WorldWideScience

Sample records for bcc transition metals

  1. Isothermal compression of bcc transition metals to 100 kbar

    International Nuclear Information System (INIS)

    Pressure-volume relationships for the bcc transition metals in the groups VB (V, Nb, and Ta) and VIB (Cr, Mo, and W) were determined under hydrostatic pressure to 100 kbar at room temperature by means of x-ray diffraction, employing diamond-anvil pressure cell and the ruby (R1 line) fluorescence calibration technique. Using the measured ultrasonic K'0 values, where K0 is the bulk modulus at ambient pressure, for five metals and the deduced shock-wave K'0 value for Cr, the values of K0 for V, Nb, Ta, Mo, W, and Cr are calculated to be 1.54, 1.71, 1.94, 2.67, 3.07, and 1.93 Mbar, respectively, by least-squares fit of the experimental P-V data to the Birch-Murnaghan equation. The K0 values thus determined are in good agreement with the ultrasonic and shock-wave values for V, Nb, Ta, Mo, and W. For Cr, the K0 value (1.93 Mbar) is in agreement with the shock-wave value (1.92 Mbar) but not with the ultrasonic value (1.65 Mbar). This discrepancy can be explained in view of the paramagnetic→antiferromagnetic transition in Cr in the temperature proximity of the ultrasonic measurements (Neel temperature T/sub N/approx.311 0K at 1 bar) and by the negative pressure dependence of T/sub N/

  2. A new method for development of bond-order potentials for transition bcc metals

    International Nuclear Information System (INIS)

    A new development of numerical bond-order potentials (BOPs) for the non-magnetic transition metals V, Nb, Ta, Cr, Mo and W is presented. The principles on which the BOPs have been set up are the same as in earlier developments (Aoki et al 2007 Prog. Mater. Sci. 52 154). However, the bond integrals are based on the recently advanced method of parametrization of tight-binding from DFT calculations (Madsen et al 2011 Phys. Rev. B 83 4119, Urban et al 2011 Phys. Rev. B 84 155119) and do not require any screening. At the same time, the functional form of the environmentally dependent repulsion is identified with the functional form of the repulsion arising from the overlap of s and p electrons in argon as proposed in Aoki and Kurokawa (2007 J. Phys.: Condens. Matter 19 136228). This is justified by the same physical origin of the environment dependent repulsion, which in transition metals arises from the overlap of s electrons that are being squeezed into the ion core regions under the influence of the strong covalent d bonds. The testing of the developed BOPs involves investigation of alternative higher energy structures, transformation paths connecting the bcc structure with other structures via continuously distorted configurations, evaluation of the vacancy formation energy and calculation of phonon spectra. In all cases, the BOP calculations are in more than satisfactory agreement with either DFT calculations and/or available experimental data. The calculated γ-surfaces for {1 0 1} planes all suggest that the core of 1/2〈1 1 1〉 screw dislocations is non-degenerate in the transition metals. This is also in full agreement with available calculations that account fully for the quantum-mechanical nature of the d electrons that provide the bulk of the bonding in transition metals. The testing of developed BOPs clearly demonstrates that they are transferable to structures well outside the regime of the ideal bcc lattice and are suitable for investigating the

  3. Vacancy properties in 5d bcc transition metals: Ab initio study at finite electron temperature

    International Nuclear Information System (INIS)

    The self-diffusion constants for the monovacancy mechanism in the 5d transition-metals with bcc structure (β-Hf, Ta and W) are investigated by first-principles pseudopotential calculations within the framework of the Local Density Functional Theory. The formation and migration energies, calculated for relaxed configurations using supercells containing 27 and 54 atomic sites, are in quite good agreement with experimental data in Ta and W, with a discrepancy lower than 10%. Preliminary results in β-Hf using smaller supercells suggest very large and relaxation energies. The effects of finite electron-temperature is shown to be quite important, and very different from one element to the other: the electron contribution to the activation entropy is negative in Ta and positive in W, reaching respectively -2 kB and 2 kB at the melting temperature. Using simple estimates for the attempt frequencies and the vibrational formation entropies, the calculated self-diffusion coefficient is in exceptional agreement with experiments in W, and clearly reproduces an accelerated diffusivity in Ta

  4. Dislocation dynamics modelling of brittle-ductile transitions in BCC metals

    Energy Technology Data Exchange (ETDEWEB)

    Tarleton, E.; Roberts, S.; Novokshanov, R. [Oxford Univ., Dept. of Materials (United Kingdom)

    2007-07-01

    Full text of publication follows: Bend tests on single crystals of BCC metals (Tungsten, Iron and Iron Chromium alloys) show the brittle ductile transition temperature of a pre-cracked specimen under 4 point bending decreases by around 10 K for each order of magnitude decrease in strain rate. At higher temperatures or lower strain rates large numbers of dislocations are produced which are able to shield the crack from the external loading. This increased plasticity in the region of the crack tip can delay or even prevent brittle fracture meaning the specimen is ductile. These experiments have been modelled using a 2D dislocation dynamics code which simulates the nucleation and motion of dislocations around a loaded crack, and their effect of the crack-tip stress intensity factor. At high simulated temperatures or low simulated loading rates, dislocations can shield the crack tip sufficiently to prevent fracture. The model gives excellent agreement between predicted and experimental value of BDT temperatures and the variation with loading rate. However this good agreement occurs only the slip direction is at 70 degrees to the crack plane, rather than the 45 degree angle imposed by the crystallography of the real test specimens. 3D modelling of a crack is currently being performed to see if cross slip can account for an effective slip plane angle close to 70 degrees. (authors)

  5. Epitaxial growth of bcc transition metal films and superlattices onto MgO (111), (011) and (001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, J.E.; Fullerton, E.E.; Sowers, C.H.; Bader, S.D.

    1994-04-01

    We demonstrate epitaxial growth of the bcc transition metals Nb, Mo, Fe, and Cr via sputtering onto single crystal MgO substrates. The epitaxial growth orientations are (011), (112) and (001) when grown onto MgO (111), (011) and (001), respectively. Further we demonstrate that under appropriate growth conditions, superlattices of these materials (e.g., Fe/Cr, Fe/V and Mo/V) can be grown with the same epitaxial order as the films.

  6. Vibrational properties of vacancy in bcc transition metals using embedded atom method potentials

    Indian Academy of Sciences (India)

    Vandana Gairola; P D Semalty; P N Ram

    2013-06-01

    The embedded atom method (EAM) potentials, with the universal form of the embedding function along with the Morse form of pair potential, have been employed to determine the potential parameters for three bcc transition metals: Fe, Mo, and W, by fitting to Cauchy pressure $(C_{12} − C_{44})/2$, shear constants $G_{v} = (C_{11} − C_{12} + 3C_{44})/5$ and 44, cohesive energy and the vacancy formation energy. The obtained potential parameters are used to calculate the phonon dispersion spectra of these metals. Large discrepancies are found between the calculated results of phonon dispersion using the EAM and the experimental phonon dispersion results. Therefore, to overcome this inadequacy of the EAM model, we employ the modified embedded atom method (MEAM) in which a modified term along with the pair potential and embedding function is added in the total energy. The phonon dispersions calculated using potential parameters obtained from the MEAM show good agreement with experimental results compared to those obtained from the EAM. Using the calculated phonons, we evaluate the local density of states of the neighbours of vacancy using the Green’s function method. The local frequency spectrum of first neighbours of vacancy in Mo shows an increase at higher frequencies and a shift towards the lower frequencies whereas in Fe and W, the frequency spectrum shows a small decrease towards higher frequency and small shift towards lower frequency. For the second neighbours of vacancy in all the three metals, the local frequency spectrum is not much different from that of the host atom. The local density of states of the neighbours of the vacancy has been used to calculate the mean square displacements and the formation entropy of vacancy. The calculated mean square displacements of the first neighbours of vacancy are found to be higher than that of the host atom, whereas it is lower for the second neighbours. The calculated results of the formation entropy of the vacancy

  7. Simulation of He embrittlement at grain boundaries in bcc transition metals

    Science.gov (United States)

    Suzudo, Tomoaki; Yamaguchi, Masatake

    2015-10-01

    To investigate what atomic properties largely determine vulnerability to He embrittlement at grain boundaries (GB) of bcc metals, we introduce a computational model composed of first principles density functional theory and a He segregation rate theory model. Predictive calculations of He embrittlement at the first wall of the future DEMO fusion concept reactor indicate that variation in the He embrittlement originated not only from He production rate related to neutron irradiation, but also from the He segregation energy at the GB that has a systematic trend in the periodic table.

  8. Dissolving, trapping and detrapping mechanisms of hydrogen in bcc and fcc transition metals

    Directory of Open Access Journals (Sweden)

    Yu-Wei You

    2013-01-01

    Full Text Available First-principles calculations are performed to investigate the dissolving, trapping and detrapping of H in six bcc (V, Nb, Ta, Cr, Mo, W and six fcc (Ni, Pd, Pt, Cu, Ag, Au metals. We find that the zero-point vibrations do not change the site-preference order of H at interstitial sites in these metals except Pt. One vacancy could trap a maximum of 4 H atoms in Au and Pt, 6 H atoms in V, Nb, Ta, Cr, Ni, Pd, Cu and Ag, and 12 H atoms in Mo and W. The zero-point vibrations never change the maximum number of H atoms trapped in a single vacancy in these metals. By calculating the formation energy of vacancy-H (Vac-Hn complex, the superabundant vacancy in V, Nb, Ta, Pd and Ni is demonstrated to be much more easily formed than in the other metals, which has been found in many metals including Pd, Ni and Nb experimentally. Besides, we find that it is most energetically favorable to form Vac-H1 complex in Pt, Cu, Ag and Au, Vac-H4 in Cr, Mo and W, and Vac-H6 in V, Nb, Ta, Pd and Ni. At last, we examine the detrapping behaviors of H atoms in a single vacancy and find that with the heating rate of 10 K/min a vacancy could accommodate 4, 5 and 6 H atoms in Cr, Mo and W at room temperature, respectively. The detrapping temperatures of all H atoms in a single vacancy in V, Nb, Ta, Ni, Pd, Cu and Ag are below room temperature.

  9. Atomistic simulation of ideal shear strength, point defects, and screw dislocations in bcc transition metals: Mo as a prototype

    International Nuclear Information System (INIS)

    Using multi-ion interatomic potentials derived from first-principles generalized pseudopotential theory, we have studied ideal shear strength, point defects, and screw dislocations in the prototype bcc transition metal molybdenum (Mo). Many-body angular forces, which are important to the structural and mechanical properties of such central transition metals with partially filled d bands, are accounted for in the present theory through explicit three- and four-ion potentials. For the ideal shear strength of Mo, our computed results agree well with those predicted by full electronic-structure calculations. For point defects in Mo, our calculated vacancy-formation and activation energies are in excellent agreement with experimental results. The energetics of six self-interstitial configurations have also been investigated. The left-angle 110 right-angle split dumbbell interstitial is found to have the lowest formation energy, in agreement with the configuration found by x-ray diffuse scattering measurements. In ascending order, the sequence of energetically stable interstitials is predicted to be left-angle 110 right-angle split dumbbell, crowdion, left-angle 111 right-angle split dumbbell, tetrahedral site, left-angle 001 right-angle split dumbbell, and octahedral site. In addition, the migration paths for the left-angle 110 right-angle dumbbell self-interstitial have been studied. The migration energies are found to be 3 endash 15 times higher than previous theoretical estimates obtained using simple radial-force Finnis-Sinclair potentials. Finally, the atomic structure and energetics of left-angle 111 right-angle screw dislocations in Mo have been investigated. We have found that the so-called open-quote open-quote easy close-quote close-quote core configuration has a lower formation energy than the open-quote open-quote hard close-quote close-quote one, consistent with previous theoretical studies. (Abstract Truncated)

  10. bcc transition metals under pressure: results from ultrasonic interferometry and diamond-cell experiments

    International Nuclear Information System (INIS)

    Hydrostatic pressure derivatives of the single-crystal elastic moduli, dC/sub ij//dP, have been measured ultrasonically for b.c.c. Nb--Mo and Ta--W solid solutions. The composition dependence of various electronic properties of these alloys is known to be reasonably well approximated by a rigid-electron-band filling model where e/a, the electron per atom ratio, is the primary parameter. The results indicate that the elastic moduli and their pressure derivatives may also be calculated in such a model. In particular, the dC/sub ij//dP show relatively sharp increases at e/a compositions of 5.4 for Nb--Mo and 5.7 for Ta--W. Both compositions correspond to changes in Fermi surface topology, as deduced from existing band calculations and the rigid band assumption. The results are discussed in the light of related electronic properties and possible geophysical applications. A comparison is also made between ultrasonic results and X-ray diffraction data for Nb. Using diamond-anvil pressure cell, compression of Nb was determined by X-ray diffraction up to 55 kbar in a liquid medium under purely hydrostatic conditions, and up to 175 kbar in a solid medium under nonhydrostatic conditions. The data obtained under hydrostatic conditions agree well with the ultrasonic equation of state and shock wave data, whereas the nonhydrostatic results tend to imply either a higher bulk modulus K/sub s/ or a higher (par. deltaK/sub s//par. deltaP)/sub T/

  11. Bcc-fcc structure transition of Te

    International Nuclear Information System (INIS)

    Using the synchrotron radiation x-ray powder diffraction technique, the structure phase transition of Te has been investigated at pressure up to 330 GPa and at 298 K. The phase transition from the bcc (Te-V) to a new high-pressure phase (Te-VI) was found at 100 GPa and the structure of the new phase was suggested to be a superlattice of the fcc structure. The Te-VI phase further transformed to the fcc phase (Te-VII) at 255 GPa with disappearance of satellite peaks. Since for group 16 elements, it has been considered that the structure of the highest pressure phase is bcc, the present results provided new information about the high-pressure behaviour of these elements.

  12. Ab initio calculations of grain boundaries in bcc metals

    Science.gov (United States)

    Scheiber, Daniel; Pippan, Reinhard; Puschnig, Peter; Romaner, Lorenz

    2016-03-01

    In this study, we compute grain boundary (GB) properties for a large set of GBs in bcc transition metals with a special focus on W, Mo and Fe using ab initio density functional theory (DFT) and semi-empirical second nearest neighbour modified embedded atom method (2NN-MEAM) potentials. The GB properties include GB energies, surface energies, GB excess volume and work of separation, which we analyse and then compare to experimental data. We find that the used 2NN-MEAM potentials can predict general trends of GB properties, but do not always reproduce the GB ground state structure and energy found with DFT. In particular, our results explain the experimental finding that W and Mo prefer intergranular fracture, while other bcc metals prefer transgranular cleavage.

  13. Soft magnetic properties of nanocrystalline bcc Fe-Zr-B and Fe-M-B-Cu (M=transition metal) alloys with high saturation magnetization (invited)

    International Nuclear Information System (INIS)

    A mostly single bcc phase with nanoscale grain sizes of 10 to 20 nm was found to form by annealing amorphous Fe-Zr-B, Fe-Hf-B, and Fe-M-B-Cu(M=Ti, Zr, Hf, Nb, and Ta) alloys for 3.6 ks in the range of 723 to 923 K. The high permeability (μe) above 10 000 at 1 kHz combined with high saturation magnetization (Bs) above 1.5 T was obtained for the bcc alloys. The highest μe and Bs values reach 14 000 and 1.7 T for Fe91Zr7B2, 20 000 and 1.55 T for Fe87Zr7B5Cu1, and 48 000 and 1.52 T for Fe86Zr7B6Cu1. Magnetostriction (λs) decreases significantly by the phase transition from amorphous to bcc phase and is measured to be 1 x 10-6 for the bcc Fe86Zr7B6Cu1 alloy. The small λs as well as the small grain size is concluded to be the reason for the good soft magnetic properties. The lattice parameter of this bcc phase is 0.2870 nm being larger than that of pure α-Fe. The small λs seems to be achieved by the dissolution of solute elements above an equilibrium solubility limit. The bcc Fe86Zr7B6Cu1 alloy also shows the low core loss of 0.066 W/kg at 1 T and 50 Hz, which is considerably smaller than that of amorphous Fe78Si9B13 and bcc Fe-3.5mass%Si alloys in practical uses as core materials in transformer

  14. The Material Orientation Relationship for the BCC-HCP Transition

    OpenAIRE

    Kashchenko, M. P.; Chashchina, V. G.

    2007-01-01

    The dynamical model of forming of martensitic crystals for the bcc-hcp transition is offered. It is shown that all macroscopic morphological characters (the habit plane, the macroshear and the orientational relationship) are expressed through elastic moduluses Cij of an initial bcc phase.

  15. Gas-bubble superlattice formation in bcc metals

    International Nuclear Information System (INIS)

    The spatial ordering of small helium bubbles (diameter 1.5-2.0 nm) produced in the bcc metals V, W, Mo, Cr, Fe and Ta by ion implantation with 30-50 keV He+ is studied using transmission electron microscopy (TEM) and earlier studies are reappraised. Implantations are at temperatures in the range 300-773 K. Gas-bubble ordering onto {110} planes is observed in all the metals studied. For V, W and Mo, the bubbles order fully in three dimensions to form a bcc gas-bubble superlattice oriented parallel with the metal lattice. A similar conclusion is reached also for Cr, Fe and Ta although the study of these metals is less detailed. The bubble lattice parameters are found from bubble spacings determined from electron diffraction patterns. The results, confirmed from bright-field micrographs, are as follows: V, similar 3.9 nm at 300 K; W, similar 6.2 nm at 775 K; Mo, similar 6.2 nm at 675 K; Cr, similar 5.1 nm at 300 K; Fe, similar 6.0 nm at 300 K; and Ta, similar 6.4 nm at 575 K. The results suggest that ordered bcc bubble superlattices are a consistent feature in bcc metals following high-dose implantation with helium at temperatures ≅0.2Tm, where Tm is the melting temperature of the metal. ((orig.))

  16. Directional versus central-force bonding in studies of the structure and glide of 1/2 < 111 > screw dislocations in bcc transition metals

    Czech Academy of Sciences Publication Activity Database

    Gröger, Roman; Vítek, V.

    2009-01-01

    Roč. 89, č. 34 (2009), s. 3163-3178. ISSN 1478-6435 R&D Projects: GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z20410507 Keywords : transition metals * dislocation core * directional bonding Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.273, year: 2009

  17. Metastable bcc phase formation in 3d ferromagnetic transition metal thin films sputter-deposited on GaAs(100) substrates

    International Nuclear Information System (INIS)

    Co100−xFex and Ni100−yFey (at. %, x = 0–30, y = 0–60) films of 10 nm thickness are prepared on GaAs(100) substrates at room temperature by using a radio-frequency magnetron sputtering system. The detailed growth behavior is investigated by in-situ reflection high-energy electron diffraction. (100)-oriented Co and Ni single-crystals with metastable bcc structure are formed in the early stage of film growth, where the metastable structure is stabilized through hetero-epitaxial growth. With increasing the thickness up to 2 nm, the Co and the Ni films start to transform into more stable hcp and fcc structures through atomic displacements parallel to bcc(110) slide planes, respectively. The stability of bcc phase is improved by adding a small volume of Fe atoms into a Co film. The critical thickness of bcc phase formation is thicker than 10 nm for Co100−xFex films with x ≥ 10. On the contrary, the stability of bcc phase for Ni-Fe system is less than that for Co-Fe system. The critical thicknesses for Ni100−yFey films with y = 20, 40, and 60 are 1, 3, and 5 nm, respectively. The Co100−xFex single-crystal films with metastable bcc structure formed on GaAs(100) substrates show in-plane uniaxial magnetic anisotropies with the easy direction along GaAs[011], similar to the case of Fe film epitaxially grown on GaAs(100) substrate. A Co100−xFex film with higher Fe content shows a higher saturation magnetization and a lower coercivity

  18. Microstructural studies of hydrogen and deuterium in bcc refractory metals

    International Nuclear Information System (INIS)

    Over the past four years this research has been principally concerned with uncovering the microstructural atomic arrangements in alloys of hydrogen and deuterium with bcc refractory metals. Because these are interstitial phases in which the host metal lattice is substantially deformed by the incorporation of the H(D) atoms, there are pronounced x-ray scattering effects. X-ray diffraction has, therefore, been the main structural tool. A main objective of the project has been to determine the degree to which phase relations and solid solution properties in metal-hydride alloys depend upon the hydrogen-hydrogen interaction via the displacement field of the metal atoms. This has often included the elucidation of subtle thermodynamic properties which are revealed in structural studies

  19. Plastic anisotropy and dislocation trajectory in BCC metals.

    Science.gov (United States)

    Dezerald, Lucile; Rodney, David; Clouet, Emmanuel; Ventelon, Lisa; Willaime, François

    2016-01-01

    Plasticity in body-centred cubic (BCC) metals at low temperatures is atypical, marked in particular by an anisotropic elastic limit in clear violation of the famous Schmid law applicable to most other metals. This effect is known to originate from the behaviour of the screw dislocations; however, the underlying physics has so far remained insufficiently understood to predict plastic anisotropy without adjustable parameters. Here we show that deviations from the Schmid law can be quantified from the deviations of the screw dislocation trajectory away from a straight path between equilibrium configurations, a consequence of the asymmetrical and metal-dependent potential energy landscape of the dislocation. We propose a modified parameter-free Schmid law, based on a projection of the applied stress on the curved trajectory, which compares well with experimental variations and first-principles calculations of the dislocation Peierls stress as a function of crystal orientation. PMID:27221965

  20. Strain ordering in BCC metals and the associated anelasticity

    International Nuclear Information System (INIS)

    The BCC to BCT transformation is thought to occur as a consequence of strain ordering due to the interaction between impurity interstitials. A Hamiltonian is given, which involves the interaction energies between the strain fields of the interstitials belonging to three distinct sublattices. In the BCT phase, one of the sublattices is preferentially occupied. The free energy of the system is calculated in the mean field approximation. In this, the BCC to BCT transformation is found to be a first-order transition at a temperature Tsub(p) that is proportional to the concentration of the interstitials and certain basic interaction parameters. The anelastic behaviour of the interacting interstitials is then studied in the region T > Tsub(p). From the anelastic strain, which is proportional to the order parameter associated with the phase transition, the static compliance is obtained. The latter obeys a Curie-Weiss type of law. The creep function, which determines the response to a constant applied stress, is found to exhibit viscous behaviour near Tsub(p). From the creep function, the frequency-dependent compliance and the internal friction are evaluated. The results predict a shift and a broadening of the internal friction peak as Tsub(p) is approached from above. The features show qualitative resemblance with the recent data on Ta-O. (author)

  1. Atomistic simulations for multiscale modeling in bcc metal

    Energy Technology Data Exchange (ETDEWEB)

    Belak, J.; Moriarty, J.A.; Soderlind, P.; Xu, W.; Yang, L.H.; Zhu

    1998-09-25

    Quantum-based atomistic simulations are being used to study fundamental deformation and defect properties relevant to the multiscale modeling of plasticity in bcc metals at both ambient and extreme conditions. Ab initio electronic-structure calculations on the elastic and ideal-strength properties of Ta and Mo help constrain and validate many-body interatomic potentials used to study grain boundaries and dislocations. The predicted C(capital Sigma)5 (310)[100] grain boundary structure for Mo has recently been confirmed in HREM measurements. The core structure, (small gamma) surfaces, Peierls stress, and kink-pair formation energies associated with the motion of a/2(111) screw dislocations in Ta and Mo have also been calculated. Dislocation mobility and dislocation junction formation and breaking are currently under investigation.

  2. Cesium under pressure: First-principles calculation of the bcc-to-fcc phase transition

    Science.gov (United States)

    Carlesi, S.; Franchini, A.; Bortolani, V.; Martinelli, S.

    1999-05-01

    In this paper we present the ab initio calculation of the structural properties of cesium under pressure. The calculation of the total energy is done in the local-density approximation of density-functional theory, using a nonlocal pseudopotential including the nonlinear core corrections proposed by Louie et al. The calculation of the pressure-volume diagram for both bcc and fcc structures allows us to prove that the transition from bcc to fcc structure is a first-order transition.

  3. Melting of Transition Metals

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M; Japel, S; Boehler, R

    2005-04-11

    We review the transition melting studies carried out at Mainz, and describe a recently developed model used to explain that the relatively low melting slopes are due to the partially filled d-bands, and the persistence of the pressure induced s-d transition. The basic tenets of the model have now been reconfirmed by new measurements for Cu and Ni. The measurements show that Cu which has a filled 3d-band, has a melt slope that is about 2.5 greater than its neighbor Ni. In the case of Mo, the apparent discrepancy of DAC melting measurements with shock melting can be explained by accounting for the change in melt slope due to the bcc-cp transition observed in the shock studies. The Fe melt curve is revisited. The possible relevance of the Jahn-Teller effect and recently observed transition metal melts with Icosahedral Short-Range Order (ISRO) is discussed.

  4. Plasticity and Failure in Nanocrystalline BCC Metals via MD Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, R E

    2010-02-12

    Advances in the ability to generate extremely high pressures in dynamic experiments such as at the National Ignition Facility has motivated the need for special materials optimized for those conditions as well as ways to probe the response of these materials as they are deformed. We need to develop a much deeper understanding of the behavior of materials subjected to high pressure, especially the effect of rate at the extremely high rates encountered in those experiments. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum at pressures less than 100 GPa to investigate the processes associated with plastic deformation for strains up to 100%. We focus on 3D polycrystalline systems with typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures. We also present some results on void growth in nanocrystalline BCC metals under tension.

  5. On the stability of rhenium up to 1 TPa pressure against transition to the bcc structure

    Indian Academy of Sciences (India)

    A K Verma; P Ravindran; R S Rao; B K Godwal; R Jeanloz

    2003-01-01

    We have carried out electronic structure total energy calculations on rhenium in the hexagonal close packed (hcp) and body centred cubic (bcc) phases, by the full potential linear muffin–tin orbital method, in order to verify the stability of the ambient pressure hcp phase against transition to the bcc structure at high pressures. As per our results, no hcp to bcc structural transition can occur up to 1 TPa pressures. Moreover, our Bain path calculations show that face centred cubic and body centred tetragonal structures are also not energetically preferred over hcp in this pressure range. The axial ratio (/) of Re changes by less than 0.33% in the pressure range studied.

  6. Extended Finnis-Sinclair potential for bcc and fcc metals and alloys

    International Nuclear Information System (INIS)

    We propose an extended Finnis-Sinclair (FS) potential by extending the repulsive term into a sextic polynomial for enhancing the repulsive interaction and adding a quartic term to describe the electronic density function. It turns out that for bcc metals the proposed potential not only overcomes the 'soft' behaviour of the original FS potential, but also performs better than the modified FS one by Ackland et al, and that for fcc metals the proposed potential is able to reproduce the lattice constants, cohesive energies, elastic constant, vacancy formation energies, equations of state, pressure-volume relationships, melting points and melting heats. Moreover, for some fcc-bcc systems, e.g. the Ag-refractory metal systems, the lattice constants, cohesive energies and elastic constants of some alloys are reproduced by the proposed potential and are quite compatible with those directly determined by ab initio calculations

  7. Influence of reaction stresses induced by dislocation slips on the orientation evolution in bcc metals

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A plastic deformation model for bcc metals is proposed in consideration of reaction stresses. The shear strains and the corresponding reaction stresses induced by the activation of dislocations are calculated in the model, which will influence the following dislocation activation. The rolling texture in bcc metals is simulated up to 80% reduction, while the ratio of critical resolved shear stresses between the dislocations slipping on the {110} and {112} planes is chosen as 0.95. The corresponding calculation is also conducted with the activation of second dislocation, if the difference between the orientation factor of the two dislocations with maximal orientation factors is lower than 5%. It is shown that the simulated texture is closer to that of the 80% rolled interstitial free steels than other modeling. It is believed that the new model can give more attention to both of the strain and stress continuities during the plastic deformation of polycrystalline metals, and therefore approaches closer to the real deformation process in bcc metals.

  8. Stress dependence of the Peierls barrier of 1/2111 screw dislocations in BCC metals

    Czech Academy of Sciences Publication Activity Database

    Gröger, Roman; Vitek, V.

    2013-01-01

    Roč. 61, č. 17 (2013), s. 6362-6371. ISSN 1359-6454 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR GAP204/10/0255 Institutional support: RVO:68081723 Keywords : Screw dislocation * Peierls barrier * Nudged elastic band * BCC metals * Peierls stress Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.940, year: 2013

  9. Which stresses affect the glide of screw dislocations in bcc metals?

    Czech Academy of Sciences Publication Activity Database

    Gröger, Roman

    2014-01-01

    Roč. 94, č. 18 (2014), s. 2021-2030. ISSN 1478-6435 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Grant ostatní: Marie Curie Actions(CZ) 247705 MesoPhysDel Institutional support: RVO:68081723 Keywords : Peierls stress * screw dislocation * bcc metal * non-glide stress * yield criterion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.825, year: 2014

  10. Inhomogeneous Distribution of Residual Deformation Effects in Textured Bcc Metals

    OpenAIRE

    Perlovich, Yu.; Bunge, H.J.; Isaenkova, M.

    1997-01-01

    The distribution of residual deformation effects in textured metal sheets was studied by X-ray diffractometric methods using a position-sensitive detector (PSD). The elaborated procedure is based on the geometric principles of texture measurement, while the PSD technique allows to observe the profile of the X-ray line simultaneously with registering of its intensity. The proper treatment of experimental results gives values of line intensity, half-width and peak position of each angular posit...

  11. Analytic bond-order potentials for the bcc refractory metals Nb, Ta, Mo and W

    International Nuclear Information System (INIS)

    Bond-order potentials (BOPs) are based on the tight-binding approximation for determining the energy of a system of interacting atoms. The bond energy and forces are computed analytically within the formalism of the analytic BOPs. Here we present parametrizations of the analytic BOPs for the bcc refractory metals Nb, Ta, Mo and W. The parametrizations are optimized for the equilibrium bcc structure and tested for atomic environments far from equilibrium that had not been included in the fitting procedure. These tests include structural energy differences for competing crystal structures; tetragonal, trigonal, hexagonal and orthorhombic deformation paths; formation energies of point defects as well as phonon dispersion relations. Our tests show good agreement with available experimental and theoretical data. In practice, we obtain the energetic ordering of vacancy, [1 1 1], [1 1 0], and [1 0 0] self-interstitial atom in agreement with density functional theory calculations. (paper)

  12. Boundary Conditions for Dislocation Dynamics Simulations and Stage 0 of BCC Metals at Low Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tang, M; Kubin, L P

    2001-05-01

    In order to study the dislocation density evolution of body centered cubic (bcc) crystals at low temperature by dislocation dynamics (DD) simulations, we investigated carefully three different boundary conditions (BC) for DD, i.e., the quasi-free surface BC, the flux-balanced BC, and the periodic BC. The latter two BCs can account for the dislocation loss from the boundary of the finite simulation box. PBC can also eliminate the influence of surfaces and improve the line connectivity. We have found that the PBC provides a convenient and effective boundary condition for DD simulations and have applied it to the study of dislocation density evolution of bcc metals during stage 0 deformation at low temperature.

  13. MD modeling of screw dislocation influence upon initiation and mechanism of BCC-HCP polymorphous transition in iron

    Science.gov (United States)

    Dremov, V. V.; Ionov, G. V.; Sapozhnikov, F. A.; Smirnov, N. A.; Karavaev, A. V.; Vorobyova, M. A.; Ryzhkov, M. V.

    2015-09-01

    The present work is devoted to classical molecular dynamics investigation into microscopic mechanisms of the bcc-hcp transition in iron. The interatomic potential of EAM type used in the calculations was tested for the capability to reproduce ab initio data on energy evolution along the bcc-hcp transformation path (Burgers deformation + shuffe) and then used in the large-scale MD simulations. The large-scale simulations included constant volume deformation along the Burgers path to study the origin and nature of the plasticity, hydrostatic volume compression of defect free samples above the bcc to hcp transition threshold to observe the formation of new phase embryos, and the volume compression of samples containing screw dislocations to study the effect of the dislocations on the probability of the new phase critical embryo formation. The volume compression demonstrated high level of metastability. The transition starts at pressure much higher than the equilibrium one. Dislocations strongly affect the probability of the critical embryo formation and significantly reduce the onset pressure of transition. The dislocations affect also the resulting structure of the samples upon the transition. The formation of layered structure is typical for the samples containing the dislocations. The results of the simulations were compared with the in-situ experimental data on the mechanism of the bcc-hcp transition in iron.

  14. Coupled Simulations of Texture Evolution during Deformation and Recrystallization of FCC and BCC Metals

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, Balasubramaniam [ORNL; Gorti, Sarma B [ORNL

    2008-01-01

    Thermo-mechanical processing to produce optimum grain structure and texture is key to the successful utilization of commercial aluminum alloys and steels as sheet products. Several modeling techniques have been developed in the past with a reasonably good predictive capability for bulk deformation textures. However, prediction of texture evolution during recrystallization remains very challenging because of uncertainties involved in predicting the mechanisms that lead to nuclei formation and crystallographic orientations of the nuclei, and the uncertainties involved in predicting the grain boundary properties that determine the growth kinetics of the nuclei. We present some of our recent work in modeling the recrystallization textures following hot deformation in polycrystalline BCC and FCC metals.

  15. Investigation of irradiation strengthening of b.c.c. metals and their alloys. Progress report, January 1976--October 1976

    International Nuclear Information System (INIS)

    Research on irradiation of bcc metals and alloys is reported. Data and information are presented in appendixes on low temperature neutron irradiation of Nb, effects of tritium on the yield stress of Nb, multiple dislocation motion, dislocation group motion, dislocation kinetics, and computer simulation of dislocation motion

  16. Grain size engineering of bcc refractory metals: Top-down and bottom-up-Application to tungsten

    International Nuclear Information System (INIS)

    We have used two general methodologies for the production of ultrafine grained (UFG) and nanocrystalline (NC) tungsten (W) metal samples: top-down and bottom-up. In the first, Equal channel angular extrusion (ECAE), coupled with warm rolling has been used to fabricate UFG W, and high pressure torsion (HPT) was used to fabricate NC W. We demonstrate an abrupt shift in the deformation mechanism, particularly under dynamic compressive loading, in UFG and NC W. This novel deformation mechanism, a dramatic transition from a uniform deformation mode to that of localized shearing, is shared by other UFG and NC body-centerd cubic (BCC) metals. We have also conducted a series of bottom-up experiments to consolidate powdered UFG W precursors into solid bodies. The bottom-up approach relies on rapid, high-temperature consolidation, specifically designed for UFG and NC W powders. The mechanical property results from the top-down UFG and NC W were used as minimum property benchmarks to guide and design the experimental protocols and parameters for use in the bottom-up procedures. Preliminary results, showing rapid grain growth during the consolidation cycle, did not achieve full density in the W samples. Further development of high-purity W nanopowders and appropriate grain-growth inhibitors (e.g., Zener pinning) will be required to successfully produce bulk-sized UFG and NC W samples

  17. Calculation of the surface energy of bcc-metals with the empirical electron theory

    International Nuclear Information System (INIS)

    We have used the dangling bond analysis method (DBAM) based on the empirical electron theory (EET) to establish a database of surface energy for low index surfaces of the bcc-metals such as V, Cr, Fe, Nb, Mo, Ta, and W. And a brief introduction of the new surface energy models will be presented in this paper. Under the first-order approximation the calculated results are in agreement with experimental and other theoretical values. And the calculated surface energy shows a strong anisotropy. As we predicted, the surface energy of the close-packed (1 1 0) is the lowest one of all index surfaces. It is also found that the dangling bond electron density and the spatial distribution of covalent bonds have a great influence on surface energy of various index surfaces. The new calculation method for the research of surface energy provides a good basis for models of surface science phenomena, and the model may be extended to the surface energy estimation of more metals, alloys, ceramics, and so on, since abundant information about the valence electronic structure (VES) can be generated from EET.

  18. 3D dislocation dynamics: stress-strain behavior and hardening mechanisms in fcc and bcc metals

    International Nuclear Information System (INIS)

    A dislocation dynamics (DD) model for plastic deformation, connecting the macroscopic mechanical properties to basic physical laws governing dislocation mobility and related interaction mechanisms, has been developed. In this model there is a set of critical reactions that determine the overall results of the simulations, such as the stress-strain curve. These reactions are annihilation, formation of jogs, junctions, and dipoles and cross-slip. In this paper, we discuss these reactions and the manner in which they influence the simulated stress-strain behavior of fcc and bcc metals. In particular, we examine the formation (zipping) and strength of dipoles and junctions, and effect of jogs, using the dislocation dynamics model. We show that the strengths (unzipping) of these reactions for various configurations can be determined by direct evaluation of the elastic interactions. Next, we investigate the phenomenon of hardening in metals subjected to cascade damage. The investigated microstructure consists of small dislocation loops decorating the mobile dislocations. Preliminary results reveal that these loops act as hardening agents, trapping the dislocations and resulting in increased yield stress

  19. Oligocyclopentadienyl transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  20. Beyond chemical accuracy: The pseudopotential approximation in diffusion Monte Carlo calculations of the HCP to BCC phase transition in beryllium

    CERN Document Server

    Shulenburger, Luke; Desjarlais, M P

    2015-01-01

    Motivated by the disagreement between recent diffusion Monte Carlo calculations and experiments on the phase transition pressure between the ambient and beta-Sn phases of silicon, we present a study of the HCP to BCC phase transition in beryllium. This lighter element provides an oppor- tunity for directly testing many of the approximations required for calculations on silicon and may suggest a path towards increasing the practical accuracy of diffusion Monte Carlo calculations of solids in general. We demonstrate that the single largest approximation in these calculations is the pseudopotential approximation. After removing this we find excellent agreement with experiment for the ambient HCP phase and results similar to careful calculations using density functional theory for the phase transition pressure.

  1. Plasticity and Failure in Nanocrystalline BCC Metals via Molecular Dynamics Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, R E

    2010-09-29

    Advances in the ability to generate extremely high pressures in dynamic experiments such as at the National Ignition Facility has motivated the need for special materials optimized for those conditions as well as ways to probe the response of these materials as they are deformed. We need to develop a much deeper understanding of the behavior of materials subjected to high pressure, especially the effect of rate at the extremely high rates encountered in those experiments. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum at pressures less than 100 GPa to investigate the processes associated with plastic deformation for strains up to 100%. We focus on 3D polycrystalline systems with typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures. We also present some results on void growth in nanocrystalline BCC metals under tension.

  2. Microstructural studies of hydrogen and deuterium in bcc refractory metals. Progress report, 1 May 1979-31 July 1980

    International Nuclear Information System (INIS)

    Over the past four years this research has been principally concerned with uncovering the microstructural atomic arrangements in alloys of hydrogen and deuterium with bcc refractory metals. Because these are interstitial phases in which the host metal lattice is substantially deformed by the incorporation of the H(D) atoms, there are pronounced x-ray scattering effects. X-ray diffraction has, therefore, been the main structural tool. A main objective of the project has been to determine the degree to which phase relations and solid solution properties in metal-hydride alloys depend upon the hydrogen-hydrogen interaction via the displacement field of the metal atoms. This has often included the elucidation of subtle thermodynamic properties which are revealed in structural studies

  3. In-situ TEM observation of dynamic interaction between dislocation and cavity in BCC metals in tensile deformation

    Science.gov (United States)

    Tougou, Kouichi; Shikata, Akihito; Kawase, Uchu; Onitsuka, Takashi; Fukumoto, Ken-ichi

    2015-10-01

    To investigate the effect of irradiation hardening of structural materials due to cavity formation in BCC metals for nuclear applications, an in-situ transmission electron microscopy (TEM) observation in tensile test was performed for the helium ion-irradiated specimens of pure molybdenum and pure iron. The obstacle barrier strength, α was calculated from the bow-out dislocation based on line tension model, and the obstacle barrier strengths of cavity in pure molybdenum and pure iron were about 0.5-0.7. The fractions of cross-slip generation of dislocation of screw type due to interaction with the cavities were about 16-18 % for pure molybdenum.

  4. The Role of Shear in the Onset of Iron's bcc to hcp Stress--Induced Phase Transition

    Science.gov (United States)

    Lew, A.; Caspersen, K.; Ortiz, M.; Carter, E.

    2003-12-01

    Iron presents a martensitic phase transition from bcc to hcp at an approximate pressure of 13 GPa. The exact onset pressure has been determined to have values ranging from 9 to 16 GPa by several different experimental results. We propose a multiscale model for Iron, with all necessary quantities computed exclusively from first--principles. In this model, we account for all shear components of the deformation, finding that they play a crucial role in its onset, even for very small amounts of shear. Briefly, the model consists of constructing the energy landscape in all six-components of strain. Then, for a given deformation of a representative sample, we minimize its energy by possibly accomodating martensitic laminates inside it, in the spirit of a spinodal decomposition. We will describe the model in detail and show how the onset pressure varies when shear is present, as well as the mixed states encoutered upon transformation.

  5. Formation of Superlattices of Gold Nanoparticles Using Ostwald Ripening in Emulsions: Transition from fcc to bcc Structure.

    Science.gov (United States)

    Schmitt, Julien; Hajiw, Stéphanie; Lecchi, Amélie; Degrouard, Jéril; Salonen, Anniina; Impéror-Clerc, Marianne; Pansu, Brigitte

    2016-06-30

    An efficient method to form 3D superlattices of gold nanoparticles inside oil emulsion droplets is presented. We demonstrate that this method relies on Ostwald ripening, a well-known phenomenon occurring during the aging of emulsions. The key point is that the nanoparticle concentration inside the smaller droplets is increasing very slowly with time, thus inducing the crystallization of the nanoparticles into superlattices. Using oil-in-water emulsions doped with hydrophobic gold nanoparticles, we demonstrate that this method is efficient for different types of oils (toluene, cyclohexane, dodecane, and hexadecane). 3D superlattices of the nanoparticles are obtained, with dimensions reaching a hundred nanometers. The kinetics of the crystallization depends on the solubility of the oil in water but also on the initial concentration of the gold nanoparticles in oil. This method also provides an innovative way to obtain the complete phase diagram of nanoparticle suspensions with concentration. Indeed, during this slow crystallization process, a transition from a disordered suspension to a fcc structure is observed, followed by a transition toward a bcc structure. This evolution with time provides key results to understand the role played by the ligands located at the surface of the nanoparticles in order to control the type of superlattices which are formed. PMID:27267312

  6. Screw dislocation mobility in BCC metals: the role of the compact core on double-kink nucleation

    International Nuclear Information System (INIS)

    In this work, we examine the kink-nucleation process in BCC screw dislocations using atomistic simulation and transition pathway analysis, with a particular focus on the compact core structure. We observe the existence of a threshold stress, which results in an abrupt change in the minimum energy path of the kink-nucleation process, and hence, a discontinuity in the activation energy versus stress for the process. The magnitude of the discontinuity is found to be related to the degree of metastability of an intermediate split-core structure. This feature appears to be a direct consequence of the so-called 'camel-hump' nature of the Peierls potential, which manifests itself in the existence of a metastable, intermediate split-core structure. The effect is observed in a number of empirical EAM potentials, including Fe, Ta, V, Nb and Mo, suggesting a generality to the observations

  7. Computer simulation of vacancy and interstitial clusters in bcc and fcc metals

    International Nuclear Information System (INIS)

    Interstitial clusters in bcc-Fe and fcc-Cu and vacancy clusters in fcc-Cu have been studied by computer simulation using different types of interatomic potentials such as a short-ranged empirical pair potential of Johnson type, short-ranged many-body potentials of Finnis-Sinclair type and long-ranged pair potentials obtained within the generalized pseudopotential theory. The stability of a self interstitial in bcc-Fe was found to be dependent on the range of potential but not on the type. Thus, both short-ranged potentials simulated left angle 110 right angle dumb-bell as a stable configuration while in the case of the long-ranged potential the stable configuration is the left angle 111 right angle crowdion. Nevertheless the structure and properties of interstitial clusters were found to be qualitatively the same with all the potentials. Up to 50 interstitials, the most stable clusters were found as perfect dislocation loops with Burgers vector vectorb=1/2 left angle 111 right angle. The stability of interstitial clusters in Cu also does not depend on the potential and for the same sizes the most stable configurations are faulted Frank loops 1/3 left angle 111 right angle {111} and edge loops in the {110} plane. The structure and stability of vacancy clusters in fcc-Cu were found to be dependent mainly on both the range of potential and equilibrium conditions. Thus for long-ranged non-equilibrium pair potentials vacancy clusters in the {111} plane collapsed and formed vacancy loops or stacking fault tetrahedra depending on the shape of the initial vacancy platelet. For the short-ranged equilibrium many-body potential vacancy clusters do not collapse into loops or tetrahedra. The process of vacancy clustering in the cascade region has been studied by molecular dynamics. (orig.)

  8. Semiconducting transition metal oxides

    International Nuclear Information System (INIS)

    Open shell transition metal oxides are usually described as Mott or charge transfer insulators, which are often viewed as being disparate from semiconductors. Based on the premise that the presence of a correlated gap and semiconductivity are not mutually exclusive, this work reviews electronic structure calculations on the binary 3d oxides, so to distill trends and design principles for semiconducting transition metal oxides. This class of materials possesses the potential for discovery, design, and development of novel functional semiconducting compounds, e.g. for energy applications. In order to place the 3d orbitals and the sp bands into an integrated picture, band structure calculations should treat both contributions on the same footing and, at the same time, account fully for electron correlation in the 3d shell. Fundamentally, this is a rather daunting task for electronic structure calculations, but quasi-particle energy calculations in GW approximation offer a viable approach for band structure predictions in these materials. Compared to conventional semiconductors, the inherent multivalent nature of transition metal cations is more likely to cause undesirable localization of electron or hole carriers. Therefore, a quantitative prediction of the carrier self-trapping energy is essential for the assessing the semiconducting properties and to determine whether the transport mechanism is a band-like large-polaron conduction or a small-polaron hopping conduction. An overview is given for the binary 3d oxides on how the hybridization between the 3d crystal field symmetries with the O-p orbitals of the ligands affects the effective masses and the likelihood of electron and hole self-trapping, identifying those situations where small masses and band-like conduction are more likely to be expected. The review concludes with an illustration of the implications of the increased electronic complexity of transition metal cations on the defect physics and doping, using

  9. Multi-scale Modelling of Interstitial and Vacancy Defects in bcc Metals

    International Nuclear Information System (INIS)

    Full text of publication follows: We develop a comprehensive multi-scale model for single self-interstitial atom and vacancy defects in body-centred cubic transition metals forming groups 5B (vanadium, niobium and tantalum) and 6B (chromium, molybdenum and tungsten) of the Periodic Table. The model spans the electronic, atomistic and mesoscopic scales, and describes the electronic structure, interatomic interactions, and thermally activated mobility of defects. Density-functional calculations show that in all the non-magnetic bee metals the axially-symmetric 111 self-interstitial atom configuration has the lowest formation energy. In chromium the difference between the energies of the 111 and the 110 self-interstitial configurations is very small, making the two structures almost degenerate. Local densities of states for the atoms forming the core of the 111 crowdion configurations exhibit systematic widening of the local d-band and an upward shift of the anti-bonding peak in empty states. Using the information provided by electronic structure calculations, we derive a family of the Finnis-Sinclair-type interatomic potentials for vanadium, niobium, tantalum, molybdenum and tungsten. Using these potentials, we perform molecular dynamics simulations of thermally activated migration of self-interstitial atom defects in tungsten, and compare the results with the earlier studies of thermal migration of self-interstitial atom defects in vanadium. We rationalize the results of simulations using analytical solutions of the multi-string Frenkel-Kontorova model describing non-linear elastic interactions between a self-interstitial defect and phonon excitations. We find that the discreteness of the crystal lattice plays a dominant part in the picture of mobility of defects. We are also able to explain the origin of the non-Arrhenius diffusion of crowdions observed at elevated temperatures. (authors)

  10. The effect of shear deformations on the transition onset pressure of the bcc to hcp pressure induced martensitic phase transformation in iron.

    Science.gov (United States)

    Caspersen, K.; Lew, A.; Ortiz, M.; Carter, E.

    2003-12-01

    At a pressure of approximately 13 GPa iron undergoes a martensitic phase transition from ground state ferro-magnetic bcc to a non-magnetic hcp structure. The exact transformation varies between experiments and is postulated to have a strong dependence on shear stresses during the loading process. To study this shear dependence we have developed a multi-scale model of iron, in which we employ a quantum mechanics based free energy, a kinematically compatible spinodal decomposition of phases, and a dependence on the bcc{}hcp transition path(s). Using this model we see that that the predicted transformation pressure for pure hydrostatic compression is much higher than expected, however with the inclusion of small initial shear deformations we see the predicted transformation pressure drop considerably and into the experimentally determined pressure range.

  11. Phase transition from fcc to bcc structure of the Cu-clusters during nanocrystallization of Fe85.2Si1B9P4Cu0.8 soft magnetic alloy

    Directory of Open Access Journals (Sweden)

    Masahiko Nishijima

    2014-05-01

    Full Text Available A role of Cu on the nanocrystallization of an Fe85.2Si1B9P4Cu0.8 alloy was investigated by X-ray absorption fine structure (XAFS and transmission electron microscopy (TEM. The Cu K-edge XAFS results show that local structure around Cu is disordered for the as-quenched sample whereas it changes to fcc-like structure at 613 K. The fcc Cu-clusters are, however, thermodynamically unstable and begin to transform into bcc structure at 638 K. An explicit bcc structure is observed for the sample annealed at 693 K for 600 s in which TEM observation shows that precipitated bcc-Fe crystallites with ∼12 nm are homogeneously distributed. The bcc structure of the Cu-clusters transforms into the fcc-type again at 973 K, which can be explained by the TEM observations; Cu segregates at grain boundaries between bcc-Fe crystallites and Fe3(B,P compounds. Combining the XAFS results with the TEM observations, the structure transition of the Cu-clusters from fcc to bcc is highly correlated with the preliminary precipitation of the bcc-Fe which takes place prior to the onset of the first crystallization temperature, Tx1 = 707 K. Thermodynamic analysis suggests that an interfacial energy density γ between an fcc-Cu cluster and bcc-Fe matrix dominates at a certain case over the structural energy between fcc and bcc Cu, ΔGfcc − bcc, which causes phase transition of the Cu clusters from fcc to bcc structure.

  12. Phase transition from fcc to bcc structure of the Cu-clusters during nanocrystallization of Fe85.2Si1B9P4Cu0.8 soft magnetic alloy

    International Nuclear Information System (INIS)

    A role of Cu on the nanocrystallization of an Fe85.2Si1B9P4Cu0.8 alloy was investigated by X-ray absorption fine structure (XAFS) and transmission electron microscopy (TEM). The Cu K-edge XAFS results show that local structure around Cu is disordered for the as-quenched sample whereas it changes to fcc-like structure at 613 K. The fcc Cu-clusters are, however, thermodynamically unstable and begin to transform into bcc structure at 638 K. An explicit bcc structure is observed for the sample annealed at 693 K for 600 s in which TEM observation shows that precipitated bcc-Fe crystallites with ∼12 nm are homogeneously distributed. The bcc structure of the Cu-clusters transforms into the fcc-type again at 973 K, which can be explained by the TEM observations; Cu segregates at grain boundaries between bcc-Fe crystallites and Fe3(B,P) compounds. Combining the XAFS results with the TEM observations, the structure transition of the Cu-clusters from fcc to bcc is highly correlated with the preliminary precipitation of the bcc-Fe which takes place prior to the onset of the first crystallization temperature, Tx1 = 707 K. Thermodynamic analysis suggests that an interfacial energy density γ between an fcc-Cu cluster and bcc-Fe matrix dominates at a certain case over the structural energy between fcc and bcc Cu, ΔGfcc−bcc, which causes phase transition of the Cu clusters from fcc to bcc structure

  13. Phase transition from fcc to bcc structure of the Cu-clusters during nanocrystallization of Fe85.2Si1B9P4Cu0.8 soft magnetic alloy

    Science.gov (United States)

    Nishijima, Masahiko; Matsuura, Makoto; Takenaka, Kana; Takeuchi, Akira; Ofuchi, Hironori; Makino, Akihiro

    2014-05-01

    A role of Cu on the nanocrystallization of an Fe85.2Si1B9P4Cu0.8 alloy was investigated by X-ray absorption fine structure (XAFS) and transmission electron microscopy (TEM). The Cu K-edge XAFS results show that local structure around Cu is disordered for the as-quenched sample whereas it changes to fcc-like structure at 613 K. The fcc Cu-clusters are, however, thermodynamically unstable and begin to transform into bcc structure at 638 K. An explicit bcc structure is observed for the sample annealed at 693 K for 600 s in which TEM observation shows that precipitated bcc-Fe crystallites with ˜12 nm are homogeneously distributed. The bcc structure of the Cu-clusters transforms into the fcc-type again at 973 K, which can be explained by the TEM observations; Cu segregates at grain boundaries between bcc-Fe crystallites and Fe3(B,P) compounds. Combining the XAFS results with the TEM observations, the structure transition of the Cu-clusters from fcc to bcc is highly correlated with the preliminary precipitation of the bcc-Fe which takes place prior to the onset of the first crystallization temperature, Tx1 = 707 K. Thermodynamic analysis suggests that an interfacial energy density γ between an fcc-Cu cluster and bcc-Fe matrix dominates at a certain case over the structural energy between fcc and bcc Cu, ΔGfcc - bcc, which causes phase transition of the Cu clusters from fcc to bcc structure.

