fine-grained hodoscopes

    Energy Technology Data Exchange (ETDEWEB)

    Borenstein, S.R.; Strand, R.C.

    1981-01-01

    Fast detectors with fine spatial resolution will be needed to exploit high event rates at ISABELLE. Scintillating optical fibers for fine grained hodoscopes have been developed by the authors. A commercial manufacturer of optical fibers has drawn and clad PVT scintillator. Detection efficiencies greater than 99% have been achieved for a 1 mm fiber with a PMT over lengths up to 60 cm. Small diameter PMT's and avalanche photodiodes have been tested with the fibers. Further improvements are sought for the fiber and for the APD's sensitivity and coupling efficiency with the fiber.

  10. Problems and precision of the alpha scintillation radon counting system

    International Nuclear Information System (INIS)

    Variations in efficiency as large as 3% have been found for radon scintillation counting systems in which the photomultiplier tubes are sensitive to the thermoluminescent photons emitted by the scintillator after exposure to light or for which the resolution has deteriorated. The additional standard deviation caused by counting a radon chamber on multiple counting systems has been evaluated and the effect, if present, did not exceed about 0.1%. The chambers have been calibrated for the measurement of radon in air, and the standard deviation was equal to statistical counting error combined with a systematic error of 1.1%. 3 references, 2 figures, 2 tables

  11. Study of rare alpha decays with scintillating bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Cardani, L., E-mail: laura.cardani@roma1.infn.it [Dipartimento di Fisica, Sapienza University of Roma, Roma I-00185 (Italy); INFN, Sezione di Roma, Roma I-00185 (Italy)

    2013-08-01

    Rare α decays can be studied with an unprecedented sensitivity by means of scintillating bolometers, as these detectors can provide a large source mass as well as an excellent resolution and can disentangle the nature of the interacting particle thanks to the different light yield. As an example of the results that can be obtained with this technique, I report the conclusive test on the identification of {sup 209}Bi decay and the measurement of the half-life of this isotope. In addition, I present a measurement with a PbWO{sub 4} scintillating bolometer, in which the lead isotopes decays were studied.

  12. A BGO scintillating bolometer for γ and α spectroscopy

    International Nuclear Information System (INIS)

    A 891 g BGO (Bi4Ge3O12) scintillating bolometer has been tested at 10 mK in the underground Laboratori Nazionali del Gran Sasso (Italy). The discrimination capability, the radio-purity of the compound and the main features of the crystal have been studied in order to demonstrate the excellent performances obtained by operating a scintillating bolometer in the field of γ and α spectroscopy. The sensitivity of this detector in the study of extremely low surface contaminations has been investigated.

  13. Methods of alleviation of ionospheric scintillation effects on digital communications

    Science.gov (United States)

    Massey, J. L.

    1974-01-01

    The degradation of the performance of digital communication systems because of ionospheric scintillation effects can be reduced either by diversity techniques or by coding. The effectiveness of traditional space-diversity, frequency-diversity and time-diversity techniques is reviewed and design considerations isolated. Time-diversity signaling is then treated as an extremely simple form of coding. More advanced coding methods, such as diffuse threshold decoding and burst-trapping decoding, which appear attractive in combatting scintillation effects are discussed and design considerations noted. Finally, adaptive coding techniques appropriate when the general state of the channel is known are discussed.

  14. Deuterated scintillators and their application to neutron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Febbraro, M., E-mail: febbraro@umich.edu [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Lawrence, C.C. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Zhu, H. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Pierson, B. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Torres-Isea, R.O; Becchetti, F.D. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Kolata, J.J. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Riggins, J. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States)

    2015-06-01

    Deuterated scintillators have been used as a tool for neutron spectroscopy without Neutron Time-of-Flight (n-ToF) for more than 30 years. This article will provide a brief historical overview of the technique and current uses of deuterated scintillators in the UM-DSA and DESCANT arrays. Pulse-shape discrimination and spectrum unfolding with the maximum-likelihood expectation maximization algorithm will be discussed. Experimental unfolding and cross section results from measurements of (d,n), ({sup 3}He,n) and (α,n) reactions are shown.

  15. Lithium-containing scintillators for thermal neutron, fast neutron, and gamma detection

    Science.gov (United States)

    Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.

    2016-03-01

    In one embodiment, a scintillator includes a scintillator material; a primary fluor, and a Li-containing compound, where the Li-containing compound is soluble in the primary fluor, and where the scintillator exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays.

  16. GPS scintillation and TEC depletion near the northern crest of equatorial anomaly over South China

    Science.gov (United States)

    Deng, Baichang; Huang, Jiang; Liu, Weifeng; Xu, Jie; Huang, Lingfeng

    2013-02-01

    This study presents a statistical analysis of GPS L-band scintillation with data observed from July 2008 to March 2012 at the northern crest of equatorial anomaly stations in Guangzhou and Shenzhen of South China. The variations of the scintillation with local time, season, solar activity and duration of scintillation patches were investigated. The relationship between the scintillation and TEC depletion was also reported. Our results revealed that GPS scintillation occurred from 19:30 LT (pre-midnight) to 03:00 LT (post-midnight). During quiet solar activity years, the scintillation was only observed in pre-midnight hours of equinox months and patches durations were mostly less than 60 min. During high solar activity years, more scintillation occurred in the pre-midnight hours of equinox and winter months; and GPS scintillation started to occur in the post-midnight hours of summer and winter. The duration of scintillation patches extended to 180 min in high solar activity years. Solar activity had a larger effect to strong scintillations (S4 > 0.6) than to weak scintillations (0.6 ⩾ S4 > 0.2). Strong scintillations were accompanied by TEC depletion especially in equinox months. We also discussed the relationship between TEC depletion and plasma bubble.

  17. Simulation results of liquid and plastic scintillator detectors for reactor antineutrino detection - A comparison

    International Nuclear Information System (INIS)

    A simulation study of two kinds of scintillation detectors has been done using GEANT4. We compare plastic scintillator and liquid scintillator based designs for detecting electron antineutrinos emitted from the core of reactors. The motivation for this study is to set up an experiment at the research reactor facility at BARC for very short baseline neutrino oscillation study and remote reactor monitoring

  18. Plastic scintillators for positron emission tomography obtained by the bulk polymerization method

    CERN Document Server

    Kapłon, Łukasz; Molenda, Marcin; Moskal, Paweł; Wieczorek, Anna; Bednarski, Tomasz; Białas, Piotr; Czerwiński, Eryk; Korcyl, Grzegorz; Kowal, Jakub; Kowalski, Paweł; Kozik, Tomasz; Krzemień, Wojciech; Niedźwiecki, Szymon; Pałka, Marek; Pawlik, Monika; Raczyński, Lech; Rudy, Zbigniew; Salabura, Piotr; Gupta-Sharma, Neha; Silarski, Michał; Słomski, Artur; Smyrski, Jerzy; Strzelecki, Adam; Wiślicki, Wojciech; Zieliński, Marcin; Zoń, Natalia

    2015-01-01

    This paper describes three methods regarding the production of plastic scintillators. One method appears to be suitable for the manufacturing of plastic scintillator, revealing properties which fulfill the requirements of novel positron emission tomography scanners based on plastic scintillators. The key parameters of the manufacturing process are determined and discussed.

  19. Methods of Fabricating Scintillators with Radioisotopes for Beta Battery Applications

    Science.gov (United States)

    Rensing, Noa M.; Squillante, Michael R.; Tieman, Timothy C.; Higgins, William; Shiriwadkar, Urmila

    2013-01-01

    Technology has been developed for a class of self-contained, long-duration power sources called beta batteries, which harvest the energy contained in the radioactive emissions from beta decay isotopes. The new battery is a significant improvement over the conventional phosphor/solar cell concept for converting this energy in three ways. First, the thin phosphor is replaced with a thick scintillator that is transparent to its own emissions. By using a scintillator sufficiently thick to completely stop all the beta particles, efficiency is greatly improved. Second, since the energy of the beta particles is absorbed in the scintillator, the semiconductor photodetector is shielded from radiation damage that presently limits the performance and lifetime of traditional phosphor converters. Finally, instead of a thin film of beta-emitting material, the isotopes are incorporated into the entire volume of the thick scintillator crystal allowing more activity to be included in the converter without self-absorption. There is no chemical difference between radioactive and stable strontium beta emitters such as Sr-90, so the beta emitter can be uniformly distributed throughout a strontium based scintillator crystal. When beta emitter material is applied as a foil or thin film to the surface of a solar cell or even to the surface of a scintillator, much of the radiation escapes due to the geometry, and some is absorbed within the layer itself, leading to inefficient harvesting of the energy. In contrast, if the emitting atoms are incorporated within the scintillator, the geometry allows for the capture and efficient conversion of the energy of particles emitted in any direction. Any gamma rays associated with secondary decays or Bremsstrahlung photons may also be absorbed within the scintillator, and converted to lower energy photons, which will in turn be captured by the photocell or photodiode. Some energy will be lost in this two-stage conversion process (high-energy particle

  20. Nd loaded liquid scintillator to search for 150Nd neutrinoless double beta decay

    Science.gov (United States)

    Barabanov, I.; Bezrukov, L.; Cattadori, C.; Danilov, N.; di Vacri, A.; Ianni, A.; Nisi, S.; Ortica, F.; Romani, A.; Salvo, C.; Smirnov, O.; Yanovich, E.

    2008-11-01

    The 150Nd is considered one of the most attractive candidate for searching neutrinoless double beta (0νββ-) decay, thanks to its high Q-value (3.367 MeV), that makes the external background issue less significative respect to other isotopes, and favorable computed matrix elements. The isotopic abundance of this isotope in natural neodimium is only 5.6% and up to now, it has been investigated only in low mass experiments. The next step is to increase the sensitivity of the experiments using larger mass of neodymium (10 ton-1 kton). This could be possible with a Nd loaded liquid scintillator (LS). At the Gran Sasso National Laboratory (LNGS), a joint INFN (Istituto Nazionale di Fisica Nucleare) and INR (Institute for Nuclear Research of Moscow) working group has been carrying out since 2001 an R&D activity aiming to develop organic liquid scintillators (LS) doped with metals. The achieved know-how and the satisfactory results obtained both with In and Gd allowed to face the development and production of Nd doped LS. The development of metal doped LS is challenging because the metal has to be embedded in a proper organic system that makes it soluble in an organic solvent minimizing the impact of the metal-organic compound on the optical and scintillation properties of the LS. A further challenge in the case of Nd is the presence of absorption bands of this element in the optical region with a transparent region around 400 nm, which is about at the maximum of the scintillator emission spectrum. A 2.5 1 Nd loaded LS has been produced diluting an originally developed Nd-Carboxylic (Nd-CBX) salt in pseudocumene (PC), the solvent of the Borexino liquid scintillator. The measured light yield, at [Nd] = 6.5 g/1 and [PPO] = 1.5 g/1, is ~ 75% of pure PC at the same fluor concentration (~ 10000 ph/MeV). The Nd doped LS has been tested in a 2 1 quartz cell (wrapped by VM2000 reflector film) having dimensions 5x5x100 cm3. The light propagates in the cell by total internal

  1. Calibration of a liquid scintillation counter to assess tritium levels in various samples

    CERN Document Server

    Al-Haddad, M N; Abu-Jarad, F A

    1999-01-01

    An LKB-Wallac 1217 Liquid Scintillation Counter (LSC) was calibrated with a newly adopted cocktail. The LSC was then used to measure tritium levels in various samples to assess the compliance of tritium levels with the recommended international levels. The counter was calibrated to measure both biological and operational samples for personnel and for an accelerator facility at KFUPM. The biological samples include the bioassay (urine), saliva, and nasal tests. The operational samples of the light ion linear accelerator include target cooling water, organic oil, fomblin oil, and smear samples. Sets of standards, which simulate various samples, were fabricated using traceable certified tritium standards. The efficiency of the counter was obtained for each sample. The typical range of the efficiencies varied from 33% for smear samples down to 1.5% for organic oil samples. A quenching curve for each sample is presented. The minimum detectable activity for each sample was established. Typical tritium levels in bio...

  2. Advanced Scintillator-Based Compton Telescope for Solar Flare Gamma-Ray Measurements

    Science.gov (United States)

    Ryan, James Michael; Bloser, Peter; McConnell, Mark; Legere, Jason; Bancroft, Christopher; Murphy, Ronald; de Nolfo, Georgia

    2015-04-01

    A major goal of future Solar and Heliospheric Physics missions is the understanding of the particle acceleration processes taking place on the Sun. Achieving this understanding will require detailed study of the gamma-ray emission lines generated by accelerated ions in solar flares. Specifically, it will be necessary to study gamma-ray line ratios over a wide range of flare intensities, down to small C-class flares. Making such measurements over such a wide dynamic range, however, is a serious challenge to gamma-ray instrumentation, which must deal with large backgrounds for faint flares and huge counting rates for bright flares. A fast scintillator-based Compton telescope is a promising solution to this instrumentation challenge. The sensitivity of Compton telescopes to solar flare gamma rays has already been demonstrated by COMPTEL, which was able to detect nuclear emission from a C4 flare, the faintest such detection to date. Modern fast scintillators, such as LaBr3, and CeBr3, are efficient at stopping MeV gamma rays, have sufficient energy resolution (4% or better above 0.5 MeV) to resolve nuclear lines, and are fast enough (~15 ns decay times) to record at very high rates. When configured as a Compton telescope in combination with a modern organic scintillator, such as p-terphenyl, sub-nanosecond coincidence resolving time allows dramatic suppression of background via time-of-flight (ToF) measurements, allowing both faint and bright gamma-ray line flares to be measured. The use of modern light readout devices, such as silicon photomultipliers (SiPMs), eliminates passive mass and permits a more compact, efficient instrument. We have flown a prototype Compton telescope using modern fast scintillators with SiPM readouts on a balloon test flight, achieving good ToF and spectroscopy performance. A larger balloon-borne instrument is currently in development. We present our test results and estimates of the solar flare sensitivity of a possible full-scale instrument

  3. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-02-05

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT "dark current" background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or "Back" detector, to both (1) minimize Compton background in the low-energy portion of the "Front" scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as impelmented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors.

  4. Optimization of the light extraction from heavy inorganic scintillators

    CERN Document Server

    Kronberger, Matthias; Lecoq, P

    2008-01-01

    Inorganic scintillators are widely used in modern medical imaging modalities as converter for the X- and gamma-radiation that is used to obtain information about the interior of the body. Likewise, they are applied in high-energy physics to measure the energy of particles that are produced in particle physics experiments. Their use is motivated by the very good detection efficiency of these materials for hard radiation which allows the construction of relatively compact and finely pixelised systems with a high spatial resolution. One key problem in the development of the next generation of particle detectors and medical imaging systems is the optimisation of the energy resolution of the detectors. This parameter is influenced by the statistical fluctuations of the light output of the scintillators, i.e. by the number of photons that are detected when a particle deposits its energy in the scintillator. The light output of the scintillator depends not only on the absolute number of generated photons but also on...

  5. A helium gas scintillator active target for photoreaction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Al Jebali, Ramsey; Annand, John R.M.; Buchanan, Emma; Gardner, Simon; Hamilton, David J.; Livingston, Kenneth; McGeorge, John C.; MacGregor, Ian J.D.; MacRae, Roderick; Reiter, Andreas J.H.; Rosner, Guenther; Sokhan, Daria; Strandberg, Bruno [University of Glasgow, School of Physics and Astronomy, Glasgow, Scotland (United Kingdom); Adler, Jan-Olof; Fissum, Kevin; Schroeder, Bent [University of Lund, Department of Physics, Lund (Sweden); Akkurt, Iskender [Sueleyman Demirel University, Fen-Edebiyat Faculty, Isparta (Turkey); Brudvik, Jason; Hansen, Kurt; Isaksson, Lennart; Lundin, Magnus [MAX IV Laboratory, PO Box 118, Lund (Sweden); Middleton, Duncan G. [Universitaet Tuebingen, Kepler Centre for Astro and Particle Physics, Physikalisches Institut, Tuebingen (Germany); Sjoegren, Johan [University of Glasgow, School of Physics and Astronomy, Glasgow, Scotland (United Kingdom); MAX IV Laboratory, PO Box 118, Lund (Sweden)

    2015-10-15

    A multi-cell He gas scintillator active target, designed for the measurement of photoreaction cross sections, is described. The target has four main chambers, giving an overall thickness of 0.103 g/cm{sup 3} at an operating pressure of 2 MPa. Scintillations are read out by photomultiplier tubes and the addition of small amounts of N{sub 2} to the He, to shift the scintillation emission from UV to visible, is discussed. First results of measurements at the MAX IV Laboratory tagged-photon facility show that the target has a timing resolution of around 1 ns and can cope well with a high-flux photon beam. The determination of reaction cross sections from target yields relies on a Monte Carlo simulation, which considers scintillation light transport, photodisintegration processes in {sup 4}He, background photon interactions in target windows and interactions of the reaction-product particles in the gas and target container. The predictions of this simulation are compared to the measured target response. (orig.)