  14. Atomic-scale simulations of material behaviors and tribology properties for BCC metal film

    Science.gov (United States)

    H, D. Aristizabal; P, A. Parra; P, López; E, Restrepo-Parra

    2016-01-01

    This work has two main purposes: (i) introducing the basic concepts of molecular dynamics analysis to material scientists and engineers, and (ii) providing a better understanding of instrumented indentation measurements, presenting an example of nanoindentation and scratch test simulations. To reach these purposes, three-dimensional molecular dynamics (MD) simulations of nanoindentation and scratch test technique were carried out for generic thin films that present BCC crystalline structures. Structures were oriented in the plane (100) and placed on FCC diamond substrates. A pair wise potential was employed to simulate the interaction between atoms of each layer and a repulsive radial potential was used to represent a spherical tip indenting the sample. Mechanical properties of this generic material were obtained by varying the indentation depth and dissociation energy. The load-unload curves and coefficient of friction were found for each test; on the other hand, dissociation energy was varied showing a better mechanical response for films that present grater dissociation energy. Structural change evolution was observed presenting vacancies and slips as the depth was varied. Project supported by la DirecciónNacional de Investigación of the Universidad Nacional de Colombia, “the Theoretical Study of Physical Properties of Hard Materials for Technological Applications” (Grant No. 20101007903).

  15. Transition metals in carbohydrate chemistry

    DEFF Research Database (Denmark)

    Madsen, Robert

    1997-01-01

    This review describes the application of transition metal mediated reactions in carbohydrate synthesis. The different metal mediated transformations are divided into reaction types and illustrated by various examples on monosaccharide derivatives. Carbon-carbon bond forming reactions are further ...

  16. Effect of microstructural and morphological parameters on the formability of BCC metal sheets

    OpenAIRE

    FRANZ, Gérald; ABED-MERAIM, Farid; Berveiller, Marcel

    2014-01-01

    The determination of forming limit strains in sheet metal forming industry is a useful way for quantifying metals in terms of formability. However, such forming limit diagrams (FLDs) remain very difficult to obtain experimentally. Therefore, the numerical prediction of forming limit strains represents a convenient alternative to replace this time consuming and expensive experimental process. Moreover, a combined theoretical-numerical model allows investigating the impact of essential microstr...

  17. Electrical Conductivity in Transition Metals

    Science.gov (United States)

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  18. Density functional theory studies of screw dislocation core structures in bcc metals

    DEFF Research Database (Denmark)

    Frederiksen, Søren Lund; Jacobsen, Karsten Wedel

    2003-01-01

    The core structures of (I 11) screw dislocations in bee metals are studied using density functional theory in the local-density approximation. For Mo and Fe, direct calculations of the core structures show the cores to be symmetric with respect to 180degrees rotations around an axis perpendicular...... to the dislocation line. The magnetic moment in the Fe core is shown to be reduced relative to the bulk value. Calculations of gamma surfaces and the elastic constants B, C' and c(44) are reported for Fe and all group VB and VIB metals. Using a criterion suggested by Vitek and Duesbery the...

  19. Atomic displacements in bcc dilute alloys

    Indian Academy of Sciences (India)

    Hitesh Sharma; S Prakash

    2007-04-01

    We present here a systematic investigation of the atomic displacements in bcc transition metal (TM) dilute alloys. We have calculated the atomic displacements in bcc (V, Cr, Fe, Nb, Mo, Ta and W) transition metals (TMs) due to 3d, 4d and 5d TMs at the substitutional site using the Kanzaki lattice static method. Wills and Harrison interatomic potential is used to calculate the atomic force constants, the dynamical matrix and the impurity-induced forces. We have thoroughly investigated the atomic displacements using impurities from 3d, 4d and 5d series in the same host metal and the same impurity in different hosts. We have observed a systematic pattern in the atomic displacements for Cr-, Fe-, Nb-, Mo-, Ta- and W-based dilute alloys. The atomic displacements are found to increase with increase in the number of d electrons for all alloys considered except for V dilute alloys. The 3d impurities are found to be more easily dissolved in the 3d host metals than 4d or 5d TMs whereas 4d and 5d impurities show more solubility in 4d and 5d TMs. In general, the relaxation energy calculation suggests that impurities may be easily solvable in 5d TM hosts when compared to 3d or 4d TMs.

  20. A composite dislocation cell model to describe strain path change effects in BCC metals

    NARCIS (Netherlands)

    Yalcinkaya, T.; Brekelmans, W.A.M.; Geers, M.G.D.

    2009-01-01

    Sheet metal forming processes are within the core of many modern manufacturing technologies, as applied in, e.g., automotive and packaging industries. Initially flat sheet material is forced to transform plastically into a three-dimensional shape through complex loading modes. Deviation from a propo

  1. Microyield and nature of physical fatigue strength of b.c.c. metals

    International Nuclear Information System (INIS)

    The peculiar features of metal behaviour in the region of micro-fluidity during static and cyclic deformation are investigated. The model of the physical limit of fatigue of the metals with the volumetric body-centered lattice is described. The investigations have been conducted on the samples of single-crystal silicon iron of three orientations and poly-crystal samples made of armco-iron and steel-45. The peculiar features of micro-deformation at static and cyclic loading with the amplitudes close to the fatigue limit are compared. It is established that the fatigue limit in the course of the cyclic load is determined by the ratio between the helical dislocation origination stress and the maximum stress during the loading cycle when the fatigue failure steadily develops

  2. Pillared layered transition metal oxides

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper reviews the recent progress in the synthesis and application of pillared transition metal oxides during the last decade, mainly concerning the synthetic methods, structures, physical properties and catalytic applications of the layered transition metal oxides pillared by inorganic oxides. The factors and their affecting regularity in the process of preparation, and some important results obtained in the catalytic application studies are summarized. Finally, a prospect on the potential new directions in this research area is also presented.

  3. Mechanical properties testing of several 800 MeV proton irradiated BCC metals and alloys

    International Nuclear Information System (INIS)

    A spallation neutron source for the 600-MeV proton accelerator facility at the Swiss Institute for Nuclear Research (SIN) consists of a vertical cylinder filled with molten Pb-Bi. The proton beam enters the cylinder, passing upward through a window in contact with the Pb-Bi eutectic liquid. Investigations are underway at the 800-MeV proton accelerator at LAMPF to test the performance of candidate SIN window materials. Based on considerations of chemical compatibility with molten Pb-Bi, as well as radiation damage mechanisms, Fe, Ta, Fe-2.25Cr-1Mo, and Fe-12Cr-1Mo (Ht-9) were chosen as candidate materials. Sheet tensile samples were sealed inside capsules containing Pb-Bi and were proton-irradiated at LAMPF to two fluences, 4.8 and 54 x 1023 p/m2. The beam current was approximately equal to the 1 mA anticipated for the upgraded SIN accelerator. Yield and ultimate strengths increased upon irradiation in all materials, while the ductility decreased. The pure metals, Ta and Fe, exhibited the greatest radiation hardening and embrittlement. The HT-9 alloy showed the smallest changes in strength and ductility

  4. Merging transition-metal activation and aminocatalysis

    OpenAIRE

    Rios, Ramon; Meazza, Marta

    2015-01-01

    In this review the principal enantioselective methodologies merging transition-metal catalysis and aminocatalysis are disclosed. 1 Introduction 2 Transition-Metal and Enamine Catalysis 3 Transition-Metal and Iminium Catalysis 4 Transition-Metal Catalysis and Organocascade (Iminium/Enamine) Activation 5 Conclusions and Perspectives

  5. Interface magnetism of 3d transition metals

    DEFF Research Database (Denmark)

    Niklasson, A. M. N.; Johansson, B.; Skriver, Hans Lomholt

    1999-01-01

    The layered resolved magnetic spin moments of the magnetic 3d bilayer interfaces Fe/V bcc, Fe/Co bcc, Fe/Cu bcc, Co/V bcc, Co/Ni fee, Co/Cu fee, Ni/V fee, Ni/Cr fcc, Ni/Cu fee and the magnetic surfaces Fe bcc, Co bcc, Co fee, and Ni fee are calculated for the (001), (011), and (111) orientations by...

  6. Microstructural Characterization of Dislocation Networks During Harper-Dorn Creep of fcc, bcc, and hcp Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Przystupa, Marek A.

    2007-12-13

    Harper-Dorn (H-D) creep is observed in metals and geological materials exposed to very low stresses at temperatures close to the melting point. It is one of several types of creep processes wherein the steady-state strain rate is proportional to the applied stress, Nabarro-Herring creep and Coble creep being two other important processes. H-D creep can be somewhat insidious because the creep rates are much larger than those expected for Nabarro-Herring or Coble creep. Since the working conditions of structural components of power plants and propulsion systems, as well as the motion of the earth’s mantle all involve very low stresses, an understanding of the factors controlling H-D creep is critical in preventing failures associated with those higher-than-expected creep rates. The purpose of this investigation was to obtain missing microstructural information on the evolution of the dislocation structures during static annealing of materials with fcc, bcc and hcp structure and use obtained results to test predictive capabilities of the dislocation network theory of H-D creep. In our view the evolutionary processes during static annealing and during Harper-Dorn creep are intimately related. The materials used in this study were fcc aluminum, hcp zinc and bcc tin. All characterizations of dislocation structures, densities and dislocation link length distributions were carried out using the etch pit method. To obtain quantitative information on the evolution of the dislocation networks during annealing the pure fcc aluminum samples were pre-deformed by creep at 913 and 620 K and then annealed. The higher deformation temperature was selected to generate starting dislocation networks similar to those forming during Harper-Dorn creep and the lower, to obtain higher dislocation densities suitable for reliable estimates of the parameters of the network growth law. The measured experimental link length distribution were, after scaling, (1) the same for all annealing

  7. Electronic and thermodynamic properties of transition metal elements and compounds

    International Nuclear Information System (INIS)

    This thesis focuses on the use of band-structure calculations for studying thermodynamic properties of solids. We discuss 3d-, 4d- and 5d-transition metal carbides and nitrides. Through a detailed comparison between theoretical and experimental results, we draw conclusions on the character of the atomic bonds in these materials. We show how electronic structure calculations can be used to give accurate predictions for bonding energies. Part of the thesis is devoted to the application of the generalized gradient approximation in electronic structure calculations on transition metals. For structures with vibrational disorder, we present a method for calculating averaged phonon frequencies without using empirical information. For magnetic excitations, we show how a combined use of theoretical results and experimental data can yield information on magnetic fluctuations at high temperatures. The main results in the thesis are: Apart for an almost constant shift, theoretically calculated bonding energies for transition metal carbides and nitrides agree with experimental data or with values from analysis of thermochemical information. The electronic spectrum of transition metal carbides and nitrides can be separated into bonding, antibonding and nonbonding electronic states. The lowest enthalpy of formation for substoichiometric vanadium carbide VC1-X at zero temperature and pressure occurs for a structure containing vacancies (x not equal to 0). The generalized gradient approximation improves theoretical calculated cohesive energies for 3d-transition metals. Magnetic phase transitions are sensitive to the description of exchange-correlation effects in electronic structure calculations. Trends in Debye temperatures can be successfully analysed in electronic structure calculations on disordered lattices. For the elements, there is a clear dependence on the crystal structure (e.g., bcc, fcc or hcp). Chromium has fluctuating local magnetic moments at temperatures well above

  8. Alkali and transition metal phospholides

    International Nuclear Information System (INIS)

    Major tendencies in modern chemistry of alkali and transition metal phospholides (phosphacyclopentadienides) are systematized, analyzed and generalized. Basic methods of synthesis of these compounds are presented. Their chemical properties are considered with a special focus on their complexing ability. Potential applications of phospholides and their derivatives are discussed. The bibliography includes 184 references

  9. Approximating Metal-Insulator Transitions

    OpenAIRE

    Danieli, C.; Rayanov, K.; Pavlov, B.; Martin, G.; Flach, S

    2014-01-01

    We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate metal-insulator transitions (MIT) at the finite iteration steps. We also report evidence on mobility ed...

  10. Metal-to-nonmetal transitions

    CERN Document Server

    Hensel, Friedrich; Holst, Bastian

    2010-01-01

    This book is devoted to nonmetal-to-metal transitions. The original ideas of Mott for such a transition in solids have been adapted to describe a broad variety of phenomena in condensed matter physics (solids, liquids, and fluids), in plasma and cluster physics, as well as in nuclear physics (nuclear matter and quark-gluon systems). The book gives a comprehensive overview of theoretical methods and experimental results of the current research on the Mott effect for this wide spectrum of topics. The fundamental problem is the transition from localized to delocalized states which describes the nonmetal-to-metal transition in these diverse systems. Based on the ideas of Mott, Hubbard, Anderson as well as Landau and Zeldovich, internationally respected scientists present the scientific challenges and highlight the enormous progress which has been achieved over the last years. The level of description is aimed to specialists in these fields as well as to young scientists who will get an overview for their own work...

  11. Nonlinear elastic effects in phase field crystal and amplitude equations: Comparison to ab initio simulations of bcc metals and graphene

    Science.gov (United States)

    Hüter, Claas; Friák, Martin; Weikamp, Marc; Neugebauer, Jörg; Goldenfeld, Nigel; Svendsen, Bob; Spatschek, Robert

    2016-06-01

    We investigate nonlinear elastic deformations in the phase field crystal model and derived amplitude equation formulations. Two sources of nonlinearity are found, one of them is based on geometric nonlinearity expressed through a finite strain tensor. This strain tensor is based on the inverse right Cauchy-Green deformation tensor and correctly describes the strain dependence of the stiffness for anisotropic and isotropic behavior. In isotropic one- and two-dimensional situations, the elastic energy can be expressed equivalently through the left deformation tensor. The predicted isotropic low-temperature nonlinear elastic effects are directly related to the Birch-Murnaghan equation of state with bulk modulus derivative K'=4 for bcc. A two-dimensional generalization suggests K2D '=5 . These predictions are in agreement with ab initio results for large strain bulk deformations of various bcc elements and graphene. Physical nonlinearity arises if the strain dependence of the density wave amplitudes is taken into account and leads to elastic weakening. For anisotropic deformation, the magnitudes of the amplitudes depend on their relative orientation to the applied strain.

  12. Synthesis of transition metal carbonitrides

    Energy Technology Data Exchange (ETDEWEB)

    Munir, Zuhair A. R. (Davis, CA); Eslamloo-Grami, Maryam (Davis, CA)

    1994-01-01

    Transition metal carbonitrides (in particular, titanium carbonitride, TiC.sub.0.5 N.sub.0.5) are synthesized by a self-propagating reaction between the metal (e.g., titanium) and carbon in a nitrogen atmosphere. Complete conversion to the carbonitride phase is achieved with the addition of TiN as diluent and with a nitrogen pressure .gtoreq.0.6 MPa. Thermodynamic phase-stability calculations and experimental characterizations of quenched samples provided revealed that the mechanism of formation of the carbonitride is a two-step process. The first step involves the formation of the nonstoichiometric carbide, TiC.sub.0.5, and is followed by the formation of the product by the incorporation of nitrogen in the defect-structure carbide.

  13. Approximating metal-insulator transitions

    Science.gov (United States)

    Danieli, Carlo; Rayanov, Kristian; Pavlov, Boris; Martin, Gaven; Flach, Sergej

    2015-12-01

    We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step, the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate Metal-Insulator Transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges, which are at variance to the celebrated Aubry-André model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase, similar to the divergence of the localization length in the insulating phase.

  14. Heterostructures of transition metal dichalcogenides

    KAUST Repository

    Amin, Bin

    2015-08-24

    The structural, electronic, optical, and photocatalytic properties of out-of-plane and in-plane heterostructures of transition metal dichalcogenides are investigated by (hybrid) first principles calculations. The out-of-plane heterostructures are found to be indirect band gap semiconductors with type-II band alignment. Direct band gaps can be achieved by moderate tensile strain in specific cases. The excitonic peaks show blueshifts as compared to the parent monolayer systems, whereas redshifts occur when the chalcogen atoms are exchanged along the series S-Se-Te. Strong absorption from infrared to visible light as well as excellent photocatalytic properties can be achieved.

  15. Lattice Dynamics of Transition Metals

    International Nuclear Information System (INIS)

    The frequency versus wave-vector v(q) dispersion relations for the normal modes of vibration of several body-centred cubic transition metal, crystals have been measured recently at room temperature. The dispersion curves for niobium, measured by Nakagawa and Woods, displayed some very unusual features, and the results could only be fitted by means of a Born-von Kármán model if interactions out to very distant neighbours (beyond eighth) were included. Subsequent measurements on tantalum by Woods showed very similar results. This is not surprising since niobium and tantalum are in column V of the periodic table and many of their electronic properties are similar. Measurements of the dispersion curves of molybdenum by Woods and Chen and of tungsten by Chen and Brockhouse showed that although these metals, which are in column VI of the periodic table, had dispersion relations which were similar to each other, these dispersion relations were very different from those of the column V metals, niobium and tantalum. The gross features of the v(q) for molybdenum and tungsten were very nearly describable by a third neighbour axially-symmetric Born-von Kármán force model, although several important features were not reproduced by this model. One of these features is a striking anomaly in the [ζζζ] longitudinal (L) branch for molybdenum where the frequency changes from v = 6.3 x 1012 c/s at ζ = 0.92 to v= 5.5 x 1012 c/s at ζ = 1.0. If this and other observed features are Kohn anomalies, their positions are consistent with the dimensions of the Fermi suríace of the column V metals proposed by Lomer. Thus it is suggested that the striking differences between the dispersion relation for niobium and that for molybdenum (metals which are believed to have quite similar band structures) reflect differences in the Fermi energies and hence the Fermi surfaces for these materials. (author)

  16. Piperazine pivoted transition metal dithiocarbamates

    Science.gov (United States)

    Khan, Sadaf; Nami, Shahab A. A.; Siddiqi, K. S.

    2008-03-01

    A quadridentate ligand disodium bis(2,2'-dithiopiperazinato-2,2'-diamino diethylamine) Na 2L 2 and its self assembled transition metal complexes of the type, M 2(L 2) 2 {M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)} have been reported. The piperazine pivoted homodinuclear complexes have been characterized by a range of spectral, thermal, microanalytical and conductometric techniques. On the basis of IR and 1HNMR data a symmetrical bidentate coordination of the dithiocarbamato moiety has been observed in all the cases. The TGA profile of the ligand exhibits two stage thermolytic pattern although the complexes decompose in three steps, respectively. Metal sulfide is found to be the end product. The formation of homodinuclear complexes has been ascertained on the basis of FAB mass spectral data and a probable fragmentation pattern has been proposed. On the basis of UV-visible spectroscopic results and room temperature magnetic moment data a tetrahedral geometry has been proposed for all the complexes except for the Ni(II) and Cu(II) which are found to be square-planar.

  17. Calculation of the Gibbs energy and the equilibrium concentration vacancies in the surface layer of bcc metals

    International Nuclear Information System (INIS)

    Calculation of Gibbs surface energy for series of body-centered cubic metals (Nb, Mo, Ta, W) and concentration of vacancies at surface layer was carried out using methods of vacancy thermodynamic model of face-centered cubic metals. Gibbs formation surface energy of body-centered cubic metals, as well as face-centered cubic metals is shown to associate with equilibrium concentration of vacancies Nv(s) at surface layer by means of correlation ΔGs = - RTlnNv(s); value Nv(s) is reached threshold value (≅ 10-2) at pre-melting temperature. Enriching surface layer of the metals by vacancies as a thermodynamic effect is at the base of events of lowering hardness of the metals under the effect of surfactant, and acceleration of atom self-diffusion at surface layer of a metal as compared with its volume

  18. Effect of the coupling between electronic structure and crystalline structure on some properties of transition metals

    International Nuclear Information System (INIS)

    The elastic constants, energetic stabilities and vacancy formation energies in transition metals are calculated within a Tight Binding model. In order to outline the effect of the electronic structure, these properties are represented as functions of band filling. The variation of the shear elastic constants of hexagonal close packed (HCP), body centered cubic (BCC) and face centered cubic (FCC) structures, is in contrast with the roughly parabolic behavior of bulk modulus. The general trends are in very good agreement with available experimental and 'ab initio' data. The vacancy formation energy in the BCC structure shows strong deviations from bell shape behavior with a maximum corresponding approximately to the band filling of group 6. This band filling effect contributes to the noticeable decrease of the self diffusion rate between group 4 and group 6. We demonstrate that the abrupt increase of the C' elastic constant, the NT1 (0.-1.1) phonon frequency, the energy differences between BCC and HCP and between FCC and HCP as well as the vacancy formation energy, that occurs when going from Zr to Mo, is related to the presence of a pseudo-gap in the density of states of the BCC structure. Using the recursion method, we show that the general trends of these properties are correctly reproduced when considering only a few moments of the density of states (about 6). On the other hand, details such as the elastic constant singularities, are displayed only with an exact calculation of the density of states. (Author). 173 refs., 84 figs., 5 tabs

  19. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  20. Electronic doping of transition metal oxide perovskites

    Science.gov (United States)

    Cammarata, Antonio; Rondinelli, James M.

    2016-05-01

    CaFeO3 is a prototypical negative charge transfer oxide that undergoes electronic metal-insulator transition concomitant with a dilation and contraction of nearly rigid octahedra. Altering the charge neutrality of the bulk system destroys the electronic transition, while the structure is significantly modified at high charge content. Using density functional theory simulations, we predict an alternative avenue to modulate the structure and the electronic transition in CaFeO3. Charge distribution can be modulated using strain-rotation coupling and thin film engineering strategies, proposing themselves as a promising avenue for fine tuning electronic features in transition metal-oxide perovskites.

  1. Dynamics of the HCP/BCC phase transition and of the diffusion in zirconium: a model based on a tight-binding potential

    International Nuclear Information System (INIS)

    We have developed an N-body interatomic potential, based on the second moment approximation of the tight-binding scheme, by fitting its four adjustable parameters to the cohesive energy, atomic volume, and elastic constants of hcp-Zr. We then showed that various properties of this potential compare favorably with those of zirconium in both the low temperatures hcp phase and the high temperature bcc phase. Such is the case in particular for the elastic constants, the phonon dispersion curves, the thermal expansion, and the melting temperature. We reproduced by molecular dynamics (MD) simulations on this potential the hcp/bcc phase transformation in both ways. It indeed occurs following the mechanism predicted by Burgers. We find a vibrational entropy of transformation equal to 0.13 kB. Our calculations suggest that in real zirconium the electronic contribution to the transformation entropy is important. We show that some interatomic potential lead to a higher value of the vibrational entropy in the hcp phase than in the bcc phase. We specified the dynamics of the vacancy migration in the bcc phase. The atomic jumps are almost exclusively nearest neighbour ones. The walk of the vacancy becomes strongly correlated at high temperatures. The vacancy jump frequency is very large and has a perfectly arrhenian behaviour. There is no evicence of a dynamical lowering of the vacancy migration barrier: the static and dynamic values of the vacancy migration energy are almost equal, both being unusually small (0.3 eV). The self diffusion coefficent of our model for the vacancy mechanism reproduces an anomalous fast diffusion close to that measured experimentally in bcc-Zr. In our model at high temperatures the time interval between successive jumps is almost equal to the time of flight. The migration events will therefore influence the formation of the vacancies

  2. Electronic spectroscopy of transition metal dimer

    OpenAIRE

    Qian, Yue; 钱玥

    2013-01-01

    This thesis reports laser spectroscopic studies of gas-phase transition metal dimers using laser ablation/reaction with free jet expansion and laser-induced fluorescence (LIF) spectroscopy technique. Themolecules studied in this work are palladium dimer (Pd2) and vanadium dimer (V2). Many compounds formed from these transition metals are important and functional catalysts in chemical reactions. Therefore, it is of great significance to start from the fundamental level to understand the prope...

  3. Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites

    Science.gov (United States)

    Kolodziejska, Joanna A.; Kozachkov, Henry; Kranjc, Kelly; Hunter, Allen; Marquis, Emmanuelle; Johnson, William L.; Flores, Katharine M.; Hofmann, Douglas C.

    2016-03-01

    The microstructure and tension ductility of a series of Ti-based bulk metallic glass matrix composite (BMGMC) is investigated by changing content of the β stabilizing element vanadium while holding the volume fraction of dendritic phase constant. The ability to change only one variable in these novel composites has previously been difficult, leading to uninvestigated areas regarding how composition affects properties. It is shown that the tension ductility can range from near zero percent to over ten percent simply by changing the amount of vanadium in the dendritic phase. This approach may prove useful for the future development of these alloys, which have largely been developed experimentally using trial and error.

  4. Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites

    Science.gov (United States)

    Kolodziejska, Joanna A; Kozachkov, Henry; Kranjc, Kelly; Hunter, Allen; Marquis, Emmanuelle; Johnson, William L; Flores, Katharine M; Hofmann, Douglas C

    2016-01-01

    The microstructure and tension ductility of a series of Ti-based bulk metallic glass matrix composite (BMGMC) is investigated by changing content of the β stabilizing element vanadium while holding the volume fraction of dendritic phase constant. The ability to change only one variable in these novel composites has previously been difficult, leading to uninvestigated areas regarding how composition affects properties. It is shown that the tension ductility can range from near zero percent to over ten percent simply by changing the amount of vanadium in the dendritic phase. This approach may prove useful for the future development of these alloys, which have largely been developed experimentally using trial and error. PMID:26932509

  5. Nitrogen-rich transition metal nitrides

    OpenAIRE

    Salamat, Ashkan; Hector, Andrew L.; Kroll, Peter; McMillan, Paul F.

    2013-01-01

    The solid state chemistry leading to the synthesis and characterization of metal nitrides with N:M ratios >1 is summarized. Studies of these compounds represent an emerging area of research. Most transition metal nitrides have much lower nitrogen contents, and they often form with non- or sub-stoichiometric compositions. These materials are typically metallic with often superconducting properties, and they provide highly refractory, high hardness materials with many technological applications...

  6. Electronic structure of hcp transition metals

    DEFF Research Database (Denmark)

    Jepsen, O.; Andersen, O. Krogh; Mackintosh, A. R.

    1975-01-01

    Using the linear muffin-tin-orbital method described in the previous paper, we have calculated the electronic structures of the hcp transition metals, Zr, Hf, Ru, and Os. We show how the band structures of these metals may be synthesized from the sp and d bands, and illustrate the effects of...... bands. This gives rise to a Fermi surface which is topologically equivalent to that recently found in Ti, and which does not support open orbits when the magnetic field is sufficiently great that breakdown is complete. It is suggested that the Fermi surface of Hf is probably similar, although very...... majority of the transition metals....

  7. Transition metal contacts to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Politou, Maria, E-mail: Maria.Politou@imec.be; De Gendt, Stefan; Heyns, Marc [KU Leuven, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Asselberghs, Inge; Radu, Iuliana; Conard, Thierry; Richard, Olivier; Martens, Koen; Huyghebaert, Cedric; Tokei, Zsolt [imec, Kapeldreef 75, 3001 Leuven (Belgium); Lee, Chang Seung [SAIT, Samsung Electronics Co., Suwon 443-803 (Korea, Republic of); Sayan, Safak [imec, Kapeldreef 75, 3001 Leuven (Belgium); Intel Corporation, 2200 Mission College Blvd, Santa Clara, California 95054 (United States)

    2015-10-12

    Achieving low resistance contacts to graphene is a common concern for graphene device performance and hybrid graphene/metal interconnects. In this work, we have used the circular Transfer Length Method (cTLM) to electrically characterize Ag, Au, Ni, Ti, and Pd as contact metals to graphene. The consistency of the obtained results was verified with the characterization of up to 72 cTLM structures per metal. Within our study, the noble metals Au, Ag and Pd, which form a weaker bond with graphene, are shown to result in lower contact resistance (Rc) values compared to the more reactive Ni and Ti. X-ray Photo Electron Spectroscopy and Transmission Electron Microscopy characterization for the latter have shown the formation of Ti and Ni carbides. Graphene/Pd contacts show a distinct intermediate behavior. The weak carbide formation signature and the low Rc values measured agree with theoretical predictions of an intermediate state of weak chemisorption of Pd on graphene.

  8. Plasmons in metallic monolayer and bilayer transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Andersen, Kirsten; Thygesen, Kristian S.

    2013-01-01

    We study the collective electronic excitations in metallic single-layer and bilayer transition metal dichalcogenides (TMDCs) using time dependent density functional theory in the random phase approximation. For very small momentum transfers (below q≈0.02 Å−1), the plasmon dispersion follows the √q...

  9. X-ray Emission Spectroscopy in Magnetic 3d-Transition Metals

    Energy Technology Data Exchange (ETDEWEB)

    Iota, V; Park, J; Baer, B; Yoo, C; Shen, G

    2003-11-18

    The application of high pressure affects the band structure and magnetic interactions in solids by modifying nearest-neighbor distances and interatomic potentials. While all materials experience electronic changes with increasing pressure, spin polarized, strongly electron correlated materials are expected to undergo the most dramatic transformations. In such materials, (d and f-electron metals and compounds), applied pressure reduces the strength of on-site correlations, leading to increased electron delocalization and, eventually, to loss of its magnetism. In this ongoing project, we study the electronic and magnetic properties of Group VIII, 3d (Fe, Co and Ni) magnetic transition metals and their compounds at high pressures. The high-pressure properties of magnetic 3d-transition metals and compounds have been studied extensively over the years, because of iron being a major constituent of the Earth's core and its relevance to the planetary modeling to understand the chemical composition, internal structure, and geomagnetism. However, the fundamental scientific interest in the high-pressure properties of magnetic 3d-electron systems extends well beyond the geophysical applications to include the electron correlation-driven physics. The role of magnetic interactions in the stabilization of the ''non-standard'' ambient pressure structures of Fe, Co and Ni is still incompletely understood. Theoretical studies have predicted (and high pressure experiments are beginning to show) strong correlations between the electronic structure and phase stability in these materials. The phase diagrams of magnetic 3d systems reflect a delicate balance between spin interactions and structural configuration. At ambient conditions, the crystal structures of {alpha}-Fe(bcc) and {var_epsilon}-Co(hcp) phases depart from the standard sequence (hcp {yields} bcc{yields} hcp {yields} fcc), as observed in all other non-magnetic transition metals with increasing the d

  10. Calculated Structural Phase-Transitions in the Alkaline-Earth Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    1982-01-01

    The local-density approximation and the linear muffin-tin orbital method have been used within the atomic-sphere approximation to calculate structural energy differences for all the alkaline earth metals at zero temperature. At ordinary pressure the calculations predict the crystal structure sequ...... sequence hcp→fcc→bcc as a function of atomic number. As a function of pressure they predict the structure sequence fcc→bcc→hcp. The structural transitions and the onset of superconductivity under pressure are correlated with the d occupation number.......The local-density approximation and the linear muffin-tin orbital method have been used within the atomic-sphere approximation to calculate structural energy differences for all the alkaline earth metals at zero temperature. At ordinary pressure the calculations predict the crystal structure...

  11. Transition Metal Catalyzed Synthesis of Aryl Sulfides

    Directory of Open Access Journals (Sweden)

    Chad C. Eichman

    2011-01-01

    Full Text Available The presence of aryl sulfides in biologically active compounds has resulted in the development of new methods to form carbon-sulfur bonds. The synthesis of aryl sulfides via metal catalysis has significantly increased in recent years. Historically, thiolates and sulfides have been thought to plague catalyst activity in the presence of transition metals. Indeed, strong coordination of thiolates and thioethers to transition metals can often hinder catalytic activity; however, various catalysts are able to withstand catalyst deactivation and form aryl carbon-sulfur bonds in high-yielding transformations. This review discusses the metal-catalyzed arylation of thiols and the use of disulfides as metal-thiolate precursors for the formation of C-S bonds.

  12. Chemical vapour deposition: Transition metal carbides go 2D

    Science.gov (United States)

    Gogotsi, Yury

    2015-11-01

    The unique properties of 2D materials, such as graphene or transition metal dichalcogenides, have been attracting much attention in the past decade. Now, metallically conductive and even superconducting transition metal carbides are entering the game.

  13. Nuclear Scattering from Transition Metals

    Science.gov (United States)

    Hira, Ajit; McKeough, James; Valerio, Mario; Cathey, Tommy

    2016-03-01

    In view of the continued interest in the scattering of light projectiles by metallic nuclei, we present a computational study of the interactions between different nuclear species of atoms such as H through F (Z neutron scattering can be used to record holographic images of materials. We have developed a FORTRAN computer program to compute stopping cross sections and scattering angles in Ag and other metals for the small nuclear projectiles, using Monte Carlo calculation. This code allows for different angles of incidence. Next, simulations were done in the energy interval from 50 to 210 keV. The computational results thus obtained are compared with relevant experimental data. The data are further analyzed to identify periodic trends in terms of the atomic number of the projectile. Such studies also have potential applications in nuclear physics and in nuclear medicine. Funding from National Science Foundation.

  14. First principles study on the charge density and the bulk modulus of the transition metals and their carbides and nitrides

    Institute of Scientific and Technical Information of China (English)

    Li Cheng-Bin; Li Ming-Kai; Yin Dong; Liu Fu-Qing; Fan Xiang-Jun

    2005-01-01

    A first principles study of the electronic properties and bulk modulus (B0) of the fcc and bcc transition metals,transition metal carbides and nitrides is presented. The calculations were performed by plane-wave pseudopotential method in the framework of the density functional theory with local density approximation. The density of states and the valence charge densities of these solids are plotted. The results show that B0 does not vary monotonically when the number of the valence d electrons increases. B0 reaches a maximum and then decreases for each of the four sorts of solids. It is related to the occupation of the bonding and anti-bonding states in the solid. The value of the valence charge density at the midpoint between the two nearest metal atoms tends to be proportional to B0.

  15. Mesoporous Transition Metal Oxides for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2015-10-01

    Full Text Available Recently, transition metal oxides, such as ruthenium oxide (RuO2, manganese dioxide (MnO2, nickel oxides (NiO and cobalt oxide (Co3O4, have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4, and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  16. Fluid metals the liquid-vapor transition of metals

    CERN Document Server

    Hensel, Friedrich

    2014-01-01

    This is a long-needed general introduction to the physics and chemistry of the liquid-vapor phase transition of metals. Physicists and physical chemists have made great strides understanding the basic principles involved, and engineers have discovered a wide variety of new uses for fluid metals. Yet there has been no book that brings together the latest ideas and findings in the field or that bridges the conceptual gap between the condensed-matter physics relevant to a dense metallic liquid and the molecular chemistry relevant to a dilute atomic vapor. Friedrich Hensel and William Warren seek

  17. Transition-metal dichalcogenides for spintronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Zibouche, Nourdine; Kuc, Agnieszka; Heine, Thomas [School of Engineering and Science, Jacobs University Bremen (Germany); Musfeldt, Janice [Department of Chemistry, University of Tennessee, Knoxville, TN (United States)

    2014-10-15

    Spin-orbit splitting in transition-metal dichalcogenide monolayers is investigated on the basis of density-functional theory within explicit two-dimensional periodic boundary conditions. The spin-orbit splitting reaches few hundred meV and increases with the size of the metal and chalcogen atoms, resulting in nearly 500 meV for WTe{sub 2}. Furthermore, we find that similar to the band gap, spin-orbit splitting changes drastically under tensile strain. In centrosymmetric transition metal dichalcogenide bilayers, spin-orbit splitting is suppressed by the inversion symmetry. However, it could be induced if the inversion symmetry is explicitly broken, e.g. by a potential gradient normal to the plane, as it is present in heterobilayers (Rashba-splitting). In such systems, the spin-orbit splitting could be as large as for the heavier monolayer that forms heterobilayer. These properties of transition metal dichalcogenide materials suggest them for potential applications in opto-, spin- and straintronics. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Transition-metal dichalcogenides for spintronic applications

    International Nuclear Information System (INIS)

    Spin-orbit splitting in transition-metal dichalcogenide monolayers is investigated on the basis of density-functional theory within explicit two-dimensional periodic boundary conditions. The spin-orbit splitting reaches few hundred meV and increases with the size of the metal and chalcogen atoms, resulting in nearly 500 meV for WTe2. Furthermore, we find that similar to the band gap, spin-orbit splitting changes drastically under tensile strain. In centrosymmetric transition metal dichalcogenide bilayers, spin-orbit splitting is suppressed by the inversion symmetry. However, it could be induced if the inversion symmetry is explicitly broken, e.g. by a potential gradient normal to the plane, as it is present in heterobilayers (Rashba-splitting). In such systems, the spin-orbit splitting could be as large as for the heavier monolayer that forms heterobilayer. These properties of transition metal dichalcogenide materials suggest them for potential applications in opto-, spin- and straintronics. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. (Electronic structure and reactivities of transition metal clusters)

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  20. Lattice Location of Transition Metals in Semiconductors

    CERN Multimedia

    2002-01-01

    %IS366 %title\\\\ \\\\Transition metals (TMs) in semiconductors have been the subject of considerable research for nearly 40 years. This is due both to their role as important model impurities for deep centers in semiconductors, and to their technological impact as widespread contaminants in Si processing, where the miniaturization of devices requires to keep their sheet concentration below 10$^{10}$ cm$^{-2}$. As a consequence of the low TM solubility, conventional ion beam methods for direct lattice location have failed completely in identifying the lattice sites of isolated transition metals. Although electron paramagnetic resonance (EPR) has yielded valuable information on a variety of TM centers, it has been unable to detect certain defects considered by theory, e.g., isolated interstitial or substitutional Cu in Si. The proposed identity of other EPR centers such as substitutional Fe in Si, still needs confirmation by additional experimental methods. As a consequence, the knowledge on the structural propert...

  1. The phosphorus and the transition metals chemistry

    International Nuclear Information System (INIS)

    The 1988 progress report, concerning the Polytechnic School unit (France), which studies the phosphorus and the transition metals chemistry, is presented. The laboratory activities are related to the following topics: the phosporus heterocyclic chemistry, the phosphorus-carbon double bonds chemistry, the new transition metals phosphorus compounds, the phosphonates and their uses. Some practical applications of homogeneous catalysis and new materials synthesis are investigated. The main results obtained are: the discovery of the tetra-phosphafulvalenes, the utilization of a new synthesis method of the phosphorus-carbon double bonds and the stabilization of the α-phosphonyled carbanions by the lithium diisopropylamidourea. The papers, the congress communications and the thesis are also shown

  2. Transformation paths in transition-metal disilicides

    Czech Academy of Sciences Publication Activity Database

    Káňa, Tomáš; Šob, Mojmír; Vitek, V.

    2011-01-01

    Roč. 465, - (2011), s. 61-64. ISSN 1662-9795. [MSMF /6./ Materials Structure and Micromechanics of Fracture. Brno, 28.06.2010-30.06.2010] R&D Projects: GA AV ČR IAA100100920; GA MŠk(CZ) OC10008 Institutional research plan: CEZ:AV0Z20410507 Keywords : transition-metal disilicides * transformation path * structural stability * electronic structure Subject RIV: BM - Solid Matter Physics ; Magnetism

  3. Ferroelectric control of metal-insulator transition

    Science.gov (United States)

    He, Xu; Jin, Kui-juan; Ge, Chen; Ma, Zhong-shui; Yang, Guo-zhen

    2016-03-01

    We propose a method of controlling the metal-insulator transition of one perovskite material at its interface with another ferroelectric material based on first principle calculations. The operating principle is that the rotation of oxygen octahedra tuned by the ferroelectric polarization can modulate the superexchange interaction in this perovskite. We designed a tri-color superlattice of (BiFeO3)N/LaNiO3/LaTiO3, in which the BiFeO3 layers are ferroelectric, the LaNiO3 layer is the layer of which the electronic structure is to be tuned, and LaTiO3 layer is inserted to enhance the inversion asymmetry. By reversing the ferroelectric polarization in this structure, there is a metal-insulator transition of the LaNiO3 layer because of the changes of crystal field splitting of the Ni eg orbitals and the bandwidth of the Ni in-plane eg orbital. It is highly expected that a metal-transition can be realized by designing the structures at the interfaces for more materials.

  4. Aging of Transition Metal Dichalcogenide Monolayers.

    Science.gov (United States)

    Gao, Jian; Li, Baichang; Tan, Jiawei; Chow, Phil; Lu, Toh-Ming; Koratkar, Nikhil

    2016-02-23

    Two-dimensional sheets of transition metal dichalcogenides are an emerging class of atomically thin semiconductors that are considered to be "air-stable", similar to graphene. Here we report that, contrary to current understanding, chemical vapor deposited transition metal dichalcogenide monolayers exhibit poor long-term stability in air. After room-temperature exposure to the environment for several months, monolayers of molybdenum disulfide and tungsten disulfide undergo dramatic aging effects including extensive cracking, changes in morphology, and severe quenching of the direct gap photoluminescence. X-ray photoelectron and Auger electron spectroscopy reveal that this effect is related to gradual oxidation along the grain boundaries and the adsorption of organic contaminants. These results highlight important challenges associated with the utilization of transition metal dichalcogenide monolayers in electronic and optoelectronic devices. We also demonstrate a potential solution to this problem, featuring encapsulation of the monolayer sheet by a 10-20 nm thick optically transparent polymer (parylene C). This strategy is shown to successfully prevent the degradation of the monolayer material under accelerated aging (i.e., high-temperature, oxygen-rich) conditions. PMID:26808328

  5. Polarization matrices in simple and transition metals

    International Nuclear Information System (INIS)

    Full text: The polarization of an inhomogeneous electron gas within a metal due to electron-electron correlations is fundamental for the prediction of inelastic electron scattering experiments such as energy-lose measurements and Compton profile studies. Moreover, the polarization matrix serves as starting point for many advanced theoretical topics as quasiparticle band structures, self energies and realistic electron momentum densities. For this contribution, we calculated polarization matrices for alkali metals, as well as for the complete serves from potassium (atomic number 19) to zinc (30) including all 3d transition metals. The main topic of our work is to study how the polarization is influenced by the fast that the correlating particles are 'Bloch electrons'. These influences become visible in the polarization matrices by (i) deviations of their diagonal elements with respect to the 'homogeneous case', and by (ii) the appearance of non-diagonal elements. We obtained an excellent agreement for the simple metals Na, K and Rb with 'jellium results', and found remarkable deviations for Li and Cs. Moreover, our results show that the non-uniform character of the 3d transition elements depends sensitively on the number of d-electrons and the energetic position of the d-bands with respect to the Fermi energy. (author)

  6. Hydrodenitrogenation of pyridine over transition metal nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Milad, I.K.; Smith, K.J. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical Engineering

    1997-11-01

    The use of transition metal nitrides (TMN) as catalysts for hydrodenitrogenation (HDN) was discussed. A study was conducted in which a series of unsupported and supported Mo, Fe, W, Co, Nb, Cr, V and Ti nitrides were examined as catalysts for the HDN of pyridine at atmospheric pressure and 350 degrees C. The catalysts were prepared by temperature programmed nitridation of the metal oxide with NH{sub 3}. It was shown that a single nitride phase was present in each of the catalysts. The Mo nitride showed the greatest activity per gram of catalyst. Co and Fe nitrides showed the highest activities per surface area of the unsupported catalyst. Metal nitrides with lower heats of formation showed higher HDN activity. 1 tab.

  7. Defect-Tolerant Monolayer Transition Metal Dichalcogenides

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Rasmussen, Filip Anselm; Kuhar, Korina;

    2016-01-01

    -principles investigation of defect tolerance in 29 monolayer transition metal dichalcogenides (TMDs) of interest for nanoscale optoelectronics. We find that the TMDs based on group VI and X metals form deep gap states upon creation of a chalcogen (S, Se, Te) vacancy, while the TMDs based on group IV metals form only...... shallow defect levels and are thus predicted to be defect-tolerant. Interestingly, all the defect sensitive TMDs have valence and conduction bands with a very similar orbital composition. This indicates a bonding/antibonding nature of the gap, which in turn suggests that dangling bonds will fall inside...... the gap. These ideas are made quantitative by introducing a descriptor that measures the degree of similarity of the conduction and valence band manifolds. Finally, the study is generalized to nonpolar nanoribbons of the TMDs where we find that only the defect sensitive materials form edge states within...

  8. Raman spectroscopy of transition metal dichalcogenides.

    Science.gov (United States)

    Saito, R; Tatsumi, Y; Huang, S; Ling, X; Dresselhaus, M S

    2016-09-01

    Raman spectroscopy of transition metal dichalcogenides (TMDs) is reviewed based on our recent theoretical and experimental works. First, we discuss the semi-classical and quantum mechanical description for the polarization dependence of Raman spectra of TMDs in which the optical dipole transition matrix elements as a function of laser excitation energy are important for understanding the polarization dependence of the Raman intensity and Raman tensor. Overviewing the symmetry of TMDs, we discuss the dependence of the Raman spectra of TMDs on layer thickness, polarization, laser energy and the structural phase. Furthermore, we discuss the Raman spectra of twisted bilayer and heterostructures of TMDs. Finally, we give our perspectives on the Raman spectroscopy of TMDs. PMID:27388703

  9. Electrical conduction in transition-metal salts

    Energy Technology Data Exchange (ETDEWEB)

    Grado-Caffaro, M.A.; Grado-Caffaro, M. [Scientific Consultants, Madrid (Spain)

    2016-08-01

    We predict that a given transition-metal salt as, for example, a K{sub 2}CuCl{sub 4}.2H{sub 2}O-type compound, can behave as an electrical conductor in the paramagnetic case. In fact, we determine the electrical conductance in a salt of this type. This conductance is found to be quantised in agreement with previous well-known results. Related mathematical expressions in the context of superexchange interaction are obtained. In addition, we determine the corresponding (macroscopically viewed) current density and the associated electron wave functions.

  10. Magnetic correlations in doped transition metal oxides

    International Nuclear Information System (INIS)

    The authors review recent reactor- and spallation-source-based neutron scattering experiments on the magnetic fluctuations and order in a variety of doped transition metal oxides. In particular, data are shown for the NiO chain compound, Y2-xCaxBaNiO5, the two-dimensional cuprate superconductors La2-xSrxCuO4 and YBa2Cu3 O6+x, and the classical three-dimensional ''Mott-Hubbard'' system V2-yO3

  11. Catabolism of hyaluronan: involvement of transition metals

    OpenAIRE

    Šoltés, Ladislav; Kogan, Grigorij

    2009-01-01

    One of the very complex structures in the vertebrates is the joint. The main component of the joint is the synovial fluid with its high-molar-mass glycosaminoglycan hyaluronan, which turnover is approximately twelve hours. Since the synovial fluid does not contain any hyaluronidases, the fast hyaluronan catabolism is caused primarily by reductive-oxidative processes. Eight transition metals – V23, Mn25, Fe26, Co27, Ni28, Cu29, Zn30, and Mo42 – naturally occurring in living organism are essent...

  12. Electrical conduction in transition-metal salts

    International Nuclear Information System (INIS)

    We predict that a given transition-metal salt as, for example, a K2CuCl4.2H2O-type compound, can behave as an electrical conductor in the paramagnetic case. In fact, we determine the electrical conductance in a salt of this type. This conductance is found to be quantised in agreement with previous well-known results. Related mathematical expressions in the context of superexchange interaction are obtained. In addition, we determine the corresponding (macroscopically viewed) current density and the associated electron wave functions.

  13. Strain Engineering of Transition Metal Dichalcogenides

    Science.gov (United States)

    Dadgar, Ali; Pasupathy, Abhay; Herman, Irving; Wang, Dennis; Kang, Kyungnam; Yang, Eui-Hyeok

    The application of strain to materials can cause changes to bandwidth, effective masses, degeneracies and even structural phases. In the case of the transition metal dichalcogenide (TMD) semiconductors, small strain (around 1 percent) is expected to change band gaps and mobilities, while larger strains are expected to cause phase changes from the triangular 2H phase to orthorhombic 1T' phases. We will describe experimental techniques to apply small and large (around 10 percent) strains to one or few layer samples of the TMD semiconductors, and describe the effect of the strain using optical (Raman, photoluminescence) and cryogenic transport techniques.

  14. Tunable magnetocaloric effect in transition metal alloys

    Science.gov (United States)

    Belyea, Dustin D.; Lucas, M. S.; Michel, E.; Horwath, J.; Miller, Casey W.

    2015-10-01

    The unpredictability of geopolitical tensions and resulting supply chain and pricing instabilities make it imperative to explore rare earth free magnetic materials. As such, we have investigated fully transition metal based “high entropy alloys” in the context of the magnetocaloric effect. We find the NiFeCoCrPdx family exhibits a second order magnetic phase transition whose critical temperature is tunable from 100 K to well above room temperature. The system notably displays changes in the functionality of the magnetic entropy change depending on x, which leads to nearly 40% enhancement of the refrigerant capacity. A detailed statistical analysis of the universal scaling behavior provides direct evidence that heat treatment and Pd additions reduce the distribution of exchange energies in the system, leading to a more magnetically homogeneous alloy. The general implications of this work are that the parent NiFeCoCr compound can be tuned dramatically with FCC metal additives. Together with their relatively lower cost, their superior mechanical properties that aid manufacturability and their relative chemical inertness that aids product longevity, NiFeCoCr-based materials could ultimately lead to commercially viable magnetic refrigerants.

  15. Methyl Complexes of the Transition Metals.

    Science.gov (United States)

    Campos, Jesús; López-Serrano, Joaquín; Peloso, Riccardo; Carmona, Ernesto

    2016-05-01

    Organometallic chemistry can be considered as a wide area of knowledge that combines concepts of classic organic chemistry, that is, based essentially on carbon, with molecular inorganic chemistry, especially with coordination compounds. Transition-metal methyl complexes probably represent the simplest and most fundamental way to view how these two major areas of chemistry combine and merge into novel species with intriguing features in terms of reactivity, structure, and bonding. Citing more than 500 bibliographic references, this review aims to offer a concise view of recent advances in the field of transition-metal complexes containing M-CH3 fragments. Taking into account the impressive amount of data that are continuously provided by organometallic chemists in this area, this review is mainly focused on results of the last five years. After a panoramic overview on M-CH3 compounds of Groups 3 to 11, which includes the most recent landmark findings in this area, two further sections are dedicated to methyl-bridged complexes and reactivity. PMID:26991740

  16. Transition Metal Nitrides: A First Principles Study

    Science.gov (United States)

    Pathak, Ashish; Singh, A. K.

    2016-04-01

    The present work describes the structural stability and electronic and mechanical properties of transition metal nitrides (TmNs: B1 cubic structure (cF8, Fm ‾ overline 3 m)) using first principles density functional theory (DFT) within generalized gradient approximation (GGA). The lattice constant of TmNs increases with increasing the atomic radii of the transition metals. Stability of the TmNs decreases from IVB to VIB groups due to increase in formation energy/atom. The bonding characteristics of these nitrides have been explained based on electronic density of states and charge density. All the TmNs satisfy Born stability criteria in terms of elastic constants except CrN and MoN that do not exist in equilibrium binary phase diagrams. The groups IVB and V-VIB nitrides are associated with brittle and ductile behaviour based on G/B ratios, respectively. The estimated melting temperatures of these nitrides exhibit reasonably good agreement with calculated with B than those of the C11 for all nitrides.

  17. Analytical description of brittle-to-ductile transition in bcc metals. Nucleation of dislocation loop at the crack tip

    International Nuclear Information System (INIS)

    Nucleation of dislocation loop at the crack tip in a material subjected to uniaxial loading is investigated. Analytical expression for the total energy of rectangular dislocation loop at the crack tip is found. Dependence of the nucleation energy barrier on dislocation loop shape and stress intensity factor at the crack tip is determined. It is established that the energetic barrier for nucleation of dislocation loop strongly depends on the stress intensity factor. Nucleation of dislocation loop is very sensitive to stress field modifiers (forest dislocations, precipitates, clusters of point defects, etc) in the crack tip vicinity. (orig.)

  18. Atomic transition probabilities in refractory metals

    International Nuclear Information System (INIS)

    Accurate transition probabilities for a large number of spectral lines in the first and second spectra of 3d, 4d and 5d metals are being measured. Radiative lifetimes of hundreds of levels in TaI, WI, MoI, NbI, HfI, ReI, RhI, RuI, NbII, CoII++, and other atoms and ions are measured using time-resolved laser-induced fluorescence on an atom or ion beam. The atom or ion beam is produced by a versatile hollow cathode discharge source. Branching ratios of levels in WI, NbI, HfI, and ReI are measured from calibrated spectra recorded on the Kitt Peak one-meter Fourier Transform Spectrometer. The transition probability measurements are used in solar and stellar elemental abundance determination. Some of the elements mentioned above are commonly used as electrodes in discharge devices. Accurate transition probabilities are also useful in studying concentrations and the effects of sputtered electrode material on laboratory discharges

  19. Robust Quantum-Based Interatomic Potentials for Multiscale Modeling in Transition Metals

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, J A; Benedict, L X; Glosli, J N; Hood, R Q; Orlikowski, D A; Patel, M V; Soderlind, P; Streitz, F H; Tang, M; Yang, L H

    2005-09-27

    First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for transferable multi-ion interatomic potentials in transition metals and alloys within density-functional quantum mechanics. In the central bcc metals, where multi-ion angular forces are important to materials properties, simplified model GPT or MGPT potentials have been developed based on canonical d bands to allow analytic forms and large-scale atomistic simulations. Robust, advanced-generation MGPT potentials have now been obtained for Ta and Mo and successfully applied to a wide range of structural, thermodynamic, defect and mechanical properties at both ambient and extreme conditions. Selected applications to multiscale modeling discussed here include dislocation core structure and mobility, atomistically informed dislocation dynamics simulations of plasticity, and thermoelasticity and high-pressure strength modeling. Recent algorithm improvements have provided a more general matrix representation of MGPT beyond canonical bands, allowing improved accuracy and extension to f-electron actinide metals, an order of magnitude increase in computational speed for dynamic simulations, and the development of temperature-dependent potentials.