  6. Lead-liquid scintillator electromagnetic calorimeter for direct photon physics

    Energy Technology Data Exchange (ETDEWEB)

    Bonesini, M.; Bortoletto, D.; Cavalli, D.; Cecchet, G.; Costa, G.; Gianotti, F.; Mandelli, L.; Mazzanti, M.; Pensotti-Rancoita, S.; Tamborini, M.

    1987-11-15

    A fine-grained sampling electromagnetic calorimeter using liquid scintillator contained in teflon tubes, its associated electronics and reconstruction programs, as used in an experiment on direct photons at CERN, are described. The performance of the system based on three years of operation is discussed.

  7. Complex Electronic Structure of Rare Earth Activators in Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Aberg, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yu, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhou, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-27

    To aid and further the understanding of the microscopic mechanisms behind the scintillator nonproportionality that leads to degradation of the attainable energy resolution, we have developed theoretical and experimental algorithms and procedures to determine the position of the 4f energy levels of rare earth dopants relative to the host band edge states.

  8. Development of scintillation and luminescent detectors at BARC

    International Nuclear Information System (INIS)

    Research and development work carried out at the Bhabha Atomic Research Centre, Bombay, in the field of radiation detectors for various applications, particularly in the area of scintillation and luminescent detectors is reviewed. The review is presented in the form of 7 articles. (author). figs

  9. The balloon-borne electron telescope with scintillating fibers (BETS)

    CERN Document Server

    Torii, S; Tateyama, N; Yoshida, K; Ouchi, Y; Yamagami, T; Saitô, Y; Murakami, H; Kobayashi, T; Komori, Y; Kasahara, K; Yuda, T; Nishimura, J

    2000-01-01

    we describe a new detector system developed for high-altitude balloon flights to observe the cosmic-ray electrons above 10 GeV. The balloon borne electron telescope with Scintillating (BETS) fibers instrument is an imaging calorimeter which is capable of selecting electrons against the large background of protons. The calorimeter is composed of a sandwich of scintillating optical-fiber belts and lead plates with a combination of three plastic scintillators for the shower trigger. The total thickness of lead is 40 mm (~7.1 r.l.) and the number of fiber belts is nine. In each belt, alternating layers are oriented in orthogonal (x and y) directions. Two sets of an intensified CCD camera are adopted for read-out of the scintillating fibers in the x and y direction, respectively. The accelerator beam tests were carried out to study the performance of detector for electrons in 1996 and for protons in 1997 at CERN-SPS. The instrument was successfully flown aboard high-altitude balloon in 1997 and 1998. It is demonst...

  10. New scintillating media based on liquid crystals for particle detectors

    CERN Document Server

    Barnik, M I; Vasilchenko, V G; Golovkin, S V; Medvedkov, A M; Soloviev, A S

    2000-01-01

    The study results of optical, photoluminiscent and scintillation properties of a liquid crystal 4-pentyl-4'-cyanobiphenyl are presented. The scintillation light output of this liquid crystal is about 35% of crystal anthracene, its main decay time constants are 4 and 14 ns, and the maximum of light emission spectrum is about 400 nm. The light output of a dissolution of green emitting light scintillation dopant R6 in the liquid crystal is about 120% of crystal anthracene. The light output of the frozen dissolution measured at -112 deg. C is about 2.5 times higher as observed at +20 deg. C. In the uniaxially oriented liquid crystal, the predominant intensity direction of emitted light is pointed perpendicular to the liquid crystal director and an appreciable part of the emitted light is elliptically polarized. The possibility to use scintillation properties of liquid crystals is considered both for the improvement of existing particle detector characteristics and for the creation of new gated particle detectors.

  11. Dosimetry in clinical static magnetic fields using plastic scintillation detectors

    DEFF Research Database (Denmark)

    Stefanowicz, S.; Latzel, H.; Lindvold, Lars René;

    2013-01-01

    . In conclusion, we found some deviations up to 7% of the supposed signal. Although the scintillators are of much denser material, we measured the same behavior in signal as in (Meijsing et al., 2009) for a Farmer ionization chamber or as in (Raaijmakers et al., 2007) for films described which indicates radiation...

  12. The design of the totally active scintillator detector

    Science.gov (United States)

    Mefodiev, A. V.; Kudenko, Y. G.

    2015-11-01

    In the project of Advanced European Infrastructures for Detectors at Accelerators (AIDA), the Institute of Nuclear Research designed and tested the Totally Active Scintillator Detector (TASD). This paper reports the results of design of TASD prototype and outlines requirements for a test beam at CERN to test these, tentatively planned on the H8 beamline in the North Area, which is equipped with a large aperture magnet. TASD consists of 50 modules of plastic scintillators. Each module is instrumented with one X and one Y plane, with 90 scintillator bars per plane. The bar width, height and length are 1.0 cm, 0.7 cm and 90 cm respectively. The distance between modules can be varied from 0 to 2.5 cm. Other components such as active detectors or passive sheets of material can be inserted in these 2.5 cm gaps if required. The full detector depth can therefore be varied from 75 cm to 200 cm and in its compact form, it is 1 m3 in volume. The paper presents measurement results for the TASD elements that included in the prototype elements (measurement of crosscurrents, the light yield of scintillators, and the characteristics of photodiodes).

  13. Optical characteristics of pure poly (vinyltoluene) for scintillation applications

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hidehito, E-mail: hidehito@rri.kyoto-u.ac.jp [Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shirakawa, Yoshiyuki [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Sato, Nobuhiro [Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Kitamura, Hisashi [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shinji, Osamu; Saito, Katashi [Kuraray Co., Ltd., 2-28, Kurashiki-cho, Tainai, Niigata 959-2691 (Japan); Takahashi, Sentaro [Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2015-01-11

    Advanced refining techniques have enabled the application of high-purity aromatic ring polymers with favourable scintillation characteristics for radiation detection, without requiring doped fluorescent guest molecules. Here, we show the optical characteristics of pure poly (vinyltoluene) (PVT). It has a 285-nm excitation maximum and a 315-nm emission maximum. The effective refractive index is 1.66, which was derived from its emission spectrum. Light yields were determined by irradiation with {sup 137}Cs and {sup 207}Bi radioactive sources. The light attenuation length is an unexpectedly high 40.5±0.3 mm. These results indicate that thick samples of undoped PVT can be used as effective scintillation materials, and will stimulate future applications. - Highlights: • High-purity poly (vinyltoluene) (PVT) is characterised for use in scintillation applications. • PVT has a 285-nm excitation maximum and a 315-nm emission maximum. • An effective refractive index of 1.66 is based on the emission spectrum. • The light attenuation length is an unexpectedly high 40.5±0.3 mm. • Thick, undoped PVT substrates are effective scintillation materials.

  14. New scintillating glasses for high energy physics applications

    International Nuclear Information System (INIS)

    A new family of scintillating glasses has been developed which is based upon Pr3+ oxide in a silicate host. The materials have fast response (30nsec ≤ Tau ≤ several μsec) and good optical transmission. Materials of this kind might find applicability as fiber-optic detectors for high energy physics experiments operating at moderate interaction rates

  15. New scintillating glasses for high energy physics applications

    International Nuclear Information System (INIS)

    A new family of scintillating glasses has been developed which is based upon Pr/sup 3+/ oxide in a silicate host. The materials have fast response (30 nsec ≤ tau ≤ several μsec) and good optical transmission. Materials of this kind might find applicability as fiber-optic detectors for high energy physics experiments operating at moderate interaction rates

  16. Ca2+-Doped CeBr3 Scintillating Materials

    Energy Technology Data Exchange (ETDEWEB)

    Guss, Paul [NSTec; Foster, Michael E. [SNL; Wong, Bryan M. [SNL; Doty, F. Patrick [SNL; Shah, Kanai [RMD; Squillante, Michael R. [RMD; Shirwadkar, Urmila [RMD; Hawrami, Rastgo [RMD; Tower, Josh [RMD; Yuan, Ding [NSTec

    2014-01-01

    Despite the outstanding scintillation performance characteristics of cerium tribromide (CeBr3) and cerium-activated lanthanum tribromide, their commercial availability and application are limited due to the difficulties of growing large, crack-free single crystals from these fragile materials. This investigation employed aliovalent doping to increase crystal strength while maintaining the optical properties of the crystal. One divalent dopant (Ca2+) was used as a dopant to strengthen CeBr3 without negatively impacting scintillation performance. Ingots containing nominal concentrations of 1.9% of the Ca2+ dopant were grown. Preliminary scintillation measurements are presented for this aliovalently doped scintillator. Ca2+-doped CeBr3 exhibited little or no change in the peak fluorescence emission for 371 nm optical excitation for CeBr3. The structural, electronic, and optical properties of CeBr3 crystals were studied using the density functional theory within the generalized gradient approximation. The calculated lattice parameters are in good agreement with the experimental data. The energy band structures and density of states were obtained. The optical properties of CeBr3, including the dielectric function, were calculated.

  17. Radioactive contamination of SrI2(Eu) crystal scintillator

    International Nuclear Information System (INIS)

    A strontium iodide crystal doped by europium (SrI2(Eu)) was produced by using the Stockbarger growth technique. The crystal was subjected to a characterization that includes relative photoelectron output and energy resolution for γ quanta. The intrinsic radioactivity of the SrI2(Eu) crystal scintillator was tested both by using it as scintillator at sea level and by ultra-low background HPGe γ spectrometry deep underground. The response of the SrI2(Eu) detector to α particles (α/β ratio and pulse shape) was estimated by analysing the 226Ra internal trace contamination of the crystal. We have measured: α/β=0.55 at Eα=7.7MeV, and no difference in the time decay of the scintillation pulses induced by α particles and γ quanta. The application of the obtained results in the search for the double electron capture and electron capture with positron emission in 84Sr has been investigated at a level of sensitivity: T1/2∼1015–1016yr. The results of these studies demonstrate the potentiality of this material for a variety of scintillation applications, including low-level counting experiments.

  18. Interference phenomena in azeotropic distillation for liquid scintillation measurement

    International Nuclear Information System (INIS)

    Full text: The Cryogenic Pilot is an experimental project within the National Nuclear Energy Research Program, which aims at developing technologies for tritium and deuterium separation by cryogenic distillation. The process used in this installation is based on a combined method for liquid-phase catalytic exchange (LPCE) and cryogenic distillation. There are two ways in which the Cryogenic Pilot can interact with the environment: by atmospheric release and through the sewage system. In order to establish the base concentration level of thr tritium released in the environment around the nuclear facilities, we investigated the sample preparation treatment for different types of samples: spinach, spring wheat, onion, hay, grass, apple, garden lettuce, soil, milk, and meat. For the azeotropic distillation of all types of samples were used two solvents, toluene and cyclohexane, and all measurements for the determination of environmental tritium concentration were carried out using liquid scintillation counting (LSC), with ultra-low liquid scintillation spectrometer Quantulus 1220 specially designed for environmental samples and low radioactivity. Sample scintillation cocktail ratio was 8:12 ml and liquid scintillation cocktail was UltimaGold LLT. The background determined for the prepared control samples was between 0.926 CPM and 1.002 CPM and the counting efficiency between 25.4% and 26.1%. The counting time was 1000 minutes (50 minutes/20 cycles) for each sample, and the minimum detectable activity according to ISO 9698 was 8.9 TU, and 9.05 TU, respectively, with a confidence factor of 3. (authors)

  19. Scintillating optical fibers in detection of X synchrotron radiation images

    International Nuclear Information System (INIS)

    It is pointed out how the use of optical fiber matrices (or alluminated optical guides) of scintillating glass can constitute systems of X image detection with energy higher than 2 KeV, with high efficiency, high spatial resolution and an acquisition capability dependent on the X flux, in the formation of the single images

  20. Scintillating bolometers: A promising tool for rare decays search

    Energy Technology Data Exchange (ETDEWEB)

    Pattavina, L., E-mail: luca.pattavina@mib.infn.it

    2013-12-21

    The idea of using a scintillating bolometer was first suggested for solar neutrino experiments in 1989. After many years of developments, now we are able to exploit this experimental technique, based on the calorimetric approach with cryogenic particle detectors, to investigate rare events such as Neutrinoless Double Beta Decay and interaction of Dark Matter candidates. The possibility to have high resolution detectors in which a very large part of the natural background can be discriminated with respect to the weak expected signal is very appealing. The goal to distinguish the different types of interactions in the detector can be achieved by means of scintillating bolometer. The simultaneous read-out of the heat and scintillation signals made with two independent bolometers enable this precious feature leading to possible background free experiment. In the frame of the LUCIFER project we report on how exploiting this technique to investigate Double Beta Decay for different isotope candidates. Moreover we demonstrate how scintillating bolometers are suited for investigating other rare events such as α decays of long living isotopes of lead and bismuth.

  1. Test of TOF Scintillator Counters for ALICE Detector

    CERN Document Server

    Semenov, P; Malakhov, A; Melkumov, G L

    1996-01-01

    The manufactured counters of the fast response scintillators with the photomultipliers valid for operation in the magnetic field environment is being considered among the options for the time-of-flight (TOF) measurements as a particle identification tool for the ALICE experiment. Here we discuss how the tests of such counters have been implemented on the particle beam in respect to the time resolution.

  2. A helium gas scintillator active target for photoreaction measurements

    International Nuclear Information System (INIS)

    A multi-cell He gas scintillator active target, designed for the measurement of photoreaction cross sections, is described. The target has four main chambers, giving an overall thickness of 0.103 g/cm3 at an operating pressure of 2 MPa. Scintillations are read out by photomultiplier tubes and the addition of small amounts of N2 to the He, to shift the scintillation emission from UV to visible, is discussed. First results of measurements at the MAX IV Laboratory tagged-photon facility show that the target has a timing resolution of around 1 ns and can cope well with a high-flux photon beam. The determination of reaction cross sections from target yields relies on a Monte Carlo simulation, which considers scintillation light transport, photodisintegration processes in 4He, background photon interactions in target windows and interactions of the reaction-product particles in the gas and target container. The predictions of this simulation are compared to the measured target response. (orig.)

  3. Use of the liquid scintillation spectrometer in bioluminescence analysis

    International Nuclear Information System (INIS)

    This review covers publications concerning analytical bioluminescence which in the main have appeared between mid-1973 and mid-1976. Outlines of some new assays and techniques are given together with modifications of existing procedures. Comments are presented on the use of the liquid scintillation spectrometer and other equipment for measuring bioluminescence. New applications are detailed and discussed

  4. Data analysis in solar neutrinos liquid-scintillator detectors

    Energy Technology Data Exchange (ETDEWEB)

    Testera, G. [INFN, Genova (Italy)

    2016-04-15

    This paper focuses on the description of some of the methods developed to extract the solar neutrino signal from the background by the two running experiments (Borexino and Kamland) based on the use of a large volume of liquid scintillator. (orig.)

  5. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    Science.gov (United States)

    Jenkins, David

    2015-06-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such "medium-resolution" spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen.

  6. Use of a large time-compensated scintillation detector in neutron time-of-flight measurements

    Science.gov (United States)

    Goodman, Charles D.

    1979-01-01

    A scintillator for neutron time-of-flight measurements is positioned at a desired angle with respect to the neutron beam, and as a function of the energy thereof, such that the sum of the transit times of the neutrons and photons in the scintillator are substantially independent of the points of scintillations within the scintillator. Extrapolated zero timing is employed rather than the usual constant fraction timing. As a result, a substantially larger scintillator can be employed that substantially increases the data rate and shortens the experiment time.

  7. Properties of the Ukrainian Polystyrene-Based Plastic Scintillator UPS 923A

    CERN Document Server

    Artikov, A M; Chirikov-Zorin, I E; Chokheli, D; Lyablin, M; Bellettini, G; Menzione, A; Tokar, S; Giokaris, N; Manousakis-Katsikakis, A

    2005-01-01

    The polystyrene-based scintillator UPS 923A was chosen for upgrading of the muon system for the CDF detector at the Fermilab Tevatron. Properties of this scintillator such as light output, light attenuation, long-term stability and also timing characteristics of scintillator and wavelength shifting fibers were investigated. The method for the Bulk Attenuation Length measurements of the scintillator to its own light emitted was proposed. Comparative measurements of the characteristics of the UPS 923A and the polyvinyltoluene-based scintillator NE 114 were performed. It was found that natural aging of the NE 114 was two times faster than that of the UPS 923A.