  20. Study of concentrated metal-ammonia solutions: magnetic properties and non metal-metal transition

    International Nuclear Information System (INIS)

    The magnetic susceptibility of alkali metal-liquid ammonia solutions has been measured in the concentration range where the solutions show a progressive passage toward the metallic state. The Knight shift of the metal nuclei and the nitrogen nucleus have been determined as a function of concentration and temperature, in Na-NH3 and Cs-NH3 solutions. A phenomenological analysis of the transport properties of metal-ammonia solutions is also presented. This analysis permits the presentation of a model for the mechanism of the transition to the metallic state. (author)

  1. New Layered Ternary Transition-Metal Tellurides

    Science.gov (United States)

    Mar, Arthur

    Several new ternary transition-metal tellurides, a class of compounds hitherto largely unexplored, have been synthesized and characterized. These are layered materials whose structures have been determined by single -crystal X-ray diffraction methods. The successful preparation of the compound TaPtTe_5 was crucial in developing an understanding of the MM'Te_5 (M = Nb, Ta; M' = Ni, Pd, Pt) series of compounds, which adopt either of two possible closely-related layered structures. Interestingly, the compound TaPdTe _5 remains unknown. Instead, the compound Ta_4Pd_3Te _{16} has been prepared. Its structure is closely related to that of the previously prepared compound Ta_3Pd _3Te_{14}. The physical properties of these compounds have been measured and correlated with the metal substitutions and interlayer separations. A new series of compounds, MM'Te _4 (M = Nb, Ta; M' = Ru, Os, Rh, Ir), has been discovered. The structure of NbIrTe_4 serves as a prototype: it is an ordered variant of the binary telluride WTe_2. Electronic band-structure calculations have been performed in order to rationalize the trends in metal-metal and tellurium -tellurium bonding observed in WTe_2 and the MM'Te_4 phases. Extension of these studies to include main-group metals has resulted in the synthesis of the new layered ternary germanium tellurides TiGeTe_6, ZrGeTe_4 , and HfGeTe_4. Because germanium can behave ambiguously in its role as a metalloid element, it serves as an anion by capping the metal-centered trigonal prisms and also as a cation in being coordinated in turn by other tellurium atoms in a trigonal pyramidal fashion. Structural relationships among these compounds are illustrated through the use of bicapped trigonal prisms and trigonal pyramids as the basic structural building blocks. The electrical and magnetic properties of these compounds have been measured. Insight into the unusual bonding and physical properties of these germanium-containing compounds has been gained through

  2. Density functional theory studies of transition metal nanoparticles in catalysis

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Rankin, Rees; Zeng, Zhenhua;

    2013-01-01

    Periodic Density Functional Theory calculations are capable of providing powerful insights into the structural, energetics, and electronic phenomena that underlie heterogeneous catalysis on transition metal nanoparticles. Such calculations are now routinely applied to single crystal metal surfaces...

  3. Smoothing of ultrathin silver films by transition metal seeding

    Science.gov (United States)

    Anders, André; Byon, Eungsun; Kim, Dong-Ho; Fukuda, Kentaro; Lim, Sunnie H. N.

    2006-11-01

    The nucleation and coalescence of silver islands on coated glass was investigated by in situ measurements of the sheet resistance. Sub-monolayer amounts of niobium and other transition metals were deposited prior to the deposition of silver. It was found that in some cases, the transition metals lead to coalescence of silver at nominally thinner films with smoother topology. The smoothing or roughening effects by the presence of the transition metal can be explained by kinetically limited transition metal islands growth and oxidation, followed by defect-dominated nucleation of silver.

  4. Radiation damage of transition metal carbides

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, G.

    1991-01-01

    In this grant period we have investigated electrical properties of transition metal carbides and radiation-induced defects produced by low-temperature electron irradiation in them. Special attention has been given to the composition VC[sub 0.88] in which the vacancies on the carbon sublattice of this fcc crystal order to produce a V[sub 8]C[sub 7] superlattice. The existence of this superlattice structure was found to make the crystal somewhat resistant to radiation damage at low doses and/or at ambient temperature. At larger doses significant changes in the resistivity are produced. Annealing effects were observed which we believe to be connected with the reconstitution of the superlattice structure.

  5. Catalytic and surface oxidation processes on transition metal surfaces

    OpenAIRE

    Jaatinen, Sampsa

    2007-01-01

    Transition metals are technologically important catalytic materials. The transition metal catalysts are used for example in petroleum and fertilizer industry. In the car industry the catalytic materials are used in the catalytic converters. Because of the industrial importance the catalytic metals have been widely studied throughout the past decades. Nonetheless, the oxidation mechanisms of small molecules and the effect of alloying to catalytic properties of metals are not fully understood. ...

  6. Ordering in binary transition metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rusakov, G. [Institute for Metal Physics UB RAS, 18 Kovalevskoj St., 620990 Ekaterinburg (Russian Federation); Ural State Technical University - UPI, 19 Mira St., 620002 Ekaterinburg (Russian Federation); Son, L., E-mail: ldson@yandex.ru [Ural State Pedagogical University, 26 Cosmonavtov Ave, 620017 Ekaterinburg (Russian Federation); Efimova, E. [Institute for Metal Physics UB RAS, 18 Kovalevskoj St., 620990 Ekaterinburg (Russian Federation); Ural State Technical University - UPI, 19 Mira St., 620002 Ekaterinburg (Russian Federation); Dubinin, N. [Institute for Metallurgy UB RAS, 101 Amundsen St., 620016 Ekaterinburg (Russian Federation); Ural State Technical University - UPI, 19 Mira St., 620002 Ekaterinburg (Russian Federation)

    2012-03-20

    We present the phenomenological thermodynamic modeling of binary alloys which demonstrate solubility of the components at high temperatures, and form intermediate phase near equiatomic composition at lower ones (the so-called sigma-phase). Besides, the regular solution miscibility gap takes place also. The nonequilibrium thermodynamic potential is written out as a sum of the free energy of regular solution and polynomial term of scalar order parameter {phi}, which describes the {sigma}-phase ordering. There are four parameters in the model: the energy of regular solution mixing, the energy of {sigma}-phase formation at zero temperature, and the widths of temperature and concentration intervals of {sigma}-phase existence in the alloy with frozen-in random distribution of components. Up to now, both phase transitions which take place in a number of transition metals binary alloys (the {sigma}-phase formation and miscibility in the regular solution) have been treated separately. In present work, the standard technique of phase diagram calculation allows us to analyze all possible phase diagrams which may arise in the alloy.

  7. Transition-metal substitutions in iron chalcogenides

    Science.gov (United States)

    Bezusyy, V. L.; Gawryluk, D. J.; Malinowski, A.; Cieplak, Marta Z.

    2015-03-01

    The a b -plane resistivity and Hall effect are studied in Fe1 -yMyTe0.65Se0.35 single crystals doped with two transition-metal elements, M = Co or Ni, over a wide doping range, 0 ≤y ≤0.2 . The superconducting transition temperature, Tc, reaches zero for Co at y ≃0.14 and for Ni at y ≃0.032 , while the resistivity at the Tc onset increases weakly with Co doping, and strongly with Ni doping. The Hall coefficient RH, positive for y =0 , remains so at high temperatures for all y , while it changes sign to negative at low T for y >0.135 (Co) and y >0.06 (Ni). The analysis based on a two-band model suggests that at high T residual hole pockets survive the doping, but holes get localized upon the lowering of T , so that the effect of the electron doping on the transport becomes evident. The suppression of the Tc by Co impurity is related to electron doping, while in the case of the Ni impurity strong electron localization most likely contributes to fast decrease of the Tc.

  8. Shear instabilities in perfect bcc crystals during simulated tensile tests

    Czech Academy of Sciences Publication Activity Database

    Černý, M.; Šesták, P.; Pokluda, J.; Šob, Mojmír

    2013-01-01

    Roč. 87, č. 1 (2013), 014117/1-014117/4. ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP108/12/0311 Institutional support: RVO:68081723 Keywords : instabilities * tensile test * bcc metals * ab initio calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013

  9. Atomistic simulation of point defects and dislocations in bbc transition metals from first principles

    International Nuclear Information System (INIS)

    Using multi-ion interatomic potentials derived from first-principles generalized pseudopotential theory, we have been studying point defects and dislocations in bcc transition metals, with molybdenum (Mo) as a prototype. For point defects in Mo, the calculated vacancy formation and activation energies are in excellent agreement with experimental results. The energetics of six self-interstitial configurations in Mo have also been investigated. The split dumb-bell is found to have the lowest formation energy, as is experimentally observed, but the corresponding migration energy is calculated to be 3--15 times higher than previous theoretical estimates. The atomic structure and energetics of screw dislocations in Mo are now being investigated. We have found that the ''easy'' core configuration has a lower formation energy than the ''hard'' one, consistent with previous theoretical studies. The former has a distinctive 3-fold symmetry with a spread out of the dislocation core along the directions, an effect which is driven by the strong angular forces present in these metals

  10. Nanostructured transition metal oxides useful for water oxidation catalysis

    Science.gov (United States)

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  11. Trends in Ionization Energy of Transition-Metal Elements

    Science.gov (United States)

    Matsumoto, Paul S.

    2005-01-01

    A rationale for the difference in the periodic trends in the ionization energy of the transition-metal elements versus the main-group elements is presented. The difference is that in the transition-metal elements, the electrons enter an inner-shell electron orbital, while in the main-group elements, the electrons enter an outer-shell electron…

  12. Transition metal oxofluorides comprising lone pair elements : Synthesis and Characterization

    OpenAIRE

    Hu, Shichao

    2014-01-01

    Within the family of transition metal oxochlorides/bromides containing lone pair elements, the transition metal cations often adopt a low-dimensional arrangement such as 2D layers, 1D chains or 0D clusters. The reduced dimensionality is attributed to the presence of stereochemically active lone pairs which are positioned in the non-bonding orbital and will not participate in bond formation and instead act as structural spacers that help to separate coordination polyhedra around transition met...

  13. Patterning Superatom Dopants on Transition Metal Dichalcogenides.

    Science.gov (United States)

    Yu, Jaeeun; Lee, Chul-Ho; Bouilly, Delphine; Han, Minyong; Kim, Philip; Steigerwald, Michael L; Roy, Xavier; Nuckolls, Colin

    2016-05-11

    This study describes a new and simple approach to dope two-dimensional transition metal dichalcogenides (TMDCs) using the superatom Co6Se8(PEt3)6 as the electron dopant. Semiconducting TMDCs are wired into field-effect transistor devices and then immersed into a solution of these superatoms. The degree of doping is determined by the concentration of the superatoms in solution and by the length of time the films are immersed in the dopant solution. Using this chemical approach, we are able to turn mono- and few-layer MoS2 samples from moderately to heavily electron-doped states. The same approach applied on WSe2 films changes their characteristics from hole transporting to electron transporting. Moreover, we show that the superatom doping can be patterned on specific areas of TMDC films. To illustrate the power of this technique, we demonstrate the fabrication of a lateral p-n junction by selectively doping only a portion of the channel in a WSe2 device. Finally, encapsulation of the doped films with crystalline hydrocarbon layers stabilizes their properties in an ambient environment. PMID:27082448

  14. Impact Electrochemistry of Layered Transition Metal Dichalcogenides.

    Science.gov (United States)

    Lim, Chee Shan; Tan, Shu Min; Sofer, Zdeněk; Pumera, Martin

    2015-08-25

    Layered transition metal dichalcogenides (TMDs) exhibit paramount importance in the electrocatalysis of the hydrogen evolution reaction. It is crucial to determine the size of the electrocatalytic particles as well as to establish their electrocatalytic activity, which occurs at the edges of these particles. Here, we show that individual TMD (MoS2, MoSe2, WS2, or WSe2; in general MX2) nanoparticles impacting an electrode surface provide well-defined current "spikes" in both the cathodic and anodic regions. These spikes originate from direct oxidation of the nanoparticles (from M(4+) to M(6+)) at the anodic region and from the electrocatalytic currents generated upon hydrogen evolution in the cathodic region. The positive correlation between the frequency of the impacts and the concentration of TMD nanoparticles is also demonstrated here, enabling determination of the concentration of TMD nanoparticles in colloidal form. In addition, the size of individual TMD nanoparticles can be evaluated using the charge passed during every spike. The capability of detecting both the "indirect" catalytic effect of an impacting TMD nanoparticle as well as "direct" oxidation indicates that the frequency of impacts in both the "indirect" and "direct" scenarios are comparable. This suggests that all TMD nanoparticles, which are electrochemically oxidizable (thus capable of donating electrons to electrodes), are also capable of catalyzing the hydrogen reduction reaction. PMID:26241193

  15. Properties of Transition Metal Doped Alumina

    Science.gov (United States)

    Nykwest, Erik; Limmer, Krista; Brennan, Ray; Blair, Victoria; Ramprasad, Rampi

    Crystallographic texture can have profound effects on the properties of a material. One method of texturing is through the application of an external magnetic field during processing. While this method works with highly magnetic systems, doping is required to couple non-magnetic systems with the external field. Experiments have shown that low concentrations of rare earth (RE) dopants in alumina powders have enabled this kind of texturing. The magnetic properties of RE elements are directly related to their f orbital, which can have as many as 7 unpaired electrons. Since d-block elements can have as many as 5 unpaired electrons the effects of substitutional doping of 3d transition metals (TM) for Al in alpha (stable) and theta (metastable) alumina on the local structure and magnetic properties, in addition to the energetic cost, have been calculated by performing first-principles calculations based on density functional theory. This study has led to the development of general guidelines for the magnetic moment distribution at and around the dopant atom, and the dependence of this distribution on the dopant atom type and its coordination environment. It is anticipated that these findings can aid in the selection of suitable dopants help to guide parallel experimental efforts. This project was supported in part by an internship at the Army Research Laboratory, administered by the Oak Ridge Institute for Science and Education, along with a grant of computer time from the DoD High Performance Computing Modernization Program.

  16. Transition metal-free olefin polymerization catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ayusman (State College, PA); Wojcinski, II, Louis M. (State College, PA); Liu, Shengsheng (State College, PA)

    2001-01-01

    Ethylene and/or propylene are polymerized to form high molecular weight, linear polymers by contacting ethylene and/or propylene monomer, in the presence of an inert reaction medium, with a catalyst system which consists essentially of (1) an aluminum alkyl component, such as trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum and diethylaluminum hydride and (2) a Lewis acid or Lewis acid derivative component, such as B (C.sub.6 F.sub.5).sub.3, [(CH.sub.3).sub.2 N (H) (C.sub.6 H.sub.5)].sup.+ [B (C.sub.6 F.sub.5)4].sup.-, [(C.sub.2 H.sub.5).sub.3 NH].sup.+ [B C.sub.6 F.sub.5).sub.4 ],.sup.-, [C(C.sub.6 F.sub.5).sub.3 ].sup.+ [B(C.sub.6 F.sub.5).sub.4 ].sup.-, (C.sub.2 H.sub.5).sub.2 Al(OCH.sub.3), (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butyl-4-methylphenoxide), (C.sub.2 H.sub.5)Al(2,6 -di-t-butylphenoxide).sub.2, (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butylphonoxide) , 2,6 -di-t-butylphenol.multidot.methylaluminoxane or an alkylaluminoxane, and which may be completely free any transition metal component(s).

  17. bcc cobalt: Metastable phase or forced structure?

    Science.gov (United States)

    Liu, Amy Y.; Singh, David J.

    1993-05-01

    General potential linearized augmented plane wave calculations of the elastic and magnetic properties of body-centered-cubic (bcc) Co are presented and discussed. Particular attention is given to the nature of the stability of bcc Co films that have been grown epitaxially on GaAs substrates. The bcc structural phase of Co, which is not found in nature, is calculated to be unstable with respect to a tetragonal distortion that transforms it continuously into the face-centered-cubic (fcc) phase. This means that bcc Co is not a true metastable phase of bulk Co. The thinner films of bcc Co that have been synthesized are more properly termed forced structures. We speculate that the few existing thick (up to 357 Å) samples of bcc Co are stabilized by the presence of impurities or other defects. This is further supported by discrepancies between the measured and calculated magnetic moments in bcc Co.

  18. The local structure of transition metal doped semiconducting boron carbides

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing; Dowben, P A [Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, Behlen Laboratory of Physics, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Luo Guangfu; Mei Waining [Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182-0266 (United States); Kizilkaya, Orhan [J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Hwy., Baton Rouge LA 70806 (United States); Shepherd, Eric D; Brand, J I [College of Engineering, and the Nebraska Center for Materials and Nanoscience, N209 Walter Scott Engineering Center, 17th and Vine Streets, University of Nebraska-Lincoln, Lincoln, NE 68588-0511 (United States)

    2010-03-03

    Transition metal doped boron carbides produced by plasma enhanced chemical vapour deposition of orthocarborane (closo-1,2-C{sub 2}B{sub 10}H{sub 12}) and 3d metal metallocenes were investigated by performing K-edge extended x-ray absorption fine structure and x-ray absorption near edge structure measurements. The 3d transition metal atom occupies one of the icosahedral boron or carbon atomic sites within the icosahedral cage. Good agreement was obtained between experiment and models for Mn, Fe and Co doping, based on the model structures of two adjoined vertex sharing carborane cages, each containing a transition metal. The local spin configurations of all the 3d transition metal doped boron carbides, Ti through Cu, are compared using cluster and/or icosahedral chain calculations, where the latter have periodic boundary conditions.

  19. Hyperfine structure studies of transition metals

    International Nuclear Information System (INIS)

    This past year our studies of hyperfine structure (hfs) in metastable states of transition metals concentrated on the analysis of hfs in the four-valence electron system, Nb II. Earlier, we measured hfs intervals using the laser-rf double resonance and laser-induced fluorescence methods in a fast-ion beam of Nb+. The resulting experimental magnetic dipole and electric quadrupole interaction constants are compared to those calculated by a relativistic configuration interaction approach. These are the first hfs data on this refractory element. Theoretically, it is found that the most important contributions to the energy are the pair excitations, valence single excitations and core polarization from the shallow core. However, the inner core polarization is found to be crucial for hfs, albeit unimportant for energy. For the J=2 level at 12805 cm-1, 4d43F. the theoretical relativistic configuration A-value is in agreement with the experimental result to an accuracy of 4%. Other calculated A-values are expected to be of the same accuracy. A paper describing these results was accepted for publication. Experimental studies of the four-valence electron system V+ in the (4s+3d)4 manifold are complete. The theoretical difficulties for the 3d manifold, noted earlier for the three-valence electron Ti+, as compared to the 4d manifold appear to be repeated in the case of the four-valence electron systems (Nb+ and V+). Relativistic configuration interaction calculations are underway, after which a paper will be published

  20. Tethered Transition Metals Promoted Photocatalytic System for Efficient Hydrogen Evolutions

    KAUST Repository

    Takanabe, Kazuhiro

    2015-03-05

    The present invention is directed, at least in part, to a process for improving the efficiency of a photocatalyst (a semiconductor photocatalyst) by tethering (depositing) a metal (e.g., metal ions of a late transition metal, such as nickel) to the semiconductor (photocatalyst) surface through the use of an organic ligand. More specifically, 1,2-ethanedithiol (EDT) functions as an excellent molecular linker (organic ligand) to attach a transition metal complex (e.g., nickel (Ni.sup.2+ ions)) to the semiconductor surface, which can be in the form of a cadmium sulfide surface. The photocatalyst has particular utility in generating hydrogen from H.sub.2S.

  1. Phase transition from fcc to bcc structure of the Cu-clusters during nanocrystallization of Fe85.2Si1B9P4Cu0.8 soft magnetic alloy

    OpenAIRE

    Masahiko Nishijima; Makoto Matsuura; Kana Takenaka; Akira Takeuchi; Hironori Ofuchi; Akihiro Makino

    2014-01-01

    A role of Cu on the nanocrystallization of an Fe85.2Si1B9P4Cu0.8 alloy was investigated by X-ray absorption fine structure (XAFS) and transmission electron microscopy (TEM). The Cu K-edge XAFS results show that local structure around Cu is disordered for the as-quenched sample whereas it changes to fcc-like structure at 613 K. The fcc Cu-clusters are, however, thermodynamically unstable and begin to transform into bcc structure at 638 K. An explicit bcc structure is observed for the sample an...

  2. The metallicities of stars with and without transiting planets

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Latham, David W.

    2015-01-01

    Host star metallicities have been used to infer observational constraints on planet formation throughout the history of the exoplanet field. The giant planet metallicity correlation has now been widely accepted, but questions remain as to whether the metallicity correlation extends to the small...... terrestrial-sized planets. Here, we report metallicities for a sample of 518 stars in the Kepler field that have no detected transiting planets and compare their metallicity distribution to a sample of stars that hosts small planets (). Importantly, both samples have been analyzed in a homogeneous manner...... using the same set of tools (Stellar Parameters Classification tool). We find the average metallicity of the sample of stars without detected transiting planets to be and the sample of stars hosting small planets to be . The average metallicities of the two samples are indistinguishable within the...

  3. Mechanisms of transition-metal gettering in silicon

    Energy Technology Data Exchange (ETDEWEB)

    MYERS JR.,SAMUEL M.; SEIBT,M.; SCHROTER,W.

    2000-03-23

    The atomic process, kinetics, and equilibrium thermodynamics underlying the gettering of transition-metal impurities in Si are reviewed from a mechanistic perspective. Methods for mathematical modeling of gettering are reviewed and illustrated. Needs for further research are discussed.

  4. Trends in catalytic NO decomposition over transition metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Rass-Hansen, Jeppe;

    2007-01-01

    The formation of NOx from combustion of fossil and renewable fuels continues to be a dominant environmental issue. We take one step towards rationalizing trends in catalytic activity of transition metal catalysts for NO decomposition by combining microkinetic modelling with density functional...... theory calculations. We show specifically why the key problem in using transition metal surfaces to catalyze direct NO decomposition is their significant relative overbinding of atomic oxygen compared to atomic nitrogen....

  5. Transition metal complexing with polymetric sulfur-containing fibrous ligand

    International Nuclear Information System (INIS)

    A study was made on interaction of Cr4, V5, Cu2 transition metals with thioamidated polymeric PVS-PAN-T ligand of fibrous structure. Sorption characteristics of PVS-PAN-T, depending on pH and temperature of solutions of copper, chromium and vanadium salts were determined. Parameters of ESR spectra of PVS-PAN-T compounds with transition metals enabled to determine the structure of formed coordination centers

  6. Excited states and transition metal compounds with quantum Monte Carlo

    OpenAIRE

    Bande, Annika

    2007-01-01

    To the most challenging electron structure calculations belong weak interactions, excited state calculations, transition metals and properties. In this work the performance of variational (VMC) and fixed-node diffusion quantum Monte Carlo (FN-DMC) is tested for challenging electron structure problems using the quantum Monte Carlo amolqc code by Lüchow et al. The transition metal compounds under consideration are vanadium oxides. Here excitation, ionization, oxygen atom and molecule abstractio...

  7. Ternary transition metal phosphides: High-temperature superconductors

    OpenAIRE

    Barz, H.; Ku, H. C.; Meisner, G. P.; Fisk, Z.; Matthias, B. T.

    1980-01-01

    Two systems of ternary transition metal phosphides with the ordered Fe2P-type hexagonal structure are reported. They have the general formula MRuP and MOsP, in which M can be Ti, Zr, or Hf. An onset of the superconducting transition temperature as high as 13.0 K is reported for the ZrRuP compound.

  8. Calculation of thermodynamic equilibrium between bcc disordered solid solutions U and Mo

    International Nuclear Information System (INIS)

    There is actually an interest to develop a new fuel with higher density for research reactors. Fuel plates would be obtained by dispersion, a method that requires both a very dense fuel dispersant (>15.0 g U/cm3 ) and a very high volume loading of the dispersant (>55%). Dispersants based in gamma (BCC) stabilized uranium alloys are being investigated, as they are able to reach uranium densities of 17.0 g U/cm3. Among them, we focus in U(Mo) bcc solid solutions with the addition of ternary elements to stabilize gamma phase. Transition metals, 4d and 5d, of groups VII and VIII are good candidates for the ternary alloy U - Mo - X. Their relative power to stabilize gamma phase seems to be in close relation with bonding energies between atoms in the alloy. A first approach to the calculation of these energies has been performed by the semi empiric method of Miedema where only bonds between pairs are considered, neglecting ternary and quaternary bonds. There is also a lack of information concerning solubilities of the ternary elements in the ternary cubic phase. In this work we aim to calculate bonding energies between atoms in the alloy using a cluster expansion of the formation energy (T=0 K) of a series of bcc ordered compounds in the systems U-Mo-X. Then the calculation of the equilibrium phase diagram by the Cluster Variation Method will be done (CVM). We show here the first part of the investigation devoted to calculation of phases equilibria in the U Mo system Formation energies of the ordered compounds were obtained by the first principles methods TB-LMTO-ASA and FP-LAPW. Another set of bonding energies was calculated in order to fit the known experimental diagram and new formation energies for the ordered compounds were derived from them. Discrepancies between both sets are discussed. (author)

  9. Transition metals and mitochondrial metabolism in the heart

    OpenAIRE

    Rines, Amy K.; Ardehali, Hossein

    2012-01-01

    Transition metals are essential to many biological processes in almost all organisms from bacteria to humans. Their versatility, which arises from an ability to undergo reduction–oxidation chemistry, enables them to act as critical cofactors of enzymes throughout the cell. Accumulation of metals, however, can also lead to oxidative stress and cellular damage. The importance of metals to both enzymatic reactions and oxidative stress makes them key players in mitochondria. Mitochondria are the ...

  10. High-resolution structural studies of ultra-thin magnetic, transition metal overlayers and two-dimensional transition metal oxides using synchrotron radiation

    International Nuclear Information System (INIS)

    This thesis report the surface-structure determination of three, ultra-thin magnetic transition-metal films, Fe/Au(100), Mn/Ni(100), and Mn/Cu(100) using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) and photoelectron holography. These structural studies are the first to use non-s initial states in the ARPEFS procedure. This thesis also reports an ARPEFS surface-structure determination of a two-dimensional transition-metal oxide, [(1 x 1)O/W(110)] x 12. The authors have analyzed the ARPFES signal from the Au 4f7/5 core level of the Au(1 ML)/Fe(15 ML)/Au(100) system. The analysis shows that the Fe grows layer by layer with one monolayer of gold, acting as a surfactant, remaining on top of the growing Fe layers. These surface gold atoms sit in the four-fold hollow site, 1.67 ± 0.02 A above the iron surface. The grown Fe layer is very much like the bulk, bcc iron, with an interlayer spacing of 1.43 ± 0.03 A. Analysis of the Mn 3p ARPEFS signals from c(2 x 2)Mn/Ni(100) and c(2 x 2)Mn/Cu(100) shows that the Mn forms highly corrugated surface alloys. The corrugation of the Mn/Ni(100) and Mn/Cu(100) systems are 0.24 ± 0.02 A and 0.30 ± 0.04 A respectively. In both cases the Mn is sticking above the plane of the surface substrate atoms. For the Mn/Ni(100) system the first layer Ni is contracted 4% from the bulk value. The Mn/Cu(100) system shows bulk spacing for the substrate Cu. Photoelectron holography shows that the Mn/Ni interface is very abrupt with very little Mn leaking into the second layer, while the Mn/Cu(100) case has a significant amount of Mn leaking into the second layer. A new, five-element electrostatic electron lens was developed for hemispherical electron-energy analyzers. This lens system can be operated at constant transverse or constants angular magnification, and has been optimized for use with the very small photon-spot sizes. Improvements to the hemispherical electron-energy analyzer are also discussed

  11. High-resolution structural studies of ultra-thin magnetic, transition metal overlayers and two-dimensional transition metal oxides using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kellar, S.A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States). Advanced Light Source Div.

    1997-05-01

    This thesis report the surface-structure determination of three, ultra-thin magnetic transition-metal films, Fe/Au(100), Mn/Ni(100), and Mn/Cu(100) using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) and photoelectron holography. These structural studies are the first to use non-s initial states in the ARPEFS procedure. This thesis also reports an ARPEFS surface-structure determination of a two-dimensional transition-metal oxide, [(1 x 1)O/W(110)] x 12. The authors have analyzed the ARPFES signal from the Au 4f{sub 7/5} core level of the Au(1 ML)/Fe(15 ML)/Au(100) system. The analysis shows that the Fe grows layer by layer with one monolayer of gold, acting as a surfactant, remaining on top of the growing Fe layers. These surface gold atoms sit in the four-fold hollow site, 1.67 {+-} 0.02 A above the iron surface. The grown Fe layer is very much like the bulk, bcc iron, with an interlayer spacing of 1.43 {+-} 0.03 A. Analysis of the Mn 3p ARPEFS signals from c(2 x 2)Mn/Ni(100) and c(2 x 2)Mn/Cu(100) shows that the Mn forms highly corrugated surface alloys. The corrugation of the Mn/Ni(100) and Mn/Cu(100) systems are 0.24 {+-} 0.02 A and 0.30 {+-} 0.04 A respectively. In both cases the Mn is sticking above the plane of the surface substrate atoms. For the Mn/Ni(100) system the first layer Ni is contracted 4% from the bulk value. The Mn/Cu(100) system shows bulk spacing for the substrate Cu. Photoelectron holography shows that the Mn/Ni interface is very abrupt with very little Mn leaking into the second layer, while the Mn/Cu(100) case has a significant amount of Mn leaking into the second layer. A new, five-element electrostatic electron lens was developed for hemispherical electron-energy analyzers. This lens system can be operated at constant transverse or constants angular magnification, and has been optimized for use with the very small photon-spot sizes. Improvements to the hemispherical electron-energy analyzer are also discussed.

  12. Theory of the transition temperature of superconducting amorphous transition metals

    International Nuclear Information System (INIS)

    In the present paper first the transition temperature Tsub(c) is shown to be a local quantity, which depends on the (average) short range order, and second it is demonstrated how to calculate local electronic properties in the framework of a short range order model and the transition temperature of amorphous systems based on accepted structure models of the amorphous state. In chapter I the theoretical basis of this work is presented in brief. The model used to study the role of short range order (in periodically ordered as well as in disordered system) is described in chapter II. The results of this model for the periodically ordered case are compared in chapter III with band structure calculations. In chapter IV it is shown how to establish short range order models for disordered systems and what kind of information can be obtained with respect to the electronic properties. Finally in chapter V it is discussed to what extend the interpretation of the transition temperature Tsub(c) as being determined by short range order effects can be supported by the electronic properties, which are calculated in the chapters III and IV. (orig.)

  13. Electronic and magnetic engineering of transition metal dichalcogenides

    Science.gov (United States)

    Tang, Youjian; Crespi, Vincent; Vincent Crespi group Team

    Transition metal dichalcogenides (TMDs) have moderate bandgaps and great potential in electronic and optoelectronic applications. We show that by intercalation and compensated doping of transition metal ions, we could generate a ``half-semiconductor'', half-metal or doped magnetic semiconductor. We will also show that covalently connecting a single layer of WS2 to a small aromatic molecule with appropriate electronegativity, it is possible to align the molecular energy levels with the WS2 conduction band edge, yielding an electronic structure of potential interest for thermoelectric applications, and covalently connecting single-layer WS2 to magnetic coordination compounds could introduce magnetization into the WS2 layer.

  14. Probable metal-insulator transition in Ag4SSe

    International Nuclear Information System (INIS)

    Highlights: • New phase transition in Ag4SSe was discovered with scanning calorimetry and supported with X-ray powder diffraction. • The thermal effect relates to the anomaly in electrical and thermal conductivity of Ag4SSe. • Similar thermal and electrical effects in K3Cu8S6 are explained with the metal-insulator transition. - Abstract: New phase transition (285 K) in low-temperature monoclinic Ag4SSe was found out below the α-β transition (358 K) after the measurements with differential scanning calorimetry. The transition reveals significant hysteresis (over 30 K). X-ray powder diffraction shows that the superlattice with doubled a and b parameters of the unit cell exists below the new transition point. The signs of this new phase transition can be found in thermal and electrical conductivity of Ag4SSe published in literature. Elusive phase transition in Ag2Se shows similar properties. The new transition is likely related to the metal-insulator type transition, like K3Cu8S6

  15. Microscopic Origin of Heisenberg and Non-Heisenberg Exchange Interactions in Ferromagnetic bcc Fe.

    Science.gov (United States)

    Kvashnin, Y O; Cardias, R; Szilva, A; Di Marco, I; Katsnelson, M I; Lichtenstein, A I; Nordström, L; Klautau, A B; Eriksson, O

    2016-05-27

    By means of first principles calculations, we investigate the nature of exchange coupling in ferromagnetic bcc Fe on a microscopic level. Analyzing the basic electronic structure reveals a drastic difference between the 3d orbitals of E_{g} and T_{2g} symmetries. The latter ones define the shape of the Fermi surface, while the former ones form weakly interacting impurity levels. We demonstrate that, as a result of this, in Fe the T_{2g} orbitals participate in exchange interactions, which are only weakly dependent on the configuration of the spin moments and thus can be classified as Heisenberg-like. These couplings are shown to be driven by Fermi surface nesting. In contrast, for the E_{g} states, the Heisenberg picture breaks down since the corresponding contribution to the exchange interactions is shown to strongly depend on the reference state they are extracted from. Our analysis of the nearest-neighbor coupling indicates that the interactions among E_{g} states are mainly proportional to the corresponding hopping integral and thus can be attributed to be of double-exchange origin. By making a comparison to other magnetic transition metals, we put the results of bcc Fe into context and argue that iron has a unique behavior when it comes to magnetic exchange interactions. PMID:27284671

  16. Molecular dynamics simulation of dislocation-void interactions in BCC Mo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyon-Jee [Department of Nuclear Engineering, University of California, Berkeley, CA (United States)], E-mail: hyon-jee@nuc.Berkeley.EDU; Wirth, Brian D. [Department of Nuclear Engineering, University of California, Berkeley, CA (United States)

    2009-04-30

    Molecular dynamics (MD) and molecular statics (MS) simulations have been performed to simulate the motion of a screw dislocation and its interaction with voids in irradiated body centered cubic (BCC) Mo. Considering the unique non-planar core structures of the screw dislocation in BCC metals, the behavior of screw dislocation motion as a function of temperature and applied shear stress is first discussed. A transition from smooth to rough motion of the screw dislocation is observed with increasing shear stress, as well as a change of dislocation glide plane from {l_brace}1 1 0{r_brace} to {l_brace}1 1 2{r_brace} with increasing temperature. The interaction of a screw dislocation with nanometer-sized voids observed in both dynamic and static conditions is then reported. The obstacle strength calculated from MS calculations shows a large increase in critical resolved shear stress for void diameter larger than about 3 nm. However, the MD results indicate that the screw dislocation interaction with void occurs via a simple shear mechanism.

  17. Bonding effects in dilute transition-metal alloys

    International Nuclear Information System (INIS)

    The Moessbauer isomer-shift data of transition-metal nuclei as impurities in metals were considered in previous papers where it was shown that, once volume effects were suitably accounted for, the data fell on a ''universal'' curve. In this paper, the deviations from universality are examined in more detail in an attempt to better understand the alloying behavior. It is found that atom A as an impurity in metal B does not sustain a shift of the same magnitude as atom B does when it is an impurity in metal A. The results are discussed in terms of d-band hybridization and of the asymmetry in the solubility behavior in transition-metal-alloy phase diagrams

  18. Bonding effects in dilute transition-metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R.E.; Swartzendruber, L.J.; Bennett, L.H.

    1981-12-01

    The Moessbauer isomer-shift data of transition-metal nuclei as impurities in metals were considered in previous papers where it was shown that, once volume effects were suitably accounted for, the data fell on a ''universal'' curve. In this paper, the deviations from universality are examined in more detail in an attempt to better understand the alloying behavior. It is found that atom A as an impurity in metal B does not sustain a shift of the same magnitude as atom B does when it is an impurity in metal A. The results are discussed in terms of d-band hybridization and of the asymmetry in the solubility behavior in transition-metal-alloy phase diagrams.

  19. Flexible metallic seal for transition duct in turbine system

    Science.gov (United States)

    Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

    2014-04-22

    A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a flexible metallic seal contacting the interface member to provide a seal between the interface member and the turbine section.

  20. The metal-insulator transition in magnetite.

    Science.gov (United States)

    Cullen, J. R.; Callen, E.

    1972-01-01

    We describe an electronic model for the low temperature transition in magnetite, in which the average number of electrons on a site is non-integral. The solution of the one-dimensional problem is reviewed, and the connection of the model with the Verwey ordering is discussed. Some of the implication of the three dimensional problem are discussed.

  1. Glutathione and Transition-Metal Homeostasis in Escherichia coli▿

    OpenAIRE

    Helbig, Kerstin; Bleuel, Corinna; Krauss, Gerd J.; Nies, Dietrich H.

    2008-01-01

    Glutathione (GSH) and its derivative phytochelatin are important binding factors in transition-metal homeostasis in many eukaryotes. Here, we demonstrate that GSH is also involved in chromate, Zn(II), Cd(II), and Cu(II) homeostasis and resistance in Escherichia coli. While the loss of the ability to synthesize GSH influenced metal tolerance in wild-type cells only slightly, GSH was important for residual metal resistance in cells without metal efflux systems. In mutant cells without the P-typ...

  2. Electronic Transitions in f-electron Metals at High Pressures:

    International Nuclear Information System (INIS)

    This study was to investigate unusual phase transitions driven by electron correlation effects that occur in many f-band transition metals and are often accompanied by large volume changes: ∼20% at the (delta)-α transition in Pu and 5-15% for analogous transitions in Ce, Pr, and Gd. The exact nature of these transitions has not been well understood, including the short-range correlation effects themselves, their relation to long-range crystalline order, the possible existence of remnants of the transitions in the liquid, the role of magnetic moments and order, the critical behavior, and dynamics of the transitions, among other issues. Many of these questions represent forefront physics challenges central to Stockpile materials and are also important in understanding the high-pressure behavior of other f- and d-band transition metal compounds including 3d-magnetic transition monoxide (TMO, TM=Mn, Fe, Co, Ni). The overarching goal of this study was, therefore, to understand the relationships between crystal structure and electronic structure of transition metals at high pressures, by using the nation's brightest third-generation synchrotron x-ray at the Advanced Photon Source (APS). Significant progresses have been made, including new discoveries of the Mott transition in MnO at 105 GPa and Kondo-like 4f-electron dehybridization and new developments of high-pressure resonance inelastic x-ray spectroscopy and x-ray emission spectroscopy. These scientific discoveries and technology developments provide new insights and enabling tools to understand scientific challenges in stockpile materials. The project has broader impacts in training two SEGRF graduate students and developing an university collaboration (funded through SSAAP)

  3. Memristor using a transition metal nitride insulator

    Science.gov (United States)

    Stevens, James E; Marinella, Matthew; Lohn, Andrew John

    2014-10-28

    Apparatus is disclosed in which at least one resistive switching element is interposed between at least a first and a second conducting electrode element. The resistive switching element comprises a metal oxynitride. A method for making such a resistive switching element is also disclosed.

  4. Metallization and charge-transfer gap closure of transition-metal iodides under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A. Li-Chung

    1993-05-01

    It is shown with resistivity and near-IR absorption measurements that NiI{sub 2}, CoI{sub 2}, and FeI{sub 2} metallize under pressure by closure of the charge-transfer energy gap at pressures of 17, 10, and 23 GPa, respectively, which is close to the antiferromagnetic-diamagnetic transition in NiI{sub 2} and CoI{sub 2}. Thus, the magnetic transitions probably are caused by the metallization; in NiI{sub 2} and CoI{sub 2}, the insulator-metal transitions are first order. Moessbauer and XRD data were also collected. Figs, 46 refs.

  5. Development of dissimilar metal transition joint by hot bond rolling

    International Nuclear Information System (INIS)

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) to stainless steel piping are required for nuclear fuel reprocessing plants. The authors have developed dissimilar transition joints made of stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot bond rolling process of clad bars and clad pipes, using a newly developed mill called 'rotary reduction mill'. This report presents the manufacturing process of dissimilar transition joints produced from the clad pipe with three layers by the hot bond rolling. First, the method of hot bond rolling of clad pipe is proposed. Then, the mechanical and corrosion properties of the dissimilar transition joints are evaluated in detail by carrying out various tests. Finally, the rolling properties in the clad pipe method are discussed. (author)

  6. Chemical compatibility between lithium oxide and transition metals

    International Nuclear Information System (INIS)

    The chemical reactions between Li2O and transition metals (Ti, V, Cr, Mn, Fe, Ni), particularly 316 steel, have been studied up to 1273 K in sealed systems under argon and also under vacuum. Pure Li2O is inherently inert towards transition metals except when such equilibria as 4Li2O + Fe = Li5FeO4 + 3Li 2Li2O + Cr = LiCrO2 + 3Li are disturbed by removal of Li by vacuum or chemical means. The results are rationalised with the known thermodynamics. LiOH impurity has a deleterious effect on the metals and accounts for some of the supposed reactivity of LI2O. It may be possible to inhibit the corrosive reaction of LiOH and LiOT towards steel, and facilitate the release of T2, by introducing metallic lithium. (orig.)

  7. Direct NO decomposition over stepped transition-metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Christensen, Claus H.;

    2007-01-01

    We establish the full potential energy diagram for the direct NO decomposition reaction over stepped transition-metal surfaces by combining a database of adsorption energies on stepped metal surfaces with known Bronsted-Evans-Polanyi (BEP) relations for the activation barriers of dissociation of...... diatomic molecules over stepped transition- and noble-metal surfaces. The potential energy diagram directly points to why Pd and Pt are the best direct NO decomposition catalysts among the 3d, 4d, and 5d metals. We analyze the NO decomposition reaction in terms of a Sabatier-Gibbs-type analysis, and we...... demonstrate that this type of analysis yields results that to within a surprisingly small margin of error are directly proportional to the measured direct NO decomposition over Ru, Rh, Pt, Pd, Ag, and An. We suggest that Pd, which is a better catalyst than Pt under the employed reaction conditions, is a...

  8. The nonmetal-metal transition in solutions of metals in molten salts

    International Nuclear Information System (INIS)

    Solutions of metals in molten salts present a rich phenomenology: localization of electrons in disordered ionic media, activated electron transport increasing with metal concentration towards a nonmetal-metal (NM-M) transition, and liquid-liquid phase separation. A brief review of progress in the study of these systems is given in this article, with main focus on the NM-M transition. After recalling the known NM-M behaviour of the component elements in the case of expanded fluid alkali metals and mercury and of solid halogens under pressure, the article focuses on liquid metal - molten salt solutions and traces the different NM-M behaviours of the alkalis in their halides and of metals added to polyvalent metal halides. (author). 51 refs, 2 figs

  9. Synthesis of some novel divalent transition metal complexes as antimicrobials

    Institute of Scientific and Technical Information of China (English)

    Kaushal K. Oza; Paresh N. Patel; Hasmukh S. Patel

    2011-01-01

    A novel series of transition metal complexes have been synthesized from the reaction of 5-((3-(methylthio)-5-(pyridin-4-yl)-4H-1,2,4-triazol-4-ylamino)methyl)quinolin-8-ol with transition metal salts. The structures of these compounds have been elucidated by elemental and spectral analysis. Furthermore, compounds were screened for in vitro antimicrobial activity against the representative panel of two Gram-positive and two Gram-negative bacteria and two strains of fungus. The various compounds show potent inhibitory action against test organisms.

  10. An inverse scattering approach to the physics of transition metals

    International Nuclear Information System (INIS)

    A method is developed for the deduction of a transition metal ion potential from a knowledge of the phase-shift nl(k). The method used is based on the distorted plane-wave scattering approximation for the deduction of non-singular potentials from scattering phase-shifts in an inverse scattering approach. The resulting electron-ion potential obtained is a finite Dirichlet series sum of short range exponential functions. The Fourier transform of the potential is obtained for applications in the area of transition metal solid state physics. (author). 14 refs, 1 tab

  11. Integrating Transition Metals into Nanomaterials: Strategies and Applications

    KAUST Repository

    Fhayli, Karim

    2016-04-14

    Transition metals complexes have been involved in various catalytic, biomedical and industrial applications, but only lately they have been associated with nanomaterials to produce innovative and well-defined new hybrid systems. The introduction of transition metals into nanomaterials is important to bear the advantages of metals to nanoscale and also to raise the stability of nanomaterials. In this dissertation, we study two approaches of associating transition metals into nanomaterials. The first approach is via spontaneous self-organization based assembly of small molecule amphiphiles and bulky hydrophilic polymers to produce organic-inorganic hybrid materials that have nanoscale features and can be precisely controlled depending on the experimental conditions used. These hybrid materials can successfully act as templates to design new porous material with interesting architecture. The second approach studied is via electroless reduction of transition metals on the surface of nanocarbons (nanotubes and nanodiamonds) without using any reducing agents or catalysts. The synthesis of these systems is highly efficient and facile resulting in stable and mechanically robust new materials with promising applications in catalysis.

  12. Volume variation of Gruneisen parameters of fcc transition metals

    Indian Academy of Sciences (India)

    C V Pandya; P R Vyas; T C Pandya; V B Gohel

    2002-02-01

    The volume variation of the Gruneisen parameters of ten fcc transition metals, up to 40% compression, has been studied on the basis of a model approach proposed by Antonov et al. The results are reasonably good for six metals except for Rh, Ag, Au and Ni when compared with available experimental and other theoretical values. The model requires an appropriate modification for Rh, Ag, Au and Ni.

  13. Spatiotemporal Analysis of Heavy Metal Water Pollution in Transitional China

    OpenAIRE

    Huixuan Li; Yingru Li; Ming-Kuo Lee; Zhongwei Liu; Changhong Miao

    2015-01-01

    China’s socioeconomic transitions have dramatically accelerated its economic growth in last three decades, but also companioned with continuous environmental degradation. This study will advance the knowledge of heavy metal water pollution in China from a spatial–temporal perspective. Specifically, this study addressed the following: (1) spatial patterns of heavy metal water pollution levels were analyzed using data of prefecture-level cities from 2004 to 2011; and (2) spatial statistical...

  14. Dimensional effects in a disordered system near metal-insulator transitions and superconductor-insulator transitions

    International Nuclear Information System (INIS)

    Low temperature transport in disordered conducting materials implies quantum interference, Coulomb repulsion, and superconducting fluctuations. Since 2-D is the lower critical dimension for the existence of metallic and superconducting states, we have studied two quantum phase transitions - the Superconductor-to-Insulator Transition (SIT) and the Metal-to-Insulator Transition (MIT) - when the thickness of a disordered system - here a-NbSi - is lowered. The underlying problem is the transition between the different states and the conditions for a 2-D metal to exist. We have studied the field and disorder-induced SIT. The principal characteristics we have observed (renormalization, role of the field orientation) are well explained by M.P.A. Fisher's theory. However, we do not find the critical exponents values and a universal resistance at the transition as predicted by this theory. Concerning the MIT, we have decreased the thickness of a metallic system to reach the dimension 2 and an insulating state. In both transitions, the passage to the insulating state clearly shows the existence of dissipative states at zero temperature that are not predicted by conventional theories. We propose an interpretation of all our results that implies the existence of a novel phase in 2-D, a Bose Metal, between the superconducting and the metallic states. This new state has been predicted by recent theories. We trace the corresponding phase diagram for the model system NbSi with respect to concentration and film thickness. In the second appendix it is shown how superconducting thin films of NbxSi1-x are used to make transition edge sensors used in the particle detection field. (author)

  15. The Metallicities of Stars With and Without Transiting Planets

    CERN Document Server

    Buchhave, Lars A

    2015-01-01

    Host star metallicities have been used to infer observational constraints on planet formation throughout the history of the exoplanet field. The giant planet metallicity correlation has now been widely accepted, but questions remain as to whether the metallicity correlation extends to the small terrestrial-sized planets. Here, we report metallicities for a sample of 518 stars in the Kepler field that have no detected transiting planets and compare their metallicity distribution to a sample of stars that hosts small planets (Rp < 1.7 R_Earth). Importantly, both samples have been analyzed in a homogeneous manner using the same set of tools (Stellar Parameters Classification tool; SPC). We find the average metallicity of the sample of stars without detected transiting planets to be [m/H]_SNTP,dwarf = -0.02 +- 0.02 dex and the sample of stars hosting small planets to be [m/H]_STP = -0.02 +- 0.02 dex. The average metallicities of the two samples are indistinguishable within the uncertainties, and the two-sample...

  16. Transition metal bioconjugates with an organometallic link between the metal and the biomolecular scaffold

    OpenAIRE

    Monney, Angèle; Albrecht, Martin

    2013-01-01

    This overview compiles recent advances in the synthesis and application of organometallic bioconjugates that comprise a metal–carbon linkage between the metal and the biomolecular scaffold. This specific area of bioorganometallic chemistry has been spurred by the discovery of naturally occurring bioorganometallic compounds and afforded organometallic bioconjugates from transition metals binding to amino acids, nucleic acids and other biomolecules. These artificial bioorganometallic compounds ...

  17. Chromospheric, transition layer and coronal emission of metal deficient stars

    Science.gov (United States)

    Boehm-Vitense, E.

    1982-01-01

    It is shown that while MgII k line emission decreases for metal deficient stars, the Ly alpha emission increases. The sum of chromospheric hydrogen and metallic emission appears to be independent of metal abundances. The total chromospheric energy loss is estimated to be 0.0004 F sub bol. The chromospheric energy input does not seem to decrease for increasing age. The transition layer emission is reduced for metal deficient stars, but it is not known whether the reduction is larger than can be explained by curve of growth effects only. Coronal X-ray emission was measured for 4 metal deficient stars. Within a 12 limit it could still be consistent with the emission of solar abundance stars.

  18. Recipe for high-Tc transition-metal chalcogenide superconductors

    International Nuclear Information System (INIS)

    The conditions for the occurrence of superconductivity in cuprates are enumerated. There is a minimum of seven, which are discussed in some detail. They may be taken as a recipe in the search for superconductors at elevated temperature with other transition-metal chalcogenide compounds. (orig.)

  19. Reaction ability of nitrosyl group in transition metal complexes

    International Nuclear Information System (INIS)

    Transformations of the intraspheric nitrosyl group in complexes of transition metals are reviewed. All the reactions involving these groups are divided into two types: reactions associated with the electrophilic properties of the nitrosyl group; reactions associated with the nucleophilic properties of the nitrosyl group. Attempts to correlate the reactivity of the nitrosyl group with its structure and spectral characteristics are considered

  20. Transport properties of transition metal impurities on gold nanowires

    Science.gov (United States)

    Pontes, Renato B.; da Silva, Edison Z.; Fazzio, Adalberto; da Silva, Antônio J. R.

    2009-03-01

    Performing first principles density functional theory (DFT) we calculated the electronic and transport properties of a Au thin nanowire with transition metal atoms (Mn, Fe, Ni or Co) bridging the two sides of the Au nanowire. We will show that these systems have strong spin dependent transport properties and that the local symmetry can dramatically change them, leading to a significant spin polarized conductance. This spin dependent transport is also associated with the transition metal in the nanowire, in particular with the d-level positioning. Using Co, for example [1], when the symmetry permits the mixing between the wire s-orbitals with the transition metal d-states, there are interference effects that resemble Fano-like resonances with an anisotropy of 0.07 at the Fermi level. On the other hand, if this symmetry decouples such states, we simply have a sum of independent transmission channels and the calculated anisotropy was 0.23. The anisotropies for the other transition metals, as well as calculated transmittances for two Co impurities will also be presented [1] R. B. Pontes, E. Z. da Silva, A. Fazzio and Antônio J. R. da Silva, J. Am. Chem. Soc. 130 (30), 9897-903, 2008

  1. The Electrochemical Synthesis of Transition-Metal Acetylacetonates

    Science.gov (United States)

    Long, S. R.; Browning, S. R.; Lagowski, J. J.

    2008-01-01

    The electrochemical synthesis of transition-metal acetylacetonates described here can form the basis of assisting in the transformation of an entry-level laboratory course into a research-like environment where all members of a class are working on the same problem, but where each member has a personal responsibility for the synthesis and…

  2. Electron-Hole Liquids in Transition Metal Oxide Heterostructures

    OpenAIRE

    Millis, Andrew J.; Schlom, Darrell G.

    2010-01-01

    Appropriately designed transition metal oxide heterostructures involving small band gap Mott insulators are argued to support spatially separated electron and hole gasses at equilibrium. Spatial separations and carrier densities favoring the formation of excitonic states are achievable. The excitonic states may exhibit potentially novel properties. Energetic estimates are given, candidate material systems are discussed, and the possibility of large photvoltaic effects is mentioned

  3. Reactions of transition metal complexes with cyclic ethers

    International Nuclear Information System (INIS)

    Three novel reactions of epoxides with homogeneous transition-metal catalysts have been explored: (a) the selective rearrangement of internal epoxides to ketones; (b) the cleavage of C-C bond in epoxides having electron-attracting substituents; (c) the transformation of terminal epoxides into esters. Based on an intensive kinetic study, a general mechanism for the transformations of epoxides is postulated

  4. Surface segregation energies in transition-metal alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1999-01-01

    to the electrostatic potential and energy. We use the database to establish the major factors which govern surface segregation in transition metal alloys. We find that the calculated trends are well described by Friedel's rectangular state density model and that the few but significant deviations...

  5. Pressure-induced phase transitions and metallization in VO2

    Science.gov (United States)

    Bai, Ligang; Li, Quan; Corr, Serena A.; Meng, Yue; Park, Changyong; Sinogeikin, Stanislav V.; Ko, Changhyun; Wu, Junqiao; Shen, Guoyin

    2015-03-01

    We report the results of pressure-induced phase transitions and metallization in VO2 based on synchrotron x-ray diffraction, electrical resistivity, and Raman spectroscopy. Our isothermal compression experiments at room temperature and 383 K show that the room temperature monoclinic phase (M 1 ,P 21/c ) and the high-temperature rutile phase (R ,P 42/m n m ) of VO2 undergo phase transitions to a distorted M 1 monoclinic phase (M 1' ,P 21/c ) above 13.0 GPa and to an orthorhombic phase (CaCl2-like, P n n m ) above 13.7 GPa, respectively. Upon further compression, both high-pressure phases transform into a new phase (phase X ) above 34.3 and 38.3 GPa at room temperature and 383 K, respectively. The room temperature M 1 -M 1' phase transition structurally resembles the R -CaCl2 phase transition at 383 K, suggesting a second-order displacive type of transition. Contrary to previous studies, our electrical resistivity results, Raman measurements, as well as ab initio calculations indicate that the new phase X , rather than the M 1' phase, is responsible for the metallization under pressure. The metallization mechanism is discussed based on the proposed crystal structure.