  8. Efficiency-determined method for thermal neutron detection with inorganic scintillator

    International Nuclear Information System (INIS)

    Because of 3He shortage, scintillator is a promising alternative choice for neutron detection in the field of thermal neutron scattering and imaging. Also, the neutron detection efficiency is difficult to be determined. In this paper, the efficiency for thermal neutron detection is presented by inorganic scintillator using probability principles, supposed that the material of scintillator is uniform in element distribution, and that attenuation length of scintillation light is longer than that of its thickness in the scintillator. The efficiencies for two pieces of lithium glass are determined by this method, indicating the method is useful for determining efficiency of thermal neutron detections. (authors)

  9. Technical manual: a survey of scintillating medium for high-energy particle detection

    CERN Document Server

    Baitenov, Adil; Beznosko, Dmitriy

    2016-01-01

    There are various particle detection methods used nowadays and the most common is using scintillators. Among scintillating materials, solid plastic and water-based liquid scintillators (WbLS) are the latest development. In particular, WbLS allows researchers to apply different particle detection methods for increased experiment efficiency. This survey attempts to make an overview on detection methods and detectors in high-energy physics using scintillators. It is meant as a summary for those new to scintillator detectors and looking for general material on the topic.

  10. Scintillation properties of Lu sub 2 Si sub 2 O sub 7 :Ce sup 3 sup + , a fast and efficient scintillator crystal

    CERN Document Server

    Pidol, L; Viana, B; Ferrand, B; Dorenbos, P; Haas, J; Eijk, C W E; Virey, E

    2003-01-01

    Cerium doped lutetium pyrosilicate Lu sub 2 Si sub 2 O sub 7 :Ce sup 3 sup + (LPS), a new inorganic scintillator, displays particularly promising performance. This material can be readily pulled from the melt. A high light output (average value: 26 300 ph MeV sup - sup 1), a relatively good energy resolution (9%) and a fast decay time (38 ns) without afterglow make this new scintillator very attractive, in particular for medical imaging. Optical characterizations and scintillation properties of LPS:Ce large single crystals are presented, including timing properties and study of the scintillation yields as a function of incident energy.

  11. Pulse shape discrimination using EJ-299-33 plastic scintillator coupled with a Silicon Photomultiplier array

    Science.gov (United States)

    Liao, Can; Yang, Haori

    2015-07-01

    Recent developments in organic plastic scintillators capable of pulse shape discrimination (PSD) have gained much interest. Novel photon detectors, such as Silicon Photomultipliers (SiPMs), offer numerous advantages and can be used as an alternative to conventional photo multiplier tubes (PMTs) in many applications. In this work, we evaluate the PSD performance of the EJ-299-33 plastic scintillator coupled with a SiPM array. 2D PSD plots as well as the Figure of Merit (FOM) parameters are presented to demonstrate the PSD capability of EJ-299-33 using a SiPM as the light sensor. The best FOM of 0.76 was observed with a 1.0 MeVee (MeV-electron-equivalent) energy threshold, despite the high noise level of the SiPM array. A high-speed digital oscilloscope was used to acquire data, which was then processed offline in MATLAB. A performance comparison between two different PSD algorithms was carried out. The dependence of PSD quality on the sampling rate was also evaluated, stimulated by the interest to implement this setup for handheld applications where power consumption is crucial.

  12. Maximum likelihood positioning and energy correction for scintillation detectors

    Science.gov (United States)

    Lerche, Christoph W.; Salomon, André; Goldschmidt, Benjamin; Lodomez, Sarah; Weissler, Björn; Solf, Torsten

    2016-02-01

    An algorithm for determining the crystal pixel and the gamma ray energy with scintillation detectors for PET is presented. The algorithm uses Likelihood Maximisation (ML) and therefore is inherently robust to missing data caused by defect or paralysed photo detector pixels. We tested the algorithm on a highly integrated MRI compatible small animal PET insert. The scintillation detector blocks of the PET gantry were built with the newly developed digital Silicon Photomultiplier (SiPM) technology from Philips Digital Photon Counting and LYSO pixel arrays with a pitch of 1 mm and length of 12 mm. Light sharing was used to readout the scintillation light from the 30× 30 scintillator pixel array with an 8× 8 SiPM array. For the performance evaluation of the proposed algorithm, we measured the scanner’s spatial resolution, energy resolution, singles and prompt count rate performance, and image noise. These values were compared to corresponding values obtained with Center of Gravity (CoG) based positioning methods for different scintillation light trigger thresholds and also for different energy windows. While all positioning algorithms showed similar spatial resolution, a clear advantage for the ML method was observed when comparing the PET scanner’s overall single and prompt detection efficiency, image noise, and energy resolution to the CoG based methods. Further, ML positioning reduces the dependence of image quality on scanner configuration parameters and was the only method that allowed achieving highest energy resolution, count rate performance and spatial resolution at the same time.

  13. Next Generation Neutron Scintillators Based On Semiconductor Nanostructures

    International Nuclear Information System (INIS)

    The results reported here successfully demonstrate the technical feasibility of ZnS QDs/6LiF/polymer composites as thermal neutron scintillators. PartTec has obtained stable ZnS QDs with a quantum yield of 17% induced by UV light, and light pulse decay lifetimes of 10-30 ns induced by both UV and neutrons. These lifetime values are much shorter than those of commercial ZnS microparticle and 6Li-glass scintillators. Clear pulse height peaks induced by neutron irradiation were seen for PartTec's ZnS nanocomposites. By adjusting the concentrations, particle size and degree of dispersion of ZnS QD/6LiF in a PVA matrix, the light absorption and light yield of films at 420-440 nm can be optimized. PartTec's novel scintillators will replace traditional 6Li-glass and ZnS/6LiF:Ag scintillators if the PL quantum yield can be improved above 30%, and/or increase the transparency of present nanoscintillators. Time and resources inhibited PartTec's total success in Phase I. For example, bulk doping preparations of ZnS QDs with Ag+, Eu3+ or Ce3+ QDs was impractical given those constraints, nor did they permit PartTec to measure systematically the change of PL decay lifetimes in different samples. PartTec will pursue these studies in the current proposal, as well as develop a better capping and dopant along with developing brighter and faster ZnS QD scintillators.

  14. Lithium indium diselenide: A new scintillator for neutron imaging

    Science.gov (United States)

    Lukosi, Eric; Herrera, Elan; Hamm, Daniel; Lee, Kyung-Min; Wiggins, Brenden; Trtik, Pavel; Penumadu, Dayakar; Young, Stephen; Santodonato, Louis; Bilheux, Hassina; Burger, Arnold; Matei, Liviu; Stowe, Ashley C.

    2016-09-01

    Lithium indium diselenide, 6LiInSe2 or LISe, is a newly developed neutron detection material that shows both semiconducting and scintillating properties. This paper reports on the performance of scintillating LISe crystals for its potential use as a converter screen for cold neutron imaging. The spatial resolution of LISe, determined using a 10% threshold of the Modulation Transfer Function (MTF), was found to not scale linearly with thickness. Crystals having a thickness of 450 μm or larger resulted in an average spatial resolution of 67 μm, and the thinner crystals exhibited an increase in spatial resolution down to the Nyquist frequency of the CCD. The highest measured spatial resolution of 198 μm thick LISe (27 μm) outperforms a commercial 50 μm thick ZnS(Cu):6LiF scintillation screen by more than a factor of three. For the LISe dimensions considered in this study, it was found that the light yield of LISe did not scale with its thickness. However, absorption measurements indicate that the 6Li concentration is uniform and the neutron absorption efficiency of LISe as a function of thickness follows general nuclear theory. This suggests that the differences in apparent brightness observed for the LISe samples investigated may be due to a combination of secondary charged particle escape, scintillation light transport in the bulk and across the LISe-air interface, and variations in the activation of the scintillation mechanism. Finally, it was found that the presence of 115In and its long-lived 116In activation product did not result in ghosting (memory of past neutron exposure), demonstrating potential of LISe for imaging transient systems.

  15. GAGG:ce single crystalline films: New perspective scintillators for electron detection in SEM.

    Science.gov (United States)

    Bok, Jan; Lalinský, Ondřej; Hanuš, Martin; Onderišinová, Zuzana; Kelar, Jakub; Kučera, Miroslav

    2016-04-01

    Single crystal scintillators are frequently used for electron detection in scanning electron microscopy (SEM). We report gadolinium aluminum gallium garnet (GAGG:Ce) single crystalline films as a new perspective scintillators for the SEM. For the first time, the epitaxial garnet films were used in a practical application: the GAGG:Ce scintillator was incorporated into a SEM scintillation electron detector and it showed improved image quality. In order to prove the GAGG:Ce quality accurately, the scintillation properties were examined using electron beam excitation and compared with frequently used scintillators in the SEM. The results demonstrate excellent emission efficiency of the GAGG:Ce single crystalline films together with their very fast scintillation decay useful for demanding SEM applications.

  16. Development and Studies of Novel Microfabricated Radiation Hard Scintillation Detectors With High Spatial Resolution

    CERN Document Server

    Mapelli, A; Haguenauer, M; Jiguet, S; Renaud, P; Vico Triviño, N

    2011-01-01

    A new type of scintillation detector is being developed with standard microfabrication techniques. It consists of a dense array of scintillating waveguides obtained by coupling microfluidic channels filled with a liquid scintillator to photodetectors. Easy manipulation of liquid scintillators inside microfluidic devices allow their flushing, renewal, and exchange making the active medium intrinsically radiation hard. Prototype detectors have been fabricated by photostructuration of a radiation hard epoxy resin (SU-8) deposited on silicon wafers and coupled to a multi-anode photomultiplier tube (MAPMT) to read-out the scintillation light. They have been characterized by exciting the liquid scintillator in the 200 micrometers thick microchannels with electrons from a 90Sr yielding approximately 1 photoelectron per impinging Minimum Ionizing Particle (MIP). These promising results demonstrate the concept of microfluidic scintillating detection and are very encouraging for future developments.

  17. Comparison of the scintillation noise above different observatories measured with MASS instruments

    CERN Document Server

    Kornilov, V; Tokovinin, A; Travouillon, T; Voziakova, O

    2012-01-01

    Scintillation noise is a major limitation of ground base photometric precision. An extensive dataset of stellar scintillation collected at 11 astronomical sites world-wide with MASS instruments was used to estimate the scintillation noise of large telescopes in the case of fast photometry and traditional long-exposure regime. Statistical distributions of the corresponding parameters are given. The scintillation noise is mostly determined by turbulence and wind in the upper atmosphere and comparable at all sites, with slightly smaller values at Mauna Kea and largest noise at Tolonchar in Chile. We show that the classical Young's formula under-estimates the scintillation noise.The temporal variations of the scintillation noise are also similar at all sites, showing short-term variability at time scales of 1 -- 2 hours and slower variations, including marked seasonal trends (stronger scintillation and less clear sky during local winter). Some correlation was found between nearby observatories.

  18. Numerical evaluation of the light transport properties of alternative He-3 neutron detectors using ceramic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Ohzu, A., E-mail: ohzu.akira@jaea.go.jp [Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Takase, M.; Haruyama, M.; Kurata, N.; Kobayashi, N.; Kureta, M. [Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Nakamura, T.; Toh, K.; Sakasai, K.; Suzuki, H.; Soyama, K. [J-PARC, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Seya, M. [Integrated Support Center for Nuclear Nonproliferation and Nuclear Security, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan)

    2015-10-21

    The light transport properties of scintillator light inside alternative He-3 neutron detectors using scintillator sheets have been investigated by a ray-tracing simulation code. The detector consists of a light-reflecting tube, a thin rectangular ceramic scintillator sheet laminated on a glass plate, and two photo-multiplier tubes (PMTs) mounted at both ends of the detector tube. The flashes of light induced on the surface of the scintillator sheet via nuclear interaction between the scintillator and neutrons are detected by the two PMTs. The light output at both ends of various detectors in which the scintillator sheets are installed with several different arrangements were examined and evaluated in comparison with experimental results. The results derived from the simulation reveal that the light transport property is strongly dependent on the arrangement of the scintillator sheet inside the tube and the shape of the tube.

  19. Climatology of GNSS ionospheric scintillation at high latitudes

    Science.gov (United States)

    Spogli, L.; Alfonsi, L.; de Franceschi, G.; Romano, V.; Aquino, M.; Dodson, A.; Mitchell, C. N.

    2009-12-01

    Under perturbed conditions caused by intense solar wind magnetosphere coupling, the ionosphere may become highly turbulent and irregularities, typically enhancements or depletions of the electron density embedded in the ambient ionosphere, can form. Such irregularities cause diffraction effects, mainly due to the random fluctuations of the refractive index of the ionosphere, on the satellites signals passing through them and consequent perturbations may cause GNSS navigation errors and outages, abruptly corrupting its performance. Due to the morphology of the geomagnetic field, whose lines are almost vertical at high latitude, polar areas are characterized by the presence of significant ionospheric irregularities having scale sizes ranging from hundreds of kilometers down to a few centimeters and with highly dynamic structures. The understanding of the effect of such phenomena is important, not only in preparation for the next solar cycle (24), whose maximum is expected in 2012, but also for a deeper comprehension of the dynamics of the high-latitude ionosphere. We analyze the fluctuations in the carrier frequency of the radio waves received on the ground, commonly referred to as ionospheric amplitude and phase scintillations, to investigate the physical processes causing them. The phase scintillations on GNSS signals are likely caused by ionospheric irregularities of scale size of hundreds of meters to few kilometers. The amplitude scintillations on GNSS signals are caused by ionospheric irregularities of scale size smaller than the Fresnel radius, which is of the order of hundreds of meters for GNSS signals, typically embedded into the patches. The Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Institute of Engineering Surveying and Space Geodesy (IESSG) of the University of Nottingham manage the same kind of GISTM (GPS Ionospheric Scintillation and TEC Monitor) receivers over the European high and mid latitude regions and over Antarctica. The

  20. Minimization effects on scintillations of sinusoidal Gaussian beams in strong turbulence

    International Nuclear Information System (INIS)

    Minimization effects on the on-axis scintillation index of cos Gaussian (cG) and cosh Gaussian (chG) beams are studied in strong turbulence. In our formulation, the unified solution of the Rytov method, which imposes spatial filtering to extend the solution to the strong turbulence regime, is applied. Our solution correctly reduces to the weak turbulence sinusoidal beam scintillations and the strong turbulence Gaussian beam scintillations. The conditions to minimize the scintillations are found to be focused chG beams. Small scale scintillations mainly determine the overall scintillations of cG and chG beams in strong turbulence. In strong turbulence, increase in the source size decreases the scintillations of collimated cG beams but does not change the scintillations of focused cG beams. Collimated cG beams having larger displacement parameters and large focal lengths show smaller scintillations in the strong regime. Change in the displacement parameters for collimated and focused chG beams and the focal length of focused chG beams do not considerably vary their scintillations in strong turbulence

  1. Characterization and testing of EJ-309 and Stilbene scintillation detectors

    Science.gov (United States)

    Baramsai, B.; Jandel, M.; Bredeweg, T. A.; Couture, A.; Mosby, S.; Rusev, G.; Ullmann, J. L.; Walker, C. L.

    2015-09-01

    A new neutron detector array (NEUANCE) is under development at the Los Alamos Neutron Science Center (LANSCE). After completion, NEUANCE will be installed in the central cavity of the 3.6π Υ-ray detector array DANCE located at the Lujan Center of LANSCE. The detector system, with simultaneous neutron and -ray detection capability, will be used to study neutron-induced capture and session reactions. The response of a EJ-309 scintillation detector to Υ-ray and neutron radiation was measured using the standard Υ-ray and 252Cf sources. The light from the detector was collected using a Hamamatsu photomultiplier tube or a Silicon photomultiplier GEANT4 was used to understand the light output and the optical photon transport in the scintillation. The detector geometry and optimum parameters for the data acquisition system were determined based on the test results and the simulations.

  2. Investigation of scintillation detectors for relativistic heavy ion calorimetry

    CERN Document Server

    Lozeva, R; Balabanski, D L; Gerl, J; Górska, M; Kojouharov, I; Kopatch, Y; Mandal, S; Schaffner, H; Wollersheim, H J

    2003-01-01

    The new DELTA E/E detection system, calorimeter telescope (CATE), for charge and mass determination of heavy ions at high energies (>=100 MeV/n) has been designed. CATE, a calorimeter telescope will consist of position sensitive Si detectors for DELTA E determination and scintillators, readout by either PIN diode or PMT, for total-E determination. Different scintillation detectors were tested with sup 1 sup 3 sup 0 Sn, sup 1 sup 8 sup 6 Pb, sup 1 sup 9 sup 7 Au and sup 2 sup 3 sup 8 U beams of (100-300) MeV/n ion energy. By properly selecting the beam species from the FRS and applying position corrections, an energy resolution of approx =0.5% FWHM was observed. The corresponding mass resolution of 1/200 is adequate for employment of CATE in the Fast Beam RISING campaign at GSI.