  6. Electrocatalysis using transition metal carbide and oxide nanocrystals

    Science.gov (United States)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel

  7. Semiconductor-metal transition in semiconductor melts with 3d metal admixtures

    International Nuclear Information System (INIS)

    Electrical conductivity and thermoelectric power measurements were performed for liquid semiconductor alloys Se0.5Te0.5 doped with 3d metals in a wide temperature range (up to 1600 K) under ambient pressures of argon gas (up to 30 MPa). Structure changes were studied by means of X-ray diffraction method. The 3d metal admixtures affect electrophysical properties and a temperature of the semiconductor-metal transition (SMT)

  8. Preparation of nanoporous metal foam from high nitrogen transition metal complexes

    Science.gov (United States)

    Tappan, Bryce C.; Huynh, My Hang V.; Hiskey, Michael A.; Son, Steven F.; Oschwald, David M.; Chavez, David E.; Naud, Darren L.

    2006-11-28

    Nanoporous metal foams are prepared by ignition of high nitrogen transition metal complexes. The ammonium salts of iron(III) tris[bi(tetrazolato)-amine], cobalt(III) tris(bi(tetrazolato)amine), and high nitrogen compounds of copper and silver were prepared as loose powders, pressed into pellets and wafers, and ignited under an inert atmosphere to form nanoporous metal foam monoliths having very high surface area and very low density.

  9. The evolution of recrystallization textures in body centered cubic metals

    International Nuclear Information System (INIS)

    A model of the evolution of recrystallization textures for b.c.c. metals was suggested based on the ODF and EBSD analysis of the texture change during annealing of cold rolled steel. The model is composed of two principles: first, the maximum principal stress direction in the deformed grain becomes the minimum Young's modulus direction in the recrystallized grain; second, a {110} plane, parallel to the maximum principal stress direction (hence, minimum Young's modulus direction), is taken for variant selection. The current model is successfully applied to describe the evolution of recrystallization textures in various b.c.c. transition metals such as tantalum, molybdenum and tungsten

  10. Empirical prediction of optical transitions in metallic armchair SWCNTs

    Directory of Open Access Journals (Sweden)

    G. R. Ahmed Jamal

    2015-12-01

    Full Text Available In this work, a quick and effective method to calculate the second and third optical transition energies of metallic armchair single-wall carbon nanotubes (SWCNT is presented. In this proposed method, the transition energy of any armchair SWCNT can be predicted directly by knowing its one chiral index as both of its chiral indices are same. The predicted results are compared with recent experimental data and found to be accurate over a wide diameter range from 2 to 4.8 nm. The empirical equation proposed here is also compared with that proposed in earlier works. The proposed way may help the research works or applications where information of optical transitions of armchair metallic nanotubes is needed.

  11. Transition Metal Nitrides for Electrocatalytic Energy Conversion: Opportunities and Challenges.

    Science.gov (United States)

    Xie, Junfeng; Xie, Yi

    2016-03-01

    Electrocatalytic energy conversion has been considered as one of the most efficient and promising pathways for realizing energy storage and energy utilization in modern society. To improve electrocatalytic reactions, specific catalysts are needed to lower the overpotential. In the search for efficient alternatives to noble metal catalysts, transition metal nitrides have attracted considerable interest due to their high catalytic activity and unique electronic structure. Over the past few decades, numerous nitride-based catalysts have been explored with respect to their ability to drive various electrocatalytic reactions, such as the hydrogen evolution reaction and the oxygen evolution reaction to achieve water splitting and the oxygen reduction reaction coupled with the methanol oxidation reaction to construct fuel cells or rechargeable Li-O2 batteries. This Minireview provides a brief overview of recent progress on electrocatalysts based on transition metal nitrides, and outlines the current challenges and future opportunities. PMID:26494184

  12. The transition to the metallic state in low density hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    McMinis, Jeremy; Morales, Miguel A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Ceperley, David M. [Department of Physics, University of Illinois, Urbana, Illinois 61801 (United States); Kim, Jeongnim [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-11-21

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work, we use diffusion quantum Monte Carlo to benchmark the transition between paramagnetic and anti-ferromagnetic body centered cubic atomic hydrogen in its ground state. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of r{sub s} = 2.27(3) a{sub 0}. We compare our results to previously reported density functional theory, Hedin’s GW approximation, and dynamical mean field theory results.

  13. Transition Metal d-Orbital Splitting Diagrams: An Updated Educational Resource for Square Planar Transition Metal Complexes

    Science.gov (United States)

    Bo¨rgel, Jonas; Campbell, Michael G.; Ritter, Tobias

    2016-01-01

    The presentation of d-orbital splitting diagrams for square planar transition metal complexes in textbooks and educational materials is often inconsistent and therefore confusing for students. Here we provide a concise summary of the key features of orbital splitting diagrams for square planar complexes, which we propose may be used as an updated…

  14. Adhesion and friction of transition metals in contact with non-metallic hard materials

    International Nuclear Information System (INIS)

    An investigation was conducted to examine the adhesion and friction behavior of transition metals in contact with various non-metallic hard materials and the nature of the metal transfer to the hard materials. Sliding friction experiments were conducted with the metals yttrium, titanium, tantalum, zirconium, vanadium, neodymium, iron, cobalt, nickel, tungsten, platinum, rhenium, ruthenium and rhodium in sliding contact with single-crystal diamond, silicon carbide, pyrolytic boron nitride and ferrite. All experiments were conducted under the following conditions: loads, 0.05-0.3 N; sliding velocities, 3 x 10-3 and 0.7 x 10-3 m min-1; in a vacuum of 10-8 Pa; at room temperature. Auger electron spectroscopy analysis was conducted with the metals and non-metals to determine the surface chemistry and the degree of surface cleanness. The results of the investigation indicate the adhesion and friction of the transition metals in contact with diamond, silicon carbide, boron nitride and ferrite are related to the relative chemical activity of the metals. The more chemically active the metal, the higher the coefficient of friction and the greater the amount of transfer to the non-metals. (Auth.)

  15. Transition-metal-catalyzed C-S bond coupling reaction.

    Science.gov (United States)

    Lee, Chin-Fa; Liu, Yi-Chen; Badsara, Satpal Singh

    2014-03-01

    Sulfur-containing molecules such as thioethers are commonly found in chemical biology, organic synthesis, and materials chemistry. While many reliable methods have been developed for preparing these compounds, harsh reaction conditions are usually required in the traditional methods. The transition metals have been applied in this field, and the palladium-catalyzed coupling of thiols with aryl halides and pseudo halides is one of the most important methods in the synthesis of thioethers. Other metals have also been used for the same purpose. Here, we summarize recent efforts in metal-catalyzed C-S bond cross-coupling reactions, focusing especially on the coupling of thiols with aryl- and vinyl halides based on different metals. PMID:24443103

  16. The pressure-induced Mott Transition in transition-metal iodides

    Energy Technology Data Exchange (ETDEWEB)

    Pasternak, M.P. (Tel Aviv Univ. (Israel). School of Physics and Astronomy); Taylor, R.D. (Los Alamos National Lab., NM (USA)); Jeanloz, R. (California Univ., Berkeley, CA (USA). Dept. of Geology and Geophysics)

    1991-01-01

    Many of the Transition Metal (TM) compounds, because of exchange and correlation interactions within the narrow and poorly overlapping d-bands, become antiferromagnetic insulators, the Mott Insulators (MI). The properties of the MI and their gradual transition into the non-correlated metallic state (the Mott Transition) are of crucial important for the elucidation of HTS materials features in particular and to magnetism in general. The transition of the MI into a metal can be achieved either by doping or by high pressure. To yield the definitive data on the Mott transition high pressure work on well characterized materials should be sought. The present studies provide for the first time extensive information on the Mott-Hubbard gap closure induced by high pressure. High pressure studies using Diamond Anvil Cells were conducted in several (TM)I{sub 2} compounds. They all have layered structures and other antiferromagnetically at ambient pressure. {sup 129}I Moessbauer Spectroscopy (MS) was used to study the properties of the (TM){sup 2+} sublattice magnetization as a function of pressure and temperature, and X-ray diffraction was used to look for possible crystallographic transitions and to obtain the equation of state. Results show that the high pressure transition at P{sub c} from a magnetic to a non-magnetic state is not accompanied by crystallographic changes. Previous studies{sup 1} with NiI{sub 2} have confirmed the presence of a metallic state at P > P{sub c}. Inherent to the pressure behavior of the magnetic state is the gradual increase of T{sub N} in all cases and a slight increase in the TM{sup 2+} moments with pressure increase. The collapse of the magnetic state is abrupt for some cases (NiI{sub 2}) and gradual for others (CoI{sub 2}), indicative of different band-overlap mechanisms. 2 refs., 5 figs.

  17. Structural relationships in complex hydrides of the late transition metals

    International Nuclear Information System (INIS)

    Literature data on complex hydrides of the late transition metals (groups 7-10), such as the hydrogen storage material Mg2NiH4, are reviewed with respect to order-disorder phase transitions and structural relationships. They are analysed in terms of crystallographic group-subgroup trees and their use in understanding the different crystal structures from a symmetry point of view is demonstrated. New data are presented on the low temperature behaviour of magnesium iridium hydrides and strontium rhodium hydrides studied by powder X-ray diffraction. (orig.)

  18. Pressure-induced phase transitions and metallization in VO2

    OpenAIRE

    Bai, Ligang; Li, Quan; Corr, Serena A; Meng, Yue; Park, Changyong; Sinogeikin, Stanislav V.; Ko, Changhyun; Wu, Junqiao; Shen, Guoyin

    2015-01-01

    We report the results of pressure-induced phase transitions and metallization in VO2 based on synchrotron x-ray diffraction, electrical resistivity, and Raman spectroscopy. Our isothermal compression experiments at room temperature and 383 K show that the room temperature monoclinic phase (M1,P21/c) and the high-temperature rutile phase (R,P42/mnm) of VO2 undergo phase transitions to a distorted M1 monoclinic phase (M1′,P21/c) above 13.0 GPa and to an orthorhombic phase (CaCl2-like, Pnnm) abo...

  19. Total binding energy via the band structure energy of 4d group transition metals

    International Nuclear Information System (INIS)

    The binding in metals provides a basis genesis to discuss the cohesive, elastic, lattice dynamical and other allied properties of the metals. A thorough and comprehensive analysis with regard to (i) various energy terms contributing to total metallic bonding, (ii) forms of the model potential incurring the band structure part of the binding, (iii) implication of s-d hybridization and (iv) effect of electron screening, has prompted us to undertake the present study of binding in several complex metals which turn out to be superconducting at low temperatures and bear hcp, bcc and fcc configurations at room temperature i.e. yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), ruthenium (Ru), rhodium (Rh) and palladium (Pd). (author). 13 refs., 2 figs., 2 tabs

  20. An Alternative Approach to the Teaching of Systematic Transition Metal Chemistry.

    Science.gov (United States)

    Hathaway, Brian

    1979-01-01

    Presents an alternative approach to teaching Systematic Transition Metal Chemistry with the transition metal chemistry skeleton features of interest. The "skeleton" is intended as a guide to predicting the chemistry of a selected compound. (Author/SA)

  1. Nonlinear d10-ML2 Transition-Metal Complexes

    OpenAIRE

    Wolters, Lando P.; Bickelhaupt, F. Matthias

    2013-01-01

    We have investigated the molecular geometries of a series of dicoordinated d10-transition-metal complexes ML2 (M=Co−, Rh−, Ir−, Ni, Pd, Pt, Cu+, Ag+, Au+; L=NH3, PH3, CO) using relativistic density functional theory (DFT) at ZORA-BLYP/TZ2P. Not all complexes have the expected linear ligand–metal–ligand (L–M–L) angle: this angle varies from 180° to 128.6° as a function of the metal as well as the ligands. Our main objective is to present a detailed explanation why ML2 complexes can become bent...

  2. Freezing of liquid alkali metals as screened ionic plasmas

    International Nuclear Information System (INIS)

    The relationship between Wigner crystallization of the classical ionic plasma and the liquid-solid transition of alkali metals is examined within the density wave theory of freezing. Freezing of the classical plasma on a rigid neutralizing background into the bcc structure is first re-evaluated, in view of recent progress in the determination of its thermodynamic functions by simulation and of the known difficulties of the theory relating to the order parameter at the (200) star of reciprocal lattice vectors. Freezing into the fcc structure is also considered in this context and found to be unfavoured. On allowing for long-wavelength deformability of the background, the ensuing appearance of a volume change on freezing into the bcc structure is accompanied by reduced stability of the fluid phase and by an increase in the entropy of melting. Freezing of alkali metals into the bcc structure is next evaluated, taking their ionic pair structure as that of an ionic plasma reference fluid screened by conduction electrons and asking that the correct ionic coupling strength at liquid-solid coexistence should be approximately reproduced. The ensuring values of the volume and entropy changes across the phase transition, as estimated from the theory by two alternative routes, are in reasonable agreement with experiment. The order parameters of the phase transition, excepting the (200) one, conform rather closely to a Gaussian behaviour and yield a Lindemann ratio in reasonable agreement with the empirical value for melting of bcc crystals. It is suggested that ionic ordering at the (200) star in the metal may be (i) assisted by medium range ordering in the conduction electrons, as indicated by differences in X-ray and neutron diffraction intensities from the liquid, and/or (ii) quite small in the hot bcc solid. Such a possible premelting behaviour of bcc metals should be worth testing experimentally by diffraction. (author). 48 refs, 1 fig., 1 tab

  3. Multireference Character for 4d Transition Metal-Containing Molecules.

    Science.gov (United States)

    Wang, Jiaqi; Manivasagam, Sivabalan; Wilson, Angela K

    2015-12-01

    Four diagnostic criteria have been examined to identify the suitability of single-reference wave function-based quantum chemistry methods for a set of 118 4d transition metal species. These diagnostics include the weight of the leading configuration of the CASSCF wave function, C0(2); the Frobenius norm of the coupled cluster amplitude vector related to single excitations, T1; the matrix 2-norm of the coupled cluster T1 amplitude vector arising from coupled cluster calculations, D1; and the percent total atomization energy, %TAE, corresponding to a relationship between energies determined with CCSD and CCSD(T) calculations. New criteria, namely, T1 ≥ 0.045, D1 ≥ 0.120, and %TAE ≥ 10%, are herein proposed as a gauge for 4d transition metal-containing molecules to predict the possible need to employ multireference (MR) wave function-based methods to describe energetic and spectroscopic properties. PMID:26642991

  4. On thermal lattice dilatation of some transition metal compounds

    International Nuclear Information System (INIS)

    The report deals with the thermal lattice dilatation of cubic transition metal compounds. The thermal dilatation is determined through the variation of the lattice constants. The measurements are carried out 'in situ' by use of a high-temperature X-ray diffractometer chamber. The evaluation relates to both the linear thermal expansion coefficient α and, for some compounds, the specific heat at constant volume Csub(V) and the Grueneisen constant γ. In general a higher thermal dilatation is observed for nitrides than for carbides with the compounds formed by the transition metals belonging to the IVA and VA groups. The influence exerted by vacancies and by the oxygen dissolved in the lattice on the thermal dilatation of carbonitrides of zirconium, hafnium and tantalum is explained by the more pronounced anharmonic character of atomic vibrations in the crystal lattice. (orig.)

  5. Laser Assisted Additively Manufactured Transition Metal Coating on Aluminum

    Science.gov (United States)

    Vora, Hitesh D.; Rajamure, Ravi Shanker; Roy, Anurag; Srinivasan, S. G.; Sundararajan, G.; Banerjee, Rajarshi; Dahotre, Narendra B.

    2016-05-01

    Various physical and chemical properties of surface and subsurface regions of Al can be improved by the formation of transition metal intermetallic phases (Al x TM y ) via coating of the transition metal (TM). The lower equilibrium solid solubility of TM in Al (additive manufacturing approach can effectively synthesize TM intermetallic coatings on the surface of Al. The focus of the present work included the development of process control to achieve thermodynamic and kinetic conditions necessary for desirable physical, microstructural and compositional attributes. A multiphysics finite element model was developed to predict the temperature profile, cooling rate, melt depth, dilution of W in Al matrix and corresponding micro-hardness in the coating, and the interface between the coating and the base material and the base material.

  6. Quantum superconductor-metal transition in a proximity array

    Energy Technology Data Exchange (ETDEWEB)

    Feigel' man, M V; Larkin, A I; Skvortsov, M A [L D Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, 117940 Moscow (Russian Federation)

    2001-10-01

    A theory of the zero-temperature superconductor-metal transition is developed for an array of superconductive islands (of size d) coupled via a disordered two-dimensional conductor with the dimensionless conductance g = h/e{sup 2} R{sub {open_square}} >> 1. At T = 0 macroscopically superconductive state of the array with lattice spacing b >> d is destroyed at g < g{sub c} {approx} 0.1 ln{sup 2} (b/d). At high temperatures the normal-state resistance between neighboring islands at b = b{sub c} is much smaller than R{sub Q} = h/4e{sup 2}. (5. superconductor-metal-insulator transitions)

  7. Engineering skyrmions in transition-metal multilayers for spintronics

    Science.gov (United States)

    Dupé, B.; Bihlmayer, G.; Böttcher, M.; Blügel, S.; Heinze, S.

    2016-06-01

    Magnetic skyrmions are localized, topologically protected spin structures that have been proposed for storing or processing information due to their intriguing dynamical and transport properties. Important in terms of applications is the recent discovery of interface stabilized skyrmions as evidenced in ultra-thin transition-metal films. However, so far only skyrmions at interfaces with a single atomic layer of a magnetic material were reported, which greatly limits their potential for application in devices. Here we predict the emergence of skyrmions in [4d/Fe2/5d]n multilayers, that is, structures composed of Fe biatomic layers sandwiched between 4d and 5d transition-metal layers. In these composite structures, the exchange and the Dzyaloshinskii-Moriya interactions that control skyrmion formation can be tuned separately by the two interfaces. This allows engineering skyrmions as shown based on density functional theory and spin dynamics simulations.

  8. Laser Assisted Additively Manufactured Transition Metal Coating on Aluminum

    Science.gov (United States)

    Vora, Hitesh D.; Rajamure, Ravi Shanker; Roy, Anurag; Srinivasan, S. G.; Sundararajan, G.; Banerjee, Rajarshi; Dahotre, Narendra B.

    2016-07-01

    Various physical and chemical properties of surface and subsurface regions of Al can be improved by the formation of transition metal intermetallic phases (Al x TM y ) via coating of the transition metal (TM). The lower equilibrium solid solubility of TM in Al (additive manufacturing approach can effectively synthesize TM intermetallic coatings on the surface of Al. The focus of the present work included the development of process control to achieve thermodynamic and kinetic conditions necessary for desirable physical, microstructural and compositional attributes. A multiphysics finite element model was developed to predict the temperature profile, cooling rate, melt depth, dilution of W in Al matrix and corresponding micro-hardness in the coating, and the interface between the coating and the base material and the base material.

  9. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides

    Science.gov (United States)

    Mak, Kin Fai; Shan, Jie

    2016-04-01

    Recent advances in the development of atomically thin layers of van der Waals bonded solids have opened up new possibilities for the exploration of 2D physics as well as for materials for applications. Among them, semiconductor transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se), have bandgaps in the near-infrared to the visible region, in contrast to the zero bandgap of graphene. In the monolayer limit, these materials have been shown to possess direct bandgaps, a property well suited for photonics and optoelectronics applications. Here, we review the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties.

  10. Structural models for amorphous transition metal binary alloys

    International Nuclear Information System (INIS)

    A dense random packing of 445 hard spheres with two different diameters in a concentration ratio of 3 : 1 was hand-built to simulate the structure of amorphous transition metal-metalloid alloys. By introducing appropriate pair potentials of the Lennard-Jones type, the structure is dynamically relaxed by minimizing the total energy. The radial distribution functions (RDF) for amorphous Fe0.75P0.25, Ni0.75P0.25, Co0.75P0.25 are obtained and compared with the experimental data. The calculated RDF's are resolved into their partial components. The results indicate that such dynamically constructed models are capable of accounting for some subtle features in the RDF of amorphous transition metal-metalloid alloys

  11. Laser Assisted Additively Manufactured Transition Metal Coating on Aluminum

    Science.gov (United States)

    Vora, Hitesh D.; Rajamure, Ravi Shanker; Roy, Anurag; Srinivasan, S. G.; Sundararajan, G.; Banerjee, Rajarshi; Dahotre, Narendra B.

    2016-07-01

    Various physical and chemical properties of surface and subsurface regions of Al can be improved by the formation of transition metal intermetallic phases (Al x TM y ) via coating of the transition metal (TM). The lower equilibrium solid solubility of TM in Al (engineering via a laser-aided additive manufacturing approach can effectively synthesize TM intermetallic coatings on the surface of Al. The focus of the present work included the development of process control to achieve thermodynamic and kinetic conditions necessary for desirable physical, microstructural and compositional attributes. A multiphysics finite element model was developed to predict the temperature profile, cooling rate, melt depth, dilution of W in Al matrix and corresponding micro-hardness in the coating, and the interface between the coating and the base material and the base material.

  12. Engineering skyrmions in transition-metal multilayers for spintronics.

    Science.gov (United States)

    Dupé, B; Bihlmayer, G; Böttcher, M; Blügel, S; Heinze, S

    2016-01-01

    Magnetic skyrmions are localized, topologically protected spin structures that have been proposed for storing or processing information due to their intriguing dynamical and transport properties. Important in terms of applications is the recent discovery of interface stabilized skyrmions as evidenced in ultra-thin transition-metal films. However, so far only skyrmions at interfaces with a single atomic layer of a magnetic material were reported, which greatly limits their potential for application in devices. Here we predict the emergence of skyrmions in [4d/Fe2/5d]n multilayers, that is, structures composed of Fe biatomic layers sandwiched between 4d and 5d transition-metal layers. In these composite structures, the exchange and the Dzyaloshinskii-Moriya interactions that control skyrmion formation can be tuned separately by the two interfaces. This allows engineering skyrmions as shown based on density functional theory and spin dynamics simulations. PMID:27257020

  13. Metal-insulator and charge ordering transitions in oxide nanostructures

    Science.gov (United States)

    Singh, Sujay Kumar

    Strongly correlated oxides are a class of materials wherein interplay of various degrees of freedom results in novel electronic and magnetic phenomena. Vanadium oxides are widely studied correlated materials that exhibit metal-insulator transitions (MIT) in a wide temperature range from 70 K to 380 K. In this Thesis, results from electrical transport measurements on vanadium dioxide (VO2) and vanadium oxide bronze (MxV 2O5) (where M: alkali, alkaline earth, and transition metal cations) are presented and discussed. Although the MIT in VO2 has been studied for more than 50 years, the microscopic origin of the transition is still debated since a slew of external parameters such as light, voltage, and strain are found to significantly alter the transition. Furthermore, recent works on electrically driven switching in VO2 have shown that the role of Joule heating to be a major cause as opposed to electric field. We explore the mechanisms behind the electrically driven switching in single crystalline nanobeams of VO2 through DC and AC transport measurements. The harmonic analysis of the AC measurement data shows that non-uniform Joule heating causes electronic inhomogeneities to develop within the nanobeam and is responsible for driving the transition in VO2. Surprisingly, field assisted emission mechanisms such as Poole-Frenkel effect is found to be absent and the role of percolation is also identified in the electrically driven transition. This Thesis also provides a new insight into the mechanisms behind the electrolyte gating induced resistance modulation and the suppression of MIT in VO2. We show that the metallic phase of VO2 induced by electrolyte gating is due to an electrochemical process and can be both reversible and irreversible under different conditions. The kinetics of the redox processes increase with temperature; a complete suppression of the transition and the stabilization of the metallic phase are achievable by gating in the rutile metallic phase

  14. Synthesis and Characterization of Few Layer Semiconducting Transition Metal Dichalcogenides

    OpenAIRE

    Mann, John Calif

    2013-01-01

    The intense interest in graphene as the prototypical 2D electronic material has recently been accompanied by the investigation of layered transition metal dichalcogenides (TMDC), most notably MoS2 and MoSe2. Like graphene, they can be prepared in a stable form down to monolayer thickness. These materials provide favorable mechanical properties similar to graphene, but exhibit an intrinsic indirect band gap that crossovers to a direct band gap in the monolayer limit without the need for nanos...

  15. Ab initio calculations of temperature dependent resistivity for transition metals

    Czech Academy of Sciences Publication Activity Database

    Wagenknecht, D.; Turek, Ilja; Carva, K.

    Praha : Matfyzpress, 2015 - (Šafránková, J.; Pavlů, J.), s. 42-47 ISBN 978-80-7378-311-2. [Week of Doctoral Students 2015. Praha (CZ), 02.06.2015-04.06.2015] R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68081723 Keywords : electrical resistivity * temperature dependence * transition metals Subject RIV: BM - Solid Matter Physics ; Magnetism

  16. Metal - Insulator Transition in 3D Quantum Percolation

    OpenAIRE

    Travenec, Igor

    2007-01-01

    We present the metal - insulator transition study of a quantum site percolation model on simple cubic lattice. Transfer matrix method is used to calculate transport properties - Landauer conductance - for the binary distribution of energies. We calculate the mobility edge in disorder (ratio of insulating sites) - energy plane in detail and we find the extremal critical disorder somewhat closer to the classical percolation threshold, than formerly reported. We calculate the critical exponent $...

  17. Applications of Transition Metals in Organic Synthesis and Polymerization

    Institute of Scientific and Technical Information of China (English)

    Praveen; K.Tandon; Manish; Srivastava; Santosh; B.Singh

    2007-01-01

    1 Results Classic oxidants require rigorous control of the experimental conditions added with the problem of lack of selectivity. Catalysis by transition metals with environmentally safe oxidants provides synthetic routes to minimize pollution by giving environmental benign by-products. Fe (Ⅵ) is a powerful and a selective oxidant with Fe(Ⅲ) as a by-product, while hydrogen peroxide is clean with water as the only by-product. Separation of sodium or potassium ferrates requires tedious processes. Associat...

  18. Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides

    OpenAIRE

    Selig, Malte; Berghäuser, Gunnar; Raja, Archana; Nagler, Philipp; Schüller, Christian; Heinz, Tony F.; Korn, Tobias; Chernikov, Alexey; Malic, Ermin; Knorr, Andreas

    2016-01-01

    Atomically thin transition metal dichalcogenides (TMDs) are direct-gap semiconductors with strong light-matter and Coulomb interaction. The latter accounts for tightly bound excitons, which dominate the optical properties of these technologically promising materials. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emiss...

  19. Two dimensional transition metal dichalcogenides grown by chemical vapor deposition

    OpenAIRE

    Tsang, Ka-yi; 曾家懿

    2014-01-01

    An atomically thin film of semiconducting transition metal dichalcogenides (TMDCs) is emerging as a class of key materials in chemistry and physics due to their remarkable chemical and electronic properties. The TMDCs are layered materials with weak out-of-plane van der Waals (vdW) interaction and strong in-plane covalent bonding enabling scalable exfoliation into two-dimensional (2D) layers of atomic thickness. The growth techniques to prepare these 2D TMDC materials in high yield and large ...

  20. Planar defects and dislocations in transition metal disilicides

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav

    Boston: John Wiley & Sons, 2013 - (Marquis, F.), s. 431-437 ISBN 978-1-63266-000-8. [Pacific Rim International Congress on Advanced Materials and Processing 2013 /8./ (PRICM-8). Waikoloa (US), 04.08.2013-09.08.2013] R&D Projects: GA AV ČR IAA100100920 Grant ostatní: AV ČR(CZ) M100411202 Institutional support: RVO:68378271 Keywords : transition metal disilicides * dislocation cores * stacking faults Subject RIV: BM - Solid Matter Physics ; Magnetism

  1. Superparamagnetism of transition metal nanoparticles in conducting polymer film

    International Nuclear Information System (INIS)

    Magnetic properties of transition metal (cobalt, iron, nickel, manganese, chromium) nanoparticles prepared by ion-exchange method in the perfluorinated sulfo-cation polymeric membrane (MF-4SK) have been investigated. While manganese and chromium in MF-4SK exhibited paramagnetic properties, cobalt, iron and nickel particles showed superparamagnetic behaviors. Our experimental evidence suggests that cobalt, iron and nickel nanoparticles in the polymer film obey a single-domain theory

  2. Exciton ionization in multilayer transition-metal dichalcogenides

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Latini, Simone; Thygesen, Kristian Sommer;

    2016-01-01

    Photodetectors and solar cells based on materials with strongly bound excitons rely crucially on field-assisted exciton ionization. We study the ionization process in multilayer transition-metal dichalcogenides (TMDs) within the Mott-Wannier model incorporating fully the pronounced anisotropy......-principles material parameters, an analysis of several important TMDs reveals WSe2 and MoSe2 to be superior for applications relying on ionization of direct and indirect excitons, respectively....

  3. Organometallic compounds of the lanthanides, actinides and early transition metals

    International Nuclear Information System (INIS)

    This book provides a reference compilation of physical and biographical data on over 1500 of the most important and useful organometallic compounds of the lanthanides, actinides and early transition metals representing 38 different elements. The compounds are listed in molecular formula order in a series of entries in dictionary format. Details of structure, physical and chemical properties, reactions and key references are clearly set out. All the data is fully indexed and a structural index is provided. (U.K.)

  4. Surface-Induced Modification of Supported Late Transition Metal Complexes

    OpenAIRE

    Snezhkova, Olesia

    2016-01-01

    The work presented in this thesis addresses the investigation of the electronic, magnetic, and structural properties of late transition metal complexes supported on various surfaces. The research is aimed at studying the interaction between the molecules and the support, together with the intermolecular interaction. This knowledge is essential e.g. for the development of organic molecule-based devices and the creation of active and stable catalysts. In this work, the modification of th...

  5. Synthesis of nanosized, electrochemically active lithium transition metal phosphates

    OpenAIRE

    Stark, Michael Andreas

    2011-01-01

    The increasing interest to develop new types of Li-ion batteries is motivated by the amplified need of batteries with high charge and discharge rates. Lithium transition metal phosphates are promising candidates to challenge this need. Before LiMnPO4 can be used as active material, research has to challenge two different aspects. First of all, for this material a crystallite size reduction is very important to improve the rate performance. And second, the electronic conductivity has to be imp...

  6. Pressure induced structural phase transition in IB transition metal nitrides compounds

    Science.gov (United States)

    Soni, Shubhangi; Kaurav, Netram; Jain, A.; Shah, S.; Choudhary, K. K.

    2015-06-01

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  7. Thermodynamics of the structural transition in metal-organic frameworks.

    Science.gov (United States)

    Rodriguez, J; Beurroies, I; Coulet, M-V; Fabry, P; Devic, T; Serre, C; Denoyel, R; Llewellyn, P L

    2016-03-01

    A thermodynamic study of the structural large-pore (LP) to narrow pore (NP) transition in various Metal Organic Frameworks (MOFs) is presented. First, the pressure induced transition at a constant temperature is investigated using a Tian-Calvet microcalorimeter set-up equipped with a high pressure cell. This device permits simultaneous measurements of the mechanical work and heat associated with the LP → NP transition. It is shown that MIL-53(Al) and MIL-53(Cr) have similar thermodynamic and mechanical behaviour whilst the MIL-47(V) system is characterized by much higher transition energy and mechanical work. Second, the temperature induced transition at ambient pressure is studied by means of differential scanning calorimetry (DSC) combined with X-ray absorption spectroscopy. This set-up enables one to follow simultaneously the structural changes associated with the phase transition detected by DSC. The MIL-53(Cr)-Br functionalized MOF is chosen here as a case study where both energetics and structural changes are discussed. PMID:26574728

  8. Discontinuous structural phase transition of liquid metal and alloys (2)

    International Nuclear Information System (INIS)

    The diameter (df) of diffusion fluid cluster before and after phase transition has been calculated in terms of the paper ''Discontinuous structural phase transition of liquid metal and alloy (1)'' Physics Letters. A 326 (2004) 429-435, to verify quantitatively the discontinuity of structural phase transition; the phenomena of thermal contraction and thermal expansion during the phase transition, together with the evolution model of discontinuous structural phase transition are also discussed in this Letter to explore further the nature of structural transition; In addition, based on the viscosity experimental result mentioned in paper [Y. Waseda, The Structure of Non-Crystalline Materials--Liquids and Amorphous Solids, McGraw-Hill, New York, 1980], we present an approach to draw an embryo of the liquid-liquid (L-L) phase diagram for binary alloys above liquidus in the paper, expecting to guide metallurgy process so as to improve the properties of alloys. The idea that controls amorphous structure and its properties by means of the L-L phase diagram for alloys and by the rapid cooling technique to form the amorphous alloy has been brought forward in the end

  9. Theory of the pairbreaking superconductor-metal transition in nanowires

    Science.gov (United States)

    Sachdev, Subir

    2009-03-01

    We present a detailed description of a zero temperature phase transition between superconducting and diffusive metallic states in very thin wires due to a Cooper pair breaking mechanism. The dissipative critical theory contains current reducing fluctuations in the guise of both quantum and thermally activated phase slips. A full cross-over phase diagram is computed via an expansion in the inverse number of complex components of the superconducting order parameter (one in the physical case). The fluctuation corrections to the electrical (σ) and thermal (κ) conductivities are determined, and we find that σ has a non-monotonic temperature dependence in the metallic phase which may be consistent with recent experimental results on ultra-narrow wires. In the quantum critical regime, the ratio of the thermal to electrical conductivity displays a linear temperature dependence and thus the Wiedemann-Franz law is obeyed, with a new universal experimentally verifiable Lorenz number. We also examined the influence of quenched disorder on the superconductor-metal transition. The self-consistent pairing eigenmodes of a quasi-one dimensional wire were determined numerically. Our results support the proposal by Hoyos et al./ (Phys. Rev. Lett. 99, 230601 (2007)) that the transition is described by the same strong disorder fixed point describing the onset of ferromagnetism in the quantum Ising model in a transverse field.

  10. Optical properties of transition metal oxide quantum wells

    Science.gov (United States)

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-01

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO3/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  11. Optical properties of transition metal oxide quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A. [Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-01-21

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO{sub 3}/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  12. Optical properties of transition metal oxide quantum wells

    International Nuclear Information System (INIS)

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO3/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered

  13. Holographic metal/superconductor phase transitions with dark matter sector

    CERN Document Server

    Peng, Yan

    2015-01-01

    In this paper, we investigate the holographic phase transitions with dark matter sector in the AdS black hole background away from the probe limit. We firstly detect the formation of the scalar hair by examining the behaviors of the superconducting solutions and the effective mass of the scalar field. Then we study the condensation of the scalar operator with respect to the Hawking temperature T. As a further step, we disclose the properties of the phase transitions from the holographic topological entanglement entropy of the system. The holographic topological entanglement entropy is proved to be very useful in characterizing the difference between various phases. At last, we also derive the qualitative properties through the analytical methods. In summary, we find that the model parameters can provide rich physics in the general holographic metal/superconductor phase transitions.

  14. Synthesis and Characterization of some First Row Transition Metal Picrates

    Directory of Open Access Journals (Sweden)

    R. C. Aggarwal

    1975-10-01

    Full Text Available Transition metal picrates of the empirical compositions Ti(Picrate CI/Sub3, Ti (Picrate/Sub2CI/Sub2, Cr (OH (H/Sub2O/Sub6 (Pierate/Sub2 and M(H/Sub2Ox (Picrate/Sub2 (where M=Mn (II, Fe (II, Co(II, Ni(II, Cu(II and Zn(II and x=4for Cu(II, 8 for Fe(II & 6 for others have been prepared and characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, infrared and electronic spectral studies. Molar conductances and molecular weights of the soluble metal picrates show that TiCI/Sub2 (Picrate/Sub2 is non electrolyte whereas others are 1:2 electrolytes. Magnetic susceptibility and electronic spectral I studies indicate that(II picrate is square planar, whereas those of Cr(III Mn(II0, Fe(II,Co(II and NI(II are spin free octahedral. The infrared spectral studies of the hydrated and anhydrous metal picrates show: (i that phenolic group of the picric acid is involved in bounding with the metals;(ii the water molecules in the hydrated metal picrates coordinated and (iii the-NO/Sub2 groups do not participate in bonding with the metals.

  15. Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds

    OpenAIRE

    Kandpal, Hem C.; FECHER, GERHARD H.; Felser, Claudia

    2006-01-01

    In this work, results of {\\it ab-initio} band structure calculations for $A_2BC$ Heusler compounds that have $A$ and $B$ sites occupied by transition metals and $C$ by a main group element are presented. This class of materials includes some interesting half-metallic and ferromagnetic properties. The calculations have been performed in order to understand the properties of the minority band gap and the peculiar magnetic behavior found in these materials. Among the interesting aspects of the e...

  16. Spatiotemporal Analysis of Heavy Metal Water Pollution in Transitional China

    Directory of Open Access Journals (Sweden)

    Huixuan Li

    2015-07-01

    Full Text Available China’s socioeconomic transitions have dramatically accelerated its economic growth in last three decades, but also companioned with continuous environmental degradation. This study will advance the knowledge of heavy metal water pollution in China from a spatial–temporal perspective. Specifically, this study addressed the following: (1 spatial patterns of heavy metal water pollution levels were analyzed using data of prefecture-level cities from 2004 to 2011; and (2 spatial statistical methods were used to examine the underlying socioeconomic and physical factors behind water pollution including socioeconomic transitions (industrialization, urbanization, globalization and economic development, and environmental characteristic (natural resources, hydrology and vegetation coverage. The results show that only Cr pollution levels increased over the years. The individual pollution levels of the other four heavy metals, As, Cd, Hg, and Pb, declined. High heavy metal water pollution levels are closely associated with both anthropogenic activities and physical environments, in particular abundant mineral resources and industrialization prosperity. On the other hand, economic development and urbanization play important roles in controlling water pollution problems. The analytical findings will provide valuable information for policy-makers to initiate and adjust protocols and strategies for protecting water sources and controlling water pollution; thus improving the quality of living environments.

  17. Perspectives of Two-dimensional Transition Metal Dichalcogenide Monolayers

    Directory of Open Access Journals (Sweden)

    Hui Pan

    2015-06-01

    Full Text Available The discovery of graphene, a novel two-dimensional (2D nanostructure, has triggered an extensive study on monolayers for diverse applications in Nano devices, optoelectronics, sensors, catalysts, and energy storage because of the easy fabrication, exceptional charge transport, thermal, optical, chemical, and mechanical properties [1]. As one of important members of 2D monolayers, 2D transition metal dichalcogenides (TMDs monolayers show a wide range of electronic, optical, mechanical, chemical, and thermal properties [2]. TMDs have a chemical formula of MX2, where M is a transition metal element from group IV, group V, or group VI, and X is a chalcogen (S, Se, or Te. They are layered materials with weakly van der Walls interaction holding together. Each layer is a sandwich structure (X–M–X, where a M-atom layer is enclosed within two X layers and the atoms in layers are hexagonally packed [3]. Depending to stacking orders and metal atom coordination, the overall symmetry of TMD can be hexagonal or rhombohedral, and the metal atoms have octahedral or trigonal prismatic coordination.

  18. Method for treating rare earth-transition metal scrap

    Science.gov (United States)

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a prefused, rare earth fluoride-bearing flux of CaF.sub.2, CaCl.sub.2 or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy.

  19. Density functional theory studies of transition metal nanoparticles in catalysis

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Rankin, Rees; Zeng, Zhenhua; Chun, Hee-Joon; Clayborne, Andre; Li, Lin; Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Larsen, Ask Hjorth; Kleis, Jesper; Jacobsen, Karsten Wedel; Romero, Nichols

    2013-01-01

    Periodic Density Functional Theory calculations are capable of providing powerful insights into the structural, energetics, and electronic phenomena that underlie heterogeneous catalysis on transition metal nanoparticles. Such calculations are now routinely applied to single crystal metal surfaces...... and to subnanometer metal clusters. Descriptions of catalysis on truly nanosized structures, however, are generally not as well developed. In this talk, I will illustrate different approaches to analyzing nanocatalytic phenomena with DFT calculations. I will describe case studies from heterogeneous...... catalysis and electrocatalysis, in which single crystal models are combined with Wulff construction-based ideas to produce descriptions of average nanocatalyst behavior. Then, I will proceed to describe explicitly DFT-based descriptions of catalysis on truly nanosized particles (<~4 nm in diameter), and I...

  20. Transition-metal prion protein attachment: Competition with copper

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2012-02-01

    Prion protein, PrP, is a protein capable of binding copper ions in multiple modes depending on their concentration. Misfolded PrP is implicated in a group of neurodegenerative diseases, which include ``mad cow disease'' and its human form, variant Creutzfeld-Jacob disease. An increasing amount of evidence suggests that attachment of non-copper metal ions to PrP triggers transformations to abnormal forms similar to those observed in prion diseases. In this work, we use hybrid Kohn-Sham/orbital-free density functional theory simulations to investigate copper replacement by other transition metals that bind to PrP, including zinc, iron and manganese. We consider all known copper binding modes in the N-terminal domain of PrP. Our calculations identify modes most susceptible to copper replacement and reveal metals that can successfully compete with copper for attachment to PrP.

  1. Mixed-Ligand Approach to Changing the Metal Ratio in Bismuth-Transition Metal Heterometallic Precursors.

    Science.gov (United States)

    Lieberman, Craig M; Wei, Zheng; Filatov, Alexander S; Dikarev, Evgeny V

    2016-04-18

    A new series of heteroleptic bismuth-transition metal β-diketonates [BiM(hfac)3(thd)2] (M = Mn (1), Co (2), and Ni (3); hfac = hexafluoroacetylacetonate, thd = tetramethylheptanedionate) with Bi:M = 1:1 ratio have been synthesized by stoichiometric reactions between homometallic reagents [Bi(III)(hfac)3] and [M(II)(thd)2]. On the basis of analysis of the metal-ligand interactions in heterometallic structures, the title compounds were formulated as ion-pair {[Bi(III)(thd)2](+)[M(II)(hfac)3](-)} complexes. The direct reaction between homometallic reagents proceeds with a full ligand exchange between main group and transition metal centers, yielding dinuclear heterometallic molecules. In heteroleptic molecules 1-3, the Lewis acidic, coordinatively unsaturated Bi(III) centers are chelated by two bulky, electron-donating thd ligands and maintain bridging interactions with three oxygen atoms of small, electron-withdrawing hfac groups that chelate the neighboring divalent transition metals. Application of the mixed-ligand approach allows one to change the connectivity pattern within the heterometallic assembly and to isolate highly volatile precursors with the proper Bi:M = 1:1 ratio. The mixed-ligand approach employed in this work opens broad opportunities for the synthesis of heterometallic (main group-transition metal) molecular precursors with specific M:M' ratio in the case when homoleptic counterparts either do not exist or afford products with an incorrect metal:metal ratio for the target materials. Heteroleptic complexes obtained in the course of this study represent prospective single-source precursors for the low-temperature preparation of multiferroic perovskite-type oxides. PMID:27054922

  2. Effect of Transition Metals on Polysialic Acid Structure and Functions.

    Science.gov (United States)

    Murthy, Raghavendra Vasudeva; Bharate, Priya; Gade, Madhuri; Sangabathuni, Sivakoti; Kikkeri, Raghavendra

    2016-04-01

    Polysialic acid (PSA) is one of the most abundant glycopolymer present in embryonic brain, and it is known to be involved in key roles such as plasticity in the central nervous system, cell adhesion, migration and localization of neurotrophins. However, in adult brain, its expression is quite low. The exception to this is in Alzheimer's disease (AD) brain, where significantly increased levels of polysilylated neural cell adhesion molecule (PSA-NCAM) have been reported. Here, we confirm the role of PSA as a metal chelator, allowing it to decrease cytotoxicity caused by high levels of transition metals, commonly found in AD brain, and as a regulator of cell behavior. UV-visible (UV-vis) and circular dichroism (CD) spectroscopy, atomic force microscopy (AFM), and isothermal titration calorimetry (ITC) techniques were used to investigate the assembly of PSA-metals complexes. These PSA-metal complexes exhibited less toxicity compared to free metal ions, and in particular, the PSA-Cu(2+) complex synergistically promoted neurite outgrowth in PC12 cells. PMID:26990355

  3. Bonding in transition-metal cluster compounds. 2. The metal cluster-borane analogy

    International Nuclear Information System (INIS)

    Following the detailed discussion of the transition-metal cluster moiety M6(μ3-X)8 in the preceding paper, a more general account of the importance of the d electrons in transition-metal cluster chemistry is presented. The putative analogy with borane clusters (and their derivatives) is examined critically. Although an isolobal relationship exists between, e.g., BH and appropriate ML/sub n/ fragments (e.g. conical Fe(CO)3), this does not imply that the BH and ML/sub n/ fragments behave in electronically similar ways when cluster formation occurs, even when structurally related clusters are formed. Nonidentical isolobal fragments have orbital differences that manifest themselves in interfragment resonance integrals and require a qualitative distinction to be drawn between the bonding modes and detailed electronic structures of (i) transition-metal cluster compounds and (ii) boranes, carboranes, and their metalla derivatives; an analysis developed in the electronic structure theory of transition-metal systems shows why this is the case. The isolobal principle and Wade's rule owe their generality and utility to being symmetry-based statements; the energetics and details of the electronic structure of cluster compounds however are a separate matter requiring appropriate methods of theoretical chemistry. 39 references, 3 figures

  4. Atomic structure of non-stoichiometric transition metal carbides

    International Nuclear Information System (INIS)

    Different kinds of experimental studies of the atomic arrangement in non-stoichiometric transition metal carbides are proposed: the ordering of carbon vacancies and the atomic static displacements are the main subjects studied. Powder neutron diffraction on TiCsub(1-x) allowed us to determine the order-disorder transition critical temperature -Tsub(c) approximately 7700C- in the TiCsub(0.52-0.67) range, and to analyze at 300 K the crystal structure of long-range ordered samples. A neutron diffuse scattering quantitative study at 300 K of short-range order in TiCsub(0.76), TiCsub(0.79) and NbCsub(0.73) single crystals is presented: as in Ti2Csub(1+x) and Nb6C5 superstructures, vacancies avoid to be on each side of a metal atom. Besides, the mean-square carbon atom displacements from their sites are small, whereas metal atoms move radially about 0.03 A away from vacancies. These results are in qualitative agreement with EXAFS measurements at titanium-K edge of TiCsub(1-x). An interpretation of ordering in term of short-range interaction pair potentials between vacancies is proposed

  5. Enhancing conductivity of metallic carbon nanotube networks by transition metal adsorption

    International Nuclear Information System (INIS)

    The conductivity of carbon nanotube thin films is mainly determined by carbon nanotube junctions, the resistance of which can be reduced by several different methods. We investigate electronic transport through carbon nanotube junctions in a four-terminal configuration, where two metallic single-wall carbon nanotubes are linked by a group 6 transition metal atom. The transport calculations are based on the Green’s function method combined with the density-functional theory. The transition metal atom is found to enhance the transport through the junction near the Fermi level. However, the size of the nanotube affects the improvement in the conductivity. The enhancement is related to the hybridization of chromium and carbon atom orbitals, which is clearly reflected in the character of eigenstates near the Fermi level. The effects of chromium atoms and precursor molecules remaining adsorbed on the nanotubes outside the junctions are also examined

  6. Modeling of the magnetic free energy of self-diffusion in bcc Fe

    Science.gov (United States)

    Sandberg, N.; Chang, Z.; Messina, L.; Olsson, P.; Korzhavyi, P.

    2015-11-01

    A first-principles based approach to calculating self-diffusion rates in bcc Fe is discussed with particular focus on the magnetic free energy associated with diffusion activation. First, the enthalpies and entropies of vacancy formation and migration in ferromagnetic bcc Fe are calculated from standard density functional theory methods in combination with transition state theory. Next, the shift in diffusion activation energy when going from the ferromagnetic to the paramagnetic state is estimated by averaging over random spin states. Classical and quantum mechanical Monte Carlo simulations within the Heisenberg model are used to study the effect of spin disordering on the vacancy formation and migration free energy. Finally, a quasiempirical model of the magnetic contribution to the diffusion activation free energy is applied in order to connect the current first-principles results to experimental data. The importance of the zero-point magnon energy in modeling of diffusion in bcc Fe is stressed.

  7. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses.

    Science.gov (United States)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent 'Stoner type' magnetization for the amorphous alloys in contrast to 'Heisenberg type' in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study. PMID:27143686

  8. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    Science.gov (United States)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe–Co metallic glass system of composition [(Co1‑x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  9. Holographic Metal-Insulator Transition in Higher Derivative Gravity

    CERN Document Server

    Ling, Yi; Wu, Jian-Pin; Zhou, Zhenhua

    2016-01-01

    We introduce a Weyl term into the Einstein-Maxwell-Axion theory in four dimensional spacetime. Up to the first order of the Weyl coupling parameter $\\gamma$, we construct charged black brane solutions without translational invariance in a perturbative manner. Among all the holographic frameworks involving higher derivative gravity, we are the first to obtain metal-insulator transitions (MIT) when varying the system parameters at zero temperature. Furthermore, we study the holographic entanglement entropy (HEE) of strip geometry in this model and find that the second order derivative of HEE with respect to the axion parameter exhibits maximization behavior near quantum critical points (QCPs) of MIT. It testifies the conjecture in 1502.03661 and 1604.04857 that HEE itself or its derivatives can be used to diagnose quantum phase transition (QPT).

  10. Compressibility of AlB2-type transition metal diborides

    International Nuclear Information System (INIS)

    The pressure behaviour of a series of transition metal borides has been studied both experimentally and by means of ab initio calculations. X-ray diffraction patterns measured up to ∼50 GPa for VB2 and ZrB2 show no obvious phase transition. Bulk moduli of 322 and 317 GPa, respectively, were obtained using a Murnaghan equation of state. Hartree-Fock LCCO (linear combination of crystal orbitals) calculations performed for TiB2 have allowed its compression behaviour to be studied. The bulk modulus obtained (292 GPa) and the proposed important contribution of the interlayer interaction to the elastic behaviour under high pressure are consistent with the experimental results for the other borides

  11. Luminescence of deep transition metal centres in solids

    International Nuclear Information System (INIS)

    The open-shell configuration of transition metal (TM) impurities greatly influences the carrier-binding properties of levels which they introduce into the band gap of a solid. Absorption and luminescence spectroscopy have proved invaluable in identifying deep TM centres and in giving insight into the nature of excited states involving interaction with carriers. Examples of transitions at associate centres and involving electron transfer between the lattice bands and the impurity are discussed. The effect which the open-shell configuration has on the characteristic recombination luminescence is illustrated for Cu impurities in II-VI compounds. Three different mechanisms for excitation of intracentre luminescence involving carrier relaxation at isolectronic TM impurities are outlined, based on spectroscopic measurements. (orig.)

  12. Stacking dependent electronic structures of transition metal dichalcogenides heterobilayer

    Science.gov (United States)

    Lee, Yea-Lee; Park, Cheol-Hwan; Ihm, Jisoon

    The systematic study of the electronic structures and optical properties of the transition metal dichalcogenides (TMD) heterobilayers can significantly improve the designing of new electronic and optoelectronic devices. Here, we theoretically study the electronic structures and optical properties of TMD heterobilayers using the first-principles methods. The band structures of TMD heterobilayer are shown to be determined by the band alignments of the each layer, the weak interlayer interactions, and angle dependent stacking patterns. The photoluminescence spectra are investigated using the calculated band structures, and the optical absorption spectra are examined by the GW approximations including the electron-hole interaction through the solution of the Bethe-Salpeter equation. It is expected that the weak interlayer interaction gives rise to the substantial interlayer optical transition which will be corresponding to the interlayer exciton.

  13. Synthesis of heterocycles through transition-metal-catalyzed isomerization reactions

    DEFF Research Database (Denmark)

    Ishøy, Mette; Nielsen, Thomas Eiland

    2014-01-01

    versatile method to form iminium and oxocarbenium ions. Given the number of reactions involving these highly electrophilic intermediates, this concept provides a sea of opportunities for heterocycle synthesis, (see scheme; Nu=nucleophile). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.......Metal-catalyzed isomerization of N- and O-allylic systems is emerging as an effective method to form synthetically useful iminium and oxocarbenium intermediates. In the presence of tethered nucleophiles, several recent examples illuminate this approach as a powerful strategy for the synthesis...... of structurally complex and diverse heterocycles. In this Concept article, we attempt to cover this area of research through a selection of recent versatile examples. A sea of opportunities! Transition-metal-catalyzed isomerization of N- and O-allylic compounds provides a mild, selective and synthetically...