  3. Single-shot positron annihilation lifetime spectroscopy with LYSO scintillators

    Science.gov (United States)

    Alonso, A. M.; Cooper, B. S.; Deller, A.; Cassidy, D. B.

    2016-08-01

    We have evaluated the application of a lutetium yttrium oxyorthosilicate (LYSO) based detector to single-shot positron annihilation lifetime spectroscopy. We compare this detector directly with a similarly configured PbWO4 scintillator, which is the usual choice for such measurements. We find that the signal to noise ratio obtained using LYSO is around three times higher than that obtained using PbWO4 for measurements of Ps excited to longer-lived (Rydberg) levels, or when they are ionized soon after production. This is due to the much higher light output for LYSO (75% and 1% of NaI for LYSO and PbWO4 respectively). We conclude that LYSO is an ideal scintillator for single-shot measurements of positronium production and excitation performed using a low-intensity pulsed positron beam.

  4. ATLAS rewards Russian supplier for scintillating tile production

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    The ATLAS collaboration has awarded Russian firm SIA Luch from Podolsk in the Moscow region an ATLAS Supplier Award. This follows delivery by the company of the final batch of scintillating tiles for the collaboration's tile calorimeter some six months ahead of schedule. Representatives of the firm are seen here receiving the award at a ceremony held in the collaboration's tile calorimeter instrumentation plant at CERN on 30 July. In front of one tile calorimeter module instrumented by scintillating tiles are (left to right) IHEP physicists Evgueni Startchenko and Andrei Karioukhine, Luch Podolsk representatives Igor Karetnikov and Yuri Zaitsev, tile calorimeter project leader Rupert Leitner, ATLAS spokesperson Peter Jenni, and CERN tile calorimeter group leader Ana Henriques-Correia.

  5. Wavelength shifting reflector foils for liquid Ar scintillation light

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Manuel [Physik Institut, Universitaet Zuerich (Switzerland); Collaboration: GERDA-Collaboration

    2013-07-01

    Liquid argon is used as a scintillator in several present and upcoming experiments. In Gerda it is used as a coolant, shielding and will be instrumented to become an active veto in Phase II. Its scintillation light has a wavelength of 128 nm, that gets absorbed by quartz. In order to measure the light using photo multiplier tubes (PMT) for cryogenic temperatures which have a quartz window, it is converted to longer wavelength by coated reflector foils. The conversion efficiency and stability of several such coatings was optimized using VM2000 and Tetratex separately as reflector foils. The efficiency has been measured in a liquid Ar set up build especially for this purpose. It employs a 3'' low radioactivity PMT of type R11065-10 from Hamamatsu, the favorite photo sensor candidate to be used in Gerda.

  6. Progress report for the scintillator plate calorimeter subsystem

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report covers the work completed in FY90 by ANL staff and those of Westinghouse STC and BICRON Corporation under subcontract to ANL towards the design of a compensating calorimeter based on the use of scintillator plate as the sensitive medium. It is presented as five task sections dealing with respectively mechanical design; simulation studies; optical system design; electronics development; development of rad hard plastic scintillator and wavelength shifter and a summary. The work carried out by the University of Tennessee under a subcontract from ANL is reported separately. Finally, as principal institution with responsibility for the overall management of this subsystem effort, the summary here reports the conclusions resulting from the work of the collaboration and their impact on our proposed direction of effort in FY91. This proposal, for obvious reasons is given separately.

  7. Transparent plastic scintillators for neutron detection based on lithium salicylate

    Science.gov (United States)

    Mabe, Andrew N.; Glenn, Andrew M.; Carman, M. Leslie; Zaitseva, Natalia P.; Payne, Stephen A.

    2016-01-01

    Transparent plastic scintillators with pulse shape discrimination containing 6Li salicylate have been synthesized by bulk polymerization with a maximum 6Li loading of 0.40 wt%. Photoluminescence and scintillation responses to gamma-rays and neutrons are reported herein. Plastics containing 6Li salicylate exhibit higher light yields and permit a higher loading of 6Li as compared to previously reported plastics based on lithium 3-phenylsalicylate. However, pulse shape discrimination performance is reduced in lithium salicylate plastics due to the requirement of adding more nonaromatic monomers to the polymer matrix as compared to those based on lithium 3-phenylsalicylate. Reduction in light yield and pulse shape discrimination performance in lithium-loaded plastics as compared to pulse shape discrimination plastics without lithium is interpreted in terms of energy transfer interference by the aromatic lithium salts.

  8. Cold neutron imaging detection with a GSO scintillator

    International Nuclear Information System (INIS)

    The pulse-height spectrum and two-dimensional image of a 0.5 mm thick GSO scintillator were investigated for a 6 A cold neutron beam. The 31 and 81 keV peaks resulting from neutron absorption by Gd nuclei were identified in the pulse-height spectrum by using a photomultiplier tube. Images of 1.5 and 2.1 mm (FWHM) in diameter were observed for 1 and 2 mm diameter incident beams with an image intensifier and viewed by a CCD camera, corresponding to a position resolution of 1.3 mm (FWHM). The result implies that a position resolution of better than 100 μm would be achievable by employing a GSO scintillator thinner than 20 μm

  9. Scintillating bolometers: a key for determining WIMP parameters

    CERN Document Server

    Cerdeno, D G; Fornasa, M; Garcia, E; Ginestra, C; Marcos, C; Martinez, M; Ortigoza, Y; Peiro, M; Puimedon, J; Sarsa, M L

    2014-01-01

    In the last decade direct detection Dark Matter (DM) experiments have increased enormously their sensitivity and ton-scale setups have been proposed, especially using germanium and xenon targets with double readout and background discrimination capabilities. In light of this situation, we study the prospects for determining the parameters of Weakly Interacting Massive Particle (WIMP) DM (mass, spin-dependent (SD) and spin-independent (SI) cross section off nucleons) by combining the results of such experiments in the case of a hypothetical detection. In general, the degeneracy between the SD and SI components of the scattering cross section can only be removed using targets with different sensitivities to these components. Scintillating bolometers, with particle discrimination capability, very good energy resolution and threshold and a wide choice of target materials, are an excellent tool for a multitarget complementary DM search. We investigate how the simultaneous use of scintillating targets with differen...

  10. Novel Scintillation Detectors for Prompt Fission γ-Ray Measurements

    Science.gov (United States)

    Billnert, R.; Andreotti, E.; Hambsch, F.-J.; Hult, M.; Karlsson, J.; Marissens, G.; Oberstedt, A.; Oberstedt, S.

    In this work we present first results from measurements of prompt fission γ-rays from the spontaneous fission in 252Cf. New and accurate data on corresponding γ-rays from the reactions 235U(nth,f) and 239Pu(nth,f) are highly demanded for the modeling of new Generation-IV nuclear reactor systems. For these experiments we employed scintillation detectors made out of new materials (LaBr3, LaCl3 and CeBr3), whose properties were necessary to know in order to obtain reliable results. Hence, we have characterized these detectors. In all the important properties these detectors outshine sodium-iodine detectors that where used in the 1970s, when the existing data had been acquired. Our finding is that the new generation of scintillation detectors is indeed promising, as far as an improved precision of the demanded data is concerned.

  11. FLARES: A flexible scintillation light apparatus for rare event searches

    Science.gov (United States)

    Sisti, M.; Baldazzi, G.; Bonvicini, V.; Campana, R.; Capelli, S.; Evangelista, Y.; Feroci, M.; Fuschino, F.; Gironi, L.; Labanti, C.; Marisaldi, M.; Previtali, E.; Rignanese, L.; Rachevsky, A.; Vacchi, A.; Zampa, G.; Zampa, N.; Zuffa, M.

    2016-07-01

    FLARES is a project for an innovative detector technology to be applied to rare event searches, and in particular to neutrinoless double beta decay experiments. Its novelty is the enhancement and optimization of the collection of the scintillation light emitted by ultra-pure crystals through the use of arrays of high performance silicon photodetectors cooled to 120 K. This would provide scintillation detectors with 1% level energy resolution, with the advantages of a technology offering relatively simple low cost mass scalability and powerful background reduction handles, as requested by future neutrinoless double beta decay experimental programs. The performances of a first production of matrices of Silicon Drift Detectors are presented and discussed in this paper.