  14. Control of plasmonic nanoantennas by reversible metal-insulator transition.

    Science.gov (United States)

    Abate, Yohannes; Marvel, Robert E; Ziegler, Jed I; Gamage, Sampath; Javani, Mohammad H; Stockman, Mark I; Haglund, Richard F

    2015-01-01

    We demonstrate dynamic reversible switching of VO2 insulator-to-metal transition (IMT) locally on the scale of 15 nm or less and control of nanoantennas, observed for the first time in the near-field. Using polarization-selective near-field imaging techniques, we simultaneously monitor the IMT in VO2 and the change of plasmons on gold infrared nanoantennas. Structured nanodomains of the metallic VO2 locally and reversibly transform infrared plasmonic dipole nanoantennas to monopole nanoantennas. Fundamentally, the IMT in VO2 can be triggered on femtosecond timescale to allow ultrafast nanoscale control of optical phenomena. These unique features open up promising novel applications in active nanophotonics. PMID:26358623

  15. New Transition metal assisted complex borohydrides for hydrogen storage

    International Nuclear Information System (INIS)

    High capacity hydrogen storage systems are indeed essential for the on-board vehicular application that leads to the pollution free environment. Apart from the various hydrogen storage systems explored in the past, complex hydrides involving light weight alkali/alkaline metals exhibits promising hydrogenation/ dehydrogenation characteristics. New transition metal assisted complex borohydrides [Zn(BH4)2] have been successfully synthesized by an inexpensive mechano-chemical process. These complex hydrides possesses gravimetric hydrogen storage capacity of ∼8.4 wt.% at around 120 C. We have determined the volumetric hydrogen absorption and desorption of these materials for a number of cycles. Another complex borohydride mixture LiBH4/MgH2 catalyzed with ZnCl2 has been synthesized and characterized using various analytical techniques. (authors)

  16. Nanoparticle plasmonics: going practical with transition metal nitrides

    Directory of Open Access Journals (Sweden)

    Urcan Guler

    2015-05-01

    Full Text Available Promising designs and experimental realizations of devices with unusual properties in the field of plasmonics have attracted a great deal of attention over the past few decades. However, the high expectations for realized technology products have not been met so far. The main complication is the absence of robust, high performance, low cost plasmonic materials that can be easily integrated into already established technologies such as microelectronics. This review provides a brief discussion on alternative plasmonic materials for localized surface plasmon applications and focuses on transition metal nitrides, in particular, titanium nitride, which has recently been shown to be a high performance refractory plasmonic material that could replace and even outperform gold in various plasmonic devices. As a material compatible with biological environments and the semiconductor industry, titanium nitride possesses superior properties compared to noble metals such as high temperature durability, chemical stability, corrosion resistance, low cost and mechanical hardness.

  17. Doping dependent plasmon dispersion in 2 H -transition metal dichalcogenides

    Science.gov (United States)

    Müller, Eric; Büchner, Bernd; Habenicht, Carsten; König, Andreas; Knupfer, Martin; Berger, Helmuth; Huotari, Simo

    2016-07-01

    We report the behavior of the charge carrier plasmon of 2 H -transition metal dichalcogenides (TMDs) as a function of intercalation with alkali metals. Intercalation and concurrent doping of the TMD layers have a substantial impact on plasmon energy and dispersion. While the plasmon energy shifts are related to the intercalation level as expected within a simple homogeneous electron gas picture, the plasmon dispersion changes in a peculiar manner independent of the intercalant and the TMD materials. Starting from a negative dispersion, the slope of the plasmon dispersion changes sign and grows monotonously upon doping. Quantitatively, the increase of this slope depends on the orbital character (4 d or 5 d ) of the conduction bands, which indicates a decisive role of band structure effects on the plasmon behavior.

  18. Ising superconductivity and Majorana fermions in transition-metal dichalcogenides

    Science.gov (United States)

    Zhou, Benjamin T.; Yuan, Noah F. Q.; Jiang, Hong-Liang; Law, K. T.

    2016-05-01

    In monolayer transition-metal dichalcogenides (TMDs), electrons in opposite K valleys are subject to opposite effective Zeeman fields, which are referred to as Ising spin-orbit coupling (SOC) fields. The Ising SOC, originating from in-plane mirror symmetry breaking, pins the electron spins to the out-of-plane directions, and results in Ising superconducting states with strongly enhanced upper critical fields. Here, we show that the Ising SOC generates equal-spin-triplet Cooper pairs with spin polarized in the in-plane directions. Importantly, the spin-triplet Cooper pairs can induce superconducting pairings in a half-metal wire placed on top of the TMD and result in a topological superconductor with Majorana end states. Direct ways to detect equal-spin triplet Cooper pairs and the differences between Ising superconductors and Rashba superconductors are discussed.

  19. Efficient photocarrier injection in a transition metal oxide heterostructure

    CERN Document Server

    Muraoka, Y; Ueda, Y; Hiroi, Z

    2002-01-01

    An efficient method for doping a transition metal oxide (TMO) with hole carriers is presented: photocarrier injection (PCI) in an oxide heterostructure. It is shown that an insulating vanadium dioxide (VO sub 2) film is rendered metallic under light irradiation by PCI from an n-type titanium dioxide (TiO sub 2) substrate doped with Nb. Consequently, a large photoconductivity, which is exceptional for TMOs, is found in the VO sub 2 /TiO sub 2 :Nb heterostructure. We propose an electronic band structure where photoinduced holes created in TiO sub 2 :Nb can be transferred into the filled V 3d band via the low-lying O 2p band of VO sub 2. (letter to the editor)

  20. Structural and electronic properties of isostructural transition metal nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Sahnoun, M., E-mail: sahnoun_cum@yahoo.f [Faculte des Sciences et Technologie, Universite de Mascara, DZ-29000 Mascara (Algeria); Parlebas, J.C. [IPCMS, UMR 7504 CNRS-ULP, 23 Rue de Loess, 67034 Strasbourg Cedex 2 (France); Driz, M. [Applied Materials Laboratory, Universite de Sidi Bel Abbes, DZ-22000 Sidi Bel Abbes (Algeria); Daul, C. [Departement de Chimie, Universite de Fribourg, CH-1700 Fribourg (Switzerland)

    2010-09-15

    The structural and electronic properties of three isostructural transition metal nitrides VN, NbN and TaN have been calculated using the full-potential linearized augmented plane-wave method within a generalized gradient approximation scheme for the exchange-correlation potential. Perfect NaCl structures as well as lattices containing nitrogen vacancies (M{sub 4}N{sub 3}), and an hexagonal {epsilon}-M{sub 2}N structure are considered. The trends are discussed and compared with available experimental and other theoretical results.

  1. Correlated electron pseudopotentials for 3d-transition metals

    International Nuclear Information System (INIS)

    A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc − Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature

  2. Correlated electron pseudopotentials for 3d-transition metals

    Science.gov (United States)

    Trail, J. R.; Needs, R. J.

    2015-02-01

    A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc - Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature.

  3. Correlated electron pseudopotentials for 3d-transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Trail, J. R., E-mail: jrt32@cam.ac.uk; Needs, R. J. [Theory of Condensed Matter Group, Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-02-14

    A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc − Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature.

  4. Thermodynamic investigations of transition metal systems containing coabon and nitrogen

    OpenAIRE

    Teng, Lidong

    2004-01-01

    In view of the important applications of carbides and carbo-nitrides of transition metals in the heat-resistant and hard materials industries, the thermodynamic activities of Cr and Mn in the Cr-C, Fe-Cr-C, Mn-Ni-C and Mn-Ni-C-N systems have been studied in the present work by the use of the galvanic cell technique. CaF2single crystals were used as the solid electrolyte. The phase relationships in selected regions of the systems in question were investigated by the use of the equilibration te...

  5. Transition Metal Catalyzed Polymerization of 1,3,5-Trioxane

    OpenAIRE

    Henes, Michael

    2002-01-01

    We highlighted that transition metal complexes can serve as mediators for the cationic ROP of 1,3,5-trioxane. As examples cyclopentadienyl molybdenum complexes of different Lewis acidity were employed tolerating considerable more water than classical Lewis acid catalysts like BF3 · OEt2 or tBuClO4. They are less active than iridium or palladium catalysts, but [CpMo(CO)3OTf] (2a) was an excellent example to carry out time-dependent 1H NMR spectroscopic studies to follow the course of the polym...

  6. The metal-to-insulator transition in disordered lithium titanate

    Science.gov (United States)

    Fazileh, Farhad

    The electronic and magnetic properties of the superconducting spinel lithium titanate have attracted substantial interest during the last three decades. This compound is one of the four spinel systems among more than 300 known spinel compounds that exhibit superconducting properties at low temperatures. It is still an open question whether electronic correlations have any significant role in the electronic and superconducting properties of this material. In this thesis, we provide some supporting evidence for the presence and importance of strong electronic correlations in this compound by studying the composition-induced metal-insulator transitions in Li1+ xTi2-xO4 and LiAlyTi2-yO 4 systems. In this study, first we introduce a one electron model for the conducting electrons, a so-called quantum site percolation (QSP) model. Experimentally, the non-stoichiometric compounds of lithium titanate, Li1+xTi2-x O4 and LiAlyTi 2-yO4, show metal-to-insulator transitions at critical doping concentrations of xc = 0.15 and yc = 0.33. We performed systematic numerical calculations based on the above-mentioned quantum site percolation model on a corner-sharing tetrahedral lattice, and our numerical results led to predictions for the critical doping concentrations of xc = 0.32 and yc = 0.83, more than twice the experimental values. Thus, this discrepancy indirectly supports the idea that perhaps electronic correlations are important, and their omission is the source of this discrepancy. The hypothesis that the screened Coulomb potentials of the doping cations could explain this disagreement was also rejected by our detailed study of this effect. We showed that this effect can only slightly change the critical doping concentrations of the metal-to-insulator transition. In the final part of our study we take into account the electronic interactions in a real-space Hartree-Fock approximation. In this model the QSP disorder is treated exactly, but the interactions are included in a

  7. Metal-insulator transition in three-band Hubbard model

    International Nuclear Information System (INIS)

    We describe a transition from a metal to an antiferromagnetic (AF) insulator in the three-band Hubbard Hamiltonian for the undoped CuO2 planes of high-temperature superconductors, including local hole correlations. If the realistic parameters are used, one finds the AF ground states with magnetic moment of ≅0.47μB and ≅0.56μB for La2CuO4 and YBa2Cu2O6, respectively. Correlations and the interoxygen hopping reduce drastically the region of the AF long-range order which disappears for the doping of 0.06 hole per unit cell. (orig.)

  8. Hydrogen induced deformational effects in some transition metals

    International Nuclear Information System (INIS)

    Investigation into regularities and nature of acceleration of creep, relaxation of stress ete under hydrogen absortion of (Fe, Pd, Nb, Ta, V) transition metals is carried out. It is shown, that under combined effect of internal or external fields of stress one can observe manifold acceleration of microplastic deformation of mechanical aftereffect (MAE). Mechanisms responsible for MAE initiated by hydrogen absorption are suggested on the ground of observation of elastic constants, internal friction and electrical conductivity and of data obtained by means of X-ray diffraction, metallographic and fractographic analyses

  9. Transition Metal Silicide Nanowires Growth and Electrical Characterization

    Institute of Scientific and Technical Information of China (English)

    PENG Zu-Lin; LIANG S.; DENG Luo-Gen

    2009-01-01

    We report the characterization of self-assembled epitaxially grown transition metal,Fe,Co,Ni,silicide nanowires(TM-NW)growth and electrical transport properties.NWs grown by reactive deposition epitaxy on various silicon surfaces show a dimension of 10nm by 5nm,and several micrometers in length.NW orientations strongly depend on substrate crystal orientation,and follow the substrate symmetry.By using conductive-AFM(c-AFM),the electron transport properties of one single NW were measured,the resistivity of crystalline nickel silicide NW was estimated to be 2×10~(-2) Ω·cm.

  10. Ferromagnetic semiconductor-metal transition in europium monoxide

    International Nuclear Information System (INIS)

    We present a microscopical model to describe the simultaneous para-to-ferromagnetic and semiconductor-to-metal transition in electron-doped EuO. The physical properties of the model are systematically studied, whereas the main remark is on the interplay between magnetic order and the transport properties. The theory correctly describes detailed experimental features of the conductivity and of the magnetization, obtained for EuO1-x or Gd-doped GdxEu1-x0. In particular the doping dependence of the Curie temperature is reproduced The existence of correlation-induced local moments on the impurity sites is essential for this description. (orig.)

  11. Electronic Doping and Scattering by Transition Metals on Graphene

    OpenAIRE

    Pi, K.; McCreary, K. M.; Bao, W.; Han, Wei; Chiang, Y. F.; Li, Yan; Tsai, S. -W.; Lau, C. N.; Kawakami, R. K.

    2009-01-01

    We investigate the effects of transition metals (TM) on the electronic doping and scattering in graphene using molecular beam epitaxy combined with in situ transport measurements. The room temperature deposition of TM onto graphene produces clusters that dope n-type for all TM investigated (Ti, Fe, Pt). We also find that the scattering by TM clusters exhibits different behavior compared to 1/r Coulomb scattering. At high coverage, Pt films are able to produce doping that is either n-type or w...

  12. LCAO-Xα calculations of transition metal clusters

    International Nuclear Information System (INIS)

    The electronic structure of some transition metal clusters (V6, Cr6, Cu6, Ag6) is studied by an approximate LCAO-Xα scheme. Energy level spectra are discussed with respect to other theoretical investigations. The density-of-states curves are represented and compared with those from band-structure calculations. The correlation between binding energies of clusters and the corresponding cohesive energies of the bulk material is shown. Furthermore, the binding energies in copper clusters versus cluster size are discussed. Finally, some experimental results according beams of copper clusters and ESR studies of matrix isolated copper clusters are explained briefly. (author)

  13. Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures

    Science.gov (United States)

    Guo, Yuzheng; Robertson, John

    2016-06-01

    We calculate a large difference in the band alignments for transition metal dichalcogenide (TMD) heterojunctions when arranged in the stacked layer or lateral (in-plane) geometries, using direct supercell calculations. The stacked case follows the unpinned limit of the electron affinity rule, whereas the lateral geometry follows the strongly pinned limit of alignment of charge neutrality levels. TMDs therefore provide one of the few clear tests of band alignment models, whereas three-dimensional semiconductors give less stringent tests because of accidental chemical trends in their properties.

  14. Functionalization of Two-Dimensional Transition-Metal Dichalcogenides.

    Science.gov (United States)

    Chen, Xin; McDonald, Aidan R

    2016-07-01

    Two-dimensional (2D) layered transition-metal dichalcogenides (TMDs) are a fascinating class of nanomaterials that have the potential for application in catalysis, electronics, photonics, energy storage, and sensing. TMDs are rather inert, and thus pose problems for chemical derivatization. However, to further modify the properties of TMDs and fully harness their capabilities, routes towards their chemical functionalization must be identified. Herein, recent efforts toward the chemical (bond-forming) functionalization of 2D TMDs are critically reviewed. Recent successes are highlighted, along with areas where further detailed analyses and experimentation are required. This burgeoning field is very much in its infancy but has already provided several important breakthroughs. PMID:26848815

  15. Transition metal borides. Synthesis, characterization and superconducting properties

    International Nuclear Information System (INIS)

    A systematic study was done on the synthesis and superconducting properties of metal rich transition metal borides. Five different binary systems were investigated including the boride systems of niobium, tantalum, molybdenum, tungsten and rhenium. High temperature solid state methods were used in order to synthesize samples of different transition metal borides of the composition M2B, MB, M3B2, MB2, and M2B4. The reactions were carried out in three different furnaces with different sample containers: the electric arc (copper crucible), the high frequency induction furnace (boron nitride, tantalum or glassy carbon crucibles), and the conventional tube furnace (sealed evacuated quartz ampoules). The products obtained were characterized with X-ray powder diffractometry, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Phase analyses and crystal structure refinements using the Rietveld method and based on structure models known from literature were performed. A neutron diffraction measurement was done for W2B4 to allow for a complete crystal structure determination, because of the presence of a heavy element like tungsten and a light element like boron that made it difficult to determine the accurate determination of the boron atom positions and occupancies from X-ray data. A new structure model for W2B4 was proposed. Magnetic measurements in a SQUID magnetometer down to temperatures as low as 1.8 K were performed to several of the products in order to see if the transition metal borides become superconducting at low temperatures, and the results were compared with data from literature. Superconducting properties were found for the following compounds: NbB2 (TC = 3.5 K), β-MoB (TC = 2.4 K), β-WB (TC = 2.0 K), α-WB (TC = 4.3 K), W2B4 (TC = 5.4 K), Re7B3 (TC = 2.4 K). A relationship between the superconducting properties and the compositional and structural features was discussed for metal diborides. Also it was found that there is an influence

  16. Origin of Transitions between Metallic and Insulating States in Simple Metals

    Science.gov (United States)

    Naumov, Ivan I.; Hemley, Russell J.

    2015-04-01

    Unifying principles that underlie recently discovered transitions between metallic and insulating states in elemental solids under pressure are developed. Using group theory arguments and first-principles calculations, we show that the electronic properties of the phases involved in these transitions are controlled by symmetry principles. The valence bands in these systems are described by simple and composite band representations constructed from localized Wannier functions centered on points unoccupied by atoms, and which are not necessarily all symmetrical. The character of the Wannier functions is closely related to the degree of s -p (-d ) hybridization and reflects multicenter chemical bonding in these insulating states. The conditions under which an insulating state is allowed for structures having an integer number of atoms per primitive unit cell as well as reentrant (i.e., metal-insulator-metal) transition sequences are detailed, resulting in predictions of behavior such as phases having band-contact lines. The general principles developed are tested and applied to the alkali and alkaline earth metals, including elements where high-pressure insulating phases have been reported (e.g., Li, Na, and Ca).

  17. Nucleation and growth of noble metals on transition-metal di-tellurides

    Science.gov (United States)

    Hla, S. W.; Marinković, V.; Prodan, A.

    1997-04-01

    Transition-metal di-tellurides (α- and β-MoTe 2 and WTe 2) were used as substrates for nucleation and growth studies of noble metals. They represent a group of chemically closely related compounds with different surface topographies. Nucleation and growth of Ag and Au at room temperature were studied by means of UHV-STM, AFM and TEM. The results revealed that the growth and orientation of these metals are influenced by the topography of the substrate surfaces. Contrary to the growth on atomically flat α-MoTe 2, there is an enhanced diffusion and nucleation along the periodic surface troughs on β-MoTe 2 and WTe 2. The topography of their (001) surfaces is responsible for the orientation of metal (112) planes being parallel to the substrate surface.)

  18. Magnetic properties of 4d transition-metal clusters

    International Nuclear Information System (INIS)

    We analyze the stability of magnetic states obtained within the tight-binding model solved by molecular dynamics for cubo-octahedral (fcc) and icosahedral clusters of 3d (Ni and Co) and 4d (Pd, Rh, and Ru) transition metals. The magnetic states are stabilized by the Hund close-quote s rule exchange interaction between the d orbitals. Taking realistic parameters deduced from band structure calculations and spectroscopic data, we obtained saturated ferromagnetism for Ni13, Co13, and Pd13 clusters, while Rh13 fcc and Ru13 clusters are partially magnetic, with an antiferromagnetic orientation of the moments on the central atoms in Ru clusters. Our results for 4d transition-metal clusters agree qualitatively with the recent experimental data and with other calculations. Metastable magnetic clusters were identified in several situations. We found a dependence of the equilibrium lattice constant on the magnetization in the considered clusters which may be explained by the character of wave functions in the cluster electronic structure. copyright 1996 The American Physical Society

  19. Electron-energy-loss spectroscopy of transition-metal carbides

    International Nuclear Information System (INIS)

    Electron-energy-loss spectroscopy (EELS) was applied to several problems dealing with the transition-metal carbides. First, narrow (200A) precipitates of TiC were identified in a single crystal of titanium diboride. Second, the carbon concentration in individual stacking faults of TaC was determined to be less than in the surrounding matrix, and the implications of this finding for crystal structure and mechanical properties were discussed. Next, thin films of amorphous carbon and TiO were studied with EELS. Experimental cross sections for C and Ti were obtained from these spectra and used for quantitative analysis of a material of known stoichiometry, V6C5 (by assuming V and Ti cross sections equal), and one of unknown stoichiometry, a cemented carbide composed of 1 to 5 μm grains of TiC/sub x/ embedded in a Ni-Mo binder. These experimental cross sections gave a C/V ratio of 0.84, very close to the expected value of 0.833, and a C/Ti ratio of 0.81 for a grain of TiC/sub x/, a reasonable value of x in these materials. Two other methods of determining cross sections were applied: calculated cross sections based on a hydrogenic model gave inaccurate results, perhaps due to the inadequacy of the model for these transition metals; and efficiency factors applied to the Bethe cross section gave reasonable results, but inferior to those from the experimental cross sections

  20. Anderson metal-insulator transitions with classical magnetic impurities

    Science.gov (United States)

    Jung, Daniel; Kettemann, Stefan; Slevin, Keith

    2016-04-01

    We study numerically the effects of classical magnetic impurities on the Anderson metal-insulator transition. We find that a small concentration of Heisenberg impurities enhances the critical disorder amplitude Wc with increasing exchange coupling strength J . The resulting scaling with J is analyzed which supports an anomalous scaling prediction by Wegner due to the combined breaking of time-reversal and spin-rotational symmetry. Moreover, we find that the presence of magnetic impurities lowers the critical correlation length exponent ν and enhances the multifractality parameter α0. The new value of ν improves the agreement with the value measured in experiments on the metal-insulator transition (MIT) in doped semiconductors like phosphor-doped silicon, where a finite density of magnetic moments is known to exist in the vicinity of the MIT. The results are obtained by a finite-size scaling analysis of the geometric mean of the local density of states which is calculated by means of the kernel polynomial method. We establish this combination of numerical techniques as a method to obtain critical properties of disordered systems quantitatively.

  1. Three modes of diffusion migration of hydrogen atoms in metals

    International Nuclear Information System (INIS)

    The classical diffusion theory failed to explain the temperature break of the activation energy and the anomalous isotropic effect observed at hydrogen atom migration in the bcc-metals. One introduces a theory based on the quantum statistical mechanics equations enabling to interpret both mentioned phenomena in detail. One studies three possible mechanisms of hydrogen diffusion in metals: over-the-barrier jump, thermally activated tunnel transition and tunnelling caused by decomposition of the local deformation near hydrogen atom

  2. Polynuclear transition metal complexes with thiocarbohydrazide and dithiocarbamates

    Science.gov (United States)

    Siddiqi, K. S.; Khan, Sadaf; Nami, Shahab A. A.; El-ajaily, M. M.

    2007-07-01

    Sn(tch) 2{MCl 2} 2 was prepared from the precursor Sn(tch) 2 and MCl 2. It was subsequently allowed to react with diethyldithiocarbamate which yielded the trinuclear complexes of the type Sn(tch) 2{M 2(dtc) 4}, where tch = thiocarbohydrazide, M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and dtc = diethyldithiocarbamate. They were characterized on the basis of microanalytical, thermal (TGA/DSC), spectral (IR, UV-vis, EPR, 1H NMR) studies, conductivity measurement and magnetic moment data. On the basis of spectral data a tetrahedral geometry has been proposed for the halide complexes, Sn(tch) 2{MCl 2} 2 except for Cu(II) which exhibits a square planar coordination although the transition metal ion in Sn(tch) 2{M 2(dtc) 4} achieves an octahedral geometry where the dithiocarbamato moiety acts as a symmetrical bidentate ligand. The bidentate nature has been established by the appearance of a sharp single ν(C-S) around 1000 cm -1. A downfield shift observed in NH a and NH b protons on moving from Sn(tch) 2 to Sn(tch) 2{MCl 2} 2 is due to the drift of electrons toward metal atoms. A two-step pyrolysis has been observed in the Sn(tch) 2{MCl 2} 2 complexes while their dithiocarbamato derivatives exhibit a three-stage degradation pattern. Finally, the in vitro antibacterial activity of Sn(tch) 2{M 2(dtc) 4} and the mononuclear Sn(tch) 2 has been carried out on bacterial strains Escherichia coli and Salmonella typhi. The compounds were found to be active against the test organisms. The activity of the complexes is enhanced with increasing concentration. The maximum activity in both the strains was achieved by cobalt(II) dithiocarbamate complex. Minimum activity was found for Sn(tch) 2 which generally increases with the introduction of transition metal ion in the complex.

  3. Electronic self-energy in simple and transition metals

    International Nuclear Information System (INIS)

    Full text: In state-of-the art quasi-particle calculations of electrons in crystalline media like metals, semiconductors, and insulators, the dynamical self-energy function of the electrons Σ(r, r'; ω) plays a fundamental role. Beyond this aspect, the self-energy can also be used to calculate the Green's function (G) of the interacting electrons, and the knowledge of G directly leads to such important quantities like occupation number or momentum density distributions. For these reasons, a profound knowledge of Σ is of vital importance for many theoretical purposes. In this contribution, we present and discuss the self-energy function in the GW approximation for simple metals like Na and Al, and transition metals as Cr, Ni, and Cu. A main topic of our work is to investigate if and to what extent our results are influenced by approximations which are frequently described in the literature, namely (i) the neglect of non-diagonal elements of the self-energy and the polarisation matrix, and (ii) the use of the so-called plasmon-pole model for the inverse of the dielectric matrix. (author)

  4. Discovery of elusive structures of multifunctional transition-metal borides

    Science.gov (United States)

    Liang, Yongcheng; Wu, Zhaobing; Yuan, Xun; Zhang, Wenqing; Zhang, Peihong

    2015-12-01

    A definitive determination of crystal structures is an important prerequisite for designing and exploiting new functional materials. Even though tungsten and molybdenum borides (TMBx) are the prototype for transition-metal light-element compounds with multiple functionalities, their elusive crystal structures have puzzled scientists for decades. Here, we discover that the long-assumed TMB2 phases with the simple hP3 structure (hP3-TMB2) are in fact a family of complex TMB3 polytypes with a nanoscale ordering along the axial direction. Compared with the energetically unfavorable and dynamically unstable hP3-TMB2 phase, the energetically more favorable and dynamically stable TMB3 polytypes explain the experimental structural parameters, mechanical properties, and X-ray diffraction (XRD) patterns better. We demonstrate that such a structural and compositional modification from the hP3-TMB2 phases to the TMB3 polytypes originates from the relief of the strong antibonding interaction between d electrons by removing one third of metal atoms systematically. These results resolve the longstanding structural mystery of this class of metal borides and uncover a hidden family of polytypic structures. Moreover, these polytypic structures provide an additional hardening mechanism by forming nanoscale interlocks that may strongly hinder the interlayer sliding movements, which promises to open a new avenue towards designing novel superhard nanocomposite materials by exploiting the coexistence of various polytypes.

  5. On the interactions between carbon monoxide and transition metals

    International Nuclear Information System (INIS)

    The sticking of carbon monoxide on surface atoms of transition metals is a collective phenomenon: according to the adsorption process period which is considered, this phenomenon may be formally described either by the Elovich equation or essentially from a steric point of view. The process rate depends upon the nature of the metal, the carbon monoxide pressure the temperature and the population densities of the induced and fundamental energy levels of the gas-solid bond. At least one of these induced levels tends to disappear with increasing time. For a localised adsorption and taking into account the surface Rayleigh waves, the analysis of the surface entropy yields the so-called iso-kinetic temperature for thermal desorption. This temperature is correlated with the cohesive energy of the metal surface atoms. Finally, it is shown that the interactions of a low energy electron bean with adsorbed molecules - reflection and energy exchange, desorption, ionization or dissociative ionization are strongly dependent on the energy levels of the gas-solid bond and the relative populations of these levels. (author)

  6. Surface stacking faults in close-packed transition metals

    International Nuclear Information System (INIS)

    The deposition of a metallic monolayer on a close-packed surface of FCC and HCP metals can induce a surface stacking fault. The energy of such stacking faults on FCC (111) and HCP (0001) surfaces of transition metals is evaluated at 0 K with a tight-binding scheme using a continued fraction technique. Perturbative potentials near the surface are calculated using a zero charge approximation. Both homo and heteroepitaxy are considered. In the case of homoepitaxy a systematic study with the d-band filling of the substrate is carried out. It is proved that a FCC (111) surface is always in perfect registry with the substrate at 0 K. The same trend is also found for the HCP (0001) surface except for the range of d-band filling which could correspond to the elements of the IIIB column. Surface stacking fault energies are of the same order of magnitude as in the bulk. In the case of heteroepitaxy, the possibility of occurrence of surface stacking fault is discussed as a function of the d-band filling of the overlayer for a given substrate. Our conclusions are in agreement with existing experimental data. (orig.)

  7. Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction.

    Science.gov (United States)

    Barkhordarian, Gagik; Klassen, Thomas; Bormann, Rüdiger

    2006-06-01

    The catalytic mechanisms of transition-metal compounds during the hydrogen sorption reaction of magnesium-based hydrides were investigated through relevant experiments. Catalytic activity was found to be influenced by four distinct physico-thermodynamic properties of the transition-metal compound: a high number of structural defects, a low stability of the compound, which however has to be high enough to avoid complete reduction of the transition metal under operating conditions, a high valence state of the transition-metal ion within the compound, and a high affinity of the transition-metal ion to hydrogen. On the basis of these results, further optimization of the selection of catalysts for improving sorption properties of magnesium-based hydrides is possible. In addition, utilization of transition-metal compounds as catalysts for other hydrogen storage materials is considered. PMID:16771356

  8. Electronic Relaxation Processes of Transition Metal Atoms in Helium Nanodroplets

    Science.gov (United States)

    Kautsch, Andreas; Lindebner, Friedrich; Koch, Markus; Ernst, Wolfgang E.

    2014-06-01

    Spectroscopy of doped superfluid helium nanodroplets (He_N) gives information about the influence of this cold, chemically inert, and least interacting matrix environment on the excitation and relaxation dynamics of dopant atoms and molecules. We present the results from laser induced fluorescence (LIF), photoionization (PI), and mass spectroscopy of Cr and Cu doped He_N. From these results, we can draw a comprehensive picture of the complex behavior of such transition metal atoms in He_N upon photo-excitation. The strong Cr and Cu ground state transitions show an excitation blueshift and broadening with respect to the bare atom transitions which can be taken as indication for the solvation inside the droplet. From the originally excited states the atoms relax to energetically lower states and are ejected from the He_N. The relaxation processes include bare atom spin-forbidden transitions, which clearly bears the signature of the He_N influence. Two-color resonant two-photon ionization (2CR2PI) also shows the formation of bare atoms and small Cr-He_n and Cu-He_n clusters in their ground and metastable states ^c. Currently, Cr dimer excitation studies are in progress and a brief outlook on the available results will be given. C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, 2011. A. Kautsch, M. Koch, and W. E. Ernst, J. Phys. Chem. A, 117 (2013) 9621-9625, DOI: 10.1021/jp312336m F. Lindebner, A. Kautsch, M. Koch, and W. E. Ernst, Int. J. Mass Spectrom. (2014) in press, DOI: 10.1016/j.ijms.2013.12.022 M. Koch, A. Kautsch, F. Lackner, and W. E. Ernst, submitted to J. Phys. Chem. A

  9. Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing.

    Science.gov (United States)

    Sarkar, Deblina; Xie, Xuejun; Kang, Jiahao; Zhang, Haojun; Liu, Wei; Navarrete, Jose; Moskovits, Martin; Banerjee, Kaustav

    2015-05-13

    Transition metal dichalcogenides (TMDs), belonging to the class of two-dimensional (2D) layered materials, have instigated a lot of interest in diverse application fields due to their unique electrical, mechanical, magnetic, and optical properties. Tuning the electrical properties of TMDs through charge transfer or doping is necessary for various optoelectronic applications. This paper presents the experimental investigation of the doping effect on TMDs, mainly focusing on molybdenum disulfide (MoS2), by metallic nanoparticles (NPs), exploring noble metals such as silver (Ag), palladium (Pd), and platinum (Pt) as well as the low workfunction metals such as scandium (Sc) and yttrium (Y) for the first time. The dependence of the doping behavior of MoS2 on the metal workfunction is demonstrated and it is shown that Pt nanoparticles can lead to as large as 137 V shift in threshold voltage of a back-gated monolayered MoS2 FET. Variation of the MoS2 FET transfer curves with the increase in the dose of NPs as well as the effect of the number of MoS2 layers on the doping characteristics are also discussed for the first time. Moreover, the doping effect on WSe2 is studied with the first demonstration of p-type doping using Pt NPs. Apart from doping, the use of metallic NP functionalized TMDs for gas sensing application is also demonstrated. PMID:25723363

  10. Quantum Spin Hall Effect and Topological Phase Transition in Two-Dimensional Square Transition Metal Dichalcogenides

    OpenAIRE

    Ma, Yandong; Kou, Liangzhi; Dai, Ying; Heine, Thomas

    2015-01-01

    Two-dimensional (2D) topological insulators (TIs) hold promise for applications in spintronics based on the fact that the propagation direction of edge electrons of a 2D TI is robustly linked to their spin origination. Here, with the use of first-principles calculations, we predict a family of robust 2D TIs in monolayer square transition metal dichalcogenides (MoS2, MoSe2, MoTe2, WS2, WSe2, and WTe2). Sizeable intrinsic nontrivial bulk band gaps ranging from 24 to 187 meV are obtained, guaran...

  11. Charge-transfer gap closure in transition-metal halides under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A.L.; Yu, P.Y.

    1995-01-01

    Insulator-to-metal transition induced by pressure has been studied in three transition metal iodides: NiI{sub 2}, CoI{sub 2} and FeI{sub 2} using optical absorption and resistivity measurements at room temperature. Comparisons between the results obtained by these two techniques suggested that the closure of the charge-transfer gap is the principal mechanism responsible for the insulator-to-metal transition in these materials.

  12. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  13. Covalent bonding and bandgap formation in transition-metal aluminides: di-aluminides of group VIII transition metals

    International Nuclear Information System (INIS)

    In this paper we study the electronic structure, electron density distribution and bonding mechanism in transition-metal (TM) di-aluminides Al2TM formed by metals of group VIII (TM=Fe,Ru,Os) and crystal structures of TM di-silicides C11b (MoSi2), C40 (CrSi2) and C54 (TiSi2). A peculiar feature of the electronic structure of these TM di-aluminides is the existence of a semiconducting gap at the Fermi level. A substitution of a 3d TM by 4d or 5d metal enhances the width of the gap. From the analysis of the charge-density distribution and the crystal-orbital overlap population we conclude that the bonding between atoms has strong covalent character. This is confirmed not only from the enhanced charge density halfway between atoms, but also by a clear bonding-antibonding splitting of the electronic states. Groups of bonding and antibonding states corresponding to a particular bonding configuration of atoms are separated by a gap. As such a gap is observed in all bonding configurations among atoms in the unit cell it results in a gap in the total density of states. The bandgap exists at a certain electron per atom ratio e/A∼4.67 and also occurs in TM di-aluminides of groups VII and IX. For group VIII TM di-aluminides the Fermi level falls just in the gap. (author)

  14. Nonequilibrium carrier dynamics in transition metal dichalcogenide semiconductors

    Science.gov (United States)

    Steinhoff, A.; Florian, M.; Rösner, M.; Lorke, M.; Wehling, T. O.; Gies, C.; Jahnke, F.

    2016-09-01

    When exploring new materials for their potential in (opto)electronic device applications, it is important to understand the role of various carrier interaction and scattering processes. In atomically thin transition metal dichalcogenide semiconductors, the Coulomb interaction is known to be much stronger than in quantum wells of conventional semiconductors like GaAs, as witnessed by the 50 times larger exciton binding energy. The question arises, whether this directly translates into equivalently faster carrier–carrier Coulomb scattering of excited carriers. Here we show that a combination of ab initio band-structure and many-body theory predicts Coulomb-mediated carrier relaxation on a sub-100 fs time scale for a wide range of excitation densities, which is less than an order of magnitude faster than in quantum wells.

  15. Chemisorption of ordered atomic layers on a model transition metal

    International Nuclear Information System (INIS)

    The effect of chemisorption of ordered atomic layers with p(1x1), p(2x1), c(2x2), p(2x2), p(4x1), and c(4x2) structures on the (001) surface of a tight-binding (model transition) metal is investigated within the Newns-Anderson model using the Hartree-Fock Green's function formalism and the phase shift technique. The self-consistent adatom charge q, the heat of adsorption ΔE, and the change in the electronic density of states during chemisorption are calculated for the two binding sites (on-site and centered fourfold-site). Particular attention is paid to the H/W (001) system and the results are compared with the available experimental results. It is shown that the long-range order and adsorption geometry of the overlayers are of great importance for the electronic properties of the chemisorbed systems. (author)

  16. Ab initio study of the transition-metal carbene cations

    Institute of Scientific and Technical Information of China (English)

    李吉海; 冯大诚; 冯圣玉

    1999-01-01

    The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH2+ were investigated by ab initio molecular orbital theory (HF/LANL2DZ). All of MCH2+ are coplanar. In the closed shell structures the C bonds to M with double bonds; while in the open shell structures the partial double bonds are formed, because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2px orbital of C and 4px, 3dxz, orbitals of M+ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated bond dissociation energies are close to the experimental ones.

  17. An Extensive Database of Electronic Structure Calculations between Transition Metals

    Science.gov (United States)

    Sayed, Shereef; Papaconstantopoulos, Dimitrios

    Density Functional Theory and its derived application methods, such as the Augmented Plane Wave (APW) method, have shown great success in predicting the fundamental properties of materials. In this work, we apply the APW method to explore the properties of diatomic pairs of transition metals in the CsCl structure, for all possible combinations. A total of 435 compounds have been studied. The predicted Density of States, and Band Structures are presented, along with predicted electron-phonon coupling and Stoner Criterion, in order to identify potential new superconducting or ferromagnetic materials. This work is performed to demonstrate the concept of ``high-throughput'' calculations at the crossing-point of ``Big Data'' and materials science. Us Dept of Energy.

  18. Radiation damage of transition metal carbides. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, G.

    1991-12-31

    In this grant period we have investigated electrical properties of transition metal carbides and radiation-induced defects produced by low-temperature electron irradiation in them. Special attention has been given to the composition VC{sub 0.88} in which the vacancies on the carbon sublattice of this fcc crystal order to produce a V{sub 8}C{sub 7} superlattice. The existence of this superlattice structure was found to make the crystal somewhat resistant to radiation damage at low doses and/or at ambient temperature. At larger doses significant changes in the resistivity are produced. Annealing effects were observed which we believe to be connected with the reconstitution of the superlattice structure.

  19. Interface of transition metal oxides at the atomic scale

    Science.gov (United States)

    Shang, Tong-Tong; Liu, Xin-Yu; Gu, Lin

    2016-09-01

    Remarkable phenomena arise at well-defined heterostructures, composed of transition metal oxides, which is absent in the bulk counterpart, providing us a paradigm for exploring the various electron correlation effects. The functional properties of such heterostructures have attracted much attention in the microelectronic and renewable energy fields. Exotic and unexpected states of matter could arise from the reconstruction and coupling among lattice, charge, orbital and spin at the interfaces. Aberration-corrected scanning transmission electron microscopy (STEM) is a powerful tool to visualize the lattice structure and electronic structure at the atomic scale. In the present study some novel phenomena of oxide heterostructures at the atomic scale are summarized and pointed out from the perspective of electron microscopy.

  20. On holographic disorder-driven metal-insulator transitions

    CERN Document Server

    Baggioli, Matteo

    2016-01-01

    We give a minimal holographic model of a disorder-driven metal-insulator transition. It consists in a CFT with a charge sector and a translation-breaking sector that interact in the most generic way allowed by the symmetries and by dynamical consistency. In the gravity dual, it reduces to a Massive Gravity-Maxwell model with new direct couplings between the Maxwell and metric that are allowed when gravity is massive. We show that, generically, the effect of disorder is to decrease the DC electrical conductivity. This happens to such an extent that the conductivity does not obey any lower bound and can be very small in the insulating phase. In some cases, the large disorder limit produces gradient instabilities that hint at the formation of modulated phases.

  1. Metal-insulator transition in three-band Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Dutka, J.; Kaminski, M. (Inst. of Physics, Jagiellonian Univ., Cracow (Poland)); Oles, A.M. (Inst. of Physics, Jagiellonian Univ., Cracow (Poland) Max-Planck-Inst., FKF, Stuttgart (Germany))

    1992-02-01

    We describe a transition from a metal to an antiferromagnetic (AF) insulator in the three-band Hubbard Hamiltonian for the undoped CuO{sub 2} planes of high-temperature superconductors, including local hole correlations. If the realistic parameters are used, one finds the AF ground states with magnetic moment of {approx equal}0.47{mu}{sub B} and {approx equal}0.56{mu}{sub B} for La{sub 2}CuO{sub 4} and YBa{sub 2}Cu{sub 2}O{sub 6}, respectively. Correlations and the interoxygen hopping reduce drastically the region of the AF long-range order which disappears for the doping of 0.06 hole per unit cell. (orig.).

  2. Three-particle approximation for transition-metal oxides

    Science.gov (United States)

    Lægsgaard, J.; Svane, A.

    1997-02-01

    Quasiparticle spectra are calculated for NiO and CuO on the basis of band structures obtained within the ab initio self-interaction-corrected local-spin density (SIC-LSD) and LSD+U approximations. On-site Coulomb correlations are described by a multiband Hubbard model, which is treated within Igarashi's three-particle approximation. The transition-metal d-state spectral weight is split into a main dnL peak and a dn-1 satellite. We show that mean-field band structures in this way can lead to a good description of the experimental photoemission spectra of these compounds. The validity of the three-particle approach is investigated, and it is concluded that the method is best suited for a system which is well orbitally polarized on the mean-field level.

  3. Optical limiting of layered transition metal dichalcogenide semiconductors

    CERN Document Server

    Dong, Ningning; Feng, Yanyan; Zhang, Saifeng; Zhang, Xiaoyan; Chang, Chunxia; Fan, Jintai; Zhang, Long; Wang, Jun

    2015-01-01

    Nonlinear optical property of transition metal dichalcogenide (TMDC) nanosheet dispersions, including MoS2, MoSe2, WS2, and WSe2, was performed by using Z-scan technique with ns pulsed laser at 1064 nm and 532 nm. The results demonstrate that the TMDC dispersions exhibit significant optical limiting response at 1064 nm due to nonlinear scattering, in contrast to the combined effect of both saturable absorption and nonlinear scattering at 532 nm. Selenium compounds show better optical limiting performance than that of the sulfides in the near infrared. A liquid dispersion system based theoretical modelling is proposed to estimate the number density of the nanosheet dispersions, the relationship between incident laser fluence and the size of the laser generated micro-bubbles, and hence the Mie scattering-induced broadband optical limiting behavior in the TMDC dispersions.

  4. Induced magnetism in transition metal intercalated graphitic systems

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-10-26

    We investigate the structure, chemical bonding, electronic properties, and magnetic behavior of a three-dimensional graphitic network in aba and aaa stacking with intercalated transition metal atoms (Mn, Fe, Co, Ni, and Cu). Using density functional theory, we find induced spin-polarization of the C atoms both when the graphene sheets are aba stacked (forming graphite) and aaa stacked (resembling bi-layer graphene). The magnetic moment induced by Mn, Fe, and Co turns out to vary from 1.38 μB to 4.10 μB, whereas intercalation of Ni and Cu does not lead to a magnetic state. The selective induction of spin-polarization can be utilized in spintronic and nanoelectronic applications.

  5. Metal-semiconductor transition of graphene nanoribbons with different addends

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.W., E-mail: xiaoweizhang@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Dai, B; Liu, J.S. [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Yang, G.W. [State Key Laboratory of Optoelectronic Materials and Technologies, Institute of Optoelectronic and Functional Composite Materials, School of Physics Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2012-02-15

    Using a LCAO method, which is based on spinless sp{sup 3} scheme, we have studied the electronic properties of graphene nanoribbons with zigzag edges (ZGNRs) terminated partially by methylene groups. Metal-semiconductor transition is proved when the H atoms at both sides of ZGNRs are partially substituted by methylene groups. Furthermore, when one-third of H atoms are substituted and the distribution of methylenes is symmetric, the band gap comes to about 0.59 eV, which is the widest energy gap in this work. Otherwise, when the addends at both sides are of asymmetric distribution, a band gap of only 0.21 eV is obtained. These results suggest that the addends at the edge of ZGNRs play an important role in modifying the electronic properties.

  6. Metal-semiconductor transition of graphene nanoribbons with different addends

    Science.gov (United States)

    Zhang, X. W.; Dai, B.; Liu, J. S.; Yang, G. W.

    2012-02-01

    Using a LCAO method, which is based on spinless sp3 scheme, we have studied the electronic properties of graphene nanoribbons with zigzag edges (ZGNRs) terminated partially by methylene groups. Metal-semiconductor transition is proved when the H atoms at both sides of ZGNRs are partially substituted by methylene groups. Furthermore, when one-third of H atoms are substituted and the distribution of methylenes is symmetric, the band gap comes to about 0.59 eV, which is the widest energy gap in this work. Otherwise, when the addends at both sides are of asymmetric distribution, a band gap of only 0.21 eV is obtained. These results suggest that the addends at the edge of ZGNRs play an important role in modifying the electronic properties.

  7. Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Tritsaris, G. A.; Rossmeisl, J.

    2012-01-01

    Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, fla...... active sites on the surface and to screen for novel bimetallic surfaces of enhanced activity. We suggest platinum copper surfaces as promising anode catalysts for direct methanol fuel cells....... and stepped, which includes platinum-based alloys with ruthenium, tin, and copper, as well as nonprecious alloys, overlayer structures, and modified edges. A common lower bound on the overpotential is estimated (ca. 0.3 V). A model for bifunctional alloys is employed to investigate the nature of the...

  8. Tunable metal-insulator transitions in bilayer graphene by thermal annealing

    OpenAIRE

    Kalon, Gopinadhan; Shin, Young Jun; Yang, Hyunsoo

    2012-01-01

    Tunable and highly reproducible metal-insulator transitions have been observed in bilayer graphene upon thermal annealing at 400 K under high vacuum conditions. Before annealing, the sample is metallic in the whole temperature regime of study. Upon annealing, the conductivity changes from metallic to that of an insulator and the transition temperature is a function of annealing time. The pristine metallic state can be reinstated by exposing to air thereby inducing changes in the electronic pr...

  9. Voltage-triggered Ultra-fast Metal-insulator Transition in Vanadium Dioxide Switches

    OpenAIRE

    Zhou, You; Chen, Xiaonan; Ko, Changhyun; Yang, Zheng; Mouli, Chandra; Ramanathan, Shriram

    2013-01-01

    Electrically driven metal-insulator transition in vanadium dioxide (VO2) is of interest in emerging memory devices, neural computation, and high speed electronics. We report on the fabrication of out-of-plane VO2 metal-insulator-metal (MIM) structures and reproducible high-speed switching measurements in these two-terminal devices. We have observed a clear correlation between electrically-driven ON/OFF current ratio and thermally-induced resistance change during metal-insulator transition. It...

  10. Transition Metal Substitution Effects on Metal-to-Polyoxometalate Charge Transfer.

    Science.gov (United States)

    Glass, Elliot N; Fielden, John; Huang, Zhuangqun; Xiang, Xu; Musaev, Djamaladdin G; Lian, Tianquan; Hill, Craig L

    2016-05-01

    A series of hetero-bimetallic transition metal-substituted polyoxometalates (TMSPs) were synthesized based on the Co(II)-centered ligand [Co(II)W11O39](10-). The eight complex series, [Co(II)(M(x)OHy)W11O39]((12-x-y)-) (M(x)OHy = V(IV)O, Cr(III)(OH2), Mn(II)(OH2), Fe(III)(OH2), Co(II)(OH2), Ni(II)(OH2), Cu(II)(OH2), Zn(II)(OH2)), of which six are reported for the first time, was synthesized starting from [Co(III)W11O39](9-) and studied using spectroscopic, electrochemical, and computational techniques to evaluate the influence of substituted transition metals on the photodynamics of the metal-to-polyoxometalate charge transfer (MPCT) transition. The bimetallic complexes all show higher visible light absorption than the plenary [Co(II)W12O40](6-) and demonstrate the same MPCT transition as the plenary complex, but they have shorter excited-state lifetimes (sub-300 ps in aqueous media). The decreased lifetimes are rationalized on the basis of nonradiative relaxation due to coordinating aqua ligands, increased interaction with cations due to increased negative charge, and the energy gap law, with the strongest single factor appearing to be the charge on the anion. The most promising results are from the Cr- and Fe-substituted systems, which retain excited-state lifetimes at least 50% of that of [Co(II)W12O40](6-) while more than tripling the absorbance at 400 nm. PMID:27082443

  11. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd, E-mail: gerd.meyer@uni-koeln.de

    2014-11-15

    Comproportionation reactions of rare-earth metal trihalides (RX{sub 3}) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ((T{sub 3}R{sub 11})X{sub 15}-type, P6{sub 3}/m), tetramers ((T{sub 4}R{sub 16})X{sub 28}(R{sub 4}) (P-43m), (T{sub 4}R{sub 16})X{sub 20} (P4{sub 2}/nnm), (T{sub 4}R{sub 16})X{sub 24}(RX{sub 3}){sub 4} (I4{sub 1}/a) and (T{sub 4}R{sub 16})X{sub 23} (C2/m) types of structure) and pentamers ((Ru{sub 5}La{sub 14}){sub 2}Br{sub 39}, Cc) of (TR{sub r}){sub n} (n=2–5) clusters. These oligomers are further enveloped by inner (X{sup i}) as well as outer (X{sup a}) halido ligands, which possess diverse functionalities and interconnect like oligomers through i–i, i–a and/or a–i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of (TR{sub 6}) octahedra via common edges are more frequent than trimers and pentamers, in which the (TR{sub r}) clusters share common faces. - Graphical abstract: Rare earth-metal cluster complexes with endohedral transition metal atoms (TR{sub 6}) may connect via common edges or faces to form dimers, trimers, tetramers and pentamers of which the tetramers are the most prolific. Packing effects and electron counts play an important role. - Highlights: • Rare-earth metal cluster complexes encapsulate transition metal atoms. • Oligomers are built via connection of octahedral clusters via common edges or faces. • Dimers through pentamers with closed structures are known. • Tetramers including a tetrahedron of endohedral atoms are the most prolific.

  12. Plasmonic percolation: Plasmon-manifested dielectric-to-metal transition

    KAUST Repository

    Chen, Huanjun

    2012-08-28

    Percolation generally refers to the phenomenon of abrupt variations in electrical, magnetic, or optical properties caused by gradual volume fraction changes of one component across a threshold in bicomponent systems. Percolation behaviors have usually been observed in macroscopic systems, with most studies devoted to electrical percolation. We report on our observation of plasmonic percolation in Au nanorod core-Pd shell nanostructures. When the Pd volume fraction in the shell consisting of palladium and water approaches the plasmonic percolation threshold, ∼70%, the plasmon of the nanostructure transits from red to blue shifts with respect to that of the unshelled Au nanorod. This plasmonic percolation behavior is also confirmed by the scattering measurements on the individual core-shell nanostructures. Quasistatic theory and numerical simulations show that the plasmonic percolation originates from a positive-to-negative transition in the real part of the dielectric function of the shell as the Pd volume fraction is increased. The observed plasmonic percolation is found to be independent of the metal type in the shell. Moreover, compared to the unshelled Au nanorods with similar plasmon wavelengths, the Au nanorod core-Pd shell nanostructures exhibit larger refractive index sensitivities, which is ascribed to the expulsion of the electric field intensity from the Au nanorod core by the adsorbed Pd nanoparticles. © 2012 American Chemical Society.

  13. Synthesis, characterization and formation process of transition metal oxide nanotubes using carbon nanofibers as templates

    International Nuclear Information System (INIS)

    Mono and binary transition metal oxide nanotubes could be synthesized by the immersion of carbon nanofiber templates into metal nitrate solutions and removal of the templates by heat treatment in air. The transition metal oxide nanotubes were composed of nano-crystallites of metal oxides. The functional groups on the carbon nanofiber templates were essential for the coating of these templates: they acted as adsorption sites for the metal nitrates, ensuring a uniform metal oxide coating. During the removal of the carbon nanofiber templates by calcination in air, the metal oxide coatings promoted the combustion reaction between the carbon nanofibers and oxygen. - Graphical abstract: Mono and binary transition metal-oxide nanotubes could be synthesized by the immersion of carbon nanofiber templates into metal nitrate solutions and removal of the templates by heat treatment in air.

  14. Green's function approach to edge states in transition metal dichalcogenides

    Science.gov (United States)

    Farmanbar, Mojtaba; Amlaki, Taher; Brocks, Geert

    2016-05-01

    The semiconducting two-dimensional transition metal dichalcogenides MX 2 show an abundance of one-dimensional metallic edges and grain boundaries. Standard techniques for calculating edge states typically model nanoribbons, and require the use of supercells. In this paper, we formulate a Green's function technique for calculating edge states of (semi-)infinite two-dimensional systems with a single well-defined edge or grain boundary. We express Green's functions in terms of Bloch matrices, constructed from the solutions of a quadratic eigenvalue equation. The technique can be applied to any localized basis representation of the Hamiltonian. Here, we use it to calculate edge states of MX 2 monolayers by means of tight-binding models. Aside from the basic zigzag and armchair edges, we study edges with a more general orientation, structurally modifed edges, and grain boundaries. A simple three-band model captures an important part of the edge electronic structures. An 11-band model comprising all valence orbitals of the M and X atoms is required to obtain all edge states with energies in the MX 2 band gap. Here, states of odd symmetry with respect to a mirror plane through the layer of M atoms have a dangling-bond character, and tend to pin the Fermi level.

  15. The metal-insulator transition in high-Tc cuprates -An unusual quantum transition

    International Nuclear Information System (INIS)

    The Hilbert spaces representing the quantum states in the CuO2 planes are not spanned by crystal symmetry adapted basis states, but by self-consistently renormalized states which form compound systems of Hilbert subspaces. In addition, these self-consistent basis representations are not necessarily stationary in time but behave dynamic in many respects. In particular, the coordinate systems of the Hilbert subspaces form a definite dynamic relative state in space and time, thus the coordinate system itself becomes a variable. This implicates a deterministic space-time relation of quantum states and the quantization of time by an internal time constant, the eigentime teiDCBF. In undoped and hole doped CuO2 planes teiDCBF occurs as a conservation quantity, whereas under electron doping a partial fluid exists in which teiDCBF does not occur as quantized quantity. The deterministic space-time behaviour of the Hilbert subspaces represents the emergence of a classical space-time structure in quantum systems. The metal-insulator transition in high-Tc cuprates, usually attributed to an antiferromagnetic Mott transition, results here from an additional splitting into Hilbert subspaces. The transition from the insulator to the conductor is causally related to coordinate transformations from the copper to the oxygen sites. The antiferromagnetism in the CuO2 planes is not caused by the half-filled valence bands, as usually assumed, but is created by off-diagonal spin compensations within filled bands.

  16. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guy [Univ. of California, San Diego, CA (United States)

    2012-06-29

    The efficient and selective preparation of organic molecules is critical for mankind. For the future, it is of paramount importance to find catalysts able to transform abundant and cheap feedstocks into useful compounds. Acyclic and heterocyclic nitrogen-containing derivatives are common components of naturally occurring compounds, agrochemicals, cosmetics, and pharmaceuticals; they are also useful intermediates in a number of industrial processes. One of the most widely used synthetic strategies, allowing the formation of an N-C bond, is the addition of an N-H bond across a carbon-carbon multiple bond, the so-called hydroamination reaction. This chemical transformation fulfills the principle of “green chemistry” since it ideally occurs with 100% atom economy. Various catalysts have been found to promote this reaction, although many limitations remain; one of the most prominent is the lack of methods that permit the use of NH3 and NH2NH2 as the amine partners. In fact, ammonia and hydrazine have rarely succumbed to homogeneous catalytic transformations. Considering the low cost and abundance of ammonia (136 million metric tons produced in 2011) and hydrazine, catalysts able to improve the reactivity and selectivity of the NH3- and NH2NH2-hydroamination reaction, and more broadly speaking the functionalization of these chemicals, are highly desirable. In the last funded period, we discovered the first homogeneous catalysts able to promote the hydroamination of alkynes and allenes with ammonia and the parent hydrazine. The key feature of our catalytic systems is that the formation of catalytically inactive Werner complexes is reversible, in marked contrast to most of the known ammonia and hydrazine transition metal complexes. This is due to the peculiar electronic properties of our neutral ancillary ligands, especially their strong donating capabilities. However, our catalysts currently require

  17. Surface states, surface metal-insulator, and surface insulator-metal transitions

    International Nuclear Information System (INIS)

    I present an informal discussion of various cases where two-dimensional surface metal-insulator structural and charge-density-wave instabilities driven by partly filled surface states have been advocated. These include reconstructions of clean semiconductor surfaces and of W(100) and Mo(100), as well as anomalies on the hydrogen-covered surfaces H/W(110) and H/Mo(110), and possibly alkali-covered surfaces such as K/Cu(111). In addition I will also discuss the opposite type of phenomena, namely surface insulator-metal transitions, which can be argued to occur on α-Ga(001), high-temperature Ge(111), and probably Be(0001). (author). 112 refs, 1 fig

  18. X-ray absorption to determine the metal oxidation state of transition metal compounds

    Science.gov (United States)

    Jiménez-Mier, J.; Olalde-Velasco, P.; Carabalí-Sandoval, G.; Herrera-Pérez, G.; Chavira, E.; Yang, W.-L.; Denlinger, J.

    2013-07-01

    We present three examples where x-ray absorption at the transition metal L2,3 edges is used to investigate the valence states of various strongly correlated (SC) and technological relevant materials. Comparison with ligand field multiplet calculations is needed to determine the metal oxidation states. The examples are CrF2, the La1-xSrxCoO3 family and YVO3. For CrF2 the results indicate a disproportionation reaction that generates Cr+, Cr2+ and Cr3+ in different proportions that can be quantified directly from the x-ray spectra. Additionally, it is shown that Co2+ is present in the catalytic La1-xSrxCoO3 perovskite family. Finally, surface effects that change the vanadium valence are also found in YVO3 nanocrystals.

  19. Synthetic Fabrication of Nanoscale MoS2-Based Transition Metal Sulfides

    Directory of Open Access Journals (Sweden)

    Jikang Yuan

    2010-01-01

    Full Text Available Transition metal sulfides are scientifically and technologically important materials. This review summarizes recent progress on the synthetic fabrication of transition metal sulfides nanocrystals with controlled shape, size, and surface functionality. Special attention is paid to the case of MoS2 nanoparticles, where organic (surfactant, polymer, inorganic (support, promoter, doping compounds and intercalation chemistry are applied.

  20. Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity

    Science.gov (United States)

    Devi, Jai; Batra, Nisha; Malhotra, Rajesh

    2012-11-01

    New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL1 and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL2 derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML(1-2)2 have been synthesized, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate ? coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mn Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu > Mn > Ni > Co > Zn.

  1. Synthesis and characterization of two dimensional transition metal dichalcogenides

    Science.gov (United States)

    Gao, Jian

    Two-dimensional transition metal dichalcogenides (TMDs) are an emerging class of atomically thin semiconductors that show potential in next-generation electronics, optoelectronics, and energy storage batteries. The successful synthesis and doping of TMDs is the key to their applications. I have synthesized monolayer MoS2, WS2, and multilayer ReS2 flakes by CVD, and studied an unprecedented one-pot synthesis for transition-metal substitution doping in large-area, synthetic monolayer TMDs. Electron microscopy, optical and electronic transport characterization and ab initio calculations indicate that our doping strategy preserves the attractive qualities of TMD monolayers, including semiconducting transport and strong direct-gap luminescence. The Re doping of MoS2 greatly improve the contact quality (one of the biggest issue in TMDs) and the FET shows Ohmic contact even at low temperature (4K). These results potentially enables next-generation optoelectronic technology in the atomically-thin regime. Besides, TMDs are generally considered to be 'air-stable', however, we have found that they exhibit poor long-term stability in air in morphology, chemical states, photo-emission, and demonstrated a potential solution to this problem by encapsulation of the monolayer sheet with transparent parylene C. Synthetic TMDs tend to grow parallel to the growth substrate, however, high performance energy conversion and storage devices prefer flakes with high exposed surface area. Therefore by choosing the right precursors and appropriate tuning of the CVD growth conditions, we have grown vertical ReS2 nanosheets on various growth substrates. We show that these structural features of the vertically grown ReS2 sheets can be exploited to significantly improve their performance as electrochemical catalysts in Lithium-Sulfur (Li-S) batteries and in hydrogen evolution reactions (HER). After 300 cycles, the specific capacity of the Li-S battery with vertical-ReS2 catalyst is retained above

  2. Transition-metal embedded carbon nitride monolayers: high-temperature ferromagnetism and half-metallicity

    Science.gov (United States)

    Choudhuri, Indrani; Kumar, Sourabh; Mahata, Arup; Rawat, Kuber Singh; Pathak, Biswarup

    2016-07-01

    High-temperature ferromagnetic materials with planar surfaces are promising candidates for spintronics applications. Using state-of-the-art density functional theory (DFT) calculations, transition metal (TM = Cr, Mn, and Fe) incorporated graphitic carbon nitride (TM@gt-C3N4) systems are investigated as possible spintronics devices. Interestingly, ferromagnetism and half-metallicity were observed in all of the TM@gt-C3N4 systems. We find that Cr@gt-C3N4 is a nearly half-metallic ferromagnetic material with a Curie temperature of ~450 K. The calculated Curie temperature is noticeably higher than other planar 2D materials studied to date. Furthermore, it has a steel-like mechanical stability and also possesses remarkable dynamic and thermal (500 K) stability. The calculated magnetic anisotropy energy (MAE) in Cr@gt-C3N4 is as high as 137.26 μeV per Cr. Thereby, such material with a high Curie temperature can be operated at high temperatures for spintronics devices.High-temperature ferromagnetic materials with planar surfaces are promising candidates for spintronics applications. Using state-of-the-art density functional theory (DFT) calculations, transition metal (TM = Cr, Mn, and Fe) incorporated graphitic carbon nitride (TM@gt-C3N4) systems are investigated as possible spintronics devices. Interestingly, ferromagnetism and half-metallicity were observed in all of the TM@gt-C3N4 systems. We find that Cr@gt-C3N4 is a nearly half-metallic ferromagnetic material with a Curie temperature of ~450 K. The calculated Curie temperature is noticeably higher than other planar 2D materials studied to date. Furthermore, it has a steel-like mechanical stability and also possesses remarkable dynamic and thermal (500 K) stability. The calculated magnetic anisotropy energy (MAE) in Cr@gt-C3N4 is as high as 137.26 μeV per Cr. Thereby, such material with a high Curie temperature can be operated at high temperatures for spintronics devices. Electronic supplementary information (ESI

  3. Liquid-Liquid Structure Transition in Metallic Melts: Experimental Evidence by Viscosity Measurement

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-Qing; WU Yu-Qin; BIAN Xiu-Fang

    2007-01-01

    Temperature dependence of viscosity for more than ten kinds of metallic melts is analysed based on viscosity measurements. An obvious turning point is observed on the Arrhenius curves. Since viscosity is one of the physical properties sensitive to structure, its discontinuous change with temperature reveals the possible liquidliquid structure transition in the metallic melts. Furthermore, an integrated liquid structure transition diagram of the Sn-Bi system is presented. The universality of liquid-liquid structure transition is also discussed simply.

  4. Thermal Low-Temperature Properties of Rare Earth Transition Metal Borocarbides

    OpenAIRE

    Lipp, Dieter

    2002-01-01

    The present work reports on thermal low-temperature properties of rare earth transition metal borocarbides such as specific heat, thermal conductivity and thermopower. The influence of structural disorder, caused by stoichiometric variations and substitutions of the rare earth element or the transition metal, on the thermal and superconducting low-temperature properties is investigated. The structural disorder results in the reduction of the superconducting transition temperature Tc, of the S...

  5. The chromospheric and transition layer emission of stars with different metal abundances

    Science.gov (United States)

    Boehm-Vitense, E.

    1981-01-01

    Preliminary results on observations of chromospheric and transition layer emission of stars with different metal abundances are reported. Metal deficient stars generally show reduced emission in the Mg II resonance lines and also in the other chromospheric and transition layer emission lines. This is interpreted as showing that energy fluxes other than acoustic fluxes must at least be coresponsible for the coronal and transition layer heating.

  6. Dissociation of N2, NO, and CO on transition metal surfaces

    DEFF Research Database (Denmark)

    Mavrikakis, Manos; Hansen, Lars Bruno; Mortensen, Jens Jørgen; Hammer, Bjørk; Nørskov, Jens Kehlet

    Using density functional theory we study the dissociation of N2, NO, and CO on transition metal surfaces. We discuss an efficient method to locate the minimum energy path and the transition state, and review recent calculations using this method to determine the transition state for dissociation of...

  7. Recognition- and Reactivity-Based Fluorescent Probes for Studying Transition Metal Signaling in Living Systems

    OpenAIRE

    Aron, Allegra T.; Ramos-Torres, Karla M.; Cotruvo, Joseph A.; Chang, Christopher J.

    2015-01-01

    Conspectus Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzy...

  8. Insulator/metal phase transition and colossal magnetoresistance in holographic model

    CERN Document Server

    Cai, Rong-Gen

    2015-01-01

    We construct a gravity dual for insulator/metal phase transition and colossal magnetoresistance (CMR) effect found in some manganese oxides materials. The computations shows a remarkable magnetic-field-sensitive DC resistivity peak appearing at the Curie temperature, where an insulator/metal phase transition happens and the magnetoresistance is scaled with the square of field-induced magnetization. We find that metallic and insulating phases coexist below the Curie point and the relation with the electronic phase separation is discussed.

  9. THE CHANGES OF BARRIER ENERGY IN FCC→BCC PHASE TRANSFORMATION BY SHEAR STRESSES

    OpenAIRE

    Kazanç, Sefa; ÖZGEN, Soner

    2010-01-01

    ABSTRACT The Lattice energy of a cubic nickel crystal has been calculated by using the embedded atom method. The embedding energy has been determined by means of quantum mechanical approximations. The lattice energy changes of the static structure including 864 atoms with Bain  and shear stresses have been obtained. The energies of the fcc and bcc phases caused by Bain stress have been compared. The variation of the barrier energy required for the transition between these structures has ...

  10. Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors

    Science.gov (United States)

    Kang, Jiahao; Liu, Wei; Sarkar, Deblina; Jena, Debdeep; Banerjee, Kaustav

    2014-07-01

    Among various 2D materials, monolayer transition-metal dichalcogenide (mTMD) semiconductors with intrinsic band gaps (1-2 eV) are considered promising candidates for channel materials in next-generation transistors. Low-resistance metal contacts to mTMDs are crucial because currently they limit mTMD device performances. Hence, a comprehensive understanding of the atomistic nature of metal contacts to these 2D crystals is a fundamental challenge, which is not adequately addressed at present. In this paper, we report a systematic study of metal-mTMD contacts with different geometries (top contacts and edge contacts) by ab initio density-functional theory calculations, integrated with Mulliken population analysis and a semiempirical van der Waals dispersion potential model (which is critical for 2D materials and not well treated before). Particularly, In, Ti, Au, and Pd, contacts to monolayer MoS2 and WSe2 as well as Mo-MoS2 and W-WSe2 contacts are evaluated and categorized, based on their tunnel barriers, Schottky barriers, and orbital overlaps. Moreover, going beyond Schottky theory, new physics in such contact interfaces is revealed, such as the metallization of mTMDs and abnormal Fermi level pinning. Among the top contacts to MoS2, Ti and Mo show great potential to form favorable top contacts, which are both n-type contacts, while for top contacts to WSe2, W or Pd exhibits the most advantages as an n- or p-type contact, respectively. Moreover, we find that edge contacts can be highly advantageous compared to top contacts in terms of electron injection efficiency. Our formalism and the results provide guidelines that would be invaluable for designing novel 2D semiconductor devices.

  11. Magnetic Exchange Couplings in Transition Metal Complexes from DFT

    Science.gov (United States)

    Peralta, Juan

    In this talk I will review our current efforts for the evaluation of magnetic exchange couplings in transition metal complexes from density functional theory. I will focus on the performance of different DFT approximations, including a variety of hybrid density functionals, and show that hybrid density functionals containing approximately 30% Hartree-Fock type exchange are in general among the best choice in terms of accuracy. I will also describe a novel computational method to evaluate exchange coupling parameters using analytic self-consistent linear response theory. This method avoids the explicit evaluation of energy differences, which can become impractical for large systems. Our approach is based on the evaluation of the transversal magnetic torque between two magnetic centers for a given spin configuration using explicit constraints of the local magnetization direction via Lagrange multipliers. This method is applicable in combination with any modern density functional with a noncollinear spin generalization and can be utilized as a ``black-box''. I will show proof-of-concept calculations in frustrated Fe7IIIdisk-shaped clusters, and dinuclear CuII, FeIII, and heteronuclear complexes. NSF DMR-1206920.

  12. Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides

    Science.gov (United States)

    Kim, Youngjun; Song, Jeong-Gyu; Park, Yong Ju; Ryu, Gyeong Hee; Lee, Su Jeong; Kim, Jin Sung; Jeon, Pyo Jin; Lee, Chang Wan; Woo, Whang Je; Choi, Taejin; Jung, Hanearl; Lee, Han-Bo-Ram; Myoung, Jae-Min; Im, Seongil; Lee, Zonghoon; Ahn, Jong-Hyun; Park, Jusang; Kim, Hyungjun

    2016-01-01

    This work reports the self-limiting synthesis of an atomically thin, two dimensional transition metal dichalcogenides (2D TMDCs) in the form of MoS2. The layer controllability and large area uniformity essential for electronic and optical device applications is achieved through atomic layer deposition in what is named self-limiting layer synthesis (SLS); a process in which the number of layers is determined by temperature rather than process cycles due to the chemically inactive nature of 2D MoS2. Through spectroscopic and microscopic investigation it is demonstrated that SLS is capable of producing MoS2 with a wafer-scale (~10 cm) layer-number uniformity of more than 90%, which when used as the active layer in a top-gated field-effect transistor, produces an on/off ratio as high as 108. This process is also shown to be applicable to WSe2, with a PN diode fabricated from a MoS2/WSe2 heterostructure exhibiting gate-tunable rectifying characteristics.

  13. Strain engineering of electronic properties of transition metal dichalcogenide monolayers

    Science.gov (United States)

    Maniadaki, Aristea E.; Kopidakis, Georgios; Remediakis, Ioannis N.

    2016-02-01

    We present Density Functional Theory (DFT) results for the electronic and dielectric properties of single-layer (2D) semiconducting transition metal dichalcogenides MX2 (M=Mo, W; X=S, Se, Te) under isotropic, uniaxial (along the zigzag and armchair directions), and shear strain. Electronic band gaps decrease while dielectric constants increase for heavier chalcogens X. The direct gaps of equilibrium structures often become indirect under certain types of strain, depending on the material. The effects of strain and of broken symmetry on the band structure are discussed. Gaps reach maximum values at small compressive strains or in equilibrium, and decrease with larger strains. In-plane dielectric constants generally increase with strain, reaching a minimum value at small compressive strains. The out-of-plane constants exhibit a similar behavior under shear strain but under isotropic and uniaxial strain they increase with compression and decrease with tension, thus exhibiting a monotonic behavior. These DFT results are theoretically explained using only structural parameters and equilibrium dielectric constants. Our findings are consistent with available experimental data.

  14. Nano tubular Transition Metal Oxide for Hydrogen Production

    International Nuclear Information System (INIS)

    TiO2, transition metal oxide nano tubes were successfully grown by anodizing of titanium foil (Ti) in ethylene glycol electrolyte containing 5wt. % hydrogen peroxide and 5wt. % ammonium fluoride for 60 minutes at 60V. It was found such electrochemical condition resulted in the formation of nano tube with average diameter of 90nm and length of 6.6 μm. These samples were used to study the effect of W loading by RF sputtering on TiO2 nano tubes. Amorphous TiO2 nano tube substrate leads to enhance incorporation of W instead of anatase. Therefore for the entire study, W was sputtered on amorphous TiO2 nano tube substrate. TiO2 nano tube sputtered for 1 minute resulted in the formation of W-O-Ti while beyond this point (10 minutes); it accumulates to form a self independent structure of WO3 on the surface of the nano tubes. TiO2 nano tube sputtered for 1 minute at 150 W and annealed at 450 degree Celsius exhibited best photocurrent density (1.4 mA/ cm2) with photo conversion efficiency of 2.5 %. The reason for such behavior is attributed to W6+ ions allows for electron traps that suppress electron hole recombination and exploit the lower band gap of material to produce a water splitting process by increasing the charge separation and extending the energy range of photoexcitation for the system. (author)

  15. Strain engineered optoelectronic properties of transition metal dichalcogenides lateral heterostructures

    Science.gov (United States)

    Lee, Jaekwang; Yoon, Mina

    2015-03-01

    Most three-dimensional bulk-scale materials rarely survive beyond 1% strain, while recently spotlighted two-dimensional (2-D) materials can sustain a high elastic strain (up to 10%) to optimize optical quantities such as band gaps and absorption spectra governing optoelectronic device performance. Despite the enormous interest in strained 2-D materials, most researches are focused on single materials or vertical heterostructures where precise control of stacking orientation is challenging. Here, using first-principles density-functional calculations, we explore how uniaxial tensile strains modify overall electronic and optical properties of transition metal dichalcogenides lateral heterostructures, such as MoX2/WX2 (X =S, Se). Based on the detailed optoelectronic information, we predict the optimal strain condition for maximal power efficiency. Furthermore, we find that uniaxial tensile strain readily develops a continuously varying direct-bandgap across the lateral heterojunctions, which results in the broad range absorption of solar spectrum useful for future optoelectronic devices. This research was conducted at the CNMS, which is sponsored at Oak Ridge National Laboratory (ORNL) by the Office of Basic Energy Sciences, U.S. Department of Energy; a portion of theory work was supported by the LDRD Program of ORNL.

  16. APCVD Transition Metal Oxides - Functional Layers in "Smart windows"

    Science.gov (United States)

    Gesheva, K. A.; Ivanova, T. M.; Bodurov, G. K.

    2014-11-01

    Transition metal oxides (TMO) exhibit electrochromic effect. Under a small voltage they change their optical transmittance from transparent to collored (absorbing) state. The individual material can manifest its electrochromic properties only when it is part of electrochromic (EC) multilayer system. Smart window is controlling the energy of solar flux entering the building or car and makes the interiors comfortable and energy utilization more effective. Recently the efforts of material researchers in this field are directed to price decreasing. APCVD technology is considered as promissing as this process permits flowthrough large-scale production process. The paper presents results on device optimization based on WO3-MoO3 working electrode. Extensive research reveals that WO3-MoO3 structure combines positive features of single oxides: excellent electrochromic performance of WO3 and better kinetic properties of MoO3 deposition. The achieved color efficiency of APCVD WO3-MoO3 films is 200cm2/C and optical modulation of 65-70% are practically favorable electrochromic characteristics. To respond to low cost requirement, the expensive hexacarbonyl can be replaced with acetylacetonate. We have started with this precursor to fabricate mixed WxV1-xO3 films. The films possess excellent surface coverage and high growth-rate. CVD deposition of VO2, a promissing thermochromic thin film material is also presented.

  17. Induce magnetism into silicene by embedding transition-metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaotian; Wang, Lu, E-mail: lwang22@suda.edu.cn, E-mail: yyli@suda.edu.cn; Lin, Haiping; Hou, Tingjun; Li, Youyong, E-mail: lwang22@suda.edu.cn, E-mail: yyli@suda.edu.cn [Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu (China)

    2015-06-01

    Embedding transition-metal (TM) atoms into nonmagnetic nanomaterials is an efficient way to induce magnetism. Using first-principles calculations, we systematically investigated the structural stability and magnetic properties of TM atoms from Sc to Zn embedded into silicene with single vacancy (SV) and double vacancies (DV). The binding energies for different TM atoms correlate with the TM d-shell electrons. Sc, Ti, and Co show the largest binding energies of as high as 6 eV, while Zn has the lowest binding energy of about 2 eV. The magnetic moment of silicene can be modulated by embedding TM atoms from V to Co, which mainly comes from the 3d orbitals of TM along with partly contributions from the neighboring Si atoms. Fe atom on SV and Mn atom on DV have the largest magnetic moment of more than 3 μB. In addition, we find that doping of N or C atoms on the vacancy site could greatly enhance the magnetism of the systems. Our results provide a promising approach to design silicene-based nanoelectronics and spintronics device.

  18. Antiferromagnetism and metal-insulator transition in high temperature superconductors

    International Nuclear Information System (INIS)

    The ground state of the three band Hubbard Hamiltonian for the CuO2 planes of high temperature superconductors is investigated using local ansatz approach which includes local correlations between holes. For sufficiently large Coulomb interaction, U, or charge transfer energy, Δ, one finds a transition from a nonmagnetic metal to an antiferromagnetic (AF) insulator. If the parameters determined by the local density approximation are used, the ground state is a charge-transfer antiferromagnet, with the magnetic moments of m=0.47μΒ and 0.56μΒ, for La2CuO4 and YBa2Cu3O6, respectively. Correlations and the presence of interoxygen hopping reduce drastically the stability of the AF long-range order which disappears at the doping of either 0.06 hole or 0.08 electron, respectively. The effective mass is enhanced by a factor less than two due to correlations. (author). 27 refs.; 5 figs

  19. Transition Metal Trichalcogenides as Novel Layered Nano Species

    Directory of Open Access Journals (Sweden)

    Fedorov V.E.

    2013-09-01

    Full Text Available In search for new materials for nanoelectronics, many efforts have been put into development of chemistry and physics of graphene, and, more recently, of other inorganic layered compounds having a bandgap (h-BN, MoS2 etc.. Here we introduce a new view on the family of transition metal trichalcogenides MQ3 (M=Ti, Zr, Nb, Ta; Q=S, Se, which were earlier considered as quasi-one-dimensional systems, and demonstrate that they also may be regarded as layered species suitable for exfoliation by a chemical method. Stable, concentrated colloidal dispersions of high-quality crystalline NbS3 and NbSe3 nanoribbons down to mono- and few-layer-thick are prepared by ultrasonic treatment of the bulk compound in several common organic solvents (DMF, NMP, CH3CN, iPrOH, H2O/EtOH. The dispersions and thin films prepared from them by vacuum filtration or spraying are characterized by a set of physical-chemical methods. Current-voltage characteristics of the NbS3 films show that charge carrier mobility is as high as 1200 – 2400 cm2V-1s-1, exceeding that of MoS2 and making NbQ3 promising potential candidates for field-effect transistors.

  20. Quasi phase transition model of shear bands in metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zengqian [Key Laboratory of Aerospace Materials and Performance, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li Ran, E-mail: liran@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Wang Gang [Department of Materials Science and Engineering, Shanghai University, Shanghai (China); Wu Sujun; Lu Xuyang [Key Laboratory of Aerospace Materials and Performance, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Zhang Tao, E-mail: zhangtao@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2011-11-15

    A quasi phase transition model of shear bands in metallic glasses (MGs) is presented from the thermodynamic viewpoint. Energy changes during shear banding in a sample-machine system are analyzed following fundamental energy theorems. Three characteristic parameters, i.e. the critical initiation energy {Delta}G{sub c}, the shear band stability index k{sub 0}, and the critical shear band length l{sub c}, are derived to elucidate the initiation and propagation of shear bands. The criteria for good plasticity in MGs with predominant thermodynamic arrest of shear bands are proposed as low {Delta}G{sub c}, large k{sub 0}, and small l{sub c}. The model, combined with experimental results, is used to analyze some controversial phenomena of deformation behavior in MGs, such as the size effect, the effect of testing machine stiffness and the relationship between elastic modulus and plasticity. This study has important implications for a fundamental understanding of shear banding as well as deformation mechanisms in MGs and provides a theoretical basis for improving the ductility of MGs.

  1. Interactions between lasers and two-dimensional transition metal dichalcogenides.

    Science.gov (United States)

    Lu, Junpeng; Liu, Hongwei; Tok, Eng Soon; Sow, Chorng-Haur

    2016-05-01

    The recent increasing research interest in two-dimensional (2D) layered materials has led to an explosion of in the discovery of novel physical and chemical phenomena in these materials. Among the 2D family, group-VI transition metal dichalcogenides (TMDs), such as represented by MoS2 and WSe2, are remarkable semiconductors with sizable energy band gaps, which make the TMDs promising building blocks for new generation optoelectronics. On the other hand, the specificity and tunability of the band gaps can generate particularly strong light-matter interactions between TMD crystals and specific photons, which can trigger complex and interesting phenomena such as photo-scattering, photo-excitation, photo-destruction, photo-physical modification, photochemical reaction and photo-oxidation. Herein, we provide an overview of the phenomena explained by various interactions between lasers and the 2D TMDs. Characterizations of the optical fundamentals of the TMDs via laser spectroscopies are reviewed. Subsequently, photoelectric conversion devices enabled by laser excitation and the functionality extension and performance improvement of the TMDs materials via laser modification are comprehensively summarized. Finally, we conclude the review by discussing the prospects for further development in this research area. PMID:27141556

  2. Application of transition metal isotope tracers in global change research

    Institute of Scientific and Technical Information of China (English)

    SONG Jinming; Thomas F. Pedersen

    2005-01-01

    High-precision isotope composition determinations using multicollector, magnetic-sector inductively coupled plasma mass spectrometry (MC-ICPMS) have recently revealed that some transition metal isotopes such as those of Mo, Fe, Cu, Zn etc. can be used as biogeochemical tracers in global change research.The Mo isotope system may be useful in paleoredox investigations indicating that δ 97/95Mo in seawater may co-vary with changes in the relative proportions of anoxic and oxic sedimentation in the ocean, and that this variation may be recorded in δ 97/95Mo of anoxic sediments. The Mo continental flux into the oceans and the global Mo isotope budget can be estimated fromδ 97/95MO values. The Fe isotope composition in seawater is an important issue because Fe plays a controlling role in biological productivity in the oceans and its abundance in seawater may have substantial effect on climate changes. Iron isotope fractionations could result from bio- and abio-processes and have about 0.1% variation (δ 56/54Fe), so Fe isotopes considered alone cannot be used to distinguish the products of abiotic and biotic Fe processing in geological records. Cu and Zn isotopes are also used as biogeochemical tracers, but the researches are relatively less. This review mainly focuses on the methods for preparation, purification and determination of new isotope tracer samples, and on isotope applications in marine environmental changes.

  3. Surface Phonon Dispersion of the Layered Transition-metal Oxides

    Science.gov (United States)

    Zhang, J.; Ismail; Matzdorf, R.; Plummer, E. W.; Kimura, T.; Tokura, Y.

    2000-03-01

    Transition-metal oxides exhibit strong coupling between the charge and spin of the electrons and the lattice. Creating a surface by cleaving a single crystal breaks the symmetry of the lattice and disturbs the correlated system without changing the stoichiometry, providing the opportunity to study the response of electronic, structural, and magnetic properties. We have utilized electron-energy loss sprectroscopy (EELS) to study the electronic and lattice excitations of the Sr_2RuO4 and La_0.5Sr_1.5MnO4 surfaces. For both of these materials there are many more than three modes; three dominate surface optical phonons with small dispersion and with higher energies compared to those in the bulk materials. However, these phonons show completely different temperature dependence for different samples. The surface phonons become soft for Sr_2RuO4 while they become stiff for La_0.5Sr_1.5MnO4 with increasing temparature. The change of phonon energy of La_0.5Sr_1.5MnO4 with temperature is also in opposite direction to that of (La, Ca)MnO_4( Zhang et al., Surf. Sci. 393, 64(1997) * LMER Corp. for U.S. DOE under contract No. DE-AC05-96OR22464). These behaviors will be discussed in terms of the electronic, magnetic, and structural properties.

  4. Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan

    2016-03-14

    Transition metal dichalcogenides (TMDs) have garnered considerable interest in recent years owing to their layer thickness-dependent optoelectronic properties. In monolayer TMDs, the large carrier effective masses, strong quantum confinement, and reduced dielectric screening lead to pronounced exciton resonances with remarkably large binding energies and coupled spin and valley degrees of freedom (valley excitons). Coherent control of valley excitons for atomically thin optoelectronics and valleytronics requires understanding and quantifying sources of exciton decoherence. In this work, we reveal how exciton-exciton and exciton-phonon scattering influence the coherent quantum dynamics of valley excitons in monolayer TMDs, specifically tungsten diselenide (WSe2), using two-dimensional coherent spectroscopy. Excitation-density and temperature dependent measurements of the homogeneous linewidth (inversely proportional to the optical coherence time) reveal that exciton-exciton and exciton-phonon interactions are significantly stronger compared to quasi-2D quantum wells and 3D bulk materials. The residual homogeneous linewidth extrapolated to zero excitation density and temperature is ~1:6 meV (equivalent to a coherence time of 0.4 ps), which is limited only by the population recombination lifetime in this sample. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  5. Defect engineering of two-dimensional transition metal dichalcogenides

    Science.gov (United States)

    Lin, Zhong; Carvalho, Bruno R.; Kahn, Ethan; Lv, Ruitao; Rao, Rahul; Terrones, Humberto; Pimenta, Marcos A.; Terrones, Mauricio

    2016-06-01

    Two-dimensional transition metal dichalcogenides (TMDs), an emerging family of layered materials, have provided researchers a fertile ground for harvesting fundamental science and emergent applications. TMDs can contain a number of different structural defects in their crystal lattices which significantly alter their physico-chemical properties. Having structural defects can be either detrimental or beneficial, depending on the targeted application. Therefore, a comprehensive understanding of structural defects is required. Here we review different defects in semiconducting TMDs by summarizing: (i) the dimensionalities and atomic structures of defects; (ii) the pathways to generating structural defects during and after synthesis and, (iii) the effects of having defects on the physico-chemical properties and applications of TMDs. Thus far, significant progress has been made, although we are probably still witnessing the tip of the iceberg. A better understanding and control of defects is important in order to move forward the field of Defect Engineering in TMDs. Finally, we also provide our perspective on the challenges and opportunities in this emerging field.

  6. Nature of the Metallization Transition in Solid Hydrogen

    CERN Document Server

    Azadi, Sam; Foulkes, W M C

    2016-01-01

    We present an accurate study of the static-nucleus electronic energy band gap of solid molecular hydrogen at high pressure. The excitonic and quasiparticle gaps of the $C2/c$, $Pc$, $Pbcn$, and $P6_3/m$ structures at pressures of 250, 300, and 350~GPa are calculated using the fixed-node diffusion quantum Monte Carlo (DMC) method. The difference between the mean-field and many-body band gaps at the same density is found to be almost independent of system size and can therefore be applied as a scissor correction to the mean-field gap of an infinite system to obtain an estimate of the many-body gap in the thermodynamic limit. By comparing our static-nucleus DMC energy gaps with available experimental results, we demonstrate the important role played by nuclear quantum effects in the electronic structure of solid hydrogen. Our DMC results suggest that the metallization of high-pressure solid hydrogen occurs via a structural phase transition rather than band gap closure.

  7. Defect-induced semiconductor to metal transition in graphene monoxide.

    Science.gov (United States)

    Woo, Jungwook; Yun, Kyung-Han; Cho, Sung Beom; Chung, Yong-Chae

    2014-07-14

    This study investigates the influence of point defects on the geometric and electronic structure of graphene monoxide (GMO) via density functional theory calculations. In aspects of defect formation energy, GMOs with oxygen vacancies and bridge interstitial defects are more likely to form when compared to GMOs with defects such as carbon vacancies and hollow interstitial defects. It was also found that the oxygen vacancy or the hollow interstitial defect induces local tensile strain around the defective site and this strain increases the band gap energy of the defective GMO. In addition, the band gaps of GMO with carbon vacancies or bridge interstitial defects decreased mainly due to the dangling bonds, not due to the strain effect. It is noted that the dangling bond derived from the defects forms the defect-level in the band gap of GMO. The semiconductor to metal transition by the band gap change (0-0.7 eV) implies the possibility for band gap engineering of GMO by vacancies and interstitial defects. PMID:24886723

  8. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems.

    Science.gov (United States)

    Aron, Allegra T; Ramos-Torres, Karla M; Cotruvo, Joseph A; Chang, Christopher J

    2015-08-18

    Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent

  9. Metal-insulator transition in NaxWO3: Photoemission spectromicroscopy study

    International Nuclear Information System (INIS)

    We have investigated the validity of percolation model, which is quite often invoked to explain the metal-insulator transition in sodium tungsten bronzes, NaxWO3 by photoelectron spectromicroscopy. The spatially resolved direct spectromicroscopic probing on both the insulating and metallic phases of high quality single crystals of NaxWO3 reveals the absence of any microscopic inhomogeneities embedded in the system within the experimental limit. Neither any metallic domains in the insulating host nor any insulating domains in the metallic host have been found to support the validity of percolation model to explain the metal-insulator transition in NaxWO3

  10. Behaviour of bcc technical superconductors under dynamic mechanical stress

    International Nuclear Information System (INIS)

    The behavior of bcc technical superconductors NbTi, NbZr and Nb under dynamic mechanical stress was investigated using two measuring techniques. In shot-sample training experiments the load was measured at which, in wire samples with a transport current applied, normal transitions occured in succesive straining cycles. Complementary, the acoustic emission from superconductors was monitored during strain at 4.2 K. A mechanism based on the formation of a stress induced shear transformation was proposed to account for the training behavior. This partially reversible shearing of the lattice is not sufficient to furnish the required energy for transition in the normal state but it may be detected by means of acoustic emission. On the other hand, a time correlation between acoustic emission and normal transition was found although training behavior and emission responded differently to the same metallurgical treatment. The experiments strongly indicate that the mechanism directly responsible for local energy release is microyielding, induced by the shear transformation. The stress relaxation which accompanies this transformation results in an increased load on the rest of the sample cross-section. Consequently microyielding caused by the transformation could occur in that region of the sample without being detected on the stress-strain curve. This would result in a sufficient release of energy to increase the sample temperature above its critical value. (orig./HP)

  11. Ferromagnetism and metal-half-metal-insulator transitions in a frustrated periodic Anderson-like organic polymer

    International Nuclear Information System (INIS)

    The ferromagnetism and quantum phase transitions of a periodic Anderson-like organic polymer, in which the next-nearest-neighboring hopping results in frustration, are investigated by means of many-body Green's function theory. It is found that the ground state lies in half-metallic and paramagnetic metallic states for weak and relatively strong frustrations, respectively. At finite temperatures, a ferrimagnetic order and two different ferromagnetic phases are unveiled. In a magnetic field, in addition to 1/3 magnetization plateau, it presents three cusps and three critical fields indicating metal-half-metal and half-metal-insulator transitions, respectively, which are closely related to the energy bands controlled by the field. - Highlights: • The ferromagnetism and quantum phase transitions of a frustrated periodic Anderson-like organic polymer are investigated by Green's function theory. • At finite temperatures, a ferrimagnetic order and two different ferromagnetic phases are unveiled. • In a magnetic field, we reveal the metal-half-metal and half-metal-insulator transitions

  12. Dislocations in C11.sub.B./sub. and BCC lattices

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav; Vitek, V.

    Budapest: Eötvös University, 2012, s. 23-28. ISBN 978-615-5270-01-7. [International conference on fundamental properties of dislocations /4./. Budapest (HU), 27.08.2012-31.08.2012] R&D Projects: GA AV ČR IAA100100920 Institutional support: RVO:68378271 Keywords : dislocation cores * bcc metals * C11 B intermetallics Subject RIV: BM - Solid Matter Physics ; Magnetism

  13. The biological chemistry of the transition metal "transportome" of Cupriavidus metallidurans.

    Science.gov (United States)

    Nies, Dietrich H

    2016-05-01

    This review tries to illuminate how the bacterium Cupriavidus metallidurans CH34 is able to allocate essential transition metal cations to their target proteins although these metals have similar charge-to-surface ratios and chemical features, exert toxic effects, compete with each other, and occur in the bacterial environment over a huge range of concentrations and speciations. Central to this ability is the "transportome", the totality of all interacting metal import and export systems, which, as an emergent feature, transforms the environmental metal content and speciation into the cellular metal mélange. In a kinetic flow equilibrium resulting from controlled uptake and efflux reactions, the periplasmic and cytoplasmic metal content is adjusted in a way that minimizes toxic effects. A central core function of the transportome is to shape the metal ion composition using high-rate and low-specificity reactions to avoid time and/or energy-requiring metal discrimination reactions. This core is augmented by metal-specific channels that may even deliver metals all the way from outside of the cell to the cytoplasm. This review begins with a description of the basic chemical features of transition metal cations and the biochemical consequences of these attributes, and which transition metals are available to C. metallidurans. It then illustrates how the environment influences the metal content and speciation, and how the transportome adjusts this metal content. It concludes with an outlook on the fate of metals in the cytoplasm. By generalization, insights coming from C. metallidurans shed light on multiple transition metal homoeostatic mechanisms in all kinds of bacteria including pathogenic species, where the "battle" for metals is an important part of the host-pathogen interaction. PMID:27065183

  14. Effect of transition metal ions on the conductivity and stability of stabilized zirconia

    DEFF Research Database (Denmark)

    Lybye, D.; Mogensen, Mogens Bjerg

    2007-01-01

    effect of co-doping with smaller transition metal ions such as Ti-, Fe- and Mn-ions. Many of the ionic radii of the transition metal ions are too small compared to the host lattice ionic radius of zirconium. Here we explore the effect of a) the small ionic radii compared to the large ionic radii of the...... host lattice and b) the preferred six coordination compared to the desired eight-fold coordination of the fluorite structure. Particular interest is paid to the solubility of the transition metal ions and to the conductivity of the resulting material. Indium is not a transition metal but due to the......Zirconia compounds stabilised with rare-earth metal oxides like yttria, ytterbia and scandia are known to be good oxide ion conductors suitable as electrolyte material in solid oxide fuel cells. However. stabilised zirconia with high oxide ion conductivity is often only metastable at fuel cell...

  15. Studies on the Transition Metal Ion Induced Fluorescence Enhancement of 1,8-Naphthalimide Derivatives

    Institute of Scientific and Technical Information of China (English)

    WEN,Guo-Tao; ZHU,Man-Zhou; WANG,Zhuo; MENG,Xiang-Ming; HU,Hui-Yuan; GUO,Qing-Xiang

    2006-01-01

    Two fluorosensor systems have been designed and synthesized with their photophysical properties and fluorescence responses toward the transition metal ions studied. The fluorosensor was composed of 1,8-naphthalimide and 4-chloro-1,8-naphthalimide as fluorophore respectively, an amino moiety as the receptor and a hydrocarbon chain as the spacer to link the fluorophore and receptor. Fluorescence intensity of these systems is very weak due to the process of the efficient intramolecular photoinduced electron transfer (PET) in the absence of metal ions. Titration of the transition metal ions can switch on the fluorescence immediately. The intensity of released fluorescence is even higher than the expected from the consideration of the PET in these systems. It may be rationalized that the receptor bound to transition metal ions and the solvation of the fluorophore by the water molecules from the hydrated transition metal salts, may significantly cause fluorescence enhancement.

  16. Oxide Wizard: an EELS application to characterize the white lines of transition metal edges.

    Science.gov (United States)

    Yedra, Lluís; Xuriguera, Elena; Estrader, Marta; López-Ortega, Alberto; Baró, Maria D; Nogués, Josep; Roldan, Manuel; Varela, Maria; Estradé, Sònia; Peiró, Francesca

    2014-06-01

    Physicochemical properties of transition metal oxides are directly determined by the oxidation state of the metallic cations. To address the increasing need to accurately evaluate the oxidation states of transition metal oxide systems at the nanoscale, here we present "Oxide Wizard." This script for Digital Micrograph characterizes the energy-loss near-edge structure and the position of the transition metal edges in the electron energy-loss spectrum. These characteristics of the edges can be linked to the oxidation states of transition metals with high spatial resolution. The power of the script is demonstrated by mapping manganese oxidation states in Fe3O4/Mn3O4 core/shell nanoparticles with sub-nanometer resolution in real space. PMID:24750576

  17. Chemistry of Two-Dimensional Transition Metal Carbides (MXenes)

    Science.gov (United States)

    Mashtalir, Olha

    With consumer trends pushing toward smaller, faster, more flexible, multitasking devices, researchers striving to meet these needs have targeted two-dimensional (2D) materials---and graphene in particular---as holding the most promise for use in advanced applications. But in 2011, a significant interest has been triggered by a newly discovered family of novel 2D materials---layered transitional metal carbides and carbonitrides, named MXenes. Those compounds were of general formula Mn+1 XnTx, where M stands for metal atom, X is C and/or N, n = 1, 2 or 3, and Tx represents surface groups. Being initially suggested as a material for electrical energy storage systems, MXenes' properties and their potential applications have not been explored. This work is the first complete study of MXenes' chemistry that sheds light on the chemical composition, structure and properties of these novel materials and possible routes of its modification. The research was focused on 2D titanium carbide, Ti3C2Tx, chosen as the representative of the MXene family. The kinetic study of Ti 3C2Tx synthesis discovered the main synthesis parameters, viz. temperature, time and particle size, that affect the etching process and define the quality of final product. MXenes were found to be able to spontaneously accommodate various ions and small organic molecules between the layers leading to preopening of the structure. A major challenge of large scale production of delaminated, atomically thin 2D MXene layers was solved with two delamination techniques involving dimethyl sulfoxide and isopropyl amine pre-intercalation followed by sonication in water. Ti3C2Tx was also found to possess adsorptive and photocatalytic properties, revealing its potential for environmental applications. It also showed limited stability in water and in the presence of oxygen, providing important practical information on proper handling and storage of MXene materials. Completion of this work allowed the performance of energy

  18. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  19. Noncollinear magnetism in surfaces and interfaces of transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Huahai

    2009-09-15

    Noncollinear (NC) magnetism is common in nature, especially when there exist geometrical frustration and chemical imparity in the system. In this work we studied the NC magnetism and the response to external magnetic fields in surfaces and interfaces of transition metals by using an semi-empirical tight-binding (TB) method that parameterized to the ab initio TB-LMTO calculations. We implemented this method to study two systems. The first one is the system of 6 Mn monolayers on Fe(001) substrate. Due to the complex structure and magnetic properties of Mn, we found 23 collinear magnetic configurations but only one NC configuration. The collinear ground state has a layered antiferromagnetic (AFM) coupling which agrees with previous experiments and calculations. In the NC configuration the local AFM coupling in the Mn layers is preserved, but the surface is 90 degree coupled to the substrate. Similar to the experiment in CdCr{sub 2}O{sub 4}, we obtained a collinear plateau in the NC evolution of the average magnetic moment in Mn slab under external magnetic fields. Another is the system of a Cr monolayer on a stepped Fe(001) substrate. As expected, the local AFM coupling in the interface of Cr and Fe are preserved. However, the edge Cr atoms is about 90 coupled to their nearest Fe neighbors. We also simulated the procedure of adding more Cr coverages gradually to a Cr bilayer coverage. As coverages increase, the magnetic moments in the Cr interface reduce, and the collinear plateau becomes wider as coverages increase. However, the saturation fields in both the two systems are extremely high, around 10 kT.We expect that when the effect of temperature is taken into account, and in some proper systems, the saturation fields could be largely reduced to the scale that can be implemented in experiment, and our study may shed light on information storage devices with ultrahigh storage density. (orig.)

  20. Scaling Relationships for Adsorption Energies of C2 Hydrocarbons on Transition Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G

    2011-08-18

    Using density functional theory calculations we show that the adsorption energies for C{sub 2}H{sub x}-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws for AH{sub x}-type adsorbates to unsaturated hydrocarbons and establishes a coherent simplified description of saturated as well as unsaturated hydrocarbons adsorbed on transition metal surfaces. A number of potential applications are discussed. We apply the model to the dehydrogenation of ethane over pure transition metal catalysts. Comparison with the corresponding full density functional theory calculations shows excellent agreement.

  1. A metal insulator transition in YbFe4Sb12 granular thin films

    International Nuclear Information System (INIS)

    Results are reported for YbFe4Sb12 thin films grown by pulsed laser deposition. Thick films (thickness > 1000 A) show electrical transport behavior typical of bulk specimens. A metal to insulator transition is observed for films with thickness -β) and a stretched exponential (ρ(T) ∼ exp[T1/T]x) for strongly insulating samples. A comparison of electrical resistivity to scanning electron microscope images indicates a correlation between the metal to insulator transition and the intergranular connectivity. Based on this result it is argued that the intergrain conductance governs the metal to insulator transition

  2. Evaluating transition-metal catalysis in gas generation from the Permian Kupferschiefer by hydrous pyrolysis

    Science.gov (United States)

    Lewan, M.D.; Kotarba, M.J.; Wieclaw, D.; Piestrzynski, A.

    2008-01-01

    Transition metals in source rocks have been advocated as catalysts in determining extent, composition, and timing of natural gas generation (Mango, F. D. (1996) Transition metal catalysis in the generation of natural gas. Org. Geochem.24, 977–984). This controversial hypothesis may have important implications concerning gas generation in unconventional shale-gas accumulations. Although experiments have been conducted to test the metal-catalysis hypothesis, their approach and results remain equivocal in evaluating natural assemblages of transition metals and organic matter in shale. The Permian Kupferschiefer of Poland offers an excellent opportunity to test the hypothesis with immature to marginally mature shale rich in both transition metals and organic matter. Twelve subsurface samples containing similar Type-II kerogen with different amounts and types of transition metals were subjected to hydrous pyrolysis at 330° and 355 °C for 72 h. The gases generated in these experiments were quantitatively collected and analyzed for molecular composition and stable isotopes. Expelled immiscible oils, reacted waters, and spent rock were also quantitatively collected. The results show that transition metals have no effect on methane yields or enrichment. δ13C values of generated methane, ethane, propane and butanes show no systematic changes with increasing transition metals. The potential for transition metals to enhance gas generation and oil cracking was examined by looking at the ratio of the generated hydrocarbon gases to generated expelled immiscible oil (i.e., GOR), which showed no systematic change with increasing transition metals. Assuming maximum yields at 355 °C for 72 h and first-order reaction rates, pseudo-rate constants for methane generation at 330 °C were calculated. These rate constants showed no increase with increasing transition metals. The lack of a significant catalytic effect of transition metals on the extent, composition, and timing of

  3. A macrocyclic approach to transition metal and uranyl Pacman complexes

    OpenAIRE

    Love, J. B.

    2009-01-01

    Multielectron redox chemistry involving small molecules such as O-2, H2O, N-2, CO2, and CH4 is intrinsic to the chemical challenges surrounding sustainable, low-carbon energy generation and exploitation. Compounds with more than one metal reaction site facilitate this chemistry by providing both unique binding environments and combined redox equivalents. However, controlling the aggregation of metal cations is problematic, as both the primary coordination spheres of the metals and the metal-m...

  4. k-asymmetric spin splitting at the interface between transition metal ferromagnets and heavy metals

    KAUST Repository

    Grytsyuk, Sergiy

    2016-05-23

    We systematically investigate the spin-orbit coupling-induced band splitting originating from inversion symmetry breaking at the interface between a Co monolayer and 4d (Tc, Ru, Rh, Pd, and Ag) or 5d (Re, Os, Ir, Pt, and Au) transition metals. In spite of the complex band structure of these systems, the odd-in-k spin splitting of the bands displays striking similarities with the much simpler Rashba spin-orbit coupling picture. We establish a clear connection between the overall strength of the odd-in-k spin splitting of the bands and the charge transfer between the d orbitals at the interface. Furthermore, we show that the spin splitting of the Fermi surface scales with the induced orbital moment, weighted by the spin-orbit coupling.

  5. Phase coexistence in the metal-insulator transition of a VO2 thin film

    International Nuclear Information System (INIS)

    Vanadium dioxide (VO2) shows a metal-insulator transition (MIT) near room temperature, accompanied by an abrupt resistivity change. Since the MIT of VO2 is known to be a first order phase transition, it is valuable to check metallic and insulating phase segregation during the MIT process. We deposited (100)-oriented epitaxial VO2 thin films on R-cut sapphire substrates. From the scanning tunneling spectroscopy (STS) spectra, we could distinguish metallic and insulating regions by probing the band gap. Optical spectroscopic analysis also supported the view that the MIT in VO2 occurs through metal and insulator phase coexistence

  6. Recent advances in metathesis-derived polymers containing transition metals in the side chain

    Directory of Open Access Journals (Sweden)

    Ileana Dragutan

    2015-12-01

    Full Text Available This account critically surveys the field of side-chain transition metal-containing polymers as prepared by controlled living ring-opening metathesis polymerization (ROMP of the respective metal-incorporating monomers. Ferrocene- and other metallocene-modified polymers, macromolecules including metal-carbonyl complexes, polymers tethering early or late transition metal complexes, etc. are herein discussed. Recent advances in the design and syntheses reported mainly during the last three years are highlighted, with special emphasis on new trends for superior applications of these hybrid materials.

  7. Recent advances in metathesis-derived polymers containing transition metals in the side chain.

    Science.gov (United States)

    Dragutan, Ileana; Dragutan, Valerian; Simionescu, Bogdan C; Demonceau, Albert; Fischer, Helmut

    2015-01-01

    This account critically surveys the field of side-chain transition metal-containing polymers as prepared by controlled living ring-opening metathesis polymerization (ROMP) of the respective metal-incorporating monomers. Ferrocene- and other metallocene-modified polymers, macromolecules including metal-carbonyl complexes, polymers tethering early or late transition metal complexes, etc. are herein discussed. Recent advances in the design and syntheses reported mainly during the last three years are highlighted, with special emphasis on new trends for superior applications of these hybrid materials. PMID:26877797

  8. Formation of bulk metallic glasses in the Fe-M-Y-B (M = transition metal) system

    International Nuclear Information System (INIS)

    In this work, quaternary Fe72-xMxY6B22 (M = Ni, Co and Mo) bulk metallic glasses (BMGs) have been developed. It is found that a fully amorphous Fe68Mo4Y6B22 cylindrical rod with 6.5 mm in diameter can be prepared by copper mold injection. These alloys have a high glass transition temperature of about 900 K with high fracture strengths up to about 3 GPa although they are still brittle. Magnetic measurements reveal that they are ferromagnetic at ambient temperature with low coercive force of about 2 A/m, saturation magnetization of about 0.7 T and effective permeability of about 7000 at 100 kHz. The newly developed Fe-based quaternary alloys exhibit excellent combination properties: superior glass forming ability (GFA), high glass transition temperature, and soft magnetic properties, which could have potential applications in electronic industries. Furthermore, the effect of Mo addition on GFA in the Fe-Y-B BMG system has been discussed compared with those of Ni and Co additions

  9. First-principles calculation on core structures and Peierls stress of a screw dislocation in BCC iron

    International Nuclear Information System (INIS)

    Predicting atomistic properties of a dislocation is a first step toward an understanding of plastic behavior of materials, in particular BCC metals. The core structure and Peierls stress of a screw dislocation in BCC iron have been determined using the first-principles calculations based on the density functional theory with the large-scale supercell containing 231 atoms. For the a0/2[111] screw dislocation of BCC iron, the core structure was found, using 1 × 1 × 4 k-point samplings, to be a symmetric displacement field with no broken symmetry, and the Peierls stress was determined to be 1.1 GPa for the simple shear stress along (-110)<111>. (author)

  10. Suppression of Structural Phase Transition in VO2 by Epitaxial Strain in Vicinity of Metal-insulator Transition

    Science.gov (United States)

    Yang, Mengmeng; Yang, Yuanjun; Bin Hong; Wang, Liangxin; Hu, Kai; Dong, Yongqi; Xu, Han; Huang, Haoliang; Zhao, Jiangtao; Chen, Haiping; Song, Li; Ju, Huanxin; Zhu, Junfa; Bao, Jun; Li, Xiaoguang; Gu, Yueliang; Yang, Tieying; Gao, Xingyu; Luo, Zhenlin; Gao, Chen

    2016-03-01

    Mechanism of metal-insulator transition (MIT) in strained VO2 thin films is very complicated and incompletely understood despite three scenarios with potential explanations including electronic correlation (Mott mechanism), structural transformation (Peierls theory) and collaborative Mott-Peierls transition. Herein, we have decoupled coactions of structural and electronic phase transitions across the MIT by implementing epitaxial strain on 13-nm-thick (001)-VO2 films in comparison to thicker films. The structural evolution during MIT characterized by temperature-dependent synchrotron radiation high-resolution X-ray diffraction reciprocal space mapping and Raman spectroscopy suggested that the structural phase transition in the temperature range of vicinity of the MIT is suppressed by epitaxial strain. Furthermore, temperature-dependent Ultraviolet Photoelectron Spectroscopy (UPS) revealed the changes in electron occupancy near the Fermi energy EF of V 3d orbital, implying that the electronic transition triggers the MIT in the strained films. Thus the MIT in the bi-axially strained VO2 thin films should be only driven by electronic transition without assistance of structural phase transition. Density functional theoretical calculations further confirmed that the tetragonal phase across the MIT can be both in insulating and metallic states in the strained (001)-VO2/TiO2 thin films. This work offers a better understanding of the mechanism of MIT in the strained VO2 films.