  12. Position Reconstruction in a Dual Phase Xenon Scintillation Detector

    CERN Document Server

    Solovov, V N; Akimov, D Yu; Araújo, H M; Barnes, E J; Burenkov, A A; Chepel, V; Currie, A; DeViveiros, L; Edwards, B; Ghag, C; Hollingsworth, A; Horn, M; Kalmus, G E; Kobyakin, A S; Kovalenko, A G; Lebedenko, V N; Lindote, A; Lopes, M I; Lüscher, R; Majewski, P; Murphy, A St J; Neves, F; Paling, S M; da Cunha, J Pinto; Preece, R; Quenby, J J; Reichhart, L; Scovell, P R; Silva, C; Smith, N J T; Smith, P F; Stekhanov, V N; Sumner, T J; Thorne, C; Walker, R J

    2011-01-01

    We studied the application of statistical reconstruction algorithms, namely maximum likelihood and least squares methods, to the problem of event reconstruction in a dual phase liquid xenon detector. An iterative method was developed for in-situ reconstruction of the PMT light response functions from calibration data taken with an uncollimated gamma-ray source. Using the techniques described, the performance of the ZEPLIN-III dark matter detector was studied for 122 keV gamma-rays. For the inner part of the detector (R<100 mm), spatial resolutions of 13 mm and 1.6 mm FWHM were measured in the horizontal plane for primary and secondary scintillation, respectively. An energy resolution of 8.1% FWHM was achieved at that energy. The possibility of using this technique for improving performance and reducing cost of scintillation cameras for medical applications is currently under study.

  13. Characterization of positronium properties in doped liquid scintillators

    CERN Document Server

    Consolati, G; Hans, S; Jollet, C; Meregaglia, A; Perasso, S; Tonazzo, A; Yeh, M

    2013-01-01

    Ortho-positronium (o-Ps) formation and decay can replace the annihilation process, when positron interacts in liquid scintillator media. The delay induced by the positronium decay represents either a potential signature for anti-neutrino detection, via inverse beta decay, or to identify and suppress positron background, as recently demonstrated by the Borexino experiment. The formation probability and decay time of o-Ps depend strongly on the surrounding material. In this paper, we characterize the o-Ps properties in liquid scintillators as function of concentrations of gadolinium, lithium, neodymium, and tellurium, dopers used by present and future neutrino experiments. In particular, gadolinium and lithium are high neutron cross section isotopes, widely used in reactor anti-neutrino experiments, while neodymium and tellurium are double beta decay emitters, employed to investigates the Majorana neutrino nature. Future neutrino experiments may profit from the performed measurements to tune the preparation of ...

  14. OPAL Forward Calorimeter (half cylinder with lead scintillator)

    CERN Multimedia

    1 half cylinder piece is available for loan. The OPAL forward Detector Calorimeter was made in 4 half cylindrical pieces. Two full cylinders were placed round the LEP beam pipe about 3m downstream of the interaction point. The detector was used primarily to measure the luminosity of LEP (rate of interactions) and also to trigger on 2-photon events. In addition it formed an essential part of the detector coverage which OPAL needed to carry out searches for new particles such as the Higgs boson. The detector is made of scintillators sandwiched between lead sheets. The light from the scintillators passes via bars of wavelength shifter and light guides on its way to be measured by photomultipliers. There is a layer of gas filled tube chambers within the calorimeter. These provide a measure of the position of the particles interacting in the calorimeter.

  15. Strong scintillations of pulsed Laguerrian beams in a turbulent atmosphere.

    Science.gov (United States)

    Banakh, Viktor A; Gerasimova, Liliya O

    2016-08-22

    Turbulent fluctuations of the energy density of broadband pulsed Laguerre-Gaussian beams are studied based on numerical solution of the parabolic wave equation for the complex spectral amplitude of the wave field by the split-step method. It is shown that in the regime of strong scintillations, the relative variance of energy density of the pulsed beams can take values smaller than unity, in contrast to the strong scintillation index of the continuous-wave beams, which tends to unity with increasing the turbulence strength. The level of residual spatial correlation of the energy density of pulsed beams exceeds that for the continuous-wave beams. It increases with shortening of the pulse duration and increasing of the refractive turbulence strength. PMID:27557206

  16. Li2Se:Te as a neutron scintillator

    International Nuclear Information System (INIS)

    We show that Li2Se:Te is a potential neutron scintillator material based on density functional calculations. Li2Se exhibits a number of properties favorable for efficient neutron detection, such as a high Li concentration for neutron absorption, a small effective atomic mass and a low density for reduced sensitivity to background gamma rays, and a small band gap for a high light yield. Our calculations show that Te doping should lead to the formation of deep acceptor complex VLi–TeSe, which can facilitate efficient light emission, similar to the emission activation in Te doped ZnSe. - Highlights: • Te doped Li2Se is proposed as a promising neutron scintillator based on density functional calculations. • Li2Se has a high Li concentration, a low density, and a small band gap, favorable for neutron detection. • Li2Se can be activated by VLi–TeSe

  17. Pulse shape analysis of liquid scintillators for neutron studies

    CERN Document Server

    Marrone, S; Colonna, N; Domingo, C; Gramegna, F; González, E M; Gunsing, F; Heil, M; Kaeppeler, F; Mastinu, P F; Milazzo, P M; Papaevangelou, T; Pavlopoulos, P; Plag, R; Reifarth, R; Tagliente, G; Taín, J L; Wisshak, K

    2002-01-01

    The acquisition of signals from liquid scintillators with Flash ADC of high sampling rate (1 GS/s) has been investigated. The possibility to record the signal waveform is of great advantage in studies with gamma's and neutrons in a high count-rate environment, as it allows to easily identify and separate pile-up events. The shapes of pulses produced by gamma-rays and neutrons have been studied for two different liquid scintillators, NE213 and C sub 6 D sub 6. A 1-parameter fitting procedure is proposed, which allows to extract information on the particle type and energy. The performance of this method in terms of energy resolution and n/gamma discrimination is analyzed, together with the capability to identify and resolve pile-up events.

  18. Characterization and Modeling of a Water-based Liquid Scintillator

    CERN Document Server

    Bignell, Lindsey J; Diwan, Milind V; Hans, Sunej; Jaffe, David E; Kettell, Steven; Rosero, Richard; Themann, Harry W; Viren, Brett; Worcester, Elizabeth; Yeh, Minfang; Zhang, Chao

    2015-01-01

    We have characterised Water-based Liquid Scintillator (WbLS) using low energy protons, UV-VIS absorbance, and fluorescence spectroscopy. We have also developed and validated a simulation model that describes the behaviour of WbLS in our detector configurations for proton beam energies of 2 GeV, 475 MeV, and 210 MeV and for two WbLS compositions. Our results have enabled us to estimate the light yield and ionisation quenching of WbLS, as well as to understand the influence of the wavelength shifting of Cerenkov light on our measurements. These results are relevant to the suitability of water-based liquid scintillator materials for next generation intensity frontier experiments.

  19. Atmospheric Scintillations: A Clue for Bird Orientation and Navigation

    Science.gov (United States)

    Petty, Charles; Bowden, Andrew; Benard, Andre

    2014-11-01

    The index-of-refraction of the troposphere is anisotropic at all scales even if the local turbulent velocity field is statistically homogeneous. This anisotropy is partly due to the coupling between the fluctuating velocity field with the Coriolis field and the Lorentz field. Thus, the redistribution of turbulent kinetic energy and the concomitant anisotropy in the index-of-refraction may provide a practical means for birds (and other animals and insects) to orient and navigate. Consequently, if birds migrate between two points on the Earth by following a great circle path, then local anisotropic scintillation phenomena may provide a means to determine the latitude, the longitude, and the bearing along an orthodromic migration path. Thus, scintillation phenomena may be an important fundamental component in the underlying mechanics that support bird orientation and navigation.

  20. Pulsar Scintillation Studies and Structure of the Local Interstellar Medium

    CERN Document Server

    Bhat, N D R; Rao, A P; Preethi, P B; Gupta, Yashwant

    1999-01-01

    Results from new observations of pulsars using the Ooty Radio Telescope (ORT) are used for investigating the structure of the Local Interstellar Medium (LISM). The observations show anomalous scintillation effects towards several nearby pulsars, and these are modeled in terms of large-scale spatial inhomogeneities in the distribution of plasma density fluctuations in the LISM. A 3-component model, where the Solar neighbourhood is surrounded by a shell of enhanced plasma turbulence, is proposed for the LISM. The inferred scattering structure is strikingly similar to the Local Bubble. Further, analysis based on recent scintillation measurements show evidence for enhanced scattering towards pulsars located in the general direction of the Loop I Superbubble. The model for the LISM has been further extended by incorporating the scattering due to turbulent plasma associated with Loop I.