  11. Features and regularities in behavior of thermoelectric properties of rare-earth, transition, and other metals under high pressure up to 20 GPa

    International Nuclear Information System (INIS)

    We report results of systematic investigations of the thermoelectric properties of a number of rare-earth metals, transition metals, and other metals under high pressure up to 20 GPa at room temperature. We studied an effect of applied pressure on the Seebeck effect of scandium (Sc), yttrium (Y), lanthanum (La), europium (Eu), ytterbium (Yb), iron (Fe), manganese (Mn), chromium (Cr), gold (Au), tin (Sn), and CeNi alloy. We found that the high-pressure behavior of the thermopower of three rare-earth metals, namely, Sc, Y, and La, follows a general trend that has been established earlier in lanthanides, and addressed to a s → d electron transfer. Europium and ytterbium, on the contrary, showed a peculiar high-pressure behavior of the thermopower with peaks at near 0.7–1 GPa for Eu and 1.7–2.5 GPa for Yb. Chromium, manganese, and tin demonstrated a gradual and pronounced lowering of the absolute value of the thermopower with pressure. Above 9–11 GPa, the Seebeck coefficients of Mn and Sn were inverted, from n- to p-type for Mn and from p- to n-type for Sn. The Seebeck effect in iron was rather high as ∼16 μV/K and weakly varied with pressure up to ∼11 GPa. Above ∼11 GPa, it started to drop dramatically with pressure to highest pressure achieved 18 GPa. Upon decompression cycle the thermopower of iron returned to the original high values but demonstrated a wide hysteresis loop. We related this behavior in iron to the known bcc (α-Fe) → hcp (ε-Fe) phase transition, and proposed that the thermoelectricity of the α-Fe phase is mainly contributed by the spin Seebeck effect, likewise, the thermoelectricity of the ε-Fe phase—by the conventional diffusion thermopower. We compare the pressure dependencies of the thermopower for different groups of metals and figure out some general trends in the thermoelectricity of metals under applied stress

  12. Features and regularities in behavior of thermoelectric properties of rare-earth, transition, and other metals under high pressure up to 20 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Morozova, Natalia V.; Shchennikov, Vladimir V. [M. N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 18 S. Kovalevskaya Str., Yekaterinburg 620137 (Russian Federation); Ovsyannikov, Sergey V., E-mail: sergey.ovsyannikov@uni-bayreuth.de, E-mail: sergey2503@gmail.com [Bayerisches Geoinstitut, Universität Bayreuth, Universitätsstrasse 30, Bayreuth D-95447 (Germany); Institute for Solid State Chemistry of Ural Branch of Russian Academy of Sciences, 91 Pervomayskaya Str., Yekaterinburg 620990 (Russian Federation)

    2015-12-14

    We report results of systematic investigations of the thermoelectric properties of a number of rare-earth metals, transition metals, and other metals under high pressure up to 20 GPa at room temperature. We studied an effect of applied pressure on the Seebeck effect of scandium (Sc), yttrium (Y), lanthanum (La), europium (Eu), ytterbium (Yb), iron (Fe), manganese (Mn), chromium (Cr), gold (Au), tin (Sn), and CeNi alloy. We found that the high-pressure behavior of the thermopower of three rare-earth metals, namely, Sc, Y, and La, follows a general trend that has been established earlier in lanthanides, and addressed to a s → d electron transfer. Europium and ytterbium, on the contrary, showed a peculiar high-pressure behavior of the thermopower with peaks at near 0.7–1 GPa for Eu and 1.7–2.5 GPa for Yb. Chromium, manganese, and tin demonstrated a gradual and pronounced lowering of the absolute value of the thermopower with pressure. Above 9–11 GPa, the Seebeck coefficients of Mn and Sn were inverted, from n- to p-type for Mn and from p- to n-type for Sn. The Seebeck effect in iron was rather high as ∼16 μV/K and weakly varied with pressure up to ∼11 GPa. Above ∼11 GPa, it started to drop dramatically with pressure to highest pressure achieved 18 GPa. Upon decompression cycle the thermopower of iron returned to the original high values but demonstrated a wide hysteresis loop. We related this behavior in iron to the known bcc (α-Fe) → hcp (ε-Fe) phase transition, and proposed that the thermoelectricity of the α-Fe phase is mainly contributed by the spin Seebeck effect, likewise, the thermoelectricity of the ε-Fe phase—by the conventional diffusion thermopower. We compare the pressure dependencies of the thermopower for different groups of metals and figure out some general trends in the thermoelectricity of metals under applied stress.

  13. Multi-scale modeling of the iron bcc arrow hcp martensitic phase transformation

    Science.gov (United States)

    Caspersen, Kyle; Carter, Emily; Lew, Adrian; Ortiz, Michael

    2004-03-01

    Pressures exceeding 10 GPa induce a martensitic phase transformation in iron, where ferro-magnetic bcc transforms into non-magnetic hcp. The transition pressure is not known precisely, but is thought to depend strongly on shear. To investigate the properties of this transformation and the role of shear, we have developed a multi-scale iron model. This model contains a free energy derived from an ab-initio based non-linear elastic expansion, a kinematically compatible spinodal decomposition of phases, ab-initio based interfacial energies, and a dependence on the bcc rightarrow hcp transformation path(s). The model shows spinodal decomposition behavior (with a slight expected deviation) as well as predicting 10 GPa to be the transformation pressure. Additionally, the model predicted that the inclusion of shear facilitates the transformation, causing transformation pressure to decrease.

  14. Behaviors of d and f electrons in transition metals studied by positron annihilation

    International Nuclear Information System (INIS)

    The background of the spectrum of Doppler broadening of positron annihilation radiation can be reduced remarkably by using a two-detector coincidence technique. With this setup, we get a peak to background ratio of about 104 on the high energy side of the peak. The d electron and f electron signal for the transition metals can be extracted from the coincidence Doppler broadening spectrum. The coincidence Doppler broadening spectra for the transition metals Zr, Nb, Mo, Ag, Hf, Pt, Au and single crystal of Si have been measured. The experimental results show that the height of the peak of the ratio curves (the reference sample is Si) for the transition metals Zr, Nb, Mo, Ag increases with the increase in the number of 4d electrons. There are 2 peaks in the ratio curves (the reference sample is Si) for the transition metals Ag, Hf, Pt. And the height of the peaks increases with the increase in atomic number. (authors)

  15. Single crystal particles of a mesoporous mixed transition metal oxide with a wormhole structure.

    Science.gov (United States)

    Lee, B; Lu, D; Kondo, J N; Domen, K

    2001-10-21

    A new type of mesoporous mixed transition metal oxide of Nb and Ta (NbTa-TIT-1) has been prepared through a two-step calcination, which consists of single crystal particles with wormhole mesoporous structure. PMID:12240191

  16. Theoretical research program to study transition metal trimers and embedded clusters

    Science.gov (United States)

    Walch, Stephen P.

    1987-01-01

    The results of ab-initio calculations are reported for (1) small transition metal clusters and (2) potential energy surfaces for chemical reactions important in hydrogen combustion and high temperature air chemistry.

  17. Electron Spin Resonance of Tetrahedral Transition Metal Oxyanions (MO4n-) in Solids.

    Science.gov (United States)

    Greenblatt, M.

    1980-01-01

    Outlines general principles in observing sharp electron spin resonance (ESR) lines in the solid state by incorporating the transition metal ion of interest into an isostructural diamagnetic host material in small concentration. Examples of some recent studies are described. (CS)

  18. Photoinduced Coherent Spin Fluctuation in Primary Dynamics of Insulator to Metal Transition in Perovskite Cobalt Oxide

    OpenAIRE

    Arima T.; Iwai S.; Itoh H; Yamada K; Ishikawa T; Yamada S; Sasaki T.

    2013-01-01

    Coherent spin fluctuation was detected in the photoinduced Mott insulator-metal transition in perovskite cobalt oxide by using 3 optical-cycle infrared pulse. Such coherent spin fluctuation is driven by the perovskite distortion changing orbital gap.

  19. First-principles calculation on Peierls stress of a screw dislocation in BCC molybdenum

    International Nuclear Information System (INIS)

    Predicting atomistic properties of a dislocation is a first step toward an understanding of plastic behavior of materials, in particular BCC metals. The core structure and Peierls stress of a screw dislocation in BCC molybdenum have been studied over the years using the first-principles and empirical methods, however, their conclusions vary due to the inefficiency of the methods. We have executed the first-principles calculation based on the density functional method, employing the most accurate 1 × 1 × 20 k-point samplings, to determine Peierls stress of the a0/2[111] screw dislocation of molybdenum. We have determined the value of 1.8 GPa for the simple shear stress along (-110)<111>. (author)

  20. Theory of magnetic transition metal nanoclusters on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lounis, S.

    2007-04-17

    This thesis is motivated by the quest for the understanding and the exploration of complex magnetism provided by atomic scale magnetic clusters deposited on surfaces or embedded in the bulk. Use is made of the density functional theory (DFT). Acting within this framework, we have developed and implemented the treatment of non-collinear magnetism into the Juelich version of the full-potential Korringa-Kohn-Rostoker Green Function (KKR-GF) method. Firstly, the method was applied to 3d transition-metal clusters on different ferromagnetic surfaces. Different types of magnetic clusters where selected. In order to investigate magnetic frustration due to competing interactions within the ad-cluster we considered a (001) oriented surface of fcc metals, a topology which usually does not lead to non-collinear magnetism. We tuned the strength of the magnetic coupling between the ad-clusters and the ferromagnetic surface by varying the substrate from the case of Ni(001) with a rather weak hybridization of the Ni d-states with the adatom d-states to the case of Fe{sub 3ML}/Cu(001) with a much stronger hybridization due to the larger extend of the Fe wavefunctions. On Ni(001), the interaction between the Cr- as well as the Mn-dimer adatoms is of antiferromagnetic nature, which is in competition with the interaction with the substrate atoms. After performing total energy calculations we find that for Cr-dimer the ground state is collinear whereas the Mn-dimer prefers the non-collinear configuration as ground state. Bigger clusters are found to be magnetically collinear. These calculations were extended to 3d multimers on Fe{sub 3ML}/Cu(001). All neighboring Cr(Mn) moments in the compact tetramer are antiferromagnetically aligned in-plane, with the directions slightly tilted towards (outwards from) the substrate to gain some exchange interaction energy. The second type of frustration was investigated employing a Ni(111) surface, a surface with a triangular lattice of atoms, were

  1. EPR of transition metal ions in NZP ceramics

    International Nuclear Information System (INIS)

    NZP-ceramics have been produced by different methods such as sol-gel, flux melting and sintering of dry salts or phosphates. Formation of NZP and related phases was confirmed by X-ray diffraction analysis. Electron paramagnetic resonance (EPR) was applied to evaluate a structure positions of paramagnetic ions and nature of radiation-induced centers. EPR responses from transition metal ions Fe3+ and Mn2+ with electron configuration 3d5 (ground state 6S5/2) which occurred as impurities in raw materials were registered in powders of NZP-ceramics. Fine structure arising due to high spin iron complexes is well resolved. A part of Fe3+ ions substitutes for Zr4+ and another part of one substitutes for Na+ ions in six-fold coordinated positions. A great value of hyperfine structure (hfs) constant (9.3 mT) shows a high ionic character of Mn-O bonds in the first coordination sphere. A coordination number is close to 6. Fine structure of Mn2+ ions are not well resolved. A comparison of the spectra of samples containing various alkali cations shows the substitution for cations in series of Li-Na-K-Rb-Cs does not result in fundamental variation in spectra except for CZP ceramics where the response with g=4.3 due to Fe3+ in strong ligand field rather than response with g=2.0 due to Fe3+ in weak field is observed. An investigation of some samples doped by 0.1...0.5 mole % of Fe3+ or Gd3+ has been carried out and principal spin-Hamiltonian parameters have been determined. The increase of Fe and Gd ions content as compared to impurity substituting for Zr and possibly Na in their own structural positions results in noticeable site distortion. Gamma irradiation of NZP ceramics results in formation of radiation-induced paramagnetic centers connected to phosphorus-oxygen. The nature and concentration of these centers depend on production method. The lowest defect concentration is in hot-pressed ceramics

  2. Beyond the upper limit of magnetic anisotropy in two-dimensional transition metal dichalcogenides

    OpenAIRE

    Odkhuu, Dorj

    2016-01-01

    Exploring an upper limit of magnetic anisotropy in two-dimensional materials, such as graphene and transition metal dichalcogenides, is at the heart of spintronics research. Herein, an atomic-scale perpendicular magnetic anisotropy up to an order of 100 meV per atom, which is far beyond the ordinarily obtained value in graphene and pristine transition metal dichalcogenides, is demonstrated in individual ruthenium and osmium adatoms at a monosulfur vacancy in molybdenum disulfide. We further p...

  3. Effects of valence, geometry and electronic correlations on transport in transition metal benzene sandwich molecules

    OpenAIRE

    Karolak, M.; Jacob, D.

    2016-01-01

    We study the impact of the valence and the geometry on the electronic structure and transport properties of different transition metal-benzene sandwich molecules bridging the tips of a Cu nanocontact. Our density-functional calculations show that the electronic transport properties of the molecules depend strongly on the molecular geometry which can be controlled by the nanocontact tips. Depending on the valence of the transition metal center certain molecules can be tuned in and out of half-...

  4. Catalytic production of carbon nanotubes over first row transition metal oxides supported on montmorillonite

    International Nuclear Information System (INIS)

    Clay-carbon nanotube composites were prepared by employing the catalytic chemical vapor deposition method (CCVD) over different transition metal oxides supported on montmorillonite. Various analytical techniques including SEM, TEM, XRD and DTA/TGA were used for the characterization of the final composite materials. The morphology, quality and structure of the produced nanotubes is shown to be dependent on the type of transition metals

  5. Computational and experimental investigation of unreported transition metal selenides and sulphides

    OpenAIRE

    Narayan, Awadhesh; Bhutani, Ankita; Rubeck, Samantha; Eckstein, James N.; Shoemaker, Daniel P.; Wagner, Lucas K.

    2015-01-01

    Expanding the library of known inorganic materials with functional electronic or magnetic behavior is a longstanding goal in condensed matter physics and materials science. Recently, the transition metal chalchogenides including selenium and sulfur have been of interest because of their correlated-electron properties, as seen in the iron based superconductors and the transition metal dichalcogenides. However, the chalcogenide chemical space is less explored than that of oxides, and there is a...

  6. Abnormal carbenes as ligands in transition metal chemistry: curiosities with exciting perspectives

    OpenAIRE

    Albrecht, Martin

    2009-01-01

    This review compiles the advances achieved in our laboratories using abnormal and less heteroatom-stabilized carbenes as ligands for transition metal chemistry. Fundamental studies allowed the evaluation of the impact of this new class of ligands both electronically and sterically. Based on these results, initial catalytic applications have been devised in the area of H-H and C-H bond activation, demonstrating the potential of abnormal carbenes as unique ligands for transition metals.

  7. Coordination Chemistry of Disilylated Stannylenes with Group 10 d10 Transition Metals: Silastannene vs Stannylene Complexation

    OpenAIRE

    Arp, Henning; Marschner, Christoph; Baumgartner, Judith; Zark, Patrick; Müller, Thomas

    2013-01-01

    The coordination behavior of disilylated stannylenes toward zerovalent group 10 transition metal complexes was studied. This was accomplished by reactions of PEt3 adducts of disilylated stannylenes with zerovalent group 10 transition metal complexes. The thus obtained products differed between the first row example nickel and its heavier congeners. While with nickel stannylene complex formation was observed, coordination of the stannylenes to palladium and platinum compounds led to unusual si...

  8. The thermodynamics and transport properties of transition metals in critical point

    CERN Document Server

    Khomkin, Alexander L

    2016-01-01

    A new method for calculating the critical point parameters (density, temperature, pressure and electrical conductivity) and binodal of vapor-liquid (dielectric-metal) phase transition is proposed. It is based on the assumption that cohesion, which determines the main properties of solid state, also determines the properties in the vicinity of the critical point. Comparison with experimental and theoretical data available for transition metals is made.

  9. Highly Enantioselective Cascade Transformations by Merging Heterogeneous Transition Metal Catalysis with Asymmetric Aminocatalysis

    OpenAIRE

    Luca Deiana; Samson Afewerki; Carlos Palo-Nieto; Oscar Verho; Johnston, Eric V.; Armando Córdova

    2012-01-01

    The concept of combining heterogeneous transition metal and amine catalysis for enantioselective cascade reactions has not yet been realized. This is of great advantage since it would allow for the recycling of expensive and non-environmentally friendly transition metals. We disclose that the use of a heterogeneous Pd-catalyst in combination with a simple chiral amine co-catalyst allows for highly enantioselective cascade transformations. The preparative power of this process has been demonst...

  10. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    DEFF Research Database (Denmark)

    Tritsaris, Georgios; Nørskov, Jens Kehlet; Rossmeisl, Jan

    2011-01-01

    We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability of...... the catalyst. Ruthenium surfaces with moderate content of selenium are calculated active for the oxygen reduction reaction, and insensitive to methanol. A significant upper limit for the activity of transition metal chalcogenides is estimated....

  11. Quantum Chemical Calculations of EPR-Hyperfine Coupling Constants for Transition Metal Complex

    International Nuclear Information System (INIS)

    In this this study the performance of various density functional approaches for calculation of electron paramagnetic resonance hyperfine coupling constants in transition metal complexes was studied. Several gradient-corrected as well as hybrid functionals have been validated by comparison with experimental data and high-level coupled-cluster calculation for 21 systems, representing a variety of bonding situations. Second part of this work represents an analysis and interpretation of spin-polarization effects in first transition metal complexes

  12. Preparation of transition metal nanoparticles and surfaces modified with (co)polymers synthesized by RAFT

    Science.gov (United States)

    McCormick, III, Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2011-12-27

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  13. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng, E-mail: guw8@pitt.edu [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2013-11-28

    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O{sub 2} adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N{sub 4} chelation, as well as the molecular and electronic structures for the O{sub 2} adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O{sub 2} on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d{sub z{sup 2}}, d{sub xy}, d{sub xz}, and d{sub yz}) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O{sub 2} adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  14. NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds

    Science.gov (United States)

    Chen, J. G.

    Owing to their unique physical and chemical properties, transition metal compounds, especially transition metal oxides, nitrides, carbides and sulfides, have been the subject of many surface science investigations. In this article we will review applications of the near-edge X-ray absorption fine structure (NEXAFS) technique in the investigations of electronic and structural properties of transition metal compounds. This review covers NEXAFS studies of compounds in various physical forms, including bulk single crystals, well-characterized overlayers on surfaces of corresponding parent metals, and amorphous powder materials. In addition to transition metal oxides, nitrides, carbides and sulfides, we will also briefly discuss NEXAFS studies of interstitial compounds containing other 2p and 3p non-metal components, namely boron, fluorine, silicon, phosphorus and chlorine. We will discuss the correlation between experimental NEXAFS spectra and the local bonding environment of these compounds, such as the number of d-electrons, spin configurations, ligand-field splitting, coordination numbers, local symmetries, and crystal structures. In addition, NEXAFS investigations of the adsorption and reaction of probing molecules will also be discussed to reveal the underlying chemical reactivities of these materials. We will use many examples to demonstrate the importance of NEXAFS studies in the overall understanding of the physical and chemical properties of transition metal compounds. Finally, we will conclude this review by summarizing the current applications, as well as potential research opportunities, of NEXAFS in several technologically important research areas, including materials science, catalysis, biological science, earth science and environmental science.

  15. Effects of transition metal ion coordination on the collision-induced dissociation of polyalanines.

    Science.gov (United States)

    Watson, Heather M; Vincent, John B; Cassady, Carolyn J

    2011-11-01

    Transition metal-polyalanine complexes were analyzed in a high-capacity quadrupole ion trap after electrospray ionization. Polyalanines have no polar amino acid side chains to coordinate metal ions, thus allowing the effects metal ion interaction with the peptide backbone to be explored. Positive mode mass spectra produced from peptides mixed with salts of the first row transition metals Cr(III), Fe(II), Fe(III), Co(II), Ni(II), Cu(I), and Cu(II) yield singly and doubly charged metallated ions. These precursor ions undergo collision-induced dissociation (CID) to give almost exclusively metallated N-terminal product ions whose types and relative abundances depend on the identity of the transition metal. For example, Cr(III)-cationized peptides yield CID spectra that are complex and have several neutral losses, whereas Fe(III)-cationized peptides dissociate to give intense non-metallated products. The addition of Cu(II) shows the most promise for sequencing. Spectra obtained from the CID of singly and doubly charged Cu-heptaalanine ions, [M + Cu - H](+) and [M + Cu](2+) , are complimentary and together provide cleavage at every residue and no neutral losses. (This contrasts with [M + H](+) of heptaalanine, where CID does not provide backbone ions to sequence the first three residues.) Transition metal cationization produces abundant metallated a-ions by CID, unlike protonated peptides that produce primarily b- and y-ions. The prominence of metallated a-ions is interesting because they do not always form from b-ions. Tandem mass spectrometry on metallated (Met = metal) a- and b-ions indicate that [b(n)  + Met - H](2+) lose CO to form [a(n)  + Met - H](2+), mimicking protonated structures. In contrast, [a(n)  + Met - H](2+) eliminate an amino acid residue to form [a(n-1)  + Met - H](2+), which may be useful in sequencing. PMID:22124980

  16. Size Controlled Synthesis of Transition Metal Nanoparticles for Catalytic Applications

    KAUST Repository

    Esparza, Angel

    2011-07-07

    Catalysis offers cleaner and more efficient chemical reactions for environmental scientists. More than 90% of industrial processes are performed with a catalyst involved, however research it is still required to improve the catalyst materials. The purpose of this work is to contribute with the development of catalysts synthesis with two different approaches. First, the precise size control of non-noble metals nanoparticles. Second, a new one-pot synthesis method based on a microemulsion system was developed to synthesize size-controlled metal nanoparticles in oxide supports. The one-pot method represents a simple approach to synthesize both support and immobilized nanometer-sized non-noble metal nanoparticles in the same reaction system. Narrow size distribution nickel, cobalt, iron and cobalt-nickel nanoparticles were obtained. High metal dispersions are attainable regardless the metal or support used in the synthesis. Thus, the methodology is adaptable and robust. The sizecontrolled supported metal nanoparticles offer the opportunity to study size effects and metal-support interactions on different catalytic reactions with different sets of metals and supports.

  17. Manipulation of a Schlenk Line: Preparation of Tetrahydrofuran Complexes of Transition-Metal Chlorides

    Science.gov (United States)

    Davis, Craig M.; Curran, Kelly A.

    2007-01-01

    Before taking an inorganic laboratory course few students have experience handling air-sensitive materials using Schlenk techniques. This exercise introduces them to techniques they will employ in later syntheses. The procedure involves the formation of anhydrous tetrahydrofuran complexes of transition-metal chlorides from metal-chloride hydrates;…

  18. On the possibility of removing of transition metal ions from sewage using polymeric complexes

    International Nuclear Information System (INIS)

    The possibility of using of complexation in the system polyethylene-imine transition metal ions (Cu2+, Ni2+, Co2+)-surface active substance for removing of metal ions from solution and sewage has been investigated. It is shown, that pH of medium, hydro-fugitive of system and ratio between component of the triply complex effect on purification of solution. (author)

  19. Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts

    DEFF Research Database (Denmark)

    Peterson, Andrew; Nørskov, Jens K.

    2012-01-01

    this work, we compare trends in binding energies for the intermediates in CO2 electrochemical reduction and present an activity “volcano” based on this analysis. This analysis describes the experimentally observed variations in transition-metal catalysts, including why copper is the best-known metal...

  20. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    Energy Technology Data Exchange (ETDEWEB)

    Peresypkina, Eugenia V. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Samsonenko, Denis G. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Vostrikova, Kira E., E-mail: vosk@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); LMI, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France)

    2015-04-15

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [(Mn(acacen)){sub 2}Ru(NO)(CN){sub 5}]{sub n} and two complexes composed of different cyanorhenates, [Ni(cyclam)]{sub 2}[ReO(OH)(CN){sub 4}](ClO{sub 4}){sub 2}(H{sub 2}O){sub 1.25} and [Cu(cyclam)]{sub 2}[Re(CN){sub 7}](H{sub 2}O){sub 12}, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN){sub n}]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu{sub 4}N){sub 2}[Ru(NO)(CN){sub 5}], soluble in organic media. - Graphical abstract: The very first results in the design of 2D coordination polymers based on penta- and heptacyanometallates of 4d and5d transitions metals are presented. - Highlights: • Design of coordination polymers based on penta- and heptacyanometallates. • New Ru and Re cyanide based heterobimetallic coordination complexes. • Hydrolysis and ox/red processes involving [Re(CN){sub 7}]{sup 3+} during crystallization. • High magnetic anisotropy of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2}(H{sub 2}O){sub n}, M=Cu, Ni, complexes.

  1. Optical conductivity of V4O7 across its metal-insulator transition

    OpenAIRE

    Vecchio, I. Lo; Autore, M.; D'apuzzo, F.; Giorgianni, F.; Perucchi, A.; Schade, U.; Andreev, V. N.; Klimov, V. A.; Lupi, S.

    2014-01-01

    The optical properties of a V4O7 single crystal have been investigated from the high temperature metallic phase down to the low temperature antiferromagnetic insulating one. The temperature dependent behavior of the optical conductivity across the metal-insulator transition (MIT) can be explained in a polaronic scenario. Charge carriers form strongly localized polarons in the insulating phase as suggested by a far-infrared charge gap abruptly opening at T_MIT = 237 K. In the metallic phase in...

  2. Transition Metal Configurations and Limitations of the Orbital Approximation.

    Science.gov (United States)

    Scerri, Eric R.

    1989-01-01

    Points out a misconception that is reinforced in many elementary and advanced chemistry texts. Discusses the general limitations of the orbital concept. Notes misconceptions related to the transition elements and their first ionization energies. (MVL)

  3. Dramatic Switching of Magnetic Exchange in a Classic Transition Metal Oxide: Evidence for Orbital Ordering

    International Nuclear Information System (INIS)

    Spin correlations in metallic and insulating phases of V2O3 and its derivatives are investigated using magnetic neutron scattering.Metallic samples have incommensurate spin correlations varying little with hole doping. Paramagnetic insulating samples have spin correlations only among near neighbors. The transition from either of these phases into the low temperature insulating antiferromagnetic phase is accompanied by an abrupt change of dynamic magnetic short range order. Our results support the idea that the transition into the antiferromagnetic insulator is also an orbital ordering transition. copyright 1997 The American Physical Society

  4. Pressure-driven Superconductivity in Transition-metal Pentatelluride HfTe5

    OpenAIRE

    Qi, Yanpeng; Shi, Wujun; Naumov, Pavel G.; Kumar, Nitesh; Schnelle, Walter; Barkalov, Oleg,; Shekhar, Chandra; Borrmann, Horst; FELSER, CLAUDIA; Yan, Binghai; Medvedev, Sergey A.

    2016-01-01

    Layered transition-metal tellurides have attracted considerable attention because of their rich physics; for example, tungsten ditelluride WTe2 exhibits extremely large magnetoresistance; the tritelluride ZrTe3 shows a charge density wave transition at low temperature; and the pentatelluride ZrTe5 displays an enigmatic resistivity anomaly and large thermoelectric power. Recently some transition-metal tellurides are predicted to be quantum spin Hall insulators (e.g. ZrTe5 and HfTe5) or Weyl se...

  5. Theory of quantum metal to superconductor transitions in highly conducting systems

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, B.

    2010-04-06

    We derive the theory of the quantum (zero temperature) superconductor to metal transition in disordered materials when the resistance of the normal metal near criticality is small compared to the quantum of resistivity. This can occur most readily in situations in which 'Anderson's theorem' does not apply. We explicitly study the transition in superconductor-metal composites, in an swave superconducting film in the presence of a magnetic field, and in a low temperature disordered d-wave superconductor. Near the point of the transition, the distribution of the superconducting order parameter is highly inhomogeneous. To describe this situation we employ a procedure which is similar to that introduced by Mott for description of the temperature dependence of the variable range hopping conduction. As the system approaches the point of the transition from the metal to the superconductor, the conductivity of the system diverges, and the Wiedemann-Franz law is violated. In the case of d-wave (or other exotic) superconductors we predict the existence of (at least) two sequential transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition.

  6. Synthesis and Electronic Properties of Transition Metal Containing Polymers

    Institute of Scientific and Technical Information of China (English)

    Wai Kin Chan

    2000-01-01

    @@ 1. Introduction Since the discovery of the first organic light emitting polymer in 1991, research in this area has been mainly focused on conjugated organic polymers. The use of polymer metal complexes for electroluminescence applications has received relatively few attention.

  7. Neutral bimetallic transition metal phenoxyiminato catalysts and related polymerization methods

    Science.gov (United States)

    Marks, Tobin J.; Rodriguez, Brandon A.; Delferro, Massimiliano

    2012-08-07

    A catalyst composition comprising a neutral bimetallic diphenoxydiiminate complex of group 10 metals or Ni, Pd or Pt is disclosed. The compositions can be used for the preparation of homo- and co-polymers of olefinic monomer compounds.

  8. Directly Predicting Water Quality Criteria from Physicochemical Properties of Transition Metals

    Science.gov (United States)

    Wang, Ying; Wu, Fengchang; Mu, Yunsong; Zeng, Eddy Y.; Meng, Wei; Zhao, Xiaoli; Giesy, John P.; Feng, Chenglian; Wang, Peifang; Liao, Haiqing; Chen, Cheng

    2016-03-01

    Transition metals are a group of elements widespread in aquatic environments that can be hazardous when concentrations exceeding threshold values. Due to insufficient data, criteria maximum concentrations (CMCs) of only seven transition metals for protecting aquatic life have been recommended by the USEPA. Hence, it is deemed necessary to develop empirical models for predicting the threshold values of water quality criteria (WQC) for other transition metals for which insufficient information on toxic potency is available. The present study established quantitative relationships between recommended CMCs and physicochemical parameters of seven transition metals, then used the developed relationships to predict CMCs for other transition metals. Seven of 26 physicochemical parameters examined were significantly correlated with the recommended CMCs. Based on this, five of the seven parameters were selected to construct a linear free energy model for predicting CMCs. The most relevant parameters were identified through principle component analysis, and the one with the best correlation with the recommended CMCs was a combination of covalent radius, ionic radius and electron density. Predicted values were largely consistent with their toxic potency values. The present study provides an alternative approach to develop screening threshold level for metals which have insufficient information to use traditional methods.

  9. The influence of the metal net charge of non-metallocene early transition metal catalyst on the ethylene polymerization activity

    Institute of Scientific and Technical Information of China (English)

    WU ChunHong; LI HuaYi; FENG YuQi; HU YouLiang

    2008-01-01

    The net charges on central metals of a serial non-metallocene early transition metal catalysts (FI cata-lyst) with similar steric hindrance were caculated with MM-QEq (molecular mechmism-charge equili-bration) method and associated with ethylene polymerization activities of these FI catalyts. It was found that the activity increased with the net charge on metal if ignoring the influence of the steric hindrance. In other words, introduction of strong and/or more electron-withdrawing groups onto the ligand of FI catalyst would enhance the activity of the catalyst. This conculsion gave a direction to designing new FI catalyst with higher activity.

  10. High volumetric capacitance near insulator-metal percolation transition

    OpenAIRE

    Efros, A. L.

    2011-01-01

    A new type of a capacitor with a very high volumetric capacitance is proposed. It is based upon the known phenomenon of a sharp increase of the dielectric constant of the metal-insulator composite in the vicinity of the percolation threshold, but still on the insulator side. The optimization suggests that the metallic particles should be of nanoscale and that the distance between planar electrodes should be somewhat larger than the correlation length of the percolation theory and 10 to 20 tim...

  11. Cellulose based transition metal nano-composites : structuring and development

    OpenAIRE

    Glatzel, Stefan

    2013-01-01

    Cellulose is the most abundant biopolymer on earth. In this work it has been used, in various forms ranging from wood to fully processed laboratory grade microcrystalline cellulose, to synthesise a variety of metal and metal carbide nanoparticles and to establish structuring and patterning methodologies that produce highly functional nano-hybrids. To achieve this, the mechanisms governing the catalytic processes that bring about graphitised carbons in the presence of iron have been investigat...

  12. Transition metal-templated synthesis of catenanes and rotaxanes

    Institute of Scientific and Technical Information of China (English)

    CHAMBRON Jean-Claude; SAUVAGE Jean-Pierre

    2012-01-01

    Among the various methods nowadays used to make catenanes and rotaxanes,the metal template synthesis occupies a place of choice,because of its versatility.This contribution shows that,thanks to the richness of their chemistry,metal templates can fulfil multiple functions for the construction of these topologically-interesting molecules,from the entwining or threading of their precursors to the simultaneous catalysis of the interlocking reaction.

  13. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    Science.gov (United States)

    Peresypkina, Eugenia V.; Samsonenko, Denis G.; Vostrikova, Kira E.

    2015-04-01

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [{Mn(acacen)}2Ru(NO)(CN)5]n and two complexes composed of different cyanorhenates, [Ni(cyclam)]2[ReO(OH)(CN)4](ClO4)2(H2O)1.25 and [Cu(cyclam)]2[Re(CN)7](H2O)12, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]3[Re(CN)7]2 (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]3[Re(CN)7]2 complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN)n]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu4N)2[Ru(NO)(CN)5], soluble in organic media.

  14. Metal-nonmetal transition in the copper-carbon nanocomposite films

    International Nuclear Information System (INIS)

    We prepared Cu nanoparticles in a-C:H thin films by co-deposition of RF-sputtering and RF-PECVD methods at room temperature. By increasing Cu content in these films a nonmetal-metal (N-M) transition is observed. This transition is explainable by the power law of percolation theory. The critical metal content is obtained 56% and the critical exponent is obtained 1.6, which is larger than the exponent for 2 dimension systems and smaller than the one for 3 dimension systems. The electrical conductivity of dielectric samples was explained by tunneling. Activation tunneling energy that was obtained from temperature dependence of electrical resistivity correlates with near infrared absorption peak of samples and both of them depend on Cu content of thin films. In the early stage of N-M transition, by increasing metal content, a peculiar effect of metallic to nonmetallic state occurs.

  15. Sol-Gel Synthesis and Characterization of Selected Transition Metal Nano-Ferrites

    Directory of Open Access Journals (Sweden)

    Aurelija GATELYTĖ

    2011-09-01

    Full Text Available In the present work, the sinterability and formation of nanosized yttrium iron garnet (Y3Fe5O12, yttrium perovskite ferrite (YFeO3, cobalt, nickel and zinc iron spinel (CoFe2O4, NiFe2O4 and ZnFe2O4, respectively powders by an aqueous sol-gel processes are investigated. The metal ions, generated by dissolving starting materials of transition metals in the diluted acetic acid were complexed by 1,2-ethanediol to obtain the precursors for the transition metal ferrite ceramics. The phase purity of synthesized nano-compounds was characterized by infrared spectroscopy (IR and powder X-ray diffraction analysis (XRD. The microstructural evolution and morphological features of obtained transition metal ferrites were studied by scanning electron microscopy (SEM.http://dx.doi.org/10.5755/j01.ms.17.3.598

  16. Metallic magnetism and change of conductivity in the nano to bulk transition of cobalt ferrite

    Science.gov (United States)

    Arunkumar, A.; Vanidha, D.; Oudayakumar, K.; Rajagopan, S.; Kannan, R.

    2013-11-01

    Variations in conductivity with particle size have been observed in cobalt ferrite, when synthesized by solgel auto-combustion method. Impedance analysis reveals metallic and semiconducting behavior at room temperature for a particle size of 6 nm and 52 nm, respectively. Upon thermal activation, metallic to semiconducting phase transition has been observed as a function of particle size and vice-versa. Grainboundary Resistance (Rgb), increased drastically with particle size (19 MΩ for 6 nm and 259 MΩ for 52 nm) at room temperature. AC conductivity and dielectric constants exhibit similar metallic to semiconducting phase transition at 6 nm and semiconducting behavior at 52 nm with temperature in the selected frequencies. Enhanced magnetic moment with an increase in the grain size along with decreased coercivity (1444 G to 1146 G) reveals transition from single domain to multi-domain. Increased inter-particle interaction is responsible for metallicity at the nano level and on the contrary semiconductivity is attributed to bulk.

  17. Low temperature ultrasonic properties of V, Nb and Ta metals

    International Nuclear Information System (INIS)

    In the present investigation, ultrasonic attenuation has been calculated in the temperature range 5K to 50K due to electron-phonon interaction mechanism in transition metals Vanadium, Niobium and Tantalum for longitudinal and shearwaves. For this evaluation, we have also computed the second order elastic constants using interaction potential model. Some characteristic features of these materials related to ultrasonic properties and other associated parameters have been discussed. It is observed that ultrasonic properties in these b.c.c. metals are different from the other materials like normal metals, intermetallics, semimetallics and alloys. (author)

  18. Transitions in Theory and Practice: Managing Metals in the Circular Economy

    Directory of Open Access Journals (Sweden)

    Melissa Jackson

    2014-07-01

    Full Text Available Transitioning from current resource management practice dominated by linear economic models of consumption and production, to circular models of resource use, will require insights into the stages and processes associated with socio-technical transitions. This paper is concerned with transitions in practice. It explores two frameworks within the transitions literature—the multi-level perspective and transition management theory—for practical guidance to inform a deliberate transition in practice. The critical futures literature is proposed as a source of tools and methods to be used in conjunction with the transition frameworks to influence and enable transitions in practice. This enhanced practical guidance for initiating action is applied to a specific context—transitioning the Australian metals sector towards a circular economy model. This particular transition case study is relevant because the vision of a circular economy model of resource management is gaining traction internationally, Australia is significant globally as a supplier of finite mineral resources and it will also be used in a collaborative research project on Wealth from Waste to investigate possibilities for the circular economy and metals recycling.

  19. Probable metal-insulator transition in Ag{sub 4}SSe

    Energy Technology Data Exchange (ETDEWEB)

    Drebushchak, V.A., E-mail: dva@igm.nsc.ru [V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Pr. Ac. Koptyuga 3, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Ul. Pirogova 2, Novosibirsk 630090 (Russian Federation); Pal’yanova, G.A.; Seryotkin, Yu.V. [V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Pr. Ac. Koptyuga 3, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Ul. Pirogova 2, Novosibirsk 630090 (Russian Federation); Drebushchak, T.N. [Novosibirsk State University, Ul. Pirogova 2, Novosibirsk 630090 (Russian Federation); Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation)

    2015-02-15

    Highlights: • New phase transition in Ag{sub 4}SSe was discovered with scanning calorimetry and supported with X-ray powder diffraction. • The thermal effect relates to the anomaly in electrical and thermal conductivity of Ag{sub 4}SSe. • Similar thermal and electrical effects in K{sub 3}Cu{sub 8}S{sub 6} are explained with the metal-insulator transition. - Abstract: New phase transition (285 K) in low-temperature monoclinic Ag{sub 4}SSe was found out below the α-β transition (358 K) after the measurements with differential scanning calorimetry. The transition reveals significant hysteresis (over 30 K). X-ray powder diffraction shows that the superlattice with doubled a and b parameters of the unit cell exists below the new transition point. The signs of this new phase transition can be found in thermal and electrical conductivity of Ag{sub 4}SSe published in literature. Elusive phase transition in Ag{sub 2}Se shows similar properties. The new transition is likely related to the metal-insulator type transition, like K{sub 3}Cu{sub 8}S{sub 6}.

  20. First-principles study of hydrogen dissociation and diffusion on transition metal-doped Mg(0 0 0 1) surfaces

    International Nuclear Information System (INIS)

    First-principles calculations within the density functional theory (DFT) have been carried out to study hydrogen molecules dissociation and diffusion on clean and transition metals (TMs) doped Mg(0 0 0 1) surfaces following Pozzo et al. work. Firstly, the stability of Mg(0 0 0 1) surface doped with transition metals atom has been studied. The results showed that transition metals on the left of the table tend to substitute Mg in the second layer, while the other transition metals prefer to substitute Mg in the first layer. Secondly, we studied hydrogen molecules dissociation and diffusion on clean and Mg(0 0 0 1) surfaces which the transition metal atoms substituted both in the first layer and second layer. When transition metal atoms substitute in the first layer, the results agree with the Pozzo et al. result; when transition metal atoms substitute in the second layer, the results showed that the transition metals on the left of the periodic table impact on the dissociation barriers is less. However, for the transition metals (Mn, Fe, Co, Ni) on the right, there is a great impact on the barriers. The transition metals doped surfaces bind the dissociated H atoms loosely, making them easily diffused. The results further reveal that the Fe dopant on the Mg surface is the best choice for H2 dissociation and hydrogen storage.

  1. Magnetism in bcc Fe-Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M.E. [Sultan Qaboos Univ., Al-Khod (Oman). Dept. of Phys.; Yousif, A.A. [Sultan Qaboos Univ., Al-Khod (Oman). Dept. of Phys.

    1994-11-01

    The magnetic moment {mu}, hyperfine field B{sub hf} and isomer shift IS at the Fe site in bcc Fe-Al alloys were calculated from first principle. Contrary to the belief that Al atoms reside in the iron lattice as magnetic holes, it was found that the local magnetic moment of Fe is decreased when Al is at a nearest neighbour site (NN), while it increases if Al is at a next-nearest neighbour site (NNN). Consequently, the average {mu} per Fe atom was found to be, initially, independent of Al content. Assuming a linear dependence of {mu}{sub Fe} on the number of Al atoms at NN and NNN sites, we calculated the average {mu}, which was found to agree with experimental results of cold worked alloys for disordered Fe-Al alloy. On the other hand, antiferromagnetic coupling appears in the CsCl ordered structures. The average B{sub hf} was also calculated and compared to experimental data and the trends in the IS are considered. (orig.)

  2. A general holographic metal/superconductor phase transition model

    CERN Document Server

    Peng, Yan

    2014-01-01

    We study the scalar condensation of a general holographic superconductor model in AdS black hole background away from the probe limit. We find the model parameters together with the scalar mass and backreaction can determine the order of phase transitions completely. In addition, we observe two types of discontinuities of the scalar operator in the case of first order phase transitions. We analyze in detail the effects of the scalar mass and backreaction on the formation of discontinuities and arrive at an approximate relation between the threshold model parameters. Furthermore, we obtain superconductor solutions corresponding to higher energy states and examine the stability of these superconductor solutions.

  3. Activated phosphors having matrices of yttrium-transition metal compound

    Science.gov (United States)

    De Kalb, E.L.; Fassel, V.A.

    1975-07-01

    A method is described for preparing a phosphor composition containing a lanthanide activator element with a host matrix having a transition element as a major component. The host matrix is composed of certain rare earth phosphates or vanadates such as YPO$sub 4$ with a portion of the rare earth replaced with one or more of the transition elements. On x-ray or other electromagnetic excitation, trace lanthanide impurities or additives within the phosphor are spectrometrically determined from their characteristic luminescence. (auth)

  4. Metal-insulator transition in Na{sub x}WO{sub 3}: Photoemission spectromicroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Sanhita, E-mail: raj@iiserkol.ac.in; Ghosh, Anirudha, E-mail: raj@iiserkol.ac.in; Raj, Satyabrata, E-mail: raj@iiserkol.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research - Kolkata, Mohanpur Campus, Nadia -741252, West Bengal (India)

    2014-04-24

    We have investigated the validity of percolation model, which is quite often invoked to explain the metal-insulator transition in sodium tungsten bronzes, Na{sub x}WO{sub 3} by photoelectron spectromicroscopy. The spatially resolved direct spectromicroscopic probing on both the insulating and metallic phases of high quality single crystals of Na{sub x}WO{sub 3} reveals the absence of any microscopic inhomogeneities embedded in the system within the experimental limit. Neither any metallic domains in the insulating host nor any insulating domains in the metallic host have been found to support the validity of percolation model to explain the metal-insulator transition in Na{sub x}WO{sub 3}.

  5. The deformation units in metallic glasses revealed by stress-induced localized glass transition

    Science.gov (United States)

    Huo, L. S.; Ma, J.; Ke, H. B.; Bai, H. Y.; Zhao, D. Q.; Wang, W. H.

    2012-06-01

    We report that even in quasi-static cyclic compressions in the apparent elastic regimes of the bulk metallic glasses, the precisely measured stress-strain curve presents a mechanical hysteresis loop, which is commonly perceived to occur only in high-frequency dynamic tests. A phenomenological viscoelastic model is established to explain the hysteresis loop and demonstrate the evolutions of the viscous zones in metallic glasses during the cyclic compression. The declining of the viscosity of the viscous zones to at least 1 × 1012 Pa s when stress applied indicates that stress-induced localized glass to supercooled liquid transition occurs. We show that the deformation units of metallic glasses are evolved from the intrinsic heterogeneous defects in metallic glasses under stress and the evolution is a manifestation of the stress-induced localized glass transition. Our study might provide a new insight into the atomic-scale mechanisms of plastic deformation of metallic glasses.

  6. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts

    DEFF Research Database (Denmark)

    Jones, Glenn; Jakobsen, Jon Geest; Shim, Signe Sarah;

    2008-01-01

    situ TEM measurements under a hydrogen atmosphere. The overall agreement between theory and experiment (at 773 K, 1 bar pressure and 10% conversion) is found to be excellent with Ru and Rh being the most active pure transition metals for methane steam reforming, while Ni, Ir, Pt, and Pd are...... metal Surfaces to develop an overview of the steam reforming process catalyzed by a range of transition metal surfaces. By combining scaling relationships with thermodynamic and kinetic analysis, we show that it is possible to determine the reactivity trends of the pure metals for methane steam...... reforming. The reaction is found to be kinetically controlled by a methane dissociation step and a CO formation step, where the latter step is found to be dominant at lower temperatures. The particle size of the metal catalysts particles have been determined by transmission electron microscopy (TEM) and the...

  7. Extraction and Binding Efficiency of Calix[8]arene Derivative Toward Selected Transition Metals

    Directory of Open Access Journals (Sweden)

    Imdadullah Qureshi

    2008-12-01

    Full Text Available In this article we have explored the extraction efficiency as well as binding ability of calix[8]arene derivative (3 for selected transition metal ions (Co2+, Cd2+, Ni2+, Pb2+ and Cu2+. Picrate salt solutions of these metals were used in the liquid-liquid extraction experiments. It is apparent from the results that ligand 3 shows appreciable high extraction of transition metal cations, with the relative order Pb2+>Cu2+>Ni2+>Co2+>Cd2+ being observed. Highest extraction efficiency has been observed for Pb2+ and Cu2+ i.e. 95 and 91% respectively. The significant extraction and complexation ability for these metal ions may be attributed to the nature, size, structure and geometry of both ligand and metal ions.

  8. Direct measurement and modulation of single-molecule coordinative bonding forces in a transition metal complex

    DEFF Research Database (Denmark)

    Hao, Xian; Zhu, Nan; Gschneidtner, Tina;

    2013-01-01

    Coordination chemistry has been a consistently active branch of chemistry since Werner's seminal theory of coordination compounds inaugurated in 1893, with the central focus on transition metal complexes. However, control and measurement of metal-ligand interactions at the single-molecule level...... remain a daunting challenge. Here we demonstrate an interdisciplinary and systematic approach that enables measurement and modulation of the coordinative bonding forces in a transition metal complex. Terpyridine is derived with a thiol linker, facilitating covalent attachment of this ligand on both gold...... significant impact on the metal-ligand interactions. The present approach represents a major advancement in unravelling the nature of metal-ligand interactions and could have broad implications in coordination chemistry....

  9. Transport studies in 2D transition metal dichalcogenides and black phosphorus.

    Science.gov (United States)

    Du, Yuchen; Neal, Adam T; Zhou, Hong; Ye, Peide D

    2016-07-01

    Two-dimensional (2D) materials are a new family of materials with interesting physical properties, ranging from insulating hexagonal boron nitride, semiconducting or semi-metallic transition metal dichalcogenides, to gapless metallic graphene. In this review, we provide a brief discussion of transport studies in transition metal dichalcogenides, including both semiconducting and semi-metallic phases, as well as a discussion of the newly emerged narrow bandgap layered material, black phosphorus, in terms of its electrical and quantum transport properties at room and cryogenic temperatures. Ultra-thin layered channel materials with atomic layer thickness in the cross-plane direction, together with relatively high carrier mobility with appropriate passivation techniques, provide the promise for new scientific discoveries and broad device applications. PMID:27187790

  10. Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation

    Science.gov (United States)

    Zhou, Lin; Li, Xiaoxiao; Yao, Ze; Chen, Zhuwen; Hong, Mei; Zhu, Rongshu; Liang, Yongye; Zhao, Jing

    2016-03-01

    Catalytic oxidation of carbon monoxide (CO) is of great importance in many different fields of industry. Until now it still remains challenging to use non-noble metal based catalysts to oxidize CO at low temperature. Herein, we report a new class of nanoporous, uniform, and transition metal-doped cerium (IV) oxide (ceria, CeO2) microsphere for CO oxidation catalysis. The porous and uniform microsphere is generated by sacrificed polymer template. Transition-metals, like Cu, Co, Ni, Mn and Fe, were doped into CeO2 microspheres. The combination of hierarchical structure and metal doping afford superior catalytic activities of the doped ceria microspheres, which could pave a new way to advanced non-precious metal based catalysts for CO oxidation.

  11. Transport studies in 2D transition metal dichalcogenides and black phosphorus

    Science.gov (United States)

    Du, Yuchen; Neal, Adam T.; Zhou, Hong; Ye, Peide D.

    2016-07-01

    Two-dimensional (2D) materials are a new family of materials with interesting physical properties, ranging from insulating hexagonal boron nitride, semiconducting or semi-metallic transition metal dichalcogenides, to gapless metallic graphene. In this review, we provide a brief discussion of transport studies in transition metal dichalcogenides, including both semiconducting and semi-metallic phases, as well as a discussion of the newly emerged narrow bandgap layered material, black phosphorus, in terms of its electrical and quantum transport properties at room and cryogenic temperatures. Ultra-thin layered channel materials with atomic layer thickness in the cross-plane direction, together with relatively high carrier mobility with appropriate passivation techniques, provide the promise for new scientific discoveries and broad device applications.

  12. The thermally induced metal-semiconducting phase transition of samarium monosulfide (SmS) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, E; Dorenbos, P; Van der Kolk, E [Delft University of Technology, Faculty of Applied Sciences, Mekelweg 15, NL-2629 JB Delft (Netherlands); Smet, P F; Poelman, D, E-mail: e.g.rogers@tudelft.n [Lumilab, Department of Solid State Sciences, Ghent University, Krijgslaan 281 S1, B-9000 Gent (Belgium)

    2010-01-13

    High quality phase pure samarium monosulfide (SmS) thin films were prepared by electron beam evaporation using a samarium metal source in a H{sub 2}S atmosphere. The optical properties (reflection, transmission, absorption) of the films in the semiconducting and metallic phase were analysed from the UV to the mid-IR and explained in terms of the electronic structure of SmS. In this paper it will be shown that metallic SmS thin films exhibit an apparently continuous thermally induced metallic to semiconducting phase transition when studied optically. Temperature dependent x-ray diffraction measurements, however, indicate that the metallic to semiconductor phase transition is in fact first order at a single grain level. The apparently continuous optical behaviour is therefore due to the polycrystalline nature of the films.

  13. High throughput methods for analyzing transition metals in proteins on a microgram scale.

    Science.gov (United States)

    Atanassova, Anelia; Högbom, Martin; Zamble, Deborah B

    2008-01-01

    Transition metals are among the most common ligands that contribute to the biochemical and physiological properties of proteins. In the course of structural proteomic projects, the detection of transition metal cofactors prior to the determination of a high-resolution structure is extremely beneficial. This information can be used to select tractable targets from the proteomic pipeline because the presence of a metal often improves protein stability and can be used to help solve the phasing problem in x-ray crystallography. Recombinant proteins are often purified with substoichiometric amounts of metal loaded, so additional metal may be needed to obtain the homogeneous protein solution crucial for structural analysis. Furthermore, identifying a metal cofactor provides a clue about the nature of the biological role of an unclassified protein and can be applied with structural data in the assignation of a putative function. Many of the existing methods for transition metal analysis of purified proteins have limitations, which include a requirement for a large quantity of protein or a reliance on equipment with a prohibitive cost.The authors have developed two simple high throughput methods for identifying metalloproteins on a microgram scale. Each of the techniques has distinct advantages and can be applied to address divergent experimental goals. The first method, based on simple luminescence and colorimetric reactions, is fast, cheap, and semiquantitative. The second method, which employs HPLC separation, is accurate and affords unambiguous metal identification. PMID:18542873

  14. The origin of half-metallicity in conjugated electron systems—a study on transition-metal-doped graphyne

    International Nuclear Information System (INIS)

    We studied the mechanism of half-metallicity (HM) formation in transition-metal-doped conjugated carbon based structures by first-principles electronic structure simulations. It is found that the HM is a rather complex phenomenon, determined by the ligand field splitting of d-orbitals of the transition metal atoms, the exchange splitting and the number of valence electrons. Since most of the conjugated carbon based structures possess ligands with intermediate strength, the ordering of the d-orbital splitting is similar in all structures, and the HM properties evolve according to the number of valence electrons. Based on this insight we predict that Cr-, Fe- and Co-doped graphyne will show HM, while Mn- and Ni-doped graphyne will not. By tuning the number of valence electrons, we are thus able to control the emergence of HM and control the energy gaps evolving in the majority or minority spin channels. (paper)

  15. Spin dependent transport of hot electrons in bcc Fe(100) and bcc Fe{sub 34}Co{sub 66}(100)

    Energy Technology Data Exchange (ETDEWEB)

    Heindl, Emanuel; Vancea, Johann; Back, Christian H. [Department of Physics, University of Regensburg (Germany)

    2010-07-01

    We investigate hot electron spin filtering in thin bcc Fe(100) and bcc Fe{sub 34}Co{sub 66}(100) layers using Ballistic Electron Emission Microscopy. An STM tip is used as a tunable constant current source of hot electrons being injected into single crystalline metallic spin valve structures. The subsequent ballistic hot electron transport is recorded and separated from thermalized electron transport by means of a metal semiconductor junction whose Schottky barrier acts as a spectrometer. Electron transport is carried out with the main transport axis along the-axis of the ferromagnetic layers at electron energies between 1 eV and 2.5 eV above the Fermi level. Parallel and antiparallel magnetization configurations of the spin valve are readily adjustable with an external magnetic field as revealed by Kerr effect and magnetocurrent measurements. When the Fe{sub 34}Co{sub 66} electrode is replaced by Fe the spin contrast drops by more than a factor of 5 in the studied energy interval. We interpret this observation to the spin asymmetry of unoccupied states and to the electron velocity being distinct for majority and minority spins. By cooling down from room temperature to 130 K ballistic currents become significantly enhanced for both materials in the parallel and the antiparallel magnetization configuration, while hot electron spin polarization is enhanced for Fe{sub 34}Co{sub 66}, only.

  16. Metallic-like to nonmetallic transitions in a variety of heavily oxygen deficient ferroelectrics

    International Nuclear Information System (INIS)

    The coupling between ferroelectric distortions and electron transport is an important factor in understanding ferroelectric/noncentrosymmetric materials with metallic conductivities and ferroelectric-based thermoelectrics. Here, multiple d0 ferroelectrics with a variety of crystal structures are doped via oxygen deficiency, resulting in metallic-like conduction in the paraelectric state. It is found that most of the studied systems show a metallic-like to nonmetallic transition near the paraelectric-ferroelectric transition. The metallic-like to nonmetallic transition temperature can be shifted using mechanisms that shift the paraelectric-ferroelectric transition temperature. It was found that the metallic-like to nonmetallic transition temperature could be shifted from 373 K to 273 K by varying (Ba1−xSrx)TiO3−δ from x = 0 to x = 0.3 and x = 1. The most probable mechanism for ferroelectric-electron transport coupling was determined to be Anderson localization associated with polarization with short-range order

  17. Semiconductor-to-metal transition in trans-polyacetylene (the role of correlated solitons

    Directory of Open Access Journals (Sweden)

    S. A. Ketabi

    2004-06-01

    Full Text Available  In this study the nature of transition to metallic regime in trans-polyacetylene (trans-PA is investigated. Based on Su-Schrieffer-Heeger (SSH model and the use of Continued - Fraction Representation (CFR as well as Lanczos algorithm procedure, we studied the effects of some selected soliton distributions on the semiconductor-to-metal transition in trans-PA.We found that,this transition occurs only when there exists a soliton sublattice in trans-PA, disordered soliton distributions and soliton clustering are the origin of the metallic transition in trans-PA, that is consistent with the experimental data. Our results show that in the presence of correlation between solitons, the disorder in accompanying single soliton distributions plays a crucial role in inducing the transition to metallic regime, so that in contrast to Anderson’s localization theorem, the electronic states near the Fermi level are extended, that is the most significant criteria for the metallic regime .

  18. Insulator-metal transition studied by heat capacity measurements on SmS

    International Nuclear Information System (INIS)

    We have measured the specific heat of SmS at pressures up to ∼7.5 kbar. We have observed that the electronic specific heat coefficient γ shows a steep increase at around Pc∼3.5 kbar, which corresponds to an insulator-metal phase transition. In the metal phase above Pc, we have found that γ reaches 100 mJ/mol K2, indicating a strongly correlated metallic state. In the insulator phase, on the other hand, we have observed an anomaly in the temperature dependence of the specific heat around 1 K, which seems to survive in the metal phase

  19. Gas bubble detection in liquid metals by means of the ultrasound transit-time-technique

    International Nuclear Information System (INIS)

    Liquid metals are used in nuclear energy technology and a precise knowledge of the distribution of the gas bubbles and their behaviour inside liquid metals is very useful. In this work the ultrasound-transit time technique is introduced as a versatile method to analyze the bubble dynamics in liquid-metal-gas flows. After discussing the principle of operation and the implementation of the technique, the methods used to extract the positions of the bubbles, their velocities, or their diameters are explained. Finally, the performance of the method is demonstrated for a liquid-metal-gas flow with and without a magnetic field. (authors)

  20. Polymer derived non-oxide ceramics modified with late transition metals.

    Science.gov (United States)

    Zaheer, Muhammad; Schmalz, Thomas; Motz, Günter; Kempe, Rhett

    2012-08-01

    This tutorial review highlights the methods for the preparation of metal modified precursor derived ceramics (PDCs) and concentrates on the rare non-oxide systems enhanced with late transition metals. In addition to the main synthetic strategies for modified SiC and SiCN ceramics, an overview of the morphologies, structures and compositions of both, ceramic materials and metal (nano) particles, is presented. Potential magnetic and catalytic applications have been discussed for the so manufactured metal containing non-oxide ceramics. PMID:22337594

  1. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Achatz, Philipp

    2009-05-15

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n{sub c} for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers ({approx} 500 cm{sup -1}) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g{sub c}. The granularity also influences significantly the superconducting properties by introducing the superconducting gap {delta} in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the

  2. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    International Nuclear Information System (INIS)

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration nc for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers (∼ 500 cm-1) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance gc. The granularity also influences significantly the superconducting properties by introducing the superconducting gap Δ in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the first time in aluminum

  3. Main Group Lewis Acid-Mediated Transformations of Transition-Metal Hydride Complexes.

    Science.gov (United States)

    Maity, Ayan; Teets, Thomas S

    2016-08-10

    This Review highlights stoichiometric reactions and elementary steps of catalytic reactions involving cooperative participation of transition-metal hydrides and main group Lewis acids. Included are reactions where the transition-metal hydride acts as a reactant as well as transformations that form the metal hydride as a product. This Review is divided by reaction type, illustrating the diverse roles that Lewis acids can play in mediating transformations involving transition-metal hydrides as either reactants or products. We begin with a discussion of reactions where metal hydrides form direct adducts with Lewis acids, elaborating the structure and dynamics of the products of these reactions. The bulk of this Review focuses on reactions where the transition metal and Lewis acid act in cooperation, and includes sections on carbonyl reduction, H2 activation, and hydride elimination reactions, all of which can be promoted by Lewis acids. Also included is a section on Lewis acid-base secondary coordination sphere interactions, which can influence the reactivity of hydrides. Work from the past 50 years is included, but the majority of this Review focuses on research from the past decade, with the intent of showcasing the rapid emergence of this field and the potential for further development into the future. PMID:27164024

  4. Electron dynamics of transition metal compounds studied with resonant soft X-ray scattering

    International Nuclear Information System (INIS)

    High resolution experimental data for resonant soft x-ray scattering of transition metal compounds are shown. The compounds studied are the ionic transition metal di-fluorides, ionic and covalent ortho vanadates and members of the La1-xSrxCoO3 perovskite family. In all compounds we studied the transition metal L2,3 edge and also the ligand (oxygen or fluorine) K edge. For the ionic compounds the transition metal data are in good agreement with atomic multiplet ligand field calculations that include charge transfer effects. Density functional calculations give very useful information to interpret the ligand x-ray emission data. The experimental metal Lα emission data show that the region between valence and conduction bands in the di-fluorides has several d-excited states. At the L2 edge of the ionic ortho vanadates we found the signature of a fast Coster-Kronig decay process that results in a very localized emission peak. Changes in the oxidation states in the La1-xSrxCoO3 compounds are observed at both the metal L2,3 edge and the oxygen K edge absorption spectra. (Author)

  5. Chemical compatibility between lithium compounds and transition metals

    International Nuclear Information System (INIS)

    The aim is to investigate the chemical reactions or otherwise of lithium compounds; Li7Pb2 (a tritium breeder), Li2O (breeder and impurity), Li3N and LiH (impurities) with containment and fusion reactor component metals - 316 and austenitic steels, titanium. Experimental details are given and results are summarized. (author)

  6. Enhancement of Platinum Cathode Catalysis by Addition of Transition Metals

    Science.gov (United States)

    Duong, Hung Tuan

    2009-01-01

    The sluggish kinetics of oxygen reduction reaction (ORR) contributes significantly to the loss of cathode overpotential in fuel cells, thus requiring high loadings of platinum (Pt), which is an expensive metal with limited supply. However, Pt and Pt-based alloys are still the best available electrocatalysts for ORR thus far. The research presented…

  7. On Transition Metal Catalyzed Reduction of N-nitrosodimethlamine

    CERN Document Server

    Zhou, Jun; Tian, Junhua; Zhao, Zhun

    2014-01-01

    This report provides a critical review on "Metal-Catalyzed Reduction of N-Nitrosodimethylamine with Hydrogen in Water", by Davie et al. N-nitrosodimethlamine (NDMA) is a contaminant in drinking and ground water which is difficult to remove by conventional physical methods, such as air stripping. Based on the reported robust capability of metal based powder shaped catalysts in hydrogen reduction, several monometallic and bimetallic catalyst are studied in this paper on the reduction of NDMA with hydrogen. Two kinds of kinetics, metal weight normalized and surface area normalized, are compared between each catalyst in terms of pseudo-first order reaction rate. Palladium, copper enhanced palladium and nickel are found to be very efficient in NDMA reduction, with half-lives on the order of hours per 10 mg/l catalyst metal. Preliminary LC-MS data and carbon balance showed no intermediates. Finally, a simple hydrogen and NMDA surface activated reaction mechanism is proposed by the author for palladium and nickel.

  8. A high-performance liquid chromatography method for determining transition metal content in proteins.

    Science.gov (United States)

    Atanassova, Anelia; Lam, Robert; Zamble, Deborah B

    2004-12-01

    Transition metals are common components of cellular proteins and the detailed study of metalloproteins necessitates the identification and quantification of bound metal ions. Screening for metals is also an informative step in the initial characterization of the numerous unknown and unclassified proteins now coming through the proteomic pipeline. We have developed a high-performance liquid chromatography method for the quantitative determination of the most prevalent biological transition metals: manganese, iron, cobalt, nickel, copper, and zinc. The method is accurate and simple and can be adapted for automated high-throughput studies. The metal analysis involves acid hydrolysis to release the metal ions into solution, followed by ion separation on a mixed-bead ion-exchange column and absorbance detection after postcolumn derivatization with the metallochromic indicator 4-(2-pyridylazo)resorcinol. The potential interferences by common components of protein solutions were investigated. The metal content of a variety of metalloproteins was analyzed and the data were compared to data obtained from inductively coupled plasma-atomic emission spectroscopy. The sensitivity of the assay allows for the detection of 0.1-0.8 nmol, depending on the metal. The amount of protein required is governed by the size of the protein and the fraction of protein with metal bound. For routine analysis 50 microg was used but for many proteins 10 microg would be sufficient. The advantages, disadvantages, and possible applications of this method are discussed. PMID:15519577

  9. Atomic and molecular spectroscopy of transition metals in condensed helium

    International Nuclear Information System (INIS)

    Full text: We investigated laser induced fluorescence spectra of copper and gold atoms and dimers thereof isolated in solid and liquid 4He. Among the atomic spectral lines the most interesting ones are forbidden transitions that involve electrons from inner d-shells which are screened from the surrounding He atoms by the outer s-shell and are therefore much less affected by the interaction with the He matrix. Indeed, the observed spectral lineshapes are much narrower than those of transitions involving outer shell electrons. Another important result is the observation of well resolved vibrational structures in five molecular bands of the Au2 and Cu2 dimers. We expect that the analysis of those spectra will significantly advance our understanding of impurity atoms and molecules in condensed He. (author)

  10. Reactivities of d~0 transition metal complexes toward oxygen:Synthetic and mechanistic studies

    Institute of Scientific and Technical Information of China (English)

    CHEN ShuJian; ZHANG XinHao; LIN ZhenYang; WU YunDong; XUE ZiLing

    2009-01-01

    Transition metals such as Fe in porphyrin complexes are known to bind or react with O_2,and such reactions are critical to many biological functions and catalytic oxidation using O_2.The transition metals in these reactions often contain valence d electrons,and oxidation of metals is an important step.In recent years,reactions of O_2 with d~0 transition metal complexes such as Hf(NR_2)_4 (R=alkyl) have been used to make metal oxide thin films as insulating gate materials in new microelectronic devices.This feature article discusses our recent studies of such reactions and the formation of TiO_2 thin films.In contrast to the reactions of many d~n complexes where metals are often oxidized,reactions of d~0 complexes such as Hf(Nme_2)_4 and Ta(Nme_2)_4(SiR_3) with O_2 usually lead to the oxidation of ligands,forming,e.g.,-ONMe_2 and-OSiR_3 from-Nme_2 and-SiR_3 ligands,respectively.Mechanistic and theoretical studies of these reactions have revealed pathways in the formation of the metal oxide thin films as microelectronic materials.

  11. Bonds Between Metal Atoms: A New Mode of Transition Metal Chemistry.

    Science.gov (United States)

    Cotton, F. Albert; Chisholm, Malcolm H.

    1982-01-01

    Discusses polynuclear metal clusters (containing two or more metal atoms bonded to one another as well as to nonmetallic elements), including their formation and applications. Studies of bonds between metal atoms reveal superconductors, organic-reaction catalysts, and photosensitive complexes that may play a role in solar energy. (JN)

  12. Synchrotron radiation studies of local structure and bonding in transition metal aluminides and rare earth transition metal magnetic nitrides. Final report, August 1, 1990--July 14, 1993

    International Nuclear Information System (INIS)

    The following areas of study are reported on: bonding and near neighbor force constants in NiAl, CoAl, FeAl via temperature dependent EXAFS; alloys formed when Fe or Ga is microalloyed into a NiAl matrix; EXAFS studies of nitrided versus non nitrided Y2Fe17; and transition metal x-ray spectra as related to magnetic moments

  13. Radicals in Transition Metal Catalyzed Reactions? Transition Metal Catalyzed Radical Reactions? A Fruitful Interplay Anyway. Part 1. Radical Catalysis by Group 4 to Group 7 Elements

    Czech Academy of Sciences Publication Activity Database

    Jahn, Ullrich

    Heidelberg : Springer, 2012 - (Heinrich, M.; Gansäuer, A.), s. 121-189 ISBN 978-3-642-28122-8. - (Topic in Current Chemistry. 320) R&D Projects: GA ČR GA203/09/1936 Institutional research plan: CEZ:AV0Z40550506 Keywords : catalysis * cross-coupling * cyclization * electron transfer * radicals * transition metal s Subject RIV: CC - Organic Chemistry

  14. Radicals in Transition Metal Catalyzed Reactions? Transition Metal Catalyzed Radical Reactions? - A Fruitful Interplay Anyway. Part 2. Radical Catalysis by Group 8 to Group 9 Elements

    Czech Academy of Sciences Publication Activity Database

    Jahn, Ullrich

    Heidelberg : Springer, 2012 - (Heinrich, M.; Gansäuer, A.), s. 191-322 ISBN 978-3-642-28122-8. - (Topic in Current Chemistry. 320) R&D Projects: GA ČR GA203/09/1936 Institutional research plan: CEZ:AV0Z40550506 Keywords : catalysis * cross-coupling * cyclization * electron transfer * radicals * transition metals * addition Subject RIV: CC - Organic Chemistry

  15. Radicals in Transition Metal Catalyzed Reactions? Transition Metal Catalyzed Radical Reactions?: A Fruitful Interplay Anyway. Part 3. Catalysis by Group 10 to Group 11 Elements and Bimetallic Catalysis

    Czech Academy of Sciences Publication Activity Database

    Jahn, Ullrich

    Heidelberg : Springer, 2012 - (Heinrich, M.; Gansäuer, A.), s. 323-452 ISBN 978-3-642-28122-8. - (Topic in Current Chemistry. 320) R&D Projects: GA ČR GA203/09/1936 Institutional research plan: CEZ:AV0Z40550506 Keywords : catalysis * cross-coupling * cyclization * electron transfer * radicals * transition metals * addition Subject RIV: CC - Organic Chemistry

  16. Second-Row Transition-Metal Doping of (ZniSi), i = 12, 16 Nanoclusters: Structural and Magnetic Properties

    OpenAIRE

    Elisa Jimenez-Izal; Matxain, Jon M.; Mario Piris; Ugalde, Jesus M

    2013-01-01

    TM@ZniSi nanoclusters have been characterized by means of the Density Functional Theory, in which Transition Metal (TM) stands from Y to Cd, and i = 12 and 16. These two nanoclusters have been chosen owing to their highly spheroidal shape which allow for favored endohedral structures as compared to other nanoclusters. Doping with TM is chosen due to their magnetic properties. In similar cluster-assembled materials, these magnetic properties are related to the Transition Metal-Transition Metal...

  17. Effective modification of MgO with surface transition metal oxides for NF3 decomposition

    Institute of Scientific and Technical Information of China (English)

    Yanan Wang; Xiufeng Xu; Pei Sheng; Hongguang Li; Tingting Wang; Youfen Huang; Fangshu Liu

    2011-01-01

    NF3 decomposition over transition metal oxides coated MgO reagents in the absence of water is investigated.The results show that NF3 can be decomposed completely over pure MgO but the time of NF3 steady full conversion kept as short as 80 min,while the reactivities of coated MgO reagents were remarkably enhanced by transition metal oxides,for example the time of NF3 complete conversion over 12%Fe/MgO extended to 380 min.It is suggested that not only an increase in surface area but also a significant enhancement in the fluorination of MgO substrate caused by the surface transition metal oxides result in an improved reactivity of coated MgO reagents for NF3 decomposition.

  18. Branched chain mechanism of the decomposition of transition metal methyl derivatives

    International Nuclear Information System (INIS)

    Data on the thermal and photodecomposition of transition metal methyl derivatives are analyzed. Generalized kinetic model of the process is suggested. It is customary that the main acts of thermal and photodecomposition of transition metal methyl derivatives are homolysis of Me-C bonds, reactions of forming methyl radicals with nondecomposed Me-CH3 groups, decomposition intermediate Me-CH2. radicals with formation of methylene biradical and its following reactions with nondecomposed groups Me-CH3, Me-CH2-Me and Me3CH and solvent. It is shown that the suggested kinetic model allows to explain quantitatively the peculiarities of decomposition of transition metal methyl derivatives and composition of forming products. (author)

  19. Theoretical Investigation of Nonlinear Optical Properties of Organic and Transition Metal Hybrid Azobenzene Dendrimers

    Institute of Scientific and Technical Information of China (English)

    LIU Cai-Ping; LIU Ping; WU Ke-Chen

    2008-01-01

    In this work, we report a theoretical exploration of the responses of organic azo-benzene dendrimers. The polarizabilities, the first and second hyperpolarizabilities of the azobenzene monomers (GO), and the first, second and third generation (G1, G2 and G3, respectively) are investigated by semi-empirical methods. The calculated results show that the nonlinear optical (NLO)properties of these organic dendrimers are mainly determined by the azobenzene chromospheres.Additionally, the values of β and γ increase almost in proportion to the number of chromophores. On the other hand, two types of transition metal hybrid azobenzene dendrimers (core-hybrid and branch-end hybrid according to the sites combined with transition metals) are simulated and discussed in detail in the framework of time-dependent density functional theory (TDDFT). The calculated results reveal that the NLO responses of these metal dendrimers distinctly varied as a result of altering the charge transfer transition scale and the excitation energies.

  20. Local electronic structure and magnetic properties of 3d transition metal doped GaAs

    Institute of Scientific and Technical Information of China (English)

    LIN He; DUAN HaiMing

    2008-01-01

    The local electronic structure and magnetic properties of GaAs doped with 3d transition metal (Sc, Ti, V, Cr, Mn, Fe, Co, Ni) were studied by using discrete varia-tional method (DVM) based on density functional theory. The calculated result in-dicated that the magnetic moment of transition metal increases first and then de-creases, and reaches the maximum value when Mn is doped into GaAs. In the case of Mn concentration of 1.4%, the magnetic moment of Mn is in good agreement with the experimental result. The coupling between impure atoms in the system with two impure atoms was found to have obvious variation. For different transition metal, the coupling between the impure atom and the nearest neighbor As also has dif-ferent variation.

  1. Prebiotic coordination chemistry: The potential role of transition-metal complexes in the chemical evolution

    Science.gov (United States)

    Beck, M.

    1979-01-01

    In approaching the extremely involved and complex problem of the origin of life, consideration of the coordination chemistry appeared not only as a possibility but as a necessity. The first model experiments appear to be promising because of prebiotic-type synthesis by means of transition-metal complexes. It is especially significant that in some instances various types of vitally important substances (nucleic bases, amino acids) are formed simultaneously. There is ground to hope that systematic studies in this field will clarify the role of transition-metal complexes in the organizatorial phase of chemical evolution. It is obvious that researchers working in the fields of the chemistry of cyano and carbonyl complexes, and of the catalytic effect of transition-metal complexes are best suited to study these aspects of the attractive and interesting problem of the origin of life.

  2. Using a Semiconductor-to-Metal Transition to Control Optical Transmission through Subwavelength Hole Arrays

    Directory of Open Access Journals (Sweden)

    R. F. Haglund Jr.

    2008-04-01

    Full Text Available We describe a simple configuration in which the extraordinary optical transmission effect through subwavelength hole arrays in noble-metal films can be switched by the semiconductor-to-metal transition in an underlying thin film of vanadium dioxide. In these experiments, the transition is brought about by thermal heating of the bilayer film. The surprising reverse hysteretic behavior of the transmission through the subwavelength holes in the vanadium oxide suggest that this modulation is accomplished by a dielectric-matching condition rather than plasmon coupling through the bilayer film. The results of this switching, including the wavelength dependence, are qualitatively reproduced by a transfer matrix model. The prospects for effecting a similar modulation on a much faster time scale by using ultrafast laser pulses to trigger the semiconductor-to-metal transition are also discussed.

  3. Fabrication of carbon nanotube films from alkyne-transition metal complexes

    Science.gov (United States)

    Iyer, Vivekanantan S.; Vollhardt, K. Peter C.

    2007-08-28

    A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between 400-800.degree. C. and more particularly 550-700.degree. C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.

  4. Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers.

    Science.gov (United States)

    Li, Wenbin; Li, Ju

    2016-01-01

    Monolayers of transition metal dichalcogenides can exist in several structural polymorphs, including 2H, 1T and 1T'. The low-symmetry 1T' phase has three orientation variants, resulting from the three equivalent directions of Peierls distortion in the parental 1T phase. Using first-principles calculations, we predict that mechanical strain can switch the relative thermodynamic stability between the orientation variants of the 1T' phase. We find that such strain-induced variant switching only requires a few percent elastic strain, which is eminently achievable experimentally with transition metal dichalcogenide monolayers. Calculations indicate that the transformation barrier associated with such variant switching is small (<0.2 eV per chemical formula unit), suggesting that strain-induced variant switching can happen under laboratory conditions. Monolayers of transition metal dichalcogenides with 1T' structure therefore have the potential to be ferroelastic and shape memory materials with interesting domain physics. PMID:26906152

  5. Influence of the inert and active ion bombardment on structure of the transition metal thin films

    CERN Document Server

    Blazhevich, S; Martynov, I; Neklyudov, I

    2002-01-01

    The results of the experimental research of the inert (He, Ne, Ar, Kr, Xe) and active (O, N) ion impact on the transition metal structure are presented. Thin high-purity (99.999 at.%) films of nickel, chrome and iron were used in the experiment. The bombardment was realized under room temperature at high vacuum (P<1x10 sup - sup 7 Pa) by a separated ion beam of 10-10 sup 3 keV. As a main result of the experiment, the full absence of crystal matrix changes was ascertained for all the transition metals irradiated by inert gas ions. The chemical nature of the crystal structure changes observed in transition metals being under active ion bombardment was found out too.

  6. Metal-insulator transition of 2d electron gas in a random magnetic field

    CERN Document Server

    Wang, X R; Liu, D Z

    1999-01-01

    We study the metal-insulator transition of a two-dimensional electron gas in the presence of a random magnetic field from the localization property. The localization length is directly calculated using a transfer matrix technique and finite size scaling analysis. We argue that there is a metal-insulator transition in such a system and show strong numerical evidence that the system undergoes a disorder driven Kosterlitz-Thouless type metal-insulator transition. We will also discuss a mean field theory which maps the random field system into a two-dimensional XY-model. The vortex and antivortex excitations in the XY-model correspond to two different kinds of magnetic domains in the random field system.

  7. Spin-state transition induced half metallicity in a cobaltate from first principles

    Science.gov (United States)

    Ou, Xuedong; Fan, Fengren; Li, Zhengwei; Wang, Hongbo; Wu, Hua

    2016-02-01

    Half metal is a promising spintronic material. Here, we explore, using first principles calculations, a spin-state transition induced half metallicity in a layered cobaltate via a physical or chemical pressure. Our exemplary first principles study shows that the layered cobaltate Sr2CoO3F would undergo a transition, under a pressure of 5.4 GPa, from a high-spin antiferromagnetic insulator to an intermediate-spin ferromagnetic half-metal. The former phase is associated with a superexchange in a Mott insulator, and the latter one is due to a broad band formation and a kinetic energy gain of the partially occupied eg orbital. Note that the above transition could also be induced by a chemical pressure via doping in (Sr1-xCax)2CoO3F (x > 0.3). This work suggests that a cobaltate would be of a particular interest if stabilized into an intermediate-spin state.

  8. Analysis on insulator–metal transition in yttrium doped LSMO from electron density distribution

    Indian Academy of Sciences (India)

    S Israel; S Saravana Kumar; R Renuretson; R A J R Sheeba; R Saravanan

    2012-02-01

    Yttrium doped LSMO (La1−SrMnO3) was prepared using sol–gel technique and analysed for the insulator–metal transition fromcharge density variation in the unit cell with respect to different stoichiometric inclusion of yttrium. X-ray powder diffraction profiles of the samples were obtained and the well known Rietveld method and a versatile tool called maximum entropy method (MEM) were used for structural and profile refinement. The charge density in the unit cell was constructed using refined structure factors and was analysed. The charge ordering taking place in the insulator–metal transition was investigated and quantified. The insulator–metal transition was found to occur when 20% of La/Sr atoms were replaced by yttrium. The changes in the charge environment have also been analysed.

  9. Global transcriptome and deletome profiles of yeast exposed to transition metals.

    Directory of Open Access Journals (Sweden)

    Yong Hwan Jin

    2008-04-01

    Full Text Available A variety of pathologies are associated with exposure to supraphysiological concentrations of essential metals and to non-essential metals and metalloids. The molecular mechanisms linking metal exposure to human pathologies have not been clearly defined. To address these gaps in our understanding of the molecular biology of transition metals, the genomic effects of exposure to Group IB (copper, silver, IIB (zinc, cadmium, mercury, VIA (chromium, and VB (arsenic elements on the yeast Saccharomyces cerevisiae were examined. Two comprehensive sets of metal-responsive genomic profiles were generated following exposure to equi-toxic concentrations of metal: one that provides information on the transcriptional changes associated with metal exposure (transcriptome, and a second that provides information on the relationship between the expression of approximately 4,700 non-essential genes and sensitivity to metal exposure (deletome. Approximately 22% of the genome was affected by exposure to at least one metal. Principal component and cluster analyses suggest that the chemical properties of the metal are major determinants in defining the expression profile. Furthermore, cells may have developed common or convergent regulatory mechanisms to accommodate metal exposure. The transcriptome and deletome had 22 genes in common, however, comparison between Gene Ontology biological processes for the two gene sets revealed that metal stress adaptation and detoxification categories were commonly enriched. Analysis of the transcriptome and deletome identified several evolutionarily conserved, signal transduction pathways that may be involved in regulating the responses to metal exposure. In this study, we identified genes and cognate signaling pathways that respond to exposure to essential and non-essential metals. In addition, genes that are essential for survival in the presence of these metals were identified. This information will contribute to our

  10. A numerical study of crack initiation in a bcc iron system based on dynamic bifurcation theory

    International Nuclear Information System (INIS)

    Crack initiation under dynamic loading conditions is studied under the framework of dynamic bifurcation theory. An atomistic model for BCC iron is considered to explicitly take into account the detailed molecular interactions. To understand the strain-rate dependence of the crack initiation process, we first obtain the bifurcation diagram from a computational procedure using continuation methods. The stability transition associated with a crack initiation, as well as the connection to the bifurcation diagram, is studied by comparing direct numerical results to the dynamic bifurcation theory [R. Haberman, SIAM J. Appl. Math. 37, 69–106 (1979)].

  11. A numerical study of crack initiation in a bcc iron system based on dynamic bifurcation theory

    Science.gov (United States)

    Li, Xiantao

    2014-10-01

    Crack initiation under dynamic loading conditions is studied under the framework of dynamic bifurcation theory. An atomistic model for BCC iron is considered to explicitly take into account the detailed molecular interactions. To understand the strain-rate dependence of the crack initiation process, we first obtain the bifurcation diagram from a computational procedure using continuation methods. The stability transition associated with a crack initiation, as well as the connection to the bifurcation diagram, is studied by comparing direct numerical results to the dynamic bifurcation theory [R. Haberman, SIAM J. Appl. Math. 37, 69-106 (1979)].

  12. A numerical study of crack initiation in a bcc iron system based on dynamic bifurcation theory

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiantao, E-mail: xli@math.psu.edu [Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-10-28

    Crack initiation under dynamic loading conditions is studied under the framework of dynamic bifurcation theory. An atomistic model for BCC iron is considered to explicitly take into account the detailed molecular interactions. To understand the strain-rate dependence of the crack initiation process, we first obtain the bifurcation diagram from a computational procedure using continuation methods. The stability transition associated with a crack initiation, as well as the connection to the bifurcation diagram, is studied by comparing direct numerical results to the dynamic bifurcation theory [R. Haberman, SIAM J. Appl. Math. 37, 69–106 (1979)].

  13. Structure, bonding, and catalytic activity of monodisperse, transition-metal-substituted CeO2 nanoparticles.

    Science.gov (United States)

    Elias, Joseph S; Risch, Marcel; Giordano, Livia; Mansour, Azzam N; Shao-Horn, Yang

    2014-12-10

    We present a simple and generalizable synthetic route toward phase-pure, monodisperse transition-metal-substituted ceria nanoparticles (M0.1Ce0.9O2-x, M = Mn, Fe, Co, Ni, Cu). The solution-based pyrolysis of a series of heterobimetallic Schiff base complexes ensures a rigorous control of the size, morphology and composition of 3 nm M0.1Ce0.9O2-x crystallites for CO oxidation catalysis and other applications. X-ray absorption spectroscopy confirms the dispersion of aliovalent (M(3+) and M(2+)) transition metal ions into the ceria matrix without the formation of any bulk transition metal oxide phases, while steady-state CO oxidation catalysis reveals an order of magnitude increase in catalytic activity with copper substitution. Density functional calculations of model slabs of these compounds confirm the stabilization of M(3+) and M(2+) in the lattice of CeO2. These results highlight the role of the host CeO2 lattice in stabilizing high oxidation states of aliovalent transition metal dopants that ordinarily would be intractable, such as Cu(3+), as well as demonstrating a rational approach to catalyst design. The current work demonstrates, for the first time, a generalizable approach for the preparation of transition-metal-substituted CeO2 for a broad range of transition metals with unparalleled synthetic control and illustrates that Cu(3+) is implicated in the mechanism for CO oxidation on CuO-CeO2 catalysts. PMID:25406101

  14. Correlated structural and electronic phase transformations in transition metal chalcogenide under high pressure

    Science.gov (United States)

    Li, Chunyu; Ke, Feng; Hu, Qingyang; Yu, Zhenhai; Zhao, Jinggeng; Chen, Zhiqiang; Yan, Hao

    2016-04-01

    Here, we report comprehensive studies on the high-pressure structural and electrical transport properties of the layered transition metal chalcogenide (Cr2S3) up to 36.3 GPa. A structural phase transition was observed in the rhombohedral Cr2S3 near 16.5 GPa by the synchrotron angle dispersive X-ray diffraction measurement using a diamond anvil cell. Through in situ resistance measurement, the electric resistance value was detected to decrease by an order of three over the pressure range of 7-15 GPa coincided with the structural phase transition. Measurements on the temperature dependence of resistivity indicate that it is a semiconductor-to-metal transition in nature. The results were also confirmed by the electronic energy band calculations. Above results may shed a light on optimizing the performance of Cr2S3 based applications under extreme conditions.

  15. Raman scattering in transition metal compounds: Titanium and compounds of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.; Ederer, D.L.; Shu, T. [Tulane Univ., New Orleans, LA (United States)] [and others

    1997-04-01

    The transition metal compounds form a very interesting and important set of materials. The diversity arises from the many states of ionization the transition elements may take when forming compounds. This variety provides ample opportunity for a large class of materials to have a vast range of electronic and magnetic properties. The x-ray spectroscopy of the transition elements is especially interesting because they have unfilled d bands that are at the bottom of the conduction band with atomic like structure. This group embarked on the systematic study of transition metal sulfides and oxides. As an example of the type of spectra observed in some of these compounds they have chosen to showcase the L{sub II, III} emission and Raman scattering in some titanium compounds obtained by photon excitation.

  16. Performance of a 'Transitioned' Infiltration Basin Part 1: TSS, Metals, and Chloride Removals.

    Science.gov (United States)

    Natarajan, Poornima; Davis, Allen P

    2015-09-01

    The water quality performance of a 'failed' stormwater infiltration basin that has 'transitioned' to a wetpond/wetland has been evaluated over a three-year period. Total suspended solids, heavy metals, and chloride in highway runoff and discharge from the transitioned basin were measured during 38 storm events. The transitioned basin provided significant reductions in TSS Event Mean Concentrations (EMCs) and mass in the runoff. Reductions in metal EMCs generally occurred. Chloride followed a seasonal cycle of high loading and mass export during colder periods, and gradual reductions in both EMCs and mass during other periods. The cumulative mass reductions were 89% TSS, 73% copper, 63% lead, 55% zinc, and 45% chloride for the study period. Combined with the dry-weather water quality in the transitioned basin, the mechanisms of pollutant removal were identified as volume reduction, sedimentation, adsorption, and dilution. The presence of wetpond/wetland features, including hydrophytic vegetatioņ enhanced the pollutant removal processes. PMID:26182408

  17. Review of thermodinamic and mechanical properties of hydrogen-transition metal systems

    International Nuclear Information System (INIS)

    A large body of fundamental and empirical knowledge has been acquired during many years of research concerning the interactions between hydrogen and metals, the location of hydrogen in metal structures, its mobility in metals and its influence on mechanical properties of metals. Much progress has been made in the understanding of related phenomena, and various theories have been proposed, but considerable disagreement still exist about basic mechanisms involved. The growing interest in these subjects and their important role in science and technology are well documented by many reviews and symposia. A general survey of these topics with reference to experimental results and theories related to thermodynamic and mechanical properties of hydrogen-transition metal systems, such as H-Pd, H-Ti, H-Fe etc. is given in the present review. Special emphasis is given to hydrogen embrittlement of metals

  18. Mercury Induced by Pressure to act as a Transition Metal in Mercury Fluorides

    Science.gov (United States)

    Botana, Jorge; Wang, Xiaoli; Hou, Chunju; Yan, Dadong; Lin, Haiqing; Ma, Yanming; Miao, Mao-Sheng

    The question of whether Hg is a transition metal remains open for stable solids. In our work we propose that high-pressure techniques will help prepare unusual oxidation states of Hg in Hg-F compounds. By means of ab initio calculations and an advanced structure-search algorithm we find that under high pressure charge is transferred from the Hg d orbitals to the F, and becomes a transition metal. HgF3 and HgF4 have been found to be stable compounds at high pressure. HgF4 consists of planar molecules, a typical geometry for d8 metallic centers. HgF3 is an example of metallic and ferromagnetic compound, with an electronic structure analogous to transparent conductors due to the Hg d9 configuration.

  19. Spin-polarized scanning tunneling microscopy of magnetic nanostructures at the example of bcc-Co/Fe(110), Fe/Mo(110), and copper phthalocyanine/Fe(1110); Spinpolarisierte Rastertunnelmikroskopie magnetischer Nanostrukturen am Beispiel von bcc-Co/Fe(110), Fe/Mo(110) und Kupfer-Phthalocyanin/Fe(110)

    Energy Technology Data Exchange (ETDEWEB)

    Methfessel, Torsten

    2010-12-09

    This thesis provides an introduction into the technique of spin-polarized scanning tunnelling microscopy and spectroscopy as an experimental method for the investigation of magnetic nanostructures. Experimental results for the spin polarized electronic structure depending on the crystal structure of ultrathin Co layers, and depending on the direction of the magnetization for ultrathin Fe layers are presented. High-resolution measurements show the position-dependent spin polarization on a single copper-phthalocyanine molecule deposited on a ferromagnetic surface. Co was deposited by molecular beam epitaxy on the (110) surface of the bodycentered cubic metals Cr and Fe. In contrast to previous reports in the literature only two layers of Co can be stabilized in the body-centered cubic (bcc) structure. The bcc-Co films on the Fe(110) surface show no signs of epitaxial distortions. Thicker layers reconstruct into a closed-packed structure (hcp / fcc). The bcc structure increases the spin-polarization of Co to P=62 % in comparison to hcp-Co (P=45 %). The temperature-dependent spin-reorientation of ultrathin Fe/Mo(110) films was investigated by spin-polarized spectroscopy. A reorientation of the magnetic easy axis from the [110] direction along the surface normal to the in-plane [001] axis is observed at T (13.2{+-}0.5) K. This process can be identified as a discontinuous reorientation transition, revealing two simultaneous minima of the free energy in a certain temperature range. The electronic structure of mono- and double-layer Fe/Mo(110) shows a variation with the reorientation of the magnetic easy axis and with the direction of the magnetization. The investigation of the spin-polarized charge transport through a copper-phthalocyanine molecule on the Fe/Mo(110) surface provides an essential contribution to the understanding of spin-transport at the interface between metal and organic molecule. Due to the interaction with the surface of the metal the HOMO-LUMO energy

  20. Hydrogen bond and protonation in carbonyl nitrosyl complexes of transition metals

    International Nuclear Information System (INIS)

    Infrared spectroscopy was used to study interaction of CoM(CO)2(NO) π-complexes, where M=Cr, Mo, Cp=η5-C5H5, with perfluorotert butanol (PFTB) and HCl in liquid Xe solutions at low temperatures. It is shown that mentioned complexes can form earlier unknown type of hydrogen bond with PFTB and HCl by oxygen atom of nitrosyl group of transition metal atom. Protonation of complexes dissolved in liquid Xe by transition metal atom during their interaction with HCl was reveald

  1. Inverse correlation between cohesive energy and thermal expansion coefficient in liquid transition metal alloys

    International Nuclear Information System (INIS)

    The volume expansion coefficients (α) of twenty-five glass-forming transition metal alloy liquids, measured using the electrostatic levitation technique, are reported. An inverse correlation between α and the cohesive energy is found. The predicted values of α from this relationship agree reasonably well with the published data for thirty other transition metal and alloy liquids; some disagreement was found for a few alloys containing significant amounts of group III and IV elements. A theoretical argument for this empirical relationship is presented. (paper)

  2. Band gap engineering of early transition-metal-doped anatase TiO₂: first principles calculations.

    Science.gov (United States)

    Li, C; Zhao, Y F; Gong, Y Y; Wang, T; Sun, C Q

    2014-10-21

    The thermal stability and electronic structures of anatase TiO2 doped with early transition metals (TM) (group III-B = Sc, Y and La; group IV-B = Zr and Hf; group V-B = V, Nb and Ta) have been studied using first principles calculations. It was found that all doped systems are thermodynamically stable, and their band gaps were reduced by 1-1.3 eV compared to pure TiO2. Doping with transition metals affects the strength of the hybrid orbital of TM-O bonding, and the band gap increases approximately linearly with the MP value of TM-O bonding. PMID:25183457

  3. Frontiers of 4d- and 5d-transition metal oxides

    CERN Document Server

    Cao, Gang

    2013-01-01

    This book is aimed at advanced undergraduates, graduate students and other researchers who possess an introductory background in materials physics and/or chemistry, and an interest in the physical and chemical properties of novel materials, especially transition metal oxides.New materials often exhibit novel phenomena of great fundamental and technological importance. Contributing authors review the structural, physical and chemical properties of notable 4d- and 5d-transition metal oxides discovered over the last 10 years. These materials exhibit extraordinary physical properties that differ s

  4. Trends in the Hydrodeoxygenation Activity and Selectivity of Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Lausche, Adam C.; Falsig, Hanne; Jensen, Anker Degn;

    2014-01-01

    This paper reports the use of a combination of density functional theory and microkinetic modelling to establish trends in the hydrodeoxygenation rates and selectivites of transition metal surfaces. Biomass and biomass-derived chemicals often contain large fractions of oxygenates. Removal of the ....... Furthermore, the insights discussed in this paper present a framework for designing catalytic materials for facilitating these conversions efficiently.......This paper reports the use of a combination of density functional theory and microkinetic modelling to establish trends in the hydrodeoxygenation rates and selectivites of transition metal surfaces. Biomass and biomass-derived chemicals often contain large fractions of oxygenates. Removal of the...

  5. An inverse-scattering approach to the physics of transition metals

    International Nuclear Information System (INIS)

    A method is developed for the deduction of a transition metal ion potential from the knowledge of the phase-shift ηl(k). The method used is based on the distorted plane-wave scattering approximation for the deduction of nonsingular potentials from scattering phase shifts in an inverse-scattering approach. The resulting electron-ion potential obtained is a finite Dirichlet series sum of short-range exponential functions. The Fourier transform of the potential is obtained for applications in the area of transition metal solid-state physics

  6. Magnetism of 3d transition-metal monolayers on Rh(100)

    OpenAIRE

    A. Al-Zubi; Bihlmayer, G.; Blügel, S.

    2011-01-01

    We employ the full-potential linearized augmented plane-wave method to report a systematic density-functional theory study of the magnetic properties of the 3d transition-metal (V, Cr, Mn, Fe, Co, and Ni) monolayers deposited on the Rh(100) substrate. We find that all monolayer films are magnetic. The size of the local magnetic moments across the transition-metal series follows Hund's rule with a maximum magnetic moment of 3.77 mu(B) for Mn. The largest induced magnetic moment of about 0.46 m...

  7. Electron spectroscopic investigation of metal-insulator transition in Ce1-SrTiO3

    Indian Academy of Sciences (India)

    U Manju; S R Krishnakumar; Sugata Ray; S Raj; M Onoda; C Carbone; D D Sarma

    2003-10-01

    We have carried out detailed electron spectroscopic investigation of Ce1-SrTiO3 exhibiting insulator-metal transition with . Core level X-ray photoelectron spectra of Ce 3 as well as resonant photoemission spectra obtained at the Ce 4 → 4 resonant absorption threshold establish Ce as being in the trivalent state throughout the series. Using the `off-resonance’ condition for Ce 4 states, we obtain the Ti 3 dominated spectral features close to , exhibiting clear signatures of coherent and incoherent peaks. We discuss the implications of our findings in relation to the metal-insulator transition observed in this series of compounds.

  8. Soft X-Ray Spectroscopic Study of Fullerene Based Transition-Metal Compounds and Related Systems

    OpenAIRE

    Qian, Limin

    2001-01-01

    This thesis addresses the electronic and geometric structures of fullerene based transition-metal compounds and other related systems. The formation of TixC60, VxC60 and NbxC60 compounds has been examined by X-ray photoelectron, soft X-ray absorption and emission and spectroscopy techniques, including resonant inelastic X-ray scattering (RIXS). The symmetry and character of the chemical bond of transition metal-fulleride has been determined. A related study of single-walled carbon nanotubes i...

  9. Investigation of Ternary Transition-Metal Nitride Systems by Reactive Cosputtering

    OpenAIRE

    van Dover, R. B.; Hessen, B.; Werder, D.; Chen, C. -H.; Felder, R.J.

    1993-01-01

    A reactive dc cosputtering technique has been used to evaluate compound formation in bimetallic transition-metal nitride systems. A wide range in M-M’ composition can be studied in a single deposition run, and the method is applicable to nonalloying metal combinations. Using this technique, it was found that δ-NbN and YN form a continuous (Nb,Y)N solid solution of the NaCl type, in which the superconducting transition temperature varies with the Nb:Y ratio. In the Gd-Cr-N system only limited ...

  10. Low-frequency impedance in thin films near the metal-semiconductor phase transition

    Science.gov (United States)

    Kompan, M. E.; Klimov, V. A.; Nikitin, S. E.; Kompan, F. M.; Goffman, V. G.; Terukov, E. I.

    2015-09-01

    The impedance of thin VO2 films at temperatures near the metal-semiconductor phase transition has been studied. It has been found that, in the low-temperature region, there is an abrupt change in the impedance. It has been demonstrated that the nature of this phenomenon is connected with thermoinertial processes in the film. From the experimental data, the heat conductivity of the film/substrate transition layer has been evaluated.

  11. d-Wave to s-wave to normal metal transitions in disordered superconductors

    International Nuclear Information System (INIS)

    We study suppression of superconductivity by disorder in d-wave superconductors, and predict the existence of (at least) two sequential low-temperature transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition. This is a universal property of the system which is independent of the sign of the interaction constant in the s-channel

  12. d-Wave to s-wave to normal metal transitions in disordered superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, B. [Department of Physics, University of Washington, Seattle, WA 98195 (United States)], E-mail: spivak@u.washington.edu; Oreto, P.; Kivelson, S.A. [Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2009-03-01

    We study suppression of superconductivity by disorder in d-wave superconductors, and predict the existence of (at least) two sequential low-temperature transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition. This is a universal property of the system which is independent of the sign of the interaction constant in the s-channel.

  13. Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition

    OpenAIRE

    Rampelberg, Geert; Schaekers, Marc; Martens, Koen; Xie, Qi; Deduytsche, Davy; De Schutter, Bob; Blasco, Nicolas; Kittl, Jorge; Detavernier, Christophe

    2011-01-01

    Vanadium dioxide (VO2) has the interesting feature that it undergoes a reversible semiconductor-metal transition (SMT) when the temperature is varied near its transition temperature at 68°C.1 The variation in optical constants makes VO2 useful as a coating material for e.g. thermochromic windows,2 while the associated change in resistivity could be interesting for applications in microelectronics, e.g. for resistive switches and memories.3 Due to aggressive scaling and increasing integration ...

  14. Separating electric field and thermal effects across the metal-insulator transition in vanadium oxide nanobeams

    OpenAIRE

    Stabile, Adam A.; Singh, Sujay K.; Wu, Tai-Lung; Whittaker, Luisa; Banerjee, Sarbajit; Sambandamurthy, G.

    2014-01-01

    We present results from an experimental study of the equilibrium and non-equilibrium transport properties of vanadium oxide nanobeams near the metal-insulator transition (MIT). Application of a large electric field in the insulating phase across the nanobeams produces an abrupt MIT and the individual roles of thermal and non-thermal effects in driving the transition are studied. Transport measurements at temperatures ($T$) far below the critical temperature ($T_c$) of MIT, in several nanoscal...

  15. Transition absorption as a mechanism of surface photoelectron emission from metals

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Protsenko, Igor E.; Ikhsanov, Renat Sh; Smetanin, Igor V.; Babicheva, Viktoriia; Uskov, Alexander

    2015-01-01

    Transition absorption of a photon by an electron passingthrough a boundary between two media with different permit-tivities is described both classically and quantum mechani-cally. Transition absorption is shown to make a substantialcontribution to photoelectron emission at a metal/semicon-ductor....../semicon-ductor interface in nanoplasmonic systems, and is put forth asa possible microscopic mechanism of the surface photoelec-tric effect in photodetectors and solar cells containing plas-monic nanoparticles....

  16. The origin of increase of damping in transition metals with rare earth impurities

    OpenAIRE

    Hohlfeld, A. Rebei J.

    2006-01-01

    The damping due to rare earth impurities in transition metals is discussed in the low concentration limit. It is shown that the increase in damping is mainly due to the coupling of the orbital moments of the rare earth impurities and the conduction $p$-electrons. It is shown that an itinerant picture for the host transition ions is needed to reproduce the observed dependence of the damping on the total angular moment of the rare earths.

  17. Colorimetric and fluorimetric assays to quantitate micromolar concentrations of transition metals.

    Science.gov (United States)

    McCall, K A; Fierke, C A

    2000-09-10

    Transition metal ions, although maintained at low concentrations, play diverse important roles in many biological processes. Two assays useful for the rapid quantification of a range of first-row transition metal ions have been developed. The colorimetric assay extends the 4-(2-pyridylazo)resorcinol assay of Hunt et al. (J. Biol. Chem. 255, 14793 (1984)) to measure nanomole quantities of Co(2+), Ni(2+), and Cu(2+) as well as Zn(2+). The fluorimetric assay takes advantage of the coordination of a number of metal ions (Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+)) by Fura-2 and can also be used to measure nanomole quantities of these ions. The assays developed here have the advantage of not requiring the extensive sample preparation necessary for other methodologies, such as atomic absorption spectroscopy and inductively coupled plasma emission spectroscopy (ICPES), while being comparable in accuracy to the detection limits of ICPES for the first-row transition metal ions. To demonstrate the effectiveness of these assays, we determined the affinity of carbonic anhydrase II (CA II), a prototypical zinc enzyme, for Ni(2+) and Cd(2+). These data indicate that CA II binds transition metals with high affinity and is much more selective for Zn(2+) over Ni(2+) or Cd(2+) than most small-molecule chelators or other metalloenzymes. PMID:10964414

  18. Phase transitions and adsorbate restructuring at metal surface

    CERN Document Server

    King, DA

    1994-01-01

    The objective in initiating this series in 1980 was to provide an in-depth review of advances made in the understanding key aspects of surface chemistry and physics through the application of new techniques to the study of well-defined surfaces. Since then the field of surface science has greatly matured, and further important techniques, particularly scanning probe microscopies, have been successfully assimilated into the applications armoury of the surface scientist. The present volume is a series of timely reviews by many of the current experts in the field of phase transitions an

  19. Hot electron spin attenuation lengths of bcc Fe34Co66-Room temperature Magnetocurrent of 1200%

    International Nuclear Information System (INIS)

    We investigate spin-dependent hot electron transport through metallic epitaxial spin valves by ballistic electron magnetic microscopy (BEMM). By variation of the thickness of one of the ferromagnetic layers we determine the spin dependent attenuation lengths which reflect hot electron transport along the vicinity of the [1 0 0]-axis of the bcc Fe34Co66 lattice. The majority spin attenuation length is more than 6 times larger than that of the minority spins within the measured energy interval of 1.3 up to 2 eV above the Fermi level. Consequently a Magnetocurrent effect exceeding 1200% accompanied by a monotonic bias voltage behavior is observed at room temperature.

  20. Studies on Transition Metal-Quercetin Complexes Using Electrospray Ionization Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Yuanzhen Liu

    2015-05-01

    Full Text Available To systematically study the effects of the number of d electrons of the first transition metal ions (Fe, Co, Ni, Cu and Zn on the formation and stability of metal flavonoid complexes, we took the quercetin/M2+ complex as a model system to investigate the structures and properties of these complexes. Based on considerable structural information obtained through ESI-MSn, all of the first transition metal ions (Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ were found to form different complexes with quercetin, while with the number of chelating flavonoids decreasing along with the reduction of the metal ionic radius. Quercetin forms different complexes with the above metal divalent ions through its 5-OH and 4-carbonyl groups; the complex stability is highly dependent on both the metallic ion and the flavonoid chelator itself. As for the central ion (M2+, when chelated with quercetin to form the complex, the stability of the complex decreased in the following order: Cu2+ > Ni2+ > Co2+ > Fe2+ > Zn2+. With flavonoid: metal stoichiometries at 2:1, the complexes formed between quercetin and metal ions (Fe2+, Ni2+, Co2+ and Zn2+ have the similar fragmentation mechanism, while Cu2+ displayed different fragmentation mechanism due to the concurrent oxidation.